A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness

Y-F Chen, P Jobanputra, P Barton, S Jowett, S Bryan, W Clark, A Fry-Smith and A Burls



November 2006

Health Technology Assessment NHS R&D HTA Programme







### How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public **and** private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

- fax (with **credit card** or **official purchase order**)
- post (with credit card or official purchase order or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you **either** to pay securely by credit card **or** to print out your order and then post or fax it.

### Contact details are as follows:

HTA Despatch Email: orders@hta.ac.uk c/o Direct Mail Works Ltd Tel: 02392 492 000 4 Oakwood Business Centre Fax: 02392 478 555

Downley, HAVANT PO9 2NP, UK Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

### Payment methods

### Paying by cheque

If you pay by cheque, the cheque must be in **pounds sterling**, made payable to *Direct Mail Works Ltd* and drawn on a bank with a UK address.

### Paying by credit card

The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

### Paying by official purchase order

You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

### How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.

# A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness

Y-F Chen, P Jobanputra, P Barton, S Jowett, Bryan, W Clark, A Fry-Smith and A Burls \*\*

- <sup>1</sup> West Midlands Health Technology Assessment Collaboration (WMHTAC), Department of Public Health and Epidemiology, University of Birmingham, UK
- <sup>2</sup> Department of Rheumatology, Selly Oak Hospital, University Hospitals Birmingham NHS Trust, Birmingham, UK
- <sup>3</sup> Health Economics Facility, Health Services Management Centre, University of Birmingham, UK

**Declared competing interests of authors:** P Jobanputra is a Consultant Rheumatologist and a member of the British Society for Rheumatology. He has received funding for educational purposes from Abbott and Wyeth and has been entertained by manufacturers of all three TNF inhibitors. He has been involved in research studies of adalimumab and etanercept for rheumatoid arthritis and his department has received funding from Wyeth and Abbott for these studies.

### Published November 2006

This report should be referenced as follows:

Chen Y-F, Jobanputra P, Barton P, Jowett S, Bryan S, Clark W, et al. A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness. *Health Technol* Assess 2006; **10**(42).

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE and Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.

<sup>\*</sup> Corresponding author

### **NHS R&D HTA Programme**

The research findings from the NHS R&D Health Technology Assessment (HTA) Programme directly influence key decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC) who rely on HTA outputs to help raise standards of care. HTA findings also help to improve the quality of the service in the NHS indirectly in that they form a key component of the 'National Knowledge Service' that is being developed to improve the evidence of clinical practice throughout the NHS.

The HTA Programme was set up in 1993. Its role is to ensure that high-quality research information on the costs, effectiveness and broader impact of health technologies is produced in the most efficient way for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined to include all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care, rather than settings of care.

The HTA Programme commissions research only on topics where it has identified key gaps in the evidence needed by the NHS. Suggestions for topics are actively sought from people working in the NHS, the public, service-users groups and professional bodies such as Royal Colleges and NHS Trusts.

Research suggestions are carefully considered by panels of independent experts (including service users) whose advice results in a ranked list of recommended research priorities. The HTA Programme then commissions the research team best suited to undertake the work, in the manner most appropriate to find the relevant answers. Some projects may take only months, others need several years to answer the research questions adequately. They may involve synthesising existing evidence or conducting a trial to produce new evidence where none currently exists.

Additionally, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme is able to commission bespoke reports, principally for NICE, but also for other policy customers, such as a National Clinical Director. TARs bring together evidence on key aspects of the use of specific technologies and usually have to be completed within a short time period.

### Criteria for inclusion in the HTA monograph series

Reports are published in the HTA monograph series if (1) they have resulted from work commissioned for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this monograph was commissioned and funded by the HTA Programme on behalf of NICE as project number 04/26/01. The protocol was agreed in January 2005. The assessment report began editorial review in March 2006 and was accepted for publication in May 2006. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme, NICE or the Department of Health.

Editor-in-Chief: Professor Tom Walley

Series Editors: Dr Aileen Clarke, Dr Peter Davidson, Dr Chris Hyde,

Dr John Powell, Dr Rob Riemsma and Dr Ken Stein

Managing Editors: Sally Bailey and Sarah Llewellyn Lloyd

ISSN 1366-5278

### © Queen's Printer and Controller of HMSO 2006

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to NCCHTA, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK.

Published by Gray Publishing, Tunbridge Wells, Kent, on behalf of NCCHTA. Printed on acid-free paper in the UK by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk.



### **Abstract**

# A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness

Y-F Chen, P Jobanputra, P Barton, S Jowett, S Bryan, W Clark, A Fry-Smith and A Burls \*\*

**Objectives:** This report reviews the clinical effectiveness and cost-effectiveness of adalimumab, etanercept and infliximab, agents that inhibit tumour necrosis factor- $\alpha$  (TNF- $\alpha$ ), when used in the treatment of rheumatoid arthritis (RA) in adults.

**Data sources:** Electronic databases were searched up to February 2005.

Review methods: Systematic reviews of the literature on effectiveness and cost-effectiveness were undertaken and industry submissions to the National Institute for Health and Clinical Excellence (NICE) were reviewed. Meta-analyses of effectiveness data were also undertaken for each agent. The Birmingham Rheumatoid Arthritis Model (BRAM), a simulation model, was further developed and used to produce an incremental cost-effectiveness analysis.

Results: Twenty-nine randomised controlled trials (RCTs), most of high quality, were included. The only head-to-head comparisons were against methotrexate. For patients with short disease duration (≤ 3 years) who were naïve to methotrexate, adalimumab was marginally less and etanercept was marginally more effective than methotrexate in reducing symptoms of RA. Etanercept was better tolerated than methotrexate. Both adalimumab and etanercept were more effective than methotrexate in slowing radiographic joint damage. Etanercept was also marginally more effective and better tolerated than methotrexate in patients with longer disease durations who had not failed methotrexate treatment. Infliximab is only licensed for use with methotrexate. All three

agents, either alone (where so licensed) or in combination with ongoing disease-modifying antirheumatic drugs (DMARDs), were effective in reducing the symptoms and signs of RA in patients with established disease. At the licensed dose, the numbers needed to treat (NNTs) (95% CI) required to produce an American College for Rheumatology (ACR) response compared with placebo were: ACR20: adalimumab 3.6 (3.1 to 4.2), etanercept 2.1 (1.9 to 2.4), infliximab 3.2 (2.7 to 4.0); ACR50: adalimumab 4.2 (3.7 to 5.0), etanercept 3.1 (2.7 to 3.6), infliximab 5.0 (3.8 to 6.7); and ACR70: adalimumab 7.7 (5.9 to 11.1), etanercept 7.7 (6.3 to 10.0), infliximab 11.1 (7.7 to 20.0). In patients who were naïve to methotrexate, or who had not previously failed methotrexate treatment, a TNF inhibitor combined with methotrexate was significantly more effective than methotrexate alone. Infliximab combined with methotrexate had an increased risk of serious infections. All ten published economic evaluations met standard criteria for quality, but the incremental cost-effectiveness ratios (ICERs) ranged from being within established thresholds to being very high because of varying assumptions and parameters. All three sponsors who submitted economic models made assumptions favourable to their product. BRAM incorporates improvements in quality of life and mortality, but assumes no effect of TNF inhibitors on joint replacement. For use in accordance with current NICE guidance as the third DMARD in a sequence of DMARDs, the base-case ICER was around £30,000 per quality-adjusted life-year (QALY) in early RA and

<sup>&</sup>lt;sup>1</sup> West Midlands Health Technology Assessment Collaboration (WMHTAC), Department of Public Health and Epidemiology, University of Birmingham, UK

<sup>&</sup>lt;sup>2</sup> Department of Rheumatology, Selly Oak Hospital, University Hospitals Birmingham NHS Trust, Birmingham, UK

<sup>&</sup>lt;sup>3</sup> Health Economics Facility, Health Services Management Centre, University of Birmingham, UK

<sup>\*</sup> Corresponding author

£50,000 per QALY in late RA. Sensitivity analyses showed that the results were sensitive to the estimates of Health Assessment Questionnaire (HAQ) progression while on TNF inhibitors and the effectiveness of DMARDs, but not to changes in mortality ratios per unit HAQ. TNF inhibitors are most cost-effective when used last. The ICER for etanercept used last is £24,000 per QALY, substantially lower than for adalimumab (£30,000 per QALY) or infliximab (£38,000 per QALY). First line use as monotherapy generates ICERs around £50,000 per QALY for adalimumab and etanercept. Using the combination of methotrexate and a TNF inhibitor as first line treatment generates much higher ICERs, as it precludes subsequent use of methotrexate, which is cheap. The ICERs for sequential use are of the same order as using the TNF inhibitor alone.

**Conclusions:** Adalimumab, etanercept and infliximab are effective treatments compared with placebo for RA patients who are not well controlled by conventional DMARDs, improving control of symptoms, improving physical function, and slowing radiographic changes in joints. The combination of a TNF inhibitor with methotrexate was more effective than methotrexate

alone in early RA, although the clinical relevance of this additional benefit is yet to be established, particularly in view of the well-established effectiveness of MTX alone. An increased risk of serious infection cannot be ruled out for the combination of methotrexate with adalimumab or infliximab. The results of the economic evaluation based on BRAM are consistent with the observations from the review of clinical effectiveness, including the ranking of treatments. TNF inhibitors are most cost-effective when used as last active therapy. In this analysis, other things being equal, etanercept may be the TNF inhibitor of choice, although this may also depend on patient preference as to route of administration. The next most cost-effective use of TNF inhibitors is third line, as recommended in the 2002 NICE guidance. Direct comparative RCTs of TNF inhibitors against each other and against other DMARDs, and sequential use in patients who have failed a previous TNF inhibitor, are needed. Longer term studies of the quality of life in patients with RA and the impact of DMARDs on this are needed, as are longer studies that directly assess effects on joint replacement, other morbidity and mortality.



# Contents

|   | Glossary and list of abbreviations                                      | vii |
|---|-------------------------------------------------------------------------|-----|
|   | Executive summary                                                       | xi  |
| I | Aims of the review                                                      | 1   |
| 2 | Background                                                              | 3   |
|   | Summary  Description of underlying health                               | 3   |
|   | problem                                                                 | 3   |
|   | Current service provision                                               | 8   |
|   | Description of the technology<br>Current NICE guidance for use of TNF   | 8   |
|   | inhibitors                                                              | 10  |
|   | costs                                                                   | 11  |
| 3 | Effectiveness                                                           | 13  |
|   | Summary                                                                 | 13  |
|   | Methods for reviewing effectiveness                                     | 13  |
|   | Results for effectiveness review<br>Summary of effectiveness review and | 16  |
|   | additional evidence                                                     | 69  |
| 4 | Health economics                                                        | 73  |
|   | evaluations                                                             | 73  |
|   | evaluations                                                             | 73  |
|   | submissions                                                             | 80  |
|   | Economic analysis used in this report                                   | 86  |
|   | Results                                                                 | 100 |
| 5 | Implications for other parties                                          | 113 |
| 6 | Factors relevant to the NHS                                             | 115 |
| 7 | Discussion                                                              | 117 |
|   | Summary                                                                 | 117 |
|   | Principal findings                                                      | 117 |
|   | uncertainties                                                           | 120 |
|   | Implications for research                                               | 122 |

| 3 | Conclusions                                                                   | 123  |
|---|-------------------------------------------------------------------------------|------|
|   | Acknowledgements                                                              | 125  |
|   | References                                                                    | 127  |
|   | Appendix I Details of key outcomes used in RA trials                          | 139  |
|   | Appendix 2 Searches: clinical effectiveness                                   | 141  |
|   | <b>Appendix 3</b> List of excluded studies for clinical effectiveness review  | 143  |
|   | <b>Appendix 4</b> Additional tables for clinical effectiveness review         | 147  |
|   | Appendix 5 Searches: economic evaluations                                     | 155  |
|   | Appendix 6 Searches: decision-analytic models                                 | 157  |
|   | Appendix 7 Searches: systematic reviews of DMARDs                             |      |
|   | <b>Appendix 8</b> Existing economic evaluations appraisal and data extraction |      |
|   | Appendix 9 Details of strategy sets used in BRAM                              | 175  |
|   | Appendix 10 Sensitivity analysis                                              | 179  |
|   | Appendix II Ongoing research                                                  | 229  |
|   | Health Technology Assessment reports published to date                        | 231  |
|   | Health Technology Assessment                                                  | 0.45 |



# Glossary and list of abbreviations

Technical terms and abbreviations are used throughout this report. The meaning is usually clear from the context, but a glossary is provided for the non-specialist reader. In some cases, usage differs in the literature, but the term has a constant meaning throughout this review.

### **Glossary**

**ACR20** A 20% improvement in the counts of the number of tender and swollen joints and at least three items from the following: observer evaluation of overall disease activity, patient evaluation of overall disease activity, patient evaluation of pain, a score of physical disability, and improvements in blood acute-phase responses.

**ACR50** A 50% improvement in the parameters described above.

**ACR70** A 70% improvement in the parameters described above.

**ACR-N** A single number that describes the percentage of improvement from baseline that a patient experiences; it is derived from the same clinical parameters as the ACR response. Details are provided in Appendix 1.

**Anti-TNFs** Biological agents that block tumour necrosis factor activity.

**Cytokines** Small peptides that mediate signals between cells, primarily in a localised environment.

Health Assessment Questionnaire (HAQ) Designed to assess the physical function of patients. Scores range from 0 (no functional impairment) to 3 (most impaired). Details are provided in Appendix 1.

**Disease Activity Score (DAS)** Calculated using a formula that includes counts for tender (53 joints) and swollen joints (44 joints), an evaluation by the patient of general health and blood acute-phase responses. Scale 0 (best) to 10 (most active disease).

**DAS28** Disease Activity Score 28, similar to DAS above but using only 28 joints for assessment. Scale 0 (best) to 10 (most active disease).

| List of a | bbreviations                                                    |       |                                       |
|-----------|-----------------------------------------------------------------|-------|---------------------------------------|
| ACR       | American College for<br>Rheumatology                            | DMARD | disease-modifying antirheumatic drug  |
| Adal      | adalimumab                                                      | DPen  | penicillamine                         |
| ADORE     | Add Enbrel or Replace                                           | EMEA  | European Medicines Agency             |
|           | Methotrexate (study)                                            | EQ-5D | EuroQol 5 Dimensions                  |
| ARAMIS    | Arthritis, Rheumatism and Aging<br>Medical Information System   | ERA   | Early Rheumatoid Arthritis study      |
| ARMADA    | Anti-Tumor Necrosis Factor                                      | ESR   | erythrocyte sedimentation rate        |
|           | Research Study Program of the<br>Monoclonal Antibody            | Etan  | etanercept                            |
|           | Adalimumab (D2E7) in<br>Rheumatoid Arthritis                    | EULAR | European League Against<br>Rheumatism |
| ASPIRE    | Active-controlled Study of<br>Patients Receiving Infliximab for | FBC   | full blood count                      |
|           | the Treatment of Rheumatoid<br>Arthritis of Early Onset         | FDA   | Food and Drug Administration          |
| ATTRACT   | Anti-TNF Trial in Rheumatoid Arthritis with Concomitant         | GPRD  | General Practice Research<br>Database |
|           | Therapy                                                         | GST   | injectable gold                       |
| AUC       | area under the curve                                            | HAQ   | Health Assessment Questionnaire       |
| AZA       | azathioprine                                                    | HCQ   | hydroxychloroquine                    |
| BCP       | biochemical profile                                             | HLA   | human leucocyte antigen               |
| BeSt      | Behandel-Strategieën study                                      | i.m.  | intramuscular                         |
| BRAM      | Birmingham Rheumatoid                                           | i.v.  | intravenous                           |
| BSR       | Arthritis Model  British Society for Rheumatology               | ICER  | incremental cost-effectiveness ratio  |
| BSRBR     | British Society for Rheumatology                                | IgG   | immunoglobulin G                      |
|           | Biologics Register                                              | IL-1  | interleukin-1                         |
| CHEC      | Consensus on Health Economic<br>Criteria                        | IL-2  | interleukin-2                         |
| CI        | Confidence interval                                             | IL-6  | interleukin-6                         |
| CRP       | C-reactive protein                                              | Infl  | infliximab                            |
| CXR       | chest X-ray                                                     | IQR   | interquartile range                   |
| CyA       | ciclosporin                                                     | ITT   | intention-to-treat                    |
| DAS       | Disease Activity Score                                          | LEF   | leflunomide                           |
|           |                                                                 |       | continued                             |

| MHAQ Modified Health Assessment Questionnaire  MRI magnetic resonance imaging  MTX methotrexate  NA not applicable  NICE National Institute for Health and Clinical Excellence  NNH number needed to harm  NNT number needed to treat  NRR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  NSAID smallest detectable difference  SER Surveillance Epidemiology and End Results  SEM standard error of the mean  SF36 Short Form 36  STAR Safety Trial of Adalimumab in Rheumatoid Arthritis with Remicade Therap soluble tumour necrosis factor receptor  TACE tumour necrosis factor-α converting enzyme  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF tumour necrosis factor  TNF tumour necrosis factor  TNF tumour necrosis factor  TNF tumour necrosis factor  TNF tumour necrosis factor visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | List of a | bbreviations continued                                                                                 |       |                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|
| Questionnaire  MRI magnetic resonance imaging  MTX methotrexate  NA not applicable  NICE National Institute for Health and Clinical Excellence  NNH number needed to harm  NNT number needed to treat  NRR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year quasi-standard error  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  NSAID standard error tumour necrosis factor  SER Surveillance Epidemiology and End Results  SEM standard error of the mean  SEM standard error of the mean  SF-36 Short Form 36  Short For | MCP       | metacarpophalangeal joint                                                                              | SAE   | serious adverse event                                         |
| magnetic resonance imaging  MTX methotrexate  NA not applicable  NICE National Institute for Health and Clinical Excellence  NNH number needed to harm  NNT number needed to treat  NR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  SER Surveillance Epidemiology and End Results  SEM standard error of the mean  STAR Short Form 36  Short F | MHAQ      |                                                                                                        | SD    | standard deviation                                            |
| NA not applicable  NICE National Institute for Health and Clinical Excellence  NICE Short Form 36  Short Form 36  Short Form 36  Short Form 36  NNH number needed to treat  SLE systemic lupus erythematosus  SMD standardised mean difference  SSZ sulfasalazine  STAR Safety Trial of Adalimumab in Rheumatoid Arthritis  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  NSAID standard error of the mean  SF-36 Short Form 36  Shor | MRI       | magnetic resonance imaging                                                                             | SDD   | smallest detectable difference                                |
| NICE National Institute for Health and Clinical Excellence  NNH number needed to harm  NNT number needed to treat  NNR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  SF-36 Short Form 36  Short Form 4   Short Form 36  Short Form 4   Short Form 36  Short Form 36  S | MTX       | methotrexate                                                                                           | SEER  |                                                               |
| NICE National Institute for Health and Clinical Excellence  NNH number needed to harm  NNT number needed to treat  NNR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  SF-36 Short Form 36  Short Form 45  Short Form | NA        | not applicable                                                                                         | SFM   | standard error of the mean                                    |
| NNT number needed to treat  NR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  TACE tumour necrosis factor receptor  TMF-R tumour necrosis factor receptor  RA rheumatoid arthritis  TMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF-R tumour necrosis factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NICE      |                                                                                                        |       |                                                               |
| NR not reported  NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  PSC safety Trial of Adalimumab in Rheumatoid Arthritis with Remicade Therap soluble tumour necrosis factor receptor  TACE tumour necrosis factor converting enzyme  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF-R tumour necrosis factor  TNF-R tumour necrosis factor  TNF-α tumour necrosis factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NNH       | number needed to harm                                                                                  | SJC   | swollen joint count                                           |
| NSAID non-steroidal anti-inflammatory drug  Pall palliation  PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  START Safety Trial of Adalimumab in Rheumatoid Arthritis with Remicade Therap Soluble tumour necrosis factor receptor  TACE tumour necrosis factor converting enzyme  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF-R tumour necrosis factor  TNF-R tumour necrosis factor  TNF-α tumour necrosis factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NNT       | number needed to treat                                                                                 | SLE   | systemic lupus erythematosus                                  |
| Pall   palliation   STAR   Safety Trial of Adalimumab in Rheumatoid Arthritis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NR        | not reported                                                                                           | SMD   | standardised mean difference                                  |
| PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life QALY quality-adjusted life-year QSE quasi-standard error TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  Rheumatoid Arthritis  START Safety Trial for Rheumatoid Arthritis with Remicade Therap soluble tumour necrosis factor receptor  TACE tumour necrosis factor-α converting enzyme  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF-R tumour necrosis factor  TNF tumour necrosis factor  TNF tumour necrosis factor  TNF tumour necrosis factor  TNF-α tumour necrosis factor  TNF-α tumour necrosis factor-α  TNF-α tumour necrosis factor | NSAID     | •                                                                                                      | SSZ   | sulfasalazine                                                 |
| PCT primary care trust  PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  START Safety Trial for Rheumatoid Arthritis with Remicade Therap soluble tumour necrosis factor receptor  TACE tumour necrosis factor-α converting enzyme  TACE  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF tumour necrosis factor  TNF-α tumour necrosis factor  TNF-α tumour necrosis factor  TNF-α tumour necrosis factor  TNF-α tumour necrosis factor-α  VAS visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pall      | palliation                                                                                             | STAR  |                                                               |
| PREMIER A prospective, randomised trial (DE013) comparing adalimumab, methotrexate, and the combination of both over 2 years in patients with early rheumatoid arthritis  PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  Arthritis with Remicade Therap soluble tumour necrosis factor receptor receptor  TACE tumour necrosis factor-α converting enzyme  TACE  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF tumour necrosis factor  TNF-α tumour necrosis factor  TNF-α tumour necrosis factor wisual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCT       | primary care trust                                                                                     |       |                                                               |
| PSS Personal and Social Services  QoL quality of life  QALY quality-adjusted life-year  QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  TACE tumour necrosis factor-α converting enzyme  TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TJC tender joint count  TNF tumour necrosis factor  TNF tumour necrosis factor  TNF-α tumour necrosis factor-α  VAS visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PREMIER   | (DE013) comparing adalimumab,<br>methotrexate, and the combination<br>of both over 2 years in patients |       | Arthritis with Remicade Therap soluble tumour necrosis factor |
| QoL       quality of life         QALY       quality-adjusted life-year         QSE       quasi-standard error         TNF-R       tumour necrosis factor receptor         RA       rheumatoid arthritis         RCT       randomised controlled trial         RD       risk difference         RR       relative risk    TEMPO Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes  TNF  TNF  tumour necrosis factor  TNF  tumour necrosis factor  VAS visual analogue scale WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSS       | ·                                                                                                      | TACE  |                                                               |
| QALY       quality-adjusted life-year       Methotrexate with Radiographic Patient Outcomes         QSE       quasi-standard error       TJC       tender joint count         TNF-R       tumour necrosis factor receptor       TNF       tumour necrosis factor         RA       rheumatoid arthritis       TNF-α       tumour necrosis factor-α         RCT       randomised controlled trial       VAS       visual analogue scale         RD       risk difference       WMD       weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QoL       | quality of life                                                                                        | TEMPO | Trial of Ftanercent and                                       |
| QSE quasi-standard error  TNF-R tumour necrosis factor receptor  RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  TJC tender joint count  TNF tumour necrosis factor  TNF-α tumour necrosis factor-α  VAS visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QALY      | quality-adjusted life-year                                                                             |       | Methotrexate with Radiographic                                |
| TNF-R tumour necrosis factor receptor RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  TNF-α tumour necrosis factor  TNF-α tumour necrosis factor-α  VAS visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QSE       | quasi-standard error                                                                                   | TILO  |                                                               |
| RA rheumatoid arthritis  RCT randomised controlled trial  RD risk difference  RR relative risk  TNF-α tumour necrosis factor-α  VAS visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TNF-R     | tumour necrosis factor receptor                                                                        |       |                                                               |
| RCT randomised controlled trial  RD risk difference  RR relative risk  VAS visual analogue scale  WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RA        | rheumatoid arthritis                                                                                   | TNF   | tumour necrosis factor                                        |
| RR relative risk WMD weighted mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RCT       | randomised controlled trial                                                                            | TNF-α | tumour necrosis factor-α                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RD        | risk difference                                                                                        | VAS   | visual analogue scale                                         |
| s.c. subcutaneous WR weighted response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RR        | relative risk                                                                                          | WMD   | weighted mean difference                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s.c.      | subcutaneous                                                                                           | WR    | weighted response                                             |

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case the abbreviation is defined in the figure legend or at the end of the table.



# **Executive summary**

### **Background**

Rheumatoid arthritis (RA) is a chronic illness characterised by inflammation of the synovial tissue in joints, which can lead to joint destruction. Treatment aims to control pain and inflammation, reduce joint damage and disability, and maintain or improve physical function and quality of life.

### **Description of technology**

Drugs that inhibit joint destruction are known as disease-modifying antirheumatic drugs (DMARDs). There are around eight DMARDs, which are not biologics, in common use in the UK. These drugs are not always effective, may lose effectiveness with time or may cause adverse effects. Alternative DMARDs are therefore needed and tumour necrosis factor (TNF) inhibitors are one class of new agents that has been developed.

Tumour necrosis factor- $\alpha$  (TNF- $\alpha$ ) is a cytokine that plays an important role in joint inflammation. TNF inhibitors have been designed to inhibit its actions. Three are currently licensed for use in the UK:

- *adalimumab*: given by subcutaneous injections (40 mg) every other week, but the dose may be increased to weekly if the disease is poorly controlled
- *etanercept*: given by a once-weekly subcutaneous injection (50 mg) or twice weekly (25 mg each)
- *infliximab*: given by intravenous infusion (3 mg kg<sup>-1</sup>) at 0, 2 and 6 weeks and at 8-weekly intervals thereafter. It is only licensed for use concomitantly with methotrexate.

# **Current recommendations and service provision**

National Institute for Health and Clinical Excellence (NICE) 2002 guidance for the use of TNF inhibitors recommended that:

 etanercept and infliximab be used in patients with clinically active disease that has not responded adequately to at least two DMARDs including methotrexate (unless contraindicated)  details of patients and their treatment should be recorded in a registry.

There is variable implementation of the guidance, with limited access to these agents in some areas. Where used, these drugs have tended to be used after people have failed two or more DMARDs (as recommended), but they are also being used sequentially, after patients fail on a TNF inhibitor (not recommended). There are currently around 10,000 patients (about 2% of the RA population) on these drugs in the UK, with an estimated annual cost to the NHS of around £100 million. These figures are rising.

Since 2002 more evidence has become available and a new agent, adalimumab, has been licensed for use in the UK. In addition, all three agents have been licensed for use in early disease.

### Objective to the report

This report reviews the clinical and costeffectiveness of adalimumab, etanercept and infliximab when used in the treatment of RA in adults.

### **Methods**

Systematic reviews of the literature on effectiveness and cost-effectiveness were undertaken. A wide range of databases was searched and information sought from researchers and industry. Industry submissions to NICE were reviewed. Meta-analyses of effectiveness data were undertaken for each agent.

The Birmingham Rheumatoid Arthritis Model (BRAM), a simulation model, was further developed and used to produce an incremental cost-effectiveness analysis.

### Results

### Number and quality of studies

Twenty-nine randomised controlled trails (RCTs), most of high quality, were included: nine on

adalimumab, 11 on etanercept and nine on infliximab. There were 14 economic evaluations: three from industry submissions, one from the British Society for Rheumatology and ten from published literature.

# Direction of evidence and size of treatment effect

### Direct comparison with standard treatments

The only head-to-head comparisons were against methotrexate. For patients with short disease duration (≤ 3 years) who were naïve to methotrexate:

- adalimumab was marginally less and etanercept was marginally more effective than methotrexate in reducing symptoms of RA; etanercept was better tolerated than methotrexate
- both adalimumab and etanercept were more effective than methotrexate in slowing radiographic joint damage.

Etanercept was also marginally more effective and better tolerated than methotrexate in patients with longer disease durations who had not failed methotrexate treatment. Infliximab is only licensed for use with methotrexate.

### TNF inhibitors versus placebo

All the three agents, either alone (where so licensed) or in combination with ongoing DMARDs, were effective in reducing the symptoms and signs of RA in patients with established disease. At the licensed dose the numbers needed to treat (95% CI) required to produce an American Colleague for Rheumatology (ACR) response compared with placebo were: ACR20: adalimumab 3.6 (3.1 to 4.2), etanercept 2.1 (1.9 to 2.4), infliximab 3.2 (2.7 to 4.0); ACR50: adalimumab 4.2 (3.7 to 5.0), etanercept 3.1 (2.7 to 3.6), infliximab 5.0 (3.8 to 6.7); ACR70: adalimumab 7.7 (5.9 to 11.1), etanercept 7.7 (6.3, to 10.0), infliximab 11.1 (7.7 to 20.0).

# Combination (TNF inhibitor plus methotrexate) versus methotrexate

In patients who were naïve to methotrexate, or who had not previously failed methotrexate treatment, a TNF inhibitor combined with methotrexate was significantly more effective than methotrexate alone. Infliximab combined with methotrexate had an increased risk of serious infections (relative risk 2.74, 95% CI 1.12 to 6.70; number needed to harm 25, 95% CI 16.7 to 100).

### **Existing economic evaluations**

All ten published economic evaluations met standard criteria for quality, but the incremental

cost-effectiveness ratios (ICERs) ranged from being within established thresholds to being very high because of varying assumptions and parameters. All three sponsors submitted economic models. All made assumptions favourable to their product (e.g. assuming that 'responders' can be separated from 'nonresponders' and choosing the most favourable trial data for effectiveness).

### **Cost-effectiveness**

BRAM incorporates improvements in quality of life and mortality, but assumes no effect of TNF inhibitors on joint replacement. For use in accordance with current NICE guidance as the third DMARD in a sequence of DMARDs, the base-case ICER was around £30,000 per quality-adjusted life-year (QALY) in early RA and £50,000 per QALY in late RA. Sensitivity analyses showed that the results were sensitive to the estimates of Health Assessment Questionnaire (HAQ) progression while on TNF inhibitors and the effectiveness of DMARDs, but not to changes in mortality ratios per unit HAQ.

TNF inhibitors are most cost-effective when used last. The ICER for etanercept used last is £24,000 per QALY, substantially lower than for adalimumab (£30,000 per QALY) or infliximab (£38,000 per QALY). First line use as monotherapy generates ICERs around £50,000 per QALY for adalimumab and etanercept. Using the combination of methotrexate and a TNF inhibitor as first line treatment generates much higher ICERs, as it precludes subsequent use of methotrexate, which is cheap. The ICERs for sequential use are of the same order as using the TNF inhibitor alone.

### **Conclusions**

Adalimumab, etanercept and infliximab are effective treatments compared with placebo for RA patients who are not well controlled by conventional DMARDs, improving control of symptoms, improving physical function and slowing radiographic changes in joints. When used alone, adalimumab is marginally less effective and etanercept is marginally more effective than methotrexate, in methotrexate-naïve patients. The combination of a TNF inhibitor with methotrexate was more effective than methotrexate alone in early RA, although the clinical relevance of this additional benefit is yet to be established, particularly in view of the well-established effectiveness of MTX alone. In addition, an

increased risk of serious infection cannot be ruled out for the combination of methotrexate with adalimumab or infliximab.

Results of published economic evaluations vary: some analyses suggest that the use of TNF inhibitors may fall within the usual acceptable costeffectiveness ranges, whereas others report very high ICERs. Although most are of high quality, none of them uses all the appropriate parameters, effectiveness data, perspective and comparators required to make their results generalisable to the NHS context. The societal perspective generates more favourable ICERs. All economic evaluations submitted by the manufacturers report ICERs that fall within the currently accepted thresholds of costeffectiveness. However, in the authors' opinion, these models make assumptions and use data that favour the TNF inhibitor being evaluated, the appropriateness of which can be questioned.

The results of the economic evaluation based on BRAM are consistent with the observations from the review of clinical effectiveness, including the ranking of treatments. TNF inhibitors are most cost-effective when used as last active therapy, with the ICER for etanercept (£24,000 per QALY) being significantly lower than the ICER for adalimumab (£30,000 per QALY) or infliximab (£38,000 per QALY). Other things being equal, etanercept would be, therefore, the TNF inhibitor of choice based on this evidence. However, the most appropriate choice of TNF inhibitor may also depend on patient preference as to route of administration.

The next most cost-effective use of TNF inhibitors is third line, as recommended in the 2002 NICE guidance, which gives ICERs around £30,000 per QALY using early RA effectiveness data. Using data for late RA, however, gives an ICER of around £50,000 per QALY for etanercept, with higher figures for adalimumab and infliximab. First-line use gives ICERs around £50,000 per QALY for adalimumab and etanercept as monotherapies with much higher figures for combinations with methotrexate.

Sequential use of TNF inhibitors was modelled, with the TNF inhibitors starting as third line therapy and using the 'late RA' values for the TNF inhibitors. The results are similar to those using the given TNF inhibitor as the sole TNF inhibitor in third place, except that the two other TNF inhibitors are somewhat less cost-effective if used after etanercept.

# Recommendations for further research

Direct comparative RCTs of TNF inhibitors against each other and against other DMARDs, and sequential use in patients who have failed a previous TNF inhibitor, are needed. Longer term studies of the quality of life in patients with RA and the impact of DMARDs on this are needed, as are longer studies that directly assess effects on joint replacement, other morbidity and mortality.

# Chapter I

## Aims of the review

### The aims of this review were:

- To provide a background on rheumatoid arthritis (RA), including epidemiology, current therapeutic options, and impact of disease on individuals and health services.
- To update<sup>1</sup> and undertake a systematic review and meta-analysis of the clinical benefits and adverse effects of adalimumab, etanercept and infliximab for RA.
- To review published cost-effectiveness and cost-utility studies of these agents and economic evaluations included in manufacturers' submissions.
- To adapt the Birmingham Rheumatoid Arthritis Model (BRAM)<sup>2,3</sup> to evaluate the costeffectiveness of these agents compared with other treatment options.

# Chapter 2

# **Background**

### **Summary**

RA is a common, chronic, inflammatory condition causing systemic illness and pain, swelling and destruction of the joints. The cause is not known. Treatment aims to control pain and inflammation, reduce joint damage and disability, and maintain or improve physical function and quality of life.

Although there are a number of disease-modifying drugs for this condition these are of limited efficacy and are often withdrawn because of toxicity or loss of effectiveness. New treatments are needed. Tumour necrosis factor (TNF) inhibitors are new biological agents that have been designed to interrupt the inflammatory pathway. Three are licensed for use in the UK: adalimumab, etanercept and infliximab.

National Institute for Health and Clinical Excellence (NICE) guidance for the use of TNF inhibitors was produced in 2002. Guidance recommends that etanercept and infliximab should only be used in patients who have tried and failed conventional agents and that details of patients and their treatment should be recorded in a registry. There is variable implementation of the guidance with limited access to these agents in some areas. Where the drugs are used they tend to be used after people have failed two or more disease-modifying antirheumatic drugs (DMARDs), as recommended, but they are also used sequentially when patients fail on a previous TNF inhibitor (not recommended). There are currently around 10,000 patients on these drugs in the UK, with an annual cost to the NHS of £100 million. These figures are rising.

Since this guidance more evidence has become available and a new agent, adalimumab, has been licensed for use in the UK. All three agents have also now been licensed for use early in the disease.

This report reviews evidence about the effectiveness and cost-effectiveness of all three agents when used both early and later in the disease.

# Description of underlying health problem

### Clinical features of RA

RA is a systemic inflammatory disorder that most often begins between the ages of 40 and 70 years. It is more common in women than in men and is characterised, pathologically, by an inflammatory reaction and increased cellularity of the lining layer of synovial joints. RA causes pain, swelling and stiffness of affected joints: these symptoms are often worse in the morning and after periods of inactivity. Other organ systems, occasionally with potentially life-threatening complications, may also be affected. Patients commonly experience fatigue and blood abnormalities such as anaemia and a raised platelet count. Weight loss, lymphnode enlargement, lung diseases (such as pleurisy, pleural fluid and alveolitis), pericarditis, vascular inflammation (vasculitis), skin nodules and eye diseases (reduced tear production or inflammation) may also occur.

The severity of disease, its clinical course and individual responses to treatment vary greatly. For example, in a community cohort nearly one in five patients were in 'remission off treatment' after 3 years of follow-up. By contrast, half of the patients attending hospital clinics were at least moderately disabled, as rated by a Health Assessment Questionnaire (HAQ) of greater than 1.0 (see Appendix 1).<sup>4</sup> Symptoms of RA may develop within days or evolve over many weeks and months.<sup>5</sup> Several distinct patterns of joint disease are recognised, including predominantly small or medium joint disease, predominantly large joint disease, flitting or transient attacks of joint pain (palindromic rheumatism), pain and stiffness of the shoulder and pelvic girdles (polymyalgic disease), and disease associated with weight loss and fever (systemic onset), or any combination of these. Pain and disability, in early RA, are linked to disease severity and to measures of psychological distress.<sup>4</sup> Disease progression can be relentless, or punctuated by partial or complete remissions, of variable and unpredictable intervals.

### Diagnosis of RA

RA is diagnosed from a constellation of clinical, laboratory and radiographic abnormalities.

Diagnosis may be obvious or may need specialist assessment or a period of clinical observation. Internationally agreed classification criteria for RA are used widely in contemporary research studies. The most recent criteria require patients to fulfil four of the following: morning stiffness in joints exceeding 1 hour, physician observed arthritis of three or more areas with soft-tissue swelling, arthritis involving hand joints, symmetrical arthritis, rheumatoid skin nodules, a positive blood test for rheumatoid factor and radiographic changes typical of rheumatoid disease. Such criteria have limited utility in routine practice and most clinicians diagnose RA without reference to them. Indeed, many patients do not meet formal disease classification criteria, at least early in their disease.<sup>7,8</sup>

### Radiographic features of RA

Conventional radiographs may be normal or may show soft-tissue swelling and reduced bone density around affected joints, in early RA. Later, there may be diffuse joint damage, indicated by narrowing of the joint space, or focal loss of bone and cartilage at the joint margin, called erosions. Joint damage is assessed in clinical trials using scores of both joint space narrowing and joint erosions. Joint deformity or instability may occur as damage progresses and in advanced disease bony fusion occurs. More sensitive imaging, for example with magnetic resonance imaging (MRI), shows detailed anatomical and pathological change. Some studies indicate that erosions are seen on MRI up to 2 years before they become visible on radiographs;9 however, only a quarter of erosions seen on MRI are eventually also seen on X-rays. The clinical importance of some MRI changes is debated but MRI remains, potentially, an important and sensitive outcome measure.<sup>10</sup>

### **Epidemiology**

RA affects around 0.5–1% of the population, three times as many women as men, and has a peak age of onset between the ages of 40 and 70 years. Prevalence of the disease at the age of 65 is six times that at the age of 25 years. Recent estimates from England and Wales show an annual incidence of 31 per 100,000 women and 13 per 100,000 men, suggesting a decline in recent decades and a prevalence of 1.2% in women and 0.4% in men. There are approximately 426,800 patients with RA in England and Wales (population 52,793,000). A primary care trust (PCT) with a population of half a million, for example, has around 4000 patients with RA.

### **Aetiology**

A specific cause for RA has not been identified; it appears to have many contributory factors including genetic and environmental influences. Genetic influence is estimated at 50–60%. <sup>13</sup> The occurrence of RA in both of a pair of monozygotic twins is 12–15% and a family history of RA gives an individual a risk ratio of 1.6, compared with the expected population rate.<sup>14</sup> The human leucocyte antigen HLA-DRB1 of chromosome 6 has been most clearly linked to RA, although this accounts for less than half of the overall genetic susceptibility of RA.15 HLA plays a key role in immune function and regulation. The only known function of DR is in presentation of peptides to T-cells for mounting an immune response to particular antigens. Rheumatoid factor, an autoantibody produced by B lymphocytes and directed against immunoglobulin G (IgG), is also an important feature of a proportion of patients with RA and is implicated in disease. 16

Infectious agents have been suspected, but no consistent relationship with an infective agent has been shown. Sex hormones have also been suspected because of the higher prevalence of RA in women and a tendency for disease to improve in pregnancy. However, a precise relationship has not been identified. A causal link with lifestyle factors such as diet, occupation or smoking has not been shown.

### **Pathology**

Synovial joints occur where the ends of two bones, covered with hyaline cartilage, meet in a region where free movement is desirable. This joint space is encapsulated by a fibrous capsule lined, on the inside, by a synovial membrane; which functions to secrete fluid to lubricate and nourish hyaline cartilage. The synovial layer of affected joints becomes enlarged owing to increased cellularity, or hyperplasia, infiltration by white blood cells and formation of new blood vessels. This is accompanied by increased fluid in the joint cavity, which contains white blood cells and a high level of protein (an exudate) contributing to the joint swelling. Bony erosions of cartilage and bone occur where synovial tissue meets cartilage and bone. This occurs through the combined actions of synovial tissue (pannus) and resident cartilage and bone cells. Erosions, and loss of cartilage, are rarely reversible. Such damage therefore compromises the structure and function of a normal joint.

### Role of TNF

TNF- $\alpha$  and other cytokines such as interferon- $\gamma$ , interferon- $\beta$ , interleukin-1 (IL-1), interleukin-2

(IL-2) and interleukin-6 (IL-6), produced by macrophages and activated lymphocytes, promote inflammation. In early RA TNF- $\alpha$  is expressed in abundance in synovial tissues and, locally, promotes growth of new blood vessels, orchestrates inflammation and other cytokine production, and induces migration of white blood cells into the joint, which release potentially harmful enzymes. Systemically, TNF- $\alpha$  is an important mediator of cachexia, fever, bone resorption and cardiovascular collapse (as in septic or endotoxic shock).

TNF- $\alpha$  has a half-life of a few minutes and its production can comprise as much as 1–2% of protein released by activated macrophages. Newly produced TNF-α spans the cell membrane and may be active in this membrane-bound form, especially in T lymphocytes. More usually, TNF-α is released as a soluble molecule by cleavage of the intracellular tail by an enzyme known as TNF-αconverting enzyme (TACE).<sup>17</sup> Three soluble molecules combine together, forming a trimer, and signal to cells by binding to one of two possible cell receptors: a 55-kDa (TNF-R1) or a 75-kDa TNF (TNF-R2) receptor. Receptor binding induces a pair of receptors to combine and triggers biological activity. TNF- $\alpha$  has a greater affinity for TNF-R1 than for TNF-R2; the latter appears to capture TNF-α and pass it on to TNF-R1. Mice lacking TNF-R1 have poorly developed lymphoid organs, are highly susceptible to infection by mycobacteria and Listeria monocytogenes, and are particularly prone to chronic inflammation and to endotoxic shock induced by TNF-α. Expression of TNF-R2 is restricted to endothelial cells (lining cells in blood vessels) and white blood cells. TNF-R1 is expressed by virtually all cell types.<sup>18</sup>

The extracellular sections of TNF receptors on cells are shed by proteolysis and these soluble TNF receptors (sTNFRs) are natural inhibitors of TNF and a means of regulating TNF-α activity, <sup>19</sup> although it has also been suggested that sTNFRs stabilise circulating TNF-α and function as TNF agonists. Levels of sTNFR are raised in RA and other conditions causing inflammation. Defective shedding of the TNF-R1 can be caused by rare autosomal recessive gene defects; known as familial periodic syndromes or TNF-receptorassociated periodic syndromes (TRAPs). People with these conditions experience episodic fever, inflammation and deposition of amyloid but may also have a survival advantage in terms of a more effective host defence against certain bacterial infections.<sup>20,21</sup>

### Goals of management

Physicians treating RA aim to control symptoms of joint pain and stiffness and to minimise loss of function and improve the quality of life of their patients. Reducing the risk of disability associated with joint damage and deformity and treating any extra-articular manifestations are also key objectives. Since RA is a heterogeneous disease, which may vary over time, a long-term plan with regular clinical evaluation to assess disease status, co-morbidity, patient preferences and psychosocial factors is essential, and is aided by well-informed and satisfied patients and carers. <sup>22,23</sup>

### Current drug therapy for RA

Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are commonly used for symptom relief in RA. These drugs do not modify the disease process and, in severe disease, are often insufficiently effective for symptom control. Corticosteroids may produce dramatic and rapid improvements in RA symptoms, including systemic features such as fatigue and weight loss, and may be given by mouth, as intramuscular injections, intravenously or as joint injections. Steroid injections provide only short-term benefits, but oral steroids may provide prolonged benefits. In clinical practice a significant proportion of patients take steroids for years and experience difficulty when therapy is withdrawn.

Some RA patients are managed solely with oral steroids, NSAIDs and analgesics, in varying combinations. Corticosteroids are also commonly used for short-term management of acute symptoms, or as bridge therapy, to allow rapid control of disease while awaiting the effects of slower acting drugs such as DMARDs, which reduce the risk of joint damage. Drugs used commonly in the UK and regarded as DMARDs include azathioprine, etanercept, ciclosporin A, hydroxychloroquine, infliximab, leflunomide, sulfasalazine, methotrexate and injectable gold. <sup>24–26</sup>

Glucocorticoids may be regarded as DMARDs, as their use appears to reduce the risk of joint damage.<sup>27</sup> Steroids were not included in the baseline clinical pathway of the economic model in this review, for the following reasons. First, glucocorticoids are used widely as an adjunct to other antirheumatic therapy whether that therapy includes conventional DMARDs or TNF inhibitors. For example, in clinical trials in established RA 50% or more of adalimumab- or placebo-treated patients were on glucocorticoids. Secondly, practice with regard to steroid use varies

greatly, such that some physicians prefer high-dose oral therapy while initiating a DMARD,<sup>28</sup> others prefer intramuscular<sup>29</sup> or even intravenous steroids, others low oral prednisolone given for prolonged periods<sup>27</sup> (with or without DMARDs) and yet others may rely on intra-articular therapy wherever possible. Thirdly, patients with established RA also differ in their preferences for how glucocorticoids are used and many, particularly those experiencing adverse effects such as weight gain or osteoporosis, prefer to avoid them altogether.

DMARDs rarely induce complete disease remission, although effective disease control can be achieved and may also lead to other benefits such as reduced cardiovascular mortality.<sup>30</sup> The mode of action of most DMARDs is incompletely understood. It is recommended that patients with active RA should be treated soon after diagnosis with DMARDs, since delayed use appears to lead to worse clinical outcomes.<sup>31</sup> This has led to the concept of a 'window of opportunity' in the treatment of RA; that is, delayed use of DMARDs reduces the prospect of benefits in the future. Appropriate concerns have been expressed about data supporting this idea.<sup>32</sup> Indeed, the 'window of opportunity' concept risks creating a therapeutic imperative for DMARD use when clinicians and patients face newly diagnosed inflammatory polyarthritis: this may be misplaced since early inflammatory polyarthritis commonly remits. Thus, careful evaluation and appropriate clinical judgements are needed in choosing therapies.<sup>33</sup>

Effective disease control with DMARDs commonly leads to successful withdrawal of NSAIDs, analgesics and corticosteroids. Some DMARDs, such as azathioprine and hydroxychloroquine, are probably less effective than other agents, such as methotrexate, sulfasalazine and leflunomide. Toxicity of DMARDs also differs, and each drug has a specific dosing and monitoring schedule. Unfortunately, discontinuation of therapy is common with these agents; for example, the proportion of people still taking gold after 5 years is 20%, sulfasalazine 35% and methotrexate 57%. Such data highlight the limitations of the available agents; that is, relatively short-term drug 'survival' for a disease with a lifelong course.

DMARDs may be discontinued because of toxicity, inadequate disease control, disease relapse, patient or physician preferences, complicating comorbidity or a combination of these. Toxicity varies from relatively minor reactions to life-

threatening events such as bone-marrow suppression. <sup>35</sup> Hydroxychloroquine and methotrexate appear to have the most favourable risk-benefit profile. <sup>36</sup> Methotrexate is widely regarded as the standard against which other drugs should be judged, and treatment is more likely to be sustained with this drug.

DMARDs are used in a variety of ways: several agents, often with corticosteroids added, may be combined early in disease (combination therapy<sup>18,37</sup>), which may then be continued or some drugs gradually withdrawn (step-down treatment<sup>28</sup>); DMARDs may be used singly and agents added (step-up); or withdrawn and replaced (sequential monotherapy), if disease control is judged to be inadequate. 31,38 In the UK monotherapy with sulfasalazine or methotrexate, in newly diagnosed patients, is currently the preferred initial strategy. Preferred DMARD combinations include methotrexate and sulfasalazine given together, or ciclosporin A or hydroxychloroquine given with methotrexate.<sup>25</sup> It appears that as successive DMARDs are tried to control disease the likelihood of sustained drug use declines, regardless of the choice of initial DMARD; that is, the second DMARD tried is likely to be used for a shorter time than the first and the third shorter than the second, and so on.<sup>26</sup> Patients achieving good disease control, or remission, with a DMARD are at risk of relapse if treatment is discontinued, and current guidelines advocate sustained long-term therapy.<sup>23</sup> Nearly a quarter of patients on long-term therapy, however, are consistently non-compliant with DMARDs.<sup>39</sup>

### Non-drug treatments

With advanced joint damage surgical intervention such as joint replacement arthroplasty, joint fusion or osteotomy may be necessary. Long-term observations show that around a quarter of patients with RA undergo a total joint arthroplasty. 40 It cannot, of course, be assumed that all such surgery is directly attributable to RA, especially as osteoarthritis is the most prevalent form of arthritis. Other surgical interventions, such as removal of synovial tissues and rheumatoid nodules, peripheral nerve decompression (such as in carpal tunnel syndrome), or soft-tissue procedures such as tendon release or repair may be necessary at any stage of disease. Patients often also need advice and support from a multidisciplinary team, including specialist nurses, podiatrists, physiotherapists and occupational therapists in contemporary rheumatology practice.

### Assessment of response to DMARDs

Remission is not usually achieved in RA, but very effective disease control is often possible. Modern clinical trials rely on composite end-points such as the American College for Rheumatology (ACR) definition of improvement, preferred in US trials, and the Disease Activity Score (DAS), preferred in European studies. The ACR response, for example, requires an improvement in counts of the number of tender and swollen joints (using designated joints) and at least three items from the following: observer evaluation of overall disease activity, patient evaluation of overall disease activity, patient evaluation of pain, a score of physical disability; and improvements in blood acute-phase responses [e.g. erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP)]. Response is defined as ACR20, ACR50 or ACR70, where the figures refer to percentage improvement of these clinical measures. This creates a dichotomous outcome of responders and non-responders. Achieving an ACR20 response has been regarded as a low hurdle, but in clinical practice patients who achieve this hurdle often gain a worthwhile clinical improvement, especially in early RA.

The DAS is calculated using a formula that includes counts for tender and swollen joints, an evaluation by the patient of general health (on a scale of 0–100), and blood acute-phase responses (usually ESR, but more recently using CRP). Originally the DAS was based on an assessment of 53 joints for tenderness and 44 joints for swelling. More recently DAS28, based on an evaluation of 28 joints, has been developed and proposed for use in routine clinical practice. DAS28, like DAS, is a continuous scale with a theoretical range from 0 to 10. Thresholds have been suggested for the scale, such that a score greater than 5.1 is regarded as indicating high disease activity, a score of less than 3.2 low disease activity and a score of less than 2.6 remission (for DAS28).41,42 It is of interest that these thresholds were originally derived from actual decisions by physicians in practice<sup>43</sup> and are now being proposed as instruments for decision-making in practice. Details of both scoring systems are provided in Appendix 1.

Radiographic outcomes are believed by many to be the most important outcome measure in RA. It is acknowledged, however, that variation in joint inflammation has a more profound and immediate impact on disability compared with the slow and cumulative effect of radiographic damage on disability.<sup>44</sup> The most commonly used tools for assessing joint damage are the Sharp and Larsen methods and their modifications, which rely on evaluations of plain radiographs (Appendix 1). As indicated above, plain radiographs are rather insensitive to change, but are cheap and widely available. A majority of patients show only mild or no progression on plain radiographs over periods of 1–2 years, highlighting one of their limitations in modern clinical trials. <sup>45</sup>

### **Prognosis**

The impact of RA on an individual can be viewed from a variety of perspectives, including employment status, economic costs to the individual or society, quality of life, physical disability, life expectancy, and medical complications such as extra-articular disease and joint deformity, radiographic damage or the need for surgery. In general, persistent disease activity is associated with poorer outcomes, although in the first 5 years of disease physical function is especially labile. Greater physical disability at presentation is associated with greater disability later in disease. Other factors linked with poorer function include older age at presentation, the presence of rheumatoid nodules, female gender, psychological distress and degree of joint tenderness.46,47

Continued employment is related to type of work and other aspects of the workplace, such as pace of work, physical environment, physical function, education and psychological status; work disability is not necessarily linked to measures of disease activity. 48,49 Radiographic damage in RA joints is also influenced by rheumatoid factor status, age, disease duration, extent of disease, and perhaps genetic factors. Life expectancy in RA is reduced and is related to age, disability, disease severity, comorbidity and rheumatoid factor status, in particular. 50-53 For example, a 50-year-old woman with RA is expected to live for 4 years less than one without RA.54 This appears to be due, principally, to increased cardiovascular disease, particularly in those who are rheumatoid factor positive.

### **Burden of illness**

Early in disease indirect costs exceed costs due to healthcare utilisation and medication (direct costs), by two-fold. <sup>55</sup> It is also clear that informal caregivers shoulder a considerable burden in terms of forgone paid employment, leisure activity and personal health. <sup>56</sup> Inevitably, in a disease characterised by lifelong pain, discomfort and physical impairment, the burden on individuals and families is increased. Recent studies show that

medication costs, especially in those treated with biological agents such as TNF inhibitors, account for a majority of the direct costs of RA.<sup>57</sup> Some drug intervention studies have shown reduced work absence with aggressive treatment strategies, <sup>58</sup> although only one-third of employed patients cease because of disease and, unsurprisingly, manual workers are much more likely to stop work.<sup>59</sup>

### **Current service provision**

Most patients with RA are referred to hospital services for assessment, but up to one-quarter of those with early inflammatory arthritis (not necessarily RA) are managed in primary care. Most district general hospitals now have a department of rheumatology with varied support from clinical nurse specialists and other professionals allied to medicine. The majority of patients followed up in a hospital rheumatology department have RA or another type of inflammatory arthritis or connective-tissue disease. A proportion of such patients may also require inpatient treatment, although there are considerable variations in inpatient facilities and hospitalisation rates for RA. The Arthritis and Musculoskeletal Alliance (ARMA) has recently proposed standards of care for patients with inflammatory arthritis. The principal motive for these standards<sup>60</sup> is to improve service provision and delivery and to reduce regional variations in access to services.  $^{61\text{-}63}$ For example, access to TNF inhibitors varies depending on local funding arrangements, such that some districts operate waiting lists for patients to begin treatment despite wide drug availability. A recent survey, commissioned by ARMA and the British Society for Rheumatology (BSR), with support from Schering-Plough, indicated that around one-third of 148 rheumatologists, mainly from England and Wales, were unable to prescribe TNF inhibitors.<sup>64</sup> Principal barriers to prescribing were identified as difficulties with local funding arrangements or problems of infrastructure such as the availability of day-case facilities or nursing support. Variable implementation of guidance on the use of TNF inhibitors was also confirmed by a survey of 196 hospitals and PCTs undertaken by the Audit Commission, which found that 'the biggest perceived barrier to implementation among NHS bodies, for both clinical guidelines and technology appraisals, was lack of money. We found that 85 per cent of respondents identified that the funds available to implement technology appraisals were insufficient, particularly in relation to high-cost appraisals, such as ... etanercept and

infliximab for rheumatoid arthritis.'60 Access to adalimumab has caused particular difficulties in some areas because this drug has not yet been evaluated by NICE.

However, some services have managed to secure additional funding for drugs and junior medical and nursing staff to enable NICE guidance to be implemented.<sup>65</sup>

### Description of the technology

# Adalimumab (Humira®; Abbott Laboratories)

Adalimumab is a recombinant monoclonal antibody, made from human peptide sequences, which binds specifically to TNF and neutralises its biological functions by blocking interactions with the p55 and p75 cell-surface TNF receptors. Treatment is currently recommended for use in people with moderate or severe RA who have not responded to one or more DMARDs, including methotrexate. An application to extend the licence of adalimumab for use in severe, active, progressive RA in adults not previously treated with methotrexate was submitted by Abbott Laboratories in December 2004<sup>66</sup> and approved in June 2005.<sup>67</sup> Concomitant treatment with methotrexate is recommended for optimum efficacy, but adalimumab may be used alone where methotrexate is not tolerated or is contraindicated. Clearance of adalimumab from the body is decreased with age and by concomitant methotrexate administration, whereas adalimumab increases methotrexate clearance.<sup>68</sup> Patients normally self-administer adalimumab by subcutaneous injections, after training, at a standard dose of 40 mg every other week; but the dose may be increased to 40 mg weekly if disease is poorly controlled.<sup>69</sup>

# Etanercept (Enbrel®; Wyeth Laboratories)

Etanercept is a combination protein consisting of the extracellular portion of two of the 75-kDa TNF receptors (TNF-R2) for TNF combined with a human Fc portion of human IgG class 1 (IgG<sub>1</sub>). Etanercept binds soluble and cell-bound TNF- $\alpha$  with high affinity and does this by competing with TNF receptors. Etanercept is administered as a twice-weekly subcutaneous injection of 25 mg or a once-weekly injection of 50 mg. Patients or caregivers normally administer etanercept, after suitable training. No dose changes are necessary for patients with renal or hepatic failure or in elderly subjects. Etanercept may be used in

combination with methotrexate or alone for the treatment of active RA in adults when the response to DMARDs, including methotrexate (unless contraindicated), has been inadequate, and for the treatment of severe, active and progressive RA not previously treated with methotrexate. Etanercept is also licensed for use in juvenile idiopathic arthritis, psoriatic arthritis, ankylosing spondylitis and severe psoriasis.

### Infliximab (Remicade®; Schering-Plough)

Infliximab is a recombinant chimeric human–murine monoclonal antibody that binds soluble and membrane-bound TNF- $\alpha$ . Stable complexes are formed, binding of TNF- $\alpha$  is prevented and TNF- $\alpha$  already bound to TNF receptors may be dissociated. The TNF- $\alpha$  binding region is of mouse origin and comprises 30% of the amino acid sequence of infliximab. The remainder is a human IgG<sub>1</sub> heavy-chain and kappa-chain constant region.

Infliximab is licensed for use in RA with methotrexate, although in clinical practice it is used without methotrexate or with other DMARDs if patients are intolerant of methotrexate.<sup>70</sup> The recommended dose of infliximab for RA is 3 mg kg<sup>-1</sup> body weight given as an intravenous infusion, followed by further infusion, at the same dose, 2 and 6 weeks later. Thereafter, infusions are given at 8-week intervals. An interval between infusions of greater than 16 weeks is not recommended because of an increased risk of hypersensitivity reactions, although infusions after longer gaps have been administered safely. 62,71,72 Freshly reconstituted infliximab is diluted to a volume of 250 ml using 0.9% sodium chloride and the infusion is administered intravenously over at least 2 hours using a low-protein-binding filter. Treated patients should be observed for 1-2 hours post infusion. Recent studies indicate that patients who tolerate infusions well and are established on therapy may receive infusions over 1 hour or less.<sup>73</sup>

Infliximab is also licensed for use in severe Crohn's disease (5 mg kg<sup>-1</sup>), including disease complicated by fistulae, ankylosing spondylitis (5 mg kg<sup>-1</sup>) and psoriatic arthritis (5 mg kg<sup>-1</sup>). Use of higher doses of infliximab in trials has encouraged use of higher doses or a shorter interval between infusions in RA.<sup>74</sup>

# Special precautions for use of TNF inhibitors

TNF inhibitors may cause a variety of adverse effects. Reactivation of *Mycobacterium tuberculosis* organisms lying dormant in walled granuloma, in

individuals previously infected with tuberculosis, is a particular concern. Such 'latent' tuberculosis, thought to be highly prevalent in the world's population, rarely causes disease. TNF- $\alpha$  is a key component of host defence against M. tuberculosis, especially in the formation of granulomas.<sup>75</sup> Inhibition of TNF- $\alpha$  appears to increase the risk of M. tuberculosis and other agents causing granulomatous diseases, such as Listeria monocytogenes (a bacterium associated with foodborne diseases) and Histoplasma capsulatum (a fungus which, in endemic areas, causes lung disease in people with a compromised immune system). The risk appears to be significantly greater with infliximab (53 patients per 100,000 treated cases) than with etanercept (28 per 100,000). <sup>76</sup> Data for adalimumab are limited, but an increased risk has also been shown. The summary of product characteristics (SPC) for adalimumab and infliximab and guidance including proposed guidance from the BSR, British Thoracic Society and the British Society for Gastroenterology recommend screening patients before treatment.<sup>77</sup> In RA this is currently done by taking a personal and family history of tuberculosis and a pretreatment chest X-ray, but the addition of skin tests using tuberculin has been proposed. Skin testing before the use of TNF inhibitors poses problems in the UK because of the use of bacille Calmette-Guérin (BCG) vaccination for tuberculosis prevention in childhood. In addition, many patients with RA are poorly responsive to tuberculin, perhaps as a result of previous or current immunosuppressive therapy, but also due to the disease.<sup>78</sup> Preventive antituberculous drug treatment in latent tuberculosis is also associated with a risk of druginduced hepatitis, which needs to be considered in deciding about prophylactic therapy.

Routine blood monitoring is not necessary for patients taking TNF inhibitors, but may be needed for concomitantly used DMARDs such as methotrexate. TNF inhibitors can induce antinuclear and anti-double-stranded DNA antibodies in the blood of some patients treated with TNF inhibitors. These antibodies are associated with systemic lupus erythematosus (SLE), a potentially serious rheumatic disease. Cases of drug-induced SLE have been reported with TNF inhibitors, but are rare. <sup>79</sup>

# Choosing between TNF inhibitors and patient preferences

Physicians may prefer one TNF inhibitor to another for clinical reasons; for example, etanercept or adalimumab may be preferred to infliximab if a patient has had an adverse effect to methotrexate, since the licence for infliximab stipulates combined therapy with methotrexate. Physicians also favour drugs with which they are familiar – etanercept and infliximab have been around longer than adalimumab - and also based on their personal experiences, or perceived efficacy, in individual circumstances. Often a choice is made for practical reasons such as convenience of self-administered injections against a need to attend hospital for intravenous infusions<sup>80</sup> or the availability of resources to deliver timely infusions. Preliminary data for infliximab administered as subcutaneous injections compared with intravenous infusions have recently been presented.<sup>81</sup>

Patients starting DMARDs are most concerned about drug toxicity82 and commonly have a fear of giving their own injections; but clinical experience shows that a majority, even those with markedly impaired hand dexterity, cope very well. Patients may prefer adalimumab to etanercept, as fewer injections are needed, and also because adalimumab is available as a prefilled syringe, whereas etanercept needs to be prepared from a powdered formulation. However, a prefilled syringe of etanercept was approved in the USA late in 2004, but at the time of writing is not available in Europe. Personal experience also suggests that some elderly patients prefer to receive intravenous infusions rather than contemplate administrating their own injections.

# Current NICE guidance for use of TNF inhibitors

Treatment of RA with etanercept and infliximab was considered in a previous NICE appraisal and the guidance published in 2002<sup>83</sup> mirrors that proposed earlier by a committee of the BSR.<sup>84</sup> A brief commentary on aspects of this guidance is given below.

A key feature of the guidance is a requirement to register treated patients, with their consent, in a national register, the BSR Biologics Register (BSRBR). The aim of the BSRBR is to establish the long-term safety of a variety of biological agents (including TNF inhibitors) in adult patients with RA and other rheumatic diseases. In particular, the BSRBR is interested in mortality, malignancy and serious adverse events (SAEs) and its sample size was based on being able to detect a two-fold increase in risk of lymphoma over 5 years. There are two cohorts: a group of patients

with rheumatic disorders newly exposed to biological agents, mainly TNF inhibitors, and a comparison group with similar disease characteristics being treated with other non-biological DMARDs. It is proposed that patients are monitored for 5 years or more. <sup>85</sup> The target for recruiting patients treated with etanercept was met recently and clinicians are no longer required to register patients being treated with this drug. Clinicians have described their difficulties finding funding for TNF inhibitors and also meeting the demands of current guidance in terms of BSRBR registration and patient evaluations. <sup>63</sup>

It is recommended that neither etanercept nor infliximab is used unless a patient has failed to respond to two DMARDs, including methotrexate. Other eligibility criteria, dose ranges and desired duration of previously tried therapies were as proposed by the BSR. Since 2002 evidence of the use of TNF inhibitors before other DMARDs has accumulated and this is considered in this review. The BSR, in their updated guidance, state that circumstances leading to first line use of TNF inhibitors would be rare. <sup>86</sup> Data from the BSRBR show that the median number of previous DMARDs used by registered patients was four, indicating conservative use of these new drugs. <sup>87</sup>

The BSR, endorsed by NICE in 2002, recommended that patients should only be eligible for TNF inhibitors if they fulfil the 1987 American Rheumatism Association (ARA) criteria for the classification of RA.88 As indicated earlier, clinicians rarely apply criteria for diagnosis in practice. Around 10% of patients in the BSRBR with a clinical diagnosis of RA appeared not to meet disease classification criteria. 85 The criteria, especially the list version, have important limitations.<sup>89</sup> Moreover, patients may take several years after disease onset to fulfil these criteria,<sup>7</sup> and it is possible that, as TNF inhibitors are used earlier in disease, some patients suitable for TNF inhibitors do not meet formal classification criteria.

Current guidance stipulates that patients should have active disease determined by a DAS28 of greater than 5.1 and that disease activity should be assessed at two time-points 1 month apart, before therapy. Funding agreements between some hospital trusts and PCTs require that these thresholds must be met before funding is agreed. Inevitably, this influences the DAS scores recorded in busy clinics. Some argue that it is unreasonable for patients to have to continue with active disease for a month, having already tolerated active

disease between clinic appointments, before being eligible for therapy. A majority of patients (94%) registered in the BSRBR are recorded as having met this standard, although the veracity of recorded data is unclear – it is not audited and there is an incentive for clinicians, who judge that thresholds inappropriately control access to therapy, to state that patients have met the criteria.

Guidance also recommends that, in order to continue therapy with TNF inhibitors, disease activity needs to decrease by a DAS28 of 1.2, or be at or below 3.2 after 3 months of treatment. The BSR submission to NICE indicates that this may have been a typing error as a good DAS response is defined as a change of greater than 1.2 and a score below 3.2.85 DAS28 thresholds scores were derived originally from actual decisions taken in practice<sup>43</sup> and their principal role is as outcome measures in clinical trials. Although these may be useful hurdles and good instruments for monitoring therapy, it has been argued that unthinking application of such thresholds devalues clinical judgements, especially since the DAS28 has some properties that undermine confidence in its value for individual decision-making. 90-93 In the BSRBR 41% of patients classified as nonresponders on DAS thresholds continued with TNF inhibitors, indicating that clinicians and patients clearly felt that the modest improvement in DAS (mean improvement 0.3) and other health gains<sup>85</sup> were sufficient to warrant continued drug use.

Sequential use of TNF inhibitors, where patients fail to respond or experience an adverse reaction to one agent, was not recommended in previous guidance on the basis that there was no evidence supporting this practice. Since then, many practising clinicians have noted benefits for patients when switching agents. Some experiences have been published and demonstrate potential benefits for patients switching from any one of the three agents to another of these agents. <sup>94,95</sup> BSR guidance (2005) cites some of this evidence without making any specific recommendations.

Data from the BSRBR indicate that this practice is prevalent, despite current guidance.

Updated BSR guidance considers, briefly, the use of dose changes and increased frequency of dosing for infliximab and adalimumab. A significant proportion of patients receiving infliximab experience increased disease activity after an initial good response. Clinicians have responded, in some cases, by reducing the interval between infusions such that patients are given 3 mg kg<sup>-1</sup> of infliximab every 6 weeks instead of every 8 weeks, or by increasing the dose of infliximab to 5 mg kg<sup>-1</sup> at 8-week intervals. 96,97 Published observations indicate effective disease control by doing this, but at significantly increased drug costs. A large series from Belgium, for example, showed that nearly one-quarter of treated patients had dose increases, 74 whereas a US study showed that over 60% of patients had dose increases.<sup>98</sup> In addition, the licence for adalimumab allows for increasing the dose from 40 mg every other week to once a week, effectively doubling the cost of therapy. It is unclear how commonly this is done in practice. By contrast, increasing etanercept beyond a total of 50 mg per week (as one or two injections) does not appear to improve efficacy.<sup>99</sup>

# Degree of diffusion and anticipated costs

By the end of 2004, 8455 patients with RA and 1081 with other rheumatic diseases were treated with TNF inhibitors and were registered with the BSRBR. New patients were being added to the registry at a rate of 450 per month, in early 2004. 62,85 If one estimates that currently around 8000–10,000 patients with RA are being treated with TNF inhibitors, at approximately £10,000 per annum each, then the annual national costs of TNF inhibitors for RA is in the region of £80–100 million. These figures are rising and, given that only around 2% of patients with RA are currently on TNF inhibitors, there is the potential for future increases to be substantial.

# Chapter 3

### Effectiveness

### **Summary**

A comprehensive search for randomised controlled trials (RCTs) was undertaken. Studies were selected, and assessed for quality, and data were extracted by two reviewers independently.

Twenty-nine trials met the inclusion criteria. One trial, the Behandel–Strategieën (BeSt), did not meet the inclusion criteria but is reported in detail as it is relevant to informing the decision on the most appropriate use of TNF inhibitors. Most trials were of good quality and compared one of the TNF inhibitors with placebo. Only three trials looked at a head-to-head comparison between a TNF inhibitor and methotrexate. No trial compared TNF inhibitors with each other.

When used alone, adalimumab was slightly less effective and etanercept was slightly more effective than methotrexate in patients who had not been treated with methotrexate or who had not previously failed methotrexate treatment.

All three TNF inhibitors, used either alone (where licensed) or in combination with ongoing conventional DMARDs, were effective in controlling the signs and symptoms of RA compared with placebo in patients who had had an inadequate response to conventional DMARDs.

Combination of a TNF inhibitor plus methotrexate was more effective than methotrexate alone in patients who had not been treated with methotrexate or who had not previously failed methotrexate treatment. The combination involving infliximab, however, was associated with an increased risk of serious infection.

Patients' previous experience with the therapy has to be taken into account when interpreting treatment effects observed in trials, particularly when combination therapy is involved. No clear relationship between disease duration and treatment effects was observed among the limited evidence from trials.

# Methods for reviewing effectiveness

### Search strategy Clinical effectiveness

The following resources were used to identify relevant studies:

- Searches of bibliographic databases:
  - Cochrane Library 2005 Issue 1
  - MEDLINE (Ovid) 1966 to February 2005,
     EMBASE (Ovid) 1980 to week 8 2005
  - Science Citation Index (ISI Web of Science) 1981–2005
- National Research Register 2005 Issue 1
- Internet sites of the Food and Drug Administration (FDA) and EMEA
- manufacturers' submissions to NICE 2005 appraisal process
- citation lists
- contact with experts and researchers.

Searches used index and text words encompassing rheumatoid arthritis, tumour necrosis factor, tumour necrosis factor receptors, anti-tumour necrosis factor, adalimumab, etanercept and infliximab. Search filters were used in MEDLINE and EMBASE to identify RCTs. Searches for adalimumab were not limited by date; searches for etanercept and infliximab started from 2001 as the previous report had covered the earlier period. There were no restrictions by language. Full details of strategies are contained in Appendix 2.

### Inclusion and exclusion criteria Clinical effectiveness: efficacy outcomes Inclusion criteria

- RCTs that compared adalimumab, etanercept or infliximab with any other agent including placebo in adult RA patients.
- Trial reports were only included if the recruitment of patients was complete.
- A trial had to be fully published as a paper or be available as a complete trial report to be included. Trial reports were requested on all major trials from the manufacturers.

### **Exclusion criteria**

• Trials of adalimumab, etanercept or infliximab

- in juvenile arthritis, Crohn's disease, psoriatic arthritis and other forms of spondyloarthritis.
- Trials of adalimumab, etanercept or infliximab comparing different doses or routes of administration without including another active or a placebo control group were only assessed for safety outcomes.
- Studies reporting solely on laboratory measures aimed at investigating disease or treatment mechanisms and which did not report relevant clinical outcomes.
- Observational studies of TNF inhibitor therapies that did not include a control group, except for information on adverse events.
- Trials only available as abstracts.

# Clinical effectiveness: safety outcomes Inclusion criteria

- RCTs that met the inclusion criteria for the review on efficacy outcomes.
- In addition to RCTs, data from postmarketing surveillance, major observational studies and various registries including the BSRBR were used to inform the assessment of the safety of these three agents.

Based on the above inclusion and exclusion criteria, study selection was made independently by two reviewers. Discrepancies were resolved by discussion, with involvement of a third reviewer when necessary.

### **Data extraction strategy**

Data included in the previous peer-reviewed, published, assessment report<sup>1</sup> were taken directly from the report and incorporated into updated analyses. Data for outcomes that were not assessed in the previous assessment report, and additional data from new trials not included in the previous report, were extracted independently by two reviewers using an agreed data extraction form. Results were extracted, where possible, for intention-to-treat (ITT) populations as raw numbers, plus any summary measures with standard deviations, confidence intervals and *p*-values. Discrepancies were resolved by discussion, with involvement of a third reviewer when necessary.

### Quality assessment strategy

The quality of RCTs was judged by adequacy of randomisation, allocation concealment, blinding, differential withdrawal between treatment arms, and use of ITT analysis. Two reviewers independently examined trial quality. Discrepancies were resolved by discussion with involvement of a third reviewer when necessary. Results of quality assessment were tabulated.

# Data analysis Outcomes of interest

Meta-analyses were carried out on selected key outcomes listed below, as specified in the review protocol (http://www.pcpoh.bham.ac.uk/publichealth/wmhtac/pdf/protocols/Anti-TNF\_2004\_final\_protocol%20.pdf).

### **Efficacy**

- Proportions of patients meeting the ACR20, ACR50 and ACR70 response criteria. Where ACR response was not reported, Paulus20 and Paulus50 were assumed to be equivalent to ACR20 and ACR50, respectively, for the purposes of meta-analysis
- swollen joint count (SJC)
- patient's global assessment of disease activity
- Health Assessment Questionnaire (HAQ)
- Disease Activity Score (DAS or DAS28)
- accepted indices of joint damage (van der Heijde modified Sharp score).

Further descriptions of the ACR response criteria, HAQ, DAS and modified Sharp score can be found in Appendix 1.

### **Tolerability**

- Withdrawals for lack of efficacy
- withdrawals due to adverse events
- withdrawals for any reason.

### **Safety**

- Serious adverse events (SAEs)
- · serious infections
- malignancy.

SAEs are defined as an adverse event that met any of the following criteria:

- fatal
- life-threatening
- results in an unplanned inpatient hospitalisation, or prolongs an existing hospitalisation
- significantly or permanently disabling
- a congenital anomaly or birth defect.

Important medical events that may not result in death, be life-threatening or require hospitalisation may still be considered SAEs if, based on appropriate medical judgement, they require medical or surgical intervention to prevent one of the outcomes listed in the definition above.

Serious infections are defined as any infections that require hospitalisation or parenteral antimicrobial treatment. If the number of patients experiencing these events was not reported, the number of patients who experienced infections that were classified as SAEs was used instead. Figures of serious infection reported by study investigators without a clear definition were also included if the above information was not available.

Additional exploratory analyses on death, any infections, non-melanoma skin cancer and all cancer excluding non-melanoma skin cancers were carried out.

### Approach for meta-analysis

Each TNF inhibitor was meta-analysed separately. The primary analysis compared each TNF inhibitor at the licensed dose (or its equivalent) with placebo or other active comparators using the latest follow-up data available from the randomised, controlled period of each trial. The doses included in the primary analysis are:

- adalimumab: 40 mg every other week (may be increased to every week if response is inadequate) or 20 mg every week
- etanercept: 25 mg twice weekly, 50 mg once weekly or 16 mg m<sup>-2</sup> twice weekly
- infliximab: 3 mg kg<sup>-1</sup> at 0, 2 and 6 weeks, and then every 8 weeks.

Sensitivity analyses included TNF inhibitors at licensed doses and above, and at all doses including sublicensed doses. Studies in which single injections or infusions were administered are not included in the primary analysis, but are included in the all-dose sensitivity analyses. Duration of follow-up for each trial is displayed on the forest plots of primary analysis for comparison. Additional analyses of results at 1 month, 3, 6 and 12 months and beyond are also conducted for ACR20 response.

For each TNF inhibitor three comparisons were made:

- 1. TNF inhibitor versus conventional DMARD: this head-to-head comparison is most relevant for clinical practice. A fair head-to-head comparison requires that patients should not have previously tried any of the drugs being compared, or at least not be selected as responders/non-responders.
- 2. TNF inhibitor versus placebo (with or without concomitant, ongoing DMARDs): trials that were included in this comparison typically recruited patients whose disease had been inadequately controlled by conventional

DMARDs. The DMARDs that the patients had been taking before study entry (if any) were either stopped or continued during the trial and a TNF inhibitor or placebo was given to patients. In both cases a TNF inhibitor is compared with placebo but the scenarios behind the comparisons are different. The former represents a comparison of stopping DMARDs versus replacing a DMARD with a TNF inhibitor. The latter represents a comparison of continuing a DMARD (which is, at best, partially effective) versus adding a TNF inhibitor to that DMARD.

To explore whether treatment effects differ between these two scenarios, the primary analyses of trials are displayed in the forest plots according to concomitant DMARD treatment. Studies in which patients stopped all concomitant DMARDs are placed on top of the plots and are labelled with a (–) sign. These are followed by studies in which patients continued their existing DMARD treatment, which are labelled with a (+) sign. In a few studies the patients continued their ongoing antirheumatic therapy, which may have included DMARDs. These studies are labelled with a (±) sign.

3. Combination (TNF inhibitor plus newly

initiated conventional DMARD) versus newlyinitiated conventional DMARD alone: this analysis reports trials in which patients were naïve to, or had not previously failed treatment with the TNF inhibitor and the DMARD being compared. The only comparator DMARD used in such trials to date has been methotrexate. The effect size in these trials represents the additional treatment benefit (or harm) of the combination over the newly initiated methotrexate alone. In these trials there is a greater benefit to patients in the control arm than seen in trials where the comparator is an established ongoing DMARD. It is thus necessary to distinguish between this analysis and that in (2), above, and the authors feel that it is inappropriate to cite a summary statistic combining these two different types of comparisons. However, for illustrative purpose, the forest plots of the primary analyses give both comparisons (2) and (3) on the same plot to illustrate the overall heterogeneity between these two types of 'placebo versus TNF

Although most trials contributed data to only one of the three comparisons described above, a few trials contributed to more than one. For example, the PREMIER trial compared adalimumab alone, methotrexate alone, and the combination of

inhibitor' comparison.

adalimumab plus methotrexate in patients naïve to both treatments. The study therefore allowed two comparisons: adalimumab versus methotrexate (comparison 1), and combination of adalimumab plus methotrexate versus methotrexate (comparison 3). No statistical adjustment was made for the multiple comparisons within a trial.

Although subgroup analyses according to disease duration (mean disease duration ≤ 3 years versus >3 years) were planned, on reviewing the data it was felt that they were insufficient to support this, as disease duration relates closely to patients' prior exposure to DMARD therapies, which was strongly associated with the type of trials that had been carried out. For example, trials that compared TNF inhibitors with placebo tended to recruit predominately RA patients with long disease duration and with prior exposure to multiple DMARDs, whereas trials that included genuine head-to-head comparison between TNF inhibitors and conventional DMARDs were predominantly carried out in patients with early RA.

### Handling of data and presentation of results

For continuous outcomes, results are presented as a weighted mean difference (WMD). For binary outcomes, results are presented as relative risk (RR). Risk differences (RD) were also used to calculate numbers needed to treat (NNT).

For outcomes with continuous data, the decision about whether to use the change from baseline or the final result depended on whether data were available for a sufficient number of studies. Where possible, the standard deviation (SD) was taken directly from the reported results, or derived from the standard error of the mean (SEM) or confidence intervals (CIs). When only the baseline SD was available, it was used as the SD for the final results as well. 100 SDs for mean change from baseline, if not available, were imputed using baseline SD and final SD assuming an intercorrelation coefficient of 0.5.<sup>101</sup> When only the median and interquartile ranges (IQRs) were reported, the median was used as the mean, and the difference between the first and third quartiles was considered equivalent to  $1.35~\mathrm{SD}$ . Where the SD could not be estimated from trial data using the above methods, an imputed SD was calculated from the baseline SD of other trials with the same intervention.

Many outcomes were meta-analysed; for brevity, only the summary results are presented. Forest plots of the primary analyses for the six key outcomes (ACR20, ACR50, ACR70, HAQ, SAEs and malignancies) are shown. A fixed effects model was

used unless trials demonstrated statistical heterogeneity (test for heterogeneity p < 0.10), in which case a random effects model was also used. In such cases the most conservative result is presented.

### Results for effectiveness review

### Number and type of studies included

In total, 29 RCTs are included in this systematic review: nine on adalimumab, 11 on etanercept and nine on infliximab. One further trial (BeSt) is also described here.

The process of study selection is summarised in *Figure 1*. Thirty-six citations met inclusion criteria (kappa for two independent reviewers was 0.70, 95% CI 0.66 to 0.75): ten papers or conference abstracts describing further results from two trials [Early Rheumatoid Arthritis (ERA) and Anti-TNF Trial in Rheumatoid Arthritis with Concomitant Therapy (ATTRACT)] included in the previous technology assessment report (TAR), <sup>1</sup> and 26 papers or conference abstracts describing results from 15 RCTs not included in the previous review. For more details of excluded studies see Appendix 3.

Seven new RCTs were identified through manufacturers' submissions and abstracts (not yet indexed in electronic databases) from conferences. Five met the inclusion criteria. Trial reports were obtained from the manufacturers for four of the trials [PREMIER, 102 Codreanu, 103 Baumgartner, 104 and Safety Trial for Rheumatoid Arthritis with Remicade Therapy (START)<sup>105</sup>] which are included in the systematic review. The study by Schattenkirchner and colleagues<sup>106</sup> (adalimumab DE004) could not be included because attempts to obtain the trial report from the manufacturer were unsuccessful. Two trials, Add Enbrel or Replace Methotrexate (ADORE)<sup>107</sup> and BeSt<sup>108</sup> did not meet the inclusion criteria as they had TNF inhibitors in all arms, thereby preventing appropriate comparisons between TNF inhibitors and other active comparators or placebo. However, although BeSt, which was a trial of DMARD sequences in RA, could not be included in meta-analyses, this study is described in detail in the section 'Infliximab' (p. 46), because it reports data that may inform the appropriate use of these agents.

The results of the PREMIER, <sup>109</sup> Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes (TEMPO; 2-year data), <sup>110</sup> START<sup>111</sup> and the BeSt<sup>108</sup> trials were published in full after the initial completion of this review, but before the publication of this report. In addition, a

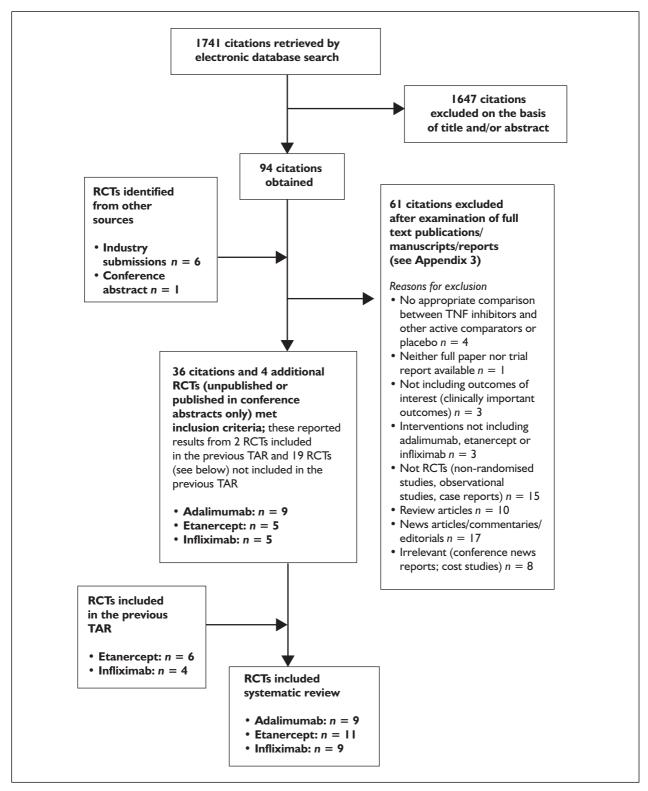



FIGURE I Flowchart for study selection

meta-analysis of serious infections and malignancies associated with adalimumab and infliximab treatment was published recently. Related references were added to this report and relevant changes in the confidentiality status of data were made.

### **Adalimumab**

### Descriptions of individual adalimumab trials

Nine trials comprising a total of 3387 patients were included. Abbott Laboratories provided clinical study reports for five studies: Anti-Tumor Necrosis Factor Research Study Program of the

Monoclonal Antibody Adalimumab (D2E7) in Rheumatoid Arthritis (ARMADA; DE009), <sup>112</sup> van de Putte (DE011), <sup>113</sup> PREMIER (DE013), <sup>102,109</sup> Keystone (DE019) <sup>114</sup> and Safety Trial of Adalimumab in Rheumatoid Arthritis (STAR; DE031). <sup>115</sup> Data from these reports and additional trial data provided within the company submission are included. A list of these nine trials, the comparators and baseline patient characteristics are shown in *Table 1*. Trial quality, based on available data, is summarised in *Table 2*. In general, the trials were of high quality.

In most trials patients met agreed disease classification criteria and active RA was defined on the basis of tender and swollen joint counts, and other parameters including ESR, CRP or morning stiffness. Two early-phase trials <sup>116,117</sup> used DAS for inclusion. Stable doses of oral prednisolone (≤ 10 mg per day) and NSAIDs were allowed. Only one trial (PREMIER)<sup>102,109</sup> recruited exclusively early RA patients (disease duration <3 years).

Excluding PREMIER, five trials had a treatment arm with the licensed dose of adalimumab: DE007, DE009, DE011, DE019 and DE031. These trials are described below and key data from all trials are presented in the tables. Mean disease duration in these trials was around 10 years. In DE031 adalimumab-treated patients had a mean disease duration of 9 years compared with 12 years for the placebo group. Oral corticosteroids were used by 50% or more of patients in most treatment arms, except in PREMIER in which over 35% of patients with early RA were on steroids. The number of tender and swollen joints required for entry varied between trials recruiting from European centres compared with US trials. For example, ten swollen joints were required for entry into DE007 and DE011, compared with six in DE019 and DE031 (US studies). Baseline HAQ scores were also higher in the former studies, indicating more functional limitation.

### van de Putte and colleagues, 2003 (DE007)<sup>119</sup>

This 12-week, double-blind, multicentre study compared weekly adalimumab 20, 40 or 80 mg s.c. with placebo without concomitant methotrexate. After 8 weeks in the trial, patients in any treatment arms with 'unbearable' disease were allowed to enter a rescue arm, during which other standard RA therapies were permitted but adalimumab was not permitted until week 12. After 12 weeks placebo-treated patients were given adalimumab 40 mg weekly for 40 weeks during a

blinded continuation phase which is not included in this review. ACR20 response at week 12 was the primary end-point. Methods of randomisation, allocation concealment and blinding were not clearly described.

# ARMADA, Weinblatt and colleagues, 2003 (DE009)<sup>112</sup>

This 24-week, double-blind, multicentre RCT compared adalimumab 20 mg every other week, 40 mg every other week, 80 mg every other week and placebo in patients receiving concomitant methotrexate. Treatment with methotrexate for at least 6 months before entry was required, with the dose stable at between 10 and 25 mg per week for more than 4 weeks. A minimum of six swollen joints and nine tender joints, and prior treatment failure with at least one DMARD besides methotrexate but no more than four DMARDs, were required. The primary end-point was ACR20 response at 24 weeks.

### van de Putte and colleagues, 2004 (DE011)<sup>113</sup>

This 26-week, double-blind, multicentre RCT compared adalimumab monotherapy (s.c. 20 mg every other week, 20 mg every week, 40 mg every other week or 40 mg every week) with placebo in patients who had failed at least one DMARD. Patients with at least ten swollen joints and 12 tender joints were recruited. The primary endpoint was ACR20 response.

# PREMIER: Breedveld and colleagues, 2006 $(DE013)^{102,109}$

This 2-year, double-blind, multicentre RCT compared treatment with methotrexate alone (started at 7.5 mg per week and escalated to up to 20 mg per week), adalimumab alone (40 mg s.c. every other week) or the combination of both in early RA patients (disease duration <3 years) who had not previously been treated with methotrexate. Patients with at least eight swollen joints and ten tender joints were recruited. Patients previously treated with more than two DMARDs were not eligible. Sixty-eight per cent of the randomised patients were DMARD naïve. Dose escalation of methotrexate had to be completed by week 26. After 16 weeks and the completion of methotrexate dose escalation, the dosing frequency for the parenteral study medication (adalimumab or placebo) was to be increased to every week for patients who failed to achieve or maintain an ACR20 response.

The primary end-points ... [Commercial-in-confidence information removed] ... to the comparison of ACR50 response at week 52 and

TABLE 1 Description of included RCTs and baseline patient characteristics: adalimumab

| Study and description                                                                                                                                                                                                                                  | Interventions <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. of<br>patients                        | Mean<br>age<br>(years)                  | Mean<br>disease<br>duration<br>(years)                                                                                                                | Mean<br>no. of<br>previous<br>DMARDs   | On<br>steroids<br>(%)      | On<br>NSAIDs<br>(%)        | Mean<br>baseline<br>HAQ<br>score            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|----------------------------|---------------------------------------------|
| DE001  den Broeder et al., 2002 <sup>116</sup> Netherlands and Germany, three centres, double-blind Adalimumab treatment: single injection Duration of follow-up: 4 weeks to 3 months <sup>b</sup>                                                     | Placebo i.v. (one dose) Adalimumab 0.5 mg kg <sup>-1</sup> i.v. (one dose) Adalimumab I mg kg <sup>-1</sup> i.v. (one dose) Adalimumab 3 mg kg <sup>-1</sup> i.v. (one dose) Adalimumab 5 mg kg <sup>-1</sup> i.v. (one dose) Adalimumab 10 mg kg <sup>-1</sup> i.v. (one dose)                                                                                                                                                                                                                                                                                                                    | - L 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 55<br>54<br>54<br>53                    | 2. 1. 2. 2. 3. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 5. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. | K. K. K. K. 4. K.<br>7. 6. 6. 6. 4. 6. | 77<br>53<br>78<br>67<br>67 | 68<br>72<br>72<br>89<br>89 | 1.57<br>1.57<br>1.85<br>1.41<br>1.61        |
| <b>Weisman et</b> <i>al.</i> , <b>2003</b> <sup>118</sup> Weisman et <i>al.</i> , <b>2003</b> <sup>118</sup> USA and Canada, six centres, double-blind Adalimumab treatment: single injection <sup>c</sup> Duration of follow-up: 4 weeks <sup>d</sup> | Placebo i.v. (one dose) + MTX  (12.5–25 mg per week, mean 17 mg per week)  Adalimumab 0.25 mg kg <sup>-1</sup> i.v. (one dose) + MTX  (12.5–25 mg per week, mean 17 mg per week)  Adalimumab 0.5 mg kg <sup>-1</sup> i.v. (one dose) + MTX  (12.5–25 mg per week, mean 13 mg per week)  Adalimumab 1 mg kg <sup>-1</sup> i.v. (one dose) + MTX  (12.5–25 mg per week, mean 16 mg per week)  Adalimumab 3 mg kg <sup>-1</sup> i.v. (one dose) + MTX  (12.5–25 mg per week, mean 15 mg per week)  Adalimumab 5 mg kg <sup>-1</sup> i.v. (one dose) + MTX  (12.5–25 mg per week, mean 18 mg per week) | <u>7</u> 6 6 6 6                          | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 13 7 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                        | Ĕ                                      | α<br>Z                     | Z<br>Z                     | - E - O - C - C - C - C - C - C - C - C - C |
| <b>DE007</b> van de Putte et al., 2003 <sup>119</sup> Europe, 25 centres, double-blind  Duration of treatment and follow-up: 12 weeks <sup>c</sup>                                                                                                     | Placebo s.c. weekly<br>Adalimumab 20 mg s.c. weekly<br>Adalimumab 40 mg s.c. weekly<br>Adalimumab 80 mg s.c. weekly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70<br>72<br>70<br>72                      | 50<br>53<br>53                          | 6000                                                                                                                                                  | 3.5<br>4.1<br>3.7<br>3.7               | 77<br>76<br>70<br>75       | 80<br>76<br>81<br>78       | 1.63<br>1.79<br>1.74<br>1.66                |
| <b>DE009, ARMADA</b> Weinblatt et al., 2003 <sup>112</sup> USA and Canada, 35 centres, double-blind Duration of treatment and follow-up: 24 weeks                                                                                                      | Placebo s.c. every other week + MTX (12.5–25 mg per week, mean 17 mg per week) Adalimumab 20 mg s.c. every other week + MTX (12.5–25 mg per week, mean 17 mg per week) Adalimumab 40 mg s.c. every other week + MTX (12.5–25 mg per week, mean 16 mg per week) Adalimumab 80 mg s.c. every other week + MTX (12.5–25 mg per week, mean 17 mg per week)                                                                                                                                                                                                                                             | 62<br>69<br>67<br>73                      | 54 55<br>57 54<br>56 57                 | 1   13   12   13   13   14   15   15   16   17   17   17   17   17   17   17                                                                          | 3.0<br>3.0<br>3.1<br>3.1               | 88 4                       | Ϋ́ Z                       | 1.64<br>1.52<br>1.55<br>1.55                |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                         |                                                                                                                                                       |                                        |                            |                            | continued                                   |

 TABLE I
 Description of included RCTs and baseline patient characteristics: adalimumab (cont'd)

| Study and description                                                                                | Interventions <sup>a</sup>                                                                                                                                           | No. of<br>patients | Mean<br>age<br>(years) | Mean<br>disease<br>duration<br>(years) | Mean<br>no. of<br>previous<br>DMARDs | On<br>steroids<br>(%)        | On<br>NSAIDs<br>(%) | Mean<br>baseline<br>HAQ<br>score |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|----------------------------------------|--------------------------------------|------------------------------|---------------------|----------------------------------|
| DE010 Rau et al., 2004 <sup>117</sup> Netherlands and Germany, four centres,                         | Placebo s.c. and i.v. (one dose) + MTX (7.5–25 mg per week)                                                                                                          | <u>&amp;</u>       | 54                     | 13                                     | 3.5                                  | 72                           | 94                  | l.38                             |
| double-blind Duration of treatment and follow-up:                                                    | Adalimumab I mg kg <sup>-1</sup> i.v. (one dose) + MTX (7.5–25 mg per week, mean 18 mg per week)                                                                     | <u>8</u>           | 52                     | =                                      | <b>3</b> .4                          | 72                           | <u>8</u>            | 1.32                             |
| 4 weeks <sup>e</sup>                                                                                 | Adalimumab I mg kg <sup>-1</sup> s.c. (one dose) + MTX<br>(7.5-25 mg per week, mean 16 mg per week)                                                                  | <u>&amp;</u>       | 23                     | =                                      | 3.3                                  | 83                           | 88                  | l.33                             |
| DE011 van de Putte et <i>al.</i> . 2004 <sup>113</sup>                                               | Placebo s.c. weekly                                                                                                                                                  | 0                  | 54                     | 12                                     | 3.6                                  | 29                           | 84                  | 88                               |
| Europe, Canada and Australia, 52 centres, double-blind                                               | Adalimumab 20 mg s.c. every other week<br>Adalimumab 20 mg s.c. weekly                                                                                               | 106                | 53                     | 6 =                                    | 3.7                                  | 02 89                        | 18                  | 8 8                              |
| Duration of treatment and follow-up: 26 weeks                                                        | Adalimumab 40 mg s.c. every other week<br>Adalimumab 40 mg s.c. weekly                                                                                               | 103                | 53                     | 12 - 1                                 | 8. 8.<br>8. 8.                       | 68<br>82                     | 82                  | <br>8<br>8<br>8                  |
| <b>DE013, PREMIER Breedveld et al., 2006</b> <sup>102,109</sup> North America, Europe and Australia, | MTX (7.5–20 mg per week) weekly <sup>g</sup><br>Adalimumab 40 mg s.c. every other week <sup>g</sup>                                                                  | 257<br>274         | 52<br>52               | 0.8                                    | 0.4<br>4.0                           | 35<br>37                     | ۲<br>Z              | I.48<br>I.63                     |
| nutricentre, double-bind  Duration of treatment and follow-up: 2 years                               | Adalimumab 40 mg s.c. every other week + MTX (7.5–20 mg per week) weekly <sup>g</sup>                                                                                | 268                | 52                     | 0.7                                    | 4.0                                  | 36                           |                     | 1.47                             |
| DE019 Keystone et al., 2004 <sup>114</sup> USA and Canada, 89 centres, double-blind                  | Placebo s.c. + MTX (12.5–25 mg per week,                                                                                                                             | 200                | 56                     | =                                      | 2.4                                  | [Commercial-                 | Z<br>Z              | 1.48                             |
| Duration of treatment and follow-up: 52 weeks                                                        | mean 17 mg per week) Adalimumab 20 mg s.c. weekly + MTX                                                                                                              | 212                | 57                     | =                                      | i.<br>2.4                            | in-confidence<br>information | e _                 | <u>-</u><br>44.                  |
|                                                                                                      | (12.5–25 mg per week, mean 16 mg per week) Adalimumab 40 mg s.c. every other week + placebo s.c. on alternate weeks + MTX (12.5–25 mg per week, mean 17 mg per week) | 207                | 26                     | =                                      | 2.4                                  | removed」                     |                     | 1.45                             |
|                                                                                                      |                                                                                                                                                                      |                    |                        |                                        |                                      |                              |                     |                                  |
|                                                                                                      |                                                                                                                                                                      |                    |                        |                                        |                                      |                              |                     | continued                        |

**TABLE 1** Description of included RCTs and baseline patient characteristics: adalimumab (cont'd)

| Study and description                                                                   | Interventions <sup>a</sup>                                                       | No. of<br>patients | Mean<br>age<br>(years) | Mean<br>disease<br>duration<br>(years) | Mean<br>no. of<br>previous<br>DMARDs | On<br>steroids<br>(%) | On<br>NSAIDs I | Mean<br>baseline<br>HAQ<br>score |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|------------------------|----------------------------------------|--------------------------------------|-----------------------|----------------|----------------------------------|
| DE 031, STAR Furst et al., 2003 <sup>115</sup> USA and Canada, 69 centres, double-blind | Placebo s.c. + baseline standard antirheumatic therapy                           | 318                | 56                     | 12                                     | > 2.0                                | 54                    | 49             | l.43                             |
| Duration of treatment and follow-up:<br>24 weeks                                        | Adalimumab 40 mg s.c. every other week + baseline standard antirheumatic therapy | 318                | 55                     | 6                                      | > 2.1                                | 15                    | 62             | 1.37                             |

<sup>3</sup> Some of the groups receiving active treatment also received matching placebo (where necessary) to maintain blinding. These placebo injections are not listed.

Fatients in the placebo group were switched to adalimumab 40 mg at week 12. Subsequent blinded and open-label continuation studies without placebo control are not included in b Open-label, continuation study (DE003) in which patients in the placebo group were switched to receive adalimumab is not included in current review the current review.

Patients received the first dose at baseline and the second dose after 4 weeks or on loss of response. Once the second dose was administered, the patient was considered to have completed the study and had the option to participate in a continuation study. This open-label continuation study (DE005X) in which the placebo group was switched to receive adalimumab is not included in the current review

A second double-blinded injection of randomised drug was given between 4 weeks and 3 months after the first injection according to the patient's response. Follow-up beyond 4 weeks and further 2.5-year open-label continuation study are not included in the current review. Further open-label extension is not included in the current review.

frequency of the parenteral medication (adalimumab) could be increased to every week on or after week 16, in patients who failed to respond or lost their response (ACR20) after Oral medication (MTX) started at 7.5 mg per week for 4 weeks. If any swollen joints remained, it could be escalated to a maximum of 20 mg per week by week 26. The dosing

MTX, methotrexate; NR, not reported. escalating the oral medication.

 TABLE 2
 Quality of included RCTs: adalimumab

| Study                                          | Sample size                     | Truly random                                        | Adequate                  | Blinding     |               |           | Important                                                                 | Important                                                                        | Use of ITT |
|------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------|--------------|---------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------|
|                                                |                                 | allocation/<br>remain on<br>randomised<br>treatment | allocation<br>concealment | Participants | Investigators | Assessors | differences in<br>baseline<br>characteristics<br>between<br>groups (item) | differences in completion rates between groups (% randomised patients completed) | analysis   |
| <b>DE001</b> den Broeder, 2002 <sup>116</sup>  | Placebo: 31<br>Adalimumab: 89   | Unclear                                             | Unclear                   | Yes          | Yes           | Undear    | °Z                                                                        | No<br>Placebo: 100%<br>Adalimumab: 99%                                           | Yes        |
| <b>DE005</b> Weisman, 2003 <sup>118</sup>      | Placebo: 15<br>Adalimumab: 45   | Yes                                                 | Yes                       | Yes          | Yes           | Unclear   | NA<br>(sample size<br>too small)                                          | No<br>Placebo: 100%<br>Adalimumab: 100%                                          | Yes        |
| <b>DE007</b> van de Putte, 2003 <sup>119</sup> | Placebo: 70<br>Adalimumab: 214  | Unclear                                             | Unclear                   | Unclear      | Undear        | Unclear   | o<br>Z                                                                    | No<br>Placebo: 97%<br>Adalimumab: 95%                                            | Yes        |
| DE009 ARMADA: Weinblatt, 2003 <sup>112</sup>   | Placebo: 62<br>Adalimumab: 209  | Yes                                                 | Yes                       | Yes          | Yes           | Yes       | o<br>Z                                                                    | [Commercial-in-confidence information removed]                                   | Yes        |
| <b>DE010</b> Rau, 2004 <sup>117</sup>          | Placebo: 18<br>Adalimumab: 36   | Unclear                                             | Unclear                   | Yes          | Yes           | Unclear   | °Z                                                                        | No<br>Placebo: 100%<br>Adalimumab: 97%                                           | Yes        |
| DE011<br>van de Putte,<br>2004 <sup>113</sup>  | Placebo: 110<br>Adalimumab: 434 | Yes                                                 | Yes                       | Ýes          | Yes           | Yes       | o<br>Z                                                                    | Yes<br>Placebo: 44%<br>Adalimumab: 73%                                           | Yes        |
|                                                |                                 |                                                     |                           |              |               |           |                                                                           |                                                                                  |            |
|                                                |                                 |                                                     |                           |              |               |           |                                                                           |                                                                                  | continued  |

TABLE 2 Quality of included RCTs: adalimumab (cont'd)

| Study                                               | Sample size                                     | Truly random                                        | Adequate                  | Blinding     |                                      |           | Important                                                                 | Important                                                                                    | Use of ITT                               |
|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------|--------------|--------------------------------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|
|                                                     |                                                 | allocation/<br>remain on<br>randomised<br>treatment | ailocation<br>concealment | Participants | Participants Investigators Assessors | Assessors | differences in<br>baseline<br>characteristics<br>between<br>groups (item) | differences in<br>completion rates<br>between groups<br>(% randomised<br>patients completed) | analysis                                 |
| DE013 PREMIER: Breedveld, 2006 <sup>102,109</sup>   | MTX: 257<br>Adalimumab: 274<br>Combination: 268 | Yes                                                 | Yes                       | /es          | Yes                                  | Yes       | 0<br>Z                                                                    | Yes<br>MTX: 66%<br>Adalimumab: 61%<br>Combination: 76%                                       | Yes                                      |
| <b>DE019</b><br>Keystone,<br>2004 <sup>114</sup>    | Placebo: 200<br>Adalimumab: 419                 | Unclear                                             | Yes                       | Yes          | Yes                                  | Yes       | o<br>Z                                                                    | Yes<br>Placebo: 70%<br>Adalimumab: 78%                                                       | Yes (except<br>radiographic<br>outcomes) |
| <b>DE031</b><br>STAR:<br>Furst, 2003 <sup>115</sup> | Placebo: 318<br>Adalimumab: 318                 | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes       | Š                                                                         | No<br>Placebo: 91%<br>Adalimumab: 91%                                                        | Yes                                      |
| NA, not applicable.                                 | <u>o</u> i                                      |                                                     |                           |              |                                      |           |                                                                           |                                                                                              |                                          |

change in modified total Sharp score from baseline to week 52 between the combination therapy and the methotrexate monotherapy only.

Keystone and colleagues, 2004 (DE019)<sup>114</sup>

This 52-week, double-blind, multicentre trial compared adalimumab 40 mg s.c. every other week, 20 mg s.c. every week and placebo in patients receiving concomitant methotrexate. Patients who either were rheumatoid factor positive or had at least one joint erosion on radiographs of the hands and feet were recruited. The primary end-points were ACR20 response at 24 weeks, change in modified Sharp score at week 52 and change in HAQ at week 52.

STAR: Furst and colleagues, 2003 (DE031)<sup>115</sup>

This 24-week, double-blind, multicentre safety trial compared adalimumab 40 mg s.c. every other week with placebo in RA patients who continued to receive their standard antirheumatic therapy (including DMARDs). Concomitant DMARDs were permitted if doses had been stable for at least 28 days before screening, and a single increase in DMARD dosage was allowed at week 12 or subsequent visits if a patient failed to meet or maintain ACR20 response. Eighty-three per cent of patients received at least one DMARD. The primary end-point, safety, was assessed by types and frequencies of adverse events, physical examination findings and standard laboratory test results.

#### Meta-analyses of adalimumab trials

The approaches to meta-analyses and data presentation are described in detail in the section 'Data analysis' (p. 14). The only adalimumab trial that recruited exclusively methotrexate-naïve patients with disease duration of less than 3 years was the PREMIER<sup>102,109</sup> trial and included three treatment arms which allow more than one comparison: adalimumab versus methotrexate and combination (adalimumab plus methotrexate) versus methotrexate.

#### Adalimumab versus methotrexate

The PREMIER<sup>102,109</sup> trial is the only trial that included head-to-head comparison between adalimumab and a DMARD (methotrexate). The results are summarised in *Table 3*.

Efficacy The only effectiveness result reaching conventional levels of statistical significance between adalimumab and methotrexate is radiographic joint damage. Patients treated with adalimumab had a smaller increase in modified Sharp score compared with those treated with

methotrexate (mean difference over 2 years –4.90, 95% CI [Commercial-in-confidence information removed]). Adalimumab appears to be marginally less effective than methotrexate in reducing disease activity as measured by other means, for example the ACR20 response (RR 0.88, 95% CI 0.75 to 1.03) and ACR50 response (RR 0.86, 95% CI 0.70 to 1.06).

*Tolerability* No significant difference was found between adalimumab and methotrexate.

Safety One death occurred in the methotrexate arm and four occurred in the adalimumab arm. The number of patients with malignancy was similar ([Commercial-in-confidence information removed] in the methotrexate arm and four in the adalimumab arm). More patients experienced SAEs in the adalimumab arm, although this did not reach statistical significance ([Commercial-in-confidence information removed]). [Commercial-in-confidence information removed] patients had serious infections in the methotrexate arm compared with [Commercial-in-confidence information removed] in the adalimumab arm, but no difference was found in the risk of overall infection between the treatment groups.

### Adalimumab versus placebo

Five trials<sup>112–115,119</sup> included a comparison of adalimumab with placebo at the licensed dose (or equivalent). Three additional trials<sup>116–118</sup> included this comparison at above or under licensed doses. The results of primary analyses (licensed dose only) for the comparison between adalimumab and placebo are summarised in *Table 4*. Forest plots for the ACR20, ACR50, ACR70, HAQ, SAEs and malignancy are shown in the upper parts of *Figures 2–12*.

*Efficacy* Adalimumab at the licensed dose is significantly more effective than placebo for all the efficacy outcomes included in the meta-analyses.

Tolerability Significantly [Commercial-in-confidence information removed] patients withdrew for any reasons and for lack of efficacy in the adalimumab group compared with the placebo group. Slightly more patients withdrew owing to adverse events in the adalimumab group, but these did not reach statistical significance.

Safety Adalimumab is associated with a slight, but significantly increased, risk of any infection compared with placebo. It also appears to be associated with an increased risk of death,

**TABLE 3** Summary of 2-year results from the PREMIER study: adalimumab s.c. licensed dose only (40 mg every other week) versus MTX alone in MTX-naïve patients, 2-year results

| Comparison or outcome                                         | N included in analysis | Statistical method | Effect size (95% CI)                                  |
|---------------------------------------------------------------|------------------------|--------------------|-------------------------------------------------------|
| ACR20 responder                                               | 531                    | RR (fixed)         | 0.88 (0.75 to 1.03)                                   |
| ACR50 responder                                               | 531                    | RR (fixed)         | 0.86 (0.70 to 1.06)                                   |
| ACR70 responder                                               | 531                    | RR (fixed)         | 0.99 (0.75 to 1.30)                                   |
| RD ACR20 responder                                            | 531                    | RD (fixed)         | -0.07 (-0.15 to 0.02)                                 |
| RD ACR50 responder                                            | 531                    | RD (fixed)         | -0.06 (-0.14 to 0.02)                                 |
| RD ACR70 responder                                            | 531                    | RD (fixed)         | 0.00 (-0.08 to 0.07)                                  |
| SJC, mean change from baseline                                | 335                    | WMD (fixed)        | [Commercial-in-confidencinformation removed]          |
| Patient's global assessment, mean change from baseline        | 329                    | WMD (fixed)        | [Commercial-in-confidencinformation removed]          |
| HAQ, mean change from baseline                                | 328                    | WMD (fixed)        | 0.00 (-0.13 to 0.13)                                  |
| DAS28-4, mean change from baseline                            | 319                    | WMD (fixed)        | [Commercial-in-confidence information removed]        |
| Modified van de Heijde-Sharp score, mean change from baseline | 531                    | WMD (fixed)        | -4.90 [Commercial-in-confidence information removed]* |
| Withdrawal for any reasons                                    | 531                    | RR (fixed)         | 1.14 (0.91 to 1.43)                                   |
| Withdrawal due to lack of efficacy                            | 531                    | RR (fixed)         | 1.06 (0.74 to 1.52)                                   |
| Withdrawal due to adverse events                              | 531                    | RR (fixed)         | 1.28 (0.73 to 2.26)                                   |
| Death                                                         | 531                    | RR (fixed)         | 3.75 (0.42 to 33.35)                                  |
| SAEs                                                          | 531                    | RR (fixed)         | [Commercial-in-confidence information removed]        |
| Malignancy: all                                               | 531                    | RR (fixed)         | [Commercial-in-confidence information removed]        |
| Malignancy: skin cancer excluding melanoma                    | 531                    | RR (fixed)         | [Commercial-in-confidence information removed]        |
| Malignancy: all cancer excluding non-melanoma skin cancer     | 531                    | RR (fixed)         | 0.94 (0.24 to 3.71)                                   |
| Serious infection                                             | 531                    | RR (fixed)         | 0.40 (0.11 to 1.54)                                   |
| Any infection                                                 | 531                    | RR (fixed)         | [Commercial-in-confidence information removed]        |

<sup>\*</sup> Statistically significant result (p < 0.05).

malignancy and serious infections, although these did not reach statistical significance. No difference in the risk of serious adverse events was observed.

Sensitivity analyses Results of sensitivity analyses that included the licensed dose and above, and all doses, are listed in *Tables 70* and *71* (Appendix 4). The results are in the same direction and very similar to the primary analysis. The increase in serious infection became statistically significant.

## Adalimumab plus methotrexate versus methotrexate alone

Only the PREMIER<sup>102,109</sup> trial included this comparison in methotrexate-naïve, early RA patients, and the results are summarised in *Table 5*. The outcomes for ACR20, ACR50, ACR70, HAQ, SAEs, and malignancy are also displayed in the lower parts of *Figures 2–12*.

*Efficacy* The combination of adalimumab plus methotrexate is more effective than methotrexate

**TABLE 4** Meta-analyses: adalimumab s.c. licensed dose only (40 mg every other week or equivalent) versus placebo (with or without ongoing conventional DMARDs), end of trial

| Comparison or outcome                                            | Studies                  | N included in analysis | Statistical method | Effect size (95% CI)                                   |
|------------------------------------------------------------------|--------------------------|------------------------|--------------------|--------------------------------------------------------|
| ACR20 responder                                                  | 5112-115,119             | 1854                   | RR (fixed)         | 2.11 (1.84 to 2.42)*                                   |
| ACR50 responder                                                  | 5112-115,119             | 1854                   | RR (fixed)         | 3.58 (2.81 to 4.58)*                                   |
| ACR70 responder                                                  | 5112-115,119             | 1854                   | RR (fixed)         | 5.22 (3.45 to 7.89)*                                   |
| RD ACR20 responder                                               | 5112-115,119             | 1854                   | RD (fixed)         | 0.28 (0.24 to 0.32)*                                   |
| RD ACR50 responder                                               | 5112-115,119             | 1854                   | RD (fixed)         | 0.24 (0.20 to 0.27)*                                   |
| RD ACR70 responder                                               | 5112-115,119             | 1854                   | RD (random)        | 0.13 (0.09 to 0.17)*                                   |
| Swollen joint count, mean change from baseline                   | 5 <sup>112–115,119</sup> | 1851                   | WMD (fixed)        | -5.14 (-6.07 to -4.21)*                                |
| Patient's global assessment, mean change from baseline           | 5 <sup>112–115,119</sup> | 1850                   | WMD (fixed)        | -1.62 (-1.89 to -1.35)*                                |
| HAQ, mean change from baseline                                   | 5112-115,119             | 1850                   | WMD (fixed)        | -0.31 (-0.36 to -0.26)*                                |
| DAS28, mean change from baseline                                 | 2113,119                 | 476                    | WMD (fixed)        | -I.I2 (-I.37 to -0.86)*                                |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | 1114                     | 551                    | WMD (fixed)        | -2.20 (-3.33 to -1.07)*                                |
| Withdrawal for any reasons                                       | 5 <sup>112–115,119</sup> | 1861                   | RR (fixed)         | [Commercial-in-<br>confidence informatio<br>removed]*  |
| Withdrawal due to lack of efficacy                               | 5 <sup>112–115,119</sup> | 1861                   | RR (fixed)         | [Commercial-in-<br>confidence information<br>removed]* |
| Withdrawal due to adverse events                                 | 5112-115,119             | 1861                   | RR (fixed)         | 1.37 (0.87 to 2.16)                                    |
| Death                                                            | 5112-115,119             | 1861                   | RR (fixed)         | 2.02 (0.42 to 9.59)                                    |
| SAEs                                                             | 5 <sup>112–115,119</sup> | 1861                   | RR (fixed)         | 1.05 (0.78 to 1.41)                                    |
| Malignancy: all                                                  | 5 <sup>112–115,119</sup> | 1861                   | RR (fixed)         | 3.44 (0.94 to 12.60)                                   |
| Malignancy: skin cancer excluding melanoma                       | 5 <sup>112–115,119</sup> | 1861                   | RR (fixed)         | 2.11 (0.55 to 8.06)                                    |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 5 <sup>112–115,119</sup> | 1861                   | RR (fixed)         | 2.92 (0.50 to 17.13)                                   |
| Serious infection                                                | 5112-115,119             | 1861                   | RR (fixed)         | 2.35 (1.00 to 5.53)                                    |
| Any infection                                                    | 4112-115                 | 1719                   | RR (fixed)         | 1.18 (1.07 to 1.29)*                                   |

alone for all the efficacy outcomes included in the meta-analysis, although the difference did not reach statistical significance for [Commercial-inconfidence information removed] and HAQ change.

Tolerability Compared with methotrexate alone, the combination was associated with significantly fewer withdrawals due to lack of efficacy and withdrawals for any reason. The combination was associated with a statistically non-significant increase in withdrawal due to adverse events.

Safety The only statistically significant difference between the combination and methotrexate

monotherapy among the safety outcomes metaanalysed was [Commercial-in-confidence information removed]. There was also a nonsignificant increase in serious infection in the combination group compared with the methotrexate group (RR [Commercial-inconfidence information removed]).

#### **Etanercept**

#### Description of included etanercept trials

Eleven trials comprising a total of 3717 patients (3659 actually treated) were included. Clinical study reports were provided by Wyeth for ten of the studies: Moreland (three studies), 120–122 ERA, 123,124 Weinblatt, 125; Wajdula, 126 Codreanu, 103

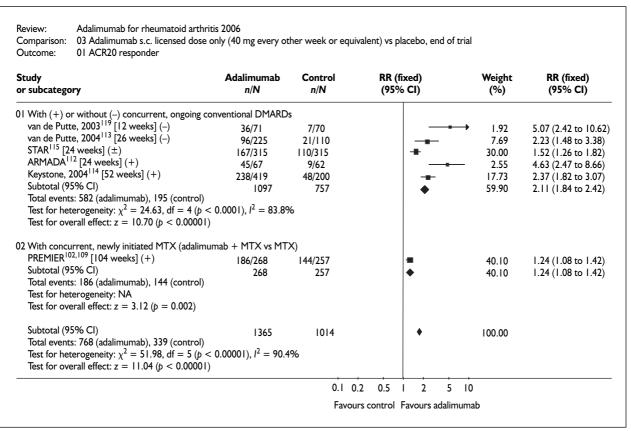



FIGURE 2 ACR20 RR: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)

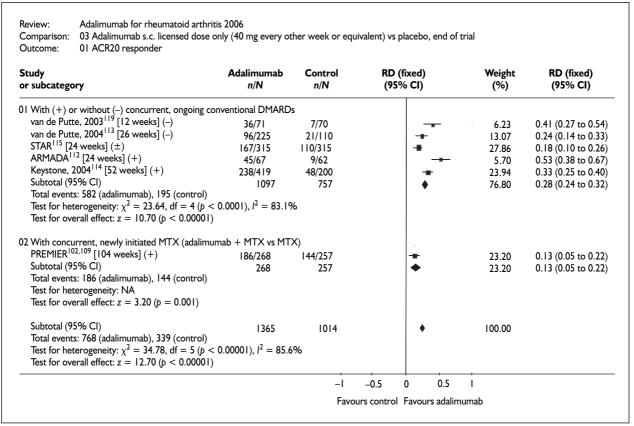



FIGURE 3 ACR20 RD: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)

| Study<br>or subcategory                                  | Adalimumab<br>n/N         | Control<br>n/N | RR (fixed)<br>(95% CI) | Weight<br>(%) | RR (fixed)<br>(95% CI) |
|----------------------------------------------------------|---------------------------|----------------|------------------------|---------------|------------------------|
| I With (+) or without (-) concurrent, ongoing co         | nventional DMARD          | s              |                        |               |                        |
| van de Putte, 2003 <sup>119</sup> [12 weeks] (–)         | 17/71                     | 1/70           |                        | → 0.53        | 16.76 (2.29 to 122.5   |
| van de Putte, 2004 <sup>113</sup> [26 weeks] (-)         | 48/225                    | 9/110          |                        | 6.32          | 2.61 (1.33 to 5.12)    |
| STAR <sup>115</sup> [24 weeks] (±)                       | 92/315                    | 35/315         |                        | 18.29         | 2.63 (1.84 to 3.75)    |
| ARMADA <sup>112</sup> [24 weeks] (+)                     | 37/67                     | 5/62           |                        | =→ 2.71       | 6.85 (2.88 to 16.31    |
| Keystone, 2004 <sup>114</sup> [52 weeks] (+)             | 166/419                   | 19/200         |                        | 13.44         | 4.17 (2.68 to 6.50)    |
| Subtotal (95% CI)                                        | 1097                      | 757            |                        | 41.30         | 3.58 (2.81 to 4.58)    |
| Total events: 360 (adalimumab), 69 (control)             |                           |                |                        |               | 0.00 (2.01 to 1.00)    |
| Test for heterogeneity: $\chi^2 = 8.66$ , df = 4 (p = 0) | $0.07$ ), $I^2 = 53.8\%$  |                |                        |               |                        |
| Test for overall effect: $z = 10.25 (p < 0.00001)$       |                           |                |                        |               |                        |
| 2 With concurrent, newly initiated MTX (adalimu          | mab + MTX vs MT.          | X)             |                        |               |                        |
| PREMIER <sup>102,109</sup> [104 weeks] (+)               | 158/268                   | 110/257        | _                      | 58.70         | 1.38 (1.16 to 1.64)    |
| Subtotal (95% CI)                                        | 268                       | 257            | -                      | 58.70         | 1.38 (1.16 to 1.64)    |
| Total events: 158 (adalimumab), 110 (control)            | 200                       | 237            |                        | 30.70         | 1.30 (1.10 to 1.01)    |
| Test for heterogeneity: NA                               |                           |                |                        |               |                        |
| Test for overall effect: $z = 3.63$ ( $p = 0.0003$ )     |                           |                |                        |               |                        |
| Subtotal (95% CI)                                        | 1365                      | 1014           |                        | 100.00        |                        |
| Total events: 518 (adalimumab), 179 (control)            | 1303                      | 1311           |                        | 100.00        |                        |
| Test for heterogeneity: $\chi^2 = 50.80$ , df = 5 (p <   | $0.00001$ ), $I^2 = 90.2$ | 2%             |                        |               |                        |
| Test for overall effect: $z = 10.91$ (p < 0.00001)       |                           |                |                        |               |                        |

FIGURE 4 ACR50 RR: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)

| tudy<br>r subcategory                                                                                                                                                                                                                                                                            | Adalimumab<br>n/N                   | Control<br>n/N       | RD (fixed)<br>(95% CI) | Weight<br>(%)  | RD (fixed)<br>(95% CI)                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|------------------------|----------------|--------------------------------------------|
| I With (+) or without (–) concurrent, ongoing co                                                                                                                                                                                                                                                 | nventional DMARD                    | s                    |                        |                |                                            |
| van de Putte, 2003 <sup>119</sup> [12 weeks] (-)                                                                                                                                                                                                                                                 | 17/71                               | 1/70                 | -                      | 6.23           | 0.23 (0.12 to 0.33)                        |
| van de Putte, 2004 <sup>113</sup> [26 weeks] (–)                                                                                                                                                                                                                                                 | 48/225                              | 9/110                | -                      | 13.07          | 0.13 (0.06 to 0.21)                        |
| STAR <sup>115</sup> [24 weeks] (±)                                                                                                                                                                                                                                                               | 92/315                              | 35/315               | -                      | 27.86          | 0.18 (0.12 to 0.24)                        |
| ARMADA <sup>112</sup> [24 weeks] (+)                                                                                                                                                                                                                                                             | 37/67                               | 5/62                 |                        | 5.70           | 0.47 (0.33 to 0.61)                        |
| Keystone, 2004 <sup>114</sup> [52 weeks] (+)                                                                                                                                                                                                                                                     | 166/419                             | 19/200               | -                      | 23.94          | 0.30 (0.24 to 0.36)                        |
| Subtotal (95% CI) Total events: 360 (adalimumab), 69 (control)                                                                                                                                                                                                                                   | 1097                                | 757                  | •                      | 76.80          | 0.24 (0.20 to 0.27)                        |
| Test for overall effect: $z = 13.33$ ( $p < 0.00001$ )  With concurrent, newly initiated MTX (adalimu PREMIER <sup>102,109</sup> [104 weeks] (+) Subtotal (95% CI) Total events: 158 (adalimumab), 110 (control) Test for heterogeneity: NA Test for overall effect: $z = 3.75$ ( $p = 0.0002$ ) | mab + MTX vs MT.<br>I 58/268<br>268 | ×)<br>110/257<br>257 | <b>+</b>               | 23.20<br>23.20 | 0.16 (0.08 to 0.25)<br>0.16 (0.08 to 0.25) |
| lest for overall effect. 2 – 3.73 (p – 0.0002)                                                                                                                                                                                                                                                   |                                     |                      |                        |                |                                            |
| Subtotal (95% CI)<br>Total events: 518 (adalimumab), 179 (control)<br>Test for heterogeneity: $\chi^2 = 28.46$ , df = 5 (p <                                                                                                                                                                     | 1365 0.0001), $I^2 = 82.49$         | 1014                 | •                      | 100.00         |                                            |

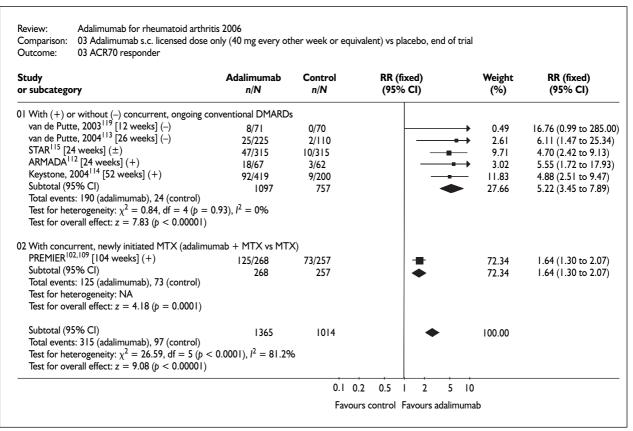



FIGURE 6 ACR70 RR: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)

| r subcategory                                                                                                            | Adalimumab<br>n/N  | Control<br>n/N | RD (fixed)<br>(95% CI) | Weight<br>(%) | RD (fixed)<br>(95% CI) |
|--------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------------------|---------------|------------------------|
| I With (+) or without (-) concurrent, ongoing c                                                                          | onventional DMARDs | 3              |                        |               |                        |
| van de Putte, 2003 <sup>119</sup> [12 weeks] (-)                                                                         | 8/71               | 0/70           | -                      | 6.23          | 0.11 (0.04 to 0.19)    |
| van de Putte, 2004 <sup>113</sup> [26 weeks] (–)                                                                         | 25/225             | 2/110          | -                      | 13.07         | 0.09 (0.04 to 0.14)    |
| STAR <sup>115</sup> [24 weeks] (±)                                                                                       | 47/315             | 10/315         | -                      | 27.86         | 0.12 (0.07 to 0.16)    |
| ARMADA <sup>112</sup> [24 weeks] (+)                                                                                     | 18/67              | 3/62           | -                      | 5.70          | 0.22 (0.10 to 0.34)    |
| Keystone, 2004 <sup>114</sup> [52 weeks] (+)                                                                             | 92/419             | 9/200          | -                      | 23.94         | 0.17 (0.13 to 0.22)    |
| Subtotal (95% CI)                                                                                                        | 1097               | 757            | •                      | 76.80         | 0.14 (0.11 to 0.16)    |
| Test for heterogeneity: $\chi^2 = 8.66$ , df = 4 ( $p =$ Test for overall effect: $z = 10.47$ ( $p < 0.00001$            |                    |                |                        |               |                        |
| 2 With concurrent, newly initiated MTX (adalim                                                                           | umah + MTX vs MTX  | <b>K</b> )     |                        |               |                        |
| PREMIER <sup>102,109</sup> [104 weeks] (+)                                                                               | 125/268            | 73/257         | -                      | 23.20         | 0.18 (0.10 to 0.26)    |
| Subtotal (95% CI)                                                                                                        | 268                | 73/237<br>257  |                        | 23.20         | 0.18 (0.10 to 0.26)    |
| Total events: 125 (adalimumab), 73 (control)                                                                             | 200                | 257            |                        | 23.20         | 0.10 (0.10 to 0.20)    |
| Test for heterogeneity: NA                                                                                               |                    |                |                        |               |                        |
| Test for overall effect: $z = 4.40 \ (p < 0.0001)$                                                                       |                    |                |                        |               |                        |
|                                                                                                                          |                    |                |                        | 100.00        |                        |
| Subtotal (95% CI)                                                                                                        | 1365               | 1014           | ▼                      | 100.00        |                        |
| Subtotal (95% CI) Total events: 315 (adalimumab), 97 (control) Test for heterogeneity: $\chi^2 = 11.06$ , df = 5 ( $p$ = |                    | 1014           | •                      | 100.00        |                        |

FIGURE 7 ACR70 RD: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)

|                           | , g                                                                                | m basel  |                           |     |                      |                         |               |                         |
|---------------------------|------------------------------------------------------------------------------------|----------|---------------------------|-----|----------------------|-------------------------|---------------|-------------------------|
| Study<br>or subcategory   |                                                                                    | N        | Adalimumab<br>mean (SD)   | N   | Control<br>mean (SD) | WMD (fixed)<br>(95% CI) | Weight<br>(%) | WMD (fixed)<br>(95% CI) |
| I With (+) or wi          | thout (–) concurrent, or                                                           | ngoing c | onventional DMAF          | RDs |                      |                         |               |                         |
| van de Putte, 2           | 003 <sup>119</sup> [12 weeks] (-)<br>004 <sup>113</sup> [26 weeks] (-)             | 71       | -0.45 (0.46)              | 70  | -0.04 (0.37)         | - <b>-</b> -            | 11.40 -       | -0.41 (-0.55 to -0.27   |
| van de Putte, 2           | 004 <sup>113</sup> [26 weeks] (-)                                                  | 225      | -0.38 (0.61)              | 110 | \ /                  |                         |               | -0.31 (-0.43 to -0.19   |
| STAR <sup>115</sup> [24 w | eeks] (±)                                                                          |          | -0.51 (0.56)              | 314 | ( )                  | -                       |               | -0.25 (-0.33 to -0.17   |
| ARMADA <sup>112</sup> [2  | 24 weeks] (+)                                                                      | 67       | -0.62 (0.63)              | 62  |                      |                         |               | -0.35 (-0.56 to -0.14   |
| Keystone, 2004            | 1 <sup>114</sup> [52 weeks] (+)                                                    |          | -0.60 (0.56)              | 200 | ,                    | -                       |               | -0.35 (-0.44 to -0.26   |
| Subtotal (95%             |                                                                                    | 1094     | 0.00 (0.50)               | 756 | 0.23 (0.50)          | •                       |               | -0.31 (-0.36 to -0.26   |
| Test for overall          | geneity: $\chi^2 = 4.90$ , df = effect: $z = 12.41$ (p < 0 nt, newly initiated MTX | 0.00001  | )                         |     |                      |                         |               |                         |
|                           | <sup>9</sup> [104 weeks] (+)                                                       | `        | -1.00 (0.70)              | 166 | -0.90 (0.60)         |                         | 12 22 -       | -0.10 (-0.23 to 0.03)   |
| Subtotal (95%             |                                                                                    | 201      | (3.70)                    | 166 | 3.75 (0.00)          |                         |               | -0.10 (-0.23 to 0.03)   |
| Test for hetero           | geneity: NA                                                                        |          |                           | .00 |                      | 1                       | 1 4.44        | ( 0.23 to 0.03)         |
|                           | effect: $z = 1.47 (p = 0.$                                                         | 14)      |                           |     |                      |                         |               |                         |
| Total (95% CI)            |                                                                                    | 1295     |                           | 922 |                      |                         | 100.00        |                         |
| Test for hetero           | geneity: $\chi^2 = 13.65$ , df                                                     | = 5 (p = | $= 0.02$ ), $I^2 = 63.49$ | %   |                      |                         | . 30.00       |                         |
| Test for overall          | effect: $z = 12.14 (p < 0)$                                                        | 10000.0  | )                         |     |                      |                         |               |                         |

FIGURE 8 HAQ change: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)

FIGURE 9 SAE RR: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)
[Commercial-in-confidence information removed].

FIGURE 10 SAE RD: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX)
[Commercial-in-confidence information removed].

FIGURE 11 Malignancy RR: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX) [Commercial-in-confidence information removed].

FIGURE 12 Malignancy RD: adalimumab licensed dose versus placebo (including adalimumab plus MTX versus MTX) [Commercial-in-confidence information removed].

TEMPO, <sup>127,128</sup> Keystone, <sup>129</sup> and Baumgartner. <sup>104</sup> Additional data from these reports were included in this systematic review. The report by Lan and colleagues <sup>130</sup> was only available as a published paper.

A list of these trials, including comparators and baseline patient characteristics, is shown in *Table 6*. Quality assessments of these trials, which are generally of high quality, are summarised in *Table 7*. In all trials, except for Baumgartner, <sup>104</sup>

patients had active disease defined according to a number of tender and swollen joints and other parameters such as ESR and CRP. All patients met agreed disease classification criteria. Stable doses of oral prednisolone (≤ 10 mg per day) and NSAIDs were allowed. With the exception of the trial by Baumgartner and colleagues, <sup>104</sup> patients with a recent history of infection and significant comorbidity were excluded. Only one trial, ERA, <sup>123,124</sup> recruited exclusively early RA patients. Key features for each of the studies are described below.

## Moreland and colleagues, 1996<sup>120</sup>

Results from this study are not included in the meta-analyses because of very small patient numbers (three or four patients in each treatment group), short duration and imbalances in baseline patient characteristics (*Table 6*).

## Moreland and colleagues, 1997<sup>121</sup>

This double-blind, multicentre RCT compared three doses of etanercept (0.25, 2 or 16 mg m<sup>-2</sup> body surface area s.c. twice weekly) with placebo for three months. Patients who had failed up to four DMARDs and had at least ten swollen joints and 12 tender joints were included. Primary efficacy measures were percentage change from baseline to 3 months in swollen joint count, tender joint count and total count of swollen or tender joints.

**TABLE 5** Summary of 2-year results from PREMIER study: combination of adalimumab s.c. licensed dose (40 mg every other week or equivalent) plus MTX versus MTX alone in MTX-naïve patients, 2-year results

| Comparison or outcome                                            | N included in analysis | Statistical method | Effect size (95% CI)                                         |
|------------------------------------------------------------------|------------------------|--------------------|--------------------------------------------------------------|
| ACR20 responder                                                  | 525                    | RR (fixed)         | 1.24 (1.08 to 1.42)*                                         |
| ACR50 responder                                                  | 525                    | RR (fixed)         | 1.38 (1.16 to 1.64)*                                         |
| ACR70 responder                                                  | 525                    | RR (fixed)         | 1.64 (1.30 to 2.07)*                                         |
| RD ACR20 responder                                               | 525                    | RD (fixed)         | 0.13 (0.05 to 0.22)*                                         |
| RD ACR50 responder                                               | 525                    | RD (fixed)         | 0.16 (0.08 to 0.25)*                                         |
| RD ACR70 responder                                               | 525                    | RD (fixed)         | 0.18 (0.10 to 0.26)*                                         |
| SJC, mean change from baseline                                   | 369                    | WMD (fixed)        | [Commercial-in-confidence information removed]               |
| Patient's global assessment, mean change from baseline           | 366                    | WMD (fixed)        | [Commercial-in-<br>confidence information<br>removed]*       |
| HAQ, mean change from baseline                                   | 367                    | WMD (fixed)        | -0.10 (-0.23 to 0.03)                                        |
| DAS28, mean change from baseline                                 | 352                    | WMD (fixed)        | [Commercial-in-confidence information removed]*              |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | 525                    | WMD (fixed)        | -8.50 [Commercial-in-<br>confidence information<br>removed]* |
| Withdrawal for any reasons                                       | 525                    | RR (fixed)         | 0.71 (0.54 to 0.93)*                                         |
| Withdrawal due to lack of efficacy                               | 525                    | RR (fixed)         | 0.27 (0.15 to 0.49)*                                         |
| Withdrawal due to adverse events                                 | 525                    | RR (fixed)         | 1.62 (0.94 to 2.77)                                          |
| Death                                                            | 525                    | RR (fixed)         | 0.96 (0.06 to 15.25)                                         |
| SAEs                                                             | 525                    | RR (fixed)         | [Commercial-in-confidence information removed]               |
| Malignancy: all                                                  | 525                    | RR (fixed)         | [Commercial-in-confidence information removed]               |
| Malignancy: skin cancer excluding melanoma                       | 525                    | RR (fixed)         | [Commercial-in-<br>confidence information<br>removed]        |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 525                    | RR (fixed)         | 0.48 (0.09 to 2.60)                                          |
| Serious infection                                                | 525                    | RR (fixed)         | [Commercial-in-confidence information removed]               |
| Any infection                                                    | 525                    | RR (fixed)         | [Commercial-in-confidence information removed]*              |

## Moreland and colleagues, 1999<sup>122</sup>

This 6-month double-blind, multicentre RCT compared etanercept 10 or 25 mg s.c. twice weekly with placebo. Patients who had failed up to four DMARDs were recruited. At least ten swollen joints and 12 tender joints were required at entry. The primary efficacy end-points were ACR20 and ACR50 response at 3 and 6 months.

## Weinblatt and colleagues, 1999<sup>125</sup>

This 24-week, double-blind, multicentre RCT compared etanercept 25 mg s.c. twice weekly with placebo. Patients who had at least six swollen joints and six tender joints despite at least 6 months of methotrexate treatment were included. All patients remained on stable doses of methotrexate (15–25 mg per week). The primary end-point was ACR20 response at 24 weeks.

 TABLE 6
 Description of included studies and baseline patient characteristics: etanercept

| Study and description                                                                                                                                                                                                                                                    | Interventions <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. of<br>patients                      | Mean<br>age<br>(years)                    | Mean<br>disease<br>duration<br>(years)                                       | No. of<br>previous<br>DMARDs                                           | On<br>steroids<br>(%)            | On<br>NSAIDs<br>(%)                    | Mean<br>baseline<br>HAQ<br>score        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------|
| Protocol 16.0002  Moreland et al., 1996 120 USA, single centre, double-blind Duration of treatment and follow-up: 4 weeks                                                                                                                                                | Placebo single i.v. injection followed by s.c. injection twice weekly  Etanercept 4 mg m <sup>-2</sup> single i.v. injection followed by 2 mg m <sup>-2</sup> s.c. injection twice weekly  Etanercept 8 mg m <sup>-2</sup> single i.v. injection followed by 4 mg m <sup>-2</sup> s.c. injection twice weekly  Etanercept 16 mg m <sup>-2</sup> single i.v. injection followed by 8 mg m <sup>-2</sup> s.c. injection twice weekly  Etanercept 15 mg m <sup>-2</sup> single i.v. injection followed by 16 mg m <sup>-3</sup> s.c. injection twice weekly  Etanercept 32 mg m <sup>-3</sup> single i.v. injection followed by 16 mg m <sup>-3</sup> s.c. injection twice weekly | 4 m m m m                               | 54 56 54 62 53                            | 9. 8 5.3 8 6.3 4.7 4.3 9.8                                                   | Ψ<br>Z                                                                 | ž                                | ž                                      | ž                                       |
| Protocol 16.0004  Moreland et al., 1997 <sup>121</sup> USA, multicentre, double-blind Duration of treatment and follow-up: 3 months  Protocol 16.0009  Moreland et al., 1999 <sup>122</sup> North America, 13 centres, double-blind Duration of treatment and follow-up: | Placebo s.c. twice weekly  Etanercept 0.25 mg m <sup>-2</sup> s.c. twice weekly  Etanercept 2 mg m <sup>-2</sup> s.c. twice weekly  Etanercept 16 mg m <sup>-2</sup> s.c. twice weekly  Placebo s.c. twice weekly  Etanercept 10 mg s.c. twice weekly  Etanercept 25 mg s.c. twice weekly                                                                                                                                                                                                                                                                                                                                                                                      | 4 4 4 4 4 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 | 55 52 55 55 55 55 55 55 55 55 55 55 55 5  | 71% > 5 years<br>76% > 5 years<br>80% > 5 years<br>80% > 5 years<br>12<br>13 | 34% MTX <sup>b</sup> 41% MTX 30% MTX 27% MTX 27% S 3.0 3.0 3.4 3.3 3.3 | 66<br>59<br>65<br>66<br>66<br>81 | 73<br>70<br>80<br>80<br>75<br>84<br>67 | 146°<br>153<br>138<br>135<br>1.7<br>1.7 |
| Protocol 16.0012  ERA: Bathon et al., 2000; <sup>123</sup> Genovese et al., 2002 <sup>124</sup> USA and Canada, 69 centres, double-blind Duration of treatment and follow-up: 24 months (double-blind for the first 12 months, and open-label for a further 12 months)   | MTX (starting 7.5 and escalating to 20 mg per week by week 8; mean 19 mg per week) + placebo<br>Etanercept 10 mg s.c. twice weekly + placebo<br>Etanercept 25 mg s.c. twice weekly + placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217<br>208<br>207                       | 8 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | 0 6.0                                                                        | 0.6<br>0.5<br>0.5                                                      | 4 45 43 4                        | 80<br>76<br>86                         | <u>-</u>                                |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           |                                                                              | 1 1                                                                    |                                  |                                        |                                         |

**TABLE 6** Description of included studies and baseline patient characteristics: etanercept (cont'd)

| Study and description                                                                                                                                                                                                                                | Interventions <sup>a</sup>                                                                                                                                                                                                                                                      | No. of<br>patients       | Mean<br>age<br>(years)        | Mean<br>disease<br>duration<br>(years) | No. of<br>previous<br>DMARDs    | On<br>steroids<br>(%)            | On<br>NSAIDs<br>(%)        | Mean<br>baseline<br>HAQ<br>score                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------------------|---------------------------------|----------------------------------|----------------------------|----------------------------------------------------------------------------------|
| Protocol 16.0014 Weinblatt et al., 1999 <sup>125</sup> USA, multicentre, double-blind Duration of treatment and follow-up: 24 weeks                                                                                                                  | Placebo + ongoing MTX (12.5–25 mg per week;<br>mean 18 mg per week)<br>Etanercept 25 mg s.c. twice weekly + ongoing<br>MTX (12.5–25 mg per week; mean 19 mg per week)                                                                                                           | 30<br>k) 59              | 53                            | <u> </u>                               | 2.8                             | 70                               | 80 75                      | <u> </u>                                                                         |
| Protocol 0881A1-300-EU Wajdula, 2000 <sup>126</sup> (European Etanercept Investigators Group) Europe, multicentre, double-blind <sup>131</sup> Duration of treatment and follow-up: 12 weeks                                                         | Placebo s.c. twice weekly Etanercept 10 mg s.c. once weekly Etanercept 10 mg s.c. twice weekly Etanercept 25 mg s.c. once weekly Etanercept 25 mg s.c. twice weekly                                                                                                             | 105<br>122<br>110<br>111 | 53 54 55<br>53 54 55<br>53 55 | 7.2<br>6.9<br>6.8<br>7.3               | 3.5<br>3.2<br>3.3<br>3.6<br>3.6 | 77<br>77<br>10<br>10<br>10<br>10 | 85<br>86<br>83<br>86<br>86 | <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>                                    |
| Protocol 0881AI-309 Codreanu et al., 2003 <sup>103</sup> Europe and Australia, multicentre, double-blind Duration of treatment and follow-up: 24 weeks <sup>d</sup>                                                                                  | Sulfasalazine 2–3 g per day + placebo<br>Etanercept 25 mg s.c. twice weekly + placebo<br>Etanercept 25 mg s.c. twice weekly +<br>SSZ 2–3 g per day                                                                                                                              | 50<br>103<br>101         | 51 51                         | 5.6<br>7.1<br>6.5                      | 2.7 2.3 2.3                     | 32<br>50<br>40                   | 88<br>82<br>83             | 9.1<br>7.1<br>9.1                                                                |
| Protocol 0881A1-308-EU/AU TEMPO: Klareskog et al., 2004110,127,128 Europe and Australia, multicentre, double-blind Duration of treatment and follow-up: period one 52 weeks; period two ongoing double-blind extension, with year 2 results reported | MTX (starting 7.5, escalating to 20 mg per week if any painful/swollen joint; mean 18 mg) + placebo Etanercept 25 mg s.c. twice weekly + placebo Etanercept 25 mg s.c. twice weekly + MTX (starting 7.5, escalating to 20 mg per week if any painful/swollen joint; mean 18 mg) | 228<br>223<br>231        | 23 23                         | 8. 6. 6. 8.<br>8. 8. 8.                | 2.3 2.3 2.3                     | 64<br>57<br>62                   | 8 88                       | 7. 8. B. B. H. B. B. H. B. B. H. B. B. H. B. |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                          |                               |                                        |                                 |                                  |                            | continued                                                                        |

 TABLE 6
 Description of included studies and baseline patient characteristics: etanercept (cont'd)

| Study and description                                                                                                                                    | Interventions <sup>a</sup>                                                                                       | No. of patients | Mean<br>age<br>(years) | Mean<br>disease<br>duration<br>(years) | No. of<br>previous<br>DMARDs | On On Mean<br>steroids NSAIDs baseline<br>(%) (%) HAQ<br>score | On<br>NSAIDs<br>(%) | Mean<br>baseline<br>HAQ<br>score |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------------------------------------|------------------------------|----------------------------------------------------------------|---------------------|----------------------------------|
| Protocol 16.0036  Keystone et al., 2004 <sup>129</sup> 15.0 and Condo 40                                                                                 | Placebo (55% with ongoing MTX,                                                                                   | 23              | 54                     | 8:01                                   | (Prior use)<br>89%           | Z<br>X                                                         | Ä                   | <u>-</u><br>4:                   |
| double-blind                                                                                                                                             | Etanercept 25 mg s.c. twice weekly (52% with                                                                     | 153             | 52                     | 8.2                                    | %06                          |                                                                |                     | <u></u><br>4:                    |
| Duration of treatment and follow-up:<br>8 weeks <sup>e</sup>                                                                                             | ongoing ITLA, mean L3 mg per week) Etanercept 50 mg s.c. once weekly (53% with ongoing MTX, mean L4 mg per week) | 214             | 53                     | 9.0                                    | %88                          |                                                                |                     | <u></u>                          |
| Protocol 0881A-100093  Lan et al., 2004 <sup>130</sup> Taiwan, single centre, double-blind  Duration of treatment and follow-up: 12 weeks                | Placebo + MTX (12.5–20 mg per week)<br>Etanercept 25 mg s.c. twice weekly + MTX<br>(same as above)               | 29              | 51<br>48               | ۲<br>Z                                 | Z                            | Z<br>Z                                                         | ž                   | 7.0.                             |
| Protocol 16.0029  Baumgartner et al., 2004 <sup>104</sup> USA, multicentre, double-blind Duration of treatment: 16 weeks Duration of follow-up: 20 weeks | Placebo twice s.c. weekly<br>Etanercept 25 mg s.c. twice weekly                                                  | 269<br>266      | 09                     | 0                                      | Z<br>R                       | æ<br>Z                                                         | Z<br>Z              | Ϋ́<br>Z                          |

<sup>a</sup> Some of the groups receiving active treatment also received matching placebo (where necessary) to maintain blinding. These placebo injections are not listed.

<sup>b</sup> All patients had received at least one previous DMARD, but details are not reported. The values shown are percentages using methotrexate in the year before the study.

<sup>c</sup> On this scale, 45 is best and 245 worst.

<sup>d</sup> Double-blind extension up to 60–100 weeks is not included in current review: data not provided.

<sup>e</sup> The placebo group switched to etanercept 25 mg twice weekly from week 8 and all treatment groups were followed up to week 16. The results from week 8 onwards are not included in the current review.

SSZ, sulfasalazine.

TABLE 7 Quality of included studies: etanercept

| Study                                                                                         | Sample size                                               | Truly random                                        | Adequate                  | Blinding     |                                      |                                      | Important                                                                | Important                                                                                    | Use of ITT                         |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------------------------|--------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                               |                                                           | allocation/<br>remain on<br>randomised<br>treatment | ailocation<br>concealment | Participants | Participants Investigators Assessors | Assessors                            | dimerences in<br>baseline<br>characteristics<br>between<br>groups (item) | differences in<br>completion rates<br>between groups<br>(% randomised<br>patients completed) | analysis                           |
| Moreland,<br>1996 <sup>120</sup>                                                              | Placebo:4<br>Etanercept: 12                               | Unclear                                             | Unclear                   | Yes          | Yes                                  | Unclear                              | Sample size too<br>small                                                 | Sample size too small                                                                        | Yes                                |
| Moreland,<br>I 997 <sup>121</sup>                                                             | Placebo: 44<br>Etanercept: I 36                           | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes                                  | <u>0</u>                                                                 | Yes<br>Placebo: 52%<br>Etanercept: 76%                                                       | Yes                                |
| Moreland,<br>I 999 <sup>122</sup>                                                             | Placebo: 80<br>Etanercept: 154                            | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes                                  | Yes (concurrent<br>steroids and<br>NSAIDs)                               | Yes<br>Placebo: 33%<br>Etanercept: 72%                                                       | Yes                                |
| ERA<br>First 12 months: MTX: 217<br>Bathon, Etanercept<br>2000 <sup>123</sup>                 | MTX: 217<br>Etanercept: 415                               | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes                                  | o<br>Z                                                                   | No<br>MTX: 79%<br>Etanercept: 82%                                                            | Yes                                |
| 12–24 months<br>Genovese,<br>2002 <sup>124</sup>                                              | MTX: 169<br>Etanercept: 343                               | Yes                                                 | ∢<br>Z                    | °Z           | °Z                                   | No (except<br>radiograph<br>readers) | °Z                                                                       | Yes<br>MTX: 59%<br>Etanercept: 69%                                                           | Yes (except radiographic outcomes) |
| Weinblatt,<br>I 999 <sup>125</sup>                                                            | Placebo: 30<br>Etanercept: 59                             | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes                                  | <u>0</u>                                                                 | Yes<br>Placebo: 80%<br>Etanercept: 97%                                                       | Yes                                |
| Wajdula,<br>2000 <sup>126</sup>                                                               | Placebo: 105<br>Etanercept: 454                           | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes                                  | <u>0</u>                                                                 | Yes<br>Placebo: 81%<br>Etanercept: 93%                                                       | No (except<br>safety)              |
| Codreanu,<br>2003 <sup>103</sup>                                                              | SSZ: 50<br>Etanercept: 103<br>Etanercept + SSZ: 101       | Yes<br>01                                           | Yes                       | Yes          | Yes                                  | Yes                                  | °Z                                                                       | Yes<br>SSZ: 66%<br>Etanercept: 91%<br>Etanercept + SSZ: 93%                                  | , is                               |
| TEMPO:<br>Up to 52 weeks, MTX: 228<br>Klareskog, Etanercept<br>2004 <sup>127</sup> Etanercept | , MTX: 228<br>Etanercept: 223<br>Etanercept +<br>MTX: 231 | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes                                  | o<br>Z                                                                   | Yes<br>MTX: 70%<br>Etanercept: 76%<br>Etanercept + MTX: 84%                                  | Yes<br>6                           |
|                                                                                               |                                                           |                                                     |                           |              |                                      |                                      |                                                                          |                                                                                              | continued                          |

 TABLE 7
 Quality of included studies: etanercept (cont'd)

| Study                                                                       | Sample size                                                           | Ę                                                   | Adequate                  | Blinding     |                                      |           | Important                                                                 | Important                                                                                    | Use of ITT |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|---------------------------|--------------|--------------------------------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|
|                                                                             |                                                                       | allocation/<br>remain on<br>randomised<br>treatment | ailocation<br>concealment | Participants | Participants Investigators Assessors | Assessors | differences in<br>baseline<br>characteristics<br>between<br>groups (item) | differences in<br>completion rates<br>between groups<br>(% randomised<br>patients completed) | analysis   |
| Week 52–100 <sup>110</sup> MTX: 152<br>Etanercept<br>Etanercept<br>MTX: 188 | <sup>10</sup> MTX: 152<br>Etanercept: 163<br>Etanercept +<br>MTX: 188 | Yes                                                 | Ψ<br>Z                    | Yes          | Yes                                  | Yes       | Unclear                                                                   | Yes<br>MTX: 52%<br>Etanercept: 61%<br>Etanercept + MTX: 71%                                  | Yes<br>%   |
| Keystone, 2004 <sup>129</sup> Placebo: 53<br>Etanercept:                    | <sup>29</sup> Placebo: 53<br>Etanercept: 367                          | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes       | °Z                                                                        | No<br>Placebo: 94%<br>Etanercept: 95%                                                        | Yes        |
| Lan 2004, <sup>130</sup>                                                    | Placebo: 29<br>Etanercept: 29                                         | Unclear                                             | Unclear                   | Yes          | Unclear                              | Unclear   | Unclear                                                                   | Unclear                                                                                      | Yes        |
| Baumgartner,<br>2004 <sup>104</sup>                                         | Placebo: 269<br>Etanercept: 266                                       | Yes                                                 | Yes                       | Yes          | Yes                                  | Yes       | o<br>Z                                                                    | Yes<br>Placebo: 72%<br>Etanercept: 86%                                                       | Yes        |
| NA, not applicable.                                                         | Je.                                                                   |                                                     |                           |              |                                      |           |                                                                           |                                                                                              |            |

## European Etanercept Investigators Study: Wajdula and colleagues, 2000<sup>126</sup>

This double-blind, multicentre RCT compared four etanercept treatment regimens (10 mg s.c. once weekly, 10 mg twice weekly, 25 mg once weekly, 25 mg twice weekly) with placebo. This study was planned to run for 6 months, but the protocol was modified to a 3-month double-blind study after inception for reasons that were unclear. Patients with at least six swollen joints and 12 tender joints, and who had failed to respond to at least one DMARD, were recruited. The primary efficacy endpoints were change from baseline in the number of swollen and painful joints at 3 months.

## ERA: Bathon and colleagues, 2000;<sup>123</sup> Genovese and colleagues, 2002<sup>124</sup>

This multicentre RCT compared etanercept 10 mg s.c. twice weekly or 25 mg s.c. twice weekly with methotrexate. There was a 12-month double-blind phase and a further 12-month open-label phase. Results at 2 years were provided by the manufacturer and are referred to as the end of study results in this review unless otherwise specified. Recruited patients had RA for less than 3 years, at least ten swollen joints and 12 tender joints, and were positive for rheumatoid factor or had at least three bony erosions on radiographs of hands, feet and wrists. Patients who had previously been treated with methotrexate were not eligible. Patients on other DMARDs at recruitment had a 4-week washout before entry. Fifty-nine per cent of patients had never received a DMARD.

The primary clinical end-point was ACR-N area under the curve (AUC) during the first 6 months, and the primary radiological end-point was the change in modified Sharp scores over 12 months.

This trial was originally designed to show the superiority of etanercept over methotrexate in preventing joint damage. However, this goal was changed to that of showing equivalence of etanercept and methotrexate.

## TEMPO: Klareskog and colleagues, 2004;<sup>127</sup> van der Heijde and colleagues, 2005<sup>128</sup> 2006<sup>110</sup>

This multicentre trial consisted of two periods. Period one was a 52-week double-blind RCT, followed by a double-blind extension of variable duration during which patients remained on randomised treatment. Two-year results were provided by the manufacturer and are referred to as the end of study results unless otherwise specified. TEMPO compared methotrexate alone (7.5 mg per week escalated to 20 mg per week if any tender or swollen joints remained), etanercept

alone (25 mg s.c. twice weekly), and a combination of the two. RA patients who had previously received methotrexate were allowed to enter (at the discretion of the investigator) provided that methotrexate had not been used within 6 months of study entry, had not been discontinued for lack of efficacy and had not caused toxicity.

Patients with disease durations between 6 months and 20 years who had failed at least one DMARD other than methotrexate were recruited. At least ten swollen joints and 12 tender joints were required. The primary clinical end-point was the 24-week AUC of the ACR-N. The 52-week change from baseline in van der Heijde modified total Sharp score was a conditional primary end-point. TEMPO appears to be the only trial in established RA (not early RA) that genuinely compares a conventional DMARD with a TNF inhibitor. However, around 42% of patients in each arm of this trial had previously tried methotrexate. It is not at all clear why these individuals discontinued methotrexate in the face of active disease if, as stated in the entry criteria, the drug was not ineffective or toxic.

## Codreanu and colleagues, 2003<sup>103</sup>

The study was only published as an abstract at the time of review, but a clinical study report was made available to the authors. This multicentre trial consisted of two periods. Period one was a 24week double-blind RCT, which was followed by a double-blind extension with patients participating between 60 to 100 weeks. The 24-week results were provided by the manufacturer and are referred to as the end of study results. The trial compared sulfasalazine alone (2–3 g per day), etanercept alone (25 mg s.c. twice weekly) and the combination of both in RA patients who were not adequately controlled while having received sulfasalazine for at least 4 months. The addition of other DMARDs was not permitted during the study. Patients with disease duration less than 20 years, with at least six swollen joints and ten tender joints were recruited. The primary endpoint was ACR20 response at 24 weeks.

## Lan and colleagues, 2004<sup>130</sup>

This single-centre, 12-week RCT compared etanercept (25 mg s.c. twice weekly) and placebo in patients who had been receiving stable doses (12.5–20 mg per week) of methotrexate for at least 4 weeks. Patients with duration of RA longer than 1 year, with at least six swollen joints and six tender joints despite methotrexate treatment were recruited. The baseline HAQ score of the patients in this trial (average 1.1) was better than in other

etanercept trials. The primary end-points were reduction in the number of swollen and tender joints from baseline to 12 weeks. Details of randomisation, allocation concealment and blinding were not described in the published paper and no trial report was made available.

## Keystone and colleagues, 2004<sup>129</sup>

This 16-week multicentre RCT compared etanercept 50 mg s.c. once weekly, etanercept 25 mg twice s.c. weekly and placebo. Placebotreated patients received etanercept 25 mg twice weekly at 8 weeks and thus results from week 8 onwards were excluded from this review. Patients with at least six swollen joints and six tender joints were recruited. Patients were allowed to continue with stable doses of methotrexate (≤ 25 mg per week), but other DMARDs were not allowed. Approximately half of the patients in each treatment group were receiving concomitant methotrexate. The primary efficacy end-point was the ACR20 response. Etanercept 50 mg once weekly was compared with placebo at week 8 and the comparative efficacy of the two etanercept treatment regimens was also studied.

### Baumgartner and colleagues, 2004<sup>104</sup>

This 16-week multicentre safety trial compared etanercept 25 mg s.c. twice weekly and placebo in adult RA patients, with at least one qualifying comorbid condition including diabetes, chronic obstructive pulmonary disease and recent infections. Randomisation was stratified by the presence of diabetes. Patients in this trial were older than those in other etanercept trials. Concomitant DMARDs (except for azathioprine, ciclosporin and cyclophosphamide) and NSAIDs were allowed and their use could be altered during the study. The overall prior and concurrent DMARD use was not reported, but 52% of all patients received concomitant methotrexate during the study. The primary end-point was the incidence of medically important infections, defined as infections that result in hospitalisation or treatment with intravenous antibiotics. No efficacy outcomes were measured. The initial study plan aimed to recruit 1000 patients, which allows an 84% power to detect a two-fold difference between the treatment groups (10% versus 20%). The study was, however, terminated early owing to the low incidence of medically important infections observed in the study (3% overall) and the slow recruitment of patients.

#### Meta-analyses of etanercept trials

The principles of analysis and data presentation of the etanercept trials are the same as those for adalimumab and are described in the section 'Data analysis' (p. 14). Two trials (TEMPO<sup>110,127</sup> and Codreanu<sup>103</sup>) included three treatment arms, which allow more than one comparison.

#### **Etanercept versus conventional DMARD**

Three trials (ERA, 123 TEMPO 110, 127 and Codreanu<sup>103</sup>) included comparisons between etanercept and a conventional DMARD. Only the ERA trial, however, allows a genuine head-to-head comparison between etanercept and methotrexate in early RA patients who were naïve to both treatments. Around 40% of patients in TEMPO had previously taken methotrexate without experiencing treatment failure due to lack of efficacy or toxicity. This, in theory, could introduce bias in favour of methotrexate. These patients, however, had not continued the methotrexate treatment for at least 6 months before the study. The reasons for this and their potential impact on study results are not clear. The investigators performed subgroup analyses and found no significant interaction between previous use of methotrexate and treatment effects in terms of ACR responses, DAS and total Sharp score. 127 The trial by Codreanu and colleagues<sup>103</sup> recruited patients who had had an inadequate response to sulfasalazine, and thus this trial should not be regarded as a head-tohead comparison. This section therefore focuses on the results from ERA (Table 8) and TEMPO (Table 9). The outcomes for ACR20, ACR50, ACR70, HAQ, SAEs, and malignancy from all three trials are also shown in the lower parts of Figures 13-23.

Efficacy Although the mean disease duration for the patients was only 1 year in ERA compared with over 6 years in the TEMPO, the results from these two studies are remarkably similar – no statistical heterogeneity between the studies was found in any of the outcomes that were meta-analysed. Overall, the results demonstrate that etanercept monotherapy is marginally more effective than methotrexate in improving RA symptoms and physical function. The differences between etanercept and methotrexate for ACR20 response and modified Sharp score were statistically significant in both studies, while the difference for ACR50 response was significant only in the TEMPO trial.

*Tolerability* Etanercept monotherapy appears to be better tolerated than methotrexate monotherapy. Fewer patients withdrew either owing to lack of efficacy or because of adverse events in etanercept-treated groups.

**TABLE 8** Summary of 2-year results from ERA study: etanercept s.c. licensed dose alone (25 mg twice weekly) versus MTX alone in MTX-naïve patients, 2-year results

| Comparison or outcome                                                            | N included in analysis | Statistical method | Effect size (95% CI)    |
|----------------------------------------------------------------------------------|------------------------|--------------------|-------------------------|
| ACR20 responder                                                                  | 424                    | RR (fixed)         | 1.22 (1.06 to 1.40)*    |
| ACR50 responder                                                                  | 424                    | RR (fixed)         | 1.16 (0.94 to 1.44)     |
| ACR70 responder                                                                  | 424                    | RR (fixed)         | 1.23 (0.89 to 1.70)     |
| RD ACR20 responder                                                               | 424                    | RD (fixed)         | 0.13 (0.04 to 0.22)*    |
| RD ACR50 responder                                                               | 424                    | RD (fixed)         | 0.07 (-0.03 to 0.16)    |
| RD ACR70 responder                                                               | 424                    | RD (fixed)         | 0.05 (-0.03 to 0.14)    |
| SJC, end of study result                                                         | 424                    | WMD (fixed)        | -1.50 (-3.44 to 0.44)   |
| Patient's global assessment, end of study result                                 | 424                    | WMD (fixed)        | 0.00 (-0.46 to 0.46)    |
| HAQ, end of study result                                                         | 424                    | WMD (fixed)        | -0.10 (-0.23 to 0.03)   |
| DAS, end of study result                                                         | 424                    | Not estimable      | No data available       |
| Modified van de Heijde-Sharp score,<br>mean change from baseline (I-year result) | 417                    | WMD (fixed)        | -0.97 (-1.65 to -0.29)* |
| Withdrawal for any reasons                                                       | 424                    | RR (fixed)         | 0.63 (0.48 to 0.84)*    |
| Withdrawal due to lack of efficacy                                               | 424                    | RR (fixed)         | 0.73 (0.40 to 1.34)     |
| Withdrawal due to adverse events                                                 | 424                    | RR (fixed)         | 0.58 (0.32 to 1.06)     |
| Death                                                                            | 424                    | RR (fixed)         | 3.14 (0.13 to 76.75)    |
| SAEs                                                                             | 424                    | RR (fixed)         | No data available       |
| Malignancy: all                                                                  | 424                    | RR (fixed)         | 1.05 (0.31 to 3.57)     |
| Malignancy: skin cancer excluding melanoma                                       | 424                    | RR (fixed)         | 1.05 (0.15 to 7.37)     |
| Malignancy: all cancer excluding non-melanoma skin cancer                        | 424                    | RR (fixed)         | 1.05 (0.21 to 5.14)     |
| Serious infection                                                                | 424                    | RR (fixed)         | 0.82 (0.31 to 2.15)     |
| Any infection                                                                    | 424                    | RR (fixed)         | 0.99 (0.90 to 1.09)     |

Safety No significant differences between etanercept and methotrexate were found. Malignancy occurred in five patients with etanercept and two patients with methotrexate in TEMPO, while equal numbers of patients (five each) developed cancer in the two treatment arms in ERA.

Subgroup analyses In addition to the subgroup analyses of prior use of methotrexate, extensive analyses were performed in TEMPO to explore potential interactions between disease duration and treatment effects. The outcomes in the early RA cohort (disease duration  $\leq 3$  years at baseline), which accounted for one-third of all patients in the trial, were generally similar to the overall study results. For example, the mean HAQ changes from baseline at 2 years

were -0.7, -0.7 and -1.0 for methotrexate alone, etanercept alone and the combination group, respectively, for both the early RA cohort (baseline HAQ = 1.6) and the late RA cohort (baseline HAQ = 1.8).

Codreanu, 2003<sup>103</sup> The comparison between etanercept and sulfasalazine in sulfasalazine partial responders/non-responders is summarised in *Table 72* (Appendix 4). The results resemble those observed in trials comparing etanercept and placebo (described in the following section), which show that etanercept is significantly more effective and better tolerated. Significantly more patients in the etanercept arm had infections compared with patients in the sulfasalazine arm (RR 1.76, 95% CI 1.05 to 2.93).

TABLE 9 Summary of 2-year results from TEMPO study: etanercept s.c. licensed dose alone (25 mg twice weekly) versus MTX alone in MTX-naïve patients/responders, 2-year results

| Comparison or outcome                                                            | N included in analysis | Statistical method | Effect size (95% CI)    |
|----------------------------------------------------------------------------------|------------------------|--------------------|-------------------------|
| ACR20 responder                                                                  | 451                    | RR (fixed)         | 1.28 (1.06 to 1.54)*    |
| ACR50 responder                                                                  | 451                    | RR (fixed)         | 1.47 (1.15 to 1.89)*    |
| ACR70 responder                                                                  | 451                    | RR (fixed)         | 1.46 (1.00 to 2.14)     |
| RD ACR20 responder                                                               | 451                    | RD (fixed)         | 0.12 (0.03 to 0.21)*    |
| RD ACR50 responder                                                               | 451                    | RD (fixed)         | 0.14 (0.05 to 0.23)*    |
| RD ACR70 responder                                                               | 451                    | RD (fixed)         | 0.08 (0.00 to 0.15)     |
| SJC, end of study result                                                         | 451                    | WMD (fixed)        | -1.10 (-3.08 to 0.88)   |
| Patient's global assessment, end of study result                                 | 451                    | WMD (fixed)        | -0.20 (-0.51 to 0.11)   |
| HAQ, end of study result                                                         | 451                    | WMD (fixed)        | -0.10 (-0.23 to 0.03)   |
| DAS, end of study result                                                         | 451                    | WMD (fixed)        | -0.10 (-0.31 to 0.11)   |
| Modified van de Heijde–Sharp score,<br>mean change from baseline (I-year result) | 424                    | WMD (fixed)        | -2.28 (-4.11 to -0.45)* |
| Withdrawal for any reasons                                                       | 451                    | RR (fixed)         | 0.81 (0.65 to 1.00)     |
| Withdrawal due to lack of efficacy                                               | 451                    | RR (fixed)         | 0.93 (0.59 to 1.47)     |
| Withdrawal due to adverse events                                                 | 451                    | RR (fixed)         | 0.75 (0.50 to 1.11)     |
| Death                                                                            | 451                    | RR (fixed)         | 1.02 (0.06 to 16.25)    |
| SAEs                                                                             | 451                    | RR (fixed)         | 1.10 (0.75 to 1.61)     |
| Malignancy: all                                                                  | 451                    | RR (fixed)         | 2.56 (0.50 to 13.04)    |
| Malignancy: skin cancer excluding melanoma                                       | 451                    | RR (fixed)         | 2.04 (0.19 to 22.39)    |
| Malignancy: all cancer excluding non-melanoma skin cancer                        | 451                    | RR (fixed)         | 3.07 (0.32 to 29.27)    |
| Serious infection                                                                | 451                    | RR (fixed)         | 0.95 (0.47 to 1.93)     |
| Any infection                                                                    | 451                    | RR (fixed)         | 0.95 (0.85 to 1.06)     |

Etanercept versus placebo Eight trials  $^{103,104,121,122,125,126,129,130}$  compared etanercept at the licensed dose (or equivalent) to placebo. Three of the trials 121,122,126 also included sublicensed doses. No trial included doses above the licensed dose. Results of the primary analyses (licensed dose) are summarised in Table 10, and are also shown in the upper parts of Figures 24–34.

Efficacy Etanercept was significantly more effective than placebo for all the efficacy outcomes being meta-analysed. Figure 24 shows a pattern of decreasing effect size for ACR20 in terms of relative risk in trials in that patients: (1) were not receiving any concurrent DMARDs; (2) were receiving concurrent DMARDs that had failed to provide adequate disease control; and (3) were receiving concurrent, newly initiated methotrexate. This pattern, however, is not clearly observed for other outcome measures, nor is it observed in trials of other TNF inhibitors.

Tolerability Etanercept is better tolerated than placebo.

Safety There were no significant differences between etanercept and placebo. In the trial by Baumgartner and colleagues, 104 which recruited patients with co-morbidity, five deaths occurred in the etanercept arm compared with one in the placebo arm.

Sensitivity analysis The results of the sensitivity analysis, which included sublicensed doses, are summarised in Table 73 (Appendix 4). These are consistent with the primary analysis.

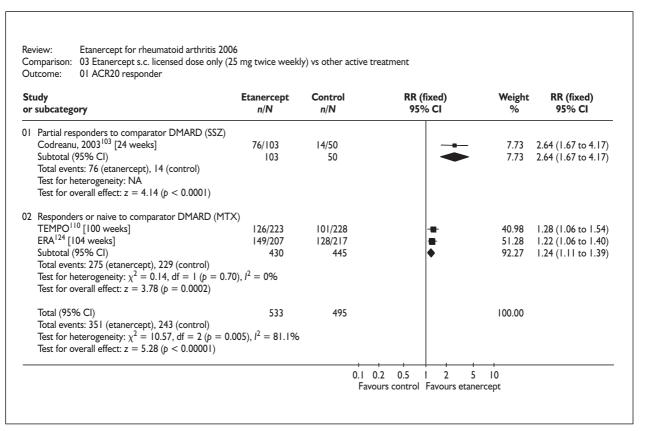



FIGURE 13 ACR20 RR: etanercept licensed dose versus other active treatment

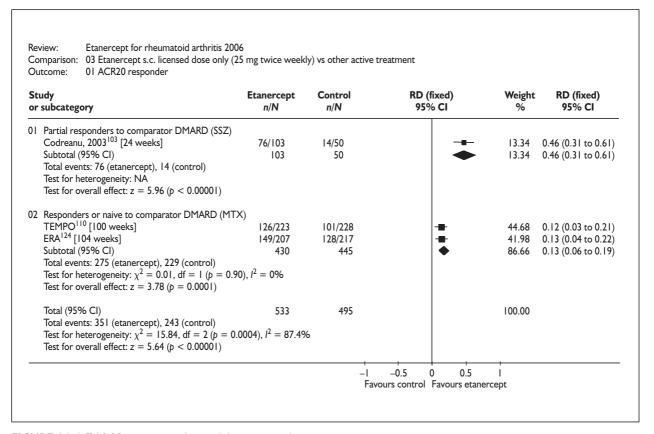
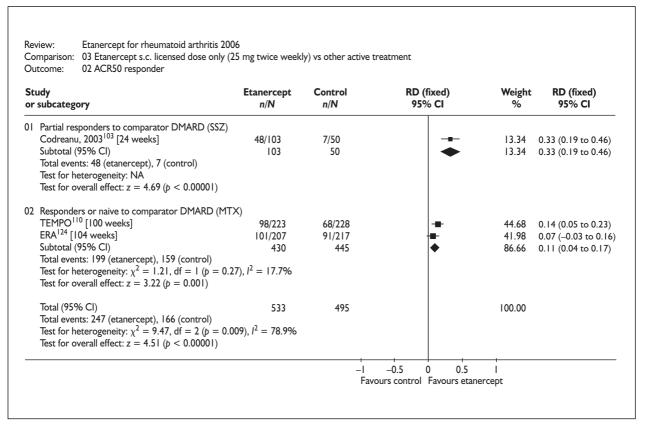




FIGURE 14 ACR20 RD: etanercept licensed dose versus other active treatment

| itudy<br>r subcategory                                                                                      | Etanercept n/N    | Control<br>n/N | RR (fixed)<br>95% CI | Weight<br>% | RR (fixed)<br>95% CI |
|-------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------------------|-------------|----------------------|
| I Partial responders to comparator DMARD (SSZ)                                                              |                   |                |                      |             |                      |
| Codreanu, 2003 <sup>103</sup> [24 weeks]                                                                    | 48/103            | 7/50           | -                    | 5.69        | 3.33 (1.62 to 6.82)  |
| Subtotal (95% CI)                                                                                           | 103               | 50             |                      | 5.69        | 3.33 (1.62 to 6.82)  |
| Total events: 48 (etanercept), 7 (control)                                                                  |                   |                |                      |             |                      |
| Test for heterogeneity: NA                                                                                  |                   |                |                      |             |                      |
| Test for overall effect: $z = 3.29 (p = 0.001)$                                                             |                   |                |                      |             |                      |
| 2 Responders or naive to comparator DMARD (MTX)                                                             |                   |                |                      |             |                      |
| TEMPO <sup>110</sup> [100 weeks]                                                                            | 98/223            | 68/228         | -                    | 40.63       | 1.47 (1.15 to 1.89)  |
| ERA <sup>124</sup> [104 weeks]                                                                              | 101/207           | 91/217         |                      | 53.68       | 1.16 (0.94 to 1.44)  |
| Subtotal (95% CI)                                                                                           | 430               | 445            | •                    | 94.31       | 1.30 (1.10 to 1.52)  |
| Test for heterogeneity: $\chi^2=$ 2.05, df = 1 ( $p=$ 0.15) Test for overall effect: z = 3.18 ( $p=$ 0.001) | $I^2 = 51.1\%$    |                |                      |             |                      |
| Total (95% CI)                                                                                              | 533               | 495            |                      | 100.00      |                      |
| Total events: 247 (etanercept), 166 (control)                                                               |                   |                |                      |             |                      |
| Test for heterogeneity: $\chi^2 = 8.88$ , df = 2 (p = 0.00)                                                 | ), $I^2 = 77.5\%$ |                |                      |             |                      |
| Test for overall effect: $z = 4.28 (p < 0.0001)$                                                            | ,,                |                |                      |             |                      |

FIGURE 15 ACR50 RR: etanercept licensed dose versus other active treatment



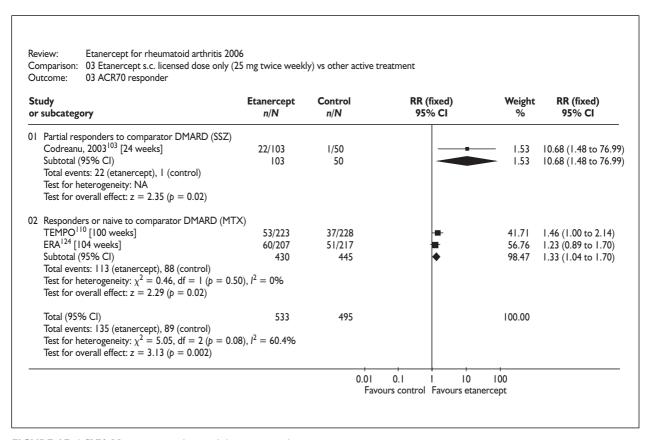



FIGURE 17 ACR70 RR: etanercept licensed dose versus other active treatment

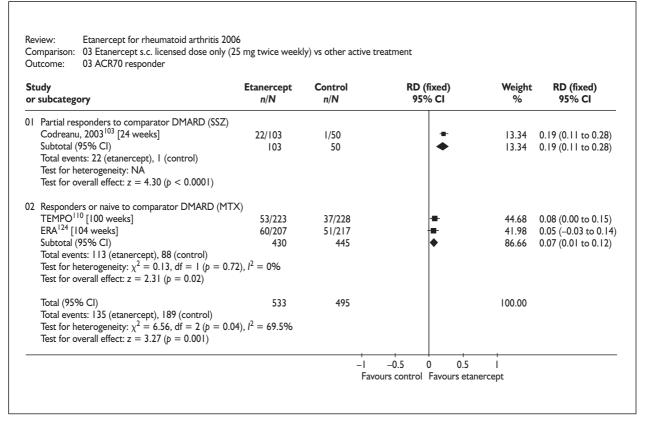



FIGURE 18 ACR70 RD: etanercept licensed dose versus other active treatment

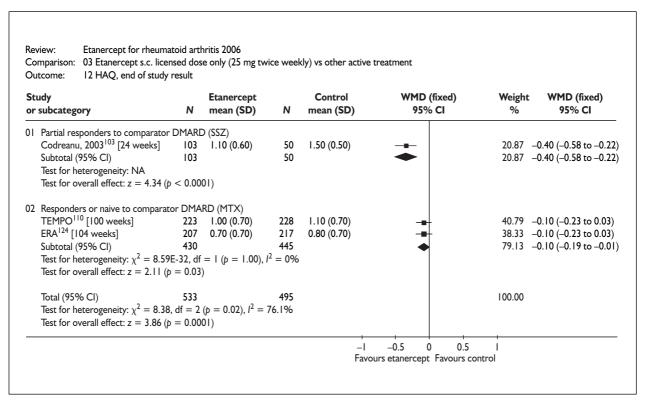
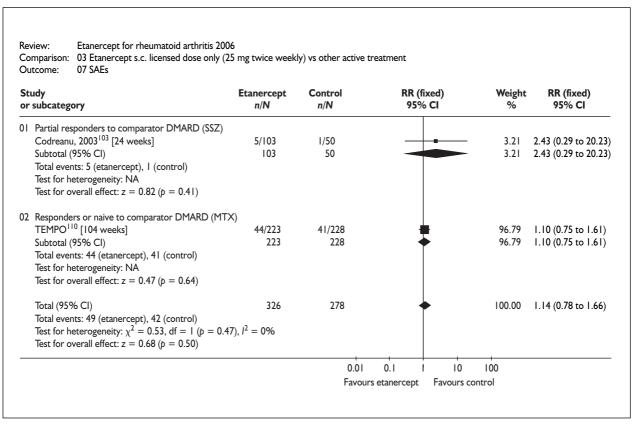




FIGURE 19 HAQ change: etanercept licensed dose versus other active treatment



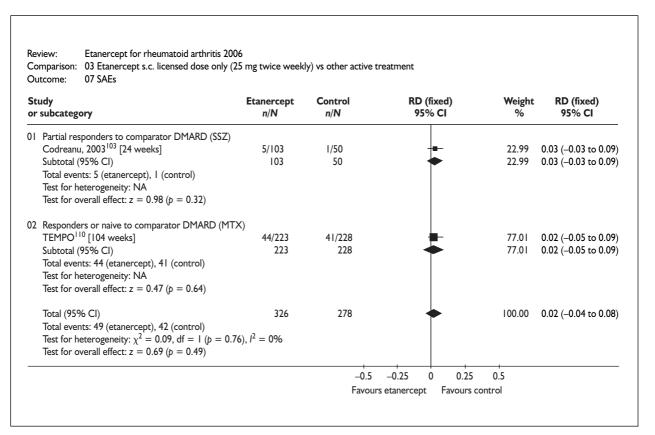



FIGURE 21 SAE RD: etanercept licensed dose versus other active treatment

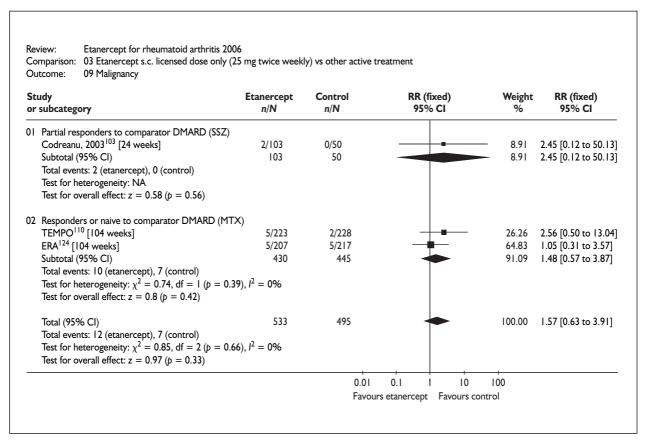



FIGURE 22 Malignancy RR: etanercept licensed dose versus other active treatment

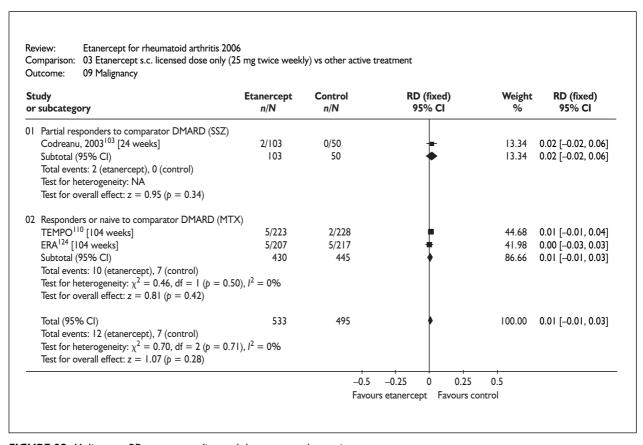



FIGURE 23 Malignancy RD: etanercept licensed dose versus other active treatment

## Etanercept plus methotrexate versus methotrexate

Only TEMPO<sup>110,127</sup> included this comparison and the results are summarised in *Table 11* and are also shown in the lower parts of *Figures 24–34*.

Efficacy The combination of etanercept plus methotrexate was significantly more effective than methotrexate monotherapy for all the efficacy outcomes considered.

*Tolerability* The combination was better tolerated than methotrexate monotherapy. Significantly fewer patients withdrew owing to lack of efficacy and for any reason in the combination group.

Safety No significant differences were found in any of the outcomes being meta-analysed. Nevertheless, SAEs and malignancy occurred more frequently in the combination group.

#### **Infliximab**

#### Description of included infliximab trials

Nine trials comprising a total of 2835 patients (2823 actually treated) were included in the meta-analyses. A prepublication manuscript of BeSt was

made available by the investigators, but did not meet the inclusion criteria. However, because of its importance it is described in detail, but the data are not used in the meta-analyses. Clinical study reports were provided by Schering-Plough for three of the studies: ATTRACT, 132-134 Active-controlled Study of Patient Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset, (ASPIRE) and START. 105,111 Additional data from these reports were included in this systematic review. Data were available only from published papers for the remaining six studies: Elliott, 136 Maini, 137 Kavanaugh, 138 Durez, 139 Taylor, 140 and Quinn. 141

Treatment comparators and baseline patient characteristics are shown in *Table 12*. Quality assessments of trials are summarised in *Table 13*. In most trials active RA was defined by six or more swollen joints (ten for ASPIRE), with additional criteria related to tender joints, ESR, CRP and morning stiffness. Taylor<sup>140</sup> and Quinn<sup>141</sup> focused on ultrasonographic and MRI outcomes, respectively. Low-dose oral steroids (<10 mg per day prednisolone) and NSAIDs were allowed at stable doses. DMARDs other than methotrexate

**TABLE 10** Meta-analyses: etanercept s.c. licensed dose only (25 mg twice weekly or equivalent) versus placebo (with or without ongoing conventional DMARDs), end of trial

| Comparison or outcome                                     | Studies                                  | N included in analysis | Statistical<br>method | Effect size (95% CI)    |
|-----------------------------------------------------------|------------------------------------------|------------------------|-----------------------|-------------------------|
| ACR20 responder                                           | 7 <sup>103,121,122,125,126,129,130</sup> | 1172                   | RR (fixed)            | 3.59 (2.89 to 4.46)*    |
| ACR50 responder                                           | 7 <sup>103,121,122,125,126,129,130</sup> | 1172                   | RR (fixed)            | 5.72 (3.92 to 8.34)*    |
| ACR70 responder                                           | 6 <sup>103,122,125,126,129,130</sup>     | 1084                   | RR (fixed)            | 9.44 (3.98 to 22.38)*   |
| RD ACR20 responder                                        | 7 <sup>103,121,122,125,126,129,130</sup> | 1172                   | RD (fixed)            | 0.48 (0.42 to 0.53)*    |
| RD ACR50 responder                                        | 7 <sup>103,121,122,125,126,129,130</sup> | 1172                   | RD (fixed)            | 0.32 (0.28 to 0.37)*    |
| RD ACR70 responder                                        | 6 <sup>103,122,125,126,129,130</sup>     | 1084                   | RD (fixed)            | 0.13 (0.10 to 0.16)*    |
| SJC, end of study result                                  | 7 <sup>103,121,122,125,126,129,130</sup> | 1178                   | WMD<br>(random)       | -6.75 (-8.95 to -4.56)* |
| Patient's global assessment, end of study result          | 7 <sup>103,121,122,125,126,129,130</sup> | 1178                   | WMD (fixed)           | -2.49 (-2.74 to -2.24)* |
| HAQ, end of study result                                  | 6 <sup>103,122,125,126,129,130</sup>     | 1055                   | WMD (fixed)           | -0.50 (-0.59 to, -0.42) |
| DAS, end of study result                                  | I 103                                    | 150                    | WMD (fixed)           | -1.50 (-1.89 to -1.11)* |
| Modified van de Heijde-Sharp score                        | 0                                        | 0                      | Not estimable         | No data available       |
| Withdrawal for any reasons                                | 7 <sup>103,104,121,122,125,126,129</sup> | 1657                   | RR (fixed)            | 0.37 (0.29 to 0.46)*    |
| Withdrawal due to lack of efficacy                        | 6 <sup>103,104,121,122,125,126</sup>     | 1237                   | RR (fixed)            | 0.19 (0.13 to, 0.28)*   |
| Withdrawal due to adverse events                          | 7 <sup>103,104,121,122,125,126,129</sup> | 1657                   | RR (fixed)            | 0.80 (0.49 to 1.30)     |
| Death                                                     | 7 <sup>103,104,121,122,125,126,129</sup> | 1657                   | RR (fixed)            | 2.22 (0.50 to 9.80)     |
| SAEs                                                      | 5 103,104,122,125,129                    | 1353                   | RR (fixed             | 1.25 (0.75 to 2.08)     |
| Malignancy: all                                           | 6 <sup>103,104,122,125,126,129</sup>     | 1569                   | RR (fixed)            | 0.44 (0.11 to 1.68)     |
| Malignancy: skin cancer excluding melanoma                | 6 <sup>103,104,122,125,126,129</sup>     | 1569                   | RR (fixed)            | 0.98 (0.17 to 5.59)     |
| Malignancy: all cancer excluding non-melanoma skin cancer | 6 103,104,122,125,126,129                | 1569                   | RR (fixed)            | 0.19 (0.02 to 1.71)     |
| Serious infection                                         | 7 <sup>103,104,122,125,126,129,130</sup> | 1627                   | RR (fixed)            | 0.78 (0.37 to 1.62)     |
| Any infection                                             | 6 103, 104, 122, 125, 126, 129           | 1569                   | RR (fixed)            | 1.00 (0.87 to 1.14)     |

were not allowed, except in START.<sup>105,111</sup> Three trials (ASPIRE, <sup>135</sup> Taylor<sup>140</sup> and Quinn<sup>141</sup>) recruited exclusively early RA patients. Key features for studies that included the licensed dose of infliximab are described below.

#### Maini and colleagues, 1998<sup>137</sup>

This 26-week, multicentre, double-blind RCT compared three doses of infliximab (1, 3 or 10 mg kg<sup>-1</sup>, with or without ongoing methotrexate 7.5 per mg week) with placebo plus ongoing methotrexate. Patients who had taken methotrexate at a dose of 7.5–15 mg per week for at least 6 months, with at least six swollen joints were recruited. Other DMARDs were not permitted. The primary efficacy measurement was the total time (in weeks) for which a patient exhibited a Paulus 20% response.

# ATTRACT: Maini and colleagues, 1999;<sup>132</sup> Lipsky and colleagues, 2000<sup>133</sup>

This double-blind, multicentre RCT compared four dosing regimens of infliximab (3 or 10 mg kg<sup>-1</sup>, i.v. at 0, 2 and 6 weeks and then every 4 or 8 weeks) with placebo, with concomitant methotrexate therapy. Patients who had been receiving methotrexate for at least 3 months and had been stable at 12.5 mg per week or more before screening were recruited. At least six swollen joints and six tender joints were required. The primary end-point was ACR20 response at week 30.

The study was planned to run for 54 weeks, but it was extended by a protocol amendment to 102 weeks based on FDA guidance. <sup>134</sup> A clinical study report for the 2-year results was provided by the

| tudy<br>r subcategory                                                                                            | Etanercept<br>n/N         | Control<br>n/N | RR (fixed)<br>95% CI | Weight<br>% | RR (fixed)<br>95% CI |
|------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------------------|-------------|----------------------|
| With (+) or without (–) concurrent, ongoing cor                                                                  | nventional DMARDs         | ·              |                      |             |                      |
| Moreland, 1997 <sup>121</sup> [12 weeks] (-)                                                                     | 33/44                     | 6/44           |                      | 3.23        | 5.50 (2.56 to 11.79) |
| Wadjula, 2000 <sup>126</sup> [12 weeks] (-)                                                                      | 76/109                    | 12/100         |                      | 6.74        | 5.81 (3.37 to 10.02) |
| Moreland, 1999 <sup>122</sup> [26 weeks] (-)                                                                     | 46/78                     | 9/80           |                      | 4.78        | 5.24 (2.76 to 9.97)  |
| Keystone, 2004 <sup>129</sup> [8 weeks] (±)                                                                      | 182/367                   | 10/53          |                      | 9.41        | 2.63 (1.49 to 4.64)  |
| Lan, 2004 <sup>130</sup> [12 weeks] (+)                                                                          | 26/29                     | 10/29          | -                    | 5.38        | 2.60 (1.55 to 4.36)  |
| Weinblatt, 1999 <sup>125</sup> [24 weeks] (+)                                                                    | 42/59                     | 8/30           |                      | 5.71        | 2.67 (1.44 to 4.94)  |
| Codreanu, 2003 <sup>103</sup> [24 weeks] (+)                                                                     | 74/100                    | 14/50          | -                    | 10.05       | 2.64 (1.67 to 4.18)  |
| Subtotal (95% CI)                                                                                                | 786                       | 386            | •                    | 45.29       | 3.59 (2.89 to 4.46)  |
| Test for heterogeneity: $\chi^2 = 10.78$ , df = 6 ( $p$ = Test for overall effect: $z = 11.55$ ( $p < 0.00001$ ) | $0.10$ ), $l^2 = 44.3\%$  |                |                      |             |                      |
| With concurrent, newly initiated MTX (etanerce                                                                   | pt + MTX)                 |                |                      |             |                      |
| TEMPO <sup>110</sup> [100 weeks] (+)                                                                             | 152/231                   | 101/228        |                      | 54.71       | 1.49 (1.25 to 1.77)  |
| Subtotal (95% CI)                                                                                                | 231                       | 228            | ♦                    | 54.71       | 1.49 (1.25 to 1.77)  |
| Total events: 152 (etanercept), 101 (control)                                                                    |                           |                |                      |             |                      |
| Test for heterogeneity: NA                                                                                       |                           |                |                      |             |                      |
| Test for overall effect: $z = 4.49 (p < 0.00001)$                                                                |                           |                |                      |             |                      |
| Total (95% CI)                                                                                                   | 1017                      | 614            |                      | 100.00      |                      |
| Total events: 631 (etanercept), 170 (control)                                                                    |                           |                |                      |             |                      |
| Test for heterogeneity: $\chi^2 = 57.50$ , df = 7 (p <                                                           | $0.00001$ ). $I^2 = 86.4$ | %              |                      |             |                      |
| lest for field ogeneity. $\chi = 37.30$ , $di = 7$ (p <                                                          |                           |                |                      |             |                      |

FIGURE 24 ACR20 RR: etanercept licensed dose versus placebo (including etanercept plus MTX versus MTX)

| r subcategory                                                                                                                                                     | Etanercept<br>n/N      | Control<br>n/N | RD (fixed)<br>95% CI | Weight<br>% | RD (fixed)<br>95% CI |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|----------------------|-------------|----------------------|
| With (+) or without (–) concurrent, ongoing                                                                                                                       | conventional DMARDs    | 5              |                      |             |                      |
| Moreland, 1997 <sup>121</sup> [12 weeks] (-)                                                                                                                      | 33/44                  | 6/44           |                      | 6.42        | 0.61 (0.45 to 0.78)  |
| Wadjula, 2000 126 [12 weeks] (-)                                                                                                                                  | 76/109                 | 12/100         |                      | 15.23       | 0.58 (0.47 to 0.68)  |
| Moreland, 1999 <sup>122</sup> [26 weeks] (-)                                                                                                                      | 46/78                  | 9/80           |                      | 11.53       | 0.48 (0.35 to 0.61)  |
| Keystone, 2004 <sup>129</sup> [8 weeks] (±)                                                                                                                       | 182/367                | 10/53          | -                    | 13.52       | 0.31 (0.19 to 0.42)  |
| Lan, 2004 <sup>130</sup> [12 weeks] (+)                                                                                                                           | 26/29                  | 10/29          | _ <del>-</del>       | 4.23        | 0.55 (0.35 to 0.76)  |
| Weinblatt, 1999 <sup>125</sup> [24 weeks] (+)<br>Codreanu, 2003 <sup>103</sup> [24 weeks] (+)                                                                     | 42/59                  | 8/30           | _ <del>-</del>       | 5.81        | 0.45 (0.25 to 0.64)  |
| Codreanu, 2003 <sup>103</sup> [24 weeks] (+)                                                                                                                      | 74/100                 | 14/50          | _ <del>-</del>       | 9.73        | 0.46 (0.31 to 0.61)  |
| Subtotal (95% CI)                                                                                                                                                 | 786                    | 386            | •                    | 66.49       | 0.48 (0.42 to 0.53)  |
| Total events: 479 (etanercept), 69 (control)                                                                                                                      |                        |                |                      |             |                      |
| Test for heterogeneity: $\chi^2 = 14.77$ , df = 6 ( $p$ )<br>Test for overall effect: $z = 17.47$ ( $p < 0.0000$ )<br>With concurrent, newly initiated MTX (etano | DI)                    |                |                      |             |                      |
| TEMPO <sup>110</sup> [100 weeks] (+)                                                                                                                              | 152/231                | 101/228        |                      | 33.51       | 0.22 (0.13 to 0.30)  |
| Subtotal (95% CI)                                                                                                                                                 | 231                    | 228            | -                    | 100.00      | 0.22 (0.13 to 0.30)  |
| Total events: 152 (etanercept), 101 (control)                                                                                                                     |                        | 220            |                      | 100.00      | 0.22 (0.13 to 0.30)  |
| Test for heterogeneity: NA                                                                                                                                        |                        |                |                      |             |                      |
| Test for overall effect: $z = 4.74$ ( $p < 0.0000$ )                                                                                                              | 1)                     |                |                      |             |                      |
|                                                                                                                                                                   | • /                    |                |                      |             |                      |
| Total (95% CI)                                                                                                                                                    | 1017                   | 614            |                      |             |                      |
| Total events: 631 (etanercept), 170 (control)                                                                                                                     |                        |                |                      |             |                      |
|                                                                                                                                                                   |                        | 0/             |                      |             |                      |
| Test for heterogeneity: $\chi^2 = 40.99$ , df = 7 ( $t$                                                                                                           | > < 0.00001), 1 = 82.9 | 70             |                      |             |                      |

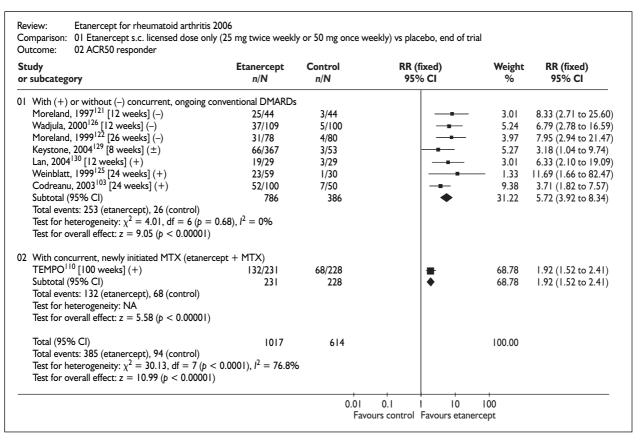



FIGURE 26 ACR50 RR: etanercept licensed dose versus placebo (including etanercept plus MTX versus MTX)

| dy<br>ubcategory                                                                                         | Etanercept<br>n/N                        | Control<br>n/N | RD (fixed)<br>95% CI | Weight<br>%    | RD (fixed)<br>95% CI                       |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|----------------------|----------------|--------------------------------------------|
| With (+) or without (-) concurrent, ongoing                                                              | conventional DMARDs                      | <b>.</b>       |                      |                |                                            |
| Moreland, 1997 <sup>121</sup> [12 weeks] (-)                                                             | 25/44                                    | 3/44           |                      | 6.42           | 0.50 (0.34 to 0.66)                        |
| Wadjula, 2000 <sup>126</sup> [12 weeks] (-)                                                              | 37/109                                   | 5/100          | -                    | 15.23          | 0.29 (0.19 to 0.39)                        |
| Moreland, 1999 <sup>122</sup> [26 weeks] (–)                                                             | 31/78                                    | 4/80           |                      | 11.53          | 0.35 (0.23 to 0.47)                        |
| Keystone, 2004 <sup>129</sup> [8 weeks] (±)                                                              | 66/367                                   | 3/53           | -                    | 13.52          | 0.12 (0.05 to 0.20)                        |
| Lan, 2004 <sup>130</sup> [12 weeks] (+)                                                                  | 19/29                                    | 3/29           | <b></b>              | 4.23           | 0.55 (0.35 to 0.76)                        |
| Weinblatt, 1999 <sup>125</sup> [24 weeks] (+)                                                            | 23/59                                    | 1/30           |                      | 5.81           | 0.36 (0.22 to 0.50)                        |
| Codreanu, 2003 <sup>103</sup> [24 weeks] (+)                                                             | 52/100                                   | 7/50           |                      | 9.73           | 0.38 (0.24 to 0.52)                        |
| Subtotal (95% CI)                                                                                        | 786                                      | 386            | •                    | 66.49          | 0.32 (0.28 to 0.37)                        |
| Total events: 253 (etanercept), 26 (control)                                                             |                                          |                |                      |                | ,                                          |
| Test for heterogeneity: $\chi^2 = 38.84$ , df = 6 (p<br>Test for overall effect: $z = 13.65$ (p < 0.000) | 01)                                      | %              |                      |                |                                            |
| With concurrent, newly initiated MTX (etan<br>TEMPO <sup>110</sup> [100 weeks] (+)                       | 132/231                                  | 68/228         | _                    | 22.51          | 0.27 (0.10 += 0.24)                        |
| Subtotal (95% CI)                                                                                        | 231                                      | 228            |                      | 33.51<br>33.51 | 0.27 (0.19 to 0.36)<br>0.27 (0.19 to 0.36) |
| Total events: 132 (etanercept), 68 (control)                                                             | 231                                      | 228            |                      | 33.31          | 0.27 (0.19 to 0.36)                        |
| Test for heterogeneity: NA                                                                               |                                          |                |                      |                |                                            |
| Test for neterogeneity. TVA  Test for overall effect: $z = 6.14$ ( $p < 0.0000$                          | 1)                                       |                |                      |                |                                            |
| lest for overall effect: $z = 6.14$ (p < 0.0000                                                          | 1)                                       |                |                      |                |                                            |
| Total (95% CI)                                                                                           | 1017                                     | 614            |                      | 100.00         |                                            |
| Total events: 385 (etanercept), 94 (control)                                                             | 1017                                     | 311            |                      | . 30.00        |                                            |
| Test for heterogeneity: $\chi^2 = 37.23$ , df = 7 ( $\mu$ )                                              | $0 < 0.00001$ ). $I^2 = 81.2$            | %              |                      |                |                                            |
|                                                                                                          | · · · · · · · · /, · · · · · · · · · · · |                | 1                    |                |                                            |

FIGURE 27 ACR50 RD: etanercept licensed dose versus placebo (including etanercept plus MTX versus MTX)

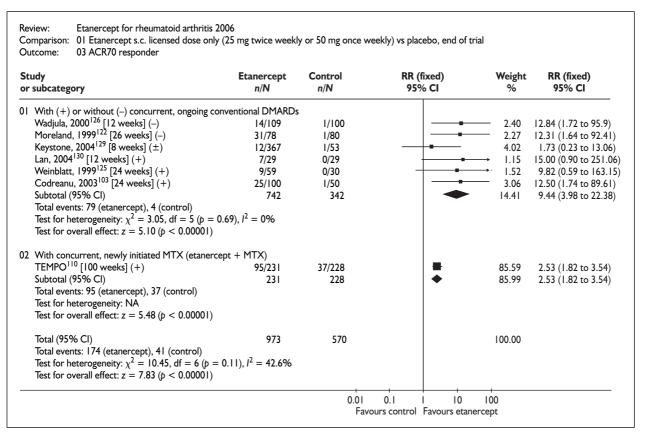



FIGURE 28 ACR70 RR: etanercept licensed dose versus placebo (including etanercept plus MTX versus MTX)

| udy<br>subcategory                                                                                                                                   | Etanercept n/N              | Control<br>n/N | RD (fixed)<br>95% CI | Weight<br>% | RD (fixed)<br>95% CI |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|----------------------|-------------|----------------------|
| With (+) or without (-) concurrent, ongoing of                                                                                                       | conventional DMARDs         | 5              |                      |             |                      |
| Wadjula, 2000 <sup>126</sup> [12 weeks] (-)                                                                                                          | 14/109                      | 1/100          | -                    | 16.28       | 0.12 (0.05, 0.18)    |
| Moreland, 1999 <sup>122</sup> [26 weeks] (-)                                                                                                         | 31/78                       | 1/80           |                      | 12.33       | 0.14 (0.06, 0.23)    |
| Keystone, 2004 <sup>129</sup> [8 weeks] (±)                                                                                                          | 12/367                      | 1/53           | +                    | 14.45       | 0.01 (-0.03 to 0.05) |
| Lan, 2004 <sup>130</sup> [12 weeks] (+)                                                                                                              | 7/29                        | 0/29           | <del></del>          | 4.53        | 0.24 (0.08 to 0.40)  |
| Weinblatt, 1999 <sup>125</sup> [24 weeks] (+)<br>Codreanu, 2003 <sup>103</sup> [24 weeks] (+)                                                        | 9/59                        | 0/30           | -                    | 6.21        | 0.15 (0.05 to 0.26)  |
| Codreanu, 2003 <sup>103</sup> [24 weeks] (+)                                                                                                         | 25/100                      | 1/50           |                      | 10.40       | 0.23 (0.14 to 0.32)  |
| Subtotal (95% CI)                                                                                                                                    | 742                         | 342            | ♦                    | 64.19       | 0.13 (0.10 to 0.16)  |
| Test for heterogeneity: $\chi^2 = 37.33$ , df = 5 (p Test for overall effect: z = 7.67 (p < 0.00001)<br>With concurrent, newly initiated MTX (etaner | rcept + MTX)                |                |                      |             |                      |
| TEMPO <sup>110</sup> [100 weeks] (+)                                                                                                                 | 95/231                      | 37/228         | -                    | 35.81       | 0.25 (0.17 to 0.33)  |
| Subtotal (95% CI) Total events: 95 (etanercept), 37 (control) Test for heterogeneity: NA Test for overall effect: $z = 6.14$ ( $p < 0.00001$ )       | 231                         | 228            | •                    | 35.81       | 0.25 (0.17 to 0.33)  |
| Total (95% CI)                                                                                                                                       | 973                         | 570            |                      | 100.00      |                      |
| Total events: 174 (etanercept), 41 (control)                                                                                                         |                             |                |                      |             |                      |
|                                                                                                                                                      | $< 0.00001$ ), $I^2 = 91.0$ | 0/2            |                      |             |                      |

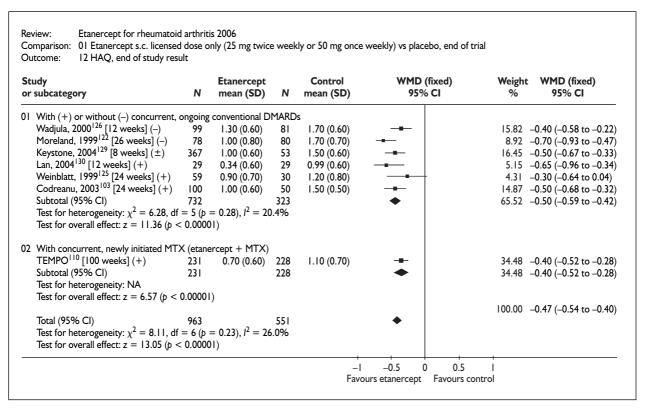



FIGURE 30 HAQ change: etanercept licensed dose only versus placebo (including etanercept plus MTX versus MTX)

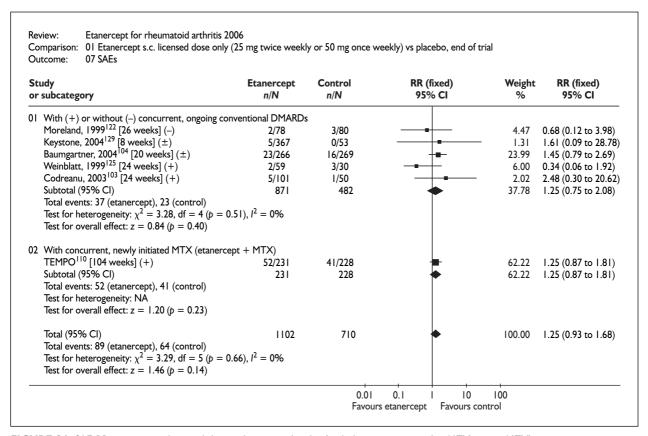



FIGURE 31 SAE RR: etanercept licensed dose only versus placebo (including etanercept plus MTX versus MTX)

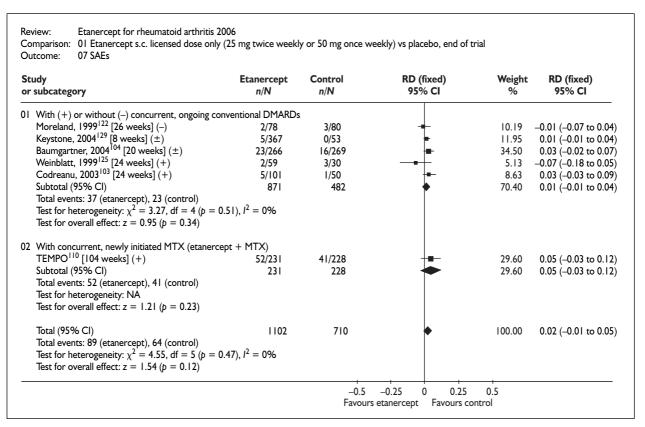



FIGURE 32 SAE RD: etanercept licensed dose only versus placebo (including etanercept plus MTX versus MTX)

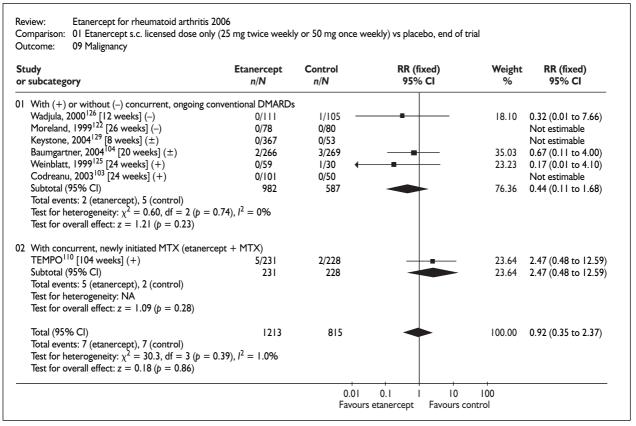



FIGURE 33 Malignancy RR: etanercept licensed dose only versus placebo (including etanercept plus MTX versus MTX)

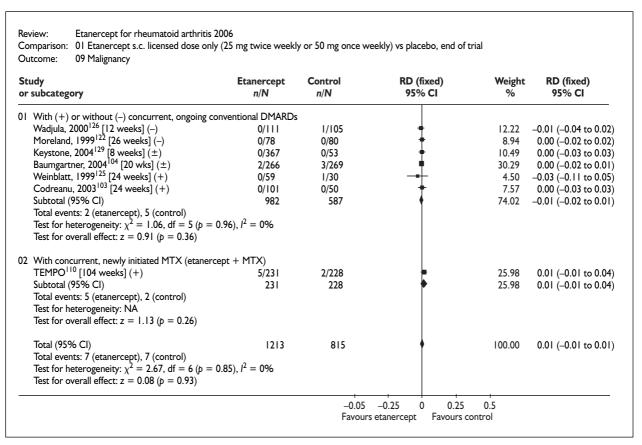



FIGURE 34 Malignancy RD: etanercept licensed dose only versus placebo (including etanercept + MTX versus MTX)

manufacturer. Results beyond week 54 were not included in meta-analyses for the following reasons: first, there was a substantial difference in the proportion of patients entering the second year between treatment arms (32% for the placebo plus methotrexate arm and 68% for the infliximab plus methotrexate arms combined); secondly, treatment was unblinded for 12% of the patients before completion of all HAQ evaluations; and thirdly, 94 of the 259 patients in the infliximab groups had a treatment gap between first year and second year of more than 8 weeks (mean 19.4 weeks) because of the timing of the protocol amendment. Consequently, the 54-week results are referred to as the end of study results in metaanalyses, unless otherwise specified.

#### ASPIRE: St Clair and colleagues, 2004<sup>135</sup>

This 54-week, double-blind, multicentre RCT compared treatment with methotrexate alone (starting at 7.5 mg per week and escalated to 20 mg per week) and infliximab (3 or 6 mg kg<sup>-1</sup> i.v. every 8 weeks) with methotrexate. Only patients with early RA, disease duration of 3 months to 3 years, were included. A minimum of ten swollen joints and 12 tender joints were

required. Patients who had received more than three doses of methotrexate or received other DMARDs within 4 weeks of study entry were not eligible.

Forty-five patients from two study sites out of 1049 randomised patients were excluded from efficacy analysis because the data could not be verified with source documents. The study had three primary end-points: ACR-N from baseline to week 54 (for reduction of signs and symptoms), van der Heijde modification of the total Sharp score (for radiographic progression of joint damage) and change from baseline in HAQ scores averaged over weeks 30–54 (for improvement in physical function). The safety outcomes for this trial were reported and analysed according to the actual treatment that the patient had received.

## Durez and colleagues, 2004<sup>139,142</sup>

This small open-label, single-centre RCT compared a single pulse of methylprednisolone (1 gm i.v.) with three infusions (at weeks 0, 2 and 6) of infliximab 3 mg kg<sup>-1</sup> i.v. in patients receiving concurrent methotrexate (10–15 mg per week). Patients with disease for more than 1 year and at

**TABLE 11** Summary of 2-year results from TEMPO study: combination of etanercept (25 mg s.c. twice weekly) plus MTX versus MTX alone in MTX-naïve patients/responders

| Comparison or outcome                                                            | N included in analysis | Statistical method | Effect size (95% CI)    |
|----------------------------------------------------------------------------------|------------------------|--------------------|-------------------------|
| ACR20 responder                                                                  | 459                    | RR (fixed)         | 1.49 (1.25 to 1.77)*    |
| ACR50 responder                                                                  | 459                    | RR (fixed)         | 1.92 (1.52 to 2.41)*    |
| ACR70 responder                                                                  | 459                    | RR (fixed)         | 2.53 (1.82 to 3.54)*    |
| RD ACR20 responder                                                               | 459                    | RD (fixed)         | 0.22 (0.13 to 0.30)*    |
| RD ACR50 responder                                                               | 459                    | RD (fixed)         | 0.27 (0.19 to 0.36)*    |
| RD ACR70 responder                                                               | 459                    | RD (fixed)         | 0.25 (0.17 to 0.33)*    |
| SJC, end of study result                                                         | 459                    | WMD (fixed)        | -3.70 (-5.71 to -1.69)* |
| Patients' global assessment, end of study result                                 | 459                    | WMD (fixed)        | -1.20 (-1.51 to -0.89)* |
| HAQ, end of study result                                                         | 459                    | WMD (fixed)        | -0.40 (-0.52 to -0.28)* |
| DAS, end of study result                                                         | 459                    | WMD (fixed)        | -0.80 (-1.02 to -0.58)* |
| Modified van de Heijde–Sharp score,<br>mean change from baseline (I-year result) | 430                    | WMD (fixed)        | -3.34 (-5.12 to -1.56)* |
| Withdrawal for any reasons                                                       | 459                    | RR (fixed)         | 0.61 (0.48 to 0.77)*    |
| Withdrawal due to lack of efficacy                                               | 459                    | RR (fixed)         | 0.27 (0.13 to 0.55)*    |
| Withdrawal due to adverse events                                                 | 459                    | RR (fixed)         | 0.80 (0.55 to 1.17)     |
| Death                                                                            | 459                    | RR (fixed)         | 0.99 (0.06 to 15.68)    |
| SAEs                                                                             | 459                    | RR (fixed)         | 1.25 (0.87 to 1.81)     |
| Malignancy: all                                                                  | 459                    | RR (fixed)         | 2.47 (0.48 to 12.59)    |
| Malignancy: skin cancer excluding melanoma                                       | 459                    | RR (fixed)         | 1.97 (0.18 to 21.62)    |
| Malignancy: all cancer excluding non-melanoma skin cancer                        | 459                    | RR (fixed)         | 2.96 (0.31 to 28.26)    |
| Serious infection                                                                | 459                    | RR (fixed)         | 0.86 (0.42 to 1.76)     |
| Any infection                                                                    | 459                    | RR (fixed)         | 1.00 (0.91 to 1.11)     |

least six swollen joints and six tender joints were recruited and followed for 14 weeks. The primary end-point was not stated, although various disease activity measures and serum matrix metalloproteinase-3 (MMP-3) were evaluated. Methods of randomisation, allocation concealment, patient withdrawals and use of ITT analysis were not clearly described.

START: Westhovens and colleagues, 2006<sup>105,111</sup> This double-blind, multicentre safety trial compared infliximab, at two doses (3 or 10 mg kg<sup>-1</sup>, i.v., at week 0, 2 and 6, then every 8 weeks thereafter), and placebo in patients receiving concurrent methotrexate. Patients were treated for 46 weeks, but patients in the placebo group were switched to receive infliximab 3 mg kg<sup>-1</sup> every 8 weeks at week 22. Thus results

beyond week 22 are excluded from this review and the 22-week results are referred to as the end of trial results.

Patients who were receiving methotrexate for at least 3 months and at a stable dose (≤ 25 mg per week) for at least 4 weeks, with a minimum of six swollen joints and six tender joints were recruited. Concomitant stable doses of other DMARDs were allowed. Twenty-five per cent of the patients were receiving one or more DMARDs in addition to methotrexate. The primary end-point was any occurrence of a serious infection within the first 22 weeks after initiating therapy.

## Quinn and colleagues, 2005<sup>141</sup>

This small, double-blind, single-centre RCT compared methotrexate alone (started at 7.5 mg

TABLE 12 Description of included RCTs and baseline patient characteristics: infliximab

| Study and description                                                                                                                                                                                                                     | Interventions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of<br>patients   | Mean<br>age<br>(years)                                | Mean<br>disease<br>duration<br>(years)    | No. of<br>previous<br>DMARDs            | On<br>steroids<br>(%)                  | On<br>NSAIDs<br>(%)      | Mean<br>baseline<br>HAQ<br>score                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------|-----------------------------------------------------------|
| Elliott et al., 1994 <sup>136</sup> Europe, four centres, double-blind Infliximab treatment: single infusion Duration of follow-up: four weeks                                                                                            | Placebo (single i.v. infusion 0.1% albumin) Infliximab single infusion 1 mg kg $^{-1}$ i.v. Infliximab single infusion 10 mg kg $^{-1}$ i.v.                                                                                                                                                                                                                                                                                                                                                        | 24<br>25<br>24       | 48<br>56<br>51                                        | 9.0<br>7.5<br>7.3                         | (Median)<br>3.7<br>2.8<br>3.1           | Ž<br>Ž                                 | Z<br>X                   | Z<br>X                                                    |
| Maini et al., 1998 <sup>137</sup> Europe, six centres, double-blind: Infliximab treatment: five infusions at 0, 2, 6, 10 and 14 weeks Duration of follow-up: 26 weeks                                                                     | Placebo (0.1% albumin i.v.) + MTX 7.5 mg per week Infliximab 1 mg $kg^{-1}$ i.v. + MTX 7.5 mg per week Infliximab 1 mg $kg^{-1}$ i.v. without MTX Infliximab 3 mg $kg^{-1}$ i.v. without MTX Infliximab 3 mg $kg^{-1}$ i.v. without MTX Infliximab 10 mg $kg^{-1}$ i.v. + MTX 7.5 mg per week Infliximab 10 mg $kg^{-1}$ i.v. without MTX Infliximab 10 mg $kg^{-1}$ i.v. without MTX                                                                                                               | 7<br>4 4 5 5 4 4 5   | 64 49 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50    | 7.6<br>14.3<br>7.6<br>12.1<br>7.8<br>11.1 | (Median) 2 2 3 2 2 2 2 2 2 2 2 2        | 50<br>67<br>60<br>50<br>60<br>60<br>60 | ž                        | (Median)<br>2.0<br>2.0<br>1.4<br>1.4<br>2.0<br>1.8<br>1.9 |
| CO168T22  ATTRACT: Maini et al., 1999; <sup>132</sup> Lipsky et al., 2000 <sup>133</sup> North America and Europe, 34 centres, double-blind Infliximab treatment: repeated infusion at 0, 2 and 6 weeks then every 8 weeks until week 54° | Placebo (0.1% albumin or saline) + MTX (median 15 mg per week) Infliximab 3 mg kg <sup>-1</sup> i.v. every 8 weeks + MTX (median 15 mg per week) Infliximab 3 mg kg <sup>-1</sup> i.v. every 4 weeks + MTX (median 15 mg per week) Infliximab 10 mg kg <sup>-1</sup> i.v. every 8 weeks + MTX (median 15 mg per week) Infliximab 10 mg per kg <sup>-1</sup> i.v. every 4 weeks + MTX (median 15 mg per week) Infliximab 10 mg per kg <sup>-1</sup> i.v. every 4 weeks + MTX (median 15 mg per week) | 88 88 88 18<br>78 18 | 52 54 52 54 52 54 54 54 55 54 55 55 55 55 55 55 55 55 | _ 6 _ 2                                   | (Mean) <sup>b</sup> 2.5 2.8 2.6 2.5 2.5 | 6 5 5 6 6<br>4 8 5 6                   | 27 67 75 89              | (Mean)<br>1.7<br>1.8<br>1.7<br>1.7                        |
| <b>Kavanaugh et al., 2000</b> <sup>138</sup> USA, three centres, double-blind Infliximab treatment: single infusion Duration of follow-up: 12 weeks <sup>c</sup>                                                                          | Placebo (single i.v. infusion 0.1% albumin) + MTX 10 mg per week Infliximab single infusion 5 mg per kg <sup>-1</sup> i.v. + MTX 10 mg per week Infliximab single infusion 10 mg kg <sup>-1</sup> i.v. + MTX 10 mg per week Infliximab single infusion 20 mg kg <sup>-1</sup> i.v. + MTX 10 mg per week                                                                                                                                                                                             | r                    | 45<br>47<br>53<br>37                                  | 6.4 7.7 7.5 4.9 4.9                       | <del>Υ</del><br>Ζ                       | 2/7<br>5/7<br>5/7<br>6/7               | 4/7<br>7/7<br>6/7<br>5/7 | (Mean)<br>1.6<br>1.4<br>1.5                               |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                                       |                                           |                                         |                                        |                          | continued                                                 |

**TABLE 12** Description of included RCTs and baseline patient characteristics: infliximab (cont'd)

| Study and description                                                                                                                                                                           | Interventions                                                                                                                                                                              | No. of patients   | Mean<br>age<br>(years) | Mean<br>disease<br>duration<br>(years) | No. of<br>previous<br>DMARDs                 | On<br>steroids<br>(%) | On<br>NSAIDs<br>(%) | Mean<br>baseline<br>HAQ<br>score |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|----------------------------------------|----------------------------------------------|-----------------------|---------------------|----------------------------------|
| CO168T29 ASPIRE: St Clair et al., 2004 <sup>135</sup> North America, Europe and Israel, multicentre, double-blind                                                                               | Placebo + MTX (starting 7.5 and increasing to 20 mg per week by week 8) Infliximab 3 mg kg <sup>-1</sup> i.v. every 8 weeks + MTX                                                          | 282               | 50                     | 6.0<br>8.0                             | DMARD naïve<br>65%<br>71%                    | 38                    | 82                  | (Mean)<br>1.5<br>1.5             |
| Infliximab treatment: repeated infusion<br>at 0, 2 and 6 weeks then every<br>8 weeks until week 46<br>Duration of follow-up: 54 weeks                                                           | (as above)<br>Infliximab 6 mg kg <sup>-1</sup> i.v. every 8 weeks +<br>MTX (as above)                                                                                                      | 363               | 20                     | 6:0                                    | %89                                          | 39                    | 82                  | 5.                               |
| Belgium, two centres, open-label Infliximab treatment: three infusions at weeks 0, 2 and 6                                                                                                      | Methylprednisolone single IV infusion I g + MTX 10–15 mg per week Infliximab 3 mg kg $^{-1}$ i.v. + MTX (as above)                                                                         | 12                | (Median)<br>56<br>48   | (Median)<br>12<br>10                   | (Median)<br>3<br>3                           | Z<br>Z                | Z<br>Z              | (Median)<br>1.5<br>1.3           |
| Taylor et al., 2004 <sup>140</sup> UK, single centre, double-blind Infliximab treatment: repeated infusion at 0, 2 and 6 weeks then every 8 weeks until week 46 Duration of follow-up: 54 weeks | Placebo (normal saline) + MTX<br>(12.5–17.5 mg per week at baseline, increasing to<br>25 mg per week if needed)<br>Infliximab 5 mg kg <sup>-1</sup> i.v. every 8 weeks + MTX<br>(as above) | 12 12             | 55                     | <u> </u>                               | α<br>Z                                       | Z<br>Z                | Z<br>Z              | α<br>Z                           |
| START: Westhovens 2006 <sup>105,111</sup> Multicentre, double-blind Infliximab treatment: four infusions at 0, 2 and 6 weeks and 14 weeks Duration of follow-up: 22 weeks <sup>d</sup>          | Placebo + MTX (mean 14 mg per week) Infliximab 3 mg kg <sup>-1</sup> i.v. + MTX (mean 14 mg per week) Infliximab 10 mg kg <sup>-1</sup> i.v. + MTX (mean 14 mg per week)                   | 363<br>360<br>361 | 52<br>53<br>51         | 10.2<br>10.3<br>9.1                    | NR (25%<br>receiving 2<br>or more<br>DMARDs) | 59<br>59<br>59        | 39<br>14<br>43      | (Mean)<br>1.4<br>1.5             |
|                                                                                                                                                                                                 |                                                                                                                                                                                            |                   |                        |                                        |                                              |                       |                     | continued                        |

**TABLE 12** Description of included RCTs and baseline patient characteristics: infliximab (cont'd)

| Study and description                                                                                                                               | Interventions                                                        | No. of<br>patients | Mean<br>age<br>(years) | Mean<br>disease<br>duration<br>(years) | No. of<br>previous<br>DMARDs | On<br>steroids<br>(%)   | On<br>NSAIDs<br>(%) | Mean<br>baseline<br>HAQ<br>score |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|------------------------|----------------------------------------|------------------------------|-------------------------|---------------------|----------------------------------|
| Quinn et al., 2005 <sup>141</sup><br>UK, single centre, double-blind<br>Infliximals treatment: reneated infusion                                    | Placebo + MTX (starting 7.5, increasing to                           | 0                  | 53                     | 0.5                                    | 0                            | 0                       | Z                   | (Median)<br>I.3                  |
| at 0, 2 and 6 weeks then every 8 weeks Infliximab 3 mg kg <sup>-1</sup> i.v. until week 46 (as above)  Duration of follow-up: 54 weeks <sup>e</sup> | Infliximab 3 mg kg <sup>-1</sup> i.v. every 8 weeks + MTX (as above) | <u>o</u>           | 15                     | 9.0                                    | 0<br>(Not<br>permitted)      | 0<br>(Not<br>permitted) |                     | <u></u>                          |

<sup>a</sup> Extension study with continuous treatment and follow-up to 102 weeks not included in the current review; see text for details (p. 53).  $^b$  Excluding MTX.

Duration of follow-up: 54 weeks

<sup>c</sup> Open label, non-comparative extension with three additional infusions of infliximab 10 mg kg<sup>-1</sup> at weeks 12, 20 and 28 and follow-up to week 40 not included in the current review.

<sup>d</sup> Patients in placebo arm switched to infliximab 3 mg kg<sup>-1</sup> at week 22 and all group continued treatments for 46 weeks. Results beyond 22 weeks are not included in the current

<sup>e</sup> Open-label extension and follow-up to 104 weeks not included in the current review as other DMARDs could be introduced during the extension.

TABLE 13 Quality of included RCTs: infliximab

| Study                                                                                   | Sample size                     | Truly random                                        | Adequate                  | Blinding               |                            |                        | Important                                                                 | Important                                                                                    | Use of ITT                                                       |
|-----------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------|------------------------|----------------------------|------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                                                                         |                                 | allocation/<br>Remain on<br>randomised<br>treatment | ailocation<br>concealment | Participants           | Participants Investigators | Assessors              | differences in<br>baseline<br>characteristics<br>between<br>groups (item) | differences in<br>completion rates<br>between groups<br>(% randomised<br>patients completed) | analysis                                                         |
| Elliott, 1994 <sup>136</sup>                                                            | Placebo: 24<br>Infliximab: 49   | Yes                                                 | Unclear                   | Yes                    | Yes                        | Yes                    | o<br>V                                                                    | No (only one patient<br>withdrew and<br>was replaced)                                        | Yes                                                              |
| Maini, 1998 <sup>137</sup>                                                              | Placebo: 14<br>Infliximab: 87   | Unclear                                             | Yes                       | Yes                    | Unclear                    | Yes                    | Yes (HAQ)                                                                 | Yes<br>Placebo: 43%<br>Infliximab: 83%                                                       | Unclear (yes<br>for Paulus<br>response)                          |
| Kavanaugh,<br>2000 <sup>138</sup>                                                       | Placebo: 7<br>Infliximab: 21    | Yes                                                 | Yes                       | Yes                    | Unclear                    | Unclear                | NA<br>(sample size<br>too small)                                          | No<br>Placebo: 100%<br>Infliximab:100%                                                       | No (except<br>ACR<br>responses)                                  |
| ATTRACT<br>Up to week 54:<br>Maini, 1999; <sup>132</sup><br>Lipsky, 2000 <sup>133</sup> | Placebo: 88<br>Infliximab: 340  | Yes                                                 | Yes                       | Yes                    | Yes                        | Yes                    | °Z                                                                        | Yes<br>Placebo: 50%<br>Infliximab: 79%                                                       | Yes (except<br>radiographic<br>and safety<br>outcomes)           |
| Week 102:<br>Maini, 2004; <sup>134</sup><br>clinical study<br>report                    | Placebo: 28<br>Infliximab: 231  | Partiall ہے۔                                        | ¥ Z                       | Partially <sup>a</sup> | Partially°                 | Partially <sup>a</sup> | (61%<br>randomised<br>patients entering<br>extension)                     | Yes<br>Placebo: 16%<br>Infliximab: 59%                                                       | Yes (except<br>SF-36,<br>radiographic<br>and safety<br>outcomes) |
| START: Westhovens, 2006;*** clinical study report                                       | Placebo: 363<br>Infliximab: 721 | Yes                                                 | Yes                       | Yes                    | Ýes                        | Yes                    | o<br>Z                                                                    | No<br>Placebo: 94%<br>Infliximab: 92%                                                        | Yes                                                              |
| ASPIRE: St Clair,<br>2004; <sup>135</sup><br>clinical study<br>report                   | Placebo: 291<br>Infliximab: 749 | Yes                                                 | Yes                       | Yes                    | Yes                        | Yes                    | o<br>Z                                                                    | No<br>Placebo: 82%<br>Infliximab: 86%                                                        | <sup>9</sup> o Z                                                 |
|                                                                                         |                                 |                                                     |                           |                        |                            |                        |                                                                           |                                                                                              | continued                                                        |

TABLE 13 Quality of included RCTs: infliximab (cont'd)

| Study                       | Sample size                                      | Truly random                                        |                           | Blinding     |                                                                |           | Important                                                                 | Important                                                                        | Use of ITT |
|-----------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------|--------------|----------------------------------------------------------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------|
|                             |                                                  | allocation/<br>Remain on<br>randomised<br>treatment | allocation<br>concealment | Participants | allocation<br>concealment Participants Investigators Assessors | Assessors | differences in<br>baseline<br>characteristics<br>between<br>groups (item) | differences in completion rates between groups (% randomised patients completed) | analysis   |
| Taylor, 2004 <sup>140</sup> | Placebo: 12<br>Infliximab: 12                    | Unclear                                             | Yes                       | Yes          | Yes                                                            | Yes       | <u>8</u>                                                                  | No (one patient<br>withdrew, but did not<br>state which arm)                     | o<br>Z     |
| Durez, 2004 <sup>139</sup>  | Methylprednisolone: 15 Unclear<br>Infliximab: 12 | Unclear                                             | Unclear                   | °Z           | Unclear                                                        | Yes       | o<br>Z                                                                    | Unclear                                                                          | Unclear    |
| Quinn, 2005 <sup>141</sup>  | Placebo: 10<br>Infliximab: 10                    | Yes                                                 | Unclear                   | Yes          | Yes                                                            | Yes       | °Z                                                                        | No<br>Placebo: 10/10<br>Infliximab: 9/10                                         | Yes        |

54. Únblinding occurred in 12% of patients before completion of all HAQ evaluations. Ninety-four of the 259 patients had a gap of more than 8 weeks between treatments because of the timing of the protocol amendment. The mean length of time for which infliximab was suspended was 19.4 weeks.

<sup>b</sup> Before unblinding, 45 patients at two study sites were excluded from the efficacy analysis (16 in the MTX–placebo group, 14 in the MTX–3 mg kg<sup>-1</sup> infliximab group and 15 in the MTX–6 mg kg<sup>-1</sup> infliximab group) because their study data could not be verified with source documents. Only 28 (32%) of the those allocated MTX in year I continued compared with 231 (68%) of those on infliximab plus MTX. For ethical reasons the study was unblinded at week

per week and escalated to up to 25 mg per week depending on disease activity) and methotrexate combined with infliximab 3 mg kg<sup>-1</sup> i.v. every 8 weeks. Patients with early RA, judged to have a poor prognosis, were treated for 12 months, with a further open-label phase up to 24 months. The latter data are not included in this review as other DMARDs could be introduced during the extension. RA patients with symptoms for less than 12 months and no previous treatment with DMARDs or oral corticosteroids were recruited. Metacarpophalangeal joint disease and poor prognosis according to a scoring system based on rheumatoid factor positivity, genetic markers, CRP, gender and HAQ score were required. The primary end-point was MRI-measured synovitis at week 14. Allocation concealment was not clearly stated.

# **BeSt: Goekoop-Ruiterman and colleagues** 108,143,144

This important trial compared four strategies for using DMARDs, rather than individual drugs. Patients with RA diagnosed within 2 years were recruited. Because patients received infliximab in all arms, this trial does not meet the inclusion criteria defined in the current protocol, which sought comparative studies of TNF inhibitors against alternative treatments. Nor can its results be incorporated meaningfully in the metaanalyses. Nevertheless, it is reported in detail here, as it is important evidence to inform guidance on appropriate use of infliximab. The primary end-points of BeSt were HAQ and radiographic joint damage according to the van der Heijde modified Sharp score after 1 year of follow-up. A sequence of drug treatments was strictly defined and patients moved along the sequence of therapies based on their response. Those who did not achieve a DAS of 2.4 or less, based on evaluation of 44 joints (Appendix 1), moved to the next step in the defined sequence. A sustained response to therapy, defined as DAS of < 2.4 for 6 months, led to a tapering of drug treatment (prednisolone and infliximab were always tapered first) that was strictly specified and included contingencies for disease relapse. The protocol also specified the required steps when drug toxicity occurred. This trial was co-sponsored by Schering-Plough and the Dutch College of Health Insurance. Drugs used in the treatment strategies were as follows.

• Group 1: sequential monotherapy (126 patients): methotrexate 15 mg per week; methotrexate 25 mg per week; sulfasalazine 2 g per day; leflunomide 20 mg per day;

- methotrexate 25 mg per week and infliximab 3 mg kg<sup>-1</sup> (according to licensed use in RA); methotrexate 25 mg week and infliximab 6 mg kg<sup>-1</sup> (maintenance interval 8 weeks); methotrexate 25 mg week and infliximab 7.5 mg kg<sup>-1</sup> (maintenance interval 8 weeks); methotrexate 25 mg per week and infliximab 10 mg kg<sup>-1</sup> (maintenance interval 8 weeks); intramuscular gold 50 mg weekly with intramuscular methylprednisolone (120 mg at weeks 1, 4 and 8); methotrexate 25 mg per week and ciclosporin 2.5 mg kg<sup>-1</sup> and prednisolone 7.5 mg per day.
- Group 2: step-up combination therapy (121 patients): methotrexate 15 mg per week; methotrexate 25 mg per week; methotrexate 25 mg per week and sulfasalazine 2 g per day; methotrexate 25 mg per week and sulfasalazine 2 g per day and hydroxychloroquine 400 mg per day; the previous sequence and prednisolone 7.5 mg per day; methotrexate 25 mg per week and infliximab 3 mg kg<sup>-1</sup> (licensed schedule); this combination with increasing doses of infliximab, as above; methotrexate, ciclosporin and prednisolone, as above; leflunomide 20 mg per day.
- Group 3: initial combination with prednisolone (133 patients): methotrexate 7.5 mg per week, sulfasalazine 2 g per day and prednisolone (60 mg reducing to 7.5 mg over 7 weeks); methotrexate, ciclosporin A and prednisolone, as above; methotrexate and infliximab with increasing doses of infliximab, as above; leflunomide 20 mg per day; gold and methylprednisolone, as above; azathioprine 2–3 mg per kg<sup>-1</sup> and prednisolone 7.5 mg per day.
- Group 4: initial combination with infliximab (128 patients): methotrexate 25 mg per week and infliximab starting at 3 mg kg<sup>-1</sup> (licensed schedule) and increasing dose of infliximab, as above, up to 10 mg kg<sup>-1</sup>; sulfasalazine alone 2 g per day; leflunomide 20 mg per day; methotrexate, ciclosporin and prednisolone, as above; gold and methylprednisolone, as above; azathioprine and prednisolone, as above.

Concomitant therapy with NSAIDs and intraarticular steroid injections, but no other parenteral or oral steroids, was allowed. Permitted doses of intra-articular steroids were not stated; it is known that intra-articular steroids produce high serum levels and can inhibit adrenal steroid production. <sup>145</sup>

A total of 508 patients was randomly allocated to a treatment strategy and assessed every 3 months by

TABLE 14 Key outcomes for the BeSt study

|                                                                  |                                      | Treatm                            | ent sequence                                           |                                                      |
|------------------------------------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Outcome                                                          | Group I<br>Sequential<br>monotherapy | Group 2<br>Step-up<br>combination | Group 3<br>Initial<br>combination<br>with prednisolone | Group 4<br>Initial<br>combination<br>with infliximab |
| HAQ (mean ± SD)                                                  |                                      |                                   |                                                        |                                                      |
| Baseline                                                         | $1.4 \pm 0.7$                        | $1.4 \pm 0.6$                     | $1.4 \pm 0.7$                                          | $1.4 \pm 0.7$                                        |
| 3 months                                                         | $1.0 \pm 0.7$                        | $1.0 \pm 0.6$                     | $0.6 \pm 0.6$                                          | $0.6 \pm 0.6$                                        |
| 12 months                                                        | $0.7 \pm 0.7$                        | $0.7 \pm 0.6$                     | $0.5 \pm 0.5$                                          | $0.5 \pm 0.5$                                        |
| DAS44 (mean ± SD)                                                |                                      |                                   |                                                        |                                                      |
| Baseline                                                         | $4.5 \pm 0.9$                        | $4.5 \pm 0.8$                     | $4.4 \pm 0.9$                                          | $4.3 \pm 0.9$                                        |
| 3 months                                                         | $3.5 \pm 1.1$                        | $3.5 \pm 1.2$                     | $2.4 \pm 1.0$                                          | 2.6 ± 1.1                                            |
| 12 months                                                        | $2.3 \pm 1.1$                        | $2.2 \pm 1.0$                     | $2.0 \pm 0.9$                                          | $2.0 \pm 1.0$                                        |
| ACR20                                                            |                                      |                                   |                                                        |                                                      |
| 3 months                                                         | 30%                                  | 37%                               | 71%                                                    | 60%                                                  |
| 12 months                                                        | 64%                                  | 63%                               | 78%                                                    | 79%                                                  |
| ACR50                                                            |                                      |                                   |                                                        |                                                      |
| 3 months                                                         | 7%                                   | 9%                                | 48%                                                    | 39%                                                  |
| 12 months                                                        | 43%                                  | 46%                               | 62%                                                    | 62%                                                  |
| ACR70                                                            |                                      |                                   |                                                        |                                                      |
| 3 months                                                         | 2%                                   | 3%                                | 21%                                                    | 19%                                                  |
| 12 months                                                        | 19%                                  | 22%                               | 30%                                                    | 40%                                                  |
| Increase in total<br>van der Heijde–Sharp score:<br>Median (IQR) | 2.0 (0.0–7.4)                        | 2.5 (0.0–6.0)                     | 1.0 (0.0–2.5)                                          | 0.5 (0.0–2.3)                                        |

a research nurse who was blinded to treatment allocation. Patients had a mean age of between 54 and 55 years, 68% were women, all met ARA disease classification criteria despite a median time from diagnosis of 2 weeks, and 65% had a positive rheumatoid factor blood test.

Key outcomes of this study are shown in the Table 14. Patients in groups 3 and 4 improved more rapidly than those in groups 1 and 2 (p < 0.001), but at 1 year differences were less marked (p < 0.009). No statistically significant differences were found on comparing group 1 with group 2, or on comparing group 3 with group 4. Similarly, significantly less radiographic progression (p < 0.007 or less) was seen in groups 3 and 4 than in groups 1 and 2, at 1 year. Radiographic joint damage did not progress in 67%, 73%, 87% and 93% of patients in groups 1 to 4, respectively. Minor gastrointestinal and skin reactions were the most frequently reported adverse events. Ten patients (8%) in group 4 had an infusion reaction to infliximab necessitating drug cessation. SAEs occurred in 6%, 7%, 13% and 5% in groups 1–4, respectively; no clear pattern of adverse reactions was noted.

Of the 128 patients allocated to group 4, which included infliximab at inception, two patients (1.6%), who had latent tuberculosis, declined prophylactic antituberculosis therapy. The percentages of patients receiving infliximab in groups 1, 2 and 3 after 12 months or more were 20%, 3% and 6%, respectively; recall that patients in this trial had therapies withdrawn because of a sustained DAS of <2.4, starting first with prednisolone followed by infliximab in group 1, for example.

After 1 year, 81% of patients in group 4 had not progressed to the next treatment. For groups 1–3 this figure was 39%, 37% and 74%, respectively. Notably, 50% of these patients in group 4 had stopped infliximab and 78% in group 3 had stopped prednisolone because of a sustained DAS of <2.4. By contrast, less than 50% of patients in groups 1 and 2 could be managed with methotrexate alone and had moved along the sequence to another DMARD. The data for groups 1 and 2 are inconsistent with clinical experience and published data for methotrexate in early RA. The authors concluded that initial combination therapy with infliximab or prednisolone had

significant advantages over sequential monotherapy with DMARDs or step-up combination DMARD use.

#### Meta-analysis of infliximab results

The principles of analysis and data presentation of infliximab trials are the same as described in the section 'Data analysis' (p. 14), towards the beginning of this chapter.

#### Infliximab versus other active treatment

The licence for infliximab stipulates that infliximab has to be used in conjunction with methotrexate, thus head-to-head comparison between infliximab and methotrexate is not considered here. However, relevant data from a small, dose-ranging study<sup>137</sup> are summarised in *Table 74* (Appendix 4). Infliximab 3 mg kg<sup>-1</sup> at 0, 2 and 6 weeks was more effective in all efficacy outcomes than a single infusion of methylprednisolone (1 g i.v.) in a small open-label RCT by Durez and colleagues.<sup>139</sup>

# Infliximab versus placebo (with concurrent, ongoing methotrexate)

Two trials (START<sup>105,11</sup> and ATTRACT<sup>133</sup>) compared infliximab at licensed dose to placebo in patients who had had an inadequate response

to methotrexate treatment. The results for these primary analyses (licensed dose) are summarised in *Table 15* and the upper parts of *Figures 35–45*. Additional data from a small, dose-ranging study<sup>136</sup> for the comparison between infliximab alone (not licensed use) and placebo without concomitant methotrexate are not considered here but are summarised in *Table 74* (Appendix 4).

*Efficacy* Infliximab was significantly more effective than placebo for all the efficacy outcomes being meta-analysed.

Tolerability Significant heterogeneity in withdrawal for any reasons was observed between ATTRACT and START (test for heterogeneity p = 0.03). Infliximab was better tolerated than placebo in ATTRACT but not in the START.

*Safety* No significant differences were found between infliximab and placebo in any of the safety outcomes being meta-analysed. The number of patients who had malignancy [Commercial-inconfidence information removed].

Sensitivity analyses Three trials (Maini, <sup>137</sup> Kavanaugh <sup>138</sup> and Taylor <sup>140</sup>) included comparisons between infliximab and placebo at

| 5.43   | 2.27 (1.86 to 2.78)<br>2.46 (1.45 to 4.15)<br>2.30 (1.90 to 2.78) |
|--------|-------------------------------------------------------------------|
| 5.43   | 2.46 (1.45 to 4.15)                                               |
|        | ` ,                                                               |
| 37.37  | 2.30 (1.90 to 2.78)                                               |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
| 2.20   | 1 22 (0 74 . 2 41)                                                |
| 2.20   | 1.33 (0.74 to 2.41)                                               |
|        | 1.16 (1.01 to 1.33)                                               |
| 62.63  | 1.17 (1.02 to 1.34)                                               |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
| 100.00 |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        | 60.44<br>62.63                                                    |

**TABLE 15** Meta-analyses: infliximab i.v. licensed dose (3 mg  $kg^{-1}$  every 8 weeks) versus placebo with ongoing MTX in MTX partial responders/non-responders, end of trial

| Comparison or outcome                                            | Studies              | N included in analysis | Statistical method | Effect size (95% CI)                                  |
|------------------------------------------------------------------|----------------------|------------------------|--------------------|-------------------------------------------------------|
| ACR20 responder                                                  | 2111,133             | 858                    | RR (fixed)         | 2.30 (1.90 to 2.78)*                                  |
| ACR50 responder                                                  | 2111,133             | 858                    | RR (fixed)         | 3.20 (2.30 to 4.44)*                                  |
| ACR70 responder                                                  | 2111,133             | 858                    | RR (fixed)         | 3.16 (1.89 to 5.27)*                                  |
| RD ACR20 responder                                               | 2111,133             | 858                    | RD (fixed)         | 0.31 (0.25 to 0.37)*                                  |
| RD ACR50 responder                                               | 2111,133             | 858                    | RD (fixed)         | 0.20 (0.15 to 0.26)*                                  |
| RD ACR70 responder                                               | 2111,133             | 858                    | RD (fixed)         | 0.09 (0.05 to 0.13)*                                  |
| SJC, mean change from baseline                                   | 2111,133             | 830                    | WMD (fixed)        | -5.08 (-6.23 to -3.94)*                               |
| Patient's global assessment, mean change from baseline           | 2111,133             | 829                    | WMD (fixed)        | -I.52 (-I.89 to -I.I5)*                               |
| HAQ, mean change from baseline                                   | 2111,133             | 818                    | WMD (fixed)        | -0.27 (-0.35 to -0.19)*                               |
| DAS28, end of study result                                       | 0                    | 0                      | Not estimable      | No data available                                     |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | I 133                | 135                    | WMD (fixed)        | -5.70 (-8.58 to -2.82)*                               |
| Withdrawal for any reasons                                       | 2111,133             | 895                    | RR (random)        | 0.76 (0.36 to 1.60)                                   |
| Withdrawal due to lack of efficacy                               | I 133                | 174                    | RR (fixed)         | 0.54 (0.33 to 0.90)*                                  |
| Withdrawal due to adverse events                                 | 2111,133             | 895                    | RR (fixed)         | 1.55 (0.82 to 2.93)                                   |
| Death                                                            | 2111,133             | 895                    | RR (fixed)         | 0.33 (0.05 to 2.06)                                   |
| SAEs                                                             | 2111,133             | 895                    | RR (fixed)         | 0.84 (0.56 to 1.26)                                   |
| Malignancy: all                                                  | 2111,133             | 895                    | RR (fixed)         | 2.48 (0.49 to 12.70)                                  |
| Malignancy: skin cancer excluding melanoma                       | 2111,133             | 895                    | RR (fixed)         | 1.49 (0.25 to 8.80)                                   |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 2111,133             | 895                    | RR (fixed)         | 2.32 (0.34 to 15.62)                                  |
| Serious infection                                                | 2111,133             | 895                    | RR (fixed)         | 0.61 (0.26 to 1.46)                                   |
| Any infection                                                    | 2 <sup>111,133</sup> | 896                    | RR (fixed)         | [Commercial-in-<br>confidence information<br>removed] |

doses or dosing schedules other than that in the licence. Sensitivity analyses which include patients from these trials are summarised in *Table 75* (licensed dose and above) and *Table 76* (all doses including sublicensed dose) (Appendix 4). Results are generally consistent with the primary analyses. However, when doses above the licensed doses are included, infliximab was associated with a slight [Commercial-inconfidence information removed] in any infection (RR [Commercial-in-confidence information removed]).

Contrary to the observations from TEMPO, data from ATTRACT indicated that there was an inverse relationship between absolute HAQ

improvement and disease duration in infliximabtreated patients.

# Infliximab plus methotrexate versus

methotrexate (newly initiated methotrexate) ASPIRE<sup>135</sup> and the study by Quinn and colleagues<sup>141</sup> compared the combination of infliximab and methotrexate with methotrexate alone in methotrexate-naïve, early RA patients. The results of primary analyses (at licensed dose) are summarised in *Table 16* and are also shown in the lower parts of *Figures 35–45*.

*Efficacy* Infliximab combined with methotrexate is more effective than methotrexate alone. The differences between the combination and

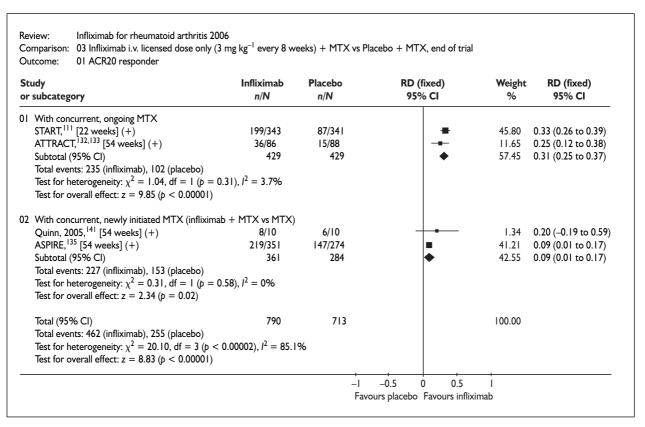
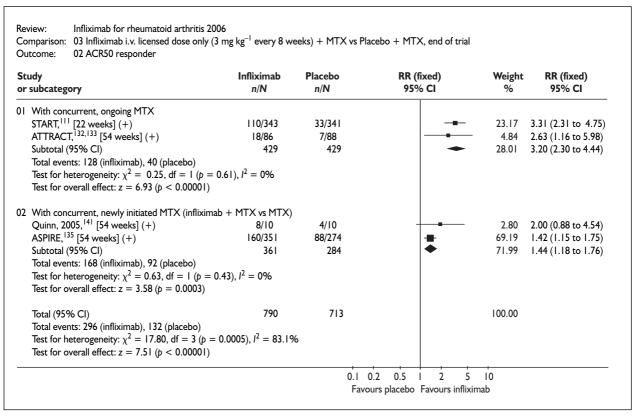




FIGURE 36 ACR20 RD: infliximab licensed dose versus placebo (with concurrent MTX)



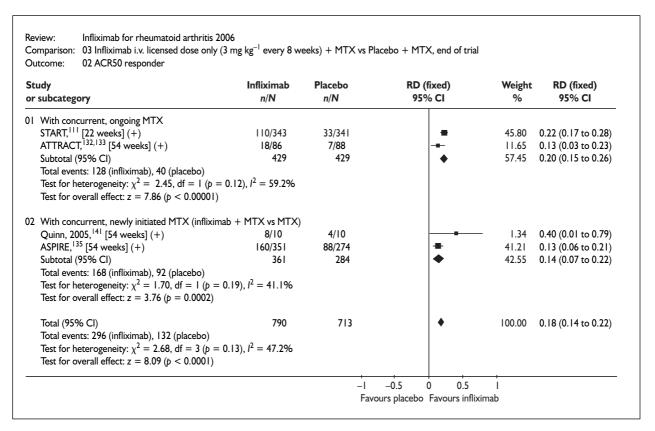



FIGURE 38 ACR50 RD: infliximab licensed dose versus placebo (with concurrent MTX)

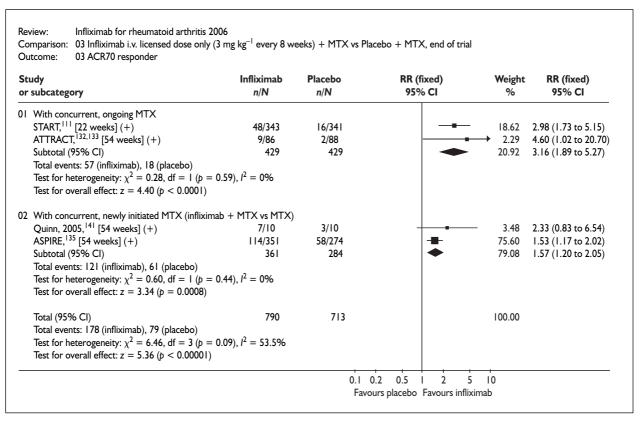



FIGURE 39 ACR70 RR: infliximab licensed dose versus placebo (with concurrent MTX)

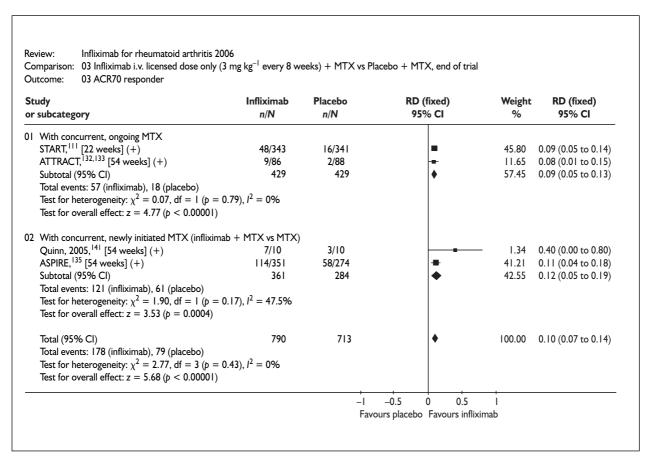
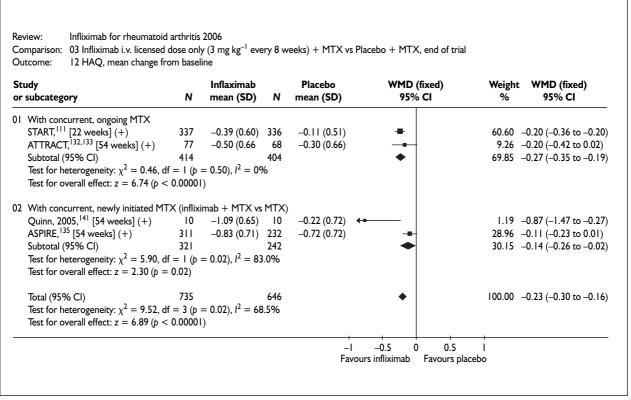




FIGURE 40 ACR70 RD: infliximab licensed dose versus placebo (with concurrent MTX)



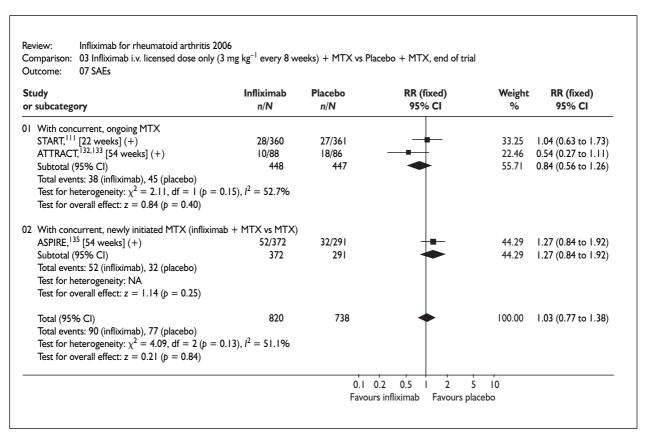



FIGURE 42 SAE RR: infliximab licensed dose versus placebo (with concurrent MTX)

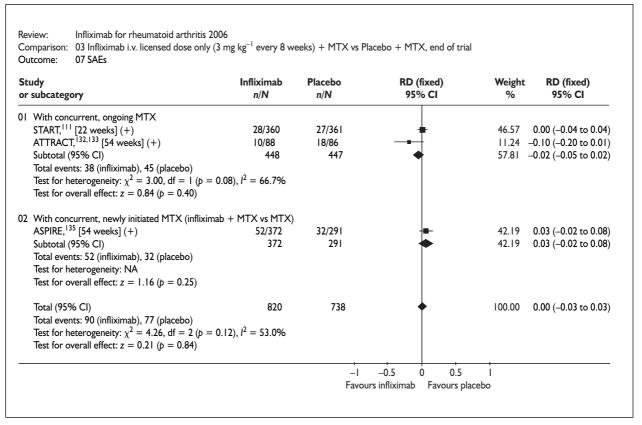



FIGURE 43 SAE RD: infliximab licensed dose versus placebo (with concurrent MTX)

**FIGURE 44** Malignancy RR: infliximab licensed dose versus placebo (with concurrent MTX)

[Commercial-in-confidence information removed].

**FIGURE 45** Malignancy RD: infliximab licensed dose versus placebo (with concurrent MTX)

[Commercial-in-confidence information removed].

methotrexate monotherapy were statistically significant for all the efficacy outcomes being meta-analysed, except for patient's global assessment of disease activity.

Tolerability The combination is associated with significantly fewer withdrawals owing to lack of efficacy (RR = 0.21, 95% CI 0.09 to 0.47), but significantly more withdrawals owing to adverse events (RR 2.99, 95% CI 1.49 to 6.03).

Safety The combination is associated with a significantly increased risk of serious infection (RR 2.74, 95% CI 1.12 to 6.70). No significant differences were found for other safety outcomes being meta-analysed.

**TABLE 16** Meta-analyses: combination of infliximab i.v. licensed dose only) plus MTX versus MTX alone in MTX-naïve patients, end of trial

| Comparison or outcome                                            | Studies          | N included in analysis | Statistical method | Effect size (95% CI)                                  |
|------------------------------------------------------------------|------------------|------------------------|--------------------|-------------------------------------------------------|
| ACR20 responder                                                  | 2135,141         | 645                    | RR (fixed)         | 1.17 (1.02 to 1.34)*                                  |
| ACR50 responder                                                  | 2135,141         | 645                    | RR (fixed)         | 1.44 (1.18 to 1.76)*                                  |
| ACR70 responder                                                  | 2135,141         | 645                    | RR (fixed)         | 1.57 (1.20 to 2.05)*                                  |
| RD ACR20 responder                                               | 2135,141         | 645                    | RD (fixed)         | 0.09 (0.01 to 0.17)*                                  |
| RD ACR50 responder                                               | 2135,141         | 645                    | RD (fixed)         | 0.14 (0.07 to 0.22)*                                  |
| RD ACR70 responder                                               | 2135,141         | 645                    | RD (fixed)         | 0.12 (0.05 to 0.19)*                                  |
| SJC, mean change from baseline                                   | I 135            | 540                    | WMD (fixed)        | -3.00 (-4.91 to -1.09)*                               |
| Patient's global assessment, mean change<br>from baseline        | I 135            | 536                    | WMD (fixed)        | -0.40 (-0.95 to 0.15)                                 |
| HAQ, mean change from baseline                                   | 2135,141         | 563                    | WMD (fixed)        | -0.14 (-0.26 to -0.02)*                               |
| DAS28, end of study result                                       | 2135,141         | 549                    | WMD (fixed)        | -0.69 (-0.99 to -0.39)*                               |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | I 135            | 641                    | WMD (fixed)        | -3.28 (-4.55 to -2.01)*                               |
| Withdrawal for any reasons                                       | I 135            | 665                    | RR (fixed)         | 0.87 (0.64 to 1.19)                                   |
| Withdrawal due to lack of efficacy                               | I 135            | 665                    | RR (fixed)         | 0.21 (0.09 to 0.47)*                                  |
| Withdrawal due to adverse events                                 | 2135,141         | 685                    | RR (fixed)         | 2.99 (1.49 to 6.03)*                                  |
| Death                                                            | I 135            | 663                    | RR (fixed)         | 0.39 (0.04 to 4.29)                                   |
| SAEs                                                             | I 135            | 663                    | RR (fixed)         | 1.27 (0.84 to 1.92)                                   |
| Malignancy: all                                                  | I 135            | 663                    | RR (fixed)         | [Commercial-in-<br>confidence information<br>removed] |
| Malignancy: skin cancer excluding melanoma                       | I <sup>135</sup> | 663                    | RR (fixed)         | [Commercial-in-<br>confidence information<br>removed] |
| Malignancy: all cancer excluding non-melanoma skin cancer        | I 135            | 663                    | Not estimable      | No event                                              |
| Serious infection                                                | I 135            | 663                    | RR (fixed)         | 2.74 (1.12 to 6.70)*                                  |
| Any infection                                                    | I 135            | 663                    | RR (fixed)         | [Commercial-in-<br>confidence information<br>removed] |

<sup>\*</sup> Statistically significant result (p < 0.05).

Sensitivity analyses Results which include additional patients treated with above the licensed dose (6 mg kg<sup>-1</sup> every eight weeks) in the ASPIRE trial are summarised in *Table 77* (Appendix 4). Data are generally consistent with the primary analyses and show a slightly increased effect size for efficacy outcomes, except for the modified Sharp score. When the above-licensed dose is included, the combination of infliximab plus methotrexate is associated with an increased risk of both serious infection (RR 2.59, 95% CI 1.11 to 6.04) and [Commercial-in-confidence information removed]. [Commercial-in-confidence information removed] patients developed malignancy in the 6 mg kg<sup>-1</sup> group compared with [Commercial-in-confidence information **removed**] in the 3 mg kg<sup>-1</sup> group in ASPIRE.

# Summary of effectiveness review and additional evidence

Results of the primary meta-analyses (licensed dose only) for the three TNF inhibitors for the key outcomes are summarised in *Table 17*. A brief description for each type of comparison is provided below.

# TNF inhibitors versus DMARDs Volume of evidence

Only one adalimumab trial (PREMIER<sup>102</sup>, n = 531 in the relevant arms) and two etanercept trials (ERA<sup>123</sup>, n = 424 and TEMPO<sup>127</sup>, n = 451) allow head-to-head comparison between a TNF inhibitor (at licensed dose) and methotrexate. No trial compared a TNF inhibitor with other conventional DMARDs.

#### Direction of effect

Adalimumab monotherapy was marginally less effective than methotrexate monotherapy in reducing RA symptoms and improving physical function in early RA patients naïve to methotrexate treatment, and did not offer better tolerability over methotrexate. By contrast, etanercept alone was slightly more effective than methotrexate alone in early RA patients who were naïve to methotrexate treatment and in patients with longer disease duration who had no history of treatment failure with methotrexate. Etanercept was better tolerated than methotrexate in these patients. Both adalimumab and etanercept were significantly more effective than methotrexate in slowing radiographic joint damage, but the clinical relevance of these differences is unclear. No significant differences between methotrexate and adalimumab and etanercept were found for the

safety outcomes, including deaths, SAEs, malignancy, serious infections and any infections. However, this may be due to the relatively small number of patients included in the analyses. Large pragmatic trials and careful postmarketing surveillance, including record linkage studies, are needed to compare the relative safety of TNF inhibitors compared with methotrexate and other DMARDs.

# **TNF** inhibitors versus placebo *Volume of evidence*

The majority of RCTs included in this review compared TNF inhibitors with placebo. Five adalimumab trials<sup>112–115,119</sup> involving 1861 patients, eight etanercept trials<sup>103,104,121,122,125,126,129,130</sup> involving 1715 patients, and two infliximab trials<sup>105,133</sup> involving 895 patients were included in the primary metanalyses.

#### Direction of effect

All three TNF inhibitors were significantly more effective in controlling the symptoms of RA, improving physical function and retarding radiographic joint damage and were associated with few treatment withdrawals compared with placebo. Use of above-licensed doses slightly increased the treatment effect for adalimumab and infliximab, but was associated with an increased risk of any infection and serious infections. More patients treated with adalimumab and infliximab had cancer, but this did not reach statistical significance. No increased risk of infection or malignancy was found for etanercept compared with placebo.

# Combination of TNF inhibitor plus methotrexate versus methotrexate *Volume of evidence*

Four trials compared a TNF inhibitor (at licensed dose) combined with methotrexate to methotrexate alone in patients naïve to, or who had not previously failed methotrexate: PREMIER<sup>102</sup> (n=525) for adalimumab; TEMPO<sup>127</sup> (n=459) for etanercept; ASPIRE<sup>135</sup> (n=665) for infliximab; Quinn 2005<sup>141</sup> (n=20) for infliximab.

#### Direction of effect

A TNF inhibitor combined with methotrexate was significantly more effective than methotrexate monotherapy in controlling RA symptoms, improving physical function and slowing radiographic joint damage for all three TNF inhibitors. Fewer patients on combination therapy withdrew from treatment, but the difference was not statistically significant for the infliximab

TABLE 17 Summary of the results of primary analyses for key outcomes included in this review

| TNF inhibitor<br>and population                                  | ACR20<br>RR <sup>c</sup> : (95% CI)<br>(and NNT)      | ACR70<br>RR <sup>4</sup> : (95% CI)<br>(and NNT) | HAQ change<br>Mean difference <sup>b</sup><br>(95% CI) | Modified Sharp score<br>Mean difference <sup>b</sup><br>(95% CI)                               | Withdrawal for<br>any reasons<br>RR <sup>c</sup> (95% CI) | SAEs<br>RR <sup>c</sup> (95% CI)                         | Serious infections<br>RR <sup>c</sup> (95% CI)<br>(and NNH) |
|------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| <b>Anti-TNF vs MTX</b> Adalimuma (early RA) <sup>b</sup>         | 0.88 (0.75 to 1.03)                                   | 0.99 (0.75 to 1.30)                              | 0.00 (-0.13 to 0.13)                                   | -2.70 (-4.74 to -0.66)/ I year, -4.90 ([Commercial-in-confidence information removed])/2 years | 1.14 (0.91 to 1.43)                                       | [Commercial-in-<br>confidence<br>information<br>removed] | [Commercial-in-confidence<br>information removed]           |
| Etanercept<br>(early RA)                                         | 1.22 (1.06 to 1.40)<br>NNT 7.7<br>(4.5 to 25.0)       | 1.23 (0.89 to 1.70)                              | -0.10 (-0.23 to 0.03)                                  | –0.97 (–1.65 to –0.29)/<br>l year                                                              | 0.63 (0.48 to 0.84)                                       | N<br>N                                                   | 0.82 (0.31 to 2.15)                                         |
| Etanercept<br>(established RA)                                   | I.28 (I.06 to I.54)<br>NNT 8.3<br>(4.8 to 33.3)       | 1.46 (1.00 to 2.14)                              | -0.10 (-0.23 to 0.03)                                  | –2.28 (–4.11 to –0.45)/<br>l year                                                              | 0.81 (0.65 to 1.00)                                       | l.10 (0.75 to 1.61)                                      | 0.95 (0.85 to 1.06)                                         |
| Anti-TNF versus placebo Adalimumab (established RA) NN           | cebo<br>2.11 (1.84 to 2.42)<br>NNT 3.6 (3.1 to 4.2)   | 5.22 (3.45 to 7.89)<br>NNT 7.7 (5.9, 11.1)       | -0.31 (-0.36 to -0.26)                                 | -0.31 (-0.36 to -0.26) -2.20 (-3.33 to -1.07)/<br>l year                                       | 0.62 (0.53 to 0.73)                                       | 1.05 (0.78 to 1.41)                                      | 2.35 (1.00 to 5.53)                                         |
| Etanercept<br>(established RA)                                   | 3.59 (2.89 to 4.46)<br>NNT 2.1 (1.9 to 2.4)           | 9.44 (3.98 to 22.38)<br>NNT 7.7 (6.3 to 10.0)    | <b>-0.50 (-0.59 to -0.42)</b> No data available        | No data available                                                                              | 0.37 (0.29 to 0.46)                                       | 1.25 (0.75 to 2.08)                                      | 0.78 (0.37 to 1.62)                                         |
| Infliximab<br>(established RA)                                   | 2.30 (1.90 to 2.78)<br>NNT 3.2 (2.7 to 4.0)           | 3.16 (1.89 to 5.27)<br>NNT 11.1 (7.7 to 20.0)    |                                                        | -0.27 (-0.35 to -0.19) -5.70 (-8.58 to -2.82)/<br>l year                                       | 0.76 (0.36 to 1.60)                                       | 0.84 (0.56 to 1.26)                                      | 0.61 (0.26 to 1.46)                                         |
| Anti-TNF + MTX vs MTX<br>Adalimumab + MTX 1.24<br>(early RA) NNT | : MTX<br>I.24 (I.08 to I.42)<br>NNT 7.7 (4.5 to 20.0) | 1.64 (1.30 to 2.07)<br>NNT 5.6 (3.8 to 10.0)     | -0.10 (-0.23 to 0.03)                                  | -4.40 (-6.14 to -2.66)/<br>l year [Commercial-in-<br>confidence information<br>removed]        | 0.71 (0.54 to 0.93)                                       | [Commercial-in-<br>confidence<br>information<br>removed] | [Commercial-in-confidenceinformation                        |
| Etanercept + MTX (established RA)                                | I.49 (I.25 to I.77)<br>NNT 4.5 (3.3 to 7.7)           | 2.53 (1.82 to 3.54)<br>NNT 4.0 (3.0 to 5.9)      | –0.40 (–0.52 to –0.28)                                 | -0.40 (-0.52 to -0.28) -3.34 (-5.12 to -1.56]/<br>l year                                       | 0.61 (0.48 to 0.77)                                       | 1.25 (0.87 to 1.81)                                      | 0.86 (0.42 to 1.76)                                         |
| Infliximab + MTX<br>(early RA)                                   | I.17 (1.02 to 1.34)<br>NNT 11.1 (5.9 to 100)          | 1.57 (1.20 to 2.05)<br>NNT 8.3 (5.3 to 20.0)     |                                                        | -0.17 (-0.29 to -0.06) -3.28 (-4.55 to -2.01]/<br>l year                                       | 0.87 (0.64 to 1.19)                                       | 1.27 (0.84 to 1.92)                                      | 2.74 (1.12 to 6.70)<br>NNH 25 (16.7 to 100)                 |
|                                                                  |                                                       |                                                  |                                                        |                                                                                                |                                                           |                                                          |                                                             |

Bold type indicates statistically significant results  $\rho<0.05$   $^{o}$  RR> | favours anti-TNFs.  $^{b}$  Negative value favours anti-TNFs.  $^{c}$  RR<| favours anti-TNFs. NNH, number needed to harm.

combination, which was associated with nearly a three-fold increase in withdrawal owing to adverse events (RR 2.99, 95% CI 1.49 to 6.03) and serious infections (RR 2.74, 95% CI 1.12 to 6.70). Adalimumab combined with methotrexate was associated with a slight, but significant increase in [Commercial-in-confidence information removed]. Risks of serious infection (RR [Commercial-in-confidence information removed]) and withdrawal owing to adverse events (RR = 1.62, 95% CI 0.94 to 2.77) were also increased, compared with methotrexate alone, but these did not reach statistical significance. No significant differences in safety outcomes were found between etanercept combined with methotrexate and methotrexate alone. More malignancy occurred in the combination group but this did not reach statistical significance. All three TNF inhibitors, when combined with methotrexate, showed a trend towards increased SAEs, but again this was not statistically significant.

# Additional information on effectiveness and safety

This section summarises additional evidence that is not included in the meta-analyses. Information cited in this section is collated from FDA reports, published reviews and observational studies, summaries of product characteristics, and submissions from the BSR and manufacturers of TNF inhibitor to NICE. Lack of appropriate, unbiased comparison groups is a major problem for the validity of comparative results from non-RCTs. This should be borne in mind when interpreting observational data. Issues related to tuberculosis and blood monitoring were discussed in the section 'Special precautions for use of TNF inhibitors' (p. 9) and are not described here.

#### Mortality

Mortality data from long-term follow-up programmes for patients treated with adalimumab and etanercept were reviewed by the FDA in 2003. <sup>146</sup> The observed death rates in the follow-up programmes, adjusted for age and gender, were lower than would be expected among US general populations and do not indicate a higher death rate with TNF inhibitor treatments.

#### Malignancies including lymphomas

A significant increase in the incidence of lymphoma compared with the general population was noted for all three TNF inhibitors in the 2003 FDA review. <sup>146</sup> Controversy remains with regard to whether the observed higher incidences indicate

additional risk due to TNF treatment, or whether they are in line with the increased risk of lymphoma observed in RA patients with high inflammatory activity. <sup>147–151</sup> In general, the incidence of other types of malignancies in TNF inhibitor-treated patients was found to be similar to, or lower than that observed in the general population. <sup>146,152,153</sup> and other RA populations. <sup>85,151</sup>

#### Congestive heart failure

Adalimumab and infliximab are contraindicated in moderate to severe heart failure (New York Heart Association class III or IV). Two RCTs (not included in this systematic review) that evaluated the use of etanercept in the treatment of congestive failure were terminated early owing to lack of efficacy, and data from one of these trials suggested a possible tendency towards worsening of congestive heart failure and increased all-cause mortality in patients treated with etanercept. 154,155 In another trial that evaluated the use of infliximab in congestive heart failure, no clinical benefit was observed and high-dose infliximab (10 mg kg<sup>-1</sup> at 0, 2 and 6 weeks) was associated with an increased risk for a composite outcome that included death from any cause and hospitalisation for heart failure (hazard ratio 2.84, 95% CI 1.01 to 7.97). 156

#### **Pulmonary fibrosis**

In an investigation of pulmonary fibrosis and associated death, BSRBR found that there was a two- to three-fold increase in mortality for patients with pulmonary fibrosis at baseline compared with those without it among all patients (including TNF-treated and control group) with 6 months' follow-up data. Sharp As the vast majority of the patients with pulmonary fibrosis at baseline were in the TNF-treated groups and only one death associated with pulmonary fibrosis occurred in the control group, it was not possible to conclude whether there is a potential association between TNF treatment and death associated with pulmonary fibrosis.

#### Combination of TNF inhibitors with anakinra

Results from an RCT (not included in this systematic review, see Appendix 3) by Genovese and colleagues<sup>157</sup> suggest that combination therapy with etanercept plus anakinra provided no treatment benefit over etanercept alone, and was associated with an increased risk of serious infections (0% for etanercept alone and 3.7–7.4% for combination therapy). The combination of TNF inhibitors and anakinra is therefore not recommended.

# Chapter 4

### Health economics

# Summary of review of existing economic evaluations

A comprehensive search for existing economic evaluations was undertaken. These were assessed for quality using the Consensus on Health Economic Criteria (CHEC) list.

#### **Existing economic evaluations**

Ten published economic evaluations and four unpublished economic evaluations, of which only three were available electronically, were identified and reviewed. All were of high quality meeting at least 15 of the 19 quality assessment criteria. All but one used a decision-analytic model. Most gave incremental cost-effectiveness ratios (ICERs) that suggested that the use of TNF inhibitors was under the threshold normally considered to be the limit for cost-effectiveness. Direct comparison of the ICERs between the studies is not possible because of their different approaches to modelling, time-horizons, comparators and perspective, country of origin, source of preference weights and effectiveness data used. Many of the estimates for effectiveness were derived from single trials, or a subset of trials rather than a systematic review and meta-analysis of relevant trial and observational data.

Although most were of high quality, none of them used all the appropriate parameters, effectiveness data, perspective and comparators required to make their results generalisable to the NHS context.

The aim of this section is to assess the costeffectiveness of adalimumab, etanercept and infliximab for treating RA from an NHS perspective.

This section of the report has three components:

- a review of existing economic evaluations of the use of TNF inhibitors in RA
- a technical commentary on the decision-analytic models used in the economic analyses reported in the manufacturers' submissions to NICE
- a description of the BRAM and the economic analyses of TNF inhibitors used singly or sequentially in RA patients, undertaken by the authors.

# Systematic review of economic evaluations

#### Method

#### Search strategy

The searches for clinical effectiveness were amplified to identify existing economic models and information on costs, cost-effectiveness and quality of life from the following sources:

- Bibliographic databases
  - MEDLINE (Ovid) 1966 to February 2005,
     EMBASE (Ovid) 1980 to week 9 2005
  - Cochrane Library (NHS EED) 2005 Issue 1
  - HEED February 2005
- Internet sites of national economic units
- Internet sites of regulatory authorities, e.g. FDA, EMEA.

Time and language limits were as for clinical effectiveness searches. Systematic reviews of DMARDs were sought to inform the economic analysis and provide a context for biological TNF inhibitors. The search strategy was based on the Aggressive Research Intelligence Facility (ARIF) search protocol for reviews, which includes the Cochrane Library, Clinical Evidence, MEDLINE, Bandolier, health technology assessment databases and in-house databases. Full details of search strategies are contained in Appendices 5–7.

#### Inclusion and exclusion criteria

The review is an update of a previous report. Inclusion and exclusion criteria applied for economic searches are shown in *Table 18*.

**TABLE 18** Inclusion criteria for the review on cost-effectiveness

| Study design | Cost-consequence analysis, cost-benefit analysis, cost-effectiveness analysis, cost-utility analysis, cost studies (UK only), quality of life studies |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Population   | People with RA; other forms of arthritis are excluded                                                                                                 |
| Intervention | Etanercept, infliximab or adalimumab                                                                                                                  |
| Comparator   | DMARDs                                                                                                                                                |
| Outcome      | Quality of life estimates, cost estimates, cost-effectiveness                                                                                         |

| IABLE 19 Sui | nmarv of bublishe | ed economic analyse | S |
|--------------|-------------------|---------------------|---|

| Study                               | TNF inhibitor(s)                   | Form of economic   | Model used               | Time-horizon |
|-------------------------------------|------------------------------------|--------------------|--------------------------|--------------|
|                                     | considered                         | analysis           |                          |              |
| Choi et al., 2002 <sup>159</sup>    | Etanercept                         | Cost-effectiveness | Decision tree            | 6 months     |
| Brennan et al., 2004 <sup>160</sup> | Etanercept                         | Cost-utility       | Patient-level simulation | Lifetime     |
| Wong et al., 2002 <sup>161</sup>    | Infliximab                         | Cost-utility       | Markov                   | Lifetime     |
| Kobelt et al., 2003 <sup>162</sup>  | Infliximab                         | Cost-utility       | Markov                   | 10 years     |
| Jobanputra et al., 2002             | Etanercept, infliximab             | Cost-utility       | Patient-level simulation | Lifetime     |
| Kobelt et al., 2004 <sup>163</sup>  | Etanercept, infliximab             | Cost-utility       | NA                       | NA           |
| Chiou et al., 2004 <sup>164</sup>   | Etanercept, infliximab, adalimumab | Cost-utility       | Decision tree            | l year       |
| Welsing et al., 2004 <sup>165</sup> | Etanercept                         | Cost-utility       | Markov                   | 5 years      |
| Bansback et al., 2005 166           | Etanercept, infliximab, adalimumab | Cost-utility       | Patient-level simulation | Lifetime     |
| Kobelt et al., 2005 <sup>167</sup>  | Etanercept                         | Cost-utility       | Markov                   | 10 years     |

### Study selection, data extraction, and quality assessment strategy

An experienced health economist applied the inclusion and exclusion criteria. Data were extracted by one reviewer using a predesigned data extraction form and were independently checked by a second reviewer. Data on the following were sought:

- study characteristics, such as form of economic analysis, population, interventions, comparators, perspective, time-horizon and modelling used
- effectiveness and cost parameters, such as effectiveness data, health state valuations (utilities), resource-use data, unit cost data, price year, discounting and key assumptions
- results and sensitivity analyses.

These characteristics and the main results of included economic evaluations are summarised in subsequent tables. The quality of included studies and industry submissions was assessed using the CHEC list. <sup>158</sup> The study question, selection of alternatives, form of evaluation, effectiveness data, costs, benefit measurement and valuation, decision modelling, discounting, allowance for uncertainty and presentation of results were all evaluated as part of this process.

# Results of systematic review of economic evaluations

Ten published studies, including one by the current authors, met the inclusion criteria. Given that Jobanputra describes the initial version of BRAM which is updated in this report, it will not

be further discussed here. Key features of the nine other studies are summarised in *Table 19*. In addition, all three manufacturers submitted economic analyses and models. These submissions are reviewed in detail in the section 'Review of industry cost-effectiveness submissions' (p. 80). Details of the nine studies are presented in Appendix 8, using a simplified version of the Drummond and Jefferson checklist. A summary of the ICERs for TNF inhibitors reported in published papers is provided in *Table 20*.

Four economic evaluations only considered etanercept compared with specified DMARDs or sequences of DMARDs (Table 21). Three studies were cost–utility analyses, with the cost-effectiveness ratio (ICER) reported as cost per QALY gained (Table 21). In addition to cost per QALY, Welsing and colleagues<sup>165</sup> considered cost per patient-year in three DAS28 states. Choi and colleagues 159 used the ACR20 response and a weighted average of proportions of patients achieving ACR70, ACR50 and ACR20 (ACR weighted response, ACR70WR) and reported the cost-effectiveness ratio as cost per ACR20 or ACR70WR. Brennan and colleagues<sup>160</sup> carried out the analysis from a healthcare perspective, whereas the other studies included direct and indirect costs. The four studies differed in how etanercept use was modelled: Choi and colleagues<sup>159</sup> considered etanercept alone over a short period of 6 months; Brennan and colleagues<sup>160</sup> placed etanercept as third line therapy in a DMARD sequence over a patient lifetime; Welsing and colleagues<sup>165</sup> considered three different etanercept pathways (etanercept first, then switch to conventional DMARDs if there

**TABLE 20** Summary of published ICERs for TNF inhibitor<sup>a</sup>

| Drug       | Comparator                                                                      | Study                   | Date   | Time-horizon | ICER                                                                                                                                                                                                                                                                                                            |
|------------|---------------------------------------------------------------------------------|-------------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adalimumab | DMARD sequence                                                                  | Bansback <sup>166</sup> | 2005   | Lifetime     | ACR50/DAS28 good:<br>€34,167 per QALY (MTX)<br>€34,922 per QALY (MTX) (from pooled analysis)<br>€41,561 per QALY (monotherapy)                                                                                                                                                                                  |
|            |                                                                                 |                         |        |              | ACR20/DAS28 moderate:<br>€40,875 per QALY (+ MTX)<br>€44,018 per QALY (+ MTX) (from pooled<br>analysis)<br>€65,499 per QALY (monotherapy)                                                                                                                                                                       |
|            | Anakinra                                                                        | Chiou <sup>164</sup>    | 2004   | l year       | Adalimumab alone dominated<br>Adalimumab + MTX dominated                                                                                                                                                                                                                                                        |
| Etanercept | Anakinra                                                                        | Chiou <sup>164</sup>    | 2004   | l year       | US \$13,387 per QALY (monotherapy)<br>US \$7,925 per QALY (+ MTX)                                                                                                                                                                                                                                               |
|            | DMARD sequence                                                                  | Brennan 160,168         | 3 2004 | Lifetime     | £16,330 per QALY                                                                                                                                                                                                                                                                                                |
|            | DMARD sequence                                                                  | Bansback <sup>166</sup> | 2005   | Lifetime     | ACR50/DAS28 good:<br>€35,760 per QALY (+ MTX)<br>€36,927 per QALY (monotherapy)                                                                                                                                                                                                                                 |
|            |                                                                                 |                         |        |              | ACR20/DAS28 moderate:<br>€51,976 per QALY (+ MTX)<br>€42,480 per QALY (monotherapy)                                                                                                                                                                                                                             |
|            | Baseline level<br>(failed at least<br>two DMARDs,<br>including<br>methotrexate) | Kobelt <sup>163</sup>   | 2004   | NA           | After 3 months of treatment: €43,500 per QALY<br>After 6 weeks of treatment: €36,900 per QALY                                                                                                                                                                                                                   |
|            | MTX                                                                             | Kobelt <sup>167</sup>   | 2005   | 10 years     | Etanercept alone dominated. Treatment for 2 years, extrapolation to 10 years: Etan-MTX €37,331 per QALY Treatment for 2 years, extrapolation to 5 years: Etan-MTX €54,548 per QALY Treatment for 10 years: Etan-MTX €46494 per QALY Treatment for 5 years, extrapolation to 10 years. Etan-MTX €47,316 per QALY |
|            | DMARD sequence                                                                  | Jobanputra <sup>1</sup> | 2002   | Lifetime     | £83,095 per QALY                                                                                                                                                                                                                                                                                                |
|            | Usual treatment,<br>leflunomide                                                 | Welsing <sup>165</sup>  | 2004   | 5 years      | Etanercept monotherapy dominated by leflunomide/etanercept combinations                                                                                                                                                                                                                                         |
|            |                                                                                 |                         |        |              | Etanercept vs usual treatment:<br>€163,556 per QALY for LEF–Etan<br>€297,151 per QALY for Etan–LEF                                                                                                                                                                                                              |
|            |                                                                                 |                         |        |              | Etanercept vs leflunomide:<br>€317,627 per QALY for LEF—Etan<br>€517,061 per QALY for Etan–LEF                                                                                                                                                                                                                  |
|            | Monotherapy<br>leflunomide, MTX,<br>SSZ, no second<br>line agent                | Choi <sup>159b</sup>    | 2002   | 6 months     | Etanercept-SSZ: \$41,900 per ACR20<br>Etanercept-MTX: \$40,800 per ACR70WR                                                                                                                                                                                                                                      |
| Infliximab | Placebo and MTX                                                                 | Wong <sup>161</sup>     | 2002   | Lifetime     | \$30,500 per QALY                                                                                                                                                                                                                                                                                               |
|            | MTX                                                                             | Kobelt <sup>162</sup>   | 2003   | 10 years     | For I year of treatment:<br>€3440 per QALY in Sweden<br>€34,800 per QALY in UK                                                                                                                                                                                                                                  |

TABLE 20 Summary of published ICERs for TNF inhibitor<sup>a</sup> (cont'd)

| Drug | Comparator                                                          | Study                   | Date | Time-horizon | ICER                                                                                         |
|------|---------------------------------------------------------------------|-------------------------|------|--------------|----------------------------------------------------------------------------------------------|
|      | Baseline level<br>(failed at least<br>two DMARDs,<br>including MTX) | Kobelt <sup>163</sup>   | 2004 | NA           | After 3 months of treatment €43,500 per QALY<br>After 6 weeks of treatment: €36,900 per QALY |
|      | DMARD sequence                                                      | Bansback 166            | 2005 | Lifetime     | ACR50/DAS28 good:<br>€48,333 per QALY (+ MTX)                                                |
|      |                                                                     |                         |      |              | ACR20/DAS28 moderate:<br>€64,935 per QALY (+ MTX)                                            |
|      | DMARD sequence                                                      | Jobanputra <sup>1</sup> | 2002 | Lifetime     | £115,937 per QALY                                                                            |
|      | Anakinra                                                            | Chiou <sup>164</sup>    | 2004 | l year       | Infliximab + MTX dominated                                                                   |

 $<sup>\</sup>it ^a$  Industry-sponsored studies are highlighted in shaded cells.

is no response; leflunomide followed by etanercept if there is no response to leflunomide (LEF–Etan); and finally, etanercept switching to leflunomide with non-response (Etan–LEF)]. Kobelt and colleagues <sup>167</sup> considered etanercept alone and etanercept combined with methotrexate.

Two studies found high ICERs. Choi and colleagues<sup>159</sup> suggested that recommendations regarding use depended on whether an ICER over \$40,000 per ACR20 or ACR70WR was considered acceptable. Welsing and colleagues  $^{165}$ recommended use of etanercept following leflunomide after two other DMARDs (where the first is methotrexate) had failed. In contrast, Brennan and colleagues<sup>160,168</sup> reported a much lower ICER and suggested "etanercept was costeffective when compared with non-biologic agents". Kobelt and colleagues 167 reported the ICER for etanercept in combination with methotrexate to be within the "acceptable range". Each study used a different modelling approach. Choi and colleagues<sup>159</sup> used a simple decision-tree structure and modelled costs and outcomes over 6 months. Welsing and colleagues<sup>165</sup> and Kobelt and colleagues<sup>167</sup> used a Markov model structure with a 5-year time-horizon and a 5- and 10-year timehorizon, respectively. Brennan and colleagues<sup>160</sup> developed an individual patient-level simulation model to calculate lifetime costs and outcomes. RCT data were used to model outcomes; it has been suggested that observational data are a more realistic representation of outcomes in practice and therefore more suitable for cost-effectiveness analyses. 169

Each study took different approaches; for example, the evaluation undertaken (cost-

effectiveness or cost-utility analysis), the treatment comparators and the time-horizon chosen (each used a different time-horizon, varying from 6 months to lifetime). Kobelt<sup>167</sup> used a cycle length of 1 year, which is not clinically relevant. A cycle length of around 4 months is more clinically relevant as decisions about the efficacy of DMARDs are generally made over this time. Three analyses were from a societal perspective, an approach that leads to a more favourable ICER. If a treatment is more effective, then patients are more able to work, thus leading to lower indirect costs. The Choi study<sup>159</sup> did not calculate cost per QALYs, therefore comparison with other results is not possible.

Two of the ten identified published studies report an economic analysis of infliximab in combination with methotrexate (Table 22), and were sponsored by the manufacturer Schering-Plough. Both studies were cost-utility analyses using a societal perspective and the comparator explored was methotrexate alone. The quality of life data used by Wong and colleagues 161 was based on selfreported global health using a visual analogue scale (VAS) from ATTRACT and the Arthritis, Rheumatism and Aging Medical Information System (ARAMIS) database. However, there are problems with VAS such as context bias and endpoint aversion, and the method is not truly preference based. Other methods are more appropriate, for example using a utility measure such as EuroQol 5 Dimensions (EQ-5D). Therefore, results should be treated with some caution. Costs were obtained from the ARAMIS database, based on a North American population, and are not directly transferable to a UK

<sup>&</sup>lt;sup>b</sup> Cost-effectiveness analysis; all other studies are cost-utility analyses. Etan, etanercept; LEF, leflunomide; QALY, quality-adjusted life-year.

TABLE 21 Published etanercept economic analyses

| Study                                      | Sponsor                                 | Patient<br>group | Comparator(s)                              | Base-case ICER                                                                                          |
|--------------------------------------------|-----------------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Choi et al.,<br>2002 <sup>159</sup>        | Not stated                              | RA               | Four monotherapy comparators: leflunomide, | Etanercept vs SSZ<br>\$41,900 per ACR20                                                                 |
|                                            |                                         |                  | MTX, SSZ, no second line agent             | Etanercept vs MTX<br>\$40,800 per ACR70WR                                                               |
| Welsing et al., 2004 <sup>165</sup>        | Not stated (but used data from Wyeth)   | RA               | Two comparators: usual treatment, LEF      | Etanercept alone was dominated by leflunomide/etanercept combinations                                   |
|                                            |                                         |                  |                                            | Versus usual treatment<br>€163,556 per QALY for LEF-Etan<br>€297,151 per QALY for Etan-LEF              |
|                                            |                                         |                  |                                            | Versus leflunomide:<br>€317,627 per QALY for LEF-Etan<br>€517,061 per QALY for Etan-LEF                 |
| Brennan et al.,<br>2004 <sup>160,168</sup> | Not stated (but two authors from Wyeth) | RA               | DMARD sequence                             | £16,330 per QALY                                                                                        |
| Kobelt et al.,<br>2005 <sup>167</sup>      | Wyeth Research                          | RA               | MTX                                        | Etanercept alone dominated. Treatment for 2 years, extrapolation to 10 years: Etan–MTX €37,331 per QALY |
|                                            |                                         |                  |                                            | Treatment for 2 years, extrapolation to 5 years: Etan–MTX €54,548 per QALY                              |
|                                            |                                         |                  |                                            | Treatment for 10 years:<br>Etan-MTX €46,494 per QALY                                                    |
|                                            |                                         |                  |                                            | Treatment for 5 years, extrapolation to 10 years. Etan–MTX €47,316 per QALY                             |

perspective, and the analysis was carried out from a societal perspective. The study authors concluded that infliximab with methotrexate was cost-effective, especially when including indirect costs of loss of productivity. However, costeffectiveness is dependent on the ICER threshold of the decision-maker. The effectiveness data used by the Kobelt study<sup>162</sup> is from observational data only, and uses a societal perspective, therefore giving a more favourable ICER. This perspective also leads to a large difference in ICERs between the UK and Sweden as this difference was driven by indirect costs. Differences arose owing to higher average salary and more generous long-term illness benefits in Sweden, plus a lower proportion of UK patients in advanced HAQ states had taken early retirement compared with Sweden. A Markov model was used in both studies, with Wong<sup>161</sup> projecting 54-week results of an RCT to a lifetime horizon and Kobelt<sup>162</sup> producing results for a 10-year time-horizon. The latter uses a 1-year cycle length, which is not clinically appropriate as

a patient may change DMARDs over a much shorter period.

The remaining four cost-effectiveness analyses considered more than one TNF inhibitor therapy (Table 23). Kobelt and colleagues 163 reported a cost-utility analysis using patient-level direct costs and effectiveness using data from a cohort of 160 patients. Patients received etanercept (n = 113) or infliximab (n = 47), but drug allocation was not randomised. Data were shown for use of a TNF inhibitor compared with resource use and quality of life for the year before treatment (baseline). Jobanputra and colleagues<sup>1</sup> considered etanercept and infliximab in comparison with a DMARD sequence. This work formed the economic evaluation of the previous NICE appraisal for TNF inhibitor drugs undertaken by the current authors and will therefore not be described further. Bansback and colleagues, 166 funded by Abbott Laboratories, used a patient-level simulation model to conduct cost-utility analyses

TABLE 22 Published infliximab economic analyses

| Study                                 | Sponsor                                                                 | Patient<br>group | Comparator(s)   | Base case ICER                                                                 |
|---------------------------------------|-------------------------------------------------------------------------|------------------|-----------------|--------------------------------------------------------------------------------|
| Wong et al.,<br>2002 <sup>161</sup>   | Schering-Plough,<br>Centocor Corp.,<br>National Institutes of<br>Health | RA               | Placebo and MTX | \$30,500 per QALY                                                              |
| Kobelt et al.,<br>2003 <sup>162</sup> | Schering-Plough                                                         | RA               | MTX             | For I year of treatment:<br>€3440 per QALY in Sweden<br>€34,800 per QALY in UK |

from a healthcare perspective. The model builds on two previous RA models. 1,160 Etanercept and adalimumab were considered as monotherapies and in combination with methotrexate, with two separate analyses for adalimumab plus methotrexate. The second analysis contained additional information from a larger adalimumab trial in a pooled analysis. Infliximab was only considered in combination with methotrexate. Results were presented as ICERs versus traditional DMARDs for two separate groups: an ACR50 response which corresponded to a good DAS28 response and an ACR20 response which corresponded to a moderate DAS28 response. Using such dichotomous data, unfortunately, does not reflect clinical reality, or practice, as many patients may continue, or cease, therapy despite such thresholds; actual drug continuation rates from observational studies are more appropriate for modelling. Chiou and colleagues 170 used a decision tree to carry out a cost-utility analysis of anakinra, adalimumab, etanercept and infliximab used alone or in combination with methotrexate during 1 year. Separate analyses were conducted for monotherapies and combination therapies. A preference weight was attached to each of the 16 health states representing a combination of the level of adverse effects and ACR response criteria. However, preference weights were derived from VAS, which is not ideal.

Kobelt and colleagues<sup>163</sup> reported QALYs within the generally accepted threshold of €50,000 per QALY; however, analysis was from a societal perspective, therefore results are not directly relevant to a UK healthcare perspective. Bansback and colleagues<sup>166</sup> suggested that adalimumab was cost-effective for the treatment of moderate to severe RA and was at least as cost-effective as etanercept or infliximab, but there was uncertainty about which drug was the most cost-effective. In addition, they concluded that with the exception of infliximab, the cost results were in a range

normally considered cost-effective in Europe. Chiou and colleagues<sup>170</sup> found anakinra to be the least cost-effective option, and etanercept (as monotherapy and combined with methotrexate) was dominant over other TNF inhibitors. Compared with anakinra, both etanercept treatment regimens were below US \$15,000 per QALY. However, the study is US based and uses US healthcare costs, therefore the results cannot be applied to the UK.

Direct comparison of these ICERs is inappropriate as the analyses are very different in terms of treatment comparators and time-horizons. The Kobelt analysis 167 is without modelling, Bansback and colleagues<sup>166</sup> conduct modelling over a patient's lifetime and Chiou and colleagues 170 model over 1-year. Modelling the response over a 1-year cycle is not clinically appropriate, especially as it is assumed that treatment will continue over this period with no switching of therapy. In reality, patients will switch from one drug to another in a period much shorter than 1 year owing to lack of response or adverse effects. In addition, Chiou<sup>170</sup> is the only study that does not use traditional DMARDs as the comparator, using anakinra monotherapy instead. However, anakinra was not recommended for routine use in the NHS by NICE in its November 2003 guidance (http://www.nice.org.uk/pdf/TA072guidance.pdf) because of its poor incremental cost-effectiveness, which was over £100,000 per QALY.<sup>3</sup>

# Summary of review of existing economic evaluations

- Results of published economic evaluations vary: some analyses suggest that use of TNF inhibitors may fall within the usual acceptable cost-effectiveness ranges, whereas others report very high ICERs.
- A direct comparison of ICERs between studies is not possible because of different approaches to modelling, in particular time-horizon, cycle

**TABLE 23** Published economic analyses for more than one TNF inhibitor therapy

| Study                                           | Sponsor                                                                                   | Patient group | Comparator(s)                                                  | Base case ICER                                                                                                                                                                                                                                           |
|-------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Etanercept, inflix                              | imab                                                                                      |               |                                                                |                                                                                                                                                                                                                                                          |
| Jobanputra et <i>al</i> ., 2002 l               | NHS HTA Programme                                                                         | RA            | DMARD sequence                                                 | Etanercept<br>£83,095 per QALY                                                                                                                                                                                                                           |
|                                                 |                                                                                           |               |                                                                | Infliximab<br>£115,937 per QALY                                                                                                                                                                                                                          |
| Kobelt et al.,<br>2004 <sup>163</sup>           | Österlund and Kock<br>Foundations, King<br>Gustav V 80 year fund,<br>Reumatikerförbundet. | RA            | Baseline level (failed<br>at least 2 DMARDs,<br>including MTX) | After 3 months of treatment:<br>€43,500 per QALY<br>After 6 weeks of treatment:<br>€36,900 per QALY                                                                                                                                                      |
| Etanercept, inflix                              | imab, adalimumab                                                                          |               |                                                                |                                                                                                                                                                                                                                                          |
| Chiou et al.,<br>2004 <sup>170</sup>            | Not stated                                                                                | RA            | Anakinra                                                       | US \$13,387 per QALY (Etanercept alone)                                                                                                                                                                                                                  |
|                                                 |                                                                                           |               |                                                                | Adalimumab alone dominated                                                                                                                                                                                                                               |
|                                                 |                                                                                           |               |                                                                | US \$7925 per QALY<br>(etanercept + MTX)                                                                                                                                                                                                                 |
|                                                 |                                                                                           |               |                                                                | Adalimumab + MTX and infliximab + MTX dominated                                                                                                                                                                                                          |
| Bansback et <i>al.</i> ,<br>2005 <sup>166</sup> | Abbott Laboratories                                                                       | RA            | DMARD sequence                                                 | ACR50/DAS28 good:<br>€34,167 per QALY (adalimumab+MTX)<br>€34,922 per QALY (adalimumab+MTX) <sup>a</sup><br>€35,760 per QALY (etanercept + MTX)<br>€48,333 per QALY (infliximab + MTX)<br>€41,561 per QALY (adalimumab)<br>€36,927 per QALY (etanercept) |
|                                                 |                                                                                           |               |                                                                | ACR20/DAS28 moderate:<br>€40,875 per QALY (adalimumab+MTX)<br>€44,018 per QALY (adalimumab+MTX)<br>€51,976 per QALY (etanercept+MTX)<br>€64,935 per QALY (infliximab+MTX)<br>€65,499 per QALY (adalimumab)<br>€42,480 per QALY (etanercept)              |

length, country of origin, perspective chosen, source of preference weights and comparator drugs.

- Many of the previous analyses are based on clinical estimates that are derived from single trials, or a small number of trials, rather than a formal systematic review, meta-analysis of evidence, or observational data of effectiveness in clinical practice.
- Drug manufacturers have sponsored four published analyses, with a further two having links with a drug company. Two studies do not state the sponsors of the study. The two remaining studies were not linked with any drug manufacturers.
- Each study was considered to be of adequate quality, in terms of criteria in the CHEC list,
- where at least 15 of 19 were met by all. All fulfilled criteria related to design and conduct; that is, each study was a cost-effectiveness evaluation addressing a clearly defined research question applied to a clearly defined population. An appropriate perspective was chosen in each and the outcomes identified were relevant and measured appropriately. Incremental analyses, to which appropriate sensitivity analyses had been applied, were reported without exception.
- Quality assessment criteria that were not met included failure to report the following: discounted future costs and benefits in two studies, potential conflicts of interest in five studies, competing interests in two studies; the generalisability of results in one study, and

| <b>TABLE 24</b> Summary of methods used in industry economic analyse | TABLE 24 |
|----------------------------------------------------------------------|----------|
|----------------------------------------------------------------------|----------|

| Submission features        | Abbott Laboratories<br>Adalimumab (Humira <sup>®</sup> )                                               | Wyeth<br>Etanercept (Enbrel <sup>®</sup> )                                             | Schering-Plough<br>Infliximab (Remicade <sup>®</sup> )                                                            |  |
|----------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Choice of TNF inhibitor    | Adalimumab in combination with MTX                                                                     | Six-line drug sequence with etanercept/MTX combination 1st line, 2nd line or 3rd line  | Infliximab in combination with MTX                                                                                |  |
| Comparator                 | Three-line drug sequence without use of adalimumab                                                     | Six-line drug sequence without use of etanercept                                       | MTX alone                                                                                                         |  |
| Patient<br>characteristics | Patients with RA, average age<br>55 years, 77% women, who<br>have failed three DMARDs<br>including MTX | Patients with RA, average age 53 years, (in line with patients in TEMPO)               | Two patient groups: (1) active<br>RA despite treatment with<br>DMARDs; (2) severe active<br>early RA              |  |
| Form of analysis           | Cost-utility analysis                                                                                  | Cost-utility analysis                                                                  | Cost-utility analysis                                                                                             |  |
| Model used                 | Patient-based transition-state model with 10,000 patients                                              | Markov model with 6-monthly cycles and 10,000 patients                                 | Markov model with 6-monthly cycles, based on ARAMIS                                                               |  |
| Time-horizon of model      | Lifetime                                                                                               | Lifetime                                                                               | Lifetime                                                                                                          |  |
| Base-case results          | £17,860 per QALY                                                                                       | Ist line: £16,000 per QALY<br>2nd line: £20,000 per QALY<br>3rd line: £18,000 per QALY | MTX experienced:<br>£6228 per QALY<br>MTX-naïve: £16,766 per QAL'<br>MTX-naïve with high CRP:<br>£13,000 per QALY |  |

ethical and distributional issues in any of the included studies.

- All but one economic analysis used a decisionanalytic model. Published models vary in some important aspects; for example, the type of model used, whether switching of therapy is considered, drug combinations, comparator therapies, and time-horizon and cycle length.
- One study carried out a cost-effectiveness analysis using patient-level data on costs and outcomes from a patient cohort. However, results for two separate TNF inhibitors were combined.
- Six studies report costs that include both those from a healthcare perspective and indirect costs including losses of productivity; inclusion of these productivity costs improves the costeffectiveness of TNF inhibitors.
- One study carried out a cost-effectiveness analysis, with the remaining nine conducting a cost-utility analysis. Two studies obtained preference weights from VAS, considered to be a less acceptable method for obtaining preference. The remaining seven studies used EQ-5D, in some cases using regression analysis to convert HAQ scores to EQ-5D.
- In model-based analyses, costs and benefits were modelled over a number of different time-

horizons: 6 months (one study), 1 year (one study), 5 years (one study), 10 years (two studies) and lifetime (four studies). However, there was no association between ICER values and time-horizon used.

#### Review of industry costeffectiveness submissions

A detailed summary of the economic analyses and models included in the company submissions to NICE for the appraisal of adalimumab, etanercept and infliximab carried out in 2005–6 is reported in this section. All three companies provided an electronic model.

The methods used in the economic analyses are presented in *Table 24*.

#### Abbott submission (adalimumab)

A patient-based, state-transition model was developed to assess the cost-effectiveness of adalimumab in combination with methotrexate compared with a sequence of traditional DMARDs in patients with moderate to severe RA. The main treatment sequences considered are shown in *Table 25*. Adalimumab monotherapy and other TNF

TABLE 25 Treatment sequences: adalimumab

| Therapy line | Treatment sequence (fourth line) | Comparator sequence |
|--------------|----------------------------------|---------------------|
| Fourth       | Adal + MTX                       | GST                 |
| Fifth        | GST                              | LEF                 |
| Sixth        | LEF                              | CyA + MTX           |
| Seventh      | CyA + MTX                        | Rescue              |
| Eighth       | Rescue                           | Rescue              |

TABLE 26 HAQ changes by response type

| ACR improvement | Observed HAQ change | HAQ change given baseline of 1.6 | New HAQ score for responders |
|-----------------|---------------------|----------------------------------|------------------------------|
| <20%            | -6.4%               | -0.102                           | 1.498                        |
| 20–50%          | <b>–34.7%</b>       | -0.555                           | 1.045                        |
| 50–70%          | <b>–57.0%</b>       | -0.912                           | 0.688                        |
| >70%            | -64.6%              | −I.034                           | 0.566                        |

inhibitors were also explored and results presented in the report. The first- to third-line therapies are not stated here as the analysis assumed that patients had failed three DMARDs including methotrexate.

The model used 6-monthly cycles in which patients can experience a number of events. In the first 6-month period on a therapy a patient can: have a positive response to treatment; have a negative response to treatment; suffer an SAE, or die. In subsequent periods a patient can: have continued efficacy; have a loss of efficacy; suffer an SAE; or die. Therefore, at the end of a cycle the patient can: continue on the same therapy; withdraw and proceed to the next therapy when a negative response, loss of efficacy or SAE has occurred; or die.

The model run was for 10,000 patients, and applied a single baseline profile rather than sampling individual patient characteristics. The baseline characteristics were set to reflect patients in adalimumab trials. Patients had a mean age of 54.7 years, 77% were women, with a baseline HAQ of 1.6 and a mean DMARD use of 3. However, assuming a fixed HAQ score at baseline ignores the heterogeneity of response.

Data used in the base-case analyses came from trials where the comparator was methotrexate, with the exception of the data for DMARDs. Here, an observational study (Geborek<sup>171</sup>) of leflunomide was used and was assumed to be representative of all DMARDs. It is inappropriate to use leflunomide data derived from populations that had failed two

DMARDs to represent all DMARDs, particularly in early RA. This is because this observational study looks at RA patients who had failed at least two DMARDs before testing leflunomide, etanercept or infliximab. In addition, using annual withdrawal rates for leflunomide from this study and assuming that this applies to all DMARDs is inappropriate. No meta-analyses of biological trials were undertaken for their analysis, and main trial data for each of the TNF inhibitors were used instead.

ACR50 data were used in the base case to determine response rate on each therapy, with patient-level trial data used for adalimumab and published data for other DMARDs. Average improvement in HAQ for ACR20, ACR50 and ACR70 responders was available from the adalimumab trials. These data were not available for other DMARDs, therefore an assumption was made that HAQ improvement would be the same as for adalimumab and independent of treatment. The calculated HAQ change, categorised by response, is shown in *Table 26*. Long-term change in HAQ was obtained from a systematic review, assuming a slight progression of disability over time, with data for a successful response recalculated to account for the variation in patient numbers in the studies. However, to assume yearon-year decrease in HAQ response in early disease is problematic as HAQ is very labile in the first 5 years of disease. Withdrawal from treatment was assumed to change the HAQ score by the equivalent amount of the initial improvement, therefore giving a slightly higher HAQ score than at baseline, but due to gradual progression of

disability. Data for non-responders were based on an observational study by Young and colleagues. <sup>46</sup> This study does not report specifically on DMARD responders and non-responders and it is unclear how these data were obtained. In addition, the study is a hospital-based study of early RA patients where data were collected annually. As HAQ is especially labile in this population, single annual measurements have limited reliability.

Patient HAQ scores are updated every 6 months and the mean level of HAQ improvement was obtained from clinical trial data and published literature. HAQ scores are converted to QALYs by using regression of HAQ against utility from trial data. The relationship between HAQ and utility scores was given as  $U=0.76-(0.28\times {\rm HAQ})+0.05\times {\rm Female}$ . This relationship was derived from analysis of Health Utility Index (HUI) 3 data obtained from the adalimumab trials.

Data on the incidence of mild, moderate and serious adverse events were estimated from an observational study. The same study and a review provided data on long-term withdrawal; the limitations of using data from Geborek<sup>171</sup> are discussed above. Mortality risk for patients with RA was adjusted by HAQ score and Gompertz models were fitted, with the minimum age set at 50 years. The 6-monthly hazard rate was calculated in the model for patients' age and midpoint HAQ score during each therapy line. This simplification may be acceptable; however, exploratory analyses would be worthwhile to test this assumption.

Resource use and costs were derived from published data, costing BSR guidelines and expert clinical opinion. In addition, some healthcare resource use was estimated based on HAQ-DI scores. Costs and benefits were discounted at 6% and 1.5%, respectively. Costs were calculated from a healthcare perspective. Both simple one-way and probabilistic sensitivity analyses were undertaken.

The base-case results using ACR50 suggest that adalimumab is cost-effective as fourth line therapy,

with an ICER of £17,860. In total, 32 one-way sensitivity analyses were conducted, all giving ICERs under £30,000 per QALY. Probabilistic sensitivity analysis showed adalimumab in combination with methotrexate to have a 99.8% probability of being cost-effective at a willingness-to-pay threshold of £30,000 per QALY. Comparison with etanercept gave a lower ICER of £14,388 and a 96% probability of being cost-effective at £30,000 per QALY.

Secondary analyses were also reported. Using an ACR20 response the cost per QALY for adalimumab plus methotrexate was £19,251. Cost-effectiveness ratios at different lines of entry were also explored for ACR50 and ACR20.

The ICERs for ACR50 are:

first line: £19,095 per QALY
second line: £18,166 per QALY

• third line: £18,479 per QALY.

The ICERs for ACR20 are:

first line: £21,228 per QALY
second line: £19,794 per QALY
third line: £19,596 per QALY.

The study concluded that adalimumab "should be considered cost-effective when compared against conventional DMARDs" and on the basis of this "the cost-effectiveness of adalimumab is very similar to that of etanercept and infliximab".

#### Wyeth submission (etanercept)

A sequential model was developed whereby a simulated patient receives a given treatment until DMARD switching occurs as a result of either failure of effectiveness or SAEs. The main treatment sequences considered are shown in *Table 27*, but others were explored and are not presented in the report.

The submission indicates that "the aim of the economic model and treatment sequences was to demonstrate that etanercept + MTX is a cost-effective intervention when used earlier in the

TABLE 27 Treatment sequences: etanercept

| Therapy line | Treatment sequence (1st line) | Comparator sequence   |
|--------------|-------------------------------|-----------------------|
| First        | Etan + MTX                    | MTX                   |
| Second       | MTX                           | SSZ                   |
| Third        | SSZ                           | LEF                   |
| Fourth       | LEF                           | GST                   |
| Fifth        | GST                           | DMARD (non-specified) |
| Sixth        | Salvage therapy               | Salvage therapy       |

management of RA, i.e. 1st and 2nd line". Etanercept and methotrexate were used in combination as "the body of evidence suggests that combination therapy is more effective than monotherapy". Using combination data, however, will weigh ICERs in favour of etanercept since patients responding to combined therapy, if they are DMARD naïve, have the opportunity of responding to two agents and many may have responded to methotrexate alone.

The model uses 6-monthly cycles and allows patients to: experience changes in disease severity; enter a remission state; develop drug tolerance problems; experience an SAE; or die. At the end of each 6-month cycle the patient can:

- change disease severity
- experience an SAE
- switch treatment therapy
- die.

The model run consisted of 10,000 hypothetical patients, followed until death. Costs were calculated from the perspective of a healthcare provider. The main driver of the model result is the patient's disease severity. Disease severity determines several factors in the model, including the likelihood of switching therapy, health-related utility and mortality. HAQ was used to represent disease severity as it was not practical to measure both HAO and DAS28 scores simultaneously. However, for the purpose of 'switching thresholds' a relationship between HAQ and DAS28 was required and changes in HAO score were used as a proxy for changes in the DAS28. Perhaps here it would have been more appropriate to use actual switching rates from clinical observation rather

than this conversion, which potentially introduces more uncertainty into the model. A baseline HAQ of 1.74 was obtained from TEMPO. Using a fixed HAQ at start of treatment has limitations and the heterogeneity of response is not taken into account. Patients' HAQ scores are updated every 6 months, with the changes based on evidence from clinical trials and other published sources (see *Table 28* for estimates).

A robust approach was applied, where distributions rather than point estimates were used to introduce a random element into HAO change. The HAQ change estimates were derived from TEMPO for etanercept, methotrexate and combination therapy. The HAQ change for unspecified DMARD was based on the Tight Control for Rheumatoid Arthritis (TICORA). This is inappropriate since data for individual drugs are available. The initial HAQ change for sulfasalazine was assumed to be -0.29. This improvement is based on an ITT analysis of trial data, and HAQ improvement for those that continue the drug was -0.43. For the purposes of economic modelling, patients who continue treatment are of interest, since those who do not are accounted for elsewhere. Thus, a figure of -0.29 underestimated the benefit of continuing with sulfasalazine. Data from trials such as TEMPO represent ideal responses and the data may not reflect outcomes in routine care. For other therapies, the estimates were based on 'published sources', and where data were not available for 6-month changes, estimates were converted to 6-month rates using a simple formula. In all cases, the first 6 months' change was accounted for when calculating medium-term changes. Patients in remission were assumed to

**TABLE 28** HAQ change parameters

|                                                    | Etan    | MTX     | Etan+<br>MTX | SSZ    | GST    | Infl +<br>MTX | DMARD  | Adal   | LEF    | Salvage |
|----------------------------------------------------|---------|---------|--------------|--------|--------|---------------|--------|--------|--------|---------|
| Initial HAQ<br>change                              | -0.690  | -0.650  | -0.890       | -0.290 | -0.430 | -0.080        | -0.270 | -0.560 | -0.500 | -0.040  |
| Medium-term<br>non-remission<br>mean HAQ<br>change |         | -0.001  | -0.052       | 0.075  | 0.045  | -0.087        | -0.080 | -0.030 | 0.000  | 0.200   |
| Remission:<br>mean HAQ<br>change                   | -0.0276 | -0.0037 | -0.0145      | 0.075  | 0.045  | -0.087        | -0.080 | -0.030 | 0.000  | 0.200   |
| Long-term:<br>change per<br>cycle                  | 0.00    | 0.02    | 0.00         | 0.10   | 0.10   | 0.00          | 0.1    | 0.00   | 0.10   | 0.28    |

TABLE 29 SAE parameters

|                                       | Etan | MTX  | Etan +<br>MTX | SSZ  | GST  | Infl +<br>MTX | DMARD | Adal | LEF  | Salvage |
|---------------------------------------|------|------|---------------|------|------|---------------|-------|------|------|---------|
| Probability of SAE                    | 0.07 | 0.07 | 0.05          | 0.07 | 0.06 | 0.10          | 0.06  | 0.07 | 0.08 | 0.10    |
| Probability<br>of switching<br>if SAE | 0.33 | 0.33 | 0.33          | 0.33 | 0.33 | 0.33          | 0.33  | 0.33 | 0.33 | 0.33    |

experience different HAQ changes from those not in remission. However, the definition of remission is problematic, and the change in HAQ may have been sufficient to represent remission without assuming further treatment benefits in modelling.

SAEs in the model were dependent on the treatment received (*Table 29*). Their occurrence affected costs, utility and the likelihood of switching therapy. SAEs were assumed to occur for one cycle only. "Due to lack of reliable evidence for this parameter, it was assumed that one-third of patients who experience an SAE would switch therapies during that (6-month) period." This assumption would be unnecessary if actual data on switching were used, and the probability of switching may actually be much higher than one-third. In addition, SAEs and switching appear to be able to occur with salvage therapy, but is it unclear how or why this happens.

Switching occurs for one of two reasons: lack of effectiveness or occurrence of an SAE. The treatment switch criteria used in the model were:

- if a patient does not have an initial (i.e. first 6 months) improvement of 0.3468 in HAQ
- if, after an initial improvement, the patient's HAQ worsens by 0.3468 over 12 months or 0.3468 over a 6-month period.

Mortality rates for RA were assumed to be 1.63 times that of the general population of the same age. The change in mortality rate was adjusted taking change in HAQ into account. Inflating the already increased mortality on the basis of HAQ appears to introduce double-counting and is therefore inappropriate. Utility weights were assumed to vary linearly with HAQ score [i.e.  $U = 0.76 + (\text{HAQ} \times -0.28)$ ]. This was further adjusted to consider SAEs, with a loss of 0.05 for each SAE experienced, but this assumption for a 6-month period for someone experiencing an SAE appears to be an underestimate.

Resource-use and cost data were taken from expert opinion and national sources. One blood test per year is assumed for those on TNF inhibitors and two for those on DMARDs. However, if those on TNF inhibitors are to receive methotrexate, then more frequent blood tests (e.g. monthly) are likely. This larger number of blood tests would apply to both arms. Rituximab is suggested for the salvage therapy, with a 6-month cost of almost £900. This is in contrast with the equivalent 'palliation' used in other analyses where costs are much lower, which may be a more accurate reflection of reality. For the base case, costs were discounted at 6% and QALYs at 1.5%. Simple one-way sensitivity analysis was undertaken on HAQ changes, mortality rate, SAE utility, cost, discount rates and switching threshold. The upper value for initial change in HAQ on etanercept of -1.3 appears to be rather high.

The base-case results suggest that etanercept is cost-effective first-line therapy. The ICERs indicate:

first line: £16,000 per QALY
second line: £20,000 per QALY
third line: £18,000 per QALY.

Sensitivity analysis results are interpreted as showing that the results for all three models (first, second and third line) are "relatively robust to changes in key parameters".

#### Schering-Plough submission (infliximab)

The economic analysis presented in this submission assessed the cost-effectiveness of infliximab in combination with methotrexate compared with methotrexate alone in patients with severe RA. Data on effectiveness were drawn from ATTRACT and ASPIRE and so the patient populations seen in those trials were assumed for the modelling work: patients with active RA despite DMARD use and patients with severe active early RA. The perspective adopted was that of the NHS and Personal and Social Services (PSS).

To estimate the long-term consequences of RA and model the natural history of RA, a Markov model was used based on ARAMIS. This is not described in detail in the report. ARAMIS is a North American database consisting of 4258 prospectively enrolled patients with RA from nine centres followed for over 17,000 patient-years. The issue here is how a population of patients seen in private practices in the USA and Canada between 1981 and 1995 can reflect practice in the NHS in 2005. The model has states defined in terms of HAQ score (e.g. HAQ 0.1-1.0) and states defined in terms of treatments (e.g. methotrexate and one or more DMARD). Each health state, in terms of disability score and treatment, determines the transitional probability. During any cycle, patients may change or retain the same treatment, with the exception that the other treatments could not change to infliximab plus methotrexate. It is unclear why a change to infliximab and methotrexate is not permitted as this is a fairly common practice for people not doing well on a DMARD. An assumption was made that when infliximab was continued beyond the trial duration, the HAQ score would be preserved but not improved, and would be discontinued with worsening HAQ or side-effects. HAQ in RA or in the normal population tends to decline with age, therefore assuming that long-term stability is unreasonable.

Clinically significant radiographic progression was determined from cohort data using the smallest detectable difference (SDD) based on the Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) definition. Although SDD is an important starting point for determining whether radiographic changes are clinically meaningful, it is by no means accepted that the two are the same. In addition, the SDD needs to be determined for each trial since it is a statistical concept and depends on the performance of two or more assessors in a particular setting, so SDDs from different settings vary considerably. Patients were divided into radiographic SDD progressors and non-progressors, with progressors having higher mean HAQ scores owing to physical disability from the progressing disease. Therefore, an absence of radiographic progression improved HAQ by 0.27 after 5-6 years. However, since there is a relationship between HAQ and radiographic change, and since HAQ changes are incorporated into the model, it appears that HAO improvements are being double-counted.

Radiographic data were used in the model, such that evidence of radiographic stabilisation was

applied to the Markov model as increasing the chance that a patient would remain in the same HAQ group, thereby decreasing the annual likelihood of HAQ progression. However, radiographic changes are likely to be greater in early RA and it is unreasonable to assume that similar changes could apply to the ATTRACT population. This analysis also calibrated the model to assume benefits 5 years from trial onset. Radiographic benefit was applied to patients treated for more than 6 weeks, so patients who discontinued infliximab where no ACR20 response was evident by week 14 did not receive this benefit. Most patients in trials do not show radiographic changes. Therefore, assuming this radiographic benefit several years later in patients with 6 weeks of treatment and an ACR20 response at 14 weeks is rather generous.

Estimates of the impact of infliximab on disease progression were obtained from the ATTRACT and from ASPIRE, with the likelihood of improved or worsened HAQ score estimated from the methotrexate and methotrexate/infliximab arms of the trials. However, using all arms of infliximab/methotrexate regardless of dose or dosing interval from ATTRACT may weigh in favour of infliximab as, although outcomes looked similar, patients on 10 mg kg<sup>-1</sup> of infliximab did appear to be doing better. Health state values were based on a personal communication from G Kobelt to the company, as follows:

- HAQ 0 = 0.819
- HAO 0.1-1.0 = 0.682
- HAQ 1.1-2.0 = 0.454
- HAQ 2.1-3.0 = 0.192.

UK-based sources for resource-use data and for unit costs were used (ERA study). Discount rates of 6% for costs and 1.5% for benefits were applied. A wide range of one-way and multiway sensitivity analyses was undertaken.

The base-case cost-effectiveness results are summarised in *Table 30*. The results are interpreted as yielding "costs per QALY that fall well within the range of such estimates for health care interventions typically funded in the UK. The high CRP subset has a better cost-effectiveness ratio because of faster radiological progression compared to the overall ASPIRE group."

The sensitivity analyses looked at stopping rules, discount rates, RA mortality assumptions, utility scores, resource use and radiographic

TABLE 30 Base-case cost-effectiveness results (Schering-Plough)

| Population                                    | Incremental cost (£) | Incremental QALYs | ICER   |
|-----------------------------------------------|----------------------|-------------------|--------|
| MTX experienced (ATTRACT)                     | 17,370               | 2.79              | 6,228  |
| MTX-naïve (ASPIRE)                            | 23,808               | 1.42              | 16,766 |
| MTX-naïve with high CRP (ASPIRE) <sup>a</sup> | 23,926               | 1.84              | 13,000 |

stabilisation. ACR20 was used for the stopping rules in this analysis; however, the stopping rule recommended by NICE stipulates use of DAS28 scores only. Although the two are related, it is not clear that ACR20 can substitute for DAS28 changes in practice. Assumptions concerning the duration of radiographic benefit were shown to be a possible driver of the cost-effectiveness results.

Clinical advice recommended that strategies where dose escalation with infliximab occurred should be excluded owing to greatly increased cost while adding very little benefit. The analysis in this report also does not consider dose escalation, therefore the ICERs reported for infliximab will underestimate drug costs. In reality, dose escalation is common and ideally should be incorporated in cost-effectiveness analyses.

#### **Summary of industry submissions**

- The submission by Wyeth suggests that etanercept is highly cost-effective.
- The submission by Schering-Plough suggests that infliximab is highly cost-effective.
- The submission by Abbott suggests that adalimumab is highly cost-effective.
- All three submissions report a model-based cost—utility analysis with a lifetime horizon, and all three have undertaken extensive sensitivity analyses. The results of all sensitivity analyses broadly support the base-case findings of

- support for the use of the new therapy/product in question.
- Two of the three submissions (those from Wyeth and Abbott Laboratories) have considered drug sequences and the use of the new therapy as part of an existing sequence.

# Economic analysis used in this report

# Summary of the Birmingham economic evaluation

A simulation model, which considered improvements in quality of life and mortality, but assumed no effect of the TNF inhibitors on the need for joint replacement, was used.

For use in accordance with current NICE guidance, as the third DMARD in a sequence of DMARDs, the base-case ICER depended on whether the effectiveness data were taken from early RA or late RA patients, as shown in *Table 31* (in clinical practice there will be a mixture of both). Sensitivity analyses showed that the results were most sensitive to figures for HAQ progression on TNF inhibitors and the effectiveness of DMARDs, but not particularly sensitive to changes in mortality ratios used per unit HAQ.

When TNF inhibitors were used as the last active therapy, the equivalent results were as shown in *Table 32*.

TABLE 31 TNF inhibitors in late and early RA

|                 |                  | Cost per QALY (£) |          | Sensitivity analys<br>late RA data (ea |                    |
|-----------------|------------------|-------------------|----------|----------------------------------------|--------------------|
| TNF inhibitor   | Comparator       | Late RA           | Early RA | Lowest                                 | Highest            |
| Adal (no MTX)   | Base strategy of | 141,000           | 35,000   | 41,000 (21,000)                        | Dominated (55,000) |
| Etan (no MTX)   | DMARDs with no   | 47,000            | 30,000   | 24,000 (19,000)                        | 95,000 (46,000)    |
| Adal (with MTX) | TNF inhibitors   | 64,000            | 30,000   | 30,000 (19,000)                        | 150,000 (43,000)   |
| Etan (with MTX) |                  | 50,000            | 29,000   | 25,000 (18,000)                        | 96,000 (42,000)    |
| Infl (with MTX) |                  | 139,000           | 30.000   | 39,000 (19,000)                        | Dominated (45,000) |

TABLE 32 TNF inhibitors as last active therapy

|                 |                  |                   | Sensi  | Sensitivity analyses (£) |  |
|-----------------|------------------|-------------------|--------|--------------------------|--|
| TNF inhibitor   | Comparator       | Cost per QALY (£) | Lowest | Highest                  |  |
| Adal (no MTX)   | Base strategy of | 40,000            | 27,000 | 64,000                   |  |
| Etan (no MTX)   | DMARDs with no   | 24,000            | 18,000 | 33,000                   |  |
| Adal (with MTX) | TNF inhibitors   | 30,000            | 22,000 | 43,000                   |  |
| Etan (with MTX) |                  | 24,000            | 18,000 | 34,000                   |  |
| Infl (with MTX) |                  | 38,000            | 26.000 | 61,000                   |  |

**TABLE 33** TNF inhibitors as first-line therapy

|                 |                  |                   | Sensi  | tivity analyses (£) |
|-----------------|------------------|-------------------|--------|---------------------|
| TNF inhibitor   | Comparator       | Cost per QALY (£) | Lowest | Highest             |
| Adal (no MTX)   | Base strategy of | 53,000            | 27,000 | 122,000             |
| Etan (no MTX)   | DMARDs with no   | 49,000            | 23,000 | 119,000             |
| Adal (with MTX) | TNF inhibitors   | 171,000           | 38,000 | Dominated           |
| Etan (with MTX) |                  | 78,000            | 28,000 | Dominated           |
| Infl (with MTX) |                  | 654,000           | 45,000 | Dominated           |

Similarly, the results for first line therapy are shown in *Table 33*.

A limited analysis of sequential use was carried out, assuming that the properties of second or third TNF inhibitors were equivalent to the use of the same treatment as first TNF inhibitor. The results were similar to the results for the equivalent therapy as sole TNF inhibitor.

The main aim of the analysis was to assess the cost-effectiveness of adding a TNF inhibitor to an existing treatment pathway for RA compared with the same pathway without that TNF inhibitor. The costs are from an NHS perspective.

The analysis was conducted using an updated version of the BRAM,<sup>2</sup> which was further developed starting from the most recent previous version (used in the assessment of anakinra<sup>3</sup>).

The BRAM is an individual sampling model. The model was devised to reflect the typical real clinical patient pathway. A large number of virtual patient histories is simulated with the accumulation of costs and QALYs. The basic model structure is shown in *Figure 46*. A complete description of the model structure follows here.

Patients are assumed to follow a sequence of treatments (single or combination therapy), which

involves: starting a treatment, spending some time on that treatment, quitting the treatment if it is toxic or ineffective, and starting the next treatment. The pattern is then repeated. Any patient who has started and had to quit all the active treatments moves on to palliation. Patients' HAQ scores are assumed to improve (decrease) on starting a treatment; this improvement is lost on quitting the treatment, which may be for reasons of either toxicity or loss of effectiveness. HAQ scores can range from 0 (best) to 3 (worst) and are constructed such that the smallest measurable change in disability is 0.125 (see Appendix 1 for further details of the HAQ). Reflecting observed data, while on any treatment, a patient's condition is assumed to decline slowly over time; this is modelled as periodic increases of 0.125 in HAQ score.

All patients are followed through to death. Mortality risk is assumed to depend on current HAQ score, as well as age and gender.

There are two important improvements from previous versions of the BRAM. First, there is individual variation in HAQ improvement on starting treatment. Secondly, time on treatment includes explicit consideration of early quitting, with early quitting owing to lack of effectiveness being correlated with poor HAQ improvement on starting treatment.

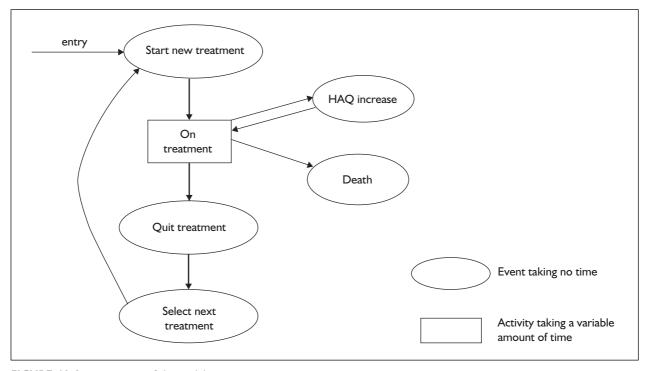



FIGURE 46 Basic structure of the model

# Strategies compared using the BRAM Baseline for comparison

Before considering how TNF inhibitors could be included in treatment strategies, it is convenient to describe the baseline strategy without TNF inhibitors.

The baseline strategy, based on a survey of rheumatology consultants in the UK,<sup>25</sup> starts with methotrexate as single therapy. If methotrexate is stopped on grounds of toxicity, it is followed by sulfasalazine as single therapy, otherwise by the combination of methotrexate plus sulfasalazine. Similarly, if this combination is quit on grounds of toxicity, it is followed by leflunomide. But, if the methotrexate-sulfasalazine combination lacks efficacy, hydroxychloroquine is added to the combination. These rules are shown in Table 34 under the heading 'Moves dependent on toxicity'. For most other treatments, the choice of treatment next in sequence, and the move to the next agent, simply depend on drug cessation, for whatever reason. For example, sulfasalazine as single therapy, in Table 34, is always followed by leflunomide, as shown under the heading 'Always move to'. In the case of ciclosporin, the preferred next treatment is the combination of ciclosporin plus methotrexate. However, this combination cannot be offered if ciclosporin has just been quit on grounds of toxicity, nor can it be offered if methotrexate was earlier quit for toxicity. This is shown under

'Relevant toxicity'. Palliation is the treatment of last resort and therefore cannot be quit.

The structure as shown in *Table 34* is more general than the structure used in previous versions of the BRAM: all the previous strategies in the model can be described by tables of this form.

#### Comparisons

For clarity, the word 'comparison' is reserved for an analysis comparing two options. The term 'strategy set' is used for a collection of strategies (treatment sequences) with a common initial sequence and divergence point.

#### Single TNF inhibitors (versus no TNF inhibitor)

In these strategy sets only one TNF inhibitor is used. There are six options in each case: adalimumab alone; etanercept alone; each of the three TNF inhibitors combined with methotrexate; and the comparator option without TNF inhibitors. These produce a total of 15 possible comparisons: five ('major comparisons') relate to including each TNF inhibitor singly within a sequence without TNF inhibitors and ten ('minor comparisons') relate to comparisons between different TNF inhibitors.

Single TNF inhibitor at the start In this strategy set, the divergence point is at the start of the sequence, that is, patients are treated with a TNF inhibitor before any other DMARD (see *Table 35*,

TABLE 34 Basic structure of the model

|             |                |                         | Moves dep         | pendent on toxicity |  |
|-------------|----------------|-------------------------|-------------------|---------------------|--|
| Treatment   | Always move to | Relevant toxicity       | If toxic, move to | Otherwise, move to  |  |
| MTX         |                | MTX                     | SSZ               | MTX+SSZ             |  |
| SSZ         | LEF            |                         |                   |                     |  |
| MTX+SSZ     |                | MTX+SSZ                 | LEF               | MTX+SSZ+HCQ         |  |
| MTX+SSZ+HCQ | LEF            |                         |                   |                     |  |
| LEF         | GST            |                         |                   |                     |  |
| GST         | AZA            |                         |                   |                     |  |
| AZA         | СуА            |                         |                   |                     |  |
| СуА         | •              | CyA or MTX <sup>a</sup> | DPen              | CyA+MTX             |  |
| CyA+MTX     | DPen           | ,                       |                   | ,                   |  |
| DPen        | Pall           |                         |                   |                     |  |

<sup>&</sup>lt;sup>o</sup> It was assumed that toxicity of MTX+SSZ (± HCQ) would not preclude the use of the combination CyA+MTX. AZA, azathioprine; DPen; penicillamine; GST, injectable gold; HCQ, hydroxychloroquine; Pall, palliation.

TABLE 35 Strategy set with TNF inhibitors at the start

| Treatment                            |                     |                   | Moves dependent on toxicity |                    |
|--------------------------------------|---------------------|-------------------|-----------------------------|--------------------|
|                                      | Always move to      | Relevant toxicity | If toxic, move to           | Otherwise, move to |
| Option I                             | Adal                |                   |                             |                    |
| Adal                                 | MTX                 |                   |                             |                    |
| Option 2                             | Etan                |                   |                             |                    |
| Etan                                 | MTX                 |                   |                             |                    |
| Option 3                             | Adal+MTX            |                   |                             |                    |
| Adal+MTX                             | SSZ                 |                   |                             |                    |
| Option 4                             | Etan+MTX            |                   |                             |                    |
| Etan+MTX                             | SSZ                 |                   |                             |                    |
| Option 5                             | Infl+MTX            |                   |                             |                    |
| Infl+MTX                             | SSZ                 |                   |                             |                    |
| Option 6                             | MTX                 |                   |                             |                    |
| MTX<br>SSZ                           | LEF                 | MTX               | SSZ                         | MTX+SSZ            |
| MTX+SSZ<br>MTX+SSZ+HCQ<br>LEF<br>GST | LEF<br>GST<br>AZA   | MTX+SSZ           | LEF                         | MTX+SSZ+HCQ        |
| AZA<br>CyA<br>CyA+MTX<br>DPen        | CyA<br>DPen<br>Pall | CyA or MTX        | DPen                        | CyA+MTX            |

options at the divergence point are shaded). Option 1 starts with adalimumab followed by methotrexate. Option 2 starts with etanercept followed by methotrexate. Option 3 starts with adalimumab in combination with methotrexate followed by sulfasalazine (it would be clinically inappropriate to use methotrexate as single therapy after failing this combination). Similarly,

options 4 and 5 start with etanercept and infliximab, respectively, in combination with methotrexate. Option 6, the comparator, starts with methotrexate. Each of options 1, 2 and 6 continues with the complete baseline strategy, while options 3, 4 and 5 join this strategy from sulfasalazine, thus avoiding the early combinations with methotrexate. It is assumed that the

combination of ciclosporin with methotrexate would still be available in this case. When the model is run, initial characteristics for (virtual) patients are sampled from the starting distribution. Each patient is then run independently through each of the six options and differences in costs and QALYs between options are recorded. This process is repeated for a sufficiently large number of patients to produce a statistically stable comparison between each pair of options.

Single TNF inhibitor as third line therapy In this strategy set, TNF inhibitors are considered as third line therapy; that is, after two DMARDs including methotrexate have been tried, in accordance with current NICE guidance.

Each (virtual) patient is started on methotrexate. Patients who quit methotrexate on grounds of toxicity move to single-therapy sulfasalazine. Those who quit for any other reason move to the combination of methotrexate plus sulfasalazine. Any patient who dies while still on one of the treatments mentioned so far is discarded from the

analysis and replaced by a new (virtual) patient starting again from the beginning with methotrexate. Any patient who fails on sulfasalazine (or methotrexate plus sulfasalazine) has reached the divergence point between the options (see *Table 36*; options after the divergence point are shaded). The patient's characteristics at this moment are stored for future use, and the patient is run through the rest of option 1, continuing with adalimumab and then leflunomide, and so on.

Costs and QALYs are counted only from the divergence point, and are discounted to the divergence point. The patient characteristics at the divergence point are retrieved, and the patient is run through option 2, starting with etanercept followed by leflunomide. Once the costs and QALYs for option 2 have been calculated, the patient characteristics at the divergence point are again retrieved, and the patient is run through option 3, starting this time with the combination adalimumab plus methotrexate, except that if methotrexate has

**TABLE 36** Strategy set with TNF inhibitors in third place

| Treatment              |                                      |                                     | Moves de          | ependent on toxicity |  |
|------------------------|--------------------------------------|-------------------------------------|-------------------|----------------------|--|
|                        | Always move to                       | Relevant toxicity If toxic, move to | If toxic, move to | Otherwise, move to   |  |
| MTX<br>SSZ<br>MTX+SSZ  | Divergence point<br>Divergence point | MTX                                 | SSZ               | MTX+SSZ              |  |
| Option I               | Adal                                 |                                     |                   |                      |  |
| Adal                   | LEF                                  |                                     |                   |                      |  |
| Option 2               | Etan                                 |                                     |                   |                      |  |
| Etan                   | LEF                                  |                                     |                   |                      |  |
| Option 3               |                                      | MTX                                 | Adal              | Adal+MTX             |  |
| Adal+MTX               | LEF                                  |                                     |                   |                      |  |
| Option 4               |                                      | MTX                                 | Etan              | Etan+MTX             |  |
| Etan+MTX               | LEF                                  |                                     |                   |                      |  |
| Option 5               | $Infl+MTX^a$                         |                                     |                   |                      |  |
| Infl+MTX               | LEF                                  |                                     |                   |                      |  |
| Option 6               | LEF                                  |                                     |                   |                      |  |
| LEF<br>GST<br>AZA      | GST<br>AZA<br>CyA                    |                                     |                   |                      |  |
| CyA<br>CyA+MTX<br>DPen | DPen<br>Pall                         | CyA or MTX                          | DPen              | CyA+MTX              |  |

<sup>&</sup>lt;sup>a</sup> The data set for this combination is used in the model, regardless of the reason for quitting MTX.

been quit on grounds of toxicity, adalimumab monotherapy is given instead. In either case, this therapy is followed by leflunomide. Option 4 is similar to option 3, with etanercept instead of adalimumab. In option 5, the combination infliximab plus methotrexate is given immediately after the divergence point.

In practice, patients who had quit methotrexate on grounds of toxicity would not be given a combination of infliximab and methotrexate (option 5). It was assumed that such patients would be given infliximab as single therapy, although the authors recognise that infliximab is often combined with other agents such as leflunomide or azathioprine in clinical practice. It was further assumed that the effectiveness of infliximab without methotrexate in these circumstances is similar to infliximab with methotrexate. To compensate for a bias in favour of infliximab introduced by this assumption, the cost for the combination is also used. (The cost of methotrexate forms only a small part of the cost of this combination.) Thus, in the model, the data set for the combination infliximab plus methotrexate is used regardless of the reason for quitting methotrexate. Option 5 continues with leflunomide, and so on. Finally, option 6 involves the use of leflunomide immediately after the divergence point. Differences between options are stored and the process is repeated for a sufficiently large number of patients.

Single TNF inhibitors as last active therapy In this strategy set, patients are run through the whole of the baseline strategy if necessary. Any patient who dies while still on active therapy is discarded from the analysis and replaced by a new patient. Any patient who fails on all the conventional DMARDs used in the baseline strategy reaches the divergence point (see *Table 37*, options at the divergence point are shaded). Thus, in this strategy TNF inhibitors are used are treatments of last resort. As before, the patient's characteristics at the divergence point are stored before the patient starts on option 1 (adalimumab followed by palliation). The patient is then restarted from the divergence point and run through each of the other options.

**TABLE 37** Strategy set with TNF inhibitors as last active therapy

|             |                       |                   | Moves dep | pendent on toxicity |  |
|-------------|-----------------------|-------------------|-----------|---------------------|--|
| Treatment   | Always move to        | Relevant toxicity |           | Otherwise, move to  |  |
| MTX         |                       | MTX               | SSZ       | MTX+SSZ             |  |
| SSZ         | LEF                   |                   |           |                     |  |
| MTX+SSZ     |                       | MTX+SSZ           | LEF       | MTX+SSZ+HCQ         |  |
| MTX+SSZ+HCQ | LEF                   |                   |           |                     |  |
| LEF         | GST                   |                   |           |                     |  |
| GST         | AZA                   |                   |           |                     |  |
| AZA         | СуА                   | <b>.</b>          |           | - 1 · 1 · 1 · 1     |  |
| CyA         | D.D.                  | CyA or MTX        | DPEN      | CyA+MTX             |  |
| CYA+MTX     | DPen                  |                   |           |                     |  |
| DPen        | Divergence point      |                   |           |                     |  |
| Option I    | Adal                  |                   |           |                     |  |
| Adal        | Pall                  |                   |           |                     |  |
| Option 2    | Etan                  |                   |           |                     |  |
| Etan        | Pall                  |                   |           |                     |  |
| Option 3    |                       | MTX               | Adal      | Adal+MTX            |  |
| Adal+MTX    | Pall                  |                   |           |                     |  |
| Option 4    |                       | MTX               | Etan      | Etan+MTX            |  |
| Etan+MTX    | Pall                  |                   |           |                     |  |
| Option 5    | Infl+MTX <sup>a</sup> |                   |           |                     |  |
| Infl+MTX    | Pall                  |                   |           |                     |  |
| Option 6    | Pall                  |                   |           |                     |  |

<sup>91</sup> 

### Strategies including two TNF inhibitors consecutively

Here the relevant decision is, having used one TNF inhibitor, whether to use a second TNF inhibitor or to revert to conventional DMARDs. Only the case where the first TNF inhibitor is used as third line therapy is considered, and adalimumab and etanercept are considered only as single therapy. Any one of the three TNF inhibitors could be the first choice. Thus, there are three strategy sets to consider, each with three options.

The first of these strategy sets (*Table 38*) starts with methotrexate, followed by sulfasalazine (with or without methotrexate) and then adalimumab. The divergence point comes immediately after adalimumab. Options 1 and 2 are to treat with etanercept and infliximab, respectively, if adalimumab fails and then continue the baseline strategy from leflunomide onwards. In the comparator, option 3, adalimumab is followed by leflunomide and the baseline strategy. The equivalent strategy sets for other choices of first TNF inhibitor are shown in *Tables 87* and *88* (Appendix 9).

# Strategies including all three TNF inhibitors consecutively

Here the relevant decision is, having used two TNF inhibitors, whether to use a third TNF inhibitor or to revert to conventional DMARDs. Again only the case where the first TNF inhibitor is used as third-line therapy is considered; that is, after sulfasalazine and methotrexate have been

tried (according to current NICE guidance), and adalimumab and etanercept are considered only as single therapy. Any one of the three TNF inhibitors could be the first fixed choice, with either of the other two as the second fixed choice. Thus, there are six strategy sets to consider, each with two options.

The strategy set shown in *Table 39* starts with methotrexate, followed by sulfasalazine (with or without methotrexate) and then adalimumab followed by etanercept. The divergence point comes immediately after etanercept. Option 1 is to use infliximab after this and then continue the baseline strategy from leflunomide onwards; option 2 is to forgo infliximab and continue directly with leflunomide. The other five strategy sets, which are similar, are given in *Tables 89–93*, (Appendix 9).

#### Data used in the BRAM

The main source of data is the current review for TNF inhibitors and published literature for other data.

#### Initial patient data

*Table 40* shows the initial age and sex distribution, based on UK data from Wiles *et al.*<sup>172</sup> The starting distribution of HAQ scores, shown in *Table 41*, is also based on Wiles.<sup>172</sup>

#### Starting treatments

In previous versions of the BRAM, the HAQ improvement (decrease) on starting any treatment

**TABLE 38** Strategy set with adalimumab followed by another TNF inhibitor

|                                                   |                                                 |                   | Moves dep          | endent on toxicity |
|---------------------------------------------------|-------------------------------------------------|-------------------|--------------------|--------------------|
| Treatment Always move to R                        | Relevant toxicity                               | If toxic, move to | Otherwise, move to |                    |
| MTX<br>SSZ<br>MTX+SSZ<br>Adal<br>Option I<br>Etan | Adal<br>Adal<br>Divergence point<br>Etan<br>LEF | МТХ               | SSZ                | MTX+SSZ            |
| Option 2                                          | Infl+MTX                                        |                   |                    |                    |
| Infl+MTX                                          | LEF                                             |                   |                    |                    |
| Option 3                                          | LEF                                             |                   |                    |                    |
| LEF<br>GST<br>AZA<br>CyA<br>CyA+MTX<br>DPen       | GST<br>AZA<br>CyA<br>DPen<br>Pall               | CyA or MTX        | DPen               | CyA+MTX            |

TABLE 39 Strategy set: adalimumab and etanercept possibly followed by infliximab

|                                             |                                          |                   | Moves dep         | endent on toxicity |
|---------------------------------------------|------------------------------------------|-------------------|-------------------|--------------------|
| Treatment                                   | Always move to                           | Relevant toxicity | If toxic, move to | Otherwise, move to |
| MTX<br>SSZ<br>MTX+SSZ<br>Adal<br>Etan       | Adal<br>Adal<br>Etan<br>Divergence point | МТХ               | SSZ               | MTX+SSZ            |
| Option I                                    | Infl+MTX                                 |                   |                   |                    |
| Infl+MTX                                    | LEF                                      |                   |                   |                    |
| Option 2                                    | LEF                                      |                   |                   |                    |
| LEF<br>GST<br>AZA<br>CyA<br>CyA+MTX<br>DPen | GST<br>AZA<br>CyA<br>DPen<br>Pall        | CyA or MTX        | DPen              | CyA+MTX            |

was fixed as a multiple of 0.125. In this version, the HAQ improvement has been allowed to vary between individual patients in the model, and is modelled as a multiplier of the original HAQ. An example of the method used is shown here for the case of leflunomide.

Data available were baseline HAQ mean 1.03 (SD 0.62) and HAQ improvement mean 0.48 (SD 0.5). $^{173}$ 

An Excel spreadsheet was set up to create a starting population of 10,000 virtual patients with HAQ scores drawn from a normal distribution with mean and standard deviation supplied by the

user. Each generated HAQ score was converted to the nearest legitimate value (multiples of 0.125 in the range 0–3). The parameters supplied were adjusted to compensate for the effect of this conversion, so that the mean and standard deviation of the population generated correspond to the data.

A beta distribution was found to match the given mean and standard deviation for HAQ improvement. The parameters are shown in *Table 42*, while *Figure 47* displays the simulated population. Each square within the graph represents a possible pair of values of starting HAQ and HAQ on treatment: the darker the

TABLE 40 Initial age and gender distribution

|        |       | Age (years) |       |       |       |       |       |       |
|--------|-------|-------------|-------|-------|-------|-------|-------|-------|
|        | 15–24 | 25–34       | 35–44 | 45–54 | 55–64 | 65–74 | 75–84 | Total |
| Male   | 0.9   | 2.5         | 5.4   | 8.3   | 9.0   | 6.8   | 5.1   | 38    |
| Female | 1.5   | 4.0         | 8.8   | 13.7  | 14.7  | 10.9  | 8.4   | 62    |

TABLE 41 Starting distribution of HAQ scores

| HAQ | 0.125 | 0.25  | 0.375 | 0.5   | 0.625 | 0.75  | 0.875  |
|-----|-------|-------|-------|-------|-------|-------|--------|
| %   | 3.1   | 6.7   | 6.7   | 5.8   | 5.3   | 4.9   | 4.8    |
| HAQ | l     | 1.125 | 1.25  | 1.375 | 1.5   | 1.625 | 1.75   |
| %   | 4.9   | 5.1   | 5.5   | 5.8   | 6.3   | 6.6   | 7.0    |
| HAQ | 1.875 | 2     | 2.125 | 2.25  | 2.375 | 2.5   | Higher |
| %   | 6.9   | 6.2   | 4.7   | 2.7   | 0.9   | 0.1   | 0      |

**TABLE 42** Fitting beta distribution to HAQ change data for leflunomide

|                        | Mean | SD   |
|------------------------|------|------|
| Initial HAQ parameters | 1.01 | 0.66 |
| Initial HAQ sampled    | 1.03 | 0.62 |
| HAQ improvement        | 0.48 | 0.50 |
|                        | а    | Ь    |
| Beta parameters        | 0.57 | 0.65 |

square, the larger the number of simulated patients with that pair of HAQ values. It can be seen that there is a high proportion of patients with equal HAQ on treatment compared with before treatment. In this example, the sampled population contains a large number of zero initial HAQ values. These are omitted from the graphs, but included in the calculations relating to HAQ improvement.

*Table 43* shows the parameters found for the beta distributions. Two sets of figures are given for each of the TNF inhibitors: one for early RA

and one for late RA. The columns headed a and b are the actual parameters of the distribution, while the column headed Mean gives the mean value of the distribution. Since the distribution is for a multiplier giving HAQ improvement, the higher the mean, the more effective the treatment. Consider, for example, a patient with HAQ before treatment equal to 2.5. The effect of a treatment with mean 0.6 will lie somewhere between two extremes. One extreme is that all patients have HAQ reduced by  $0.6 \times 2.5 = 1.5$ , so that HAQ on treatment would be 1.0, while the other extreme is that 60% of patients have HAO reduced to zero, while the other 40% have no change in HAQ. Where values of a and b are both less than 1, as is generally the case for the values used here, the distribution is close to the second of these cases.

### Time on treatments

The model allows for two stages of early quitting of treatment. *Figure 48* shows the general shape for the survival curve assumed for a particular treatment. The first step represents cessation of treatment after 6 weeks, which is assumed to be

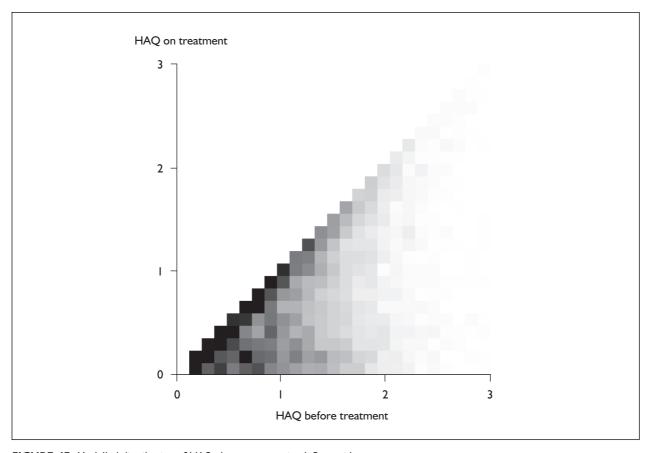



FIGURE 47 Modelled distribution of HAQ change on starting leflunomide

**TABLE 43** Beta distributions for HAQ multipliers

| Treatment                  | а                                                        | Ь                                                        | Mean                                                     | Source                                                                                                                                                          |
|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adal early RA              | [Commercial-<br>in-confidence<br>information<br>removed] | [Commercial-<br>in-confidence<br>information<br>removed] | [Commercial-<br>in-confidence<br>information<br>removed] | From PREMIER trial <sup>102</sup> (DE013); unpublished data (observed values) from trial report. MTX-naïve patients                                             |
| Adal late RA               | 0.16                                                     | 0.61                                                     | 0.21                                                     | From van de Putte <sup>113</sup> (DE011), data with LOCI imputation, without concomitant MTX                                                                    |
| Adal + MTX<br>early RA     | [Commercial-<br>in-confidence<br>information<br>removed] | [Commercial-<br>in-confidence<br>information<br>removed] | [Commercial-<br>in-confidence<br>information<br>removed] | From PREMIER trial <sup>102</sup> (DE013); unpublished data (observed values) from trial report. MTX-naïve patients.                                            |
| Adal + MTX<br>late RA      | 1.08                                                     | 1.36                                                     | 0.44                                                     | Combined results from ARMADA trial <sup>112</sup> (DE009) and Keystone <sup>114</sup> (DE019)                                                                   |
| AZA                        | 0.20                                                     | 0.80                                                     | 0.20                                                     | Data assumed to be similar to anakinra using data from Bresnihan <sup>174</sup>                                                                                 |
| СуА                        | 0.13                                                     | 0.26                                                     | 0.33                                                     | RCT of GST vs CyA in early RA, 175 Kvien 176                                                                                                                    |
| Etan early RA              | 0.59                                                     | 0.52                                                     | 0.53                                                     | From ERA trial. <sup>123</sup> Unpublished data with LOC imputation from trial report. MTX-naïve patients                                                       |
| Etan late RA               | 0.43                                                     | 0.67                                                     | 0.39                                                     | Combined results from Moreland, <sup>122</sup><br>Codreanu <sup>103</sup> and TEMPO. <sup>127</sup> Unpublished data<br>with LOCF imputation from trial reports |
| Etan + MTX<br>early RA     | 0.72                                                     | 0.50                                                     | 0.59                                                     | From TEMPO <sup>127</sup> (data from Wyeth submission                                                                                                           |
| Etan + MTX<br>late RA      | 0.20                                                     | 0.30                                                     | 0.40                                                     | From Weinblatt. 125 Unpublished data with LOCF imputation from trial report                                                                                     |
| GST                        | 0.45                                                     | 0.70                                                     | 0.39                                                     | As for CyA                                                                                                                                                      |
| HCQ                        | 0.15                                                     | 0.40                                                     | 0.27                                                     | Trial of HCQ in early RA <sup>177</sup>                                                                                                                         |
| Infl (+MTX)<br>early RA    | 0.76                                                     | 0.67                                                     | 0.53                                                     | From St Clair <sup>135</sup> (ASPIRE trial). MTX-naïve patients                                                                                                 |
| Infl (+MTX)<br>late RA     | 0.11                                                     | 0.38                                                     | 0.22                                                     | From ATTRACT <sup>132</sup> (unpublished data from trial report, observed values)                                                                               |
| LEF                        | 0.57                                                     | 0.65                                                     | 0.47                                                     | RCT of LEF vs MTX <sup>173</sup>                                                                                                                                |
| MTX                        | 0.98                                                     | 0.82                                                     | 0.54                                                     | As for LEF                                                                                                                                                      |
| DPen                       | 0.20                                                     | 0.80                                                     | 0.20                                                     | Assumed same as AZA                                                                                                                                             |
| SSZ                        | 0.70                                                     | 0.84                                                     | 0.45                                                     | Follow-up observations of patients involved in an RCT, <sup>178</sup> Smolen <sup>179</sup>                                                                     |
| Combination<br>CyA + MTX   | 0.80                                                     | 0.45                                                     | 0.64                                                     | Data from an RCT of CyA vs CyA combined with MTX in early RA <sup>180</sup>                                                                                     |
| Combination<br>MTX+SSZ     | 0.70                                                     | 0.84                                                     | 0.45                                                     | Assumed as for SSZ                                                                                                                                              |
| Combination<br>MTX+SSZ+HCQ | 0.15                                                     | 0.40                                                     | 0.27                                                     | Assumed as for HCQ                                                                                                                                              |

LOCF, last observation carried forward.

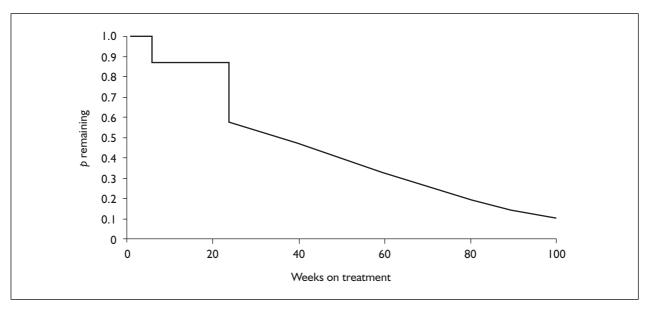



FIGURE 48 Illustrative curve for survival time on a treatment (based on leflunomide data)

**TABLE 44** Early cessation of DMARDs: data, sources and comments

| Drug                       | Cessation at<br>≤ 6 weeks <sup>a</sup>         | Ceasing between 6 and 24 weeks                                             | Comments and source                                                                                                                                                                                                         |
|----------------------------|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adal (with or without MTX) | 5%                                             | 10% (5% because of toxicity and 4% for inefficacy, 1% for other reasons)   | No appropriate data found; assume same as infliximab                                                                                                                                                                        |
| AZA                        | 15%                                            | 25%                                                                        | Data estimated from Willkens. <sup>181</sup> Reasons for cessation due to toxicity, inefficacy or other reasons are not available                                                                                           |
| СуА                        | 8%                                             | 24% (12% because of inefficacy and 12% for toxicity)                       | Data estimated from Yocum <sup>182</sup> It is assumed that half of those ceasing between 6 and 24 weeks do so because of inefficacy and the other half because of toxicity; based on observations by Marra. <sup>183</sup> |
| Etan (with or without MTX) | 4%                                             | 3% (1% because of toxicity and 2% for inefficacy)                          | Observational study by Geborek 2002 <sup>171</sup> (see leflunomide) 84% of all patients remained on treatment at 12 months                                                                                                 |
| GST                        | 14%                                            | 27% (18% because of toxicity and 9% for inefficacy)                        | Figures estimated from Hamilton. 184 Estimated figures from Zeidler 175 are 10% within 6 weeks and 34% at 24 weeks                                                                                                          |
| HCQ                        | 3%                                             | 18% (4% because of toxicity and 14% for inefficacy)                        | Data estimated from Furst <sup>185</sup> using a cohort treated with 800 mg per day as this group provided the most complete data set                                                                                       |
| Infl + MTX                 | 5%                                             | 10% (5% because of toxicity and 4% for inefficacy, 1% for other reasons)   | Observational study by Geborek <sup>171</sup> (see leflunomide).<br>75% of all patients remained on treatment at 12 months                                                                                                  |
| LEF                        | 10% for drug toxicity and 3% for other reasons | 30% (10% because of toxicity, 19% for inefficacy and 1% for other reasons) | Data estimated from Geborek. <sup>171</sup> These data are preferred to trial data because clinical experience indicates that continued drug use is less likely in practice than use in randomised trials. <sup>186</sup>   |
| MTX                        | 8.5%                                           | 19.5% (8.5% because of toxicity and 11% for inefficacy)                    | Estimates from Hamilton <sup>184</sup>                                                                                                                                                                                      |

TABLE 44 Early cessation of DMARDs: data, sources and comments (cont'd)

| Drug                                 | Cessation at<br>≤ 6 weeks <sup>a</sup> | Ceasing between 6 and 24 weeks                                                | Comments and source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DPen                                 | Assume same as                         | s AZA                                                                         | No reliable data are available for use of penicillamine late in disease; late drug-use data are required by the modelling strategy                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SSZ                                  | 10%                                    | 28% (9% because of toxicity, 10.5% for inefficacy and 8.5% for other reasons) | No ideal source identified. Data estimated from two clinical trials (Proudman <sup>187</sup> and Smolen <sup>179</sup> ) that gave data from which inferences about early and late cessations were made                                                                                                                                                                                                                                                                                                                                                               |
| Combination<br>(CyA and MTX)         | 0%                                     | 50%                                                                           | No data source. The model assumes that patients will have tried both MTX and CyA monotherapy before trying this combination. Therefore, patients experiencing toxicity to either agent in the past would not be eligible for this combination. The use of this combination after failed monotherapy with CyA and MTX assumes a synergistic effect for efficacy, although there is no definitive evidence for this. In the absence of data, but based on an educated guess, it was assumed that 50% of patients cease therapy after 24 weeks owing to lack of efficacy |
| Combination<br>(MTX and SSZ)         | As for SSZ                             |                                                                               | As the model does not propose combination therapy from the outset with this combination, but proposes that SSZ is added when MTX is inefficacious (and not toxic), in a stepup strategy, it was assumed that patients respond, in terms of toxicity and drug continuation, as they would if SSZ alone had been used                                                                                                                                                                                                                                                   |
| Combination<br>(MTX, SSZ<br>and HCQ) | As for HCQ                             |                                                                               | As above, the model does not propose combination therapy from the outset but drugs are added in a step-up strategy. Thus, toxicity and drug continuation rates for this combination are assumed to be similar to HCQ alone, since patients only use HCQ in the combination if MTX and SSZ in combination have been inefficacious (and not toxic)                                                                                                                                                                                                                      |

for toxicity. The second step represents cessation between 6 and 24 weeks after starting treatment, which could be for toxicity or inefficacy. *Table 44* shows the data used for early cessation of DMARDs. The implementation of this approach is illustrated in *Figure 49*. The variables u1 and u2 are drawn from a uniform distribution between 0 and 1. The value of u1 is used primarily to determine the HAQ improvement on starting treatment using the beta distribution with parameters as shown in *Table 43*, while u2 determines the time on treatment. The four zones in *Figure 49* represent the following:

- A withdrawal within 6 weeks (assumed due to toxicity)
- B withdrawal between 6 and 24 weeks for inefficacy
- C withdrawal between 6 and 24 weeks for toxicity
- D remaining on the treatment after 24 weeks.

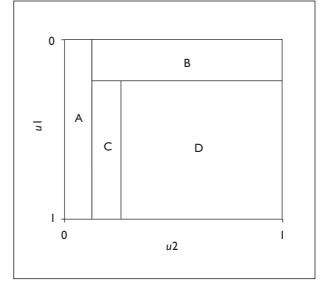



FIGURE 49 Early cessation of treatment

TABLE 45 Times to quitting DMARD

| DMARD               | а    | b (years) | Mean (years) | Source                       |
|---------------------|------|-----------|--------------|------------------------------|
| Adal                | 0.73 | 5.96      | 7.26         | Assumed same as infliximate  |
| AZA                 | 0.39 | 4.35      | 15.53        | GPRD database 188            |
| СуА                 | 0.5  | 4.35      | 8.70         | GPRD database 188            |
| Étan                | 0.73 | 12.34     | 15.03        | Geborek <sup>171</sup>       |
| GST                 | 0.48 | 1.81      | 3.91         | GPRD database <sup>188</sup> |
| HCQ                 | 0.49 | 3.52      | 7.31         | GPRD database 188            |
| Infl                | 0.73 | 5.96      | 7.26         | Geborek <sup>171</sup>       |
| LEF                 | I    | 5.98      | 5.98         | GPRD database <sup>188</sup> |
| MTX                 | 0.51 | 15.73     | 30.35        | GPRD database <sup>188</sup> |
| DPen                | 0.57 | 2.60      | 4.20         | GPRD database <sup>188</sup> |
| SSZ                 | 0.46 | 4.66      | 11.01        | GPRD database <sup>188</sup> |
| Combination CyA+MTX | I    | 1.74      | 1.74         | Tugwell, 189 Gerards 190     |
| MTX+SSZ             | 0.46 | 4.66      | 11.01        | As for SSZ alone             |
| MTX+SSX+HCQ         | 0.49 | 3.52      | 7.31         | As for HCQ alone             |

GPRD, General Practice Research Database.

In implementation, the values of *u*1 and *u*2 are compared with critical values calculated so that zones A, B and C in *Figure 49* have the appropriate areas to represent the probabilities given in *Table 44*. This method means that early withdrawal for inefficacy coincides with the minimum HAQ improvement.

For patients who remain on treatment after 24 weeks, the time on treatment is assumed to be independent of HAQ improvement. The value of *u*2 is converted to a value from a Weibull distribution, represented in the curved part of *Figure 48*.

A random variable X has a Weibull distribution with shape parameter a and scale parameter b if  $\left(\frac{X}{b}\right)^a$  has an exponential distribution with unit

mean. The Weibull distribution is more general than the constant-risk exponential distribution in that it reduces to the exponential distribution when a = 1. If a < 1, then the risk decreases over time, while if a > 1, the risk increases over time. Parameters a and b are shown in *Table 45*. For convenience, the mean of the distribution is also shown.

### HAQ changes on treatment

The model assumes a constant risk of increase in HAQ score while in treatment and that an individual's HAQ score increases gradually and in steps of 0.125, apart from the effects of starting and ending treatment. While HAQ can change at any stage of disease, and is known to be more labile in early disease, the assumption of a gradual increase in HAQ is reasonable for the parts of the

model where comparisons are being made, as the model applies to the later stages of the disease. The rate of increase in HAQ was chosen to reflect the empirically observed increase reported by Scott and Strand. <sup>191</sup>

#### Toxicity

Toxicity of treatments beyond 24 weeks was only an issue if it potentially affected later choices of treatment, as shown in Table 44. Thus, it was only an issue for methotrexate, ciclosporin and the combination methotrexate plus sulfasalazine. For other treatments, cessation because of toxicity or inefficacy has the same consequence in the model; that is, use of the treatment next in sequence. For ciclosporin it was assumed that drug cessation was due to toxicity with a probability of 0.8 regardless of time spent on drug. 192 For methotrexate, the probability p was set to depend on the time t years on the drug, by the formula p = 0.362 + $0.115e^{-0.457t}$ , which was derived from a comparison between the survival curves given in Maetzel. 193 For methotrexate plus sulfasalazine, it was assumed that the probability for methotrexate alone applies.

#### Costs

Costs are made up of drug costs plus monitoring costs. For all treatments, there are higher costs on starting than there are for continued use. The total cost for time on any treatment is modelled as a one-off starting cost followed by a steady annual usage cost. For completeness, all costs are shown. The price year is 2004 in each case. The unit costs of the various inputs are shown in *Tables 46* and 47. The monitoring assumptions are listed in *Table 48*.

**TABLE 46** Unit costs for tests and visits

| Test                         | Cost $(\mathbf{f})^a$ | Source                           |
|------------------------------|-----------------------|----------------------------------|
| FBC                          | 3.98                  | Newchurch <sup>194</sup>         |
| ESR                          | 3.07                  | Newchurch <sup>194</sup>         |
| ВСР                          | 3.84                  | Newchurch <sup>194</sup>         |
| CXR                          | 15.59                 | Newchurch <sup>195</sup>         |
| Urinalysis                   | 0.08                  | Newchurch <sup>194</sup>         |
| Visit                        |                       |                                  |
| GP                           | 24.00                 | Curtis and Netten 196            |
| Hospital outpatient          | 91.00                 | Curtis and Netten 196            |
| Hospital inpatient (per day) | 202.00                | Curtis and Netten <sup>196</sup> |
| Specialist nurse visit       | 45.50                 | Assumed half of outpatient visit |

 $<sup>^{\</sup>it a}$  Inflated to 2004 prices using Hospital and Community Health Services (HCHS) inflation index.  $^{\rm 196}$  BCP, biochemical profile; CXR, chest X-ray; FBC, full blood count.

TABLE 47 Unit costs for drugs

| Treatment | Cost                    | Assumptions                                                                     |
|-----------|-------------------------|---------------------------------------------------------------------------------|
| Adal      | £357.50 per dose        | 26 doses per year                                                               |
| AZA       | 53.4p per day           | 150 mg per day                                                                  |
| СуА       | £3.73 per day           | 225 mg per day                                                                  |
| Etan      | £178.75 per dose        | 52 doses of 50 mg per year                                                      |
| GST       | £8.89 per dose          | 50-mg ampoule, administered at GP visit                                         |
| HCQ       | II.4p per day           | 300 mg per day                                                                  |
| Infl      | £419.62 per vial        | 70-kg patient, drug wastage if full vials not used, cost per administration £12 |
| LEF       | £1.70 per day           | 20 mg per day                                                                   |
| MTX       | II.7p per 2.5-mg tablet | 15 mg per week                                                                  |
| DPen      | 49.2p per day           | 500 mg per day                                                                  |
| SSZ       | 32.9p per day           | 2.5 g per day                                                                   |

**TABLE 48** Monitoring assumptions

| Treatment  | Pretreatment                         | On treatment                                                                                                                                                                |
|------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Palliation |                                      | Outpatient visit every 3 months                                                                                                                                             |
| Adal       | FBC, ESR, BCP, CXR                   | FBC, ESR, BCP at weeks 2, 4, 8, 12, then every 3 months                                                                                                                     |
| AZA        | FBC, ESR, BCP                        | FBC and BCP weekly for 6 weeks, then every 2 weeks for 3 visits, then monthly                                                                                               |
| СуА        | FBC, $2 \times$ BCP, ESR, urinalysis | FBC, BCP every 2 weeks for 4 months, then BCP monthly                                                                                                                       |
| Etan       | FBC, ESR, BCP, CXR                   | FBC, ESR, BCP at weeks 2, 4, 8, 12, then every 3 months                                                                                                                     |
| GST        | FBC, ESR, BCP, urinalysis            | FBC, BCP, urinalysis every week for up to 21 injections, then every 2 weeks for 3 months, then every 3 weeks for 3 months, then monthly. Treatment given by i.m. injections |
| HCQ        | FBC, ESR, BCP                        | FBC, ESR, BCP every 3 months                                                                                                                                                |
| Infl       | FBC, ESR, BCP, CXR                   | FBC, ESR, BCP at weeks 2, 6 and every 8 weeks (at time of infusions)                                                                                                        |
| LEF        | FBC, ESR, BCP, urinalysis            | FBC every 2 weeks for 6 months, every 8 weeks thereafter. BCP monthly for 6 months, every 8 weeks thereafter                                                                |
| MTX        | FBC, ESR, BCP, CXR                   | FBC, BCP every 2 weeks for 4 months then monthly                                                                                                                            |
| SSZ        | FBC, ESR, BCP                        | FBC every 2 weeks and BCP every 4 weeks for 12 weeks, then FBC and BCP every 3 months                                                                                       |

**TABLE 49** Treatment costs

| Treatment           | Start-up<br>(£) | Annual usage (£) |
|---------------------|-----------------|------------------|
| Palliation          | 0.00            | 364.00           |
| Adal                | 515.88          | 9714.84          |
| Adal+MTX            | 515.88          | 9751.34          |
| AZA                 | 694.81          | 1380.26          |
| CyA                 | 350.37          | 2482.08          |
| Etan                | 515.88          | 9714.84          |
| Etan+MTX            | 515.88          | 9751.34          |
| GST                 | 2765.24         | 1581.48          |
| HCQ                 | 101.89          | 448.97           |
| Infl                | 1676.14         | 9333.54          |
| LEF                 | 986.91          | 1211.72          |
| MTX                 | 512.76          | 1222.34          |
| DPen                | 476.94          | 1401.77          |
| SSZ                 | 584.47          | 514.88           |
| Combination CyA+MTX | 350.37          | 2566.34          |
| MTX+SSZ             | 584.47          | 1341.94          |
| MTX+SSZ+HCQ         | 101.89          | 1346.85          |

All costs discounted at 6% per annum from divergence point.

Combining the above information leads to the model inputs shown in *Table 49*. It should be noted that palliation does not include hospitalisation. Hospital admissions may be higher for RA patients with no DMARD options, but no data were available as a guide.

The base model does not include costs for hospitalisation as a result of RA. This is because of wide variation in rates dictated by local facilities and practice. The ERA study shows a large range of hospitalisation for RA, but there are no data for the impact of DMARDs on hospital admission rates. <sup>46</sup> The effects of DMARDs on joint replacement have also not been included in the base model. Again, this is because of the absence of data on the effects of DMARDs on joint replacement rates. These uncertainties are explored later in a sensitivity analysis.

Basic mortality comes from standard life tables. A relative risk of 1.33 per unit HAQ is applied. <sup>198</sup> More recently, Sokka and colleagues <sup>199</sup> reported a risk of 2.73 per unit HAQ. The present analysis maintained the relative risk of 1.33 for the base case, but used the range from 1 to 2.73 for sensitivity analysis.

In the base case, the following assumptions were made concerning HAQ increases over time. It was assumed that patients remaining on TNF inhibitors experience a worsening (increase) in HAQ equivalent to the general population. Based

on the study by Krishnan and colleagues,<sup>200</sup> this was set a progression of 0.03 per year, making a mean time of 4 years between each 0.125 unit increase in HAQ. It was assumed that TNF inhibitors halve the general worsening in HAQ, so that patients on palliation have a progression rate of 0.06 per year, a mean time of 2 years between each 0.125 unit increase in HAQ. For conventional DMARDs, an intermediate progression rate of 0.045 per year was assumed, a mean time of 2.7 years between each 0.125 unit increase in HAQ. These assumptions were varied in sensitivity analysis.

On quitting any treatment, it is assumed that the HAQ improvement (reduction) obtained on starting treatment is exactly reversed. For example, if the HAQ score improves from 1.25 to 0.875 on starting treatment, and the HAQ score is 1 before quitting treatment, then the HAQ score will be 1.375 after quitting. If applying this rule would take the post-treatment HAQ score above 3, then the post-treatment HAQ score is set to 3.

### Quality of life (QoL) scores

Conversion from HAQ to QALYs is by the formula QoL = 0.862 - 0.327HAQ calculated from the data set supplied by Hurst, and reported in Hurst and colleagues.<sup>201</sup> It was assumed that start and end effects can be modelled as one-off deductions equal to 0.2 years times the change in QoL score.

QALYs are discounted at 1.5% per annum from the divergence point between strategies.

### Results

The model was run for each of the strategy sets shown above. A fixed random number seed was used, and the model was run for at least 10,000 (virtual) patients. Comparisons between each pair of options can be found in the form of an ICER with a quasi-confidence interval, reflecting the sampling in running the model, not parameter uncertainty. Fixed stopping rules were used to determine whether the quasi-confidence interval was sufficiently precise, or whether the run-length needed to be increased. The definition of 'sufficiently precise' used was as follows. In cases of dominance (north-west or south-east quadrants), 95% quasi-confidence intervals for cost difference and QALY difference each had to avoid zero. In other cases, a quasi-confidence interval [lower (L), upper (U)] for the ICER had to satisfy the

following properties, according to the values of L and U:

- U < 5000 or L > 200,000: U/L < 2.5
- U < 10,000 or L > 100,000: U/L < 2.0
- U < 20,000 or L > 50,000: U/L < 1.5
- U < 30,000 or L > 30,000: U/L < 1.2
- L < 30,000 and U > 30,000: U/L < 1.1.

In cases where there were more than two options to compare, the more important comparisons are those between an option including a TNF inhibitor and the baseline without that TNF inhibitor. These are referred to as 'major comparisons'. Comparisons between different strategies including TNF inhibitors are referred to as 'minor comparisons'. Results are given for the following minor comparisons:

- effect of adding methotrexate (adalimumab plus methotrexate versus adalimumab alone, etanercept plus methotrexate versus etanercept alone)
- comparison between monotherapies (adalimumab versus etanercept alone)
- comparison between combinations with methotrexate (adalimumab plus methotrexate versus etanercept plus methotrexate versus infliximab plus methotrexate).

The model was first run with 10,000 patients. If any major comparison gave insufficiently precise results, then the number of patients was increased to 20,000, then to 40,000, then to 100,000, then to 200,000, and so on as necessary until all major comparisons gave sufficiently precise results. If any quoted minor comparison was insufficiently precise at this stage, the number of patients was increased once more. The actual number of patients modelled in each case is stated.

#### Base case-results

Results were obtained with base-case parameters for each of the strategy sets described above.

### Single TNF inhibitor use

The base-case ICERs are summarised in *Table 50*. The full individual results for each single TNF inhibitor, used alone or with methotrexate, for each strategy are given in *Tables 51–54*.

For the HAQ improvement on starting a TNF inhibitor, the 'early RA' values were used for the strategy set involving TNF inhibitors at the start, both sets of values were used for single TNF inhibitors in third place, and the 'late RA' values were used for all other cases. When interpreting these results, it should be borne in mind that the distinction between early RA and late RA is rather arbitrary and is not always practical. Of note, patients' response to a drug or to a combination of drugs depends on their previous experience with these therapies. Patients' previous experience with methotrexate is particularly relevant here: the early RA data used in our model represent the benefit that would be expected if the patients were naïve to methotrexate or had not previously failed methotrexate treatment. The analyses using early RA data in the strategies involving TNF inhibitors combined with methotrexate as third line therapy are therefore better interpreted as sensitivity analyses that incorporated treatment benefit that is unlikely to be seen in current practice (as most patients, if not all, would have failed methotrexate before starting a TNF inhibitor as the third line treatment, according to current guidance). For TNF inhibitors used alone, the cost-effectiveness of current practice probably lies between the results in which early RA data and late RA data were used.

**TABLE 50** Summary of base-case ICERs for each TNF inhibitor (alone and with MTX)

| TNF inhibitor         | Comparator    | Cos                          | Cost per QALY (£)                        |                                        |         |  |
|-----------------------|---------------|------------------------------|------------------------------------------|----------------------------------------|---------|--|
|                       |               | Usage consisten              | Usage consistent with 2002 NICE guidance |                                        |         |  |
|                       |               | Third line<br>(late RA data) | Last in strategy                         | Third line<br>(using early<br>RA data) |         |  |
| Adalimumab (no MTX)   | Base strategy | 140,000                      | 40,000                                   | 35,000                                 | 53,000  |  |
| Etanercept (no MTX)   | of DMARDs     | 47,000 <sup>a</sup>          | 24,000                                   | $30,000^{a}$                           | 49,000  |  |
| Adalimumab (with MTX) | with no TNF   | 64,000                       | 30,000                                   | 30,000                                 | 170,000 |  |
| Etanercept (with MTX) | inhibitors    | $50,000^{a}$                 | 24,000                                   | 28,000                                 | 78,000  |  |
| Infliximab (with MTX) |               | 140,000°                     | 38,000                                   | 30,000                                 | 650,000 |  |

**TABLE 51** Base case: TNF inhibitors third (late RA values) (40,000 patients)

| Option      | Cost (£)       | QSE        | QALYs              | QSE        |  |
|-------------|----------------|------------|--------------------|------------|--|
| Adal        | 47,442         | 154        | 5.6365             | 0.0234     |  |
| Etan        | 60,341         | 188        | 6.3415             | 0.0246     |  |
| Adal+MTX    | 47,963         | 155        | 5.9053             | 0.0232     |  |
| Etan+MTX    | 60,329         | 188        | 6.2974             | 0.0250     |  |
| Infl+MTX    | 47,278         | 148        | 5.6380             | 0.0235     |  |
| Base        | 16,509         | 36         | 5.4169             | 0.0218     |  |
| Comparison  | Diff. cost (£) | QSE        | Diff. QALY         | QSE        |  |
| Adal – Base | 30,934         | 150        | 0.2196             | 0.0224     |  |
| Etan – Base | 43,832         | 181        | 0.9246             | 0.0237     |  |
| Ad+M – Base | 31,454         | 151        | 0.4884             | 0.0226     |  |
| Et+M – Base | 43,821         | 182        | 0.8805             | 0.0241     |  |
| In+M – Base | 30,770         | 145        | 0.2212             | 0.0224     |  |
| Ad+M – Adal | 520            | 204        | 0.2688             | 0.0288     |  |
| Etan – Et+M | 12             | 243        | 0.0441             | 0.0252     |  |
| Etan – Adal | 12,899         | 225        | 0.7050             | 0.0238     |  |
| Et+M-Ad+M   | 12,367         | 225        | 0.3920             | 0.0242     |  |
| Ad+M-In+M   | 684            | 200        | 0.2673             | 0.0228     |  |
| Et+M – In+M | 13,051         | 221        | 0.6593             | 0.0241     |  |
| Comparison  | ICER (£ per QA | ALY)       | Qua                | si-Cl      |  |
| Adal – Base | 141,000        |            | 117,000 1          | to 177,000 |  |
| Etan – Base | 47,400         |            | 45,100 to 50,000   |            |  |
| Ad+M – Base | 64,400         |            | 58,900 to 71,000   |            |  |
| Et+M – Base | 49,800         |            | 47,200 to 52,700   |            |  |
| In+M – Base | 139,000        |            | 116,000 to 174,000 |            |  |
| Ad+M – Adal | 1,940          |            | 382 to 3,490       |            |  |
| Etan – Et+M |                | Comparison | is inconclusive    |            |  |
| Etan – Adal | 18,300         |            | 17,000 1           | to 19,800  |  |
| Et+M-Ad+M   | 31,500         |            | 27,900 1           | to 36,200  |  |
| Ad+M-In+M   | 2,560          |            |                    | to 4,120   |  |
| Et+M-In+M   | 19,800         |            | 18,300 1           | to 21,500  |  |

### Sequential use of TNF inhibitors

Sequential use of TNF inhibitors was modelled with the TNF inhibitors starting as third line therapy and using the 'late RA' values for the TNF inhibitors. Base-case ICERs are summarised in Table 55 and the individual results for the sequential use of TNF inhibitors are given in *Tables 56–64*. The results are similar to those using the 'Following TNF inhibitor' as the sole TNF inhibitor in third place as shown in Table 51, except that the two other TNF inhibitors are somewhat less cost-effective if used after etanercept. Similar results were obtained for TNF inhibitors as the third in the sequence.

### Sensitivity analysis

Extensive sensitivity analysis has been carried out for all strategy sets involving use of a single TNF inhibitor. As in the base case, for the HAQ

improvement on starting a TNF inhibitor, the early RA values were used for the strategy set involving TNF inhibitors at the start, the late RA values were used for TNF inhibitors last, and both sets of values were used for TNF inhibitors in third place. Full details of the sensitivity analysis are given in Appendix 10. Summarised forms are given in Tables 65-68.

### Summary of model results

When the effectiveness values for early RA were used for TNF inhibitors in third place, the results for the three TNF inhibitors were broadly similar. They are sensitive to assumptions about HAQ progression while on treatment, and to assumptions about effectiveness and long-term survival on conventional DMARDs. When the effectiveness values for late RA were used instead, the results were considerably less favourable.

TABLE 52 Base case: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE                   | QALYs                         | QSE       |  |
|-------------|----------------|-----------------------|-------------------------------|-----------|--|
| Adal        | 48,264         | 98                    | 6.3183                        | 0.0150    |  |
| Etan        | 60,948         | 119                   | 6.8617                        | 0.0159    |  |
| Adal+MTX    | 48,536         | 99                    | 6.4613                        | 0.0149    |  |
| Etan+MTX    | 61,254         | 119                   | 6.9715                        | 0.0160    |  |
| Infl+MTX    | 48,173         | 94                    | 6.4405                        | 0.0149    |  |
| Base        | 16,494         | 23                    | 5.3995                        | 0.0138    |  |
| Comparison  | Diff. cost (£) | QSE                   | Diff. QALY                    | QSE       |  |
| Adal – Base | 31,770         | 96                    | 0.9188                        | 0.0148    |  |
| Etan – Base | 44,454         | 116                   | 1.4623                        | 0.0157    |  |
| Ad+M – Base | 32,042         | 96                    | 1.0619                        | 0.0148    |  |
| Et+M – Base | 44,761         | 116                   | 1.5720                        | 0.0157    |  |
| In+M – Base | 31,679         | 92                    | 1.0410                        | 0.0147    |  |
| Ad+M – Adal | 272            | 131                   | 0.1430                        | 0.0154    |  |
| Et+M – Etan | 306            | 155                   | 0.1097                        | 0.0169    |  |
| Etan – Adal | 12,684         | 144                   | 0.5434                        | 0.0162    |  |
| Et+M-Ad+M   | 12,719         | 144                   | 0.5101                        | 0.0163    |  |
| Ad+M-In+M   | 362            | 128                   | 0.0208                        | 0.0154    |  |
| Et+M-In+M   | 13,081         | 142                   | 0.5310                        | 0.0162    |  |
| Comparison  | ICER (£ per 0  | QALY)                 | Qua                           | si-CI     |  |
| Adal – Base | 34,600         | )                     | 33,500 to 35,700              |           |  |
| Etan – Base | 30,400         | )                     | 29,700 to 31,100              |           |  |
| Ad+M – Base | 30,200         | )                     | 29,300 to 31,100              |           |  |
| Et+M – Base | 28,500         | )                     | 27,900 to 29,100              |           |  |
| In+M – Base | 30,400         | )                     | 29,600 to                     | o 31,300  |  |
| Ad+M – Adal | 1,900          | )                     | 23 to 3,780                   |           |  |
| Et+M – Etan |                |                       | Etan alone; diff. cost not si | gnificant |  |
| Etan – Adal | 23,300         |                       | 21,900 to                     |           |  |
| Et+M-Ad+M   | 24,900         | )                     | 23,400 to                     | 26,700    |  |
| ln+M-Ad+M   | Adal+MT>       | K more costly than In | fl+MTX; diff. QALY not sig    | gnificant |  |
| Et+M-In+M   | 24,600         | ,<br>)                | 23,100 to                     | 26,300    |  |

When the effectiveness values for early RA were used for TNF inhibitors at the start, the results were somewhat less favourable than the results obtained using early RA values for TNF inhibitors in third place. The results for combinations with methotrexate were much worse than for monotherapy. This reflects the definition of the strategy options, in that starting with a TNF

inhibitor in combination with methotrexate precludes the later use of methotrexate alone.

An important limitation of this work is the poor quality of the data on effectiveness of conventional DMARDs. It has not been possible to find data that would support quantification of a reduction in effectiveness with disease duration.

 TABLE 53
 Base case: TNF inhibitors first (400,000 patients)

| Option      | Cost (£)                                | QSE            | QALYs                                  | QSE    |  |
|-------------|-----------------------------------------|----------------|----------------------------------------|--------|--|
| Adal        | 49,538                                  | 51             | 8.9674                                 | 0.0084 |  |
| Etan        | 63,892                                  | 62             | 9.3005                                 | 0.0088 |  |
| Adal+MTX    | 49,650                                  | 52             | 8.5176                                 | 0.0080 |  |
| Etan+MTX    | 64,079                                  | 62             | 8.9408                                 | 0.0085 |  |
| Infl+MTX    | 49,079                                  | 49             | 8.3682                                 | 0.0080 |  |
| Base        | 15,331                                  | 11             | 8.3166                                 | 0.0079 |  |
| Comparison  | Diff. cost (£)                          | QSE            | Diff. QALY                             | QSE    |  |
| Adal – Base | 34,207                                  | 50             | 0.6508                                 | 0.0085 |  |
| Etan – Base | 48,561                                  | 60             | 0.9839                                 | 0.0087 |  |
| Ad+M – Base | 34,319                                  | 51             | 0.2010                                 | 0.0083 |  |
| Et+M – Base | 48,748                                  | 61             | 0.6242                                 | 0.0086 |  |
| In+M - Base | 33,748                                  | 48             | 0.0516                                 | 0.0083 |  |
| Ad+M – Adal | 112                                     | 69             | -0.4498                                | 0.0085 |  |
| Et+M – Etan | 187                                     | 82             | -0.3597                                | 0.0090 |  |
| Etan – Adal | 14,354                                  | 76             | 0.3332                                 | 0.0088 |  |
| Et+M-Ad+M   | 14,429                                  | 77             | 0.4232                                 | 0.0086 |  |
| Ad+M-In+M   | 571                                     | 68             | 0.1493                                 | 0.0083 |  |
| Et+M-In+M   | 15,000                                  | 75             | 0.5726                                 | 0.0086 |  |
| Comparison  | ICER (£ per C                           | QALY)          | Quasi-Cl                               |        |  |
| Adal – Base | 52,600                                  | 1              | 51,200 to 54,000                       |        |  |
| Etan – Base | 49,400                                  |                | 48,500 to 50,300                       |        |  |
| Ad+M – Base | 171,000                                 |                | 158,000 to 186,000                     |        |  |
| Et+M – Base | 78,100                                  |                | 76,000 to 80,300                       |        |  |
| In+M – Base | 654,000                                 |                | 495,000 to 962,000                     |        |  |
| Ad+M – Adal | , , , , , , , , , , , , , , , , , , , , |                | n Adal+MTX; diff. cost not significant |        |  |
| Et+M – Etan |                                         | Etan alone dom | ninates Etan+MTX                       | -      |  |
| Etan – Adal | 43,100                                  | ı              | 40,900 to                              | 45,500 |  |
| Et+M-Ad+M   | 34,100                                  | ı              | 32,700 to                              | 35,600 |  |
| Ad+M-In+M   | 3,830                                   | ı              | 2,820 to                               | 4,830  |  |
| Et+M-In+M   | 26,200                                  | 1              | 25,400 to                              | 27,100 |  |

 TABLE 54
 Base case: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                | QALYs                          | QSE      |  |
|-------------|----------------|--------------------|--------------------------------|----------|--|
| Adal        | 36,176         | 215                | 1.8631                         | 0.0218   |  |
| Etan        | 49,208         | 262                | 2.9877                         | 0.0267   |  |
| Adal+MTX    | 36,420         | 216                | 2.1607                         | 0.0223   |  |
| Etan+MTX    | 49,390         | 263                | 2.9836                         | 0.0271   |  |
| Infl+MTX    | 36,430         | 209                | 1.9166                         | 0.0225   |  |
| Base        | 2,857          | 11                 | 1.0317                         | 0.0182   |  |
| Comparison  | Diff. cost (£) | QSE                | Diff. QALY                     | QSE      |  |
| Adal – Base | 33,319         | 213                | 0.8314                         | 0.0159   |  |
| Etan – Base | 46,352         | 260                | 1.9560                         | 0.0228   |  |
| Ad+M – Base | 33,563         | 214                | 1.1290                         | 0.0171   |  |
| Et+M – Base | 46,534         | 260                | 1.9519                         | 0.0234   |  |
| In+M - Base | 33,574         | 207                | 0.8848                         | 0.0169   |  |
| Ad+M – Adal | 244            | 294                | 0.2976                         | 0.0204   |  |
| Et+M – Etan | 182            | 348                | -0.004 I                       | 0.0297   |  |
| Etan – Adal | 13,033         | 323                | 1.1246                         | 0.0251   |  |
| Et+M-Ad+M   | 12,970         | 325                | 0.8229                         | 0.0264   |  |
| ln+M-Ad+M   | П              | 290                | -0.2442                        | 0.0212   |  |
| Et+M-In+M   | 12,960         | 318                | 1.0670                         | 0.0261   |  |
| Comparison  | ICER (£/QALY)  | •                  | Quas                           | i-Cl     |  |
| Adal – Base | 40,100         |                    | 38,500 to 41,800               |          |  |
| Etan – Base | 23,700         |                    | 23,100 to 24,300               |          |  |
| Ad+M – Base | 29,700         |                    | 28,800 to 30,700               |          |  |
| Et+M – Base | 23,800         |                    | 23,200 to 24,500               |          |  |
| In+M – Base | 37,900         |                    | 36,500 to                      | 39,500   |  |
| Ad+M – Adal | Adal+MTX mo    | ore effective than | Adal alone; diff. cost not sig | nificant |  |
| Et+M – Etan |                |                    | n is inconclusive              |          |  |
| Etan – Adal | 11,600         | ,                  | 10,800 to                      | 12,400   |  |
| Et+M-Ad+M   | 15,800         |                    | 14,600 to 17,200               |          |  |
| ln+M-Ad+M   | Adal+MTX mo    | ore effective than | Infl+MTX; diff. cost not sig   | nificant |  |
| Et+M-In+M   | 12,100         |                    | 11,300 to                      | 13,000   |  |

**TABLE 55** Summary ICERs for sequential use of two TNF inhibitors

| First TNF inhibitor used | Following TNF inhibitor | ICER (£ per QALY) |
|--------------------------|-------------------------|-------------------|
| Adal (alone)             | Etan                    | 52,000            |
| ,                        | Infl                    | 240,000           |
| Etan (alone)             | Adal                    | 240,000           |
| ,                        | Infl                    | 190,000           |
| Infli (with MTX)         | Adal                    | 140,000           |
| ,                        | Etan                    | 47,000            |

**TABLE 56** Second TNF inhibitor following adalimumab (40,000 patients)

| Option      | Cost (£)          | QSE | QALYs              | QSE    |
|-------------|-------------------|-----|--------------------|--------|
| Etan        | 58,871            | 184 | 5.7622             | 0.0235 |
| Infl        | 46,036            | 146 | 5.0558             | 0.0224 |
| Base        | 15,972            | 36  | 4.9302             | 0.0206 |
| Comparison  | Diff. cost (£)    | QSE | Diff. QALY         | QSE    |
| Etan – Base | 42,899            | 179 | 0.8320             | 0.0231 |
| Infl – Base | 30,064            | 142 | 0.1256             | 0.0220 |
| Etan – Infl | 12,835            | 216 | 0.7064             | 0.0234 |
| Comparison  | ICER (£ per QALY) |     | Quasi-CI           |        |
| Etan – Base | 51,600            |     | 48,800 to 54,600   |        |
| Infl – Base | 239,000           |     | 177,000 to 368,000 |        |
| Etan – Infl | 18.200            | )   | 16.900 to          | 19.600 |

 TABLE 57
 Second TNF inhibitor following etanercept (100,000 patients)

| Option      | Cost (£)                                                  | QSE | QALYs              | QSE    |
|-------------|-----------------------------------------------------------|-----|--------------------|--------|
| Adal        | 45,666                                                    | 95  | 4.8230             | 0.0138 |
| Infl        | 45,424                                                    | 91  | 4.8559             | 0.0139 |
| Base        | 15,653                                                    | 23  | 4.6988             | 0.0129 |
| Comparison  | Diff. cost (£)                                            | QSE | Diff. QALY         | QSE    |
| Adal – Base | 30,013                                                    | 93  | 0.1242             | 0.0136 |
| Infl – Base | 29,773                                                    | 89  | 0.1571             | 0.0137 |
| Adal – Infl | 240                                                       | 122 | -0.0329            | 0.0138 |
| Comparison  | ICER (£ per QALY)                                         |     | Quas               | i-CI   |
| Adal – Base | 242,000                                                   | )   | 198,000 to 310,000 |        |
| Infl – Base | 190,000                                                   |     | 161,000 to 230,000 |        |
| Adal – Infl | Infl more effective than Adal; diff. cost not significant |     |                    |        |

 TABLE 58 Second TNF inhibitor following infliximab (40,000 patients)

| Option      | Cost (£)          | QSE | QALYs              | QSE    |
|-------------|-------------------|-----|--------------------|--------|
| Adal        | 46,365            | 152 | 5.1019             | 0.0223 |
| Etan        | 58,844            | 185 | 5.7985             | 0.0237 |
| Base        | 15,994            | 36  | 4.8872             | 0.0206 |
| Comparison  | Diff. cost (£)    | QSE | Diff. QALY         | QSE    |
| Adal – Base | 30,371            | 148 | 0.2147             | 0.026  |
| Etan – Base | 42,850            | 179 | 0.9113             | 0.0232 |
| Etan – Adal | 12,479            | 221 | 0.6966             | 0.0234 |
| Comparison  | ICER (£ per QALY) |     | Quasi-CI           |        |
| Adal – Base | 141,000           |     | 118,000 to 177,000 |        |
| Etan – Base | 47,000            |     | 44,700 to 49,600   |        |
| Etan – Adal | 17,900            | )   | 16,700 to          | 19,400 |

 TABLE 59
 Third TNF inhibitor following adalimumab and etanercept (100,000 patients)

| Option      | Cost (£)          | QSE | QALYs              | QSE    |
|-------------|-------------------|-----|--------------------|--------|
| Infl        | 44,122            | 90  | 4.3990             | 0.0133 |
| Base        | 15,134            | 23  | 4.3289             | 0.0123 |
| Comparison  | Diff. cost (£)    | QSE | Diff. QALY         | QSE    |
| Infl – Base | 28,988            | 87  | 0.0701             | 0.0133 |
| Comparison  | ICER (£ per QALY) |     | Quasi-CI           |        |
| Infl – Base | 414,000           |     | 300,000 to 667,000 |        |

**TABLE 60** Third TNF inhibitor following adalimumab and infliximab (20,000 patients)

| Cost (£)          | QSE                                         | QALYs                                                                     | QSE                                                                                                                                                                                             |
|-------------------|---------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56,640            | 256                                         | 5.2256                                                                    | 0.0318                                                                                                                                                                                          |
| 1,391             | 50                                          | 4.4743                                                                    | 0.0279                                                                                                                                                                                          |
| Diff. cost (£)    | QSE                                         | Diff. QALY                                                                | QSE                                                                                                                                                                                             |
| 41,250            | 248                                         | 0.7513                                                                    | 0.0319                                                                                                                                                                                          |
| ICER (£ per QALY) |                                             | Quasi-CI                                                                  |                                                                                                                                                                                                 |
| 54,900            |                                             | 50,600 to 60,100                                                          |                                                                                                                                                                                                 |
|                   | 56,640<br>1,391<br>Diff. cost (£)<br>41,250 | 56,640 256<br>1,391 50  Diff. cost (£) QSE  41,250 248  ICER (£ per QALY) | 56,640       256       5.2256         1,391       50       4.4743         Diff. cost (£)       QSE       Diff. QALY         41,250       248       0.7513         ICER (£ per QALY)       Quasi |

 TABLE 61 Third TNF inhibitor following etanercept and adalimumab (100,000 patients)

| Cost (£)          | QSE                                                            | QALYs                                                                         | QSE                                                                                                           |
|-------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 44,299            | 90                                                             | 4.4228                                                                        | 0.0133                                                                                                        |
| 15,130            | 23                                                             | 4.3222                                                                        | 0.0123                                                                                                        |
| Diff. cost (£)    | QSE                                                            | Diff. QALY                                                                    | QSE                                                                                                           |
| 29169             | 88                                                             | 0.1006                                                                        | 0.0134                                                                                                        |
| ICER (£ per QALY) |                                                                | Quasi-CI                                                                      |                                                                                                               |
| 290,000           |                                                                | 229,000 to                                                                    | 395,000                                                                                                       |
|                   | 44,299<br>15,130<br><b>Diff. cost (£)</b> 29169  ICER (£ per ( | 44,299 90<br>15,130 23<br>Diff. cost (£) QSE<br>29169 88<br>ICER (£ per QALY) | 44,299 90 4.4228<br>15,130 23 4.3222  Diff. cost (£) QSE Diff. QALY  29169 88 0.1006  ICER (£ per QALY) Quasi |

**TABLE 62** Third TNF inhibitor following etanercept and infliximab (100,000 patients)

| Option      | Cost (£)       | QSE               | QALYs      | QSE     |
|-------------|----------------|-------------------|------------|---------|
| Adal        | 44,497         | 94                | 4.3904     | 0.0131  |
| Base        | 15,130         | 23                | 4.3231     | 0.0123  |
| Comparison  | Diff. cost (£) | QSE               | Diff. QALY | QSE     |
| Adal – Base | 29,367         | 92                | 0.0673     | 0.0132  |
| Comparison  | ICER (£ per 0  | ICER (£ per QALY) |            | i-Cl    |
| Adal – Base | 437,000        | )                 | 313,000 to | 720,000 |

 TABLE 63
 Third TNF inhibitor following infliximab and adalimumab (20,000 patients)

| Option      | Cost (£)       | QSE               | QALYs      | QSE    |
|-------------|----------------|-------------------|------------|--------|
| Etan        | 56,788         | 257               | 5.2257     | 0.0318 |
| Base        | 15,434         | 50                | 4.4850     | 0.0280 |
| Comparison  | Diff. cost (£) | QSE               | Diff. QALY | QSE    |
| Etan – Base | 41,354         | 248               | 0.7407     | 0.0319 |
| Comparison  | ICER (£ per    | ICER (£ per QALY) |            | i-CI   |
| Etan – Base | 55,800         |                   | 51,400 to  | 61,100 |

 TABLE 64
 Third TNF inhibitor following infliximab and etanercept (10,000 patients)

| Option      | Cost (£)          | QSE     | QALYs      | QSE     |
|-------------|-------------------|---------|------------|---------|
| Adal        | 44,336            | 66      | 4.3794     | 0.0093  |
| Base        | 15,122            | 16      | 4.3218     | 0.0087  |
| Comparison  | Diff. cost (£)    | QSE     | Diff. QALY | QSE     |
| Adal – Base | 29,214            | 64      | 0.0577     | 0.0093  |
| Comparison  | ICER (£ per QALY) |         | Quasi-CI   |         |
| Adal – Base | 506,000           | 506,000 |            | 749,000 |

**TABLE 65** Sensitivity analyses: TNF inhibitors at the start

| Scenario                                            | Adal – Base | Etan – Base | Adal+MTX –<br>Base | Etan+MTX –<br>Base | Infl+MTX<br>Base |
|-----------------------------------------------------|-------------|-------------|--------------------|--------------------|------------------|
| Base case                                           | 52,600      | 49,400      | 171,000            | 78,100             | 654,000          |
| No HAQ progression on TNF inhibitors                | 27,000      | 23,500      | 37,600             | 28,000             | 46,100           |
| Slow HAQ progression on all DMARDs                  | 108,000     | 89,500      | Base               | 613,000            | Base             |
| Slow HAQ progression on all treatments              | 122,000     | 109,000     | Base               | 645,000            | Base             |
| Fast HAQ progression on all treatments              | 92,500      | 99,500      | Base               | 343,000            | Base             |
| No effect of HAQ on mortality                       | 50,500      | 46,500      | 211,000            | 80,700             | 1,910,000        |
| Mortality ratio 2.73 per unit HAQ                   | 62,300      | 55,300      | 125,000            | 77,400             | 433,000          |
| Effectiveness of conventional DMARDs down 50%       | 34,700      | 30,400      | 39,300             | 32,100             | 44,600           |
| Effectiveness of conventional DMARDs up 50%         | 115,000     | 119,000     | Base               | Base               | Base             |
| Survival times on conventional DMARDs down 50%      | 40,300      | 36,900      | 104,000            | 55,600             | 227,000          |
| Survival times on conventional DMARDs up 50%        | 60,500      | 56,900      | 151,000            | 86,800             | 605,000          |
| Survival times on TNF inhibitors down 50%           | 53,400      | 48,300      | Base               | 177,000            | Base             |
| Survival times on TNF inhibitors up 50%             | 54,900      | 50,700      | 92,300             | 66,800             | 166,000          |
| Review at 12 weeks                                  | 53,500      | 48,900      | 195,000            | 81,500             | 2,190,000        |
| Short-term quitters on TNF inhibitors down 50%      | 56,000      | 50,400      | 167,000            | 79,600             | 833,000          |
| Short-term quitters on TNF inhibitors up 50%        | 50,500      | 48,100      | 161,000            | 75,700             | 518,000          |
| Short-term quitters on conventional DMARDs down 50% | 53,400      | 49,500      | 139,000            | 74,700             | 345,000          |
| Short-term quitters on conventional DMARDs up 50%   | 50,800      | 47,000      | 198,000            | 79,800             | 2,950,000        |
| Include offset costs                                | 53,100      | 48,100      | 166,000            | 77,900             | 827,000          |

Base: baseline option dominates option with TNF inhibitor.

**TABLE 66** Sensitivity analyses: TNF inhibitors in third place, early RA values

| Scenario                                            | Adal – Base | Etan – Base | Adal+MTX –<br>Base | Etan+MTX –<br>Base | Infl+MTX –<br>Base |
|-----------------------------------------------------|-------------|-------------|--------------------|--------------------|--------------------|
| Base case                                           | 34,600      | 30,400      | 30,200             | 28,500             | 30,400             |
| No HAQ progression on TNF inhibitors                | 21,200      | 18,700      | 19,100             | 17,800             | 19,500             |
| Slow HAQ progression on all DMARDs                  | 43,000      | 38,800      | 36,300             | 36,000             | 39,000             |
| Slow HAQ progression on all treatments              | 54,600      | 45,600      | 43,200             | 42,000             | 45,300             |
| Fast HAQ progression on all treatments              | 49,400      | 45,200      | 40,500             | 41,000             | 42,100             |
| No effect of HAQ on mortality                       | 32,200      | 29,200      | 28,400             | 27,400             | 29,200             |
| Mortality ratio 2.73 per unit HAQ                   | 36,100      | 31,400      | 31,000             | 29,400             | 31,200             |
| Effectiveness of conventional DMARDs down 50%       | 26,600      | 22,600      | 23,100             | 22,100             | 24,300             |
| Effectiveness of conventional DMARDs up 50%         | 49,600      | 43,400      | 40,200             | 39,000             | 41,300             |
| Survival times on conventional DMARDs down 50%      | 27,800      | 24,900      | 25,100             | 23,800             | 25,200             |
| Survival times on conventional DMARDs up 50%        | 39,200      | 34,400      | 34,300             | 33,400             | 34,300             |
| Survival times on TNF inhibitors down 50%           | 36,700      | 32,000      | 32,200             | 29,600             | 33,400             |
| Survival times on TNF inhibitors up 50%             | 33,200      | 29,800      | 28,200             | 27,700             | 28,800             |
| Review at 12 weeks                                  | 33,700      | 30,400      | 29,700             | 28,500             | 30,300             |
| Short-term quitters on TNF inhibitors down 50%      | 35,300      | 30,800      | 30,700             | 29,000             | 31,300             |
| Short-term quitters on TNF inhibitors up 50%        | 33,800      | 30,500      | 29,200             | 28,300             | 30,200             |
| Short-term quitters on conventional DMARDs down 50% | 34,100      | 30,800      | 29,900             | 28,300             | 30,900             |
| Short-term quitters on conventional DMARDs up 50%   | 32,500      | 29,100      | 28,600             | 27,300             | 28,900             |
| Include offset costs                                | 32,400      | 28,900      | 28,100             | 27,100             | 28,400             |

**TABLE 67** Sensitivity analyses: TNF inhibitors in third place, late RA values

| Scenario                                            | Adal – Base | Etan – Base | Adal+MTX –<br>Base | Etan+MTX –<br>Base | Infl+MTX ·<br>Base |
|-----------------------------------------------------|-------------|-------------|--------------------|--------------------|--------------------|
| Base case                                           | 141,000     | 47,400      | 64,400             | 49,800             | 139,000            |
| No HAQ progression on TNF inhibitors                | 41,500      | 24,400      | 30,200             | 24,600             | 39,400             |
| Slow HAQ progression on all DMARDs                  | 535,000     | 68,500      | 101,000            | 69,600             | 462,000            |
| Slow HAQ progression on all treatments              | Base        | 90,200      | 150,000            | 93,300             | Base               |
| Fast HAQ progression on all treatments              | Base        | 95,400      | 147,000            | 96,100             | Base               |
| No effect of HAQ on mortality                       | 97,700      | 43,300      | 53,800             | 43,900             | 92,900             |
| Mortality ratio 2.73 per unit HAQ                   | 680,000     | 53,000      | 84,400             | 53,400             | 329,000            |
| Effectiveness of conventional DMARDs down 50%       | 58,400      | 31,200      | 40,500             | 31,600             | 56,900             |
| Effectiveness of conventional DMARDs up 50%         | Base        | 87,500      | 136,000            | 90,700             | Base               |
| Survival times on conventional DMARDs down 50%      | 66,700      | 34,200      | 42,300             | 35,000             | 61,900             |
| Survival times on conventional DMARDs up 50%        | 324,000     | 57,900      | 84,600             | 59,700             | 246,000            |
| Survival times on TNF inhibitors down 50%           | 120,000     | 46,400      | 62,300             | 46,600             | 124,000            |
| Survival times on TNF inhibitors up 50%             | 149,000     | 47,700      | 63,200             | 48,900             | 130,000            |
| Review at 12 weeks                                  | 145,000     | 47,000      | 62,800             | 48,200             | 125,000            |
| Short-term quitters on TNF inhibitors down 50%      | 134,000     | 45,800      | 64,200             | 48,800             | 115,000            |
| Short-term quitters on TNF inhibitors up 50%        | 151,000     | 47,100      | 59,400             | 48,100             | 135,000            |
| Short-term quitters on conventional DMARDs down 50% | 165,000     | 48,900      | 60,700             | 48,700             | 132,000            |
| Short-term quitters on conventional DMARDs up 50%   | 99,200      | 42,800      | 55,600             | 43,800             | 94,600             |
| Include offset costs                                | 135,000     | 45,400      | 60,300             | 46,600             | 116,000            |

Base: baseline option dominates option with TNF inhibitor.

 TABLE 68 Sensitivity analyses: TNF inhibitors in last place

| Scenario                                            | Adal – Base | Etan – Base | Adal+MTX –<br>Base | Etan+MTX –<br>Base | Infl+MTX –<br>Base |
|-----------------------------------------------------|-------------|-------------|--------------------|--------------------|--------------------|
| Base case                                           | 40,100      | 23,700      | 29,700             | 23,800             | 37,900             |
| No HAQ progression on TNF inhibitors                | 27,100      | 18,100      | 22,100             | 18,000             | 25,700             |
| Slow HAQ progression on all DMARDs                  | 39,500      | 24,400      | 30,500             | 24,900             | 37,600             |
| Slow HAQ progression on all treatments              | 64,100      | 33,400      | 43,000             | 34,000             | 60,500             |
| Fast HAQ progression on all treatments              | 58,300      | 30,300      | 39,400             | 30,000             | 53,300             |
| No effect of HAQ on mortality                       | 40,100      | 23,200      | 30,000             | 23,400             | 38,600             |
| Mortality ratio 2.73 per unit HAQ                   | 37,500      | 23,000      | 29,500             | 23,100             | 34,900             |
| Effectiveness of conventional DMARDs down 50%       | 39,500      | 23,900      | 29,800             | 23,800             | 37,400             |
| Effectiveness of conventional DMARDs up 50%         | 38,900      | 23,600      | 29,400             | 23,900             | 38,200             |
| Survival times on conventional DMARDs down 50%      | 38,500      | 23,700      | 28,900             | 24,000             | 37,700             |
| Survival times on conventional DMARDs up 50%        | 39,500      | 23,700      | 30,300             | 23,600             | 38,800             |
| Survival times on TNF inhibitors down 50%           | 43,800      | 24,700      | 32,800             | 25,700             | 43,500             |
| Survival times on TNF inhibitors up 50%             | 37,200      | 22,800      | 28,900             | 23,000             | 36,600             |
| Review at 12 weeks                                  | 39,700      | 23,300      | 29,400             | 23,900             | 37,800             |
| Short-term quitters on TNF inhibitors down 50%      | 40,800      | 23,900      | 30,200             | 24,100             | 38,400             |
| Short-term quitters on TNF inhibitors up 50%        | 39,000      | 23,400      | 29,400             | 23,700             | 37,400             |
| Short-term quitters on conventional DMARDs down 50% | 39,300      | 23,500      | 29,500             | 23,800             | 37,400             |
| Short-term quitters on conventional DMARDs up 50%   | 38,300      | 23,900      | 29,800             | 24,000             | 36,500             |
| Include offset costs                                | 38,400      | 22,300      | 27,900             | 22,400             | 36,100             |

## Implications for other parties

The substantial economic impact of RA in terms of direct and indirect costs has been highlighted elsewhere in this report. Studies indicate a great range of potential costs that cannot readily be explained by socioeconomic or clinical factors. However, it is apparent that a minority of patients may account for a great proportion of the direct medical costs. Costs incurred by individuals, in a cohort of early

arthritis patients, are similar to costs incurred by healthcare services. Costs incurred by family and friends in terms of forgone paid work, forgone leisure time and other factors greatly exceed costs incurred by individuals and healthcare services. Clearly, this could have an impact on the quality of life of patients and carers. Further, physical disability resulting in difficulties in self-care, and work disability has implications for PSS.

### Factors relevant to the NHS

C ince the last NICE guidance the use of TNF Inhibitors to treat RA has become established practice in rheumatology in the UK. Use of infliximab requires day-case facilities by rheumatology departments because it is given intravenously. At present, there is great variation in use of day-case facilities by rheumatologists, determined in part by local resources of inpatient and outpatient facilities. Widespread use of adalimumab and etanercept places a greater demand on outpatient facilities and requires greater involvement of outpatient nurses in order that patients and carers may be taught to selfadminister injections, and to provide back-up in case of difficulties and disease and drug monitoring services. Again, there are great variations in use of nurse specialists in rheumatology and relatively few training opportunities for nurses wishing to specialise in

this area. However, increasing use of DMARDs has led to an increasing requirement for specialised nurses.

The long-term impact of TNF inhibitors on joint failure and the likelihood of orthopaedic surgery cannot be demonstrated directly at present because the agents are still relatively new. Surrogate end-points such as radiographic change suggest potentially important benefits, and potentially a reduced demand for surgery, but the clinical relevance of reported radiographic changes is debated.<sup>45</sup>

Finally, issues of equity have been highlighted by the wide variation in availability of TNF inhibitors across the UK, and these have continued despite NICE guidance.

### Discussion

### **Summary**

### **Effectiveness: principal findings**

- All the TNF inhibitors were effective treatments for patients with RA.
- For patients who were naïve to methotrexate, adalimumab monotherapy was marginally less effective and etanercept monotherapy was marginally more effective than methotrexate.
- Combination of a TNF inhibitor with methotrexate was more effective than methotrexate alone in patients naïve to methotrexate.
- An increased risk of serious infections cannot be ruled out for infliximab and adalimumab plus methotrexate.

### **Cost-effectiveness: principal findings**

- Last active therapy in sequence:
  - TNF inhibitors are most cost-effective when used last
  - the ICER for etanercept used last is £24,000 per QALY and substantially lower than the ICERs for adalimumab (£30,000 per QALY) or infliximab (£38,000 per QALY).
- Third-line use (as recommended in the 2002 NICE guidance):
  - gives ICERs around £30,000 per QALY using early RA effectiveness data
  - gives ICERs of around £50,000 per QALY for etanercept (with or without methotrexate) using late RA data
  - ICERs for adalimumab and infliximab are somewhat higher using late RA data.
- First-line use:
  - gives ICERs around £50,000 per QALY for adalimumab and etanercept monotherapy
  - much higher ICERs for combinations including methotrexate as first-line therapy.
- Sequential use:
  - similar results to use of the equivalent TNF inhibitor as sole TNF inhibitor in the sequence
  - ICERs for adalimumab and infliximab increased somewhat if used after etanercept.

### **Principal findings**

The key findings of this review were as follows.

### Quality and quantity of evidence

Twenty-nine RCTs (nine adalimumab, 11 etanercept and nine infliximab), including ten trials reviewed in the previous assessment report,¹ were included in this review. The trials were generally of high quality and recruited a total of 9939 patients. Five of the trials¹02,123,135,140,141 recruited exclusively RA patients with short disease duration (≤ 3 years). In addition, the BeSt study is described and discussed in this review in view of its novel approach and clinical relevance, although it does not strictly meet the inclusion criteria.

### **Head-to-head comparisons**

Only a small number of included RCTs looked at head-to-head comparisons of TNF inhibitors with methotrexate: ERA<sup>123</sup> and TEMPO<sup>127</sup> for etanercept and PREMIER<sup>102</sup> for adalimumab. No identified RCT directly compared a TNF inhibitor with a conventional DMARD other than methotrexate. BeSt is the only RCT that compares different sets of sequential treatments in early RA patients.

In the PREMIER trial, <sup>102</sup> adalimumab alone (at licensed dose) was marginally less effective than methotrexate in controlling the symptoms of RA in patients who were naïve to methotrexate, and was associated with slight, but not significant, increase in SAEs (RR [Commercial-in-confidence information removed]). The only advantage of adalimumab monotherapy over methotrexate was a reduction in radiographic joint damage. The results are reflected in the extension of marketing authorisation for adalimumab recently issued by the EMEA, <sup>67</sup> which recommended the use of adalimumab in combination with methotrexate, rather than adalimumab alone, in early RA patients.

Etanercept alone (at licensed dose) was as effective or slightly more effective than methotrexate in controlling RA symptoms and retarding joint damage in patients who were naïve to or who had no treatment failure with methotrexate in the ERA<sup>123</sup> and TEMPO<sup>127</sup> trials. Although the mean disease duration for the patients was only 1 year in the ERA trial, compared with over 6 years in the TEMPO, the results from these two studies are remarkably similar, with no statistical

heterogeneity found between the studies in any of the outcomes being meta-analysed. Subgroup analyses within TEMPO also indicated that treatment effects do not vary substantially between early RA and late RA patients.

TEMPO was unique in that it was the only trial that allowed head-to-head comparison between a TNF inhibitor and methotrexate, in a population that included both early RA and established RA. While it provides useful insight in many aspects, the generalisability of the results, at least in the UK, is not clear. In this trial half of the patients were reported as having previously received methotrexate without toxicity or lack of efficacy and yet these patients had not been treated with methotrexate for at least 6 months before the study. Such patients are uncommon in real practice. Consequently, the use of results from this trial in the economic model to give an estimate of improvement with the use of the combination of etanercept plus methotrexate in established RA, would exaggerate the treatment benefit as most real patients would have failed treatment with methotrexate at this stage.

### TNF inhibitors versus placebo

The majority of RCTs included in this review compared TNF inhibitors with placebo. Adalimumab, etanercept and infliximab are all effective treatments, compared with placebo, in terms of improving symptoms of the disease and preventing radiographic damage due to disease. The relative risk for ACR20 for etanercept versus placebo showed a decreasing pattern in trials in which patients: (1) were not receiving any concurrent DMARDs; (2) were receiving concurrent DMARDs which had failed to provide adequate disease control; and (3) were receiving concurrent, newly initiated methotrexate (see Figure 24, p. 48). This reflects increasing response rates in the control (placebo) arms rather than differential response rates in the intervention (etanercept) arms. Statistically significant differences were found in most of the efficacy outcomes (but not necessarily safety outcomes) between (3) and the other two analyses. This confirmed the importance of separating comparisons in which newly initiated methotrexate was involved. The difference between (1) and (2), however, was only marginal (test for heterogeneity p = 0.10). This is consistent with the suggestion that the presence or absence of concurrent DMARDs that had failed to provide adequate control of disease activity does not have a significant influence on the treatment effect of adalimumab or etanercept. Further observations

from direct comparison within etanercept trials, in Codreanu<sup>103</sup> (replacing ongoing sulfasalazine with etanercept or adding etanercept to ongoing sulfasalazine) and ADORE<sup>107</sup> (replacing ongoing methotrexate with etanercept or adding etanercept to ongoing methotrexate) are also consistent with this interpretation: there were generally no significant differences between etanercept-alone arms and combination arms in efficacy and safety outcomes in these two trials. No adalimumab trial allowed such observation, and the current licence stipulates that adalimumab should be given in combination with methotrexate unless it is not tolerated, possibly on the basis that the absolute improvement observed in adalimumab trials was larger when adalimumab was given with methotrexate.

The pooled risk of malignancies for adalimumab compared with placebo approached statistical significance in the meta-analysis. Malignancies were also observed more frequently in infliximabtreated patients in placebo-controlled trials. While these findings were based on a small number of cases and do not appear to be supported by observational studies, continuous vigilance regarding this potential adverse effect is warranted. Observational studies published to date have compared the incidence of malignancies for TNF inhibitor-treated patients with either the incidence observed in general population or that observed in cohorts of RA patients. Comparisons have ignored the well-known 'healthy patient' effect of trials and, indeed, patients who entered trials of TNF inhibitors or who received TNF treatment in practice were a subgroup of RA patients in which patients with risk factors associated with malignancies (such as past history of malignancy; chronic obstructive pulmonary disease, viral hepatitis and HIV infection) were excluded. The patients who received TNF inhibitors in observational studies were therefore likely to have a lower risk of malignancies (with the exception of lymphoma) compared with general population or general RA population. Future observational studies should attempt to adjust for such potential confounding.

## TNF inhibitor plus methotrexate versus methotrexate

Four trials<sup>102,127,135,141</sup> compared the combination of a TNF inhibitor plus methotrexate with methotrexate alone in patients naïve to methotrexate or patients who did not have a history of treatment failure with methotrexate. The combinations were significantly more effective than methotrexate alone for all three TNF

inhibitors, although the incremental benefits were significantly smaller (with the exception of joint damage) than those observed in comparisons between TNF inhibitors and placebo.

Combination of infliximab and methotrexate in this context was associated with increased risk of serious infection, and a similar, non-significant trend (which may be due to insufficient statistical power) was observed for adalimumab. No trials have compared a combination of methotrexate with a conventional DMARD to the combination of methotrexate with a TNF inhibitor.

### Overall effectiveness and safety

At the licensed dose the NNTs (95% CI) required to produce an improvement in ACR20 response in comparison with placebo are: adalimumab 3.6 (3.1 to 4.2), etanercept 2.1 (1.9 to 2.4), infliximab 3.2 (2.7 to 4.0). While these are favourable NNTs for medical interventions, they also emphasise the importance of direct comparisons between DMARDs in estimating the ICER of new treatments for RA.

The NNT figures appear to be slightly in favour of etanercept. Indirect comparisons of agents should be interpreted with caution, however, given the potential differences in patient populations, study design and method of analysis across trials. This is particularly the case when using NNTs with a metric like the ACR response. Not only do ACR responses have a ceiling effect, but the absolute health gain obtained from achieving a positive ACR response is a function of the baseline health status of patients. Truly fair and unbiased comparisons can only be made through direct comparisons of TNF inhibitors in trials and these are urgently needed.

An important clinical difference between the included trials is whether patients recruited were concurrently receiving newly initiated methotrexate in both intervention and control arms. The relative risks of achieving ACR response (TNF inhibitor plus methotrexate versus methotrexate alone) were, perversely, larger in trials in which patients were no longer responding to methotrexate than in trials where patients had not previously received methotrexate or had not failed to respond previously. For example, pooled RRs for ACR70 for methotrexate plus TNF inhibitor versus methotrexate alone range from 3.16 (infliximab) to 9.44 (etanercept) in trials of methotrexate partial or non-responders; these are reduced to a range from 1.57 (infliximab) to 2.53 (etanercept) in trials of methotrexate-naïve patients or

responders. This is largely due to the fact that the response rates in the methotrexate arm were much higher in the latter trials. When interpreting these results, it is important to take into account the absolute risk differences between treatment groups, which are reflected in NNTs.

### **Methodology**

In this systematic review, results were pooled from the end of trials irrespective of the duration of follow-up. This was done to maximise the number of studies and to increase the statistical power of meta-analyses. The authors acknowledge that it may, on occasion, be preferable to pool results with similar duration of follow-up when there is evidence that the effect size of the treatment varies over time. Nevertheless, statistical heterogeneity in the end-of-trial results between studies was not found for the majority of analyses that were carried out. Where heterogeneity was observed, the differences in the duration of follow-up do not usually explain the heterogeneity, except for the single case of Keystone<sup>129</sup> in the analysis of etanercept versus placebo. This 8-week study is the only trial included in the meta-analyses with a duration of less than 12 weeks. Its short duration might explain the smaller RR observed for ACR50 and ACR70 compared with other etanercept trials.

As the duration of trial increases, the influence of imputation methods used to deal with missing data (e.g. last observation carried forward or assuming that all withdrawals were non-responders) becomes greater. This is because losses to follow-up and withdrawals increase as study length increases. The impact is difficult to assess, however, as results obtained using different analytical methods are rarely reported together.

The differential withdrawal and follow-up between treatment groups, particularly in placebocontrolled trials, makes the assessment of adverse events difficult. The quality of reporting adverse events in published papers needs to be improved but, commonly, cause and effect relationships are difficult to determine.35 Skin carcinomas, for example, were omitted from the reporting of malignancy in several trials. Trials lack power to identify potentially important toxicities, and although postmarketing surveillance through databases such as the BSRBR can be useful in detecting rarer adverse events, such large-scale studies are resource intensive, depend on the goodwill of many specialists and raise important concerns about data quality and ownership.

### Results of modelling

The results of the economic evaluation using BRAM generally reflect the patterns observed in the review of clinical effectiveness. The estimated ICER for etanercept used as third-line treatment compared with base case, is somewhat more favourable than the previous estimate (£48,000 per QALY and £83,000 per QALY, respectively). This is because the model now gives some lasting benefit to effective treatments after their withdrawal. The additional evidence available and improvements in the economic model mean that the ICER for infliximab as a third-line agent has changed from £115,000 per QALY to £139,000 per QALY. In particular, an estimated mean HAQ improvement of 0.6 (derived from a personal communication) was used in the first evaluation, whereas a mean improvement of 0.4, based on empirical data from ATTRACT, was used in this evaluation. This outweighs the incorporation of some lasting benefit to infliximab treatment.

When used alone as third-line treatment, the modelling results for adalimumab and etanercept using 'early RA' data are much more favourable than the results using 'late RA' data. The evidence about whether HAQ improvements tend to be smaller in patients with longer disease duration was inconsistent in the trials. Nevertheless, given equal change in absolute HAQ score on treatment, the improvement in early RA patients (who tend to have better HAQ scores to start with) will give a larger relative improvement. This effect is reflected in the current version of the BRAM, which modelled HAQ improvement using a multiplier for each treatment and the individual patient's baseline HAQ score, rather than using a fixed average HAQ change for all patients.

Compared with etanercept alone, concurrent use of methotrexate makes little difference in cost-effectiveness when etanercept is used as third-line treatment. Concurrent use of methotrexate improved the cost-effectiveness of adalimumab as third-line treatment.

The modelling results for TNF inhibitors combined with methotrexate as third-line therapy using 'early RA' data demonstrate that use of inappropriate estimates of treatment effect (assuming that the HAQ improvement for combination therapy in patients who were naïve to methotrexate or who had not failed methotrexate can be applied to patients who had failed methotrexate treatment) can produce ICERs that are misleadingly low.

The BRAM produces ICERs in the region of £50,000 per QALY for monotherapy with a TNF inhibitor as first-line treatment. Combination with methotrexate makes the results less favourable to TNF inhibitors in cost-effectiveness terms. This appears to be because, although the combination has better effectiveness than monotherapy in itself, the use of the combination precludes subsequent use of methotrexate (which is cheap).

The more favourable ICERs for TNF inhibitors used as last active therapy (compared with palliation) and less favourable ICERs for TNF inhibitors used as first-line treatment (compared with methotrexate) highlight the importance of using appropriate comparators in economic evaluation. Such comparators should reflect treatment options relevant to a patient's disease stage.

# Assumptions, limitations and uncertainties

### **Strengths**

Strengths of this review include:

- A comprehensive search strategy to identify all relevant evidence already within the public domain was undertaken.
- Additional information, not previously available, was provided by industry and lead researchers.
- There was a substantial number of trials for each agent, which generally showed consistent results
- Trials were mainly well conducted.
- Clinical expert input at an early stage ensured that a clinically relevant perspective was maintained throughout.
- Data were available from the BSRBR and GPRD that were not available in the first review.
- The BRAM has been in the public domain for some time and subject to scrutiny and a number of improvements. A meeting was held with all three manufacturers before undertaking the report to ensure that there were no concerns about fundamental errors within the model and general agreement about the direction of proposed further development.

### Limitations and uncertainties include:

 There is a potential for bias through unblinding in TNF inhibitor studies, as infusion and injection-related adverse events are more frequent with active therapy. Unblinding of physician or patient has been demonstrated to

- introduce bias which generally exaggerates the treatment effect.
- This review primarily focuses on evidence from RCTs, which, so far, have insufficient numbers of patients and follow-up time to detect rare but potentially SAEs. Some of the non-statistically significant trends in adverse events identified in this review therefore warrant close monitoring when new trial evidence becomes available. For example, for all three TNF inhibitors, a similar non-significant trend for increased SAEs was found for TNF inhibitors combined with methotrexate compared with methotrexate alone in patients who were naïve to methotrexate. Pooling the data for all three agents showed that SAEs just approached statistical significance (RR [Commercial-inconfidence information removed]). Using methods specific for analysing data of sparse events, Bongartz and colleagues demonstrated a statistically significant increase in the risk of malignancies associated with higher doses of adalimumab and infliximab.<sup>202</sup> The analysis was based on similar (but fewer) trials to those included in this review. Data from adalimumab and infliximab trials in both early and late RA patients were combined in this analysis.
- It is commendable that all the manufacturers made available the clinical study reports of their major trials in the technology appraisal process. This allowed the reviewers to include unpublished data. Substantial information from adalimumab trials and some information from infliximab trials, however, was regarded by manufacturers as confidential, despite repeated requests to reconsider. Therefore, important data on SAEs had to be removed from this report, and readers are urged to interpret data in the relevant sections with care.

Assumptions relating to the economic analyses are described in detail in the section 'Economic analysis used in this report' (p. 86). However, key limitations include:

- The BRAM assumes that if patients continue on a DMARD it remains effective. Patients and clinicians are aware of the limitations and flaws of such an assumption. <sup>203</sup>
- The evidence concerning how long patients remain on treatment is uncertain and data were used from observational cohorts studying drug survival with particular DMARDs to determine when lack of effectiveness or toxicity causes a change in treatment.
- The evidence about how long patients remain on TNF inhibitors is also uncertain. Data from

- the BSRBR about drug-survival for the different TNF inhibitors were not used because of uncertainty about their validity: constraints imposed by national guidance on the use of TNF inhibitors mean that data may not be accurately recorded and there has been no audit or validation of the registry data.
- The drug survival curves for 6, 12 and 18 months in the BSRBR show different patterns of patients remaining on each TNF inhibitor during the first 6 months of treatment, suggesting a cohort effect, possibly caused by changing use of these drugs, which needs to be investigated and explained and which adds to the uncertainty about how long patients will remain on treatment.
- This report explored the strategies of using either TNF inhibitor alone or combination therapy (TNF inhibitor plus methotrexate) as the first-line treatment for early RA patients and incorporated data on HAO improvement from relevant clinical trials. There were insufficient data to distinguish survival on treatment between these two strategies and thus a common data set for withdrawal was used. This may potentially underestimate the treatment benefit of combination therapy, if the combination therapy is better than monotherapy. The impact is probably greater for adalimumab than for etanercept: in the PREMIER trial the combination therapy was better than adalimumab alone, whereas in TEMPO continuation on the drug appeared to be similar between these two strategies.
- Adalimumab was only modelled at 40 mg every other week using associated costs. In the PREMIER trial the dose could be increased (dosing interval reduced) to 40 mg weekly.
   Since the data from PREMIER were used in the 'early RA' scenario in the model, the treatment benefit may have been overestimated and the costs underestimated.
- By using an NHS and PSS perspective, as required by NICE, the BRAM significantly underestimates the potential economic advantages of effective disease control since costs incurred by families and carers are substantial.
- Strategies for treating RA are potentially very complex. For reasons of feasibility only the most common strategies were modelled. The model is based on the saw-tooth strategy, in which there is continued or serial use of one or multiple DMARDs. While this approach appears to reflect and be effective in clinical practice, <sup>38</sup> there are limited long-term data on optimum strategies for treating RA, although recent data,

for example from BeSt, described in this report, suggest that alternative approaches may be more effective.

### Implications for research

- Direct comparative RCTs of TNF inhibitors against each other and against other DMARDs are needed.
- Trials of different anti-TNFs in patients who have failed a previous TNF inhibitor are also needed.
- Longer term studies of the QoL in patients with RA and the impact of DMARDs and other

- interventions on QoL are needed.
- Longer term studies or follow-up, directly assessing the impact of DMARDs, including TNF inhibitors, on joint replacement, other disease and drug-related morbidity, and mortality, are required.
- Continued vigilance about the potential harms of TNF inhibitors is necessary and work is needed to improve the assessment of cause and effect relationships in patients who experience adverse effects, especially as RA itself can cause multisystem disease.<sup>35</sup>

## Conclusions

dalimumab, etanercept and infliximab are  $oldsymbol{ au}$ effective treatments compared with placebo for RA patients who are not well controlled by conventional DMARDs, improving control of symptoms, improving physical function and slowing radiographic changes in joints. When used alone, adalimumab is marginally less effective and etanercept is marginally more effective than methotrexate, in methotrexate-naïve patients. The combination of a TNF inhibitor with methotrexate was more effective than methotrexate alone in this population, although the clinical relevance of this additional benefit is yet to be established, particularly in view of the well-established effectiveness of methotrexate alone. In addition, an increased risk of serious infection cannot be ruled out for the combination of methotrexate with adalimumab and infliximab.

Results of published economic evaluations vary: some analyses suggest that the use of TNF inhibitors may fall within the usual acceptable cost-effectiveness ranges, whereas others report very high ICERs. Although most are of high quality, none of them used all of the appropriate parameters, effectiveness data, perspective and comparators required to make their results generalisable to the NHS context. The societal perspective generates more favourable ICERs. All economic evaluations submitted by the manufacturers report ICERs that fall within the currently accepted thresholds of cost-effectiveness. However, these models make assumptions and use data that favour the TNF inhibitor being evaluated, the appropriateness of which can be questioned.

The results of the economic evaluation based on BRAM are consistent with the observations from the review of clinical effectiveness, including the ranking of treatments. TNF inhibitors are most cost-effective when used as last active therapy, with the ICER for etanercept (£24,000 per QALY) being significantly lower than the ICERs for adalimumab (£30,000 per QALY) or infliximab (£38,000 per QALY). Other things being equal, etanercept would be, therefore, the TNF inhibitor of choice. However, the most appropriate choice of TNF inhibitor may also depend on patient preference as to route of administration.

The next most cost-effective use of TNF inhibitors is third line, as recommended in the 2002 NICE guidance, which gives ICERs around £30,000 per QALY using early RA effectiveness data. Using data for late RA, however, gives an ICER of around £50,000 per QALY for etanercept, with higher figures for adalimumab and infliximab. First-line use gives ICERs around £50,000 per QALY for adalimumab and etanercept as monotherapies, with much higher figures for combinations with methotrexate.

This study only modelled sequential use of TNF inhibitors with the TNF inhibitors starting as third-line therapy and using the late RA values for the TNF inhibitors. The results are similar to those using the given TNF inhibitor as the sole TNF inhibitor in third place, except that the two other TNF inhibitors are somewhat less costeffective if used after etanercept.

Direct head-to-head trials of DMARDs and the TNF inhibitors are needed to establish with more certainty the relative values of the different agents. Longer term follow-up and postmarketing surveillance are needed to ascertain the true risk of adverse events.



# Acknowledgements

The contents remain the responsibility of the lacksquare authors and Amanda Burls is guarantor. They are grateful to the following individuals for their help or advice during the writing of this report: Linda Briscoe (Department of Public Health and Epidemiology, University of Birmingham), Becky Taylor (Health Economics Facility, University of Birmingham), Drs Renée Allaart and Yvonne Goekoop-Ruiterman (Leiden University Medical Center, The Netherlands), Dr Jeska de Vries-Bouwstra (VU Medical Center, Amsterdam, The Netherlands), and other BeSt study investigators for providing prepublication manuscript from the BeSt study, Professor Tom Huizinga (Leiden University Medical Center, The Netherlands), for facilitating initial communication, David Fisher, Dr Nigel Arden, Dr Chris Edwards and Dr Tjeerd van Staa (MRC Epidemiology Resource Centre, University of Southampton), for providing GPRD data on DMARD use in the UK, Peter Conway and Alan Reynolds (Wyeth Laboratories UK), for providing additional data from etanercept trials, Alan Kane (Schering-Plough UK), for providing additional data from infliximab trials, Abbott Laboratories, for providing additional data from adalimumab trials, and the peer reviewers for their useful comments.

This report was commissioned by the NHS R&D HTA Programme.

### Contribution of authors

Pelham Barton (Lecturer in Mathematical Modelling) constructed and analysed the new version of the Birmingham Rheumatoid Arthritis Model (BRAM), drafted the section of the report relating to the BRAM, responded to peer review, and read and edited the draft report. Stirling Bryan (Professor in Health Economics) selected

studies from the searches for published economic analyses, contributed to the economics review, review of submissions from industry, development of model structure and unit cost data collection, and edited the report. Amanda Burls (Senior Clinical Lecturer in Public Health and Epidemiology) was the senior reviewer on this report and provided project management and advice on all aspects of the report, participated in data extraction and analyses, drafted the results section, summary and discussion, compiled and edited the draft report, and takes final responsibility for the whole report. Yen-Fu Chen (Systematic Reviewer) was the main reviewer on this report and maintained day-to-day running of the review. He compiled the study protocol, carried out study selection and data extraction (mainly for etanercept and infliximab), and conducted meta-analyses. He also drafted the following sections: methods, narratives for included trials, and part of the results and discussion, and edited the report. Wendy Clark (Information Pharmacist) applied the inclusion and exclusion criteria, was involved in data extraction principally for adalimumab, and commented on the draft report. Anne Fry-Smith (Information Specialist) devised and implemented search strategies for bibliographic databases, drafted the searching methods section and commented on the draft report. Paresh Jobanputra (Consultant Rheumatologist) drafted the introduction, assisted with study selection, extracted data from some studies, contributed to the development of the economic model, identified data sources for parameters for the model, edited the report and responded to peer-review comments. Sue Jowett (Health Economist) wrote the review of existing economic evaluations.



## References

- Jobanputra P, Barton P, Bryan S, Burls A. The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation. *Health Technol Assess* 2002;6(21).
- 2. Barton P, Jobanputra P, Wilson J, Bryan S, Burls A. The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis. *Health Technol Assess* 2004; 8(11).
- 3. Clark W, Jobanputra P, Barton P, Burls A. The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis. *Health Technol Assess* 2004;**8**(18).
- Wiles NJ, Scott DGI, Barrett EM, Merry P, Arie E, Gaffney K, et al. Benchmarking: the five year outcome of rheumatoid arthritis assessed using a pain score, the Health Assessment Questionnaire and the Short Form-36 in a community and a clinic based sample. Ann Rheum Dis 2001; 60:956–61.
- 5. Jacoby R, Jayson M, Cosh J. Onset, early stages, and prognosis of rheumatoid arthritis: a clinical study of 100 patients with 11-year follow-up. *BMJ* 1973;**ii**:96–100.
- 6. Arnett FC, Edworthy S, Bloch D. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum* 1988;**31**:315–24.
- 7. Wiles N, Symmons D, Harrison B, Barrett E, Barrett J, Scott D. Estimating the incidence of rheumatoid arthritis. Trying to hit a moving target? *Arthritis Rheum* 1999;**42**:1339–46.
- 8. Ashcroft J. Arthritis: understanding people's everyday needs. London: Arthritis Care; 1997.
- 9. Ostergaard M, Hansen M, Stoltenberg M, Jensen KE, Szkudlarek M, Pedersen-Zbinden B, *et al.* New radiographic bone erosions in the wrists of patients with rheumatoid arthritis are detectable with magnetic resonance imaging a median of two years later. *Arthritis Rheum* 2003;48:2128–31.
- 10. Goldbach-Mansky R, Woodburn J, Yao L, Lipsky PE. Magnetic resonance imaging in the evaluation of bone damage in rheumatoid arthritis: a more precise image or just a more expensive one? *Arthritis Rheum* 2003;**48**:585–9.

- 11. Symmons D, Turner G, Webb R, Asten P, Barrett E, Lunt M, *et al.* The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. *Rheumatology* 2002;**41**:793–800.
- 12. National Statistics website. People and migration. URL: http://www.statistics.gov.uk. Accessed 16 March 2005.
- 13. MacGregor A, Snieder H, Rigby A, Koskenvuo M, Kapiro J, Aho K. Characterising the quantitative genetic contribution to rheumatoid arthritis using data from twins. *Arthritis Rheum* 2000;**43**:30–7.
- Jones MA, Silman AJ, Whiting S, Barrett EM, Symmons DP. Occurrence of rheumatoid arthritis is not increased in the first degree of relatives of a population based inception cohort of inflammatory polyarthritis. *Ann Rheum Dis* 1996; 55:89–93.
- 15. Newton JL, Harvey SM, Wordsworth BP, Brown MA. A review of the MHC genetics of rheumatoid arthritis. *Genes Immun* 2004;**5**:151–7.
- 16. Edwards JCW, Cambridge G. Prospects for B-cell targeted therapy in autoimmune disease. *Rheumatology* 2005;**44**:151–6.
- Moreland L. Inhibitor of tumor necrosis factor for rheumatoid arthritis. J Rheumatol 1999;26(Suppl): 7–15.
- 18. Verhoeven A, Boers M, Tugwell P. Combination therapy in rheumatoid arthritis: updated systematic review. *Br J Rheumatol* 1998;**37**:612–19.
- 19. Kollias G, Douni E, Kassiotis G, Kontoyiannis D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. *Ann Rheum Dis* 1999; **58**(Suppl 1):32–9.
- McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominant inherited autoinflammatory disorders. Cell 1999;97:133–44.
- 21. Xanthoulea S, Pasparakis M, Kousteni S, Brakebusch C, Wallach D, Bauer J, et al. Tumour necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. URL: http://www.jem.org/cgi/doi/10.1084/jem.20040345. Accessed 20 March 2005.

- 22. Scott D, Shipley M, Dawson A, Edwards S, Symmons D, Woolf A. The clinical management of rheumatoid arthritis and osteoarthritis: strategies for improving clinical effectiveness. *Br J Rheumatol* 1998;**37**:546–54.
- 23. Scottish Intercollegiate Guidelines Network (SIGN). Management of early rheumatoid arthritis. URL: http://www.sign.ac.uk/guidelines/fulltext/48/index.html. Accessed 17 May 2005.
- 24. Jones G, Halbert J, Crotty M, Shanahan EM, Batterham M, Ahern M. The effect of treatment on radiological progression in rheumatoid arthritis: a systematic review of randomized placebo-controlled trials. *Rheumatology* 2003;**42**:6–13.
- Jobanputra P, Wilson J, Douglas K, Burls A. A survey of British rheumatologists' DMARD preferences for rheumatoid arthritis. *Rheumatology* 2004;43:206–10.
- Pincus T, Marcum SB, Callahan LF. Long-term drug therapy for rheumatoid arthritis in seven rheumatology private practices: II. Second line drugs and prednisone. *J Rheumatol* 1992; 19:1885–94.
- 27. Hickling P, Jacoby RK, Kirwan JR. Arthritis and Rheumatism Council Low Dose Glucocorticoid Study Group. Joint destruction after glucocorticoids are withdrawn in early rheumatoid arthritis. *Rheumatology* 1998;37:930–6.
- 28. Boers M, Verhoeven AC, Markusse HM, van de Laar MAFJ, Westhovens R, van Denderen JC, *et al.* Randomised comparison of combined step-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone in early rheumatoid arthritis. *Lancet* 1997;**350**:309–18.
- 29. Choy EC, Kingsley GH, Khoshaba B, Pipitone N, Scott DL, Intramuscular Methyprednisolone Study Group. A two year randomised controlled trial of intramuscular depot steroids in patients with established rheumatoid arthritis who have shown a complete response to disease modifying antirheumatic drugs. *Ann Rheum Dis* 2005; **64**:1288–93.
- 30. Choi H, Hernan M, Seeger J, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis. *Lancet* 2002;**359**:1173–7.
- 31. Blue Cross & Blue Shield Association. Special Report: Evidence on sequencing of conventional and biological disease-modifying anti-rheumatic drugs. URL: http://www.bcbs.com/tec/vol118/18\_11.html. Accessed 18 May 2005.
- Landewe RBM. The benefits of early treatment in rheumatoid arthritis. Arthritis Rheum 2003;48:1–5.
- 33. Visser H, Le Cessie S, Vos K, Breedveld FC, Hazes JMW. How to diagnose rheumatoid arthritis early. A prediction model for persistent (erosive) arthritis. *Arthritis Rheum* 2002;**46**:357–65.

- 34. Edwards CJ, Arden NK, van Staa TP, Reading I, Saperia JC, Fisher D, *et al*. The changing use of disease-modifying anti-rheumatic drugs in individuals with RA from the General Practice Research Database (GPRD). *Rheumatology* 2005; **44**(Suppl 1):i2.
- 35. Jobanputra P, Homer D, Maggs F, Beavan J. Serious adverse events to disease modifying antirheumatic drugs for inflammatory arthritis: a West Midlands experience. *Drug Saf* 2002;**25**:1099–105.
- Felson D, Anderson J, Meenan R. Use of short-term efficacy/toxicity tradeoffs to select second-line drugs in rheumatoid arthritis. A meta-analysis of published clinical trials. *Arthritis Rheum* 1992; 35:1117–25.
- 37. Mottonen T, Hannonen P, Leirisalo-Repo M, Nissila M, Kautiainen H, Korpela M. Comparison of combination therapy with single-drug therapy in early rheumatoid arthritis: a randomised trial. *Lancet* 1999;**353**:1568–73.
- 38. Sokka T, Mottonen T, Hannonen P. Disease-modifying anti-rheumatic drug use according to the 'sawtooth' treatment strategy improves the functional outcome in rheumatoid arthritis: results of a long-term follow-up study with review of the literature. *Rheumatology* 2000;**39**:34–42.
- 39. Viller F, Guillemin F, Briancon S, Moum T, Suurmeijer T, van den Heuvel W. Compliance with drug therapy in rheumatoid arthritis: a longitudinal European study. *Joint Bone Spine* 2000;**67**:178–82.
- Wolfe F, Zwillich SH. The long-term outcomes of rheumatoid arthritis. *Arthritis Rheum* 1998; 41:1072–82.
- 41. van Gestel AM, Haagsma CJ, Van Riel PLCM. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. *Arthritis Rheum* 1998;**41**:1845–50.
- 42. Fransen J, Creemers MCW, Van Riel PLCM. Remission in rheumatoid arthritis: agreement of the disease activity score (DAS28) with the ARA preliminary remission criteria. *Rheumatology* 2004; 43:1252–5.
- 43. van Gestel AM, Prevoo MLL, van 'T Hof MA, van Rijswijk MH, Van De Putte LBA, Van Riel PLCM. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the Preliminary American College of Rheumatology and the World Health Organisation/International League Against Rheumatism criteria. *Arthritis Rheum* 1996;39:34–40.
- 44. Kirwan JR. Links between radiological change, disability and pathology in rheumatoid arthritis. *Rheumatology* 2001;**40**:881–6.
- 45. Landewe R, Boers M, van der Heijde D. How to interpret radiological progression in randomised clinical trials? *Rheumatology* 2003;**42**:2–5.

- 46. Young A, Dixey J, Cox N, Davies P, Devlin J, Emery P. How does disability in early rheumatoid arthritis (RA) affect patients and their lives? Results of 5 years follow-up in 732 patients from the Early RA Study (ERAS). *Rheumatology* 2000; 39:603–11.
- 47. Uhlig T, Smedstad L, Vaglum P, Moum T, Gerard N, Kvien T. The course of rheumatoid arthritis and predictors of psychological, physical and radiographic outcome after 5 years of follow-up. *Rheumatology* 2000;**39**:732–41.
- 48. Barrett EM, Scott DGI, Wiles N, Symmons D. The impact of rheumatoid arthritis on employment status in the early years of disease: a UK community-based study. *Rheumatology* 2000; **39**:1403–9.
- 49. Chorus AMJ, Miedem HS, Wevers CJ, van der Linden S. Labour force participation among patients with rheumatoid arthritis. *Ann Rheum Dis* 2000;**59**:549–54.
- 50. Goodson N, Wiles N, Lunt M, Barrett EM, Silman A, Symmons DPM. Mortality in early inflammatory polyarthritis. Cardiovascular disease is increased in seropositive patients. *Arthritis Rheum* 2002;**46**:2010–19.
- 51. Boers M, Dijkmans B, Gabriel S, Maradit-Kremers H, O'Dell J, Pincus T. Making an impact on mortality in rheumatoid arthritis. Targeting cardiovascular disease. *Arthritis Rheum* 2004; 50:1734–9.
- 52. Navarro-Cano G, del Rincon I, Pogosian S, Roldan JF, Escalante A. Association of mortality with disease severity in rheumatoid arthritis, independent of comorbidity. *Arthritis Rheum* 2003; **48**:2425–33.
- 53. Ward MM. Recent improvements in survival in patients with rheumatoid arthritis: better outcomes or different study designs? *Arthritis Rheum* 2001; 44:1467–9.
- 54. Gabriel SE, Crowson CS, Kremers HM, Doran MF, Turesson C, O'Fallon WM, *et al.* Survival in rheumatoid arthritis: a population-based analysis of trends over 40 years. *Arthritis Rheum* 2003; **48**:54–8.
- 55. Hallert E, Husberg M, Jonsson D, Skogh T. Rheumatoid arthritis is already expensive during the first year of the disease (the Swedish TIRA project). *Rheumatology* 2004;**43**:1374–82.
- 56. Brouwer WB, van Exel NJ, Van de Berg B, Dinant HJ, Koopmanschap MA. Burden of caregiving: evidence of objective burden, subjective burden, and quality of life impacts on informal caregivers of patients with rheumatoid arthritis. *Arthritis Rheum* 2004;51:570–7.
- 57. Michaud K, Messer J, Choi HK, Wolfe F. Direct medical costs and their predictors in patients with rheumatoid arthritis: a three-year study of 7,257 patients. *Arthritis Rheum* 2003;**48**:2750–62.

- 58. Puolakka K, Kautiainen H, Mottonen T, Hannonen P, Korpela M, Julkunen H, *et al.* Impact of initial aggressive drug treatment with a combination of disease-modifying antirheumatic drugs on the development of work disability in early rheumatoid arthritis: a five-year randomized follow-up trial. *Arthritis Rheum* 2004;**50**:55–62.
- 59. Young A, Dixey J, Kulinskay E, Cox N, Davies P, Devlin J, *et al*. Which patients stop working because of rheumatoid arthritis? Results of five years' follow up in 732 patients from Early RA Study (ERAS). *Ann Rheum Dis* 2002;**6**:335–40.
- 60. Audit Commission. Managing the financial implications of NICE guidance ISBN 186240 513 1. London: Audit Commission; 2005.
- Arthritis and Musculoskeletal Alliance. Standards of care for people with inflammatory arthritis. URL: http://www.arma.uk.net/pdfs/ia.pdf. Accessed 22 May 2005.
- Griffiths I, Silman A, Symmons D, Scott DGI. BSR Biologics Registry. *Rheumatology* 2004;43:1463–4.
- 63. Knights SE, Averns H. The influence of resource limitation on the use of biologic agents in South West England. *Rheumatology* 2004; **43**(Suppl 2): ii76.
- 64. British Society for Rheumatology and the Musculoskeletal Alliance. Access to anti-TNFα therapies for adults with inflammatory arthritis. URL: http://www.rheumatology.org.uk/media/pressreleases/pressreleasebsrarmasurvey. Accessed 13 June 2005.
- 65. Somerville MF, Brooksby A, Gaffney K, Scott DGI. Anti-TNF: patients, politics and practicalities of access to treatment during the last four years. *Rheumatology* 2004;**43**(Suppl 2):ii39–40.
- 66. Abbott Laboratories. Press release. URL: http://abbott.com/news/press\_release.cfm?id=867. Accessed 14 June 2005.
- 67. European Medicines Agency. Committee for medicinal products for human use postauthorisation summary of option for Humira. URL: http://www.emea.eu.int/pdfs/human/opinion/ 20715105en.pdf. Accessed 18 August 2005.
- 68. Mahmood I, Green MD. Center for Drug
  Evaluation and Research and Center for Biologics
  Evaluation and Research. Application No.
  125057/0. Clinical pharmacology and
  biopharmaceutics review(s). URL:
  http://www.fda.gov/cder/biologics/review/
  BLA125057\_S000\_HUMIRA\_BIOPHARMR.pdf.
  Accessed 14 June 2005.
- 69. Abbott Laboratories. Humira 40 mg solution for injection in pre-filled syringe. Summary of product characteristics. URL: http://emc.medicines.org.uk/emc/industry/default.asp?page=displaydoc.asp&documentid=13111. Accessed 14 June 2005.

- 70. Watson K, Hyrich KL, Lunt M, Silman A, Symmons D, BSR Biologics Register. Infliximab and non-methotrexate DMARDs for rheumatoid arthritis: efficacy in clinical practice. *Arthritis Rheum* 2004;**50**(Suppl):S190.
- 71. Electronic Medicines Compendium. Schering-Plough. Remicade 100 mg powder for concentrate for solution for infusion. Summary of product characteristics. URL: http://emc.medicines.org.uk/emc/industry/default.asp?page=displaydoc.asp&documentid=3236. Accessed 14 June 2005.
- 72. Buch MH, Marzo-Ortega H, Bingham SJ, Emery P. Long-term treatment of rheumatoid arthritis with tumour necrosis factor a blockade: outcome of ceasing and restarting biologicals [1]. *Rheumatology* 2004;**43**:243–4.
- 73. Buch MH, Linsay S, Bryer D, Fairclough A, Rees-Evans B, Emery P. Incidence of influsion-related reactions in patients receiving infliximab: recommendations for administration guidelines. *Ann Rheum Dis* 2004;**63**(Suppl):285.
- 74. Durez P, Van den Bosch F, Corluy L, Veys EM, De Clerck L, Peretz A, *et al*. A dose adjustment in patients with rheumatoid arthritis not optimally responding to a standard dose of infliximab of 3 mg/kg every 8 weeks can be effective: a Belgian prospective study. *Rheumatology* 2005;44:465–8.
- 75. Ehlers S. Why does tumour necrosis factor targeted therapy reactivate tuberculosis? *J Rheumatol* 2005;**32**(Suppl 74):35–9.
- Wallis RS, Broder M, Wong J, Beenhouwer D. Granulomatous infections due to tumour necrosis factor blockade: correction. *Clin Infect Dis* 2004; 39:1254–5.
- Ormerod LP. Tuberculosis and anti-TNF-α treatment. *Thorax* 2004;59:921.
- Gardam MA, Keystone EC, Menzies R, Manners S, Skamene E, Long R, et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 2003;3:148–55.
- 79. Charles PJ, Smeenk RJT, De Jong J, Feldmann M, Maini R. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumour necrosis factor α: findings in open-label and randomised placebo controlled trials. *Arthritis Rheum* 2000;43:2383–90.
- 80. Bennett SP, Sawyer S, Baker A, Arden NK, Edwards CJ. Patient preferences in choosing anti-TNF therapies. *Rheumatology* 2005;**44**(Suppl 1): i151.
- 81. Westhovens R, Houssiau F, Joly J, Everitt DE, Bouman-Thio E, Zhu Y, *et al.* A phase I study assessing the safety, clinical response, and pharmacokinetics of an experimental infliximab

- formulation for subcutaneous or intramuscular administration in patients with rheumatoid arthritis. *J Rheumatol* 2006;**33**:847–53.
- Fraenkel L, Bogardus ST, Concato J, Felson DT, Wittink DR. Patient preferences for treatment of rheumatoid arthritis. *Ann Rheum Dis* 2004;
   63:1372–8.
- 83. National Institute for Health and Clinical Excellence. Guidance on the use of etanercept and infliximab for the treatment of rheumatoid arthritis. URL: http://www.nice.org.uk/pdf/RA\_A4\_summary.pdf. Accessed 23 May 2005.
- 84. British Society for Rheumatology. Guidelines for prescribing TNF blockers in adults with rheumatoid arthritis. URL: www.rheumatology. org.uk. Accessed 14 June 2001.
- 85. British Society for Rheumatology. Anti-TNFa agents in rheumatoid arthritis. Evidence for the 5-year review of anti-TNFα. Submission to the National Institute for Health and Clinical Evidence; 2005.
- 86. Ledingham J, Deighton C. Update on the British Society for Rheumatology guidelines for prescribing TNFα blockers in adults with rheumatoid arthritis (update of previous guidelines of April 2001). *Rheumatology* 2005; **44**:157–63.
- 87. Watson K, Hyrich K, Symmons D, Silman A, BSR Biologics Register. British Society for Rheumatology Biologics Register (BSRBR): the experience of rheumatoid arthritis patients receiving infliximab or etanercept to December 2003 [abstract LB1]. *Rheumatology* 2004; 43(Suppl 2):ii1.
- 88. Arnett F, Edworthy S, Bloch D. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis and Rheum* 1988;**31**:315–24.
- 89. Harrison B, Symmons D, Barrett E, Silman A. The performance of the 1987 ARA classification criteria for rheumatoid arthritis in a population based cohort of patients with early inflammatory polyarthritis. *J Rheumatol* 1998;25:2324–30.
- 90. Gardiner PV, Bell AL, Taggart AJ, Wright G, Kee F, Smyth A, *et al.* A potential pitfall in the use of the Disease Activity Score (DAS28) as the main response criterion in treatment guidelines for patients with rheumatoid arthritis. *Ann Rheum Dis* 2005;**64**:506–7.
- 91. Cohen M. Accentuate the positive: we are better than guidelines. *Arthritis Rheum* 1997;**40**:2–4.
- Tannenbaum S. What physicians know. N Engl J Med 1993;329:1268–71.
- 93. Wolfe F, Michaud K, Pincus T, Furst D, Keystone E. The Disease Activity Score is not suitable as the sole criterion for initiation and evaluation of anti-

- tumor necrosis factor therapy in the clinic. Arthritis Rheum 2005;52:3873–9.
- 94. Gomez-Puerta JA, Rodriguez-Cros JR, Graell E, Cañete JD, Albaladejo C, Sanmarti R. One-year efficacy of etanercept in rheumatoid arthritis patients who previously failed to infliximab. *Arthritis Rheum* 2004;**50**(Suppl):S190.
- 95. Keystone EC, Perruquet JL, Lidman RW, Stein B, Peller JS, Xia HA, *et al.* Switching anti-TNF therapy: real-world outcome of patients with rheumatoid arthritis who failed either infliximab or etanercept treatment and switched to another TNF inhibitor. *Arthritis Rheum* 2004;**50**(Suppl): S400–1.
- 96. Westhovens R, Wolfe F, Rahman MU, Han J, Yocum D. Infliximab dose escalation in patients with rheumatoid arthritis. Results from the START trial. *Arthritis Rheum* 2004;**50**(Suppl):S185–6.
- 97. van Vollenhoven RF, Brannemark S, Klareskog L. Dose escalation of infliximab in clinical practice: improvements seen may be explained by a regression-like effect. *Ann Rheum Dis* 2004; **63**:426–30.
- 98. Stern R, Wolfe F. Infliximab dose and clinical status: results of 2 studies in 1642 patients with rheumatoid arthritis. *J Rheumatol* 2004;**31**:1538–45.
- Schiff M, Mease P, Weinblatt M, Moreland L, Burge D. Randomized control trial of 25 mg vs.
   mg Enbrel (etanercept) twice weekly in rheumatoid arthritis (RA) [abstract 1947]. Arthritis Rheum 2000;43(9 Suppl):S391.
- 100. Blumenauer B, Judd M, Wells G, Burls A, Cranney A, Hochberg M, *et al.* Infliximab for the treatment of rheumatoid arthritis [review]. *Cochrane Database Syst Rev* 2002;(3):CD003785.
- Deeks JJ, Higgins JPT, Altman DG. Analysing and presenting results. In Higgins JPT, Green S, editors. *Cochrane handbook for systematic reviews for interventions* 4.2.4 [updated March 2005]; Section 8. Chichester: John Wiley & Sons; 2005.
- 102. Breedveld FC, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R, Perez JL, et al. Early treatment of rheumatoid arthritis (RA) with adalimumab (HUMIRA®) plus methotrexate vs. adalimumab alone or methotrexate alone. The PREMIER study [abstract L5]. Arthritis Rheum 2004;50:4096–7.
- 103. Codreanu C, Combe B, Fiocco U, Gaubitz M, Geusens PP, Kvien T, *et al.* Double-blind comparison of etanercept and sulfasalazine, alone and combined in active RA patients [abstract THU0120]. *EULAR 2003*; 2003.
- 104. Baumgartner SW, Paulus H, Burch F, Kivitz A, Dunn M, Kerr D, *et al.* A study to determine the safety of etanercept (Enbrel) in patients with rheumatoid arthritis who have concomitant

- comorbid conditions [abstract 1765]. *Arthritis Rheum* 2004;**50**(9 Suppl):S660–1.
- 105. Yocum D, Rahman MU, Han C, Bala M, Han J, Westhovens R. Infliximab rapidly improves all components of physical function assessed by the HAQ in patients with rheumatoid arthritis: results from the START trial [abstract]. *Arthritis Rheum* 2004;**50**(9 Suppl):S188–9.
- 106. Schattenkirchner M, Krüger K, Sander O, Rau R, Kroot EJ, van Riel PL, et al. Efficacy and tolerability of weekly subcutaneous injections of the fully human anti-TNF antibody D2E7 in patients with rheumatoid arthritis results of a Phase I study. Arthritis Rheum 1998; 41(9 Suppl):S57.
- 107. van Riel P, Taggart A, Sany J, Gaubitz M, Garcia Lopez A, Korpela M, *et al.* Clinical efficacy and safety of the combination of etanercept plus methotrexate and etanercept alone in the treatment of rheumatoid arthritis patients with an inadequate response to methotrexate: the ADORE study [EULAR 2005 abstract]. *Ann Rheum Dis* 2005;**64**(Suppl III):437.
- 108. Goekoop-Ruiterman YPM, De Vries-Bouwstra JK, Allaart CF, Van Zeben D, Kerstens PJSM, Hazes JMW, *et al.* Clinical and radiological outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. *Arthritis Rheum* 2005;**52**:3381–90.
- 109. Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R, *et al.* The PREMIER study. A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. *Arthritis Rheum* 2006;**54**:26–37.
- 110. van der Heijde D, Klareskog L, Rodriguez-Valverde V, Codreanu C, Bolosiu H, Melo-Gomes J, et al. Comparison of etanercept and methotrexate, alone and combined, in the treatment of rheumatoid arthritis. Arthritis Rheum 2006; 54:1063–74.
- 111. Westhovens R, Yocum D, Han J, Berman A, Strusberg I, Geusens P, et al. The safety of infliximab, combined with background treatments, among patients with rheumatoid arthritis and various comorbidities: a large, randomized, placebo-controlled trial. Arthritis Rheum 2006; 54:1075–86.
- 112. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, *et al*. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA

- trial. [published erratum appears in Arthritis Rheum 2003;**48**:855]. Arthritis Rheum 2003;**48**:35–45.
- 113. van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL, *et al*. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. *Ann Rheum Dis* 2004;**63**:508–16.
- 114. Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, *et al*. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. *Arthritis Rheum* 2004;**50**:1400–11.
- 115. Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA, Compagnone D, *et al.* Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). *J Rheumatol* 2003;**30**:2563–71.
- 116. den Broeder A, van de PL, Rau R, Schattenkirchner M, van Riel P, Sander O, *et al*. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. *J Rheumatol* 2002;**29**:2288–98.
- 117. Rau R, Simianer S, van Riel PL, van de Putte LB, Kruger K, Schattenkirchner M, *et al.* Rapid alleviation of signs and symptoms of rheumatoid arthritis with intravenous or subcutaneous administration of adalimumab in combination with methotrexate. *Scand J Rheumatol* 2004; 33:145–53.
- 118. Weisman MH, Moreland LW, Furst DE, Weinblatt ME, Keystone EC, Paulus HE, *et al*. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. *Clin Ther* 2003; **25**:1700–21.
- 119. van de Putte LB, Rau R, Breedveld FC, Kalden JR, Malaise MG, van Riel PL, et al. Efficacy and safety of the fully human anti-tumour necrosis factor alpha monoclonal antibody adalimumab (D2E7) in DMARD refractory patients with rheumatoid arthritis: a 12 week, phase II study. *Ann Rheum Dis* 2003;**62**:1168–77.
- 120. Moreland LW, Margolies G, Heck LW Jr, Saway A, Blosch C, Hanna R, *et al*. Recombinant soluble tumor necrosis factor receptor (p80) fusion protein: toxicity and dose finding trial in

- refractory rheumatoid arthritis. J Rheumatol 1996; **23**:1849–55.
- 121. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)–FC fusion protein. N Engl J Med 1997;337:141–7.
- 122. Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, *et al.* Etanercept therapy in rheumatoid arthritis. *Ann Intern Med* 1999;**130**:478–86.
- 123. Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, *et al*. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. *N Engl J Med* 2000;**343**:1586–93.
- 124. Genovese MC, Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, *et al.* Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. *Arthritis Rheum* 2002; **46**:1443–50.
- 125. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, *et al.* A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. *N Engl J Med* 1999;**340**:253–9.
- 126. Wajdula J. A double-blind, placebo controlled study of the efficacy and safety of four different doses of etanercept in patients with rheumatoid arthritis. *Ann Rheum Dis* 2000;**59** (Suppl):163.
- 127. Klareskog L, van der HD, de Jager JP, Gough A, Kalden J, Malaise M, *et al.* Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. *Lancet* 2004; **363**:675–81.
- 128. van der Heijde D, Landewé R, Klareskog L, Rodriguez-Valverde V, Settas L, Pedersen R, *et al.* Presentation and analysis of data on radiographic outcome in clinical trials: experience from the TEMPO study. *Arthritis Rheum* 2005;**52**:49–60.
- 129. Keystone EC, Schiff MH, Kremer JM, Kafka S, Lovy M, DeVries T, *et al.* Once-weekly administration of 50 mg etanercept in patients with active rheumatoid arthritis: results of a multicenter, randomized, double-blind, placebocontrolled trial. *Arthritis Rheum* 2004;**50**:353–63.
- 130. Lan JL, Chou SJ, Chen DY, Chen YH, Hsieh TY, Young M Jr. A comparative study of etanercept plus methotrexate and methotrexate alone in Taiwanese patients with active rheumatoid

- arthritis: a 12-week, double-blind, randomized, placebo-controlled study. *J Formos Med Assoc* 2004; **103**:618–23.
- 131. van Laar JM, Verburg RJ, Fibbe WE, Breedveld FC. Intensive immunosuppression and autologous stem cell transplantation for patients with severe rheumatoid arthritis: the Leiden experience. *J Rheumatol* 2001;**64** (Suppl):25–7.
- 132. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, *et al.* Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. *Lancet* 1999; **359**:1932–9.
- 133. Lipsky PE, van der Heijde DMFM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, *et al*. Infliximab and methotrexate in the treatment of rheumatoid arthritis. *N Engl J Med* 2000; **343**:1594–602.
- 134. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Furst D, Weisman MH, *et al.* Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate. *Arthritis Rheum* 2004;**50**:1051–65.
- 135. St Clair EW, van der Heijde DM, Smolen JS, Maini RN, Bathon JM, Emery P, et al.
  Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. *Arthritis Rheum* 2004; 50:3432–43.
- 136. Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, *et al.* Randomised doubleblind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. *Lancet* 1994; **334**:1105–10.
- 137. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, *et al.* Therapeutic efficacy of multiple intravenous infusions of anti-tumour necrosis factor α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. *Arthritis Rheum* 1998;**41**:1552–63.
- 138. Kavanaugh A, St Clair E, McCune W, Braakman T, Lipsky P. Chimeric anti-tumor necrosis factor a monoclonal antibody treatment of patients with rheumatoid arthritis receiving methotrexate therapy. *J Rheumatol* 2000;**27**:841–50.
- 139. Durez P, Nzeusseu TA, Lauwerys BR,
  Manicourt DH, Verschueren P, Westhovens R, et al.
  A randomised comparative study of the short term
  clinical and biological effects of intravenous pulse
  methylprednisolone and infliximab in patients
  with active rheumatoid arthritis despite

- methotrexate treatment. Ann Rheum Dis 2004; **63**:1069–74.
- 140. Taylor PC, Steuer A, Gruber J, Cosgrove DO, Blomley MJ, Marsters PA, *et al.* Comparison of ultrasonographic assessment of synovitis and joint vascularity with radiographic evaluation in a randomized, placebo-controlled study of infliximab therapy in early rheumatoid arthritis. *Arthritis Rheum* 2004;**50**:1107–16.
- 141. Quinn MA, Conaghan PG, O'Connor PJ, Karim Z, Greenstein A, Brown A, *et al*. Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: results from a twelve-month randomized, double-blind, placebo-controlled trial. *Arthritis Rheum* 2005;**52**:27–35.
- 142. Durez P, Toukap AN, Lauwerys BR, Manicourt DH, Westhovens R, Houssiau FA. Distinct effects of infliximab and intravenous pulse methylprednisolone on CRP, interleukin-6 and matrix metalloproteinase-3 serum titers in rheumatoid arthritis patients with active disease despite methotrexate. A prospective randomised comparative study. Arthritis Rheum 2003; 48(9 Suppl):212.
- 143. Goekoop-Ruiterman YPM, De Vries-Bouwstra JK, Van Zeben D, Kerstens PJSM, Hazes JMW, Zwinderman AH, *et al.* Treatment strategies in early rheumatoid arthritis: clinical and radiological outcomes after 2 year follow-up of the BeSt study [abstract L4]. *Arthritis Rheum* 2004; **50**(12 Suppl):4096.
- 144. De Vries-Bouwstra JK, Goekoop-Ruiterman YPM, Breedveld FC, Han KH, Kerstens PJS, Ronday HK, *et al.* Clinical and radiological outcomes after one-year follow-up of the BeSt study, a randomized trial comparing four different treatment strategies in early rheumatoid arthritis (RA) [abstract]. *Arthritis Rheum* 2003;48(Suppl):3649.
- 145. Armstrong RD, English J, Gibson T, Chakraborty J, Marks V. Serum methylprednisolone levels following intra-articular injection of methylprednisolone acetate. *Ann Rheum Dis* 1981; 40:571–4.
- 146. FDA Arthritis Advisory Committee. Update on the TNF-α blocking agents. FDA briefing document 4 March, 2003 meeting of Arthritis Advisory Committee. URL: http://www.fda.gov/ohrms/dockets/ac/03/briefing/3930B1\_01\_B-TNF. Briefing.pdf. Accessed 19 January 2005.
- 147. Symmons DPM, Silman AJ. Anti-tumor necrosis factor α therapy and the risk of lymphoma in rheumatoid arthritis: no clear answer. *Arthritis Rheum* 2004;**50**:1703–6.

- 148. Wolfe F, Michaud K. Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. *Arthritis Rheum* 2004;**50**:1740–51.
- 149. Baecklund E, Ekbom A, Sparen P, Feltelius N, Klareskog L. Disease activity and risk of lymphoma in patients with rheumatoid arthritis: nested case–control study. *BMJ* 1998;**317**: 180–1.
- 150. Askling J, Fored CM, Baecklund E, Brandt L, Backlin C, Ekbom A, *et al.* Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. *Ann Rheum Dis* 2005; **64**:1414–20.
- 151. Geborek P, Bladstrom A, Turesson C, Gulfe A, Petersson IF, Saxne T, *et al.* Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. *Ann Rheum Dis* 2005;**64**:699–703.
- 152. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Feltelius N, *et al.* Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. *Ann Rheum Dis* 2005;**64**:1421–6.
- 153. Lebwohl M, Blum R, Berkowitz E, Kim D, Zitnik R, Osteen C, *et al.* No evidence for increased risk of cutaneous squamous cell carcinoma in patients with rheumatoid arthritis receiving etanercept for up to 5 years. *Arch Dermatol* 2005;**141**:861–4.
- 154. Coletta AP, Clark AL, Banarjee P, Cleland JGF. Clinical trials update: RENEWAL (RENAISSANCE and RECOVER) and ATTACH. *Eur J Heart Fail* 2002;**4**:559–61.
- 155. Khanna D, McMahon M, Furst DE. Anti-tumor necrosis factor α therapy and heart failure. What have we learned and where do we go from here? *Arthritis Rheum* 2004;**50**:1040–50.
- 156. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebocontrolled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart failure (ATTACH) trial. *Circulation* 2003;107:3133–40.
- 157. Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, *et al.* Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. *Arthritis Rheum* 2004;**50**:1412–19.
- 158. Evers S, Goossens M, de Vet H, vanTulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations:

- consensus on health economic criteria. *Int J Technol Assess Health Care* 2005;**21**:240–5.
- 159. Choi HK, Seeger JD, Kuntz KM. A cost effectiveness analysis of treatment options for methotrexate-naïve rheumatoid arthritis. *J Rheumatol* 2002;29:1156–65.
- 160. Brennan A, Bansback N, Reynolds A, Conway P. Modelling the cost-effectiveness of etanercept in adults with rheumatoid arthritis in the UK. *Rheumatology* 2004;**43**:62–72.
- Wong JB, Singh G, Kavanaugh A. Estimating the cost-effectiveness of 54 weeks of infliximab for rheumatoid arthritis. *Am J Med* 2002;113:400–8.
- 162. Kobelt G, Jonsson L, Young A, Eberhardt K. The cost-effectiveness of infliximab (Remicade) in the treatment of rheumatoid arthritis in Sweden and the United Kingdom based on the ATTRACT study. *Rheumatology* 2003;**42**:326–35.
- 163. Kobelt G, Eberhardt K, Geborek P. TNF inhibitors in the treatment of Rheumatoid Arthritis in clinical practice: costs and outcomes in a follow up study of patients with RA treated with etanercept or infliximab in southern Sweden. *Ann Rheum Dis* 2004;63:4–10.
- 164. Chiou C-F, Choi J, Reyes CM. Cost-effectiveness analysis of biological treatments for rheumatoid arthritis. *Expert Review of Pharmacoeconomics and Outcomes Research* 2004;**4**:307–15.
- 165. Welsing PMJ, Severens JL, Hartman M, van Riel PLCM, Laan RFJM. Modeling the 5-year cost effectiveness of treatment strategies including tumor necrosis factor-blocking agents and leflunomide for treating rheumatoid arthritis in the Netherlands. *Arthritis Rheum (Arthritis Care and Research)* 2004;**51**:964–73.
- 166. Bansback N, Brennan A, Ghatneker O. Cost effectiveness of Adalimumab in the treatment of moderate to severe rheumatoid arthritis patients in Sweden. *Ann Rheum Dis* 2005;64:995–1002.
- 167. Kobelt G, Lindgren P, Singh A, Klareskog L. Cost-effectiveness of etanercept (Enbrel) in combination with methotrexate in the treatment of active rheumatoid arthritis based on the TEMPO trial. *Ann Rheum Dis* 2005;**64**:1174–9.
- 168. Brennan A, Bansback N. Re: Wolfe *et al.* Do rheumatology cost-effectiveness analyses make sense? *Rheumatology* 2004;**43**:677–8.
- 169. Wolfe F, Michaud K, Pincus T. Do rheumatology cost-effectiveness analyses make sense? *Rheumatology* 2004;**43**:4–6.
- 170. Chiou C, Choi J, Reyes CM. Cost-effectiveness analysis of biological treatments for rheumatoid arthritis. *Review in Pharmacoeconomics Outcomes Research* 2004;**4**:307–15.

- 171. Geborek P, Crnkic M, Petersson IF, Saxne T, South Swedish Arthritis Treatment Group. Etanercept, infliximab, and leflunomide in established rheumatoid arthritis: clinical experience using a structured follow up programme in southern Sweden. *Ann Rheum Dis* 2002;**61**:793–8.
- 172. Wiles NJ, Lunt M, Barrett EM, Bukhari M, Silman AJ, Symmons DPM, *et al.* Reduced disability at five years with early treatment of inflammatory polyarthritis. Results from a large observational cohort, using propensity models to adjust for disease severity. *Arthritis Rheum* 2001; 44:1033–42.
- 173. Emery P, Breedveld FC, Lemmel EM, Kaltwasser JP, Dawes PT, Gömör B. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. *Rheumatology* 2000;**39**:655–65.
- 174. Bresnihan B, Alvaro-Gracia JM, Cobby M, Doherty M, Domljan Z, Emery P. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. *Arthritis Rheum* 1998;**41**:2196–204.
- 175. Zeidler HK, Kvien TK, Hannonen P, Wollheim FA, Forre O, Geidel H. Progression of joint damage in early active severe rheumatoid arthritis during 18 months of treatment: comparison of low-dose cyclosporin and parenteral gold. *Br J Rheumatol* 1998;**37**:874–82.
- 176. Kvien TK, Zeidler HK, Hannonen P, Wollheim FA, Forre O, Hafstrom I, *et al.* Long term efficacy and safety of cyclosporin versus parental gold in early rheumatoid arthritis: a three year study of radiographic progression, renal function, and arterial hypertension. *Ann Rheum Dis* 2002; **61**:511–16.
- 177. HERA Study Group. A randomised trial of hydroxychloroquine in early rheumatoid arthritis. *Am J Med* 1995;**98**:168.
- 178. Kalden JR, Scott DL, Smolen JS, Schattenkirchner M, Rozman B, Williams BD, *et al*. Improved functional ability in patients with rheumatoid arthritis – long-term treatment with leflunomide versus sulfasalazine. *J Rheumatol* 2001; 28:1983–91.
- 179. Smolen JS, Kalden JR, Scott DL, Rozman B, Kvien TK, Larsen A, *et al*. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. *Lancet* 1999;**353**:259–66.
- 180. Gerards AH, Landewe RB, Prins AP, Bruyn GA, Goei The HS, Laan RF, *et al.* Cyclosporin A monotherapy versus cyclosporin A and methotrexate combination therapy in patients with early rheumatoid arthritis: a double blind

- randomised placebo controlled trial. *Ann Rheum Dis* 2003;**62**:291–6.
- 181. Willkens RF, Sharp JT, Stablein D, Marks C, Wortmann R. Comparison of azathioprine, methotrexate, and the combination of the two in the treatment of rheumatoid arthritis. *Arthritis Rheum* 1995;**38**:1799–806.
- 182. Yocum DE, Allard S, Cohen SB, Emery P, Flipo RM, Goobar J, *et al*. Microemulsion formulation of cyclosporin (Sandimmun Neoral) vs Sandimmun: comparative safety, tolerability, and efficacy in severe acute rheumatoid arthritis. *Rheumatology* 2000;**39**:156–64.
- 183. Marra CA, Esdaile JM, Guh D, Fisher JH, Chalmers A, Anis AH. The effectiveness and toxicity of cyclosporin A in rheumatoid arthritis: longitudinal analysis of a population-based registry. *Arthritis Care and Research* 2001; **45**:240–5.
- 184. Hamilton J, McInnes IB, Thomson EA, Porter D, Hunter JA, Madhok R, *et al*. Comparative study of intramuscular gold and methotrexate in a rheumatoid arthritis population from a socially deprived area. *Ann Rheum Dis* 2001;**60**:566–72.
- 185. Furst D, Lindsley H, Baethge B, Botstein GR, Caldwell J, Dietz F, *et al.* Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis. *Arthritis Rheum* 1999;**42**:357–65.
- 186. Van Roon EN, Jansen TLT, Mourad L, Houtman PM, Bruyn GAW, Griep EN, *et al.* Leflunomide in active rheumatoid arthritis: a prospective study in daily practice. *Br J Clin Pharmacol* 2004;**58**:201–8.
- 187. Proudman SM, Conaghan PG, Richardson C, Griffiths B, Green MJ, McGonagle D, *et al*. Treatment of poor prognosis early rheumatoid arthritis. A randomised study of treatment with methotrexate, cyclosporin A, and intraarticular cortiocosteroids compared with sulphasalaszine alone. *Arthritis Rheum* 2000;**43**:1809–19.
- 188. Edwards CJ, Arden NK, Fisher D, Saperia JC, Reading I, van Staa TP, et al. The changing use of disease-modifying anti-rheumatic drugs in individuals with rheumatoid arthritis from the United Kingdom General Practice Research Database. Rheumatology 2005;44:1394–8.
- 189. Tugwell P, Pincus T, Yocum D, Stein M, Gluck O, Kraag G, et al. Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. N Engl J Med 1995; 333:137–41.
- 190. Gerards A, Landewe R, Prins A, Bruijn G, Goei T, Dijkmans B. Combination therapy with cyclosporin A and methotrexate in patients with early aggressive rheumatoid arthritis,

- a randomised double blind placebo controlled trial. *Arthritis Rheum* 2000;**43** (Suppl):S382.
- 191. Scott DL, Strand V. The effects of diseasemodifying anti-rheumatic drugs on the Health Assessment Questionnaire score. Lessons from the leflunomide clinical trials database. *J Rheumatol* 2002;41:899–909.
- Lynch N, Robinson E. Cyclosporin use in inflammatory arthritis: a 2-year prospective national audit. Arthritis Rheum 2000;43 (Suppl):S344.
- 193. Maetzel A, Wong W, Strand V, Tugwell P, Wells G, Bombardier C. Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease modifying anti-rheumatic drugs. *Rheumatology* 2000;**39**:975–81.
- 194. Newchurch. National Pathology Alliance Benchmarking Report: Haematology and blood transfusion 2000/2001. London: Newchurch; 2002.
- 195. Newchurch. Radiology Benchmarking Report: 1999/2000. London: Newchurch; 2001.
- Curtis L, Netten N. Unit costs of health and social care 2004. Canterbury: PSSRU, University of Kent; 2004.
- 197. British National Formulary. BNF 50; September 2005. URL: www.bnf.org.
- 198. Wolfe F, Mitchell DM, Sibley JT, Fries JF, Bloch DA, Williams CA. The mortality of rheumatoid arthritis. *Arthritis Rheum* 1994;**37**:481–94.
- 199. Sokka T, Hakkinen A, Krishnan E, Hannonen P. Similar prediction of mortality by the health assessment questionnaire in patients with rheumatoid arthritis and the general population. *Ann Rheum Dis* 2004;**63**:494–7.
- 200. Krishnan E, Sokka T, Häkkinen A, Hubert H, Hannonen P. Normative values for the Health Assessment Questionnaire disability index. *Arthritis Rheum* 2004;**50**:953–60.
- 201. Hurst NP, Kind P, Ruta D, Hunter M, Stubbings A. Measuring health-related quality of life in rheumatoid arthritis: validity, responsiveness and reliability of EuroQol (EQ-5D). Br J Rheumatol 1997;36:551–9.
- 202. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. *JAMA* 2006; 295:2275–85.
- 203. Jobanputra P, Hunter M, Clark D, Lambert C, Hurst N. An audit of methotrexate and folic acid for rheumatoid arthritis. Experience from a teaching centre. Br J Rheumatol 1995;34:971–5.
- 204. Fries JF, Spitz PW, Kraines RG, Holman HR. Measurement of patient outcomes in arthritis. *Arthritis Rheum* 1980;23:137–45.

- 205. Wolfe F. Which HAQ is best? A comparison of the HAQ, MHAQ and RA-HAQ, a difficult 8 item HAQ (DHAQ), and a rescored 20 item HAQ (HAQ20): analyses in 2491 rheumatoid arthritis patients following leflunomide initiation. *J Rheumatol* 2001;28:982–9.
- 206. Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, et al. American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 1995;38:727–35.
- Siegel JN, Zhen B-G. Use of the American College of Rheumatology N (ACR-N) index of improvement in rheumatoid arthritis. Argument in favor. Arthritis Rheum 2005;52:1637–41.
- 208. Boers M. Use of the American College of Rheumatology N (ACR-N) index of improvement in rheumatoid arthritis. Argument in opposition. *Arthritis Rheum* 2005;**52**:1642–5.
- 209. Scott DL. Radiographs in rheumatoid arthritis. *International Journal of Advances in Rheumatology* 2003;1:2–8.
- 210. Sharp JT, Young DY, Bluhm GB, Brook A, Brower AC, Corbett M, *et al.* How many joints in the hands and wrists should be included in a score of radiologic abnormalities used to assess rheumatoid arthritis? *Arthritis Rheum* 1985; **28**:1326–35.
- 211. van der Heijde D, van Leeuwen MA, Riel PLCM, Koster AM, van 'T Hof MA, van Rijswijk MH, *et al.* Biannual radiographic assessments of hands and feet in a three-year prospective followup of patients with early rheumatoid arthritis. *Arthritis Rheum* 1992;35:26–34.
- Scott DL, Housseien DA, Laasonen L. Proposed modification to Larsen's scoring methods of hand and wrist radiographs. *Br J Rheumatol* 1995;
   34:56.
- 213. Fleischmann RM, Baumgartner SW, Tindall EA, Weaver AL, Moreland LW, Schiff MH, et al. Response to etanercept (Enbrel) in elderly patients with rheumatoid arthritis: a retrospective analysis of clinical trial results. *J Rheumatol* 2003;30:691–6.
- 214. Smeets TJ, Kraan MC, van Loon ME, Tak PP. Tumor necrosis factor alpha blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. *Arthritis Rheum* 2003; 48:2155–62.
- 215. St Clair EW, Wagner CL, Fasanmade AA, Wang B, Schaible T, Kavanaugh A, et al. The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, doubleblind, placebo-controlled trial. Arthritis Rheum 2002;46:1451–9.

- 216. Schotte H, Willeke P, Mickholz E, Schorat MA, Ortega SM, Schluter B, *et al.* [Long-term treatment with etanercept significantly reduces the production of pro-inflammatory cytokine mononuclear cells in the blood of patients with rheumatoid arthritis]. *Z Rheumatol* 2001;**60**:83.
- 217. Grigor C, Capell H, Stirling A, McMahon AD, Lock P, Vallance R, *et al.* Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. *Lancet* 2004;**364**:263–9.
- 218. Lukina GV, Sigidin I, Skurkovich SV, Skurkovich BS. [Double-blind trial of the effectiveness of antibodies to interferon-gamma and tumor necrosis factor-alpha in rheumatoid arthritis (preliminary results)] [in Russian]. *Ter Arkh* 2001; 73(5):12–15.
- 219. Sigidin YA, Loukina GV, Skurkovich B, Skurkovich S. Randomized, double-blind trial of anti-interferon-gamma antibodies in rheumatoid arthritis. *Scand J Rheumatol* 2001;**30**:203–7.
- 220. Brocq O, Plubel Y, Breuil V, Grisot C, Flory P, Mousnier A, *et al.* Etanercept–infliximab switch in rheumatoid arthritis 14 out of 131 patients treated with anti TNF alpha. *Presse Med* 2002;**31**:1836–9.
- 221. Capria A, De Nardo D, De Sanctis G, Simonelli AR, Kroegler B, Silvestri F, et al. Endothelial dysfunction in rheumatoid arthritis is improved by anti-tumor necrosis factor-α treatment. European Journal of Inflammation 2004;2:113–18.
- 222. Cohen JD, Zaltni S, Kaiser MJ, Bozonnat MC, Jorgensen C, Daures JP, *et al.* Secondary addition of methotrexate to partial responders to etanercept alone is effective in severe rheumatoid arthritis. *Ann Rheum Dis* 2004;**63**:209–10.
- 223. Ferraro-Peyret C, Coury F, Tebib JG, Bienvenu J, Fabien N. Infliximab therapy in rheumatoid arthritis and ankylosing spondylitis-induced specific antinuclear and antiphospholipid autoantibodies without autoimmune clinical manifestations: a two-year prospective study. *Arthritis Res Ther* 2004;**6**:R535–43.
- 224. Genovese M, Martin R, Fleischmann R, Keystone E, Bathon J, Hinck B, et al. Etanercept (Enbrel®) in early erosive rheumatoid arthritis (ERA trial): observations at 3 years. Arthritis Rheum 2001;44(9):151.
- 225. Genovese MC, Martin RW, Fleischmann RM, Keystone EC, Bathon JM, Spencer-Green G. Etanercept (Enbrel®) in early erosive rheumatoid arthritis (ERA trial): observations at 4 years. Arthritis Rheum 2002;46(9):S530.
- 226. Genovese MC, Martin RW, Fleischmann RM, Keystone EC, Bathons JM, Tsuji WH. Etanercept (Enbrel®) in early erosive rheumatoid arthritis (ERA trial): clinical and radiographic data. *Arthritis Rheum* 2003;**48**(9 Suppl):208.

- 227. Gomez-Puerta JA, Sanmarti R, Rodriguez-Cros JR, Canete JD. Etanercept is effective in patients with rheumatoid arthritis with no response to infliximab therapy. *Ann Rheum Dis* 2004;**63**:896.
- 228. Korczowska I, Hrycaj P, Lacki JK. Does infliximab decrease bone turnover in rheumatoid arthritis patients [3]. *Joint Bone Spine* 2003;**70**:398–400.
- 229. Kucharz EJ, Gozdzik J, Kopec M, Kotulska A, Lewicki M, Pieczyrak R, *et al.* A single infusion of infliximab increases the serum endostatin level in patients with rheumatoid arthritis [8]. *Clin Exp Rheumatol* 2003;**21**:273–4.
- 230. Osborn TG. Intraarticular etanercept versus saline in rheumatoid arthritis: a single injection double blind placebo controlled study. *Arthritis Rheum* 2002;46(9):S518.
- 231. Saadeh CK, Brown DM, Chumney-Malacara JM, Crow J. Infliximab therapy for rheumatoid arthritis (RA) induced significant control of asthma in patients with both RA and asthma or asthma/COPD in addition to improving RA status. *J Allergy Clin Immunol* 2002;**109**:741.
- 232. Smith GR, Tymms KE, Falk M. Etanercept treatment of renal amyloidosis complicating rheumatoid arthritis. *Intern Med J* 2004;**34**:570–2.
- 233. Yazici Y, Erkan D, Kulman I, Schwartzman S, Harrison MJ. Etanercept (ETA) vs infliximab (INF): a comparison of efficacy in controlling rheumatoid arthritis (RA) flares during the first year of therapy and the year prior to their use. *Arthritis Rheum* 2001;44:171.
- 234. Breedveld FC. Tumour necrosis factor blockade in rheumatoid arthritis. *Clin Med* 2001;**1**:107–9.
- Calin A. Infliximab: chimeric human–murine monoclonal antibody. *Journal of Drug Evaluation* 2003;1:77–108.
- 236. Muhlhauser U, Munzel F, Eschenhagen T. Etanercept. *Dtsch Med Wochenschr* 2003;**128**:1775–8.
- 237. Pugsley MK. Etanercept Immunex. Curr Opin Investig Drugs 2001;**2**:1725–31.
- 238. Rashmi S, Ujala V. A novel therapeutic approach in rheumatoid arthritis. *Indian Journal of Pharmacology* 2004;**36**:265–6.
- 239. Rau R. Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. *Ann Rheum Dis* 2002; **61**(Suppl 2):ii70–3.
- 240. Sautner J. Adalimumab (Humira) [in German]. *Internistische Praxis* 2005;**45**:159–62.
- 241. Vervaeren J. Rheumatoid arthritis: a new treatment [in French]. *J Pharm Belg* 2002; **57**(4):82–8.

- 242. Winning A. Infliximab in the treatment of rheumatoid arthritis. *Journal of Clinical Excellence* 2001;**3**:211–14.
- Yung RL. Etanercept Immunex. Curr Opin Investig Drugs 2001;2:216–21.
- 244. Anonymous. [Adalimumab slows the progression of rheumatoid arthritis] [in German]. *Pharm Unserer Zeit* 2003;**32**:75–6.
- Anonymous. Etanercept/anakinra RA combination therapy has increased risk compared to etanercept monotherapy. Formulary 2004;39(8):394, 397.
- Bain B, Brazil M. Adalimumab. Nat Rev Drug Discov 2003;2(9):693–4.
- 247. Becker C. Adalimumab is suitable for everyday use [in German]. *Pharmazeutische Zeitung* 2004; **149**(26):28, 30.
- 248. Boers M, COBRA Study Group. Demonstration of response in rheumatoid arthritis patients who are nonresponders according to the American College of Rheumatology 20% criteria: the paradox of beneficial treatment effects in nonresponders in the ATTRACT trial. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy. *Arthritis Rheum* 2001;44:2703–4.
- 249. Bruhn C. Adalimumab the first pure human monoclonal antibody for the treatment of rheumatoid arthritis [in German]. *Deutsche Apotheker Zeitung* 2002;**142**(45):38–40.
- 250. Bruhn C. Rheumatoid arthritis: combination of etanercept and methotrexate is superior to monotherapy [in German]. *Deutsche Apotheker Zeitung* 2004;**144**(21):46–8.
- 251. Choy EH. Two is better than one? Combination therapy in rheumatoid arthritis. *Rheumatology* 2004;**43**:1205–7.
- Cutolo M. Etanercept improves rheumatoid arthritis partially responsive to methotrexate. *Clin Exp Rheumatol* 2001;19:626–7.
- 253. Czajka S. Long-term study on infliximab [in German]. *Pharmazeutische Zeitung* 2001;**146**(16):30, 32.
- 254. Haneveld JK. Combination treatment with etanercept and methotrexate for rheumatoid arthritis [in Dutch]. *Pharmaceutisch Weekblad* 2004; 139:870–1.
- 255. Hellwig B. Rheumatoid arthritis: adalimumab new antibody against TNF alpha [in German]. *Deutsche Apotheker Zeitung* 2003;**143**(38):48–50.

- 256. Masche UP. Adalimumab [in German]. *Pharma-Kritik* 2003;**25**(9):35–6.
- 257. Matucci-Cerinic M. The addition of adalimumab to methotrexate reduces rheumatoid arthritis activity in patients with longstanding disease. *Clin Exp Rheumatol* 2004;**22**:34–5.
- 258. Moreland L. Infliximab in rheumatoid arthritis. *Curr Rheumatol Rep* 2004;**6**:334–5.
- 259. Moreland L. Adalimumab in rheumatoid arthritis. *Curr Rheumatol Rep* 2004;**6**:333–4.
- 260. Rothschild BM. American College of Rheumatology – 65th Annual Meeting: TNF therapies: 11–15 November 2001, San Francisco, CA, USA. *Idrugs* 2002;**5**:35–7.
- Braddock M. 2nd International Conference on Immune-Mediated Diseases & 8th International Anti-Inflammation Meeting. Expert Opin Investig Drugs 2004;13:555–64.
- 262. Croasdell G. JP Morgan Hambrecht & Quist 21st Annual Healthcare Conference: 6–9 January 2003, San Francisco, CA, USA. *Idrugs* 2003;**6**:93–6.
- 263. Evans R. Inflammation 2003 Sixth World Congress: 2–6 August 2003, Vancouver, Canada. *Idrugs* 2003;**6**:831–3.
- 264. Levy RA, Galarza C, Shoenfeld Y. I Latin American Congress of Autoimmunity Galapagos – September 15–18. Autoimmunity Reviews 2004; 3:76–87.
- 265. Oelke K. American College of Rheumatology 65th Annual Meeting: 10–15 November 2001, San Francisco, CA, USA. *Idrugs* 2002;**5**:30–1.
- 266. Trepman E, Lutter LD, Thordarson DB, Greer RE, Lutter J. Highlights of the Nineteenth Annual Summer Meeting of the American Orthopaedic Foot and Ankle Society, Hilton Head, South Carolina, June 27–29, 2003. Foot and Ankle Surgery 2003;9:245–54.
- 267. Yung RL. American College of Rheumatology 65th Annual Meeting Degenerative Joint Diseases 11–15 November 2001, San Francisco, CA, USA. *Idrugs* 2002;**5**:32–4.
- 268. van de Putte L, Bergemann R, Rosery H, Pang F, Dietz B, Kupper H, *et al.* Variation in resource utilization and treatment costs for rheumatoid arthritis (RA) across 5 countries in an adalimumab (D2E7) clinical trial [abstract]. *Value Health* 2002; 5:475–6.

# Appendix I

### Details of key outcomes used in RA trials

# The Health Assessment Questionnaire (HAQ)

The HAQ now comprises a family of questionnaires designed to assess the functional capacity of patients with musculoskeletal complaints and specifically RA. The most widely used HAQ is derived from the Stanford Health Assessment Questionnaire<sup>204</sup> and consists of two or three questions in eight categories:

- Dressing and grooming: dress yourself, including doing shoelaces, and shampoo your hair
- Rising: from an armless chair and in and out of bed
- Eating: being able to cut meat, lift a full cup or glass to the mouth, and open a new carton of milk
- Walking: outdoors on flat ground and climb five steps
- Hygiene: wash and dry entire body, take a bath, get on and off the toilet
- Reaching: reach and get down a 5-lb object, bend down and pick up clothing
- Grip: open car doors, open previously unopened jars, turn taps on and off
- Activities: run errands and shop, get in and out of car, do chores.

The score from the most limited activity in each category is obtained. Each category is scored 0 (without any difficulty), 1 (with some difficulty), 2 (with much difficulty) or 3 (unable to do). Use of aids or devices to help with function is taken into account, so that the need for such assistance automatically scores 2 (unless 3 has been ticked). The maximum score in each of the eight categories is added to give a maximum possible score of 24. This total score may be divided by 8 to give an average value in the range 0–3.

HAQ has several modifications:<sup>205</sup>

• Modified HAQ (MHAQ): a shortened version of HAQ which uses only one question in each of the eight categories and does not consider the use of aids and devices to assist function. It is simpler to score and has the same range as HAQ (0–3).

- RA-HAQ: another shortened version of HAQ designed to overcome some of the metric limitations of MHAQ.
- DHAQ: uses the original eight categories of HAQ, but is based on the most difficult items in each of the categories. Neither the RA-HAQ nor DHAQ has been widely used, unlike MHAQ.

# American College for Rheumatology response criteria<sup>206</sup>

To achieve an ACR20 response a 20% improvement in the score for tender joints and a 20% improvement in swollen joints is necessary, and 20% improvement in at least three of the following:

- global disease activity assessed by observer
- global disease activity assessed by patient
- patient assessment of pain
- physical disability score (e.g. HAQ)
- acute-phase response (e.g. ESR or CRP).

Responses may also be defined as ACR50 (50%) or ACR70 (70%) depending on the degree of benefit.

ACR-N is an extension of the ACR response criteria, and is defined as the lowest of the following three values:

- percentage change in the number of swollen joints
- percentage change in the number of tender joints
- the median of the percentage change in the other five measures listed above.

It is thus a continuous variable. For example, an ACR-N of 38 means an improvement of at least 38% in tender and swollen joint counts and an improvement of at least 38% in three of the five other parameters. <sup>207</sup> The ACR-N has been adopted in some clinical trials, such as the ERA study <sup>123</sup> without prior validation; its advantages and disadvantages have recently been debated. <sup>207,208</sup>

# Disease Activity Score (DAS) Original DAS

DAS =  $0.54(\sqrt{\text{RAI}}) + 0.065(\text{total number of swollen joints out of }44) + 0.33(\ln \text{ESR}) + 0.0072 \text{ (patient general health score where }0=\text{best}, 100=\text{worst})$ 

where RAI refers to a graded score of joint tenderness for 53 joints, known as the Ritchie Articular Index.

#### DAS based on 28 joint evaluations

DAS  $28-4 = 0.56(\sqrt{\text{TJC28}}) + 0.28(\sqrt{\text{SJC28}}) + 0.7\ln(\text{ESR}) + 0.014 \text{ (patient general health score where } 0=\text{best,} 100=\text{worst)}$ 

where TJC is tender joint count and SJC is swollen joint count. Where scores for general health are not available, or not measured, the following formula is used:

DAS 28-3 = 
$$[0.56(\sqrt{\text{TJC28}}) + 0.28(\sqrt{\text{SJC28}}) + 0.7\ln(\text{ESR})]1.08 + 0.16$$

# Radiographic assessment methods<sup>209</sup>

#### Sharp score

The simplified Sharp system, <sup>210</sup> which evaluates hand and wrist images, assesses 17 areas for erosions and 18 areas for joint space narrowing. Each joint is scored on a six-point scale as follows: 0 = no erosion; 1 = discrete erosion; 2 = two separate quadrants with erosions or 20–40% joint involvement; 3 = 3 separate quadrants with erosions or 41–60% joint involvement; 4 = all four quadrants with joint erosion or 61–80% joint involvement; and 5 = extensive destruction with over 80% joint involvement. The range of erosion scores for a patient with two hands and wrists is

0–170. For joint space narrowing each joint is scored using a five-point scale as follows: 0 = no narrowing; 1 = up to 25% narrowing; 2 = 26–65% narrowing; 3 = 66–99% narrowing; and 4 = complete narrowing. The range for joint space narrowing is therefore 0–144. This gives a total joint score in the range 0–314.

#### Van der Heijde modified Sharp score

In this case 16 joints are assessed in each hand and wrist and six joints in each foot. Erosions are scored 0–5 and depending on the affected surface area and 0–10 in the feet, yielding possible erosion scores of 0–160 for hands/wrists and 0–120 for feet (total 0–280). Joint space narrowing is assessed in 15 joints for each hand/wrist and six joints in each foot on a scale of 0–4. The range of possible joint space narrowing scores is in the range 0–168. This yields a possible total score in the range 0–448. <sup>211</sup>

#### Larsen score

In this method standard films are used to classify each joint into one of six possible categories (0 = normal, 5 = severely damaged). Any joint may be scored, but the focus is on hands and feet. In the hands each proximal interphalangeal joint and each metacarpophalangeal joint scores 0–5; each wrist joint scores 0–25 (the basic score is multiplied by 5): this gives a maximum score of 150 for two hands and wrists. In the feet each metatarsophalangeal joint is scored 0–5, giving a total score of 50 for two feet. This yields a possible total score in the range 0–200.

#### Scott-modified Larsen<sup>212</sup>

Scott and colleagues suggested minor modifications to the scale to improve correlation between scorers. It was proposed that grade 1 included erosions and cysts of less than 1 mm diameter and grade 2 included one or more erosions of more than 1 mm diameter.

### Searches: clinical effectiveness

### **Cochrane Library (CENTRAL)**

2005 Issue 1

- #1 rheumatoid NEXT arthritis in All Fields in all products
- #2 MeSH descriptor Arthritis, Rheumatoid, this term only in MeSH products
- #3 (#1 OR #2)
- #4 "tumor necrosis factor\*" in All Fields in all products
- #5 "tumour necrosis factor\*" in All Fields in all products
- #6 MeSH descriptor Receptors, Tumor Necrosis Factor, this term only in MeSH products
- #7 "anti tnf" in All Fields in all products
- #8 antitnf in All Fields in all products
- #9 infliximab in All Fields in all products
- #10 remicade in All Fields in all products
- #11 enbrel in All Fields in all products
- #12 etanercept in All Fields in all products
- #13 adalimumab in All Fields in all products
- #14 humira in All Fields in all products
- #15 (#4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14)
- #16 (#3 AND #15)

### Ovid MEDLINE(R)

1966 to February week 2 2005

- 1 arthritis rheumatoid/
- 2 tumo?r necrosis factor.mp.
- 3 exp receptors tumor necrosis factor/
- 4 anti TNF.mp.
- 5 infliximab.mp.
- 6 remicade.mp.
- 7 enbrel.mp.
- 8 etanercept.mp.
- 9 or/2-8
- 10 rheumatoid arthritis.mp.
- 11 1 or 10
- 12 9 and 11
- 13 randomized controlled trial.pt.
- 14 controlled clinical trial.pt.
- 15 randomized controlled trials.sh.
- 16 random allocation.sh.
- 17 double blind method.sh.
- 18 single blind method.sh.

- 19 or/13-18
- 20 (animals not human).sh.
- 21 19 not 20
- 22 clinical trial.pt.
- 23 exp clinical trials/
- 24 (clin\$ adj25 trial\$).ti,ab.
- 25 ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj25 (blind\$ or mask\$)).ti,ab.
- 26 placebo\$.ti,ab.
- 27 random\$.ti,ab.
- 28 placebos.sh.
- 29 research design.sh.
- 30 or/22-29
- 31 30 not 20
- 32 31 not 21
- 33 21 or 32
- 34 12 and 33
- 35 limit 34 to yr = 2001 2005
- 36 adalimumab.mp.
- 37 humira.mp.
- 38 or/36-37
- 39 1 and 38 and 33
- 40 35 or 39

### **EMBASE** (Ovid)

1980 to week 8 2005

- 1 arthritis rheumatoid/
- 2 tumo?r necrosis factor.mp.
- 3 exp receptors tumor necrosis factor/
- 4 anti TNF.mp.
- 5 infliximab.mp.
- 6 remicade.mp.
- 7 enbrel.mp.
- 8 etanercept.mp.
- 9 or/2-8
- 10 rheumatoid arthritis.mp.
- 11 1 or 10
- 12 9 and 11
- 13 adalimumab.mp.
- 14 humira.mp.
- 15 or/13-14
- 16 randomized controlled trial/
- 17 exp clinical trial/
- 18 exp controlled study/
- 19 double blind procedure/
- 20 randomization/
- 21 placebo/

- 22 single blind procedure/
- 23 (control\$ adj (trial\$ or stud\$ or evaluation\$ or experiment\$)).mp.
- 24 ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj5 (blind\$ or mask\$)).mp.
- 25 (placebo\$ or matched communities or matched schools or matched populations).mp.
- 26 (comparison group\$ or control group\$).mp.
- 27 (clinical trial\$ or random\$).mp.
- 28 (quasiexperimental or quasi experimental or pseudo experimental).mp.
- 29 matched pairs.mp.
- 30 or/16-29
- 31 12 and 30
- 32 limit 31 to yr=2001 2005
- 33 15 and 11 and 30
- 34 32 or 33

# Science Citation Index (Web of Science)

1981-2005

- #1 TS=(rheumatoid arthritis AND (infliximab OR remicade OR enbrel OR etanercept OR tumor necrosis factor OR tumour necrosis factor OR tnf))
- #2 TS=(rheumatoid arthritis AND (infliximab OR remicade OR enbrel OR etanercept))
- #3 TS=(rheumatoid arthritis AND (infliximab OR remicade OR enbrel OR etanercept) AND (trial\* OR random\* OR control\*))
- #4 TS=(rheumatoid arthritis AND (adalimumab OR humira) AND (trial\* OR random\* OR control\*))
- #5 TS=(rheumatoid arthritis AND (adalimumab OR humira) AND (trial\* OR random\* OR control\*))
- #6 #3 OR #4
- #7 #3 OR #5

# List of excluded studies for clinical effectiveness review

**TABLE 69** Studies excluded from clinical effectiveness review

| Citation                                                     | Reason for exclusion/comment                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No appropriate compariso                                     | on between TNF inhibitors and other active comparators or placebo                                                                                                                                                                                                                                                                                                                                      |
| Fleischmann et al., 2003 <sup>213</sup>                      | This was a retrospective analysis which compared the efficacy and safety of etanercept between age $\geq$ 65 group and age $<$ 65 group using data from etanercept trials. No data from placebo groups or other active comparator groups were included                                                                                                                                                 |
| Genovese et al., 2004 <sup>157</sup>                         | This study compared the combination of anakinra and etanercept with etanercept alone. It was thus an assessment of the efficacy and safety of anakinra versus placebo. The results indicated that adding anakinra to etanercept provided no treatment benefit, but was associated with increased risk of adverse events                                                                                |
| Goekoop-Ruiterman et al.,<br>2004, <sup>143</sup> BeSt       | This is an ongoing RCT which compares four treatment strategies for RA. As all strategies included infliximab treatment at some point, the effectiveness and safety of infliximab compared with other agents cannot be appropriately assessed. Although not meeting inclusion criteria, because of its importance this study is described in detail in the section 'Infliximab' (p. 46) of this report |
| van Riel et <i>al.</i> , EULAR<br>2005, <sup>107</sup> ADORE | This was an open-label RCT which compared two treatment strategies in RA patients inadequately controlled by methotrexate therapy: adding etanercept to methotrexate or replacing methotrexate with etanercept. No comparison of etanercept with placebo or other active treatment can be made                                                                                                         |
| Neither full paper nor tria                                  |                                                                                                                                                                                                                                                                                                                                                                                                        |
| Schattenkirchner et al.,<br>1998 <sup>106</sup>              | This was a small ( $n = 24$ ), double-blind, Phase I RCT which compared adalimumab 0.5 mg kg <sup>-1</sup> s.c. weekly with placebo, with follow-up of 8–12 weeks                                                                                                                                                                                                                                      |
| Not including outcomes o                                     | f interest (clinically important outcomes)                                                                                                                                                                                                                                                                                                                                                             |
| Smeets et al., 2003 <sup>214</sup>                           | This was an RCT which studied the effect of single dose of infliximab compared with placeb on cell infiltration in synovial tissues in 24 patients                                                                                                                                                                                                                                                     |
| St Clair et al., 2002 <sup>215</sup>                         | This was a pharmacokinetic study of infliximab using data from ATTRACT                                                                                                                                                                                                                                                                                                                                 |
| Schotte et <i>al.</i> , 2001 <sup>216</sup>                  | This appears to be a study of the effect of etanercept on the production of proinflammatory cytokine mononuclear cells in the blood. Unable to obtain the paper (citation may be incorrect)                                                                                                                                                                                                            |
| Interventions do not inclu                                   | de adalimumab, etanercept or infliximab                                                                                                                                                                                                                                                                                                                                                                |
| Grigor et al., 2004, <sup>217</sup><br>TICORA                | This was a single-blind RCT which compared two treatment strategies (intensive outpatient management and routine care) in RA patients. Neither strategy included TNF inhibitors as part of the treatment                                                                                                                                                                                               |
| Lukina et al., 2001 <sup>218</sup>                           | This was an RCT which compared intramuscular injections of anti-interferon- $\gamma$ , anti-TNF- $\alpha$ , and placebo in 30 RA patients. The identity of the anti-TNF- $\alpha$ is not clear and it does not appear to be one of the three TNF inhibitors of interest                                                                                                                                |
| Sigidin et <i>al.</i> , 2001 <sup>219</sup>                  | This appears to be a duplicate publication of Lukina et al., $2001^{218}$ listed above. The identity of the anti-TNF- $\alpha$ is not clear and it does not appear to be one of the three TNF inhibitors of interest                                                                                                                                                                                   |
| Not RCTs                                                     |                                                                                                                                                                                                                                                                                                                                                                                                        |
| Brocq et al., 2002 <sup>220</sup>                            | Non-randomised study describing outcomes from consecutive use of etanercept and infliximab and vice versa                                                                                                                                                                                                                                                                                              |
| Buch et al., 2004 <sup>72</sup>                              | Observational study of ceasing and restarting TNF inhibitors with no control group                                                                                                                                                                                                                                                                                                                     |
|                                                              | Non-randomised study investigating TNF inhibition and endothelial dysfunction                                                                                                                                                                                                                                                                                                                          |
| Capria et al., 2004 <sup>221</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                        |

**TABLE 69** Studies excluded from clinical effectiveness review (cont'd)

| Citation                                                     | Reason for exclusion/comment                                                                                                                      |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Ferraro-Peyret et al., 2004 <sup>223</sup>                   | Non-randomised study investigating infliximab treatment and autoantibodies in RA and ankylosing spondylitis patients                              |
| Genovese et al., 2001 <sup>224</sup>                         | Three-year outcomes from the extension of etanercept ERA trial in which patient no longer remained on randomised treatment. Abstract              |
| Genovese et al., 2002 <sup>225</sup>                         | Four-year outcomes from the extension of etanercept ERA trial in which patient no longer remained on randomised treatment. Abstract               |
| Genovese et al., 2003 <sup>226</sup>                         | Five-year outcomes from the extension of etanercept ERA trial in which patient no longer remained on randomised treatment. Abstract               |
| Gomez-Puerta et al., 2004 <sup>227</sup>                     | Observational study of using etanercept after treatment failure with infliximab with no control group                                             |
| Korczowska et al., 2003 <sup>228</sup>                       | Non-randomised study investigating infliximab treatment and bone turnover                                                                         |
| Kucharz et al., 2003 <sup>229</sup>                          | Non-randomised study investigating infliximab treatment and serum endostatin level                                                                |
| Osborn, 2002 <sup>230</sup>                                  | Abstract. Double-blind controlled study of single injection of intra-articular etanercept versusaline in RA patients. No mention of randomisation |
| Saadeh et al., 2002 <sup>231</sup>                           | Non-randomised study investigating infliximab treatment and asthma control in RA patients. Abstract                                               |
| Smith et al., 2004 <sup>232</sup>                            | Case report of treating renal amyloidosis complicating RA with etanercept                                                                         |
| Yazici et al., 2001 <sup>233</sup>                           | Non-randomised study comparing the efficacy of etanercept with infliximab. Abstract                                                               |
| Review articles                                              | •                                                                                                                                                 |
| Breedveld, 2001 <sup>234</sup>                               | Review of TNF blockade in RA                                                                                                                      |
| Calin, 2003 <sup>235</sup>                                   | Review of infliximab                                                                                                                              |
| Muhlhauser, 2003 <sup>236</sup>                              | Review of etanercept (German)                                                                                                                     |
| Pugsley, 200 I <sup>237</sup>                                | Review of etanercept                                                                                                                              |
| Rashmi and Ujala, 2004 <sup>238</sup>                        | Review of novel therapeutic approach for RA                                                                                                       |
| Rau, 2002 <sup>239</sup>                                     | Review of adalimumab treatment in RA                                                                                                              |
| Sautner, 2005 <sup>240</sup>                                 | Review of adalimumab (German)                                                                                                                     |
| Vervaeren, 2002 <sup>241</sup>                               | Review of new treatment in RA (French)                                                                                                            |
| Winning, 2001 <sup>242</sup>                                 | Review of infliximab treatment in RA                                                                                                              |
| Yung, 2001 <sup>243</sup>                                    | Review of etanercept                                                                                                                              |
| News articles/commentaries<br>Anonymous, 2003 <sup>244</sup> | es/editorials<br>Summary of adalimumab DE019 (German)                                                                                             |
| Anonymous, 2004 <sup>245</sup>                               | News on Genovese et al., 2004 <sup>157</sup> listed above, which compared the combination of                                                      |
| Anonymous, 2004                                              | anakinra and etanercept and etanercept alone                                                                                                      |
| Bain and Brazil, 2003 <sup>246</sup>                         | Commentary on adalimumab                                                                                                                          |
| Becker, 2004 <sup>247</sup>                                  | News article on adalimumab (German)                                                                                                               |
| Boers, 2001 <sup>248</sup>                                   | Letter. Commentary on ATTRACT                                                                                                                     |
| Bruhn, 2002 <sup>249</sup>                                   | Commentary on adalimumab (German)                                                                                                                 |
| Bruhn, 2004 <sup>250</sup>                                   | News article on TEMPO (German)                                                                                                                    |
| Choy, 2004 <sup>251</sup>                                    | Editorial on combination therapy                                                                                                                  |
| Cutolo, 200 I <sup>252</sup>                                 | Commentary on an etanercept RCT                                                                                                                   |
| Czajka, 2001 <sup>253</sup>                                  | News article on ATTRACT (German)                                                                                                                  |
| Haneveld, 2004 <sup>254</sup>                                | News article on TEMPO (Dutch)                                                                                                                     |
| Hellwig, 2003 <sup>255</sup>                                 | Commentary on adalimumab (German)                                                                                                                 |
| Masche, 2003 <sup>256</sup>                                  | Commentary on adalimumab (German)                                                                                                                 |
| Matucci-Cerinic, 2004 <sup>257</sup>                         | Commentary on ARMADA                                                                                                                              |
| Moreland, 2004 <sup>258</sup>                                | Commentary on an infliximab RCT                                                                                                                   |
| Moreland, 2004 <sup>259</sup>                                | Commentary on an adalimumab RCT                                                                                                                   |
| Rothschild, 2002 <sup>260</sup>                              | Conference news report regarding TNF therapies                                                                                                    |

continued

**TABLE 69** Studies excluded from clinical effectiveness review (cont'd)

| Citation                                           | Reason for exclusion/comment                 |  |  |  |  |
|----------------------------------------------------|----------------------------------------------|--|--|--|--|
| Irrelevant (conference news reports; cost studies) |                                              |  |  |  |  |
| Braddock, 2004 <sup>261</sup>                      | Conference news report                       |  |  |  |  |
| Croasdell, 2003 <sup>262</sup>                     | Conference news report                       |  |  |  |  |
| Evans, 2003 <sup>263</sup>                         | Conference news report                       |  |  |  |  |
| Levy et al., 2004 <sup>264</sup>                   | Conference news report                       |  |  |  |  |
| Oelke, 2002 <sup>265</sup>                         | Conference news report                       |  |  |  |  |
| Trepman et al., 2003 <sup>266</sup>                | Conference news report                       |  |  |  |  |
| Yung, 2002 <sup>267</sup>                          | Conference news report                       |  |  |  |  |
| van de Putte et al., 2002 <sup>268</sup>           | Cost study for an adalimumab trial. Abstract |  |  |  |  |

### Additional tables for clinical effectiveness review

#### **Adalimumab**

#### Adalimumab versus placebo: sensitivity analyses

**TABLE 70** Meta-analyses: adalimumab licensed dose (40 mg every other week or equivalent) and above versus placebo (with or without ongoing conventional DMARDs), end of trial

| Comparison or outcome                                            | Studies                  | N included in analysis | Statistical method | Effect size (95% CI)   |
|------------------------------------------------------------------|--------------------------|------------------------|--------------------|------------------------|
| ACR20 responder                                                  | 5 <sup>112–115,119</sup> | 2172                   | RR (fixed)         | 2.23 (1.94 to 2.56)*   |
| ACR50 responder                                                  | 5112-115,119             | 2172                   | RR (fixed)         | 3.73 (2.91 to 4.77)*   |
| ACR70 responder                                                  | 5112-115,119             | 2172                   | RR (fixed)         | 5.28 (3.49 to 8.00)*   |
| RD ACR20 responder                                               | 5112-115,119             | 2172                   | RD (fixed)         | 0.30 (0.26 to 0.34)*   |
| RD ACR50 responder                                               | 5112-115,119             | 2172                   | RD (fixed)         | 0.24 (0.21 to 0.27)*   |
| RD ACR70 responder                                               | 5112-115,119             | 2172                   | RD (fixed)         | 0.14 (0.11 to 0.16)*   |
| SJC, mean change from baseline                                   | 5112-115,119             | 2169                   | WMD (fixed)        | -5.52 (-6.39 to -4.64) |
| Patient's global assessment, mean change from baseline           | 5 <sup>112–115,119</sup> | 2168                   | WMD (fixed)        | -1.76 (-2.01 to -1.50) |
| HAQ, mean change from baseline                                   | 5112-115,119             | 2168                   | WMD (fixed)        | -0.33 (-0.38 to -0.28) |
| DAS28, mean change from baseline                                 | 2113,119                 | 721                    | WMD (random)       | -1.30 (-1.69 to -0.92) |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | I 114                    | 551                    | WMD (fixed)        | -2.20 (-3.33 to -1.07) |
| Withdrawal for any reasons                                       | 5112-115,119             | 2179                   | RR (random)        | 0.60 (0.40 to 0.88)*   |
| Withdrawal due to lack of efficacy                               | 5112-115,119             | 2179                   | RR (fixed)         | 0.35 (0.28 to 0.43)*   |
| Withdrawal due to adverse events                                 | 5112-115,119             | 2179                   | RR (fixed)         | 1.41 (0.90 to 2.21)    |
| Death                                                            | 5112-115,119             | 2179                   | RR (fixed)         | 1.76 (0.45 to 6.86)    |
| SAEs                                                             | 5112-115,119             | 2179                   | RR (fixed)         | 1.08 (0.81 to 1.44)    |
| Malignancy: all                                                  | 5112-115,119             | 2179                   | RR (fixed)         | 2.99 (0.93 to 9.66)    |
| Malignancy: skin cancer excluding melanoma                       | 5 <sup>112–115,119</sup> | 2179                   | RR (fixed)         | 1.97 (0.53 to 7.27)    |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 5 <sup>112–115,119</sup> | 2179                   | RR (fixed)         | 2.52 (0.56 to 11.47)   |
| Serious infection                                                | 5112-115,119             | 2179                   | RR (fixed)         | 2.35 (1.03 to 5.34)*   |
| Any infection                                                    | 4112-115                 | 1895                   | RR (fixed)         | 1.19 (1.08 to 1.31)*   |

TABLE 71 Meta-analyses: adalimumab (s.c. or i.v. all doses) versus placebo (with or without ongoing conventional DMARDs), end of trial

| Comparison or outcome                                            | Studies                      | N included in analysis | Statistical method | Effect size (95% CI)                |
|------------------------------------------------------------------|------------------------------|------------------------|--------------------|-------------------------------------|
| ACR20 responder                                                  | 8112-119                     | 2581                   | RR (fixed)         | 2.27 (1.99 to 2.60)*                |
| ACR50 responder                                                  | 8112-119                     | 2581                   | RR (fixed)         | 3.78 (2.96 to 4.83)*                |
| ACR70 responder                                                  | 5112-115,119                 | 2347                   | RR (fixed)         | 5.09 (3.36 to 7.71)*                |
| RD ACR20 responder                                               | 8112-119                     | 2581                   | RD (fixed)         | 0.30 (0.27 to 0.34)*                |
| RD ACR50 responder                                               | 8112-119                     | 2581                   | RD (random)        | 0.23 (0.18 to 0.28)*                |
| RD ACR70 responder                                               | 5 <sup>112–115,119</sup>     | 2347                   | RD (fixed)         | 0.13 (0.11 to 0.15)*                |
| SJC, mean change from baseline                                   | 8112-119                     | 2578                   | WMD (fixed)        | -5.37 (-6.11 to -4.64)              |
| Patient's global assessment, mean change from baseline           | 8 <sup>112–119</sup>         | 2577                   | WMD (fixed)        | -1.74 (-1.97 to -1.51) <sup>3</sup> |
| HAQ, mean change from baseline                                   | 8112-119                     | 2577                   | WMD (fixed)        | -0.31 (-0.35 to -0.27)              |
| DAS28, mean change from baseline                                 | 2113,119                     | 827                    | WMD (fixed)        | -I.23 (−I.44 to −I.02)              |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | I 114                        | 551                    | WMD (fixed)        | -2.20 (-3.33 to -1.07)              |
| Withdrawal for any reasons                                       | 8112-119                     | 2588                   | RR (random)        | 0.62 (0.46 to 0.84)*                |
| Withdrawal due to lack of efficacy                               | 8112-119                     | 2588                   | RR (fixed)         | 0.39 (0.32 to 0.47)*                |
| Withdrawal due to adverse events                                 | 8112-119                     | 2588                   | RR (fixed)         | 1.44 (0.93 to 2.24)                 |
| Death                                                            | 8112-119                     | 2588                   | RR (fixed)         | 1.53 (0.44 to 5.26)                 |
| SAEs                                                             | 8112-119                     | 2588                   | RR (fixed)         | 1.06 (0.80 to 1.40)                 |
| Malignancy: all                                                  | 6112-115,118,119             | 2414                   | RR (fixed)         | 2.84 (0.90 to 8.97)                 |
| Malignancy: skin cancer excluding melanoma                       | 6 <sup>112–115,118,119</sup> | 2414                   | RR (fixed)         | 2.00 (0.55 to 7.24)                 |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 6 <sup>112–115,118,119</sup> | 2414                   | RR (fixed)         | 2.23 (0.50 to 9.91)                 |
| Serious infection                                                | 7 <sup>112–115,117–119</sup> | 2468                   | RR (fixed)         | 2.27 (1.00 to 5.18)                 |
| Any infection                                                    | 4112-115                     | 2070                   | RR (fixed)         | 1.19 (1.08 to 1.31)*                |

### **Etanercept**

### Etanercept versus sulfasalazine in sulfasalazine partial responders/non-responders

**TABLE 72** Summary of 24-week results from Codreanu: 103 etanercept (25 mg s.c. twice weekly) versus sulfasalazine in sulfasalazine partial responders

| Comparison or outcome                                            | N included in analysis | Statistical method | Effect size (95% CI)   |
|------------------------------------------------------------------|------------------------|--------------------|------------------------|
| ACR20 responder                                                  | 153                    | RR (fixed)         | 2.64 (1.67 to 4.17)*   |
| ACR50 responder                                                  | 153                    | RR (fixed)         | 3.33 (1.62 to 6.82)*   |
| ACR70 responder                                                  | 153                    | RR (fixed)         | 10.68 (1.48 to 76.99)* |
| RD ACR20 responder                                               | 153                    | RD (fixed)         | 0.46 (0.31 to 0.61)*   |
| RD ACR50 responder                                               | 153                    | RD (fixed)         | 0.33 (0.19 to 0.46)*   |
| RD ACR70 responder                                               | 153                    | RD (fixed)         | 0.19 (0.11 to 0.28)*   |
| SJC, end of study result                                         | 153                    | WMD (fixed)        | -5.90 (-9.54 to -2.26) |
| Patient's global assessment, end of study result                 | 153                    | WMD (fixed)        | -2.40 (-2.94 to -1.86  |
| HAQ, end of study result                                         | 153                    | WMD (fixed)        | -0.40 (-0.58 to -0.22) |
| DAS, end of study result                                         | 153                    | WMD (fixed)        | −I.50 (−I.87 to −I.I3  |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | 0                      | Not estimable      | Not assessed           |
| Withdrawal for any reasons                                       | 153                    | RR (fixed)         | 0.26 (0.12 to 0.54)*   |
| Withdrawal due to lack of efficacy                               | 153                    | RR (fixed)         | 0.04 (0.01 to 0.30)*   |
| Withdrawal due to adverse events                                 | 153                    | RR (fixed)         | 0.97 (0.25 to 3.72)    |
| Death                                                            | 153                    | RR (fixed)         | 1.47 (0.06 to 35.48)   |
| SAEs                                                             | 153                    | RR (fixed)         | 2.43 (0.29 to 20.23)   |
| Malignancy: all                                                  | 153                    | RR (fixed)         | 2.45 (0.12 to 50.13)   |
| Malignancy: skin cancer excluding melanoma                       | 153                    | RR (fixed)         | 1.47 (0.06 to 35.48)   |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 153                    | RR (fixed)         | 1.47 (0.06 to 35.48)   |
| Serious infection                                                | 153                    | RR (fixed)         | 2.45 (0.12 to 50.13)   |
| Any infection                                                    | 153                    | RR (fixed)         | 1.76 (1.05 to 2.93)*   |

**TABLE 73** Meta-analyses: etanercept s.c. all doses (including sublicence doses) versus placebo (with or without ongoing conventional DMARDs), end of trial

| Comparison or outcome                                            | Studies                                  | N included in analysis | Statistical<br>method | Effect size (95% CI)    |
|------------------------------------------------------------------|------------------------------------------|------------------------|-----------------------|-------------------------|
| ACR20 responder                                                  | 7 <sup>103,121,122,125,126,129,130</sup> | 1672                   | RR (fixed)            | 3.48 (2.78 to 4.35)*    |
| ACR50 responder                                                  | 7 <sup>103,121,122,125,126,129,130</sup> | 1672                   | RR (fixed)            | 4.97 (3.40 to 7.27)*    |
| ACR70 responder                                                  | 6 <sup>103,122,125,126,129,130</sup>     | 1492                   | RR (fixed)            | 8.55 (3.59 to 20.37)*   |
| RD ACR20 responder                                               | 7 <sup>103,121,122,125,126,129,130</sup> | 1672                   | RD (fixed)            | 0.43 (0.38 to 0.47)*    |
| RD ACR50 responder                                               | 7 <sup>103,121,122,125,126,129,130</sup> | 1672                   | RD (fixed)            | 0.26 (0.22 to 0.30)*    |
| RD ACR70 responder                                               | 6 <sup>103,122,125,126,129,130</sup>     | 1492                   | RD (fixed)            | 0.11 (0.08 to 0.14)*    |
| SJC, end of study result                                         | 7 <sup>103,121,122,125,126,129,130</sup> | 1689                   | WMD<br>(random)       | -5.78 (-8.12 to -3.43)* |
| Patient's global assessment, end of study result                 | 7 <sup>103,121,122,125,126,129,130</sup> | 1689                   | WMD<br>(fixed)        | -2.33 (-2.56 to -2.10)* |
| HAQ, end of study result                                         | 6 <sup>103,122,125,126,129,130</sup>     | 1440                   | WMD<br>(fixed)        | -0.49 (-0.57 to -0.40)* |
| DAS, end of study result                                         | I 103                                    | 150                    | WMD<br>(fixed)        | -I.50 (-I.89 to -I.II)* |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | 0                                        | 0                      | Not<br>estimable      | No data available       |
| Withdrawal for any reasons                                       | 7 <sup>103,104,121,122,125,126,129</sup> | 2168                   | RR (fixed)            | 0.43 (0.36 to 0.51)*    |
| Withdrawal due to lack of efficacy                               | 6 <sup>103,104,121,122,125,126</sup>     | 1748                   | RR (fixed)            | 0.28 (0.21 to 0.36)*    |
| Withdrawal due to adverse events                                 | 7 <sup>103,104,121,122,125,126,129</sup> | 2168                   | RR (fixed)            | 0.87 (0.54 to 1.38)     |
| Death                                                            | 7 <sup>103,104,121,122,125,126,129</sup> | 2168                   | RR (fixed)            | 1.44 (0.44 to 4.69)     |
| SAEs                                                             | 5 103,104,122,125,129                    | 1429                   | RR (fixed)            | 1.25 (0.76 to 2.06)     |
| Malignancy: all                                                  | 6 <sup>103,104,122,125,126,129</sup>     | 1988                   | RR (fixed)            | 0.47 (0.13 to 1.67)     |
| Malignancy: skin cancer excluding<br>melanoma                    | 6 <sup>103,104,122,125,126,129</sup>     | 1988                   | RR (fixed)            | 0.64 (0.15 to 2.77)     |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 6 <sup>103,104,122,125,126,129</sup>     | 1988                   | RR (fixed)            | 0.34 (0.07 to 1.74)     |
| Serious infection                                                | 7 <sup>103,104,122,125,126,129,130</sup> | 2046                   | RR (fixed)            | 0.75 (0.37 to 1.48)     |
| Any infection                                                    | 6103,104,122,125,126,129                 | 1988                   | RR (random)           | 1.01 (0.83 to 1.24)     |

#### **Infliximab**

#### Infliximab alone versus placebo or methotrexate

 
 TABLE 74
 Meta-analyses: infliximab i.v. (all doses) without MTX versus control (placebo or MTX) in MTX partial responders/
 non-responders, end of trial

| Comparison or outcome                                            | Comparator           | Studies                              | N included in analysis | Statistical<br>method    | Effect size (95% CI)                          |
|------------------------------------------------------------------|----------------------|--------------------------------------|------------------------|--------------------------|-----------------------------------------------|
| Paulus 20 responder                                              | vs placebo<br>vs MTX | l <sup>136</sup>                     | 73<br>58               | RR (fixed)<br>RR (fixed) | 7.35 (1.91 to 28.21)*<br>2.86 (0.40 to 20.67) |
| Paulus 50 responder                                              | vs placebo<br>vs MTX |                                      | 73<br>58               | RR (fixed)<br>RR (fixed) | 5.14 (1.31 to 20.15)*<br>4.33 (0.26 to 72.44) |
| ACR70 responder                                                  | _                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| RD Paulus 20 responder                                           | vs placebo<br>vs MTX | l <sup>136</sup><br>l <sup>137</sup> | 73<br>58               | RD (fixed)<br>RD (fixed) | 0.53 (0.35 to 0.70)*<br>0.13 (-0.05 to 0.31)  |
| RD Paulus 50 responder                                           | vs placebo<br>vs MTX |                                      | 73<br>58               | RD (fixed)<br>RD (fixed) | 0.35 (0.17 to 0.52)*<br>0.14 (0.00 to 0.27)   |
| RD ACR70 responder                                               | _                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| SJC, end of study result                                         | vs placebo           | I 136                                | 73                     | WMD (fixed)              | -12.20 (-17.17 to -7.23)                      |
| Patient's global assessment, end of study result                 | vs placebo           | I <sup>136</sup>                     | 73                     | WMD (fixed)              | -1.00 (-1.39 to -0.61)*                       |
| HAQ, mean change from baseline                                   | _                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| DAS28, end of study result                                       | _                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | -                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| Withdrawal for any reasons                                       | vs MTX               | I 137                                | 58                     | RR (fixed)               | 0.48 (0.25 to 0.93)*                          |
| Withdrawal due to lack of efficacy                               | vs MTX               | I 137                                | 58                     | RR (fixed)               | 0.32 (0.15 to 0.69)*                          |
| Withdrawal due to adverse events                                 | vs MTX               | I 137                                | 58                     | RR (fixed)               | 3.00 (0.17 to 52.53)                          |
| Death                                                            | _                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| SAEs                                                             | _                    | 0                                    | 0                      | Not estimable            | Data not available                            |
| Malignancy                                                       | vs MTX               | I 137                                | 58                     | Not estimable            | No events                                     |
| Serious infection                                                | vs MTX               | I 137                                | 58                     | Not estimable            | No events                                     |
| Any infection                                                    | vs placebo           | I 136                                | 73                     | RR (fixed)               | 2.94 (0.37 to 23.06)                          |

### Infliximab versus placebo (with concomitant, ongoing methotrexate)

 
 TABLE 75
 Meta-analyses: infliximab i.v. licensed dose and above versus placebo with ongoing MTX in MTX partial responders/
 non-responders, end of trial

| Comparison or outcome                                            | Studies                      | N included in analysis | Statistical method | Effect size (95% CI)                                      |
|------------------------------------------------------------------|------------------------------|------------------------|--------------------|-----------------------------------------------------------|
| ACR20 responder                                                  | 4111,133,137,140             | 1513                   | RR (fixed)         | 2.50 (2.10 to 2.99)*                                      |
| ACR50 responder                                                  | 4 <sup>111,133,137,140</sup> | 1513                   | RR (fixed)         | 3.73 (2.75 to 5.07)*                                      |
| ACR70 responder                                                  | 2111,133                     | 1448                   | RR (fixed)         | 3.79 (2.34 to 6.15)*                                      |
| RD ACR20 responder                                               | 4 <sup>111,133,137,140</sup> | 1513                   | RD (fixed)         | 0.34 (0.30 to 0.39)*                                      |
| RD ACR50 responder                                               | 4111,133,137,140             | 1513                   | RD (fixed)         | 0.25 (0.21 to 0.29)*                                      |
| RD ACR70 responder                                               | 2111,133                     | 1448                   | RD (fixed)         | 0.12 (0.09 to 0.14)*                                      |
| SJC, mean change from baseline                                   | 2111,133                     | 1401                   | WMD (fixed)        | -5.28 (-6.27 to -4.29)                                    |
| Patient's global assessment, mean change from baseline           | 2 <sup>111,133</sup>         | 1400                   | WMD (fixed)        | -1.60 (-1.91 to -1.29)                                    |
| HAQ, mean change from baseline                                   | 2111,133                     | 1381                   | WMD (fixed)        | -0.29 (-0.36 to -0.23)                                    |
| DAS28, end of study result                                       | I <sup>140</sup>             | 24                     | WMD (fixed)        | -1.80 (-2.68 to -0.92)                                    |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | 2133,140                     | 373                    | WMD (fixed)        | -6.79 (-9.19 to -4.39)                                    |
| Withdrawal for any reasons                                       | 3111,133,137                 | 1553                   | RR (random)        | 0.48 (0.17 to 1.33)                                       |
| Withdrawal due to lack of efficacy                               | 2133,137                     | 471                    | RR (fixed)         | 0.28 (0.19 to 0.41)*                                      |
| Withdrawal due to adverse events                                 | 4111,133,137,140             | 1577                   | RR (fixed)         | 1.65 (0.97 to 2.81)                                       |
| Death                                                            | 2111,133                     | 1510                   | RR (fixed)         | 0.55 (0.16 to 1.81)                                       |
| SAEs                                                             | 2111,133                     | 1510                   | RR (fixed)         | 0.92 (0.67 to 1.27)                                       |
| Malignancy: all                                                  | 3111,133,137                 | 1553                   | RR (fixed)         | 2.64 (0.62 to 11.26)                                      |
| Malignancy: skin cancer excluding melanoma                       | 3 <sup>111,133,137</sup>     | 1553                   | RR (fixed)         | 1.68 (0.31 to 9.04)                                       |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 3 <sup>111,133,137</sup>     | 1553                   | RR (fixed)         | 2.30 (0.40 to 13.17)                                      |
| Serious infection                                                | 3111,133,137                 | 1553                   | RR (fixed)         | 1.32 (0.74 to 2.35)                                       |
| Any infection                                                    | 2 <sup>111,132</sup>         | 1510                   | RR (fixed)         | [Commercial-in-<br>confidence<br>information<br>removed]* |

**TABLE 76** Meta-analyses: infliximab i.v. all doses versus placebo with ongoing MTX in MTX partial responders/non-responders, end of trial

| Comparison or outcome                                            | Studies                          | N included in analysis | Statistical method | Effect size (95% CI)                                     |
|------------------------------------------------------------------|----------------------------------|------------------------|--------------------|----------------------------------------------------------|
| ACR20 responder                                                  | 5 <sup>111,133,137,138,140</sup> | 1555                   | RR (fixed)         | 2.50 (2.10 to 2.99)*                                     |
| ACR50 responder                                                  | 5111,133,137,138,140             | 1555                   | RR (fixed)         | 3.68 (2.72 to 4.98)*                                     |
| ACR70 responder                                                  | 2111,133                         | 1448                   | RR (fixed)         | 3.79 (2.34 to 6.15)*                                     |
| RD ACR20 responder                                               | 5 <sup>111,133,137,138,140</sup> | 1555                   | RD (fixed)         | 0.34 (0.29 to 0.39)*                                     |
| RD ACR50 responder                                               | 5111,133,137,138,140             | 1555                   | RD (fixed)         | 0.24 (0.21 to 0.28)*                                     |
| RD ACR70 responder                                               | 2111,133                         | 1448                   | RD (fixed)         | 0.12 (0.09 to 0.14)*                                     |
| SJC, end of study result                                         | 2111,133                         | 1401                   | WMD (fixed)        | -5.28 (-6.27 to -4.29)                                   |
| Patient's global assessment, end of study result                 | 2111,133                         | 1400                   | WMD (fixed)        | -1.60 (-1.91 to -1.29)                                   |
| HAQ, mean change from baseline                                   | 2111,133                         | 1381                   | WMD (fixed)        | -0.29 (-0.36 to -0.23)                                   |
| DAS28, end of study result                                       | I <sup>140</sup>                 | 24                     | WMD (fixed)        | -1.80 (-2.68 to -0.92)                                   |
| Modified van de Heijde–Sharp score,<br>mean change from baseline | 2133,140                         | 373                    | WMD (fixed)        | -6.79 (-9.19 to -4.39)                                   |
| Withdrawal for any reasons                                       | 4 <sup>111,133,137,138</sup>     | 1595                   | RR (random)        | 0.45 (0.16 to 1.28)                                      |
| Withdrawal due to lack of efficacy                               | 3133,137,138                     | 513                    | RR (fixed)         | 0.27 (0.18 to 0.40)*                                     |
| Withdrawal due to adverse events                                 | 5 <sup>111,133,137,138,140</sup> | 1619                   | RR (fixed)         | 1.66 (0.97 to 2.82)                                      |
| Death                                                            | 2 <sup>111,133</sup>             | 1510                   | RR (fixed)         | 0.55 (0.16 to 1.81)                                      |
| SAEs                                                             | 2 <sup>111,133</sup>             | 1510                   | RR (fixed)         | 0.92 (0.67 to 1.27)                                      |
| Malignancy: all                                                  | 3111,133,137                     | 1567                   | RR (fixed)         | 2.64 (0.62 to 11.26)                                     |
| Malignancy: skin cancer excluding melanoma                       | 3 <sup>111,133,137</sup>         | 1567                   | RR (fixed)         | 1.68 (0.31 to 9.04)                                      |
| Malignancy: all cancer excluding non-melanoma skin cancer        | 3 <sup>111,133,137</sup>         | 1567                   | RR (fixed)         | 2.30 (0.40 to 13.17)                                     |
| Serious infection                                                | 4111,133,137,138                 | 1595                   | RR (fixed)         | 1.29 (0.72 to 2.31)                                      |
| Any infection                                                    | 2 <sup>111,133</sup>             | 1510                   | RR (random)        | [Commercial-in-<br>confidence<br>information<br>removed] |

### Infliximab plus MTX versus MTX

 TABLE 77 Meta-analyses: combination of infliximab (i.v. all doses) plus MTX versus MTX alone in MTX-naïve patients, end of trial

| Comparison or outcome                                            | Studies          | <b>P</b> articipants | Statistical method | Effect size (95% CI)                                      |
|------------------------------------------------------------------|------------------|----------------------|--------------------|-----------------------------------------------------------|
| ACR20 responder                                                  | 2135,141         | 1000                 | RR (fixed)         | 1.20 (1.07 to 1.36)*                                      |
| ACR50 responder                                                  | 2135,141         | 1000                 | RR (fixed)         | 1.51 (1.26 to 1.82)*                                      |
| ACR70 responder                                                  | 2135,141         | 1000                 | RR (fixed)         | 1.67 (1.31 to 2.13)*                                      |
| RD ACR20 responder                                               | 2135,141         | 1000                 | RD (fixed)         | 0.11 (0.04 to 0.18)*                                      |
| RD ACR50 responder                                               | 2135,141         | 1000                 | RD (fixed)         | 0.16 (0.10 to 0.23)*                                      |
| RD ACR70 responder                                               | 2135,141         | 1000                 | RD (fixed)         | 0.14 (0.08 to 0.20)*                                      |
| SJC, mean change from baseline                                   | I 135            | 846                  | WMD (fixed)        | -3.00 (-4.76 to -1.24)*                                   |
| Patient's global assessment, mean change<br>from baseline        | l <sup>135</sup> | 842                  | WMD (fixed)        | -0.70(-1.18 to -0.22)*                                    |
| HAQ, mean change from baseline                                   | 2135,141         | 1016                 | WMD (fixed)        | -0.17 (-0.28 to -0.07)*                                   |
| DAS28, end of study result                                       | 2135,141         | 838                  | WMD (fixed)        | -0.82 (-1.08 to -0.55)*                                   |
| Modified van de Heijde-Sharp score,<br>mean change from baseline | l <sup>135</sup> | 1004                 | WMD (fixed)        | -3.23 (-4.43 to -2.03)*                                   |
| Withdrawal for any reasons                                       | I 135            | 1040                 | RR (fixed)         | 0.93 (0.71 to 1.21)                                       |
| Withdrawal due to lack of efficacy                               | I 135            | 1040                 | RR (fixed)         | 0.28 (0.16 to 0.49)*                                      |
| Withdrawal due to adverse events                                 | 2135,141         | 1060                 | RR (fixed)         | 3.02 (1.55 to 5.88)*                                      |
| Death                                                            | I 135            | 1040                 | RR (fixed)         | 0.39 (0.05 to 2.75)                                       |
| SAEs                                                             | I 135            | 1040                 | RR (fixed)         | 1.25 (0.86 to 1.82)                                       |
| Malignancy: all                                                  | l <sup>135</sup> | 1040                 | RR (fixed)         | [Commercial-in-<br>confidence<br>information<br>removed]  |
| Malignancy: skin cancer excluding melanoma                       | I <sup>135</sup> | 1040                 | RR (fixed)         | [Commercial-in-<br>confidence<br>information<br>removed]  |
| Malignancy: all cancer excluding non-melanoma skin cancer        | I 135            | 1040                 | RR (fixed)         | 3.50 (0.19 to 64.88)                                      |
| Serious infection                                                | I 135            | 1040                 | RR (fixed)         | 2.59 (1.11 to 6.04)*                                      |
| Any infection                                                    | l <sup>135</sup> | 1040                 | RR (fixed)         | [Commercial-in-<br>confidence<br>information<br>removed]* |

### Searches: economic evaluations

### Ovid MEDLINE(R)

1966 to February week 3 2005

- 1 arthritis rheumatoid/
- 2 tum?r necrosis factor.mp.
- 3 exp receptors tumor necrosis factor/
- 4 anti tnf.mp.
- 5 infliximab.mp.
- 6 remicade.mp.
- 7 enbrel.mp.
- 8 etanercept.mp.
- 9 or/2-8
- 10 1 and 9
- 11 economics/
- 12 exp "costs and cost analysis"/
- 13 cost of illness/
- 14 exp health care costs/
- 15 economic value of life/
- 16 exp economics medical/
- 17 exp economics hospital/
- 18 economics pharmaceutical/
- 19 exp "fees and charges"/
- 20 (econom\$ or cost or costs or costly or costing or price or pricing or pharmacoeconomic\$).tw.
- 21 (expenditure\$ not energy).tw.
- 22 (value adj1 money).tw.
- 23 budget\$.tw.
- 24 or/11-23
- 25 10 and 24
- 26 limit 25 to yr=2001-2005
- 27 adalimumab.mp.
- 28 humira.mp.
- 29 or/27-28
- 30 29 and 24
- 31 26 or 30
- 32 quality of life/
- 33 life style/
- 34 health status/
- 35 health status indicators/
- 36 value of life/
- 37 quality of wellbeing.tw.
- 38 or/32-37
- 39 1 and 38
- 40 limit 39 to yr=2001-2005
- 41 31 or 40

### **EMBASE** (Ovid)

1980 to week 9 2005

1 arthritis rheumatoid/

- 2 tum?r necrosis factor.mp.
- 3 exp receptors tumor necrosis factor/
- 4 anti tnf.mp.
- 5 infliximab.mp.
- 6 remicade.mp.
- 7 enbrel.mp.
- 8 etanercept.mp.
- 9 or/2-8
- 10 1 and 9
- 11 cost benefit analysis/
- 12 cost effectiveness analysis/
- 13 cost minimization analysis/
- 14 cost utility analysis/
- 15 economic evaluation/
- 16 (cost or costs or costed or costly or costing).tw.
- 17 (economic\$ or pharmacoeconomic\$ or price\$ or pricing).tw.
- 18 (technology adj assessment\$).tw.
- 19 or/11-18
- 20 10 and 19
- 21 limit 20 to yr=2001-2005
- 22 adalimumab.mp.
- 23 humira.mp.
- 24 or/22-23
- 25 24 and 19
- 26 21 or 25
- 27 exp quality of life/
- 28 health status/
- 29 27 or 28
- 30 1 and 29
- 31 limit 30 to yr=2001 2005

### **Cochrane Library (NHSEED)**

2005 Issue 1

See search strategy for Cochrane Library under Clinical Effectiveness, page 141.

#### **HEED**

February 2005

A series of searches were done using the following terms: anti tnf; infliximab;

remicade, enbrel, etanercept, adalimumab, humira and references which included rheumatoid arthritis were selected.

# Searches: decision-analytic models

#### Ovid MEDLINE(R)

1966 to February week 2 2005

- 1 arthritis rheumatoid/
- 2 tum?r necrosis factor.mp.
- 3 exp receptors tumor necrosis factor/
- 4 anti tnf.mp.
- 5 infliximab.mp.
- 6 remicade.mp.
- 7 enbrel.mp.
- 8 etanercept.mp.
- 9 or/2-8
- 10 1 and 9
- 11 decision support techniques/
- 12 markov.mp.
- 13 exp models economic/
- 14 decision analysis.mp.
- 15 cost benefit analysis/
- 16 or/11-15
- 17 10 and 16
- 18 limit 17 to yr=2001 2005
- 19 adalimumab.mp.
- 20 humira.mp.
- 21 or/19-20
- 22 1 and 21 and 16
- 23 18 or 22

#### **EMBASE** (Ovid)

1980 to week 8 2005

- 1 arthritis rheumatoid/
- 2 tum?r necrosis factor.mp.
- 3 exp receptors tumor necrosis factor/
- 4 anti tnf.mp.
- 5 infliximab.mp.
- 6 remicade.mp.
- 7 enbrel.mp.
- 8 etanercept.mp.
- 9 or/2-8
- 10 1 and 9
- 11 decision support techniques/
- 12 markov.mp.
- 13 exp models economic/
- 14 decision analysis.mp.
- 15 cost benefit analysis/
- 16 or/11-15
- 17 10 and 16
- 18 limit 17 to yr=2001-2005
- 19 adalimumab.mp.
- 20 humira.mp.
- 21 or/19-20
- 22 1 and 21 and 16
- 23 18 or 22

### Searches: systematic reviews of DMARDs

### Ovid MEDLINE(R)

1999 to March week 4 2005

- 1 arthritis rheumatoid/
- 2 (hydroxychloroquine or ciclosporine or gold or methotrexate or leflunomide or penicillamine or sulfasalazine or azathioprine).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
- 3 dmard\$.mp.
- 4 1 and (2 or 3)
- 5 (systematic adj review\$).mp.
- 6 (data adj synthesis).mp.
- 7 (published adj studies).ab.
- 8 (data adj extraction).ab.
- 9 meta-analysis/
- 10 meta-analysis.ti.
- 11 comment.pt.
- 12 letter.pt.
- 13 editorial.pt.
- 14 animals/
- 15 human/
- 16 14 not (14 and 15)
- 17 4 not (11 or 12 or 13 or 16)
- 18 or/5-10
- 19 17 and 18
- 20 limit 19 to yr=2001 2005
- 21 from 20 keep 5-6,9,12

### **EMBASE (Ovid)**

1996 to week 14 2005

- 1 (systematic adj review\$).mp.
- 2 meta-analysis.ti.

- 3 meta-analysis/
- 4 arthritis rheumatoid/
- 5 (hydroxychloroquine or ciclosporine or gold or methotrexate or leflunomide or penicillamine or sulfasalazine or azathioprine).mp. [mp=title, abstract, subject headings, drug trade name, original title, device manufacturer, drug manufacturer name]
- 6 dmard\$.mp.
- 7 or/1-3
- 8 4 and (5 or 6)
- 9 7 and 8
- 10 limit 9 to yr = 2001 2005
- 11 from 10 keep 1,3,6,13,22,32,59

#### **Cochrane Library**

2005 Issue 1

- #1 dmard\* in All Fields in all products
- #2 hydroxychloroquine OR ciclosporine OR gold OR methotrexate in All Fields in all products
- #3 leflunomide OR penicillamine OR sulfasalazine OR azathioprine in All Fields in all products
- #4 "rheumatoid arthritis" in All Fields in all products
- #5 MeSH descriptor Arthritis, Rheumatoid, this term only in MeSH products
- #6 (#1 OR #2 OR #3)
- #7 (#4 OR #5)
- #8 (#6 AND #7)

### Existing economic evaluations: appraisal and data extraction

TABLE 78 Choi et al., 2002 159

Authors Choi, Seeger, Kuntz

Date 2002

Type of economic evaluation Cost-effectiveness analysis

Country of origin USA Currency used **US** dollars Year to which costs apply 1999 Perspective Societal

Patients with MTX-naïve RA Study population

Intervention I Etanercept Intervention 2

Intervention 3 MTX (up to 15 mg weekly)

Intervention 4

Intervention 5 No second line agent

Source of effectiveness data Clinical trial data used: ACR20 response criteria and a weighted outcome measure of ACR

responses relative to a full weight of ACR70 responses (ACR70 response: ACR70 WR) by calculating a weighted average of proportions achieving ACR70, ACR50 and ACR20. A weight of I was assigned to ACR70, a weight of 50/70 to ACR50 and a weight of 20/70 to

ACR20

Cost data handled appropriately

Yes. Direct and indirect costs were considered. Medication costs were averaged wholesale prices and monitoring costs were based on published estimates where available. If unavailable, costs were derived from the cost of the components recommended by ACR for each DMARD which were summed, or by monitoring guidelines in the package insert of

The cost of no second-line treatment was calculated by subtracting ophthalmological monitoring cost (once over the 6-month period) from the monitoring cost of the least expensive DMARD costs. Monitoring costs of etanercept were assumed to be the same as the monitoring costs of the no second-line treatment. Toxicity cost associated with MTX therapy was estimated to be \$259 (1999 prices). Toxicity cost of SSZ was assumed to be the same as MTX. It was assumed that there were no toxicity costs for leflunomide or etanercept

Inpatient surgical costs were included to capture potential savings associated with improvement of RA from each option. An exponential relationship between HAQ score and inpatient surgery costs for each treatment strategy was developed. Medical admission costs were assumed to be largely due to toxicity of DMARDs

Indirect costs were included to capture the potential savings associated with improvement of RA for each treatment. An HAQ indirect cost assignment was used, using the same HAQ efficacy estimates used for the surgical costs. A linear relationship was assumed to exist between work capacity and HAQ score to infer indirect cost savings associated with HAQ improvement. This was based on a published cost-effectiveness analysis in a Swedish RA population. The average wage was multiplied by work capacity achieved in each option to

estimate the cost of lost work capacity

Modelling summary A decision-analytic model was constructed and analysed using Data software (version 3.5;

> TreeAge Software, Williamstown, MA, USA). The decision tree with a time-horizon of 6 months was used in the model (this was considered to represent the usual duration of

clinical trials of RA)

continued

#### TABLE 78 Choi et al., 2002<sup>159</sup> (cont'd)

Outcome measures used in economic evaluations

The occurrence of toxicity related to each therapy and ACR response criteria (ACR20 or ACR70). ICERs were for per patient achieving ACR20 or ACR70WR

Direction of result with appropriate quadrant location

In the base-case analysis using either ACR20 or ACR70WR for MTX-naïve RA, MTX and SSZ both cost less and were more effective (SE quadrant: cost saving) than no second-line therapy. SSZ compared with MTX at ACR20 was in the NE quadrant (more costly but also more effective). Using ACR70, SSZ compared with MTX cost more but was less effective (NW quadrant). LEF was also ruled out by simple dominance when compared with MTX (i.e. NW quadrant). Compared with MTX and SSZ, etanercept was both more expensive and more effective (i.e. NE quadrant):

etanercept vs SSZ: \$41,900 per ACR20 etanercept vs MTX: \$40,800 per ACR70WR

Statistical analysis for patient-level stochastic data

Not undertaken

Appropriateness of statistical

NΑ

analysis

NΑ

Uncertainty around cost-effectiveness expressed

Not undertaken

Appropriateness of method dealing with uncertainty around cost effectiveness

NA

Sensitivity analysis

Yes: sensitivity analyses were performed to determine the robustness of the base-case results to variations of baseline estimates. Three-way sensitivity analyses were also done to determine robustness of base-case results to variations of more than one key variable, including the main variable of triple therapy efficacy

Modelling inputs and techniques appropriate

Yes

Authors' conclusions

MTX is cost-effective (cost savings vs the no second-line treatment option) for MTX-naïve RA in achieving ACR20 or ACR70WR over a 6-month period. The relative cost-effectiveness between SSZ and MTX cannot be determined with reasonable certainty, but SSZ therapy appears to be as cost-effective as MTX (cost saving) in achieving ACR outcomes over a 6-month period. The most efficacious option, etanercept, incurs higher incremental costs per ACR20 or ACR70WR than other options analysed. Whether etanercept compared with MTX is cost-effective depends on whether >\$40,000 per ACR20 or ACR70WR over a 6-month period is considered acceptable

NE, north-east; NW, north-west; SE, south-east.

#### **TABLE 79** Wong et al., 2002<sup>161</sup>

Authors Wong, Singh, Kavanaugh

Date 2002

Type of economic evaluation Cost-utility analysis

Country of origin **USA** Currency used US dollars Year to which costs apply 1998 Perspective Societal

Study population Patients with active, refractory RA

Placebo + MTX Intervention I Intervention 2 Infliximah + MTX

Source of effectiveness data Data were extrapolated from ATTRACT and ARAMIS. Quality of life data were assessed as

self-reported global health using a VAS: for the first year data from ATTRACT were used and

after the first year estimates were based on ARAMIS

Cost data handled appropriately

Yes. Drug costs were based on the average wholesale price of infliximab, infusion administration costs and pretreatment evaluation. Direct costs were taken from ATTRACT and included all non-protocol-related medical care costs. For a societal perspective, indirect cost estimates from ATTRACT were also used for the first year for the subset of patients who were employed at the time of enrolment. Indirect costs beyond the first year were estimated to be between one and three times the costs in year I. Costs from ARAMIS included self-reported hospitalisation, emergency room visits, outpatient surgeries, home care and non-traditional treatments, as well as those for physicians, therapists and nurse practitioners, laboratory tests, radiological studies, drugs and nursing home, rehabilitation or

hospitalisation

Modelling summary Markov model consisting of 21 health states to project the 54-week results of RCTs to

lifetime economic and clinical outcomes. A cycle length of 6 months was used

Outcome measures used in economic evaluations

Life expectancy and QALYs (based on VAS) to calculate cost per QALY

Direction of result with appropriate quadrant location

NE quadrant. \$30,500 per QALY

Statistical analysis for

patient-level stochastic data

analysis

Appropriateness of statistical NA

Uncertainty around

cost-effectiveness expressed

Not undertaken

Not undertaken

Appropriateness of method dealing with uncertainty

around cost effectiveness

NA

Yes. Sensitivity analyses were conducted to examine the impact of varying the values used, with and without indirect costs related to productivity losses from disability

Modelling inputs and techniques appropriate

Sensitivity analysis

Yes

Authors' conclusions Infliximab plus MTX for 54 weeks for RA should be cost-effective, with its clinical benefit

providing good value for the drug cost, especially when including productivity losses. Although infliximab beyond 54 weeks will be likely to be cost-effective, the economics and clinical benefit remain uncertain and will depend on long-term results of clinical trials

#### **TABLE 80** Kobelt et al., 2003<sup>162</sup>

Authors Kobelt, Jonsson, Young, Eberhardt

Date 2003

Type of economic evaluation Cost-utility analysis France, Sweden, UK Country of origin

Currency used Euros, Swedish Kronor, pounds sterling

Year to which costs apply Not stated Perspective Societal

Study population Patients with RA not responding to at least two DMARDs (including MTX)

Intervention I Infliximab + MTX Intervention 2 MTX alone

Source of effectiveness data Clinical data from two RA cohorts, followed for up to 15 years, in Sweden and the UK

(ERAS), in which average HAQ scores were calculated and used to inform the effectiveness

data and the transition probabilities within the model

Cost data handled appropriately

Direct costs included hospitalisation, surgical interventions, ambulatory and community care and RA medication. Non-medical direct costs and informal care costs were excluded. The cost of hospitalisation was based on the number of inpatient days in different wards and ward-specific costs; the cost of surgical interventions was based on the type of intervention and its duration multiplied by the cost per minute of operating theatre use. Outpatient costs were based on the number of visits to different healthcare professionals. The cost of RA drugs was calculated from the number of months of use and the cost associated with standard drug monitoring protocols in place in the rheumatology departments of participating study centres. Unit cost data were taken from hospital accounting data and official price lists. Indirect costs were calculated as the loss of work capacity of patients in the more advanced disease states. For patients in disease state 1 (i.e. HAQ < 0.6) only shortterm sick leave was considered. The human capital approach was used, in which an individual's productivity is valued at market price. The total number of productive years lost at each stage (of the model) was compared with the number in state I, and the difference multiplied by the average gross annual income. The cost of infliximab was calculated using the official list price and the doses prescribed in clinical practice (in Sweden and in the UK, respectively)

Markov model with a cycle length of I year (in line with the annual follow-up of Modelling summary

epidemiological studies). A time-horizon of 10 years was used

Outcome measures used in economic evaluations

Incremental QALYs (based on EQ-5D) and ICERs

Direction of result with appropriate quadrant location

NE quadrant. For 1 year of treatment, €3440 per QALY in Sweden and €34,800 per QALY in the UK. The only exception is with the 'alternative model' comparing total costs at I year (unadjusted) and total costs at I year (adjusted for the effect loss at discontinuation) for Sweden. The direction of results in these two cases is the SE quadrant (cost saving)

Statistical analysis for patient-level stochastic data Not undertaken

Appropriateness of statistical

NA

analysis

Uncertainty around cost-effectiveness expressed Not undertaken

Appropriateness of method dealing with uncertainty around cost effectiveness

NA

Sensitivity analysis

A sensitivity analysis was undertaken by way of an 'alternative model', in which a loss of treatment effect was assumed in the year after discontinuation, expressed as a faster disease progression than that reported in the cohorts. Differences in HAQ scores between infliximab and MTX groups in the clinical trials were applied to the cohorts for the treatment arm for the first year. Thus, treatment was compared directly with that of the cohorts. A sensitivity

analysis was also undertaken on the price of infliximab

### **TABLE 80** Kobelt et al., 2003<sup>162</sup> (cont'd)

Modelling inputs and techniques appropriate

Yes

Authors' conclusions

I or 2 years of treatment with infliximab reduced direct and indirect resource consumption in Sweden and the UK, thereby partly offsetting the treatment costs. In the base-case analysis, including direct and indirect costs, the cost per QALY gained was SEK32,000 in Sweden ( $\leqslant$ 3440) and £21,600 in the UK ( $\leqslant$ 34,800) for I year of treatment. The respective QALY gains were 0.248 and 0.298. With 2 years of treatment, the cost per QALY gained was SEK150,000 in Sweden ( $\leqslant$ 16,100) and £29,900 in the UK ( $\leqslant$ 48,200). The results suggest that I-2 years of treatment with infliximab and MTX, compared with MTX alone, will lead to savings in both direct and indirect costs. Savings in direct costs are  $\leqslant$ 1500–2000 in Sweden and up to 800 in the UK. These savings will not offset the cost of infliximab. The majority of savings will come from maintaining the patients' ability to work. However, when only direct costs are included, the cost-effectiveness ratios remain within the usual range for treatments to be recommended for use

### **TABLE 81** Welsing et al., 2004<sup>165</sup>

Authors Welsing, Severens, Hartman, van Riel, Laan

Date 2004

Type of economic evaluation 

Cost-utility analysis

Country of origin Netherlands
Currency used Euros
Year to which costs apply Not stated
Perspective Societal

Study population Patients with RA who satisfy the indication for TNF inhibitors in the Netherlands

Intervention I Usual treatment

Intervention 2 Treatment with leflunomide, in the case of non-response after 3 months switch to usual

treatment

Intervention 3 Treatment with etanercept, in the case of non-response after 3 months switch to usual

treatment

Intervention 4 Treatment with leflunomide, in the case of non-response after 3 months switch to

etanercept, in the case of non-response switch to TNF-blocking agent, switch to usual

treatment

Intervention 5 Treatment with etanercept, in the case of non-response after 3 months switch to

leflunomide, in the case of non-response switch to leflunomide switch to usual treatment

Source of effectiveness data 
The following sources of effectiveness data were used:

I. QoL data from a 48-week multicentre trial involving 411 patients were assigned to the health states within the Markov model

- Follow-up data of patients from an open longitudinal study of early RA (disease duration <I year with no prior use of DMARDs), underway since 1985 at the University Medical Centre Nijmegen, the Netherlands. These patients stopped treatment with SSZ and MTX owing to insufficient effect or toxicity and had high disease activity. These data were used
- to calculate transition probabilities for usual treatment
- 3. Effectiveness data from a data set, made available by Wyeth Pharmaceuticals (Madison, NJ, USA), from clinical trials of monotherapy with etanercept in patients who failed DMARD treatment (one to four DMARDs) and of combination therapy with MTX in patients with insufficient response to MTX alone. Patients with high disease activity at baseline and a good or moderate response to etanercept (EULAR criteria) after 3 months were selected. These data were used to calculate transition probabilities. Published ACR20, ACR50 and ACR70 response criteria after 1 and 2 years of treatment were used to represent Markov states for moderate disease activity, low disease activity and remission, respectively. Expected patient-years were calculated in each of the different Markov states

# TABLE 81 Welsing et al., 2004<sup>165</sup> (cont'd)

| Cost data handled appropriately                                              | Yes. Costs were assigned from a 48-week multicentre trial with MTX that included 411 patients. Medical and non-medical (absence from paid work, travel expenses) costs were collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modelling summary                                                            | A Markov model consisting of health states defined by the DAS. A cycle length of 3 months was used. Markov states from remission (DAS < 1.6), low disease activity (1.6< DAS >2.4), moderate disease activity (2.4< DAS >3.7) and high disease activity (DAS28>3.7) were used. A time limit of 5 years (20 cycles) was applied. A specific Markov model was used with the same structure and the same costs and utility values of the Markov states for each treatment strategy. The models used specific transition probabilities and costs for the respective drug treatments. Using these models, the expected costs and effects were compared between the different treatment strategies |
| Outcome measures used in economic evaluations                                | QALYs were compared between the different treatment strategies to calculate cost per QALY and ICERs. EQ-5D was used to calculate utilities. Also considered was cost per patient-year in the three DAS28 states                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Direction of result with appropriate quadrant location                       | NE quadrant, except for a small number of studies in the NW quadrant, relating to comparisons between interventions 4 and 5. Etanercept alone was dominated by leflunomide/etanercept combinations. Versus usual treatment the ICERs were $\in$ 163,556 per QALY for LEF–Etan and $\in$ 297,151 per QALY for Etan–LEF. Versus leflunomide the ICERs were $\in$ 317,627 per QALY for LEF–Etan and $\in$ 517,061 per QALY for Etan–LEF                                                                                                                                                                                                                                                         |
| Statistical analysis for patient-level stochastic data                       | Not undertaken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Appropriateness of statistical analysis                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Uncertainty around cost-effectiveness expressed                              | Yes. Model uncertainty was explored using PSA. Distributions were specified for the transition probabilities, the costs and the utility values of the Markov states and for the response of etanercept (EULAR good/moderate) and leflunomide treatment (ACR20) after 3 months. 2.5–97.5 percentiles were reported from PSA for costs and QALYs, but no ICERs were given                                                                                                                                                                                                                                                                                                                      |
| Appropriateness of method dealing with uncertainty around cost effectiveness | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sensitivity analysis                                                         | Yes. One-way sensitivity analysis was applied to determine the relative importance of different parameters for the primary outcome. Correlations between the parameters and outcomes were calculated. Important model parameter values as defined by the correlation were also varied in a one-way sensitivity analysis                                                                                                                                                                                                                                                                                                                                                                      |
| Modelling inputs and techniques appropriate                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Authors' conclusions                                                         | Treatment strategies that include TNF inhibitors are probably the most effective for patients in whom two DMARDs have previously failed, of which one is MTX. From these strategies, treatment starting with leflunomide, and in the case of non-response switching to a TNF                                                                                                                                                                                                                                                                                                                                                                                                                 |

### **TABLE 82** Brennan et al., 2004<sup>160</sup>

Authors Brennan, Bansback, Reynolds, Conway

Date 2004

Type of economic evaluation Cost-utility analysis

Country of origin UK

Currency used Pounds sterling

Year to which costs apply

Perspective NHS in the UK

Study population Patients with RA who failed to respond previously to at least two DMARDs (MTX as first

line and sulfasalazine as second line)

Intervention I Treatment pathway I: third option: etanercept monotherapy; fourth: intramuscular gold; and

fifth: ciclosporin and MTX

Intervention 2 Treatment pathway II: third option: intramuscular gold; fourth: ciclosporin and MTX; and

fifth: leflunomide

Source of effectiveness data DAS28 scores were used. Comparative data on the DAS28 for etanercept was unavailable,

therefore data from a Phase III study of etanercept vs placebo were used, alongside published data for other DMARDs. Patient characteristics of published data were compared with those of the Phase III study to identify studies that enrolled similar patients. Where comparable studies were unavailable, ACR20 response was assumed to be 35%, using published meta-analysis of patient with > 10 years, disease duration. These sources were used to inform model parameter values relating to initial response to therapy and initial HAQ

Long-term HAQ response was estimated from published sources and data from a long-term, open-label study of etanercept. ERAS was used as a source of data for HAQ improvements during periods of non-response. Long-term withdrawal was estimated using data from a study based on clinical practice in Sweden, showing an annual withdrawal of 8.3%

Evidence presented in four separate studies was used as a basis for the relationship between HAQ and utility to inform quality of life data. Variation in the results was small and the median relationship was used in the primary analysis. Trial data were used to inform

response rates of treatment and HAQ improvements

Cost data handled appropriately

Yes. Drug and monitoring costs and other direct costs were examined for each treatment. Drug costs derived from current list prices and monitoring costs were estimated using BSR guidelines. Evidence from studies in the USA and Sweden suggests a strong correlation between HAQ score and direct costs. Costs reported in these studies were used to inform parameter values (converted to 2000 UK currency using the purchaser parity index and inflation). Both gave an almost identical linear relationship of £860 p.a. increase in direct costs. In the model the difference in the two comparators HAQ score trends is converted into a difference in direct healthcare costs, i.e. worse HAQ scores generate higher direct costs, pro rata

Sensitivity analyses were used: first, to examine the impact of the additional costs associated with home help, residential and nursing home care and, secondly, to examine the impact of economic productivity to society through maintained employment. Data from a Swedish

study were used to inform the latter

Modelling summary A decision-analytic model was developed in Excel. Patients following each treatment pathway (etanercept vs DMARD sequence) were simulated. A cycle length of 6 months was used. A

patient population of 10,000 was simulated over the lifetime and a Monte Carlo approach taken. Discounting was applied to costs (6% p.a.) and benefits (1.5% p.a.) in line with

guidance from NICE

Outcome measures used in economic evaluations

QALYs through the use of etanercept compared with current UK clinical practice. HAQ and

EQ-5D data were used to calculate QALYs through regression

Direction of result with appropriate quadrant location

NE quadrant. £16,330 per QALY

Statistical analysis for patient-level stochastic data Yes: patient-level data were used taken from the model simulation

Appropriateness of statistical Yes

analysis

TABLE 82 Brennan et al., 2004<sup>160</sup> (cont'd)

Uncertainty around cost-effectiveness expressed

Uncertainty in the results was expressed in terms of conducting scenario-based one-way sensitivity analyses to investigate the impact of alternative scenarios for the key model

parameter values

Appropriateness of method dealing with uncertainty around cost effectiveness

Yes

Sensitivity analysis One-way sensitivity analysis (scenario-based) was undertaken: analysis as described above

was performed, in addition to analyses of changes to the response rate of etanercept,

changes to HAQ scores and changes to mortality estimates

Modelling inputs and techniques appropriate

Authors' conclusions Etanercept is cost-effective compared with non-biological agents. NICE recognised it as cost-

effective and recommended its availability for use in patients who have failed at least two DMARDs previously. This model was used to inform the decision taken by NICE

**TABLE 83** Kobelt et al., 2004<sup>163</sup>

Authors Kobelt, Eberhardt, Geborek

Date

Cost-utility analyses Type of economic evaluation Country of origin Sweden, France

Currency used Euros Year to which costs apply 2002 Perspective Societal

Study population Patients with RA who failed to respond to at least two DMARDs, including MTX, in Sweden

Intervention I Etanercept or infliximab

Intervention 2 Baseline level (failed at least two DMARDs, including MTX)

Source of effectiveness data Follow-up of patients from a cohort treated with etanercept or infliximab

Clinical outcomes measured and methods of valuation used follow-up

The Swedish version of the HAQ, DAS28 and the EQ-5D were used during the first year of

Cost data handled appropriately

Yes. Direct costs were based on unit cost data from Lund (the largest centre used in the trial), and a Swedish pharmaceutical lexicon. Indirect costs were estimated by the human capital method using the average annual gross salary. Short-term sick leave was based on the number of days of absence and the loss of productivity was based on the proportion of full-

time work of patients aged >65 years

Modelling summary Not undertaken

Outcome measures used in economic evaluations

Mean utilities per year and QALY gained with I year of treatment, based on EQ-5D data

Direction of result with appropriate quadrant location

NE quadrant. After 3 months of treatment: €43,500 per QALY; after 6 weeks treatment:

€36,900 per QALY

Statistical analysis for patient-level stochastic data

Yes

Appropriateness of statistical analysis

Yes: means and standard deviations reported. No bootstrapping was undertaken, and this

may have been appropriate given the small data set

Uncertainty around cost-effectiveness expressed Not undertaken

Appropriateness of method dealing with uncertainty around cost effectiveness

NA

### TABLE 83 Kobelt et al., 2004<sup>163</sup> (cont'd)

Sensitivity analysis Sensitivity analysis was undertaken on all 160 patients: all patients who began one of the treatments. The main economic evaluation was based on those patients who continued to receive TNF inhibitor treatment for at least 12 months and had complete data (116 patients) NA

Modelling inputs and techniques appropriate

Cost-effectiveness ratios are within the generally accepted threshold of €50,000, but need Authors' conclusions

to be confirmed with larger samples. Assuming that the improvements occurred within 3 months after treatment, the cost per QALY is €36,900. Sensitivity analysis, including all 160 patients, gave an estimated cost per QALY of €53,600. The cost per QALY increases for patient groups with less severe disease

**TABLE 84** Chiou et al., 2004<sup>170</sup>

Authors Chiou, Choi, Reyes

Date

Type of economic evaluation Cost-utility analysis

Country of origin USA **US** dollars Currency used Year to which costs apply 2003

Perspective Healthcare (payers)

Study population Patients with moderate to severe RA who were deemed candidates for the following

biological monotherapies and combination therapies

Intervention I Adalimumab

Intervention 2 Anakinra (reference case for monotherapy)

Intervention 3 Etanercept

Intervention 4 Adalimumab + MTX Intervention 5 Anakinra + MTX Intervention 6 Etanercept + MTX Intervention 7 Infliximab + MTX

Source of effectiveness data Effectiveness data were sourced from a review of previously published RCTs. The results of

> the review were presented to an expert panel of rheumatologists who selected the relevant clinical trials based on similar patient inclusion criteria and baseline characteristics. ACR response criteria: ACR20, ACR50 and ACR70 were used in the model. Probabilities for achieving ACR20, ACR50 and ACR70 for each treatment strategy were sourced from published literature. The absolute response rates from the clinical trial data with the most comparable patient population characteristics and study design were used as input data for the model. SAE rates were also sourced from clinical trial data. The same expert panel classified the adverse events, associated with each treatment strategy, into severity levels and estimated the corresponding medical resource use associated with each. SAEs were categorised as mild, moderate or severe. The highest frequency reported in a study was used to assign the probability within each severity classification. Probabilities for being in each health state were determined by the product of the probability of achieving each ACR response criterion and for developing different levels of SAEs, assuming that the probabilities

for achieving each were independent

Cost data handled appropriately

Yes. Drug costs were based on US average wholesale prices. Healthcare resource costs for medication, injection and infusion, monitoring and management of SAEs were obtained from the 2003 American Medical Association Current Procedural Terminology (CPT codes) codebook, the 2003 Medicare Reimbursement Fee Schedule and the Medstat Diagnosis Related Group (DRG) Guide. The costs of complications were estimated as follows: a mild complication included the cost of one visit every 6 months and associated laboratory tests, the cost of a moderate complication included that of a mild complication plus the cost of antibiotics, and the cost of a severe complication included the cost of hospitalisation for pneumonia or sepsis

### **TABLE 84** Chiou et al., 2004<sup>170</sup> (cont'd)

| Modelling summary | A decision tree was developed in Data 4.0 (IreeAge software) to compare the costs and |
|-------------------|---------------------------------------------------------------------------------------|
|                   | outcomes of a hypothetical cohort of patients. The time-horizon was I year and        |

outcomes of a hypothetical cohort of patients. The time-horizon was T year, and effectiveness was measured at 6 and 12 months. The structure of the model is flexible, allowing for data that may be available over a longer follow-up period. If effectiveness data were not available at 12 months, 6- and 12-month effectiveness data were assumed to be equivalent. Within the model 16 health states were used: these were the product of the severity of SAE and the ACR response criteria, e.g. a patient could have no ACR, ACR20, ACR50 or ACR70 and could be experiencing no SAE, mild SAEs, moderate SAEs or severe

Outcome measures used in economic evaluations

Effectiveness was measured in QALYs. It was assumed that patients would live with one of the 16 health states at any given time. Preference weights for each health state, used to calculate the QALYs, were measured using a VAS (HAQ) obtained from a survey of 748

patients with RA

Not undertaken

Direction of result with appropriate quadrant location

NE quadrant. Monotherapies: etanercept NE quadrant, US\$13,387 per QALY. Adalimumab dominated. Combination therapies: etanercept + MTX NE quadrant, US\$7925. Adalimumab

+ MTX and infliximab + MTX dominated

Statistical analysis for patient-level stochastic data

Appropriateness of statistical

analysis

NA

Uncertainty around

cost-effectiveness expressed

Not undertaken

Appropriateness of method dealing with uncertainty around cost effectiveness

NA

Sensitivity analysis

Yes: one-way sensitivity analyses were performed on all input variables. Cost variables were varied from 50 to 200% of baseline and probability values increased and decreased by 50% of baseline. Cost of treatment and the probability of achieving ACR response criteria were the main drivers of ICERs. Costs of SAEs, probabilities of developing SAEs, healthcare resource costs and the cost of MTX did not affect the ICERs

Modelling inputs and techniques appropriate

Authors' conclusions

Anakinra was the least expensive option and etanercept dominated other treatments. Cost of drugs and probability for achieving response were the main drivers of ICERs

### **TABLE 85** Bansback et al., 2005<sup>166</sup>

Authors Bansback, Brennan, Ghatnekar

Date 2005

Cost-utility analysis Type of economic evaluation Country of origin UK, Sweden Currency used Euros Year to which costs apply 2001 Perspective Healthcare

Patients with moderate to severe RA for whom at least two traditional DMARDs had failed Study population

(simulation of 10,000 patients)

Intervention I Adalimumab monotherapy

Intervention 2 Adalimumab + MTX (study nos DE009 and DE019)

Intervention 3 Adalimumab + MTX (study no. DE009)

Intervention 4 Etanercept monotherapy Intervention 5 Etanercept + MTX Intervention 6 Infliximab + MTX

TABLE 85 Bansback et al., 2005<sup>166</sup> (cont'd)

| Intervention 7                                                               | Traditional drug treatment (DMARDs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source of effectiveness data                                                 | Treatment response data from a published review and conference abstracts. Two combination RCTs were available for adalimumab. The first, ARMADA, was similar to the etanercept and infliximab trials in design and patient numbers. The second, a larger, more comprehensive study, also included radiographic evaluations. In Sweden, decisions to continue treatment are made using the DAS response criteria. This study presents results for two definitions of classifying successful response: ACR20 and ACR50. Comparison of trials suggests similarities between the results of ACR and DAS responses. This model assumes that ACR20 corresponds to a moderate DAS28 score and ACR50 corresponds to a good DAS score. In addition, HAQ was mapped to a health utility measure (HUI 3). Analysis of patient-level adalimumab data was used to calculate HAQ improvement in ACR20 and ACR50 responders. The model assumed that HAQ worsened after withdrawal from treatment, immediately at the point of withdrawal and equalled the initial HAQ improvement for all treatments |
| Cost data handled appropriately                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Modelling summary                                                            | A decision-analytic model building on two previously described models. Patient-based transition state model, simulating a population of 10,000 patients. A cycle length of 6 months was used, within which the risks of withdrawal, adverse events and mortality were determined, based on experiences of an average patient. Patients were simulated for their lifetime. Model parameter values were derived from patient-level data analysis of adalimumab RCTs or published sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Outcome measures used in economic evaluations                                | At each 6-month cycle in the model the patients' health-related quality of life scores were evaluated by simple linear transformation from the HAQ-DI score. From this a cost-utility analysis was possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Direction of result with appropriate quadrant location                       | NE quadrant For the group ACR50/DAS28 good: €34,167 per QALY (adalimumab + MTX) €34,922 per QALY (adalimumab + MTX) <sup>a</sup> €35,760 per QALY (etanercept + MTX) €48,333 per QALY (infliximab + MTX) €41,561 per QALY (adalimumab) €36,927 per QALY (etanercept)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                              | For the group ACR20/DAS28 moderate:<br>€40,875 per QALY (adalimumab + MTX)<br>€44,018 per QALY (adalimumab + MTX) <sup>a</sup><br>€51,976 per QALY (etanercept + MTX)<br>€64,935 per QALY (infliximab + MTX)<br>€65,499 per QALY (adalimumab)<br>€42,480 per QALY (etanercept)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Statistical analysis for patient-level stochastic data                       | Patient-level data were used to calculate HAQ improvement in patients who were ACR20 and ACR50 responders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Appropriateness of statistical analysis                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Uncertainty around cost-effectiveness expressed                              | Yes. Cost-effectiveness acceptability curve and cost-effectiveness plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Appropriateness of method dealing with uncertainty around cost effectiveness | Yes. Appropriate methods were used: both central values and probability density functions were used to describe the distribution of uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sensitivity analysis                                                         | Yes. Univariate sensitivity analysis and multivariate sensitivity analysis were used. Uncertainty in assumptions around model structure was also explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Modelling inputs and techniques appropriate                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Authors' conclusions                                                         | Adalimumab appears to be cost-effective for the treatment of moderate to severe RA. Results suggest that adalimumab is at least as cost-effective as other TNF inhibitors, with the exception of infliximab; the cost results were between $\leqslant$ 35,000 and $\leqslant$ 42,000 per QALY, a range normally considered cost-effective in European countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 $^{\it a}$  Including additional information from a larger adalimumab trial in a pooled analysis.

#### **TABLE 86** Kobelt et al., 2005<sup>167</sup>

Authors Kobelt, Lindgren, Singh, Klareskog

Date 2005

Type of economic evaluation Cost-utility analysis
Country of origin Sweden, France, USA

Currency used Euros
Year to which costs apply 2004
Perspective Societal

Study population Patients with active RA who failed to respond to at least two DMARDs, other than MTX.

Patients who had been previously exposed to MTX were included provided they were deemed to be appropriate candidates for MTX treatment at the time of enrolment to the

study

Intervention I Etanercept
Intervention 2 MTX

Intervention 3 Etanercept and MTX

Source of effectiveness data A double-blind randomised clinical trial of 682 patients (TEMPO). Disease progression is

based on observed transitions in the clinical trial for patients with an HAQ measurement used at both the start and the end of each year for the first 2 years. Transition probabilities for the model beyond the trial data are based on the average reported annual progression of HAQ (0.03). Disease activity and severity was measured in TEMPO by correlating the patient global VAS with the DAS28. As a result, it was found that a DAS28 of 3.2

corresponds to a score of 41 on the global VAS

Cost data handled appropriately

Yes: direct resource use included all healthcare and community services, as well as investments, devices, transportation and informal help. Indirect costs included early retirement due to RA, long- and short-term sick leave, and loss of leisure time. Costs and benefits were discounted at 3%. Cost data came from a survey of 616 Swedish patients, related to function and disease activity, plus 1810 patients' early retirement data

Modelling summary A Markov model was developed, with five main functional states and cut-off points at HAQ

0.6, 1.1, 1.6 and 2.1. Each state is further separated into two substrates representing high and low disease activity. All resulting ten states are further subdivided according to those receiving study treatments or not. Changes in disease status are modelled as transitions between the states at intervals of 1 year (cycles). Costs and utility are assigned to each of the 20 states, and the model estimates expected costs and QALYs for defined cohorts of patients over given periods. A Monte Carlo simulation was run and bootstrapping was used to estimate uncertainty around input values. The model was run for 10 years of treatment, or

for treatment in trial only for 2 years and extrapolation to 10 years

Outcome measures used in economic evaluations

Data related to function and disease activity (EQ-5D) obtained from a survey of 1016 patients with confirmed RA, carried out in 1997, and a more recent follow-up survey, conducted in 2002, of 616 patients. EQ-5D was related to HAQ scores and disease activity

using multiple regression

Direction of result with appropriate quadrant location

NE quadrant. Treatment for 2 years, extrapolation to 10 years: etanercept alone dominated. Etanercept/MTX vs MTX €37,331 per QALY

Treatment for 2 years, extrapolation to 5 years: etanercept alone dominated.

Etanercept/MTX vs MTX €54,548 per QALY

Treatment for 10 years: etanercept/MTX vs MTX €46,494 per QALY

Treatment for 5 years, extrapolation to 10 years: etanercept/MTX vs MTX  $\leqslant$ 47,316 per

QALY

Statistical analysis for patient-level stochastic data

Not undertaken

Appropriateness of statistical

analysis

NA

Uncertainty around cost-effectiveness expressed

Yes

Appropriateness of method dealing with uncertainty around cost effectiveness

Yes: the methods used were appropriate. A Monte Carlo simulation was run and bootstrapping was used to estimate the uncertainty around the model parameter values.

Cost effectiveness acceptability curves were also used

# **TABLE 86** Kobelt et al., 2005 167 (cont'd)

| Sensitivity analysis                        | Yes: sensitivity analysis was conducted and the results were found to be most sensitive to assumptions about the costs of treatment and the difference in utility between the treatment groups                                                                                                                                                                                     |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modelling inputs and techniques appropriate | Yes                                                                                                                                                                                                                                                                                                                                                                                |
| Authors' conclusions                        | Incorporating the influence of disease activity allows better assessment of the effects of anti-TNF treatment on patients' general well-being. The cost per QALY gained with combination treatment with etanercept with MTX compared with MTX alone falls within the acceptable range and the probability that the cost-effectiveness ratio is below a threshold of €50,000 is 88% |

# Appendix 9

# Details of strategy sets used in BRAM

**TABLE 87** Strategy set with etanercept followed by another TNF inhibitor

| Treatment | Always move to   | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           |                  |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Etan             |                   |                             |                    |
| MTX+SSZ   | Etan             |                   |                             |                    |
| Etan      | Divergence point |                   |                             |                    |
| Option I  | Adal             |                   |                             |                    |
| Adal      | LEF              |                   |                             |                    |
| Option 2  | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | LEF              |                   |                             |                    |
| Option 3  | LEF              |                   |                             |                    |
| LEF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       |                  | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | •                 |                             | ,                  |
| DPen      | Pall             |                   |                             |                    |

**TABLE 88** Strategy set with infliximab followed by another TNF inhibitor

| Treatment | Always move to   | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           |                  |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Infl+MTX         |                   |                             |                    |
| MTX+SSZ   | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | Divergence point |                   |                             |                    |
| Option I  | Adal             |                   |                             |                    |
| Adal      | LEF              |                   |                             |                    |
| Option 2  | Etan             |                   |                             |                    |
| Etan      | LEF              |                   |                             |                    |
| Option 3  | LEF              |                   |                             |                    |
| LÉF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       | •                | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | •                 |                             | •                  |
| DPen      | Pall             |                   |                             |                    |

**TABLE 89** Strategy set: adalimumab and infliximab possibly followed by etanercept

| Treatment | Always move to   | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           |                  |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Adal             |                   |                             |                    |
| MTX+SSZ   | Adal             |                   |                             |                    |
| Adal      | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | Divergence point |                   |                             |                    |
| Option I  | Etan             |                   |                             |                    |
| Etan      | LEF              |                   |                             |                    |
| Option 2  | LEF              |                   |                             |                    |
| LÉF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       | •                | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | •                 |                             | ,                  |
| DPen      | Pall             |                   |                             |                    |

**TABLE 90** Strategy set: etanercept and adalimumab possibly followed by infliximab

| Treatment | Always move to   | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           |                  |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Etan             |                   |                             |                    |
| MTX+SSZ   | Etan             |                   |                             |                    |
| Etan      | Adal             |                   |                             |                    |
| Adal      | Divergence point |                   |                             |                    |
| Option I  | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | LEF              |                   |                             |                    |
| Option 2  | LEF              |                   |                             |                    |
| LEF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       | •                | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | •                 |                             | ,                  |
| DPen      | Pall             |                   |                             |                    |

**TABLE 91** Strategy set: etanercept and infliximab possibly followed by adalimumab

| Treatment |                  | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           | Always move to   |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Etan             |                   |                             |                    |
| MTX+SSZ   | Etan             |                   |                             |                    |
| Etan      | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | Divergence point |                   |                             |                    |
| Option I  | Adal             |                   |                             |                    |
| Adal      | LEF              |                   |                             |                    |
| Option 2  | LEF              |                   |                             |                    |
| LEF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       | -                | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | -                 |                             | •                  |
| DPen      | Pall             |                   |                             |                    |

**TABLE 92** Strategy set: infliximab and adalimumab possibly followed by etanercept

| Treatment |                  | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           | Always move to   |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Infl+MTX         |                   |                             |                    |
| MTX+SSZ   | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | Adal             |                   |                             |                    |
| Adal      | Divergence point |                   |                             |                    |
| Option I  | Etan             |                   |                             |                    |
| Etan      | LEF              |                   |                             |                    |
| Option 2  | LEF              |                   |                             |                    |
| LEF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       | ,                | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | •                 |                             | •                  |
| DPen      | Pall             |                   |                             |                    |

**TABLE 93** Strategy set: infliximab and etanercept possibly followed by adalimumab

| Treatment | Always move to   | Relevant toxicity | Moves dependent on toxicity |                    |
|-----------|------------------|-------------------|-----------------------------|--------------------|
|           |                  |                   | If toxic, move to           | Otherwise, move to |
| MTX       |                  | MTX               | SSZ                         | MTX+SSZ            |
| SSZ       | Infl+MTX         |                   |                             |                    |
| MTX+SSZ   | Infl+MTX         |                   |                             |                    |
| Infl+MTX  | Etan             |                   |                             |                    |
| Etan      | Divergence point |                   |                             |                    |
| Option I  | Adal             |                   |                             |                    |
| Adal      | LEF              |                   |                             |                    |
| Option 2  | LEF              |                   |                             |                    |
| LÉF       | GST              |                   |                             |                    |
| GST       | AZA              |                   |                             |                    |
| AZA       | СуА              |                   |                             |                    |
| СуА       | ,                | CyA or MTX        | DPen                        | CyA+MTX            |
| CyA+MTX   | DPen             | ,                 |                             | ,                  |
| DPen      | Pall             |                   |                             |                    |

# Appendix 10 Sensitivity analysis

Extensive sensitivity analysis was carried out for all strategy sets involving the use of a single TNF inhibitor. As in the base case, for the HAQ improvement on starting a TNF inhibitor, the early RA values were used for the strategy set involving TNF inhibitors at the start, the late RA values were used for TNF inhibitors last, and both sets of values were used for TNF inhibitors in third place.

There is a total of 18 variations on the original parameter set. These are described in detail at the start of each set of results. In each case, all parameters not mentioned in the description of

the variation were assumed to take their base-case values.

### Variation I

For this variation, it was assumed that there was no progression in HAQ score while on TNF inhibitors, and progression was as for the base case on other treatments.

TABLE 94 Variation 1: TNF inhibitors first (100,000 patients)

| Option      | Cost (£)       | QSE                   | QALYs                         | QSE      |  |
|-------------|----------------|-----------------------|-------------------------------|----------|--|
| Adal        | 49,558         | 103                   | 9.5740                        | 0.0182   |  |
| Etan        | 64,270         | 125                   | 10.3899                       | 0.0201   |  |
| Adal+MTX    | 49,912         | 104                   | 9.2247                        | 0.0177   |  |
| Etan+MTX    | 64,499         | 126                   | 10.0596                       | 0.0200   |  |
| Infl+MTX    | 49,188         | 99                    | 9.0404                        | 0.0177   |  |
| Base        | 15,322         | 21                    | 8.3056                        | 0.0158   |  |
| Comparison  | Diff. cost (£) | QSE                   | Diff. QALY                    | QSE      |  |
| Adal – Base | 34,236         | 101                   | 1.2685                        | 0.0177   |  |
| Etan – Base | 48,948         | 122                   | 2.0844                        | 0.0191   |  |
| Ad+M – Base | 34,590         | 103                   | 0.9191                        | 0.0177   |  |
| Et+M - Base | 49,177         | 124                   | 1.7541                        | 0.0192   |  |
| In+M – Base | 33,866         | 97                    | 0.7348                        | 0.0175   |  |
| Ad+M – Adal | 354            | 141                   | -0.3493                       | 0.0187   |  |
| Et+M – Etan | 229            | 167                   | -0.3303                       | 0.0210   |  |
| Etan – Adal | 14,712         | 154                   | 0.8159                        | 0.0198   |  |
| Et+M - Ad+M | 14,587         | 156                   | 0.8349                        | 0.0200   |  |
| Ad+M – In+M | 724            | 138                   | 0.1844                        | 0.0185   |  |
| Et+M – In+M | 15,311         | 153                   | 1.0193                        | 0.0199   |  |
| Comparison  | ICER (£ per    | · QALY)               | Quasi-CI                      |          |  |
| Adal – Base | 27,00          | 0                     | 26,200 to 27,800              |          |  |
| Etan – Base | 23,50          | 0                     | 23,000 to 23,900              |          |  |
| Ad+M – Base | 37,60          | 0                     | 36,200 to 39,200              |          |  |
| Et+M – Base | 28,00          | 0                     | 27,400 to 28,700              |          |  |
| In+M – Base | 46,10          | 0                     | 44,000 to                     | 48,400   |  |
| Ad+M – Adal |                | Adal alone don        | ninates Adal+MTX              |          |  |
| Et+M – Etan | Etan alon      | e more effective than | Etan+MTX; diff. cost not sign | nificant |  |
| Etan – Adal | 18,00          | 0                     | 17,100 to                     | 19,000   |  |
| Et+M - Ad+M | 17,50          | 0                     | 16,600 to                     | 18,400   |  |
| Ad+M – In+M | 3,93           | 0                     | 2,230 to                      | 5,620    |  |
| Et+M - In+M | 15,00          | 0                     | 14,400 to                     | 15,700   |  |

 TABLE 95
 Variation 1: TNF inhibitors third (early RA values) (20,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 48,371              | 221                    | 6.8542                          | 0.0366   |  |
| Etan        | 61,650              | 271                    | 7.7651                          | 0.0413   |  |
| Adal+MTX    | 48,830              | 224                    | 7.0461                          | 0.0368   |  |
| Etan+MTX    | 61,349              | 270                    | 7.8660                          | 0.0416   |  |
| Infl+MTX    | 48,298              | 212                    | 6.9820                          | 0.0365   |  |
| Base        | 16,444              | 51                     | 5.3484                          | 0.0306   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 31,926              | 217                    | 1.5058                          | 0.0352   |  |
| Etan – Base | 45,206              | 263                    | 2.4167                          | 0.0390   |  |
| Ad+M – Base | 32,386              | 220                    | 1.6977                          | 0.0353   |  |
| Et+M – Base | 44,905              | 262                    | 2.5176                          | 0.0397   |  |
| In+M – Base | 31,854              | 208                    | 1.6336                          | 0.0352   |  |
| Ad+M – Adal | 459                 | 295                    | 0.1919                          | 0.0380   |  |
| Etan – Et+M | 301                 | 351                    | -0.1009                         | 0.0440   |  |
| Etan – Adal | 13,280              | 326                    | 0.9109                          | 0.0411   |  |
| Et+M - Ad+M | 12,519              | 327                    | 0.8199                          | 0.0418   |  |
| In+M – Ad+M | 532                 | 289                    | 0.0641                          | 0.0383   |  |
| Et+M – In+M | 13,051              | 321                    | 0.8840                          | 0.0415   |  |
| Comparison  | ICER (£ per         | r QALY)                | Quas                            | i-CI     |  |
| Adal – Base | 21,20               | 00                     | 20,200 to 22,300                |          |  |
| Etan – Base | 18,70               | 00                     | 18,100 to 19,400                |          |  |
| Ad+M – Base | 19,10               | 00                     | 18,300 to 19,900                |          |  |
| Et+M - Base | 17,80               | 00                     | 17,300 to 18,500                |          |  |
| In+M – Base | 19,50               | 00                     | 18,700 to                       | 20,400   |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Etan – Et+M | Etan+M <sup>-</sup> | TX more effective than | Etan alone; diff. cost not sign | nificant |  |
| Etan – Adal | 14,60               | 00                     | 13,200 to                       | 16,200   |  |
| Et+M – Ad+M | 15,30               | 00                     | 13,700 to                       | 17,200   |  |
| In+M - Ad+M |                     |                        | n is inconclusive               |          |  |
| Et+M - In+M | 14,80               | •                      | 13,300 to                       | 16,500   |  |

 TABLE 96
 Variation 1: TNF inhibitors third (late RA values) (40,000 patients)

| Option               | Cost (£)       | QSE | QALYs      | QSE    |
|----------------------|----------------|-----|------------|--------|
| Adal                 | 47,664         | 156 | 6.1760     | 0.0254 |
| Etan                 | 60,598         | 191 | 7.2320     | 0.0286 |
| Adal+MTX             | 48,194         | 157 | 6.4741     | 0.0253 |
| Etan+MTX             | 60,894         | 191 | 7.2297     | 0.0289 |
| Infl+MTX             | 47,561         | 149 | 6.2132     | 0.0254 |
| Base                 | 16,490         | 36  | 5.4254     | 0.0218 |
| Comparison           | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base          | 31,174         | 152 | 0.7506     | 0.0234 |
| Etan – Base          | 44,107         | 185 | 1.8066     | 0.0264 |
| Ad+M – Base          | 31,704         | 153 | 1.0487     | 0.0238 |
| Et+M - Base          | 44,404         | 186 | 1.8043     | 0.0268 |
| In+M – Base          | 31,071         | 145 | 0.7878     | 0.0237 |
| Ad+M – Adal          | 530            | 206 | 0.2981     | 0.0245 |
| Et+M – Etan          | 296            | 247 | 0.0023     | 0.0293 |
| Etan – Adal          | 12,934         | 228 | 1.0560     | 0.0269 |
| Et+M - Ad+M          | 12,700         | 230 | 0.7556     | 0.0276 |
| Ad+M – In+M          | 633            | 202 | 0.2609     | 0.0248 |
| Au : 1 1 - 111   1 1 |                | 224 | 1.0165     | 0.0273 |

TABLE 96 Variation 1: TNF inhibitors third (late RA values) (40,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY) | Quasi-Cl         |
|-------------|-------------------|------------------|
| Adal – Base | 41,500            | 39,100 to 44,300 |
| Etan – Base | 24,400            | 23,700 to 25,200 |
| Ad+M – Base | 30,200            | 28,900 to 31,700 |
| Et+M - Base | 24,600            | 23,900 to 25,400 |
| In+M - Base | 39,400            | 37,200 to 42,000 |
| Ad+M – Adal | 1,780             | 362 to 3,190     |
| Et+M - Etan | Comparison        | is inconclusive  |
| Etan – Adal | 12,200            | 11,500 to 13,100 |
| Et+M - Ad+M | 16,800            | 15,500 to 18,300 |
| Ad+M - In+M | 2,420             | 811 to 4,040     |
| Et+M - In+M | 13,100            | 12,300 to 14,000 |

 TABLE 97 Variation 1: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                           | QSE      |
|-------------|----------------|------------------------|---------------------------------|----------|
| Adal        | 36,801         | 219                    | 2.3062                          | 0.0253   |
| Etan        | 49,842         | 267                    | 3.6405                          | 0.0320   |
| Adal+MTX    | 37,043         | 221                    | 2.5987                          | 0.0259   |
| Etan+MTX    | 49,381         | 267                    | 3.6409                          | 0.0323   |
| Infl+MTX    | 36,517         | 211                    | 2.3587                          | 0.0258   |
| Base        | 2,848          | П                      | 1.0512                          | 0.0185   |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                      | QSE      |
| Adal – Base | 33,954         | 217                    | 1.2550                          | 0.0188   |
| Etan – Base | 46,994         | 264                    | 2.5893                          | 0.0276   |
| Ad+M – Base | 34,195         | 219                    | 1.5475                          | 0.0202   |
| Et+M - Base | 46,533         | 264                    | 2.5897                          | 0.0282   |
| In+M - Base | 33,670         | 209                    | 1.3076                          | 0.0198   |
| Ad+M – Adal | 242            | 301                    | 0.2925                          | 0.0246   |
| Etan – Et+M | 461            | 353                    | -0.0004                         | 0.036    |
| Etan – Adal | 13,041         | 330                    | 1.3343                          | 0.030    |
| Et+M - Ad+M | 12,338         | 331                    | 1.0422                          | 0.032    |
| Ad+M – In+M | 526            | 294                    | 0.2400                          | 0.0253   |
| Et+M – In+M | 12,863         | 323                    | 1.2821                          | 0.0315   |
| Comparison  | ICER (£ per    | r QALY)                | Quas                            | i-CI     |
| Adal – Base | 27,10          | 00                     | 26,200 to 28,000                |          |
| Etan – Base | 18,10          | 00                     | 17,700 to 18,600                |          |
| Ad+M – Base | 22,10          | 00                     | 21,500 to 22,800                |          |
| Et+M - Base | 18,00          | 00                     | 17,500 to 18,400                |          |
| In+M – Base | 25,70          | 00                     | 24,900 to                       | 26,600   |
| Ad+M – Adal | Adal+M7        | TX more effective than | Adal alone; diff. cost not sign | nificant |
| Et+M – Etan |                | Comparisor             | n is inconclusive               |          |
| Etan – Adal | 9,77           | 70                     | 9,110 to                        | 10,400   |
| Et+M - Ad+M | 11,80          | 00                     | 10,900 to                       | 12,900   |
| Ad+M – In+M | Adal+M7        | TX more effective than | n Infl+MTX; diff. cost not sign | nificant |
| Et+M - In+M | 10,00          | 00                     | 9,330 to                        | 10,700   |

For this variation, it was assumed that HAQ progression on all active treatments was at 0.03 per year.

 TABLE 98
 Variation 2: TNF inhibitors first (200,000 patients)

| Option      | Cost (£)       | QSE                   | QALYs                         | QSE      |
|-------------|----------------|-----------------------|-------------------------------|----------|
| Adal        | 49,443         | 72                    | 9.5963                        | 0.0130   |
| Etan        | 63,882         | 87                    | 9.8239                        | 0.0132   |
| Adal+MTX    | 49,787         | 73                    | 9.0930                        | 0.0122   |
| Etan+MTX    | 64,093         | 88                    | 9.3620                        | 0.0122   |
| Infl+MTX    | 49,186         | 70                    | 8.9392                        | 0.0122   |
| Base        | 15,420         | 15                    | 9.2826                        | 0.0125   |
| Comparison  | Diff. cost (£) | QSE                   | Diff. QALY                    | QSE      |
| Adal – Base | 34,023         | 71                    | 0.3137                        | 0.0128   |
| Etan – Base | 48,462         | 85                    | 0.5413                        | 0.0130   |
| Ad+M – Base | 34,367         | 72                    | -0.1896                       | 0.0125   |
| Et+M – Base | 48,673         | 86                    | 0.0794                        | 0.0128   |
| In+M – Base | 33,766         | 68                    | -0.3433                       | 0.0125   |
| Ad+M – Adal | 345            | 98                    | -0.5033                       | 0.0127   |
| Et+M – Etan | 211            | 116                   | -0.4619                       | 0.0131   |
| Etan – Adal | 14,440         | 107                   | 0.2276                        | 0.0131   |
| Et+M – Ad+M | 14,306         | 109                   | 0.2690                        | 0.0126   |
| Ad+M – In+M | 601            | 97                    | 0.1537                        | 0.0123   |
| Et+M – In+M | 14,907         | 107                   | 0.4228                        | 0.0126   |
| Comparison  | ICER (£ per    | r QALY)               | Quas                          | i-CI     |
| Adal – Base | 108,0          | 00                    | 100,000 to 118,000            |          |
| Etan – Base | 89,5           | 00                    | 85,400 to 94,100              |          |
| Ad+M – Base | ·              | Base domina           | ates Adal+MTX                 | •        |
| Et+M – Base | 613,0          | 00                    | 463,000 to 906,000            |          |
| In+M – Base | ŕ              | Base domin            | nates Infl+MTX                | •        |
| Ad+M – Adal |                | Adal alone don        | ninates Adal+MTX              |          |
| Et+M – Etan | Etan alon      | e more effective than | Etan+MTX; diff. cost not sign | nificant |
| Etan – Adal | 63,5           |                       | 56,900 to                     |          |
| Et+M - Ad+M | 53,20          |                       | 48,600 to                     | ,        |
| Ad+M - In+M | 3,9            |                       | 2,510 to                      | ,        |
| Et+M - In+M | 35,30          |                       | 33,200 to                     | •        |

 TABLE 99
 Variation 2: TNF inhibitors third (early RA values) (100,000 patients)

| Option         | Cost (£)       | QSE | QALYs      | QSE    |
|----------------|----------------|-----|------------|--------|
| Adal           | 48,569         | 98  | 6.9994     | 0.0159 |
| Etan           | 61,074         | 119 | 7.4020     | 0.0166 |
| Adal+MTX       | 48,640         | 98  | 7.1398     | 0.0159 |
| Etan+MTX       | 61,329         | 119 | 7.4999     | 0.0166 |
| Infl+MTX       | 48,158         | 94  | 7.0644     | 0.0158 |
| Base           | 16,590         | 23  | 6.2559     | 0.0151 |
| Comparison     | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base    | 31,979         | 96  | 0.7435     | 0.0155 |
| Etan – Base    | 44,484         | 116 | 1.1462     | 0.0161 |
| Ad+M – Base    | 32,049         | 96  | 0.8840     | 0.0156 |
| Et+M – Base    | 44,738         | 116 | 1.2441     | 0.0162 |
| In+M – Base    | 31,567         | 92  | 0.8086     | 0.0155 |
| Ad+M – Adal    | 70             | 131 | 0.1405     | 0.0160 |
| Et+M – Etan    | 255            | 154 | 0.0979     | 0.0171 |
| LLTI'I - LLaii |                |     | 0.4027     | 0.0165 |

TABLE 99 Variation 2: TNF inhibitors third (early RA values) (100,000 patients) (cont'd)

| Et+M – Ad+M | 12,689     | 144                                                             | 0.3601                         | 0.0166           |  |  |
|-------------|------------|-----------------------------------------------------------------|--------------------------------|------------------|--|--|
| Ad+M – In+M | 482        | 128                                                             | 0.0754                         | 0.0160           |  |  |
| Et+M – In+M | 13,171     | 141                                                             | 0.4355                         | 0.0165           |  |  |
| Comparison  | ICER (£ pe | er QALY)                                                        | Quas                           | si-CI            |  |  |
| Adal – Base | 43,000     |                                                                 | 41,300 to 44,900               |                  |  |  |
| Etan – Base | 38,8       | 38,800 37,700 to 40                                             |                                | ) to 40,000      |  |  |
| Ad+M – Base | 36,3       | 36,300                                                          |                                | 35,000 to 37,600 |  |  |
| Et+M - Base | 36,0       | 36,000                                                          |                                | 36,900           |  |  |
| In+M – Base | 39,0       | 9,000 37,600 to 40,600                                          |                                | 40,600           |  |  |
| Ad+M – Adal | Adal+M     | +MTX more effective than Adal alone; diff. cost not significant |                                | nificant         |  |  |
| Et+M - Etan | Etan+M     | ITX more effective than                                         | Etan alone; diff. cost not sig | nificant         |  |  |
| Etan – Adal | 31,1       |                                                                 | 28,600 to                      |                  |  |  |
| Et+M - Ad+M | 35,2       | 00                                                              | 32,200 to                      | 38,900           |  |  |
| Ad+M - In+M | 6,3        | 90                                                              | 2,050 to                       | 10,700           |  |  |
| Et+M - In+M | 30,2       | 00                                                              | 28,000 to                      | 32.800           |  |  |

 TABLE 100
 Variation 2: TNF inhibitors third (late RA values) (400,000 patients)

| Option      | Cost (£)       | QSE        | QALYs              | QSE     |  |
|-------------|----------------|------------|--------------------|---------|--|
| Adal        | 47,823         | 49         | 6.3067             | 0.0079  |  |
| Etan        | 60,550         | 59         | 6.8904             | 0.0082  |  |
| Adal+MTX    | 48,056         | 49         | 6.5602             | 0.0079  |  |
| Etan+MTX    | 60,660         | 59         | 6.8825             | 0.0082  |  |
| Infl+MTX    | 47,505         | 47         | 6.3152             | 0.0079  |  |
| Base        | 16,546         | П          | 6.2482             | 0.0075  |  |
| Comparison  | Diff. cost (£) | QSE        | Diff. QALY         | QSE     |  |
| Adal – Base | 31,277         | 48         | 0.0584             | 0.0075  |  |
| Etan – Base | 44,004         | 58         | 0.6421             | 0.0079  |  |
| Ad+M - Base | 31,510         | 48         | 0.3119             | 0.0076  |  |
| Et+M - Base | 44,114         | 58         | 0.6343             | 0.0079  |  |
| In+M - Base | 30,959         | 46         | 0.0669             | 0.0076  |  |
| Ad+M – Adal | 233            | 65         | 0.2535             | 0.0075  |  |
| Et+M - Etan | 111            | 77         | -0.0079            | 0.0082  |  |
| Etan – Adal | 12,727         | 71         | 0.5837             | 0.0078  |  |
| Et+M - Ad+M | 12,605         | 71         | 0.3223             | 0.0079  |  |
| Ad+M – In+M | 551            | 63         | 0.2450             | 0.0076  |  |
| Et+M – In+M | 13,155         | 70         | 0.5673             | 0.0079  |  |
| Comparison  | ICER (£ per    | QALY)      | Quas               | i-Cl    |  |
| Adal – Base | 535,00         | 00         | 426,000 to 721,000 |         |  |
| Etan – Base | 68,50          | 00         | 66,900 to          | 70,300  |  |
| Ad+M – Base | 101,00         | 00         | 96,300 to          | 106,000 |  |
| Et+M – Base | 69,60          | 00         | 67,800 to          | 71,300  |  |
| In+M – Base | 462,00         | 00         | 377,000 to         | 597,000 |  |
| Ad+M – Adal | 92             | 20         | 407 to             | 1,430   |  |
| Et+M - Etan |                | Comparisor | n is inconclusive  |         |  |
| Etan – Adal | 21,80          | 00         | 21,200 to          |         |  |
| Et+M - Ad+M | 39,10          | 00         | 37,200 to          | 41,200  |  |
| Ad+M – In+M | 2,25           | 50         | 1,710 to           | 2,780   |  |
| Et+M - In+M | 23,20          | 00         | 22,500 to          | 23,900  |  |

**TABLE 101** Variation 2: TNF inhibitors last (40,000 patients)

| Option      | Cost (£)       | QSE                  | QALYs             | QSE    |  |
|-------------|----------------|----------------------|-------------------|--------|--|
| Adal        | 36,137         | 151                  | 2.5122            | 0.0164 |  |
| Etan        | 49,203         | 186                  | 3.5657            | 0.0193 |  |
| Adal+MTX    | 36,712         | 154                  | 2.7769            | 0.0166 |  |
| Etan+MTX    | 49,570         | 187                  | 3.5483            | 0.0196 |  |
| Infl+MTX    | 36,295         | 147                  | 2.5568            | 0.0167 |  |
| Base        | 2,866          | 8                    | 1.6689            | 0.0141 |  |
| Comparison  | Diff. cost (£) | QSE                  | Diff. QALY        | QSE    |  |
| Adal – Base | 33,271         | 150                  | 0.8433            | 0.0120 |  |
| Etan – Base | 46,337         | 184                  | 1.8969            | 0.0163 |  |
| Ad+M – Base | 33,846         | 152                  | 1.1080            | 0.0128 |  |
| Et+M – Base | 46,704         | 185                  | 1.8794            | 0.0166 |  |
| In+M – Base | 33,429         | 145                  | 0.8879            | 0.0125 |  |
| Ad+M – Adal | 575            | 208                  | 0.2647            | 0.0148 |  |
| Et+M – Etan | 366            | 247                  | -0.0175           | 0.0209 |  |
| Etan – Adal | 13,066         | 228                  | 1.0535            | 0.0179 |  |
| Et+M – Ad+M | 12,857         | 229                  | 0.7714            | 0.0185 |  |
| Ad+M – In+M | 417            | 205                  | 0.2201            | 0.0153 |  |
| Et+M – In+M | 13,275         | 226                  | 0.9915            | 0.0185 |  |
| Comparison  | ICER (£ per    | £ per QALY) Quasi-CI |                   | i-Cl   |  |
| Adal – Base | 39,50          | 0                    | 38,300 to 40,700  |        |  |
| Etan – Base | 24,40          | 0                    | 24,000 to 24,900  |        |  |
| Ad+M – Base | 30,50          | 0                    | 29,800 to 31,300  |        |  |
| Et+M – Base | 24,90          | 0                    | 24,400 to 25,300  |        |  |
| In+M – Base | 37,60          | 0                    | 36,600 to 38,800  |        |  |
| Ad+M – Adal | 2,17           | 0                    | 583 to            | 3,760  |  |
| Et+M – Etan |                | Comparisor           | n is inconclusive |        |  |
| Etan – Adal | 12,40          |                      | I I,800 to        | 13,000 |  |
| Et+M – Ad+M | 16,70          | 0                    | 15,700 to         |        |  |
| Ad+M - In+M | 1,90           | 0                    |                   | 3,780  |  |
| Et+M - In+M | 13,40          | 0                    | 12,700 to         | 14,100 |  |

For this variation, it was assumed that HAQ progression on all treatments (including palliation) was at 0.03 per year.

 TABLE 102
 Variation 3: TNF inhibitors first (200,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 49,569         | 72  | 9.7112     | 0.0131 |
| Etan        | 63,858         | 87  | 9.8759     | 0.0133 |
| Adal+MTX    | 49,774         | 73  | 9.2703     | 0.0124 |
| Etan+MTX    | 64,028         | 88  | 9.5070     | 0.0128 |
| Infl+MTX    | 49,024         | 69  | 9.1106     | 0.0125 |
| Base        | 15,432         | 15  | 9.4317     | 0.0127 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 34,137         | 71  | 0.2796     | 0.0127 |
| Etan – Base | 48,426         | 85  | 0.4442     | 0.0129 |
| Ad+M – Base | 34,342         | 72  | -0.1614    | 0.0124 |
| Et+M – Base | 48,596         | 86  | 0.0754     | 0.0127 |
|             | 22.502         | 68  | -0.3210    | 0.0124 |
| In+M – Base | 33,592         | 00  | -0.5210    |        |

**TABLE 102** Variation 3: TNF inhibitors first (200,000 patients) (cont'd)

| Et+M – Etan | 170                     | 116                      | -0.3689                     | 0.0130   |
|-------------|-------------------------|--------------------------|-----------------------------|----------|
| Etan – Adal | 14,288                  | 107                      | 0.1647                      | 0.0130   |
| Et+M - Ad+M | 14,254                  | 109                      | 0.2368                      | 0.0124   |
| Ad+M - In+M | 750                     | 97                       | 0.1596                      | 0.0121   |
| Et+M – In+M | 15,004                  | 107                      | 0.3964                      | 0.0124   |
| Comparison  | ICER (£ po              | er QALY)                 | Quasi-CI                    |          |
| Adal – Base | 122,000                 |                          | 112,000 to 134,000          |          |
| Etan – Base | 109,                    | 000 103,000 to 116,000   |                             | 116,000  |
| Ad+M – Base |                         | Base domina              | tes Adal+MTX                |          |
| Et+M - Base | 645,                    | 000                      | 483,000 to 971,000          |          |
| In+M - Base | Base dominates Infl+MTX |                          |                             |          |
| Ad+M - Adal |                         | Adal alone dom           | inates Adal+MTX             |          |
| Et+M - Etan | Etan alo                | ne more effective than E | tan+MTX; diff. cost not sig | nificant |
| Etan – Adal | 86,                     | 800                      | 74,900 to                   | 103,000  |
| Et+M - Ad+M | 60,                     | 200                      | 54,400 to                   | 67,300   |
| Ad+M - In+M | 4,                      | 700                      | 3,290 to                    | 6,110    |
| Et+M - In+M | 37.                     | 900                      | 35.600 to                   | 40.500   |

 TABLE 103
 Variation 3: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                             | QSE      |  |
|-------------|---------------------|------------------------|-----------------------------------|----------|--|
| Adal        | 48,353              | 98                     | 7.1282                            | 0.0162   |  |
| Etan        | 61,090              | 119                    | 7.5230                            | 0.0169   |  |
| Adal+MTX    | 48,521              | 98                     | 7.2854                            | 0.0163   |  |
| Etan+MTX    | 61,314              | 119                    | 7.6104                            | 0.0169   |  |
| Infl+MTX    | 48,159              | 94                     | 7.2431                            | 0.0162   |  |
| Base        | 16,597              | 23                     | 6.5465                            | 0.0157   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 31,756              | 96                     | 0.5816                            | 0.0153   |  |
| Etan – Base | 44,493              | 115                    | 0.9765                            | 0.0160   |  |
| Ad+M – Base | 31,924              | 96                     | 0.7389                            | 0.0153   |  |
| Et+M - Base | 44,717              | 116                    | 1.0639                            | 0.0160   |  |
| In+M - Base | 31,562              | 92                     | 0.6966                            | 0.0153   |  |
| Ad+M – Adal | 169                 | 131                    | 0.1573                            | 0.0157   |  |
| Et+M - Etan | 224                 | 155                    | 0.0874                            | 0.0169   |  |
| Etan – Adal | 12,737              | 144                    | 0.3948                            | 0.0164   |  |
| Et+M – Ad+M | 12,792              | 144                    | 0.3250                            | 0.0163   |  |
| Ad+M – In+M | 363                 | 128                    | 0.0423                            | 0.0157   |  |
| Et+M – In+M | 13,155              | 141                    | 0.3673                            | 0.0163   |  |
| Comparison  | ICER (£ per         | r QALY)                | Quasi-CI                          |          |  |
| Adal – Base | 54,60               |                        | 51,900 to 57,700                  |          |  |
| Etan – Base | 45,60               | 00                     | 44,100 to 47,100                  |          |  |
| Ad+M – Base | 43,20               | 00                     | 41,500 to 45,100                  |          |  |
| Et+M – Base | 42,00               | 00                     | 40,800 to 43,400                  |          |  |
| In+M – Base | 45,30               | 00                     | 43,400 to                         | 47,400   |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | n Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan | Etan+M <sup>-</sup> | TX more effective than | n Etan alone; diff. cost not sign | nificant |  |
| Etan – Adal | 32,30               | 00                     | 29,700 to                         | 35,300   |  |
| Et+M – Ad+M | 39,40               | 00                     | 35,700 to                         | 43,900   |  |
| Ad+M – In+M | 8,57                | 70                     | Not dete                          | ermined  |  |
| Et+M - In+M | 35,80               | 00                     | 32,800 to                         | 39,400   |  |

 TABLE 104
 Variation 3: TNF inhibitors third (late RA values) (200,000 patients)

| Option      | Cost (£)       | QSE        | QALYs              | QSE    |
|-------------|----------------|------------|--------------------|--------|
| Adal        | 47,618         | 69         | 6.4691             | 0.0115 |
| Etan        | 60,491         | 84         | 7.0178             | 0.0117 |
| Adal+MTX    | 48,013         | 69         | 6.7402             | 0.0114 |
| Etan+MTX    | 60,620         | 84         | 7.0029             | 0.0119 |
| Infl+MTX    | 47,539         | 66         | 6.5037             | 0.0115 |
| Base        | 16,572         | 16         | 6.5310             | 0.0111 |
| Comparison  | Diff. cost (£) | QSE        | Diff. QALY         | QSE    |
| Adal – Base | 31,046         | 67         | -0.0620            | 0.0105 |
| Etan – Base | 43,919         | 81         | 0.4868             | 0.0109 |
| Ad+M – Base | 31,441         | 68         | 0.2092             | 0.0106 |
| Et+M – Base | 44,048         | 82         | 0.4719             | 0.0111 |
| In+M – Base | 30,966         | 65         | -0.0274            | 0.0105 |
| Ad+M – Adal | 394            | 91         | 0.2712             | 0.0106 |
| Et+M – Etan | 130            | 109        | -0.0148            | 0.0115 |
| Etan – Adal | 12,872         | 100        | 0.5487             | 0.0110 |
| Et+M – Ad+M | 12,608         | 101        | 0.2627             | 0.0111 |
| Ad+M – In+M | 474            | 90         | 0.2366             | 0.0106 |
| Et+M – In+M | 13,082         | 99         | 0.4993             | 0.0112 |
| Comparison  | ICER (£ per Q  | ALY)       | Quasi              | -CI    |
| Adal – Base |                | Base do    | minates Adal       |        |
| Etan – Base | 90,200         |            | 86,300 to 94,500   |        |
| Ad+M – Base | 150,000        |            | 137,000 to 167,000 |        |
| Et+M – Base | 93,300         |            | 89,100 to 97,900   |        |
| In+M – Base |                | Base domir | nates Infl+MTX     |        |
| Ad+M – Adal | 1,450          |            | 770 to             | 2,140  |
| Et+M – Etan |                | Compariso  | n is inconclusive  |        |
| Etan – Adal | 23,500         | •          | 22,500 to          | 24,500 |
| Et+M – Ad+M | 48,000         |            | 44,200 to          | 52,500 |
| Ad+M - In+M | 2,000          |            | 1,230 to           | 2,780  |
| Et+M - In+M | 26,200         |            | 25,000 to          | 27,500 |

 TABLE 105
 Variation 3: TNF inhibitors last (20,000 patients)

| Option          | Cost (£)       | QSE | QALYs      | QSE    |
|-----------------|----------------|-----|------------|--------|
| Adal            | 36,505         | 217 | 3.0616     | 0.0268 |
| Etan            | 49,138         | 263 | 3.9234     | 0.0289 |
| Adal+MTX        | 36,861         | 219 | 3.3262     | 0.0268 |
| Etan+MTX        | 48,704         | 263 | 3.8854     | 0.0295 |
| Infl+MTX        | 36,554         | 210 | 3.0937     | 0.0273 |
| Base            | 2,913          | 12  | 2.5375     | 0.0256 |
| Comparison      | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base     | 33,591         | 214 | 0.5241     | 0.0188 |
| Etan – Base     | 46,224         | 260 | 1.3859     | 0.0237 |
| Ad+M – Base     | 33,947         | 217 | 0.7887     | 0.0196 |
| Et+M – Base     | 45,790         | 260 | 1.3479     | 0.0238 |
| In+M - Base     | 33,640         | 208 | 0.5562     | 0.0192 |
| Ad+M – Adal     | 356            | 297 | 0.2646     | 0.0216 |
| Etan – Et+M     | 434            | 348 | 0.0380     | 0.0290 |
| Etan – Adal     | 12,633         | 323 | 0.8618     | 0.0255 |
| Et+M - Ad+M     | 11,843         | 326 | 0.5592     | 0.0260 |
| LLTI'I - AUTI'I |                | 202 | 0.2325     | 0.0222 |
| In+M - Ad+M     | 307            | 292 | 0.2323     | 0.0222 |

TABLE 105 Variation 3: TNF inhibitors last (20,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)               | Quasi-CI                              |
|-------------|---------------------------------|---------------------------------------|
| Adal – Base | 64,100                          | 59,700 to 69,100                      |
| Etan – Base | 33,400                          | 32,200 to 34,600                      |
| Ad+M - Base | 43,000                          | 40,900 to 45,400                      |
| Et+M - Base | 34,000                          | 32,800 to 35,300                      |
| In+M - Base | 60,500                          | 56,500 to 65,000                      |
| Ad+M – Adal | Adal+MTX more effective than A  | dal alone; diff. cost not significant |
| Etan – Et+M | Comparison is                   |                                       |
| Etan – Adal | 14,700                          | 13,600 to 15,900                      |
| Et+M - Ad+M | 21,200                          | 19,100 to 23,700                      |
| In+M - Ad+M | Adal+MTX more effective than Ir | nfl+MTX; diff. cost not significant   |
| Et+M - In+M | 15,300                          | 14,200 to 16,800                      |

For this variation, it was assumed that HAQ progression on all treatments was at 0.06 per year.

**TABLE 106** Variation 4: TNF inhibitors first (1,000,000 patients)

| Option      | Cost (£)       | QSE            | QALYs            | QSE     |
|-------------|----------------|----------------|------------------|---------|
| Adal        | 49,224         | 32             | 7.7643           | 0.0046  |
| Etan        | 63,281         | 39             | 7.8800           | 0.0047  |
| Adal+MTX    | 49,404         | 32             | 7.3785           | 0.0044  |
| Etan+MTX    | 63,465         | 39             | 7.5377           | 0.0045  |
| Infl+MTX    | 48,751         | 31             | 7.2236           | 0.0044  |
| Base        | 15,234         | 7              | 7.3969           | 0.0044  |
| Comparison  | Diff. cost (£) | QSE            | Diff. QALY       | QSE     |
| Adal – Base | 33,990         | 31             | 0.3674           | 0.0049  |
| Etan – Base | 48,047         | 38             | 0.4830           | 0.0050  |
| Ad+M – Base | 34,170         | 32             | -0.0185          | 0.0048  |
| Et+M – Base | 48,231         | 38             | 0.1408           | 0.0049  |
| In+M – Base | 33,517         | 30             | -0.1733          | 0.0048  |
| Ad+M – Adal | 180            | 44             | -0.3858          | 0.0049  |
| Et+M - Etan | 184            | 51             | -0.3423          | 0.0050  |
| Etan – Adal | 14,057         | 47             | 0.1157           | 0.0050  |
| Et+M - Ad+M | 14,061         | 48             | 0.1592           | 0.0048  |
| In+M – Ad+M | 653            | 43             | 0.1548           | 0.0047  |
| Et+M – In+M | 14,714         | 47             | 0.3141           | 0.0048  |
| Comparison  | ICER (£ pe     | r QALY)        | Quas             | i-Cl    |
| Adal – Base | 92,5           | 500            | 90,100 to        | 95,100  |
| Etan – Base | 99,5           | 500            | 97,500 to        | 102,000 |
| Ad+M – Base |                | Base domina    | ates Adal+MTX    |         |
| Et+M – Base | 343,0          | 000            | 320,000 to       | 368,000 |
| In+M – Base |                | Base domin     | nates Infl+MTX   |         |
| Ad+M – Adal |                | Adal alone don | ninates Adal+MTX |         |
| Et+M – Etan |                | Etan alone don | ninates Etan+MTX |         |
| Etan – Adal | 122,0          | 000            | 112,000 to       | 133,000 |
| Et+M – Ad+M | 88,3           | 300            | 83,200 to        | 94,000  |
| In+M – Ad+M | 4,2            | 20             | 3,610 to         | 4,830   |
| Et+M - In+M | 46,9           | 000            | 45,400 to        | 48,400  |

 TABLE 107
 Variation 4: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 48,100              | 97                     | 5.2549                          | 0.0131   |  |
| Etan        | 60,598              | 117                    | 5.5899                          | 0.0135   |  |
| Adal+MTX    | 48,344              | 98                     | 5.4002                          | 0.0129   |  |
| Etan+MTX    | 60,707              | 118                    | 5.6922                          | 0.0135   |  |
| Infl+MTX    | 47,877              | 93                     | 5.3595                          | 0.0130   |  |
| Base        | 16,461              | 23                     | 4.6139                          | 0.0125   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 31,639              | 95                     | 0.6409                          | 0.0136   |  |
| Etan – Base | 44,137              | 114                    | 0.9759                          | 0.0141   |  |
| Ad+M – Base | 31,883              | 96                     | 0.7863                          | 0.0136   |  |
| Et+M – Base | 44,246              | 115                    | 1.0782                          | 0.0142   |  |
| In+M – Base | 31,415              | 91                     | 0.7455                          | 0.0135   |  |
| Ad+M – Adal | 244                 | 130                    | 0.1454                          | 0.0141   |  |
| Et+M – Etan | 109                 | 153                    | 0.1023                          | 0.0150   |  |
| Etan – Adal | 12,498              | 142                    | 0.3350                          | 0.0145   |  |
| Et+M - Ad+M | 12,363              | 142                    | 0.2919                          | 0.0145   |  |
| Ad+M – In+M | 467                 | 127                    | 0.0408                          | 0.0140   |  |
| Et+M – In+M | 12,831              | 141                    | 0.3327                          | 0.0145   |  |
| Comparison  | ICER (£ pe          | r QALY)                | Quas                            | si-CI    |  |
| Adal – Base | 49,40               | 00                     | 47,300 to 51,600                |          |  |
| Etan – Base | 45,20               | 00                     | 43,900 to 46,600                |          |  |
| Ad+M – Base | 40,50               | 00                     | 39,200 to 42,000                |          |  |
| Et+M – Base | 41,00               | 00                     | 40,000 to 42,200                |          |  |
| In+M - Base | 42,10               | 00                     | 40,600 to                       | 43,700   |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan | Etan+M <sup>-</sup> | TX more effective than | Etan alone; diff. cost not sign | nificant |  |
| Etan – Adal | 37,30               | 00                     | 34,200 to                       | 41,000   |  |
| Et+M - Ad+M | 42,40               | 00                     | 38,400 to                       | 47,200   |  |
| Ad+M – In+M | 11,50               | 00                     | 6,110 to                        | 92,700   |  |
| Et+M - In+M | 38,60               | 00                     | 35,400 to                       | 42,400   |  |

 TABLE 108
 Variation 4: TNF inhibitors third (late RA values) (200,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 47,417         | 68  | 4.5550     | 0.0092 |
| Etan        | 59,961         | 83  | 5.0714     | 0.0094 |
| Adal+MTX    | 47,781         | 69  | 4.8287     | 0.0091 |
| Etan+MTX    | 60,035         | 83  | 5.0689     | 0.0095 |
| Infl+MTX    | 47,068         | 66  | 4.5821     | 0.0092 |
| Base        | 16,382         | 16  | 4.6147     | 0.0088 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 31,034         | 67  | -0.0596    | 0.0093 |
| Etan – Base | 43,579         | 80  | 0.4568     | 0.0097 |
| Ad+M – Base | 31,399         | 67  | 0.2141     | 0.0093 |
| Et+M - Base | 43,652         | 81  | 0.4542     | 0.0097 |
| In+M – Base | 30,686         | 64  | -0.0325    | 0.0093 |
| Ad+M – Adal | 364            | 90  | 0.2737     | 0.0093 |
| Et+M – Etan | 73             | 107 | -0.0025    | 0.0101 |
| Etan – Adal | 12,545         | 99  | 0.5164     | 0.0097 |
| Et+M - Ad+M | 12,254         | 100 | 0.2402     | 0.0098 |
| In+M - Ad+M | 713            | 89  | 0.2466     | 0.0094 |
|             | 12,967         | 98  | 0.4867     | 0.0098 |

TABLE 108 Variation 4: TNF inhibitors third (late RA values) (200,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)   | Quasi-CI           |
|-------------|---------------------|--------------------|
| Adal – Base | Base dominates Adal |                    |
| Etan – Base | 95,400              | 91,500 to 99,600   |
| Ad+M – Base | 147,000             | 135,000 to 161,000 |
| Et+M - Base | 96,100              | 92,100 to 100,000  |
| In+M - Base | Base domi           | nates Infl+MTX     |
| Ad+M – Adal | 1,330               | 665 to 2,000       |
| Et+M - Etan | Compariso           | on is inconclusive |
| Etan – Adal | 24,300              | 23,300 to 25,300   |
| Et+M - Ad+M | 51,000              | 47,100 to 55,700   |
| In+M - Ad+M | 2,890               | 2,140 to 3,640     |
| Et+M - In+M | 26,600              | 25,500 to 27,800   |

**TABLE 109** Variation 4: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                             | QSE     |
|-------------|----------------|------------------------|-----------------------------------|---------|
| Adal        | 35,868         | 213                    | 1.0425                            | 0.0190  |
| Etan        | 48,695         | 259                    | 1.9916                            | 0.0222  |
| Adal+MTX    | 36,319         | 215                    | 1.3258                            | 0.0191  |
| Etan+MTX    | 48,859         | 259                    | 2.0122                            | 0.0229  |
| Infl+MTX    | 35,780         | 206                    | 1.0933                            | 0.0194  |
| Base        | 2,833          | П                      | 0.4757                            | 0.0166  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                        | QSE     |
| Adal – Base | 33,035         | 211                    | 0.5668                            | 0.0142  |
| Etan – Base | 45,863         | 256                    | 1.5159                            | 0.0195  |
| Ad+M – Base | 33,486         | 213                    | 0.8501                            | 0.0149  |
| Et+M - Base | 46,027         | 256                    | 1.5365                            | 0.0203  |
| In+M - Base | 32,947         | 204                    | 0.6176                            | 0.0149  |
| Ad+M – Adal | 451            | 291                    | 0.2834                            | 0.0179  |
| Et+M – Etan | 164            | 339                    | 0.0206                            | 0.0258  |
| Etan – Adal | 12,827         | 321                    | 0.9492                            | 0.0217  |
| Et+M - Ad+M | 12,541         | 320                    | 0.6864                            | 0.0231  |
| Ad+M – In+M | 539            | 287                    | 0.2325                            | 0.0186  |
| Et+M – In+M | 13,080         | 316                    | 0.9189                            | 0.0231  |
| Comparison  | ICER (£ per    | · QALY)                | Quas                              | i-CI    |
| Adal – Base | 58,30          | 0                      | 55,400 to 61,500                  |         |
| Etan – Base | 30,30          | 0                      | 29,400 to 31,100                  |         |
| Ad+M – Base | 39,40          | 0                      | 38,000 to 40,900                  |         |
| Et+M – Base | 30,00          | 0                      | 29,100 to 30,800                  |         |
| In+M – Base | 53,30          | 0                      | 50,800 to                         | 56,100  |
| Ad+M – Adal | Adal+M7        | TX more effective than | n Adal alone; diff. cost not sign | ificant |
| Et+M – Etan |                | Comparisor             | n is inconclusive                 |         |
| Etan – Adal | 13,50          | 0                      | 12,600 to                         | 14,400  |
| Et+M - Ad+M | 18,30          | 0                      | 16,800 to                         | 20,000  |
| Ad+M – In+M | Adal+M7        | TX more effective than | n Infl+MTX; diff. cost not sign   | ificant |
| Et+M - In+M | 14,20          | 0                      | 13,300 to                         | 15,300  |

For this variation, no effect of HAQ on mortality was assumed.

**TABLE 110** Variation 5: TNF inhibitors first (2,000,000 patients)

| Option      | Cost (£)       | QSE                     | QALYs                         | QSE       |
|-------------|----------------|-------------------------|-------------------------------|-----------|
| Adal        | 51,012         | 23                      | 9.3150                        | 0.0038    |
| Etan        | 65,955         | 28                      | 9.6947                        | 0.0040    |
| Adal+MTX    | 50,983         | 23                      | 8.7897                        | 0.0036    |
| Etan+MTX    | 66,074         | 28                      | 9.2429                        | 0.0039    |
| Infl+MTX    | 50,480         | 22                      | 8.6424                        | 0.0036    |
| Base        | 16,139         | 5                       | 8.6245                        | 0.0036    |
| Comparison  | Diff. cost (£) | QSE                     | Diff. QALY                    | QSE       |
| Adal – Base | 34,873         | 23                      | 0.6905                        | 0.0039    |
| Etan – Base | 49,817         | 28                      | 1.0702                        | 0.0040    |
| Ad+M – Base | 34,844         | 23                      | 0.1652                        | 0.0038    |
| Et+M - Base | 49,935         | 28                      | 0.6185                        | 0.0040    |
| In+M - Base | 34,341         | 22                      | 0.0179                        | 0.0038    |
| Adal – Ad+M | 29             | 32                      | 0.5253                        | 0.0039    |
| Et+M – Etan | 118            | 38                      | -0.4518                       | 0.004     |
| Etan – Adal | 14,943         | 35                      | 0.3797                        | 0.004     |
| Et+M - Ad+M | 15,091         | 35                      | 0.4533                        | 0.0040    |
| Ad+M – In+M | 503            | 31                      | 0.1473                        | 0.0038    |
| Et+M – In+M | 15,594         | 35                      | 0.6005                        | 0.0040    |
| Comparison  | ICER (£ per    | · QALY)                 | Quas                          | i-CI      |
| Adal – Base | 50,5           | 500                     | 49,900 to 51,100              |           |
| Etan – Base | 46,5           | 500                     | 46,200 to 46,900              |           |
| Ad+M – Base | 211,0          | 000                     | 202,000 to 221,000            |           |
| Et+M – Base | 80,7           | 700                     | 79,700 to 81,800              |           |
| In+M - Base | 1,910,0        | 000                     | 1,340,000 to                  | 3,340,000 |
| Adal – Ad+M | Adal alon      | e more effective than . | Adal+MTX; diff. cost not sign | ificant   |
| Et+M – Etan |                | Etan alone don          | ninates Etan+MTX              |           |
| Etan – Adal | 39,4           | 100                     | 38,500 to                     |           |
| Et+M - Ad+M | 33,3           | 300                     | 32,700 to                     | 33,900    |
| Ad+M - In+M | 3,4            | 110                     | 2,950 to                      | 3,870     |
| Et+M – In+M | 26,0           | 000                     | 25,600 to                     | 26,300    |

**TABLE III** Variation 5: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 49,798         | 100 | 6.3972     | 0.0153 |
| Etan        | 63,034         | 121 | 6.9544     | 0.0163 |
| Adal+MTX    | 49,814         | 100 | 6.5335     | 0.0153 |
| Etan+MTX    | 62,915         | 121 | 7.0522     | 0.0163 |
| Infl+MTX    | 49,551         | 96  | 6.4934     | 0.0153 |
| Base        | 17,285         | 23  | 5.3888     | 0.0142 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 32,513         | 98  | 1.0083     | 0.0152 |
| Etan – Base | 45,749         | 118 | 1.5656     | 0.0161 |
| Ad+M – Base | 32,529         | 98  | 1.1447     | 0.0152 |
| Et+M – Base | 45,630         | 118 | 1.6634     | 0.0162 |
| In+M – Base | 32,266         | 94  | 1.1046     | 0.0152 |
| Ad+M – Adal | 16             | 134 | 0.1364     | 0.0158 |
|             | 1.10           | 158 | -0.0978    | 0.0173 |
| Etan – Et+M | 119            | 130 | -0.0770    | 0.0173 |

TABLE III Variation 5: TNF inhibitors third (early RA values) (100,000 patients) (cont'd)

| Et+M – Ad+M | 13,101     | 148                     | 0.5187                                      | 0.0166    |                  |  |
|-------------|------------|-------------------------|---------------------------------------------|-----------|------------------|--|
| Ad+M - In+M | 263        | 131                     | 0.0401                                      | 0.0158    |                  |  |
| Et+M – In+M | 13,364     | 145                     | 0.5588                                      | 0.0166    |                  |  |
| Comparison  | ICER (£ pe | er QALY)                | Quas                                        | si-CI     |                  |  |
| Adal – Base | 32,200     |                         | 32,200 31,300 to 33,300                     |           |                  |  |
| Etan – Base | 29,200     |                         | ,200 28,600 to 29,900                       |           | 28,600 to 29,90  |  |
| Ad+M – Base | 28,400     |                         | 0 27,700 to 29,200                          |           | 27,700 to 29,200 |  |
| Et+M - Base | 27,400     |                         | 26,900 to 28,000                            |           |                  |  |
| In+M - Base | 29,2       | .00                     | 28,400 to 30,100                            |           |                  |  |
| Ad+M – Adal | Adal+M     | 1TX more effective than | than Adal alone; diff. cost not significant |           |                  |  |
| Et+M - Etan | Etan+M     | 1TX more effective than | Etan alone; diff. cost not sign             | nificant  |                  |  |
| Etan – Adal | 23,8       | 800                     | 22,300                                      | to 25,400 |                  |  |
| Et+M - Ad+M | 25,3       | 00                      | 23,700                                      | to 27,100 |                  |  |
| Ad+M – In+M | 6,5        | 60                      | Dominates                                   | to 14,900 |                  |  |
| Et+M - In+M | 23,9       | 000                     | 22.500                                      | to 25,500 |                  |  |

 TABLE 112
 Variation 5: TNF inhibitors third (late RA values) (100,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 49,757              | 99                     | 5.7131                          | 0.0151   |  |
| Etan        | 62,853              | 121                    | 6.4337                          | 0.0159   |  |
| Adal+MTX    | 49,833              | 100                    | 5.9854                          | 0.0151   |  |
| Etan+MTX    | 62,864              | 121                    | 6.4188                          | 0.0162   |  |
| Infl+MTX    | 49,590              | 96                     | 5.7287                          | 0.0152   |  |
| Base        | 17,271              | 23                     | 5.3807                          | 0.0142   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 32,487              | 98                     | 0.3324                          | 0.0145   |  |
| Etan – Base | 45,582              | 118                    | 1.0530                          | 0.0154   |  |
| Ad+M – Base | 32,562              | 98                     | 0.6047                          | 0.0146   |  |
| Et+M - Base | 45,594              | 118                    | 1.0381                          | 0.0157   |  |
| In+M – Base | 32,319              | 94                     | 0.3481                          | 0.0146   |  |
| Ad+M – Adal | 75                  | 134                    | 0.2723                          | 0.0147   |  |
| Et+M - Etan | 11                  | 158                    | -0.0149                         | 0.0164   |  |
| Etan – Adal | 13,096              | 147                    | 0.7206                          | 0.0154   |  |
| Et+M - Ad+M | 13,032              | 148                    | 0.4334                          | 0.0158   |  |
| Ad+M – In+M | 243                 | 131                    | 0.2566                          | 0.0148   |  |
| Et+M – In+M | 13,274              | 145                    | 0.6900                          | 0.0158   |  |
| Comparison  | ICER (£ per         | ICER (£ per QALY)      |                                 | Quasi-CI |  |
| Adal – Base | 97,70               | 00                     | 89,900 to 107,000               |          |  |
| Etan – Base | 43,30               | 00                     | 42,000 to 44,600                |          |  |
| Ad+M – Base | 53,80               | 00                     | 51,400 to 56,600                |          |  |
| Et+M – Base | 43,90               | 00                     | 42,600 to 45,300                |          |  |
| In+M – Base | 92,90               | 00                     | 85,600 to                       | 101,000  |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                     | Comparisor             | n is inconclusive               |          |  |
| Etan – Adal | 18,20               |                        | 17,300 to                       | 19,100   |  |
| Et+M - Ad+M | 30,10               | 00                     | 27,900 to                       | 32,600   |  |
| Ad+M - In+M | Adal+M <sup>-</sup> | TX more effective than | Infl+MTX; diff. cost not sign   | nificant |  |
| Et+M - In+M | 19,20               | 00                     | 18,300 to                       | 20,300   |  |

**TABLE 113** Variation 5: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                           | QSE      |  |
|-------------|----------------|------------------------|---------------------------------|----------|--|
| Adal        | 38,154         | 224                    | 1.6229                          | 0.0230   |  |
| Etan        | 51,491         | 271                    | 2.8279                          | 0.0280   |  |
| Adal+MTX    | 37,604         | 223                    | 1.9000                          | 0.0234   |  |
| Etan+MTX    | 51,024         | 270                    | 2.7969                          | 0.0282   |  |
| Infl+MTX    | 37,743         | 213                    | 1.6469                          | 0.0235   |  |
| Base        | 3,258          | 12                     | 0.7532                          | 0.0194   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 34,896         | 223                    | 0.8697                          | 0.0163   |  |
| Etan – Base | 48,233         | 269                    | 2.0746                          | 0.0237   |  |
| Ad+M – Base | 34,346         | 221                    | 1.1468                          | 0.0174   |  |
| Et+M – Base | 47,766         | 267                    | 2.0437                          | 0.0243   |  |
| In+M – Base | 34,485         | 212                    | 0.8937                          | 0.0172   |  |
| Adal – Ad+M | 550            | 305                    | -0.2771                         | 0.0207   |  |
| Etan – Et+M | 467            | 360                    | 0.0309                          | 0.0311   |  |
| Etan – Adal | 13,338         | 335                    | 1.2049                          | 0.0258   |  |
| Et+M-Ad+M   | 13,420         | 334                    | 0.8970                          | 0.0272   |  |
| In+M – Ad+M | 139            | 298                    | -0.2530                         | 0.0214   |  |
| Et+M – In+M | 13,281         | 329                    | 1.1500                          | 0.0269   |  |
| Comparison  | ICER (£ per    | r QALY)                | Quas                            | i-CI     |  |
| Adal – Base | 40,10          | 00                     | 38,600 to 41,800                |          |  |
| Etan – Base | 23,20          | 00                     | 22,700 to 23,900                |          |  |
| Ad+M – Base | 30,00          | 00                     | 29,000 to 31,000                |          |  |
| Et+M – Base | 23,40          | 00                     | 22,800 to 24,000                |          |  |
| In+M – Base | 38,60          | 00                     | 37,100 to 40,200                |          |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                | Compariso              | n is inconclusive               |          |  |
| Etan – Adal | 11,10          |                        | 10,300 to                       | 11,800   |  |
| Et+M – Ad+M | 15,00          | 00                     | 13,900 to                       | 16,200   |  |
| In+M – Ad+M | Adal+M         | TX more effective than | n Infl+MTX; diff. cost not sign | nificant |  |
| Et+M - In+M | 11,50          |                        | 10,800 to                       |          |  |

In this variation, a mortality ratio of 2.73 HAQ was assumed, as reported by Sokka and colleagues. 199

TABLE 114 Variation 6: TNF inhibitors first (200,000 patients)

| Option          | Cost (£)       | QSE | QALYs      | QSE    |
|-----------------|----------------|-----|------------|--------|
| Adal            | 45,580         | 69  | 7.9578     | 0.0116 |
| Etan            | 58,199         | 84  | 8.2524     | 0.0121 |
| Adal+MTX        | 46,298         | 71  | 7.7037     | 0.0110 |
| Etan+MTX        | 58,780         | 85  | 8.0276     | 0.0116 |
| Infl+MTX        | 45,229         | 67  | 7.5142     | 0.0110 |
| Base            | 13,334         | 15  | 7.4406     | 0.0107 |
| Comparison      | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base     | 32,246         | 68  | 0.5172     | 0.0113 |
| Etan – Base     | 44,866         | 81  | 0.8118     | 0.0116 |
| Ad+M – Base     | 32,965         | 69  | 0.2631     | 0.0110 |
| Et+M – Base     | 45,447         | 82  | 0.5870     | 0.0114 |
| In+M – Base     | 31,896         | 65  | 0.0737     | 0.0109 |
| III I II - Dasc |                |     | 0.2541     | 0.0113 |
| Ad+M – Adal     | 718            | 93  | -0.2541    | 0.0113 |

TABLE 114 Variation 6: TNF inhibitors first (200,000 patients) (cont'd)

| Etan – Adal | 12,620     | 101                           | 0.2947                  | 0.0119 |  |
|-------------|------------|-------------------------------|-------------------------|--------|--|
| Et+M - Ad+M | 12,482     | 103                           | 0.3239                  | 0.0115 |  |
| Ad+M - In+M | 1,069      | 92                            | 0.1895                  | 0.0110 |  |
| Et+M - In+M | 13,551     | 101                           | 0.5134                  | 0.0115 |  |
| Comparison  | ICER (£ po | er QALY)                      | Quas                    | si-CI  |  |
| Adal – Base | 62,300     |                               | 62,300 59,700 to 65,200 |        |  |
| Etan – Base | 55,300     |                               | 53,700 to 56,900        |        |  |
| Ad+M – Base | 125,000    |                               | 116,000 to 137,000      |        |  |
| Et+M - Base | 77,400     |                               | 74,500 to 80,600        |        |  |
| In+M - Base | 433,       | 000                           | 334,000 to 615,000      |        |  |
| Ad+M – Adal |            | Adal alone dominates Adal+MTX |                         |        |  |
| Et+M - Etan |            | Etan alone domi               | nates Etan+MTX          |        |  |
| Etan – Adal | 42,        | 800                           | 39,600 to               | 46,700 |  |
| Et+M - Ad+M | 38,        | 500                           | 35,900 to               | 41,600 |  |
| Ad+M - In+M | 5,         | 640                           | 4,470 to                | 6,810  |  |
| Et+M - In+M | 26,        | 400                           | 25,200 to               | 27.700 |  |

 TABLE 115
 Variation 6: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                        | QSE     |  |
|-------------|----------------|------------------------|------------------------------|---------|--|
| Adal        | 44,583         | 95                     | 5.9748                       | 0.0143  |  |
| Etan        | 56,078         | 114                    | 6.4647                       | 0.0153  |  |
| Adal+MTX    | 45,074         | 95                     | 6.1281                       | 0.0143  |  |
| Etan+MTX    | 56,534         | 115                    | 6.5723                       | 0.0153  |  |
| Infl+MTX    | 44,746         | 91                     | 6.1093                       | 0.0142  |  |
| Base        | 14,431         | 22                     | 5.1390                       | 0.0129  |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                   | QSE     |  |
| Adal – Base | 30,152         | 92                     | 0.8358                       | 0.0140  |  |
| Etan – Base | 41,647         | 110                    | 1.3256                       | 0.0149  |  |
| Ad+M – Base | 30,643         | 93                     | 0.9890                       | 0.0140  |  |
| Et+M - Base | 42,103         | Ш                      | 1.4333                       | 0.0150  |  |
| In+M – Base | 30,315         | 89                     | 0.9703                       | 0.0140  |  |
| Ad+M – Adal | 492            | 125                    | 0.1533                       | 0.0148  |  |
| Et+M – Etan | 456            | 147                    | 0.1076                       | 0.0163  |  |
| Etan – Adal | 11,495         | 136                    | 0.4899                       | 0.0154  |  |
| Et+M - Ad+M | 11,460         | 138                    | 0.4442                       | 0.0155  |  |
| Ad+M – In+M | 328            | 123                    | 0.0188                       | 0.0148  |  |
| Et+M – In+M | 11,788         | 135                    | 0.4630                       | 0.0155  |  |
| Comparison  | ICER (£ per    | ICER (£ per QALY)      |                              | i-Cl    |  |
| Adal – Base | 36,10          | 00                     | 34,900 to 37,300             |         |  |
| Etan – Base | 31,40          | 00                     | 30,700 to 32,200             |         |  |
| Ad+M – Base | 31,00          |                        | 30,100 to 31,900             |         |  |
| Et+M – Base | 29,40          | 00                     | 28,800 to 30,000             |         |  |
| In+M – Base | 31,20          |                        | 30,300 to                    | •       |  |
| Ad+M – Adal | 3,21           | 0                      | 1,460 to                     | 4,950   |  |
| Et+M – Etan | 4,24           | 10                     | 1,220 to                     | 7,260   |  |
| Etan – Adal | 23,50          | 00                     | 22,000 to                    | 25,200  |  |
| Et+M – Ad+M | 25,80          | 00                     | 24,000 to                    | 27,900  |  |
| Ad+M – In+M | Adal+M         | TX more costly than Ir | nfl+MTX; diff. QALY not sign | ificant |  |
| Et+M – In+M | 25,50          | 00                     | 23,800 to                    | 27,400  |  |

 TABLE 116
 Variation 6: TNF inhibitors third (late RA values) (1,000,000 patients)

| Option      | Cost (£)       | QSE                   | QALYs              | QSE     |  |
|-------------|----------------|-----------------------|--------------------|---------|--|
| Adal        | 41,814         | 29                    | 5.1891             | 0.0045  |  |
| Etan        | 54,024         | 36                    | 5.8965             | 0.0047  |  |
| Adal+MTX    | 43,010         | 29                    | 5.4874             | 0.0044  |  |
| Etan+MTX    | 53,985         | 36                    | 5.8899             | 0.0048  |  |
| Infl+MTX    | 41,754         | 28                    | 5.2320             | 0.0045  |  |
| Base        | 14,422         | 7                     | 5.1488             | 0.0041  |  |
| Comparison  | Diff. cost (£) | QSE                   | Diff. QALY         | QSE     |  |
| Adal – Base | 27,392         | 28                    | 0.0403             | 0.0042  |  |
| Etan – Base | 39,602         | 34                    | 0.7477             | 0.0045  |  |
| Ad+M – Base | 28,588         | 28                    | 0.3386             | 0.0043  |  |
| Et+M – Base | 39,563         | 34                    | 0.7410             | 0.0046  |  |
| In+M - Base | 27,333         | 27                    | 0.0832             | 0.0043  |  |
| Ad+M – Adal | 1,196          | 38                    | 0.2983             | 0.0043  |  |
| Etan – Et+M | 39             | 45                    | 0.0066             | 0.0049  |  |
| Etan – Adal | 12,210         | 41                    | 0.7074             | 0.0046  |  |
| Et+M - Ad+M | 10,976         | 42                    | 0.4025             | 0.0047  |  |
| Ad+M – In+M | 1,255          | 37                    | 0.2554             | 0.0044  |  |
| Et+M – In+M | 12,231         | 41                    | 0.6579             | 0.0047  |  |
| Comparison  | ICER (£ per    | ICER (£ per QALY) Qua |                    | si-CI   |  |
| Adal – Base | 680,0          | 00                    | 562,000 to 861,000 |         |  |
| Etan – Base | 53,00          | 00                    | 52,300 to 53,600   |         |  |
| Ad+M – Base | 84,40          | 00                    | 82,400 to 86,600   |         |  |
| Et+M - Base | 53,40          | 00                    | 52,700 to 54,100   |         |  |
| In+M - Base | 329,00         | 00                    | 298,000 to         | 366,000 |  |
| Ad+M – Adal | 4,0            | 10                    | 3,730 to           | 4,290   |  |
| Et+M – Etan |                | Comparisor            | n is inconclusive  |         |  |
| Etan – Adal | 17,30          | 00                    | 17,000 to          | 17,500  |  |
| Et+M - Ad+M | 27,30          | 00                    | 26,600 to          | 28,000  |  |
| Ad+M - In+M | 4,9            | 10                    | 4,580 to           | 5,250   |  |
| Et+M - In+M | 18,60          | 00                    | 18,300 to          | 18,900  |  |

 TABLE 117
 Variation 6: TNF inhibitors last (40,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 31,938         | 141 | 2.3301     | 0.0146 |
| Etan        | 45,099         | 177 | 3.4063     | 0.0183 |
| Adal+MTX    | 33,386         | 144 | 2.5975     | 0.0149 |
| Etan+MTX    | 44,820         | 177 | 3.3885     | 0.0185 |
| Infl+MTX    | 32,290         | 137 | 2.4002     | 0.0151 |
| Base        | 2,037          | 7   | 1.5331     | 0.0116 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 29,901         | 140 | 0.7970     | 0.0111 |
| Etan – Base | 43,061         | 175 | 1.8731     | 0.0158 |
| Ad+M – Base | 31,349         | 143 | 1.0643     | 0.0117 |
| Et+M - Base | 42,783         | 175 | 1.8553     | 0.0161 |
| In+M – Base | 30,253         | 135 | 0.8671     | 0.0117 |
| Ad+M – Adal | 1,448          | 192 | 0.2674     | 0.0142 |
| Etan – Et+M | 278            | 233 | 0.0178     | 0.0210 |
| Etan – Adal | 13,161         | 213 | 1.0762     | 0.0176 |
| Et+M - Ad+M | 11,434         | 216 | 0.7910     | 0.0182 |
| Ad+M – In+M | 1,096          | 189 | 0.1973     | 0.0147 |
| ~~···       |                | 210 | 0.9883     | 0.0183 |

TABLE 117 Variation 6: TNF inhibitors last (40,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY) | Quasi-CI         |
|-------------|-------------------|------------------|
| Adal – Base | 37,500            | 36,500 to 38,600 |
| Etan – Base | 23,000            | 22,600 to 23,400 |
| Ad+M - Base | 29,500            | 28,800 to 30,200 |
| Et+M - Base | 23,100            | 22,600 to 23,500 |
| In+M - Base | 34,900            | 33,900 to 35,900 |
| Ad+M – Adal | 5,420             | 3,870 to 6,970   |
| Et+M - Etan | Comparison i      | s inconclusive   |
| Etan – Adal | 12,200            | 11,700 to 12,800 |
| Et+M - Ad+M | 14,500            | 13,600 to 15,400 |
| Ad+M - In+M | 5,560             | 3,470 to 7,640   |
| Et+M - In+M | 12,700            | 12,100 to 13,300 |

In this variation, the effectiveness of conventional DMARDs was reduced by 50%. This was done by reducing the a parameter for HAQ multiplier by 50%, keeping the value of a+b fixed. For example, for leflunomide a=0.57 and b=0.65. This was changed to a=0.285 and b=0.935.

**TABLE 118** Variation 7: TNF inhibitors first (40,000 patients)

| Option      | Cost (£)            | QSE                     | QALYs                           | QSE      |  |
|-------------|---------------------|-------------------------|---------------------------------|----------|--|
| Adal        | 49,297              | 161                     | 7.5581                          | 0.0248   |  |
| Etan        | 63,619              | 196                     | 8.1659                          | 0.0264   |  |
| Adal+MTX    | 49,206              | 162                     | 7.4410                          | 0.0242   |  |
| Etan+MTX    | 64,015              | 198                     | 8.0980                          | 0.0259   |  |
| Infl+MTX    | 49,286              | 156                     | 7.3395                          | 0.0242   |  |
| Base        | 15,139              | 34                      | 6.5733                          | 0.0234   |  |
| Comparison  | Diff. cost (£)      | QSE                     | Diff. QALY                      | QSE      |  |
| Adal – Base | 34,158              | 158                     | 0.9848                          | 0.0234   |  |
| Etan – Base | 48,480              | 192                     | 1.5926                          | 0.0248   |  |
| Ad+M – Base | 34,067              | 160                     | 0.8677                          | 0.0230   |  |
| Et+M – Base | 48,875              | 193                     | 1.5247                          | 0.0248   |  |
| In+M – Base | 34,147              | 154                     | 0.7662                          | 0.0229   |  |
| Adal – Ad+M | 92                  | 220                     | 0.1171                          | 0.0242   |  |
| Et+M – Etan | 395                 | 261                     | -0.0679                         | 0.0269   |  |
| Etan – Adal | 14,322              | 241                     | 0.6078                          | 0.0257   |  |
| Et+M - Ad+M | 14,809              | 244                     | 0.6570                          | 0.0255   |  |
| In+M – Ad+M | 80                  | 216                     | -0.1015                         | 0.0240   |  |
| Et+M – In+M | 14,729              | 241                     | 0.7585                          | 0.0255   |  |
| Comparison  | ICER (£ per         | r QALY)                 | Quas                            | i-Cl     |  |
| Adal – Base | 34,70               | 00                      | 33,100 to 36,400                |          |  |
| Etan – Base | 30,40               | 00                      | 29,500 to 31,500                |          |  |
| Ad+M – Base | 39,30               |                         | 37,300 to 41,500                |          |  |
| Et+M – Base | 32,10               | 00                      | 31,000 to 33,200                |          |  |
| In+M – Base | 44,60               | 00                      | 42,000 to                       | 47,400   |  |
| Adal – Ad+M | Adal alon           | e more effective than a | Adal+MTX; diff. cost not sigr   | nificant |  |
| Et+M - Etan | Etan alon           | e more effective than I | Etan +MTX; diff. cost not sign  | nificant |  |
| Etan – Adal | 23,60               | 00                      | 21,600 to                       | 25,900   |  |
| Et+M - Ad+M | 22,50               |                         | 20,800 to                       | ,        |  |
| In+M – Ad+M | Adal+M <sup>-</sup> | TX more effective than  | n Infl+MTX; diff. cost not sign | nificant |  |
| Et+M - In+M | 19,40               | 00                      | 18,100 to                       | 21,000   |  |

**TABLE 119** Variation 7: TNF inhibitors third (early RA values) (20,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 48,650              | 222                    | 5.4799                          | 0.0317   |  |
| Etan        | 61,379              | 267                    | 6.2553                          | 0.0344   |  |
| Adal+MTX    | 48,423              | 221                    | 5.6541                          | 0.0319   |  |
| Etan+MTX    | 61,220              | 267                    | 6.2992                          | 0.0345   |  |
| Infl+MTX    | 48,015              | 212                    | 5.5708                          | 0.0316   |  |
| Base        | 16,317              | 52                     | 4.2654                          | 0.0289   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 32,334              | 216                    | 1.2145                          | 0.0287   |  |
| Etan – Base | 45,063              | 260                    | 1.9899                          | 0.0320   |  |
| Ad+M – Base | 32,107              | 216                    | 1.3887                          | 0.0289   |  |
| Et+M – Base | 44,904              | 259                    | 2.0338                          | 0.0320   |  |
| In+M - Base | 31,699              | 207                    | 1.3054                          | 0.0288   |  |
| Adal – Ad+M | 227                 | 294                    | -0.1742                         | 0.0316   |  |
| Etan – Et+M | 159                 | 350                    | -0.0438                         | 0.0365   |  |
| Etan – Adal | 12,729              | 323                    | 0.7754                          | 0.0341   |  |
| Et+M - Ad+M | 12,797              | 325                    | 0.6451                          | 0.0343   |  |
| Ad+M – In+M | 408                 | 289                    | 0.0833                          | 0.0316   |  |
| Et+M – In+M | 13,205              | 319                    | 0.7284                          | 0.0342   |  |
| Comparison  | ICER (£ per         | ICER (£ per QALY)      |                                 | i-Cl     |  |
| Adal – Base | 26,60               | 00                     | 25,400 to 28,000                |          |  |
| Etan – Base | 22,60               | 00                     | 21,900 to 23,400                |          |  |
| Ad+M – Base | 23,10               | 00                     | 22,200 to 24,200                |          |  |
| Et+M – Base | 22,10               | 00                     | 21,400 to 22,800                |          |  |
| In+M – Base | 24,30               | 00                     | 23,200 to                       | 25,500   |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                     | Comparisor             | n is inconclusive               |          |  |
| Etan – Adal | 16,40               |                        | 14,900 to                       | 18,300   |  |
| Et+M - Ad+M | 19,80               | 00                     | 17,700 to                       | 22,500   |  |
| Ad+M - In+M | Adal+M <sup>-</sup> | TX more effective than | n Infl+MTX; diff. cost not sign | nificant |  |
| Et+M – In+M | 18,10               | 00                     | 16,400 to                       | 20,300   |  |

TABLE 120 Variation 7: TNF inhibitors third (late RA values) (40,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 47,660         | 155 | 4.8371     | 0.0221 |
| Etan        | 60,622         | 189 | 5.7193     | 0.0239 |
| Adal+MTX    | 48,035         | 155 | 5.0840     | 0.0221 |
| Etan+MTX    | 60,555         | 189 | 5.6993     | 0.0241 |
| Infl+MTX    | 47,352         | 149 | 4.8462     | 0.0223 |
| Base        | 16,295         | 36  | 4.3003     | 0.0206 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 31,365         | 151 | 0.5367     | 0.0188 |
| Etan – Base | 44,327         | 183 | 1.4190     | 0.0213 |
| Ad+M – Base | 31,740         | 152 | 0.7837     | 0.0193 |
| Et+M - Base | 44,260         | 183 | 1.3990     | 0.0216 |
| In+M – Base | 31,058         | 145 | 0.5459     | 0.0190 |
| Ad+M – Adal | 375            | 205 | 0.2470     | 0.0198 |
| Etan – Et+M | 67             | 244 | 0.0200     | 0.0239 |
| Etan – Adal | 12,962         | 227 | 0.8823     | 0.0218 |
| Et+M - Ad+M | 12,520         | 227 | 0.6153     | 0.0223 |
| Ad+M – In+M | 682            | 202 | 0.2378     | 0.0202 |
|             | 13,203         | 223 | 0.8531     | 0.0222 |

TABLE 120 Variation 7: TNF inhibitors third (late RA values) (40,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)                                                   | Quasi-CI         |
|-------------|---------------------------------------------------------------------|------------------|
| Adal – Base | 58,400                                                              | 54,600 to 62,900 |
| Etan – Base | 31,200                                                              | 30,300 to 32,200 |
| Ad+M – Base | 40,500                                                              | 38,600 to 42,600 |
| Et+M - Base | 31,600                                                              | 30,700 to 32,700 |
| In+M - Base | 56,900                                                              | 53,200 to 61,200 |
| Ad+M – Adal | Adal+MTX more effective than Adal alone; diff. cost not significant |                  |
| Et+M - Etan | Comparison is inconclusive                                          |                  |
| Etan – Adal | 14,700                                                              | 13,900 to 15,600 |
| Et+M - Ad+M | 20,300                                                              | 18,800 to 22,100 |
| Ad+M - In+M | 2,870                                                               | 1,100 to 4,640   |
| Et+M - In+M | 15,500                                                              | 14,600 to 16,500 |

**TABLE 121** Variation 7: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                             | QSE      |  |
|-------------|----------------|------------------------|-----------------------------------|----------|--|
| Adal        | 36,804         | 218                    | 1.9159                            | 0.0224   |  |
| Etan        | 49,802         | 263                    | 3.0181                            | 0.0269   |  |
| Adal+MTX    | 37,244         | 220                    | 2.2088                            | 0.0229   |  |
| Etan+MTX    | 49,641         | 264                    | 3.0262                            | 0.0274   |  |
| Infl+MTX    | 36,534         | 208                    | 1.9573                            | 0.0229   |  |
| Base        | 2,900          | П                      | 1.0582                            | 0.0184   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 33,904         | 216                    | 0.8577                            | 0.0162   |  |
| Etan – Base | 46,902         | 260                    | 1.9599                            | 0.0227   |  |
| Ad+M – Base | 34,344         | 218                    | 1.1506                            | 0.0175   |  |
| Et+M - Base | 46,741         | 261                    | 1.9680                            | 0.0236   |  |
| In+M - Base | 33,634         | 206                    | 0.8990                            | 0.0171   |  |
| Ad+M – Adal | 440            | 299                    | 0.2929                            | 0.0209   |  |
| Etan – Et+M | 161            | 348                    | –0.008 I                          | 0.0301   |  |
| Etan – Adal | 12,998         | 324                    | 1.1022                            | 0.0251   |  |
| Et+M - Ad+M | 12,397         | 328                    | 0.8174                            | 0.0267   |  |
| Ad+M - In+M | 710            | 293                    | 0.2515                            | 0.0215   |  |
| Et+M – In+M | 13,107         | 320                    | 1.0689                            | 0.0266   |  |
| Comparison  | ICER (£ per    | Quas                   | i-Cl                              |          |  |
| Adal – Base | 39,50          | 00                     | 38,000 to 41,200                  |          |  |
| Etan – Base | 23,90          | 00                     | 23,300 to 24,600                  |          |  |
| Ad+M – Base | 29,80          | 00                     | 28,900 to 30,900                  |          |  |
| Et+M - Base | 23,800         |                        | 23,100 to 24,400                  |          |  |
| In+M – Base | 37,40          | 00                     | 36,000 to 39,000                  |          |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | n Adal alone; diff. cost not sign | nificant |  |
| Etan – Et+M |                | Comparisor             | n is inconclusive                 |          |  |
| Etan – Adal | 11,80          | 00                     | 11,000 to 12,600                  |          |  |
| Et+M – Ad+M | 15,20          | 00                     | 14,000 to                         | ,        |  |
| Ad+M – In+M | 2,82           | .0                     | 442 to                            | 5,200    |  |
| Et+M – In+M | 12,30          | 00                     | 11,500 to                         | 13,200   |  |

For this variation, the effectiveness of conventional DMARDs was increased by 50% compared to the base case.

 TABLE 122
 Variation 8: TNF inhibitors first (100,000 patients)

| Option      | Cost (£)                   | QSE                   | QALYs                         | QSE      |  |
|-------------|----------------------------|-----------------------|-------------------------------|----------|--|
| Adal        | 49,674                     | 102                   | 10.2372                       | 0.0182   |  |
| Etan        | 63,645                     | 123                   | 10.3454                       | 0.0188   |  |
| Adal+MTX    | 49,702                     | 103                   | 9.4737                        | 0.0170   |  |
| Etan+MTX    | 64,356                     | 125                   | 9.7486                        | 0.0178   |  |
| Infl+MTX    | 49,177                     | 98                    | 9.3253                        | 0.0171   |  |
| Base        | 15,515                     | 21                    | 9.9405                        | 0.0170   |  |
| Comparison  | Diff. cost (£)             | QSE                   | Diff. QALY                    | QSE      |  |
| Adal – Base | 34,160                     | 100                   | 0.2967                        | 0.0188   |  |
| Etan – Base | 48,130                     | 120                   | 0.4048                        | 0.0191   |  |
| Ad+M – Base | 34,187                     | 101                   | -0.4668                       | 0.0184   |  |
| Et+M - Base | 48,841                     | 122                   | -0.1920                       | 0.0187   |  |
| In+M - Base | 33,662                     | 97                    | -0.6152                       | 0.0184   |  |
| Ad+M – Adal | 27                         | 139                   | -0.7635                       | 0.0187   |  |
| Et+M - Etan | 711                        | 165                   | -0.5968                       | 0.0193   |  |
| Etan – Adal | 13,970                     | 152                   | 0.1082                        | 0.0192   |  |
| Et+M – Ad+M | 14,654                     | 154                   | 0.2748                        | 0.0186   |  |
| Ad+M – In+M | 525                        | 136                   | 0.1484                        | 0.0181   |  |
| Et+M – In+M | 15,179                     | 151                   | 0.4232                        | 0.0185   |  |
| Comparison  | ICER (£ per QALY) Quasi-CI |                       |                               |          |  |
| Adal – Base | 115,000 102,000 to 132,000 |                       |                               | 132,000  |  |
| Etan – Base | 119,000 109,000 to 131,000 |                       |                               |          |  |
| Ad+M – Base | Base dominates Adal+MTX    |                       |                               |          |  |
| Et+M – Base | Base dominates Etan+MTX    |                       |                               |          |  |
| In+M – Base |                            | Base domir            | nates Infl+MTX                |          |  |
| Ad+M – Adal | Adal alon                  | e more effective than | Adal+MTX; diff. cost not sign | nificant |  |
| Et+M – Etan |                            |                       | ninates Etan+MTX              |          |  |
| Etan – Adal | 129,00                     | 00                    | 95,300 to 200,000             |          |  |
| Et+M - Ad+M | 53,30                      | 00                    | 46,900 to                     | 61,800   |  |
| Ad+M - In+M | 3,53                       | 30                    | 1,500 to                      | 5,560    |  |
| Et+M - In+M | 35,90                      | 00                    | 32,900 to                     | 39.400   |  |

 TABLE 123
 Variation 8: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 48,434         | 99  | 7.0553     | 0.0158 |
| Etan        | 60,764         | 119 | 7.4295     | 0.0166 |
| Adal+MTX    | 48,453         | 98  | 7.2055     | 0.0157 |
| Etan+MTX    | 61,044         | 119 | 7.5540     | 0.0167 |
| Infl+MTX    | 48,044         | 94  | 7.1746     | 0.0157 |
| Base        | 16,612         | 23  | 6.4132     | 0.0145 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 31,823         | 96  | 0.6420     | 0.0165 |
| Etan – Base | 44,152         | 115 | 1.0163     | 0.0170 |
| Ad+M – Base | 31,842         | 96  | 0.7922     | 0.0164 |
| Et+M - Base | 44,433         | 116 | 1.1407     | 0.0170 |
| In+M – Base | 31,432         | 92  | 0.7614     | 0.0164 |
| AdiM Add    | 19             | 131 | 0.1502     | 0.0168 |
| Ad+M – Adal |                |     | 0.1245     | 0.0177 |

TABLE 123 Variation 8: TNF inhibitors third (early RA values) (100,000 patients) (cont'd)

| Etan – Adal | 12,329                                                              | 143                                                                 | 0.3743                     | 0.0173           |  |
|-------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------|--|
| Et+M – Ad+M | 12,591                                                              | 144                                                                 | 0.3485                     | 0.0173           |  |
| Ad+M - In+M | 410                                                                 | 410 128                                                             |                            | 0.0167           |  |
| Et+M – In+M | 13,001 141                                                          |                                                                     | 0.3794                     | 0.0173           |  |
| Comparison  | ICER (£ per QALY)                                                   |                                                                     | Qua                        | si-CI            |  |
| Adal – Base | 49,600                                                              |                                                                     | 47,100 to 52,300           |                  |  |
| Etan – Base | 43,400                                                              |                                                                     | 42,000 to 45,000           |                  |  |
| Ad+M – Base | 40,200                                                              |                                                                     | 38,600 to 42,000           |                  |  |
| Et+M - Base | 39,000                                                              |                                                                     | 37,800 to                  | 40,200           |  |
| In+M – Base | 41,300                                                              |                                                                     | 39,600 to                  | 43,200           |  |
| Ad+M – Adal | Adal+MTX more effective than Adal alone; diff. cost not significant |                                                                     |                            | nificant         |  |
| Et+M - Etan | Etan+N                                                              | Etan+MTX more effective than Etan alone; diff. cost not significant |                            |                  |  |
| Etan – Adal | 32,9                                                                | 32,900                                                              |                            | 36,400           |  |
| Et+M - Ad+M | 36,1                                                                | 36,100                                                              |                            | 32,800 to 40,200 |  |
| Ad+M - In+M | Adal+1                                                              | MTX more costly than In                                             | fl+MTX; diff QALY not sign | nificant         |  |
| Et+M - In+M | 34,3                                                                | ,                                                                   | 31,300 to 37,800           |                  |  |

**TABLE 124** Variation 8: TNF inhibitors third (late RA values) (200,000 patients)

| Option      | Cost (£)                   | QSE                   | QALYs                            | QSE    |  |
|-------------|----------------------------|-----------------------|----------------------------------|--------|--|
| Adal        | 47,668                     | 69                    | 6.3544                           | 0.0111 |  |
| Etan        | 60,199                     | 84                    | 6.9127                           | 0.0116 |  |
| Adal+MTX    | 47,941                     | 69                    | 6.6445                           | 0.0110 |  |
| Etan+MTX    | 60,509                     | 84                    | 6.8989                           | 0.0117 |  |
| Infl+MTX    | 47,363                     | 66                    | 6.3784                           | 0.0111 |  |
| Base        | 16,657                     | 16                    | 6.4152                           | 0.0103 |  |
| Comparison  | Diff. cost (£)             | QSE                   | Diff. QALY                       | QSE    |  |
| Adal – Base | 31,011                     | 67                    | -0.0608                          | 0.0113 |  |
| Etan – Base | 43,542                     | 81                    | 0.4975                           | 0.0117 |  |
| Ad+M – Base | 31,284                     | 67                    | 0.2293                           | 0.0114 |  |
| Et+M - Base | 43,852                     | 82                    | 0.4837                           | 0.0119 |  |
| In+M - Base | 30,706                     | 65                    | -0.0369                          | 0.0114 |  |
| Ad+M – Adal | 273                        | 91                    | 0.2901                           | 0.0113 |  |
| Et+M - Etan | 310                        | 108                   | -0.0138                          | 0.0121 |  |
| Etan – Adal | 12,531                     | 100                   | 0.5583                           | 0.0117 |  |
| Et+M - Ad+M | 12,568                     | 101                   | 0.2544                           | 0.0118 |  |
| Ad+M – In+M | 577                        | 89                    | 0.2661                           | 0.0114 |  |
| Et+M – In+M | 13,145                     | 98                    | 0.5206                           | 0.0118 |  |
| Comparison  | ICER (£ per QALY) Quasi-CI |                       |                                  | i-Cl   |  |
| Adal – Base | Base dominates Adal        |                       |                                  |        |  |
| Etan – Base | 87,5                       | 00                    | 83,600 to 91,900                 |        |  |
| Ad+M – Base | 136,000                    |                       | 124,000 to 151,000               |        |  |
| Et+M – Base | 90,7                       | 00                    | 86,400 to 95,300                 |        |  |
| In+M – Base |                            |                       | nates Infl+MTX                   |        |  |
| Ad+M – Adal | •                          | 41                    | 310 to 1,570                     |        |  |
| Et+M – Etan | Etan-                      | HMTX more costly that | an Etan; diff QALY not significa | ant    |  |
| Etan – Adal | 22,4                       | 00                    | 21,500 to                        | 23,500 |  |
| Et+M – Ad+M | 49,4                       |                       | 45,200 to                        | ,      |  |
| Ad+M – In+M | 2,1                        |                       | 1,470 to                         |        |  |
| Et+M – In+M | 25,3                       | 00                    | 24,100 to                        | 26,500 |  |

**TABLE 125** Variation 8: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)          | QSE                    | QALYs                             | QSE      |  |
|-------------|-------------------|------------------------|-----------------------------------|----------|--|
| Adal        | 36,186            | 215                    | 1.8335                            | 0.0220   |  |
| Etan        | 49,049            | 262                    | 2.9338                            | 0.0268   |  |
| Adal+MTX    | 36,117            | 215                    | 2.1086                            | 0.0223   |  |
| Etan+MTX    | 49,070            | 263                    | 2.9087                            | 0.0271   |  |
| Infl+MTX    | 35,434            | 205                    | 1.8284                            | 0.0221   |  |
| Base        | 2,812             | П                      | 0.9754                            | 0.0180   |  |
| Comparison  | Diff. cost (£)    | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 33,374            | 213                    | 0.8581                            | 0.0159   |  |
| Etan – Base | 46,237            | 259                    | 1.9584                            | 0.0227   |  |
| Ad+M – Base | 33,305            | 213                    | 1.1332                            | 0.0171   |  |
| Et+M – Base | 46,258            | 260                    | 1.9333                            | 0.0233   |  |
| In+M – Base | 32,622            | 203                    | 0.8530                            | 0.0164   |  |
| Adal – Ad+M | 69                | 292                    | −0.275 I                          | 0.0205   |  |
| Et+M – Etan | 21                | 343                    | –0.025 I                          | 0.0297   |  |
| Etan – Adal | 12,863            | 320                    | 1.1003                            | 0.0250   |  |
| Et+M – Ad+M | 12,953            | 323                    | 0.8002                            | 0.0264   |  |
| Ad+M – In+M | 683               | 286                    | 0.2802                            | 0.0210   |  |
| Et+M – In+M | 13,636            | 317                    | 1.0804                            | 0.0260   |  |
| Comparison  | ICER (£ per QALY) |                        | Quas                              | i-CI     |  |
| Adal – Base | 38,90             | 0                      | 37,400 to 40,500                  |          |  |
| Etan – Base | 23,600            |                        | 23,000 to 24,200                  |          |  |
| Ad+M – Base | 29,400            |                        | 28,500 to 30,400                  |          |  |
| Et+M – Base | 23,900            |                        | 23,300 to 24,600                  |          |  |
| In+M – Base | 38,20             | 0                      | 36,800 to 39,900                  |          |  |
| Adal – Ad+M | Adal+M7           | TX more effective than | n Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                   | Comparisor             | n is inconclusive                 |          |  |
| Etan – Adal | 11,70             | 0                      | 10,900 to 12,500                  |          |  |
| Et+M – Ad+M | 16,20             | 0                      | 15,000 to                         | 17,600   |  |
| Ad+M - In+M | 2,44              | 0                      | 364 to                            | 4,510    |  |
| Et+M - In+M | 12,60             | 0                      | 11,800 to                         | 13,500   |  |

For this variation, survival times on conventional DMARDs were reduced by 50%.

**TABLE 126** Variation 9: TNF inhibitors first (40,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 49,448         | 160 | 8.3841     | 0.0254 |
| Etan        | 63,898         | 194 | 8.8538     | 0.0267 |
| Adal+MTX    | 49,982         | 163 | 7.8754     | 0.0241 |
| Etan+MTX    | 63,770         | 197 | 8.4103     | 0.0259 |
| Infl+MTX    | 48,828         | 154 | 7.6905     | 0.0240 |
| Base        | 15,589         | 32  | 7.5443     | 0.0235 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 33,859         | 157 | 0.8398     | 0.0254 |
| Etan – Base | 48,309         | 190 | 1.3095     | 0.0266 |
| Ad+M – Base | 34,393         | 161 | 0.3311     | 0.0247 |
| Et+M – Base | 48,181         | 192 | 0.8660     | 0.0260 |
| In+M – Base | 33,239         | 152 | 0.1462     | 0.0246 |
|             | 533            | 219 | -0.5087    | 0.0256 |
| Ad+M – Adal |                |     |            |        |

**TABLE 126** Variation 9: TNF inhibitors first (40,000 patients) (cont'd)

| Etan – Adal | 14,449 241 0.4697 |                         | 0.0270                         |          |
|-------------|-------------------|-------------------------|--------------------------------|----------|
| Et+M - Ad+M | 13,789            | 244                     | 0.5349                         | 0.0261   |
| Ad+M – In+M | 1,154             | 1,154 217               |                                | 0.0248   |
| Et+M – In+M | 14,943            | 237                     | 0.7198                         | 0.0262   |
| Comparison  | ICER (£ per QALY) |                         | Quas                           | si-CI    |
| Adal – Base | 40,300            |                         | 38,000 to 42,900               |          |
| Etan – Base | 36,               | 900                     | 35,400 to 38,500               |          |
| Ad+M – Base | 104,              | 000                     | 90,400 to 122,000              |          |
| Et+M – Base | 55,               | 600                     | 52,500 to 59,200               |          |
| In+M - Base | 227,              | 000                     | 170,000 to                     | 343,000  |
| Ad+M – Adal |                   | Adal alone domi         | nates Adal+MTX                 |          |
| Etan – Et+M | Etan+M            | 1TX more effective than | Etan alone; diff. cost not sig | nificant |
| Etan – Adal | 30,               | 800                     | 27,500 to                      | 34,900   |
| Et+M - Ad+M | 25,               | 800                     | 23,400 to                      | 28,800   |
| Ad+M – In+M | 6,                | 240                     | 3,350 to                       | 9,130    |
| Et+M - In+M | 20,               | 20.800 19.200 to 22.600 |                                | 22.600   |

 TABLE 127
 Variation 9: TNF inhibitors third (early RA values) (40,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                             | QSE      |
|-------------|---------------------|------------------------|-----------------------------------|----------|
| Adal        | 48,652              | 157                    | 5.9790                            | 0.0225   |
| Etan        | 61,597              | 190                    | 6.6380                            | 0.0245   |
| Adal+MTX    | 48,533              | 157                    | 6.1027                            | 0.0225   |
| Etan+MTX    | 61,625              | 191                    | 6.7264                            | 0.0245   |
| Infl+MTX    | 48,384              | 150                    | 6.0913                            | 0.0225   |
| Base        | 15,954              | 32                     | 4.8044                            | 0.0202   |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                        | QSE      |
| Adal – Base | 32,698              | 155                    | 1.1746                            | 0.0211   |
| Etan – Base | 45,643              | 185                    | 1.8336                            | 0.0231   |
| Ad+M – Base | 32,580              | 155                    | 1.2983                            | 0.0212   |
| Et+M - Base | 45,671              | 187                    | 1.9220                            | 0.0234   |
| In+M - Base | 32,430              | 148                    | 1.2869                            | 0.0212   |
| Adal – Ad+M | 118                 | 211                    | -0.1237                           | 0.0230   |
| Et+M – Etan | 27                  | 249                    | 0.0884                            | 0.0263   |
| Etan – Adal | 12,945              | 232                    | 0.6590                            | 0.0246   |
| Et+M - Ad+M | 13,091              | 232                    | 0.6238                            | 0.0248   |
| Ad+M – In+M | 150                 | 207                    | 0.0114                            | 0.0229   |
| Et+M – In+M | 13,241              | 229                    | 0.6351                            | 0.0248   |
| Comparison  | ICER (£ pe          | r QALY)                | Quas                              | i-CI     |
| Adal – Base | 27,80               | 00                     | 26,800 to 28,900                  |          |
| Etan – Base | 24,90               | 00                     | 24,300 to 25,600                  |          |
| Ad+M – Base | 25,10               | 00                     | 24,300 to 26,000                  |          |
| Et+M - Base | 23,80               | 00                     | 23,200 to 24,400                  |          |
| In+M – Base | 25,20               | 00                     | 24,400 to                         | 26,100   |
| Adal – Ad+M | Adal+M <sup>-</sup> | TX more effective than | n Adal alone; diff. cost not sigr | nificant |
| Et+M - Etan | Etan+M <sup>-</sup> | TX more effective than | n Etan alone; diff. cost not sign | nificant |
| Etan – Adal | 19,60               | 00                     | 18,100 to                         | 21,400   |
| Et+M - Ad+M | 21,00               | 00                     | 19,300 to                         | 23,000   |
| Ad+M - In+M |                     | Comparisor             | n is inconclusive                 |          |
| Et+M - In+M | 20,80               |                        | 19,200 to                         | 22,800   |

 TABLE 128
 Variation 9: TNF inhibitors third (late RA values) (100,000 patients)

| Option      | Cost (£)       | QSE        | QALYs             | QSE    |  |
|-------------|----------------|------------|-------------------|--------|--|
| Adal        | 47,766         | 98         | 5.2589            | 0.0139 |  |
| Etan        | 60,801         | 119        | 6.0926            | 0.0150 |  |
| Adal+MTX    | 48,120         | 99         | 5.5438            | 0.0139 |  |
| Etan+MTX    | 60,803         | 120        | 6.0658            | 0.0152 |  |
| Infl+MTX    | 47,372         | 94         | 5.2900            | 0.0141 |  |
| Base        | 15,905         | 20         | 4.7814            | 0.0127 |  |
| Comparison  | Diff. cost (£) | QSE        | Diff. QALY        | QSE    |  |
| Adal – Base | 31,861         | 97         | 0.4775            | 0.0125 |  |
| Etan – Base | 44,895         | 117        | 1.3112            | 0.0139 |  |
| Ad+M – Base | 32,215         | 97         | 0.7624            | 0.0127 |  |
| Et+M - Base | 44,898         | 117        | 1.2844            | 0.0140 |  |
| In+M – Base | 31,466         | 92         | 0.5086            | 0.0126 |  |
| Ad+M – Adal | 354            | 132        | 0.2849            | 0.0131 |  |
| Et+M – Etan | 2              | 155        | -0.0269           | 0.0154 |  |
| Etan – Adal | 13,035         | 145        | 0.8337            | 0.0142 |  |
| Et+M - Ad+M | 12,683         | 145        | 0.5220            | 0.0145 |  |
| Ad+M – In+M | 748            | 129        | 0.2538            | 0.0132 |  |
| Et+M – In+M | 13,431         | 142        | 0.7758            | 0.0145 |  |
| Comparison  | ICER (£ per    | r QALY)    | Quas              | i-CI   |  |
| Adal – Base | 66,70          | 00         | 63,400 to 70,400  |        |  |
| Etan – Base | 34,20          | 00         | 33,500 to 35,000  |        |  |
| Ad+M – Base | 42,30          | 00         | 40,900 to 43,700  |        |  |
| Et+M – Base | 35,00          | 00         | 34,200 to 35,800  |        |  |
| In+M – Base | 61,90          | 00         | 58,900 to 65,100  |        |  |
| Ad+M – Adal | 1,24           | 10         | 311 to            | 2,170  |  |
| Et+M – Etan |                | Comparisor | n is inconclusive |        |  |
| Etan – Adal | 15,60          | 00         | 15,000 to         | 16,300 |  |
| Et+M - Ad+M | 24,30          | 00         | 22,900 to         | 25,900 |  |
| Ad+M - In+M | 2,95           | 50         | 1,890 to          | 4,010  |  |
| Et+M - In+M | 17,30          | 00         | 16,600 to         | 18,100 |  |

 TABLE 129
 Variation 9: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 37,473         | 220 | 2.2513     | 0.0234 |
| Etan        | 51,062         | 267 | 3.3807     | 0.0277 |
| Adal+MTX    | 37,834         | 222 | 2.5615     | 0.0238 |
| Etan+MTX    | 50,984         | 269 | 3.3579     | 0.0284 |
| Infl+MTX    | 36,998         | 211 | 2.2586     | 0.0236 |
| Base        | 3,020          | 12  | 1.3562     | 0.0200 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 34,454         | 218 | 0.8951     | 0.0170 |
| Etan – Base | 48,042         | 265 | 2.0245     | 0.0235 |
| Ad+M – Base | 34,814         | 220 | 1.2053     | 0.0183 |
| Et+M - Base | 47,964         | 267 | 2.0018     | 0.0245 |
| In+M – Base | 33,979         | 209 | 0.9025     | 0.0174 |
| Ad+M – Adal | 361            | 302 | 0.3102     | 0.0216 |
| Etan – Et+M | 78             | 357 | 0.0228     | 0.0306 |
| Etan – Adal | 13,588         | 331 | 1.1294     | 0.0258 |
| Et+M - Ad+M | 13,150         | 334 | 0.7965     | 0.0274 |
| Ad+M – In+M | 836            | 297 | 0.3028     | 0.0219 |
|             | 13,985         | 330 | 1.0993     | 0.0271 |

TABLE 129 Variation 9: TNF inhibitors last (20,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)            | Quasi-CI                               |
|-------------|------------------------------|----------------------------------------|
| Adal – Base | 38,500                       | 37,000 to 40,100                       |
| Etan – Base | 23,700                       | 23,100 to 24,400                       |
| Ad+M – Base | 28,900                       | 28,000 to 29,900                       |
| Et+M - Base | 24,000                       | 23,300 to 24,600                       |
| In+M - Base | 37,700                       | 36,200 to 39,200                       |
| Ad+M – Adal | Adal+MTX more effective than | Adal alone; diff. cost not significant |
| Etan – Et+M |                              | is inconclusive                        |
| Etan – Adal | 12,000                       | 11,200 to 12,800                       |
| Et+M - Ad+M | 16,500                       | 15,200 to 18,100                       |
| Ad+M - In+M | 2,760                        | 757 to 4,760                           |
| Et+M - In+M | 12,700                       | 11,900 to 13,700                       |

In this variation, long-term survival times on conventional DMARDs were increased by 50% compared to the base case.

 TABLE 130
 Variation 10: TNF inhibitors first (1,000,000 patients)

| Option      | Cost (£)       | QSE                     | QALYs                         | QSE      |  |
|-------------|----------------|-------------------------|-------------------------------|----------|--|
| Adal        | 49,349         | 32                      | 9.1995                        | 0.0054   |  |
| Etan        | 63,709         | 39                      | 9.4888                        | 0.0056   |  |
| Adal+MTX    | 49,406         | 33                      | 8.8607                        | 0.0052   |  |
| Etan+MTX    | 63,822         | 40                      | 9.1948                        | 0.0055   |  |
| Infl+MTX    | 48,782         | 31                      | 8.6889                        | 0.0052   |  |
| Base        | 15,056         | 7                       | 8.6331                        | 0.0051   |  |
| Comparison  | Diff. cost (£) | QSE                     | Diff. QALY                    | QSE      |  |
| Adal – Base | 34,293         | 32                      | 0.5664                        | 0.0055   |  |
| Etan – Base | 48,653         | 38                      | 0.8556                        | 0.0056   |  |
| Ad+M – Base | 34,351         | 32                      | 0.2275                        | 0.0054   |  |
| Et+M - Base | 48,766         | 39                      | 0.5617                        | 0.0056   |  |
| In+M - Base | 33,727         | 31                      | 0.0558                        | 0.0054   |  |
| Ad+M – Adal | 57             | 44                      | -0.3389                       | 0.0055   |  |
| Et+M – Etan | 113            | 52                      | -0.2940                       | 0.0057   |  |
| Etan – Adal | 14,360         | 48                      | 0.2892                        | 0.0057   |  |
| Et+M - Ad+M | 14,415         | 49                      | 0.3341                        | 0.0056   |  |
| Ad+M – In+M | 624            | 43                      | 0.1717                        | 0.0054   |  |
| Et+M – In+M | 15,039         | 48                      | 0.5059                        | 0.0056   |  |
| Comparison  | ICER (£ per    | · QALY)                 | Quas                          | i-Cl     |  |
| Adal – Base | 60,50          | 00                      | 59,400 to 61,700              |          |  |
| Etan – Base | 56,90          | 00                      | 56,100 to 57,600              |          |  |
| Ad+M – Base | 151,00         | 00                      | 144,000 to 158,000            |          |  |
| Et+M – Base | 86,80          | 00                      | 85,100 to 88,600              |          |  |
| In+M – Base | 605,00         |                         | 507,000 to                    | ,        |  |
| Ad+M – Adal | Adal alon      | e more effective than A | Adal+MTX; diff. cost not sign | nificant |  |
| Et+M – Etan |                | Etan alone don          | ninates Etan+MTX              |          |  |
| Etan – Adal | 49,70          | 00                      | 47,800 to                     | 51,700   |  |
| Et+M - Ad+M | 43,10          | 00                      | 41,700 to                     | 44,700   |  |
| Ad+M – In+M | 3,63           | 30                      | 3,080 to                      | 4,190    |  |
| Et+M - In+M | 29,70          | 00                      | 29,100 to                     | 30,400   |  |

 TABLE 131
 Variation 10: TNF inhibitors third (early RA values) (40,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                          | QSE      |
|-------------|----------------|------------------------|--------------------------------|----------|
| Adal        | 48,020         | 155                    | 6.5747                         | 0.0244   |
| Etan        | 61,120         | 188                    | 7.0687                         | 0.0257   |
| Adal+MTX    | 48,339         | 155                    | 6.6981                         | 0.0242   |
| Etan+MTX    | 61,228         | 189                    | 7.1102                         | 0.0257   |
| Infl+MTX    | 48,105         | 150                    | 6.6926                         | 0.0243   |
| Base        | 16,523         | 37                     | 5.7705                         | 0.0227   |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                     | QSE      |
| Adal – Base | 31,497         | 152                    | 0.8042                         | 0.0249   |
| Etan – Base | 44,597         | 182                    | 1.2982                         | 0.0258   |
| Ad+M – Base | 31,816         | 152                    | 0.9275                         | 0.0246   |
| Et+M – Base | 44,705         | 183                    | 1.3397                         | 0.0258   |
| In+M – Base | 31,582         | 146                    | 0.9220                         | 0.0245   |
| Ad+M – Adal | 319            | 206                    | 0.1233                         | 0.0254   |
| Et+M - Etan | 108            | 244                    | 0.0415                         | 0.0273   |
| Etan – Adal | 13,100         | 227                    | 0.4940                         | 0.0263   |
| Et+M - Ad+M | 12,889         | 227                    | 0.4122                         | 0.0262   |
| Ad+M – In+M | 234            | 202                    | 0.0055                         | 0.0254   |
| Et+M – In+M | 13,123         | 224                    | 0.4177                         | 0.0264   |
| Comparison  | ICER (£ per    | r QALY)                | Quas                           | si-CI    |
| Adal – Base | 39,20          | 00                     | 36,900 to 41,800               |          |
| Etan – Base | 34,40          | 00                     | 33,000 to 35,800               |          |
| Ad+M – Base | 34,30          | 00                     | 32,500 to 36,300               |          |
| Et+M - Base | 33,40          |                        | 32,100 to 34,700               |          |
| In+M - Base | 34,30          | 00                     | 32,500 to                      | 36,200   |
| Ad+M – Adal | Adal+M         | TX more effective than | Adal alone; diff. cost not sig | nificant |
| Et+M – Etan |                | Comparisor             | n is inconclusive              |          |
| Etan – Adal | 26,50          |                        | 23,800 to                      | 29,900   |
| Et+M - Ad+M | 31,30          | 00                     | 27,600 to                      | 36,000   |
| Ad+M - In+M |                | Comparisor             | n is inconclusive              |          |
| Et+M - In+M | 31,40          |                        | 27,800 to                      | 36,200   |

 TABLE 132
 Variation 10: TNF inhibitors third (late RA values) (200,000 patients)

| Option        | Cost (£)       | QSE | QALYs      | QSE    |
|---------------|----------------|-----|------------|--------|
| Adal          | 47,421         | 69  | 5.8207     | 0.0108 |
| Etan          | 60,281         | 84  | 6.4823     | 0.0113 |
| Adal+MTX      | 47,890         | 69  | 6.0967     | 0.0107 |
| Etan+MTX      | 60,167         | 84  | 6.4569     | 0.0114 |
| Infl+MTX      | 47,275         | 66  | 5.8505     | 0.0108 |
| Base          | 16,478         | 17  | 5.7252     | 0.0101 |
| Comparison    | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base   | 30,943         | 67  | 0.0955     | 0.0106 |
| Etan – Base   | 43,803         | 81  | 0.7571     | 0.0112 |
| Ad+M – Base   | 31,412         | 68  | 0.3714     | 0.0107 |
| Et+M - Base   | 43,690         | 81  | 0.7317     | 0.0113 |
| In+M – Base   | 30,797         | 64  | 0.1253     | 0.0107 |
| Ad+M – Adal   | 469            | 91  | 0.2760     | 0.0107 |
| Etan – Et+M   | 113            | 108 | 0.0253     | 0.0117 |
| Etan – Adal   | 12,861         | 100 | 0.6616     | 0.0111 |
| Et+M – Ad+M   | 12,277         | 100 | 0.3603     | 0.0113 |
| Ad+M – In+M   | 615            | 89  | 0.2461     | 0.0107 |
| Adtri - intri |                |     |            | 0.0113 |

TABLE 132 Variation 10: TNF inhibitors third (late RA values) (200,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY) | Quasi-CI           |
|-------------|-------------------|--------------------|
| Adal – Base | 324,000           | 265,000 to 417,000 |
| Etan – Base | 57,900            | 56,200 to 59,600   |
| Ad+M – Base | 84,600            | 80,000 to 89,700   |
| Et+M - Base | 59,700            | 57,900 to 61,600   |
| In+M - Base | 246,000           | 210,000 to 296,000 |
| Ad+M – Adal | 1,700             | 1,030 to 2,370     |
| Etan - Et+M | Comparison        | is inconclusive    |
| Etan – Adal | 19,400            | 18,700 to 20,200   |
| Et+M - Ad+M | 34,100            | 32,000 to 36,400   |
| Ad+M - In+M | 2,500             | 1,740 to 3,260     |
| Et+M - In+M | 21,300            | 20,400 to 22,100   |

**TABLE 133** Variation 10: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                            | QSE              |  |
|-------------|----------------|------------------------|----------------------------------|------------------|--|
| Adal        | 35,547         | 213                    | 1.7509                           | 0.0217           |  |
| Etan        | 48,513         | 259                    | 2.8543                           | 0.0263           |  |
| Adal+MTX    | 36,079         | 215                    | 2.0217                           | 0.0220           |  |
| Etan+MTX    | 48,990         | 261                    | 2.8815                           | 0.0269           |  |
| Infl+MTX    | 35,384         | 203                    | 1.7622                           | 0.0220           |  |
| Base        | 2,789          | П                      | 0.9214                           | 0.0179           |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                       | QSE              |  |
| Adal – Base | 32,758         | 211                    | 0.8294                           | 0.0161           |  |
| Etan – Base | 45,724         | 257                    | 1.9328                           | 0.0226           |  |
| Ad+M – Base | 33,290         | 213                    | 1.1003                           | 0.0166           |  |
| Et+M - Base | 46,201         | 259                    | 1.9601                           | 0.0231           |  |
| In+M – Base | 32,594         | 201                    | 0.8407                           | 0.0162           |  |
| Ad+M – Adal | 532            | 292                    | 0.2709                           | 0.0202           |  |
| Et+M - Etan | 476            | 344                    | 0.0273                           | 0.0297           |  |
| Etan – Adal | 12,966         | 318                    | 1.1034                           | 0.0251           |  |
| Et+M – Ad+M | 12,911         | 323                    | 0.8598                           | 0.0261           |  |
| Ad+M – In+M | 695            | 284                    | 0.2596                           | 0.0204           |  |
| Et+M – In+M | 13,606         | 314                    | 1.1193                           | 0.0258           |  |
| Comparison  | ICER (£ per    | · QALY)                | Quas                             | si-Cl            |  |
| Adal – Base | 39,50          | 0                      | 37,900 to                        | 37,900 to 41,200 |  |
| Etan – Base | 23,70          | 0                      | 23,100 to 24,300                 |                  |  |
| Ad+M – Base | 30,30          | 0                      | 29,300 to 31,300                 |                  |  |
| Et+M – Base | 23,60          | 0                      | 23,000 to 24,200                 |                  |  |
| In+M – Base | 38,80          | 0                      | 37,300 to 40,400                 |                  |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | n Adal alone; diff. cost not sig | nificant         |  |
| Et+M – Etan |                | Comparisor             | n is inconclusive                |                  |  |
| Etan – Adal | 11,80          | 0                      | 11,000 to                        | 12,500           |  |
| Et+M – Ad+M | 15,00          | 0                      | 13,900 to                        | 16,300           |  |
| Ad+M – In+M | 2,68           | 0                      | 449 to                           | 4,910            |  |
| Et+M - In+M | 12,20          | 0                      | 11,400 to                        | 12,900           |  |

## Variation II

In this variation, the long-term survival times on TNF inhibitors were reduced by 50%.

 TABLE 134
 Variation 11: TNF inhibitors first (200,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                           | QSE      |
|-------------|----------------|------------------------|---------------------------------|----------|
| Adal        | 38,822         | 54                     | 8.7520                          | 0.0115   |
| Etan        | 51,459         | 73                     | 9.0597                          | 0.0119   |
| Adal+MTX    | 38,771         | 54                     | 8.1127                          | 0.0110   |
| Etan+MTX    | 51,404         | 74                     | 8.5160                          | 0.0115   |
| Infl+MTX    | 38,772         | 52                     | 8.0226                          | 0.0110   |
| Base        | 15,356         | 15                     | 8.3124                          | 0.0111   |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                      | QSE      |
| Adal – Base | 23,466         | 53                     | 0.4396                          | 0.0118   |
| Etan – Base | 36,103         | 72                     | 0.7473                          | 0.0121   |
| Ad+M – Base | 23,415         | 54                     | -0.1997                         | 0.0115   |
| Et+M – Base | 36,048         | 72                     | 0.2036                          | 0.0118   |
| In+M – Base | 23,416         | 51                     | -0.2898                         | 0.0115   |
| Adal – Ad+M | 50             | 73                     | 0.6393                          | 0.0116   |
| Etan – Et+M | 55             | 99                     | 0.5437                          | 0.0121   |
| Etan – Adal | 12,637         | 87                     | 0.3077                          | 0.0121   |
| Et+M – Ad+M | 12,632         | 88                     | 0.4033                          | 0.0116   |
| In+M – Ad+M | I              | 72                     | -0.0901                         | 0.0113   |
| Et+M – In+M | 12,632         | 87                     | 0.4934                          | 0.0116   |
| Comparison  | ICER (£ per    | r QALY)                | Quas                            | i-Cl     |
| Adal – Base | 53,4           | 00                     | 50,700 to 56,400                |          |
| Etan – Base | 48,30          | 00                     | 46,800 to 49,900                |          |
| Ad+M – Base | ŕ              | Base domina            | ates Adal+MTX                   |          |
| Et+M – Base | 177,0          | 00                     | 159,000 to                      | 200,000  |
| In+M – Base | ·              | Base domin             | nates Infl+MTX                  |          |
| Adal – Ad+M | Adal alon      | e more effective than  | Adal+MTX; diff. cost not sign   | nificant |
| Et+M – Etan |                |                        | Etan+MTX; diff. cost not sign   |          |
| Etan – Adal | 41,10          |                        | 38,000 to                       |          |
| Et+M - Ad+M | 31,30          |                        | 29,600 to                       | ,        |
| In+M – Ad+M | Adal+M         | TX more effective than | n Infl+MTX; diff. cost not sign | nificant |
| Et+M - In+M | 25,6           |                        | 24,400 to                       |          |

 TABLE 135
 Variation 11: TNF inhibitors third (early RA values) (100,000 patients)

| Option                     | Cost (£)       | QSE | QALYs      | QSE    |
|----------------------------|----------------|-----|------------|--------|
| Adal                       | 38,639         | 74  | 5.9879     | 0.0143 |
| Etan                       | 50,057         | 100 | 6.4353     | 0.0150 |
| Adal+MTX                   | 38,722         | 74  | 6.0756     | 0.0143 |
| Etan+MTX                   | 50,158         | 100 | 6.5242     | 0.0151 |
| Infl+MTX                   | 38,801         | 71  | 6.0527     | 0.0143 |
| Base                       | 16,468         | 23  | 5.3842     | 0.0137 |
| Comparison                 | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base                | 22,171         | 73  | 0.6037     | 0.0142 |
| Etan – Base                | 33,589         | 97  | 1.0511     | 0.0149 |
| Ad+M – Base                | 22,254         | 73  | 0.6914     | 0.0143 |
| Et+M - Base                | 33,690         | 97  | 1.1400     | 0.0149 |
|                            | 22,332         | 70  | 0.6685     | 0.0142 |
| In+M – Base                | 22,332         | / 0 | 0.0003     | 0.01.2 |
| In+M – Base<br>Ad+M – Adal | 83             | 99  | 0.0877     | 0.0146 |
|                            | ,              | • • |            | ***    |

TABLE 135 Variation 11: TNF inhibitors third (early RA values) (100,000 patients) (cont'd)

| Et+M – Ad+M | 11,436     | 117                                                                 | 0.4486                          | 0.0152   |
|-------------|------------|---------------------------------------------------------------------|---------------------------------|----------|
| In+M – Ad+M | 78         | 96                                                                  | -0.0229                         | 0.0145   |
| Et+M – In+M | 11,357     | 116                                                                 | 0.4715                          | 0.0152   |
| Comparison  | ICER (£ pe | er QALY)                                                            | Quas                            | i-CI     |
| Adal – Base | 36,7       | 700                                                                 | 35,100 to                       | 38,600   |
| Etan – Base | 32,000     |                                                                     | ,000 31,100 to 32,900           |          |
| Ad+M – Base | 32,200     |                                                                     | 30,900 to 33,600                |          |
| Et+M - Base | 29,6       | 000                                                                 | 28,800 to                       | 30,400   |
| In+M - Base | 33,4       | 00                                                                  | 32,000 to 34,900                |          |
| Ad+M – Adal | Adal+M     | Adal+MTX more effective than Adal alone; diff. cost not significant |                                 | nificant |
| Et+M - Etan | Etan+M     | 1TX more effective than                                             | Etan alone; diff. cost not sign | nificant |
| Etan – Adal | 25,5       | 000                                                                 | 23,800 to                       | 27,500   |
| Et+M - Ad+M | 25,5       | 000                                                                 | 23,800 to                       | 27,400   |
| In+M - Ad+M | •          | Comparison                                                          | is inconclusive                 | •        |
| Et+M - In+M | 24.1       | •                                                                   | 22,600 to                       | 25.800   |

 TABLE 136
 Variation 11: TNF inhibitors third (late RA values) (200,000 patients)

| Option      | Cost (£)                   | QSE                    | QALYs                             | QSE      |  |
|-------------|----------------------------|------------------------|-----------------------------------|----------|--|
| Adal        | 38,431                     | 52                     | 5.5641                            | 0.0101   |  |
| Etan        | 49,697                     | 70                     | 6.0961                            | 0.0106   |  |
| Adal+MTX    | 38,502                     | 52                     | 5.7344                            | 0.0101   |  |
| Etan+MTX    | 49,806                     | 70                     | 6.0959                            | 0.0106   |  |
| Infl+MTX    | 38,541                     | 50                     | 5.5583                            | 0.0101   |  |
| Base        | 16,490                     | 16                     | 5.3809                            | 0.0097   |  |
| Comparison  | Diff. cost (£)             | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 21,940                     | 51                     | 0.1832                            | 0.0099   |  |
| Etan – Base | 33,207                     | 69                     | 0.7153                            | 0.0103   |  |
| Ad+M – Base | 22,012                     | 51                     | 0.3536                            | 0.0099   |  |
| Et+M - Base | 33,316                     | 69                     | 0.7150                            | 0.0103   |  |
| In+M - Base | 22,050                     | 49                     | 0.1774                            | 0.0099   |  |
| Ad+M – Adal | 72                         | 69                     | 0.1704                            | 0.0099   |  |
| Et+M – Etan | 109                        | 93                     | -0.0003                           | 0.0107   |  |
| Etan – Adal | 11,266                     | 82                     | 0.5321                            | 0.0102   |  |
| Et+M - Ad+M | 11,304                     | 82                     | 0.3614                            | 0.0104   |  |
| In+M - Ad+M | 38                         | 68                     | -0.1762                           | 0.0099   |  |
| Et+M – In+M | 11,265                     | 81                     | 0.5376                            | 0.0104   |  |
| Comparison  | ICER (£ per QALY) Quasi-CI |                        |                                   |          |  |
| Adal – Base | 120,0                      | 00                     | 108,000 to 134,000                |          |  |
| Etan – Base | 46,40                      | 00                     | 45,100 to 47,800                  |          |  |
| Ad+M – Base | 62,30                      | 00                     | 58,900 to 66,000                  |          |  |
| Et+M – Base | 46,60                      | 00                     | 45,300 to 48,000                  |          |  |
| In+M – Base | 124,00                     | 00                     | 112,000 to                        | 140,000  |  |
| Ad+M – Adal | Adal+M <sup>-</sup>        | TX more effective than | n Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                            | Comparisor             | n is inconclusive                 |          |  |
| Etan – Adal | 21,20                      | 00                     | 20,300 to                         |          |  |
| Et+M - Ad+M | 31,30                      | 00                     | 29,500 to                         | 33,200   |  |
| In+M - Ad+M | Adal+M <sup>-</sup>        | TX more effective than | n Infl+MTX; diff. cost not sign   | nificant |  |
| Et+M - In+M | 21,00                      | 00                     | 20,100 to                         | 21,900   |  |

 TABLE 137
 Variation 11: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                             | QSE      |  |
|-------------|----------------|------------------------|-----------------------------------|----------|--|
| Adal        | 26,797         | 159                    | 1.5818                            | 0.0202   |  |
| Etan        | 38,999         | 222                    | 2.4968                            | 0.0240   |  |
| Adal+MTX    | 26,804         | 163                    | 1.7647                            | 0.0206   |  |
| Etan+MTX    | 38,450         | 220                    | 2.4194                            | 0.0240   |  |
| Infl+MTX    | 26,971         | 155                    | 1.5903                            | 0.0205   |  |
| Base        | 2,850          | П                      | 1.0352                            | 0.0185   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 23,946         | 158                    | 0.5466                            | 0.0135   |  |
| Etan – Base | 36,149         | 220                    | 1.4617                            | 0.0190   |  |
| Ad+M – Base | 23,954         | 161                    | 0.7295                            | 0.0144   |  |
| Et+M – Base | 35,599         | 218                    | 1.3842                            | 0.0193   |  |
| In+M - Base | 24,121         | 154                    | 0.5551                            | 0.0138   |  |
| Ad+M – Adal | 7              | 222                    | 0.1829                            | 0.0163   |  |
| Etan – Et+M | 550            | 300                    | 0.0775                            | 0.0243   |  |
| Etan – Adal | 12,202         | 265                    | 0.9151                            | 0.0205   |  |
| Et+M - Ad+M | 11,645         | 265                    | 0.6547                            | 0.0213   |  |
| In+M - Ad+M | 167            | 220                    | -0.1744                           | 0.0166   |  |
| Et+M – In+M | 11,479         | 261                    | 0.8291                            | 0.0209   |  |
| Comparison  | ICER (£ per    | r QALY)                | Quas                              | i-Cl     |  |
| Adal – Base | 43,80          | 00                     | 41,700 to 46,200                  |          |  |
| Etan – Base | 24,70          |                        | 24,000 to 25,500                  |          |  |
| Ad+M – Base | 32,80          | 00                     | 31,500 to 34,300                  |          |  |
| Et+M – Base | 25,70          | 00                     | 25,000 to 26,500                  |          |  |
| In+M – Base | 43,50          | 00                     | 41,300 to                         | 45,800   |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | n Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan | Etan alon      | e more effective than  | Etan+MTX; diff. cost not sign     | nificant |  |
| Etan – Adal | 13,30          | 00                     | 12,600 to                         | 14,200   |  |
| Et+M - Ad+M | 17,80          | 00                     | 16,500 to                         | 19,300   |  |
| In+M - Ad+M | Adal+M7        | TX more effective than | n Infl+MTX; diff. cost not sign   | nificant |  |
| Et+M - In+M | 13,80          |                        | 13,000 to                         |          |  |

In this variation, survival times on TNF inhibitors were increased by 50% compared to the base case.

 TABLE 138
 Variation 12: TNF inhibitors first (100,000 patients)

| Option                     | Cost (£)       | QSE | QALYs      | QSE    |
|----------------------------|----------------|-----|------------|--------|
| Adal                       | 56,493         | 116 | 9.0677     | 0.0172 |
| Etan                       | 70,886         | 132 | 9.4132     | 0.0179 |
| Adal+MTX                   | 56,728         | 117 | 8.7667     | 0.0164 |
| Etan+MTX                   | 71,163         | 133 | 9.1543     | 0.0174 |
| Infl+MTX                   | 55,594         | 111 | 8.5600     | 0.0164 |
| Base                       | 15,320         | 21  | 8.3179     | 0.0158 |
| Comparison                 | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base                | 41,173         | 113 | 0.7498     | 0.0172 |
| Etan – Base                | 55,566         | 129 | 1.0953     | 0.0177 |
| Ad+M – Base                | 41,408         | 115 | 0.4488     | 0.0168 |
| Et+M – Base                | 55,843         | 129 | 0.8364     | 0.0175 |
|                            | 40,275         | 109 | 0.2421     | 0.0168 |
| In+M – Base                | 70,273         |     |            |        |
| In+M – Base<br>Ad+M – Adal | 235            | 156 | -0.3010    | 0.0174 |

TABLE 138 Variation 12: TNF inhibitors first (100,000 patients) (cont'd)

| Etan – Adal | 14,393     | 164                                                               | 0.3455                      | 0.0180           |  |
|-------------|------------|-------------------------------------------------------------------|-----------------------------|------------------|--|
| Et+M - Ad+M | 14,435     | 166                                                               | 0.3876                      | 0.0177           |  |
| Ad+M - In+M | 1,133      | 154                                                               | 0.2067                      | 0.0171           |  |
| Et+M – In+M | 15,569     | 163                                                               | 0.5942                      | 0.0177           |  |
| Comparison  | ICER (£ po | er QALY)                                                          | Quas                        | si-CI            |  |
| Adal – Base | 54,900     |                                                                   | 52,500 to 57,600            |                  |  |
| Etan – Base | 50,        | 50,700                                                            |                             | 49,100 to 52,400 |  |
| Ad+M – Base | 92,        | 92,300                                                            |                             | 85,800 to 99,800 |  |
| Et+M - Base | 66,        | 800                                                               | 64,100 to 69,700            |                  |  |
| In+M – Base | 166,       | 166,000 146,000 to 193,000                                        |                             | 193,000          |  |
| Ad+M – Adal | Adal alo   | Il alone more effective than Adal+MTX; diff. cost not significant |                             | nificant         |  |
| Et+M - Etan | Etan alo   | ne more effective than E                                          | tan+MTX; diff. cost not sig | nificant         |  |
| Etan – Adal | 41,        | 700                                                               | 37,600 to 46,600            |                  |  |
| Et+M - Ad+M | 37,        | 200                                                               | 34,000 to                   | 41,100           |  |
| Ad+M - In+M | 5,         | 480                                                               | 3,740 to                    | 7,220            |  |
| Et+M - In+M | 26,        | 200                                                               | 24,600 to                   | 28.000           |  |

 TABLE 139
 Variation 12: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                             | QSE      |  |
|-------------|----------------|------------------------|-----------------------------------|----------|--|
| Adal        | 54,611         | 111                    | 6.5295                            | 0.0154   |  |
| Etan        | 67,263         | 127                    | 7.0841                            | 0.0165   |  |
| Adal+MTX    | 54,797         | 112                    | 6.7368                            | 0.0154   |  |
| Etan+MTX    | 67,427         | 128                    | 7.2198                            | 0.0165   |  |
| Infl+MTX    | 54,229         | 107                    | 6.6898                            | 0.0154   |  |
| Base        | 16,488         | 23                     | 5.3802                            | 0.0137   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 38,123         | 108                    | 1.1492                            | 0.0151   |  |
| Etan – Base | 50,775         | 123                    | 1.7039                            | 0.0161   |  |
| Ad+M – Base | 38,309         | 109                    | 1.3566                            | 0.0153   |  |
| Et+M - Base | 50,939         | 124                    | 1.8396                            | 0.0162   |  |
| In+M – Base | 37,741         | 104                    | 1.3096                            | 0.0152   |  |
| Ad+M – Adal | 186            | 147                    | 0.2074                            | 0.0162   |  |
| Et+M – Etan | 164            | 162                    | 0.1357                            | 0.0176   |  |
| Etan – Adal | 12,652         | 156                    | 0.5547                            | 0.0169   |  |
| Et+M - Ad+M | 12,630         | 156                    | 0.4830                            | 0.0169   |  |
| Ad+M – In+M | 568            | 144                    | 0.0470                            | 0.0162   |  |
| Et+M – In+M | 13,198         | 153                    | 0.5300                            | 0.0169   |  |
| Comparison  | ICER (£ per    | · QALY)                | Quasi-CI                          |          |  |
| Adal – Base | 33,20          |                        | 32,300 to 34,100                  |          |  |
| Etan – Base | 29,80          |                        | 29,200 to 30,400                  |          |  |
| Ad+M – Base | 28,20          |                        | 27,600 to 28,900                  |          |  |
| Et+M – Base | 27,70          |                        | 27,200 to 28,200                  |          |  |
| In+M – Base | 28,80          | 0                      | 28,100 to                         | 29,500   |  |
| Ad+M – Adal |                |                        | n Adal alone; diff. cost not sign |          |  |
| Et+M – Etan | Etan+M7        | TX more effective than | Etan alone; diff. cost not sign   | nificant |  |
| Etan – Adal | 22,80          | 0                      | 21,400 to                         | 24,400   |  |
| Et+M – Ad+M | 26,10          | 0                      | 24,300 to                         | 28,200   |  |
| Ad+M – In+M | 12,10          | 0                      | 6,510 to                          | 83,000   |  |
| Et+M - In+M | 24,90          | 0                      | 23,300 to                         | 26,700   |  |

 TABLE 140
 Variation 12: TNF inhibitors third (late RA values) (40,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 53,637              | 174                    | 5.6256                          | 0.0237   |  |
| Etan        | 66,384              | 201                    | 6.4225                          | 0.0252   |  |
| Adal+MTX    | 53,914              | 174                    | 5.9687                          | 0.0237   |  |
| Etan+MTX    | 66,339              | 201                    | 6.3959                          | 0.0256   |  |
| Infl+MTX    | 53,072              | 167                    | 5.6571                          | 0.0238   |  |
| Base        | 16,470              | 36                     | 5.3761                          | 0.0217   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 37,167              | 169                    | 0.2495                          | 0.0227   |  |
| Etan – Base | 49,914              | 194                    | 1.0464                          | 0.0244   |  |
| Ad+M – Base | 37,443              | 170                    | 0.5926                          | 0.0230   |  |
| Et+M – Base | 49,868              | 195                    | 1.0198                          | 0.0249   |  |
| In+M – Base | 36,601              | 162                    | 0.2811                          | 0.0230   |  |
| Ad+M – Adal | 277                 | 228                    | 0.3431                          | 0.0233   |  |
| Etan – Et+M | 45                  | 254                    | 0.0266                          | 0.0262   |  |
| Etan – Adal | 12,747              | 242                    | 0.7969                          | 0.0245   |  |
| Et+M - Ad+M | 12,425              | 244                    | 0.4272                          | 0.0252   |  |
| Ad+M – In+M | 842                 | 223                    | 0.3116                          | 0.0236   |  |
| Et+M – In+M | 13,267              | 237                    | 0.7387                          | 0.0251   |  |
| Comparison  | ICER (£ per         | r QALY)                | Quas                            | i-CI     |  |
| Adal – Base | 149,0               | 00                     | 126,000 to 182,000              |          |  |
| Etan – Base | 47,7                | 00                     | 45,500 to 50,100                |          |  |
| Ad+M – Base | 63,2                | 00                     | 58,600 to 68,500                |          |  |
| Et+M – Base | 48,9                | 00                     | 46,600 to 51,400                |          |  |
| In+M – Base | 130,0               | 00                     | 112,000 to                      | 156,000  |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Etan – Et+M |                     | Comparisor             | n is inconclusive               |          |  |
| Etan – Adal | 16,0                |                        | 14,900 to                       | 17,200   |  |
| Et+M – Ad+M | 29,10               | 00                     | 25,900 to                       | 33,200   |  |
| Ad+M – In+M | 2,7                 | 00                     | 1,210 to                        | 4,190    |  |
| Et+M - In+M | 18,0                | 00                     | 16,700 to                       | 19,500   |  |

**TABLE 141** Variation 12: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 42,047         | 244 | 2.0899     | 0.0236 |
| Etan        | 55,244         | 282 | 3.3320     | 0.0287 |
| Adal+MTX    | 42,667         | 244 | 2.4122     | 0.0240 |
| Etan+MTX    | 55,230         | 282 | 3.3098     | 0.0292 |
| Infl+MTX    | 41,638         | 234 | 2.0948     | 0.0241 |
| Base        | 2,865          | 11  | 1.0366     | 0.0184 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 39,182         | 241 | 1.0533     | 0.0178 |
| Etan – Base | 52,379         | 278 | 2.2954     | 0.0250 |
| Ad+M – Base | 39,802         | 242 | 1.3756     | 0.0189 |
| Et+M - Base | 52,365         | 279 | 2.2732     | 0.0257 |
| In+M – Base | 38,773         | 232 | 1.0582     | 0.0186 |
| Ad+M – Adal | 620            | 327 | 0.3223     | 0.0231 |
| Etan – Et+M | 13             | 365 | 0.0222     | 0.0329 |
| Etan – Adal | 13,197         | 349 | 1.2421     | 0.0282 |
| Et+M – Ad+M | 12,563         | 349 | 0.8976     | 0.0293 |
|             | 1,030          | 322 | 0.3174     | 0.0239 |
| Ad+M – In+M | 1,000          |     |            |        |

TABLE 141 Variation 12: TNF inhibitors last (20,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)              | Quasi-CI                               |
|-------------|--------------------------------|----------------------------------------|
| Adal – Base | 37,200                         | 35,900 to 38,600                       |
| Etan – Base | 22,800                         | 22,300 to 23,400                       |
| Ad+M – Base | 28,900                         | 28,100 to 29,800                       |
| Et+M - Base | 23,000                         | 22,500 to 23,600                       |
| In+M - Base | 36,600                         | 35,300 to 38,000                       |
| Ad+M – Adal | Adal+MTX more effective than a | Adal alone; diff. cost not significant |
| Et+M - Etan |                                | is inconclusive                        |
| Etan – Adal | 10,600                         | 9,880 to 11,400                        |
| Et+M - Ad+M | 14,000                         | 12,900 to 15,300                       |
| Ad+M - In+M | 3,240                          | 1,160 to 5,330                         |
| Et+M - In+M | 11,200                         | 10,400 to 12,000                       |

In this variation, the possibility was considered of reviewing the effectiveness of TNF inhibitors at 12 weeks rather than at 24 weeks. For the purpose of this analysis, the proportion of short-term quitters was left unchanged.

 TABLE 142
 Variation 13: TNF inhibitors first (4,000,000 patients)

| Option      | Cost (£)       | QSE            | QALYs              | QSE       |  |
|-------------|----------------|----------------|--------------------|-----------|--|
| Adal        | 48,362         | 16             | 8.9326             | 0.0027    |  |
| Etan        | 63,011         | 20             | 9.2897             | 0.0028    |  |
| Adal+MTX    | 48,531         | 16             | 8.4856             | 0.0025    |  |
| Etan+MTX    | 63,129         | 20             | 8.9015             | 0.0027    |  |
| Infl+MTX    | 47,903         | 16             | 8.3299             | 0.0025    |  |
| Base        | 15,338         | 3              | 8.3150             | 0.0025    |  |
| Comparison  | Diff. cost (£) | QSE            | Diff. QALY         | QSE       |  |
| Adal – Base | 33,024         | 16             | 0.6176             | 0.0027    |  |
| Etan – Base | 47,673         | 19             | 0.9747             | 0.0028    |  |
| Ad+M – Base | 33,194         | 16             | 0.1706             | 0.0026    |  |
| Et+M - Base | 47,791         | 19             | 0.5864             | 0.0027    |  |
| In+M – Base | 32,566         | 15             | 0.0149             | 0.0026    |  |
| Ad+M – Adal | 170            | 22             | -0.4470            | 0.0027    |  |
| Et+M - Etan | 118            | 26             | -0.3882            | 0.0028    |  |
| Etan – Adal | 14,649         | 24             | 0.3571             | 0.0028    |  |
| Et+M - Ad+M | 14,598         | 25             | 0.4158             | 0.0027    |  |
| Ad+M – In+M | 628            | 22             | 0.1557             | 0.0026    |  |
| Et+M – In+M | 15,226         | 24             | 0.5716             | 0.0027    |  |
| Comparison  | ICER (£ per    | · QALY)        | Quas               | i-Cl      |  |
| Adal – Base | 53,5           | 500            | 53,000 to 53,900   |           |  |
| Etan – Base | 48,9           | 900            | 48,600 to 49,200   |           |  |
| Ad+M – Base | 195,0          | 000            | 189,000 to 201,000 |           |  |
| Et+M – Base | 81,5           | 500            | 80,700 to          | 82,300    |  |
| In+M – Base | 2,190,0        | 000            | 1,620,000 to       | 3,380,000 |  |
| Ad+M – Adal |                | Adal alone don | ninates Adal+MTX   |           |  |
| Et+M – Etan |                | Etan alone don | ninates Etan+MTX   |           |  |
| Etan – Adal | 41,0           | 000            | 40,400 to          | 41,700    |  |
| Et+M - Ad+M | 35,1           | 100            | 34,600 to          | 35,600    |  |
| Ad+M – In+M | 4,0            | )30            | 3,720 to           | 4,340     |  |
| Et+M - In+M | 26,6           | 600            | 26,400 to          | 26,900    |  |

 TABLE 143
 Variation 13: TNF inhibitors third (early RA values) (200,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE              |  |
|-------------|---------------------|------------------------|---------------------------------|------------------|--|
| Adal        | 47,317              | 70                     | 6.2908                          | 0.0106           |  |
| Etan        | 60,211              | 85                     | 6.8125                          | 0.0112           |  |
| Adal+MTX    | 47,436              | 70                     | 6.4180                          | 0.0106           |  |
| Etan+MTX    | 60,434              | 85                     | 6.9173                          | 0.0113           |  |
| Infl+MTX    | 47,044              | 67                     | 6.3844                          | 0.0105           |  |
| Base        | 16,472              | 16                     | 5.3751                          | 0.0097           |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE              |  |
| Adal – Base | 30,845              | 69                     | 0.9158                          | 0.0105           |  |
| Etan – Base | 43,739              | 82                     | 1.4374                          | 0.0111           |  |
| Ad+M – Base | 30,964              | 69                     | 1.0429                          | 0.0105           |  |
| Et+M – Base | 43,962              | 83                     | 1.5422                          | 0.0111           |  |
| In+M – Base | 30,572              | 66                     | 1.0094                          | 0.0104           |  |
| Ad+M – Adal | 120                 | 93                     | 0.1271                          | 0.0110           |  |
| Et+M – Etan | 223                 | 110                    | 0.1048                          | 0.0119           |  |
| Etan – Adal | 12,894              | 103                    | 0.5216                          | 0.0114           |  |
| Et+M – Ad+M | 12,997              | 103                    | 0.4994                          | 0.0115           |  |
| Ad+M – In+M | 393                 | 92                     | 0.0335                          | 0.0109           |  |
| Et+M – In+M | 13,390              | 101                    | 0.5329                          | 0.0115           |  |
| Comparison  | ICER (£ pe          | r QALY)                | ) Quasi-Cl                      |                  |  |
| Adal – Base | 33,70               | 00                     | 32,900                          | 32,900 to 34,500 |  |
| Etan – Base | 30,40               | 00                     | 30,000 to 30,900                |                  |  |
| Ad+M – Base | 29,70               | 00                     | 29,100 to 30,300                |                  |  |
| Et+M – Base | 28,50               | 00                     | 28,100 to 28,900                |                  |  |
| In+M – Base | 30,30               | 00                     | 29,700                          | to 30,900        |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant         |  |
| Et+M – Etan | 2,12                | 20                     | Dominates                       | to 4,280         |  |
| Etan – Adal | 24,70               | 00                     | 23,600                          | to 25,900        |  |
| Et+M – Ad+M | 26,00               | 00                     | 24,800                          | to 27,400        |  |
| Ad+M – In+M | 11,70               | 00                     | 6,500                           | to 59,200        |  |
| Et+M - In+M | 25,10               | 00                     | 24,000                          | to 26,300        |  |

TABLE 144 Variation 13: TNF inhibitors third (late RA values) (100,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 46,475         | 98  | 5.6051     | 0.0147 |
| Etan        | 59,709         | 120 | 6.3171     | 0.0156 |
| Adal+MTX    | 47,066         | 99  | 5.8852     | 0.0147 |
| Etan+MTX    | 59,706         | 120 | 6.2940     | 0.0157 |
| Infl+MTX    | 46,456         | 94  | 5.6372     | 0.0148 |
| Base        | 16,473         | 23  | 5.3979     | 0.0138 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 30,002         | 96  | 0.2073     | 0.0142 |
| Etan – Base | 43,236         | 116 | 0.9192     | 0.0151 |
| Ad+M – Base | 30,593         | 97  | 0.4873     | 0.0143 |
| Et+M - Base | 43,232         | 116 | 0.8961     | 0.0153 |
| In+M – Base | 29,983         | 92  | 0.2393     | 0.0142 |
| Ad+M – Adal | 591            | 130 | 0.2801     | 0.0143 |
| Etan – Et+M | 3              | 155 | 0.0231     | 0.0160 |
| Etan – Adal | 13,234         | 143 | 0.7119     | 0.0151 |
| Et+M - Ad+M | 12,639         | 144 | 0.4088     | 0.0154 |
|             | 610            | 128 | 0.2480     | 0.0145 |
| Ad+M – In+M |                |     |            |        |

TABLE 144 Variation 13: TNF inhibitors third (late RA values) (100,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY) | Quasi-Cl           |
|-------------|-------------------|--------------------|
| Adal – Base | 145,000           | 127,000 to 168,000 |
| Etan - Base | 47,000            | 45,500 to 48,700   |
| Ad+M – Base | 62,800            | 59,300 to 66,700   |
| Et+M - Base | 48,200            | 46,600 to 50,000   |
| In+M - Base | 125,000           | 112,000 to 142,000 |
| Ad+M – Adal | 2,110             | 1,160 to 3,060     |
| Etan – Et+M | Comparison        | is inconclusive    |
| Etan – Adal | 18,600            | 17,700 to 19,500   |
| Et+M - Ad+M | 30,900            | 28,700 to 33,600   |
| Ad+M - In+M | 2,460             | 1,390 to 3,530     |
| Et+M - In+M | 20,200            | 19,200 to 21,300   |

 TABLE 145
 Variation 13: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                                | QSE      |  |
|-------------|----------------|------------------------|--------------------------------------|----------|--|
| Adal        | 35,094         | 216                    | 1.8291                               | 0.0217   |  |
| Etan        | 48,150         | 264                    | 2.9608                               | 0.0267   |  |
| Adal+MTX    | 35,380         | 219                    | 2.1258                               | 0.0225   |  |
| Etan+MTX    | 48,416         | 265                    | 2.9210                               | 0.0270   |  |
| Infl+MTX    | 35,066         | 210                    | 1.8709                               | 0.0224   |  |
| Base        | 2,848          | П                      | 1.0178                               | 0.0181   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                           | QSE      |  |
| Adal – Base | 32,246         | 215                    | 0.8113                               | 0.0158   |  |
| Etan – Base | 45,302         | 262                    | 1.9431                               | 0.0230   |  |
| Ad+M – Base | 32,531         | 217                    | 1.1080                               | 0.0172   |  |
| Et+M - Base | 45,567         | 262                    | 1.9032                               | 0.0232   |  |
| In+M - Base | 32,217         | 208                    | 0.8532                               | 0.0168   |  |
| Ad+M – Adal | 285            | 298                    | 0.2967                               | 0.0204   |  |
| Et+M – Etan | 266            | 352                    | -0.0399                              | 0.0299   |  |
| Etan – Adal | 13,056         | 325                    | 1.1318                               | 0.0253   |  |
| Et+M - Ad+M | 13,036         | 327                    | 0.7952                               | 0.0263   |  |
| Ad+M – In+M | 314            | 292                    | 0.2548                               | 0.0213   |  |
| Et+M – In+M | 13,350         | 321                    | 1.0500                               | 0.0260   |  |
| Comparison  | ICER (£ per    | · QALY)                | Quasi-CI                             |          |  |
| Adal – Base | 39,70          | 0                      | 38,200 to 41,400                     |          |  |
| Etan – Base | 23,30          | 0                      | 22,700 to 23,900                     |          |  |
| Ad+M – Base | 29,40          | 0                      | 28,400 to 30,400                     |          |  |
| Et+M – Base | 23,90          |                        | 23,300 to 24,600                     |          |  |
| In+M – Base | 37,80          | 00                     | 36,300 to                            | 39,400   |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | n Adal alone; diff. cost not sigr    | nificant |  |
| Et+M – Etan |                | Comparisor             | n is inconclusive                    |          |  |
| Etan – Adal | 11,50          | 0                      | 10,800 to                            | 12,300   |  |
| Et+M – Ad+M | 16,40          | 0                      | 15,100 to                            | 17,900   |  |
| Ad+M – In+M | Adal+M7        | ΓX more effective than | $n \ln H + MTX; diff. cost not sign$ | nificant |  |
| Et+M - In+M | 12,70          | 0                      | 11,900 to                            | 13,700   |  |

In this variation, the probability of quitting TNF inhibitors in the short term was reduced by 50%.

 TABLE 146
 Variation 14: TNF inhibitors first (1,000,000 patients)

| Option      | Cost (£)       | QSE            | QALYs              | QSE       |
|-------------|----------------|----------------|--------------------|-----------|
| Adal        | 50,542         | 32             | 8.9468             | 0.0053    |
| Etan        | 64,418         | 39             | 9.2912             | 0.0055    |
| Adal+MTX    | 50,660         | 33             | 8.5290             | 0.0051    |
| Etan+MTX    | 64,608         | 39             | 8.9364             | 0.0054    |
| Infl+MTX    | 49,980         | 31             | 8.3593             | 0.0051    |
| Base        | 15,336         | 7              | 8.3177             | 0.0050    |
| Comparison  | Diff. cost (£) | QSE            | Diff. QALY         | QSE       |
| Adal – Base | 35,206         | 32             | 0.6291             | 0.0054    |
| Etan – Base | 49,083         | 38             | 0.9735             | 0.0055    |
| Ad+M – Base | 35,325         | 32             | 0.2112             | 0.0052    |
| Et+M - Base | 49,273         | 38             | 0.6187             | 0.0054    |
| In+M - Base | 34,645         | 30             | 0.0416             | 0.0052    |
| Ad+M – Adal | 118            | 44             | -0.4178            | 0.0054    |
| Et+M - Etan | 190            | 52             | -0.3547            | 0.0057    |
| Etan – Adal | 13,876         | 48             | 0.3444             | 0.0056    |
| Et+M – Ad+M | 13,948         | 48             | 0.4075             | 0.0055    |
| Ad+M – In+M | 680            | 43             | 0.1697             | 0.0052    |
| Et+M – In+M | 14,628         | 47             | 0.5771             | 0.0055    |
| Comparison  | ICER (£ per    | QALY)          | Quas               | i-CI      |
| Adal – Base | 56,00          | 00             | 55,000 to          | 56,900    |
| Etan – Base | 50,40          | 00             | 49,900 to          | 51,000    |
| Ad+M – Base | 167,00         | 00             | 159,000 to 176,000 |           |
| Et+M – Base | 79,60          | 00             | 78,300 to 81,100   |           |
| In+M – Base | 833,00         | 00             |                    | 1,110,000 |
| Ad+M – Adal |                | Adal alone don | ninates Adal+MTX   |           |
| Et+M – Etan |                | Etan alone don | ninates Etan+MTX   |           |
| Etan – Adal | 40,30          | 00             | 39,000 to          | 41,700    |
| Et+M - Ad+M | 34,20          | 00             | 33,300 to          |           |
| Ad+M - In+M | 4,0            | 10             | 3,440 to           | 4,570     |
| Et+M - In+M | 25,30          | 00             | 24,800 to          | 25 900    |

 TABLE 147
 Variation 14: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE        | QALYs            | QSE    |
|-------------|----------------|------------|------------------|--------|
| Adal        | 49,271         | 98         | 6.3330           | 0.0150 |
| Etan        | 61,438         | 119        | 6.8631           | 0.0159 |
| Adal+MTX    | 49,332         | 98         | 6.4770           | 0.0149 |
| Etan+MTX    | 61,790         | 119        | 6.9684           | 0.0160 |
| Infl+MTX    | 49,095         | 95         | 6.4474           | 0.0149 |
| Base        | 16,462         | 23         | 5.4046           | 0.0138 |
| Comparison  | Diff. cost (£) | QSE        | Diff. QALY       | QSE    |
| Adal – Base | 32,809         | 96         | 0.9284           | 0.0148 |
| Etan – Base | 44,977         | 115        | 1.4585           | 0.0157 |
| Ad+M – Base | 32,871         | 96         | 1.0724           | 0.0148 |
| Et+M – Base | 45,329         | 116        | 1.5638           | 0.0157 |
| In+M – Base | 32,633         | 92         | 1.0429           | 0.0148 |
| mini Dasc   |                |            | 0.1.440          | 0.0154 |
| Ad+M – Adal | 62             | 130        | 0.1440           | 0.0154 |
|             | 62<br>352      | 130<br>154 | 0.1440<br>0.1053 | 0.0154 |

TABLE 147 Variation 14: TNF inhibitors third (early RA values) (100,000 patients) (cont'd)

| Et+M – Ad+M | 12,458     | 143                     | 0.4914                         | 0.0162   |
|-------------|------------|-------------------------|--------------------------------|----------|
| Ad+M - In+M | 238        | 127                     | 0.0296                         | 0.0154   |
| Et+M – In+M | 12,695     |                         |                                | 0.0161   |
| Comparison  | ICER (£ pe | er QALY)                | Qua                            | si-CI    |
| Adal – Base | 35,3       | 35,300 34,200 to 36,500 |                                |          |
| Etan – Base | 30,8       | 30,800 30,200 to 31,500 |                                |          |
| Ad+M – Base | 30,7       | 30,700 29,800 to 31,500 |                                |          |
| Et+M - Base | 29,0       | 00                      | 28,400 to                      | 29,600   |
| In+M – Base | 31,3       | 00                      | 30,400 to                      | o 32,200 |
| Ad+M – Adal | Adal+M     | ITX more effective than | Adal alone; diff. cost not sig | nificant |
| Et+M - Etan | 3,3        | 40                      | 234 to                         | o 6,450  |
| Etan – Adal | 23,0       | 00                      | 21,500 to                      | 24,600   |
| Et+M - Ad+M | 25,4       | 00                      | 23,700 to                      | o 27,300 |
| Ad+M - In+M |            | Comparison              | is inconclusive                |          |
| Et+M - In+M | 24,4       | .00                     | 22,900 to                      | 26.100   |

 TABLE 148
 Variation 14: TNF inhibitors third (late RA values) (40,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 48,510              | 154                    | 5.6096                          | 0.0234   |  |
| Etan        | 60,764              | 187                    | 6.3362                          | 0.0247   |  |
| Adal+MTX    | 48,682              | 154                    | 5.8713                          | 0.0232   |  |
| Etan+MTX    | 61,084              | 187                    | 6.2842                          | 0.0248   |  |
| Infl+MTX    | 48,029              | 148                    | 5.6453                          | 0.0235   |  |
| Base        | 16,478              | 36                     | 5.3700                          | 0.0217   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 32,032              | 150                    | 0.2396                          | 0.0223   |  |
| Etan – Base | 44,286              | 181                    | 0.9662                          | 0.0237   |  |
| Ad+M – Base | 32,204              | 150                    | 0.5013                          | 0.0225   |  |
| Et+M - Base | 44,606              | 181                    | 0.9141                          | 0.0239   |  |
| In+M - Base | 31,551              | 144                    | 0.2753                          | 0.0224   |  |
| Ad+M – Adal | 172                 | 202                    | 0.2617                          | 0.0227   |  |
| Etan – Et+M | 319                 | 240                    | -0.052 I                        | 0.0252   |  |
| Etan – Adal | 12,255              | 224                    | 0.7266                          | 0.0239   |  |
| Et+M - Ad+M | 12,402              | 223                    | 0.4128                          | 0.0242   |  |
| Ad+M - In+M | 653                 | 198                    | 0.2260                          | 0.0228   |  |
| Et+M – In+M | 13,054              | 220                    | 0.6389                          | 0.0241   |  |
| Comparison  | ICER (£ per         | r QALY)                | Quasi-CI                        |          |  |
| Adal – Base | 134,0               | 00                     | 113,000 to 164,000              |          |  |
| Etan – Base | 45,80               | 00                     | 43,700 to 48,200                |          |  |
| Ad+M – Base | 64,20               | 00                     | 58,900 to 70,600                |          |  |
| Et+M - Base | 48,80               | 00                     | 46,300 to 51,500                |          |  |
| In+M - Base | 115,00              | 00                     | 98,600 to                       | 137,000  |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Etan – Et+M | Etan+M <sup>-</sup> | TX more effective than | Etan alone; diff. cost not sign | nificant |  |
| Etan – Adal | 16,90               | 00                     | 15,700 to                       | 18,200   |  |
| Et+M - Ad+M | 30,00               | 00                     | 26,800 to                       | 34,200   |  |
| Ad+M – In+M | 2,89                | 90                     | 1,040 to                        | 4,740    |  |
| Et+M - In+M | 20,40               | 00                     | 18,900 to                       | 22,300   |  |

TABLE 149 Variation 14: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                           | QSE      |  |
|-------------|---------------------|------------------------|---------------------------------|----------|--|
| Adal        | 37,360              | 214                    | 1.8689                          | 0.0219   |  |
| Etan        | 49,845              | 262                    | 2.9910                          | 0.0267   |  |
| Adal+MTX    | 37,334              | 215                    | 2.1633                          | 0.0223   |  |
| Etan+MTX    | 50,136              | 263                    | 2.9875                          | 0.0272   |  |
| Infl+MTX    | 37,314              | 208                    | 1.9216                          | 0.0226   |  |
| Base        | 2,869               | П                      | 1.0236                          | 0.0183   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 34,491              | 213                    | 0.8453                          | 0.0160   |  |
| Etan – Base | 46,976              | 259                    | 1.9675                          | 0.0229   |  |
| Ad+M – Base | 34,465              | 213                    | 1.1398                          | 0.0171   |  |
| Et+M – Base | 47,267              | 260                    | 1.9639                          | 0.0234   |  |
| In+M – Base | 34,445              | 206                    | 0.8980                          | 0.0170   |  |
| Adal – Ad+M | 26                  | 292                    | -0.2945                         | 0.0204   |  |
| Et+M – Etan | 291                 | 348                    | -0.0035                         | 0.0299   |  |
| Etan – Adal | 12,485              | 322                    | 1.1222                          | 0.0253   |  |
| Et+M – Ad+M | 12,802              | 323                    | 0.8242                          | 0.0263   |  |
| Ad+M – In+M | 20                  | 289                    | 0.2417                          | 0.0213   |  |
| Et+M – In+M | 12,822              | 316                    | 1.0659                          | 0.0262   |  |
| Comparison  | ICER (£ per         | r QALY)                | Quasi-CI                        |          |  |
| Adal – Base | 40,80               | 00                     | 39,200 to 42,500                |          |  |
| Etan – Base | 23,90               | 00                     | 23,300 to 24,500                |          |  |
| Ad+M – Base | 30,20               | 00                     | 29,300 to 31,300                |          |  |
| Et+M – Base | 24,10               | 00                     | 23,500 to 24,700                |          |  |
| In+M – Base | 38,40               | 00                     | 36,900 to                       | 39,900   |  |
| Adal – Ad+M | Adal+M <sup>-</sup> | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                     | Compariso              | n is inconclusive               |          |  |
| Etan – Adal | 11,10               |                        | 10,400 to                       | 11,900   |  |
| Et+M – Ad+M | 15,50               | 00                     | 14,400 to                       | 16,900   |  |
| Ad+M – In+M | Adal+M              | TX more effective than | n Infl+MTX; diff. cost not sign |          |  |
| Et+M – In+M | 12,00               |                        | 11,200 to                       |          |  |

In this variation, short-term quitters on TNF inhibitors were increased by 50% compared to the base case.

 TABLE 150
 Variation 15: TNF inhibitors first (400,000 patients)

| Option       | Cost (£)       | QSE | QALYs      | QSE    |
|--------------|----------------|-----|------------|--------|
| Adal         | 48,439         | 51  | 8.9461     | 0.0084 |
| Etan         | 63,188         | 62  | 9.2858     | 0.0087 |
| Adal+MTX     | 48,589         | 52  | 8.4953     | 0.0080 |
| Etan+MTX     | 63,452         | 63  | 8.9254     | 0.0085 |
| Infl+MTX     | 47,964         | 50  | 8.3522     | 0.0080 |
| Base         | 15,293         | 10  | 8.2891     | 0.0079 |
| Comparison   | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base  | 33,146         | 50  | 0.6569     | 0.0085 |
| Etan – Base  | 47,895         | 61  | 0.9967     | 0.0087 |
| Ad+M – Base  | 33,296         | 51  | 0.2062     | 0.0083 |
| Et+M – Base  | 48,159         | 61  | 0.6362     | 0.0086 |
| In+M – Base  | 32,670         | 49  | 0.0631     | 0.0083 |
| A-LINA A-L-I | 150            | 70  | -0.4507    | 0.0085 |
| Ad+M – Adal  |                |     |            |        |

**TABLE 150** Variation 15: TNF inhibitors first (400,000 patients) (cont'd)

| Etan – Adal | 14,749     | 77                            | 0.3398                  | 0.0088 |
|-------------|------------|-------------------------------|-------------------------|--------|
| Et+M – Ad+M | 14,862     | 78                            | 0.4301                  | 0.0086 |
| Ad+M - In+M | 626        | 69                            | 0.1431                  | 0.0083 |
| Et+M – In+M | 15,488     | 76                            | 0.5732                  | 0.0086 |
| Comparison  | ICER (£ pe | er QALY)                      | Quas                    | si-CI  |
| Adal – Base | 50,5       | 50,500 49,200 to 51,800       |                         | 51,800 |
| Etan – Base | 48,100     |                               | 48,100 47,200 to 48,900 |        |
| Ad+M – Base | 161,0      | 000                           | 149,000 to 176,000      |        |
| Et+M - Base | 75,7       | 700                           | 73,700 to 77,800        |        |
| In+M – Base | 518,0      | 000                           | 410,000 to 703,000      |        |
| Ad+M – Adal |            | Adal alone dominates Adal+MTX |                         |        |
| Et+M - Etan |            | Etan alone dom                | inates Etan+MTX         |        |
| Etan – Adal | 43,4       | 400                           | 41,200 to               | 45,800 |
| Et+M - Ad+M | 34,6       | 600                           | 33,200 to               | 36,100 |
| Ad+M - In+M | 4,3        | 370                           | 3,280 to                | 5,460  |
| Et+M - In+M | 27,0       | 000                           | 26.200 to               | 27.900 |

**TABLE 151** Variation 15: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                             | QSE       |  |
|-------------|---------------------|------------------------|-----------------------------------|-----------|--|
| Adal        | 47,414              | 99                     | 6.3210                            | 0.0149    |  |
| Etan        | 60,282              | 119                    | 6.8437                            | 0.0159    |  |
| Adal+MTX    | 47,500              | 99                     | 6.4689                            | 0.0149    |  |
| Etan+MTX    | 60,789              | 120                    | 6.9720                            | 0.0159    |  |
| Infl+MTX    | 47,191              | 95                     | 6.4248                            | 0.0148    |  |
| Base        | 16,484              | 23                     | 5.4070                            | 0.0137    |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                        | QSE       |  |
| Adal – Base | 30,930              | 97                     | 0.9140                            | 0.0148    |  |
| Etan – Base | 43,798              | 116                    | 1.4367                            | 0.0156    |  |
| Ad+M – Base | 31,017              | 97                     | 1.0619                            | 0.0149    |  |
| Et+M - Base | 44,305              | 117                    | 1.5650                            | 0.0158    |  |
| In+M - Base | 30,708              | 93                     | 1.0178                            | 0.0147    |  |
| Ad+M – Adal | 86                  | 132                    | 0.1479                            | 0.0155    |  |
| Et+M – Etan | 507                 | 155                    | 0.1283                            | 0.0169    |  |
| Etan – Adal | 12,868              | 145                    | 0.5228                            | 0.0162    |  |
| Et+M - Ad+M | 13,288              | 145                    | 0.5031                            | 0.0163    |  |
| Ad+M – In+M | 309                 | 129                    | 0.0441                            | 0.0115    |  |
| Et+M – In+M | 13,597              | 143                    | 0.5472                            | 0.0162    |  |
| Comparison  | ICER (£ per         | r QALY)                | Quasi-CI                          |           |  |
| Adal – Base | 33,80               | 00                     | 32,800 to 35,000                  |           |  |
| Etan – Base | 30,50               | 00                     | 29,800 to 31,200                  |           |  |
| Ad+M – Base | 29,20               | 00                     | 28,400 to 30,100                  |           |  |
| Et+M – Base | 28,30               | 00                     | 27,700 to 28,900                  |           |  |
| In+M – Base | 30,20               | 00                     | 29,300                            | to 31,100 |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | n Adal alone; diff. cost not sign | nificant  |  |
| Et+M - Etan | 3,95                | 0                      | 1,310                             | to 6,590  |  |
| Etan – Adal | 24,60               | 00                     | 23,100                            | to 26,300 |  |
| Et+M - Ad+M | 26,40               | 00                     | 24,700                            | to 28,400 |  |
| Ad+M - In+M | 7,01                | 0                      | Dominates                         | to 14,700 |  |
| Et+M - In+M | 24,90               | 00                     | 23,400                            | to 26,500 |  |

 TABLE 152
 Variation 15: TNF inhibitors third (late RA values) (40,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                           | QSE      |  |
|-------------|----------------|------------------------|---------------------------------|----------|--|
| Adal        | 46,642         | 154                    | 5.6138                          | 0.0232   |  |
| Etan        | 59,704         | 188                    | 6.3308                          | 0.0246   |  |
| Adal+MTX    | 46,901         | 155                    | 5.9263                          | 0.0232   |  |
| Etan+MTX    | 60,076         | 189                    | 6.3199                          | 0.0249   |  |
| Infl+MTX    | 46,267         | 148                    | 5.6352                          | 0.0233   |  |
| Base        | 16,492         | 36                     | 5.4140                          | 0.0217   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 30,151         | 151                    | 0.1998                          | 0.0223   |  |
| Etan – Base | 43,213         | 182                    | 0.9169                          | 0.0237   |  |
| Ad+M – Base | 30,409         | 151                    | 0.5123                          | 0.0226   |  |
| Et+M – Base | 43,584         | 183                    | 0.9059                          | 0.0240   |  |
| In+M – Base | 29,775         | 145                    | 0.2212                          | 0.0225   |  |
| Ad+M – Adal | 259            | 206                    | 0.3125                          | 0.0228   |  |
| Et+M – Etan | 372            | 244                    | -0.0110                         | 0.0253   |  |
| Etan – Adal | 13,062         | 226                    | 0.7171                          | 0.0237   |  |
| Et+M - Ad+M | 13,175         | 228                    | 0.3936                          | 0.0242   |  |
| Ad+M – In+M | 634            | 201                    | 0.2911                          | 0.0230   |  |
| Et+M – In+M | 13,809         | 223                    | 0.6847                          | 0.0242   |  |
| Comparison  | ICER (£ per    | QALY)                  | Quas                            | i-CI     |  |
| Adal – Base | 151,00         | 00                     | 123,000 to 194,000              |          |  |
| Etan – Base | 47,10          | 00                     | 44,800 to 49,700                |          |  |
| Ad+M – Base | 59,40          | 00                     | 54,500 to 65,200                |          |  |
| Et+M – Base | 48,10          | 00                     | 45,700 to 50,800                |          |  |
| In+M – Base | 135,00         | 00                     | 112,000 to                      | 169,000  |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                |                        | n is inconclusive               |          |  |
| Etan – Adal | 18,20          |                        | 17,000 to                       | 19,700   |  |
| Et+M – Ad+M | 33,50          |                        | 29,700 to                       |          |  |
| Ad+M – In+M | 2,18           |                        |                                 | 3,600    |  |
| Et+M - In+M | 20,20          | 00                     | 18,700 to                       | 21,900   |  |

**TABLE 153** Variation 15: TNF inhibitors last (40,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 35,348         | 154 | 1.8651     | 0.0157 |
| Etan        | 48,690         | 186 | 2.9900     | 0.0189 |
| Adal+MTX    | 35,388         | 154 | 2.1386     | 0.0159 |
| Etan+MTX    | 49,012         | 187 | 2.9827     | 0.0193 |
| Infl+MTX    | 35,511         | 149 | 1.9051     | 0.0160 |
| Base        | 2,865          | 8   | 1.0327     | 0.0130 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 32,482         | 153 | 0.8324     | 0.0115 |
| Etan – Base | 45,825         | 184 | 1.9573     | 0.0161 |
| Ad+M – Base | 32,523         | 152 | 1.1058     | 0.0122 |
| Et+M - Base | 46,147         | 185 | 1.9500     | 0.0167 |
| In+M – Base | 32,646         | 147 | 0.8724     | 0.0120 |
| Ad+M – Adal | 41             | 211 | 0.2734     | 0.0147 |
| Et+M – Etan | 322            | 247 | -0.0073    | 0.0212 |
| Etan – Adal | 13,342         | 230 | 1.1249     | 0.0179 |
| Et+M – Ad+M | 13,624         | 232 | 0.8442     | 0.0189 |
|             | 123            | 207 | -0.2334    | 0.0151 |
| In+M – Ad+M |                |     |            |        |

TABLE 153 Variation 15: TNF inhibitors last (40,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)               | Quasi-CI                              |
|-------------|---------------------------------|---------------------------------------|
| Adal – Base | 39,000                          | 37,900 to 40,200                      |
| Etan – Base | 23,400                          | 23,000 to 23,800                      |
| Ad+M – Base | 29,400                          | 28,700 to 30,100                      |
| Et+M - Base | 23,700                          | 23,200 to 24,100                      |
| In+M – Base | 37,400                          | 36,400 to 38,500                      |
| Ad+M – Adal | Adal+MTX more effective than A  | dal alone; diff. cost not significant |
| Et+M – Etan | Comparison is                   |                                       |
| Etan – Adal | 11,900                          | 11,300 to 12,400                      |
| Et+M - Ad+M | 16,100                          | 15,300 to 17,100                      |
| In+M - Ad+M | Adal+MTX more effective than Ir | nfl+MTX; diff. cost not significant   |
| Et+M - In+M | 12,500                          | 12,000 to 13,200                      |

In this variation, short-term quitters on conventional DMARDs were reduced by 50%.

**TABLE 154** Variation 16: TNF inhibitors first (200,000 patients)

| Option      | Cost (£)       | QSE                     | QALYs                         | QSE      |  |
|-------------|----------------|-------------------------|-------------------------------|----------|--|
| Adal        | 49,314         | 72                      | 8.9243                        | 0.0119   |  |
| Etan        | 63,789         | 88                      | 9.2683                        | 0.0124   |  |
| Adal+MTX    | 49,359         | 73                      | 8.5292                        | 0.0113   |  |
| Etan+MTX    | 63,870         | 89                      | 8.9366                        | 0.0120   |  |
| Infl+MTX    | 48,774         | 70                      | 8.3809                        | 0.0114   |  |
| Base        | 15,059         | 15                      | 8.2830                        | 0.0112   |  |
| Comparison  | Diff. cost (£) | QSE                     | Diff. QALY                    | QSE      |  |
| Adal – Base | 34,255         | 71                      | 0.6412                        | 0.0119   |  |
| Etan – Base | 48,730         | 85                      | 0.9853                        | 0.0122   |  |
| Ad+M – Base | 34,300         | 72                      | 0.2461                        | 0.0116   |  |
| Et+M – Base | 48,811         | 86                      | 0.6535                        | 0.0121   |  |
| In+M – Base | 33,715         | 69                      | 0.0978                        | 0.0116   |  |
| Ad+M – Adal | 46             | 98                      | –0.395 I                      | 0.0120   |  |
| Et+M - Etan | 81             | 117                     | -0.3317                       | 0.0126   |  |
| Etan – Adal | 14,475         | 107                     | 0.3441                        | 0.0124   |  |
| Et+M – Ad+M | 14,511         | 109                     | 0.4074                        | 0.0121   |  |
| Ad+M – In+M | 585            | 97                      | 0.1483                        | 0.0117   |  |
| Et+M – In+M | 15,096         | 107                     | 0.5557                        | 0.0121   |  |
| Comparison  | ICER (£ per    | ICER (£ per QALY)       |                               | Quasi-CI |  |
| Adal – Base | 53,40          | 00                      | 51,500 to 55,500              |          |  |
| Etan – Base | 49,50          |                         | 48,200 to 50,700              |          |  |
| Ad+M – Base | 139,00         | 00                      | 127,000 to 154,000            |          |  |
| Et+M – Base | 74,70          |                         | 72,000 to 77,600              |          |  |
| In+M – Base | 345,00         | 00                      | 278,000 to                    | 452,000  |  |
| Ad+M – Adal | Adal alon      | e more effective than a | Adal+MTX; diff. cost not sign | nificant |  |
| Et+M – Etan | Etan alon      | e more effective than   | Etan+MTX; diff. cost not sign | nificant |  |
| Etan – Adal | 42,10          | 00                      | 39,200 to                     | 45,400   |  |
| Et+M – Ad+M | 35,60          | 00                      | 33,600 to                     | 37,900   |  |
| Ad+M – In+M | 3,94           |                         | 2,500 to                      | ,        |  |
| Et+M - In+M | 27,20          | 00                      | 26,000 to                     | 28.500   |  |

 TABLE 155
 Variation 16: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                           | QSE              |  |
|-------------|----------------|------------------------|---------------------------------|------------------|--|
| Adal        | 48,077         | 98                     | 6.1839                          | 0.0148           |  |
| Etan        | 60,569         | 119                    | 6.6881                          | 0.0158           |  |
| Adal+MTX    | 48,004         | 98                     | 6.3123                          | 0.0147           |  |
| Etan+MTX    | 60,729         | 119                    | 6.8202                          | 0.0158           |  |
| Infl+MTX    | 47,742         | 94                     | 6.2718                          | 0.0147           |  |
| Base        | 16,282         | 23                     | 5.2523                          | 0.0135           |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                      | QSE              |  |
| Adal – Base | 31,796         | 96                     | 0.9317                          | 0.0144           |  |
| Etan – Base | 44,287         | 115                    | 1.4358                          | 0.0153           |  |
| Ad+M – Base | 31,723         | 95                     | 1.0600                          | 0.0145           |  |
| Et+M – Base | 44,447         | 115                    | 1.5679                          | 0.0155           |  |
| In+M – Base | 31,461         | 92                     | 1.0195                          | 0.0144           |  |
| Adal – Ad+M | 73             | 130                    | -0.1283                         | 0.0152           |  |
| Et+M – Etan | 160            | 154                    | 0.1321                          | 0.0167           |  |
| Etan – Adal | 12,491         | 143                    | 0.5041                          | 0.0159           |  |
| Et+M - Ad+M | 12,725         | 143                    | 0.5079                          | 0.0161           |  |
| Ad+M – In+M | 262            | 127                    | 0.0405                          | 0.0151           |  |
| Et+M – In+M | 12,987         | 141                    | 0.5484                          | 0.0160           |  |
| Comparison  | ICER (£ per    | r QALY)                | Quas                            | i-Cl             |  |
| Adal – Base | 34,10          | 00                     | 33,100                          | 33,100 to 35,200 |  |
| Etan – Base | 30,80          | 00                     | 30,200 to 31,500                |                  |  |
| Ad+M – Base | 29,90          | 00                     | 29,100 to 30,800                |                  |  |
| Et+M – Base | 28,30          | 00                     | 27,800 to 28,900                |                  |  |
| In+M – Base | 30,90          |                        | 30,000                          | to 31,800        |  |
| Adal – Ad+M | Adal+M         | TX more effective than | Adal alone; diff. cost not sign | nificant         |  |
| Et+M – Etan |                |                        | Etan alone; diff. cost not sign |                  |  |
| Etan – Adal | 24,80          |                        | •                               | to 26,600        |  |
| Et+M - Ad+M | 25,10          | 00                     | 23,500                          | to 26,900        |  |
| Ad+M - In+M | 6,46           | 50                     | Dominates                       | to 14,400        |  |
| Et+M - In+M | 23,70          | 00                     | 22.300                          | to 25,300        |  |

TABLE 156 Variation 16: TNF inhibitors third (late RA values) (40,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 47,168         | 153 | 5.4548     | 0.0229 |
| Etan        | 59,981         | 187 | 6.1606     | 0.0243 |
| Adal+MTX    | 47,513         | 154 | 5.7821     | 0.0230 |
| Etan+MTX    | 59,811         | 187 | 6.1612     | 0.0248 |
| Infl+MTX    | 47,179         | 148 | 5.5014     | 0.0232 |
| Base        | 16,305         | 36  | 5.2680     | 0.0213 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 30,862         | 149 | 0.1869     | 0.0218 |
| Etan – Base | 43,676         | 181 | 0.8926     | 0.0233 |
| Ad+M – Base | 31,207         | 150 | 0.5141     | 0.0221 |
| Et+M - Base | 43,505         | 181 | 0.8932     | 0.0238 |
| In+M – Base | 30,874         | 144 | 0.2334     | 0.0221 |
| Ad+M – Adal | 345            | 203 | 0.3273     | 0.0223 |
| Etan – Et+M | 171            | 241 | -0.0007    | 0.0252 |
| Etan – Adal | 12,814         | 224 | 0.7057     | 0.0234 |
| Et+M - Ad+M | 12,298         | 224 | 0.3791     | 0.0239 |
|             | 333            | 199 | 0.2807     | 0.0224 |
| Ad+M – In+M |                |     |            |        |

TABLE 156 Variation 16: TNF inhibitors third (late RA values) (40,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)              | Quasi-Cl                               |
|-------------|--------------------------------|----------------------------------------|
| Adal – Base | 165,000                        | 134,000 to 215,000                     |
| Etan - Base | 48,900                         | 46,500 to 51,700                       |
| Ad+M – Base | 60,700                         | 55,900 to 66,400                       |
| Et+M - Base | 48,700                         | 46,200 to 51,500                       |
| In+M - Base | 132,000                        | 111,000 to 163,000                     |
| Ad+M – Adal | Adal+MTX more effective than A | Adal alone; diff. cost not significant |
| Et+M - Etan | Comparison i                   | s inconclusive                         |
| Etan – Adal | 18,200                         | 16,900 to 19,600                       |
| Et+M - Ad+M | 32,400                         | 28,700 to 37,300                       |
| Ad+M - In+M | Adal+MTX more effective than I | nfl+MTX; diff. cost not significant    |
| Et+M - In+M | 19,100                         | 17,700 to 20,800                       |

 TABLE 157
 Variation 16: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)            | QSE                    | QALYs                             | QSE      |  |
|-------------|---------------------|------------------------|-----------------------------------|----------|--|
| Adal        | 35,614              | 212                    | 1.6384                            | 0.0211   |  |
| Etan        | 48,151              | 258                    | 2.7369                            | 0.0258   |  |
| Adal+MTX    | 36,030              | 215                    | 1.9330                            | 0.0216   |  |
| Etan+MTX    | 48,536              | 260                    | 2.7245                            | 0.0264   |  |
| Infl+MTX    | 35,659              | 205                    | 1.6827                            | 0.0218   |  |
| Base        | 2,746               | П                      | 0.8031                            | 0.0171   |  |
| Comparison  | Diff. cost (£)      | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 32,867              | 210                    | 0.8353                            | 0.0156   |  |
| Etan – Base | 45,405              | 255                    | 1.9338                            | 0.0225   |  |
| Ad+M – Base | 33,284              | 213                    | 1.1299                            | 0.0169   |  |
| Et+M - Base | 45,790              | 257                    | 1.9214                            | 0.023    |  |
| In+M – Base | 32,913              | 203                    | 0.8796                            | 0.0163   |  |
| Ad+M – Adal | 417                 | 290                    | 0.2946                            | 0.0204   |  |
| Et+M - Etan | 385                 | 339                    | -0.0124                           | 0.0297   |  |
| Etan – Adal | 12,538              | 319                    | 1.0985                            | 0.0248   |  |
| Et+M - Ad+M | 12,506              | 320                    | 0.7915                            | 0.0262   |  |
| Ad+M – In+M | 371                 | 286                    | 0.2503                            | 0.0210   |  |
| Et+M – In+M | 12,877              | 315                    | 1.0417                            | 0.0261   |  |
| Comparison  | ICER (£ per         | · QALY)                | Quas                              | i-CI     |  |
| Adal – Base | 39,30               | 00                     | 37,800 to 41,000                  |          |  |
| Etan – Base | 23,50               | 0                      | 22,900 to 24,100                  |          |  |
| Ad+M – Base | 29,50               | 0                      | 28,500 to 30,400                  |          |  |
| Et+M – Base | 23,80               | 0                      | 23,200 to 24,500                  |          |  |
| In+M – Base | 37,40               | 0                      | 36,000 to 38,900                  |          |  |
| Ad+M – Adal | Adal+M <sup>-</sup> | TX more effective than | n Adal alone; diff. cost not sigr | nificant |  |
| Et+M – Etan |                     | Compariso              | n is inconclusive                 |          |  |
| Etan – Adal | 11,40               | 0                      | 10,600 to                         | 12,200   |  |
| Et+M – Ad+M | 15,80               | 0                      | 14,600 to                         | 17,200   |  |
| Ad+M – In+M | Adal+M <sup>-</sup> | TX more effective than | n Infl+MTX; diff. cost not sign   | nificant |  |
| Et+M - In+M | 12,40               | 0                      | 11,600 to                         | 13,300   |  |

In this variation, short-term quitters on conventional DMARDs were increased by 50% compared to the base case.

TABLE 158 Variation 17: TNF inhibitors first (10,000,000 patients)

| Option      | Cost (£)       | QSE            | QALYs              | QSE       |  |
|-------------|----------------|----------------|--------------------|-----------|--|
| Adal        | 49,715         | 10             | 8.9033             | 0.0017    |  |
| Etan        | 64,017         | 12             | 9.2629             | 0.0018    |  |
| Adal+MTX    | 50,012         | 10             | 8.4065             | 0.0016    |  |
| Etan+MTX    | 64,298         | 12             | 8.8430             | 0.0017    |  |
| Infl+MTX    | 49,330         | 10             | 8.2443             | 0.0016    |  |
| Base        | 15,626         | 2              | 8.2329             | 0.0016    |  |
| Comparison  | Diff. cost (£) | QSE            | Diff. QALY         | QSE       |  |
| Adal – Base | 34,088         | 10             | 0.6704             | 0.0017    |  |
| Etan – Base | 48,391         | 12             | 1.0300             | 0.0018    |  |
| Ad+M – Base | 34,386         | 10             | 0.1736             | 0.0017    |  |
| Et+M - Base | 48,672         | 12             | 0.6101             | 0.0018    |  |
| In+M - Base | 33,704         | 10             | 0.0114             | 0.0017    |  |
| Ad+M – Adal | 298            | 14             | -0.4968            | 0.0017    |  |
| Et+M – Etan | 281            | 16             | -0.4199            | 0.0018    |  |
| Etan – Adal | 14,302         | 15             | 0.3596             | 0.0018    |  |
| Et+M - Ad+M | 14,286         | 15             | 0.4365             | 0.0018    |  |
| Ad+M - In+M | 683            | 14             | 0.1622             | 0.0017    |  |
| Et+M – In+M | 14,986         | 15             | 0.5987             | 0.0018    |  |
| Comparison  | ICER (£ per    | r QALY)        | Quas               | Quasi-CI  |  |
| Adal – Base | 50,8           | 300            | 50,600 to 51,100   |           |  |
| Etan – Base | 47,0           | 000            | 46,800 to 47,100   |           |  |
| Ad+M – Base | 198,0          | 000            | 194,000 to 202,000 |           |  |
| Et+M – Base | 79,8           | 300            | 79,300 to 80,200   |           |  |
| In+M – Base | 2,950,0        | 000            | 2,270,000 to       | 4,180,000 |  |
| Ad+M – Adal |                | Adal alone don | ninates Adal+MTX   |           |  |
| Et+M – Etan |                | Etan alone don | ninates Etan+MTX   |           |  |
| Etan – Adal | 39,8           | 300            | 39,400 to          | 40,200    |  |
| Et+M - Ad+M | 32,7           | 700            | 32,500 to          | 33,000    |  |
| Ad+M - In+M | 4,2            | 210            | 4,020 to           | 4,400     |  |
| Et+M - In+M | 25,0           | 000            | 24,800 to          | 25 200    |  |

 TABLE 159
 Variation 17: TNF inhibitors third (early RA values) (200,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 48,713         | 70  | 6.4132     | 0.0107 |
| Etan        | 61,513         | 84  | 6.9711     | 0.0114 |
| Adal+MTX    | 49,060         | 70  | 6.5622     | 0.0107 |
| Etan+MTX    | 61,624         | 84  | 7.0722     | 0.0114 |
| Infl+MTX    | 48,606         | 67  | 6.5343     | 0.0107 |
| Base        | 16,575         | 16  | 5.4246     | 0.0099 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 32,138         | 69  | 0.9886     | 0.0107 |
| Etan – Base | 44,938         | 82  | 1.5465     | 0.0113 |
| Ad+M – Base | 32,485         | 69  | 1.1376     | 0.0108 |
| Et+M – Base | 45,048         | 82  | 1.6476     | 0.0114 |
| In+M – Base | 32,031         | 66  | 1.1097     | 0.0107 |
|             | 347            | 94  | 0.1490     | 0.0112 |
| Ad+M – Adal |                |     |            |        |

TABLE 159 Variation 17: TNF inhibitors third (early RA values) (200,000 patients) (cont'd)

| Etan – Adal | 12,800                | 103                     | 0.5579                         | 0.0117           |  |
|-------------|-----------------------|-------------------------|--------------------------------|------------------|--|
| Et+M - Ad+M | 12,564                | 103                     | 0.5100                         | 0.0118           |  |
| Ad+M – In+M | 454                   | 92                      | 0.0279                         | 0.0112           |  |
| Et+M – In+M | 13,017                | 101                     | 0.5379                         | 0.0117           |  |
| Comparison  | ICER (£ per QALY) Qua |                         | si-CI                          |                  |  |
| Adal – Base | 32,500                |                         | 31,800 to 33,200               |                  |  |
| Etan – Base | 29,100                |                         | 28,600 to 29,500               |                  |  |
| Ad+M – Base | 28,6                  | 28,600                  |                                | 28,000 to 29,100 |  |
| Et+M - Base | 27,3                  | 27,300                  |                                | 27,700           |  |
| In+M - Base | 28,9                  | 28,900 28,300 to 29,400 |                                | 29,400           |  |
| Ad+M – Adal | 2,3                   | 330                     | 1,020 to                       | 3,630            |  |
| Et+M – Etan | Etan+N                | 1TX more effective than | Etan alone; diff. cost not sig | nificant         |  |
| Etan – Adal | 22,9                  | 900                     | 22,000 to 24,000               |                  |  |
| Et+M - Ad+M | 24,6                  | 500                     | 23,500 to                      | 25,900           |  |
| Ad+M – In+M | 16,3                  | 300                     | 8,560 to                       | 161,000          |  |
| Et+M - In+M | 24,2                  | 200                     | 24,200 23,100 to 25,400        |                  |  |

TABLE 160 Variation 17: TNF inhibitors third (late RA values) (100,000 patients)

| Option      | Cost (£)       | QSE        | QALYs             | QSE    |  |
|-------------|----------------|------------|-------------------|--------|--|
| Adal        | 47,967         | 98         | 5.7255            | 0.0150 |  |
| Etan        | 61,045         | 119        | 6.4486            | 0.0158 |  |
| Adal+MTX    | 48,371         | 99         | 5.9809            | 0.0149 |  |
| Etan+MTX    | 60,953         | 119        | 6.4212            | 0.0160 |  |
| Infl+MTX    | 47,619         | 94         | 5.7371            | 0.0150 |  |
| Base        | 16,602         | 23         | 5.4093            | 0.0140 |  |
| Comparison  | Diff. cost (£) | QSE        | Diff. QALY        | QSE    |  |
| Adal – Base | 31,366         | 96         | 0.3162            | 0.0145 |  |
| Etan – Base | 44,444         | 116        | 1.0393            | 0.0154 |  |
| Ad+M – Base | 31,769         | 97         | 0.5716            | 0.0147 |  |
| Et+M - Base | 44,351         | 116        | 1.0119            | 0.0156 |  |
| In+M – Base | 31,017         | 92         | 0.3278            | 0.0146 |  |
| Ad+M – Adal | 404            | 131        | 0.2554            | 0.0148 |  |
| Etan – Et+M | 93             | 155        | 0.0274            | 0.0163 |  |
| Etan – Adal | 13,078         | 143        | 0.7231            | 0.0154 |  |
| Et+M – Ad+M | 12,582         | 144        | 0.4402            | 0.0157 |  |
| Ad+M – In+M | 752            | 128        | 0.2438            | 0.0149 |  |
| Et+M – In+M | 13,334         | 141        | 0.6841            | 0.0157 |  |
| Comparison  | ICER (£ per    | · QALY)    | Quas              | si-CI  |  |
| Adal – Base | 99,20          |            | 90,800 to 109,000 |        |  |
| Etan – Base | 42,80          | 0          | 41,500 to 44,100  |        |  |
| Ad+M – Base | 55,60          | 0          | 52,800 to 58,600  |        |  |
| Et+M – Base | 43,80          | 0          | 42,500 to 45,200  |        |  |
| In+M – Base | 94,60          | 0          | 86,900 to 104,000 |        |  |
| Ad+M – Adal | 1,58           | 0          | 541 to            | 2,620  |  |
| Etan – Et+M |                | Comparisor | n is inconclusive |        |  |
| Etan – Adal | 18,10          | 0          | 17,300 to         | 19,000 |  |
| Et+M – Ad+M | 28,60          | 0          | 26,600 to         | 30,900 |  |
| Ad+M – In+M | 3,09           | 0          | 1,970 to          | 4,200  |  |
| Et+M - In+M | 19,50          | 0          | 18,600 to         | 20,500 |  |

TABLE 161 Variation 17: TNF inhibitors last (40,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                             | QSE      |  |
|-------------|----------------|------------------------|-----------------------------------|----------|--|
| Adal        | 37,083         | 155                    | 2.2519                            | 0.0167   |  |
| Etan        | 50,402         | 189                    | 3.3443                            | 0.0198   |  |
| Adal+MTX    | 37,492         | 157                    | 2.5198                            | 0.0170   |  |
| Etan+MTX    | 50,589         | 190                    | 3.3466                            | 0.0201   |  |
| Infl+MTX    | 37,150         | 150                    | 2.2976                            | 0.0171   |  |
| Base        | 2,970          | 8                      | 1.3602                            | 0.0142   |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                        | QSE      |  |
| Adal – Base | 34,113         | 154                    | 0.8917                            | 0.0119   |  |
| Etan – Base | 47,431         | 187                    | 1.9841                            | 0.0165   |  |
| Ad+M – Base | 34,522         | 156                    | 1.1596                            | 0.0127   |  |
| Et+M – Base | 47,619         | 188                    | 1.9864                            | 0.0170   |  |
| In+M – Base | 34,180         | 148                    | 0.9374                            | 0.0125   |  |
| Ad+M – Adal | 409            | 213                    | 0.2679                            | 0.0150   |  |
| Et+M – Etan | 188            | 249                    | 0.0024                            | 0.0214   |  |
| Etan – Adal | 13,319         | 232                    | 1.0924                            | 0.0181   |  |
| Et+M - Ad+M | 13,097         | 234                    | 0.8269                            | 0.0190   |  |
| Ad+M – In+M | 342            | 208                    | 0.2221                            | 0.0154   |  |
| Et+M – In+M | 13,439         | 229                    | 1.0490                            | 0.0189   |  |
| Comparison  | ICER (£ per    | r QALY)                | Quas                              | i-CI     |  |
| Adal – Base | 38,30          | 00                     | 37,200 to                         | 39,400   |  |
| Etan – Base | 23,90          | 00                     | 23,500 to 24,400                  |          |  |
| Ad+M – Base | 29,80          | 00                     | 29,100 to 30,500                  |          |  |
| Et+M – Base | 24,00          | 00                     | 23,500 to 24,400                  |          |  |
| In+M – Base | 36,50          | 00                     | 35,500 to                         | 37,500   |  |
| Ad+M – Adal | Adal+M         | TX more effective than | n Adal alone; diff. cost not sign | nificant |  |
| Et+M – Etan |                |                        | n is inconclusive                 |          |  |
| Etan – Adal | 12,20          | •                      | 11,600 to                         | 12,800   |  |
| Et+M - Ad+M | 15,80          |                        | 15,000 to                         | 16,800   |  |
| Ad+M - In+M | Adal+M         | TX more effective than | n Infl+MTX; diff. cost not sign   | nificant |  |
| Et+M - In+M | 12,80          | 00                     | 12,200 to                         | 13,500   |  |

For the final variation, the use of offset costs was considered to account for joint replacement and hospitalisation. In the absence of an effective method of including this explicitly in the model, a cost of £860 per unit HAQ score was assumed, as used in previous work.<sup>3</sup>

 TABLE 162
 Variation 18: TNF inhibitors first (400,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 57,939         | 54  | 8.9463     | 0.0084 |
| Etan        | 71,889         | 65  | 9.3025     | 0.0088 |
| Adal+MTX    | 58,353         | 54  | 8.5201     | 0.0080 |
| Etan+MTX    | 72,424         | 65  | 8.9313     | 0.0085 |
| Infl+MTX    | 57,933         | 52  | 8.3555     | 0.0080 |
| Base        | 24,395         | 19  | 8.3149     | 0.0079 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 33,543         | 52  | 0.6314     | 0.0085 |
| Etan – Base | 47,494         | 62  | 0.9876     | 0.0087 |
| Ad+M – Base | 33,958         | 52  | 0.2051     | 0.0083 |
| Et+M - Base | 48,028         | 62  | 0.6163     | 0.0086 |
|             | 33,537         | 50  | 0.0405     | 0.0083 |

TABLE 162 Variation 18: TNF inhibitors first (400,000 patients) (cont'd)

| Ad+M – Adal | 414        | 70                            | -0.4263          | 0.0085    |
|-------------|------------|-------------------------------|------------------|-----------|
| Et+M - Etan | 534        | 83                            | -0.3712          | 0.0090    |
| Etan – Adal | 13,950     | 77                            | 0.3562           | 0.0088    |
| Et+M - Ad+M | 14,071     | 77                            | 0.4112           | 0.0087    |
| Ad+M – In+M | 420        | 69                            | 0.1646           | 0.0083    |
| Et+M – In+M | 14,491     | 76                            | 0.5758           | 0.0086    |
| Comparison  | ICER (£ pe | er QALY)                      | Quasi-Cl         |           |
| Adal – Base | 53,100     |                               | 51,700 to 54,600 |           |
| Etan – Base | 48,100     |                               | 47,200 to 49,000 |           |
| Ad+M – Base | 166,000    |                               | 153,000 to       | 180,000   |
| Et+M - Base | 77,        | 900                           | 75,800 to 80,200 |           |
| In+M – Base | 827,       | 000                           | 587,000 to       | 1,400,000 |
| Ad+M – Adal |            | Adal alone dominates Adal+MTX |                  |           |
| Et+M - Etan |            | Etan alone don                | ninates Etan+MTX |           |
| Etan – Adal | 39,        | 200                           | 37,300 to 41,300 |           |
| Et+M - Ad+M | 34,        | 200                           | 32,800 to 35,800 |           |
| Ad+M - In+M | 2,         | 550                           | 1,680 to         | 3,420     |
| Et+M - In+M | 25         | 200                           | 24,400 to 26,000 |           |

 TABLE 163
 Variation 18: TNF inhibitors third (early RA values) (100,000 patients)

| Option      | Cost (£)       | QSE                    | QALYs                                      | QSE     |  |
|-------------|----------------|------------------------|--------------------------------------------|---------|--|
| Adal        | 58,107         | 106                    | 6.3065                                     | 0.0149  |  |
| Etan        | 70,040         | 126                    | 6.8371                                     | 0.0159  |  |
| Adal+MTX    | 58,088         | 105                    | 6.4506                                     | 0.0149  |  |
| Etan+MTX    | 70,137         | 126                    | 6.9344                                     | 0.0159  |  |
| Infl+MTX    | 57,699         | 101                    | 6.4264                                     | 0.0149  |  |
| Base        | 27,448         | 43                     | 5.3611                                     | 0.0137  |  |
| Comparison  | Diff. cost (£) | QSE                    | Diff. QALY                                 | QSE     |  |
| Adal – Base | 30,659         | 101                    | 0.9454                                     | 0.0148  |  |
| Etan – Base | 42,592         | 119                    | 1.4760                                     | 0.0156  |  |
| Ad+M – Base | 30,639         | 100                    | 1.0895                                     | 0.0148  |  |
| Et+M - Base | 42,689         | 119                    | 1.5733                                     | 0.0157  |  |
| In+M – Base | 30,250         | 96                     | 1.0653                                     | 0.0147  |  |
| Adal – Ad+M | 20             | 133                    | -0.1441                                    | 0.0155  |  |
| Et+M – Etan | 96             | 157                    | 0.0973                                     | 0.0168  |  |
| Etan – Adal | 11,933         | 146                    | 0.5306                                     | 0.0162  |  |
| Et+M - Ad+M | 12,049         | 146                    | 0.4838                                     | 0.0163  |  |
| Ad+M – In+M | 389            | 130                    | 0.0242                                     | 0.0155  |  |
| Et+M – In+M | 12,438         | 144                    | 0.5080                                     | 0.0162  |  |
| Comparison  | ICER (£ per    | r QALY)                | Quas                                       | i-Cl    |  |
| Adal – Base | 32,40          | 00                     | 31,400 to 33,500                           |         |  |
| Etan – Base | 28,90          | 00                     | 28,200 to 29,500                           |         |  |
| Ad+M – Base | 28,10          | 00                     | 27,400 to 28,900                           |         |  |
| Et+M – Base | 27,10          | 00                     | 26,600 to 27,700                           |         |  |
| In+M – Base | 28,40          | 00                     | 27,600 to 29,200                           |         |  |
| Ad+M – Adal | Adal+M7        | TX more effective than | nan Adal alone; diff. cost not significant |         |  |
| Et+M – Etan | Etan+M7        | TX more effective than | nan Etan alone; diff. cost not significant |         |  |
| Etan – Adal | 22,50          | 00                     | 21,100 to 24,100                           |         |  |
| Et+M – Ad+M | 24,90          | 00                     | 23,200 to 26,800                           |         |  |
| Ad+M – In+M | Adal+M         | TX more costly than I  | nfl+MTX; diff QALY not sign                | ificant |  |
| Et+M - In+M | 24,50          | 00                     | 22,900 to                                  | 26,300  |  |

 TABLE 164
 Variation 18: TNF inhibitors third (late RA values) (100,000 patients)

| Option      | Cost (£)          | QSE                    | QALYs                           | QSE      |  |
|-------------|-------------------|------------------------|---------------------------------|----------|--|
| Adal        | 58,576            | 109                    | 5.5927                          | 0.0147   |  |
| Etan        | 70,549            | 129                    | 6.3112                          | 0.0156   |  |
| Adal+MTX    | 58,583            | 107                    | 5.8779                          | 0.0147   |  |
| Etan+MTX    | 70,423            | 128                    | 6.2830                          | 0.0157   |  |
| Infl+MTX    | 58,374            | 105                    | 5.6291                          | 0.0148   |  |
| Base        | 27,469            | 43                     | 5.3622                          | 0.0137   |  |
| Comparison  | Diff. cost (£)    | QSE                    | Diff. QALY                      | QSE      |  |
| Adal – Base | 31,107            | 103                    | 0.2305                          | 0.0141   |  |
| Etan – Base | 43,080            | 121                    | 0.9489                          | 0.0151   |  |
| Ad+M – Base | 31,114            | 102                    | 0.5156                          | 0.0142   |  |
| Et+M - Base | 42,954            | 121                    | 0.9208                          | 0.0152   |  |
| In+M - Base | 30,906            | 99                     | 0.2669                          | 0.0142   |  |
| Ad+M – Adal | 7                 | 136                    | 0.2851                          | 0.0144   |  |
| Etan – Et+M | 126               | 159                    | 0.0281                          | 0.0161   |  |
| Etan – Adal | 11,973            | 149                    | 0.7184                          | 0.0152   |  |
| Et+M - Ad+M | 11,840            | 148                    | 0.4052                          | 0.0153   |  |
| Ad+M - In+M | 209               | 134                    | 0.2488                          | 0.0145   |  |
| Et+M – In+M | 12,048            | 147                    | 0.6540                          | 0.0153   |  |
| Comparison  | ICER (£ per QALY) |                        | Quasi-CI                        |          |  |
| Adal – Base | 135,00            | 00                     | 120,000 to 154,000              |          |  |
| Etan – Base | 45,40             | 00                     | 44,000 to 46,900                |          |  |
| Ad+M - Base | 60,30             | 00                     | 57,200 to 63,900                |          |  |
| Et+M - Base | 46,60             | 00                     | 45,100 to 48,300                |          |  |
| In+M - Base | 116,00            | 00                     | 105,000 to 130,000              |          |  |
| Ad+M – Adal | Adal+M7           | TX more effective than | Adal alone; diff. cost not sign | nificant |  |
| Etan – Et+M |                   | Comparisor             | n is inconclusive               |          |  |
| Etan – Adal | 16,70             | 00                     | 15,900 to                       | 17,500   |  |
| Et+M - Ad+M | 29,20             | 00                     | 27,100 to                       | 31,800   |  |
| Ad+M - In+M | Adal+M7           | TX more effective than | n Infl+MTX; diff. cost not sign | nificant |  |
| Et+M - In+M | 18,40             | 00                     | 17,500 to                       | 19,500   |  |

 TABLE 165
 Variation 18: TNF inhibitors last (20,000 patients)

| Option      | Cost (£)       | QSE | QALYs      | QSE    |
|-------------|----------------|-----|------------|--------|
| Adal        | 50,104         | 239 | 1.8630     | 0.0220 |
| Etan        | 61,587         | 282 | 2.9782     | 0.0267 |
| Adal+MTX    | 49,663         | 234 | 2.1603     | 0.0223 |
| Etan+MTX    | 61,732         | 283 | 2.9730     | 0.0271 |
| Infl+MTX    | 50,066         | 231 | 1.9151     | 0.0226 |
| Base        | 18,262         | 81  | 1.0336     | 0.0183 |
| Comparison  | Diff. cost (£) | QSE | Diff. QALY | QSE    |
| Adal – Base | 31,842         | 227 | 0.8293     | 0.0160 |
| Etan – Base | 43,325         | 267 | 1.9446     | 0.0228 |
| Ad+M – Base | 31,401         | 223 | 1.1267     | 0.0171 |
| Et+M - Base | 43,470         | 266 | 1.9393     | 0.0233 |
| In+M – Base | 31,804         | 220 | 0.8815     | 0.0169 |
| Adal – Ad+M | 440            | 303 | -0.2974    | 0.0204 |
| Et+M – Etan | 144            | 352 | -0.0053    | 0.0298 |
| Etan – Adal | 11,484         | 332 | 1.1153     | 0.0253 |
| Et+M - Ad+M | 12,068         | 330 | 0.8126     | 0.0264 |
| In+M – Ad+M | 402            | 297 | -0.2452    | 0.0214 |
|             | 11,666         | 325 | 1.0578     | 0.0262 |

 TABLE 165
 Variation 18: TNF inhibitors last (20,000 patients) (cont'd)

| Comparison  | ICER (£ per QALY)               | Quasi-CI                               |
|-------------|---------------------------------|----------------------------------------|
| Adal – Base | 38,400                          | 36,900 to 40,000                       |
| Etan – Base | 22,300                          | 21,700 to 22,900                       |
| Ad+M – Base | 27,900                          | 27,000 to 28,800                       |
| Et+M - Base | 22,400                          | 21,800 to 23,000                       |
| In+M - Base | 36,100                          | 34,700 to 37,600                       |
| Ad+M – Adal | Adal+MTX more effective than A  | Adal alone; diff. cost not significant |
| Et+M - Etan | Comparison is inconclusive      |                                        |
| Etan – Adal | 10,300                          | 9,540 to 11,100                        |
| Et+M - Ad+M | 14,900                          | 13,700 to 16,200                       |
| In+M - Ad+M | Adal+MTX more effective than Ir | •                                      |
| Et+M - In+M | 11,000                          | 10,200 to 11,900                       |

# Appendix II

# Ongoing research

# Additional ongoing/unpublished trials

### Source: ClinicalTrials.gov http://www.clinicaltrials.gov/ct

The role of cytokines on growth hormone suppression in premenopausal women with rheumatoid arthritis and the effect of treatment with etanercept. Sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Diseases

http://www.clinicaltrials.gov/ct/show/NCT00099554

Effectiveness and safety of Enbrel<sup>®</sup> (etanercept) in rheumatoid arthritis subjects who have failed Remicade<sup>®</sup> (infliximab). Sponsored by Abbott Laboratories

http://www.clinicaltrials.gov/ct/show/NCT00095147 ?order=4

Abatacept and infliximab in combination with methotrexate in subjects with rheumatoid arthritis. Sponsored by Bristol-Myers Squibb

http://www.clinicaltrials.gov/ct/show/NCT00056602 ?order=5

Clinically important changes in rheumatoid arthritis. Sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Diseases

### Source: Controlled-Trials.com http://www.controlled-trials.com/

http://www.controlled-

trials.com/mrct/trial/INFLIXIMAB%7CADALIMU MAB%7CETANERCEPT%

7CRHEUMATOID%20ARTHRITIS/1059/67577.h tml

Preference of rheumatoid arthritis (RA) patients of Enbrel<sup>®</sup> (etanercept) auto-injector versus Enbrel<sup>®</sup> pre-filled syringes. Sponsored by Amgen

http://www.controlled-

trials.com/mrct/trial/INFLIXIMAB%7CADALIMU MAB%7CETANERCEPT%

7CRHEUMATOID%20ARTHRITIS/1059/67629.h

OPPOSITE: Open-label, Pilot Protocol of Patients with Rheumatoid Arthritis who Switch to Infliximab after an Incomplete Response To Etanercept. Sponsored by Centocor



# Health Technology Assessment Programme

Director, Professor Tom Walley, Director, NHS HTA Programme,

Department of Pharmacology & Therapeutics, University of Liverpool Deputy Director, Professor Jon Nicholl,

Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research

## **Prioritisation Strategy Group**

#### Members

#### Chair, Professor Tom Walley,

Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool Professor Bruce Campbell, Consultant Vascular & General Surgeon, Royal Devon & Exeter Hospital

Dr Edmund Jessop, Medical Advisor, National Specialist, Commissioning Advisory Group (NSCAG), Department of Health, London Professor Jon Nicholl, Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research

Dr John Reynolds, Clinical Director, Acute General Medicine SDU, Radcliffe Hospital, Oxford Dr Ron Zimmern, Director, Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

## HTA Commissioning Board

#### Members

#### Programme Director, Professor Tom Walley,

Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool

#### Chair,

### Professor Jon Nicholl,

Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research

## Deputy Chair,

School of Medicine

Professor Jenny Hewison, Professor of Health Care Psychology, Academic Unit of Psychiatry and Behavioural Sciences, University of Leeds

Dr Jeffrey Aronson Reader in Clinical Pharmacology, Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford

Professor Deborah Ashby, Professor of Medical Statistics, Department of Environmental and Preventative Medicine, Queen Mary University of London Professor Ann Bowling, Professor of Health Services Research, Primary Care and Population Studies, University College London

Dr Andrew Briggs, Public Health Career Scientist, Health Economics Research Centre, University of Oxford

Professor John Cairns, Professor of Health Economics, Public Health Policy, London School of Hygiene and Tropical Medicine, London

Professor Nicky Cullum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York

Mr Jonathan Deeks, Senior Medical Statistician, Centre for Statistics in Medicine, University of Oxford

Dr Andrew Farmer, Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford Professor Fiona J Gilbert, Professor of Radiology, Department of Radiology, University of Aberdeen

Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen

Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham

Professor Peter Jones, Head of Department, University Department of Psychiatry, University of Cambridge

Professor Sallie Lamb, Professor of Rehabilitation, Centre for Primary Health Care, University of Warwick

Professor Stuart Logan, Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter & Plymouth Dr Linda Patterson, Consultant Physician, Department of Medicine, Burnley General Hospital

Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine

Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Dr Jonathan Shapiro, Senior Fellow, Health Services Management Centre, Birmingham

Ms Kate Thomas, Deputy Director, Medical Care Research Unit, University of Sheffield

Ms Sue Ziebland, Research Director, DIPEx, Department of Primary Health Care, University of Oxford, Institute of Health Sciences

# Diagnostic Technologies & Screening Panel

#### Members

#### Chair,

**Dr Ron Zimmern,** Director of the Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

Ms Norma Armston, Lay Member, Bolton

Professor Max Bachmann Professor of Health Care Interfaces, Department of Health Policy and Practice, University of East Anglia

Professor Rudy Bilous Professor of Clinical Medicine & Consultant Physician, The Academic Centre, South Tees Hospitals NHS Trust

Dr Paul Cockcroft, Consultant Medical Microbiologist and Clinical Director of Pathology, Department of Clinical Microbiology, St Mary's Hospital, Portsmouth Professor Adrian K Dixon, Professor of Radiology, University Department of Radiology, University of Cambridge Clinical School

Dr David Elliman, Consultant Paediatrician/ Hon. Senior Lecturer, Population Health Unit, Great Ormond St. Hospital, London

Professor Glyn Elwyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales Swansea

Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London

Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford Dr Susanne M Ludgate, Medical Director, Medicines & Healthcare Products Regulatory Agency, London

Professor William Rosenberg, Professor of Hepatology, Liver Research Group, University of Southampton

Dr Susan Schonfield, Consultant in Public Health, Specialised Services Commissioning North West London, Hillingdon Primary Care Trust

Dr Phil Shackley, Senior Lecturer in Health Economics, School of Population and Health Sciences, University of Newcastle upon Tyne

Dr Margaret Somerville, PMS Public Health Lead, Peninsula Medical School, University of Plymouth

Dr Graham Taylor, Scientific Director & Senior Lecturer, Regional DNA Laboratory, The Leeds Teaching Hospitals Professor Lindsay Wilson Turnbull, Scientific Director, Centre for MR Investigations & YCR Professor of Radiology, University of Hull

Professor Martin J Whittle, Associate Dean for Education, Head of Department of Obstetrics and Gynaecology, University of Birmingham

Dr Dennis Wright, Consultant Biochemist & Clinical Director, Pathology & The Kennedy Galton Centre, Northwick Park & St Mark's Hospitals, Harrow

## Pharmaceuticals Panel

#### Members

#### Chair,

**Dr John Reynolds**, Chair Division A, The John Radcliffe Hospital, Oxford Radcliffe Hospitals NHS Trust

Professor Tony Avery, Head of Division of Primary Care, School of Community Health Services, Division of General Practice, University of Nottingham

Ms Anne Baileff, Consultant Nurse in First Contact Care, Southampton City Primary Care Trust, University of Southampton

Professor Stirling Bryan, Professor of Health Economics, Health Services Management Centre, University of Birmingham Mr Peter Cardy, Chief Executive, Macmillan Cancer Relief, London

Professor Imti Choonara, Professor in Child Health, Academic Division of Child Health, University of Nottingham

Dr Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Dr Karen A Fitzgerald, Consultant in Pharmaceutical Public Health, National Public Health Service for Wales, Cardiff

Mrs Sharon Hart, Head of DTB Publications, *Drug & Therapeutics Bulletin*, London Dr Christine Hine, Consultant in Public Health Medicine, South Gloucestershire Primary Care Trust

Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Section of Medicine, The Royal Marsden Hospital, Sutton

Ms Barbara Meredith, Lay Member, Epsom

Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge

Dr Frances Rotblat, CPMP Delegate, Medicines & Healthcare Products Regulatory Agency, London Professor Jan Scott, Professor of Psychological Treatments, Institute of Psychiatry, University of London

Mrs Katrina Simister, Assistant Director New Medicines, National Prescribing Centre, Liverpool

Dr Richard Tiner, Medical Director, Medical Department, Association of the British Pharmaceutical Industry, London

Dr Helen Williams, Consultant Microbiologist, Norfolk & Norwich University Hospital NHS Trust

## Therapeutic Procedures Panel

#### Members

Chair, Professor Bruce Campbell, Consultant Vascular and General Surgeon, Department of Surgery, Royal Devon & Exeter Hospital

Dr Aileen Clarke, Reader in Health Services Research, Public Health & Policy Research Unit, Barts & the London School of Medicine & Dentistry, London

Dr Matthew Cooke, Reader in A&E/Department of Health Advisor in A&E, Warwick Emergency Care and Rehabilitation, University of Warwick Dr Carl E Counsell, Clinical Senior Lecturer in Neurology, Department of Medicine and Therapeutics, University of Aberdeen

Ms Amelia Curwen, Executive Director of Policy, Services and Research, Asthma UK, London

Professor Gene Feder, Professor of Primary Care R&D, Department of General Practice and Primary Care, Barts & the London, Queen Mary's School of Medicine and Dentistry, London

Professor Paul Gregg, Professor of Orthopaedic Surgical Science, Department of General Practice and Primary Care, South Tees Hospital NHS Trust, Middlesbrough

Ms Bec Hanley, Co-Director, TwoCan Associates, Hurstpierpoint Ms Maryann L Hardy, Lecturer, Division of Radiography, University of Bradford

Professor Alan Horwich, Director of Clinical R&D, Academic Department of Radiology, The Institute of Cancer Research, London

Dr Simon de Lusignan, Senior Lecturer, Primary Care Informatics, Department of Community Health Sciences, St George's Hospital Medical School, London

Professor Neil McIntosh, Edward Clark Professor of Child Life & Health, Department of Child Life & Health, University of Edinburgh Professor James Neilson, Professor of Obstetrics and Gynaecology, Department of Obstetrics and Gynaecology, University of Liverpool

Dr John C Pounsford, Consultant Physician, Directorate of Medical Services, North Bristol NHS Trust

Karen Roberts, Nurse Consultant, Queen Elizabeth Hospital, Gateshead

Dr Vimal Sharma, Consultant Psychiatrist/Hon. Senior Lecturer, Mental Health Resource Centre, Cheshire and Wirral Partnership NHS Trust, Wallasey

Dr L David Smith, Consultant Cardiologist, Royal Devon & Exeter Hospital

Professor Norman Waugh, Professor of Public Health, Department of Public Health, University of Aberdeen

# **Expert Advisory Network**

#### Members

Professor Douglas Altman, Director of CSM & Cancer Research UK Med Stat Gp, Centre for Statistics in Medicine, University of Oxford, Institute of Health Sciences, Headington, Oxford

Professor John Bond, Director, Centre for Health Services Research, University of Newcastle upon Tyne, School of Population & Health Sciences, Newcastle upon Tyne

Mr Shaun Brogan, Chief Executive, Ridgeway Primary Care Group, Aylesbury

Mrs Stella Burnside OBE, Chief Executive, Office of the Chief Executive. Trust Headquarters, Altnagelvin Hospitals Health & Social Services Trust, Altnagelvin Area Hospital, Londonderry

Ms Tracy Bury, Project Manager, World Confederation for Physical Therapy, London

Professor Iain T Cameron, Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton

Dr Christine Clark, Medical Writer & Consultant Pharmacist, Rossendale

Professor Collette Clifford, Professor of Nursing & Head of Research, School of Health Sciences, University of Birmingham, Edgbaston, Birmingham

Professor Barry Cookson, Director, Laboratory of Healthcare Associated Infection, Health Protection Agency, London

Professor Howard Cuckle, Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds

Dr Katherine Darton, Information Unit, MIND – The Mental Health Charity, London

Professor Carol Dezateux, Professor of Paediatric Epidemiology, London Mr John Dunning, Consultant Cardiothoracic Surgeon, Cardiothoracic Surgical Unit, Papworth Hospital NHS Trust, Cambridge

Mr Jonothan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester

Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne

Professor Pam Enderby, Professor of Community Rehabilitation, Institute of General Practice and Primary Care, University of Sheffield

Mr Leonard R Fenwick, Chief Executive, Newcastle upon Tyne Hospitals NHS Trust

Professor David Field, Professor of Neonatal Medicine, Child Health, The Leicester Royal Infirmary NHS Trust

Mrs Gillian Fletcher, Antenatal Teacher & Tutor and President, National Childbirth Trust, Henfield

Professor Jayne Franklyn, Professor of Medicine, Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham

Ms Grace Gibbs, Deputy Chief Executive, Director for Nursing, Midwifery & Clinical Support Services, West Middlesex University Hospital, Isleworth

Dr Neville Goodman, Consultant Anaesthetist, Southmead Hospital, Bristol

Professor Alastair Gray, Professor of Health Economics, Department of Public Health, University of Oxford

Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester

Professor Allen Hutchinson, Director of Public Health & Deputy Dean of ScHARR, Department of Public Health, University of Sheffield Dr Duncan Keeley, General Practitioner (Dr Burch & Ptnrs), The Health Centre, Thame

Dr Donna Lamping, Research Degrees Programme Director & Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London

Mr George Levvy, Chief Executive, Motor Neurone Disease Association, Northampton

Professor James Lindesay, Professor of Psychiatry for the Elderly, University of Leicester, Leicester General Hospital

Professor Julian Little, Professor of Human Genome Epidemiology, Department of Epidemiology & Community Medicine, University of Ottawa

Professor Rajan Madhok, Medical Director & Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York

Professor David Mant, Professor of General Practice, Department of Primary Care, University of Oxford

Professor Alexander Markham, Director, Molecular Medicine Unit, St James's University Hospital, Leeds

Dr Chris McCall, General Practitioner, The Hadleigh Practice, Castle Mullen

Professor Alistair McGuire, Professor of Health Economics, London School of Economics

Dr Peter Moore, Freelance Science Writer, Ashtead

Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton

Mrs Julietta Patnick, Director, NHS Cancer Screening Programmes, Sheffield

Professor Tim Peters, Professor of Primary Care Health Services Research, Academic Unit of Primary Health Care, University of Bristol Professor Chris Price, Visiting Chair – Oxford, Clinical Research, Bayer Diagnostics Europe, Cirencester

Professor Peter Sandercock, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh

Dr Eamonn Sheridan, Consultant in Clinical Genetics, Genetics Department, St James's University Hospital, Leeds

Dr Ken Stein, Senior Clinical Lecturer in Public Health, Director, Peninsula Technology Assessment Group, University of Exeter

Professor Sarah Stewart-Brown, Professor of Public Health, University of Warwick, Division of Health in the Community Warwick Medical School, LWMS, Coventry

Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick

Dr Ross Taylor, Senior Lecturer, Department of General Practice and Primary Care, University of Aberdeen

Mrs Joan Webster, Consumer member, HTA – Expert Advisory Network

### **Feedback**

The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.

The National Coordinating Centre for Health Technology Assessment, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SOI6 7PX, UK.

Fax: +44 (0) 23 8059 5639 Email: hta@hta.ac.uk

http://www.hta.ac.uk