Appendices

A systematic review and economic evaluation of statins for the prevention of coronary events

S Ward, M Lloyd Jones, A Pandor, M Holmes, R Ara, A Ryan, W Yeo and N Payne

April 2007

Health Technology Assessment NHS R\&D HTA Programme www.hta.ac.uk

How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost $£ 20$ each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.
Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is $£ 2$ per monograph and for the rest of the world $£ 3$ per monograph.
You can order HTA monographs from our Despatch Agents:

- fax (with credit card or official purchase order)
- post (with credit card or official purchase order or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch Email: orders@hta.ac.uk
c/o Direct Mail Works Ltd
Tel: 02392492000
4 Oakwood Business Centre
Fax: 02392478555
Downley, HAVANT PO9 2NP, UK
Fax from outside the UK: +44 2392478555
NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of $£ 100$ for each volume (normally comprising 30-40 titles). The commercial subscription rate is $£ 300$ per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.
Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.
Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.

Appendix I MEDLINE search strategy

Clinical effectiveness

1 randomized controlled trial.pt. (187081)
2 randomized controlled trials/ (31619)
3 random allocation/ (50342)
4 double blind method/ (77461)
5 single blind method/ (7962)
6 clinical trial.pt. (378915)
7 exp clinical trials/ (152599)
81 or 2 or 3 or 4 or 5 or 6 or 7 (485131)
9 (clinic\$ adjl trial\$).tw. (77257)
10 ((singl\$ or doubl\$ or treb\$ or trip\$) adj3
(blind\$ or mask\$)).tw. (74642)
11 PLACEBOS/ (22859)
12 placebo\$.tw. (83145)
13 randomly allocated.tw. (7575)
14 (allocated adj2 random).tw. (602)
15 or/9-14 (194563)
168 or 15 (534732)
17 case report.tw. (97812)
18 letter.pt. (501492)
19 historical article.pt. (207878)
20 review of reported cases.pt. (49218)
21 review, multicase.pt. (8081)
22 or/17-21 (847807)
2316 not 22 (518130)
24 statin\$.tw. (4866)
25 simvastatin.tw. (2023)
26 pravastatin.tw. (1550)
27 fluvastatin.tw. (621)
28 atorvastatin.tw. (907)
29 rosuvastatin.tw. (125)
$30 \mathrm{hmg} \$. t w$. (9052)
31 co-A reductase inhibitor\$.tw. (25)
32 Hydroxymethylglutaryl-CoA Reductase Inhibitors/ (4855)
33 Anticholesteremic Agents/ or Pravastatin/ or Simvastatin/ or Lovastatin/ (10480)
34 lipid lowering.tw. (4073)
35 or/24-34 (23939)
3623 and 35 (4990)
3. pravastatin.tw.
4. lovastatin.tw.
5. fluvastatin.tw.
6. atorvastatin.tw.
7. rosuvastatin.tw.
8. hmg\$.tw.
9. co-reductase inhibitor\$.tw.
10. Hydroxymethylglutaryl-CoA Reductase Inhibitors/
11. Anticholesteremic Agents/ or Pravastatin/ or Simvastatin/ or Lovastatin/
12. lipid lowering.tw.
13. or/l-12
14. Coronary Disease/
15. (coronary or heart or arter\$).tw.
16. Cerebrovascular Disorders/
17. stroke.tw.
18. or/14-17
19. 13 and 18
20. ECONOMICS/
21. "Costs and Cost Analysis"/
22. Cost Allocation/
23. Cost-Benefit Analysis/
24. Cost Control/
25. Cost Savings/
26. Cost of Illness/
27. Health Care Costs/
28. Drug Costs/
29. Health Expenditures/
30. \exp Economics, Medical/
31. exp Economics, Pharmaceutical/
32. exp "Fees and Charges"/
33. exp BUDGETS/
34. (high adj cost).tw.
35. (low adj cost).tw.
36. cost utility.tw.
37. (fiscal or funding or financial or finance).tw.
38. (health?care adj cost).tw.
39. (cost adj estimate).tw.
40. (cost adj variable).tw.
41. (unit adj cost).tw.
42. (economic\$ or pharmacoeconomic\$ or price\$ or pricing).tw.
43. or/20-42
44. 19 and 43

Appendix 2

Trials meeting the inclusion criteria for review

TThe major publication for each study is marked with an asterisk.

3T

*Olsson AG, Eriksson M, Johnson O, Kjellstrom T, Lanke J, Larsen ML, et al. A 52-week, multicenter, randomized, parallel-group, double-blind, doubledummy study to assess the efficacy of atorvastatin and simvastatin in reaching low-density lipoprotein cholesterol and triglyceride targets: the Treat-to-Target (3T) study. Clin Ther 2003;25:119-38.

4522 I L-0026

Olsson A, Southworth H, Wilpshaar JW. Long-term efficacy and safety of rosuvastatin: results of a 52-week comparator-controlled trial versus atorvastatin. Eur Heart J 2001;22:253.
*Olsson AG, Istad H, Luurila O, Ose L, Stender S, Tuomilehto J, et al. Effects of rosuvastatin and atorvastatin compared over 52 weeks of treatment in patients with hypercholesterolemia. Am Heart J 2002; 144:1044-51.

4522 I L-0028

Brown WV, Chitra RR, Zedler BK, Bays HE, Hassman HA. Long-term efficacy and safety of rosuvastatin: results of a 52 -week comparator-controlled trial versus pravastatin and simvastatin. Eur Heart J 2001;22:270.
*Brown WV, Bays HE, Hassman DR, McKenney J, Chitra R, Hutchinson H, et al. Efficacy and safety of rosuvastatin compared with pravastatin and simvastatin in patients with hypercholesterolemia: a randomized, double-blind, 52-week trial. Am Heart J 2002;
144:1036-43.

4D

*Rauscher, M. Atorvastatin lowers LDL but not risk of CV events in diabetics with ESRD. http://www.lifescan.com/ professionals/hcp/news/dn110104-1. 29 November 2004.

Wanner C, Krane V, Ruf G, Marz W, Ritz E. Rationale and design of a trial improving outcome of type 2 diabetics on hemodialysis. Kidney Int 1999;56:S222-6.

4S

Berg K, Dahlen G, Christophersen B, Cook T, Kjekshus J, Pedersen T. Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian Simvastatin Survival Study. Clin Genet 1997;52:254-61.

Faergeman O, Kjekshus J, Cook T, Pyorala K, Wilhelmsen L, Thorgeirsson G, et al. Differences in the treatment of coronary heart disease between countries as revealed in the Scandinavian Simvastatin Survival Study (4S). Eur Heart J 1998;19:1531-7.

Haffner SM, Alexander CM, Cook TJ, Boccuzzi SJ, Musliner TA, Pedersen TR, et al. Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med 1999;159:2661-7.

Kjekshus J. 718-1: effect of simvastatin on ischemic signs and symptoms in the Scandinavian Simvastatin Survival Study (4S). Am Heart J 1997;134:141.

Kjekshus J, Pedersen TR. Reducing the risk of coronary events: evidence from the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 1995;76:64-8C.

Kjekshus J, Pedersen TR, Olsson AG, Faergerman O, Pyorala K. The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Card Fail 1997;3:249-54.

Miettinen TA, Pyorala K, Olsson AG, Musliner TA, Cook TJ, Faergerman O, et al. Cholesterol-lowering therapy in women and elderly patients with myocardial infarction or angina pectoris: findings from the Scandinavian Simvastatin Survival Study (4S). Circulation 1997;96:4211-18.
Nordero E, Thomsen H, Lyngborg K, Andersen GS, Nielsen F, Simonsen EH, et al. Design and baseline results of the Scandinavian Simvastatin Survival Study of patients with stable angina and/or previous myocardial infarction. Am J Cardiol 1993;71:393-400.
*Pedersen TR. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383-9.

Pedersen TR. Coronary artery disease: the Scandinavian Simvastatin Survival Study experience. Am J Cardiol 1998;82:53-6T.

Pedersen TR, Kjekshus J, Berg K, Haghfelt T, Faergeman O, Thorgeirsson G, et al. Baseline serum cholesterol and treatment effect in the Scandinavian Simvastatin Survival Study (4S). Lancet 1995;346:1274-5.

Pedersen TR, Berg K, Cook TJ, Faergerman O, Haghfelt T, Kjekshus J, et al. Safety and tolerability of cholesterol lowering with simvastatin during 5 years in the Scandinavian Simvastatin Survival Study. Arch Intern Med 1996;156:2085-92.

Pedersen TR, Kjekshus J, Berg K, Olsson AG, Wilhelmsen L, Wedel H, et al. Cholesterol lowering and the use of healthcare resources. Results of the Scandinavian Simvastatin Survival Study. Circulation 1996;93:1796-802.

Pedersen TR, Kjekshus J, Pyorala K, Olsson AG, Cook TJ, Musliner TA, et al. Effect of simvastatin on ischemic signs and symptoms in the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 1998; 81:333-5.

Pedersen TR, Olsson AG, Faergeman O, Kjekshus J, Wedel H, Berg K, et al. Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S). Circulation 1998;97:1453-60.

Pedersen TR, Wilhelmsen L, Faergeman O, Strandberg TE, Thorgeirsson G, Troedsson L, et al. Follow-up study of patients randomized in the Scandinavian Simvastatin Survival Study (4S) of cholesterol lowering. Am J Cardiol 2000;86:257-62.

Pyorala K. The effect of cholesterol lowering with simvastatin on coronary events in diabetic patients with coronary heart disease. Diabetes 1995;44:35A.

Pyorala K, Pedersen TR, Kjekshus J, Faergerman O, Olsson AG, Thorgeirsson G. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 1997;20:614-20.

Strandberg TE, Lehto S, Pyorala K, Kesaniemi A, Oksa H. Cholesterol lowering after participation in the Scandinavian Simvastatin Survival Study (4S) in Finland. Eur Heart J 1997;18:1725-7.

Strandberg TE, Pyorala K, Cook TJ, Wilhelmsen L, Faergeman O, Thorgeirsson G, et al. Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S). Lancet 2004;364:771-7.

Wilhelmsen L, Pyorala K, Wedel H, Cook T, Pedersen T, Kjekshus J. Risk factors for a major coronary event after myocardial infarction in the Scandinavian Simvastatin Survival Study (4S). Impact of predicted risk on the benefit of cholesterol-lowering treatment. Eur Heart J 2001;22:1119-27.

ALERT

 Gronhagen-Riska C, et al. Effects of fluvastatin on renaltransplant function and graft loss in renal transplant patients in ALERT (Assessment of Lescol in Renal Transplantation). Nephrol Dial Transplant 2003;18:236.

Holdaas H, Fellstrom B, Holme I, Nyberg G, Fauchald P, Jardine A, et al. Effects of fluvastatin on cardiac events in renal transplant patients: ALERT (Assessment of Lescol in Renal Transplantation) study design and baseline data. J Cardiovasc Risk 2001;8:63-71.

Holdaas H, Fellstrom B, Jardine A, Holme I, Nyberg G, Fauchald P, et al. Randomized double blind trial of fluvastatin for hypercholesterolemia in renal transplant recipients. Am J Transplant 2003;3:442.

Holdaas H, Fellstrom B, Jardine A, Holme I, Nyberg G, Gronhagen-Riska C, et al. Effects of fluvastatin on cardiovascular events in renal transplant patients: ALERT (Assessment of Lescol in Renal Transplantation). Nephrol Dial Transplant 2003;18:237.
*Holdaas H, Fellstrom B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet 2003;361:2024-31.

ALLHAT-LLT

*ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA 2002; 288:2998-3007.

Davis BR, Cutler JA, Gordon DJ, Furberg CD, Wright JT Jr, Cushman WC, et al. Rationale and design for the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). ALLHAT Research Group. Am J Hypertens 1996;9:342-60.

Grimm RH Jr, Margolis KL, Papademetriou V, Cushman WC, Ford CE, Bettencourt J, et al. Baseline characteristics of participants in the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension 2001;37:19-27.

Papademetriou V, Gordon D, Hartney TJ, Geraci TS, Piller LB, Ford CE, et al. Baseline characteristics of participants in the lipid lowering component of ALLHAT. Am J Hypertens 2003;16:12A.

Pressel S, Davis BR, Louis GT, Whelton P, Adrogue H, Egan D, et al. Participant recruitment in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Control Clin Trials 2001;22:674-86.

Wright JT Jr, Cushman WC, Davis BR, Barzilay J, Colon P, Egan D, et al. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT): clinical center recruitment experience. Control Clin Trials 2001;22:659-73.

Abstract

ALLIANCE Hunninghake DB, Koren M, on behalf of the ALLIANCE Investigators. Comparison of clinical outcomes in managed care patients with CHD treated in aggressive lipid lowering programs using Atorvastatin versus usual care. The ALLIANCE Study. Program and abstracts from the American College of Cardiology 53rd Annual Scientific Session, March 7-10, 2004; New Orleans, LA. Late-Breaking Clinical Trials I; 2004.

Isaacsohn JL, Davidson MH, Hunninghake D, Singer R, McLain R, Black DM. Aggressive Lipid-Lowering Initiation Abates New Cardiac Events (ALLIANCE) rationale and design of atorvastatin versus usual care in hypercholesterolemic patients with coronary artery disease. Am J Cardiol 2000;86:250-2. *Koren MJ, Hunninghake DB. Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics. J Am Coll Cardiol 2004;44:1772-9.

Aronow 2003

*Aronow WS, Nayak D, Woodworth S, Ahn C. Effect of simvastatin versus placebo on treadmill exercise time until the onset of intermittent claudication in older patients with peripheral arterial disease at six months and at one year after treatment. Am J Cardiol 2003; 92:711-12.

ASAP

Smilde TJ, Trip MD, Wollersheim H, van Wissen S, Kastelein JJP, Stalenhoef AFH. Rationale, design and baseline characteristics of a clinical trial comparing the effects of robust vs conventional cholesterol lowering and intima media thickness in patients with familial hypercholesterolaemia: the Atorvastatin versus Simvastatin on Atherosclerosis Progression (ASAP) study. Clinical Drug Investigation 2000;20:67-79.
*Smilde TJ, van Wissen S, Wollersheim H, Trip MD, Kastelein JJ, Stalenhoef AF. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 2001;357:577-81.
van Wissen S, Smilde TJ, Trip MD, de Boo T, Kastelein JJ, Stalenhoef AF. Long term statin treatment reduces lipoprotein(a) concentrations in heterozygous familial hypercholesterolaemia. Heart 2003;89:893-6.

ASCOT-LLA
Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Anglo-Scandinavian Cardiac

Outcomes Trial: a brief history, rationale and outline protocol. J Hum Hypertens 2001;15:S11-12.

Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Rationale, design, methods and baseline demography of participants of the AngloScandinavian Cardiac Outcomes Trial. ASCOT investigators. J Hypertens 2001;19:1139-47.

Sever P, Dahlof B, Poulter N, Wedel H. Prevention of cardiovascular events and procedures with atorvastatin in hypertensive patients with type II diabetes in the Anglo-Scandinavian Cardiac Outcome Trial: lipidlowering arm. J Hum Hypertens 2003;17:730-1.
*Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial - Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361:1149-58.

A-to-Z

Blazing MA, De Lemos JA, Dyke CK, Califf RM, Bilheimer D, Braunwald E. The A-to-Z Trial: methods and rationale for a single trial investigating combined use of low-molecular-weight heparin with the glycoprotein IIb/IIIa inhibitor tirofiban and defining the efficacy of early aggressive simvastatin therapy. Am Heart J 2001;142:211-17.
Blazing MA, De Lemos JA, White HD, Fox KAA, Verheugt FWA, Ardissino D, et al. Safety and efficacy of enoxaparin vs unfractionated heparin in patients with non-ST-segment elevation acute coronary syndromes who receive tirofiban and aspirin. JAMA 2004; 292:55-64.
*De Lemos JA, Blazing MA, Wiviott SD, Lewis EF, Fox KAA, White HD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes. Phase Z of the A to Z trial. JAMA 2004;292:1307-16.

CAIUS

*Mercuri M, Bond MG, Sirtori CR, Veglia F, Crepaldi G, Feruglio FS, et al. Pravastatin reduces carotid intimamedia thickness progression in an asymptomatic hypercholesterolemic mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study. Am J Med 1996;101:627-34.

Sirtori CR, Bianchi G, Bond MG, D'Alo G, Gallus G, Liberatore S, et al. Pravastatin intervention trial on carotid artery atherosclerosis in patients with mild hypercholesterolemia: the CAIUS study. International Journal of Cardiac Imaging 1995;11:119-24.

CARDS

Colhoun HM, Thomason MJ, Mackness MI, Maton SM, Betteridge DJ, Durrington PN, et al. Design of the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med 2002;19:201-11.
*Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004;364:685-98.

Colhoun H, Betteridge J, Durrington P, Hitman G, Neil A, Livingstone S, et al. Collaborative Atorvastatin Diabetes Study. CARDS. 2004. URL: www.cardstrial.org. Accessed 12 July 2004.

Thomason MJ, Colhoun HM, Livingstone SJ, Mackness MI, Betteridge DJ, Durrington PN, et al. Baseline characteristics in the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med 2004;21:901-5.

CARE

Flaker GC, Warnica JW, Sacks FM, Moye L, Davis BR, Rouleau JL, et al. Pravastatin prevents clinical events in revascularized patients with average cholesterol concentrations. J Am Coll Cardiol 1999;34:106-12.

Goldberg RB, Mellies MJ, Sacks FM, Moye LA, Howard BV, Howard WJ, et al. Care Investigators. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the Cholesterol and Recurrent Events (CARE) trial. Circulation 1998; 98:2513-19.

Lewis SJ, Moye LA, Sacks FM, Johnstone DE, Timmis G, Mitchell J, et al. Effect of pravastatin on cardiovascular events in older patients with myocardial infarction and cholesterol levels in the average range. Results of the Cholesterol and Recurrent Events (CARE) trial. Ann Intern Med 1998;129:681-9.

Lewis SJ, Sacks FM, Mitchell JS, East C, Glasser S, Kell S, et al. Effect of pravastatin on cardiovascular events in women after myocardial infarction: the Cholesterol and Recurrent Events (CARE) trial. J Am Coll Cardiol 1998;32:140-6.

Pfeffer MA, Sacks FM, Moye LA, Brown L, Rouleau JL, Hartley H, et al. CARE Investigators. Cholesterol and Recurrent Events: a secondary prevention trial for normolipidemic patients. Am J Cardiol 1995;76:98-106C.

Plehn JF, Davis BR, Sacks FM, Rouleau JL, Pfeffer MA, Bernstein V, et al. CARE Investigators. Reduction of stroke incidence after myocardial infarction with pravastatin: the Cholesterol and Recurrent Events

PPP Project Investigators, Furberg C, Byington RP, Baker JL, Cobbe SM, Davis B, et al. Design, rationale, and baseline characteristics of the Prospective Pravastatin Pooling (PPP) project - a combined analysis of three large-scale randomized trials: Long-term Intervention with Pravastatin in Ischemic Disease (LIPID), Cholesterol and Recurrent Events (CARE), and West of Scotland Coronary Prevention Study (WOSCOPS). Am I Cardiol 1995;76:899-905.

Sacks FM, Pfeffer MA, Moye L, Brown LE, Hamm P, Cole TG, et al. Rationale and design of a secondary prevention trial of lowering normal plasma cholesterol levels after acute myocardial infarction: the Cholesterol and Recurrent Events trial (CARE). Am J Cardiol 1991; 68:1436-46.

Sacks FM, Rouleau J-L, Moye LA, Pfeffer MA, Warnica JW, Arnold MO, et al. Baseline characteristics in the Cholesterol and Recurrent Events (CARE) trial of secondary prevention in patients with average serum cholesterol levels. Am J Cardiol 1995;75:621-3.
*Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996;335:1001-9.

Sacks FM, Moye LA, Davis BR, Cole TG, Rouleau JL, Nash DT, et al. Relationship between plasma LDL concentrations during treatment with pravastatin and recurrent coronary events in the cholesterol and recurrent events trial. Circulation 1998;97:1446-52.

Tonelli M, Moye L, Sacks F, Curhan G. Pravastatin is effective for secondary prevention of cardiovascular events in patients with chronic renal insufficiency (CRI). J Am Soc Nephrol 2001;12:252A.

Tonelli M, Moye L, Sacks F, Cole T, Curhan G. Effect of pravastatin on loss of renal function in patients with CKD. J Am Soc Nephrol 2002;13:257-8A.

Tonelli M, Moye L, Sacks FM, Cole T, Curhan GC. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol 2003; 14:1605-13.

Tonelli M, Moye L, Sacks FM, Kiberd B, Curhan G, Cholesterol and Recurrent Events (CARE) Trial Investigators. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann Intern Med 2003;138:98-104.

CIS

*Bestehorn HP, Rensing UF, Roskamm H, Betz P, Benesch L, Schemeitat K, et al. The effect of simvastatin on progression of coronary artery disease. The multicenter Coronary Intervention Study (CIS). Eur Heart J 1997;18:226-34.

Colivicchi 2002

Colivicchi F, Ammirati F, Guido V, Tubaro M, Montefoschi N, Varveri A, et al. High-dose atorvastatin treatment in patients with end-stage coronary artery disease: preliminary results of a prospective, randomized, controlled trial. Eur Heart J 2001;22:270
*Colivicchi F, Guido V, Tubaro M, Ammirati F, Montefoschi N, Varveri A, et al. Effects of atorvastatin 80 mg daily early after onset of unstable angina pectoris or non-Q-wave myocardial infarction. Am J Cardiol 2002; 90:872-4.

DALI

*Diabetes Atorvastin Lipid Intervention (DALI) Study Group. The effect of aggressive versus standard lipid lowering by atorvastatin on diabetic dyslipidemia: the DALI study: a double-blind, randomized, placebocontrolled trial in patients with type 2 diabetes and diabetic dyslipidemia. Diabetes Care 2001;24:1335-41.

ESTABLISH

*Okazaki S, Yokoyama T, Miyauchi K, Shimada K, Kurata T, Sato H, et al. Early statin treatment in patients with acute coronary syndrome. Demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH study. Circulation 2004;110:1061-8.

FLARE

Foley DP, Serruys PW. Fluvastatin for the prevention of restenosis after coronary balloon angioplasty: angiographic and methodological background of the fluvastatin angioplasty restenosis trial. British Journal of Clinical Practice 1994;48:39-50.

Foley DP, Serruys PW. Fluvastatin for the prevention of restenosis after coronary balloon angioplasty: angiographic and methodological background of the fluvastatin angioplasty restenosis trial. British Journal of Clinical Practice 1996;Suppl 77A:40-53.

Foley DP, Bonnier H, Jackson G, Macaya C, Shepherd J, Vrolix M, et al. FLARE Study Group. Prevention of restenosis after coronary balloon angioplasty: rationale and design of the Fluvastatin Angioplasty Restenosis (FLARE) trial. Am J Cardiol 1994;73:50-61D.

Serruys P. FLARE (Fluvastatin Angioplasty Restenosis Trial). Am Heart J 1997;134:145.
*Serruys PW, Foley DP, Jackson G, Bonnier H, Macaya C, Vrolix M, et al. A randomized placebo-controlled trial of fluvastatin for prevention of restenosis after successful coronary balloon angioplasty; final results of the Fluvastatin Angiographic Restenosis (FLARE) trial. Eur Heart J 1999;20:58-69.

FLORIDA

Liem AH, Van Boven AJ, Veeger NJGM, Withagen AJ, Robles de Medina RM, Tijssen JGP, et al. Effect of fluvastatin on ischaemia following acute myocardial infarction: a randomized trial. Eur Heart J 2002; 23:1931-7.

GISSI-P

Anonymous. Protocollo dello studio GISSI-prevenzione. Studio di intervento preventivo sulle componenti aterosclerotica e trombotica del rischio post-infarto [Protocol of the GISSI-prevention study. Study of preventive intervention in the atherosclerotic and thrombotic components of post-infarction risk]. Giornale Italiano di Cardiologia 1993;23:1053-61.

GISSI Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 1999;354:447-55.
*GISSI Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico). Results of the low-dose (20 mg) pravastatin GISSI Prevenzione trial in 4271 patients with recent myocardial infarction: do stopped trials contribute to overall knowledge? Ital Heart J 2000;1:810-20.

GREACE

Athyros VG, Mikhailidis DP, Papageorgiou AA, Mercouris BR, Athyrou VV, Symeonidis AN, et al. Attaining United Kingdom-European Atherosclerosis Society low-density lipoprotein cholesterol guideline target values in the GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. Curr Med Res Opin 2002;18:499-502.
*Athyros VG, Papageorgiou AA, Mercouris BR, Athyrou VV, Symeonidis AN, Basayannis EO, et al. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. Curr Med Res Opin 2002; 18:220-8.

Athyros VG, Papageorgiou AA, Symeonidis AN, Didangelos TP, Pehlivanidis AN, Bouloukos VI, et al. Early benefit from structured care with atorvastatin in patients with coronary-heart-disease and diabetes mellitus. Angiology 2003;54:679-90.

HPS

Collins R. The MRC/BHF Heart Protection Study: preliminary results. Int J Clin Pract 2002;56:53-6.

Collins R, Armitage J, Parish S, Sleigh P, Peto R, Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebocontrolled trial. Lancet 2003;361:2005-16.

Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative Group. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20,536 people with cerebrovascular disease or other high-risk conditions. Lancet 2004;363:757-67.
*Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7-22.

MRC/BHF Heart Protection Study of cholesterollowering therapy and of antioxidant vitamin supplementation in a wide range of patients at increased risk of coronary heart disease death: early safety and efficacy experience. Eur Heart J 1999; 20:725-41.

KAPS

Salonen R, Nyyssonen K, Porkkala E, Rummukainen J, Salonen JT. KAPS: the effect of pravastatin on atherosclerotic progression in carotid and femoral arteries. Circulation 1994;90:I-127.
*Salonen R, Nyyssonen K, Porkkala E, Rummukainen J, Belder R, Park J-S, et al. Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation 1995;92:1758-64.

Salonen R, Nyyssonen K, Porkkala-Sarataho E, Salonen JT. The Kuopio Atherosclerosis Prevention Study (KAPS): effect of pravastatin treatment on lipids, oxidation resistance of lipoproteins, and atherosclerotic progression. American Journal of Cardiology 1995; 76:34-9C.

Kobashigawa 1995

*Kobashigawa JA, Katznelson S, Laks H, Johnson JA, Yeatman L, Wang XM, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995;333:621-7.

LIPID

Colquhoun D, Keech A, Hunt D, Marschner I, Simes J, Glasziou P, et al. Effects of pravastatin on coronary events in 2073 patients with low levels of both lowdensity lipoprotein cholesterol and high-density
lipoprotein cholesterol: results from the LIPID study. Eur Heart J 2004;25:771-7.
Glasziou P, Mulray SE, Hall JP, Martin A, Harris P, Thompson P, et al. Costs, quality of life, and costeffectiveness of pravastatin in patients with coronary heart disease and average cholesterol levels. Aust $N Z J$ Med 1999;29:145.

Hague W, Johns J, Young P, Tonkin A. Baseline risk factors and coronary heart disease outcomes among women in the LIPID study. Eur Heart J 2000;21:207.
Hague W, Johns J, Young P, Hunt D, Bradfield R, Denton M, et al. Long-term treatment with pravastatin reduces coronary heart disease mortality in women with prior coronary heart disease and average cholesterol levels. J Am Coll Cardiol 2001;37:262A.
Hague W, Forder P, Simes J, Hunt D, Tonkin A, LIPID Investigators. Effect of pravastatin on cardiovascular events and mortality in 1516 women with coronary heart disease: results from the Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) study. Am Heart J 2003;145:643-51.
Hunt D, Keech A, Thompson A, Baker J, Hague W, Aylward P, et al. Impact of cholesterol lowering treatment with pravastatin in women and elderly patients with coronary heart disease (CHD) and average cholesterol levels. Aust $N Z J$ Med 1999;29:198.
Hunt D, Young P, Simes J, Hague W, Mann S, Owensby D, et al. Benefits of pravastatin on cardiovascular events and mortality in older patients with coronary heart disease are equal to or exceed those seen in younger patients: Results from the LIPID trial. Ann Intern Med 2001;134:931-40.

Keech A, Colquhoun D, Baker J, Simes RJ, Bradfield R, Best J, et al. Benefits of long term cholesterol lowering therapy using pravastatin among patients with diabetes in the Lipid Study. Aust N Z J Med 2000;30:172.

Keech A, Colquhoun D, Best J, Kirby A, Simes RJ, Hunt D, et al. Secondary prevention of cardiovascular events with long-term pravastatin in patients with diabetes or impaired fasting glucose. Diabetes Care 2003; 26:2713-21.

Lipid Study Group. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholesterol concentrations: the LIPID trial follow-up. Lancet 2002;359:1379-87.
Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339:1349-57.

Marschner IC, Colquhoun D, Simes RJ, Glasziou P, Harris P, Singh BB, et al. LIPID Study Investigators. Long-term risk stratification for survivors of acute coronary syndromes. Results from the Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Study. J Am Coll Cardiol 2001;38:56-63.

Reid IR, Hague W. Effect of pravastatin on fracture incidence in the LIPID study: a randomized controlled trial. J Bone Miner Res 2000;15:S225.

Reid IR, Hague W, Emberson J, Baker J, Tonkin A, Hunt D, et al. Effect of pravastatin on frequency of fracture in the LIPID study: secondary analysis of a randomised controlled trial. Long-term Intervention with Pravastatin in Ischaemic Disease. Lancet 2001; 357:509-12.

Simes J. Reduction in coronary events with pravastatin and proportion of treatment benefit explained by on-study LIPID levels in the LIPID study. Atherosclerosis 2000;151:44.

Simes RJ, Baker J, MacMahon S, Hague W, Colquhoun D, West M, et al. Pravastatin reduces total mortality in patients with coronary heart disease (CHD) and average cholesterol levels: relationship of baseline cholesterol and treatment effects in the LIPID trial. Aust N Z J Med 1999;29:145.

Simes J, Hunt D, Mulray S, Kirby A, Newman P, Tonkin AM, et al. Importance of prolonged follow-up in showing the benefit of pravastatin in subgroups of patients with coronary heart disease: the LIPID trial. Eur Heart J 2001;22:28.

Simes J, Tonkin A, Kiroy A, Mulray A, White H, Glasziou P, et al. Cholesterol-lowering therapy is more cost-effective for older than younger patients: results from the LIPID study. Eur Heart J 2001;22:270.

Simes RJ, Marschner IC, Hunt D, Colquhoun D, Sullivan D, Stewart RAH, et al. Relationship between lipid levels and clinical outcomes in the Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Trial: to what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels? Circulation 2002;105:1162-9.

Stewart RA, Sharples KJ, North FM, Menkes DB, Baker J, Simes J. LIPID Study Investigators. Long-term assessment of psychological well-being in a randomized placebo-controlled trial of cholesterol reduction with pravastatin. Arch Intern Med 2000;160:3144-52.

Tonkin AM. Management of the Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) study after the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 1995;76:107-12C.

Tonkin A. The Long term Intervention with Pravastatin in Ischaemic Disease (LIPID) study results. Atherosclerosis 1998;136:S39.

Tonkin A, Aylward P, Colquhoun D, Glasziou P, Harris P, Hunt D, et al. Design features and baseline characteristics of the LIPID (Long-Term Intervention with Pravastatin in Ischemic Disease) study: a randomized trial in patients with previous acute myocardial infarction and/or unstable angina pectoris. Am J Cardiol 1995;76:474-9.

Tonkin A, Becker S, Hunt D, Keech A, Lane G, White H, et al. Effects of pravastatin on cardiovascular endpoints
in patients with previous unstable angina. Atherosclerosis 2000;151:44.

Tonkin AM, Colquhoun D, Emberson J, Hague W, Keech A, Lane G, et al. Effects of pravastatin in 3260 patients with unstable angina: results from the LIPID study. Lancet 2000;356:1871-5.

White HD, Simes RJ, Watson J, Anderson N, Hankey G, Simes S, et al. The LIPID trial: impact of lipid lowering therapy with pravastatin on the risk of stroke. Aust $N Z J$ Med 1999;29:168.

White HD, Simes RJ, Anderson NE, Hankey GJ, Watson JDG, Hunt D, et al. Pravastatin therapy and the risk of stroke. N Engl J Med 2000;343:317-26.

LIPS

Lemos PA, Boxho G, Goedhart D, O'Neil B, Broustet JP, Berghoefer G, et al. Fluvastatin prevents cardiac events following successful percutaneous coronary intervention in patients with multivessel disease: the Lescolfi Intervention Prevention Study. J Am Coll Cardiol 2003; 19:244A.

Lesaffre E, Kocmanova D, Lemos PA, Disco CM, Serruys PW. A retrospective analysis of the effect of noncompliance on time to first major adverse cardiac event in LIPS. Clin Ther 2003;25:2431-47.

Saia F, de Feyter P, Serruys PW, Lemos PA, Arampatzis CA, Hendrickx GR, et al. Effect of fluvastatin on long-term outcome after coronary revascularization with stent implantation. Am J Cardiol 2004;93:92-5.

Serruys PW. A double blind placebo-controlled randomized trial of fluvastatin after successful percutaneous intervention in patients with coronary heart disease: the Lescol Intervention Prevention Study (LIPS). J Am Coll Cardiol 2002;6:41A.
Serruys PW, de Feyter PJ, Benghozi R, Hugenholtz PG, Lesaffre E. The Lescol ${ }^{\circledR}$ Intervention Prevention Study (LIPS): a double-blind, placebo-controlled, randomized trial of the long-term effects of fluvastatin after successful transcatheter therapy in patients with coronary heart disease. Int J Cardiovasc Intervent 2001; 4:165-72.
*Serruys PWJC, de Feyter P, Macaya C, Kokott N, Puel J, Vrolix M, et al. Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA 2002;287:3215-22.

LiSA

Abletshauser C, Riegger G, Schwandt P, Ludwig M, Widimsky J, Welzel D. The effect of fluvastatin on cardiac events in hyperlipidemic patients with symptomatic coronary heart disease. Atherosclerosis 1999; 144:35.

Anonymous. The Lescol in Severe Atherosclerosis (LiSA) trial. Br J Cardiol 1998;5:1-2.

Riegger G, Abletshauser C, Ludwig M, Schwandt P, Weidinger G, Welzel D. Role of statins in CHD: the LiSA study. Z Kardiol 1999;88:267.
*Riegger G, Abletshauser C, Ludwig M, Schwandt P, Widimsky J, Weidinger G, et al. The effect of fluvastatin on cardiac events in patients with symptomatic coronary artery disease during one year of treatment. Atherosclerosis 1999;144:263-70.

MAAS

*Anonymous. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet 1994;344:633-8.

Dumont J. Does simvastatin retard the progression of coronary atherosclerosis? Design of the MAAS trial. Arterioscler Thromb 1991;11:1466A.

Dumont JM. Effect of cholesterol reduction by simvastatin on progression of coronary atherosclerosis: design, baseline characteristics, and progress of the Multicenter Anti-Atheroma Study (MAAS). Control Clin Trials 1993;14:209-28.

Mehra 2003

*Mehra MR, Uber PA, Vivekananthan K, Solis S, Scott RL, Park MH, et al. Comparative beneficial effects of simvastatin and pravastatin on cardiac allograft rejection and survival. J Am Coll Cardiol 2002;40:1609-14.

Mohler 2003

*Mohler ER III, Hiatt WR, Creager MA. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation 2003;108:1481-6.

Mondillo 2003

*Mondillo S, Ballo P, Barbati R, Guerrini F, Ammaturo T, Agricola E, et al. Effects of simvastatin on walking performance and symptoms of intermittent claudication in hypercholesterolemic patients with peripheral vascular disease. Am J Med 2003;114:359-64.

O'Rourke 2000

O'Rourke B, Barbir M, Banner NR, Mitchell A, Yacoub MH. Fluvastatin in cardiac transplant recipients with hyperlipidaemia: results of a double blind randomised study. Circulation 2000;102:II489.
*O'Rourke B, Barbir M, Mitchell AG, Yacoub MH, Banner NR. Efficacy and safety of fluvastatin therapy for hypercholesterolaemia after heart transplantation. Results of a randomised double blind placebo controlled study. Int J Cardiol 2004;94:235-40.

Oxford Cholesterol Study

Keech AC. Randomised trial of the effects on mortality of cholesterol lowering with simvastatin in patients at increased risk of coronary heart disease. Atherosclerosis 1990;85:92.

Keech A, Collins R, Peto R, Sleight P. Medium-term effects of cholesterol lowering with simvastatin in patients at increased risk of coronary disease. Arterioscler Thromb 1991;11:1512A.

Keech A, Collins R, MacMahon S, Armitage J, Lawson A, Wallendszus K, et al. Three-year follow-up of the Oxford Cholesterol Study: assessment of the efficacy and safety of simvastatin in preparation for a large mortality study. Eur Heart J 1994;15:255-69.
Keech AC, Armitage JM, Wallendszus KR, Lawson A, Hauer AJ, Parish SE, et al. Oxford Cholesterol Study Group. Absence of effects of prolonged simvastatin therapy on nocturnal sleep in a large randomized placebo-controlled study. Br J Clin Pharmacol 1996; 42:483-90.
Wardle J, Armitage J, Collins R, Wallendszus K, Keech A, Lawson A. Randomised placebo controlled trial of effect on mood of lowering cholesterol concentration. Oxford Cholesterol Study Group. BMJ 1996;313:75-8.

PATE

*Ito H. A comparison of low versus standard dose pravastatin therapy for the prevention of cardiovascular events in the elderly: the Pravastatin Anti-atherosclerosis Trial in the Elderly (PATE). J Atheroscler Thromb 2001; 8:33-44.

PLAC I

Pitt B, Ellis SG, Mancini GB, Rosman HS, McGovern ME. Design and recruitment in the United States of a multicenter quantitative angiographic trial of pravastatin to limit atherosclerosis in the coronary arteries (PLAC I). Am J Cardiol 1993;72:31-5.
*Pitt B, Mancini GB, Ellis SG, Rosman HS, Park JS, McGovern ME. Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC I): reduction in atherosclerosis progression and clinical events. PLAC I investigation. J Am Coll Cardiol 1995;26:1133-9.

PLAC II

Byington RP, Furberg CD, Crouse JR III, Espeland MA, Bond MG. Pravastatin, Lipids, and Atherosclerosis in
the Carotid Arteries (PLAC-II). Am J Cardiol 1995; 76:54-9C.

Byington RP, Jukema JW, Salonen JT, Pitt B, Bruschke AV, Hoen H, et al. Reduction in cardiovascular events during pravastatin therapy. Pooled analysis of clinical events of the Pravastatin Atherosclerosis Intervention Program. Circulation 1995;92:2419-25.

Byington RP, Davis BR, Plehn JF, White HD, Baker J, Cobbe SM, et al. Reduction of stroke events with pravastatin: the Prospective Pravastatin Pooling (PPP) project. Circulation 2001;103:387-92.

Crouse JR, Byington RP, Bond MG, Espeland MA, Sprinkle JW, McGovern ME, et al. Pravastatin, lipids, and atherosclerosis in the carotid arteries: design features of a clinical trial with carotid atherosclerosis outcome. Control Clin Trials 1992;13:495-506.

Crouse JR, Furberg CD, Byington RP, Bond MG, Espeland MA. The PLAC-2 trial: effects of pravastatin on atherosclerosis progression and clinical events. Circulation 1993;87:702.
*Crouse JR III, Byington RP, Bond MG, Espeland MA, Craven TE, Sprinkle JW, et al. Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). Am J Cardiol 1995;75:455-9.

Furberg CD, Byington RP, Crouse JR, Espeland MA. Pravastatin, lipids, and major coronary events. Am J Cardiol 1994;73:1133-4.

Furberg CD, Pitt B, Byington RP, Park J-S, McGovern ME. Reduction in coronary events during treatment with pravastatin. PLAC I and PLAC II Investigators. Pravastatin Limitation of Atherosclerosis in the Coronary Arteries. Am J Cardiol 1995;76:60-3C.
Pfeffer MA, Keech A, Cobbe SM, Tonkin A, Byington RP, Braunwald E, et al. Prospective pravastatin pooling (PPP) project: the tolerability and safety of pravastatin based on a 112,000 patient year experience in placebocontrolled trials. Eur Heart J 2001;22:271.

Pfeffer MA, Keech A, Sacks FM, Cobbe SM, Tonkin A, Byington RP, et al. Safety and tolerability of pravastatin in long-term clinical trials: Prospective Pravastatin Pooling (PPP) Project. Circulation 2002;105:2341-6.
PPP Project Investigators, Furberg C, Byington RP, Baker JL, Cobbe SM, Davis B, et al. Design, rationale, and baseline characteristics of the Prospective Pravastatin Pooling (PPP) project - a combined analysis of three large-scale randomized trials: Long-term Intervention with Pravastatin in Ischemic Disease (LIPID), Cholesterol and Recurrent Events (CARE), and West of Scotland Coronary Prevention Study (WOSCOPS). Am J Cardiol 1995;76:899-905.

Sacks FM, Tonkin AM, Shepherd J, Braunwald E, Cobbe S, Hawkins CM, et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation 2000;102:1893-900.

Simes RJ. Prospective meta-analysis of cholesterollowering studies: the Prospective Pravastatin Pooling (PPP) Project and the Cholesterol Treatment Trialists (CTT) Collaboration. Am J Cardiol 1995;76:122-6C.

Simes J, Furberg CD, Braunwald E, Davis BR, Ford I, Tonkin A, et al. Effects of pravastatin on mortality in patients with and without coronary heart disease across a broad range of cholesterol levels. The Prospective Pravastatin Pooling project. Eur Heart J 2002;23:207-15.

PMSG

Pravastatin Multinational Study Group for Cardiac Risk Patients. Effects of pravastatin in patients with serum total cholesterol levels from 5.2 to $7.8 \mathrm{mmol} /$ liter (200 to $300 \mathrm{mg} / \mathrm{dl}$) plus two additional atherosclerotic risk factors. Am J Cardiol 1993;72:1031-7.

PREDICT

*Bertrand ME, McFadden EP, Fruchart JC, Van Belle E, Commeau P, Grollier G, et al. Effect of pravastatin on angiographic restenosis after coronary balloon angioplasty. The PREDICT Trial Investigators. Prevention of Restenosis by Elisor after Transluminal Coronary Angioplasty. J Am Coll Cardiol 1997;30:863-9.

PROSPER

Ford I, Blauw GJ, Murphy MB, Shepherd J, Cobbe SM, Bollen ELEM, et al. A Prospective Study of Pravastatin in the Elderly at Risk (PROSPER): screening experience and baseline characteristics. Current Controlled Trials in Cardiovascular Medicine 2002;3:8.

Gaw A, Shepherd J, Blauw GJ, Murphy M. Pravastatin in the prevention of cerebrovascular disease and its consequences in the elderly - the PROSPER design. Stroke 1999;30:251.

Houx PJ, Sheperd J, Blauw GJ, Murphy MB, Ford I, Bollen EL, et al. Testing cognitive function in elderly populations: the PROSPER study. PROspective Study of Pravastatin in the Elderly at Risk. J Neurol Neurosurg Psychiatry 2002;73:385-9.

Shepherd J, Blauw GJ, Murphy MB, Cobbe SM, Bollen ELEM, Buckley BM, et al. The design of a prospective study of pravastatin in the elderly at risk (PROSPER). Am J Cardiol 1999;84:1192-7.
*Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER):
a randomised controlled trial. Lancet 2002;360:1623-30.

PROVE IT-TIMI

Cannon CP, McCabe CH, Belder R, Breen J, Braunwald E. Design of the Pravastatin or Atorvastatin

Evaluation and Infection Therapy (PROVE IT)-TIMI 22 trial. Am J Cardiol 2002;89:860-1.
*Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350:1495-504.

Kelley CL. REVERSAL and PROVE-IT. Frequently asked questions. 2004. VHA Pharmacy Benefits Management Strategic Healthcare Group and the Medical Advisory Panel; 11 August 2004.

REGRESS

Aengevaeren WRM, Uijen GJH, Jukema JW, Bruschke AVG, Van der Werf T. Functional evaluation of lipidlowering therapy by pravastatin in the Regression Growth Evaluation Statin Study (REGRESS). Circulation 1997;96:429-35.

Barth JD, Zonjee MM. REGRESS Research Group. Regression growth evaluation statin study (REGRESS): study design and baseline characteristics in 600 patients. Can J Cardiol 1992;8:925-32.

Boekholdt SM, Agema WR, Peters RJ, Zwinderman AH, van der Wall EE, Reitsma PH, et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003;
107:2416-21.
de Groot E, Jukema JW, Van Boven AJ, Reiber JHC, Zwinderman AH, Lie KI, et al. Effect of pravastatin on progression and regression of coronary atherosclerosis and vessel wall changes in carotid and femoral arteries: a report from the Regression Growth Evaluation Statin Study. Am J Cardiol 1995;76:40-6C.
*Jukema JW, Bruschke AVG, Van Boven JA, Reiber JHC, Bal ET, Zwinderman AH, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995;91:2528-40.

Mulder HJ, Bal ET, Jukema JW, Zwinderman AH, Schalij MJ, Van Boven AJ, et al. Pravastatin reduces restenosis two years after percutaneous transluminal coronary angioplasty (REGRESS trial). Am J Cardiol 2000;86:742-6.

REVERSAL

*Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis. A randomized controlled trial.

Sato 2001

*Sato S, Kobayashi T, Awata N, Reiber JHC,
Nakagawa Y, Hiraoka H, et al. Randomized, controlled trial of secondary prevention of coronary sclerosis in normocholesterolemic patients using pravastatin: two-year follow-up of the prevention of coronary sclerosis study. Current Therapeutic Research, Clinical and Experimental 2001;62:473-85.

SCAT

Burton JR, Tymchak WJ, Dzavik V, Taylor D, Catellier DJ, Buller-Christopher EH, et al. Subgroup benefits from long-term lipid lowering therapy in normocholesterolemic patients: Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). Circulation 2000;102:706.

Burton JR, Teo KK, Buller CE, Plante S, Catellier D, Tymchak W, et al. Effects of long term cholesterol lowering on coronary atherosclerosis in patient risk factor subgroups: the Simvastatin/enalapril Coronary Atherosclerosis Trial (SCAT). Can J Cardiol 2003; 19:487-91.

Teo KK, Burton JR, Buller C, Plante S, Yokoyama S, Montague TJ. SCAT Investigators. Rationale and design features of a clinical trial examining the effects of cholesterol lowering and angiotensin-converting enzyme inhibition on coronary atherosclerosis: Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). Can J Cardiol 1997;13:591-9.
*Teo KK, Burton JR, Buller CE, Plante S, Catellier D, Tymchak W, et al. Long-term effects of cholesterol lowering and angiotensin-converting enzyme inhibition on coronary atherosclerosis: The Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). Circulation 2000; 102:1748-54.

Wenke 1997

*Wenke K, Meiser B, Thiery J, Nagel D, von Scheidt W, Steinbeck G, et al. Simvastatin reduces graft vessel disease and mortality after heart transplantation: a fouryear randomized trial. Circulation 1997;96:1398-402.

Wenke K, Meiser B, Thiery J, Nagel D, von Scheidt W, Krobot K, et al. Simvastatin initiated early after heart transplantation: 8-year prospective experience.
Circulation 2003;107:93-7.

WOSCOPS

Cobbe SM, Shepherd J, Lorimer AR, McKillop JH, Ford I, Packard CJ, et al. The effects of pravastatin on hospital admission in hypercholesterolemic middle-aged men: West of Scotland Coronary Prevention Study. J Am Coll Cardiol 1999;33:909-15.

Ford I, Cobbe SM, Nears A, Innes J, Baillie H. West of Scotland Coronary Prevention Study (WOSCOPS): 5-year post-trial follow-up. Eur Heart J 2002;23:516.

Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 2001;103:357-62.
Isles C, Shepherd J, Cobbe SM, Lorimer AR, McKillop JH, Ford I, et al. West of Scotland Coronary Prevention Study: identification of high-risk groups and comparison with other cardiovascular intervention trials. Lancet 1996;348:1339-42.

Packard CJ, Sheperd J, Cobbe SM, Ford I, Isles CG, McKillop JH, et al. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998;97:1440-5.

Shepherd J. The West of Scotland Coronary Prevention Study: a trial of cholesterol reduction in Scottish men. Am J Cardiol 1995;76:113-17C.
*Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, Macfarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301-7.

Shepherd J, Cobbe SM, Lorimer AR, McKillop JH, Ford I, Packard CJ, et al. Compliance and adverse event withdrawal: their impact on the West of Scotland Coronary Prevention Study. Eur Heart J 1997; 18:1718-24.

Shepherd J, Gaw A, West of Scotland Coronary Prevention Study Group. The anatomy of a clinical trial. The West of Scotland Coronary Prevention Study. Med Princ Pract 2002;11:17-30.

West of Scotland Coronary Prevention Study Group. A coronary primary prevention study of Scottish men aged 45-64 years: trial design. J Clin Epidemiol 1992; 45:849-60.

West of Scotland Coronary Prevention Study Group. Computerised record linkage: compared with traditional patient follow-up methods in clinical trials and illustrated in a prospective epidemiological study. J Clin Epidemiol 1995;48:1441-52.

West of Scotland Coronary Prevention Study Group. Baseline risk factors and their association with outcome in the West of Scotland Coronary Prevention Study. Am J Cardiol 1997;79:756-62.

WOSCOPS Study Group. Screening experience and baseline characteristics in the West of Scotland Coronary Prevention Study. West of Scotland Coronary Prevention Study. Am J Cardiol 1995;76:485-91.

Appendix 3

Ongoing studies, and studies for which data are unavailable

TABLE 93 Ongoing studies, and studies for which data are unavailable

Study	No. randomised	Population (subgroups)	Comparison	\% with CHD at baseline	\% with CVD at baseline	Mean total cholesterol at baseline ($\mathrm{mmol} \mathrm{l}^{-1}$)	Main outcome measures	Comment
AIDA ${ }^{282}$	600	Patients with type 2 diabetes and albuminuria	Atorvastatin 20 mg per day vs placebo	No data	No data	No data	Cardiovascular events	Published results not found, although study completion was expected by 2001
ASPEN ${ }^{283}$	Aim 2250	Patients with type 2 diabetes with or without a previous MI	Atorvastatin 10 mg per day vs placebo	No data	No data	No data	Mortality, morbidity	Ongoing study
AURORA ${ }^{284}$	Aim 2700	Male and female haemodialysis patients aged 50-80 years, irrespective of previous history of CVD	Rosuvastatin 10 mg per day vs placebo	No data	No data	No data	All-cause mortality, cardiovascular mortality, major cardiovascular events (death, MI, stroke), cardiovascular interventions, cost per LYS	Study not likely to report until 2007 at the earliest
CORONA ${ }^{285}$	4950	Men and women aged ≥ 60 years with chronic symptomatic systolic heart failure	Rosuvastatin 10 mg per day vs placebo	100\%			Cardiovascular death, non-fatal MI, non-fatal stroke	
GISSI-HF ${ }^{285}$		Patients with chronic heart failure	Rosuvastatin 10 mg per day vs placebo					
HYRIM 286	567	Men aged 40-74 years with hypertension	Fluvastatin 40 mg per day vs placebo				Major cardiac events, CVD events	Publication expected January 2005

TABLE 93 Ongoing studies, and studies for which data are unavailable (cont'd)

Study	No. randomised	Population (subgroups)	Comparison	\% with CHD at baseline	\% with CVD at baseline	Mean total cholesterol at baseline (mmol I- ${ }^{-1}$)	Main outcome measures	Comment
IDEAL ${ }^{286}$	Aim 7600 (achieved 8888) ${ }^{66}$	Patients aged ≤ 80 years with definite AMI	Atorvastatin 80 mg per day vs simvastatin $20-40 \mathrm{mg}$ per day	MI 100\%	No data	No data	CHD mortality, non-fatal MI	Ongoing study
$\begin{aligned} & \text { Japanese Mega } \\ & \text { Study }{ }^{287} \end{aligned}$	8009	Patients aged 40-70 years without preexisting vascular disease with TC $220-270 \mathrm{mg} \mathrm{dl}^{-1}$	Pravastatin 10-20 mg per day vs dietary therapy	No data	0\%	No data	CHD mortality, non-fatal MI, fatal stroke, non-fatal stroke	Ongoing study
JUPITER ${ }^{288}$	Aim 15,000	Men aged ≥ 55 and women aged ≥ 65 years with low LDL-C ($<3.36 \mathrm{mmol} \mathrm{l}^{-1}$) and elevated highsensitivity CRP	Rosuvastatin 20 mg per day vs placebo	No MI	No stroke or arterial revascularisation	No data	All-cause mortality, cardiovascular mortality, noncardiovascular mortality, MI, stroke, hospitalisation for unstable angina, arterial revascularisation, type 2 diabetes, fractures, venous thromboembolic events, adverse events	Ongoing study
SEARCH ${ }^{289}$	12,000	Patients with prior MI	Simvastatin 20 vs 80 mg per day	100\%			Coronary events	Ongoing study

TABLE 93 Ongoing studies, and studies for which data are unavailable (cont'd)

Study	No. randomised	Population (subgroups)	Comparison	\% with CHD at baseline	\% with CVD at baseline	Mean total cholesterol at baseline (mmol lil	Main outcome measures	Comment
SPARCL ${ }^{290}$	4732	Patients with prior stroke or TIA but without known CHD	Atorvastatin 80 mg per day vs placebo	0\%	Stroke 69\%, TIA 31\%	5.5	All-cause mortality, fatal or non-fatal stroke, cardiac mortality, non-fatal MI, resuscitated cardiac arrest, unstable angina, TIA, clinically significant PVD, any revascularisation (cardiac or peripheral), stroke disability	Ongoing study: data collection anticipated to end by October 2004
$\begin{aligned} & \text { Stegmayr } \\ & 2001^{291} \end{aligned}$	40+	Patients with severe renal dysfunction	Atorvastatin 10 mg per day vs no treatment	No data	No data	No data	Mortality, MI, CABG, PTCA	Study completed but manuscript submitted to journal so author currently unwilling to provide full data. Duration of intervention >5 years; study not industry supported (Stegmayr BG: personal communication)
TNT ${ }^{292}$	10,003	Men and women aged 35-75 years with clinically evident CHD (previous MI, previous or present angina with objective evidence of atherosclerotic CHD) who had undergone a coronary revascularisation procedure	Atorvastatin 80 vs 10 mg per day	100\% (MI 42\%)	Cerebrovascular disease 5.2%, PVD II.0\%	4.5	All-cause mortality Fatal or non-fatal stroke CHD death Non-fatal MI Resuscitated cardiac arrest, angina, TIA, PVD, revascularisation	Ongoing study

Appendix 4
 Excluded studies

TABLE 94 RCTs identified by the electronic searches and excluded at the full paper stage, for reasons not immediately apparent from the full text

Study	Reason for exclusion
LCAS 293	Monotherapy subgroups not truly randomised as randomisation not stratified taking into account the need for cholestyramine Not clear whether the same dietary intervention was used in both arms or only in the control arm
FAST 294	

TABLE 95 RCTs referred to in the manufacturers' submissions which did not meet the study inclusion criteria, with reasons

Manufacturer/study	Reason for exclusion
AstraZeneca (rosuvastatin)	
ANDROMEDA ${ }^{295}$	Too short (16 weeks)
CORALL ${ }^{296}$	Too short (12 weeks)
MERCURY ${ }^{297}$	Too short (16 weeks)
RADAR ${ }^{298}$	Too short (18 weeks)
STELLAR ${ }^{208}$	Too short (6 weeks)
Study $24{ }^{299}$	Too short (12 weeks)
Study 25^{300}	Too short (24 weeks)
Study 27^{301}	Too short (12 weeks)
Study 30302	Too short (18 weeks)
Study 33^{303}	Too short (6 weeks)
URANUS ${ }^{304}$	Too short (16 weeks)
Bristol-Myers Squibb (pravastatin) Wiegman, 2004 ${ }^{305}$	Wrong patient group (children)
MSD (simvastatin) None	
Novartis (fluvastatin)	
Baggio, 1994 ${ }^{306}$	Too short (6 weeks)
Ballantyne, $2000{ }^{307}$	Too short (6 weeks)
Bruckert, $2004{ }^{308}$	Does not report clinical outcomes
Buzzi, $1997{ }^{309}$	Not RCT
Farnier, 2000 ${ }^{310}$	Too short (16 weeks)
Farnier, 2003 ${ }^{311}$	Combination therapy
FLUENT ${ }^{312}$	Not RCT
Fluvastatin titrate-to-goal study ${ }^{313}$	Too short (12 weeks)
Hunninghake, 2002 ${ }^{314}$	Too short (24 weeks)
Insull, 1994315	Too short (6 weeks)
Insull, 2004 ${ }^{316}$	Too short (24 weeks)
Isaacsohn, $2003{ }^{317}$	Too short (12 weeks)
Jacotot, $1994{ }^{318}$	Too short (6 weeks)
LCAS, ${ }^{293}$	Monotherapy subgroups not truly randomised as randomisation not stratified taking into account the need for cholestyramine
Leitersdorf, $1995{ }^{319}$	Combination therapy
Lye, 1998820	Too short (24 weeks)
Olsson, 2001 ${ }^{321}$	Too short (24 weeks)
Pauciullo, 2000322	Combination therapy
Peters, $1994{ }^{323}$	Not RCT
Teramoto, $1995{ }^{324}$	Not RCT
Tomlinson, $1995{ }^{325}$	Too short (8 weeks)
Winkler, $2002{ }^{326}$	Too short (8 weeks)
	continued

TABLE 95 RCTs referred to in the manufacturers' submissions which did not meet the study inclusion criteria, with reasons (cont'd)

Manufacturer/study	Reason for exclusion	
Pfizer (atorvastatin)		
ACCESS ${ }^{327}$	Does not report clinical outcomes	
ADVOCATE ${ }^{328}$	Too short (16 weeks)	
ARBITER ${ }^{329}$	Does not report clinical outcomes	
ASSETT ${ }^{330}$	Too short (6 weeks)	
Assmann, 1999331	Does not report clinical outcomes	
Athyros, 19988^{332}	Does not report clinical outcomes	
ATROCAP ${ }^{333}$	Too short (19 weeks)	
Bakker-Arkema, 1996334	Too short (4 weeks)	
Ballantyne, $2003{ }^{335}$	Too short (12 weeks)	
BELLES ${ }^{336}$	Unfinished; not clinical end-points	
Bertolami, $2002{ }^{337}$	Too short (12 weeks)	
Bertolini, 1997338	No clinical outcomes	
Best, 1996339	Too short (4 weeks)	
Bo, 2001 ${ }^{340}$	Too short (24 weeks)	
Boquist, 2002 ${ }^{341}$	Too short (8 weeks)	
Branchi, 2001 ${ }^{342}$	Too short (2 months)	
CARDS 13^{343}	Does not report clinical outcomes	
CAVEAT ${ }^{344}$	Too short (8 weeks)	
Chan, 2002 ${ }^{345}$	Too short (6 weeks)	
CURVES ${ }^{346}$	Too short (8 weeks)	
Dalla Nora, $2003{ }^{347}$	Does not report clinical outcomes	
Dallongeville, 1998 ${ }^{348}$	Too short (16 weeks)	
Dart, 1997349	Does not report clinical outcomes	
Davidson, 1997 ${ }^{350}$	Inappropriate comparator	
Davidson, $2002{ }^{299}$	Too short (12 weeks)	
Farnier, 2000351	Too short (6 weeks)	
Ferrier, 2002352	Cross-over study; does not report clinical outcomes	
Gentile, 2000 ${ }^{353}$	Does not report clinical outcomes	
Harris, $2002{ }^{354}$	Too short (16 weeks)	
Heinonen, 1996 ${ }^{355}$	Does not report clinical outcomes	
Hunninghake, 2001 ${ }^{356}$	Combination therapy	
Hunninghake, 2001 ${ }^{357}$	Inappropriate comparator	
Illingworth, 2001 ${ }^{358}$	Does not report clinical outcomes	
J-CLAS ${ }^{359}$	Too short (8 weeks)	
Jiala, 2001 ${ }^{360}$	Too short (6 weeks); cross-over trial	
Jilma, 2003 ${ }^{361}$	Too short (12 weeks)	
Joukhadar, 2001 ${ }^{362}$	Too short (13 weeks)	
Kadikoylu, $2003{ }^{363}$	Too short (24 weeks)	
Karalis, $2002{ }^{364}$	Too short (6 weeks)	
Kastelein, 2000 ${ }^{134}$	Too short (12 weeks)	
Kinlay, 2002 ${ }^{365}$	Inappropriate comparator	
McCrindle, 2003^{366}	Irrelevant patient group (children and adolescents)	
Magnani, $2000{ }^{367}$	Too short (4 months)	
MIRACL, ${ }^{368}$	Too short (16 weeks)	
Mullen, $2000{ }^{369}$	Too short (6 weeks)	
Muscari, 2001370	Too short (13 weeks)	
Nawawi, 2003 ${ }^{371}$	Too short (13 weeks)	
Nawrocki, $1995{ }^{372}$	Too short (6 weeks)	
Olsson, 2001 ${ }^{373}$	Too short (6 weeks)	
Oranje, 2001 ${ }^{374}$	Too short (13 weeks)	
Paiva, $2003{ }^{375}$	Too short (8 weeks)	
Pontrelli, 2002376	Too short (8 weeks)	
Raison, 2002^{377}	Too short (12 weeks)	
Recto, 20000^{378}	Too short (6 weeks)	
Renders, 2001 ${ }^{379}$	Too short (3 months)	
Sardo, 2002 ${ }^{330}$	Too short (12 weeks)	
Schneck, 2003 ${ }^{303}$	Too short (6 weeks)	
Schrott, 1998881	Too short (6 weeks)	
		continued

TABLE 95 RCTs referred to in the manufacturers' submissions which did not meet the study inclusion criteria, with reasons (cont'd)

Manufacturer/study	Reason for exclusion
Schuster, $1998{ }^{382}$	Does not report clinical outcomes
Sposito, $2003{ }^{383}$	Too short (6 weeks)
Stein, 2001 ${ }^{384}$	Too short (6 weeks)
Stein, 2001 ${ }^{385}$	Inappropriate comparator; too short (18 weeks)
STELLAR ${ }^{208}$	Too short (6 weeks)
Tan, $2002{ }^{386}$	Does not report clinical outcomes
Tanaka, 2001 ${ }^{387}$	Too short (12 weeks)
Tannous, 1999388	Too short (4 weeks)
Target Tangible, ${ }^{389}$	Too short (14 weeks)
Van den Akker, 2003 ${ }^{390}$	Too short (18 weeks)
Vansant, 2000 ${ }^{391}$	Too short (4 weeks)
Wang, 2001392	Too short (8 weeks)
Watts, $2003{ }^{393}$	Too short (6 weeks)
Wierzbicki, 1999394	Too short (12 weeks); cross-over trial
Woiffenbuttel, 1998 ${ }^{395}$	Too short (16 weeks)
Wu, $2002{ }^{396}$	Too short (16 weeks)

Appendix 5

Tabulation of study quality

TABLE 96 Atorvastatin: placebo-controlled trials

	$4 D^{84}$	ASCOT-LLA ${ }^{102}$	CARDS ${ }^{103}$	DALI ${ }^{86}$	Mohler 2003 ${ }^{\text {21 }}$
Was the method used to assign participants to the treatment groups really random?	Y	Y	Y	?	?
What method of assignment was used?	Centrally determined code	Computer	Computer	?	?
Was the allocation of treatment concealed?	Y	Y	Y	?	?
What method was used to conceal treatment allocation?	Allocation by statistical coordinating centre	Allocation by local coordinating centre	Prepackaged medication	?	?
Was the number of participants who were randomised stated?	Y	Y	Y	Y	Y
Were details of baseline comparability presented?	N	Y	Y	Y	Y
Was baseline comparability achieved?	?	Y	Y	N (placebo group younger, with shorter mean duration of diabetes and higher mean BMI)	N (disparity re smoking, no information re lipid levels)
Were the eligibility criteria for study entry specified?	Y	Y	Y	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	?	Y	Y	N	? (possible disparities in the doses of aspirin)
Were the outcome assessors blinded to the treatment allocations?	?	Y	Y	?	Y for peripheral vascular outcomes
Were the individuals who administered the intervention blinded to the treatment allocation?	Y	Y presumably	Y	Y	Y presumably
Were the participants who received the intervention blinded to the treatment allocation?	Y	Y	Y	Y	Y
Was the success of the blinding procedure assessed?	N	N	N	N	N
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	?	Y	Y	Y	Y
Were the reasons for withdrawal stated?	N	N	Y	Y	Y
Was an ITT analysis included?	?	Y	Y	Y	Y

TABLE 97 Atorvastatin: comparisons with 'usual care' and 'no statin'

	ALLIANCE ${ }^{88}$	Colivicchi 2002 ${ }^{129}$	ESTABLISH ${ }^{89}$	GREACE ${ }^{128}$
Was the method used to assign participants to the treatment groups really random?	Y	Y	Y	Y
What method of assignment was used?	By central laboratory	Computer	Minimisation	Computergenerated list
Was the allocation of treatment concealed?	Y	?	?	?
What method was used to conceal treatment allocation?	Allocation by central laboratory	?	?	?
Was the number of participants who were randomised stated?	Y	Y	Y	Y
Were details of baseline comparability presented?	Y	Y	Y	Y
Was baseline comparability achieved?	Y	Y	Y	Y
Were the eligibility criteria for study entry specified?	Y	Y	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	Y	Y	Y	Y
Were the outcome assessors blinded to the treatment allocations?	?	Y	Y	?
Were the individuals who administered the intervention blinded to the treatment allocation?	N	N	N	N
Were the participants who received the intervention blinded to the treatment allocation?	N	N	N	N
Was the success of the blinding procedure assessed?	NA	NA	NA	NA
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y for clinical end-points, N for lipid results in control arm	Y	Y for clinical end-points, N for the primary end-point	Y
Were the reasons for withdrawal stated?	Y	Y	Y	Y
Was an ITT analysis included?	Y	Y	Y for clinical events	Y

TABLE 98 Fluvastatin: placebo-controlled studies

	ALERT ${ }^{142}$	FLARE ${ }^{108}$	FLORIDA ${ }^{109}$	LIPS ${ }^{110}$	LiSA ${ }^{93}$	$\begin{aligned} & \text { O’Rourke } \\ & 2004^{139} \end{aligned}$
Was the method used to assign participants to the treatment groups really random?	Y	?	?	Y	?	?
What method of assignment was used?	Fixed block randomisation	?	?	Block randomisation	?	?
Was the allocation of treatment concealed?	Y	?	?	Y	?	?
What method was used to conceal treatment allocation?	Prepackaged medication	?	?	Medication pack numbers	?	?
Was the number of participants who were randomised stated?	Y	Y	Y	Y	Y	Y
Were details of baseline comparability presented?	Y	Y	Y	Y	Y	Y
Was baseline comparability achieved?	Y	Y	Y	Y generally, but higher percentage of patients with diabetes in the fluvastatin group	Y	Y , largely
Were the eligibility criteria for study entry specified?	Y	Y	Y	Y	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	Y	N	Y	Y	N	Y
Were the outcome assessors blinded to the treatment allocations?	Y	?	Y	Y	Y	?
Were the individuals who administered the intervention blinded to the treatment allocation?	Y	Y	Y presumably	Y in theory	Y presumably (matching placebo)	Y
Were the participants who received the intervention blinded to the treatment allocation?	Y	Y	Y	Y in theory but many got to know their TC levels, thus effectively breaking the blind	Y presumably (matching placebo)	Y
Was the success of the blinding procedure assessed?	N	N	N	Informally	N	N
						continued

TABLE 98 Fluvastatin: placebo-controlled studies (cont'd)

	ALERT ${ }^{142}$	FLARE ${ }^{108}$	FLORIDA ${ }^{109}$	LIPS ${ }^{110}$	LiSA ${ }^{93}$	O'Rourke $2004{ }^{139}$
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y	No, mainly because of the requirement for uncomplicated PTCA	Y	Y	Y for clinical events	Y for safety
Were the reasons for withdrawal stated?	Y	Y	?	Y	Y	Y
Was an ITT analysis included?	Y	Yes by the authors' terms, not perhaps in the generally accepted sense	Y	Y	Y	Y for safety

TABLE 99 Pravastatin: placebo-controlled studies

	CAIUS ${ }^{107}$	CARE ${ }^{\prime \prime \prime}$	KAPS ${ }^{133}$	LIPID ${ }^{112}$	PLAC I ${ }^{113}$	PLAC $1{ }^{95}$	PMSG ${ }^{\text {6 }}$	PREDICT ${ }^{114}$	PROSPER ${ }^{81}$	REGRESS ${ }^{115}$	WOSCOPs ${ }^{82}$
Was the method used to assign participants to the treatment groups really random?	Y	Y	Y	Y	?	?	?	?	Y	Y	Y
What method of assignment was used?	Allocation by independent coordinating and analysis centre	Computer	Allocation by biostatistician	Block randomisation	?	?	?	?	Computerised pseudorandom number generator	Block randomisation	Permuted block
Was the allocation of treatment concealed?	Y	Y	Y	?	?	?	?	?	Y	?	?
What method was used to conceal treatment allocation?	Allocation by independent coordinating and analysis centre	Telephone allocation by data coordinating centre	Allocation by biostatistician	?	?	?	?	?	Telephone call or through fax exchange with study data centres	?	?
											continued

TABLE 99 Pravastatin: placebo-controlled studies (cont'd)

	CAIUS ${ }^{107}$	CARE ${ }^{\text {II }}$	KAPS ${ }^{133}$	LIPID ${ }^{1 / 2}$	PLAC ${ }^{113}$	PLAC $19{ }^{195}$	PMSG ${ }^{\text {\% }}$	PREDICT ${ }^{1 / 4}$	PROSPER ${ }^{81}$	REGRESS ${ }^{115}$	WOSCOPs ${ }^{82}$
Was the number of participants who were randomised stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Were details of baseline comparability presented?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Was baseline comparability achieved?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Were the eligibility criteria for study entry specified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	N	Y	N	Y	Y	Y	Y	N	Y	?	N
Were the outcome assessors blinded to the treatment allocations?	?	Y	Y	Y	Y	Y	?	Y	Y	Y	Y
Were the individuals who administered the intervention blinded to the treatment allocation?	Y	Y presumably	Y	?	Y	Y	$\begin{gathered} \mathrm{Y} \\ \text { presumably } \end{gathered}$	presumably	Y	Y	Y
Were the participants who received the intervention blinded to the treatment allocation?	Y	Y	Y	Y	Y	Y	$\begin{gathered} \mathrm{Y} \\ \text { presumably } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { presumably } \end{gathered}$	Y	Y	Y presumably
Was the success of the blinding procedure assessed?	N	N	N	N	N	N	N	N	N	N	N
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y	Y for clinical outcomes	Y	Y	Y for clinical outcomes	Y for clinical outcomes	Y	Y	Y	Y	N
Were the reasons for withdrawal stated?	N	N	Y	Y	Y	N	Y	Y	Y	Y	N
Was an ITT analysis included?	Y	Y	Y	Y	Y	Y	Y	Y (for secondary clinical outcomes only)	Y	Y	Y

TABLE 100 Pravastatin: comparisons with 'usual care' and 'no statin'

	ALLHAT-LLT ${ }^{127}$	GISSI-P ${ }^{130}$	Kobashigawa $1995{ }^{140}$	Sato 2001 ${ }^{\mathbf{8 7}}$
Was the method used to assign participants to the treatment groups really random?	Y	Y	?	?
What method of assignment was used?	Computer generated	Block randomisation	?	?
Was the allocation of treatment concealed?	Y	?	?	?
What method was used to conceal treatment allocation?	Concealed randomisation scheme	?	?	?
Was the number of participants who were randomised stated?	Y	Y	Y	Y
Were details of baseline comparability presented?	Y	Y	Y	Y
Was baseline comparability achieved?	Y	Y	Y	Y
Were the eligibility criteria for study entry specified?	Y	Y	N	Y
Were any cointerventions identified that may influence the outcomes for each group?	Y	Y	N	N
Were the outcome assessors blinded to the treatment allocations?	For some outcomes	Y	N	Y
Were the individuals who administered the intervention blinded to the treatment allocation?	N	N	N	?
Were the participants who received the intervention blinded to the treatment allocation?	N	N	N	?
Was the success of the blinding procedure assessed?	NA	NA	NA	N
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y	Y for clinical outcomes	Y for mortality data	Y for lipids and clinical events
Were the reasons for withdrawal stated?	Y	N	N	N
Was an ITT analysis included?	Y	Y	N	Y

TABLE IOI Simvastatin: placebo-controlled studies

	$4 S^{97}$	Aronow 2003^{118}	CIS ${ }^{98}$	HPS ${ }^{\mathbf{7 4}}$	MAAS ${ }^{100}$	Mondillo $2003{ }^{105}$	Oxford Cholesterol Study ${ }^{101}$	SCAT ${ }^{116}$
Was the method used to assign participants to the treatment groups really random?	Y	?	?	Y	?	?	Y	Y
What method of assignment was used?	Coded prepackaged medication	?	?	Minimisation	?	?	Computer	Computer
Was the allocation of treatment concealed?	Y	?	?	Y	?	?	Y	Y
What method was used to conceal treatment allocation?	Coded prepackaged medication	?	?	Central telephone randomisation service	?	?	Randomisation at central unit	Coded medication
Was the number of participants who were randomised stated?	Y	Y	Y	Y	Y	Y	Y	Y
Were details of baseline comparability presented?	Y	Only for patients who survived to study end	Y	Y	Y	Y	Y	Y
Was baseline comparability achieved?	Y	Y for patients who survived to study end	Y	Y	Y	Y	Y	Y
Were the eligibility criteria for study entry specified?	Y	Implicitly	Y	Y	Y	Y	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	Y	N	Y	Y	Y	N	Y	Y
Were the outcome assessors blinded to the treatment allocations?	Y	?	Y	?	Y	?	?	?
Were the individuals who administered the intervention blinded to the treatment allocation?	Y	?	Y	Y	Y	Y	Y	Y
Were the participants who received the intervention blinded to the treatment allocation?	Y	Presumably, since placebo was used	Y	Y in theory, but their family doctors were free to monitor their cholesterol levels	Y	Y	Y	Y

TABLE IOI Simvastatin: placebo-controlled studies (cont'd)

	$4 S^{97}$	$\begin{aligned} & \text { Aronow } \\ & 2003^{118} \end{aligned}$	CIS ${ }^{98}$	HPS ${ }^{74}$	MAAS ${ }^{100}$	Mondillo 2003^{105}	Oxford Cholesterol Study ${ }^{101}$	SCAT ${ }^{116}$
Was the success of the blinding procedure assessed?	Y	N	N	N	N	N	N	N
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y	Y	Y	Y	Y	Y	$\begin{gathered} Y \\ \text { for insomnia } \end{gathered}$	Y
Were the reasons for withdrawal stated?	Y	Y	N	Y	To a degree	NA	Y	Y
Was an ITT analysis included?	Y	Y	Y	Y	Y	Y	Y	Y

\footnotetext{
TABLE 102 Simvastatin: comparison with 'no statin'

	Wenke $1997{ }^{141}$
Was the method used to assign participants to the treatment groups really random?	?
What method of assignment was used?	?
Was the allocation of treatment concealed?	?
What method was used to conceal treatment allocation?	?
Was the number of participants who were randomised stated?	Y
Were details of baseline comparability presented?	Y
Was baseline comparability achieved?	Y
Were the eligibility criteria for study entry specified?	Y but not very specifically
Were any cointerventions identified that may influence the outcomes for each group?	N
Were the outcome assessors blinded to the treatment allocations?	Y
Were the individuals who administered the intervention blinded to the treatment allocation?	Probably not
Were the participants who received the intervention blinded to the treatment allocation?	Probably not
Was the success of the blinding procedure assessed?	N
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y
Were the reasons for withdrawal stated?	NA
Was an ITT analysis included?	Y

TABLE 103 Statin-statin comparisons

	452211/0026 ${ }^{125}$	452211/0028 ${ }^{126}$	37^{83}	ASAP ${ }^{85}$	Mehra 2002 ${ }^{\text {94 }}$	$\begin{aligned} & \text { PROVE } \\ & \text { IT-TIMI } \end{aligned}$	REVERSAL ${ }^{\text {90 }}$
Was the method used to assign participants to the treatment groups really random?	?	Y	Y	Y	?	Y	Y
What method of assignment was used?	?	Block randomisation	Randomisation code prepared by study statistician	Computergenerated	?	Central randomisation scheme	Permuted block
Was the allocation of treatment concealed?	?	?	Y	Y	?	Y	Y
What method was used to conceal treatment allocation?	?	?	Prepackaged numbered medication	Opaque envelopes kept by hospital pharmacist	?	Allocation by centre	Generated by consulting statistician not otherwise involved in the trial
Was the number of participants who were randomised stated?	Y	Y	Y	Y	Y	Y	Y
Were details of baseline comparability presented?	Y	Y	Y	Y	Y	Y	N for full safety population; only for those included in primary analysis
Was baseline comparability achieved? no data re total population	Y	Y	Y	Y	Y	Y	Y for primary analysis;
Were the eligibility criteria for study entry specified?	Y	Y	Y	Y	Y	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	N	N	N	Y	N	N	N
Were the outcome assessors blinded to the treatment allocations?	?	?	Y	Y	?	?	Y
Were the individuals who administered the intervention blinded to the treatment allocation?	$\stackrel{Y}{\text { presumably }}$	presumably	Y	Y	N	presumably	Y
Were the participants who received the intervention blinded to the treatment allocation?	Y presumably	presumably	Y	Y	N	presumably	Y
Was the success of the blinding procedure assessed?	N	N	N	N	NA	N	N
							continued

TABLE 103 Statin-statin comparisons (cont'd)

	452211/0026 ${ }^{125}$	452211/0028 ${ }^{126}$	$3 T^{83}$	ASAP ${ }^{85}$	Mehra $2002{ }^{\text {94 }}$	$\begin{aligned} & \text { PROVE } \\ & \text { IT-TIMI }{ }^{124} \end{aligned}$	REVERSAL ${ }^{90}$
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y	Y	Y	Y	Y	Y	Y for clinical events
Were the reasons for withdrawal stated?	Y	Y	Partially	Y	Y	Y	Y
Was an ITT analysis included?	N (for data at 52 weeks)	N (for data at 52 weeks)	Y	Y	Presumably Y	Y	Y for all patients with evaluable ultrasounds at baseline and 18 months

	A-to- Z^{131}	PATE ${ }^{132}$
Was the method used to assign participants to the treatment groups really random?	Y	Y
What method of assignment was used?	Central	Minimisation
Was the allocation of treatment concealed?	Y	Y
What method was used to conceal treatment allocation?	Blinded medication	Telephone call or fax
Was the number of participants who were randomised stated?	Y	Y
Were details of baseline comparability presented?	Y	Y
Was baseline comparability achieved?	Y	Largely
Were the eligibility criteria for study entry specified?	Y	Y
Were any cointerventions identified that may influence the outcomes for each group?	Y	N
Were the outcome assessors blinded to the treatment allocations?	Y	Y
Were the individuals who administered the intervention blinded to the treatment allocation?	Y	?
Were the participants who received the intervention blinded to the treatment allocation?	Y	?
Was the success of the blinding procedure assessed?	N	N
Were at least 80% of the participants originally included in the randomised process followed up in the final analysis?	Y	Y for clinical outcomes
Were the reasons for withdrawal stated?	Y	N
Was an ITT analysis included?	Y	Y

Appendix 6

Placebo-controlled RCTs: data sheets
TABLE 105 Placebo-controlled RCTs: study characteristics

Study	Patient group	Mean baseline LDL-C ($\mathrm{mmol} \mathrm{l}^{-1}$)	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{a}$	Duration of intervention (years)	Gender	Mean age (years)	No. treated/ no. controls
Atorvastatin											
4D (full report not available) ${ }^{84}$	Type 2 diabetes, haemodialysis for <2 years	NR	NR	Germany	Atorvastatin 20 mg per day	NR	Not clear	Median 4	MF	NR	619/636
$\begin{aligned} & \text { ASCOT- } \\ & \text { LLA } \end{aligned}$	Hypertensive, no CHD	3.4	NR; CVD mortality 0.5\%	UK, Republic of Ireland, Norway, Sweden, Denmark, Finland	Atorvastatin 10 mg per day	None reported	Aggressive antihypertensive therapy	Median 3.3	MF	63.2	5168/5137
CARDS ${ }^{103}$	Type 2 diabetes, no clinical CVD	3.0	0.5\%	UK, Republic of Ireland	Atorvastatin 10 mg per day	Modified AHA Step I diet	No	Median 4.0	MF	61.7	1428/1410
DALI ${ }^{86}$	Type 2 diabetes and diabetic dyslipidaemia	3.7	0\%	The Netherlands	Atorvastatin 10 or 80 mg per day	None reported	No	0.58	MF	59.4	73/72/72
Mohler 2003^{21}	CVD (stable intermittent claudication)	No data	0.9\%	Canada, USA	Atorvastatin 10 or 80 mg per day	NCEP Step I diet	Aspirin	1.0	MF	68	120/120/114
Fluvastatin											
FLARE ${ }^{108}$	CHD (successful balloon angioplasty)	4.0	1.2\%	Belgium, The Netherlands, France, Italy, Spain, UK, Republic of Ireland	Fluvastatin 80 mg per day	None reported	Aspirin $\leq 325 \mathrm{mg}$ per day	0.78	MF	61	409/425

TABLE 105 Placebo-controlled RCTs: study characteristics (cont'd)

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Duration of intervention (years)	Gender	Mean age (years)	No. treated/ no. controls
FLORIDA ${ }^{109}$	CHD (acute MI)	3.6	Cardiac mortality 4.0\%	The Netherlands	Fluvastatin 80 mg per day	None reported	Standard medication (including aspirin, β-blockers and/or ACE inhibitors) at the attending cardiologist's discretion	1.0	MF	60	265/275
LIPS ${ }^{110}$	CHD (angina or silent ischaemia)	3.4	0.7\%	Belgium, France, Germany, Italy, UK, The Netherlands, Spain, Switzerland, Canada, Brazil	Fluvastatin 80 mg per day	Dietary and lifestyle counselling	No	Median 3.9	MF	60	844/833
LiSA^{93}	Hyperlipidaemia, stable symptomatic CHD	5.1	2.2\%	Germany, Czech Republic	Fluvastatin $40-80 \mathrm{mg}$ per day	European Atherosclerosis Society cholesterollowering diet	No	1.0	MF	60	187/178
Pravastatin											
CAIUS ${ }^{107}$	Moderately elevated LDL-C, ultrasonographically identified early atherosclerosis, no symptomatic CVD	4.7	0\%	Italy	Pravastatin 40 mg per day	AHA Step I diet	No	3.0	MF	55	151/154

TABLE 105 Placebo-controlled RCTs: study characteristics (cont'd)

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Duration of intervention (years)	Gender	Mean age (years)	No. treated/ no. controls
CARE ${ }^{\text {II }}$	MI, average cholesterol	3.6	I.1\%	USA, Canada	Pravastatin 40 mg per day	NCEP Step I diet (Step II if LDL-C $\geq 4.5 \mathrm{mmol} \mathrm{l}^{-1}$)	Cholestyramine 8-16 mg per day if LDL-C $\geq 4.5 \mathrm{mmol}^{-1}$	Median 5.0	MF	59	2081/2078
KAPS ${ }^{133}$	Hypercholesterolaemia, with and without CVD	4.9	0.3\%	Finland	Pravastatin 40 mg per day	Dietary advice to lower LDL-C	No	3.0	M	57	224/223
LIPID ${ }^{1 / 2}$	CHD (MI or unstable angina)	3.9	1.4\%	Australia, New Zealand	Pravastatin 40 mg per day	Lipid-lowering diet (max. cholesterol intake 300 mg per day)	No	6.1	MF	Median 62	4512/4502
PLAC 1^{113}	CHD	4.2	1.5\%	USA	Pravastatin 40 mg per day	AHA Phase I diet or equivalent	Cholestyramine resin in patients with LDL-C $\geq 4.9 \mathrm{mmol} \mathrm{l}^{-1}$ on the AHA Phase II or equivalent diet. If LDL-C remained ≥ 4.9 on max. dose of 6 packets per day cholestyramine, patients received openlabel pravastatin 5-10 mg per day (or placebo, depending on original	3.0	MF	57	206/202

TABLE I05 Placebo-controlled RCTs: study characteristics (cont'd)

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Duration of intervention (years)	Gender	Mean age (years)	No. treated/ no. controls
							treatment assignment); if these measures were unsuccessful, they were withdrawn from the study				
PLAC 1195	CHD	4.3	Not clear	USA	Pravastatin $10-40 \mathrm{mg}$ per day	AHA Phase I diet with individual nutritional counselling	No	3.0	MF	62	75/76
PMSG ${ }^{96}$	Primary hypercholesterolaemia and ≥ 2 additional CHD risk factors	$\begin{aligned} & \text { NR; TC } \\ & 6.8 \end{aligned}$	1.1\%	Australia, Belgium, Finland, Germany, Israel, The Netherlands, Sweden, UK	Pravastatin $20-40 \mathrm{mg}$ per day	Diet modification; advice on smoking	No	0.5	MF	55	530/532
PREDICT ${ }^{1 / 4}$	CHD (successful PTCA)	4.0	Not clear	France	Pravastatin 40 mg per day	None reported	Aspirin 100 mg per day	0.5	MF	58	347/348
PROSPER ${ }^{81}$	Elderly, with or at significant risk of CVD	3.8	1.3\%	Scotland, Ireland, The Netherlands	Pravastatin 40 mg per day	NCEP Step I diet or local equivalent	No	3.2	MF	75	2891/2913
REGRESS ${ }^{115}$	CHD	4.3	0.6\%	The Netherlands	Pravastatin 40 mg per day	Dietary counselling	No	2.0	M	56	450/434

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Duration of intervention (years)	Gender	Mean age (years)	No. treated/ no. controls
WOSCOPS ${ }^{82}$	Moderate hypercholesterolaemia	5.0	0.4\%	Scotland	Pravastatin 40 mg per day	Smoking and dietary advice	No	4.9	M	55	3302/3293
Simvastatin											
45^{97}	CHD and moderate hypercholesterolaemia	4.9	1.6\%	Scandinavia	Simvastatin $20-40 \mathrm{mg}$ per day	Dietary counselling consistent with European Atherosclerosis Society guidelines	No	Median 5.4	MF	58	2221/2223
$\begin{aligned} & \text { Aronow } \\ & 2003^{118} \end{aligned}$	Intermittent claudication due to PVD	3.3	17\%	USA	Simvastatin 40 mg per day	None reported	No	1.0	MF	75	34/35
$\mathrm{Cl}{ }^{98}$	CHD and hypercholesterolaemia	4.3	0.7\%	Germany	Simvastatin $20-40 \mathrm{mg}$ per day	Lipid-lowering diet (max. cholesterol intake 300 mg per day)	After 12 weeks, an ion-exchange resin was added to patients in the simvastatin group with LDL-C ≥ 3. 1 I mmol I or $\geq 6.48 \mathrm{mmol} \mathrm{l}^{-1}$ in the placebo group	2.3	M	49	129/125
HPS ${ }^{74}$	Substantial risk of death from CHD	3.4	1.4\%	UK	Simvastatin 40 mg per day	None reported	Factorial design (also evaluating antioxidant vitamins)	5.0	MF	NR	$\begin{aligned} & 10,269 / \\ & 10,267 \end{aligned}$

TABLE 105 Placebo-controlled RCTs: study characteristics (cont'd)
TABLE 105 Placebo-controlled RCTs: study characteristics (cont'd)

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Duration of intervention (years)	Gender	Mean age (years)	No. treated/ no. controls
MAAS ${ }^{100}$	Moderate hypercholesterolaemia and known CAD	4.4	0.5\%	Europe	Simvastatin 20 mg per day	Lipid-lowering diet	No	4.0	MF	55	193/188
Mondillo $2003{ }^{105}$	PVD and hypercholesterolaemia	4.9	NR	Italy	Simvastatin 40 mg per day	None reported	No. Patients asked to avoid analgesic medication	0.5	MF	67	43/43
Oxford Cholesterol Study ${ }^{101}$	Increased risk of CHD	4.8	NR	England	Simvastatin 20 or 40 mg per day	Dietary advice broadly similar to AHA Step I diet	No	6.0	MF	63	206/208/207
SCAT ${ }^{116}$	CHD	3.4	0.5\%	Canada	Simvastatin $20-40 \mathrm{mg}$ per day	NCEP Step I or, if necessary, Step II, diet	2×2 factorial design also evaluating an ACE inhibitor (enalapril $2.5-10 \mathrm{mg}$ twice daily)	4.0	MF	61	230/230
${ }^{a}$ In most studies, many patients were, at randomisation, already receiving medications other than statins to treat conditions such as hypertension and diabetes. This medications that specifically formed a part of the study protocol. AHA, American Heart Association; F, female; M, male; NCEP, National Cholesterol Education Program.											

TABLE 106 Placebo-controlled RCTs: selected results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI		
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control	
Atorvastatin									
4D (full report not available) ${ }^{84}$	NR								
ASCOT-LLA ${ }^{102}$	185/5168	212/5137	NR	NR	89/5168	121/5137	100/5168	154/5137	
CARDS ${ }^{103}$	61/1428	82/1410	$21 / 1428^{397}$	$25 / 1410^{397}$	21/1428	39/1410	NR	NR	
DALI ${ }^{86}$	0/145	0/72	0/145	0/72	NR	NR	0/145	1/72	
Mohler, 2003 ${ }^{\text {21 }}$	5/240	1/114	2/240	1/114	2/240	0/114	7/240	3/114	
Fluvastatin									
FLARE ${ }^{108}$	NR	NR	3/409	7/425	NR	NR	6/409	17/425	
FLORIDA ${ }^{109}$	7/265	11/275	2/265	9/275	NR	NR	NR	NR	
LIPS ${ }^{110}$	36/844	49/833	13/844	24/833	NR	NR	42/844	60/833	
LiSA ${ }^{93}$	NR	NR	2/187	4/178	NR	NR	2/187	5/178	
Pravastatin									
CAIUS ${ }^{107}$	NR	NR	1/151	0/154	NR	NR	2/151	2/154	
CARE ${ }^{1 / 1}$	180/2081	196/2078	96/2081	119/2078	52/2081	76/2078	212/2081	274/2078	
KAPS ${ }^{133}$	3/224	4/223	2/224	2/223	2/224	4/223	5/224	8/223	
LIPID ${ }^{1 / 2}$	498/4512	633/4502	287/4512	373/4502	169/4512	204/4502	557/4512	715/4502	
PLAC ${ }^{113}$	4/206	6/202	3/206	3/202	0/206	2/202	NR	NR	
PLAC $1{ }^{95}$	3/75	5/76	NR	NR	NR	NR	NR	NR	
PMSG ${ }^{66}$	NR	NR	0/530	3/532	0/530	3/532	0/530	7/532	
PREDICT ${ }^{1 / 4}$	4/347	1/348	NR	NR	NR	NR	NR	NR	
PROSPER ${ }^{81}$	298/2891	306/2913	94/2891	122/2913	135/289 1	131/2913	292/2891	356/2913	
REGRESS ${ }^{1 / 5}$	5/450	8/434	2/450	4/434	$3^{a} / 450$	5 $/ 434$	NR	NR	
WOSCOPS ${ }^{82}$	106/3302	135/3293	38/3302	52/3293	46/3302	51/3293	174/3302	248/3293	
Simvastatin									
$4 S^{97}$	182/222 1	256/2223	\| 11/222		189/2223	$75^{9} / 2221^{398}$	$102^{a} / 2223^{398}$	431/222 1	622/2223
Aronow, 2003 ${ }^{118}$	NR	NR	3/34	6/35	NR	NR	NR	NR	
ClS^{98}	1/129	4/125	1/129	2/125	NR	NR	2/129	7/125	
HPS ${ }^{74}$	1328/10,269	1507/10,267	587/10,269	707/10,267	444/I0,269	585/10,267	898/10,269	1212/10,267	
MAAS ${ }^{100}$	4/193	11/188	4/193	4/188	NR	NR	NR	NR	
Mondillo, 2003 ${ }^{105}$	NR								
Oxford Cholesterol Study ${ }^{101}$	NR								
SCAT ${ }^{116}$	13/230	6/230	7/230	4/230	4/230	7/230	NR	NR	

Appendix 7

Placebo-controlled studies: additional forest plots

FIGURE 37 Placebo-controlled studies: cardiovascular mortality

FIGURE 38 Placebo-controlled studies: stroke mortality

FIGURE 39 Placebo-controlled studies: non-fatal stroke

FIGURE 40 Placebo-controlled studies: unstable angina

FIGURE 4I Placebo-controlled studies: hospitalisations for unstable angina

FIGURE 42 Placebo-controlled studies: TIA

FIGURE 43 Placebo-controlled studies: PAD

Review: Comparison: Outcome:	Statins 88 Placebo-controlled studies: CABG 01 CABG		$\begin{aligned} & \text { RR (random) } \\ & \text { 95\% Cl } \end{aligned}$			
Study or subcategory	Treatment n/N	Control n/N			Weight \%	$\begin{aligned} & \text { RR (random) } \\ & 95 \% \mathrm{Cl} \end{aligned}$
OI Fluvastatin						
FLARE ${ }^{108}$	18/409	10/425		-	1.71	1.87 (0.87 to 4.00)
LiSA ${ }^{93}$	0/187	0/I78				Not estimable
FLORIDA ${ }^{109}$	12/265	19/275		-	1.99	0.66 (0.32 to 1.32$)$
Subtotal ($95 \% \mathrm{Cl}$)	861	878			3.70	I. 10 (0.39 to 3.06)
Total events: 30 (treatment), 29 (control)						
Test for heterogeneity: $\chi^{2}=3.94, \mathrm{df}=1(p=0.05), \mathrm{I}^{2}=74.6 \%$						
Test for overall effect: $z=0.17(p=0.86)$						
02 Pravastatin						
PMSG ${ }^{96}$	0/530	3/532	$\stackrel{\square}{*}$		0.12	0.14 (0.01 to 2.77)
KAPS ${ }^{133}$	4/224	4/223			0.54	1.00 (0.25 to 3.93)
PLACI ${ }^{113}$	20/206	23/202			2.98	0.85 (0.48 to 1.50)
REGRESS ${ }^{1 / 5}$	24/450	22/434			3.02	1.05 (0.60 to 1.85)
CARE ${ }^{\text {II }}$	156/208\|	207/2078	-		15.97	0.75 (0.62 to 0.92)
PREDICT ${ }^{1 / 4}$	15/347	18/348		-	2.19	0.84 (0.43 to 1.63)
LIPII ${ }^{1 / 2}$	415/4152	520/4502	분		25.72	0.80 (0.70 to 0.90)
Subtotal (95\% Cl)	8350	8319	\checkmark		50.54	0.79 (0.72 to 0.88)
Total events: 634 (treatment), 797 (control)						
Test for heterogeneity: $\chi^{2}=2.71, \mathrm{df}=6(p=0.84), \mathrm{I}^{2}=0 \%$						
Test for overall effect: $z=4.56$ ($p<0.0000$ I)						
03 Simvastatin						
49^{97}	212/2221	339/2223	-		20.17	0.63 (0.53 to 0.74)
MAAS ${ }^{100}$	8/193	16/188			1.47	0.49 (0.21 to I. II)
SCAT 116	7/230	9/230			1.07	0.78 (0.29 to 2.05)
HPS ${ }^{74}$	324/10,269	452/I0,267	답		23.05	0.72 (0.62 to 0.82)
Subtotal (95\% Cl)	12,913	12,908	\checkmark		45.76	0.67 (0.61 to 0.75)
Total events: 55 I (treatment), 816 (control)						
Test for heterogeneity: $\chi^{2}=2.23, \mathrm{df}=3(p=0.53), I^{2}=0 \%$						
Test for overall effect: $z=7.43$ ($p<0.0000$ I)						
Total ($95 \% \mathrm{Cl}$)	22,124	22,105	\checkmark		100.00	0.74 (0.67 to 0.82)
Total events: 1215 (treatment), 1642 (control) ${ }^{\text {a }}$ (${ }^{\text {a }}$						
Test for heterogeneity: $\chi^{2}=15.80, \mathrm{df}=12(p=0.20), 1^{2}=24.0 \%$						
Test for overall effect: $z=5.70$ ($p<0.0000 \mathrm{I})$						
			$\begin{array}{lll}0.1 & 0.2 & 0.5\end{array}$			
			Favours treatment			

FIGURE 44 Placebo-controlled studies: CABG

FIGURE 45 Placebo-controlled studies: PTCA

FIGURE 46 Placebo-controlled studies: CABG + PTCA

Appendix 8
 Placebo-controlled studies: statins in primary CVD prevention

TABLE 107 Placebo-controlled studies: statins in primary CVD prevention

Outcome	Studies contributing data	No. with event/total no.: statin	No. with event/total no.: placebo	$\mathbf{R R}$	95\% CI
All-cause mortality	CARDS	61/1428	82/1410	0.73	0.53 to 1.01
Cardiovascular mortality	CARDS	25/1428	37/1410	0.67	0.40 to 1.10
CHD mortality	CARDS, CAIUS	22/1579	82/1564	0.86	0.49 to 1.52
Stroke mortality	CARDS	1/1428	5/1410	0.20	0.02 to 1.69
Non-fatal stroke	CARDS	20/1428	30/1410	0.66	0.38 to 1.15
TIA	No data				
PAD	No data				
Fatal MI	CARDS, CAIUS	9/1579	20/1564	0.60	0.12 to 3.04
Non-fatal MI	CARDS, CAIUS	26/1579	43/1564	0.60	0.37 to 0.97
Stable angina	No data				
Unstable angina	CARDS	7/1428	9/1410	0.77	0.29 to 2.06
CABG		No data			
PTCA	No data				
CABG + PTCA	CARDS, CAIUS	25/1579	34/1564	0.72	0.49 to 1.21
CHD death plus non-fatal MI	CARDS, CAIUS	45/1579	67/1564	0.66	0.46 to 0.96
CHD death, non-fatal MI and fatal or non-fatal stroke	CARDS, PROSPER non-CVD subgroup	246/3013	300/3064	0.79	0.53 to 1.17
CHD death, non-fatal MI , fatal or non-fatal stroke and coronary revascularisation	CARDS	76/1428	118/1410	0.64	0.48 to 0.84

FIGURE 47 Placebo-controlled studies: statins in primary CVD prevention: CHD mortality

FIGURE 48 Placebo-controlled studies: statins in primary CVD prevention: fatal MI

FIGURE 49 Placebo-controlled studies: statins in primary CVD prevention: non-fatal MI

Review: Statins Comparison: 10 Primary CVD: placebo-controlled studies: coronary revascularisation Outcome: OI Coronary revascularisations							
Study or subcategory	Treatment n / N	Control n/N				Weight \%	$\begin{aligned} & \text { RR (random) } \\ & 95 \% \mathrm{Cl} \end{aligned}$
Total (95\% CI) Total events: 25 (treatment), 34 (control) Test for heterogeneity: $\chi^{2}=0.80, \mathrm{df}=\mathrm{I}(p=0.37), \mathrm{I}^{2}=0 \%$						100.00	0.72 (0.43 to I.2I)
0.1 0.2 0.5 1 2 5 Favours treatment Favours control							

FIGURE 50 Placebo-controlled studies: statins in primary CVD prevention: coronary revascularisations

Review: Statins Comparison: II Primary CVD: placebo-controlled studies: CHD death plus non-fatal MI Outcome: OI CHD death plus non-fatal MI						
Study or subcategory	Treatment n / N	Control n / N	$\begin{array}{r} \text { RR (ra } \\ 95^{\circ} \end{array}$		Weight \%	$\begin{aligned} & \text { RR (random) } \\ & 95 \% \mathrm{Cl} \end{aligned}$
02 Pravastatin CAIUS ${ }^{107}$					3.64	1.02 (0.15 to 7.15)
Subtotal $(95 \% \mathrm{Cl})$ 154 151 3.64 1.02 (0.15 to 7.15)						1.02 (0.15 to 7.15)
Total events: 2 (treatment), 2 (control) Test for heterogeneity: NA						
Test for overall effect: $z=0.02(p=0.98)$						
Total (95\% Cl) $1579 \quad 1564$					100.00	0.66 (0.46 to 0.96)
Total events: 45 (treatment), 67 (control)						
Test for heterogeneity: $\chi^{2}=0.19, \mathrm{df}=1(p=0.66), 1^{2}=0 \%$						
$\begin{array}{lllllll}0.1 & 0.2 & 0.5 & 1 & 2 & 5 & 10\end{array}$						
Favours treatment Favours control						

FIGURE 5I Placebo-controlled studies: statins in primary CVD prevention: CHD death plus non-fatal MI

FIGURE 52 Placebo-controlled studies: statins in primary CVD prevention: CHD death, non-fatal MI and fatal or non-fatal stroke

Appendix 9
 Placebo-controlled studies: statins in primary CHD prevention

TABLE 108 Placebo-controlled studies: statins in primary CHD prevention

Outcome	Studies contributing data	No. with event/total no.: statin	No. with event/total no.: placebo	RR	95\% CI

FIGURE 53 Placebo-controlled studies: statins in primary CHD prevention: CVD mortality

FIGURE 54 Placebo-controlled studies: statins in primary CHD prevention: CHD mortality

FIGURE 55 Placebo-controlled studies: statins in primary CHD prevention: stroke mortality

FIGURE 56 Placebo-controlled studies: statins in primary CHD prevention: fatal MI

FIGURE 57 Placebo-controlled studies: statins in primary CHD prevention: unstable angina

FIGURE 58 Placebo-controlled studies: statins in primary CHD prevention: PAD

FIGURE 59 Placebo-controlled studies: statins in primary CHD prevention: coronary revascularisations

FIGURE 60 Placebo-controlled studies: statins in primary CHD prevention: CH death, non-fatal MI and fatal or non-fatal stroke

Appendix 10
 Placebo-controlled studies: statins in secondary CHD prevention

TABLE 109 Placebo-controlled studies: statins in secondary CHD prevention

Outcome	Studies contributing data	No. with event/total no.: statin	No. with event/total no.: placebo	RR	95\% CI	
All-cause mortality	FLORIDA, LIPS, PLAC I, PLAC II, REGRESS, CARE, PREDICT, LIPID, 4S, CIS, SCAT	933/11,360	II75/I I,326	0.80	0.70 to 0.89	
Cardiovascular mortality	FLORIDA, PLAC I, CARE, LIPID, 4S, CIS	589/9414	786/9405	0.75	0.68 to 0.83	
CHD mortality	FLARE, LiSA, FLORIDA, LIPS, PLAC I, CARE, LIPID, 4S, MAAS, REGRESS, CIS, SCAT	532/II,727	743/I I,693	0.72	0.64 to 0.80	
Stroke mortality	FLORIDA, LIPS, PLAC I, CARE, PREDICT, LIPID, CIS	37/8384	34/8363	1.07	0.67 to 1.71	
Non-fatal stroke	PLAC I, CARE, LIPID	189/6799	250/6782	0.72	0.53 to 0.95	
TIA	4S	19/222 1	29/2223	0.66	0.37 to 1.17	
PAD (new or worsening intermittent claudication)	4S	52/2221	81/2223	0.64	0.46 to 0.91	
Fatal MI	LiSA, FLORIDA, PLAC I, REGRESS, CARE, LIPID, PREDICT, 4S, MAAS, SCAT	114/10,692	201/10,658	0.57	0.45 to 0.72	
Non-fatal MI	FLARE, LiSA, LIPS, PLAC I, REGRESS, CARE, PREDICT, 4S, CIS, SCAT	408/7104	596/7076	0.69	0.59 to 0.79	
Stable angina	No data					
Unstable angina	LiSA, CARE, 4 S	886/4489	1089/4479	0.82	0.72 to 0.94	
Patients hospitalised for unstable angina	LIPID, CIS, SCAT	I043/487 \|	$1153 / 4857$	0.90	0.84 to 0.97	
CABG	FLARE, LiSA, FLORIDA, PLAC I, REGRESS, CARE, PREDICT, LIPID, 4S, MAAS, SCAT	887/11,101	I 183/I I,083	0.76	0.66 to 0.87	
PTCA	FLARE, LiSA, FLORIDA, REGRESS, CARE, PREDICT, LIPID, 4S, MAAS, SCAT	621/10,895	770/10,881	0.79	0.67 to 0.94	
CABG + PTCA	LiSA, LIPS, CARE, PREDICT, LIPID, 4S, CIS, SCAT	\|382/10,55		$1782 / 10,517$	0.77	0.69 to 0.85

TABLE 109 Placebo-controlled studies: statins in secondary CHD prevention (cont'd)

Outcome	Studies contributing data	No. with event/total no.: statin	No. with event/total no.: placebo	RR	$\mathbf{9 5 \%} \mathbf{\text { Cl }}$
CHD death plus non-fatal MI	FLARE, LiSA, LIPS, CARE, LIPID, 4S, CIS	$1252 / 10,383$	$1700 / 10,364$	0.73	0.68 to 0.80
CHD death, non-fatal MI and fatal or non-fatal stroke	No data				
CHD death, non-fatal MI or coronary revascularisation CHD death, non-fatal MI, fatal or non-fatal stroke or any revascularisation	FLARE, LiSA, CIS	$101 / 725$	$115 / 728$	0.91	0.71 to 1.17

FIGURE 6 I Placebo-controlled studies: statins in secondary CHD prevention: fatal stroke

FIGURE 62 Placebo-controlled studies: statins in secondary CHD prevention: TIA

FIGURE 63 Placebo-controlled studies: statins in secondary CHD prevention: CHD death, non-fatal MI or coronary revascularisation

FIGURE 64 Placebo-controlled studies: statins in secondary CHD prevention: CHD death, non-fatal MI, fatal or non-fatal stroke or revascularisation

Appendix II
 Placebo-controlled studies: statins in secondary CVD prevention

TABLE IIO Placebo-controlled studies: statins in secondary CVD prevention (only results that differ from those in secondary CHD prevention)

Outcome	Studies contributing data	No. with event/total no.: statin	No. with event/total no.: placebo	RR	95\% CI
All-cause mortality	Mohler, FLORIDA, LIPS, PLAC I, PLAC II, REGRESS, CARE, PREDICT, LIPID, 4S, CIS, SCAT	938/1 1,600	II76/I I,440	0.80	0.71 to 0.90
CHD mortality	Mohler, Aronow, FLARE, LiSA, FLORIDA, LIPS, PLAC I, CARE, LIPID, 4S, MAAS, REGRESS, CIS, SCAT	537/12,001	750/I 1,842	0.72	0.64 to 0.80
Stroke mortality	Mohler, FLORIDA, LIPS, PLAC I, CARE, PREDICT, LIPID, CIS	38/8624	34/8477	1.08	0.67 to 1.72
PAD (new or worsening intermittent claudication)	Mohler, 4S	55/2461	90/2337	0.58	0.42 to 0.80
CHD death plus non-fatal MI	Mohler, FLARE, LiSA, LIPS, CARE, LIPID, 4S, CIS	1259/10,774	1703/10,632	0.74	0.69 to 0.79

FIGURE 65 Placebo-controlled studies: statins in secondary CVD prevention: all-cause mortality

FIGURE 66 Placebo-controlled studies: statins in secondary CVD prevention: CHD mortality

FIGURE 67 Placebo-controlled studies: statins in secondary CVD prevention: stroke mortality

FIGURE 68 Placebo-controlled studies: statins in secondary CVD prevention: PAD

FIGURE 69 Placebo-controlled studies: statins in secondary CVD prevention: CHD death plus non-fatal MI

Appendix 12

Direct comparisons with other statins: data sheets

TABLE I II Direct comparisons with other statins: study characteristics

Study	Patient group	Mean baseline LDL-C ($\mathrm{mmol} \mathrm{l}^{-1}$)	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
$\begin{aligned} & 452211 / / \\ & 0026^{125} \end{aligned}$	Primary hypercholesterolaemia	4.9	NA	Northern Europe	Rosuvastatin 5-80 or $10-80 \mathrm{mg}$ per day vs atorvastatin 10-80 mg per day	AHA Step I diet	No	1	MF	57	138/134/140
$\begin{aligned} & 4522111 / \\ & 0028^{126} \end{aligned}$	Hypercholesterolaemia	4.9	NA	USA	Rosuvastatin 5-80 or 10-80 mg per day vs pravastatin 20-40 mg per day or simvastatin 20-80 mg per day	NCEP Step I diet	No	1	MF	59	$\begin{aligned} & 123 / 116 / \\ & 118 / 120 \end{aligned}$
$3 T^{83}$	CVD and dyslipidaemia	5.2	NA	Denmark, Finland, Iceland, Norway, Sweden	Atorvastatin 20 mg per day vs simvastatin 20 mg per day	Dietary counselling	No	1	MF	63	556/537
$\begin{aligned} & \text { PROVE } \\ & \text { IT-TIMI } \end{aligned}$	CHD (recent ACS)	Median 2.8	NA	Australia, Canada, France, Germany, Italy, Spain, UK, USA	Atorvastatin 80 mg per day vs pravastatin 40 mg per day	NCEP diet	2×2 factorial design also evaluating a 10-day course of gatifloxacin (antibiotic) or placebo every month during the trial	2	MF	58	2099/2063

TABLE I II Direct comparisons with other statins: study characteristics (cont'd)

Study	Patient group	Mean baseline LDL-C ($\mathrm{mmol} \mathrm{l}{ }^{-1}$)	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
REVERSAL ${ }^{90}$	CHD	3.9	NA	USA	Atorvastatin 80 mg per day vs pravastatin 40 mg per day	None reported	No	1.5	MF	56	328/329
${ }^{a}$ In most studies, many patients were, at randomisation, already receiving medications other than statins to treat conditions such as hypertension and diabetes. This medications that specifically formed a part of the study protocol. ACS, acute coronary syndrome.											

TABLE II2 Direct comparisons with other statins: selected results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI	
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control
$452211 / 0026^{125}$	NR							
$452211 / 0028^{126}$	NR							
$3 \mathrm{~T}^{83}$	NR	NR	NR	NR	1/556	0/537	NR	NR
PROVE IT-TIMI' ${ }^{124}$	2.2\%	3.2\%	NR	NR	1.0\%	1.0\%	8.3\%	10.0\%
REVERSAL ${ }^{\text {90 }}$	1/327	1/327	NR	NR	1/327	1/327	NR	NR

Appendix 13

Comparisons with 'usual care': data sheets

TABLE II3 Comparisons with 'usual care': study characteristics

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: control arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups ${ }^{\text {a }}$	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
Atorvastatin											
ALLIANCE ${ }^{88}$	CHD	3.8	1.2\%	USA	Atorvastatin $10-80 \mathrm{mg}$ per day	No	No	4	MF	61	1217/1225
GREACE ${ }^{128}$	CHD	4.7	0.7\%	Greece	Atorvastatin $10-80 \mathrm{mg}$ per day	No	No	3	MF	59	800/800
ESTABLISH ${ }^{89}$	CHD (patients who had undergone emergency coronary angiography and PCl for ACS)	3.2	0\%	Japan	Atorvastatin 20 mg per day	No	After PCI, all patients received aspirin 100 mg per day and ticlopidine 100 mg b.d. for >3 weeks, and cilostazol 100 mg b.d. for 4 days	0.5	MF	62	35/35
Pravastatin											
ALLHAT- LLT 127	Moderate hypercholesterolaemia, wellcontrolled hypertension, with and without CHD	3.3	1.2\%	USA, Puerto Rico, US Virgin Islands, Canada	Pravastatin 40 mg per day	NCEP Step I diet	Therapy designed to achieve BP < $140 /$ $<90 \mathrm{mmHg}$	4.8	MF	66	5170/5185

TABLE II4 Comparisons with 'usual care': selected results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI	
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control
Atorvastatin								
ALLIANCE ${ }^{88}$	121/1217	127/1225	43/1217	61/1225	35/1217	39/1225	95/1217	155/1225
GREACE ${ }^{128}$	23/800	40/800	20/800	38/800	9/800	17/800	41/800	89/800
ESTABLISH ${ }^{89}$	0/35	1/35	0/35	0/35	NR	NR	0/35	0/35
Pravastatin								
ALLHAT-LLT ${ }^{127}$	631/5170	641/5185	160/5170	162/5185	209/5170	231/5185	380/5170	421/5185

Appendix 14
 Assessment of clinical effectiveness: comparisons with 'usual care'

All four studies that compared a statin with usual care ${ }^{88,89,127,128}$ reported all-cause mortality; the pooled results did not demonstrate a significant effect in favour of statin treatment (Figure 70).

The only study to report cardiovascular mortality and stroke mortality (ALLHAT-LLT) did not demonstrate any treatment effect in either case (RR $0.99,95 \%$ CI 0.84 to 1.15 , and $0.95,95 \%$ CI 0.65 to 1.38 , respectively). All four studies reported CHD mortality, but again the combined results did not demonstrate a significant risk reduction (Figure 71).

None of the studies reported fatal MI. However, both studies that reported instances of non-fatal MI found that atorvastatin treatment was associated with a statistically significant risk reduction (Figure 72).

Two studies reported outcomes related to unstable angina; neither was statistically significant. The GREACE study found a relative risk of (undefined) unstable angina of 0.48 (95% CI 0.23 to 1.00), while the ALLIANCE study found a relative risk of hospitalisation for unstable angina of 0.72 (95% CI 0.42 to 1.23).

None of the studies reported on stable angina, TIA or peripheral vascular disease. Three studies reported total stroke; again, the combined results were not statistically significant (Figure 73). One study (ALLIANCE) reported the number of patients undergoing peripheral revascularisation; the relative risk was not statistically significant (RR 0.87 ; 95% CI 0.60 to 1.26).

None of the studies reported separately on CABG or PTCA. Although three studies presented information on total cardiac revascularisation,

FIGURE 70 Comparisons with usual care: all-cause mortality

FIGURE 7I Comparisons with usual care: CHD mortality

FIGURE 72 Comparisons with usual care: effect on non-fatal MI
again the combined result was not statistically significant (Figure 74).

Statin treatment was associated with a statistically significant reduction in the composite risk of CHD death or non-fatal MI (Figure 75).

Assessment of effectiveness in patients without CHD at baseline: comparison with usual care

The ALLHAT-LLT study presented results relating to all-cause mortality and to a composite of CHD death and non-fatal MI for the subgroup of subjects without CHD at baseline. ${ }^{127}$ However, it should be noted that, as randomisation was not

FIGURE 73 Comparisons with usual care: effect on total stroke

FIGURE 74 Comparisons with usual care: effect on CABG or PTCA
stratified by either prior CHD or baseline LDL-C, these are not true randomised comparisons.
Moreover, the study does not report the number of patients in each group with each outcome, and thus it is only possible to report the relative risks calculated by the investigators, which have been subdivided by baseline LDL-C; none is statistically significant (Table 115).

Assessment of effectiveness in patients with CHD at baseline: comparison with usual care

The ALLIANCE, ESTABLISH AND GREACE studies were carried out in patients with baseline CHD. Their combined results are more favourable to statin therapy than the combined results of all four studies (Table 116), and this might be taken to

FIGURE 75 Comparisons with usual care: effect on CHD death plus non-fatal MI

TABLE II5 Comparison with usual care: results from the ALLHAT-LLT study non-CHD subgroup

Outcome	LDL-C	RR $(95 \% \mathbf{C I})$ (investigators' calculations)
All-cause mortality	$\geq 130 \mathrm{mg} \mathrm{dl}^{-1}$	$0.96(0.84$ to 1.1 I$)$
	$<130 \mathrm{mg} \mathrm{dl}^{-1}$	$1.18(0.90$ to 1.56$)$
CHD death plus non-fatal MI	$\geq 130 \mathrm{mg} \mathrm{dl}^{-1}$	$0.92(0.77$ to 1.09$)$
	$<130 \mathrm{mg} \mathrm{dl}^{-1}$	$0.73(0.49$ to 1.07$)$

TABLE II6 Comparisons with usual care by CHD status: relative risk (95\% CI)

Outcome	Mixed population	Established CHD
All-cause mortality	0.92 (0.77 to I.10)	0.78 (0.51 to I.20)
Cardiovascular mortality	0.99 (0.84 to 1.15)	No data
CHD mortality	0.76 (0.53 to 1.09)	0.64 (0.47 to 0.87)
Stroke mortality	0.95 (0.65 to 1.38)	No data
Total stroke	0.89 (0.75 to 1.05)	0.77 (0.48 to I.24)
PVD (peripheral revascularisation)	0.87 (0.60 to I.26)	0.87 (0.60 to I.26)
Non-fatal MI	0.51 (0.39 to 0.67)	0.51 (0.39 to 0.67)
Stable angina	No data	No data
Unstable angina	0.48 (0.23 to 1.00)	0.48 (0.23 to I.00)
Patients hospitalised for unstable angina	0.72 (0.43 to I.23)	0.72 (0.43 to I.23)
CABG + PTCA	0.75 (0.49 to 1.14)	0.75 (0.49 to I.14)
CHD death plus non-fatal MI	0.65 (0.44 to 0.96)	0.55 (0.42 to 0.73)

indicate that statin therapy is more effective, relative to usual care, in patients with existing CHD than in a mixed population. However, as may be seen from Figures 70-75, the results of the GREACE study are consistently more favourable to statin therapy than those of the other studies and, with the removal of the ALLHAT-LLT study from the meta-analysis, the weight given to GREACE rises from 10.77% in analyses that include all four studies to 36.90%.

The ALLHAT-LLT study also reported the relative risks of all-cause mortality and of CHD death plus non-fatal MI in the subgroup with baseline CHD. Although, this time, the results were not subdivided by LDL-C, they were still not statistically significant (RR $0.95,95 \%$ CI 0.74 to 1.23 , and $1.03,95 \%$ CI 0.77 to 1.38 , respectively). ${ }^{127}$

Appendix 15

Comparisons with 'no statin': data sheets

TABLE II7 Comparisons with 'no statin': study characteristics

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
Atorvastatin											
$\begin{aligned} & \text { Colivicchi } \\ & 2002^{129} \end{aligned}$	End-stage CHD	3.4	9.8\%	Italy	Conventional medical treatment + atorvastatin 80 mg per day	None reported	No	1	MF	68	40/41
Pravastatin											
GISSI-P ${ }^{130}$	CHD (recent MI)	3.9	1.1\%	Italy	Pravastatin 20 mg per day	Diet	Factorial trial also evaluating supplements of $n-3$ polyunsaturated fatty acids (I g per day), vitamin E 300 mg per day, a combination of the two, or standard treatment	2	MF	60	2138/2133
Sato 2001 ${ }^{87}$	CHD	NR; TC 5.2	2.3\%	Japan	Pravastatin 20 mg per day	None reported	No	1.8	MF	60	54/66

TABLE II8 Comparisons with 'no statin': results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI	
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control
Atorvastatin Colivicchi 2002 ${ }^{\text {12 }}$	NR	NR	3/40	4/41	NR	NR	7/40	II/4\|
Pravastatin GISSI-P ${ }^{130}$ Sato 2001^{87}	$\begin{gathered} 72 / 2138 \\ 1 / 54 \end{gathered}$	$\begin{gathered} 88 / 2133 \\ 4 / 66 \end{gathered}$	$\begin{gathered} 3 I / 2138 \\ 1 / 54 \end{gathered}$	$\begin{gathered} 49 / 2133 \\ 3 / 66 \end{gathered}$	$\begin{gathered} 20 / 2138 \\ 0 / 54 \end{gathered}$	$\begin{gathered} 19 / 2133 \\ 1 / 66 \end{gathered}$	$\begin{gathered} 67 / 2138 \\ 1 / 54 \end{gathered}$	$\begin{gathered} 83 / 2133 \\ 3 / 66 \end{gathered}$

Appendix 16
 Assessment of clinical effectiveness: comparisons with 'no statin'

Only one study that compared a statin with 'no statin' (GISSI-P) reported both all-cause and cardiovascular mortality: low-dose pravastatin did not have a statistically significant effect on either outcome (RR $0.82,95 \%$ CI 0.60 to 1.11 , and 0.80 , 95% CI 0.56 to 1.14 , respectively). ${ }^{130}$ However, the combined data from the two studies that provided data on CHD mortality ${ }^{129,130}$ indicated that statin therapy was associated with a reduced risk of an event (Figure 76).

Two studies reported the number of patients suffering any stroke; their combined results did not indicate any benefit from statin therapy (Figure 77). One of these studies (GISSI-P) also reported fatal and non-fatal strokes separately; again, no benefit was demonstrated from statin therapy (RR $1.00,95 \% \mathrm{CI} 0.25$ to 3.98 , and 1.06 , 95% CI 0.53 to 2.15 , respectively).

GISSI-P was also the only study to report fatal MI; again, the result was not statistically significant
(RR $0.60,95 \%$ CI 0.22 to 1.64). ${ }^{130}$ The MIs reported in another study ${ }^{87}$ appeared implicitly to have been fatal but, as this was not specified, they have not been included in the analysis. Although two studies reported non-fatal MI, the results were not significant, even when combined (Figure 78).

None of the studies reported on angina (either stable or unstable angina), TIA or PVD.

Only one study ${ }^{130}$ provided separate data on CABG and PTCA, with relative risks of 0.88 (95% CI 0.68 to 1.14) and 0.90 (0.63 to 1.29), respectively. Although two studies ${ }^{87,130}$ provided data relating to total cardiac revascularisations, again the pooled data were not statistically significant (Figure 79).

All three studies provided data relating to a composite end-point of CHD death plus non-fatal MI, but again the results were not statistically significant (Figure 80).

FIGURE 76 Comparisons with 'no statin': effect on CHD mortality

Review: Statins Comparison: 59 Secondary CHD: comparisons with 'no statin': total stroke Outcome: 01 Total stroke						
Study or subcategory	Treatment n / N	Control n/N		$\begin{aligned} & \text { RR (random) } \\ & 95 \% \mathrm{Cl} \end{aligned}$	Weight \%	$\begin{aligned} & \text { RR (random) } \\ & 95 \% \mathrm{Cl} \end{aligned}$
O1 Pravastatin						
GISSI-pl30	20/2138	19/2133			96.28	1.05 (0.56 to 1.96)
Sato ${ }^{87}$	0/54	1/66			3.72	0.41 (0.02 to 9.77)
Subtotal (95\% Cl)	2192	2199			100.00	1.01 (0.55 to 1.87)
Total events: 20 (treatment), 20 (control)						
Test for heterogeneity: $\chi^{2}=0.33, \mathrm{df}=1(p=0.57), I^{2}=0 \%$						
Test for overall effect: $z=0.04(p=0.97)$						
Total ($95 \% \mathrm{Cl}$)	2192	2199			100.00	1.01 (0.55 to 1.87)
Total events: 20 (treatment), 20 (control)						
Test for heterogeneity: $\chi^{2}=0.33, \mathrm{df}=1(p=0.57), I^{2}=0 \%$						
Test for overall effect: $z=0.04(p=0.97)$						
			$0.1 \quad 0.2$	0.5 \| 2		
			Favours	atment Favo		

FIGURE 77 Comparisons with 'no statin': effect on total stroke

FIGURE 78 Comparisons with 'no statin': effect on non-fatal MI

FIGURE 79 Comparisons with 'no statin': effect on CABG or PTCA

FIGURE 80 Comparisons with 'no statin': effect on CHD death plus non-fatal MI

Appendix 17

Dose comparisons: data sheets

TABLE II9 Dose comparisons: study characteristics

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Com	rator	Lifes inter reco in bo trea grou	ns ded	Add med give both trea grou		Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
A-to-Z ${ }^{\mid 31}$	ACS	2.9	NA	4I countries in Europe, Australia, New Zealand, North and South America, South Africa and Asia ${ }^{399}$	Simvastatin 40 mg per day for 30 days, then 80 mg per day	Place 4 mon follow simva 20 mg	for by in day	AHA	diet	No		2	MF	61 (median)	2265/2232
PATE ${ }^{132}$	With and without previous CVD	4.3	NA	Japan	Pravastatin 5 mg per day	Prava 10-20 day	ger	Non		No		3.9	MF	NR	331/334
${ }^{a}$ In most studies, many patients were, at randomisation, already receiving medications other than statins to treat conditions such as hypertension and diabetes. This medications that specifically formed a part of the study protocol.															
TABLE 120 Dose comparisons: selected results															
Study			All-cause mortality		CHD mortality				Total stroke				CHD death + non-fatal MI		
			Treatment	Control	Treatment		Control		Treatment		Control		Treatment		Control
A-to-Z ${ }^{131}$			104/2265	130/2232	NR		NR		28/2265		35/2232		NR		NR
PATE ${ }^{132}$			14/331	20/334	NR		NR								

TABLE 120 Dose comparisons: selected results

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Com	ator	Lifes inte reco in bo trea grou	ns ded	Add med give both trea grou		Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
A-to-Z ${ }^{131}$	ACS	2.9	NA	4I countries in Europe, Australia, New Zealand, North and South America, South Africa and Asia ${ }^{399}$	Simvastatin 40 mg per day for 30 days, then 80 mg per day	Place 4 mon follow simva 20 m	for by tin day	AHA	diet	No		2	MF	61 (median)	2265/2232
PATE ${ }^{132}$	With and without previous CVD	4.3	NA	Japan	Pravastatin 5 mg per day	Prava 10-2 day	ger	Non		No		3.9	MF	NR	331/334
${ }^{a}$ In most studies, many patients were, at randomisation, already receiving medications other than statins to treat conditions such as hypertension and diabetes. This medications that specifically formed a part of the study protocol.															
TABLE I20 Dose comparisons: selected results															
Study			All-cause mortality		CHD mortality				Total stroke				CHD death + non-fatal MI		
			Treatment	Control	Treatment		Control		Treatment		Control		Treatment		Control
A-to-Z ${ }^{131}$			104/2265	130/2232	NR		NR		28/2265		35/2232		NR		NR
PATE ${ }^{132}$			14/331	20/334	NR		NR								

Appendix 18

Assessment of clinical effectiveness: dose comparisons

Tn the A-to-Z study, the use of an aggressive dose of simvastatin was associated with a reduced risk of cardiovascular mortality; other reported outcomes were not statistically significant ${ }^{131}$ (for details see Table 121).

The PATE study showed no statistically significant results in relation to any clinical end-point, even when all fatal and non-fatal cardiovascular events were pooled (RR of event in low-dose group compared with standard dose $1.44,95 \%$ CI 0.92 to 2.25). The results for the subgroups with and without baseline CVD were therefore not statistically significant. ${ }^{132}$

TABLE 12 I Dose comparisons: aggressive versus lower dose simvastatin in patients with CHD^{131}

Outcome	RR	$\mathbf{9 5 \%} \mathbf{~ C I}$
All-cause mortality	0.79	0.61 to 1.01
Cardiovascular mortality	0.75	0.57 to 0.99
Total stroke	0.79	0.48 to 1.29
Total MI	0.96	0.77 to 1.19
Coronary revascularisations	0.95	0.74 to 1.21

Appendix 19
 Subgroup data

Women

TABLE I22 Placebo-controlled studies: results by gender - meta-analysis

Outcome	Men		Women	
	Studies providing data	$\mathbf{R R} \mathbf{(9 5 \% ~ C I)}$	Studies providing data	RR (95\% CI)
All-cause mortality	KAPS, REGRESS, WOSCOPS, 4S	$\begin{gathered} 0.70 \\ (0.61 \text { to } 0.82) \end{gathered}$	4S	$\begin{gathered} 1.16 \\ (0.69 \text { to } 1.95) \end{gathered}$
Cardiovascular mortality	WOSCOPS	$\begin{gathered} 0.68 \\ (0.48 \text { to } 0.98) \end{gathered}$	No data	
CHD mortality	CARE, REGRESS, WOSCOPS, 4S, CIS	$\begin{gathered} 0.66 \\ (0.56 \text { to } 0.79) \end{gathered}$	4S, CARE	$\begin{gathered} 0.83 \\ (0.49 \text { to } 1.38) \end{gathered}$
Stroke mortality	WOSCOPS	$\begin{gathered} 1.50 \\ (0.42 \text { to } 5.30) \end{gathered}$	No data	
Non-fatal stroke	WOSCOPS	$\begin{gathered} 0.85 \\ (0.56 \text { to } 1.29) \end{gathered}$	No data	
Total stroke	CARE, KAPS, PROSPER	$\begin{gathered} 0.84 \\ (0.66 \text { to } 1.08) \end{gathered}$	CARE, PLAC I, PROSPER	$\begin{gathered} 0.76 \\ (0.50 \text { to } 1.13) \end{gathered}$
TIA	PROSPER	$\begin{gathered} 0.72 \\ (0.48 \text { to } 1.09) \end{gathered}$	PROSPER	$\begin{gathered} 0.80 \\ (0.53 \text { to } 1.21) \end{gathered}$
PVD	No data		No data	
Fatal MI	CARE, KAPS, REGRESS	$\begin{gathered} 0.70 \\ (0.42 \text { to } 1.16) \end{gathered}$	CARE	$\begin{gathered} 0.17 \\ (0.02 \text { to } 1.39) \end{gathered}$
Non-fatal MI	CARE, KAPS, WOSCOPS, 4S, CIS	$\begin{gathered} 0.73 \\ (0.66 \text { to } 0.80) \end{gathered}$	4S, CARE	$\begin{gathered} 0.62 \\ (0.47 \text { to } 0.83) \end{gathered}$
Stable angina	No data		No data	
Unstable angina (unspecified)	CARE	$\begin{gathered} 0.88 \\ (0.76 \text { to } 1.03) \end{gathered}$	CARE	$\begin{gathered} 0.87 \\ (0.64 \text { to } 1.20) \end{gathered}$
Hospitalisation for unstable angina	CIS	$\begin{gathered} 0.97 \\ (0.38 \text { to } 2.50) \end{gathered}$	No data	
CABG	CARE, KAPS	$\begin{gathered} 0.77 \\ (0.63 \text { to } 0.95) \end{gathered}$	CARE, PLAC I	$\begin{gathered} 0.67 \\ (0.37 \text { to } 1.22) \end{gathered}$
PTCA	CARE, KAPS, REGRESS	$\begin{gathered} 0.60 \\ (0.32 \text { to } \mathrm{I} . \mathrm{II}) \end{gathered}$	CARE, PLAC I	$\begin{gathered} 0.55 \\ (0.33 \text { to } 0.93) \end{gathered}$
CABG + PTCA	CARE, WOSCOPS, 4S, CIS	$\begin{gathered} 0.72 \\ (0.65 \text { to } 0.8 \mathrm{I}) \end{gathered}$	4S, CARE	$\begin{gathered} 0.5 \mathrm{I} \\ (0.37 \text { to } 0.70) \end{gathered}$
CHD death plus non-fatal MI	ASCOT-LLA, CARE, LIPID, PROSPER, WOSCOPS	$\begin{gathered} 0.70 \\ (0.63 \text { to } 0.78) \end{gathered}$	4S, ASCOT-LLA, CARE, LIPID, PROSPER	$\begin{gathered} 0.82 \\ (0.69 \text { to } 0.96) \end{gathered}$
CHD death, non-fatal MI or coronary revascularisation	CARE	$\begin{gathered} 0.81 \\ (0.72 \text { to } 0.92) \end{gathered}$	CARE	$\begin{gathered} 0.58 \\ (0.42 \text { to } 0.81) \end{gathered}$

TABLE 123 Placebo-controlled studies: the LIPID and LIPS studies - results by gender

Outcome	LIPID \% RR reduction ${ }^{\text {a }}$		LIPS $\mathbf{R R}^{\boldsymbol{a}}$	
	Men	Women	Men	Women
All-cause mortality	25 (15 to 34)	11 (-18 to 33)	NR	
CHD mortality	25 (12 to 37)	18 (-24 to 46)	NR	
Total MI	31 (20 to 41)	16 (-19 to 41)	NR	
Hospital admission for unstable angina	16 (7 to 23)	-9 (-33 to 10)	NR	
Total stroke	25 (6 to 40)	-28 (-114 to 23)	NR	
Coronary revascularisation	18 (8 to 28)	25 (-1 to 44)	NR	
CHD death + non-fatal MI	Full data available and incorporated into meta-analysis		NR	
CHD death, non-fatal MI or coronary revascularisation	22 (15 to 29)	17 (-2 to 33)	0.79 (0.64 to 0.98)	0.66 (0.38 to 1.14)
${ }^{a}$ Investigators' calculations.				

People with diabetes

TABLE I24 Placebo-controlled studies: results in people with and without diabetes

Outcome	People with diabetes		People without diabetes	
	Studies providing data	$\mathbf{R R} \mathbf{(9 5 \% ~ C I)}$	Studies providing data	RR (95\% CI)
All-cause mortality	CARDS, LIPID, 4S	$\begin{gathered} 0.72 \\ (0.56 \text { to } 0.93) \end{gathered}$	LIPID, 4S	$\begin{gathered} 0.73 \\ (0.60 \text { to } 0.87) \end{gathered}$
Cardiovascular mortality	CARDS	$\begin{gathered} 0.67 \\ (0.40 \text { to } 1.10) \end{gathered}$	No data	
CHD mortality	CARDS, CARE, 4S	$\begin{gathered} 0.84 \\ (0.61 \text { to } 1.17) \end{gathered}$	CARE, 4S	$\begin{gathered} 0.66 \\ (0.50 \text { to } 0.87) \end{gathered}$
Stroke mortality	CARDS	$\begin{gathered} 0.20 \\ (0.02 \text { to } 1.69) \end{gathered}$	No data	
Non-fatal stroke	CARDS	$\begin{gathered} 0.66 \\ (0.38 \text { to } 1.15) \end{gathered}$	No data	
Total stroke	CARDS, CARE, $4 S^{a}$	$\begin{gathered} 0.63 \\ (0.44 \text { to } 0.91) \end{gathered}$	CARE, $4 \mathrm{~S}^{\text {a }}$	$\begin{gathered} 0.66 \\ (0.5 \mathrm{I} \text { to } 0.85) \end{gathered}$
TIA	No data		No data	
PVD	No data		No data	
Fatal MI	CARDS, CARE	$\begin{gathered} 0.46 \\ (0.25 \text { to } 0.83) \end{gathered}$	CARE	$\begin{gathered} 0.71 \\ (0.38 \text { to } 1.31) \end{gathered}$
Non-fatal MI	CARDS, DALI, CARE, 4 S	$\begin{gathered} 0.54 \\ (0.32 \text { to } 0.91) \end{gathered}$	CARE, 4S	$\begin{gathered} 0.70 \\ (0.57 \text { to } 0.85) \end{gathered}$
Stable angina	No data		No data	
Unstable angina (unspecified)	CARDS, CARE	$\begin{gathered} 0.88 \\ (0.64 \text { to } 1.20) \end{gathered}$	CARE	$\begin{gathered} 0.89 \\ (0.77 \text { to } 1.04) \end{gathered}$
Hospitalisation for angina	No data		No data	
CABG	CARE	$\begin{gathered} 0.71 \\ (0.46 \text { to } 1.10) \end{gathered}$	CARE	$\begin{gathered} 0.78 \\ (0.62 \text { to } 0.97) \end{gathered}$
PTCA	CARE	$\begin{gathered} 0.70 \\ (0.5 \mathrm{I} \text { to } 0.98) \end{gathered}$	CARE	$\begin{gathered} 0.79 \\ (0.65 \text { to } 0.97) \end{gathered}$
CABG + PTCA	CARDS, 4S	$\begin{gathered} 0.70 \\ (0.47 \text { to } 1.03) \end{gathered}$	4S	$\begin{gathered} 0.66 \\ (0.56 \text { to } 76) \end{gathered}$
CHD death plus non-fatal MI	ASCOT-LLA, CARE, 4S	$\begin{gathered} 0.73 \\ (0.53 \text { to l.01) } \end{gathered}$	ASCOT-LLA, CARE	$\begin{gathered} 0.67 \\ (0.51 \text { to } 0.90) \end{gathered}$
CHD death, non-fatal MI or coronary revascularisation	LIPS, CARE	$\begin{gathered} 0.71 \\ (0.54 \text { to } 0.94) \end{gathered}$	LIPS, CARE	$\begin{gathered} 0.81 \\ (0.73 \text { to } 0.90) \end{gathered}$
a "Cerebrovascular disease event".				

TABLE 125 HPS: results in people with diabetes

Outcome	HPS Event rate ratio ${ }^{a}$	
	With diabetes	Without diabetes
All-cause mortality	NR	NR
CHD mortality	0.80	NR
	$(0.66$ to 0.96$)$	NR
Total MI	NR	NR
First non-fatal MI	0.67	NR
Hospital admission for unstable angina	$(0.50$ to 0.80$)$	0.74
Total stroke	NR	$(0.64$ to 0.86$)$
	0.76	NR
Coronary revascularisation	$(0.61$ to 0.94$)$	0.74
Any revascularisation (includes non-coronary)	NR	$(0.67$ to 0.82$)$
	0.83	NR
Peripheral macrovascular complications	$(0.70$ to 0.97$)$	0.73
CHD death + non-fatal MI	Event rate ratio NR but $p=0.03$	$(0.66$ to 0.8 l$)$
	0.73	
CHD death, non-fatal MI or coronary revascularisation	$(0.62$ to 0.85$)$	NR
${ }^{\text {a }}$ Investigators' calculations.	NR	

Elderly patients

TABLE I26 Placebo-controlled studies: results by age group

Outcome	People aged <65 years		People aged >65 years	
	Studies providing data	RR (95\% CI)	Studies providing data	RR (95\% CI)
All-cause mortality	4S	$\begin{gathered} 0.73 \\ (0.58 \text { to } 0.91) \end{gathered}$	PROSPER, 4S	$\begin{gathered} 0.83 \\ (0.58 \text { to } 1.19) \end{gathered}$
Cardiovascular mortality	No data		PROSPER	$\begin{gathered} 0.87 \\ (0.69 \text { to } 1.08) \end{gathered}$
CHD mortality	CARE, 4S	$\begin{gathered} 0.80 \\ (0.42 \text { to } 1.49) \end{gathered}$	CARE, PROSPER, 4S	$\begin{gathered} 0.66 \\ (0.53 \text { to } 0.82) \end{gathered}$
Stroke mortality	No data		PROSPER	$\begin{gathered} 1.58 \\ (0.81 \text { to } 3.09) \end{gathered}$
Non-fatal stroke	No data		PROSPER	$\begin{gathered} 0.98 \\ (0.76 \text { to } 1.26) \end{gathered}$
Total stroke	CARE	$\begin{gathered} 0.80 \\ (0.48 \text { to } 1.35) \end{gathered}$	CARE, PLAC I	$\begin{gathered} 0.61 \\ (0.39 \text { to } 0.95) \end{gathered}$
TIA	No data		PROSPER	$\begin{gathered} 0.76 \\ (0.57 \text { to } 1.02) \end{gathered}$
PVD	No data		No data	
Fatal MI	No data		No data	
Non-fatal MI	CARE, 4S	$\begin{gathered} 0.72 \\ (0.64 \text { to } 0.82) \end{gathered}$	CARE, PROSPER, 4S	$\begin{gathered} 0.80 \\ (0.69 \text { to } 0.93) \end{gathered}$
Stable angina	No data		No data	
Unstable angina (unspecified)	CARE	$\begin{gathered} 0.81 \\ (0.69 \text { to } 0.96) \end{gathered}$	CARE	$\begin{gathered} 1.08 \\ (0.83 \text { to } 1.39) \end{gathered}$
Hospitalisation for angina	No data		No data	
CABG	CARE	$\begin{gathered} 0.83 \\ (0.66 \text { to } 1.06) \end{gathered}$	CARE, PLAC I	$\begin{gathered} 0.60 \\ (0.42 \text { to } 0.85) \end{gathered}$
PTCA	CARE	$\begin{gathered} 0.75 \\ (0.61 \text { to } 0.93) \end{gathered}$	CARE, PLAC I	$\begin{gathered} 0.94 \\ (0.62 \text { to } 1.42) \end{gathered}$
$C A B G+$ PTCA	CARE, 4S	$\begin{gathered} 0.72 \\ (0.63 \text { to } 0.82) \end{gathered}$	CARE, PROSPER, 4 S	$\begin{gathered} 0.70 \\ (0.58 \text { to } 0.84) \end{gathered}$
CHD death plus non-fatal MI	CARE	$\begin{gathered} 0.87 \\ (0.71 \text { to } 1.08) \end{gathered}$	CARE, PROSPER	$\begin{gathered} 0.74 \\ (0.56 \text { to } 0.97) \end{gathered}$
CHD death, non-fatal MI or coronary revascularisation	CARE	$\begin{gathered} 0.82 \\ (0.72 \text { to } 0.94) \end{gathered}$	CARE	$\begin{gathered} 0.70 \\ (0.57 \text { to } 0.85) \end{gathered}$

Appendix 20

Cardiac transplant patients: data sheets

TABLE 127 Cardiac transplant patients: study characteristics

Study	Patient group	Mean baseline LDL-C ($\mathrm{mmol} \mathrm{l}^{-1}$)	Crude annual CHD mortality: control arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
Fluvastatin											
$\begin{aligned} & \text { O'Rourke } \\ & 2004^{139} \end{aligned}$	Cardiac transplant recipients with hyperlipidaemia	4.4	0\%	England	Fluvastatin 40 mg per day vs placebo	AHA Step I diet	Immunosuppressive treatment (Neoral ciclosporin and azathioprine)		MF	52	52/27
Pravastatin											
Mehra 2002 ${ }^{94}$	Cardiac transplant recipients	4.2	NA	USA	Pravastatin 20 mg per day vs simvastatin 10 mg per day	Dietary counselling (low-fat diet)	Immunosuppressive treatment (ciclosporin, azathioprine and corticosteroids)		MF	53	24/26
$\begin{aligned} & \text { Kobashigawa } \\ & 1995^{140} \end{aligned}$	Cardiac transplant recipients	NR; TC 4.6	0\%	USA	Pravastatin 20-40 mg per day vs 'usual care'	Dietary counselling (low-fat, lowcholesterol diet)	Immunosuppressive treatment (ciclosporin, prednisone and azathioprine)	1	MF	52	47/50
Simvastatin											
Wenke 1997 ${ }^{141}$	Cardiac transplant recipients	2.8	NR	Germany	Simvastatin 5-20 mg per day (mean dose 10 mg per day) vs 'usual care'	AHA Step II diet	Immunosuppressive treatment (ciclosporin A, azathioprine and prednisolone)	4	MF	48	35/37

TABLE 128 Cardiac transplant patients: selected results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI	
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control
Fluvastatin O'Rourke 2004^{139}	2/52	0/27	NR	NR	NR	NR	NR	NR
Pravastatin Mehra 2002^{94} Kobashigawa 1995^{140}	$\begin{aligned} & 2 / 24 \\ & 3 / 47 \end{aligned}$	$\begin{array}{r} 2 / 26 \\ 10 / 50 \end{array}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$
Simvastatin Wenke 1997^{141}	4/35	11/37	NR	NR	NR	NR	NR	NR

Appendix 21

Cardiac transplant patients: results

TThe only clinical outcomes reported in the placebo-controlled study of statins in cardiac transplant patients were all-cause mortality and suspected rejection episodes; in neither case was there a statistically significant difference between treatment groups (Table 129).

The head-to-head statin comparison again only reported mortality data, and again found no
statistically significant difference between treatment groups in terms of clinical outcomes (Table 130).

The studies that compared statins with no statin treatment found no statistically significant difference between treatment groups in terms of clinical outcomes (Table 131).

TABLE 129 Statins in cardiac transplant patients: placebo-controlled trial ${ }^{139}$

Outcome	No. in each group with event	RR (95\% CI)
All-cause mortality	Fluvastatin: $2 / 52$ Placebo: $0 / 27$	$2.64(0.13$ to 53.14$)$
Suspected rejection episode	Fluvastatin: $3 / 52$ 	Placebo: $0 / 27$

TABLE 130 Statins in cardiac transplant patients: direct comparison ${ }^{94}$

Outcome	No. in each group with event	RR (95\% CI)
All-cause mortality	Pravastatin: $2 / 24$ Simvastatin: $2 / 26$	$1.08(0.17$ to 7.10$)$
CVD mortality	Pravastatin: $1 / 24$ Simvastatin: $1 / 26$	$\mathrm{I} .08(0.07$ to 16.38$)$
CHD mortality	Pravastatin: $1 / 24$ Simvastatin: $0 / 26$	$3.24(0.14$ to 75.91$)$
Stroke mortality	Pravastatin: $0 / 24$ Simvastatin: $1 / 26$	$0.36(0.02$ to 8.43$)$

TABLE I3I Statins in transplant patients: effect on all-cause mortality - comparisons with no statin

Study	No. in each group with event	RR (95\% CI)
Kobashigawa 1995^{140}	Pravastatin $20-40 \mathrm{mg}$ per day: $3 / 47$ Control: $10 / 50$	$0.32(0.09$ to 1.09$)$
Wenke 1997^{141}	Simvastatin $5-20 \mathrm{mg}$ per day: $4 / 35$ Control: $11 / 37$	$0.38(0.13$ to 1.10$)$

Appendix 22

Renal transplant patients: data sheets

TABLE 132 Renal transplant patients: study characteristics

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: placebo arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
ALERT ${ }^{142}$	Renal transplant recipients with mild to moderate hypercholesterolaemia	4.1	1.0\%	Belgium, Canada, Denmark, Finland, Germany, Norway, Sweden, Switzerland, UK	Fluvastatin $40-80 \mathrm{mg}$ per day	None reported	No	5.1	MF	50	1050/1052

TABLE 133 Renal transplant patients: selected results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI	
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control
ALERT ${ }^{142}$	143/1050	138/1052	36/1050	54/1052	74\%/1050	$63^{\circ} / 1052$	70/1050	104/1052

Appendix 23

Renal transplant patients: results

The results of the ALERT study are summarised in Table 134.

TABLE I34 Statins in renal transplant recipients: results of the ALERT study ${ }^{142}$

Outcome	$\mathbf{R R}$	$\mathbf{9 5 \%} \mathbf{C l}$
All-cause mortality	1.04	0.84 to 1.29
Cardiovascular mortality	0.91	0.66 to 1.25
CHD mortality	0.67	0.44 to 1.01
Cerebrovascular mortality	1.22	0.60 to 2.46
Total cerebrovascular events	1.18	0.85 to 1.63
Non-fatal MI	0.70	0.48 to 1.01
CABG	1.04	0.60 to 1.82
PTCA	0.79	0.49 to 1.27
CHD death plus non-fatal MI	0.67	0.50 to 0.90
CHD death, non-fatal MI or coronary revascularisation	0.84	0.66 to 1.06

Appendix 24

People with familial hypercholesterolaemia: data sheets

TABLE I35 People with familial hypercholesterolaemia: study characteristics

Study	Patient group	Mean baseline LDL-C (mmol lil	Crude annual CHD mortality: control arm	Country of study	Intervention	Lifestyle interventions recommended in both treatment groups	Additional medication given to both treatment groups	Follow-up (years)	Gender	Mean age (years)	No. treated/ no. controls
ASAP ${ }^{85}$	Heterozygous familial hypercholeste rolaemia	8.2	NA	The Netherlands	Atorvastatin 80 mg per day vs simvastatin 40 mg per day	None reported	No	2	MF	48	160/165

TABLE I36 People with familial hypercholesterolaemia: selected results

Study	All-cause mortality		CHD mortality		Total stroke		CHD death + non-fatal MI	
	Treatment	Control	Treatment	Control	Treatment	Control	Treatment	Control
ASAP ${ }^{85}$	1/160	2/160	1/160	1/160	NR	NR	NR	NR

Appendix 25
 People with familial hypercholesterolaemia: results

The results of the ASAP study are summarised in Table 137.

TABLE 137 Statins in patients with heterozygous familial hypercholesterolaemia: direct comparison ${ }^{85}$

Outcome	Number in each group with event	RR (95\% CI)
All-cause mortality	Atorvastatin 80 mg per day: $1 / 160$ Simvastatin 40 mg per day: $2 / 160$	$0.50(0.05$ to 5.46$)$
CVD mortality	Atorvastatin 80 mg per day: $1 / 160$ Simvastatin 40 mg per day: $1 / 160$	$1.00(0.06$ to 15.85$)$
CHD mortality	Atorvastatin 80 mg per day: $1 / 160$ Simvastatin 40 mg per day: $1 / 160$	$1.00(0.06$ to 15.85$)$

Appendix 26

Ethnic minorities

The results of the subgroup analyses of the ALLHAT-LLT study are summarised in Table 138.

TABLE 138 ALLHAT-LLT study: relative risk of event in black and non-black subgroups (95% CI) (investigators' calculations) ${ }^{127}$

Outcome	Black	Non-black
All-cause mortality	$\mathrm{I} .0 \mathrm{I}(0.85$ to I .19$)$	$0.98(0.85$ to 1.13$)$
CHD death plus non-fatal MI	$0.73(0.58$ to 0.92$)$	$1.02(0.86$ to I.2I)

Appendix 27

Drug toxicity: data from studies with non-statin comparator arms

TABLE I39 Atorvastatin: toxicity

TABLE 139 Atorvastatin: toxicity (cont'd)

TABLE 140 Fluvastatin: toxicity

Study	Statin dose (mg per day)	Clinical adverse events (excluding all-cause mortality and cardiovascular events)			Withdrawals/discontinuation of study medication due to adverse events
O'Rourke2004^{139}	40	No. of patients with event			Fluvastatin: 7/52 Placebo: 2/27
			Fluvastatin $(n=52)$	Placebo $(n=27)$	
		Suspected rejection episode Minor side-effects (mainly GI) Swelling of tongue and mouth after taking study capsule		0	
			7	1	
			0	I	
ALERT ${ }^{142}$	40-80	No. of patients with event			Fluvastatin: I55/I050 Placebo: I72/I052
		$\begin{array}{cc} \begin{array}{c} \text { Fluvastatin } \\ (n=1050) \end{array} & \text { Placebo } \\ (n=1052) \\ \hline \end{array}$			
		Malignancies Musculoskeletal Suicide Graft loss or doubling of serum creatinine	296	316	
			526	531	
			1	0	
			183	165	
LiSA ${ }^{93}$	40-80	There were two SAEs possibly related to study medication: one elevation of creatine phosphokinase on placebo and one possible hypersensitivity reaction to fluvastatin. On a global assessment of tolerability, 92% of fluvastatin patients rated tolerability as good or very good compared with 89% on placebo. However, patients known to be hypersensitive to, or intolerant of, statins were excluded from the study			Fluvastatin: 6.1\% Placebo: 4.5\%
FLARE ${ }^{108}$	80	No. (\%) of patients with event			NR
			Fluvastatin $(n=409)$	$\begin{aligned} & \text { Placebo } \\ & (n=425) \end{aligned}$	
		Malignant disease	4 (0.8\%)	II (2.1\%)	
		Headache	(3.8\%)	(1.7\%)	
		Nausea	(3.4\%)	(2.3\%)	
		Other pain	(4.4\%)	(2.5\%)	
FLORIDA 109	80	NR			Fluvastatin: II.3\% Placebo: I3.5\%
LIPS ${ }^{110}$	80	No. of patients with event			Fluvastatin: I24/844 (14.7\%) Placebo: I04/833 (I2.5\%)
			Fluvastatin $(n=844)$	Placebo $(n=833)$	
		Fatal cancer	14	18	
		Non-fatal cancer	46	49	
		Death from respiratory failure	3	2	
		Death from sepsis	1	3	
		Other death	3	I	

TABLE I4I Pravastatin: toxicity

Study	Statin dose (mg per day)	Clinical adverse events (excluding all-cause mortality and cardiovascular events)			Withdrawals/discontinuation of study medication due to adverse events
Kobashigawa1995^{140}	20-40	No of patients with event			NR
			Pravastatin $(n=47)$	$\begin{aligned} & \hline \text { Placebo } \\ & (n=50) \end{aligned}$	
		Death due to cardiac rejection Cancer death Death due to infection	3	10	
			0	1	
			0	1	
PMSG ${ }^{96}$	20-40	No. of patients with serious adverse events			Pravastatin: 25/530 Placebo: 33/532
			Pravastatin $(n=530)$	$\begin{gathered} \text { Placebo } \\ (n=532) \end{gathered}$	
		Angioedema causing withdrawal		0	
		Pulmonary	0	3	
		Gl	2	0	
		Diabetes	I	0	
ALLHAT-LLT ${ }^{127}$	40	No. of patients with event			NR
			Pravastatin ($n=5170$)	$\begin{gathered} \text { Placebo } \\ (n=5185) \end{gathered}$	
		Cancer	378	369	
CAIUS ${ }^{107}$	40	No. of patients with SAE			NR
			Atorvastatin $(n=15 \mid)$	Placebo $(n=154)$	
		Cancer	3	4	
CARE ${ }^{\text {II }}$	40	No. of patients with event			Pravastatin: 45/208I (2.2\%) Placebo: 74/2078 (3.6\%)
			Pravastatin $(n=208 \mathrm{I})$	$\begin{gathered} \text { Placebo } \\ (n=2078) \end{gathered}$	
		Cancer	172	161	
		Colorectal cancer	12	21	
		Breast cancer	21	I	
		Violent death	8	4	
KAPS ${ }^{133}$	40	Most common AEs: \% of patients with event			Pravastatin: 8/224 Placebo: I 2/223
			Pravastatin $(n=224)$	Placebo $(n=223)$	
		Abdominal pain	11.2\%	9.4\%	
		Cough	8.9\%	8.5\%	
		No. of patients discontinuing because of event			
			Pravastatin $(n=224)$	Placebo $(n=223)$	
		Gl complaints	3	7	
		Stroke	1	2	
		Elevated liver enzymes	1	0	
		Pneumonia	1	0	
		Eczema	1	0	
		Nerve pain	1	0	
		Prostate cancer	0	1	
		Chest pain	0	1	
		Depression	0	1	
					continued

TABLE I4I Pravastatin: toxicity (cont'd)

Study	Statin dose (mg per day)	Clinical adverse events (excluding all-cause mortality and cardiovascular events)			Withdrawals/discontinuation of study medication due to
LIPID ${ }^{1 / 2}$	40	No. of patients with event			NR
			Pravastatin $(n=45 I 2)$	$\begin{gathered} \text { Placebo } \\ (n=4502) \end{gathered}$	
		Newly diagnosed primary cancer	379	399	
		Cancer death	128	141	
		Deaths or hospitalisations due to accident, violence or attempted suicide	213	221	
		Death due to trauma or suicide	e 6	11	
		Fracture	175	183	
PLAC 1^{113}	40	\% of patients with event			NR
			Pravastatin $(n=206)$	Placebo $(n=202)$	
		Dyspepsia/heartburn	17\%	9\%	
PLAC 1195	20-40	NR			NR
PREDICT ${ }^{1 / 4}$	40	NR			6 patients; not attributed to treatment arm
PROSPER ${ }^{81}$	40	No. of patients with event			NR
			Pravastatin $(n=2891)$	Placebo $(n=2913)$	
		Cancer death	115	91	
		Trauma death/suicide	2	7	
		SAE	1608	1604	
		Incident cancer ${ }^{\text {a }}$	245	199	
		${ }^{a}$ Seems to be number of cancers rather than number of patients			
REGRESS ${ }^{115}$	40	No. of patients discontinuing study medication because of event			Pravastatin: 16/450 Placebo: 10/435
			Pravastatin $(n=450)$	$\begin{gathered} \text { Placebo } \\ (n=434) \end{gathered}$	
		Cancer	3	3	
		Endocrine disorders	0	2	
		Back pain	1	1	
		Joint complaints	1	0	
		Skin rash	2	0	
		Abdominal cramps	2	0	
		Worsening vision	1	0	
		Conjunctivitis	,	0	
		Sleep disturbance	1	0	
WOSCOPS ${ }^{82}$	40	$\underline{\text { No. of patients with event }}$			
			Pravastatin $(n=3302)$	$\begin{gathered} \text { Placebo } \\ (n=3293) \end{gathered}$	
		Incident cancer	116	106	
		Cancer death	44	49	
		Suicide	2	1	
		Trauma death	3	5	
					continued

TABLE I4I Pravastatin: toxicity (cont'd)

Study	Statin dose (mg per day)	Clinical adverse events (excluding all-cause mortality and cardiovascular events)			Withdrawals/discontinuation of study medication due to adverse events
		Of the 5974 subjects classified as non-diabetic at baseline, 139 developed overt diabetes mellitus over the course of the study. Pravastatin treatment was associated with a significantly reduced risk of developing diabetes (hazard ratio $0.70,95 \% \mathrm{Cl}$ 0.50 to $0.98, p=0.036)^{400}$			
Sato $2001{ }^{87}$	10	Excluded patients with known allergy to pravastatin			NR
GISSI-P ${ }^{130}$	20	\% of patients with event			Pravastatin: 57/2138
			Pravastatin $(n=2138)$	$\begin{gathered} \text { Placebo } \\ (n=2133) \end{gathered}$	
		Cancer	16	25	

TABLE 142 Rosuvastatin: toxicity

Study	Statin dose (mg per day)	Clinical adverse events (excluding all-cause mortality and cardiovascular events)	Withdrawals/discontinuation of study medication due to adverse events
No studies available with non-statin comparator arms			

TABLE 143 Simvastatin: toxicity

Study	Statin dose (mg per day)	Clinical adverse events (excluding all-cause mortality and cardiovascular events)			Withdrawals/discontinuation of study medication due to adverse events
Wenke 1997 ${ }^{141}$	5-20	Excluded patients with hypersensitivity to statins No. of patients with event			NR
			Simvastatin $(n=35)$	Placebo $(n=37)$	
		Death due to severe graft rejection	I	5	
		Death due to severe pulmonary infection	2	2	
		Death due to graft vessel disease	1	2	
		Death due to multiple organ failure	0	1	
		Death due to prostate cancer	0	1	
		Infection complications	6	5	
		Diagnosed cytomegalovirus	4	3	
		Hypertension requiring treatment	16	14	
					continued

TABLE 143 Simvastatin: toxicity (cont'd)
$\left.\begin{array}{|lllllll}\hline \text { Study } & \begin{array}{lll}\text { Statin dose } \\ \text { (mg per day) }\end{array} & \begin{array}{l}\text { Clinical adverse events (excluding all-cause } \\ \text { mortality and cardiovascular events) }\end{array} & \begin{array}{l}\text { Withdrawals/discontinuation } \\ \text { of study medication due to }\end{array} \\ \text { adverse events }\end{array}\right]$

Appendix 28

Quality checklists for sponsor submissions

TABLE I44 Pfizer: atorvastatin

Reference ID

Title

Authors

Year
Modelling assessments should include:
I. A statement of the problem
2. A discussion of the need for modelling vs alternatives
3. A description of the relevant factors and outcomes
4. A description of the model, including reasons for this type of model and a specification of the scope, time frame, perspective, comparators and settings
5. A description of data sources (including subjective estimates), with a description of the strengths and weaknesses of each source, with reference to a specific hierarchy of evidence
6. A list of assumptions pertaining to the structure of the model (e.g. factors included, relationships and distributions) and the data
7. A list of parameter values that will be used for a base-case analysis, and a list of the ranges in those values that represent appropriate confidence limits for use in sensitivity analysis

Clinical and cost effectiveness of 'statins for the prevention of coronary events'

Pfizer

2004

Y The economic model is designed to evaluate the costeffectiveness of atorvastatin compared with placebo and simvastatin in the primary and secondary prevention of (a) CHD and (b) CHD plus stroke

N

Y Yes: different baseline cholesterol levels; analysis of different subgroups: diabetics, women. Cost-effectiveness is measured in terms of cost per QALY gained. Information is provided for atorvastatin versus placebo (and simvastatin)
Y A Markov modelling approach is used with each Markov cycle lasting for I year. The annual likelihood of a patient experiencing a fatal or non-fatal coronary event is determined by one of two risk engines: the Framingham risk prediction model and UKPDS Risk Engine. The Framingham risk algorithm was chosen for non-diabetics on the basis that it is the most widely accepted predictive tool in UK clinical practice
Comparator: both placebo and simvastatin are used as comparators. Simvastatin was selected on the basis that it is the most widely prescribed statin in England and Wales
Time-frame: base case - lifetime. The model is flexible: patients can enter the model at any age between 35 and 99 years. If, for example, a men enters the model at the age of 50 , he can potentially receive a maximum of 49 years of statin (or placebo) therapy, unless death occurs before the end of the model timehorizon
Perspective: UK NHS
Y The majority of data sources were identified, although it was not always clear exactly how data are derived. For instance, the distribution of CHD events: primary and subsequent
N Very limited discussion of the strengths and weaknesses of sources was given
Y The key assumptions relating to the structure of the model were described, although limited explanation of reasons for selection of assumptions was given in some cases

N Base-case parameters were listed; however, parameters for sensitivity analysis were not presented in a readily accessible fashion in the report. No justification is given for the distributions selected for sensitivity analysis

TABLE I44 Pfizer: atorvastatin (cont'd)

8. The results derived from applying the model for the base case
9. The results of the sensitivity analysis: unidimensional, best/worst case, multidimensional (Monte Carlo/parametric), threshold
?However, it would have been useful if a CHD-only scenario had been presented Very limited univariate sensitivity was undertaken. The results of the PSA in Appendix E are for atorvastatin vs simvastatin only and are the same as the results presented in Table I7 of the main report. The CEACs presented are for atorvastatin vs simvastatin only. No discussion of PSA results was given
might affect the results
II. A description of the validation undertaken, including concurrence of experts, internal consistency, external consistency and predictive validity
I2. A description of the setting to which the results can be applied
I3. A description of research in progress that could yield new data that could alter the results of the analysis

for the base case
9. The results of the sensitivity analysis: unidimensional, best/worst case, multidimensional (Monte Carlo/parametric), threshold
10. A discussion of how the modelling assumptions N might affect the results
II. A description of the validation undertaken, including concurrence of experts, internal consistency, external consistency and predictive validity
12. A description of the setting to which the could yield new data that could alter the results of the analysis
explanation was offered for differences between results in some cases N N

However, it would have been useful if a CHD-only scenario had been presented

Very imited univariate sensitivity was undertaken. The results of report. The CEACs presented are for atorvastatin vs simvastatin only. No discussion of PSA results was given

Y Limited validation was undertaken. The results of the costeffectiveness analysis were compared with previously published results of other cost-effectiveness evaluations. A limited N

TABLE 145 AstraZeneca: rosuvastatin

Reference ID				
Title		Cost effectiveness of primary and secondary prevention of CHD, a model based on the STELLAR trial		
Authors		Davies A, Hutton J (for AstraZeneca)		
Year				
Modelling assessments should include:			\quad	2004
:---	:---			

TABLE 145 AstraZeneca: rosuvastatin (cont'd)
6. A list of assumptions pertaining to the structure of the model (e.g. factors included, relationships and distributions) and the data
7. A list of parameter values that will be used for a base-case analysis, and a list of the ranges in those values that represent appropriate confidence limits for use in sensitivity analysis
8. The results derived from applying the model for the base case
9. The results of the sensitivity analyses: unidimensional, best/worst case, multidimensional (Monte Carlo/parametric), threshold
10. A discussion of how the modelling assumptions might affect the results, indicating both the direction of the bias and the approximate magnitude of the effect
II. A description of the validation undertaken, including concurrence of experts, internal consistency, external consistency and predictive validity
12. A description of the settings to which the results of the analysis can be applied and a list of factors that could limit the applicability of the results
13. A description of research in progress that could yield new data that could alter the results of the analysis

N List of assumptions = No, other than assumes cholesterol reduction from rosuvastatin will produce a reduction in events as is evidence based in the other statins. Discusses the uncertainty in how chemically induced reduction in cholesterol translates to actual reductions in cholesterol-related CHD risks over medium and longer terms; hence, only does one secondary event and does not apply the Framingham equation in perpetuity
Y List of distributions used in probabilistic $=$ Yes
Y List of factors included $=$ Yes
Costs associated with adverse events excluded as there are no significant differences in adverse event rates among the statins
Patients' non-compliance, discontinuation and failure to titrate in accordance with guidelines not accounted for in the simulation

Y List of parameter values that will be used for a base case $=$ Yes
$\mathrm{Y} \quad$ List of ranges that represent Cl used in sensitivity analysis $=\mathrm{Yes}$

Y Results derived from base case $=$ Yes

Results of sensitivity analysis:
Y Unidimensional = Yes
N Best/Worst case $=\mathrm{No}$
Y Multidimensional (Monte Carlo/parametric) $=$ Yes
Y Threshold $=$ willingness to pay $=$ Yes
Discussion of how assumptions might affect the results Direction of bias =
Magnitude of effect =
Some: (I) excluding monitoring biases model results to less efficacious drugs as titration monitoring costs not included.
(2) Using higher generic simvastatin penetration reduced the difference in cost per patient to target between rosuvastatin and simvastatin. (3) Using different starting doses for the drugs changed the order of cost-effectiveness. (4) Using the higher baseline population cholesterol level increased the cost per patient to target, but the order remained the same. (5) Reducing the baseline population cholesterol levels decreased the estimated cost per patient to target and changed the order to simvastatin, fluvastatin, rosuvastatin, atorvastatin and pravastatin. (6) Lowering the cholesterol targets: the more efficacious (rosuvastatin, atorvastatin, simvastatin) statins were more effective at getting patients to target, therefore average cost-effectiveness ratios (ACERs) were much lower compared with fluvastatin and pravastatin

N Validation undertaken $=$ No
N Concurrence of experts $=\mathrm{No}$
N Internal consistency $=$ not discussed
N External consistency $=$ not discussed
$\mathrm{N} \quad$ Predictive validity $=$ not discussed
N Description of settings to which results can be applied $=$ not discussed
N List of factors that could limit the applicability of results $=$ not discussed

N Not discussed, other than the costing and penetration for generic simvastatin

TABLE I46 Novartis: fluvastatin

Reference ID

Title
Authors
Year
Modelling assessments should include:
I. A statement of the problem
2. A discussion of the need for modelling vs alternative methodologies
3. A description of the relevant factors and outcomes
4. A description of the model, including reasons for this type of model and a specification of the scope including time-frame, perspective, comparators and setting
5. A description of data sources (including subjective estimates), with a description of the strengths and weaknesses of each source, with reference to a specific classification or hierarchy of evidence
6. A list of assumptions pertaining to: the structure of the model (e.g. factors included, relationships and distributions) and the data
7. A list of parameter values that will be used for a base-case analysis, and a list of the ranges in those values that represent appropriate confidence limits for use in a sensitivity analysis
8. The results derived from applying the model for the base case
9. The results of the sensitivity analyses: unidimensional, best/worst case, multidimensional (Monte Carlo/parametric), threshold
10. A discussion of how the modelling assumptions might affect the results, indicating both the direction of the bias and the approximate magnitude of the effect
II. A description of the validation undertaken, including concurrence of experts, internal consistency, external consistency and predictive validity
12. A description of the settings to which the results of the analysis can be applied and a list of factors that could limit the applicability of the results
13. A description of research in progress that could yield new data that could alter the results of the analysis

Cost-effectiveness of fluvastatin

Novartis

2004
Y The economic model is designed to evaluate the cost-effectiveness of fluvastatin for patients following successful PCl
N None given

Y The two arms are described: the treatment group was given dietary and lifestyle counselling and treated with fluvastatin $(40 \mathrm{mg})$ twice daily commencing immediately after first PCl , and the control group was given dietary and lifestyle counselling only. Outcomes are those seen in the LIPS trial on which the model is based. No other details given
Y The model is well described. No reason is given for choosing a Markov approach. The time-frame, perspective, comparators and setting are specified

Y Effectiveness data are based on the only trial available so far to determine the effect of statin treatment on clinical outcomes following a successful PCI. The transition probabilities in the model are based on the individual components of a composite end-point in the trial. These are not published and were estimated by Novartis from actual trial data. It is therefore not possible to verify the accuracy of the state transition probabilities. Sources of quality of life and cost data are well documented. Assumptions made regarding data are likely to have a conservative effect on the results
Y No explicit assumptions pertaining to the structure of the model are given. Assumptions regarding the data are described

Y

Y Costs and health gains only

Y All included

Y Modelling assumptions are discussed. The effect is likely to underestimate the effectiveness of fluvastatin; however, this is not quantified

N No validation was undertaken

Y Setting described. Applicability of non-UK health utilities discussed

N No research in progress described

TABLE 147 Bristol-Myers Squibb: pravastatin

Reference ID

Title

Authors
Year
Modelling assessments should include:
I. A statement of the problem
2. A discussion of the need for modelling vs alternative methodologies
3. A description of the relevant factors and outcomes
4. A description of the model, including reasons for this type of model and a specification of the scope including time-frame, perspective, comparators and setting. Note: $n=$ number of health states within submodel
5. A description of data sources (including subjective estimates), with a description of the strengths and weaknesses of each source, with reference to a specific classification or hierarchy of evidence
6. A list of assumptions pertaining to the structure of the model (e.g. factors included, relationships and distributions) and the data
7. A list of parameter values that will be used for a base-case analysis, and a list of the ranges in those values that represent appropriate confidence limits for use in a sensitivity analysis
8. The results derived from applying the model for the base case
9. The results of the sensitivity analyses: unidimensional, best/worst case, multidimensional (Monte Carlo/parametric), threshold
10. A discussion of how the modelling assumptions might affect the results, indicating both the direction of the bias and the approximate magnitude of the effect
II. A description of the validation undertaken, including concurrence of experts, internal consistency, external consistency and predictive validity
12. A description of the settings to which the results of the analysis can be applied and a list of factors that could limit the applicability of the results
13. A description of research in progress that could yield new data that could alter the results of the analysis

Cost-effectiveness of pravastatin

Bristol-Myers Squibb

2004

Y The economic model is designed to evaluate the cost-effectiveness of pravastatin within a range of patient characteristics in primary and secondary prevention

N None given

Y The setting is described as far as treatment arms, costs and effectiveness and economic perspective. Outcomes relate to those evaluated in the RCTs on which the model is based
Y The model is reasonably well described. No reason is given for choosing a Markov approach. The time-frame, perspective, comparators and setting are specified

Y/N Effectiveness data are based WOSCOPS (primary) and LIPID (secondary). Brief reasons for including these RCTs and excluding others are given. A description of strengths and weaknesses is not given

N No assumptions are discussed

N No parameter values are listed

Y A full description of the costs and health gains is given for a range of risk parameters, grouped by gender

Y Extensive one-way sensitivity analysis is reported, together with a best/worse case scenario. No PSA is undertaken

N No discussion of how assumptions may affect the results

N No validation was undertaken

Y A limited discussion regarding the applicability is given

N No research in progress described

Appendix 29

Efficacy data from AstraZeneca submission

TABLE I48 Efficacy data used in the AstraZeneca submission cost-effectiveness model

	Total cholesterol					HDL					Triglycerides				
	Base lipid	\% Change	$\underset{\text { (log-log }}{\text { SE }}$ scale)	Lower confidence limit	Upper confidence limit	Base lipid	\% Change	$\begin{gathered} \text { SE } \\ \text { (log-log } \\ \text { scale) } \end{gathered}$	Lower confidence limit	Upper confidence limit	Base lipid	\% Change	$\underset{\text { (log-log }}{\text { SE }}$ scale)	Lower confidence limit	Upper confidence limit
R 10	275	32.9\%	7.75\%	27.42\%	38.48\%	51	7.7\%	18.91\%	2.44\%	17.03\%	179	19.8\%	9.29\%	14.33\%	25.93\%
R 20	274	37.6\%	7.96\%	31.88\%	43.30\%	51	9.5\%	18.36\%	3.43\%	19.35\%	180	23.7\%	9.29\%	17.78\%	30.12\%
R 40	280	40.2\%	8.00\%	34.44\%	45.88\%	50	9.6\%	18.52\%	3.44\%	19.59\%	183	26.1\%	9.26\%	19.98\%	32.62\%
A 10	274	27.1\%	7.59\%	21.98\%	32.46\%	50	5.7\%	20.08\%	1.43\%	14.48\%	174	20.0\%	9.42\%	14.43\%	26.23\%
A 20	275	31.8\%	7.71\%	26.38\%	37.34\%	50	4.8\%	20.74\%	1.05\%	13.24\%	176	22.6\%	9.38\%	16.74\%	29.01\%
A 40	275	35.8\%	7.86\%	30.17\%	41.46\%	50	4.4\%	21.10\%	0.89\%	12.68\%	178	26.8\%	9.41\%	20.53\%	33.45\%
A 80	279	38.9\%	7.95\%	33.18\%	44.58\%	51	2.1\%	24.75\%	0.19\%	9.27\%	181	28.2\%	9.37\%	21.85\%	34.87\%
S 10	275	20.3\%	7.49\%	15.77\%	25.24\%	51	5.3\%	20.15\%	1.28\%	13.82\%	174	11.9\%	9.69\%	7.62\%	17.20\%
S 20	276	25.7\%	7.53\%	20.70\%	30.97\%	50	6.0\%	19.90\%	1.57\%	14.88\%	182	17.6\%	9.23\%	12.47\%	
S 40	272	27.9\%	7.64\%	22.70\%	33.32\%	51	5.2\%	20.22\%	1.23\%	13.68\%	172	14.8\%	9.58\%	9.98\%	20.52\%
S 80	277	32.9\%	7.72\%	27.44\%	38.46\%	51	6.8\%	19.28\%	1.98\%	15.85\%	181	18.2\%	9.25\%	12.97\%	24.14\%
P 20	276	14.7\%	7.56\%	10.82\%	19.14\%	50	3.2\%	22.60\%	0.47\%	10.97\%	187	8.2\%	9.78\%	4.83\%	12.69\%
P 40	271	17.2\%	7.57\%	12.98\%	21.93\%	49	4.4\%	21.32\%	0.87\%	12.79\%	179	7.7\%	10.09\%	4.39\%	12.20\%
P 80	276	21.5\%	7.48\%	16.87\%	26.52\%	50	5.6\%	20.14\%	1.39\%	14.34\%	181	13.2\%	9.41\%	8.76\%	18.57\%
F 20	275	16.4\%	7.53\%	12.30\%	21.02\%	51	4.6\%	20.71\%	0.98\%	12.85\%	179	5.5\%	10.68\%	2.80\%	9.51\%
F 40	275	19.9\%	7.49\%	15.41\%	24.81\%	51	5.2\%	20.22\%	1.23\%	13.68\%	179	8.4\%	9.96\%	4.92\%	13.04\%
F 80	275	21.4\%	7.50\%	16.77\%	26.42\%	51	7.5\%	18.98\%	2.33\%	16.77\%	179	14.9\%	9.38\%	10.15\%	20.52\%

TABLE I49 Efficacy data and distributions assigned in the AstraZeneca cost-effectiveness model

Drug	Dose (mg)	Mean (SD) \% reduction in TC	Distribution for TC reduction	Mean (SD) \% reduction in LDL-C	Distribution for LDL-C reduction	n
Rosuvastatin	10	33 (10)	Beta (1126, 2297)	46 (13)	Beta (1039, 1226)	156
	20	38 (II)	Beta (1261, 2095)	52 (14)	Beta (1122, 1021)	160
	40	40 (II)	Beta (1359, 2020)	55 (13)	Beta (1181, 968)	157
Atorvastatin	10	27 (8)	Beta (1237, 3324)	37 (11)	Beta (1180, 2033)	158
	20	32 (II)	Beta (930, 1999)	43 (14)	Beta (782, 1054)	154
	40	36 (10)	Beta (1243, 2237)	48 (13)	Beta (1114, 1217)	156
	80	39 (11)	Beta (1189, 1874)	51 (14)	Beta (1082, 1037)	165
Fluvastatin	20	13 (6)	Beta $(49,327)$	17 (8)	Beta (509,1288)	12
	40	19 (9)	Beta (43, 184)	23 (10)	Beta (1126, 2094)	12
	80	35 (13)	Beta (222, 632)	26 (9)	Beta (753, 1188)	40
Pravastatin	10	15 (8)	Beta (431, 2501)	20 (II)	Beta (1319, 1562)	160
	20	17 (9)	Beta (507, 2453)	24 (11)	Beta (405, 1608)	164
	40	22 (9)	Beta (687, 2508)	30 (13)	Beta (578, 1801)	161
Simvastatin	10	20 (10)	Beta $(524,2054)$	28 (14)	Beta (635, 1504)	165
	20	26 (9)	Beta (981, 2842)	35 (11)	Beta (392, 1415)	162
	40	28 (II)	Beta (722, 1868)	39 (14)	Beta (876, 244I)	158
	80	33 (9)	Beta (1505, 3067)	46 (12)	Beta (1053, 2504)	163

Appendix 30

Cost tables from AstraZeneca submission

TABLE 150 Resource use for CHD^{a} used in the AstraZeneca cost-effectiveness model

		Distribution	Alpha	Beta	Probability
	Acute $\mathrm{PCI}(\mathrm{ACS})$	Beta	53	980	0.05
	Acute PCI (stable angina) ${ }^{\text {b }}$	Beta	100.6	1022.4	0.01
	Repeat revascularisation	Beta	8	157	0.04
	Repeat revascularisation PCI	Beta		0.00	
	Death (revascularisation PCl$)$	Beta	0		0.00
	MI (revascularisation PCI)	Beta	1	7	0.12
	Death (revascularisation CABG)	Beta		0.00	
	MI (revascularisation CABG)	Beta		0.00	
	Death (no repeat revascularisation)	Beta	5	152	0.02
	MI (no repeat revascularisation)	Beta	5	147	0.04
	CABG (ACS)	Beta	47	933	0.04
	CABG (stable angina) ${ }^{\text {b }}$	Beta	9.4	970.6	0.01
	Death (CABG)	Beta	5	42	0.16
	MI (CABG)	Beta	3	39	0.16
	6-month revascularisation	Beta	48	885	0.05
	6-month revascularisation PCI	Beta	23	25	0.64
	Death (6-month revascularisation PCI$)$	Beta	2	21	0.04
	MI (6-month revascularisation PCI)	Beta	2	19	0.03
	Death (6-month revascularisation CABG)	Beta	0		0.00
	MI (6-month revascularisation CABG)	Beta	4	21	0.16
	Death (no revascularisation)	Beta	68	817	0.08
	MI (no revascularisation)	Beta	40	777	0.04
Angiography	PCI in acute period	Beta	51	2	0.98
	CABG in acute period	Beta	38	9	0.81
	No initial revascularisation	Beta	193	740	0.23
CCU stay	PCl in acute period	Beta	20	33	0.39
	CABG in acute period	Beta	28	18	0.60
	No initial revascularisation	Beta	375	543	0.41
Length of inpatient stay	PCI in acute period	Beta	10.3	8.04	9.11
	CABG in acute period	Beta	15.28	12.32	39.18
	No initial revascularisation	Beta	5.45	4.78	4.82
Length of CCU stay	PCl in acute period	Beta	3.7	4.12	0.81
	CABG in acute period	Beta	4.71	6.61	0.51
	No initial revascularisation	Beta	2.11	1.95	3.05
${ }^{a}$ Extracts from Palmer et al. (2002). ${ }^{214}$ ${ }^{b}$ Assumed one-fifth of unstable angina intervention rate. CCU, coronary care unit.					

TABLE I5I Unit costs used in the AstraZeneca cost-effectiveness model

Procedure	Unit cost	Source
PCI	1410.04	Palmer 2114
CABG	4902.22	Palmer 214
Angiogram	748.25	Palmer 214
Repeat PCI	2976	Palmer 214
Carotid endarterectomy	2541	NHS reference costs, 2003403
		(Q05: Extracranial or upper limb arterial surgery)
Hospital stay/visit		
Non-cardiac	244.00	Palmer 214
Cardiac	157.47	Palmer 214
CCU	459.04	Palmer 214
Day-case non-cardiac	182.00	Palmer 214
Day-case cardiac	108.58	Palmer 214
Outpatient	59.70	Palmer 214
Heart failure clinic	50.00	Stewarrt 404
TIA	1015.00	NHS reference costs, 2003 (without complications)

TABLE 152 Stroke costs used in the AstraZeneca cost-effectiveness model

Cost of stroke		Distribution	Mean cost	SD	N	Source
	Mild	Gamma	5,099	2505	83	Youmananan
	Moderate	Gamma	4,816	2231	114	Youmanana
	Severe	Gamma	10,555	7246	210	Youman 202
Cost of TIA		Distribution	Mean	Alpha	Beta	
		Beta	11%	6.28	52	Mant 215
	\% Endarterectomy	Beta	14%	35	164	Mant 215

TABLE 153 Other CVD costs used in the AstraZeneca cost-effectiveness model

Cost of CHF		Distribution	Mean	SD		Source
	Days of hospitalisation Proportion of other CVD that is CHF	Gamma None	$\begin{gathered} 12 \\ 50 \% \end{gathered}$	12		Stewart ${ }^{404}$ Assumption
Cost of PVD		Distribution	Mean	SD	N	
	Emergency aortic surgery	Gamma	5366	2303	171	NHS
	Elective abdominal vascular surgery	Gamma	2541	867	4098	reference
	Lower limb arterial surgery	Gamma	3391	2801	4182	costs, 2003 ${ }^{403}$
	Bypass to tibial artery	Gamma	2085	874	472	
	Therapeutic endovascular procedures	Gamma	1513	859	10633	
	Diagnostic radiology with complications	Gamma	1453	707	1862	
	Diagnostic radiology without complications	Gamma	1102	661	9646	
	Amputations	Gamma	6152	2405	2341	
	Foot procedure for diabetes or arterial disease	Gamma	2065	930	941	
	PVD >69 years or co-morbidity	Gamma	1756	1000	2932	
	PVD <70 years without co-morbidity	Gamma	1309	692	1752	

TABLE 154 Quarterly CVD event follow up resource use, used in the AstraZeneca cost-effectiveness model

	Length of stay			No. of patients using resource			
	Distribution	Mean	SD	Distribution	Alpha	Beta	N
Angina							
Cardiac day case	Gamma	8.87	9.58	Beta	1	251	252
Cardiac non-CCU	Gamma	6.82	6.82	Beta	76	176	252
Cardiac CCU	Gamma	3.44	2.5	Beta	17	235	252
Cardiac outpatient visits				Beta	115	137	252
Non-cardiac day case	Gamma	10.39	17.81	Beta	1	251	252
Non-cardiac non CCU	Gamma	4.86	4.91	Beta	67	185	252
Non-cardiac outpatient visits				Beta	138	114	252
Angiography				Beta	20	232	252
PTCA				Beta	2	250	252
CABG				Beta	7	245	252
$($ Total no. of patient days $=113,222$)				Source: Palme			
MI							
Cardiac non-CCU	Gamma	10.8	7.82	Beta	5	22	27
Cardiac CCU	Gamma	8.8	6.44	Beta	10	17	27
Cardiac outpatient visits	Gamma	3.43	3.08	Beta	21	6	27
Non-cardiac non-CCU	Gamma	12	13.6	Beta	7	20	27
Non-cardiac outpatient visits	Gamma	3.27	3.45	Beta	15	12	27
Angiography				Beta	5	22	27
PTCA				Beta	3	24	27
CABG				Beta	1	26	27
(Total no. of patient days $=7248$)				Source: Palme			
Post-MI							
Cardiac non-CCU	Gamma	5.95	6.05	Beta	5	10	15
Cardiac CCU	Gamma	2	2	Beta	I	14	15
Cardiac outpatient visits	Gamma	2.88	1.73	Beta	8	7	15
Non-cardiac non-CCU	Gamma	7	7.94	Beta	3	12	15
Non-cardiac outpatient visits (Total no. of patient days = 2993)	Gamma	2.33	1.32	Beta Source: Palme	9	6	15
Stroke							
Proportion discharged home							
Mild							68
Moderate				Beta	207	9	99
Severe				Beta Source: Youm	313	15	196
CHF				Clinic visits pe	2 month		
Clinic visits (per annum)				Beta	6	6	NA
Hospital days (per annum)	Gamma	12	12	Source: Stewa			
PVD							
Annual follow-up cost	Gamma	1000	500	Source: Jones ${ }^{4}$			

Appendix 31

Summary of key modelling assumptions used in the ScHARR cost-effectiveness model

All assumptions used in the model have been discussed and validated using expert opinion (Yeo W, Royal Hallamshire Hospital, Sheffield: personal communications, October 2004). The impact of changing the assumptions has been explored before making final decisions. Any changes in the assumptions that have a significant impact on the results have been presented in univariate sensitivity analyses.

The following headings refer to subsections in Chapter 4, in the section 'ScHARR economic analysis' (p. 83).

Detailed methodology

Al. Base case: it is assumed that statin treatment does not affect probabilities of stroke or TIA events. This assumption is required to meet the criteria laid down in the research question. Further analyses are conducted (scenarios 1 and 2) to explore the affect of amending this assumption.

Structure of the Markov model

A2. It is assumed that all patients will die if they reach the age of 100 years. As patients in the model are at risk of a CHD event, which increases with age, the majority of patients will die before this age. No sensitivity analysis is conducted to examine the effect of changing this assumption.

Treatment/comparator

A3. It is assumed that all patients are given standard advice regarding dietary control and lifestyle advice and that an equal proportion of patients in each cohort will receive medications such as aspirin, hypertensive treatments or alternative lipid-lowering treatments. Exploring the impact of changing this assumption would require a different methodology and detailed evidence which is beyond the remit of the current evaluation. It is likely that the majority of costs and benefits associated with this assumption will cancel out and no sensitivity analysis is conducted to explore the impact of changing this assumption.

Event rates

A4. In the absence of incidence rates for primary CHD events in older patients, it is assumed that
rates increase in proportion to those observed in younger age bands. In addition, the reported rates for first ever stroke are assumed to represent both fatal and non-fatal events, and are apportioned using the reported ratio across all ages.

Holding incidence rates constant from the age of 74 years had little impact on the results, and sensitivity analyses were conducted to explore the impact of changing the ratio across health states.

Annual risk levels modelled

A5. It is assumed that the annual risk of a CHD event increases linearly with age. The ratio between CHD risk and CVD risk changes with age, and uncertainties in the assumption and the ratio are explored in sensitivity analyses.

Secondary event rates

A6. In the absence of more detailed evidence, it was assumed that the regression results for probabilities of subsequent events after a 1-year period free of an event could be used to represent all subsequent events irrespective of the time interval or number of previous events. This is a conservative assumption as it implies that there is no additive effect from previous events. Uncertainty is explored in the probabilistic analyses.

A7. Owing to a lack of detailed evidence to provide probabilities of subsequent events following onset of stable angina or TIA that vary with age, it is assumed that the transitions from both the TIA and stable angina health states could be modified using the respective primary incidence rates.

A8. Owing to a lack of evidence, the probability of a fatal CVD event for patients with a history of stable angina is not modelled.

A9. Owing to a lack of published evidence, it is assumed that the probability of a non-fatal MI following a non-fatal stroke is equivalent to the probability of a non-fatal MI for patients with a history of TIA. Again, uncertainty in this assumption is explored in the probabilistic analyses.

A10. It is assumed that the probabilities of vascular death for patients with a history of stroke could be apportioned equally between CHD and CVD fatal events. This is a conservative assumption as the benefits of reduced fatal CHD events are smaller than the benefits associated with reduced fatal CVD events. Again, uncertainty in this assumption is explored in the probabilistic analyses.

Costs

A11. Assumptions on health state costs are based on published evidence where available and expert opinion (Yeo W: personal communication). Uncertainty in costs is explored in the probabilistic analyses and univariate analyses are performed to explore the impact of changing cost parameters modelled.

A12. It is assumed that statins have a good safety profile and costs associated with possible adverse events are not modelled.

Utility

A linear decrease in utility is assumed as age increases. This assumption is based on a patientlevel analysis of the Kind data. ${ }^{241}$

Compliance

The base case assumes that the relative risks derived from the ITT analyses can be generalised to patients taking statin treatment in general clinical practice. This assumption is based on the ITT analysis and the evidence that suggests that after the first few years compliance and continuance stabilise and remain fairly constant in the long term. Uncertainty in this assumption is explored in a series of evaluations that examine the impact of reducing the relative risks applied and the associated statin costs.

Appendix 32

Results of the regression analyses used in the ScHARR cost-effectiveness model

TABLE 155 Results of linear regression for utility by age modelled in the ScHARR cost-effectiveness model ${ }^{241}$

(a) Summary output for linear regression								
Regression statistics								
Multiple R R^{2} Adjusted R^{2} Standard error Observations	$\begin{gathered} 0.2005 \\ 0.0402 \\ 0.0397 \\ 0.2576 \\ 1979 \end{gathered}$							
(b) ANOVA								
	df	SS	MS	F	nificanc			
Regression Residual Total	$\begin{array}{r} 1 \\ 1977 \\ 1978 \end{array}$	$\begin{array}{r} 5.50 \\ 131.21 \\ 136.71 \end{array}$	$\begin{aligned} & 5.497 \\ & 0.066 \end{aligned}$	82.822	2.1E-19			
Coefficients		SE	t statistic	p-Value	$\begin{aligned} & \text { Lower } \\ & \text { 95\% } \end{aligned}$	Upper 95\%	$\begin{aligned} & \text { Lower } \\ & \text { 95.0\% } \end{aligned}$	$\begin{aligned} & \text { Upper } \\ & 95.0 \% \end{aligned}$
Intercept	1.060	0.029	36.605	2E-224	1.003	1.117	1.003	1.118
x	-0.004	0.000	-9.1007	2.13E-19	-0.005	-0.003	-0.005	-0.003

TABLE 156 Parameters from regression analysis used to calculate the CVD event risk corresponding to the CHD event risk by age and gender ${ }^{226}$ used in the ScHARR cost-effectiveness model

	Men		Women	
	35-54 years	55-74 years	35-54 years	55-74 years
	Mean (95\% CI)	Mean (95\% CI)	Mean (95\% CI)	Mean (95\% CI)
Slope	1.25 (1.21 to 1.29)	1.27 (1.22 to I.32)	1.27 (1.22 to 1.32)	1.44 (1.37 to 1.51)
Intercept	0.84 (0.45 to I.23)	4.92 (3.82 to 6.02)	1.87 (1.58 to 2.16)	3.87 (3.09 to 4.65)

Appendix 33
 Diabetes data used in the ScHARR cost-effectiveness model

TABLE 157 Health state utilities used in the diabetic analysis of the ScHARR cost-effectiveness model ${ }^{204}$

	Base case	Diabetic
Stable angina	0.808	0.724^{a}
Unstable angina	0.770	0.690^{a}
Ist year MI	0.760	0.681
Post-MI	0.760	0.681
TIA	1.000	1.000
Ist stroke year I	0.629	0.526
Post Ist stroke	0.629	0.526

${ }^{a}$ Adjusted using first year diabetic MI utility and basecase utilities for stable and unstable angina, respectively.

TABLE I58 Health state costs used in the diabetic analysis of the ScHARR cost-effectiveness model ${ }^{200}$

	Base case	Diabetic
Stable angina	$£ \mid 7 I$	$£ 464^{a}$
Post-stable angina	$£ \mid 7 I$	$£ 464^{a}$
Unstable angina	$£ 440$	$£ 464^{a}$
Post-unstable angina	$£ I 7 I$	$£ 464^{a}$
Ist year costs MI	$£ 4,448$	$£ 5, I 04$
Ongoing costs MI	$£ I 7 I$	$£ 464$
Fatal MI	$£ I, I 66$	$£ I, 567$
TIA	$£ I, 064$	$£ I, 46 I$
Post-TIA (ongoing costs)	$£ 264$	$£ 362^{b}$
Ist year costs stroke	$£ 8,046$	$£ I I, 047^{b}$
Ongoing costs stroke	$£ 2, I 63$	$£ 2,970$
Fatal stroke	$£ 7,04 I$	$£ 9,667^{b}$

${ }^{a}$ Assumed equal to ongoing costs for MI.
${ }^{b}$ Costs adjusted using ongoing costs for stroke and base-case costs.

Appendix 34

Results of univariate sensitivity analyses explored in the ScHARR cost-effectiveness model

(a) Discount rates

The new NICE guidelines ${ }^{406}$ suggest that future analyses are to be presented using discounting rates of 3.5% for both costs and benefits. To enable comparison with future evaluations of health care interventions, the CHD base case is also presented using the proposed discounting rates (Table 159).

When using these values, secondary ICERs range from $£ 16,000$ for women aged 65 years to $£ 24,000$ per QALY for women aged 45 years. In primary prevention the ICERs estimated range from $£ 19,000$ for men aged 45 years at 3% annual risk of a CHD event to $£ 152,000$ per QALY for women aged 75 years at 0.5% annual risk.

(b) Relative risks

To explore the sensitivity of the results to changes in the assumptions on relative risk from statin treatment, 1000 samples were generated allowing the relative risk values of statin treatment to vary while holding all other parameters constant at their mean value. As can be seen in Table 160, the model is robust to changes in the values used for the relative risk of statin treatment; hence, only a selection of the results by age and risk level is presented.

(c) Health state costs

Health state costs were adjusted by plus or minus 20\% (Tables 161 and 162). Increasing or decreasing health state cost has minimal impact on the results. In secondary prevention the ICERS are relatively unchanged. In primary prevention analyses the costs per QALY for men aged 85 years at 0.5% risk range between approximately $£ 14,900$ and $£ 74,100$ relative to the base case of $£ 14,900$ and $£ 74,200$, respectively. For women the corresponding values are $£ 20,300$ and $£ 84,200$ compared with the base case of $£ 20,300$ and £84,300.

(d) Statin prescribing costs

A reduction of 20% and 40% in the average statin treatment costs was assessed. A full discussion on the rationale for choosing a 20% and 40% price reduction is presented in the section 'Cost of statins' (p. 94).

As can be seen in Table 163, decreasing the prices of statins by 20% and 40% reduced the highest cost per QALY in secondary prevention from $£ 16,000$ in the base case to $£ 13,000$ and $£ 10,000$, respectively.

Reducing statin costs by 40% and 20% for primary prevention reduces the highest ICERs estimated,

TABLE I59 Discounted cost per QALY using 3.5\% discounting for both costs and benefits

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£22,606	£19,390	£20,609	£22,585	£25,928	£32,165	£46,485
	55	£18,824	£22,86 1	£24,675	£27,492	£32,131	£40,647	£60,107
	65	£16,856	£26,697	£29,581	¢ 33,881	£40,791	£53,367	¢82,539
	75	£ 17,801	£36,826	£41,501	£48,354	¢59,223	¢78,819	¢123,983
	85	£19,41]	£46,039	¢52,139	¢60,714	¢73,578	£94,902	f136,859
Women	45	£23,707	£29,647	£30,788	£33,071	£37,501	£46,832	£72,409
	55	£19,539	£30,428	£32,106	£35,116	£40,62	£51,816	¢81,791
	65	£15,916	£32,130	£35,22 1	£40,029	£48,099	£63,665	£103,942
	75	£16,390	£46,256	£51,634	£59,629	¢72,493	£96,103	f152,222
	85	£17,800	£61,344	£68,134	¢77,443	£90,896	¢111,891	¢148,957

TABLE 160 Discounted cost per QALY using 1000 Monte Carlo samples for each evaluation on the relative risk from statin treatment (holding all other parameters constant at their mean value)

	Age (years)	Secondary		Primary prevention 1.5\% annual CHD risk	
		SAI	Base case	SAI	Base case
Men	45	¢10,203	£10,239	¢12,225	£12,209
	55	£9,999	¢10,035	¢17,345	¢17,243
	65	£10,485	£10,525	£25,266	£25,133
	75	¢12,692	£12,744	¢41,607	£41,489
	85	¢15,590	¢15,657	¢58, 100	£57,957
Women	45	¢10,029	¢10,067	¢16,714	£16,571
	55	¢9,767	¢9,804	£20,730	£20,598
	65	£9,429	£9,466	£28,309	£28,246
	75	¢11,232	¢11,280	¢48,601	£48,526
	85	¢13,953	¢14,017	¢69,244	£69,147

TABLE I6I Plus 20\% on all health state costs

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢10,192	¢9,469	¢9,951	¢10,770	¢12,187	¢14,846	¢ 20,869
	55	£9,980	£12,644	£13,526	£14,924	¢17,247	£21,514	£ 31,140
	65	¢10,477	£16,800	¢18,500	£21,043	£25,131	£32,540	£49,490
	75	¢12,688	£26,184	£29,380	£ 34,062	£41,467	¢54,729	¢84,813
	85	£15,507	£ 36,668	¢41,395	£48,011	¢57,872	¢74,043	¢105,219
Women	45	¢10,047	£13,802	¢14,113	¢14,912	¢16,608	£20,312	£30,507
	55	¢9,795	£16,04 I	¢16,741	¢18,098	£20,667	£25,964	£40,096
	65	£9,463	£19,433	£21,136	£23,816	£28,339	£37,057	£59,35
	75	¢11,273	£ 31,698	£35,177	¢40,353	¢48,662	¢63,800	¢99,081
	85	£13,927	¢47,545	¢52,567	¢59,424	¢69,264	¢84,45 I	£110,739

TABLE 162 Minus 20\% on all health state costs

	Age (years)	Secondary	Annual CHD risk						
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%	
Men	45	£ 10,286	£9,467	¢9,966	¢10,80)	f\|2,23		¢14,899	£20,92 I
	55	¢10,090	¢12,577	£ 13,481	¢14,899	¢17,239	£21,515	£31,132	
	65	¢10,573	£16,756	£18,475	£21,035	£25,134	£32,545	¢49,471	
	75	¢12,799	£26,196	£29,407	£ 34,102	£41,511	¢54,764	¢84,799	
	85	£15,807	£ 36,855	¢41,584	£48,196	£58,042	¢74,177	£105,267	
Women	45	¢10,086	¢13,612	¢13,967	¢14,805	¢16,534	£20,264	¢30,469	
	55	¢9,813	£15,773	¢16,523	¢17,924	£20,529	£25,852	£39,985	
	65	¢9,470	¢19,145	£20,887	£23,601	£28,152	£36,887	£59,166	
	75	¢11,287	£31,333	£34,847	¢40,055	¢48,389	¢63,540	¢98,801	
	85	¢14,107	¢47,227	¢52,279	¢59,164	¢69,029	¢84,235	fl10,531	

with cost per QALY estimated to be $£ 72,000$ and $£ 92,000$ for women aged 85 years at 0.5% annual risk of a CHD event, in comparison to the basecase estimate of $£ 111,000$ (Tables 164-66).

If the ICERs estimated are compared with those estimated when reducing costs associated with the different health states, it is clear that the cost of statin treatment has a far greater impact on the cost-effectiveness ratio across all ages.

TABLE 163 CHD analysis: secondary prevention results for a cohort of 1000 patients using a 20% and 40% reduction in the weighted statin cost used in the base case

		Incremental cost per QALY		
	Age (years)	Base case	Statin cost -40\%	Statin cost $\mathbf{- 2 0 \%}$

state costs\end{array}\right]\)

TABLE 164 CHD analysis: primary prevention results for a cohort of 1000 patients using a 40% reduction in the weighted statin cost used in the base case

Age (years)		Annual CHD risk					
		3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢6,107	¢6,407	£6,926	¢7,83।	£9,540	¢13,422
	55	¢8,202	¢8,758	¢9,648	¢11,138	£13,886	¢20,101
	65	£10,898	¢11,986	£ 13,621	£16,258	£21,047	£32,020
	75	£17,010	¢19,076	£22,109	£26,914	£ 35,530	Ł55,090
	85	£23,906	£26,995	£31,324	£37,782	¢48,378	¢68,815
Women	45	£9,005	¢9,180	£9,672	£10,746	£13,117	¢19,678
	55	£10,503	¢10,927	¢11,776	£13,412	£16,812	£25,923
	65	¢12,727	¢13,805	£15,516	¢18,42]	£24,042	£ 38,450
	75	£20,768	£23,002	£26,338	£31,707	£41,508	¢64,382
	85	£ 31,223	¢ $34,48 \mathrm{I}$	£38,937	£45,34 I	£55,234	¢72,373

TABLE 165 Minus 20% on statin prescribing costs

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢8,354	¢7,787	68,183	¢8,856	£10,020	£12,206	¢17,159
	55	¢8,185	£10,406	£11,131	¢12,280	¢14,191	£17,700	£25,619
	65	¢8,594	¢13,838	£15,236	¢17,330	£20,695	£26,795	¢40,750
	75	¢10,413	£21,600	£24,235	£28,096	£34,202	£45,138	¢69,948
	85	£12,734	£ 30,334	£34,243	£39,714	£47,870	£61,244	¢87,029
Women	45	¢8,239	¢11,356	¢11,610	¢ 12,265	£13,658	¢16,702	£25,083
	55	¢8,037	£13,205	£13,779	¢14,894	£17,005	£21,360	£32,982
	65	¢7,764	¢16,008	£17,408	¢19,612	£23,333	£30,507	£48,854
	75	¢9,256	£26,141	£29,007	£ 33,271	£40,117	Ł52,589	¢81,662
	85	¢ 1 1,441	£ 39,304	£43,452	£49,116	£57,244	£69,788	¢91,504

(e) Baseline utility

Using a constant baseline utility of 1 instead of the change in utility by age measured by Kind and colleagues. ${ }^{241}$

In the secondary prevention evaluations, all patients commence the analysis with a history of an event and thus their quality of life throughout the model is reduced to reflect the health of a patient in the health state that they occupy or

TABLE 166 Minus 40% on statin prescribing costs

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢6,470	66,107	66,407	¢6,926	¢7,831	£9,540	¢13,422
	55	£6,334	¢8,202	¢8,758	¢9,648	¢11,138	¢13,886	£20,101
	65	¢6,663	£10,898	£11,986	£13,621	¢16,258	£21,047	£32,020
	75	¢8,082	£17,010	£19,076	£22,109	£26,914	£35,530	¢55,090
	85	£9,810	£23,906	£26,995	£ 31,324	£ 67,782	£48,378	¢68,815
Women	45	¢6,412	¢9,005	69,180	¢9,672	£10,746	¢13,117	¢19,678
	55	¢6,270	£10,503	£10,927	£11,776	¢13,412	¢16,812	£25,923
	65	¢6,063	£12,727	£13,805	£15,516	¢18,421	£24,042	£ 38,450
	75	¢7,231	£20,768	£23,002	£26,338	£31,707	¢41,508	¢64,382
	85	¢8,866	£31,223	¢ 34,48 I	£ 38,937	¢45,34 I	¢55,234	£72,373

move to. For the primary prevention evaluations a large proportion of patients commence the analyses in the event-free state. Using 1 as the baseline utility value by age assumes that everyone at all ages who is CHD free is in perfect health.

It is acknowledged that when using the data from Kind ${ }^{241}$ there is a small element of doublecounting as a proportion of the patients in the sample will have a history of CHD. However, a series of exploratory evaluations was conducted to examine what, if any, impact this had on the results generated. The analyses suggested that using a constant baseline utility of 1 across all ages would bias the results in favour of statin treatment as patients remaining in the event-free health state would potentially accrue a larger health benefit than was appropriate.

Ideally, the most accurate results would be obtained by assigning quality of life values that change with age for the individual health state. Unfortunately this evidence is not available and a series of sensitivity analyses was conducted to
explore the impact of varying the values and assumptions that have been used to assign quality of life in the model.

If the baseline utility is assigned a value of 1 across all ages, this reduces the estimated costs per QALY for secondary prevention, producing ICERs ranging from approximately $£ 7,000$ for women at aged 65 years to $£ 10,000$ for men aged 85 years (as opposed to $£ 9,000$ per QALY and $£ 16,000$ per QALY, respectively, in the base case).

For the primary prevention analyses, using a baseline utility of 1 gives ICERs ranging from approximately $£ 7000$ for men aged 45 years at 3% annual risk to $£ 72,000$ per QALY for women aged 85 years at 0.5% annual CHD risk (Table 167). For women at 0.5% annual risk the base case estimated cost per QALY is $£ 111,000$ and the large reduction is caused by over 50% increase in incremental QALYs gained: 30 QALYs gained by the statin cohort when holding the baseline utility constant as opposed to 20 QALYs gained when varying the baseline utility. Using a constant utility

TABLE 167 Using constant baseline utility of I across all ages

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	I.5\%	1.0\%	0.5\%
Men	45	¢7,691	¢7,287	¢7,638	¢8,239	¢9,285	£ 1 1,249	£15,678
	55	£7,379	£9,385	£10,023	£11,036	£12,720	£15,806	£22,734
	65	¢7,554	¢12,072	£13,278	£15,080	£17,971	£23,198	£35,095
	75	£8,854	f18,151	£20,345	£23,554	£28,620	£37,666	¢58,069
	85	£10,467	£24,476	£27,593	£31,948	£38,421	£48,995	£69,239
Women	45	¢7,453	f10,417	£ 10,624	E11,191	£12,419	¢15,118	£22,542
	55	¢7,120	f11,712	£12,210	£13,181	£15,023	£18,818	£28,910
	65	£6,733	¢13,769	£14,969	£16,852	£20,025	£26,126	£41,643
	75	¢7,784	£21,672	£24,040	£27,557	£33,187	£43,405	£67,048
	85	¢9,335	£31,334	£34,622	¢39,099	£45,504	¢55,346	¢72,266

of 1 increases the number of incremental QALYs gained by an average of 41% across all secondary and primary evaluations.

(f) Health state utilities

Using plus or minus 10\% on all health state utilities, but allowing the baseline utility to vary with age

There is a large degree of uncertainty surrounding the correct valuation of health states particularly when events vary in severity and may have longterm health implications. It is particularly difficult to assign accurate measurements to quality of life when patients move between health states and when they have had a major event such as a nonfatal MI or stroke and then remain event free for a number of years. There is an added complication when assigning the values to patients experiencing an event at different stages in their lives, as younger patients may feel that the disutility due to an unexpected event has a greater impact on their quality of life than an older patient may.

If the utility values assigned to the different health states are increased by 10%, the statin cohorts gain more benefits from the events avoided.
Consequently, the estimated costs per QALY decrease slightly for the secondary prevention analyses, ranging from approximately $£ 9000$ to $£ 15,100$ for women aged 65 years and men aged 85 years, respectively. Conversely, primary prevention results increase, ranging from $£ 10,400$ for men aged 45 years to $£ 112,900$ for women aged 85 years at 3% and 0.5% annual CHD risk, respectively (Table 168).

If the utility values assigned to the different health states are reduced by 10%, the estimated costs per

QALY for secondary prevention of CHD increase from approximately $£ 9500$ to $£ 10,000$ for women aged 65 years and increase from $£ 15,600$ to $£ 16,300$ for men aged 85 years. For the primary prevention analyses, the estimated cost per QALYs decrease, ranging from approximately $£ 8700$ for men aged 45 years at 3% annual CHD risk to $£ 108,400$ for women aged 85 years at 0.5% annual risk, in comparison to $£ 9500$ for men aged 45 at 3% annual risk and $£ 110,600$ for women aged 85 at 0.5% annual risk in the base case (Table 169).

Varying the values assigned to the health states has opposite impacts on primary and secondary results depending on whether the values are increased or decreased. All patients in secondary evaluations have a quality of life assigned to them based on their current health state; therefore, increasing or decreasing the quality of life value assigned to the health states has the expected result of either decreasing or increasing the estimated cost per QALY, respectively. However, when exploring the cost-effectiveness of statins in primary prevention, because a large proportion of patients commence in the event-free state, and in the statin arm a greater proportion remain in this health state for a longer period, their utility is unaffected by the changes made to the quality of life experienced by patients having an event. Hence, when the values assigned to health state utilities are decreased, although benefits from patients in event states are decreased, the total incremental benefits of the cohorts are increased as the benefits accrued by patients in the eventfree health state outweigh the reduced amounts from patients in the event states. Conversely, increasing utility values for event states produces an overall reduction in the total incremental benefits as fewer patients in the statin arm are affected by the increase in utility.

TABLE 168 Using plus 10% on all health state utilities, but allowing the baseline utility to vary with age

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	I.5\%	I.0\%	0.5\%
Men	45	£9,793	¢ 10,426	£ 10,916	£11,768	£13,259	¢16,07]	£22,447
	55	£9,460	¢13,802	£14,710	£16,167	£18,604	£23,086	£33,171
	65	£10,013	¢17,812	¢19,589	£22,248	£26,519	£34,249	¢51,873
	75	£12,193	£27,727	£31,068	£ 35,960	£43,683	¢57,479	¢88,60 1
	85	£15,063	£38,718	£43,609	£50,434	£60,564	¢77,062	£108,483
Women	45	£9,568	f15,981	£16,150	£16,875	£18,590	£22,482	£33,306
	55	£9,160	£ 17,911	£18,549	£19,904	£22,560	£28,114	£42,945
	65	£8,963	£20,580	£22,349	£25,137	£29,846	£38,911	£61,983
	75	£ 10,691	£33,348	£36,962	£42,334	¢50,94 I	£66,562	£102,670
	85	£13,366	£49,634	¢54,762	¢61,736	£71,688	¢86,921	fll2,934

TABLE 169 Using minus 10% on all health state utilities, but allowing the baseline utility to vary with age

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£10,727	¢8,67I	¢9,156	¢9,954	¢11,313	£13,840	¢19,544
	55	¢10,685	¢11,608	£12,480	¢13,837	£16,068	£20,143	£29,336
	65	¢11,093	¢15,858	¢17,503	¢19,954	¢23,884	£30,998	¢47,299
	75	¢13,346	£24,814	£27,890	£32,390	£ 39,505	¢52,262	¢81,323
	85	¢16,300	¢ 34,994	£ 39,567	¢45,978	¢55,565	£71,375	¢102,191
Women	45	£10,620	¢12,000	£12,417	¢13,273	¢14,948	¢18,485	£28,110
	55	£10,546	£14,306	£15,075	¢16,447	£18,950	£24,023	£37,504
	65	¢10,030	¢18,150	£19,826	£22,434	£26,808	£ 35,218	656,763
	75	¢11,939	£29,874	£ 33,258	£ 38,278	£46,329	¢61,019	¢95,474
	85	¢14,734	¢45,332	¢50,276	¢57,038	¢66,779	¢81,913	¢108,428

TABLE I 70 Using constant baseline utility across all ages and plus IO\% on health state utilities

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£7,359	¢8,003	¢8,349	¢8,965	£10,057	¢12,124	£16,800
	55	¢6,960	£ 10,245	£ 10,891	£11,936	£ 13,691	¢16,923	£24,170
	65	¢7,189	¢ 12,801	¢14,052	£15,928	£18,941	£24,387	£36,752
	75	¢8,475	¢19,198	£21,483	£24,828	£ 30,104	£39,507	¢60,610
	85	¢10,073	£ 25,757	£28,979	£ 33,468	£40,117	£50,906	¢71,319
Women	45	¢7,085	¢ 12,075	¢12,152	¢12,642	£13,86\|	¢16,673	£24,518
	55	¢6,656	¢13,131	¢13,562	¢14,510	£16,393	£20,35	£30,912
	65	¢6,378	¢14,668	£15,896	£17,840	£21,128	£27,455	£43,496
	75	¢7,38।	£22,905	£25,349	£28,983	£34,799	¢45,326	¢69,498
	85	¢8,905	£ 32,793	£ 36,136	£40,675	£47,139	¢56,996	£73,725

(g) Baseline and health state utilities

Combining the effect of using a constant value of 1 for baseline quality of life and increasing the values assigned to health states by 10% produces secondary prevention costs per QALY ranging from approximately $£ 6400$ for women aged 65 years to $£ 10,100$ for men aged 85 years (Table 170). For primary prevention, using a constant value of 1 for baseline quality of life in conjunction with decreasing the values assigned to health states by 10% produces costs per QALY ranging from approximately $£ 6700$ for men aged 45 years at 3% annual risk of a CHD event to $£ 70,800$ for women aged 85 years at 0.5% annual risk of a CHD event (Table 171). However, as stated previously, it is believed that using a conservative alternative.

(h) Incidence and prevalence

Incidence and prevalence increased by 150\% for each health state individually

To examine uncertainty in the proportion of patients allocated to the different health states, a series of analyses was performed where the proportion of patients assigned to the starting health states was increased by 150% (Tables 172-175). Varying the ratio of patients across health states had little impact on the results. Increasing the proportion of patients who commenced the secondary prevention analyses in the non-fatal MI health state by 150% while holding the other values constant reduced the lowest estimated ICER to around $£ 9200$ (Table 174), while increasing the proportion of patients starting in the non-fatal stroke state increased the lowest estimated ICER to $£ 10,100$ and the highest estimated ICER to £16,600 (Table 175).

TABLE I7I Using constant baseline utility across all ages and minus 10% on all health state utilities

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢8,055	¢6,689	¢7,038	¢7,622	¢8,624	£10,492	¢14,696
	55	¢7,85	¢8,658	¢9,283	£10,262	¢11,877	¢14,828	£21,460
	65	¢7,957	¢11,422	¢12,584	¢14,318	¢17,096	£22,120	£ 33,581
	75	¢9,268	£17,213	¢19,321	£22,405	£27,275	¢ 35,988	¢55,732
	85	¢10,893	£23,316	£26,334	£30,559	£36,863	¢47,222	¢67,277
Women	45	¢7,861	£9,160	¢9,437	£10,039	¢11,248	¢13,829	£20,861
	55	¢7,652	£10,570	E11,104	£12,075	¢13,863	¢17,500	£27,152
	65	¢7,129	¢12,975	¢14,143	£15,968	£19,032	£24,919	£ 39,941
	75	¢8,234	£20,564	£22,859	£26,264	£ 31,718	¢41,641	¢64,765
	85	¢9,809	£ 30,000	£33,230	£ 37,641	¢43,979	¢53,789	¢70,864

TABLE I72 Increasing the incidence and prevalence rates for patients commencing in the stable angina health state

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£10,527	¢9,640	¢10,104	£10,903	£12,297	¢14,923	£20,880
	55	£10,223	£12,682	£13,533	£14,894	£17,168	£21,359	£30,836
	65	¢10,614	¢16,787	¢18,447	£20,940	£24,955	¢ 32,245	¢48,955
	75	¢12,888	£26,097	£29,230	£33,828	£41,110	654,177	¢83,902
	85	¢15,985	£ 37,010	£41,697	£48,263	£58,059	¢74,139	£105,187
Women	45	¢10,364	£13,588	£13,815	¢14,52\|	£16,095	¢19,601	£29,352
	55	¢9,876	¢15,699	¢16,309	£17,556	£19,972	£25,012	£ 38,574
	65	¢9,442	¢19,082	£20,680	£23,223	£27,547	¢ 35,929	¢57,497
	75	¢11,315	£ 30,841	¢34,137	£39,071	£47,034	¢61,626	¢95,955
	85	¢14,262	¢46,44 I	¢51,298	£57,968	£67,604	¢82,605	¢108,921

TABLE 173 Increasing the incidence and prevalence rates for patients commencing in the unstable angina health state

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£9,935	£9,252	£9,744	£10,566	£11,974	¢ 14,601	£20,527
	55	¢9,818	¢12,290	£13,174	¢14,562	£16,855	£21,051	£30,493
	65	¢10,175	¢16,248	£17,918	£20,410	£24,405	£31,637	£48,178
	75	£12,125	£25,111	£28,217	£ 32,762	£ 39,946	¢52,821	¢82,113
	85	¢14,562	¢ 35,250	£ 39,858	¢46,314	Ł55,961	¢71,849	£102,749
Women	45	¢9,64	¢13,018	¢13,384	f14,218	¢15,914	¢19,558	£29,525
	55	¢9,515	¢15,352	£16,086	¢17,456	£20,006	£25,221	£39,098
	65	¢9,114	¢18,768	£20,460	£23,106	£27,555	£ 36,115	Ł58,020
	75	£10,646	¢ 30,620	£34,044	£39,130	£47,288	¢62,163	¢96,957
	85	¢12,919	¢46,197	¢51,177	£57,982	¢67,769	¢82,929	£109,355

A similar series of analyses was performed adjusting the proportion and thus the probability of the distribution across primary events. The largest impact was a result of increasing the proportion of patients assigned to an initial primary non-fatal stroke health state. This adjustment (an increase of 150%) increased the ICERs produced from $£ 9000$ to $£ 10,000$ for men
aged 45 years and from $£ 111,000$ to $£ 115,000$ for women aged 85 years.

Increasing the proportion of patients assigned to the primary non-fatal MI health state decreased the ICERs to $£ 8900$ for men aged 45 years and £106,000 for women aged 85 years.

TABLE I74 Increasing the incidence and prevalence rates for patients commencing in the non-fatal MI health state

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢9,773	¢8,88।	¢9,368	£10,176	¢11,553	¢14,1I7	¢19,897
	55	¢9,668	£11,853	£12,719	£14,076	£16,315	£20,409	£29,628
	65	£10,255	£15,675	£17,299	£19,722	£23,608	£30,647	£46,775
	75	£12,425	£24,132	£27,146	£ 31,557	£ 38,536	¢51,064	¢79,665
	85	¢15,45	£ 33,918	£ 38,424	£44,748	¢54,220	¢69,883	£100,577
Women	45	£9,590	£12,966	£13,310	¢14,118	¢15,783	£19,373	£29,209
	55	¢9,458	¢14,974	£15,690	¢17,027	¢19,520	£24,621	£ 38,209
	65	¢9,227	£18,023	¢19,652	£22,203	£26,499	£34,780	¢56,043
	75	£11,075	£29,008	£ 32,280	£ 37,149	¢44,979	659,313	¢93,136
	85	¢13,880	¢43,654	£48,49 I	¢55,132	¢64,745	¢79,788	£106,457

TABLE 175 Increasing the incidence and prevalence rates for patients commencing in the non-fatal stroke health state

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£10,725	¢10,291	£10,804	f11,679	¢13,195	¢16,043	£22,500
	55	£ 10,451	£13,869	£14,831	£16,349	£18,866	£23,474	£ 33,821
	65	¢11,048	£18,616	£20,486	£23,274	£27,736	£ 35,781	¢54,016
	75	¢13,503	£29,217	£32,740	£37,877	¢45,954	¢60,296	¢92,292
	85	£16,564	£40,687	£45,762	¢52,809	663,199	£79,956	£111,336
Women	45	¢10,635	£15,024	£15,392	¢16,288	¢18,155	¢22,192	£33,200
	55	¢10,298	¢17,466	£18,293	¢19,829	£22,677	£28,469	¢43,699
	65	¢10,078	£21,424	£23,358	£26,359	£31,367	¢40,908	¢64,857
	75	£12,004	£34,679	£38,540	¢44,225	¢53,250	¢69,455	£106,248
	85	£14,893	Ł51,310	£56,616	£63,770	¢73,877	¢89,140	¢114,691

TABLE I76 Increasing the incidence and prevalence rates for patients commencing in the TIA health state

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£10,306	¢9,509	£10,035	£ 10,901	¢12,374	¢15,108	£21,259
	55	£10,057	¢12,785	£13,723	¢15,184	£17,586	£21,961	£31,758
	65	£10,573	¢17,172	£18,941	£21,573	£25,780	£ 33,371	£50,636
	75	£12,820	£26,771	£30,053	£ 34,848	¢42,412	£55,920	£86,430
	85	£15,775	£36,954	£41,706	¢48,350	¢58,242	¢74,445	£105,630
Women	45	£10,149	£13,853	£14,271	£15,178	¢16,997	£20,868	£ 31,367
	55	¢9,896	£16,001	£16,795	¢18,248	£20,927	£26,371	¢40,75
	65	¢9,502	¢19,539	£21,323	£24,098	£28,747	£ 37,655	£60,302
	75	£11,394	£ 32,207	£ 35,815	£41,156	£49,690	£65,167	£101,005
	85	¢14,182	£48,344	¢53,470	¢60,44 I	¢70,400	¢85,680	¢111,907

(i) Rate of increase in risk of CHD over time

Using upper and lower 95\% Cls for natural increase in CHD and corresponding increase in annual CVD risk in the primary prevention analyses

Increasing both the natural increase in CHD risk with age for the primary prevention population
and the corresponding calculated annual CVD risk increases the lowest estimated cost per QALY by 4% for men aged 45 years at a starting annual CHD risk of 3%, and decreases the highest estimated cost per QALY by just 2% for women aged 85 years at 0.5% annual risk of a CHD event (Table 177). Using the lower 95\% CI for the natural increase in CHD risk with age and the corresponding annual CVD risk has a similar but

TABLE 177 Upper CI for natural age-increased risk in CHD risk and the corresponding increase in annual CVD risk

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£10,239	¢9,871	¢10,329	¢11,116	£12,480	¢15,027	¢20,682
	55	¢10,035	¢ 13,014	¢13,862	£15,210	£17,443	¢21,508	£30,468
	65	¢10,525	¢17,068	£18,724	£21,195	£25,143	£ 32,222	¢48,040
	75	¢12,744	£26,386	£29,504	£34,058	¢41,218	¢53,917	¢82, 125
	85	£15,657	£ 66,842	£41,479	£47,957	£57,582	¢73,288	£103,288
Women	45	¢10,067	¢14,306	£14,566	£15,307	£16,926	£20,490	¢30,210
	55	¢9,804	¢16,439	¢17,084	£18,371	£20,835	¢25,918	£39,299
	65	£9,466	¢19,575	£21,229	£23,831	£28,213	£ 36,610	£57,752
	75	¢11,280	£ 31,539	£34,921	£ 39,944	£47,98।	¢62,538	¢96,032
	85	¢14,017	¢47,148	¢52,069	¢58,785	£68,415	¢83,259	¢108,906

TABLE 178 Lower Cl for natural age-increased risk in CHD risk and the corresponding increase in annual CVD risk

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	¢10,239	¢9,074	¢9,597	¢ 10,464	¢11,947	¢14,735	¢21,167
	55	¢10,035	£12,210	¢13,149	¢14,617	£17,050	£21,541	£ 31,901
	65	¢10,525	¢16,488	£18,250	£20,885	¢25,130	¢32,894	Ł51,081
	75	¢12,744	£25,992	£29,282	¢34, IIO	£41,774	¢55,628	¢87,734
	85	¢15,657	£ 36,680	£41,500	¢48,253	£58,342	¢74,960	¢107,291
Women	45	¢10,067	£13,112	£13,516	¢14,411	¢16,216	£20,088	£30,794
	55	¢9,804	£ 15,371	£16,176	¢ 17,646	£20,358	£25,901	£40,837
	65	£9,466	£18,994	£20,786	£23,581	£28,278	£37,349	¢60,873
	75	¢11,280	£ 31,485	£35,100	¢40,469	£49,089	¢64,856	¢102,058
	85	¢14,017	£47,623	¢52,78।	¢59,813	¢69,897	¢85,458	¢ 112,423

converse impact on the results, decreasing the lower estimated cost per QALY by 4% and increasing the highest estimated cost per QALY by 2\% (Table 178).

(j) Time-frame of the model

As the evidence used to model benefits from statin treatment is derived from trials of a relatively short time-horizon in comparison with the lifetime model in the current evaluation, the cost and benefits associated with just 10 years of statin treatment are explored.

Shortening the time-frame of the model to 10 years of statin treatment increases the estimated costs per QALY across all age groups (Table 179). The discounted ICERs using the 10 -year horizon range from approximately $£ 24,000$ to $£ 125,000$ per QALY for women and from $£ 20,000$ to $£ 100,000$ per QALY for men. Using a 10-year horizon as opposed to lifetime has a greater impact on the results for the younger ages, and
these results suggest that it is less cost-effective to treat younger patients than older patients.
Younger patients are less likely to benefit from statins in the first 10 years of treatment as the risk of subsequent and fatal events is lower in younger patients. However, if treatment is started at an earlier age and continued over the patient's lifetime the costs avoided and health benefits gained accrue to reduce the cost per QALY.

The 10-year results for older patients ($£ 20,000$ and $£ 19,000$ for men and women aged 85 years) are comparable to those estimated for a lifetime of treatment ($£ 16,000$ and $£ 14,000$ for men and women aged 85 years).

Examining the costs and benefits over 10 years has a large impact on the primary prevention results, with the ICER for 45 -year-old men at 3% annual risk of a CHD event increasing from $£ 10,000$ to $£ 36,000$ per QALY, and the ICER for 85 -year-old women at 0.5% annual risk increasing from $£ 111,000$ to $£ 367,000$ per QALY (Table 180).
The impact of assessing only 10 years of benefits is

TABLE I79 CHD secondary prevention: 10-year results for a cohort of 1000 patients

	Age (years)	Undiscounted			Discounted		
		Incremental costs	Incremental QALYs	Incremental cost per QALY	Incremental costs	Incremental QALYs	Incremental cost per QALY
Men	45	£3,292,690	29	¢115,032	£2,584,265	26	£99,501
	55	£3,175,936	49	¢64,353	£2,502,553	45	£55,853
	65	£2,923,748	79	¢37,019	£2,319,143	72	£32,309
	75	£2,528,75	92	£27,405	£2,038,55 I	84	£24,257
	85	¢1,836,161	86	¢21,399	£1,542,956	79	£19,577
Women	45	£3,351,264	23	£143,962	£2,629,071	21	£124,530
	55	£3,267,634	40	£82,506	£2,570,147	36	£71,537
	65	£3,043,878	78	£39,259	£2,403,566	70	£34,145
	75	£2,735,210	99	£27,761	Ł2,180,838	90	£24,346
	85	£2,092,025	101	£20,693	¢1,724,416	93	£18,634

TABLE 180 CHD analysis: primary prevention for a cohort of 1000 patients at varying annual CHD risk - 10 -year time-frame (discounted cost per QALY)

	Age (years)	Annual CHD risk					
		3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£35,766	£41,708	¢50,574	¢65,133	£93,281	£170,072
	55	¢42,744	¢49,607	¢59,836	¢76,591	£108,809	¢195,489
	65	¢44,987	¢52,324	¢63,225	¢81,016	£115,042	£205,498
	75	¢52,973	¢61,590	¢74,357	¢95, I 12	£134,538	£237,735
	85	¢52,719	¢61,451	¢74,349	¢95,241	¢134,72	£236,928
Women	45	£57,557	¢66,842	¢80,845	£104,202	£ 150,605	£286,019
	55	¢60,976	¢70, 144	¢84,04 I	¢107,275	£153,367	£286,503
	65	¢57,541	¢66,586	¢80,208	£102,838	£147,376	£273,953
	75	¢74,867	¢86,730	¢104,474	¢133,699	£190,430	£346,534
	85	¢80,799	¢93,862	f113,263	¢144,931	£205,55 I	£367,198

greater at lower levels of baseline risk, as fewer secondary CHD events will occur within the first 10 years.

(k) Compliance

Using the 'worst case', scenario, where full compliance is reduced to 55% and 50% by year 5 for secondary and primary patients, respectively, and the full treatment costs are incurred: in
secondary prevention the lowest ICER (for women aged 65 years) increases to $£ 14,000$ from $£ 9000$, while the highest ICER (for men aged 85 years) increases to $£ 22,000$ from $£ 16,000$ per QALY (Table 181). Using the same scenario, with the full treatment costs, primary analyses produce ICERs ranging from $£ 16,000$ for men aged 45 years at 3% annual risk of a CHD event to $£ 133,000$ for women aged 75 years at 0.5% annual risk of a CHD event, in comparison with the base-case range of $£ 9000-111,000$.

TABLE I8I Compliance using the worst case scenario with the full treatment costs

	Age (years)	Secondary	Annual CHD risk					
			3.0\%	2.5\%	2.0\%	1.5\%	1.0\%	0.5\%
Men	45	£15,582	£16,079	¢17,039	¢18,578	£21,155	£25,900	£36,547
	55	£15,07]	£21,025	£22,665	£25,180	£29,270	£36,674	¢53,209
	65	£15,478	£27,524	£30,486	¢ 34,854	£41,793	£54,239	£82,387
	75	£18,266	£41,748	¢46,985	£54,567	£66,397	¢87,22 I	£133,042
	85	£21,518	£54,103	¢60,639	¢69,534	¢82,298	£102,080	£136,72\|
Women	45	£15,315	£22,108	£22,957	£24,602	£27,741	£34,25 I	¢51,622
	55	£14,694	£25,414	£26,882	£29,418	£33,945	£42,954	£66,305
	65	£13,905	£ 30,631	¢ 33,621	¢ 38,187	£45,712	£59,886	£94,955
	75	£16,177	£48,588	¢54,135	¢62,205	¢74,824	£97,000	£145,357
	85	£19,3\|2	£66,314	¢72,613	¢80,859	¢92,062	£108,080	£132,743

Appendix 35

Results of additional sensitivity analyses requested by the Appraisal Committee

TThe additional analyses requested are detailed below.

- the cost-effectiveness of lowering risk thresholds for treatment (scenario 1: CHD plus stroke outcomes)
- sensitivity of economic results to the analytical time-horizon of the model and assumptions impacting on long-term extrapolation (scenario 1: CHD plus stroke outcomes)
- the cost-effectiveness of lowering risk thresholds for treatment using 3.5% discount rates for both costs and benefits (scenario 1: CHD plus stroke outcomes).

The outcomes of these analyses are summarised below.

The cost-effectiveness of lowering risk thresholds for treatment considers the naturally framed question: ‘Having accepted a threshold of $x \%$ CHD risk, what is the cost-effectiveness of lowering that threshold to $y \%$, taking into account the increased numbers of people, incurring costs and receiving benefits, who would be eligible for treatment?'

In considering the cost-effectiveness of lowering the risk threshold for treatment from, say, 3% to 2.5%, it is clear that people with a risk of greater than 3% would be treated under both options. The cost and QALY impact in these people can therefore be disregarded. The cost-effectiveness of reducing the threshold is therefore the costeffectiveness of treating people with a risk level between 2.5 and 3% versus not treating them.

Since incremental costs and QALYs differ with age and risk level, the overall cost-effectiveness for that population group is estimated from the number of people expected to fall into each age and risk category.

The weighted ICERs for men are comparable across all CHD risk levels, ranging between approximately $£ 15,500$ and $£ 18,300$. The ICERs for women are slightly higher than for men, with a range of $£ 19,500-29,500$.

The sensitivity of economic results to the analytical time-horizon of the model and assumptions
impacting on long-term extrapolation were examined. The scenarios evaluated in the main report demonstrate the cost-effectiveness of statin treatment over a patient's lifetime, with a sensitivity analysis presented for the base-case CHD scenario using a time-horizon of 10 years. However, the majority of the effectiveness data is derived from RCTs with an average duration of approximately 5 years. Hence, a large proportion of the costs and benefits associated with statin treatment is based on extrapolations within the model. An additional series of analyses was performed exploring the sensitivity of the model to assumptions that impact on long-term estimates of costs and benefits. The economic results at $5,10,15$ and 20 years, together with the lifetime results for scenario 1 (CHD plus stroke outcomes) are presented.

The analysis demonstrates that for the CHD risks considered (up to 4.5% per annum) the costeffectiveness of treating people over the age of 75 years who have not experienced a previous CHD event is over $£ 20,000$ per QALY for all risk levels and over $£ 30,000$ for all but the highest risk groups modelled for over 20 years. It should be noted that the number of people in these categories is small.

With respect to cohorts aged 45,55 and 65 years, the cost-effectiveness of statin therapy is highly sensitive to the time-horizon of the analysis. For example, for men and women aged 55 years, analysed over the full lifetime, all estimates of cost-effectiveness are $£ 20,000$ per QALY or better. However, when using a 10-year horizon all estimates of cost-effectiveness are worse than $£ 30,000$ per QALY. Using a time-horizon of 20 years the cost-effectiveness at greater than 3% CHD risk is better than $£ 20,000$. The results for the ages of 45 and 65 years show a similar pattern of sensitivity to analytical time-horizon.

Cost-effectiveness of statin treatment weighted by the proportion risk (scenario I: CHD plus stroke outcomes)

An additional analysis was performed to estimate the cost-effectiveness of treating people between

TABLE 183 Numbers of people in each age/risk group (derived from HSE 1998^{203} and England and Wales population 2003)a

Age (years)	Men				Women			
	45-54	55-64	65-74	75-84	45-54	55-64	65-74	75-84
Annual CHD risk								
1.0\%	147,522	156,160	67,054	7,791	22,579	62,202	116,955	100,450
I.1\%	132,769	156,160	75,995	15,582	22,579	74,642	49,481	86,100
1.2\%	95,889	131,760	67,054	31,165	12,902	70,495	49,481	57,400
1.3\%	73,761	92,720	67,054	23,373	9,677	53,908	67,474	50,225
1.4\%	70,073	122,000	75,995	62,329	16,128	41,468	62,976	21,525
1.5\%	55,321	107,360	80,465	38,956	9,677	29,028	62,976	43,050
1.6\%	51,633	48,800	80,465	0	3,226	24,881	40,484	14,350
1.7\%	36,880	78,080	71,525	31,165	6,451	29,028	26,990	0
1.8\%	25,816	63,440	75,995	38,956	12,902	16,587	26,990	7,175
1.9\%	11,064	53,680	80,465	85,703	0	12,440	40,484	28,700
2.0\%	18,440	68,320	58,114	46,747	0	12,440	17,993	35,875
2.1\%	33,192	73,200	67,054	15,582	0	16,587	0	7,175
2.2\%	14,752	53,680	67,054	62,329	0	12,440	17,993	14,350
2.3\%	25,816	48,800	62,584	31,165	3,226	12,440	8,997	0
2.4\%	11,064	53,680	35,762	23,373	3,226	8,294	22,491	0
2.5\%	7,376	68,320	75,995	31,165	3,226	4,147	22,491	7,175
2.6\%	11,064	39,040	31,292	15,582	0	0	4,498	7,175
2.7\%	7,376	43,920	44,703	23,373	6,451	8,294	13,495	7,175
2.8\%	3,688	19,520	40,233	15,582	0	4,147	8,997	7,175
2.9\%	0	19,520	53,644	31,165	0	8,294	8,997	0
3.0\%	3,688	9,760	62,584	23,373	3,226	8,294	8,997	7,175
${ }^{a}$ The HSE does not include anyone over the age of 85 years.								

x and $y \%$ compared with not treating them. In considering the cost-effectiveness of lowering the risk threshold for treatment from, say, 3% to 2.5%, it is clear that people with a risk of greater than 3% would be treated under both options. The cost and QALY impact in these people can therefore be disregarded. The cost-effectiveness of reducing the threshold is therefore the cost-effectiveness of treating people with a risk level between 2.5% and 3% versus not treating them.

Since incremental costs and QALYs differ with age and risk level, the overall cost effectiveness for that population group is estimated from the number of people expected to fall into each age and risk category (Table 183). The incremental costs and the incremental QALYs obtained from scenario 1 (CHD plus stroke outcomes), using increments of CHD risk of 0.01 per annum, were weighted using the number of people in each of these age and risk groups.

The total incremental costs and QALYs are multiplied by the number of people in each category to give a cost per QALY of treating people at risk levels between x and $y \%$ compared with not treating them.

As can be seen in Table 184, the weighted ICERs for men are comparable across all CHD risk levels, ranging between approximately $£ 15,500$ and $£ 18,300$. The ICERs for women are slightly higher than for men, with a range of £19,500-29,500.

Sensitivity of economic results to the analytical time-horizon of the model and assumptions impacting on long-term extrapolation

The scenarios evaluated in the main report demonstrate the cost-effectiveness of statin treatment over a patient's lifetime. However, the majority of the effectiveness data is derived from RCTs with an average duration of approximately 5 years. Hence, a large proportion of the costs and benefits associated with statin treatment is based on extrapolations within the model. The key assumptions underpinning the extrapolations are:

- Effectiveness of statins is maintained over the time-horizon of the model.

TABLE 184 Discounted weighted cost per QALY, comparing treating people at CHD risk between $\mathrm{x} \%$ and $\mathrm{y} \%$ per annum (scenario I: CHD plus stroke outcomes)

Treating between \boldsymbol{x} and $\boldsymbol{y} \%$	Total weighted incremental cost	Total weighted incremental QALY	Weighted cost per QALY
Men			
I.5\% to 1.0%	£7,228,416,284	394,220	£18,336
2.0\% to 1.5%	£4,403,78।,134	249,449	¢17,654
3.0\% to 2.0\%	£5,531,945,178	350,048	£15,803
2.5\% to 2.0\%	£3,355,782,620	209,889	¢15,988
3.0\% to 2.5\%	Ł2, 176,162,559	140,159	£15,526
Women			
1.5\% to 1.0%	£4,284,769,082	145,259	£29,498
2.0\% to 1.5%	£1,783,546,414	74,797	£23,845
3.0\% to 2.0 \%	¢1,259,349,710	61,083	£20,617
2.5\% to 2.0 \%	£772,631,864	36,032	£21,443
3.0\% to 2.5 \%	£486,717,846	25,05 I	¢19,429

- Compliance is maintained over time, and this is true for individuals identified as low and high risk.
- Events are distributed within global CHD risk levels, by age and gender.
- Multiple events occur over long time-horizons: the complexity of this issue and the lack of robust evidence mean that it is difficult to estimate the direction of any bias introduced.

The NICE methods guidance states:

> "2.2.6.1 The time span used in the appraisal usually reflects the period over which the main differences between technologies from the point of view of both their likely health effects and use of healthcare resources are expected to be experienced, taking into account the limitations of supporting evidence."
> "5.8.3 Providing an all-embracing definition of what constitutes a high-quality model is not possible, but some guidelines are available. In general, all structural assumptions and data inputs should be clearly documented and justified. This is particularly important in the case of modelling to extrapolate costs and health benefits over an extended time horizon. In such circumstances alternative time horizon scenarios should be considered in order to compare the implications of different assumptions for the results."

The original report presented 10-year results for base-case CHD; therefore, an additional series of analyses was performed exploring a broader range of time-horizons for scenario 1 (CHD plus stroke outcomes). Tables 185 and 186 present the costeffectiveness ratios across different horizons for the age and risk groups being considered.

As can be seen, as the time-horizon over which the costs and benefits associated with statin treatment are accrued increases from 5 years to lifetime, the ICERs decrease. In addition, as the initial annual CHD risk decreases, the range in the ICERs across the age groups increases.

The results demonstrate that irrespective of risk, it is not cost-effective to treat cohorts over the age of 75 years. However, the majority of these people will be at a high risk or would be secondary patients and hence will already be receiving statin treatment.

Restricting the discussion of the differing horizon results to cohorts aged 45,55 and 65 years, the male ICERs estimated are comparable across the ages. For example, the approximate ICERs for men aged 45,55 and 65 years at 1.5% annual risk are $£ 27,700$ ($£ 38,700, £ 61,400$, $£ 135,300$), $£ 30,800$ ($£ 44,100, £ 72,100, £ 162,600$) and $£ 33,700$ ($£ 46,100, £ 75,800$, $£ 182,300$) when using a time-horizon of $20(15,10,5)$ years.

The female ICERs are also comparable across the age groups 45,55 and 65 years, and are all higher than those estimated for men. For example, using a 20-year horizon and cohorts at 1.5% annual CHD risk, the estimated ICERs are approximately $£ 45,100, £ 42,400$ and $£ 41,300$ for women aged 45,55 and 65 years, respectively. Similarly, using a 10-year horizon the ICERs for women at 1.5% risk are $£ 62,900, £ 62,100$ and $£ 60,000$ for the ages of 45,55 and 65 years, respectively.

TABLE 185 Comparing the incremental discounted cost per QALY results across the different time-horizons by age/risk level for men

Horizon		Annual CHD risk					
		1.50\%	2.00\%	2.50\%	3.00\%	3.50\%	4.00\%
	Start age	45	45	45	45	45	45
Lifetime		¢12,080	¢10,664	¢9,839	¢9,347	¢9,06	¢8,913
20		£27,724	£22,628	¢19,527	¢17,482	£16,066	£15,056
15		¢38,697	¢ 30,864	£26,085	¢22,899	¢20,650	¢19,001
10		¢61,416	¢47,791	£39,491	£33,928	£29,960	£27,002
5		£ 135,290	£102,705	¢82,989	¢69,788	¢60,340	¢53,252
	Start age	55	55	55	55	55	55
Lifetime		£17,073	¢14,757	¢13,357	¢12,467	¢ 11,891	£11,525
20		£30,849	£25,353	£21,984	¢19,754	£18,206	£17,100
15		£44,083	¢ 35,412	¢30,095	£26,542	¢24,033	¢22,194
10		£72,064	¢56,429	£46,878	£40,470	£35,897	£ 32,490
5		¢162,619	¢123,966	£100,570	¢84,904	¢73,694	¢65,285
	Start age	65	65	65	65	65	65
Lifetime		£24,867	£20,807	¢18,276	£16,579	¢15,389	£14,530
20		£ 33,651	£27,438	£23,590	£21,007	¢19,181	¢17,843
15		¢46,142	¢ 36,926	£31,238	£27,409	£24,683	£22,663
10		¢75,769	¢59,258	¢49,133	£42,317	£ 37,437	£ 33,788
5		£182,270	¢138,828	f112,519	¢94,894	¢82,277	¢72,809
	Start age	75	75	75	75	75	75
Lifetime		£41,025	£33,684	£29,038	£25,862	£23,578	£21,876
20		£45, III	£36,548	¢31,208	¢27,591	£25,004	£23,082
15		Ł55,835	¢44,649	¢37,704	¢ 33,003	£29,635	£27,123
10		¢88,640	¢69,439	£57,616	£49,633	£43,903	£39,610
5		£221,243	¢168,622	£136,738	£115,373	£100,075	¢88,595
	Start age	85	85	85	85	85	85
Lifetime		¢57,397	£47,601	£41,031	£36,337	¢ 32,829	£ 30,121
20		¢57,397	£47,601	£41,031	¢36,337	¢32,829	£30,121
15		¢57,397	¢47,601	£41,031	£36,337	¢ 32,829	£ 30,121
10		£89,821	¢70,228	¢58,120	£49,920	£44,016	£39,577
5		£205,862	¢156,884	£127,143	£107,186	¢92,881	¢82,137

Cost-effectiveness of lowering risk thresholds for treatment using 3.5\% discount rates for both costs and benefits (scenario I: CHD plus stroke outcomes)

As in the first of these additional analyses, the total incremental costs and QALYs were multiplied by the number of people in each category to give a cost per QALY of treating people at risk levels between x and $y \%$ compared with not treating them, the key difference being that costs and benefits are discounted at 3.5% in the following evaluations.

As can be seen in Table 187, the weighted ICERs for men range between approximately $£ 26,500$ (3.0% to 2.5%) and $£ 44,900$ (1.0% to 0.5%) and increase as initial CHD risk level decreases. The
weighted ICERs for women are higher than the corresponding results for men and range from approximately $£ 33,300$ (3.0% to 2.5%) to $£ 78,000$ (1.0\% to 0.5%).

Cost-effectiveness of lowering risk thresholds for treatment using different age groups (scenario I: CHD plus stroke outcomes) with 3.5\% discount rates for both costs and benefits

The results presented in Table 188 use the same methodologies as the first and third of these additional sensitivity analyses, and the results are presented by age group as opposed to an overall weighted ICER by risk level.

TABLE 186 Comparing the incremental discounted cost per QALY results across the different time-horizons by age/risk level for women

Horizon		Annual CHD risk					
		1.50\%	2.00\%	2.50\%	3.00\%	3.50\%	4.00\%
Lifetime	Start age	45	45	45	45	45	45
		¢16,410	¢14,702	¢13,879	¢13,538	¢13,492	¢13,647
20		¢45,129	¢36,817	£31,954	£28,860	£26,800	£25,402
15		¢62,913	£50,104	£42,491	£37,520	£34,077	£31,601
10		£98,617	£76,656	¢63,496	£54,775	£48,608	£44,047
5		£209,159	£159,135	¢129,091	£109,074	¢94,800	¢84,121
	Start age	55	55	55	55	55	55
Lifetime		£20,387	¢17,813	£16,436	¢15,705	¢15,372	¢15,308
20		£42,437	¢35,037	¢ 30,741	£28,060	£26,334	£25,230
15		¢62,075	¢50,067	£42,972	£38,397	¢ 35,295	£ 33,135
10		£101,235	£79,495	¢66,500	£57,937	Ł51,936	£47,550
5		£219,483	¢167,719	£136,658	¢115,991	¢101,283	¢90,307
	Start age	65	65	65	65	65	65
Lifetime		£27,942	¢23,439	£20,761	¢19,047	¢17,908	¢17,139
20		£41,306	£33,577	£28,960	£25,956	£23,898	£22,444
15		¢57,976	£46,294	£39,282	£34,669	£31,454	£29,127
10		¢96,145	¢75,140	¢62,496	¢54,105	¢48,174	¢43,795
5		£232,074	£176,899	£143,755	¢ 121,681	¢105,953	¢94,201
	Start age	75	75	75	75	75	75
Lifetime		£47,997	¢ 39,741	¢34,589	£31,119	£28,661	£26,864
20		¢56,299	¢45,518	£38,966	£34,618	£31,566	£29,340
15		¢73,427	¢58,591	¢49,566	¢43,552	£39,301	£ 36,173
10		£133,853	¢96,959	¢80,623	£69,702	661,930	¢56,152
5		£335,165	£255,719	£207,908	£176,024	¢153,282	£136,274
	Start age	85	85	85	85	85	85
Lifetime		¢68,600	¢58,772	¢51,924	£46,907	£43,094	£40,116
20		¢68,600	¢58,772	651,924	¢46,907	¢43,094	¢40,116
15		¢68,600	¢58,772	651,924	¢46,907	¢43,094	¢40,116
10		£135,256	£105,860	¢87,843	¢75,710	¢67,015	£60,503
5		£368,518	£281,364	£228,683	£193,442	£168,244	£149,358

TABLE 187 Discounted weighted cost per QALY, comparing treating at CHD risk between $\mathrm{x} \%$ and $\mathrm{y} \%$ per annum using 3.5% discounting rates

Annual CHD risk level	Cost	QALY	Weighted cost per QALY
Men			
I.0\% to 0.5\%	£13,446,792,896	299,206	¢44,942
1.5\% to 1.0%	£9,231,474,512	260,269	¢35,469
2.0\% to 1.5%	¢5,493,480,530	172,108	£31,919
2.5\% to 2.0\%	¢4,166,716,702	147,524	£28,244
3.0\% to 2.5\%	£2,675,731,299	101,084	£26,470
3.0\% to 2.0\%	¢6,842,448,00 I	248,608	£27,523
Women			
1.0\% to 0.5\%	£15,740,710,901	204,428	¢76,999
1.5\% to 1.0%	£5,359,083,526	98,232	¢54,555
2.0\% to 1.5%	Ł2,231,518,185	51,501	¢43,329
2.5\% to 2.0\%	¢962,071,647	25,226	£38,137
3.0\% to 2.5\%	¢607,172,653	17,705	£34,295
3.0\% to 2.0%	£1,569,244,300	42,931	¢ 36,553

TABLE 188 Discounted weighted cost per QALY for individual age groups, comparing treating at CHD risk between $\mathrm{x} \%$ and $\mathrm{y} \%$ per annum using 3.5\% discounting rates

Annual CHD risk level	Age groups (years)			
	45-54	55-64	65-74	75-84
Men				
I.0\% to 0.5\%	£40,339	¢50,131	¢63,654	¢96,567
1.5\% to 1.0%	£29,507	£36,659	¢46,85	¢65,515
2.0\% to 1.5%	£24,625	£30,008	£ 37,275	¢52,193
2.5\% to 2.0\%	£21,575	¢26,098	£ 31,780	¢45,025
3.0\% to 2.5\%	£20,05 I	£23,878	£28,103	¢38,992
Women				
I.0\% to 0.5\%	¢60,594	£67,543	¢84,95 I	£127,615
1.5\% to 1.0%	£42,616	¢46,468	¢56,480	¢87,04 I
2.0\% to 1.5%	¢ 35,419	£ 38,144	¢ 44,444	¢66,969
2.5\% to 2.0%	£31,045	¢33,537	£ 37,217	¢57,79 I
3.0\% to 2.5%	£30,126	¢30,842	£ 33,731	¢49,239

As can be seen, the ICERs for men are lower than those for women across all risk and age groups. In addition, the ICERs increase as the initial risk level decreases and increase as age increases. The ICERs range from approximately $£ 20,100$ and
£30,100 for men and women, respectively, aged $45-54$ years at an initial 3.0% CHD risk, to $£ 96,600$ and $£ 127,600$ for men and women aged $75-84$ years at an initial 1.0% CHD risk.

Feedback

The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.

The National Coordinating Centre for Health Technology Assessment,
Mailpoint 728, Boldrewood,
University of Southampton,
Southampton, SOI6 7PX, UK.
Fax: +44 (0) 2380595639 Email: hta@hta.ac.uk
http://www.hta.ac.uk

