Systematic review of the effectiveness and cost-effectiveness of HealOzone® for the treatment of occlusal pit/fissure caries and root caries

M. Brazzelli, L. McKenzie, S. Fielding, C. Fraser, J. Clarkson, M. Kilonzo and N. Waugh

Feedback
The HTA Programme and the authors would like to know your views about this report. The Correspondence Page on the HTA website (http://www.hta.ac.uk) is a convenient way to publish your comments, or you can send them to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
c/o Direct Mail Works Ltd
4 Oakwood Business Centre
Downley, HAVANT PO9 2NP, UK
Email: orders@hta.ac.uk
Tel: 02392 492 000
Fax: 02392 478 555
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Systematic review of the effectiveness and cost-effectiveness of HealOzone® for the treatment of occlusal pit/fissure caries and root caries

M Brazzelli,¹* L McKenzie,² S Fielding,³ C Fraser,¹ J Clarkson,⁴ M Kilonzo² and N Waugh³

¹ Health Services Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK
² Health Economics Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK
³ Department of Public Health, Institute of Applied Health Sciences, University of Aberdeen, UK
⁴ Dental Health Services Research Unit, MacKenzie Building, Dundee, UK

* Corresponding author. Current affiliation: Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, UK

Declared competing interests of authors: none

Published May 2006

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medical/EMBASE and Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The research findings from the NHS R&D Health Technology Assessment (HTA) Programme directly influence key decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC) who rely on HTA outputs to help raise standards of care. HTA findings also help to improve the quality of the service in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’ that is being developed to improve the evidence of clinical practice throughout the NHS.

The HTA Programme was set up in 1993. Its role is to ensure that high-quality research information on the costs, effectiveness and broader impact of health technologies is produced in the most efficient way for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined to include all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care, rather than settings of care.

The HTA Programme commissions research only on topics where it has identified key gaps in the evidence needed by the NHS. Suggestions for topics are actively sought from people working in the NHS, the public, service-users groups and professional bodies such as Royal Colleges and NHS Trusts.

Research suggestions are carefully considered by panels of independent experts (including service users) whose advice results in a ranked list of recommended research priorities. The HTA Programme then commissions the research team best suited to undertake the work, in the manner most appropriate to find the relevant answers. Some projects may take only months, others need several years to answer the research questions adequately. They may involve synthesising existing evidence or conducting a trial to produce new evidence where none currently exists.

Additionally, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme is able to commission bespoke reports, principally for NICE, but also for other policy customers, such as a National Clinical Director. TARs bring together evidence on key aspects of the use of specific technologies and usually have to be completed within a short time period.

Criteria for inclusion in the HTA monograph series

Reports are published in the HTA monograph series if (1) they have resulted from work commissioned for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this monograph was commissioned and funded by the HTA Programme on behalf of NICE as project number 03/50/01. The protocol was agreed in June 2004. The assessment report began editorial review in June 2005 and was accepted for publication in September 2005. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme, NICE or the Department of Health.

Editor-in-Chief: Professor Tom Walley
Series Editors: Dr Aileen Clarke, Dr Peter Davidson, Dr Chris Hyde, Dr John Powell, Dr Rob Riemsmma and Dr Ken Stein
Managing Editors: Sally Bailey and Sarah Llewellyn Lloyd

ISSN 1366-5278

© Queen’s Printer and Controller of HMSO 2006

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to NCCHTA, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK.

Published by Gray Publishing, Tunbridge Wells, Kent, on behalf of NCCHTA.
Printed on acid-free paper in the UK by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk.
Abstract

Systematic review of the effectiveness and cost-effectiveness of HealOzone® for the treatment of occlusal pit/fissure caries and root caries

M Brazzelli,1* L McKenzie,2 S Fielding,3 C Fraser,1 J Clarkson,4 M Kilonzo2 and N Waugh3

1 Health Services Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK
2 Health Economics Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK
3 Department of Public Health, Institute of Applied Health Sciences, University of Aberdeen, UK
4 Dental Health Services Research Unit, MacKenzie Building, Dundee, UK

* Corresponding author. Current affiliation: Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, UK

Objectives: To assess the effectiveness and cost-effectiveness of HealOzone® (CurOzone USA Inc., Ontario, Canada) for the management of pit and fissure caries, and root caries. The complete HealOzone procedure involves the direct application of ozone gas to the caries lesion on the tooth surface, the use of a remineralising solution immediately after application of ozone and the supply of a ‘patient kit’, which consists of toothpaste, oral rinse and oral spray all containing fluoride.

Data sources: Electronic databases up to May 2004 (except Conference Papers Index, which were searched up to May 2002).

Review methods: A systematic review of the effectiveness of HealOzone for the management of tooth decay was carried out. A systematic review of existing economic evaluations of ozone for dental caries was also planned but no suitable studies were identified. The economic evaluation included in the industry submission was critically appraised and summarised. A Markov model was constructed to explore possible cost-effectiveness aspects of HealOzone in addition to current management of dental caries.

Results: Five full-text reports and five studies published as abstracts met the inclusion criteria. The five full-text reports consisted of two randomised controlled trials (RCTs) assessing the use of HealOzone for the management of primary root caries and two doctoral theses of three unpublished randomised trials assessing the use of HealOzone for the management of occlusal caries. Of the abstracts, four assessed the effects of HealOzone for the management of occlusal caries and one assessed the effects of HealOzone for the management of root caries. Overall, the quality of the studies was modest, with many important methodological aspects not reported (e.g. concealment of allocation, blinding procedures, compliance of patients with home treatment). In particular, there were some concerns about the choice of statistical analyses. In most of the full-text studies analyses were undertaken at lesion level, ignoring the clustering of lesions within patients. The nature of the methodological concerns was sufficient to raise doubts about the validity of the included studies’ findings. A quantitative synthesis of results was deemed inappropriate. On the whole, there is not enough evidence from published RCTs on which to judge the effectiveness of ozone for the management of both occlusal and root caries. The perspective adopted for the study was that of the NHS and Personal Social Services. The analysis, carried out over a 5-year period, indicated that treatment using current management plus HealOzone cost more than current management alone for non-cavitated pit and fissure caries (£40.49 versus £24.78), but cost less for non-cavitated root caries (£14.63 versus £21.45). Given the limitations of the calculations these figures should be regarded as illustrative, not definitive. It was not possible to measure health benefits in terms of quality-adjusted life-years, due to uncertainties around the evidence of clinical effectiveness, and to the fact that the adverse events avoided are transient (e.g. pain from injection of local anaesthetic, fear of the drill). One-way sensitivity analysis was applied to the model. However, owing to the limitations of the economic
analysis, this should be regarded as merely speculative. For non-cavitated pit and fissure caries, the HealOzone option was always more expensive than current management when the probability of cure using the HealOzone option was 70% or lower. For non-cavitated root caries the costs of the HealOzone comparator were lower than those of current management only when cure rates from HealOzone were at least 80%. The costs of current management were higher than those of the HealOzone option when the cure rate for current management was 40% or lower. One-way sensitivity analysis was also performed using similar NHS Statement of Dental Remuneration codes to those that are used in the industry submission. This did not alter the results for non-cavitated pit fissure caries as the discounted net present value of current management remained lower than that of the HealOzone comparator (£22.65 versus £33.39).

Conclusions: Any treatment that preserves teeth and avoids fillings is welcome. However, the current evidence base for HealOzone is insufficient to conclude that it is a cost-effective addition to the management and treatment of occlusal and root caries. To make a decision on whether HealOzone is a cost-effective alternative to current preventive methods for the management of dental caries, further research into its clinical effectiveness is required. Independent RCTs of the effectiveness and cost-effectiveness of HealOzone for the management of occlusal caries and root caries need to be properly conducted with adequate design, outcome measures and methods for statistical analyses.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Aim of the review</td>
<td>1</td>
</tr>
<tr>
<td>2 Background</td>
<td>3</td>
</tr>
<tr>
<td>Dental caries</td>
<td>3</td>
</tr>
<tr>
<td>Current service provision</td>
<td>7</td>
</tr>
<tr>
<td>Description of new intervention</td>
<td>11</td>
</tr>
<tr>
<td>Key questions</td>
<td>12</td>
</tr>
<tr>
<td>3 Effectiveness</td>
<td>13</td>
</tr>
<tr>
<td>Methods for reviewing effectiveness</td>
<td>13</td>
</tr>
<tr>
<td>Results</td>
<td>14</td>
</tr>
<tr>
<td>Discussion of results and conclusions on the evidence for and against the intervention</td>
<td>21</td>
</tr>
<tr>
<td>4 Systematic review of economic evaluations</td>
<td>23</td>
</tr>
<tr>
<td>Methods</td>
<td>23</td>
</tr>
<tr>
<td>Results</td>
<td>23</td>
</tr>
<tr>
<td>Review of industry submission</td>
<td>24</td>
</tr>
<tr>
<td>5 Economic analysis</td>
<td>29</td>
</tr>
<tr>
<td>Methods for economic analysis</td>
<td>29</td>
</tr>
<tr>
<td>Results</td>
<td>33</td>
</tr>
<tr>
<td>Discussion</td>
<td>36</td>
</tr>
<tr>
<td>6 Implications for the NHS</td>
<td>37</td>
</tr>
<tr>
<td>National Service Framework</td>
<td>37</td>
</tr>
<tr>
<td>Health targets</td>
<td>37</td>
</tr>
<tr>
<td>Fair access</td>
<td>37</td>
</tr>
<tr>
<td>Equity issues</td>
<td>37</td>
</tr>
<tr>
<td>Budget implications to the NHS</td>
<td>37</td>
</tr>
<tr>
<td>7 Discussion</td>
<td>41</td>
</tr>
<tr>
<td>Main results</td>
<td>41</td>
</tr>
<tr>
<td>Need for further research</td>
<td>41</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>43</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>Appendix 1 Literature search strategies</td>
<td>51</td>
</tr>
<tr>
<td>Appendix 2 Data extraction form</td>
<td>55</td>
</tr>
<tr>
<td>Appendix 3 Checklist for the quality assessment of randomised controlled trials</td>
<td>59</td>
</tr>
<tr>
<td>Appendix 4 Characteristics of included studies: full-text reports</td>
<td>61</td>
</tr>
<tr>
<td>Appendix 5 Characteristics of included studies: abstracts</td>
<td>71</td>
</tr>
<tr>
<td>Appendix 6 Structure of the economic model</td>
<td>75</td>
</tr>
<tr>
<td>Health Technology Assessment reports</td>
<td>81</td>
</tr>
<tr>
<td>published to date</td>
<td></td>
</tr>
<tr>
<td>Health Technology Assessment Programme</td>
<td>93</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>DFS</td>
<td>decayed and filled surfaces</td>
</tr>
<tr>
<td>DMFS</td>
<td>decayed, missing and filled surfaces</td>
</tr>
<tr>
<td>DMFT</td>
<td>decayed, missing and filled teeth</td>
</tr>
<tr>
<td>ECM</td>
<td>electrical conductance measurement</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GDS</td>
<td>General Dental Services</td>
</tr>
<tr>
<td>IADR</td>
<td>International Association for Dental Research</td>
</tr>
<tr>
<td>ITT</td>
<td>intention-to-treat</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Centre for Health Statistics</td>
</tr>
<tr>
<td>NHANES III</td>
<td>USA National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHS EED</td>
<td>NHS Economic Evaluation Database</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NPV</td>
<td>net present value</td>
</tr>
<tr>
<td>ns</td>
<td>not significant</td>
</tr>
<tr>
<td>NS</td>
<td>not stated</td>
</tr>
<tr>
<td>ORCA</td>
<td>European Organisation for Caries Research</td>
</tr>
<tr>
<td>PRCL</td>
<td>primary root carious lesion</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-years</td>
</tr>
<tr>
<td>QLF</td>
<td>quantitative light-induced fluorescence</td>
</tr>
<tr>
<td>QOTI/FOTI</td>
<td>quantitative fibre-optic transillumination</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDR</td>
<td>NHS Statement of Dental Remuneration</td>
</tr>
<tr>
<td>TACT</td>
<td>tuned aperture computed tomography</td>
</tr>
<tr>
<td>UCD</td>
<td>ultrasound caries detector</td>
</tr>
<tr>
<td>USPHS</td>
<td>US Public Health Service criteria</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case the abbreviation is defined in the figure legend or at the end of the table.
Background

Dental caries is a chronic disease caused by the localised and progressive demineralisation of the hard tissues of the coronal and root surfaces of the teeth. Caries location, development and progression depend on a range of environmental, social and genetic factors, and vary greatly among individuals.

Despite the decline in the prevalence of dental caries observed in the high-income countries during the past few decades as a consequence of the increased availability of fluoride products and improved oral hygiene, dental caries is still a common disease experienced by almost 80% of children by the age of 18 years and by almost 90% of adults.

The current management of early non-cavitated occlusal and root caries, and cavitated root caries, which are still accessible to cleaning, is based on non-operative preventive strategies that include information on oral hygiene, dietary advice, use of topically applied fluorides and application of sealants. For cavitated occlusal caries and cavitated root caries that are not easily accessible to cleaning, restorative interventions are adopted (drilling and filling).

HealOzone® (CurOzone USA Inc., Ontario, Canada) has recently been proposed as a novel method for the treatment of dental caries. It is suggested that HealOzone may reverse, arrest or slow the progression of dental caries. The complete HealOzone procedure involves the direct application of ozone gas to the caries lesion on the tooth surface, the use of a remineralising solution immediately after application of ozone and the supply of a ‘patient kit’, which consists of toothpaste, oral rinse and oral spray all containing fluoride.

Objective

The review aims to assess the effectiveness and cost-effectiveness of HealOzone for the management of pit and fissure caries, and root caries.

Methods

A systematic review of the effectiveness of HealOzone for the management of tooth decay was carried out. A systematic review of existing economic evaluations of ozone for dental caries was also planned but no suitable studies were identified. The economic evaluation included in the industry submission was critically appraised and summarised.

A Markov model was constructed to explore possible cost-effectiveness aspects of HealOzone in addition to current management of dental caries.

Results

Number and quality of studies, and direction of evidence

Five full-text reports and five studies published as abstracts met the inclusion criteria. Of these, only one was published in a refereed journal, but it lacked some study details. The remaining studies were PhD theses, unpublished reports or conference proceedings. The five full-text reports consisted of two randomised controlled trials.
(RCTs) assessing the use of HealOzone for the management of primary root caries and two PhD theses of three unpublished randomised trials assessing the use of HealOzone for the management of occlusal caries. Of the five studies published as abstracts, four assessed the effects of HealOzone for the management of occlusal caries and one the effects of HealOzone for the management of root caries.

Overall, the quality of the studies was modest, with many important methodological aspects not reported (e.g. concealment of allocation, blinding procedures, compliance of patients with home treatment). In particular, there were some concerns about the choice of statistical analyses. In most of the full-text studies analyses were undertaken at lesion level, ignoring the clustering of lesions within patients. The nature of the methodological concerns was sufficient to raise doubts about the validity of the included studies’ findings. A quantitative synthesis of results was deemed inappropriate.

Summary of benefits

Root caries

Two studies (one published and one unpublished) assessing the use of HealOzone for the management of primary non-cavitated root caries reported high success rates for ozone-treated lesions and no significant changes in the control lesions, despite application of topical fluoride. This is puzzling, since topical fluoride is known to be effective. Results of cavitated root lesions were poorly defined and reported in one of these two studies. Cavitated lesions did not seem to benefit from ozone application.

One unpublished study showed that fissure sealants preceded by the application of ozone for the preventive treatment of non-cavitated root lesions were more likely to remain intact (61% versus 42%, p < 0.05).

Pit and fissure caries

One unpublished study did not show any significant benefits of HealOzone for the management of non-cavitated pit and fissure lesions in the permanent dentition. Similarly, a small unpublished pilot study did not show any significant differences between cavitated occlusal lesions treated with or without ozone, apart from an improvement in the hardness and visual clinical indices. In contrast, findings from conference proceedings (which provide little detail for the assessment of their methodological quality and therefore are of little use in systematic reviews) reported very high success rates (from 86.6% to 99% of reversal of caries).

Adding ozone to a fissure sealant did not seem to produce better sealant retention in occlusal lesions extending 2–4 mm into dentine.

Data on the use of HealOzone for the treatment of occlusal lesion in the deciduous dentition were available from only one unpublished study. An overall reduction in clinical severity scores was reported for non-cavitated occlusal lesions in primary molars treated with ozone.

On the whole, there is not enough evidence from published RCTs on which to judge the effectiveness of ozone for the management of both occlusal and root caries.

Costs

The perspective adopted for the study was that of the NHS and Personal Social Services. The analysis, carried out over a 5-year period, indicated that treatment using current management plus HealOzone cost more than current management alone for non-cavitated pit and fissure caries (£40.49 versus £24.78), but cost less for non-cavitated root caries (£14.63 versus £21.45). Given the limitations of the calculations these figures should be regarded as illustrative, not definitive.

Cost per quality-adjusted life-year

It was not possible to measure health benefits in terms of quality-adjusted life-years. This was mainly due to uncertainties around the evidence of clinical effectiveness, and to the fact that the adverse events avoided are transient (e.g. pain from injection of local anaesthetic, fear the drill).

Sensitivity analyses

One-way sensitivity analysis was applied to the model. However, owing to the limitations of the economic analysis, this should be regarded as merely speculative. For non-cavitated pit and fissure caries, the HealOzone option was always more expensive than current management when the probability of cure using the HealOzone option was 70% or lower. For non-cavitated root caries the costs of the HealOzone comparator were lower than those of current management only when cure rates from HealOzone were at least 80%. The costs of current management were higher than those of the HealOzone option when the cure rate for current management was 40% or lower.

One-way sensitivity analysis was also performed using similar NHS Statement of Dental
Remuneration codes to those that are used in the industry submission. This did not alter the results for non-cavitated pit fissure caries as the discounted net present value of current management remained lower than that of the HealOzone comparator (£22.65 versus £33.39).

Conclusions

Any treatment that preserves teeth and avoids fillings is welcome. However, the current evidence base for HealOzone is insufficient to conclude that it is a cost-effective addition to the management and treatment of occlusal and root caries.

Limitations of the calculations

The economic analysis was severely constrained by the uncertainty over clinical effectiveness, and it could be argued that such analysis was inappropriate. It was done merely to illustrate the key factors involved in economic modelling. The long-term effects of HealOzone are unknown and the assumption that reversed caries remains inactive may not be reliable.

Recommendations for research

To make a decision on whether HealOzone is a cost-effective alternative to current preventive methods for the management of dental caries, further research into its clinical effectiveness is required. Independent RCTs of the effectiveness and cost-effectiveness of HealOzone for the management of occlusal caries and root caries need to be properly conducted with adequate design, outcome measures and methods for statistical analyses.
Chapter 1

Aim of the review

The review aims to assess the effectiveness and cost-effectiveness of HealOzone® (CurOzone USA Inc., Ontario, Canada) for the management of both pit and fissure caries, and root caries.
Dental caries

Aetiology, pathology and prognosis

Dental caries (tooth decay) is a chronic disease caused by the localised and progressive demineralisation of the hard tissues of the coronal and root surfaces of the teeth. The demineralisation is caused by the interaction of acid-producing oral microorganisms (in particular Streptococcus mutans, Lactobacillus and Actinomyces species) with dietary carbohydrates (sugar).

Caries occurs when the natural dynamic balance between mineralisation and demineralisation of dental tissues is disrupted. The process begins on the surface of the enamel (outer surface of the tooth; see Figure 1). In enamel caries, the lesion may reverse or arrest by remineralisation. If remineralisation does not occur, the lesion may penetrate the enamel and consequently result in the formation of a cavity, which may progress through the dentine and the pulp of the tooth. In the absence of treatment, dental caries may ultimately destroy the tooth. Caries location, development and progression are influenced by a range of environmental, social and genetic factors, and vary greatly among individuals. In most individuals dental caries tend to progress slowly over time, with lesions often taking more than 2 years to cavitate, although in some it can take a shorter time. Conversely, some lesions never cavitate.

According to the anatomical location of carious lesions, it is possible to differentiate between coronal lesions, which may affect the pits and fissures or the smooth surfaces of a tooth, and root lesions, which affect the exposed root cementum and dentine. Root caries occurs in the same manner as coronal caries, but demineralisation begins at a higher pH and it is more common in older people. The term primary caries is used to indicate lesions on the unrestored surfaces of teeth, while caries that develops adjacent to a filling is referred to as recurrent or secondary caries. Hidden caries is a term used to identify carious lesions in the dentine that are not detected by visual examination but are large enough to be identified radiographically. According to their activity, carious lesions may be classified as active or inactive/arrested. A lesion that is considered to be progressive is described as active, whereas a lesion that has stopped further progression is described as arrested. This distinction is clinically important as arrested lesions do not require any further preventive interventions.

The occlusal surfaces (pits and fissures) of teeth are particularly susceptible to dental caries owing to their morphological structure (minute dimensions of pits and fissures) and because microbial plaque is more likely to grow in these areas (plaque stagnation). The teeth are more prone to plaque stagnation during eruption. Occlusal caries is seen more often in molar teeth than in premolar or anterior teeth.

The incidence of root caries begins at about 30–40 years of age and tends to increase thereafter. Root caries is most prevalent in the elderly because when people get older and retain their natural teeth, their gums tend to recede and expose the root surfaces. According to the published NHS Plan for Modernising NHS

Dentistry, “nearly 90% of people aged over 65 years show some signs of gum disease compared with 14% of 16–24 year olds”.

Significance in terms of ill-health

Impact on patient’s quality of life
Dental caries may have a significant impact on an individual’s life. The most common consequences of untreated lesions are discomfort and pain. Restorative dental treatments can now be provided pain free, apart from the pain of the local anaesthetic injection. However, for some people restorative treatments are associated with fear and anxiety, which, may become barriers to dental attendance. Treatment avoidance can subsequently lead to further progression of caries which, in turn, may cause more distress and long-term complications. Gross decay may lead to disturbances in eating and sleeping patterns because of pain. Psychological distress can arise from the embarrassment and self-consciousness of having missing or decayed teeth, especially in the anterior dentition. Communication problems may ultimately occur as a possible result of tooth loss.

In addition to human cost, dental caries can be costly for the patients receiving treatment. For many patients NHS charges can be expensive, especially for those who earn just enough to disqualify them from exemption or remission of charges. Moreover, where provision of NHS dentistry is patchy, patients may have to depend on private dental care.

Impact on the NHS
Treatments for dental care carry considerable costs for both the NHS and society. NHS General Dental Services (GDS) data reveal that the total number of claims in England and Wales for dental interventions in the financial year 2002/03 was 34 million. Almost half (48%) of claims were for treatments requiring no dental intervention (i.e. examination, simple scaling, X-ray, fissure sealant, topical fluoride). The total number of teeth filled was about 19 million, while the number of teeth with roots filled was just over one million. Overall, the total gross fees authorised was £1634 million. The care and treatment for children accounted for 27% (£461 million) of all gross fees authorised.

Epidemiology
There has been a significant reduction in dental caries since the 1970s in industrialised countries, due to environmental and educational factors such as the increased use of fluoride in public water supplies, dentifrices and dental products; improved oral hygiene and prophylaxis; dietary counselling; and increased access to dental care. Nevertheless, dental caries is still a common disease, experienced by almost 80% of children by the age of 18 and by almost 90% of adults.

Prevalence in children
Since the significant decline in the 1970s and 1980s, it seems that over the past 20 years caries prevalence rates have become relatively stable. The 2003 Children’s Dental Health Survey commissioned by the UK Health Departments provides the most recent estimate of the prevalence of dentine decay in children in England and Wales. The 2003 survey is the fourth in a series of dental health surveys carried out every 10 years since 1973. The criteria used in the survey to assess dental caries were the following:

- filled decay, otherwise sound: teeth with amalgam, or other fillings that had no cavitated dentine caries present
- obvious decay experience: all teeth with cavitated dentine caries, restorations with cavitated dentine caries, teeth with filled decay (otherwise sound) and teeth extracted due to caries. The term relates to the DMFT (decayed, missing, and filled teeth) dental decay index.

The preliminary findings of this survey indicate that:

- there has not been a substantial change in the proportion of 5- and 8-year-olds who presented with obvious decay in the primary (milk) teeth between the 1993 and 2003 dental survey (Table 1)
- the proportion of filled primary teeth as well as the proportion of the total obvious decay experience represented by filled primary teeth in 5- and 8-year-olds has declined since 1983, indicating a decline in restorative interventions (Table 1)
- the mean number of primary teeth with obvious decay has decreased since 1983 in 5- and 8-year-olds (Table 2), but the mean number of primary teeth with obvious decay among children with decay has not changed considerably since 1993, apart from the decline in the number of filled teeth in the 8-year-olds (Table 3)
- the proportion of 8-, 12- and 15-year-olds with obvious tooth decay and cavities into dentine in permanent teeth has decreased considerably since 1983 (Figures 2 and 3)
- the proportion of filled permanent teeth has declined considerably since 1983 in 12- and 15-year-olds, but not in 8-year-olds (Figure 4)
the proportion of the total obvious decay experience represented by the number of filled permanent teeth in 8-, 12- and 15-year-olds has increased since 1993, indicating an increase in restorative interventions (Table 4).

These findings are consistent with those found by the USA Third National Health and Nutrition Examination Survey (NHANES III), Centers for Disease Control and Prevention (CDC), National Centre for Health Statistics (NCHS) and the National Survey of Dental Caries in US School Children 1986–1987, where 52% of children aged 6–8 years and 61% of children aged 15 years presented with tooth decay in permanent or primary teeth. The proportion of children with untreated caries in permanent or primary teeth was 29% for the 6–8-year-olds and 20% for the 15-year-olds (Figure 5).

Dental caries is not evenly distributed across the child population, with about 26% of children (worst cases) presenting with 75% of all carious lesions. This can be interpreted in the light of the fact that dental caries is a disease of lifestyle with strong socio-economic and geographical differences. The use of deprivation categories in the assessment of Scottish schoolchildren aged 5 years is a good example of how measures of socio-economic status may correlate with dental caries experience (Figure 6). The link between social status and prevalence of caries is also supported by the data from the National Children’s Dental Health Survey carried out in the UK in 1993 (Figure 7).

Prevalence in adults
Fewer prevalence data are available for adults.
FIGURE 2 Proportion of children with obvious decay experience in permanent teeth by age (Children’s Dental Health in the United Kingdom, 2003)\(^3\)

FIGURE 3 Proportion of children with cavities into dentine in permanent teeth by age (Children’s Dental Health in the United Kingdom, 2003)\(^3\)

FIGURE 4 Proportion of children with filled permanent teeth by age (Children’s Dental Health in the United Kingdom, 2003)\(^3\)
According to the UK 1998 Adult Dental Health Survey, adults had an average of 1.5 decayed or unsound teeth (teeth with visual or cavitated caries or those with an unsound restoration) and 55% had at least one decayed or unsound tooth. The numbers of adults with decayed or unsound teeth varied according to the regions surveyed. The proportion of dentate adults with tooth decay in England, Wales, Scotland and Northern Ireland is shown in Figure 8.

The mean proportion of filled permanent teeth ranged from 9% for people aged 16–24 years to 39% for people aged 45–54 years (Figure 9).

Overall, 66% of the adult population showed at least one tooth with a root surface that was exposed, worn, decayed or filled. Overall, root surface fillings were found in 43% of people aged 65 and older.

Similarly, in the USA, NHANES III – Phase 1 found evidence of coronal carious lesions in 94% of the studied population. The mean score for decayed and filled surfaces (DFS) on permanent teeth in adults was 22.2. Carious lesions were found in 23% of all dentate adults and in 47% of people aged 65 years and over (NHANES III 1998–1991).

Current service provision

Current management of dental caries

Increasing emphasis has been recently dedicated to the provision of caries prevention and
FIGURE 7 Average number of decayed, missing or filled teeth in adolescents in the UK by social class (National Children’s Dental Health Survey, 1993)\(^7\)

FIGURE 8 Proportion of adults with decaying or unsound teeth by country (United Kingdom Adult Dental Health Survey, 1998)\(^8\)

FIGURE 9 Mean proportion of filled teeth by age (United Kingdom Adult Dental Health Survey, 1998)\(^8\)
management strategies. In particular, attention to risk assessment and to preventive non-operative methods for assisting remineralisation of early caries has been advocated. Despite the acknowledged importance for the prevention of caries, non-operative, preventive treatments are not fully funded by the NHS at present. Changes are likely to be introduced with the implementation of the new contract in 2006.

Efficient management of dental caries depends on the knowledge of patients’ dental and medical history and risk assessment, correct identification of carious lesions and identification of the best treatment options for dental caries. A thorough dental and medical history provides information about patients’ previous experience of dental caries, number of active lesions and factors that may affect caries activity (e.g. general oral hygiene, diet and sugar intake, exposure to fluoride, salivary flow rate, certain medical conditions and medications). Caries risk assessment aims at identifying high-risk individuals who may benefit more from preventive treatments, and low-risk individuals for whom restorative treatments could be delayed. Carious lesions are first identified on the basis of the findings of the clinical examination (visual criteria). For visual detection of occlusal caries and for predicting their activity and severity, the ranked scoring system described by Ekstrand and colleagues is recognised as a valid and reliable tool, although mainly used in clinical research. For assessing the extent and severity of root caries the tactile criteria of ‘soft, leathery and hard’ on probing are commonly used in dental practice and dental research. Radiographic investigations (X-rays) have been widely used for decades as an adjunct to clinical examination to estimate the depth of occlusal lesions into dentine or to identify lesions that are hidden from clinical examination. More recently, other quantitative, more advanced methods have been proposed for the diagnosis of dental caries. These include methods based on:

- digital radiology [e.g. digital image enhancement, digital subtraction radiography, tuned aperture computed tomography (TACT)]
- visible light [e.g. quantitative fibre-optic transillumination (QOTI/FOTI), quantitative light-induced fluorescence (QLF)]
- laser fluorescence (e.g. DIAGNOdent)
- electrical current [e.g. electrical conductance measurement (ECM)]
- ultrasound [e.g. ultrasound caries detector (UCD)].

However, with the exception of digital radiology, these diagnostic procedures are not widely used in dental practice. Some procedures need further investigation (e.g. QOTI/FOTI, QLF) or further development (e.g. UCD) before their use could be recommended in dental practice. Others are prone to false-positive measurements (e.g. small amount of plaque identified as a carious lesion by DIAGNOdent) or unreliable findings (e.g. because of inadequate tooth isolation during ECM), which require a careful interpretation and sometimes correction by the dentist. In particular, to the authors’ knowledge the validity of DIAGNOdent as an instrument for detecting occlusal caries has yet to be demonstrated in vivo studies.

Treatment of early caries (non-cavitated pit and fissure caries and root caries)

Treatment options for early caries include the following:

- provision of information about oral hygiene
- dietary assessment and advice
- fluoride-delivery methods
- application of chlorhexidine
- pit and fissure sealants
- recall at regular intervals.

Oral hygiene

Instructions on oral hygiene aim at improving personal removal of plaque by toothbrushing. Regular toothbrushing in children may help to reduce the incidence of caries, and children whose level of oral hygiene is good experience less decay. Despite the lack of evidence on the effectiveness of oral hygiene instructions, toothbrushing, together with the use of fluoride toothpaste and the advice of reducing sugar intake, is usually recommended in the dental practice for maintaining a good level of oral hygiene.

Dietary assessment and advice

Evidence from epidemiological and experimental studies indicates that frequent consumption of fermentable carbohydrates is associated with prevalence of dental caries. For some patients the frequency of intake of a certain type of food may primarily contribute to their caries risk and modification of this factor may be sufficient to change their risk. The diet–caries association is, however, complex and needs to be evaluated not only on the basis of the quantity and type of fermentable carbohydrates consumed, but also considering several other background factors such as age, total food intake, dietary habits, salivary flow rate, use and type of medications, and use of
fluoride products. Dietary assessment is usually recommended in patients with multiple active lesions. In contrast, no diet modifications are suggested for patients with inactive caries. The dentist, however, may still provide information on how unhealthy dietary habits may become a problem, especially when associated with a poor level of oral hygiene.14

Fluoride-delivery methods
Use of fluoride-delivery products and water fluoridation are among the factors that have contributed to the observed progressive improvement in oral health since the 1970s. Evidence indicates that fluoridation of the water supply is associated with an increased proportion of children without caries and a reduction in the number of teeth affected by caries.1,15,16 Topical fluoride-delivery methods in the form of toothpastes, mouth rinses, gels or varnishes are effective measures to prevent dental caries. Their effectiveness has been established on evidence from randomised trials and more recently from a series of Cochrane systematic reviews of randomised trials.17–22 Overall, fluoride toothpaste is the cheapest and the most widespread method to control dental caries.23–25 A recent randomised, double-blind, clinical trial examined the anticaries effectiveness of fluoride dentifrices containing 1700, 2200 and 2800 ppm fluoride ion compared with a 1100 ppm fluoride control toothpaste, in schoolchildren aged 6–15 years.24 The 1-year results demonstrated significant caries reductions for higher fluoride dentifrices for all tooth surfaces, but in particular for occlusal surfaces.24 The use of fluoride mouth rinses and gels, as an adjunct to fluoride toothpaste, is usually advised for individuals at high risk of developing caries. Fluoride varnish is used to provide fluoride delivery to specific tooth sites and surfaces and is usually applied at intervals of 3 or 6 months. A recent systematic review by Marinho and colleagues,17 looked at the effectiveness of fluoride varnish in preventing dental caries in children and adults and commented on the ability of fluoride varnish to promote remineralisation of early caries. The included studies also considered “non-cavitated incipient enamel lesions”, clinically visible as white spots or discoloured fissures, which would be included among those lesions eligible for ozone application. The treatment effect was measured in terms of ‘prevented fraction’ (mean increment in caries in controls minus mean increment in fluoride group divided by the mean increment in the controls). For the seven studies that contributed to the main meta-analysis, the decayed, missing and filled surfaces (DMFS) prevented fraction pooled estimate was 0.46 [95% confidence interval (CI) 0.30 to 0.63, p < 0.0001], indicating a substantial benefit and demonstrating that fluoride varnish alone can result in reversal of early caries. Similarly, the meta-analysis of the three studies assessing the effect of fluoride varnish on deciduous teeth suggested a 0.33% (95% CI 0.19% to 0.48%, p < 0.0001) reduction in DMFS. Another recent systematic review26 of selected caries prevention methods reached similar conclusions, demonstrating that there is a fair body of evidence on the effectiveness of fluoride varnish to arrest or reverse non-cavitated carious lesions in permanent teeth. Other fluoride products such as fluoride supplements (e.g. fluoride tablets or drops) are regarded as less effective methods of delivering fluoride because they rely entirely upon patient compliance. Their use is usually limited to high-risk categories of children, adults and, particularly, elderly people.27

Application of chlorhexidine
The effectiveness of chlorhexidine as an antimicrobial for preventing progression of non-cavitated caries has yet to be established. Current evidence is derived mainly from small studies evaluating the effects of different forms of chlorhexidine (varnish, gel or rinse) in combination with other concomitant preventive measures.26,28

Pit and fissure sealants
Pits and fissures are sealed to prevent caries development.28 Evidence indicates that caries does not progress as long as the sealant remains in place.29,30 Sealant applications may be suitable for both young children and older patients.31 Materials that are currently used to seal a lesion include different types of composite resin and glass ionomer cement. The resin-based sealants are divided into generations according to their mechanism for polymerisation and their content. The first generation sealants which were activated by ultraviolet light are no longer available and the most recently developed fourth generation sealants contain fluoride. The effectiveness of resin sealants for the prevention of caries in the permanent teeth of children and adolescents was demonstrated by Ahovuo-Saloranta and colleagues32 in a recent Cochrane systematic review. The review compared second, third and fourth generation resin-based sealants or glass ionomer sealants with a control (no sealant) and compared one type of fissure sealant with another type. The focus of the review was on prevention, and the children and adolescents included did not seem to present with obvious caries. The review
concluded that resin-based sealants are effective in preventing caries of the occlusal surfaces of permanent molars. Reduction of caries ranged from 86% at 12 months to 57% at 48–54 months. Resin sealant retention was good across studies and sealants were retained completely in 79% and 92% of cases at 12 months. Sealant retention decreased with time and at 36 months ranged from 61 to 80%. Evidence on the effects of glass ionomer-based sealants was less convincing.

Treatment of cavitated pit and fissure caries and root caries

For lesions that have progressed to the stage of cavity, restorative interventions are often used to remove the decayed tissue and fill the cavity to aid plaque control. However, cavitated root lesions that are still accessible to cleaning need not always be filled because cleaning alone can arrest caries. A number of different materials can be used to restore a tooth. These include composite resin, glass ionomer cement and amalgam. Amalgam is still the material of choice for large restoration of molar teeth. Root caries are usually restored with composite resin or glass ionomer cement. According to the NHS Dental Review 2002–2003, in the quarter ending December 2002 the number of teeth filled was 4,896,951 and on average one tooth was filled for every two claims (55%). Overall, restorations showed a median survival interval to next restorative intervention of just over 8 years. The main factors associated with different likelihoods of re-intervention were the age of the patient at the date of restoration, the position of the tooth and the type/material of restoration.

Description of new intervention

Rationale

The antimicrobial effects of ozone gas (O₃) have been known for many years. Direct application of ozone gas to the coronal or root tooth surface is claimed to have a sterilising effect. In particular, ozone is claimed to stop the action of the acidogenic and aciduric micro-organisms responsible for the tooth decay. It is consequently alleged to be able to reverse, arrest or slow down the progression of dental caries. It is also maintained that ozone is useful for reducing the microbial flora in cavitated lesions, before fillings are inserted.

Development of HealOzone

The ozone unit for dental use was initially developed by CurOzone Inc. (Canada) and subsequently manufactured under licence and distributed by KaVo-Dental GmbH & Co. (Germany) under the name ‘HealOzone’. Its use has been pioneered by Professor Edward Lynch and his team at Queen's University in Belfast, Northern Ireland, and Barts and the London Queen Mary’s School of Medicine and Dentistry in London, UK. HealOzone is a certified Medical Device [Conformité Européene (CE) marked] for the management of occlusal pit and fissure caries, and root caries. According to the manufacturer, 294 HealOzone units (as at June 2004) are currently in use in dental practices in the UK and more than one million people have already received HealOzone treatment. The HealOzone technology has not yet received Food and Drug Administration (FDA) approval in the USA.

The new version of HealOzone (Mark3) was launched in July 2004. According to the manufacturer previous models can be upgraded to the most recent technical functions.

HealOzone procedure

The HealOzone procedure consists of a package, which includes the application of ozone gas, the use of remineralising agents, a patient kit and information on oral hygiene. The HealOzone device comprises an air filter, a vacuum pump, an ozone generator, a handpiece fitted with a sealing silicone cup and a flexible hose. The silicone cups are available in a range of five sizes from 3 to 8 mm in diameter. The HealOzone unit requires high-voltage power to generate ozone from the air and to convert ozone back to oxygen when the process is completed. The air is exposed to high-voltage current to generate ozone at a concentration of 2100 ppm ± 10% and passes through the instrument hose and handpiece. The flow of air into the system, the delivery of ozone to the tooth and the removal of ozone from the system after completion of treatment are achieved by a vacuum pump, which works at an adjustable flow rate of 615 cm³ per minute to maintain the ozone concentration at 2100 ppm.

The procedure usually takes between 20 and 120 seconds per tooth. Immediately after ozone application the tooth surface is treated with a remineralising solution (reductant) containing fluoride, calcium, zinc, phosphate and xylitol dispensed from a 2-ml ampoule. The reductant is supplied in packs of 100 ampoules. Patients are also supplied with a patient kit, which consists of toothpaste, oral rinse and oral spray, all containing fluoride, calcium, zinc, phosphate and
xylitol, and aims to enhance the remineralisation process. HealOzone application for the treatment of non-cavitated lesions is usually repeated at 3 and 6 months. There is no clear information on how delivery of ozone at the correct concentration can be ensured by the device.

Key questions

This review aims to answer the following questions:

- For the management of pit and fissure caries, is the HealOzone procedure more effective than the combination of oral hygiene, dietary advice, chlorhexidine/fluoride varnish and fissure sealant? If so, is it a cost-effective alternative?
- For the management of non-cavitated root caries, is the HealOzone procedure more clinically effective than the combination of oral hygiene, dietary advice and varnish? If so, is it cost-effective?
- For the management of cavitated caries, how often, if at all, is HealOzone procedure an alternative to fillings?
- For the management of cavitated caries, does the application of ozone gas and of a re-mineralising solution to the cavity before restoration prolong the life of a filling? If so, is it cost-effective?
Chapter 3

Effectiveness

Methods for reviewing effectiveness

Search strategy
Initial database searches were undertaken to identify relevant systematic reviews and other evidence-based reports. Several websites were also consulted to obtain background information. Full details of the main sources consulted are listed in Appendix 1.

Electronic searches were conducted to identify published and unpublished studies on the clinical and cost-effectiveness of ozone therapy for dental caries. The electronic databases searched are detailed in Table 5. Full details of the search strategies are documented in Appendix 1. It was anticipated that there was a small body of research available, therefore a sensitive search strategy for clinical effectiveness studies was undertaken to retrieve all useful information on ozone therapy for dental caries. Additional searches were carried out for economic data and these are detailed in Chapter 4. In addition, selected conferences proceedings that were not available electronically were handsearched. These were International Association for Dental Research (IADR) conference proceedings for 1999–2001 and the annual European Organisation for Caries Research (ORCA) Congresses 2000–2003. Research abstracts, published on industry and users’ websites (KaVo Dental, CurOzone USA, HealOzone and DentalOzone; see Appendix 1 for full details), were also identified. Reference lists of included studies were also checked for additional study reports.

Inclusion and exclusion criteria
All citations identified by the search strategy were assessed for relevance by two reviewers. Copies of the full-text, published papers of those considered to be relevant were then obtained. It was decided that studies reported in languages other than English would be identified but not included in the review.

For clinical effectiveness assessment, included studies were randomised controlled trials (RCTs) of ozone treatment (HealOzone) versus at least one comparator (nil, placebo or active treatment). Data from studies other than randomised trials were collected but not included in the review. The outcome measures were required to be measures of clinical effectiveness (e.g. reversal/progression of caries). Only in vivo studies involving human subjects were deemed to be suitable for inclusion, while studies reporting in vitro results were excluded. Studies were also excluded if their follow-up was less than 6 months or did not report clinically relevant outcome measures.

Data extraction strategy
A data abstraction form was designed (Appendix 2) to collect details from each individual study.

<table>
<thead>
<tr>
<th>Database</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Citation Index (SCI)</td>
<td>Cochrane Library, Issue 2, 2004</td>
</tr>
<tr>
<td>BIOSIS</td>
<td>Issue 2, 2004</td>
</tr>
<tr>
<td>AMED</td>
<td>18 May 2004</td>
</tr>
<tr>
<td>Cochrane Controlled Trials Register (CCTR)</td>
<td>18 May 2004</td>
</tr>
<tr>
<td>National Research Register (NRR)</td>
<td>1991 to 15 May 2004</td>
</tr>
<tr>
<td>Current Controlled Trials (CCT)</td>
<td>1982 to May 2002</td>
</tr>
<tr>
<td>Clinical Trials</td>
<td>1993 to May 2004</td>
</tr>
<tr>
<td>SCI Proceedings</td>
<td>2002 to 2004</td>
</tr>
<tr>
<td>Conference Papers Index</td>
<td></td>
</tr>
<tr>
<td>ZETOC Conferences</td>
<td></td>
</tr>
<tr>
<td>IADR Meetings Abstracts</td>
<td></td>
</tr>
</tbody>
</table>
These included the type of study design, number of participants and their characteristics, intervention characteristics, caries information including location and severity of lesion, patient outcomes such as reversal/progression of caries, and any reported adverse events.

In particular, the outcomes sought for the included studies were as follows:

(a) Non-cavitated caries
- reversal of caries
- progression of caries
- utilisation of dental services (e.g. visits to dental care units; duration of dental treatment)
- adverse events
- patient-centred measures (e.g. patient satisfaction and preference, relief of pain/discomfort)
- quality of life.

(b) Cavitated caries
- time to restorative interventions
- need for further restorative interventions and length of time between restorations
- symptoms of pulpal pathology.

Inclusion criteria were assessed independently by two reviewers. Any disagreements were resolved by consensus or referred to a third reviewer. Reviewers were not blinded to the names of study authors, institutions or publications.

Quality assessment strategy
Two reviewers assessed the methodological quality of all included studies and any disagreements were resolved by discussion. The quality assessment of RCTs was formally assessed using a published checklist modified by the reviewers for the purpose of this review. The checklist consisted of 12 questions, which focus on the following methodological aspects: method of randomisation, unit of randomisation, concealment of allocation, comparability of groups at baseline, blinding procedures, number of withdrawals/dropouts and completeness of assessment at follow-up. For each question a ‘Yes’, ‘No’ or ‘Unclear’ answer was required. The quality assessment checklist is presented in Appendix 3.

Results

Quantity and quality of research available
After removing duplicates a total of 331 reports was identified (Table 6): 78% (257) were abstracts and 22% (74) were full-text reports. Eighty-five reports (seven full-text papers and 78 abstracts) were selected for full assessment, of which 21 (three full-text papers and 18 abstracts) met the predefined criteria for inclusion in the review. In addition, two reports, both PhD theses, were identified from reference lists. All 23 identified reports were written in English.

Number of studies identified
In total, five studies reported in five full-text papers and 13 abstracts, and five studies reported only as abstracts, met the inclusion criteria for studies of clinical effectiveness. In case of multiple publications the report with the longest follow-up time and/or largest sample size was chosen as the main source of information.

Number and type of studies excluded
After identifying duplicates, several studies were excluded as they did not meet the inclusion criteria. The main reasons for exclusion, together with the corresponding number of studies excluded are listed in Table 7.

TABLE 6 Number of screened and selected reports according to database searched

<table>
<thead>
<tr>
<th>Database searched</th>
<th>Number screened</th>
<th>Number selected</th>
<th>Included studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDLINE/EMBASE/MEDLINE Extra</td>
<td>46</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SCI</td>
<td>38</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>BIOSIS</td>
<td>38</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>IADR abstracts</td>
<td>175</td>
<td>43</td>
<td>12</td>
</tr>
<tr>
<td>Handsearch</td>
<td></td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Websites</td>
<td></td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Other databases</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>331</td>
<td>85</td>
<td>21</td>
</tr>
</tbody>
</table>
Number and type of studies included
The five full-text studies consisted of two RCTs assessing the use of HealOzone for the management of primary root caries—one published trial by Holmes and one unpublished trial by Baysan and Lynch, and two PhD theses assessing the use of HealOzone for the management of pit and fissure caries, one by Abu-Naba’a reporting two unpublished trials and one by Abu-Salem reporting one unpublished trial.

Root caries studies
Holmes (2003): this published randomised trial of management of primary non-cavitated root caries had two treatment groups: ozone plus reductant plus patient care kit versus air treatment plus reductant plus patient care kit. This study was set in a general dental practice.

Baysan and Lynch (2004): this unpublished randomised trial on cavitated and non-cavitated root caries had four treatment groups: ozone plus reductant versus reductant only, and ozone plus sealant versus sealant only. It recruited patients who attended the School of Dentistry in Belfast.

Pit and fissure caries studies
Abu-Naba’a PhD thesis included two randomised studies: a main study (Abu-Naba’a, 2003) and a pilot study (Abu-Naba’a pilot study, 2003), which are considered separately as they do not include the same patient population. The main study assessed exclusively non-cavitated occlusal lesions, whereas the pilot study included cavitated occlusal lesions. Patients were recruited from the School of Dentistry in Belfast for both the main and pilot studies.

The Abu-Naba’a main study had four treatment groups: ozone plus reductant versus air treatment plus reductant, and ozone plus reductant plus sealant versus reductant plus sealant only. It involved 90 patients with 254 lesions.

The Abu-Naba’a pilot study had two treatment groups: ozone plus reductant versus reductant only. It involved eight patients with 34 lesions.

The Abu-Salem study had two treatment groups: HealOzone plus reductant versus reductant only. It recruited 21 patients with 74 lesions, from Belfast primary schools.

Of the five studies published only as abstracts, four assessed the effects of HealOzone for the management of occlusal pit and fissure carious lesions, and one assessed the effects of HealOzone on primary root carious lesions.

Tabulation of quality of studies, characteristics of studies and evidence rating
The characteristics of the five full-text studies (type and number of participants and carious lesions, details of study design, inclusion criteria, characteristics of intervention and main results) are shown in Appendix 4.

Method of randomisation was reported in three studies. Concealment of allocation was not specified in any of the included studies. One study was described as double blind and another study stated that outcome assessment was undertaken by a blinded examiner. In particular, the double-blind study by Holmes was reported to involve three dentists: the first dentist performed the
initial assessment of primary root carious lesions; the second randomised the lesions to treatment groups; the first then treated and assessed the result without knowing which were given ozone and which air, using a modified HealOzone machine; the third dentist independently assessed lesions in 15 patients. The practicality of the entire process is, however, doubtful. Holmes is the only author of the study and the other assessors are neither listed as authors nor acknowledged in the paper.

It was unclear whether blinding procedures were secured in the remaining three included studies. The total number of people in the studies was 287, with a total of 768 carious lesions. Across the studies, the ages of the participant groups ranged from 7 to 82 years. Only three studies provided information on the gender of the participants.36–38 The length of follow-up ranged from 6 to 21 months.

Each study involved either two or four intervention groups. Ozone was always used in combination with other active interventions (i.e. ozone plus reductant, ozone plus reductant plus patient care kit, ozone plus sealant, ozone plus reductant plus sealant) and compared to the same intervention without ozone or to a sham procedure (air treatment). The dosage of ozone treatment varied between studies. In the Baysan and Lynch study,36 the Abu-Salem study38 and the Abu-Naba’a main study,37 ozone was administered for 10 seconds, whereas in the Holmes study35 and the Abu-Naba’a pilot study37 ozone was administered for 40 seconds. In all studies ozone applications were repeated at some point before the final follow-up. None of the included studies provided information on the model/version of the HealOzone device.

The main outcome measure was reversal of caries. This included the proportion of carious lesions becoming hard and, for some of the included studies, the proportion of lesions reversing from ‘leathery’ to ‘leathery approaching hard texture’, but not necessarily hardening. The proportion of lesions that deteriorated from leathery to soft was also recorded, although not consistently. Where appropriate the proportion of intact sealants was documented. Changes in the ECM and DIAGNOdent readings were also reported in the identified studies, but not considered in this review, owing to the unreliability of their measurements (i.e. high-false positive rates) and poor correlation with clinical outcomes.38

In the majority of the included studies, data analysis was conducted at the level of the lesion. Holmes used χ^2 statistics, but did not specify whether they were for related samples (i.e. McNemar χ^2 test). In the Baysan and Lynch study no information was provided on the choice of statistical test used. In both Abu-Naba’a studies the unit of analysis was tooth-pair, but it was unclear whether the occurrence of multiple pairs of lesions per mouth was taken into account. Abu-Salem used a mixed-effects analysis of variance (ANOVA) with random effects for patient and teeth within patient, and fixed effects for group and time of treatment.

The characteristics of the five studies published as abstracts are shown in Appendix 5.

\textbf{Tabulation of results and assessment of effectiveness}

The clinical effectiveness results are presented according to type of carious lesions (root caries results are presented separately from occlusal caries results). Within this categorisation studies results are presented according to:

- type of outcome measures
- type of publication (results of full-text studies are presented separately from results of studies published as conference proceedings)
- type of dentition (treatment results of primary teeth are presented separately from treatment results of permanent teeth).

It was planned to undertake further statistical analyses of the data reported in the full-text studies and when appropriate to combine them quantitatively. However, owing to the limited raw data provided, this proved unfeasible. The p-values of statistical analyses in the results section are those originally quoted by the studies’ authors. However, as the data were not analysed as ‘paired data’ on a patient basis, their validity and reliability are open to question.

\textbf{Primary root carious lesions}

Two full-text studies by Holmes35 and Baysan and Lynch36 and one abstract by Lynch and colleagues57 assessed the use of ozone for the management of primary non-cavitated root carious lesions. The Baysan and Lynch study also included the assessment of a non-specified number of cavitated root lesions. In the Holmes studies the clinical criteria of ‘soft, leathery and hard’ were adopted for the assessment of carious lesions, whereas in the Baysan and Lynch study
lesions were classified according to a five-point severity index as follows:

0 all ‘hard’ lesions
1 ‘leathery’ lesions considered to be small, easily cleanable and approaching a ‘hard’ texture
2 ‘leathery’ lesions judged to be shallow and where the surface of the exposed sound dentine could be easily maintained plaque free
3 ‘leathery’ lesions judged to be in surfaces that were difficult to maintain plaque free, and large, cavitated ‘leathery’ lesions where pulpal integrity was judged to be at risk
4 all ‘soft’ lesions.

No information was provided on the validity and reproducibility of the above severity index, or on how lesions were clinically identified as ‘leathery’ ‘soft’ or ‘hard’. In particular, the distinction between three degrees of ‘leathery’ seemed rather artificial.

Change in clinical severity Table 8 shows for each of the included studies the proportions of carious lesions that according to the studies’ authors reversed (became hard), improved (became less severe) or deteriorated in the ozone-treated group and the control group. The Holmes study reported that 100% of ozone-treated primary root carious lesions (PRCLs) had reversed by 18 months, while 37% of PRCLs in the control group had worsened from leathery to soft and 1% had reversed. However, comparisons of results at different follow-up points show some inconsistencies in the way data were reported (Table 9). In particular, the results at 21 months (published as an abstract) showed an increase in the number of control lesions that stabilised

<table>
<thead>
<tr>
<th>TABLE 8 Results of root carious lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PRCLs becoming hard</td>
</tr>
<tr>
<td>Baysan and Lynch, 2004 (12 months)</td>
</tr>
<tr>
<td>Holmes, 2003 (18 months)</td>
</tr>
<tr>
<td>PRCLs becoming less severe (from index 2 to 1)</td>
</tr>
<tr>
<td>Baysan and Lynch, 2004 (12 months)</td>
</tr>
<tr>
<td>Holmes, 2003 (18 months)</td>
</tr>
</tbody>
</table>

NR, not reported (the denominator was not clearly reported in the study, so the number of caries cannot be calculated, hence only percentages are given).

a Baysan and Lynch: non-cavitated and cavitated primary root carious lesions.
b Holmes: non-cavitated primary root carious lesions.

<table>
<thead>
<tr>
<th>TABLE 9 Results of the Holmes study at each recall visit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PRCLs becoming hard</td>
</tr>
<tr>
<td>12 months</td>
</tr>
<tr>
<td>18 months</td>
</tr>
<tr>
<td>21 months</td>
</tr>
<tr>
<td>PRCLs remaining leathery</td>
</tr>
<tr>
<td>12 months</td>
</tr>
<tr>
<td>18 months</td>
</tr>
<tr>
<td>21 months</td>
</tr>
<tr>
<td>PRCLs becoming soft</td>
</tr>
<tr>
<td>12 months</td>
</tr>
<tr>
<td>18 months</td>
</tr>
<tr>
<td>21 months</td>
</tr>
</tbody>
</table>

NR, not reported (the denominator was not clearly reported in the study, so the number of caries cannot be calculated, hence only percentages are given).

a Baysan and Lynch: non-cavitated and cavitated primary root carious lesions.
b Holmes: non-cavitated primary root carious lesions.
(from 54/87 at 18 months to 65/81 at 21 months) and a subsequent decrease in the number of control lesions that had become soft (from 32/87 at 18 months to 10/81 at 21 months), indicating an improvement over time in lesions receiving treatment other than ozone. No comments on these changes were provided by the authors.

In the Baysan and Lynch study,36 47% of the ozone-treated lesions had arrested by 12 months, whereas none had become hard in the control group (p < 0.001), and 52% had reversed from index 2 (leathery) to index 1 (leathery approaching hard texture) in the ozone group compared with 12% of lesions in the control group (p < 0.001). So, if one combines the ‘approaching hard’ (from index 2 to 1) and ‘hard’ lesions (from index 2 to 0), 99% of lesions improved, as in the Holmes study. This study included both cavitated and non-cavitated root lesions, but results were not clearly presented according to the type of lesions and it is unclear how many cavitated and non-cavitated lesions were assessed in each intervention group. Only one figure in the paper presented results for both types of lesions in the ozone group: the percentage of cavitated lesions that had reversed (become hard) decreased from 9.1% at 1 month to 1.4% at 9 months, indicating an increase/progression in the severity of cavitated root lesions treated with ozone. No statistical analysis was undertaken by the authors, no corresponding data were given for the control group, and no comments on reversal/progression of cavitated lesions were provided in the text of the paper.

In addition, the abstract by Lynch and colleagues57 indicated that 80% (48/60) of non-cavitated PRCLs treated with ozone reversed from severity index 4 to 3, whereas none of the soft lesions in the control group significantly changed, and that 94% (189/200) of leathery lesions became hard and arrested in the ozone group, whereas those in the control group did not significantly change.

Marginal adaptation of the root sealant The Baysan and Lynch study36 also assessed the effects of ozone with or without a fissure sealant using the modified US Public Health Service (USPHS) criteria. In the ozone plus sealant group 61% of sealants were retained compared with 42% in the sealant only group (p < 0.05) at 12 months.

It is worth noticing that both groups had the same other active interventions such as reductant, patient care kits and sealants. The very low improvement rates in the control groups are therefore surprising.

Summary: root carious lesions The two full-text studies assessing the use of ozone for root carious lesions both report very high success rates with ozone and very low improvement rates in the controls.

Fissure sealants after application of ozone for the preventive treatment of non-cavitated root lesions are more likely to remain intact (61% versus 42%, p < 0.05).

Pit and fissure carious lesions

The three remaining studies – the Abu-Naba’a main study (2003),37 Abu-Naba’a pilot study (2003)37 and Abu-Salem (2004) study38 – assessed the effects of ozone on pit and fissure carious lesions. Both Abu-Naba’a studies involved patients aged over 12 years with primary lesions in the permanent posterior teeth, while the Abu-Salem study involved children 7–9 years old with carious lesions in the posterior primary teeth. The Abu-Naba’a main study and the Abu-Salem study assessed non-cavitated lesions, while the Abu-Naba’a pilot study included lesions with cavitation.

Change in clinical severity: permanent dentition

Results of full-text studies Tables 10 and 11 illustrate the results of the Abu-Naba’a main study.37 Clinical severity of non-cavitated pit and fissure lesions was assessed using the criteria described by Ekstrand and colleagues (0 = least severe, 1, 2, 3, 4 = most severe).9 The change in severity score is calculated as the score at follow-up minus the score at baseline. Thus, a negative change indicates an improvement, while a positive change implies a worsening of lesion severity. The mean change from baseline in clinical severity score at 12 months was not significantly different (p = 0.112) between the two intervention groups: ozone (10 seconds) plus reductant group versus reductant only group (Table 10).

It was also reported that a greater proportion of ozone-treated lesions improved or stabilised compared with control lesions at all recalls (Table 11). However, statistical analyses of these data were not provided. The relationship between clinical severity score and the need for future fillings was not explained.

No significant difference in the clinical severity score was found between the ozone and control groups in the Abu-Naba’a main study.
reported proportions of lesions improved, stabilised and deteriorated appeared similar between groups, but no statistical analyses were undertaken and the clinical relevance of these findings was not explained in terms of fillings avoided.

Abu-Naba’a pilot study In the Abu-Naba’a pilot study,37 17 lesions (with cavitation) were treated with ozone plus reductant and 17 reserved as controls (reductant only) in eight patients. Outcomes were measured using Ekstrand and colleagues’ clinical index9 as well as the following clinical indices: hardness index (hard, leathery, soft), visual index (sound, arrested, active), cavitation score (1 = no cavitation, 2 = microcavitation, 3 = frank cavitation), colour index (normal, yellow, light brown, grey, dark brown, black), frosted enamel measure (mm), stained enamel measure (mm) and perceived treatment need index (e.g. requiring no intervention, requiring preventive resin restoration, requiring drilling and filling).

Thirteen lesions in the treatment group and 12 lesions in the control group were assessed at 6 months. Lesions treated with ozone showed a significant reduction in the hardness and visual indices (Table 12). No significant differences between groups were found for any other indices or for the Ekstrand clinical index \((p > 0.05) \).

This study was only a pilot study, which did not add much to the results of the Abu-Naba’a main study.37

Results of abstracts The abstracts gave little detail of studies, their methodology could not be easily assessed and therefore their findings must be interpreted with caution. They are included here for completeness and as a guide to emerging research.

Three abstracts compared pit and fissure lesions receiving ozone (at different concentrations) with pit and fissure lesions receiving no-ozone treatment.54–56 Their results are presented in Table 13. The proportion of lesions reported as clinically reversed, the extent of which was not specified, ranged from 86.6 to 99% in the ozone-treated groups. All studies reported that no significant clinical changes were observed in the control group, but no numerical information was given.

Another abstract55 compared the use of ozone versus conventional treatment in 35 patients, each with two occlusal lesions extending radiographically 2–4 mm into dentine. The authors defined the occlusal lesions as non-cavitated, but lesions 2–4 mm into dentine on radiographs are likely to have small cavities that...
trap plaque and are likely to progress unless cleaned thoroughly. The ozone-treated lesions received ozone for 40 seconds and application of a glass ionomer preventive sealing, which was subsequently replaced with a posterior composite at 3 months. The control lesions received conventional drilling and filling (posterior composite). All the ozone-treated lesions were reported to have reversed at 3 months. Six complaints (17.1%) of postoperative sensitivity were reported after conventional drilling and filling at 6 months compared with none after ozone treatment ($p < 0.05$). Postoperative sensitivity is, however, a measure commonly used to assess large carious lesions and it is questionable whether it should be used for early carious lesions. Moreover, complaints of postoperative sensitivity after occlusal restorations are rare.

Clinical reversal of caries: primary dentition One full-text study assessed the use of ozone for the treatment of non-cavitated primary posterior teeth in children aged 7–9 years. Occlusal lesions were assigned to receive ozone for 10 seconds followed by a reductant or a reductant only. The proportion of lesions that improved, remained stable or deteriorated in each intervention group was not provided and the clinical severity findings were only presented graphically. The graph showed a steady increase in the mean change from baseline clinical severity scores for the control group, compared with an initial slight decrease and a subsequent levelling in the ozone group at 12 months. The overall changes in the clinical severity scores were analysed using a mixed-effects ANOVA. This analysis assumed that patients and teeth within patients had a random effect, while group and time of treatment had a fixed effect. There was overall little reduction in clinical severity scores in the ozone-treated group, while an overall increase was observed in the control group. There was a statistically significant effect of treatment upon clinical severity scores with time ($p < 0.01$).

Sealant retention The Abu-Naba’a main study also assessed the use of ozone for 10 seconds with and without a fissure sealant. No sealants were reported to be lost in either the ozone plus sealant group or the sealant-only group. The percentage of partial loss in the ozone plus sealant group at 12 months was 32.7%, and in the sealant-only group was 29.8%, with no significant differences between groups (this indicates similar rates of reinterventions between groups for repairing partial sealant loss).

TABLE 12 Number of pit/fissure lesions showing a reduction in the clinical indices at 6 months (Abu-Naba’a pilot study)

<table>
<thead>
<tr>
<th>Colour index</th>
<th>Hardness index</th>
<th>Visual index</th>
<th>Cavitation score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>11/13 (84.6%)</td>
<td>8/13 (61.5%)</td>
<td>6/13 (46.2%)</td>
</tr>
<tr>
<td>Control</td>
<td>4/12 (33.3%)</td>
<td>1/12 (8.3%)</td>
<td>5/12 (41.7%)</td>
</tr>
<tr>
<td>p-Value</td>
<td><0.05</td>
<td><0.05</td>
<td>ns</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Darker d</th>
<th>Lighter e</th>
<th>Perceived treatment need f</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/13 (23.1%)</td>
<td>2/13 (15.4%)</td>
<td>12/13 (92%)</td>
</tr>
<tr>
<td>2/12 (16.7%)</td>
<td>6/12 (50%)</td>
<td>9/12 (75%)</td>
</tr>
<tr>
<td>0.084 (ns)</td>
<td>0.16 (ns)</td>
<td></td>
</tr>
</tbody>
</table>

a The proportion of lesions becoming hard
b The proportion of lesions with increasing score
c The proportion of lesions with reduction in cavity score
d The proportion of darker lesions
e The proportion of lighter lesions
f The proportion of lesions with a reduced treatment need

TABLE 13 Reversal of pit/fissure caries: findings from abstracts

<table>
<thead>
<tr>
<th>Ozone at follow-up</th>
<th>Control at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%)</td>
<td>No. (%)</td>
</tr>
<tr>
<td>Holmes 2003 34 (12 months)</td>
<td>1918/1937 (99)</td>
</tr>
<tr>
<td>Hamid, 2003 35 (6 months)</td>
<td>80/92 (86.9)</td>
</tr>
<tr>
<td>Megighian and Bertolini, 2004 36 (6 months)</td>
<td>$p < 0.05$</td>
</tr>
</tbody>
</table>

320 lesions treated

20
Discussion of results and conclusions on the evidence for and against the intervention

Only a limited number of RCTs (five full-text reports and five studies reported as abstracts) were available for assessing the effects of ozone for the management of root carious lesions and pit and fissure carious lesions. Of these only one was published in a refereed journal, but lacked some study details, while the remaining studies were derived from PhD theses, unpublished reports or conference proceedings. All full-text studies with the exception of the Holmes study were conducted by the same research team that developed the procedure, led by Professor Lynch of Queen's University, but Holmes was at one time part of the same group, having done his PhD in Belfast. The methodological quality varied across studies and information on method of randomisation, concealment of allocation, blinding procedures and statistical methods was lacking in many of them. Therefore, interpretation of studies results was not straightforward. A quantitative synthesis of results was not feasible owing to the differences among studies regarding intervention, dosage of ozone and outcome measures.

There were some concerns over the appropriateness of the methods of analysis adopted by study investigators. All studies in this review were of a hierarchical structure, although not necessarily treated as such for analysis. Specific types of analysis are required when data have a hierarchical structure. The hierarchy occurs as smaller units, such as lesions or teeth, are clustered together within a larger unit, the patient. In most studies included in this review, the statistical analysis was carried out at the lesion level. However, two lesions within one patient are not strictly independent, so analysis at the lesion level is inappropriate. A more suitable statistical analysis takes into account the hierarchical clustering of lesions within a subject.

In the simple case of two lesions per person, one receiving control and one receiving the ozone treatment, paired data are produced. In this case, the appropriate paired analysis would be a McNemar χ^2 test for dichotomous data, a Wilcoxon signed rank test for ordinal data and a paired t-test for continuous data. The choice of statistical tests that ignore the pairing of the data is more conservative and may fail to detect important differences found by paired analysis.

In the case of more than two lesions per subject, multilevel modelling procedures would need to be used.

Baysan and Lynch stated that statistical tests were used, but they did not specify which particular tests. Holmes used χ^2 tests, but did not specify whether they were McNemar χ^2 tests. Abu-Naba’a (main and pilot studies) recognised the fact that there were pairs of teeth. However, in some cases there were multiple pairs of teeth per person and it is not clear whether this was taken into account. Abu-Salem used analysis of variance for a mixed effects model. This type of analysis is hierarchical in nature, with one component for the patients and one for the tooth within the patient. However, as not enough information was provided by the author it was not possible to determine whether the statistical analysis was conducted appropriately.

For primary non-cavitated root caries both the Holmes study and the Baysan and Lynch study, reported high success rates for ozone-treated lesions compared with control lesions. However, the lack of reversal of caries among controls receiving conventional treatment (reductant) known to be efficacious is puzzling.

Cavitated root lesions did not seem to benefit from ozone application, showing indeed a negative effect over time, but no formal statistical analysis was presented.

Treatment results of pit and fissure caries of permanent teeth were not consistent across studies. The Abu-Naba’a main study did not show any significant differences between non-cavitated lesions treated with or without ozone. Similarly, the Abu-Naba’a pilot study, which included lesions with cavitation, did not demonstrate any significant effect of ozone apart from an improvement in the hardness and visual clinical indices. In contrast, results from conference proceedings (methodologically less reliable) provided very high success rates (from 86.6% to 100% of reversal of caries).

Data on the use of ozone for the treatment of primary teeth were available from only one study, which suggested an overall reduction in clinical severity scores for non-cavitated occlusal lesions in primary molars treated with ozone ($p < 0.01$).

The adjunct of ozone to a fissure sealant produced a better sealant retention in root carious lesions (61% of sealant retention versus 42%, $p < 0.05$).
but not in pit and fissure carious lesions (32.7% versus 29.8%).

On the whole, and despite the differences reported in some studies (e.g. Holmes), there are as yet insufficient published full-text studies (only one refereed journal article) to provide convincing evidence on the effectiveness of ozone for the management of caries.

This review was done independently of the Cochrane systematic review on ozone therapy for the treatment of dental caries, which concluded that at present there is no reliable evidence on the effectiveness of ozone applications to arrest or reverse the decay process. The present version of the Cochrane review does not include the Holmes (2003) and Abu-Salem (2004) studies.

Important subgroup differences

There are not enough data on which to assess the effects of ozone on cavitated caries in the permanent dentition (both occlusal caries and root caries) or on non-cavitated occlusal caries in the deciduous dentition (only one study involved children with primary teeth). No data are available on cavitated occlusal caries in deciduous teeth, secondary caries or high-risk patient categories.

Adverse effects of intervention

None of the studies reported any adverse events in the intervention group.
Methods

Search strategies
In addition to the electronic searches and handsearches detailed in Chapter 3, a search of the NHS Economic Evaluation Database (NHS EED) and the Health Management Information Consortium was undertaken for economic evaluations of ozone for dental caries. Details of the searches are provided in Appendix 1.

Studies that reported both costs and outcomes of HealOzone compared with any of the comparators were sought. The manufacturer’s submission to the National Institute for Health and Clinical Excellence (NICE) was also scanned for relevant economic evidence.

Inclusion and exclusion criteria
To be included, studies needed to compare HealOzone with any of the existing comparators in terms of their costs and effectiveness. Studies reported in languages other than English were identified from the literature searches, but would not be included in the review unless a structured abstract was available from NHS EED. A single economist assessed all abstracts for relevance. Full-text papers were then obtained for all studies that appeared potentially relevant and were formally assessed for relevance.

Data abstraction
The following data were extracted for each included study:

- study characteristics:
 - research question
 - study design
 - setting
 - basis of costing
- characteristics of the study population or of the populations that formed the basis of data used in a modelling exercise:
 - numbers receiving or randomised to each intervention
 - dates to which data of effectiveness and costs relate
- duration of follow-up for both effectiveness and costs
- results
 - summary of effectiveness and costs (point estimate and, if reported, range or standard deviation)
 - summary of cost-effectiveness/utility (point estimate and, if reported, range or standard deviation)
 - sensitivity analysis
- conclusions as reported by the authors of the study.

Quality assessment
A single economist assessed the quality of included studies using a published checklist. The questions were set out on a standard form generated before the review.

Data synthesis
Data from included studies were assessed and summarised by a single economist, and interpreted alongside the results of the systematic review of effectiveness so that conclusions could be drawn on the relative efficiency of HealOzone compared with alternative treatments.

Results
The search revealed no published economic evaluations of HealOzone. One published trial was found which discussed the costs and effectiveness of the management of primary root caries with HealOzone. However, since the cost information is limited to estimates of the total cost of dentistry, with no detail of costs and consequences of the alternatives, the study did not meet all of the methodological criteria listed in Table 14 to be classified as an economic evaluation and therefore was not further reviewed. Two abstracts concerning studies on the costs and benefits of HealOzone for dental caries were found, but did not provide sufficient details of study design or data for the purpose of this review. However, the industry submission from KaVo Dental (August 2004) provided an economic evaluation. The remainder of this section provides a summary and critique of that submission.

The unpublished industry submission from KaVo Dental Ltd, UK (KaVo: Clinical and cost
Effectiveness of HealOzone for the treatment and management of dental caries, 2004) included an economic model of HealOzone compared with current treatment for non-cavitated pit and fissure caries, cavitated pit and fissure caries, and root caries. Both a base-case and a probabilistic analysis were included. The submission comprised both a text document and supporting Excel spreadsheets.

Table 14 provides a summarised assessment of the KaVo industry submission based on the ten critical appraisal components.61

Summary of the industry submission

The submission by KaVo included a cost-effectiveness analysis over a 5-year time horizon of HealOzone treatment versus current management for non-cavitated pit and fissure caries, cavitated pit and fissure caries, and cavitated root caries. The current management treatments were defined as follows:

- non-cavitated pit and fissure caries: sealants
- cavitated pit and fissure caries: glass ionomer, composite resin and amalgam fillings
- root caries glass ionomer and composite resin restorations.

These comparators were identified from the expert opinion of four dentists. The submission does not consider preventive treatments such as oral hygiene or advice on diet along with surface applications of fluoride and sealants as a comparator. The intervention with HealOzone is
defined as an initial treatment with HealOzone followed by 12 weeks of treatment with mineralising toothpaste, oral rinse and spray, with the possible addition of restorative treatments. An opinion survey of 243 dentists practising HealOzone treatment was used to estimate the proportion of teeth that would require additional restorative treatment at the same time as the HealOzone application or at any time subsequently, but only 48 provided usable responses.

Effectiveness data were obtained from a review of published evidence for HealOzone and the current management of dental caries. Clinical outcomes included caries progression and reversal.

Costs included those of comparators plus costs of restorations avoided. The costs of each current treatment comparator were estimated from published data for the treatments defined above. All cost data were estimated from the perspective of the NHS and were presented in UK pounds sterling (£) at 2003 prices. Their method was to translate the treatments into relevant treatment codes listed in the Statement of Dental Remuneration (SDR codes)64 and then to use GDS65 data to identify the total annual numbers of such treatments. These data are presented separately for patients aged less than 18 years and those aged 18 years and over. The same source (GDS) gives annual total treatment costs which, when combined with annual treatment numbers, gave a unit cost per treatment item. These figures were adjusted to take account of SDR codes relating to more than one tooth and more than one type of caries. The unit cost estimates do not appear to differentiate between primary restorations on virgin tooth surfaces and secondary restorations, the latter being outside the scope of the study since these would be unsuitable for treatment with HealOzone. Finally, these unit cost estimates were adjusted to reflect the fact that patients under 18 years receive free NHS dental care and those aged 18 years and over pay 80% of their NHS dental fees, unless they are eligible for free treatment. It was assumed that the dental practice and not the NHS would fund the capital cost and running cost of the actual HealOzone device.

Using these unit cost estimates the industry model assesses the annual cost to the NHS for each comparator. To estimate the annual cost to the NHS of the HealOzone comparator the industry submission carried out a survey of dentists to estimate the proportion of teeth currently treated for either non-cavitated pit and fissure caries, cavitated pit and fissure caries or root caries that would be suitable for treatment with HealOzone. This survey also asked dentists to estimate the proportion of HealOzone-treated teeth that would require some restorative treatment either at the time of HealOzone treatment or sometime afterwards. These restorative treatments were defined similarly to current management treatments for each caries type.

The unit cost of HealOzone treatment was based on the cost of patient consumables and dentists’ time (in practice, a dentist is remunerated by a fee per item of service as listed in the SDR and these fees are intended to reflect the costs incurred by dental practices). Using the results of a questionnaire survey of dentists who use HealOzone in their own dental practice the estimated unit cost for a course of HealOzone-treatment was then adjusted to reflect the estimated percentages of HealOzone-treated teeth that would require additional restorative treatment. On the basis of responses to this questionnaire an additional cost of restoration (using current management in addition to HealOzone) was applied to 44% of non-cavitated pit and fissure caries, 84% of cavitated pit and fissure caries and 47% of root caries.

The cost to the NHS of HealOzone also took into account the proportion of treatment fees paid by the NHS rather than by patients as described above for current treatment costs. The unit cost for a course of HealOzone procedure was based on an assumption of more than one HealOzone application per course of treatment. The model used a mean of 2.5 HealOzone applications per course of treatment (range 1–4). This was based on data from KaVo Dental.

An additional cost was added to reflect the weighted average cost per tooth year of restorations avoided. This was based on data from a study that reported the average cost per tooth year of restoration in teeth previously filled with amalgam or composite resin for each type of caries over 5 and 10 years. When calculating the cost of restorations avoided the costs of the original restoration are removed to avoid double counting.66

The model uses rates of caries progression and regression taken from a variety of unpublished and published clinical studies. The mean values for annual rates of caries progression for the current treatments assumed in the industry...
submission, along with the study reference from which these values were obtained, are: non-cavitated pit and fissure caries 0%,67 cavitated pit and fissure caries 4.9%,68-70 and root caries 3.9%.68,69

The progression rates cited for HealOzone were all 0%, taken from studies with follow-up of 3–21 months.35,40,42,44,53,71,72

Caries reversal rates for non-HealOzone treatments were assumed to be zero. The industry submission does cite a 15% reversal rate found in a study reporting the use of varnish (chlorhexidine), but this value was excluded from the industry submission on the grounds that such varnish is not cited in the SDR codes. Rates of caries reversal in teeth treated with HealOzone were derived from 11 studies with follow-up times ranging from 3 to 21 months. The annualised mean values used for base-case analysis were: non-cavitated pit and fissure caries 93.3%,53,55 cavitated pit and fissure caries 79.0%,72-77 and root caries 84.5%.35,40,42,44,57,71

Although no evidence was available to estimate underlying QALY scores, the industry submission model estimated alternative cost per QALY thresholds of between £10,000 and £40,000 assuming quality of life benefits from 1 day to 1 month. The assumptions for QALY estimates were utility gains of 0.01, 0.02, 0.05 and 0.1 for restorations avoided.

The model was run to provide results using base-case data. The deterministic base-case analysis used mean values from the minimum and maximum values inputted for each parameter. Both one-way analysis and multivariate sensitivity analysis were also conducted. Stochastic analysis was conducted using Monte Carlo simulation over 10,000 cycles. Random numbers were used to select data inputs from those provided.

Results

The average baseline figure estimated in the industry model, across all caries types, for the incremental cost to the NHS per tooth treated with HealOzone was £6.24. Allowing for the cost of restorations avoided (see earlier description), the net incremental cost per tooth treated with HealOzone was ‘minus’ £9.70. The industry model also resulted in an estimated NHS cost of £61 per case of caries progression avoided (for all caries types) using a 5-year model time horizon, and assuming up to 35 cases per 1000 avoided per year (152 over 5 years). An estimated 846 cases of caries reversal per 100 cases treated with HealOzone were reported, with an estimated NHS cost case of per caries reversal of £7.38, again for all caries types.

The estimated minimum utility gain (at 0.095) to achieve a cost per QALY of £30,000 was found to be for the use of HealOzone for root caries treatment. This was estimated using alternative cost-effectiveness acceptability thresholds based on varying the length of time over which a utility gain was accrued.

Sensitivity analysis indicated that the main drivers of cost and cost-effectiveness were numbers of teeth treated per treatment session and the numbers of treatments per course of therapy. Multivariate analysis revealed that despite uncertainty around the cost of HealOzone, HealOzone would be likely to be cost-effective over a 10-year follow-up period.

The report also discusses the wider implications to the NHS, impact on patient health and equity issues. The results of the economic evaluation are used to estimate the budget impact to the NHS from the use of HealOzone technology for all caries treatment of all eligible teeth. The figures include both initial treatment costs and the estimated costs of restorations avoided. On this basis, an annual net incremental cost of £48.1 million in year 1, reducing to £11.8 million by year 5, was estimated for HealOzone. These results assume that the capital and running costs of the HealOzone device are funded by dental practices, with no contribution from the NHS apart from the fee for service. If the exchequer provided additional funds for the device this would cost the NHS an additional £110.4 million, assuming one device per dental practice in England and Wales. Additional annual servicing costs are estimated at £10.8 million.

Although the evaluation does not include patient health as an outcome in the model, the results include a brief description of possible effects on patient health, based on studies of patient attitudes to dental treatment.

Equity issues are also briefly discussed in the results. The report cites evidence suggesting a link between caries incidence and deprivation, and that deprived populations would be one group less likely to benefit from HealOzone technology as long as it is only available through private dental treatment.
Critique of industry submission

On the whole, the economic evaluation submitted by KaVo Ltd is based on reasonable economic evaluation methodology. Nevertheless, a number of concerns can be raised relating to the choice of comparators and the quality of data used to parameterise the economic model.

The comparators used in the industry submission for non-cavitated caries were based on restorative treatment of caries. The evaluation did not consider preventive measures for early caries. However, the management of non-cavitated caries rarely requires fillings, as it is now well-established that preventive treatments for early lesions can be effective in reversing and arresting further progression of caries. Furthermore, HealOzone has been cited as being “most effective in the role of prevention and early management of lesions”.78

It would therefore have been appropriate for the industry model to include conservative treatments aimed at ensuring reversal of early caries as additional comparators for non-cavitated caries.

The HealOzone comparator includes an assumption about the proportions of teeth that would require additional treatment to HealOzone treatment alone. These assumptions are taken from a survey of 243 dentists who currently use HealOzone, of whom only 48 provided usable responses. Given the absence of robust, objective clinical data, options to obtain relevant model parameter values are limited. Nonetheless, such data are potentially biased and unreliable and the considerable uncertainty would be reduced if actual clinical evidence were to exist. This was a non-randomised survey of opinion and cannot therefore be interpreted as having a strong evidence source. It does not appear that any random selection process was used to recruit dentists for the survey, and therefore it is unclear whether any attempt was made to obtain a balanced opinion.

The industry evaluation of implications to the NHS includes an assumption about the numbers of teeth suitable for treatment with HealOzone. These figures were again estimated from information taken from a survey of dentists who are users of HealOzone.

The assumption concerning the funding of the capital cost of providing a HealOzone device in dental surgeries was that this would not affect the fee for service. In reality, however, it would be expected that any additional contribution by the NHS towards capital costs incurred by dental practices would be offset by lowering subsequent fees paid to dentists for the associated therapy.

Estimates of caries progression and reversal rates were extracted from a range of studies of varying degrees of quality, including published and unpublished RCTs, conference abstracts and PhD theses. Some of the limitations of these data sources are discussed in Chapter 3. Caries progression rates for current management were extracted from studies that did not include HealOzone as a comparator and the patient mix may be different. Caries progression rates for HealOzone were estimated from studies with follow-up periods from as little as 3 months, all of which claimed a 0% caries progression rate. Other studies show higher caries progression rates.

Selecting the most favourable studies biases the results.

Rates of caries reversal with current management were assumed to be zero despite a 15% reversal rate being reported in one study. This rate was excluded from the analysis on the grounds that it was associated with the application of chlorhexidine varnish and this was assumed by the authors of the industry report not to be a standard NHS dental treatment. However, dentists commonly rank application of varnish among ‘treatments for sensitive cementum or dentine’ (code 3631 in the SDR).

Source data for caries reversal associated with the use of HealOzone came from 14 studies, three of which had follow-up of less than 3 months. Only the latter were included in the sensitivity analysis. The remaining 11 studies differed in design and quality. For non-cavitated pit and fissure caries effectiveness data were extracted from studies with 3–6-month follow-up.53,55 For cavitated pit and fissure caries, despite finding no available evidence, data from five studies were used in the model. The assumption used to justify this is the following:

“None of the available studies specifically describes the treatment of cavitated pit and fissure caries. In the absence of such detail, the studies presented in this section refer to carious lesions, which are deemed to require drilling and filling. While non-cavitated caries may be treated in this way, drilling and filling is the conventional treatment for cavitated caries and it is therefore assumed that these studies included a proportion of cavitated caries.” (KaVo Dental, 2004).

A further concern is that, although the industry submission report does acknowledge the limitation of combining data from more than one study,
given the disparity in inclusion/exclusion criteria and other study characteristics, the reversal rates and progression rates used as the mean rates for base-case analysis were calculated using the results from more than one study.

Estimates of the cost of rerestorations avoided are based on a number of assumptions and the report does acknowledge the absence of published data for rates of future rerestorations. Instead, the model uses published data for the average cost per tooth year of rerestoration in teeth previously filled with amalgam or composite resin over 5 and 10 years (KaVo industry submission, 2004). It is unclear in the report exactly how estimates of the numbers of future rerestorations would be avoided as a result of HealOzone treatment, although the report does provide estimates for the cost of such rerestorations avoided. Given the considerable uncertainty surrounding the rate of rerestorations, the figures used should be interpreted with care. Realistically, such data could only be obtained from the outcomes of a long-term study of the effectiveness of the relevant comparators. QALY estimates are included in the economic evaluation, but are not based on quality of life data. Instead, assumptions concerning the amount of utility gain and duration of gain were used to derive QALY thresholds. Given the short duration of any potential intermittent change in quality of life, along with the high degree of uncertainty surrounding any estimates of QALY scores, the additional information value of such QALY thresholds is dubious.

Although the economic evaluation in the industry submission is well presented, the choice of comparator is questionable and considerable uncertainty surrounds many of the parameter values used in the model. Therefore, their results overestimate the benefits of HealOzone.
Chapter 5
Economic analysis

Given the current state of the clinical effectiveness evidence, with little published in full in peer-reviewed journals, it could be argued that economic analysis is premature. However, NICE always requests some attempt at economic appraisal, if only to clarify the data deficits. Therefore, the following analysis has been produced more as illustrative modelling than as hard evidence.

Methods for economic analysis

The economic evaluation aimed to assess the cost-effectiveness of HealOzone relative to the alternative interventions for the treatment of both occlusal pit and fissure caries and root caries. As identified in the previous section, economic evaluations of HealOzone versus conventional treatments of dental caries were virtually non-existent at the time of this review. This section provides an economic evaluation using cost-effectiveness analysis and presents economic models of the treatment of non-cavitated pit and fissure caries, and root caries. They compare current management versus current management plus HealOzone. The results over the extended period must be qualified by the fact that follow-up data on HealOzone are limited to 2 years. The results reported in this section should be interpreted on the understanding that they entirely depend on the model parameters and assumptions made. The authors recommend that the model be rerun in the future if evidence on clinical effectiveness is published.

Markov model framework

This section presents a description of the Markov model developed for the assessment, and of the parameters that were common across all models. Key parameters specific to each model and results are then presented separately for each comparator. The section concludes with a summary of the results for all comparators and of the factors deemed to be most critical in affecting the results.

Markov modelling techniques were used to assess the cost-effectiveness of HealOzone plus current management of dental caries. A Markov model is composed of a set of defined health states among which a patient can move over successive periods and is run using a hypothetical cohort of patients. The model incorporates both the logical and temporal sequences of treatment, including the events that follow from the initial treatment procedure and the outcomes for the patient that are associated with each possible scenario or clinical pathway. Transition probabilities are used to allow patients to move within and between these states of health. A patient can only be in one state of health at any time and can only make one transition per cycle. A relevant period is chosen for the length of a cycle and the cycles then link together to form a Markov chain. The length of cycle used in this study was 1 year. When the model is run over the defined number of cycles, a discounted net present value (NPV) for the cost of an intervention is calculated, determined by the occurrence of different states and the length of time in various states.

The models were designed to estimate a typical patient’s costs and outcomes for the alternative treatments over a 5-year period. A 5-year time horizon was chosen to facilitate comparison with the results from the industry model. Figure 10 summarises the basic structure of the model. Similar models were developed to carry out the analysis for non-cavitated pit and fissure caries, and non-cavitated root caries.

Non-cavitated pit and fissure caries

The model for non-cavitated pit and fissure caries compares current management strategies (i.e. watchful waiting, oral hygiene/removal of plaque, fluoride applications and sealants) versus the same strategy plus HealOzone.

Non-cavitated root caries

The model for non-cavitated root caries compares current management strategies (i.e. removal of plaque, topical fluorides, chlorhexidine and a sealant) versus the same strategy plus HealOzone.

Model pathways

The pathways for each model were developed in accordance with the protocol for the assessment along with expert opinion from members of a
local dental school. All models have simplified clinical event pathways, but are designed to reflect those clinical events of importance to the evaluation (Figures 15–18 in Appendix 6).

Non-cavitated pit and fissure caries and root caries

Following initial treatment carious lesions may either reverse or not reverse. Lesions that do not show reversal of caries progression after the initial intervention require additional treatment. This is a further application of the initial preventive/non-restorative treatment or a restorative treatment (i.e. drilling and filling). In those receiving further preventive/non-restorative treatments, caries can again be reversed or treated with filling (Figure 10). The event pathway is split into two mutually exclusive events, the reversal (cure) of caries and no reversal of caries. The arrows between these states represent the possible transitions between them. Movement between the different states is governed by the transition probabilities, such as the chance of the caries reversing. The absorbing state in this model is a tooth with a filling. While this is not an absorbing state in reality, given the 5-year timescale of the model, and that a typical filling would last longer than 5 years, no states beyond filling were included. It was assumed that once a tooth was cured it remained in a cured state for the rest of the 5 years. TREEAGE DATA 4.0 software (TREEAGE Software, 2001) was used to construct the model.

Estimation of parameters

Probabilities

The time horizon considered in the Markov model was a maximum of 5 years. The outcome considered in the economic evaluation was the numbers of carious lesions cured. The main probabilities used in the model were the rates of reversal (cure) of caries. These rates were derived from the effectiveness study (Chapter 3) and consultation with dental practitioners. The probability of cure rates (Table 15) obtained from the effectiveness studies and used in the first run of the economic model were: HealOzone 0.074 (7.4%) for the non-cavitated pit and fissure caries and 0.98 (98%) for the non-cavitated root caries. The rates used for current management were 0.056 (5.6%) for non-
cavitated pit and fissure caries and 0.01(1%) for non-cavitated root caries. These values, which are highly favourable to HealOzone, were different to those used in the industry model, which aggregated data from a number of studies, some of which did not meet the inclusion criteria specified in this review. In the absence of any alternative information, it was assumed for the purposes of the model that, following initial treatment, there was a 0.50 (50%) chance of subsequent treatment being the same treatment as the initial one received or a filling.

The root caries cure rates are taken from the Holmes study, the results of which seem puzzling; they reflect a best possible case for HealOzone.

Costs

The perspective adopted for the study is that of the NHS and Personal Social Services. The unit costs of dental treatments were taken directly from cost data published by the NHS. Table 16 provides details of the different treatments with corresponding codes from the NHS SDR for each treatment item. Unit costs are listed for each treatment item and represent the fee paid by the NHS to the dentist for each item of service.

Resource-use data were identified from existing literature, reports from manufacturers and advice from experts in this field. Based on existing evidence and clinical opinion, patients were assumed to visit the dentist every 6 months. Cost data were measured in pounds sterling (£) for the

TABLE 15 Probabilities used in the economic model

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Probability</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HealOzone cure rate (non-cavitated pit fissures)</td>
<td>0.074</td>
<td>Table 11, Chapter 3</td>
</tr>
<tr>
<td>Current management cure rate (non-cavitated pit fissures)</td>
<td>0.056</td>
<td>Table 11, Chapter 3</td>
</tr>
<tr>
<td>HealOzone cure rate (non-cavitated root caries)</td>
<td>0.98</td>
<td>Table 9, Chapter 3</td>
</tr>
<tr>
<td>Current management cure rate (non-cavitated root caries)</td>
<td>0.01</td>
<td>Table 9, Chapter 3</td>
</tr>
<tr>
<td>Percentage being retreated with initial treatment</td>
<td>0.50</td>
<td>Discussions with expert</td>
</tr>
<tr>
<td>Percentage being retreated with filling</td>
<td>0.50</td>
<td>Discussions with expert</td>
</tr>
</tbody>
</table>

TABLE 16 Unit cost per item

<table>
<thead>
<tr>
<th>Type</th>
<th>Current treatment (SDR code)</th>
<th>Cost (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>Hygiene/diet advice (0601)</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td>Chlorhexidine gel/varnish or fluoride varnish (3631)</td>
<td>4.60</td>
</tr>
<tr>
<td></td>
<td>Fissure sealant (0701)</td>
<td>6.95</td>
</tr>
<tr>
<td></td>
<td>Total (sum of above)</td>
<td>19.25</td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>Hygiene/diet advice (0601)</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td>Chlorhexidine gel/varnish or fluoride varnish (3631)</td>
<td>4.60</td>
</tr>
<tr>
<td></td>
<td>Total (sum of above)</td>
<td>12.30</td>
</tr>
<tr>
<td>Cavitated pit and fissure caries</td>
<td>Sealant only (1441)</td>
<td>6.95</td>
</tr>
<tr>
<td></td>
<td>Composite resin (1442)</td>
<td>9.80</td>
</tr>
<tr>
<td></td>
<td>Glass-ionomer (1443)</td>
<td>10.55</td>
</tr>
<tr>
<td></td>
<td>Amalgam (1401 or 1421)</td>
<td>14.15 (posterior)</td>
</tr>
<tr>
<td></td>
<td>Total (average of above)</td>
<td>16.98</td>
</tr>
<tr>
<td>HealOzone</td>
<td>Total (average of above)</td>
<td>20 (estimate)</td>
</tr>
</tbody>
</table>

* Costs are those that would be incurred by the NHS and exclude patient contributions to dental fees. Further details of cost calculations are presented in Appendix 6.
year 2004. As specified by the guidelines for conducting health technology assessment, cost-effectiveness results should reflect the present value of the stream of costs and benefit accruing over the time horizon of the analysis. To make the analysis consistent with the model used in the industry submission the analysis was carried out over a period of 5 years. An annual discount rate of 3.5% was applied to both costs and benefits accrued, the rate currently specified in the HTA guidelines.

The per-item fee for service paid by the NHS was used as a proxy for costs to the NHS of current management. Under the current NHS dental system patients pay 80% of the dentist’s fee, with the remaining 20% being paid by the exchequer (except that there is a maximum charge for a course of dental treatment of £366). Some patients, including all those less than 18 years old, are entitled to free treatment and the exchequer pays the full cost of treatment. Recent figures report that 25% of all claims for patients aged 18 years and over were exempt from patient charges. The other 75% of claims for patients aged 18 and over therefore include a patient contribution at 20% of the NHS contribution using the figures described earlier, at 100% of the amount of a claim per child and 40% per adult. Following this two-stage weighting process, the adjusted costs to the NHS used in the model were £9.02 for the non-cavitated pit and fissure caries and £6.09 for non-cavitated root caries, and a filling was estimated at £12.75. Details of the costs are included in Table 17.

The costs of HealOzone were calculated using the existing NHS methods and information from the manufacturer. Most of the studies indicated that HealOzone treatment is given at the start, and repeated at 3 and 6 months. The cost of HealOzone therefore took into account that patients could receive between one and three applications. The cost of HealOzone treatment also included that of current management as HealOzone was considered as an additional treatment and not as a stand-alone treatment. The weighted average cost of ‘current management plus HealOzone treatment’ used in the model was £20.03 for non-cavitated pit and fissure caries and

Table 17: Weighted average costs used in the model

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Cost (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 18</td>
</tr>
<tr>
<td>Current management</td>
<td></td>
</tr>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>19.25</td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>12.30</td>
</tr>
<tr>
<td>Current management plus HealOzone</td>
<td></td>
</tr>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>39.25</td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>32.30</td>
</tr>
<tr>
<td>Restorative interventions</td>
<td></td>
</tr>
<tr>
<td>Filling</td>
<td>19.67</td>
</tr>
</tbody>
</table>

Costs are those that would be incurred by the NHS excluding patient contributions to dental fees.

In the absence of separate effectiveness data for adults and children it was decided to combine all age groups for the base-case analysis. A two-stage process was required to weight the unit costs to represent a mixed population of adults and children. Further details of the stages involved in the cost calculations are reported in Appendix 6. Published statistics indicate that adults and children do not receive similar proportions of each treatment item among the different treatment items listed in Table 16. The first stage was therefore to calculate the percentage mix of children and adults for each identified SDR component of the treatment. These proportions were then weighted by the amount that the NHS contributed using the figures described earlier, at 100% of the amount of a claim per child and 40% per adult. Following this two-stage weighting process, the adjusted costs to the NHS used in the model were £9.02 for the non-cavitated pit and fissure caries and £6.09 for non-cavitated root caries, and a filling was estimated at £12.75. Details of the costs are included in Table 17.
£17.10 for non-cavitated root caries. These values were not similar to those used in the industry model as they focused on costs and benefits to the NHS in England and Wales as a whole, rather than on costs and benefits faced by the average patient.

Quality of life
It was not possible to measure health benefits in terms of QALYs. This was mainly because the adverse events avoided are transient: a few seconds’ pain from injection of local anaesthetic; the anxiety/fear of having a drill and numbness until the local anaesthesia wears off.

Sensitivity analysis
As every economic analysis contains some degree of uncertainty, imprecision or methodological controversy, and this one more than most, a sensitivity analysis was performed. Given the limited effectiveness data for estimating rates of caries reversal, the models were rerun using different probability values of reversal of caries. Assumptions were also made about what items to include in each of the interventions and sensitivity analysis was performed using different codes to determine the costs, namely the SDR codes used in the industry submission.

Results
The analysis, carried out over a 5-year period using the data reported in the trials, indicated that treatment using current management plus HealOzone cost more than current management alone for non-cavitated pit and fissure caries (£40.49 versus £24.78), but cost less for non-cavitated root caries (£14.63 versus £21.45). For non-cavitated pit and fissure caries 91.8% of the teeth treated using current management received a filling and 8.2% of teeth were cured. For teeth treated with current management plus HealOzone, 89.2% received fillings and 10.8% were cured. This was different from the results of the Cochrane review by Ahovuo-Saloranta and colleagues, which reported that the reduction in caries ranged from 86% at 12 months to 57% at 48–54 months. This review focused, however, on the prevention (and not the treatment) of tooth decay in children and adolescents who presented with no obvious caries. Based on the Holmes study, 1.5% of teeth were cured at 5 years in the non-cavitated root caries group treated with current management and 98.5% teeth were filled, while 99.9% of teeth were cured by the combination of current management and HealOzone and 0.01% were filled. The present authors remain sceptical about these results.

Sensitivity analysis
There was very little suitable evidence on the effectiveness of the HealOzone comparator. One-way sensitivity analysis was applied to the model to assess the robustness of the results to variations in the underlying data. The probability of caries being cured was varied for each comparator separately, using the baseline cure rate for the alternative comparator. These results indicated that when higher probability cure rates were used the proportion of teeth filled was lower at 12 months. These results were similar to those of the Cochrane review by Ahovuo-Saloranta and colleagues. However, as the focus of the Cochrane review was on the prevention of dental decay in the permanent teeth of children and adolescents, the extrapolation of its results to an adult population with dental caries might be questionable.

The results of the one-way sensitivity analyses are illustrated in Figures 11–14 and presented in tabular form in Appendix 6 (Tables 29–32).

In Figure 11 the costs refer to those of current management when the baseline cure rates of HealOzone are used (0.074). The discounted NPV for the cost of HealOzone was £40.49. The above results indicate that the discounted NPV of the cost of the HealOzone comparator, using baseline parameter values for HealOzone, was higher than that of current management at any probability of cure with current management. This is mainly attributable to the fact that the baseline cure rate used in the model is less than 10%. The results also indicate that as the probability of cure rate increases, the cost reduces and the number of teeth filled also reduces.

In Figure 12 the costs refer to those of HealOzone plus current management when the baseline annual cure rate of current management is used (0.056). The discounted NPV for the cost of current management was £24.78. Varying the probability of the cure rates of HealOzone plus current management, and using the baseline cure rate probability for current management, indicated that the HealOzone option was always more expensive than current management when the probability of cure using the HealOzone option was 70% or lower.

In Figure 13 the costs of HealOzone reflect the costs when the baseline probability of cure of
current management (0.01) was used and the probability of cure of HealOzone management was varied accordingly. The one-way sensitivity analysis results show that discounted NPVs for the costs of current management plus HealOzone were lower than those of current management only when cure rates from current management plus HealOzone were at least 80% and above.

In Figure 14 the costs of current management reflect the costs when the baseline probability of cure of HealOzone (0.98) was used and the probability of cure of current management was varied accordingly. The discounted NPVs for the costs of current management were higher than those of current management plus HealOzone when the cure rate for current management was 40% or lower.
FIGURE 13 One-way sensitivity analysis for non-cavitated root caries: discounted NPV of each comparator at alternative cure rates for HealOzone plus current management, holding the baseline cure rate for current management constant.

FIGURE 14 One-way sensitivity analysis for non-cavitated root caries: discounted NPV of each comparator at alternative cure rates for current management, holding the baseline cure rate for HealOzone plus current management constant.
One-way sensitivity analysis was also carried out using similar SDR codes to those used in the industry submission. Table 18 shows the SDR codes used by the industry for patients under 18 years of age. The figures for those over 18 years were similar. This did not alter the results for non-cavitated pit fissure caries as the discounted NPV of current management remained lower than that of the HealOzone comparator (£22.65 versus £33.39). These results could be attributed to the fact that it was assumed that patients received the same treatment as the initial one and the cost of current management plus HealOzone is much higher than that of current management alone, given that HealOzone is an additional treatment rather than an alternative treatment. Results using the SDR codes used for non-cavitated root caries in the industry model gave similar results to those in the base-case analysis. HealOzone cost less than current management (£17.66 versus £30.41).

Discussion

The economic analysis was greatly constrained by the uncertainty over clinical effectiveness; therefore, the results should be regarded mainly as illustrations of the key variables and hence interpreted cautiously as they reflect the parameter values and assumptions used in the model. A further constraint was the lack of long-term data on the effectiveness of HealOzone (it is not known whether caries that is reversed will always stay in the inactive/arrested state or whether future treatments will be required). To attempt to model longer term effects the available 12-month data were extrapolated to 5 years. It is not known at this stage whether this assumption is valid. Another possible area of uncertainty was related to whether the response to HealOzone treatment would increase with increasing dose levels.

It was not possible to model the treatment of cavitated caries since no effectiveness data on direct comparisons were available. The analysis was carried out on a hypothetical cohort of teeth with carious lesions and did into take into account the proportion of teeth that are unsuitable for HealOzone treatment. Further research is therefore necessary to support a complete economic evaluation.
Chapter 6
Implications for the NHS

National Service Framework

The majority of general dental practitioners in the UK are contracted to the NHS through GDS, although, as independent contractors, dentists who offer NHS treatment may also offer certain treatments on a private basis. Dentists receive fixed fees per item of treatment for adults, while for children they receive a combination of fixed fees per item and capitation fees. Under this NHS system patients can pay up to 80% of the cost of their treatment up to a maximum cost of around £366. Some patients are entitled to free NHS dental treatment, including children, young people in full-time education, pregnant women and those with a child under 1 year old, and people on low incomes. The costs of running a dental practice, including capital costs of equipment, are met by the dental practice rather than the NHS, and recovered from the fee for service charges paid by the patients and the NHS. In addition to dentists contracted to provide NHS treatment, some of whom also offer private treatment, there are many dentists in the UK who only provide treatment on a private basis. Currently, HealOzone treatment is only available as a private treatment from a limited number of dentists.

Health targets

There are no specific health targets, although in England the Department of Health set a target to reduce tooth decay in 5-year-olds to low levels by 2003, while in Wales the official target was to achieve no more than 48% of 5-year-olds having tooth decay by 2002.80

The new Base Dental Contract (based on the personal dental services model) will be introduced for all practices in April 2006. The new contract will be more likely to have a greater preventive and capitation element.81

Fair access

At the time of writing HealOzone treatment was only available through private dental care and it was estimated that there were 294 HealOzone units in the UK (at June 2004). Were ozone therapy to be made available, provision of HealOzone units would have to be increased much beyond this to allow all suitable patients fair access to the treatment.

Equity issues

The availability of HealOzone treatment is currently limited to those people who are able and willing to pay for the treatment privately. However, in the present state of knowledge, it cannot be said that people suffer by being unable to afford it.

Budget implications to the NHS

At present, HealOzone is only available to patients through private dental care. The aim of this section is to estimate what the implications would be to the NHS if HealOzone were made available as an NHS dental service.

The models used in the economic evaluation described in Chapter 5 considered the costs and effectiveness of current treatment with and without the addition of HealOzone for arresting the progression of dental caries (further details of these cost calculations are presented in Appendix 6). The evaluation does not consider those teeth with carious lesions, which would be unsuitable for HealOzone therapy. These could be considered in the estimated implications to the NHS for the total population of teeth with carious lesions if estimated numbers of such teeth were available. To achieve this it is necessary to make assumptions about the proportion of teeth currently treated for caries that would be suitable for alternative HealOzone treatment. This proportion would be used to calculate the total annual number of treated teeth.

Data from GDS provide statistics for the numbers of teeth treated by SDR code in a year for adults and children in England and Wales. At the time of writing the latest available GDS data were those pertaining to the year ending March 2003.

© Queen’s Printer and Controller of HMSO 2006. All rights reserved.
The following results were calculated by combining the GDS data with assumptions about the SDR codes relevant to each caries type to estimate annual numbers of teeth treated for non-cavitated pit and fissure caries and non-cavitated root caries. Again, teeth with cavitated caries were not considered given the absence of evidence on the effectiveness of HealOzone as a comparator treatment for cavitated caries.

Non-cavitated pit and fissure caries

The discounted NPV for the cost over 5 years of teeth treated initially with current management or HealOzone plus current management was reported in Chapter 5. These figures were combined with the numbers of teeth treated initially using annual GDS data for the SDR codes in the present treatment definitions. The results should, however, be interpreted with extreme caution given that they are based on the limited effectiveness data available for the economic analysis, as reported in Chapters 3 and 5 of this report.

The total discounted NPV over 5 years for treating non-cavitated primary fissure caries was estimated at £8,565,765 for current management and £13,996,280 for HealOzone therapy (Table 19). The base-case results showed that by 5 years fillings were present in 91.8% of teeth treated with current management compared with 89.2% of teeth treated with HealOzone plus current management. Using these figures the incremental cost per tooth treated would be £15.71, at an initial total cost to the NHS of £5,430,515. The incremental cost over 5 years for the HealOzone comparator compared with current management (£13,996,280–£8,565,765) was divided by the difference in numbers of teeth filled at 5 years for the HealOzone comparator and current management (308,340–317,327). The incremental cost per filling avoided, using these assumptions, would be estimated at £604.23.

The industry submission estimates for the percentage of teeth currently treated that would be suitable for HealOzone, obtained from the opinion of current users of HealOzone, were 92% for non-cavitated pit and fissure caries, 76% for cavitated pit and fissure caries, and 76% for root caries. These figures were derived from Table 15 in the industry submission.

Non-cavitated root caries

The total discounted NPV over 5 years for treating non-cavitated root caries, using the best case for HealOzone again, would be estimated at £7,371,882 for current management and £5,876,885 for HealOzone therapy. The net difference in these two costs shows that HealOzone therapy would save the NHS £4.35 per tooth treated initially with HealOzone in addition to current management for root caries, a total cost saving over 5 years of £1,494,997 (Table 20).

These figures are estimated using base-case values for caries reversal rates. Limited suitable effectiveness data were available for reversal rates of root caries, apart from a single study reporting reversal rates of 1% for current management and 98% for HealOzone treatment. Given the extreme values of reversal rates for the comparators, based on the limited effectiveness data available at the time of analysis, these results need to be interpreted with caution. It was only possible to carry out limited one-way sensitivity analyses.

TABLE 19 NHS annual cost for treatment of non-cavitated pit and fissure caries

<table>
<thead>
<tr>
<th></th>
<th>NPV of treatment cost over 5 years (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current management</td>
<td>8,565,765</td>
</tr>
<tr>
<td>HealOzone plus current management</td>
<td>13,996,280</td>
</tr>
<tr>
<td>Net difference in cost</td>
<td>5,430,515</td>
</tr>
<tr>
<td>Net difference in cost per tooth treated initially</td>
<td>15.71</td>
</tr>
</tbody>
</table>

TABLE 20 NHS annual cost for treatment of non-cavitated root caries

<table>
<thead>
<tr>
<th></th>
<th>NPV of treatment cost over 5 years (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current management</td>
<td>7,371,882</td>
</tr>
<tr>
<td>HealOzone plus current management</td>
<td>5,876,885</td>
</tr>
<tr>
<td>Net difference in cost</td>
<td>--1,494,997</td>
</tr>
<tr>
<td>Net difference in cost per tooth treated initially</td>
<td>--4.35</td>
</tr>
</tbody>
</table>
varying cure rates separately for the HealOzone and current management comparators (see Chapter 5). From the results of the sensitivity analyses it can be seen that the net difference in cost per tooth treated initially was higher for current management unless the probability of cure for the HealOzone comparator was lower than approximately 80%.

It is advisable that the reader interprets all such results merely as an illustration of possible scenarios. In the light of limited evidence on effectiveness, a more detailed analysis of budget implications was not considered likely to add any useful information to the evaluation.

The cost implications over time are difficult to ascertain since there are many uncertain factors to take into account. Further research is required to model the cost implications over time, taking into account the cost of rorestorations beyond the lifetime of first fillings and their effects over time on the tooth population. For example, it is unknown how long an arrested carious lesion remains inactive. Any prospective trial should have sufficient follow-up to allow for this.

Importantly, the above results are based on the authors’ assumptions for the management of the different types of caries.

In addition, it is difficult to estimate the actual cost of HealOzone to the NHS. Assuming that patients who pay some of their dental treatment fees are willing to pay no more than current treatment for the same condition initially, what would the cost-effectiveness ratio be? Would patients opt for this treatment if it was more expensive?

Finally, would patients be given a choice for caries management or would dentists have to follow some guidelines about the best treatment? This has implications on the numbers of teeth treated.
Main results

Clinical effectiveness
The literature on ozone treatment is still at a relatively early stage, in the sense that only one paper has been published in full in a refereed journal. Most of the reports are available only in abstract form, as conference proceedings, and inevitably give few details. Many trials are still very short term and none of the studies has followed up the patients after they have stopped ozone treatment for a reasonable length of time. It is also worthwhile remembering that caries is a dynamic process: a lesion can remineralise without the need for any intervention, and the rate of caries progression can be very slow.

HealOzone is supposed to kill the microorganisms (bacteria) responsible for dental plaque formation. However, unless patients have improved their plaque control and eliminated the causes of the increased numbers of microorganisms, the plaque will re-form and the lesion will progress again. This raises the question of whether HealOzone is a reasonable preventive technology. Furthermore, treatments based on HealOzone would need to be repeated for an indeterminate numbers of years to be beneficial, with obvious cost implications.

The available evidence is conflicting, with the root caries treatment showing much better results than treatment for pit and fissure caries. However, the results are surprising, partly because the ozone group did so well, with 99% cure or improvement, but mainly because the control group performed very badly, despite receiving the same care package (oral hygiene, topical fluoride, etc.) but without the application of ozone. Compliance of patients with treatment, however, was not assessed in the included studies.

In particular, it proved difficult to identify the additional role of ozone gas from the patient kit or the synergistic effect between ozone and the patient kit, which contained, among other elements, fluoride and xylitol. It would have been useful, for example, to know the effects of ozone alone, namely ozone gas, together with the patient’s normal brushing or how HealOzone compares to professional plaque control (the removal of plaque by a dentist or hygienist), which has been used effectively in the management of dental caries in adults. A recent study assessing the outcomes of a 30-year preventive programme based on professional and self-performed plaque control has shown how high standards of oral hygiene are associated with a very low incidence of dental caries and periodontal disease in adults.82

Cost-effectiveness
If HealOzone led to a reduction in future fillings, then the extra cost might be justified. The authors do not believe that the evidence base yet supports that.

Need for further research
Nearly all the research to date comes from the same group who developed and pioneered the procedure, and have the greatest experience in its use. There is a need for large, well-conducted RCTs to assess the effectiveness and cost-effectiveness of HealOzone for the management of both occlusal and root caries. In particular, future trials:

- should be conducted by independent research teams
- should be properly randomised so that an equal number of lesions, or paired lesions, per mouth are allocated to intervention groups
- should apply appropriate statistical methods for the analysis of paired-data on a patient basis;
- should use validated and reproducible criteria for the assessment of caries
- should measure relevant outcomes such as reduction in caries incidence over a reasonable period (at least 2 years, but realistically much longer)
- should mask participants and outcome assessors
- should provide both a statistical and a clinical interpretation of their findings
- should conform to the CONSORT guidelines for the reporting of RCTs.83

Owing to the natural history of the caries process, any future trial would need to include a very long follow-up, which would have a significant impact on trial costs.
There also appears to be a need for evaluation of the different methods of assessing caries severity. The base case could be clinical examination, with the marginal benefits and costs of more sophisticated techniques assessed. Although the economic evaluation was not able to provide results that could be used by decision-makers, it was a valuable exercise in highlighting the paucity of good quality data on key parameters. In particular, the paucity of suitable data from published clinical trials comparing the effectiveness of HealOzone with appropriate comparators restricted the scope of the economic model. No comparable quality of life data were available for the comparators, thus limiting the range of outcomes available for an evaluation. These gaps in the data needed to undertake an informative economic evaluation of HealOzone can only be filled through further research in the form of prospective RCTs.

To provide adequate information to assess the cost-effectiveness of HealOzone, any future economic evaluation of HealOzone should feature the following characteristics:

- It should be based on data from properly conducted RCTs of HealOzone versus appropriate comparators (e.g. no treatment or current management).
- Follow-up of patients should be long enough to allow identification of both short-term and long-term resource use and effectiveness.
- Outcome data must include both short-term and long-term rates of caries reversal, caries progression, retreatment and/or rerestoration.
- Separate consideration is needed for cavitated and non-cavitated caries.
- Sufficient power is needed to allow for robust subgroup analyses for deciduous and permanent teeth, and for variation in caries severity.
- An estimate of the unit cost of HealOzone to the NHS should be based on calculations similar to those underlying the SDR figures for current dental treatments provided by the NHS.
- Factors affecting patients’ quality of life should be considered, both at the point of treatment and during follow-up (e.g. the effect on quality of life due to pain from toothache).
Chapter 8

Conclusion

Any treatment that preserves teeth and avoids fillings is welcome. However, the current evidence base for HealOzone is insufficient to conclude that it is a cost-effective addition to the management and treatment of occlusal and root caries.
Acknowledgements

Grateful thanks to Heather Mackintosh for her secretarial support.

The views and opinions expressed are those of the authors and do not necessarily reflect those of the funding bodies.

Publication information
The Aberdeen Health Technology Assessment Group is part of the Institute of Applied Health Sciences (IAHS). The Institute of Applied Health Sciences within the College of Medicine and Life Sciences of the University of Aberdeen is made up of discrete but methodologically related research groups. The HTA Group is drawn mainly from the Health Services Research Unit, the Department of Public Health and the Health Economics Research Unit.

The HTA Group carries out independent health technology assessment reports (TARs) for the UK HTA Programme, which commissions TARs for the National Institute for Health and Clinical Excellence (NICE) and other bodies, such as the National Screening Committee. In addition, a joint venture between the Health Services Research Unit at Aberdeen and the Medical Care Research Unit at Sheffield University forms the Review Body for Interventional Procedures (ReBIP) Programme within NICE. ReBIP undertakes systematic reviews and, where appropriate, establishes UK registries to collect and analyse data on the efficacy and safety of selected procedures.

Contribution of authors
Miriam Brazzelli (Research Fellow) and Shona Fielding (Medical Statistician) completed the review of effectiveness. Lynda McKenzie (Research Fellow) conducted the review of economic evaluations. Lynda McKenzie and Mary Kilonzo (Research Fellow) conducted the economic evaluation. Cynthia Fraser (Information Scientist) developed and ran the search strategies. Norman Waugh (Professor of Public Health) provided oversight and contributed to drafting the review. Jan Clarkson (Honary Consultant in Paediatric Dentistry) provided clinical advice and commented on the draft review.

References

Appendix 1

Literature search strategies

Sources searched for systematic reviews, other evidence-based reports and background information

Databases
Cochrane Database of Systematic Reviews (CDSR). The Cochrane Library (Issue 2, 2004).
Database of Abstracts of Reviews of Effectiveness (NHS Centre for Reviews and Dissemination), April 2004.
HTA Database (NHS Centre for Reviews and Dissemination), April 2004.

Websites
CurOzone USA Inc.
DentalOzone. London: Dental Clinique.
NHS Dental Practice Board.
Department of Health.

Search strategies used to identify reports assessing ozone therapy for dental caries

MEDLINE (1966 to week 1 2004), EMBASE (1980 to week 20 2004), (MEDLINE Extra 17 May 2004)
Ovid Multifile Search.
URL: http://gateway.ovid.com/athens
1 (heal ozone or curazone).tw.
2 ozone/ (14334)
3 (ozone or o3).tw.
4 (oxidat$ or oxidis$).tw.
5 or/2-4
6 exp tooth demineralization/ use mesz
7 dental caries/ use emez
8 demineralization/ use emez
9 Dental Caries Susceptibility/ use mesz
10 Dental Enamel Solubility/
11 (caries or carious).tw.
12 ((tooth or teeth or dental or dentine or enamel or root? or occlusal) adj5 decay$).tw.
13 ((tooth or teeth or dental or dentine or enamel or root? or occlusal) adj5 cavitis$).tw.
14 ((tooth or teeth or dental or root? or dentine or occlusal or enamel or cavitated) adj5 lesion$).tw.
15 ((tooth or teeth or dental or dentine or enamel) adj5 (minerali$ or deminerali$ or reminerali$)).tw.
16 or/6-15
17 1 or (5 and 16)
18 human/
19 animal/ use mesz
20 nonhuman/ use emez
21 (19 or 20) not 18
22 17 not 21
23 remove duplicates from 22
Science Citation Index 1981 to 16 May 2004
Web of Science Proceedings 1990 to 15 May 2004
Web of Knowledge.
URL: http://wok.mimas.ac.uk/

#1 TS= (Healozone or curazone)
#2 TS= (ozone or o3)
#3 TS= (oxidat* or oxidis*)
#4 #2 or #3
#5 TS= (caries or carious)
#6 TS= ((tooth or teeth or dental or dentine or enamel or root* or occlusal) SAME decay*)
#7 TS= ((tooth or teeth or dental or root* or dentine or occlusal or enamel or cavitated) SAME lesion*)
#8 TS= ((tooth or teeth or dental or dentine or enamel or root* or occlusal) SAME cavit*)
#9 TS= ((tooth or teeth or dental or enamel) SAME (minerali* OR deminerali* OR reminerali*))
#10 #5 OR #6 OR #7 OR #8 OR #9
#11 #4 AND #10
#12 #1 OR #11

BIOSIS (1985 to 12 May 2004)
Edina. URL: http://edina.ac.uk/biosis/
(tn: (humans)) and (((al: (healozone)) or al: (curazone)) or (((al: (oxidat*)) or al: (oxidis*)) or ((al: (ozone)) or al: (o3))) and (((al: (caries)) or al: (carious)) or (((al: (root n5 decay*)) or al: (roots n5 decay*))) or (((al: (dentine n5 decay*)) or al: (dentine n5 decay*)) or (((al: (occlusal n5 decay*)) or al: (occlusal n5 decay*)))) or (((al: (tooth n5 decay*)) or al: (tooth n5 decay*)) or (((al: (dental n5 decay*)) or al: (dental n5 decay*)) or (((al: (root n5 cavit*)) or al: (roots n5 cavit*)) or (((al: (dentine n5 cavit*)) or al: (dentine n5 cavit*)) or (((al: (enamel n5 cavit*)) or al: (enamel n5 cavit*)) or (((al: (tooth n5 cavit*)) or al: (tooth n5 cavit*)) or (al: (dental n5 cavit*)))))) or (((al: (root n5 lesion*)) or al: (roots n5 lesion*)) or ((al: (dentine n5 lesion*)) or al: (dentine n5 lesion*)) or (((al: (occlusal n5 lesion*)) or al: (occlusal n5 lesion*))) or (((al: (tooth n5 lesion*)) or (al: (teeth n5 lesion*)) or (al: (dental n5 lesion*))) or (al: (cavitated n5 lesion*))) or (((al: (tooth n5 minerali*)) or (al: (teeth n5 minerali*)) or (al: (dental n5 minerali*)))) or (((al: (tooth n5 reminerali*)) or (al: (teeth n5 reminerali*)) or (al: (dental n5 reminerali*))) or (al: (tooth n5 deminerali*)) or ((al: (teeth n5 minerali*)) or (al: (teeth n5 reminerali*))) or (al: (teeth n5 deminerali*)) or (al: (teeth n5 minerali*)) or (al: (dentine n5 deminerali*)) or ((al: (dent* n5 minerali*)) or (al: (dent* n5 reminerali*))) or (al: (dentine n5 reminerali*)) or (al: (enamel n5 reminerali*)) or (al: (enamel n5 reminerali*)))

AMED (1985 to May 2004)
Ovid. URL: http://gateway.ovid.com/athens
1 (healozone or curazone).tw
2 (ozone or o3).tw.
3 (oxidat$ or oxidis$).tw.
4 or/2-3
5 (caries or carious).tw
6 ((tooth or teeth or dentale or dentine or enamel or root? or occlusal) adj5 decay$).tw
7 ((tooth or teeth or dental or dentine or enamel or root? or occlusal) adj5 cavit$).tw
8 ((tooth or teeth or dental or root? or dente or occlusal or enamel or cavitated) adj5 lesion?).tw
9 ((tooth or teeth or dental or dentine or enamel) adj5 (minerali$ or deminerali$ or reminerali$)).tw
10 or/5-9
11 1 or (4 and 10)
12

Cochrane Library Issue 2, 2004
URL: http://www.update-software.com/clibng/cliblogon.htm
National Research Register
(Issue 2, 2004)
URL: http://www.update-software.com/National/
#1. (healozone or curazone)
#2. OZONE single term (MeSH)
#3. (ozone or o3)
#4. (oxidat* or oxidis*)
#5. (#2 or #3 or #4)
#6. TOOTH DEMINERALIZATION explode tree 1 (MeSH)
#7. DENTAL CARIES SUSCEPTIBILITY single term (MeSH)
#8. DENTAL ENAMEL SOLUBILITY single term (MeSH)
#9. (caries or carious)
#10. ((tooth or teeth or dental or dentine or enamel or root* or occlusal) and decay*)
#11. ((tooth or teeth or dental or dentine or enamel or root* or occlusal) and cavit*)
#12. ((tooth or teeth or dental or dentine or enamel or root* or occlusal or cavitated) and lesion*)
#13. ((tooth or teeth or dental or dentine or enamel) and (minerali$ or deminerali$ or reminerali$))
#14. ((tooth or teeth or dental or dentine or enamel and (minerali$ or deminerali$ or reminerali$))
#15. (#6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14)
#16. (#5 and #15)
#17. (#1 or #16)
DARE, NHS Economic Evaluation Database and HTA Databases
(April 2004)
NHS Centre for Reviews and Dissemination
URL: http://nhscrd.york.ac.uk/welcome.htm
Ozone or healozone or oxid* – all fields
Dental or caries or carious – all fields

Clinical Trials (18 May 2004)
URL: http://clinicaltrials.gov/ct/gui/c/r

Current Controlled Trials (18 May 2004)
URL: http://www.controlled-trials.com/
Ozone or healozone or oxid* – all fields

Health Management Information Consortium (May 2004)
1 (healozone or curazone).tw.
2 dental caries/
3 (caries or carious).tw.
4 ((tooth or teeth or dental or dentine or enamel or root? or occlusal) adj1 decay$).tw.
5 ((tooth or teeth or dental or dentine or enamel or root? or occlusal) adj1 cavit$).tw.
6 ((tooth or teeth or dental or dentine or enamel or cavitated) adj1 lesion?).tw.
7 ((tooth or teeth or dental or dentine or enamel) adj1 (minerali$ or deminerali$ or reminerali$)).tw.
8 or/1-7
9 limit 8 to yr=1995 – 2004

Conference Papers Index (1982 to May 2002)
Cambridge Scientific Abstracts
URL: http://www.csa1.co.uk/
KW=(healozone or curazone) or (KW=(ozone or oxidat* or oxidis*) and KW=(caries or carious or dental)) or (KW=(ozone or oxidat* or oxidis*) and KW=(teeth or tooth or cavit*)) or (KW=(ozone or oxidat* or oxidis*) and KW=(occlusal or decay* or lesion*))

MIMAS URL: http://zetoc.mimas.ac.uk/
Ozone or healozone or oxid* and (conference: dental or dentist or caries)

IADR Meeting abstracts
URL: http://www.iadr.com/Meetings/index.html
IARD/AADR/CADR 80th General Session, San Diego, March 2002
IARD/AADR/CADR 82nd General Session, Honolulu, March 2004
AADR 32nd Annual Meeting and Exhibition, San Antonio, March 2003
IADR 81st General Session, Goteborg 2003
IADR, Irish Division Annual Meeting, Belfast, 2004
BSDR Ann Scientific Meeting, Birmingham, April 2004

Handsearching

Journal of Dental Research

Caries Research

Websites
CurOzone USA Inc.
DentalOzone. London: Dental Clinique.
HealOzone. Dr Julian Holmes.
Appendix 2

Data extraction form

‘HealOzone’ Technology Assessment Review

Data extraction form

Reviewer ID: Date information extracted:

<table>
<thead>
<tr>
<th>Study Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study ID: _____________________________</td>
</tr>
<tr>
<td>Study identifier: ______________________</td>
</tr>
<tr>
<td>(Surname of first author + year of publication)</td>
</tr>
<tr>
<td>Study origin: __________________________</td>
</tr>
<tr>
<td>Language: ______________________________</td>
</tr>
<tr>
<td>Published</td>
</tr>
<tr>
<td>Full text</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
</tr>
<tr>
<td>Quasi – RCT</td>
</tr>
<tr>
<td>Observational Study</td>
</tr>
</tbody>
</table>

For RCTs only: What is the unit of randomisation?

| Patient |
| Tooth/lesion |
| Tooth/lesion pair |
Participants

<table>
<thead>
<tr>
<th>Number of eligible patients:</th>
<th>Number of patients randomised:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Exclusion criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interventions

<table>
<thead>
<tr>
<th>Type of intervention</th>
<th>Number of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Group 1:**
- **Group 2:**
- **Group 3:**

Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Intervention 1</th>
<th>Intervention 2</th>
<th>Intervention 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean, range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent/Deciduous teeth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary or Secondary caries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparability at baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of the intervention

Location of trial centre(s):	
Source of participants:	
Method of recruitment:	
Method of randomisation:

Dosage of HealOzone application:

Repeated applications:

Was a reductant applied? If yes, what was its formulation?

Did patient receive the aftercare kit (e.g. toothpaste, mouth rinse and spray)?

Length of follow-up:

Compliance with the treatment:

Number lost to follow-up:

Caries Information

- **Method of caries examination:**

- **Tooth location, lesion location, and type of lesion:**

- **Severity of caries:**

Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Intervention 1</th>
<th>Intervention 2</th>
<th>Intervention 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cavitated caries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversal of caries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progression of caries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilisation of dental resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse reactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient–centred measures (e.g. patient satisfaction and preference, relief of pain/discomfort)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality of life</th>
</tr>
</thead>
</table>

Cavitated caries

<table>
<thead>
<tr>
<th>Time to restorative interventions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Need for further restorative interventions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Symptoms of pulpal pathology</th>
</tr>
</thead>
</table>

Other comments
Appendix 3

Checklist for the quality assessment of randomised controlled trials

(adapted from Verhagen, 199834)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was the assignment to the treatment groups really random?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Adequate approaches to sequence generation</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• computer-generated random tables</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• random number tables</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Inadequate approaches to sequence generation</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• use of alternation, case record numbers, birth dates or week days</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>2. Was the unit of randomisation clear?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>3. Was the treatment allocation concealed?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Adequate approaches to concealment of randomisation</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• centralised or pharmacy-controlled randomisation</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• serially-numbered identical containers</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• on-site computer based system with a randomisation sequence that is</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>not readable until allocation</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• other approaches with robust methods to prevent foreknowledge of the</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>allocation sequence to clinicians and patients</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Inadequate approaches to concealment of randomisation</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• use of alternation, case record numbers, birth dates or week days</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• open random numbers lists</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>• serially numbered envelopes (even sealed opaque envelopes can be</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>subject to manipulation)</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>4. Were the groups similar at baseline in terms of prognostic factors?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>5. Were the eligibility criteria specified?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>6. Were the groups treated in the same way apart from the intervention received?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>7. Was the outcome assessor blinded to the treatment allocation?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>8. Was the care provider blinded?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>9. Were the patients blinded?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>10. Were the point estimates and measures of variability presented for the primary outcome measures?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>11. Was the withdrawal/dropout rate likely to cause bias?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>12. Did the analyses include an intention-to-treat analysis?</td>
<td></td>
<td>----</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
Appendix 4

Characteristics of included studies:

full-text reports
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. and characteristics of participants and carious lesions</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes and caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baysan and Lynch, 200416,41-44 (Belfast, UK)</td>
<td>n = 79 (220 primary cavitated and non-cavitated root carious lesions)</td>
<td>Design: RCT (unpublished)</td>
<td>Two or four primary non-cavitated and cavitated root carious lesions with severity index II (leathery lesions)</td>
<td>Group 1: cleaning of the tooth surface, application of O₃ + reductant The procedure was repeated after 1 month without ozone and at 3 months with ozone Group 2: reductant only The procedure was repeated after 1 month and at the 3-month follow-up Group 3: O₃ + sealant (Seal & Protect, Dentsply, Germany) The procedure was repeated at 3 months. Sealants were reapplied only if a partial or complete loss of the sealant was suspected Group 4: sealant only (Seal & Protect, Dentsply, Germany) Sealants were reapplied after 1 and 3 months only if a partial or complete loss of the sealant was suspected Reductant formulation: Sodium fluoride (1100 ppm F), xylitol, sodium benzoate, among other active ingredients Ozone dosage: 10 seconds</td>
<td>Reversal of caries, groups 1 and 2: at 12 months 47% of PRCLs reversed from severity index I to 0 (hard) in the ozone group, while none became hard in the control group ($p < 0.001$). 52% of lesions reversed from 2 to 1 in the ozone group compared with 11.6% in the control group ($p < 0.001$) Cavitated lesions in the ozone group did not show the same trend of improvement of non-cavitated lesions. Percentage of lesions that became hard decreased from 9.1 at 1 month to 1.4 at 9 months, suggesting worsening of cavitated carious lesions. Data for the control group were not given</td>
<td>The number of lesions in each intervention group was not clearly reported All subjects enrolled in the study received preventive advice, including oral hygiene and dietary advice, and were given a toothbrush and toothpaste (Natural White, Natural White Inc., USA, 1100 ppm F) Unclear whether cleaning of the root surface was performed before treatment in groups 2, 3 and 4 It was reported that subjects who "presented with any form of discomfort were immediately treated with conventional drilling and filling procedures", but no further information was provided Methods for statistical analyses not clearly reported. Unclear whether the results were adjusted for covariates/risk factors Emphasis on non-cavitated lesions</td>
</tr>
<tr>
<td>Author(s)</td>
<td>No. and characteristics of participants and carious lesions</td>
<td>Design</td>
<td>Inclusion criteria</td>
<td>Interventions</td>
<td>Results</td>
<td>Notes and caveats</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Caries assessment: ECM III (Lode Diagnostics BV, The Netherlands), DIAGNodent (KaVo, Germany) and clinical criteria. The severity of lesions was assessed on a four-point scale (0 = hard lesions; 4 = soft lesions). In addition, modified USPHS criteria were used for assessing groups 3 and 4. Assessors/operators: single operator (A. Baysan) Ozone device output: NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. and characteristics of participants and carious lesions</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes and caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes, 2003[^35,39,40] (Berkshire, UK)</td>
<td>n = 89 (178 primary non-cavitated root carious lesions, 89 lesions in each group)</td>
<td>Design: RCT</td>
<td>Adults with two leathery non-cavitated PRCLs</td>
<td>Group 1: application of O₃ + reductant + patient care kit</td>
<td>18 months follow-up. Reversal of caries: 87/87 lesions in the ozone group reversed (became hard) compared with 1/87 in the control group (p < 0.01)</td>
<td>All subjects enrolled in the study received information on oral hygiene, brushing techniques and diet. In particular, all subjects received instructions on how to use the remineralising toothpaste twice a day, the mineral mouthwash twice a day and the remineralising spray four times a day. All subjects were offered a pharmacological treatment, which they all accepted as an alternative to the traditional drilling and filling. No details of the pharmacological treatment were provided. The two dentists who allocated subjects to intervention groups and assessed severity of lesions, and the third dentist who assessed reproducibility of data, were not acknowledged in the paper. The 21-month findings published in abstract format (Holmes, 2004[^40] seem to contradict those reported in the full text.</td>
</tr>
<tr>
<td></td>
<td>Age, mean ± SD (range): 70.8 ± 6 (60–82)</td>
<td>Unit of randomisation: lesion</td>
<td></td>
<td>Group 2: air treatment + reductant only + patient care kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tooth and lesion location: leathery roof surface lesions (severity index II)</td>
<td>Method of randomisation: computer-generated random tables</td>
<td></td>
<td>Repeated applications of O₃ + reductant at 3, 6, 12 and 18 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caries risk assessment: NS</td>
<td>Concealment of allocation: NS</td>
<td></td>
<td>Reductant formulation: xylitol, fluoride, calcium, phosphate and zinc (no concentrations provided)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blinding: double blind</td>
<td>Blinding: double blind</td>
<td></td>
<td>Ozone dosage: 40 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITT: no</td>
<td>ITT: no</td>
<td></td>
<td>Caries assessment: ECM (Lode Diagnostics BV, The Netherlands), DIAGNodent (KaVo, Germany) and visual/tactile examination method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length of follow-up: 3, 6, 12, 18 and 21 months</td>
<td>Lost at follow-up: two at 18 months</td>
<td></td>
<td>Assessors/operators: the ozone treatment was applied by a different operator to the one recording the severity of lesions. Unclear whether the operator who assessed outcomes was the same one who did allocated subjects to intervention groups. A sample of 15 subjects (30 lesions) was examined by a third dentist to test reproducibility of results</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparability of groups at baseline: unclear</td>
<td>Setting: general dental practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^35]: Reference 35[^35]
[^39]: Reference 39[^39]
[^40]: Reference 40[^40]
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. and characteristics of participants and carious lesions</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes and caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ozone device output: it was reported that the HealOzone unit was fitted with a modified control integrated electronic chip. Unclear whether this modified chip could allow better calibration and monitoring of ozone doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. and characteristics of participants and carious lesions</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes and caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit and fissure caries: permanent dentition</td>
<td>Abu-Naba’a, 2003, main study (258 primary occlusal pit and fissure carious lesions)</td>
<td>Design: RCT (unpublished)</td>
<td>Age: 79 subjects between 12 and 31 years, 8 subjects between 32 and 41 years, and 3 subjects > 41 years</td>
<td>Before treatment all lesions were disclosed and cleaned with an air-abrasive system (PROPHYflex 2, KaVo, Germany)</td>
<td>Reversal of caries: no significant differences between groups in the mean change from baseline: Group 1: 0.283 (0.64) Group 2: 0.443 (0.74); (p = 0.112)</td>
<td>All subjects enrolled in the study received preventive advice and were given a toothbrush and toothpaste (Natural White; Natural White Inc., UK, 1100 ppm F) Sealant was reapplied if necessary and O₃ application repeated Subjects’ attendance to follow-up visits varied. The number of subjects assessed by ECM differed from the number of subjects assessed by DIAGNODent at follow-up visits</td>
</tr>
<tr>
<td></td>
<td>n = 90 (258 primary occlusal pit and fissure carious lesions)</td>
<td>Unit of randomisation: lesion</td>
<td>Gender (M/F): 35/55</td>
<td>Group 1: application of O₃ + reductant</td>
<td>ECM values: no significant differences in the mean change from baseline values between groups: Group 1 (109 lesions): mean log change 0.020 (1.4) Group 2 (109 lesions): 0.073 (1.61) (p = 0.75)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(Belfast, UK)</td>
<td>Method of randomisation: random sampling digit tables</td>
<td>Tooth and lesion location: all posterior teeth in the upper and lower jaws. Central grooves and pits were the most commonly observed lesions Caries risk assessment: NS</td>
<td>Group 2: reductant only/control</td>
<td>Excluding teeth with baseline ECM score 0: Group 1 (77 lesions): 0.327 (1.32) Group 2 (69 lesions): 0.073 (1.37); (p = 0.54)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concealment of allocation: NS</td>
<td>Comparability of groups at baseline: more severe lesions (index scores of 2 and 3) in the treatment group (p = 0.055). More molars in the treatment group than in the control group. Setting: general dental practice</td>
<td>Group 3: O₃ + reductant + fissure sealant (Guardian, Kerr)</td>
<td>DIAGNODent values: no significant differences between groups (p > 0.05) at any follow-up visits</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinding: unclear ITT: no</td>
<td>Length of follow-up: 1, 3, 6, 9 and 12 months</td>
<td>Group 4: reductant + sealant</td>
<td>Groups 3 and 4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lost at follow-up: 32 subjects</td>
<td>Reductant formulation: Sodium fluoride (1100 ppm F), xylitol and zinc chloride among other active ingredients</td>
<td>Secondary caries: no significant differences between groups (two secondary caries in the ozone group and two secondary caries in the control group)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparability of groups at baseline: more severe lesions (index scores of 2 and 3) in the treatment group (p = 0.055). More molars in the treatment group than in the control group. Setting: general dental practice</td>
<td>Ozone dosage: 10 seconds</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caries assessment: ECM (Lode Diagnostics BV, The Netherlands), DIAGNODent (KaVo, Germany) and clinical severity (Ekstrand, 1998).² In addition, modified USPHS criteria + radiographic assessments were used for assessing groups 3 and 4</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. and characteristics of participants and carious lesions</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes and caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessors/operators: three operators were reported to assess radiographs. A single operator assessed the lesions and interpreted ECM and DIAGNOdent findings (L. Abu-Naba’a)</td>
<td></td>
<td></td>
<td>Sealant retention: partial loss in the margins of the sealants in 32.7% in the O₃ + sealant group compared with 29.8% in the sealant-only group (p > 0.05)</td>
<td></td>
<td>No significant differences in terms of fissure sealant colour and radiographic depth of radiolucency between groups</td>
</tr>
<tr>
<td></td>
<td>Ozone device output: NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 21 Characteristics of full-text reports (cont’d)
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. and characteristics of participants and carious lesions</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes and caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu-Naba’a, 2003, pilot study37,51,52 (Belfast, UK)</td>
<td>n = 8 (38 occlusal pit and fissure lesions, 19 in each group)</td>
<td>Design: RCT (unpublished)</td>
<td>Unit of randomisation: lesion</td>
<td>Before treatment all lesions were disclosed and cleaned with an air-abrasive system (PROPHYflex 2, KaVo, Germany)</td>
<td>Clinical severity scores: not significant differences between groups at any follow-up visits ($p > 0.05$)</td>
<td>All subjects enrolled in the study received preventive advice and were given a toothbrush and toothpaste (1100 ppm F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit of randomisation: lesion</td>
<td>Group 1: application of O$_3$ + reductant</td>
<td>ECM and DIAGNOdent readings: no significant differences between groups ($p > 0.05$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Method of randomisation: random sampling digit tables</td>
<td>Group 2: reductant only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Concealment of allocation: NS</td>
<td>At 3 months group 1 received another application of O$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blinding: unclear ITT: no</td>
<td>Reductant formulation: sodium fluoride (1100 ppm F), xylitol and zinc chloride among other active ingredients</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length of follow-up: 1, 3 and 6 months</td>
<td>Ozone dosage: 40 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lost at follow-up: unclear</td>
<td>Caries assessment: ECM (Lode Diagnostics BV, The Netherlands), DIAGNOdent (KaVo, Germany), and clinical criteria (Ekstrand, 1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparability of groups at baseline: more severe lesions (index score of 3) in the control group</td>
<td>Assessors/operators: Unclear. It would seem that a single operator assessed the lesions and interpreted ECM and DIAGNOdent findings (L. Abu-Naba’a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Setting: general dental practice</td>
<td>Ozone device output: 33% of the outcome expected</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
TABLE 21 Characteristics of full-text reports (cont’d)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Design Methods and participants and caries lesions</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu-Salem, 2004</td>
<td>Pit and fissure caries; primary dentition</td>
<td>n = 21</td>
<td>Ozone dosage: 10 seconds</td>
<td>12-month follow-up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(74 non-cavitated occlusal carious lesions in primary molars)</td>
<td></td>
<td>Clinical severity scores: overall there was a little reduction in clinical caries severity scores in the ozone group and an increase in scores in the control group. There was a significant effect of clinical treatment on caries severity scores (ANOVA) (p < 0.01).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age range: 7–9 years</td>
<td></td>
<td>Log ECM and DIAGNOdent readings: there was a significant effect of time and treatment on the mean log ECM readings (p < 0.001) and the mean DIAGNOdent readings (p < 0.001). There was also an overall significant effect of time and treatment on ECM scores (p < 0.001) and an overall increase in the DIAGNOdent scores in the ozone group compared with the control group (p < 0.05).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gender (M/F): 9/21</td>
<td></td>
<td>Results reported in a format that did not allow any further analysis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caries risk assessment: NS</td>
<td></td>
<td>NS, not stated, ITT, intention-to-treat, O3, ozone gas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ITT: no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length of follow-up: 3, 6, 9 and 12 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lost at follow-up: four subjects (16 lesions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparability of groups at baseline: there was a significant difference in mean DIAGNOdent scores at baseline (p < 0.01) and in the ozone group. Lesions in ozone group appeared to be more severe than those in the control group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Setting: general dental practice</td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2006. All rights reserved.
Appendix 5

Characteristics of included studies:

abstracts
Table 22 Characteristics of abstracts

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. of participants (no. and type of lesions)</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root caries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Lynch et al., 2004²⁷ (Belfast, UK) | 260 (two PRCLs: 60 subjects with two soft PRCLs and 200 with two leathery non-cavitated PRCLs, least severe category) | Design: RCT | Two primary root carious lesions | Group 1: O₃ (260 lesions)
Group 2: no treatment (260 lesions)
Ozone dosage: NS
Caries assessment: clinical assessment
Reversal of caries: Soft lesions: at 6 months, 48/60 of ozone-treated soft PRCLs had reversed (from index 4 to 3), no significant changes in control soft lesions (< 0.01)
Leathery lesions: 189/200 of ozone-treated PRCLs had reversed from index 1 to 0 (hard to arrested), no significant changes for control lesions (< 0.01)
Adverse events: none observed | Reversal of caries:
Soft lesions: at 6 months, 48/60 of ozone-treated soft PRCLs had reversed (from index 4 to 3), no significant changes in control soft lesions (< 0.01)
Leathery lesions: 189/200 of ozone-treated PRCLs had reversed from index 1 to 0 (hard to arrested), no significant changes for control lesions (< 0.01)
Adverse events: none observed | | | | | | | |
| **Pit and fissure caries** | | | | | | |
| Holmes and Lynch, 2004³² (Belfast, UK) | 38 (76 non-cavitated occlusal caries lesions) | Design: RCT | Two non-cavitated early occlusal carious lesions with radiographic radiolucencies extending 2–4 mm into dentine | Group 1: air abrasion + O₃ + mineral wash + glass ionomer sealant. After 3 months the glass ionomer sealant was dissected and replaced with a posterior composite
Group 2: conventional drilling and filling using posterior composite
Ozone dosage: 40 seconds
Caries assessment: radiographic and clinical assessment
No post-operative sensitivity was associated with ozone treatment, while 6/35 subjects in the conventional treatment group complained of some post-operative sensitivity
Reversal of caries: at 3 months all ozone dentine caries was hard and required no additional removal
Adverse events: none observed | No post-operative sensitivity was associated with ozone treatment, while 6/35 subjects in the conventional treatment group complained of some post-operative sensitivity
Reversal of caries: at 3 months all ozone dentine caries was hard and required no additional removal
Adverse events: none observed | | | | | | | |
TABLE 22 Characteristics of abstracts (cont’d)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>No. of participants (no. and type of lesions)</th>
<th>Design</th>
<th>Inclusion criteria</th>
<th>Interventions</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes, 2003(^{34})</td>
<td>376 (2364 primary non-cavitated occlusal fissure lesions)</td>
<td>Design: RCT</td>
<td>Primary occlusal fissure lesions with caries judged to extend 2 mm into dentine (1170 teeth)</td>
<td>Group 1: O(_3) treatment Group 2: no treatment Ozone dosage: 10, 20, 30 or 40 seconds depending on the clinical severity. Applications were repeated every 3 months if reversal had not occurred</td>
<td>Reversal of caries: 99% in the ozone group (1918 lesions); the control lesions did not change significantly The DIAGNOdent values correlated with the clinical findings ((p < 0.01))</td>
<td>Adverse events: none observed A total of 1937/2364 received ozone application. Unclear how many lesions were randomly allocated to each group (unbalanced randomisation?)</td>
</tr>
<tr>
<td>Hamid, 2003(^{35})</td>
<td>184 (184 non-cavitated pit and fissure carious lesions)</td>
<td>Design: RCT</td>
<td>Primary early occlusal pit/fissure lesions with caries extending up to 1 mm into dentine</td>
<td>Group 1: O(_3) treatment (92 lesions) Group 2: no treatment (92 lesions) Ozone dosage: 40 seconds at baseline and at 3 months Caries assessment: clinical assessment and DIAGNOdent (KaVo, Germany)</td>
<td>Reversal of caries: 86.6% in the ozone group; the control lesions did not change significantly ((p < 0.05)) The DIAGNOdent values correlated with the clinical findings Adverse events: none observed</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>No. of participants (no. and type of lesions)</td>
<td>Design</td>
<td>Inclusion criteria</td>
<td>Interventions</td>
<td>Results</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Megighian and Bertolini, 2004<sup>46</sup> (Verona, Italy)</td>
<td>80 (300 pit and fissure carious lesions)</td>
<td>Design: randomised clinical trial Unit of randomisation: lesion Concealment of allocation: NS Blinding: double blind ITT: no Length of follow-up: 6 months Lost at follow-up: NS Setting: private practice, Italy</td>
<td>Pit and fissure carious lesions</td>
<td>Group 1: O<sub>3</sub> (220 lesions) Group 2: no treatment (80 lesions) Ozone dosage: 20, 30 or 40 seconds according to clinical severity Caries assessment: clinical assessment and DIAGNOdent (KaVo, Germany)</td>
<td>Reversal of caries: ozone-treated lesions clinically reversed ($p < 0.05$), while control lesions did not DIAGNOdent: significant overall reduction in readings for ozone-treated lesions, while control lesions showed an increase in DIAGNOdent readings 85% of teeth clinically reversed and showed a DIAGNOdent reduction</td>
<td>Unclear whether the proportion of lesions that clinically reversed or showed a reduction in DIAGNOdent readings were all ozone-treated lesions or included some control lesions</td>
</tr>
</tbody>
</table>
Appendix 6

Structure of the economic model

Decision models to assess costs and benefits of HealOzone

The four models depicted in Figures 15–18 have a similar structure; therefore, only current management plus HealOzone is described here. Markov models can be used to estimate costs and consequences that occur over a series of years (in this study up to 5 years). At the beginning of the first year each patient receives current management plus HealOzone and hence a probability of 1 is attached. At the end of the first year there is a chance that the patients are cured (caries are reversed) or they have progressed. If

![Figure 15](image1.png)

FIGURE 15 Decision model to assess the cost and benefits of current management plus HealOzone of non-cavitated root caries (Markov model)

![Figure 16](image2.png)

FIGURE 16 Decision model to assess the costs and benefits of current management of non-cavitated root caries
they have progressed there is a chance that they receive the same treatment or a new treatment (filling). The chance of a patient being cured is \(p_{\text{cure}} \) and not being cured is \(1 - p_{\text{cure}} \). The chance that a patient will receive the same treatment is \(\text{probretreat} \). In the model it is assumed that the patient has a 50% chance of receiving the same treatment or having a filling. If the first treatment fails the patient moves to the third branch or the fifth branch. The probability of cure does not change in the third branch and those who go into the third branch are either cured or filled. The filled tooth state is a terminal state and patients do not leave it. The model also assumes that when a patient is cured they remain cured for as long as the model runs.

Details of cost calculations are shown in Tables 23–30.
TABLE 23 Annual treatment numbers for non-cavitated caries based on each relevant SDR code by age group for year ending March 2003

<table>
<thead>
<tr>
<th>SDR code</th>
<th>Treatment numbers</th>
<th>No. of caries types</th>
<th>No. of teeth</th>
<th>Total teeth treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>601</td>
<td>3,930</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>2,393</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>701</td>
<td>73</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>601</td>
<td>3,930</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>2,393</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>601</td>
<td>11,728</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>669,304</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>701</td>
<td>1,922</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>601</td>
<td>11,728</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>669,304</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where one SDR code was relevant to more than one type of caries the published treatment numbers were divided by the number of relevant types of caries. Similar adjustments were provided for the numbers of teeth to which any one SDR code applied.

TABLE 24 Percentage teeth treated by age group of patient, based on numbers in Table 23

<table>
<thead>
<tr>
<th>SDR code</th>
<th><18 years (%)</th>
<th>≥18 years (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>601</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>701</td>
<td>3.7</td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>601</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>0.4</td>
</tr>
</tbody>
</table>

TABLE 25 Calculation for cost to NHS based on 100% treatment items paid for those <18 years and 40% all treatment items paid for those ≥18 years

<table>
<thead>
<tr>
<th>SDR code</th>
<th><18 years</th>
<th>≥18 years</th>
<th>Unit cost (£)</th>
<th>NHS cost (£)</th>
<th>Weighted average NHS fee across all age (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td>601</td>
<td>25.1%</td>
<td>74.9%</td>
<td>7.70</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>0.4%</td>
<td>99.6%</td>
<td>4.60</td>
<td>4.60</td>
</tr>
<tr>
<td></td>
<td>701</td>
<td>3.7%</td>
<td>96.3%</td>
<td>6.95</td>
<td>6.95</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>19.25</td>
<td>19.25</td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td>601</td>
<td>25.1%</td>
<td>74.9%</td>
<td>7.70</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td>3631</td>
<td>0.4%</td>
<td>99.6%</td>
<td>4.60</td>
<td>4.60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>12.30</td>
<td>12.30</td>
</tr>
</tbody>
</table>
TABLE 26 Cost calculations for treatment of cavitated caries

<table>
<thead>
<tr>
<th>Age</th>
<th>SDR code</th>
<th>Total annual treatment numbers</th>
<th>Annual treatment numbers</th>
<th>No. of caries types</th>
<th>No. of teeth</th>
<th>Total teeth treated</th>
</tr>
</thead>
<tbody>
<tr>
<td><18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavitated pit and fissure caries</td>
<td>1441</td>
<td>1,025,404</td>
<td>1</td>
<td>1</td>
<td>1,025,404</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1442</td>
<td>201,308</td>
<td>1</td>
<td>1</td>
<td>201,308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1443</td>
<td>163,379</td>
<td>1</td>
<td>1</td>
<td>163,379</td>
<td></td>
</tr>
<tr>
<td>Anterior teeth</td>
<td>1401</td>
<td>557,753</td>
<td>1</td>
<td>1</td>
<td>557,753</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1401a</td>
<td>386,061</td>
<td>1</td>
<td>1</td>
<td>386,061</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1401a</td>
<td>35,681</td>
<td>1</td>
<td>2</td>
<td>35,681</td>
<td></td>
</tr>
<tr>
<td>Posterior teeth</td>
<td>1421</td>
<td>17,840.5</td>
<td>2</td>
<td>2</td>
<td>35,681</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1421a</td>
<td>2,070,977</td>
<td>2</td>
<td>2</td>
<td>35,681</td>
<td></td>
</tr>
<tr>
<td>≥18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavitated pit and fissure caries</td>
<td>1441</td>
<td>147,980</td>
<td>1</td>
<td>1</td>
<td>147,980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1442</td>
<td>86,667</td>
<td>1</td>
<td>1</td>
<td>86,667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1443</td>
<td>68,353</td>
<td>1</td>
<td>1</td>
<td>68,353</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1401a</td>
<td>1,671,224</td>
<td>1</td>
<td>1</td>
<td>835,612</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1421a</td>
<td>4,141,954</td>
<td>1</td>
<td>1</td>
<td>2,070,977</td>
<td>2,070,977</td>
</tr>
</tbody>
</table>

Figures assume a treatment mix of SDR codes 1441, 1442 and 1443 plus either 1401 or 1421. All patients also receive SDR code 0101 (initial dental assessment).
It is also assumed that 50% of treatments are for anterior and 50% for posterior teeth.

TABLE 27 Steps used to calculate the mean cost of a filling when different proportions of children and adults receive different treatment mixes by SDR code

<table>
<thead>
<tr>
<th>SDR code</th>
<th><18 years</th>
<th>≥18 years</th>
<th>Unit cost (£)</th>
<th><18 years</th>
<th>≥18 years</th>
<th>Weighted average NHS fee across all age (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1441</td>
<td>87.4</td>
<td>12.6</td>
<td>6.95</td>
<td>6.95</td>
<td>2.78</td>
<td>6.42</td>
</tr>
<tr>
<td>1442</td>
<td>69.9</td>
<td>30.1</td>
<td>9.80</td>
<td>9.80</td>
<td>3.92</td>
<td>8.03</td>
</tr>
<tr>
<td>1443</td>
<td>70.5</td>
<td>29.5</td>
<td>10.55</td>
<td>10.55</td>
<td>4.22</td>
<td>8.68</td>
</tr>
<tr>
<td>1401a</td>
<td>25.0</td>
<td>75.0</td>
<td>7.50</td>
<td>7.50</td>
<td>3.00</td>
<td>4.13</td>
</tr>
<tr>
<td>1421a</td>
<td>8.5</td>
<td>91.5</td>
<td>14.15</td>
<td>14.15</td>
<td>5.66</td>
<td>6.38</td>
</tr>
<tr>
<td>1421a</td>
<td>9.3</td>
<td>90.6</td>
<td>14.15</td>
<td>14.15</td>
<td>5.66</td>
<td>6.45</td>
</tr>
</tbody>
</table>

Overall % mix children/adults for fillings and mean cost per filling: 45.1% for <18 years, 54.9% for ≥18 years, average cost per filling visit: 19.67.

Total average cost per filling visit: 12.75.

*50% mix assumed.
TABLE 28 HealOzone cost calculations

<table>
<thead>
<tr>
<th>1st year initial treatment option</th>
<th>Unit cost (£)</th>
<th>Cost to NHS (£)</th>
<th>% who have caries treatment<sup>a</sup></th>
<th>Weighted average cost to NHS (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><18 years</td>
<td>≥18 years</td>
<td><18 years</td>
<td>≥18 years</td>
</tr>
<tr>
<td>Non-cavitated pit and fissure caries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current<sup>b</sup></td>
<td>19.25</td>
<td>19.25</td>
<td>7.70</td>
<td>25.1</td>
</tr>
<tr>
<td>HealOzone</td>
<td>20.00</td>
<td>20.00</td>
<td>8.00</td>
<td>25.1</td>
</tr>
<tr>
<td>Current + HealOzone</td>
<td>39.25</td>
<td>15.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitated root caries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current<sup>b</sup></td>
<td>12.30</td>
<td>12.30</td>
<td>4.92</td>
<td>25.1</td>
</tr>
<tr>
<td>HealOzone</td>
<td>20.00</td>
<td>20.00</td>
<td>8.00</td>
<td>25.1</td>
</tr>
<tr>
<td>Current + HealOzone</td>
<td>32.30</td>
<td>12.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Non-cavitated pit and fissure caries treatment or non-cavitated root caries treatment (see Table 25).

^b See Tables 24 and 25.

Non-cavitated pit and fissure caries

The combined cost of HealOzone and current management is £40.49 and the cost of current management alone is £24.78.

TABLE 29 Results of one-way sensitivity analysis for non-cavitated pit fissure caries (current management versus current management and HealOzone) holding ‘current management plus HealOzone’ cost constant

<table>
<thead>
<tr>
<th>Probability</th>
<th>Proportion cured</th>
<th>Proportion filled</th>
<th>Current management</th>
<th>HealOzone</th>
<th>Additional cost of HealOzone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.985</td>
<td>£26.06</td>
<td>£40.49</td>
<td>£14.43</td>
</tr>
<tr>
<td>0.1</td>
<td>0.015</td>
<td>0.985</td>
<td>£23.81</td>
<td>£40.49</td>
<td>£16.68</td>
</tr>
<tr>
<td>0.2</td>
<td>0.145</td>
<td>0.855</td>
<td>£21.67</td>
<td>£40.49</td>
<td>£18.82</td>
</tr>
<tr>
<td>0.3</td>
<td>0.28</td>
<td>0.72</td>
<td>£19.66</td>
<td>£40.49</td>
<td>£20.83</td>
</tr>
<tr>
<td>0.4</td>
<td>0.405</td>
<td>0.595</td>
<td>£17.77</td>
<td>£40.49</td>
<td>£22.72</td>
</tr>
<tr>
<td>0.5</td>
<td>0.52</td>
<td>0.48</td>
<td>£16.00</td>
<td>£40.49</td>
<td>£24.49</td>
</tr>
<tr>
<td>0.6</td>
<td>0.625</td>
<td>0.375</td>
<td>£14.36</td>
<td>£40.49</td>
<td>£26.13</td>
</tr>
<tr>
<td>0.7</td>
<td>0.72</td>
<td>0.28</td>
<td>£12.84</td>
<td>£40.49</td>
<td>£27.65</td>
</tr>
<tr>
<td>0.8</td>
<td>0.805</td>
<td>0.195</td>
<td>£11.44</td>
<td>£40.49</td>
<td>£29.05</td>
</tr>
<tr>
<td>0.9</td>
<td>0.88</td>
<td>0.12</td>
<td>£10.17</td>
<td>£40.49</td>
<td>£30.32</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.00</td>
<td>£9.02</td>
<td>£40.49</td>
<td>£31.47</td>
</tr>
</tbody>
</table>

TABLE 30 Results of one-way sensitivity analysis for non-cavitated pit fissure caries (current management versus current management and HealOzone) holding current management cost constant

<table>
<thead>
<tr>
<th>Probability</th>
<th>Proportion cured</th>
<th>Proportion filled</th>
<th>Current management</th>
<th>HealOzone</th>
<th>Additional cost of HealOzone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.985</td>
<td>£24.78</td>
<td>£42.58</td>
<td>£17.80</td>
</tr>
<tr>
<td>0.1</td>
<td>0.015</td>
<td>0.985</td>
<td>£24.78</td>
<td>£39.77</td>
<td>£14.99</td>
</tr>
<tr>
<td>0.2</td>
<td>0.145</td>
<td>0.855</td>
<td>£24.78</td>
<td>£37.08</td>
<td>£12.30</td>
</tr>
<tr>
<td>0.3</td>
<td>0.28</td>
<td>0.72</td>
<td>£24.78</td>
<td>£34.52</td>
<td>£9.74</td>
</tr>
<tr>
<td>0.4</td>
<td>0.405</td>
<td>0.595</td>
<td>£24.78</td>
<td>£32.08</td>
<td>£7.30</td>
</tr>
<tr>
<td>0.5</td>
<td>0.52</td>
<td>0.48</td>
<td>£24.78</td>
<td>£29.76</td>
<td>£4.98</td>
</tr>
<tr>
<td>0.6</td>
<td>0.625</td>
<td>0.375</td>
<td>£24.78</td>
<td>£27.57</td>
<td>£2.79</td>
</tr>
<tr>
<td>0.7</td>
<td>0.72</td>
<td>0.28</td>
<td>£24.78</td>
<td>£25.50</td>
<td>£0.72</td>
</tr>
<tr>
<td>0.8</td>
<td>0.805</td>
<td>0.195</td>
<td>£24.78</td>
<td>£23.55</td>
<td>–£1.23</td>
</tr>
<tr>
<td>0.9</td>
<td>0.88</td>
<td>0.12</td>
<td>£24.78</td>
<td>£21.73</td>
<td>–£3.05</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.00</td>
<td>£24.78</td>
<td>£20.03</td>
<td>–£4.75</td>
</tr>
</tbody>
</table>
Non-cavitated root caries

The combined cost of HealOzone and current management is £14.63 and the cost of current management alone is £21.45 (Tables 31 and 32).

TABLE 31 Results of one-way sensitivity analysis for non-cavitated root caries (current management versus current management and HealOzone) holding current management cost constant

<table>
<thead>
<tr>
<th>Probability</th>
<th>Proportion cured</th>
<th>Proportion filled</th>
<th>Current management</th>
<th>HealOzone</th>
<th>Additional cost of HealOzone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>£21.45</td>
<td>£38.18</td>
<td>£16.73</td>
</tr>
<tr>
<td>0.1</td>
<td>0.145</td>
<td>0.855</td>
<td>£21.45</td>
<td>£35.52</td>
<td>£14.07</td>
</tr>
<tr>
<td>0.2</td>
<td>0.28</td>
<td>0.72</td>
<td>£21.45</td>
<td>£32.98</td>
<td>£11.53</td>
</tr>
<tr>
<td>0.3</td>
<td>0.405</td>
<td>0.595</td>
<td>£21.45</td>
<td>£30.57</td>
<td>£9.12</td>
</tr>
<tr>
<td>0.4</td>
<td>0.52</td>
<td>0.48</td>
<td>£21.45</td>
<td>£28.27</td>
<td>£6.82</td>
</tr>
<tr>
<td>0.5</td>
<td>0.625</td>
<td>0.375</td>
<td>£21.45</td>
<td>£26.10</td>
<td>£4.65</td>
</tr>
<tr>
<td>0.6</td>
<td>0.72</td>
<td>0.28</td>
<td>£21.45</td>
<td>£24.06</td>
<td>£2.61</td>
</tr>
<tr>
<td>0.7</td>
<td>0.805</td>
<td>0.195</td>
<td>£21.45</td>
<td>£22.13</td>
<td>£0.68</td>
</tr>
<tr>
<td>0.8</td>
<td>0.88</td>
<td>0.12</td>
<td>£21.45</td>
<td>£20.33</td>
<td>−£1.12</td>
</tr>
<tr>
<td>0.9</td>
<td>0.945</td>
<td>0.055</td>
<td>£21.45</td>
<td>£18.65</td>
<td>−£2.80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>£21.45</td>
<td>£17.10</td>
<td>−£4.35</td>
</tr>
</tbody>
</table>

TABLE 32 Results of one-way sensitivity analysis for non-cavitated root caries (current management versus current management and HealOzone) holding 'current management plus HealOzone' cost constant

<table>
<thead>
<tr>
<th>Probability</th>
<th>Proportion cured</th>
<th>Proportion filled</th>
<th>Current management</th>
<th>HealOzone</th>
<th>Additional cost of HealOzone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>£21.67</td>
<td>£14.63</td>
<td>−£7.04</td>
</tr>
<tr>
<td>0.1</td>
<td>0.145</td>
<td>0.855</td>
<td>£19.56</td>
<td>£14.63</td>
<td>−£4.93</td>
</tr>
<tr>
<td>0.2</td>
<td>0.28</td>
<td>0.72</td>
<td>£17.57</td>
<td>£14.63</td>
<td>−£2.94</td>
</tr>
<tr>
<td>0.3</td>
<td>0.405</td>
<td>0.595</td>
<td>£15.70</td>
<td>£14.63</td>
<td>−£1.07</td>
</tr>
<tr>
<td>0.4</td>
<td>0.52</td>
<td>0.48</td>
<td>£13.96</td>
<td>£14.63</td>
<td>£0.67</td>
</tr>
<tr>
<td>0.5</td>
<td>0.625</td>
<td>0.375</td>
<td>£12.34</td>
<td>£14.63</td>
<td>£2.29</td>
</tr>
<tr>
<td>0.6</td>
<td>0.72</td>
<td>0.28</td>
<td>£10.84</td>
<td>£14.63</td>
<td>£3.79</td>
</tr>
<tr>
<td>0.7</td>
<td>0.805</td>
<td>0.195</td>
<td>£9.47</td>
<td>£14.63</td>
<td>£5.16</td>
</tr>
<tr>
<td>0.8</td>
<td>0.88</td>
<td>0.12</td>
<td>£8.22</td>
<td>£14.63</td>
<td>£6.41</td>
</tr>
<tr>
<td>0.9</td>
<td>0.945</td>
<td>0.055</td>
<td>£7.09</td>
<td>£14.63</td>
<td>£7.54</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>£6.09</td>
<td>£14.63</td>
<td>£8.54</td>
</tr>
</tbody>
</table>
Health Technology Assessment Programme

Prioritisation Strategy Group

Members

Chair, Professor Tom Walley, Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool
Professor Bruce Campbell, Consultant Vascular & General Surgeon, Royal Devon & Exeter Hospital
Dr Edmund Jessop, Medical Advisor, National Specialist Commissioning Advisory Group (NSCAG), Department of Health, London
Professor Jon Nicholl, Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research
Dr John Reynolds, Clinical Director, Acute General Medicine SDU, Radcliffe Hospital, Oxford
Dr Ron Zimmern, Director, Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

Deputy Chair, Professor Jenny Hewison, Professor of Health Care Psychology, Academic Unit of Psychiatry and Behavioural Sciences, University of Leeds School of Medicine
Dr Andrew Briggs, Public Health Career Scientist, Health Economics Research Centre, University of Oxford
Professor John Cairns, Professor of Health Economics, Public Health Policy, London School of Hygiene and Tropical Medicine, London
Professor Nicky Callum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York
Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen
Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham
Professor Fiona J Gilbert, Professor of Radiology, Department of Radiology, University of Aberdeen
Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Professor Ann Bowling, Professor of Health Services Research, Primary Care and Population Studies, University College London
Professor Andrew Grieve, Professor of Health Services Research, University of York
Professor John Cairns, Professor of Health Economics, Public Health Policy, London School of Hygiene and Tropical Medicine, London
Professor Nicky Callum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York
Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen
Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham
Professor Fiona J Gilbert, Professor of Radiology, Department of Radiology, University of Aberdeen
Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Deputy Director, Professor Jon Nicholl, Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research

HTA Commissioning Board

Members

Programme Director, Professor Tom Walley, Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool
Professor Ann Bowling, Professor of Health Services Research, Primary Care and Population Studies, University College London
Dr Andrew Briggs, Public Health Career Scientist, Health Economics Research Centre, University of Oxford
Professor Nicky Callum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York
Professor Fiona J Gilbert, Professor of Radiology, Department of Radiology, University of Aberdeen
Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen
Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham
Professor Peter Jones, Head of Department, University Department of Psychiatry, University of Cambridge
Professor Sallie Lamb, Professor of Rehabilitation, Centre for Primary Health Care, University of Warwick
Professor Stuart Logan, Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter & Plymouth
Dr Linda Patterson, Consultant Physician, Department of Medicine, Burnley General Hospital
Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Dr Jeffrey Aronson, Reader in Clinical Pharmacology, Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford
Professor Deborah Ashby, Professor of Medical Statistics, Department of Environmental and Preventive Medicine, Queen Mary University of London
Mr Jonathan Deeks, Senior Medical Statistician, Centre for Statistics in Medicine, University of Oxford
Dr Andrew Farmer, Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford
Professor Anna Bowling, Professor of Health Services Research, University of York
Professor Andrew Grieve, Professor of Health Services Research, University of York
Professor John Cairns, Professor of Health Economics, Public Health Policy, London School of Hygiene and Tropical Medicine, London
Professor Nicky Callum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York
Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen
Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham
Professor Peter Jones, Head of Department, University Department of Psychiatry, University of Cambridge
Professor Sallie Lamb, Professor of Rehabilitation, Centre for Primary Health Care, University of Warwick
Professor Stuart Logan, Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter & Plymouth
Dr Linda Patterson, Consultant Physician, Department of Medicine, Burnley General Hospital
Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Dr Jonathan Shapiro, Senior Fellow, Health Services Management Centre, Birmingham
Ms Kate Thomas, Deputy Director, Medical Care Research Unit, University of Sheffield
Ms Sue Ziebland, Research Director, DIPEx, Department of Primary Health Care, University of Oxford, Institute of Health Sciences

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)

© Queen’s Printer and Controller of HMSO 2006. All rights reserved.
Diagnostic Technologies & Screening Panel

Members

Chair,
Dr Ron Zimmern, Director of the Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

Ms Norma Armstrong, Lay Member, Bolton

Professor Max Bachmann
Professor of Health Care Interfaces, Department of Health Policy and Practice, University of East Anglia

Professor Rudy Bilous
Professor of Clinical Medicine & Consultant Physician, The Academic Centre, South Tees Hospitals NHS Trust

Dr Paul Cockcroft, Consultant Medical Microbiologist and Clinical Director of Pathology, Department of Clinical Microbiology, St Mary's Hospital, Portsmouth

Professor Adrian K Dixon, Professor of Radiology, University Department of Radiology, University of Cambridge Clinical School

Dr David Elliman, Consultant Paediatrician/ Hon. Senior Lecturer, Population Health Unit, Great Ormond St. Hospital, London

Professor Glyn Ebyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales Swansea

Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London

Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford

Dr Susanne M Ludgate, Medical Director, Medicines & Healthcare Products Regulatory Agency, London

Dr Catriona Mckie, Senior Lecturer in Community Health Science, University of Strathclyde

Professor William Rosenberg, Professor of Hepatology, Liver Research Group, University of Southampton

Dr Susan Schonfield, Consultant in Public Health, Specialised Services Commissioning North West London, Hillingdon Primary Care Trust

Professor Adrian K Dixon, Professor of Radiology, University Department of Radiology, University of Cambridge Clinical School

Dr David Elliman, Consultant Paediatrician/ Hon. Senior Lecturer, Population Health Unit, Great Ormond St. Hospital, London

Professor Glyn Ebyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales Swansea

Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London

Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford

Dr Susanne M Ludgate, Medical Director, Medicines & Healthcare Products Regulatory Agency, London

Pharmaceuticals Panel

Members

Chair,
Dr John Reynolds, Chair Division A, The John Radcliffe Hospital, Oxford Radcliffe Hospitals NHS Trust

Professor Tony Avery, Head of Division of Primary Care, School of Community Health Services, Division of General Practice, University of Nottingham

Ms Anne Baileff, Consultant Nurse in First Contact Care, Southampton City Primary Care Trust, University of Southampton

Professor Stirling Bryan, Professor of Health Economics, Health Services Management Centre, University of Birmingham

Mr Peter Cardy, Chief Executive, Macmillan Cancer Relief, London

Professor Imti Choonara, Professor in Child Health, Academic Division of Child Health, University of Nottingham

Dr Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Dr Karen A Fitzgerald, Consultant in Pharmaceutical Public Health, National Public Health Service for Wales, Cardiff

Mrs Sharon Hart, Head of DTB Publications, Drug & Therapeutics Bulletin, London

Dr Christine Hine, Consultant in Public Health Medicine, South Gloucestershire Primary Care Trust

Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Section of Medicine, The Royal Marsden Hospital, Sutton

Ms Barbara Meredith, Lay Member, Epsom Dr Richard Tiner, Medical Director, Medical Department, Association of the British Pharmaceutical Industry, London

Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge

Dr Frances Rotblat, CPMP Delegate, Medicines & Healthcare Products Regulatory Agency, London

Professor Lindsay Wilson Turnbull, Scientific Director, Centre for MR Investigations & YCR Professor of Radiology, University of Hull

Professor Martin J Whittle, Associate Dean for Education, Head of Department of Obstetrics and Gynaecology, University of Birmingham

Dr Dennis Wright, Consultant Biochemist & Clinical Director, Pathology & The Kennedy Galton Centre, Northwick Park & St Mark’s Hospitals, Harrow

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
Therapeutic Procedures Panel

Members

Chair,
Professor Bruce Campbell,
Consultant Vascular and
General Surgeon, Department
of Surgery, Royal Devon &
Exeter Hospital

Dr Aileen Clarke,
Reader in Health Services
Research, Public Health &
Policy Research Unit, Barts &
the London School of Medicine
& Dentistry, London

Dr Matthew Cooke, Reader in
A&E/Department of Health
Advisor in A&E, Warwick
Emergency Care and
Rehabilitation, University of
Warwick

Dr Carl E Counsell, Clinical
Senior Lecturer in Neurology,
Department of Medicine and
Therapeutics, University of
Aberdeen

Ms Amelia Curwen, Executive
Director of Policy, Services and
Research, Asthma UK, London

Professor Gene Feder, Professor
of Primary Care R&D,
Department of General Practice
and Primary Care, Barts & the
London, Queen Mary’s School
of Medicine and Dentistry,
London

Professor Paul Gregg,
Professor of Orthopaedic
Surgical Science, Department of
General Practice and Primary
Care, South Tees Hospital NHS
Trust, Middlesbrough

Ms Bec Hanley, Co-Director,
TwoCan Associates,
Hurstpierpoint

Ms Maryann L Hardy,
Lecturer, Division of
Radiography, University of
Bradford

Professor Alan Horwich,
Director of Clinical R&D,
Academic Department of
Radiology, The Institute of
Cancer Research,
London

Dr Simon de Lusignan,
Senior Lecturer,
Primary Care Informatics,
Department of Community
Health Sciences,
St George’s Hospital Medical
School, London

Professor Neil McIntosh,
Edward Clark Professor of
Child Life & Health,
Department of Child Life &
Health, University of
Edinburgh

Professor James Neilson,
Professor of Obstetrics and
Gynaecology, Department of
Obstetrics and Gynaecology,
University of Liverpool

Dr John C Pounsford,
Consultant Physician,
Directorate of Medical Services,
North Bristol NHS Trust

Karen Roberts, Nurse
Consultant, Queen Elizabeth
Hospital, Gateshead

Dr Vimal Sharma, Consultant
Psychiatrist/Hon. Senior Lecturer,
Mental Health Resource Centre,
Cheshire and Wirral Partnership
NHS Trust, Wallasey

Dr I. David Smith, Consultant
Cardiologist, Royal Devon &
Exeter Hospital

Professor Norman Waugh,
Professor of Public Health,
Department of Public Health,
University of Aberdeen

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
Expert Advisory Network

Members

- **Professor Douglas Altman,**
 Director of CSM & Cancer Research UK Med Stat Gp, Centre for Statistics in Medicine, University of Oxford, Institute of Health Sciences, Headington, Oxford
- **Professor John Bond,**
 Director, Centre for Health Services Research, University of Newcastle upon Tyne, School of Population & Health Sciences, Newcastle upon Tyne
- **Mr Shaun Bregan,**
 Chief Executive, Ridgeway Primary Care Group, Aylesbury
- **Mrs Stella Burnside OBE,**
 Chief Executive, Office of the Chief Executive, Trust Headquarters, Altnagelvin Hospitals Health & Social Services Trust, Altnagelvin Area Hospital, Londonderry
- **Ms Tracy Burry,**
 Project Manager, World Confederation for Physical Therapy, London
- **Professor Iain T Cameron,**
 Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton
- **Dr Christine Clark,**
 Medical Writer & Consultant Pharmacist, Rossendale
- **Professor Collette Clifford,**
 Professor of Nursing & Head of Research, School of Health Sciences, University of Birmingham, Edgbaston, Birmingham
- **Professor Barry Cookson,**
 Director, Laboratory of Healthcare Associated Infection, Health Protection Agency, London
- **Professor Howard Cuckle,**
 Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds
- **Dr Katherine Darton,**
 Information Unit, MIND – The Mental Health Charity, London
- **Professor Carol Deazeux,**
 Professor of Paediatric Epidemiology, London
- **Mr John Dunning,**
 Consultant Cardiothoracic Surgeon, Cardiothoracic Surgical Unit, Papworth Hospital NHS Trust, Cambridge
- **Mr Jonathan Earnshaw,**
 Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester
- **Professor Martin Eccles,**
 Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne
- **Professor Pam Enderby,**
 Professor of Community Rehabilitation, Institute of General Practice and Primary Care, University of Sheffield
- **Mr Leonard R Enrick,**
 Chief Executive, Newcastle upon Tyne Hospitals NHS Trust
- **Professor David Field,**
 Professor of Neonatal Medicine, Child Health, The Leicester Royal Infirmary NHS Trust
- **Mrs Gillian Fletcher,**
 Antenatal Teacher & Tutor and President, National Childbirth Trust, Henfield
- **Professor Jayne Franklyn,**
 Professor of Medicine, Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham
- **Ms Grace Gibbs,**
 Deputy Chief Executive, Director for Nursing, Midwifery & Clinical Support Services, West Middlesex University Hospital, Isleworth
- **Dr Neville Goodman,**
 Consultant Anaesthetist, Southend Hospital, Bristol
- **Professor Alastair Gray,**
 Professor of Health Economics, Department of Public Health, University of Oxford
- **Professor Robert E Hawkins,**
 CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester
- **Professor Allen Hutchinson,**
 Director of Public Health & Deputy Dean of ScHARR, Department of Public Health, University of Sheffield
- **Dr Duncan Keeley,**
 General Practitioner (Dr Burch & Partners), The Health Centre, Thame
- **Dr Donna Lamping,**
 Research Degrees Programme Director & Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London
- **Mr George Levy,**
 Chief Executive, Motor Neurone Disease Association, Northampton
- **Professor James Lindesay,**
 Professor of Psychiatry for the Elderly, University of Leicester, Leicester General Hospital
- **Professor Julian Little,**
 Professor of Human Genome Epidemiology, Department of Epidemiology & Community Medicine, University of Ottawa
- **Professor Rajan Madhok,**
 Medical Director & Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York
- **Professor David Mant,**
 Professor of General Practice, Department of Primary Care, University of Oxford
- **Professor Alexander Markham,**
 Director, Molecular Medicine Unit, St James’s University Hospital, Leeds
- **Dr Chris McCall,**
 General Practitioner, The Hadleigh Practice, Castle Mullen
- **Professor Alistair McGurie,**
 Professor of Health Economics, London School of Economics
- **Dr Peter Moore,**
 Freelance Science Writer, Ashtead
- **Dr Sue Moss,**
 Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton
- **Mrs Julietta Patnick,**
 Director, NHS Cancer Screening Programmes, Sheffield
- **Professor Tim Peters,**
 Professor of Primary Care Health Services Research, Academic Unit of Primary Health Care, University of Bristol
- **Professor Chris Price,**
 Visiting Chair – Oxford, Clinical Research, Bayer Diagnostics Europe, Cirencester
- **Professor Peter Sanderson,**
 Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh
- **Dr Eamonn Sheridan,**
 Consultant in Clinical Genetics, Genetics Department, St James’s University Hospital, Leeds
- **Dr Ken Stein,**
 Senior Clinical Lecturer in Public Health, Director, Peninsula Technology Assessment Group, University of Exeter
- **Professor Sarah Stewart-Brown,**
 Professor of Public Health, University of Warwick, Division of Health in the Community Warwick Medical School, IWMs, Coventry
- **Professor Ala Szczepur,**
 Professor of Health Service Research, Centre for Health Services Studies, University of Warwick
- **Dr Ross Taylor,**
 Senior Lecturer, Department of General Practice and Primary Care, University of Aberdeen
- **Mrs Joan Webster,**
 Consumer member, HTA – Expert Advisory Network

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
How to obtain copies of this and other HTA Programme reports.
An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents, York Publishing Services.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £1 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents, York Publishing Services by:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:
York Publishing Services Email: ncchta@yps-publishing.co.uk
PO Box 642 Tel: 0870 1616662
YORK YO31 7WX Fax: 0870 1616663
UK Fax from outside the UK: +44 1904 430868

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please contact York Publishing Services at the address above. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods
Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to York Publishing Distribution and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?
Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact York Publishing Services (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Systematic review of the effectiveness and cost-effectiveness of HealOzone® for the treatment of occlusal pit/fissure caries and root caries

M Brazzelli, L McKenzie, S Fielding, C Fraser, J Clarkson, M Kilonzo and N Waugh

Feedback
The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.

May 2006