Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis

J Thompson Coon, G Rogers, P Hewson, D Wright, R Anderson, M Cramp, S Jackson, S Ryder, A Price and K Stein

Feedback
The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:
- fax (with credit card or official purchase order)
- post (with credit card or official purchase order or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:
HTA Despatch
c/o Direct Mail Works Ltd
4 Oakwood Business Centre
Downley, HAVANT PO9 2NP UK
Email: orders@hta.ac.uk
Tel: 02392 492 000
Fax: 02392 478 555
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods
Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?
Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis

J Thompson Coon,1* G Rogers,1 P Hewson,2 D Wright,2 R Anderson,1 M Cramp,3 S Jackson,4 S Ryder,5 A Price6 and K Stein1

1 Peninsula Technology Assessment Group (PenTAG), Peninsula Medical School, Exeter, UK
2 School of Mathematics and Statistics, University of Plymouth, UK
3 Hepatology Research Group, Peninsula Medical School, Exeter, UK
4 Radiology Department, Plymouth NHS Hospitals Trust, UK
5 Queen’s Medical Centre, University of Nottingham, UK
6 Southampton Health Technology Assessments Group, University of Southampton, UK

* Corresponding author

Declared competing interests of authors: K Stein received an unrestricted grant from Schering Plough (UK) to carry out work on the cost-effectiveness of combination therapy for hepatitis C in 2000. KS is also a member of the editorial board for Health Technology Assessment, but he was not involved in the editorial process for this report. M Cramp sits on hepatitis C advisory boards for Schering Plough, Gilead and Roche. He has received unrestricted educational grants from Roche and Schering Plough to support research and service development. He has been awarded an NHS R&D grant looking at injecting drug users who do not have hepatitis C virus infection. J Thompson Coon received a grant from the Hepatitis C Trust to conduct a systematic review of complementary and alternative therapies for the treatment of chronic hepatitis C.

Published September 2007

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medical/EMBASE and Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The Health Technology Assessment (HTA) programme, now part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the costs, effectiveness and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined to include all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care, rather than settings of care. The research findings from the HTA Programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA Programme is needs-led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, the public and consumer groups and professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA Programme then commissions the research by competitive tender.

Secondly, the HTA Programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Thirdly, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer-reviewed by a number of independent expert referees before publication in the widely read monograph series *Health Technology Assessment*.

Criteria for inclusion in the HTA monograph series

Reports are published in the HTA monograph series if (1) they have resulted from work for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this monograph was commissioned by the HTA Programme as project number 05/31/01. The contractual start date was in September 2005. The draft report began editorial review in April 2006 and was accepted for publication in January 2007. As the funder, by devising a commissioning brief, the HTA Programme specified the research question and study design. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme or the Department of Health.

Editor-in-Chief: Professor Tom Walley
Series Editors: Dr Aileen Clarke, Dr Peter Davidson, Dr Chris Hyde, Dr John Powell, Dr Rob Riemsma and Professor Ken Stein
Programme Managers: Sarah Llewellyn Lloyd, Stephen Lemon, Stephanie Russell and Pauline Swinburne

© Queen’s Printer and Controller of HMSO 2007

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to: NCCHTA, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK.

Published by Gray Publishing, Tunbridge Wells, Kent, on behalf of NCCHTA.
Printed on acid-free paper in the UK by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk.
Abstract

Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis

J Thompson Coon,1* G Rogers,1 P Hewson,2 D Wright,2 R Anderson,1 M Cramp,3 S Jackson,4 S Ryder,5 A Price6 and K Stein1

1 Peninsula Technology Assessment Group (PenTAG), Peninsula Medical School, Exeter, UK
2 School of Mathematics and Statistics, University of Plymouth, UK
3 Hepatology Research Group, Peninsula Medical School, Exeter, UK
4 Radiology Department, Plymouth NHS Hospitals Trust, UK
5 Queen’s Medical Centre, University of Nottingham, UK
6 Southampton Health Technology Assessments Group, University of Southampton, UK
* Corresponding author

Objectives: To evaluate the effectiveness, cost-effectiveness and cost–utility of surveillance of patients with cirrhosis [alcoholic liver disease (ALD)-, hepatitis B (HBV)- and C virus (HCV)-related], using periodic serum α-fetoprotein (AFP) testing and/or liver ultrasound examination, to detect hepatocellular carcinoma (HCC), followed by treatment with liver transplantation or resection, where appropriate.

Data sources: Electronic databases were searched up to March 2006.

Review methods: A systematic review was carried out using standard methodological guidelines. A computerised decision-analytic model was then developed to compare various surveillance strategies.

Results: No studies were identified that met the criteria of the systematic review. Based on the assumptions used in the model, the most effective surveillance strategy uses a combination of AFP testing and ultrasound at 6-monthly intervals. Compared with no surveillance, this strategy is estimated to more than triple the number of people with operable HCC tumours at time of diagnosis, and almost halves the number of deaths from HCC. On all effectiveness measures and at both testing frequencies, AFP- and ultrasound-led surveillance strategies are very similar. This may be because test sensitivity was varied according to tumour size, which means that AFP testing is capable of identifying many more small tumours than ultrasound. The best available evidence suggests that AFP tests will detect approximately six times as many small tumours as ultrasound. Increasing the frequency of either test to 6-monthly intervals is more effective than performing combined testing on an annual basis. The undiscounted lifetime cost of the surveillance strategies, including all care and treatment costs, ranges from £40,300 (annual AFP triage) to £42,900 (6-monthly AFP and ultrasound). The equivalent discounted costs are £28,400 and £30,400. Only a small proportion of these total costs results from the cost of the screening tests. However, screening test costs, and the cost of liver transplants and caring for people post-transplant, accounted for most of the incremental cost differences between alternative surveillance strategies. The results suggest that different surveillance strategies may provide the best value for money in patient groups of different cirrhosis aetiologies. The surveillance of people with HBV-related cirrhosis for HCC provides the best value for money, while surveillance in people with ALD-related cirrhosis provides the poorest value for money. In people with HBV-related cirrhosis, at an assumed maximum willingness to pay (WTP) for a quality-adjusted life-year (QALY) of £30,000, both the deterministic and probabilistic cost–utility analyses suggest the optimal surveillance strategy would be 6-monthly surveillance with the combination of AFP testing and ultrasound. In contrast, for those with ALD-related cirrhosis, annual screening with AFP as a triage test is the only surveillance strategy that is likely to be considered cost-effective at this WTP. The probabilistic analysis implies that the estimated benefits of a 6-monthly AFP triage strategy will only be worth the cost in those with ALD when society’s WTP for a QALY exceeds around £40,000. For people with HCV-related cirrhosis, the model suggests that the most
cost-effective surveillance strategy at a WTP threshold of £30,000/QALY would be surveillance with a 6-monthly AFP triage strategy.

Conclusions: In a mixed-aetiology cohort, the most effective surveillance strategy is to screen each patient with AFP assay and ultrasound imaging on a 6-monthly basis. However, when costs are taken into account it is doubtful whether ultrasound should be routinely offered to those with blood AFP of less than 20 ng/ml, unless policy-makers are prepared to pay over £60,000 per QALY for the benefits achieved. Furthermore, the cost-effectiveness of surveillance for HCC varies considerably depending on the aetiology of cirrhosis; it is much more likely to be cost-effective in those with HBV-related cirrhosis, and much less likely to be cost-effective in those with ALD-related cirrhosis. Further development of the model would help to enable refinement of an optimal screening strategy. Research into the use of contrast-enhanced ultrasound technology for HCC detection would also be valuable, as would research into the epidemiology and natural history of ALD-related cirrhosis. Studies are also needed to investigate the influence of cirrhosis aetiology on tumour AFP expression.
Contents

Glossary and list of abbreviations vii
Executive summary ix

1 Aim and background 1
Aim ... 1
Epidemiology and natural history of hepatic cirrhosis ... 1
Epidemiology and natural history of hepatocellular carcinoma 3
Treatment for hepatocellular carcinoma ... 7
Screening for and diagnosis of hepatocellular carcinoma ... 11
Quality of life ... 16

2 Systematic review 19
Methods .. 19
Results ... 19

3 Cost-effectiveness model: methods 21
Overview of model 21
Model structure 21
Simulated populations 21
Disease process/natural history 21
Surveillance programme 23
Treatment ... 25
Parameters .. 26
Discounting ... 30
Dealing with uncertainty 30

4 Cost-effectiveness model: parameters 35
Overriding principles 35
Selection of parameters: baseline characteristics ... 35
Selection of parameters: transitions 37
Selection of parameters: resources 51
Selection of parameters: utilities 56

5 Cost-effectiveness model: results 61
Effectiveness of surveillance 61
Costs of surveillance 65
Cost-effectiveness of surveillance 65
Sensitivity analyses 72

6 Discussion .. 103
Summary and interpretation of main findings ... 103
Strengths and weaknesses of the study 108
Comparison with other studies 112
Implications for policy 112
Recommendations for further research 113

Acknowledgements 115
References ... 117
Appendix 1 Assessment protocol 137
Appendix 2 Systematic review: search strategies ... 143
Appendix 3 Systematic review: identification, retrieval and inclusion/exclusion of studies .. 157
Appendix 4 Systematic review: studies excluded at full-text stage 159
Appendix 5 Expert advisory group 163
Appendix 6 One-way sensitivity analyses (net benefit) ... 165
Appendix 7 Comparison of all surveillance strategies with no surveillance 167
Appendix 8 Additional outputs from Monte Carlo simulations 171
Appendix 9 Expected value of perfect information results .. 175
Appendix 10 Individual sampling tumour growth model: methods 177
Appendix 11 Comparison of present study with other published cost-effectiveness analyses .. 185
Health Technology Assessment reports published to date 187
Health Technology Assessment Programme ... 203
Glossary and list of abbreviations

Technical terms and abbreviations are used throughout this report. The meaning is usually clear from the context, but a glossary is provided for the non-specialist reader. In some cases, usage differs in the literature, but the term has a constant meaning throughout this review.

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Quality-adjusted life-year</th>
<th>A measure of health outcome that weights time spent in a health state according to the quality of that health state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine transferase</td>
<td>Ascites</td>
<td>An accumulation of fluid in the abdomen which may occur as a result of cirrhosis of the liver.</td>
</tr>
<tr>
<td>An enzyme present in the liver, levels of which are raised in cases of viral hepatitis.</td>
<td>An enzyme present in the liver, levels of which are raised in cases of viral hepatitis.</td>
<td>Ascites</td>
</tr>
<tr>
<td>Ascites</td>
<td>A condition in which the liver responds to injury or death of some of the cells by producing interlacing strands of fibrous tissue between which are nodules of regenerating cells.</td>
<td>Ascites</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>A condition in which the liver responds to injury or death of some of the cells by producing interlacing strands of fibrous tissue between which are nodules of regenerating cells.</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>The formation of fibrous or scar tissue.</td>
<td>Fibrosis</td>
</tr>
<tr>
<td>Genotype</td>
<td>The genetic information carried by a pair of alleles which controls a particular characteristic.</td>
<td>Genotype</td>
</tr>
<tr>
<td>Multinodular</td>
<td>A hepatocellular carcinoma (HCC) tumour type which is either a collection of discrete lesions developing synchronously (multicentric HCC), or one dominant mass and a number of ‘daughter’ nodules (intrahepatic metastases).</td>
<td>Multinodular</td>
</tr>
<tr>
<td>Quality-adjusted life-year</td>
<td>A measure of health outcome that weights time spent in a health state according to the quality of that health state.</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>The proportion of people who have a disease and are correctly classified as having the disease by a diagnostic test.</td>
<td>Specificity</td>
</tr>
<tr>
<td>Specificity</td>
<td>The proportion of people who do not have a disease and are correctly classified as not having it by a diagnostic test.</td>
<td>Utility</td>
</tr>
<tr>
<td>Utility</td>
<td>A measure of the value attached to a health state. Used to weight time spent in that health state in cost–utility analyses.</td>
<td>Variceal bleeding</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>authors' assumption</td>
</tr>
<tr>
<td>AFP</td>
<td>alpha-fetoprotein</td>
</tr>
<tr>
<td>ALD</td>
<td>alcoholic liver disease</td>
</tr>
<tr>
<td>CEAC</td>
<td>cost-effectiveness acceptability curve</td>
</tr>
<tr>
<td>CEUS</td>
<td>contrast-enhanced ultrasound</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>C-P</td>
<td>Child–Pugh</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>DCP</td>
<td>dex-gamma carboxyprothrombin</td>
</tr>
<tr>
<td>EO</td>
<td>expert opinion</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>EuroQol 5 Dimensions</td>
</tr>
<tr>
<td>EVPI</td>
<td>expected value of perfect information</td>
</tr>
<tr>
<td>HBV</td>
<td>hepatitis B virus</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCC_L</td>
<td>large HCC tumour</td>
</tr>
<tr>
<td>HCC_M</td>
<td>medium-sized HCC tumour</td>
</tr>
<tr>
<td>HCC_S</td>
<td>small HCC tumour</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C virus</td>
</tr>
<tr>
<td>HRQoL</td>
<td>health-related quality of life</td>
</tr>
<tr>
<td>HUI</td>
<td>Health Utility Index</td>
</tr>
<tr>
<td>ICER</td>
<td>incremental cost-effectiveness ratio</td>
</tr>
<tr>
<td>IQR</td>
<td>interquartile range</td>
</tr>
<tr>
<td>ITT</td>
<td>intention-to-treat</td>
</tr>
<tr>
<td>LUS</td>
<td>liver ultrasound (examination)</td>
</tr>
<tr>
<td>MELD</td>
<td>Model for End-stage Liver Disease</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>NA</td>
<td>not applicable</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NNS</td>
<td>number needed to be under surveillance</td>
</tr>
<tr>
<td>NR</td>
<td>not reported</td>
</tr>
<tr>
<td>NS</td>
<td>not stated</td>
</tr>
<tr>
<td>NSRC</td>
<td>National Schedule of Reference Costs</td>
</tr>
<tr>
<td>OLT</td>
<td>orthotopic liver transplantation</td>
</tr>
<tr>
<td>ONS</td>
<td>Office for National Statistics</td>
</tr>
<tr>
<td>PEI</td>
<td>percutaneous ethanol injection</td>
</tr>
<tr>
<td>PLC</td>
<td>primary liver cancer</td>
</tr>
<tr>
<td>PSA</td>
<td>probabilistic sensitivity analysis</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RFA</td>
<td>radiofrequency thermal ablation</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SF-36</td>
<td>(Medical Outcomes Study) Short Form 36</td>
</tr>
<tr>
<td>SG</td>
<td>standard gamble</td>
</tr>
<tr>
<td>SR</td>
<td>systematic review</td>
</tr>
<tr>
<td>TACE</td>
<td>transarterial chemoembolisation</td>
</tr>
<tr>
<td>TNM</td>
<td>tumour node metastasis</td>
</tr>
<tr>
<td>UKT</td>
<td>UK Transplant</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
</tr>
<tr>
<td>WTP</td>
<td>willingness to pay</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case the abbreviation is defined in the figure legend or at the end of the table.
Background

Cirrhosis is long-term liver damage from the build-up of scar tissue (fibrosis) which, as it develops, impairs effective blood flow and inhibits the organ’s vital functions. There are many causes of cirrhosis, including viral hepatitis [hepatitis B and C virus (HBV and HCV)], excessive alcohol intake, non-alcoholic fatty liver disease, primary biliary cirrhosis and haemochromatosis (iron overload).

Cirrhosis can remain in an asymptomatic (compensated) state for many years. The onset of overt liver failure (decompensation) is characterised by a variety of symptoms including ascites, portosystemic encephalopathy, gastrointestinal bleeding and hepatorenal syndrome, and is often the first indication of previously silent liver disease.

Hepatocellular carcinoma (HCC) is a malignant tumour arising from liver cells (hepatocytes) and occurs mainly in cirrhotic livers. HCC affects around twice as many men as women and is more common in those above the age of 40. There is some evidence for a recent rise in incidence of HCC in England with age-adjusted incidence rising from 1.8 per 100,000 men and 0.6 per 100,000 women in 1995 to 2.8 and 0.8, respectively, in 2002. Curative treatment options include resection and orthoptic liver transplantation. Palliative treatments include percutaneous ethanol injection, radiofrequency ablation and transcatheter chemoablation.

Two diagnostic tests are routinely used to detect HCC in clinical practice: serum α-fetoprotein (AFP) and ultrasonography. The sensitivity of AFP as a diagnostic tool is restricted by the existence of non-AFP-secreting tumours. The reliability of ultrasonographic diagnosis depends on a range of factors, including the expertise of the operator, the sophistication of the equipment and the size and nature of the tumour.

Routine periodic surveillance of individuals with cirrhosis is currently recommended by UK, European and American clinical guidelines. A 2002 survey confirmed that approximately three-quarters of UK gastroenterologists undertake a formal programme of surveillance for HCC in cirrhosis, mostly using a combination of AFP and ultrasound. The optimal screening frequency has not been established, although an interval of 6 months is recommended in UK and European guidelines, purportedly on the basis of available evidence on tumour growth rate.

Observational data suggest that HCCs detected during formal surveillance are smaller and more likely to be a single lesion than those that present symptomatically or by chance. Consequently, patients whose disease is detected as a result of surveillance are more likely to receive curative treatment than those whose diagnosis is symptomatic or incidental.

Objective

The objective of this report was to evaluate the effectiveness, cost-effectiveness and cost-utility of surveillance of patients with cirrhosis [alcoholic liver disease (ALD)-, HBV- and HCV-related], using periodic serum AFP testing and/or liver ultrasound examination, to detect HCC, followed by treatment with liver transplantation or resection, where appropriate.

Methods

Systematic review

Electronic databases were searched for randomised clinical trials of surveillance (with AFP and ultrasound) of people with cirrhosis of known underlying cause (ALD, HBV, HCV) for HCC. Updated searches were performed in March 2006.

Economic analysis

A computerised decision-analytic model was developed to compare various surveillance strategies. Comparisons were made between:

- no surveillance
- annual surveillance using AFP as the initial screening test
- annual surveillance using ultrasound alone
- annual surveillance using AFP and ultrasound
- 6-monthly surveillance using AFP as the initial screening test
The study modelled a population with a diagnosis of compensated cirrhosis who are also eligible to enter a surveillance programme. Those deemed eligible were aged 70 years or less, with no pre-existing medical conditions that would preclude treatment with liver transplantation or hepatic resection (including current alcohol or intravenous drug abuse).

Previously published research and a panel of clinical experts helped to inform the structure of the model. A Markov model was used to capture both natural disease progression and diagnostic and treatment pathways reflective of current best clinical practice in the UK NHS. HCC tumours are detected as a result of regular surveillance and symptomatic or incidental diagnosis. Surgical treatment of small or medium-sized tumours is predominantly by liver transplantation; liver resection is also possible, particularly in people with small tumours. Surgical treatment of people with large tumours is not possible within the confines of the model. People with decompensated cirrhosis or a surgically treatable tumour enter the transplant waiting list and have an equal chance of receiving a liver transplant. People deemed to have surgically untreatable HCC enter a range of simpler model states which simulate the costs and effectiveness of palliative care and best supportive care.

Parameter estimates were obtained from comprehensive literature reviews. No methodological restrictions were applied, but searches were limited to papers published or available in English.

The technical performance of the alternative testing strategies was modelled using decision trees. Test sensitivity for AFP and ultrasound was varied according to tumour size. Expected costs and utilities for each surveillance strategy were calculated using both a cohort and a Monte Carlo simulation approach. The model runs for the lifetime of the cohort. Costs (base year 2004) and benefits (QALYs) were discounted at 3.5%.

The model was developed to allow separate analysis of each of the three main cirrhosis aetiologies (ALD, HBV and HCV).

Uncertainty in the model was explored using extensive one-way sensitivity analyses, selected scenario analyses and probabilistic sensitivity analysis. A value of information analysis was conducted to determine the maximum possible value of further research.

Results
Systematic review
The searches returned 214 separate references. From screening of abstracts, 207 of these were excluded, leaving seven potentially relevant studies to be reviewed in full. All seven were excluded at this stage [no results for patients with cirrhosis ($n=3$), modelling study ($n=1$), narrative review ($n=2$), uncontrolled cohort study ($n=1$)].

Economic analysis
Effectiveness of surveillance
Based on the assumptions used in the model, the most effective surveillance strategy uses a combination of AFP testing and ultrasound at 6-monthly intervals. Compared with no surveillance, this strategy is estimated to more than triple the number of people with operable HCC tumours at time of diagnosis, and almost halve the number who die from HCC. This is a result of the identification of over ten times as many small HCC tumours (less than 2 cm in diameter) and over twice as many medium-sized tumours (between 2 and 5 cm in diameter). Consequently, more tumours are suitable for surgical intervention. Under the conditions of the model, this surveillance strategy would lead to an increase in the percentage of liver transplantations performed for known HCC (as opposed to decompensated cirrhosis) from 8% to 28%, compared with no surveillance.

On all effectiveness measures and at both testing frequencies, AFP- and ultrasound-led surveillance strategies are very similar. This may be because test sensitivity was varied according to tumour size, which means that AFP testing is capable of identifying many more small tumours than ultrasound. The best available evidence suggests that AFP tests will detect approximately six times as many small tumours as ultrasound. Increasing the frequency of either test to 6-monthly intervals is more effective than performing combined testing on an annual basis.

Cost of surveillance
The undiscounted lifetime cost of the surveillance strategies, including all care and treatment costs, ranges from £40,300 (annual AFP triage) to £42,900 (6-monthly AFP and ultrasound). The equivalent discounted costs are £28,400 and
£30,400. Only a small proportion (<4% of undiscounted costs) of these total costs results from the cost of the screening tests. However, screening test costs, and the cost of liver transplants and caring for people post-transplant, accounted for most of the incremental cost differences between alternative surveillance strategies.

Cost-effectiveness of surveillance

The results suggest that different surveillance strategies may provide the best value for money in patient groups of different cirrhosis aetiologies. The surveillance of people with HBV-related cirrhosis for HCC provides the best value for money, while surveillance in people with ALD-related cirrhosis provides the poorest value for money.

In people with HBV-related cirrhosis, at an assumed maximum willingness to pay (WTP) for a quality-adjusted life-year (QALY) of £30,000, both the deterministic and probabilistic cost–utility analyses suggest the optimal surveillance strategy would be 6-monthly surveillance with the combination of AFP testing and ultrasound.

In contrast, for those with ALD-related cirrhosis, annual screening with AFP as a triage test is the only surveillance strategy that is likely to be considered cost-effective at this WTP. NHS investment in more effective surveillance strategies probably represents an unacceptable cost for the extra benefits gained (e.g. £35,000 per QALY gained by moving to a 6-monthly AFP triage strategy). In addition, there is a high degree of uncertainty in the ALD model. The probabilistic analysis implies that the estimated benefits of a 6-monthly AFP triage strategy will only be worth the cost when society’s WTP for a QALY exceeds around £40,000.

For people with HCV-related cirrhosis, and again applying this WTP threshold, the model suggests that the most cost-effective surveillance strategy would be surveillance with a 6-monthly AFP triage strategy.

It may not be considered practical to have separate screening strategies for people with cirrhosis of different aetiology. Results for an artificially produced mixed cohort containing people with HBV, ALD and HCV suggest that, if one surveillance policy had to be applied across cirrhosis cohorts of all three aetiologies, 6-monthly AFP with ultrasound is always the most effective option and, at commonly accepted levels of WTP for QALYs, 6-monthly AFP as a triage test is the most cost-effective strategy.

These results should be viewed with caution for a number of reasons. Considerable uncertainty still surrounds some of the underlying parameters that influence the cost-effectiveness estimates. In addition, some of the differences between aetiologies may be more attributable to the mean age at diagnosis than to any inherent differences in the nature of disease progression. Lastly, the discounting of costs and benefits has a major impact on the cost-effectiveness results.

Conclusions

In a mixed aetiology cohort, the most effective surveillance strategy is to screen each patient with AFP assay and ultrasound imaging on a 6-monthly basis. However, when costs are taken into account it is doubtful whether ultrasound should be routinely offered to those with blood AFP of less than 20 ng/ml, unless policy makers are prepared to pay a very high price (over £60,000 per QALY) for the extra benefits achieved. Furthermore, the cost-effectiveness of surveillance for HCC varies considerably depending on the aetiology of cirrhosis; it is much more likely to be cost-effective in those with HBV-related cirrhosis, and much less likely to be cost-effective in those with ALD-related cirrhosis. This may be largely due to the younger age at diagnosis of cirrhosis in patients with HBV. This raises the possibility that there may be further subgroups of patients with ALD and HCV, diagnosed with cirrhosis at a younger age, in whom more intensive surveillance might provide value for money.

Implications for policy

The results show that surveillance strategies for HCC are effective, and can often be considered cost-effective in patients with cirrhosis. We believe that the implementation of formal surveillance programmes should be considered where they do not currently exist.

The results also suggest that different surveillance strategies in patient groups with different underlying causes of cirrhosis may provide the best value for money, if appropriate recall systems could be implemented, and also if this was judged to be ethically acceptable.

A surveillance strategy in which AFP testing is used as a triage step probably represents the best value for money.
These results also suggest a possible shift in the clinical settings where cirrhosis surveillance is conducted; as AFP triage appears to be a highly cost-effective strategy, either annually or 6-monthly, it may be more appropriate to perform the initial screening test in the primary care setting.

If effective surveillance programmes were to become widespread across the UK against a background of limited organ supply, the waiting list for liver transplants would undoubtedly increase. Detailed exploration of this was beyond the scope of this project, but preliminary findings suggest that this might be an important issue.

Recommendations for further research

Model development
- Extensive value of information analysis should be used to identify which parameters or groups of parameters contribute most to the uncertainty in the cost-utility results, and therefore suggest priorities for further primary research.
- Alternative modelling methods should be used to account for heterogeneity in the patient population, so that the impact of factors such as tumour growth rate, tumour characteristics and variability in individual patients’ serial test results may be accurately assessed. Such methods could also be used to investigate the optimal surveillance strategy, optimal surveillance interval and the effects of surveillance on waiting lists for liver transplantation.
- Further investigation is needed into the accepted cut-off levels for AFP tests and how different cut-off levels impact on the effectiveness and cost-effectiveness of surveillance for HCC.
- Further modelling studies should investigate innovative surveillance strategies not currently undertaken in clinical practice.
- Further modelling studies should investigate the impact of alternative treatment modalities (e.g. more resection of small tumours, radiofrequency ablation as a ‘curative’ treatment of small tumours), because identifying more operable HCC tumours will probably lead to longer transplant waiting lists.
- Further modelling is needed of the impact of age at diagnosis of cirrhosis on the cost-effectiveness of surveillance strategies.
- Anecdotal reports suggest that non-alcohol fatty liver disease is increasing in incidence and will soon represent the second largest cause of cirrhosis in the UK. Further modelling studies are needed to assess the effectiveness and cost-effectiveness of surveillance in this patient group.

Other research
- The effectiveness and cost-effectiveness of microbubble ultrasound technology to detect HCC tumours should be evaluated, and the test performance in various stages of cirrhosis/aetiologies compared with explant pathology.
- Epidemiological research in the UK is needed to assess the incidence and rate of tumour growth of HCC in different cirrhosis aetiologies.
- The association between the level of AFP secreted and tumour size in different cirrhosis aetiologies needs to be assessed.
- Detailed observational research is needed on the epidemiology and natural history of ALD-related cirrhosis. Despite existing evidence that ALD accounts for the majority of the UK’s disease burden of cirrhosis, and emerging evidence that alcohol consumption is rising, ALD-related cirrhosis remains particularly poorly described in the literature.
- Observational studies could be conducted which collect AFP measurements on the same population of people with cirrhosis over time, and investigate the relationship between the emergence or presence of HCC tumours and patterns of change in AFP levels over time (as opposed to the predictive ability of particular absolute AFP thresholds).
- Quality of life studies should assess the utility of all stages of disease, during assessment for treatment, during and post-treatment in all cirrhosis aetiologies in a UK population.
Aim
The aim of this research was to determine the effectiveness, cost-effectiveness and cost-utility of surveillance of patients with cirrhosis, using periodic serum alpha fetoprotein (AFP) testing and/or ultrasound examination, to detect hepatocellular carcinoma (HCC), followed by treatment with liver transplantation or resection, where appropriate.

The assessment protocol is reproduced in full in Appendix 1.

Epidemiology and natural history of hepatic cirrhosis
Although the liver is extremely efficient at recovering from isolated insults, exposure to long-term damage results in the build-up of scar tissue (fibrosis) which, as it develops, impairs effective blood flow and inhibits the organ’s vital functions, including its ability to regenerate itself. The progressive, irreversible form of this liver disease is referred to as cirrhosis, a term that derives from an ancient Greek word, kírhos (orange-coloured), in reference to the distinctive appearance of affected livers at autopsy.

Aetiology
Hepatic cirrhosis can have a wide variety of causes, by far the most common of which are viral hepatitis [hepatitis B virus (HBV) and hepatitis C virus (HCV)] and alcoholic liver disease (ALD). The relative importance of these factors is heavily dependent on geography: in most industrialised countries, alcoholic aetiology predominates whereas, in most of the developing world and Mediterranean Europe, postviral cirrhosis is more common.

Hepatitis B
In adults, the great majority of HBV infections are either silent or predisposed to swift recovery, but a proportion of affected people will subsequently develop ‘carrier’ status (more properly, chronic, asymptomatic HBV infection). It is these people who are at risk of developing hepatic cirrhosis. The rate of cirrhosis development in patients with chronic HBV is estimated to be in the range 2–5.4 per 100 person-years, with a 5-year cumulative incidence of cirrhosis of 8–20%.1

HBV prevalence in the UK is low, with a lifetime risk of infection estimated at between 0.42 and 0.55%.5 It is estimated that around 0.5 per 100,000 UK residents develop chronic HBV each year, with a lifetime risk in the region of 0.04–0.05%.2,3 HBV therefore makes a relatively minor contribution to cirrhosis in the UK: a 1985 cross-sectional analysis of patients with cirrhosis in London suggested that 7.7% had chronic HBV infection,4 and a more recent survey from Birmingham identified just 4.5% of patients with the virus.3 These proportions are consistent with those reported in other countries with a low prevalence of HBV: 4.2% in France,6 7% in the USA7 and 7.5% in Spain,8 and much lower than estimates from areas with higher HBV endemicity, for example 13% in Italy,9 20% in Japan,10 58% in Korea,11 63.3% in central Africa12 and 74.5% in China.13

Hepatitis C
As with HBV, the acute phase of HCV infection is predominantly asymptomatic. However, rates of chronicity are much higher in HCV: only about 20% of infected patients clear the virus, and the remaining proportion are subject to variable progression of liver inflammation and fibrosis which may culminate in cirrhosis.14 This process can be reflected in symptomatic presentation (nausea, anorexia, chronic fatigue) but, more often, it is clinically silent until the liver is quite extensively damaged.15 The rate at which chronic HCV infections progress to cirrhosis depends on an array of factors. Freeman and colleagues meta-analysed 57 studies addressing this issue, concluding that the key markers of accelerated development of cirrhosis are male gender, heavy alcohol use, elevation of alanine aminotransferase (ALT, an important biological marker of liver function) and degree of liver inflammation. Their predictive model suggests that, 20 years after HCV infection, the rate of progression to cirrhosis ranges from 10% in low-risk individuals to 25% in high-risk cases.16 In retrospective analyses of patients with cirrhosis, including one based on a Scottish population,17 it is estimated that...
progression to cirrhosis occurs a median of 30–35 years after infection with HCV.18,19

The World Health Organization (WHO) estimates that about 3% of the world’s population has been infected with HCV, leading to around 170 million chronically infected cases globally. Geographical distribution appears to be quite sporadic, but broadly follows the trend of lower prevalence in richer countries.20 In relative terms, the UK has very low prevalence of HCV. The Department of Health’s HCV strategy assumes that 0.4% of the general population in England have chronic HCV infection,14 although this is thought to be a conservative estimate.21 The main route of transmission, since the introduction of effective screening of blood products, is the sharing of blood-contaminated needles in injecting drug users. There are limited data on the role played by HCV in the aetiology of cirrhosis in the UK. One published analysis reports that 7.6% of cirrhoses detected in a single Birmingham unit were associated with HCV positivity.5 Although this estimate is based on a relatively small sample, it is notable that the proportion is extremely low in comparison with those reported in other countries: 17% in France,6 21% in Belgium,22 27–35% in the USA,23 29% in Spain,8 51% in Africa,24 58% in Japan25 and 69.9% in Italy.9

Alcohol
It is estimated that approximately 10–20% of chronic heavy drinkers develop cirrhosis in their lifetime.26 There is conflicting evidence as to whether alcohol exerts a dose–response27,28 or threshold29,30 effect, although it appears that there is generally little danger in low levels of alcohol consumption [fewer than 30 g (around 4 units) of alcohol per day31]. Predominant consumption of spirits32,33 (especially illicit, home-made liquor34) may exacerbate the risk. Conversely, a drinking pattern dominated by meal-time consumption may be associated with lower rates of disease.31

It has been suggested that up to 80% of all UK cirrhoses are related to a history of heavy alcohol consumption,35 although studies based on hospital admission statistics suggest the true proportion is around 60%.5,56 Such findings fit well with the 60.5% reported by an extensive cohort study based on mortality statistics from Denmark,37 a country with similar drinking patterns to the UK38 and comparable prevalence of HBV39 and HCV.20 Broadly speaking, the proportions of alcohol-related cases reported from other countries are inversely associated with the prevalence of viral hepatitis: 69.5% in France,6 61% in Belgium,22 60.5% in Denmark,37 59% in Spain,8 35% in the USA,23 31.9% in Italy9 and 21.9% in Japan.40

It should be noted that these risk factors are not mutually exclusive. The combination of HCV infection and alcohol misuse, in particular, appears to constitute a potent interaction in the development of cirrhosis.19,41,42

There are several other risk factors for the development of cirrhosis: liver damage secondary to obesity43 and spontaneous degeneration of the bile ducts (primary biliary cirrhosis). Haemochromatosis, autoimmune disease and metabolic disease may also be important precursors for the development of cirrhosis. Finally, it should be acknowledged that, although the proportion diminishes as knowledge advances, some cirrhoses are still classified as ‘cryptogenic’ (i.e. of unknown cause).

Incidence
Because cirrhosis frequently goes undetected, it is extremely challenging to provide an accurate estimate of its overall prevalence. Several investigators have studied the proportion of cirrhotic livers among extensive series of autopsies; those from northern and eastern Europe suggest a prevalence of 2–6%,44–48 although the rate reached 9.5% in Italy.49

Natural history
Because of the liver’s relative resilience, cirrhosis can remain in an asymptomatic (compensated) phase for many years. The onset of overt liver failure (decompensation) is characterised by a variety of symptoms, including the following:

- **Ascites** (abdominal swelling caused by the accumulation of fluid within the peritoneal cavity) is the most common presenting symptom.50–52 This can lead to further complications, including pleural effusions, hernias and, most seriously, spontaneous bacterial peritonitis. In patients with compensated cirrhosis, the 5-year cumulative incidence of ascites is approximately 30%. Once ascites develops, 1-year survival is about 50%.53

- **Portosystemic encephalopathy** is a neuropsychiatric condition, which arises as a result of imperfect liver function and secondary circulatory complications, leading to increased exposure to neurotoxic substances in the cerebral bloodstream. The incidence of overt hepatic encephalopathy among patients with
compensated cirrhosis has been estimated at 17.4%, although subclinical neuropsychiatric dysfunction has been demonstrated in 30–84% of patients with cirrhosis.

- **Gastrointestinal bleeding**: because of the back-pressure caused by obstructed portal veins, varices (dilated veins, which are susceptible to rupture) commonly develop in the oesophagus. Oesophageal varices develop in 50–60% of patients with liver cirrhosis, and up to one-third of these patients have a variceal haemorrhage within 2 years of diagnosis.

- **Hepatorenal syndrome**: renal failure secondary to hepatic dysfunction occurs in 40% of patients with cirrhosis and ascites over 5 years.

The most widely used summary measure of decompensation is the Child–Pugh score. Proposed by Child and Turcotte in 1964 and modified by Pugh and colleagues in 1973, the score provides a simple system for stratifying liver failure. It subdivides patients into three categories on the basis of a composite score built from five assessments: jaundice (measured by serum bilirubin), liver synthetic function [measured by serum albumin and prothrombin time and/or international normalised ratio (INR)] and overt symptoms (ascites and encephalopathy). The benchmarks that make up the score are shown in Table 1.

It has been demonstrated that Child–Pugh scores correlate well with prognosis. The proportion of patients surviving for 5 years from first onset of overt symptoms is 52–70% for grade A patients, 32–50% for grade B patients and 2–36% for grade C patients, with more recent studies providing estimates at the top end of these ranges.

Incidence of decompensation

Studies of Western cohorts with viral cirrhosis have reported that around 20% of patients develop decompensation within 5 years of diagnosis (although it should be emphasised that many of these patients will have had an extended prehistory of silent cirrhosis). There is some suggestion that patients with HCV-related cirrhosis are more likely to develop decompensation than those with HBV (5-year cumulative incidence of 28% and 16%, respectively; \(p = 0.0094 \)).

Symptomatic decompensation is often the first indication of previously silent liver disease. Cohort studies suggest a high but variable proportion of patients presenting in a decompensated state. Underlying aetiology may be a significant factor in this variability, with viral cirrhoses being detected at an earlier stage and patients with cirrhosis of alcoholic origin presenting with more advanced failure.

Epidemiology and natural history of hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the name given to tumours arising from liver cells (hepatocytes). HCC is considered to be the most common type of primary liver tumour, although data from the office for National Statistics (ONS) show that, in England, intrahepatic biliary...
cancer (cholangiocarcinoma) may be more common,70 certainly among women.

Aetiology

HCC is unusual among cancers, since its aetiology is well understood. Overwhelmingly, the premalignant condition is hepatic cirrhosis. In British narrative reviews of HCC, it is commonly asserted that around 80% of tumours develop in cirrhotic livers.71–73 This figure is in line with the results of a few small UK series from the 1980s, in which rates of 73–80% were reported,74–76 and comparable with data from elsewhere in Europe (71–88% in France,77–80 75–90% in Germany,81–85 77–97% in Italy86–92 and 93% in Spain93). The picture may be different in North America, where similar studies suggest that the proportion of HCC patients who have cirrhosis is as low as 58%94 to 63%.95

The rate at which cirrhotic livers progress to HCC is one of the key topics under review in the present study, and is addressed in detail below. It is generally asserted that HCCs develop in cirrhotic livers at a rate of approximately 3–5% per year,73,96,97 although it is acknowledged that rates may vary according to the aetiology of underlying liver disease. Fattovich and colleagues pooled data on HCC development from a number of cohort studies of European or US patients with cirrhosis (compensated at trial entry; no antiviral treatment). They calculated the annual rate of progression to be around 2.2% in HBV-related cirrhosis, 3.7% in HCV-positive patients and 1.7% in alcohol-related cases.67,98,99

In postviral cirrhosis, there is some suggestion that the genotype of the virus may be related to carcinogenesis. Evidence is strongest in HCV, in which genotype 1b appears to be associated with an increased risk of HCC.100–102 There is little evidence surrounding the relationship between viral genotype and carcinogenesis in HBV. A study from Taiwan suggests that genotype C may be more carcinogenic; however, this genotype is uncommon in Western populations.103

A variety of other factors is linked to hepatocellular carcinogenesis:

- **Oral contraceptives** have been associated with increased risk of HCC. Yu and Yuan meta-analysed eight case–control studies conducted in relatively young US white and European women (predominantly without cirrhosis), calculating an odds ratio of 2.5 [95% confidence interval (CI) 1.7 to 3.5] in those who had used oral contraceptives compared with those who had not.104

- **Smoking** appears to increase the risk of HCC, although this effect may only act synergistically in combination with heavy alcohol consumption.105

- **Occupational exposure to vinyl chloride** is also recognised as a significant risk factor for hepatocellular carcinogenesis.106

Incidence

Global data suggest that more than 500,000 new cases of primary liver cancer (PLC) develop each year, equating to an age-adjusted worldwide incidence of 14.97 per 100,000 men and 5.51 per 100,000 women per year.107 This makes the liver the fifth most common site of primary neoplasia,108 accounting for an estimated 5.6% of all new cancers worldwide.107

By comparison, PLC is less prevalent in the UK. In 2002 (the year for which most recent UK registry data are available), 2248 cases were registered in England, giving an age-adjusted incidence of 3.4 per 100,000. In total, 0.8% of cancer registrations were made under International Classification of Diseases-10 (ICD-10) code C22 (malignant neoplasm of liver and intrahepatic bile ducts), making it only the 23rd most common three-figure code in the registry.109

On average, 893 cases of HCC were registered each year in England in 1995–2002, equating to an age-adjusted incidence of 1.5 per 100,000.

Demographics

In England, HCC affects around twice as many men as women: in 1995–2002, the male to female ratio was 2.23 (= 9:4). The asymmetry peaks in the age group 45–65 years, in which affected men outnumber women by a factor of more than 3.5.

HCC is extremely rare in young people in England: registry data suggest an annual incidence in the order of one per million underforties. Above the age of 40, incidence increases fairly sharply, to a peak of 14.9 per 100,000 men and 5.1 per 100,000 women in the 75–79 age group (Figure 1).

Time-related trends in incidence and mortality

In recent years, several authors have reported increasing incidence of PLC in general and/or HCC in particular, on the basis of either cancer registries or mortality statistics. There appears to be persuasive evidence in Japanese,70,110
French,70,79,111,112 Italian,70,91,112 Australian,70 Canadian113 and US70,114–118 populations.

UK data appear to be more ambiguous. Taylor-Robinson and co-workers’ review of mortality rates from 1979 to 1994 concluded that, while deaths from all causes of PLC almost doubled in the period, the recorded rates of HCC remained “relatively static”119 (a finding which has led the same authors to focus attention on the rising incidence of intrahepatic cholangiocarcinoma120). La Vecchia and colleagues were unable to detect any consistent trend in PLC mortality in UK data from 1970 to 1996, while recording significant increases over the same period in some other European states,112 results that are echoed in Khan and colleagues’ review of international data from 1979 to 1997.70

In contrast, a rising incidence of HCC is an unmistakable feature of the more recent registry data made available to us by the National Cancer Intelligence Centre at the ONS, as shown in Figure 2. A steady escalation is apparent, with age-adjusted incidence rising from 1.8 per 100,000 men and 0.6 per 100,000 women in 1995 to 2.8 and 0.8, respectively, in 2002. During this period, the number of registrations of HCC rose by almost two-thirds, from 665 to 1099.

Several hypotheses have been put forward to explain the rising incidence of HCC. Any underlying increase in the prevalence of hepatitis viruses would be expected to result in a commensurate rise in cases of HCC. UK experts are concerned that HCV prevalence is rising. There is also concern that a large reservoir of as-yet undetected cases exists, and many of these individuals are bound to develop symptomatic complications, including HCC.21,121 In a similar way, increased incidence of HCC is believed to be predominantly attributable to HCV-related cases in North America113,122,123 and Japan.124

Another hypothesis is that, in developed nations, HCC has remained stable in the indigenous population, and the apparent increase is attributable to immigration from populations with higher prevalence of the disease. However, on the basis of one US population, at least, this theory appears unsupported.117

Finally, rising incidence of HCC may be contributed to by the substantial improvements in clinical management of chronic cirrhosis in recent years: because fewer patients die of direct complications of cirrhosis,36,125 more now live to develop HCC.97,122
Pathology

The pathology of HCC can be subdivided according to a wide variety of characteristics and schema.

The gross morphology of the tumour is a key starting point. Solitary (uninodular) tumours are the simplest form of HCC, with a single lesion developing in one place. Multinodular HCCs can either be a collection of discrete lesions developing synchronously (multicentric HCC) or one dominant mass and a number of ‘daughter’ nodules (intrahepatic metastases). Diffuse HCCs are poorly defined, widely infiltrative masses that present particular diagnostic challenges on imaging. Massive tumours are a special instance of a solitary HCC, in which most or all of one lobe of the liver has been replaced. Small ‘satellite’ nodules may be present elsewhere.

There are many other pathological features of HCCs that are considered significant. Histological differentiation (the degree to which the microscopic appearance of HCC cells is recognisably comparable to that seen in normal hepatocytes) seems to be an indication of the maturity of the tumour. Early HCCs are well differentiated, whereas later HCC progression is associated with decreasing differentiation of tumour histology. Tumour encapsulation, in which a fibrous capsule develops around the tumour, and vascular invasion, in which the malignancy spreads into the portal or hepatic veins, are important tumour characteristics. Encapsulated HCCs appear to be less aggressively invasive than tumours without this feature. Vascular invasion is valued as an early indicator of the aggressiveness of a tumour (for example, its metastatic potential or the likelihood of rapid recurrence following treatment). Rates of vascular invasion are significantly lower in tumours that are small, histologically well differentiated or encapsulated. It has also been found that tumours arising in women are more likely to be encapsulated and less likely to show vascular invasion.

Staging systems

Various staging systems seek to provide prognostic information by combining data about tumour characteristics, underlying liver function and/or patient condition; these have been reviewed in detail elsewhere. In Western populations, the most widely used systems are as follows:

- The TNM (tumour node metastasis) system ranges from I (early cancer with good prognosis) to IV-B (very advanced HCC with extremely poor prognosis). It is commonly used to summarise tumour-related factors, but is unable to account for the patient’s liver function or clinical condition.
The Okuda score was proposed in 1985. It combines a simple index of tumour extensiveness with information about liver function. However, because it is unable to distinguish between tumours on anything but the crudest level, it is generally considered out of date, in the context of modern diagnostic and therapeutic techniques.138

The CLIP (Cancer of the Liver Italian Program) system is a composite score, categorising patients on the basis of broad-gauge measures of liver function (Child–Pugh status) and tumour morphology (three-way index of size and multinodularity), to which are added two prognostically significant dichotomised variables: substantially elevated AFP level and presence of portal vein thrombosis. A total score of 0–6 is produced. Like the Okuda score, the CLIP score cannot distinguish between apparently disparate tumour types, but its predictive power has been validated in a variety of settings.139–141

The BCLC (Barcelona Clinic Liver Cancer) staging system divides cases into early, intermediate, advanced and end-stage categories, and is the basis of the Barcelona unit’s treatment algorithm. Several tumour-related variables (size, multinodularity, presence of vascular invasion and extrahepatic spread) are taken into account, as are the patient’s Child–Pugh score and performance status.

None of these systems has gained unanimous acceptance, although elements of each have been found pragmatically useful by various investigators. It has been argued that the geographical differences in disease profile are such that a single, universal staging system may be an unrealistic target.135

Natural history
The true natural history of HCC is impossible to characterise fully. In the past, patients only presented at an advanced, symptomatic phase of disease. Following advances in diagnostic methods, cases can be detected at an earlier stage, but this progress has been accompanied by the development of therapeutic techniques, the active objective of which is to disrupt underlying prognosis.135

Unless detected early, HCC carries a dismal prognosis. It is commonly asserted that patients who present with advanced, untreatable HCC have a median survival of less than 6 months.135,142 Llovet and colleagues amalgamated results from the control arms of two RCTs at their unit, calculating that a subgroup of patients with advanced, symptomatic HCC survived for a median of 5.4 months after diagnosis.143 This finding accords well with several other studies which suggest that patients who receive supportive care alone have a median survival in the range 3–7 months.85,137,144–146

However, these figures are likely to be affected by selection bias. For example, patients may be more likely to receive no active treatment if they present with the kind of advanced, symptomatic tumour that places them at the gloomier end of the prognostic spectrum.

According to US registry data from 1992 to 1996, median survival for all patients with HCC regardless of treatment was 0.64 years (1- and 5-year relative survival rates of 23% and 6%).147 There are no analogous data for the UK, although 1- and 5-year survival rates for all PLC in England were 11% and 3%, respectively, in 1985–1989.148

Several pathological features have prognostic significance. Tumours with well-differentiated histology are associated with better survival.128 Encapsulated tumours show longer disease-free and overall survival, although the thickness of the capsule does not appear to be significant.129 Absence of vascular invasion (gross or microscopic) is a highly significant indication of better prognosis.149,150

Treatment for hepatocellular carcinoma

Resection
Surgical resection of the tumorous liver (hepatectomy) is the simplest curative therapy for HCC. A variety of conceptual and technical advances, starting with the development of segmental anatomical principles in the 1950s, has made the approach progressively safer and more effective.151

Indications
According to guidelines published by the British Society of Gastroenterology,96 and the European Association for the Study of the Liver,152 patients with single tumours less than 5 cm in diameter or three nodules smaller than 3 cm in diameter can be considered for resection (although additional research has shown that patients with larger tumours may also benefit.153–157).

The efficacy of resection is predominantly dependent on the functional viability of the non-tumorous liver and, as a result, the best results are
achieved when removing carcinomas from non-cirrhotic livers. At the other end of the spectrum, cirrhotic decompensation of Child–Pugh grade B or C is considered an absolute contraindication to resection.

Results

Perioperative mortality

Song and co-workers reviewed published surgical series from various countries, concluding that, following a substantial improvement in results over the past two decades, most major centres are now achieving perioperative mortality rates of 5% or less. Some Far Eastern units have now reported lengthy series (>100 consecutive patients) without any perioperative deaths. Patients are more susceptible to postoperative liver failure when resection leaves them with only a small volume of remnant liver.

Long-term survival

Song and colleagues’ review suggests that, over the past 20 years, 5-year survival following resection has been in the range 30–50%. This estimate is derived from a sample of publications that is dominated by series from the Far East, where patients may have better prognosis owing to lower age and higher rates of patients without cirrhosis. Nevertheless, it seems broadly in line with estimates from exclusively Western populations. In an analysis of a US epidemiological database, patients who were recorded as undergoing resection of their HCC had a 1-year survival of 72.7% and a 5-year survival of 32.5% (compared with 40.9% and 7.3%, respectively, for patients who did not have surgery). Recent reviews from the Barcelona group have asserted that, with meticulous selection of optimal candidates, a 5-year survival rate of 70% can be achieved. Vascular invasion is an important predictor of outcome, with an almost two-fold risk of cancer-related death in patients with vascular invasion.

Disease recurrence

The most common cause of death in patients who have undergone resection is recurrent intrahepatic tumour. Early recurrence (<1 year) is thought to develop from residual cancerous material, and tends to be predicted by tumour-related factors (large, multifocal and/or vascularly invasive tumours are associated with increased risk). In contrast, late-recurring HCCs (>5 years after resection) are considered to be new primary tumours. Occurrence is largely dependent on the malignant potential of the underlying liver disease and, as such, indices of liver function provide the most useful prognostic information.

In cohorts consisting partially or wholly of patients with cirrhosis, disease recurs within 5 years in 50–65% of surviving patients. Published disease-free survival rates (i.e. the cumulative probability of avoiding both death and disease recurrence) predominantly fall within the following ranges: 50–80% at 1 year, 30–50% at 3 years, 15–40% at 5 years and 8–20% at 10 years.

Transplantation

Because orthotopic liver transplantation (OLT) seeks to address not only HCC but also underlying liver disease, it is theoretically superior to resection. Since the first procedure in 1968, over 10,000 OLTs have been performed in the UK (UK Transplant website: http://www.uktransplant.org.uk). HCC was listed as a primary or subsidiary diagnosis in 281 (13.7%) of the 2029 first adult elective OLT undertaken in the UK between 1 January 1996 and 31 December 2004 (data provided by UK Transplant).

Indications

The early history of OLT for HCC was characterised by high recurrence rates and disappointing survival, but results began to improve markedly when stringent selection criteria were applied to prospective candidates. The most widely adopted criteria were those published by the Milan unit in 1996, which stipulate that candidates should be considered for OLT if they have either a solitary tumour no more than 5 cm in diameter, or multicentric HCC with up to three nodules, so long as none exceeds 3 cm in diameter. More recently, the team from University of California, San Francisco, has argued that the Milan criteria can be “modestly expanded” to include solitary tumours 6.5 cm in diameter or smaller, and multicentric tumours with up to three nodules 4.5 cm or smaller, and aggregate tumour diameter 8 cm or less. Malignant invasion of the venous drainage, which is strongly associated with tumour recurrence following OLT (see below), is also considered a contraindication. However, while macrovascular invasion may be detected on preoperative imaging, microvascular infiltration is a histopathological diagnosis that, in the absence of preoperative biopsy, cannot be made prior to hepatectomy. Extrahepatic metastases also contraindicate OLT.

NHS guidance stipulates that patients should be listed for OLT “only if the clinician feels that they have a greater than 50% probability of survival at
5 years after transplantation with a quality of life that is acceptable to the patient.”

Results

Perioperative mortality

Although one Chinese unit has recently reported a series of 67 consecutive procedures without any deaths, it is generally accepted that early mortality rates for OLT are likely to exceed those for resection. Published series from the past two decades tend to provide perioperative mortality rates of under 15%, with the most recent predominantly falling in the range 2–8%. One UK unit has reported that, during their experience with OLT for small HCC from 1995 to 1999, there were four perioperative mortalities in 30 cases (13.3%).

Long-term survival

Having adopted the narrow selection criteria described above, several units have been able to achieve a 5-year survival rate of 70–75%. These results are commonly cited in contemporary reviews and guidelines, although US registry evidence suggests that 60% may be a more realistic figure. There is some evidence that HCV-related cases may be associated with poorer survival.

Disease recurrence

When performed in cases meeting current selection criteria, OLT prevents early disease recurrence in the majority of cases; it is commonly asserted that 5-year recurrence rates of no more than 25% are achievable. Where vascular invasion is undetected preoperatively (or is not considered an exclusion criterion), it is associated with starkly increased recurrence rates.

Graft reinfection

Where OLT is undertaken for HCC secondary to viral hepatitis, there is a significant risk that the implanted liver will become infected. In HCV, graft reinfection is an invariable finding, and the patient is classified as cirrhotic within 5 years in 10–30% of cases. In HBV, immunoprophylactic and/or antiviral therapy provides relatively effective protection against graft reinfection, although such treatment is expensive.

Availability and allocation of donor organs; the waiting list

OLT is only a viable therapy if sufficient cadaveric livers are available for implantation. In the UK, donor livers are allocated according to a national sharing scheme, with priority given to the most urgent cases. It has recently been asserted that most UK patients requiring OLT receive treatment “without major delay.” In the most recent published UK cohort of patients undergoing OLT for HCC (1995–1999), median time on the waiting list was 36 days (range 1–370 days). However, it appears that waiting times may be getting longer: at present, adults in the UK wait a median of 73 days for a suitable liver. In March 2005, there were 271 patients on the transplantation list.

In the USA, organ allocation is prioritised according to the Model for End-stage Liver Disease (MELD) score, a composite measure based on three biochemical variables – serum bilirubin, creatinine levels and the international ratio of prothrombin time – which has been shown to correlate accurately with the probability of survival on the waiting list. We understand from our expert advisory group that some individual UK units are adopting this method of according priority to patients awaiting OLT.

Inevitably, tumours will continue to progress while patients await OLT, in some cases to an extent that contraindicates OLT. In one US study, 6- and 12-month dropout rates of 7.3% and 25.3%, respectively, were recorded. In Barcelona, they were 11% and 38%, respectively.

Of the 1088 patients on the UK OLT waiting list in 2004/5, there was an 8% dropout rate and an additional 7% of patients died. These figures include all patients on the waiting list for a liver transplant, not only those whose primary indication was HCC.

As discussed below, it is possible that suitability for OLT may be preserved by adjuvant treatment on the waiting list.

Other interventions

A wide armamentarium of further treatments for HCC is available, as an alternative or a supplement to resection/OLT:

- **In percutaneous ethanol injection (PEI)**, absolute alcohol is injected into the HCC(s) under computed tomography (CT) or ultrasound guidance. The procedure is considered to be simple, inexpensive and relatively safe. The majority of smaller tumours can be totally ablated, excellent 1-year survival rates (90% or better) can be achieved, and some long-term results are only slightly inferior to those achieved with resection (5-year survival of around 40–50%).

- Of several thermal ablation techniques, the most commonly used is radiofrequency
thermal ablation (RFA), in which tumour temperature is raised via a needle electrode, causing necrosis of the tissue. RFA can be performed during open surgery or laparoscopically, but is most commonly performed percutaneously, with ultrasonographic image guidance. Two recent randomised controlled trials (RCTs) have suggested that the short-term results of RFA may be slightly superior to those of PEI; however, no long-term follow-up is reported.234,235 The UK National Institute for Health and Clinical Excellence (NICE) has published guidance stipulating that RFA should always be monitored using ultrasound or CT; and should only be used following consideration, in each individual case, by a multidisciplinary team including a surgeon.236

- **Transarterial chemoembolisation** (TACE) combines embolic obstruction of the tumour’s arterial supply (leading to ischaemic necrosis) with localised delivery of a chemotherapeutic agent (often doxorubicin or cisplatin). A meta-analysis of seven RCTs comparing TACE with conservative management showed a significant benefit in terms of 2-year survival rates (41% vs 27%; odds ratio 0.53, 95% CI 0.32 to 0.89; \(p < 0.017 \)).237 However, it is recognised that TACE is susceptible to several potentially serious complications, including toxic and/or ischaemic damage to the functional liver.238 There is also an appreciable procedure-related mortality (approximately 4%, rising to 10–20% in decompensated patients).239

- Several types of intravenous chemotherapy have been investigated. None shows clear evidence of effectiveness, and none is recommended for routine practice at present.96,132 Similarly, antioestrogen therapy, most commonly with tamoxifen, is not associated with a treatment effect in high-quality trials.237

Choice of treatment

Although resection and OLT are the preferred treatment options, only a small proportion of cases are suitable for these approaches. The Barcelona team suggests that only 5–10% of the HCC patients they see can be resected.240 In The Netherlands in 1989–1998, 12% of the registered HCC cases underwent resection or OLT.241 Similarly, analysis of a US database showed that 10.4% of the total HCC population in 1988–1998 underwent resection.242

There are a few groups of patients for whom resection is preferred to OLT or vice versa. Resection is the primary therapy for HCC in non-cirrhotic livers,96 owing to excellent survival rates (see above), coupled with some disappointing experience in OLT for this indication.242 Conversely, resection is contraindicated in patients with HCC arising in decompensated cirrhosis (see above), so OLT is the only viable curative treatment.

Patients with small HCCs arising in compensated cirrhosis are suitable for either approach. The long-term freedom from recurrence achievable with OLT probably makes it the treatment of choice,96 although this presumes that organ availability will not compromise the effectiveness of the programme. The Barcelona clinic’s experience suggests that average waiting time should be maintained at less than 6 months. Above this cut-off, waiting list dropout will have a negative impact on survival rates, making OLT inferior to resection, when compared on an intention-to-treat (ITT) basis.216

The European Association for the Study of the Liver (EASL) guidelines summarise current best practice by suggesting that each decision should be made individually, with a view to locally available resources “in terms of technical skills, experience and organ availability.”152

Non-surgical interventions are used in a variety of situations. According to current UK guidelines, they should only be used where resection is contraindicated.56 Nevertheless, at least one British author has suggested that, as the evidence base evolves, one or more novel techniques may prove to be comparable with resection in terms of crude survival advantage and, in the long run, discrimination between the available treatments may be dominated by questions of cost, safety and quality of life.243

Increasingly, techniques such as those described above are being used with the aim of delaying tumour progression in patients awaiting OLT (neoadjuvant or bridging therapy).244 This approach has not been assessed in any randomised trials; however, some observational245–248 and modelling228,249 studies have suggested that it may assist in waiting list management, thereby maximising the effectiveness of an OLT programme. It has been emphasised that, although bridging strategies may induce objectively demonstrable pretransplant tumour control, this apparent effectiveness may not ultimately be reflected in survival benefit following OLT.256
Screening for and diagnosis of hepatocellular carcinoma

Diagnostic tests
Serum AFP testing

AFP is present in high concentrations in fetal blood serum but, soon after birth, it drops to much lower levels. AFP is produced by immature hepatocytes and can therefore be seen at times of liver regeneration (i.e. in active disease with ongoing liver repair) or with some hepatocellular tumours that are made up of transformed, often immature hepatocytes. Elevated levels of AFP are therefore frequently detectable in patients with liver disease, particularly HCC, and consequently, serum AFP assay has been used as a cheap, simple screening method for HCC for many years.

Unfortunately, the sensitivity of AFP as a diagnostic tool is substantially restricted by the existence of non-secreting tumours. The consensus is that up to 20% of HCCs do not produce elevated levels of AFP. It has been suggested that non-AFP-secreting tumours may arise more frequently in alcohol-related cirrhosis. What is more, the test’s specificity is limited by the known incidence of raised AFP in non-malignant liver disease: transient or sustained increases of AFP may occur in the absence of HCC, especially in patients experiencing inflammatory flares of chronic viral hepatitis.

As a result of these factors, the diagnostic effectiveness of AFP depends on the chosen cut-off value. Several cut-off values have been investigated, but the broadest range of literature relates to a watershed of 20 ng/ml. Daniele and colleagues summarise seven studies in which this cut-off was adopted, reporting a sensitivity ranging between 41 and 65% and a specificity of 80–94%. Predictably, the use of higher cut-off levels results in increased specificity, but at significant cost to the test’s sensitivity.

Because AFP assay apparently has relatively poor sensitivity at any cut-off level, it is increasingly argued that it is an inadequate screening test when used on its own. One editorial goes as far as to announce its “Obituary.” It has been suggested that AFP assay is still useful in confirming suspicions raised in imaging studies, or that it might function effectively as a form of triage, with elevated AFP (and/or increasing levels over a series of periodic measurements) used to identify patients in whom detailed, sensitive investigation should be an urgent priority.

Ultrasonography

Ultrasonography has been a universal choice for first-line imaging of the liver since the 1980s. It is widely available and very efficient, especially when compared to more detailed but more expensive, unwieldy imaging technologies, such as magnetic resonance imaging (MRI) and CT. The reliability of ultrasonographic diagnosis of HCC is variable and depends on a range of factors, including the expertise of the operator and the sophistication of the equipment.

The reported sensitivity of ultrasonography varies as widely as 35–84%. However, the reference standards used in these series are variable and, in some cases, of limited validity (for example, biopsy may confirm suspected cases, but this method will not adequately detect false-negative findings). When measured against the reference standard of explant pathology in transplantation series, the proportion of patients with HCC who are correctly identified by ultrasound is between one-third and two-thirds. False-positive results are less pervasive: the same studies report specificities in the range 92–98%.

There is good evidence that larger lesions are more reliably identified on ultrasonography. In Bennett and co-workers’ study, sensitivities for the detection of HCCs of diameter greater than 5 cm, 3–5 cm, 2–3 cm, 1–2 cm and less than 1 cm were 75%, 50%, 20%, 13.6% and 0%, respectively. Other teams have found a similar correlation between tumour size and ultrasound sensitivity.

The technology of ultrasound diagnosis is evolving rapidly; it is anticipated that advances such as microbubble contrast enhancement and harmonic imaging techniques will significantly improve early detection rates in coming years. There is also a possibility that these developments will raise false-positive findings.

Other tests

In addition to AFP, several other serological markers of HCC have been studied, most notably des-gamma carboxyprothrombin (DCP). However, assays of such markers are not routine in clinical practice.

The other radiographical tests that are commonly used in the diagnosis of HCC are CT and MRI. When measured against the optimal reference standard of explant pathology in transplantation series, CT has a sensitivity in the range 44–68%. In a 1997 UK study of iodised oil CT, 44% of HCCs at least 1 cm in diameter were identified.
MRI has a reported sensitivity in the range 55–77% in similar evaluations. In Europe, CT and MRI are generally considered too expensive and inconvenient to be used in primary screening; in contrast, a 1998 survey of US specialists showed that one-quarter used CT for this purpose.

Biopsy is contraindicated in cases of potential HCC, owing to the risk of tumour ‘seeding’ (dissemination of malignancy when tumour cells leak along the track created by the biopsy needle), which may occur in up to 5% of cases. UK guidelines stipulate that biopsy should be avoided where possible and, in any event, reserved for cases "where considerable doubt exists". When used, it is still subject to a significant false-negative rate, since well-differentiated tumour cells can be difficult to distinguish from benign growth.

Surveillance programmes

Routine periodical screening of individuals with cirrhosis is recommended by UK and European guidelines. Further, although we have not ‘audited’ the surveillance of people with cirrhosis for HCC against NHS National Screening Committee criteria, other recent reviews report that most of the usual recognised criteria for defining what constitutes a viable and effective screening programme are met (with the main exception being a total lack of high-quality RCTs).

A 2002 survey confirmed that approximately three-quarters of UK gastroenterologists undertake a formal programme of surveillance for HCC in cirrhosis, mostly using a combination of ultrasound and AFP. Similar findings were reported in an analogous US study of 1998.

Testing and recall pathways

It is a prerequisite of any surveillance programme that there should be a predefined algorithm, prescribing the order in which tests should be undertaken and the basis on which definitive diagnosis may be reached.

European guidelines, which have been modified in practice by the Barcelona group, envisage 6-monthly ultrasound as the primary screening test. When suspicious lesions are identified, subsequent steps depend on the diameter of the abnormality:

- <1 cm: Possible HCC. Repeat ultrasound at 3-monthly intervals; if nodule grows, follow further steps as below.
- 1–2 cm: Probable HCC. Detailed diagnostic work-up indicated (AFP; additional imaging), but definitive diagnosis requires biopsy.
- 2–3 cm: Highly probable HCC. If ultrasound appearances are characteristic, diagnosis may be established non-invasively, by either confirmatory imaging (CT, MRI, angiography) or AFP > 400 ng/ml. Otherwise, biopsy is necessary.
- >3 cm: Almost certain HCC. Approach as per 2–3-cm tumours, but an additional careful search for vascular invasion is indicated.

In practice, biopsy is often not performed, regardless of tumour size, owing to concerns over needle track seeding. Guidelines issued by the American Association for the Study of Liver Diseases (AASLD) in November 2005 seek to make this more explicit, with biopsy only recommended for investigation of nodules with atypical vascular patterns.

Frequency of tests

The optimal frequency of screening has not been established. Lai and colleagues’ audit revealed a wide range of test intervals in use in the UK: some consultants prefer screening to be repeated as frequently as 3-monthly, while others are content to review those at risk once every 2 years.

A screening interval of 6 months is now recommended in UK and European guidelines, on the basis of available evidence as to the growth rate of small tumours. It has been reported that annual screening is not significantly less effective, although the study in question showed a trend towards better results with 6-monthly testing.

An alternative approach is to use AFP assay to define the frequency of ultrasound screening. For instance, Belgian guidelines recommend that ultrasonography should be performed every 6 months in patients with normal AFP, but twice as often in those whose AFP exceeds 20 ng/ml.

Compliance with surveillance programmes

For a surveillance programme to achieve optimal results, subjects must be willing to attend for screening when required. The available evidence suggests that compliance rates are relatively good in surveillance for HCC: Collier and Sherman’s review of the literature found that between 3 and 18% of at-risk patients with cirrhosis fail to comply with screening programmes. One exception
may be patients with drink-related cirrhosis who remain alcohol dependent (in Belgium, for example, guidelines stipulate that alcoholics who continue to drink should be excluded from surveillance278).

Effectiveness of surveillance

As described above, surveillance for HCC is now a matter of routine practice in the UK and elsewhere. Accordingly, the kind of randomised evidence that would be necessary to demonstrate its effectiveness is extremely unlikely to be generated. Two Chinese RCTs have addressed similar issues in a different population (HBV-positive patients with or without cirrhosis), with conflicting results. Whereas Zhang and co-workers concluded that surveillance reduced mortality,281 Chen and colleagues felt that, although the programme had increased detection rates, no positive survival benefit accrued as a consequence.282

Although there is no relevant randomised evidence on the subject, several observational studies have investigated the efficacy of surveillance for HCC. The design of these studies is summarised in Table 2 (case series) and Table 3 (cohort studies).

The detection of presymptomatic disease should lead to therapeutic advantages compared with the treatment of cases as and when symptoms arise. Studies of surveillance for HCC tend to concentrate on outcomes such as the number and size of

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Population</th>
<th>Exclusion criteria</th>
<th>Surveillance programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benvegnù et al., 1994283</td>
<td>Italy</td>
<td>Mixed</td>
<td>None</td>
<td>1986–1993 6 290</td>
</tr>
<tr>
<td>Borzio et al., 1995284</td>
<td>Italy</td>
<td>Mixed</td>
<td>C-P C; age >70</td>
<td>1985–1986 6 307</td>
</tr>
<tr>
<td>Chiaramonte et al., 1999285</td>
<td>Italy</td>
<td>HBV/HCV</td>
<td>C-P B/C</td>
<td>1981–1993 6 259</td>
</tr>
<tr>
<td>Colombo et al., 1991286</td>
<td>Italy</td>
<td>Mixed</td>
<td>C-P C; age <35</td>
<td>1985–1986 3–12 417</td>
</tr>
<tr>
<td>Cottone et al., 1994287</td>
<td>Italy</td>
<td>Mixed</td>
<td>C-P B/C</td>
<td>1979–1984 6 147</td>
</tr>
<tr>
<td>Fasani et al., 1999288</td>
<td>Italy</td>
<td>Mixed</td>
<td>C-P C</td>
<td>1985– 6–12 1,584 NR</td>
</tr>
<tr>
<td>Henrion et al., 200022</td>
<td>Belgium</td>
<td>Mixed</td>
<td>None</td>
<td>1995 3–6 141</td>
</tr>
<tr>
<td>Imberti et al., 1993289</td>
<td>Italy</td>
<td>Mixed</td>
<td>C-P C</td>
<td>1984–1991 3–6 200</td>
</tr>
<tr>
<td>Izzo et al., 1998290</td>
<td>Italy</td>
<td>HBV/HCVb</td>
<td>C-P B/C</td>
<td>1993–1996 3 1,125 NR</td>
</tr>
<tr>
<td>Oka et al., 199010</td>
<td>Japan</td>
<td>Mixed</td>
<td>None</td>
<td>1983–1988 2–3 140</td>
</tr>
<tr>
<td>Pateron et al., 19946</td>
<td>France</td>
<td>Mixed</td>
<td>C-P C; AFP >15 ng/dl</td>
<td>1986–1987 6 118</td>
</tr>
<tr>
<td>Sangiovanni et al., 2004291</td>
<td>Italy</td>
<td>Mixed</td>
<td>C-P C</td>
<td>1985–1986 6–12 417</td>
</tr>
<tr>
<td>Tong et al., 2001292</td>
<td>USA</td>
<td>HBV/HCVd</td>
<td>None</td>
<td>1991–1998 6–12 602</td>
</tr>
<tr>
<td>Velazquez et al., 20038</td>
<td>Spain</td>
<td>Mixed</td>
<td>Age <40/65; C-P C</td>
<td>1992–1999 3–6 463</td>
</tr>
<tr>
<td>Zoli et al., 1996293</td>
<td>Italy</td>
<td>Mixed</td>
<td>None</td>
<td>1989–1991 6 164</td>
</tr>
</tbody>
</table>

C-P, Child–Pugh score; Freq., frequency of screening; NR, not reported.
a Median.
b Including patients with precirrhotic chronic hepatitis.
TABLE 3 Observational studies of surveillance for HCC using AFP and ultrasound: design of cohort studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Population (P/R)</th>
<th>Exclusion criteria</th>
<th>Surveillance programme</th>
<th>Dates</th>
<th>Freq. (months)</th>
<th>n</th>
<th>Duration (months), mean ± SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolondi et al., 2001</td>
<td>Italy</td>
<td>Mixed (P)</td>
<td>Age >60, C-P C; AFP >200 ng/dl</td>
<td>1989–1991</td>
<td>6</td>
<td>313</td>
<td>56 ± 31 (6–100)</td>
<td></td>
</tr>
<tr>
<td>Dohmen et al., 2000</td>
<td>Japan</td>
<td>Mixed (R)</td>
<td>NR</td>
<td>1989–1998</td>
<td>1–4</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Giannini et al., 2000</td>
<td>Italy</td>
<td>HCV (R)</td>
<td>NR</td>
<td>1993–1998</td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2003</td>
<td>Belgium</td>
<td>Mixed (P)</td>
<td>None</td>
<td>1995–1998</td>
<td>3–6</td>
<td>293</td>
<td>60 (30–78)</td>
<td></td>
</tr>
<tr>
<td>Kemp et al., 2005</td>
<td>Australia</td>
<td>Mixed (P)</td>
<td>None</td>
<td>1994–2002</td>
<td>6–12</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Solmi et al., 1996</td>
<td>Italy</td>
<td>Mixed (P)</td>
<td>None</td>
<td>1988–1998</td>
<td>6</td>
<td>360</td>
<td>56 (18–72)</td>
<td></td>
</tr>
<tr>
<td>Tanaka et al., 1990</td>
<td>Japan</td>
<td>Mixed (P)</td>
<td>Age >70; Decompensation</td>
<td>1987–1989</td>
<td>3–6</td>
<td>660</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Trevisani et al., 2002</td>
<td>Italy</td>
<td>Mixed (R)</td>
<td>NR</td>
<td>1998–1998</td>
<td>6/12</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Trevisani et al., 2004</td>
<td>Italy</td>
<td>Mixed (R)</td>
<td>Age <70</td>
<td>1998–2001</td>
<td>6/12</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Wong et al., 2000</td>
<td>USA</td>
<td>Mixed (R)</td>
<td>NR</td>
<td>1993–1998</td>
<td>1–12</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Yu et al., 2004</td>
<td>Taiwan</td>
<td>Mixed (R)</td>
<td>Age <20/ 70</td>
<td>1996–1997</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

P, prospective; R, retrospective.

a Including patients who developed HCC in non-cirrhotic liver.
b Including patients with precirrhotic chronic hepatitis.
c Study explicitly concerned with elderly cohort.

tumours detected, in deference to established
treatment parameters that suggest that HCCs
are best treated when small and uninodular.
Where the observational studies identified
report such outcomes, their results are tabulated
in Table 4 (case series) and Table 5 (cohort
studies). These data suggest that HCCs detected
during formal surveillance programmes are
smaller and more likely to be uninodular
than those that present symptomatically or by
chance.

Several of the studies also investigated whether
this theoretical advantage translated into tangible
benefit, by assessing treatability rates and survival
in their screened cohorts. These data are
tabulated in Table 6 (case series) and Table 7 (cohort studies).
Again, it appears that patients whose disease is detected via formal surveillance are more likely to receive curative treatment, compared with those whose diagnosis is symptomatic or incidental. Moreover, it appears as though the screened patients benefit from increased survival, although it is important to consider the potential for lead-time bias in the measurement of survival-related outcomes of screening programmes. Because survival is measured from the date of diagnosis,

<table>
<thead>
<tr>
<th>Study</th>
<th>HCCs detected</th>
<th>Unifocal (%)</th>
<th>Maximum tumour diameter (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Bolondi et al., 2001<sup>68</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>61</td>
<td>80.3</td>
<td>2.7 ± 1.1</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>104</td>
<td>52.9</td>
<td>3.3 ± 3.2</td>
</tr>
<tr>
<td>Dohmen et al., 2000<sup>294</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-month surveillance group</td>
<td>102</td>
<td>69.6</td>
<td></td>
</tr>
<tr>
<td>Irregular surveillance group</td>
<td>248</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>186</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>Giannini et al., 2000<sup>295</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>34</td>
<td>58.8</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>27</td>
<td>51.9</td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2003<sup>296</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>17</td>
<td>94.1</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemp et al., 2005<sup>297</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>41</td>
<td>56.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>55</td>
<td>45.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Solmi et al., 1996<sup>298</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>24</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaka et al., 1990<sup>299</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>22</td>
<td>81.8</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>83</td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td>Trevisani et al., 2002<sup>300</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-month surveillance group</td>
<td>215</td>
<td>56.3</td>
<td></td>
</tr>
<tr>
<td>12-month surveillance group</td>
<td>155</td>
<td>54.2</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>451</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td>Trevisani et al., 2004<sup>301</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>158</td>
<td>62.7</td>
<td>3.0 (2.2–3.3)<sup>c</sup></td>
</tr>
<tr>
<td>Incidentally diagnosed controls</td>
<td>138</td>
<td>48.6</td>
<td>4.0 (3.0–5.0)<sup>c</sup></td>
</tr>
<tr>
<td>Symptom diagnosed controls</td>
<td>67</td>
<td>35.8</td>
<td>4.0 (3.5–5.0)<sup>c</sup></td>
</tr>
<tr>
<td>All unscreened controls</td>
<td>205</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td>Wong et al., 2000<sup>302</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuen et al., 2000<sup>303</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>142</td>
<td>66.9</td>
<td>3.5 (0.5–15)</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>164</td>
<td>58.5</td>
<td>8.1 (1.3–25)</td>
</tr>
<tr>
<td>Yu et al., 2004<sup>304</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td>164</td>
<td>75.6</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td>516</td>
<td>55.8</td>
<td></td>
</tr>
</tbody>
</table>

^a ≤6 cm.
^b ≤4 cm.
^c Interquartile range.
cases that are detected in an early, presymptomatic phase will appear to benefit from increased lifespan, even if the patient’s course has been entirely unaffected by the intervention. Accordingly, HCCs detected during surveillance will appear to have longer survival than cases that were first diagnosed later in their clinical progression.

Trevisani and colleagues performed an adjusted analysis of their survival data to account for lead-time bias, in which surveillance remained associated with significantly longer survival.278 The studies of Kemp and co-workers297 and Yuen and colleagues303 also consider lead-time bias and each conclude that it may account for some but not all of the discrepancy observed between screened cases and controls.

Cost-effectiveness of surveillance
The searches identified six published cost-effectiveness or cost-utility analyses of the surveillance of patients to detect HCC.304–309 Three were considered to have less relevance to the project scope and policy context of surveillance for HCC in the current NHS.305,308 One of these, the oldest (published in 1992), is not strictly a cost-effectiveness analysis and was restricted to people with HBV-related cirrhosis.305 A more recent study, published in 2004, was based on data from a mixed aetiology cohort of Mexican patients of whom only 42% had cirrhosis. Results were reported in terms of the cost per correct diagnosis.308 The model-based study by Sarasin and colleagues was based on a simulated generic Western population of 10,000 55-year-old men with Child-Pugh class A cirrhosis.309 Outputs were presented as cost per life-year saved for the policy of AFP with ultrasound surveillance at 6-monthly intervals.

The three remaining studies were full incremental cost-utility analyses of surveillance based on Markov models among patients with HCV-related cirrhosis in the USA.304,306,307 All were published since 2003 and appear to have been conducted to good modelling standards. The present analysis was compared with these three studies. Compared with no surveillance, the incremental cost-effectiveness of 6-monthly screening with both AFP tests and ultrasound was between US $24,500306 and $46,600307 per QALY (equivalent to between £18,400 and £37,300, if inflated and converted to 2005 UK pounds).

For a discussion of these findings in comparison to the present study, see p. 112 and Appendix 11.

Quality of life
Impact of cirrhosis on quality of life
Factors that may be associated with impaired health-related quality of life (HRQoL) in patients with cirrhosis include chronic viral infection, emotional problems associated with ongoing substance or alcohol abuse, fear of progressive disease and complications, manifestation of disease complications such as ascites and hepatic encephalopathy, and the adverse effects of treatments (e.g. interferon).

Studies using generic instruments such as the Short Form 36 (SF-36; developed to measure the full range of health and well-being) and the Nottingham Health Profile (developed to measure distress) have demonstrated impaired HRQoL.310–314 The largest study, conducted in Italy among 544 patients with cirrhosis of varying severities and aetiologies, found that severity of

TABLE 6 Observational studies of surveillance for HCC using AFP and ultrasound: eligibility for treatment and survival in case series

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment (%)</th>
<th>Median survival (months)</th>
<th>Actuarial survival rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any</td>
<td>Resection</td>
<td>OLT</td>
</tr>
<tr>
<td>Cottone et al., 1994</td>
<td>33.3</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2000</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Imberti et al., 1993</td>
<td>23.7</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Izzo et al., 1998</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Oka et al., 1990</td>
<td>82.5</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>Pateron et al., 1994</td>
<td>35.7</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Sangiovanni et al., 2004</td>
<td>61</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Tong et al., 2001</td>
<td>67.7</td>
<td>12.9</td>
<td>25.8</td>
</tr>
<tr>
<td>Velazquez et al., 2003</td>
<td>71.1</td>
<td>5.3</td>
<td>28.9</td>
</tr>
<tr>
<td>Zoli et al., 1996</td>
<td>58.8</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

* Estimate derived from published Kaplan–Meier curve (precise figures not specified).
TABLE 7 Observational studies of surveillance for HCC using AFP and ultrasound: eligibility for treatment and survival in cohort studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment (%)</th>
<th>Median survival (months)</th>
<th>Actuarial survival rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Any</td>
<td>Resection</td>
</tr>
<tr>
<td>Bolondi et al., 2001</td>
<td></td>
<td>68.9</td>
<td>9</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>58.6</td>
<td>8</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dohmen et al., 2000</td>
<td></td>
<td>88°</td>
<td>74°</td>
</tr>
<tr>
<td>1-month surveillance</td>
<td></td>
<td>75°</td>
<td>60°</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular surveillance</td>
<td></td>
<td>53°</td>
<td>40°</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giannini et al., 2000</td>
<td></td>
<td>88°</td>
<td>74°</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>75°</td>
<td>60°</td>
</tr>
<tr>
<td>Irregular surveillance</td>
<td></td>
<td>53°</td>
<td>40°</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2003</td>
<td></td>
<td>68.4</td>
<td>17.6</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>66.7</td>
<td>7.4</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemp et al., 2005</td>
<td></td>
<td>63.4</td>
<td>11.8°</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>20</td>
<td>6.8°</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaka et al., 1990</td>
<td></td>
<td>88.8</td>
<td>32.5</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>100</td>
<td>54.5</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td>98.8</td>
<td>32.5</td>
</tr>
<tr>
<td>Trevisani et al., 2004</td>
<td></td>
<td>70.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>56.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Incidentally diagnosed</td>
<td></td>
<td>29.9</td>
<td>0</td>
</tr>
<tr>
<td>controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom diagnosed</td>
<td></td>
<td>47.8</td>
<td>2.0</td>
</tr>
<tr>
<td>All unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trevisani et al., 2002</td>
<td></td>
<td>74.9°</td>
<td>11.6°</td>
</tr>
<tr>
<td>6-month surveillance</td>
<td></td>
<td>34</td>
<td>81°</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-month surveillance</td>
<td></td>
<td>54.3</td>
<td>8.2</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong et al., 2000</td>
<td></td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>65.3</td>
<td>18.7</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu et al., 2004</td>
<td></td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuen et al., 2000</td>
<td></td>
<td>73.9</td>
<td>26.8</td>
</tr>
<tr>
<td>Surveillance group</td>
<td></td>
<td>40.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Unscreened controls</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Estimate derived from published Kaplan–Meier curve.
- Resection and/or transplantation.
- Adjusted for estimated lead-time.
- Combined rates across annual and semiannual surveillance groups.
- Range for symptomatic and incidental cases.
disease (as measured by Child–Pugh score) was most closely correlated with HRQoL, the effects were greatest in younger patients and underlying aetiology of cirrhosis was unrelated to changes in HRQoL.!

Impact of HCC on quality of life

Bianchi and colleagues assessed HRQoL using the SF-36 and Nottingham Health Profile in 101 patients with HCC who had received their diagnosis a median of 10 months earlier (range 0–72 months). Scores for both measures showed significant impairment compared with the normative population. However, when these results were compared with results from a group of matched controls (n = 202) with a diagnosis of cirrhosis (matched for gender, age, aetiology, Child–Pugh score, severity of ascites and sleep disturbances) there were few differences. Observed differences were primarily related to the pain domains of both questionnaires and were not related to tumour size.

Impact of liver transplantation on quality of life

Two small studies were identified in which the HRQoL of patients with cirrhosis on the waiting list for a liver transplant was assessed. None of the subjects was on the waiting list as a result of a diagnosis of HCC. Significant associations were observed between HRQoL (specifically the physical functioning domain of the SF-36 in one study and the Child–Pugh score. Aetiology of the underlying liver disease had no effect on the results.

Several studies have assessed the effects of liver transplantation on HRQoL but have not focused specifically on liver transplant as a result of a diagnosis of HCC. The most comprehensive of these assessed HRQoL using EuroQoL 5 Dimensions (EQ-5D) and SF-36 in all individuals selected to receive treatment as part of the UK NHS liver transplantation programme at each of the six liver transplant units in England and Wales during a 2-year period (n = 542). A paired comparison of HRQoL before transplantation and 3 months post-transplantation showed significant improvements in both the SF-36 and EQ-5D. Analysis of all patients who survived until the end of the study showed further improvements on both scales.

Impact of liver resection on quality of life

There is very little published evidence surrounding the effect of liver resection on HRQoL in patients with HCC. We identified one study, from China, in which HRQoL was measured using the FACT-G questionnaire, in 66 consecutive patients undergoing resection for HCC. Significant improvements in HRQoL were seen 3 months postoperatively. A total of 46 patients completed all postoperative assessments (up to 24 months postoperatively); at all time-points their mean scores were higher than those recorded preoperatively. Development of recurrence was the main factor leading to deterioration in HRQoL over time.
Chapter 2
Systematic review

Methods
The review generally adhered to the methodological guidelines published by the NHS Centre for Reviews and Dissemination (York) Report No. 4.321

Inclusion and exclusion criteria
Studies were included or excluded from the review with regard to the criteria listed in Box 1. One exclusion criterion (irrelevance to the UK setting) requires qualification. Because the incidence and aetiology of cirrhosis vary widely between the UK and elsewhere (especially the Far East and the developing world; see Chapter 1), studies from Asia and Africa were only considered for inclusion if they contained sufficient detail to enable us to consider the impact of key population differences. In particular, we looked for detailed information about age and co-morbidity, and required separate reporting of findings according to underlying cause of cirrhosis. The situation in Europe and elsewhere in the developed world is considered more relevant to the UK setting; however, studies from these places were only considered for inclusion if they contained sufficient detail to observe and account for any important dissimilarities in the populations.

Search strategy
Electronic databases were searched for RCTs. Appendix 2 shows the databases searched and the strategy in full. Bibliographies of articles were also searched.

Identification of studies
Relevant studies were identified in two stages. Abstracts returned by the search strategy were examined independently by two researchers (JTC and GR) and screened for inclusion or exclusion. Disagreements were resolved by discussion. Full texts of the identified studies were obtained. Two researchers (JTC and GR) examined these independently for inclusion or exclusion and disagreements were resolved by discussion. The process is illustrated in Appendix 3.

Results
The inclusion/exclusion process is illustrated in Appendix 3.

The searches returned 214 separate references. From screening of abstracts, 207 of these were excluded, leaving seven potentially relevant studies to be reviewed in full. All seven papers were excluded at this stage (see Appendix 4 for a list of these, with reasons for exclusion). Because no studies were identified that met the criteria, we were unable to proceed with the review.

BOX 1 Inclusion and exclusion criteria for systematic review

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Surveillance for HCC using AFP and/or ultrasound</td>
</tr>
<tr>
<td>Comparators</td>
<td>No intervention</td>
</tr>
<tr>
<td></td>
<td>AFP or ultrasound alone</td>
</tr>
<tr>
<td>Population</td>
<td>Population (total or separately reported) with cirrhosis of known underlying cause (alcohol, HBV or HCV)</td>
</tr>
<tr>
<td></td>
<td>Not cirrhotic patients (or mixed population not reported separately)</td>
</tr>
<tr>
<td>Study design</td>
<td>RCTs</td>
</tr>
<tr>
<td></td>
<td>Published in English</td>
</tr>
<tr>
<td></td>
<td>Not surveillance for HCC</td>
</tr>
<tr>
<td></td>
<td>Surveillance other than AFP and/or conventional ultrasound</td>
</tr>
<tr>
<td></td>
<td>Surveillance for outcomes other than HCC</td>
</tr>
<tr>
<td></td>
<td>Population with cirrhosis other than alcohol-related, HBV or HCV</td>
</tr>
<tr>
<td></td>
<td>Not relevant to the UK setting</td>
</tr>
<tr>
<td></td>
<td>Narrative reviews, editorials, letters, case reports and modelling studies</td>
</tr>
<tr>
<td></td>
<td>Observational (non-randomised) studies, including case series, cross-sectional studies, cohort studies and case–control studies</td>
</tr>
<tr>
<td></td>
<td>Preclinical or biological studies, animal models</td>
</tr>
<tr>
<td></td>
<td>Abstract only available</td>
</tr>
<tr>
<td></td>
<td>Not available in English</td>
</tr>
</tbody>
</table>
Chapter 3

Cost-effectiveness model: methods

Overview of model

The population of interest is people with a diagnosis of compensated cirrhosis (ALD, HBV and HCV), deemed eligible to enter a surveillance programme; that is, aged 70 years or less with no pre-existing medical conditions that would preclude treatment with liver transplant or hepatic resection (including current alcohol or intravenous drug abuse).

A state transition (Markov) model was constructed using TreeAge Pro™ 2005 (TreeAge Software, Williamstown, MA, USA) to compare various surveillance strategies. Comparisons were made between:

- no surveillance
- annual surveillance using AFP triage
- annual surveillance using ultrasound alone
- annual surveillance using AFP and ultrasound
- 6-monthly surveillance using AFP triage
- 6-monthly surveillance using ultrasound alone, and
- 6-monthly surveillance using AFP and ultrasound.

The technical performance of the alternative testing strategies was modelled using decision trees. Test sensitivity was varied according to tumour size. Expected costs and utilities for each surveillance strategy were calculated using both a cohort and a Monte Carlo simulation approach. The model structure was developed on the basis of literature reviews, in collaboration with the expert advisory group (Appendix 5), and is limited by the availability of reliable and valid parameter estimates against which to calibrate intermediate outputs.

The effectiveness of the various surveillance strategies was estimated by calculating the number of people that would need to be monitored to prevent one death from HCC. The analysis was undertaken from the perspective of the UK NHS. Costs are expressed in UK pounds using 2004 as the base year; estimates from previous years were inflated using published inflation indices for NHS hospital and community health services pay and prices. Benefits and costs were discounted at 3.5%; other discount rates were explored in sensitivity analyses. Outcomes of the cost-utility analysis are expressed in terms of quality-adjusted life-years (QALYs). The model runs for the lifetime of the population.

Model structure

The influence diagram is shown in Figure 3. States are shown as boxes, logical steps in the transition pathway are shown as ovals and allowable state transitions are shown as arrows. Background mortality (arrows not shown) is also applied to patients in all states of the model. Excess mortality is associated with some states, which are shaded black. There are three parts to the model. The first, the basis of the model, is the disease process or ‘natural history’ component. The surveillance programme and treatment components are then superimposed onto the disease process.

Simulated populations

The model was developed to allow separate analysis of each of the three cirrhosis aetiologies (ALD, HBV and HCV). Results were also produced for a mixed cohort weighted according to the following proportions: 57.6% ALD, 7.3% HBV and 35.1% HCV (see below).

The starting age (age of diagnosis of cirrhosis) and gender mix of simulated cohorts were based on evidence from appropriate studies in the literature (see below). In the base-case analysis, the surveillance programme was limited to those aged 70 years or less, because the clinical expert advisors suggested that people with cirrhosis older than this would be much less likely to be eligible for curative treatments (e.g. transplantation, liver resection).

Disease process/natural history

The disease process is time dependent and is represented using a series of disease states, such as compensated and decompensated cirrhosis. Possible movements (transitions) between states
FIGURE 3 Screening for HCC in hepatic cirrhosis: influence diagram. HCC tumours: L, large; M, medium; S, small.
are shown as arrows (see Figure 4). Transitions between states occur at fixed time intervals (cycle length). In this model, the cycle length is 1 month; this is short enough to reflect the cost and quality of life impact of major surgical treatment episodes (e.g. transplantation or resection) and to allow the simulation of realistic changes in disease status between surveillance intervals.

A probability is assigned to each of these arrows (transition probability) and governs the likelihood of a person moving from one state to another during a month. Each state also has an associated cost and quality of life (utility). Some transitions also generate costs (e.g. cost associated with surveillance tests). Total costs and utilities are estimated over the lifetime of the simulated population by calculating the amount of time spent in each state (and adding any costs linked to transitions).

Within the natural history model, distinction is made between people with compensated and decompensated cirrhosis. Progression from compensated cirrhosis to decompensated cirrhosis is irreversible. The rate of incidence of HCC is the same in compensated and decompensated livers. HCC can be either be diagnosed or undiagnosed (occult). This distinction allows the model to track the number of people with an unknown HCC tumour who receive a liver transplant for decompensated cirrhosis.

Three classes of HCC tumour were defined. ‘Small’ tumours are defined as 2 cm or less in diameter, ‘medium’ tumours as between 2 and 5 cm in diameter, and ‘large’ tumours as larger than 5 cm in diameter. The model assumes that all tumours are uninnodular, and treats diameter as a surrogate measure of all characteristics of tumour progression (there is excellent evidence, for example, that tumour diameter is strongly associated with the probability of vascular invasion130,131,217). Therefore, what the model defines as ‘medium’ tumours would, in real-world practice, include those with multiple, small nodules that would not preclude transplantation, and a ‘large’ tumour may be thought to include those which are diffuse in nature. Tumour characteristics in terms of detectability and treatability are reflected in the transition probabilities in the surveillance and treatment parts of the model. For example, transition probabilities reflect the assumption that there is a greater likelihood of larger tumours invading the portal vein and becoming symptomatic.

Owing to the lack of evidence surrounding mortality in people with a non-symptomatic tumour, the model assumes that the presence of an HCC tumour has no effect on mortality until it becomes ‘large’, at which point it becomes very likely to be symptomatic and is associated with an additional mortality rate.

Surveillance programme

Transition probabilities associated with the surveillance programme are operated at 6- or 12-monthly intervals as appropriate. The technical performance of each testing strategy is modelled using decision trees. Testing strategies (or protocols) were based on European guidelines, which recommend that the diagnosis of HCC be based on findings from two coincident imaging techniques.152 Two AFP thresholds were used, 20 and 400 ng/ml, as these are associated with the broadest evidence base.

Transition probabilities for the correct and incorrect diagnosis of HCC were calculated using the probabilities associated with the appropriate pathways (see Table 9).

In the base-case analysis, the performance of each test is determined only by the presence and size of any HCC tumour. Test performance is independent of the results of previous tests.

As people reach the ceiling age for surveillance (70 years old, in the base case), they leave the surveillance programme and follow a natural history pathway without surveillance.

In the base case, 100% compliance with the surveillance programme was assumed. Other compliance rates have been explored in a scenario analysis. Two types of non-compliance were considered: failure to attend random appointments and dropping out of the programme altogether. The probability that a person is compliant or non-compliant is applied at the same frequency as the testing visits for the appropriate surveillance programme. People who discontinue their participation in the programme follow a natural history pathway without surveillance. Incidental diagnosis is possible from these states.

Incidental/symptomatic presentation of HCC is permitted for people with both compensated and decompensated cirrhosis at all stages of disease (e.g. small, medium and large tumours), although with significantly lower probabilities for those with small or medium-sized tumours.
FIGURE 4 Decision trees describing surveillance strategies: (a) AFP and ultrasound; (b) AFP triage; (c) ultrasound
All confirmatory imaging is by CT scan. There is a small rate of false-positive diagnoses as a result of surveillance, all of which are assumed to be rapidly discovered before treatment. This accords with anecdotal evidence from the clinical experts, that on no occasions in their clinical experience had a liver explanted or resected for HCC been found not to contain an HCC tumour. Furthermore, the proportion of modelled false positives was ultimately so small (between 1 in 1000 and 4 in 1000 of those with no HCC tested) as to have no significant effect on model outcomes.

Treatment

A mixed treatment approach of liver transplantation and resection was modelled. The key structural assumptions used in the model are listed in *Box 2*.

People can enter the transplant waiting list for liver resection for HCC. Liver resection takes place in the month following diagnosis.

There is no prioritisation of people waiting for a transplant; each person is as likely to receive a liver as any other, regardless of the reason for listing. There is anecdotal evidence that individual UK units prioritise cases using a variety of criteria, with some, but not all, centres relying on MELD score to inform allocation policy, as in the USA (see Chapter 1). Because of this heterogeneity of practice, a decision was made to simplify the model by assuming equal priority for all cases.

During their time on the transplant waiting list, patients are subject to the same natural disease process as those prelisting (i.e. the tumour, if they have one, can progress from small to medium to large; a person with decompensated disease without HCC can develop a tumour that may then progress; and a person with compensated disease and a tumour can become decompensated).

Some people are deemed unsuitable for surgical treatment, including those who are diagnosed with...
a large tumour and those whose tumour becomes large while on the waiting list. The number of people who receive transplant, resection or who are deemed unsuitable for surgical treatment are based on simple proportions according to tumour size. Small tumours are deemed more amenable to surgical treatment (by both transplant and resection) than medium-sized tumours (see Table 10).

People who undergo successful treatment (by either transplantation or resection) enter a simplified disease process in which excess mortality rates and associated costs and utilities encompass the spectrum of possible post-treatment experiences. Separate health states to simulate recurrence of HCC post-OLT have not been developed. However, the parameters used to define patient experience following OLT account for additional mortality risk, utility disbenefit and costs that may be associated with recurrence and further treatment.

People with small and medium-sized tumours that are deemed to be surgically untreatable enter a series of states (palliative care) which mirror the natural history of the disease. Palliative treatments (RFA, PEI, TACE and best supportive care) are applied to some people. The sequence of palliative care was developed with reference to the algorithm proposed by Poon and colleagues.322

A proportion of patients with small and medium-sized tumours receive RFA and PEI (see the section ‘Surgically untreatable HCC’, p. 56). Once people progress to ‘terminal HCC large’, an excess mortality with associated costs and utilities is applied, which reflects the palliation provided by transarterial chemoembolisation for a fixed proportion of people.

Parameters

A full list of the parameters used in the Markov model appears in Tables 8–11. More detailed descriptions of the sources from which these estimates were obtained and a justification of their choice can be found in Chapter 4.

To derive some of the time-specific parameter values needed for the Markov model from numbers in published research, probabilities were converted to rates using the standard formula:

\[-\ln(1 - \text{prob}) \]

\[\text{time} \]

Rates were converted to probabilities using the formula:

\[1 - \exp^{-\text{rate} \times \text{time}} \]
TABLE 8 Parameters used in Markov model: cohort characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age of starting cohort (age of diagnosis of cirrhosis)</td>
<td>ALD</td>
<td>53.3</td>
<td>Roberts et al., 2005<sup>16</sup></td>
<td>43.3 to 63.3</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>44.0</td>
<td>Fattovich et al., 1995<sup>98</sup></td>
<td>34.0 to 54.0</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>54.0</td>
<td>Fattovich et al., 1997<sup>64</sup></td>
<td>44.0 to 64.0</td>
</tr>
<tr>
<td>Gender mix of cohort (% male)</td>
<td>ALD</td>
<td>70.1%</td>
<td>ONS mortality statistics<sup>a</sup></td>
<td>50.0% to 90.2%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>86.5%</td>
<td>Fattovich et al., 1995<sup>98</sup></td>
<td>82.6% to 89.7%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>58.1%</td>
<td>Fattovich et al., 1997<sup>64</sup></td>
<td>53.1% to 62.9%</td>
</tr>
<tr>
<td>Upper age limit for surveillance programmes</td>
<td>All</td>
<td>70</td>
<td>AA</td>
<td>60 to 80</td>
</tr>
</tbody>
</table>

Composition of mixed aetiology cohort:
- ALD: 57.6%^e EO
- HBV: 7.3%
- HCV: 35.1%

TABLE 9 Parameters used in Markov model: values affecting transition probabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual incidence of cirrhosis decompensation</td>
<td>ALD</td>
<td>3.3%</td>
<td></td>
<td>1.8% to 7.0%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>3.3%</td>
<td></td>
<td>1.8% to 6.0%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>5.3%</td>
<td></td>
<td>3.9% to 7.0%</td>
</tr>
<tr>
<td>Annual incidence of HCC</td>
<td>ALD</td>
<td>1.7%</td>
<td>Fattovich et al., 2004<sup>323</sup></td>
<td>1.2% to 2.2%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>2.2%</td>
<td>Fattovich et al., 2004<sup>323</sup></td>
<td>1.6% to 2.8%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>3.7%</td>
<td>Fattovich et al., 2004<sup>323</sup></td>
<td>3.2% to 4.2%</td>
</tr>
<tr>
<td>Tumour growth rate (volume doubling time)</td>
<td>All</td>
<td>127 days<sup>b</sup></td>
<td>Taouli et al., 2005<sup>324</sup></td>
<td>80 days<sup>c</sup> to 203 days<sup>d</sup></td>
</tr>
<tr>
<td>Probability of AFP =<20 ng/ml in HCC<sub>S</sub></td>
<td>All</td>
<td>0.352</td>
<td></td>
<td>0.261 to 0.456</td>
</tr>
<tr>
<td>Probability of AFP 21–400 ng/ml in HCC<sub>S</sub></td>
<td>All</td>
<td>0.568</td>
<td></td>
<td>0.464 to 0.667</td>
</tr>
<tr>
<td>Probability of AFP >400 ng/ml in HCC<sub>S</sub></td>
<td>All</td>
<td>0.080</td>
<td></td>
<td>0.039 to 0.155</td>
</tr>
<tr>
<td>Probability of AFP =<20 ng/ml in HCC<sub>M</sub></td>
<td>All</td>
<td>0.378</td>
<td></td>
<td>0.276 to 0.492</td>
</tr>
<tr>
<td>Probability of AFP 21–400 ng/ml in HCC<sub>M</sub></td>
<td>All</td>
<td>0.500</td>
<td></td>
<td>0.389 to 0.611</td>
</tr>
<tr>
<td>Probability of AFP >400 ng/ml in HCC<sub>M</sub></td>
<td>All</td>
<td>0.122</td>
<td></td>
<td>0.065 to 0.215</td>
</tr>
<tr>
<td>Probability of AFP =<20 ng/ml in HCC<sub>L</sub></td>
<td>All</td>
<td>0.222</td>
<td></td>
<td>0.063 to 0.547</td>
</tr>
<tr>
<td>Probability of AFP 21–400 ng/ml in HCC<sub>L</sub></td>
<td>All</td>
<td>0.444</td>
<td></td>
<td>0.189 to 0.733</td>
</tr>
<tr>
<td>Probability of AFP >400 ng/ml in HCC<sub>L</sub></td>
<td>All</td>
<td>0.334</td>
<td></td>
<td>0.121 to 0.646</td>
</tr>
<tr>
<td>Probability of AFP =<20 ng/ml in patients with no HCC</td>
<td>All</td>
<td>0.906</td>
<td>Trevisani et al., 2001<sup>251</sup></td>
<td>0.853 to 0.941</td>
</tr>
<tr>
<td>Probability of AFP 21–400 ng/ml in patients with no HCC</td>
<td>All</td>
<td>0.088</td>
<td>Trevisani et al., 2001<sup>251</sup></td>
<td>0.054 to 0.140</td>
</tr>
<tr>
<td>Probability of AFP >400 ng/ml in patients with no HCC</td>
<td>All</td>
<td>0.006</td>
<td>Trevisani et al., 2001<sup>251</sup></td>
<td>0.001 to 0.033</td>
</tr>
<tr>
<td>Probability of detection of HCC<sub>S</sub> by ultrasound</td>
<td>All</td>
<td>0.107</td>
<td>Bennett et al., 2002<sup>256</sup></td>
<td>0.037 to 0.272</td>
</tr>
<tr>
<td>Probability of detection of HCC<sub>M</sub> by ultrasound</td>
<td>All</td>
<td>0.286</td>
<td>Bennett et al., 2002<sup>256</sup></td>
<td>0.082 to 0.641</td>
</tr>
</tbody>
</table>

^bTaouli et al., 2005
^cTaouli et al., 2005
^dTaouli et al., 2005
^eAuthors' assumption; EO, assumption based on expert opinion.

© Queen's Printer and Controller of HMSO 2007. All rights reserved.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of detection of HCCc by ultrasound</td>
<td>All</td>
<td>0.750</td>
<td>Bennett et al., 2002<sup>256</sup></td>
<td>0.301 0.954</td>
</tr>
<tr>
<td>False-positive rate for ultrasound</td>
<td>All</td>
<td>3.5%</td>
<td>Bennett et al., 2002<sup>256</sup></td>
<td>1.6% 7.4%</td>
</tr>
<tr>
<td>Probability of detection of HCCs by CT</td>
<td>All</td>
<td>1.000</td>
<td>AA</td>
<td>1.000 1.000</td>
</tr>
<tr>
<td>Probability of detection of HCCm by CT</td>
<td>All</td>
<td>1.000</td>
<td>AA</td>
<td>1.000 1.000</td>
</tr>
<tr>
<td>False-positive rate for CT</td>
<td>All</td>
<td>10.2%</td>
<td>Brancatelli et al., 2003<sup>325</sup></td>
<td>7.6% 13.7%</td>
</tr>
<tr>
<td>Annual symptomatic/incidental presentation rate for HCCc</td>
<td>All</td>
<td>1.6%</td>
<td>f</td>
<td>0% 16.2%</td>
</tr>
<tr>
<td>Annual symptomatic/incidental presentation rate for HCCm</td>
<td>All</td>
<td>12.1%</td>
<td>f</td>
<td>0% 30.3%</td>
</tr>
<tr>
<td>Annual symptomatic/incidental presentation rate for HCCM</td>
<td>All</td>
<td>50.0%</td>
<td>f</td>
<td>0% 100%</td>
</tr>
<tr>
<td>Proportion with decompensated cirrhosis who are listed for OLT</td>
<td>All</td>
<td>90%</td>
<td>AA</td>
<td>80% 100%</td>
</tr>
<tr>
<td>Proportion with HCCc who receive resection</td>
<td>All</td>
<td>20%</td>
<td>AA</td>
<td>10% 30%</td>
</tr>
<tr>
<td>Proportion with HCCc who are listed for OLT</td>
<td>All</td>
<td>75%</td>
<td>AA</td>
<td>65% 85%</td>
</tr>
<tr>
<td>Proportion with HCCc who are deemed surgically untreatable</td>
<td>All</td>
<td>5%</td>
<td>AA</td>
<td>5% 5%</td>
</tr>
<tr>
<td>Proportion with HCCm who receive resection</td>
<td>All</td>
<td>5%</td>
<td>AA</td>
<td>2% 10%</td>
</tr>
<tr>
<td>Proportion with HCCm who are listed for OLT</td>
<td>All</td>
<td>85%</td>
<td>AA</td>
<td>88% 80%</td>
</tr>
<tr>
<td>Proportion with HCCm who are deemed surgically untreatable</td>
<td>All</td>
<td>10%</td>
<td>AA</td>
<td>10% 10%</td>
</tr>
<tr>
<td>Median wait on OLT waiting list<sup>d</sup></td>
<td>All</td>
<td>72 days<sup>h</sup></td>
<td>UKT</td>
<td>68 days<sup>i</sup> 76 days<sup>j</sup></td>
</tr>
<tr>
<td>Annual mortality rate due to compensated cirrhosis</td>
<td>All</td>
<td>0%</td>
<td>AA</td>
<td>0% 5%</td>
</tr>
<tr>
<td>Annual mortality rate due to decompensated cirrhosis</td>
<td>ALD</td>
<td>17.7%</td>
<td><sup>k</sup></td>
<td>12.7% 32.5%</td>
</tr>
<tr>
<td>90-day mortality rate for patients undergoing OLT</td>
<td>ALD</td>
<td>6.0%</td>
<td>UKT</td>
<td>0.0% 12.6%</td>
</tr>
<tr>
<td>Proportion of patients surviving 1 year following OLT</td>
<td>ALD</td>
<td>92.0%</td>
<td>UKT</td>
<td>84.5% 99.5%</td>
</tr>
<tr>
<td>Proportion of patients surviving 5 year following OLT</td>
<td>ALD</td>
<td>54.7%</td>
<td>UKT</td>
<td>38.2% 71.3%</td>
</tr>
<tr>
<td>90-day mortality rate for patients undergoing resection</td>
<td>All</td>
<td>3.9%</td>
<td>Llovet et al., 1999<sup>216</sup></td>
<td>1.3% 10.8%</td>
</tr>
<tr>
<td>Proportion of patients surviving 1 year following resection</td>
<td>All</td>
<td>85.0%</td>
<td>Llovet et al., 1999<sup>216</sup></td>
<td>79.0% 88.0%</td>
</tr>
<tr>
<td>Proportion of patients surviving 3 year following resection</td>
<td>All</td>
<td>62.0%</td>
<td>Llovet et al., 1999<sup>216</sup></td>
<td>54.0% 76.0%</td>
</tr>
<tr>
<td>Proportion of patients surviving 5 year following resection</td>
<td>All</td>
<td>51.0%</td>
<td>Llovet et al., 1999<sup>216</sup></td>
<td>36.0% 58.0%</td>
</tr>
</tbody>
</table>

continued
TABLE 9 Parameters used in Markov model: values affecting transition probabilities (cont’d)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Annual mortality rate associated with occult HCC<sub>L</sub></td>
<td>All</td>
<td>72.9%</td>
<td>Greten et al., 2005<sup>83</sup></td>
<td>34.6%</td>
</tr>
<tr>
<td>Annual mortality rate associated with known HCC<sub>L</sub></td>
<td>All</td>
<td>64.4%</td>
<td>1</td>
<td>33.6%</td>
</tr>
<tr>
<td>HCC tumours: S, small (<2 cm); M, medium (2–5 cm); L, large (5 cm); UKT, UK Transplant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a Assumed same as HBV in absence of a reliable ALD-specific estimate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b Monthly probability of progression from HCC<sub>S</sub> to HCC<sub>M</sub> = 0.056; monthly probability of progression from HCC<sub>M</sub> to HCC<sub>L</sub> = 0.036.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c Monthly probability of progression from HCC<sub>S</sub> to HCC<sub>M</sub> = 0.036; monthly probability of progression from HCC<sub>M</sub> to HCC<sub>L</sub> = 0.023.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d Monthly probability of progression from HCC<sub>S</sub> to HCC<sub>M</sub> = 0.089; monthly probability of progression from HCC<sub>M</sub> to HCC<sub>L</sub> = 0.056.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e AFP distributions derived from pooled individual patient data.<sup>10,287,293,326–328</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f Rates calibrated to be in line with the mix of tumour sizes reported in Trevisani et al. (2002).<sup>278</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g All patients have the same probability of receiving a transplant, regardless of reason for listing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h Equivalent to a monthly probability of receiving a transplant = 0.254.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i Equivalent to a monthly probability of receiving a transplant = 0.242.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j Equivalent to a monthly probability of receiving a transplant = 0.267.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k Average of HBV and HCV values in absence of a reliable ALD-specific estimate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l Assuming 33% of patients receive TACE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 10 Parameters used in Markov model: values affecting costs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Unit costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP test</td>
<td>£4 per test</td>
<td>£2</td>
</tr>
<tr>
<td>CT scan</td>
<td>£110 per scan</td>
<td>£50</td>
</tr>
<tr>
<td>Ultrasound scan</td>
<td>£50 per scan</td>
<td>£26</td>
</tr>
<tr>
<td>MRI scan</td>
<td>£200 per scan</td>
<td>£180</td>
</tr>
<tr>
<td>Outpatient appointment</td>
<td>£101 per appointment</td>
<td>£72</td>
</tr>
<tr>
<td>PEI</td>
<td>£754 per procedure</td>
<td>£377</td>
</tr>
<tr>
<td>RFA</td>
<td>£381 per procedure</td>
<td>£190</td>
</tr>
<tr>
<td>TACE</td>
<td>£537 per procedure</td>
<td>£268</td>
</tr>
<tr>
<td>State costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All compensated cirrhosis states</td>
<td>£1,171 per year</td>
<td>£718</td>
</tr>
<tr>
<td>All decompensated cirrhosis states</td>
<td>£9,385 per year</td>
<td>£6,407</td>
</tr>
<tr>
<td>All known HCC states</td>
<td>£1,230 extra<sup>a</sup> per year</td>
<td>£615</td>
</tr>
<tr>
<td>OLT</td>
<td>£21,800 per operation</td>
<td>£16,700</td>
</tr>
<tr>
<td>Post-OLT (year 1)</td>
<td>£9,872 per patient per year</td>
<td>£4,831</td>
</tr>
<tr>
<td>Post-OLT (year 2 onwards)</td>
<td>£1,564 per patient per year</td>
<td>£821</td>
</tr>
<tr>
<td>Resection</td>
<td>£5,400 per operation</td>
<td>£1,500</td>
</tr>
<tr>
<td>Postresection</td>
<td>£3,532 per patient per year</td>
<td>£2,338</td>
</tr>
<tr>
<td>Palliative care (HCC<sub>S</sub> and HCC<sub>M</sub>)</td>
<td>£1,619 extra<sup>b</sup> per year</td>
<td>£809</td>
</tr>
<tr>
<td>Palliative care (HCC<sub>L</sub>)</td>
<td>£177 extra<sup>c</sup> per year</td>
<td>£88</td>
</tr>
<tr>
<td>Event costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False-positive diagnosis</td>
<td>£512 per false-positive diagnosis</td>
<td>£374</td>
</tr>
<tr>
<td>Symptomatic/incidental diagnosis</td>
<td>£164 per diagnosis</td>
<td>£78</td>
</tr>
<tr>
<td>a In addition to costs of underlying cirrhosis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b In addition to costs of underlying cirrhosis and costs of HCC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performed consecutively, these two calculations are equivalent to:

$$1 - \text{prob}^{-\frac{1}{\text{time}}}$$

where \(\text{time} \) is the number of units of interest spanned in the probability. For example, annual probabilities were converted to monthly ones using the formula $$1 - \text{prob}^{-\frac{1}{12}}$$.

Discounting

In accordance with HM Treasury advice, costs and benefits are discounted at 3.5%. The impact of discounting on the results was explored using the following rates: 1.5%, 3%, 4.5% and 6%. Undiscounted results are also presented.

Dealing with uncertainty

One-way sensitivity analysis

Extensive one-way sensitivity analyses were undertaken to explore which of the input parameters, when varied in isolation, have the greatest impact on the results. For simplicity, a single core comparison was used: 6-monthly AFP and ultrasound versus no surveillance in a mixed cohort.

In some of the analyses of uncertainty the results are expressed in terms of net monetary benefit. Net monetary benefit is an alternative method of combining the outputs (marginal cost and marginal benefit) from the cost–utility model. It is calculated by first assigning a cost value to a benefit unit. The marginal benefit of the treatment arm of the model can then be rescaled in terms of cost using this valuation. If a QALY is valued at £30,000, for example, then a marginal benefit of 100 QALYs between arms is valued at £3,000,000. The net monetary benefit of the treatment can then be calculated by simply offsetting the marginal cost against the marginal benefits of treatment (i.e. the benefit difference between arms expressed in pounds minus the cost difference expressed in pounds). The advantage of using net monetary benefit as an output metric is that it is a more intuitive measure of output and behaves in a more linear way than the incremental cost-effectiveness ratio (ICER). It is hence much easier to interpret. The main downside of using net monetary benefit is that it relies on a specific level of valuation for each unit of benefit. The present analysis used the commonly applied valuation of £30,000 per QALY.

Inputs used in the one-way sensitivity analyses are shown in Tables 8–11.

TABLE II Parameters used in Markov model: utilities

<table>
<thead>
<tr>
<th>Health state</th>
<th>Markov states applied to</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensated cirrhosis</td>
<td>All compensated cirrhosis states (± known or occult HCCs or HCCM, including patients on the OLT waiting list)</td>
<td>0.75</td>
<td>Chong et al., 2003</td>
<td>0.66</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decompensated cirrhosis</td>
<td>All decompensated cirrhosis states (± known or occult HCCs or HCCM, including patients on the OLT waiting list)</td>
<td>0.66</td>
<td>Chong et al., 2003</td>
<td>0.46</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCC</td>
<td>Terminal HCC</td>
<td>0.64</td>
<td>Chong et al., 2003</td>
<td>0.44</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Month of OLT</td>
<td>OLT (month of)</td>
<td>0.50</td>
<td>AA</td>
<td>0.30</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Post-OLT (year 1)</td>
<td>Post-OLT (year 1)</td>
<td>0.69</td>
<td>Ratcliffe et al., 2002</td>
<td>0.64</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Post-OLT (year 2+)</td>
<td>Post-OLT (year 2 onwards)</td>
<td>0.73</td>
<td>Ratcliffe et al., 2002</td>
<td>0.67</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Month of resection</td>
<td>Resection (month of)</td>
<td>0.50</td>
<td>AA</td>
<td>0.30</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Postresection</td>
<td>Postresection (survivors)</td>
<td>0.73</td>
<td>a</td>
<td>0.62</td>
<td>0.84</td>
<td></td>
</tr>
</tbody>
</table>

* a Weighted average of values adopted for compensated and decompensated cirrhosis, calculated to approximate average clinical course following resection, including probability of decompensation.
Scenario analyses
Several scenario analyses were also performed.

Compliance
The effects of compliance on the cost-effectiveness analysis were explored in two ways: in a scenario analysis and in a detailed one-way sensitivity analysis. Two types of non-compliance were considered: (i) not all appointments are attended, everyone has an equal probability of attending or missing the appointment and (ii) a proportion of people discontinue participation in the programme altogether. In the scenario analysis two levels of non-compliance were considered: 50% of appointments are missed with 5% dropping out of the programme per year and 75% of appointments are missed with 10% of people dropping out of the programme per year.

Tumour growth rate
For each aetiology of cirrhosis, nine separate analyses were performed, with both of the tumour growth rates that are specified in the model (HCCS to HCCM and HCCM to HCCL) varied simultaneously over nine equal strata, corresponding to tumour volume doubling times from 80 to 203 days (the 95% confidence interval reported in the selected parameter source for tumour growth rate; see below). The results of these analyses were then pooled, with a weighted average cost, utility and cost–utility calculated according to three separate distributions: a normal distribution (approximating a similar number of slow-growing and fast-growing tumours) and two beta distributions (approximating a preponderance of slow-growing and fast-growing tumours, respectively).

Transplant as the only surgical treatment option
An analysis was performed in which the only treatment option is transplant. The number of patients listed for transplant or who were deemed unsuitable for surgical treatment was based on simple proportions and varied according to tumour size (Table 12).

More effective, more expensive ultrasound
An analysis was performed in which the cost and effectiveness of ultrasound were increased to reflect potential improvements in ultrasound technology. Further details are provided in the section ‘More effective, more expensive ultrasound’ (p. 85).

Alternative AFP sensitivity data
An analysis was performed using alternative data on the diagnostic accuracy of AFP assay obtained from a report published by Farinati and co-workers. This was not an a priori analysis as the data came to our attention in the latter stages of preparation of this report. The data originate from a consecutive series of more than 1000 Italian patients with HCC. More details are provided in the section ‘Alternative AFP sensitivity data’ (p. 88).

Detailed one-way sensitivity analyses
Several detailed one-way sensitivity analyses were performed in which parameters (or related groups of parameters) of interest were varied while all other values, which may themselves be subject to uncertainty, were held at their base-case values. These analyses were performed over wide ranges of possible parameter values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with HCCS who are listed for OLT</td>
<td>All</td>
<td>95%</td>
<td>AA</td>
<td>90% to 98%</td>
</tr>
<tr>
<td>Proportion with HCCS who are deemed surgically untreated</td>
<td>All</td>
<td>5%</td>
<td>AA</td>
<td>10% to 2%</td>
</tr>
<tr>
<td>Proportion with HCCM who are listed for OLT</td>
<td>All</td>
<td>90%</td>
<td>AA</td>
<td>80% to 95%</td>
</tr>
<tr>
<td>Proportion with HCCM who are deemed surgically untreated</td>
<td>All</td>
<td>10%</td>
<td>AA</td>
<td>20% to 5%</td>
</tr>
<tr>
<td>Proportion with HCCL who are deemed surgically untreated</td>
<td>All</td>
<td>100%</td>
<td>AA</td>
<td>– to –</td>
</tr>
</tbody>
</table>

TABLE 12 Parameters used in scenario in which transplantation is the only possible curative treatment option
values for various reasons which are explained in more detail below.

Compliance
In this analysis, because there is little evidence to inform the nature of non-compliance with surveillance, the two parameters which define the probability that screening appointments will be met were varied over a range of correlated values. The likelihood of any individual test cycle being performed ranged from 25 to 100% and, simultaneously, the proportion of the cohort dropping out of the programme entirely was varied from 10% per annum to nil.

Tumour growth rate
In addition to the scenario analysis described above, a one-way analysis was performed in which the effect of varying the average rate at which all tumours in the base case of the model are assumed to grow was investigated.

Sensitivity of ultrasound
As it is possible that the research literature-derived values surrounding ultrasound test performance may not reflect current practice or technological developments, an analysis was performed in which the parameters defining the sensitivity of ultrasound for detecting tumours were simultaneously varied over a range of correlated values from 5 to 50%, 10 to 75% and 50 to 100% for small, medium and large HCCs, respectively.

Cost of AFP test
The low cost of the AFP test may be important in the finding that surveillance with AFP as the initial test is always cheaper and always more cost-effective than surveillance with ultrasound at the same frequency. Therefore, a threshold analysis was performed on the cost of AFP, which examines model outputs as this unit cost is increased. As this analysis examines the impact of a cost input, the results are expressed in terms of cost-effectiveness, expressed as net monetary benefit at a willingness-to-pay (WTP) threshold of £30,000 per QALY, as a function of the cost of the AFP test.

Probabilistic sensitivity analysis
Probabilistic sensitivity analysis (PSA) was also undertaken. A Monte Carlo simulation was developed to explore the impact of underlying parameter uncertainty on cost-effectiveness. In the stochastic approach, the Markov model is run for 10,000 trials with key input values randomly drawn from probabilistic density functions in each model run. In these simulated trials, values were sampled for transition probabilities, utilities and costs, using the distributions as shown in Tables 13–16.

Wherever possible, we relied on the sample sizes in the research on which the base-case parameter estimate is based (denoted \(n \)). However, in some instances these sample sizes were so small that they created nonsensical results, so for these parameters a higher notional sample size (denoted \(N \)) was arbitrarily used. The uncertainty in all binary probability parameters was assumed to have a beta distribution, most cost parameters a log-normal distribution and the parameter age at diagnosis a normal distribution. Dirichlet distributions were used for probability parameters where there were more than two chance outcomes.

Value of information analyses
Expected value of perfect information (EVPI) analysis uses PSA outputs to assess the likely costs of making a poor decision based on the available data, and hence provides a measure of the maximum monetary value of having perfect information. Hence, the global EVPI provides a notional upper estimate of the total cost of further research that might better inform the parameters

Table 13 Parameters varied in probabilistic model simulations: cohort characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Cohort</th>
<th>Parameters of the distribution</th>
<th>Expected value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age of starting cohort (age of diagnosis of cirrhosis)</td>
<td>Normal</td>
<td>ALD</td>
<td>Mean = 53; SD = 4√(500)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HBV</td>
<td>Mean = 44; SD = 4√(500)</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCV</td>
<td>Mean = 54; SD = 4√(500)</td>
<td>54</td>
</tr>
<tr>
<td>Gender mix of cohort (% male)</td>
<td>Beta</td>
<td>ALD</td>
<td>(n = 301; r = 211)</td>
<td>0.70100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HBV</td>
<td>(n = 349; r = 302)</td>
<td>0.86533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCV</td>
<td>(n = 384; r = 223)</td>
<td>0.58073</td>
</tr>
<tr>
<td>Upper age limit for surveillance programmes</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = ln(70); sigma (SD of logs) = ln(80/60)/√(2000)</td>
<td>70.00145</td>
</tr>
<tr>
<td>Parameter</td>
<td>Distribution</td>
<td>Cohort</td>
<td>Parameters of the distribution</td>
<td>Expected value</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Annual incidence of cirrhosis decompensation</td>
<td>Beta</td>
<td>ALD</td>
<td>n = 161; r = 5</td>
<td>0.03106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HBV</td>
<td>n = 161; r = 5</td>
<td>0.03106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCV</td>
<td>n = 136; r = 7</td>
<td>0.05147</td>
</tr>
<tr>
<td>Annual incidence of HCC</td>
<td>Beta</td>
<td>ALD</td>
<td>n = 584; r = 10</td>
<td>0.01712</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HBV</td>
<td>n = 401; r = 9</td>
<td>0.02244</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCV</td>
<td>n = 1284; r = 47</td>
<td>0.03660</td>
</tr>
<tr>
<td>Tumour growth rate (small to medium)</td>
<td>Beta</td>
<td>All</td>
<td>n = 16; r = 8</td>
<td>0.5</td>
</tr>
<tr>
<td>Tumour growth rate (medium to large)</td>
<td>Beta</td>
<td>All</td>
<td>n = 16; r = 6</td>
<td>0.375</td>
</tr>
<tr>
<td>AFP distribution in HCC<sub>s</sub></td>
<td>Dirichlet</td>
<td>All</td>
<td>Alphas list = List(352;568;80)</td>
<td></td>
</tr>
<tr>
<td>AFP distribution in HCC<sub>M</sub></td>
<td>Dirichlet</td>
<td>All</td>
<td>Alphas list = List(378;500;122)</td>
<td></td>
</tr>
<tr>
<td>AFP distribution in HCC<sub>L</sub></td>
<td>Dirichlet</td>
<td>All</td>
<td>Alphas list = List(222;444;334)</td>
<td></td>
</tr>
<tr>
<td>AFP distribution in patients with no HCC</td>
<td>Dirichlet</td>
<td>All</td>
<td>Alphas list = List(906;88;6)</td>
<td></td>
</tr>
<tr>
<td>Probability of detection of HCC<sub>s</sub> by ultrasound</td>
<td>Beta</td>
<td>All</td>
<td>N = 500; r = 54</td>
<td>0.108</td>
</tr>
<tr>
<td>Probability of detection of HCC<sub>M</sub> by ultrasound</td>
<td>Beta</td>
<td>All</td>
<td>N = 500; r = 143</td>
<td>0.286</td>
</tr>
<tr>
<td>Probability of detection of HCC<sub>L</sub> by ultrasound</td>
<td>Beta</td>
<td>All</td>
<td>N = 500; r = 375</td>
<td>0.75</td>
</tr>
<tr>
<td>False-positive rate for ultrasound</td>
<td>Beta</td>
<td>All</td>
<td>N = 500; r = 17</td>
<td>0.034</td>
</tr>
<tr>
<td>False-positive rate for CT</td>
<td>Beta</td>
<td>All</td>
<td>N = 600; r = 539</td>
<td>0.89833</td>
</tr>
<tr>
<td>Annual symptomatic/incidental presentation rate for HCC<sub>s</sub></td>
<td>Beta</td>
<td>All</td>
<td>N = 10000; r = 160</td>
<td>0.016</td>
</tr>
<tr>
<td>Annual symptomatic/incidental presentation rate for HCC<sub>M</sub></td>
<td>Beta</td>
<td>All</td>
<td>N = 1000; r = 121</td>
<td>0.121</td>
</tr>
<tr>
<td>Annual symptomatic/incidental presentation rate for HCC<sub>L</sub></td>
<td>Beta</td>
<td>All</td>
<td>N = 1000; r = 500</td>
<td>0.5</td>
</tr>
<tr>
<td>Proportion with decompensated cirrhosis who are listed for OLT</td>
<td>Beta</td>
<td>All</td>
<td>N = 1000; r = 900</td>
<td>0.9</td>
</tr>
<tr>
<td>Proportion with HCC<sub>s</sub> who are listed for OLT</td>
<td>Beta</td>
<td>All</td>
<td>N = 1000; r = 950</td>
<td>0.95</td>
</tr>
<tr>
<td>Proportion with HCC<sub>s</sub> who receive resection</td>
<td>Beta</td>
<td>All</td>
<td>N = 500; r = 100</td>
<td>0.2</td>
</tr>
<tr>
<td>Proportion with HCC<sub>M</sub> who are listed for OLT</td>
<td>Beta</td>
<td>All</td>
<td>N = 1000; r = 900</td>
<td>0.9</td>
</tr>
<tr>
<td>Proportion with HCC<sub>L</sub> who receive resection</td>
<td>Beta</td>
<td>All</td>
<td>N = 500; r = 25</td>
<td>0.05</td>
</tr>
<tr>
<td>Monthly probability of receiving an OLT once on waiting list</td>
<td>Beta</td>
<td>All</td>
<td>n = 2271; r = 577</td>
<td>0.25407</td>
</tr>
<tr>
<td>Annual mortality rate due to decompensated cirrhosis</td>
<td>Beta</td>
<td>ALD</td>
<td>n = 98; r = 17</td>
<td>0.17347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HBV</td>
<td>n = 33; r = 7</td>
<td>0.21212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCV</td>
<td>n = 65; r = 8</td>
<td>0.12308</td>
</tr>
<tr>
<td>Mortality rate for patients following OLT</td>
<td>Log-normal</td>
<td>All</td>
<td>u (mean of logs) = 0; sigma (SD of logs) = 0.3/√(2000)</td>
<td>1.00002</td>
</tr>
<tr>
<td>Mortality rate for patients following resection</td>
<td>Log-normal</td>
<td>All</td>
<td>u (mean of logs) = 0; sigma (SD of logs) = 0.3/√(2000)</td>
<td>1.00002</td>
</tr>
<tr>
<td>Annual mortality rate associated with occult HCC<sub>L</sub></td>
<td>Beta</td>
<td>All</td>
<td>n = 194; r = 141</td>
<td>0.72680</td>
</tr>
<tr>
<td>Annual mortality rate associated with known HCC<sub>L</sub></td>
<td>Beta</td>
<td>All</td>
<td>N = 100; r = 66</td>
<td>0.66</td>
</tr>
</tbody>
</table>
TABLE 15 Parameters varied in probabilistic model simulations: values affecting costs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Cohort</th>
<th>Parameters of the distribution</th>
<th>Expected value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP test</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(4)); sigma (SD of logs) = (\ln(8/2)/4/\sqrt{8})</td>
<td>4.03</td>
</tr>
<tr>
<td>CT scan</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(110)); sigma (SD of logs) = (\ln(130)/50/4/\sqrt{130})</td>
<td>110.02</td>
</tr>
<tr>
<td>Ultrasound scan</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(50)); sigma (SD of logs) = (\ln(100/26)/4/\sqrt{135})</td>
<td>50.02</td>
</tr>
<tr>
<td>State costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All compensated cirrhosis</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(1171)); sigma (SD of logs) = (\ln(2479)/\sqrt{1150})</td>
<td>1202.52</td>
</tr>
<tr>
<td>All decompensated cirrhosis</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(9385)); sigma (SD of logs) = (\ln(9610)/\sqrt{1500})</td>
<td>9651.81</td>
</tr>
<tr>
<td>All known HCC states</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(1230)); sigma (SD of logs) = (\ln(2460/615)/4/\sqrt{20})</td>
<td>1233.70</td>
</tr>
<tr>
<td>OLT</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(21800)); sigma (SD of logs) = (\ln(31800/16700)/1.35/14)</td>
<td>21812.66</td>
</tr>
<tr>
<td>Post-OLT</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = 0; sigma (SD of logs) = 0.25/\sqrt{500}</td>
<td>1.00006</td>
</tr>
<tr>
<td>Resection</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(5400)); sigma (SD of logs) = (\ln(6000/1500)/1.35/\sqrt{131})</td>
<td>5421.78</td>
</tr>
<tr>
<td>Postresection</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(3532)); sigma (SD of logs) = (\ln(4763/2338)/4/\sqrt{115})</td>
<td>3532.49</td>
</tr>
<tr>
<td>Palliative care (HCC and HCCₜ)</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(1618.65)); sigma (SD of logs) = (\ln(3237.3/809.16)/4/\sqrt{50})</td>
<td>1620.60</td>
</tr>
<tr>
<td>Palliative care (HCCₗ)</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(177.21)); sigma (SD of logs) = (\ln(354.22/88.44)/4/\sqrt{50})</td>
<td>177.21</td>
</tr>
<tr>
<td>Event costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False-positive diagnosis</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = (\ln(512)); sigma (SD of logs) = (\ln(796/374)/\sqrt{124})</td>
<td>513.18</td>
</tr>
</tbody>
</table>

TABLE 16 Parameters varied in probabilistic model simulations: utilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Cohort</th>
<th>Parameters</th>
<th>Expected value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensated cirrhosis</td>
<td>Beta</td>
<td>All</td>
<td>(N = 500); (r = 375)</td>
<td>0.75</td>
</tr>
<tr>
<td>Decompensated cirrhosis</td>
<td>Beta</td>
<td>All</td>
<td>(N = 100); (r = 9)</td>
<td>0.09</td>
</tr>
<tr>
<td>HCC</td>
<td>Beta</td>
<td>All</td>
<td>(N = 100); (r = 11)</td>
<td>0.11</td>
</tr>
<tr>
<td>Post-OLT</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = 0; sigma (SD of logs) = 0.16</td>
<td>1.01288</td>
</tr>
<tr>
<td>Postresection</td>
<td>Log-normal</td>
<td>All</td>
<td>(u) (mean of logs) = 0; sigma (SD of logs) = 0.3/\sqrt{(2000)}</td>
<td>1.00002</td>
</tr>
</tbody>
</table>

Owing to limitations of computational capacity and time, no estimates were calculated of the value of perfect information (i.e. minimising the uncertainty) in relation to particular parameters or groups of parameters (that is, partial EVPI analysis).
Chapter 4
Cost-effectiveness model: parameters

Overriding principles

For all estimates, attempts were made to find a source that had a large sample size, consisted of UK patients with a diagnosis of cirrhosis (with details of cirrhosis aetiology) and was a recently published study. For parameters in which there were no UK-based studies available, sources from countries with a similar disease profile were sought (see the section 'Epidemiology and natural history of hepatic cirrhosis', p. 1).

Initially, three additional literature searches for model parameter estimates were performed in electronic databases in the following areas (full details are provided in Appendix 2):

- natural history and progression of cirrhosis and HCC
- effectiveness and harms of treatments for HCC
- quality of life associated with cirrhosis, HCC and surveillance.

The search strategies were developed, tested and refined by an information scientist (AP). All searches were limited to English-language papers in humans. The search for articles relating to the natural history and progression of cirrhosis and HCC was limited to the years 2002–2005 to reduce the number of results. Searches were not limited by methodological features. Reference lists from retrieved articles were studied and additional papers were identified following contacts with experts.

During the implementation of the model, particular efforts were taken to obtain relevant literature in areas where there was a paucity of data in these initial searches. Additional searches, which were not limited by publication date, were therefore performed in the following areas:

- quality of life associated with cirrhosis, HCC and surveillance
- cost-effectiveness of surveillance
- survival following transplant, resection and other palliative treatments
- test performance of AFP, ultrasound and CT
- tumour growth rate.

In some cases, data were obtained from unpublished sources; further details are provided below.

Selection of parameters: baseline characteristics

Age at diagnosis of cirrhosis

Nineteen studies were identified that fulfilled the initial criteria and described the age of patients at diagnosis of cirrhosis. Thirteen studies were excluded. Details of the studies are shown in Table 17.

Alcoholic cirrhosis

None of the studies provides data from the UK. The three short-listed estimates are similar; however, since the study by Fattovich and colleagues represents a larger overall sample size, a mean age of 44 years was used for the age of diagnosis of cirrhosis in patients with HBV. Again, this value was varied by ±10 years in the one-way sensitivity analysis.

HCV-related cirrhosis

None of the studies provides data exclusively from UK patients; however, the study by Fattovich and colleagues represents a larger overall sample size, a mean age of 44 years was used for the age of diagnosis of cirrhosis in patients with HCV. This value was varied by ±10 years in the one-way sensitivity analysis.
Gender mix at time of diagnosis of cirrhosis

The studies considered for this parameter were predominantly the same as those reviewed for baseline age estimates.5,6,8,10,68,284,286,289,293,298

See Table 18 for details.

Alcoholic cirrhosis

The UK studies considered suggest that between three- and four-fifths of patients with alcohol-related cirrhosis are men. Mortality statistics from the ONS registry suggest that the proportion is currently around 70\% (i.e. in the middle of this range). As there is no reason to suspect that gender imparts a differential risk of mortality in alcohol-related cirrhosis, this figure was used as the base-case point estimate, and the proportion was varied between 50\% (an arbitrary value to explore evidence that ALD is becoming more widespread among females335) and 90.2\% (as per del Olmo and colleagues’ findings332) in sensitivity analyses.

HBV-related cirrhosis

We concluded that the one UK study we had identified was based on too small a sample to be reliable so, for the reasons discussed above, the same study used to inform the age parameter was adopted98. In the base case, the proportion of males within the simulated population of patients with HBV is therefore 86.5\%. The reported 95\% confidence intervals were used to define the range used in sensitivity analyses (82.6 to 89.7\%).

HCV-related cirrhosis

As for HCV, the small UK study was rejected and the same study used to inform the age parameter64 was relied on. In the base case, the proportion of males within the simulated population of patients with HCV is therefore 58.1\%. The reported 95\% confidence intervals were used to define the range used in sensitivity analyses (53.1 to 62.9\%).

Composition of mixed cohort

The composition of the mixed cohort is the mean of three estimates obtained from the expert advisory group: 57.6\% of the cohort has cirrhosis as a result of ALD, 35.1\% have HCV-related cirrhosis and 7.3\% have HBV-related cirrhosis.

Table 17: Selection of parameter estimates: age at diagnosis of cirrhosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>Aet.</th>
<th>N</th>
<th>Mean age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saunders et al., 1981331</td>
<td>UK</td>
<td>1959–1976</td>
<td>ALD</td>
<td>242</td>
<td>53a</td>
</tr>
<tr>
<td>del Olmo et al., 1998332</td>
<td>Spain</td>
<td>NS</td>
<td>ALD</td>
<td>327</td>
<td>51.2</td>
</tr>
<tr>
<td>Chiaramonte et al., 1999285</td>
<td>Italy</td>
<td>1981–1993</td>
<td>HBV</td>
<td>66</td>
<td>44.8</td>
</tr>
<tr>
<td>del Olmo et al., 1998332</td>
<td>Spain</td>
<td>NS</td>
<td>HBV</td>
<td>111</td>
<td>44.5</td>
</tr>
<tr>
<td>Chiaramonte et al., 1999285</td>
<td>Italy</td>
<td>1981–1993</td>
<td>HCV</td>
<td>166</td>
<td>55.5</td>
</tr>
<tr>
<td>del Olmo et al., 1998332</td>
<td>Spain</td>
<td>NS</td>
<td>HCV</td>
<td>597</td>
<td>55.8</td>
</tr>
<tr>
<td>Roberts et al., 200536</td>
<td>UK</td>
<td>1966–1999</td>
<td>ALD</td>
<td>2802</td>
<td>53.3 (SD 12.4)</td>
</tr>
<tr>
<td>Fattovich et al., 199598</td>
<td>Europec</td>
<td>1973–1991</td>
<td>HBV</td>
<td>349</td>
<td>44 (range 17–74)</td>
</tr>
<tr>
<td>Fattovich et al., 199764</td>
<td>Europed</td>
<td>1982–1992</td>
<td>HCV</td>
<td>384</td>
<td>54 (SD 4.93)</td>
</tr>
</tbody>
</table>

a Mean age for men (55.2 for women).
b Including non-A/non-B hepatitis (185 patients identified before 1990).
c Nine centres in Italy, Denmark, France, Greece, The Netherlands, Portugal and Spain.
d Seven centres in Italy, Belgium, France, The Netherlands and the UK.
Selection of parameters: transitions

Rate of incidence of HCC in patients with cirrhosis

Nine studies were identified that fulfilled the initial selection criteria.6,8,64,65,67,323,332,333,335
Details of the studies are shown in Table 19. None of the studies reported the incidence of HCC in patients with cirrhosis in the UK.

Alcoholic cirrhosis

A review by Fattovich and colleagues323 included two estimates of the incidence of HCC among patients with alcoholic cirrhosis. One estimate was derived from a series of three population-based studies and, although this included a large number of patients (\(n = 15,020\)), diagnoses of HBV and HCV were not investigated. The second estimate also summarised the data from three studies, but involved 584 patients visiting liver clinics and excluded patients with HBV and HCV. The second estimate was therefore considered most appropriate for use in the model.

HBV-related cirrhosis

Three papers included data on the incidence of HCC among patients with HBV.67,98,323 Two were studies conducted in several European countries and the third a combined estimate from six studies performed in Italy (\(n = 5\)) and Greece (\(n = 1\)) which excluded patients treated with interferon. Estimates from all three sources were similar; the estimate used in the model was taken from the review as it involves the largest sample size and provides additional information of the variability surrounding the estimate.

HCV-related cirrhosis

Five studies included data on patients with HCV. The study by Fattovich and colleagues64 was excluded as the criteria for inclusion of patients in the study have been criticised for being too narrow; all patients with a history of alcohol abuse greater than 80 g per day for more than 5 years were excluded. Estimates from the four remaining studies are similar. An incidence rate of 3.7 per 100 person-years was chosen to populate the model because it was derived from the largest

\begin{table}[h]
\centering
\caption{Selection of parameter estimates: gender mix at diagnosis of cirrhosis}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
\textbf{Study} & \textbf{Country} & \textbf{Years} & \textbf{Aet.} & \textbf{N} & \textbf{Gender mix} \\
\hline
Saunders et al., 1981331 & UK & 1959–1976 & ALD & 242 & 66–80\% malea \\
Roberts et al., 200536 & UK & 1966–1999 & ALD & 2802 & 61.3\% male \\
Douds et al., 20055 & UK & 1987–2000 & ALD & 232 & 76.3\% male \\
Henrion et al., 2003296 & Belgium & 1995–1998 & ALD & 186 & 71.0\% male \\
del Olmo et al., 1998332 & Spain & NS & ALD & 327 & 90.2\% male \\
Douds et al., 20055 & UK & 1987–2000 & HBV & 17 & 76.5\% male \\
Chiaramonte et al., 1999385 & Italy & 1981–1993 & HBV & 66 & 75.8\% male \\
del Olmo et al., 1998332 & Spain & NS & HBV & 111 & 80.2\% male \\
Douds et al., 20035 & UK & 1987–2000 & HCV & 29 & 69.0\% male \\
Chiaramonte et al., 1999385 & Italy & 1981–1993 & HCV & 166 & 52.4\% male \\
Henrion et al., 2003296 & Belgium & 1995–1998 & HCV & 65 & 56.9\% male \\
Degos et al., 2000333 & France & 1987–1996 & HCV & 416 & 57.7\% male \\
del Olmo et al., 1998332 & Spain & NS & HCV & 597 & 58.1\% male \\
ONS mortality statisticsc & England and Wales & 1999–2003 & ALD & 827 & 70.1\% male \\
Fattovich et al., 199598 & Europed & 1973–1991 & HBV & 349 & 86.5\% male \\
Fattovich et al., 199764 & Europee & 1982–1992 & HCV & 384 & 58.1\% male \\
\hline
\end{tabular}
\end{table}

b Including non-A/non-B hepatitis (185 patients identified before 1990).
d Nine centres in Italy, Denmark, France, The Netherlands, Portugal and Spain.
e Seven centres in Italy, Belgium, France, The Netherlands and the UK.

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
sample size (a combined estimate from 13 studies involving 1284 individuals) and patients treated with interferon were excluded.

Tumour growth rate

There are very few studies which evaluate the growth rate of HCC tumours. Extensive searching revealed a total of nine papers (Table 20). We were unable to locate studies based on UK populations or studies in which the tumour growth rates in patients with different cirrhosis aetiologies were reported.

It was felt that this aspect of the natural history of HCCs might be substantially affected by the underlying characteristics of the population. Accordingly, the six short-listed papers that originated in Asian countries were excluded. For the same reason, of the two remaining options, we were predisposed to prefer the US study over the Italian paper, although it was noted that these two
studies reported very similar mean tumour volume doubling times.

Taouli and colleagues’ paper reports a retrospective cohort and modelling study, describing the growth rate of 16 untreated tumours in 11 patients. Mean baseline and follow-up tumour volumes were 10.5 cm³ (range 0.7–243.6 cm³) and 22.0 cm³ (range 2.5–870.8 cm³), respectively. Mean tumour volume doubling time was 127 days (95% CI 80 to 203; range 17.5–541.4 days). Therefore, a mean tumour doubling time of 127 days was used to define tumour growth rate in patients with all three aetiologies of cirrhosis. In the absence of evidence to the contrary, the assumption was made that growth rates are constant, and a parameter estimate was applied to transitions from small to medium tumours and from medium to large tumours. For the range of values used in sensitivity analyses, the upper and lower bounds of the 95% confidence intervals reported in the chosen study were adopted. This range encompasses all the sample means reported in papers from which data were extracted.

Rate of incidence of decompensation

We were unable to identify any cohort studies from the UK. When broadening the search to include data from other countries, a total of seven papers was identified. Three studies were excluded on preliminary review, in two cases because they were considered out of date. The remaining four studies were considered in detail. Between them, the papers reported the incidence of decompensation in two cohorts of patients with HBV-related cirrhosis and three cohorts of patients with HCV-related cirrhosis. No studies were found reporting rates of decompensation in patients with alcohol-related cirrhosis. The data considered are collected in Table 21.

As far as posthepatitic cirrhosis is concerned, it was felt that these studies represented a reliable and relatively homogeneous evidence base. Because the most recently published paper by Fattovich and colleagues represents a large European study with a long follow-up period (median 79 months) and includes separate estimates for patients with HBV and HCV, this study was chosen to provide the base-case parameters, and the other estimates identified were used to inform the ranges used in sensitivity analyses.

We were unable to find any estimates of the incidence of decompensation in patients with alcoholic compensated cirrhosis. It was therefore assumed that the incidence would be similar to that occurring in patients with HBV, for two main reasons: first, ALD and HBV cohorts are comparable in terms of gender mix (which may be a covariate of decompensation probability) and, secondly, it was assumed that abstinent former

TABLE 20 Selection of parameter estimates: tumour growth rate

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>N</th>
<th>Tumour volume doubling time</th>
<th>Mean ± SD</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshino 1983</td>
<td>Japan</td>
<td>1983</td>
<td>39</td>
<td>204.2 ± 135.00</td>
<td>171.6 (27–606)</td>
<td></td>
</tr>
<tr>
<td>Sheu et al., 1985</td>
<td>Taiwan</td>
<td>1981–1983</td>
<td>16</td>
<td>132.0 ± 94.00</td>
<td>95.0 (41–315)</td>
<td></td>
</tr>
<tr>
<td>Ebara et al., 1986</td>
<td>Japan</td>
<td>1979–1983</td>
<td>21</td>
<td>197.7 ± 173.3</td>
<td>117.0 (29–398)</td>
<td></td>
</tr>
<tr>
<td>Barbara et al., 1992</td>
<td>Italy</td>
<td>1984–1990</td>
<td>31</td>
<td>136.0 ± 94.21</td>
<td>115.7 (29–398)</td>
<td></td>
</tr>
<tr>
<td>Saito et al., 1998</td>
<td>Japan</td>
<td>1988–1993</td>
<td>21</td>
<td>207.5 ± 162.60</td>
<td>142.7 (76–720)</td>
<td></td>
</tr>
<tr>
<td>Nakajima et al., 2002</td>
<td>Japan</td>
<td>NS</td>
<td>34</td>
<td>90.8 ± 67.08</td>
<td>74.5 (17–274)</td>
<td></td>
</tr>
<tr>
<td>Kubota et al., 2003</td>
<td>Japan</td>
<td>1995–2002</td>
<td>22</td>
<td>114.9 ± 102.70</td>
<td>83.2 (33–496)</td>
<td></td>
</tr>
<tr>
<td>Taouli et al., 2005</td>
<td>USA</td>
<td>1997–2002</td>
<td>16</td>
<td>127.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

脚注:

- “During the past three years” (study received January 1983).
- 16 tumours in 11 patients.
- The generalised estimation equation approach was used “to account for the correlation of lesions from the same patients”. Generalised estimation equation means were calculated first on their log-transformed values and then transformed back into the original scales.
drinkers, having effectively eliminated the source of ongoing liver damage, were likely to experience decompensation rates at the lower end of the range observed. Accordingly, the HBV cohort’s annual incidence rate of 3.3% was duplicated for the ALD group, and the impact of this assumption was explored by varying the rate across the full range seen in all aetiologies in sensitivity analyses. Accordingly, the study used a rate of incidence of decompensation of 3.3% per year for patients with HBV and alcoholic cirrhosis and 5.3% per year for patients with HCV.

Anecdotal evidence suggests that the rate of decompensation in patients with HCC may be higher than in patients without HCC, but we were unable to find any significant evidence from the literature to substantiate this. Therefore, the rate of decompensation was varied from 1.8% to 7.0% per year for patients with HBV and 5.3% per year for patients with HCC.

Rate of incidental/symptomatic diagnosis of HCC
In the modelling of surveillance programmes, a particular problem is the estimation of incidental/symptomatic presentation (i.e. the likelihood that individuals with tumours will come to attention outside surveillance interventions; even those under surveillance may become symptomatic before their HCCs are screen detected). Of course, it is impossible to rely on published literature to characterise the natural history of unknown tumours, so it is necessary to rely on surrogate measures.

The model was calibrated to the data reported in Trevisani and colleagues’ retrospective cohort study, because this paper provided a variety of measures against which model outputs could be checked. In particular, we sought to approximate the following findings:

- The proportion of unsurveilled patients who present with small and medium HCCs was

<table>
<thead>
<tr>
<th>TABLE 21 Selection of parameter estimates: rate of incidence of decompensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven studies reviewed:</td>
</tr>
<tr>
<td>Studies excluded (3):</td>
</tr>
<tr>
<td>• Two studies were based on cohorts recruited in the 1970s51,52</td>
</tr>
<tr>
<td>• One study concentrated on outcomes that were too wide ranging to correspond to the definition of decompensation355</td>
</tr>
<tr>
<td>Data extracted from four studies:</td>
</tr>
<tr>
<td>Study</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Fattovich et al., 199598</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fattovich et al., 199764</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hu et al., 199966</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fattovich et al., 200257</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Nine centres in Italy, Denmark, France, Greece, The Netherlands, Portugal and Spain.
\(^b\) Excluding patients who developed HCC.
\(^c\) Estimated from published Kaplan–Meier graph; precise figures not specified.
calculated with reference to Trevisani and co-workers’ reporting of tumours that came to attention while ‘non-advanced’ (i.e. meeting the Milan criteria for transplantation; this was taken to equate to the present definition of ‘small’ and ‘medium’ tumours): 139/449 = 31.0%.

- The model’s predictions were checked against the reported proportion of patients who presented symptomatically despite being under surveillance: 29/215 = 13.5% among those under 6-monthly follow-up and 25/155 = 16.1% for those being assessed annually.

A simplified version of the first phase of the natural history model was constructed in Microsoft Excel and used to predict the values that would enable these results to be replicated most accurately. This provided estimated annual symptomatic/incidental presentation rates of 1.6% for small HCCs (equivalent monthly rate 0.14%) and 12.1% for medium HCCs (equivalent monthly rate 1.1%).

It was assumed that large tumours would become symptomatic at a rate of 50% per year (5.6% per month).

Compliance with the surveillance programme

There are very few published data presenting detailed information regarding compliance with surveillance programmes in patients with cirrhosis (Table 22). Only one relevant UK study was found, but this is currently only available as an abstract.

In the base case, 100% compliance with the surveillance programme is assumed. However, compliance is clearly an important factor in the success of a surveillance programme, and various types of non-compliance were explored in sensitivity analyses (see the sections ‘Scenario analyses’, p. 80, and ‘Detailed one-way sensitivity analyses’, p. 89).

Test performance

The evidence base relating to diagnostic test performance was assessed with reference to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool developed by Whiting and co-workers. In particular, we were keen to ensure that studies had assessed the test in question against an adequate reference (‘gold’) standard. In diagnosis of HCC, the optimal reference standard is pathological examination of the liver. Because patients who have been listed for transplantation due to liver failure may have undiagnosed HCCs, such patients comprise an ideal population in whom to assess the accuracy of diagnostic tests: the test is carried out while the patient is awaiting transplantation and, following the procedure, test

TABLE 22 Selection of parameter estimates: patient compliance with surveillance programmes

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Pop.</th>
<th>N</th>
<th>Freq.</th>
<th>Median follow-up (months) (range)</th>
<th>Irregular attendance</th>
<th>Complete dropout</th>
<th>n (%)</th>
<th>Equiv. annual rate</th>
<th>Equiv. monthly rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henrion et al., 2000</td>
<td>Belgium</td>
<td>ALD</td>
<td>86</td>
<td>6</td>
<td>34</td>
<td>11 (12.8%)</td>
<td>23.0%</td>
<td>2.155%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2003</td>
<td>Belgium</td>
<td>ALD</td>
<td>172</td>
<td>6</td>
<td>60</td>
<td>26 (15.1%)</td>
<td>97 (56.4%)</td>
<td>15.3%</td>
<td>1.374%</td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2000</td>
<td>Belgium</td>
<td>HCV</td>
<td>30</td>
<td>6</td>
<td>34</td>
<td>5 (16.7%)</td>
<td>1 (3.3%)</td>
<td>1.2%</td>
<td>0.100%</td>
<td></td>
</tr>
<tr>
<td>Henrion et al., 2003</td>
<td>Belgium</td>
<td>HCV</td>
<td>64</td>
<td>6</td>
<td>60</td>
<td>4 (6.3%)</td>
<td>11 (17.2%)</td>
<td>3.7%</td>
<td>0.314%</td>
<td></td>
</tr>
<tr>
<td>Woodall et al., 2002</td>
<td>UK</td>
<td>HCV</td>
<td>100</td>
<td>6</td>
<td>48</td>
<td></td>
<td>11 (11.0%)</td>
<td>2.9%</td>
<td>0.242%</td>
<td></td>
</tr>
<tr>
<td>Benvegnù et al., 1994</td>
<td>Italy</td>
<td>Mixed</td>
<td>290</td>
<td>6</td>
<td>46.3 (8–96)</td>
<td></td>
<td>38 (13.1%)</td>
<td>3.6%</td>
<td>0.303%</td>
<td></td>
</tr>
<tr>
<td>Bolondi et al., 2001</td>
<td>Italy</td>
<td>Mixed</td>
<td>313</td>
<td>6</td>
<td>56 (6–100)</td>
<td></td>
<td>24 (7.7%)</td>
<td>1.7%</td>
<td>0.142%</td>
<td></td>
</tr>
<tr>
<td>Borzio et al., 1995</td>
<td>Italy</td>
<td>Mixed</td>
<td>307</td>
<td>6</td>
<td>43 (12–95)</td>
<td></td>
<td>34 (11.1%)</td>
<td>3.0%</td>
<td>0.255%</td>
<td></td>
</tr>
<tr>
<td>Colombo et al., 1991</td>
<td>Italy</td>
<td>Mixed</td>
<td>447</td>
<td>3–12</td>
<td>33</td>
<td></td>
<td>55 (12.3%)</td>
<td>4.7%</td>
<td>0.397%</td>
<td></td>
</tr>
<tr>
<td>Oka et al., 1990</td>
<td>Japan</td>
<td>Mixed</td>
<td>140</td>
<td>2–3</td>
<td>36.2 (2–72)</td>
<td></td>
<td>26 (18.6%)</td>
<td>6.6%</td>
<td>0.566%</td>
<td></td>
</tr>
<tr>
<td>Paterson et al., 1994</td>
<td>France</td>
<td>Mixed</td>
<td>118</td>
<td>6</td>
<td>36 (4–48)</td>
<td>21 (17.8%)</td>
<td>4 (3.4%)</td>
<td>1.1%</td>
<td>0.096%</td>
<td></td>
</tr>
<tr>
<td>Sangiovanni et al., 2004</td>
<td>Italy</td>
<td>Mixed</td>
<td>417</td>
<td>6–12</td>
<td>148 (1–213)</td>
<td></td>
<td>165 (39.6%)</td>
<td>4.0%</td>
<td>0.340%</td>
<td></td>
</tr>
<tr>
<td>Solmi et al., 1996</td>
<td>Italy</td>
<td>Mixed</td>
<td>406</td>
<td>6</td>
<td>56 (18–72)</td>
<td></td>
<td>46 (11.3%)</td>
<td>5.4%</td>
<td>0.461%</td>
<td></td>
</tr>
<tr>
<td>Velazquez et al., 2003</td>
<td>Spain</td>
<td>Mixed</td>
<td>463</td>
<td>3–6</td>
<td>38.6 (1–96)</td>
<td></td>
<td>35 (7.6%)</td>
<td>2.4%</td>
<td>0.203%</td>
<td></td>
</tr>
</tbody>
</table>

Freq., frequency; pop., population.

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
results can be compared to the explanted liver. Several studies have assessed the accuracy of various methods of HCC detection in this setting and, where possible, we sought to rely on these for the model parameters.

Ultrasound examination

The search was limited to studies reporting the accuracy of ultrasound when measured against the reference standard of explant pathology in transplantation series. Nine such studies were identified, details of which are shown in Table 23. For the purposes of the model, it was crucial to capture the performance of ultrasound in detecting tumours of various sizes. Therefore, studies were excluded if they provided insufficient detail about the diameter of nodules found and missed.

Because abdominal ultrasonography is a rapidly advancing specialism, Dodd and co-workers’ data were considered unreliable, as they were collected 15 years ago (even though their results are comparable to those presented in the other studies considered). The two Korean papers were also discounted, as neither provides any evidence on the detectability of larger HCCs: no tumours in Kim and colleagues’ series exceed 5 cm in diameter and, although Liu and co-workers found tumours of up to 16 cm, available analyses only refer to tumours larger than 2 cm. Rode and colleagues’ findings are based on a small sample (43 liver explants, with HCC in six) and, owing to the exclusion of nodules smaller than 8 mm, the study almost certainly overestimates the capacity of ultrasound for detecting small HCCs.

Bennett and co-workers present a more pessimistic view of the sensitivity of ultrasound, especially for the detection of small tumours, than the other analyses considered. However, we concluded that this study provides the most robust evidence currently available and, accordingly, drew the model parameters from this data.

It was presumed that the efficacy of ultrasound detection was likely to have a substantial effect on the outputs of the model, and the impact of these parameters was explored in extensive sensitivity analyses (see the section ‘Detailed one-way sensitivity analyses’, p. 89). As well as testing the model’s reliance on these data, the effect of increasingly accurate first line imaging was simulated. Accordingly, scenarios were constructed and explored reflecting what may be anticipated from future technological progress in this area (see the section ‘Scenario analyses’, p. 80).

TABLE 23 Selection of parameter estimates: ultrasound test performance

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>N</th>
<th>HCC</th>
<th>Specificity</th>
<th>Size (diameter)</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies rejected (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodd et al., 1992</td>
<td>USA</td>
<td>1990–1991</td>
<td>200</td>
<td>34</td>
<td>97.6%</td>
<td><1</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1–3</td>
<td>42.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>3</td>
<td>68.0%</td>
</tr>
<tr>
<td>Kim et al., 2001</td>
<td>Korea</td>
<td>1996–1999</td>
<td>52</td>
<td>18</td>
<td>91.7%</td>
<td><2</td>
<td>30.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2–5</td>
<td>37.5%</td>
</tr>
<tr>
<td>Liu et al., 2003</td>
<td>Korea</td>
<td>1996–2001</td>
<td>118</td>
<td>31</td>
<td>96%</td>
<td><2</td>
<td>13.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2</td>
<td>45.5%</td>
</tr>
<tr>
<td>Rode et al., 2001</td>
<td>France</td>
<td>1996–1997</td>
<td>43</td>
<td>6</td>
<td>94.6%</td>
<td><1</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1–2</td>
<td>50.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2</td>
<td>100.0%</td>
</tr>
<tr>
<td>Study selected</td>
<td>Bennett et al., 2002</td>
<td>USA</td>
<td>1991–2000</td>
<td>200</td>
<td>27</td>
<td>96.5%</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2–5</td>
<td>28.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>5</td>
<td>75.0%</td>
</tr>
</tbody>
</table>

a All malignancies, of which 28 (82%) were HCC.
The sensitivity of AFP assay as a screening test for HCC is a function of the distribution of serum AFP levels in affected patients (i.e. the probability that an individual with HCC will have AFP above a given threshold). The relevant thresholds defined in this study are 20 and 400 ng/ml (see the section ‘Surveillance programme’, p. 23). The search identified 25 studies reporting AFP levels in patients with HCC; details are collected

TABLE 24 Selection of parameter estimates: AFP level in HCCs according to tumour size (sensitivity of test)

25 studies reviewed:

Studies excluded (13):
- Ten papers provided insufficient data regarding tumour size.40,251,262,292,294,359–363
- One study adopted thresholds that could not be mapped on to our project.364
- One study reported a cohort of patients identified by AFP-only surveillance (so data exclude low-AFP cases).365
- One study reported results that are focused on a subgroup of patients with low AFP.366

Data extracted from 12 studies:

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>Size (cm)</th>
<th>(n)</th>
<th><20 n (%)</th>
<th>20–400 n (%)</th>
<th>>400 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheu et al., 1985327</td>
<td>Taiwan</td>
<td>1981–1983</td>
<td><2</td>
<td>(16)</td>
<td>3 (20.0%)</td>
<td>8 (53.3%)</td>
<td>4 (26.7%)</td>
</tr>
<tr>
<td>Sheu et al., 1985367</td>
<td>Taiwan</td>
<td>1981–1983</td>
<td>2–5</td>
<td>(10)</td>
<td>6 (60.0%)</td>
<td>1 (25.0%)</td>
<td>2 (50.0%)</td>
</tr>
<tr>
<td>Ebara et al., 1986328</td>
<td>Japan</td>
<td>1979–1983</td>
<td><2</td>
<td>(4)</td>
<td>5 (37.5%)</td>
<td>9 (64.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Cottone et al., 1988326</td>
<td>Italy</td>
<td>1988</td>
<td><2</td>
<td>(8)</td>
<td>4 (50.0%)</td>
<td>3 (37.5%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Maringhini et al., 1988368</td>
<td>Italy</td>
<td>1980–1984</td>
<td><5</td>
<td>(56)</td>
<td>21 (37.5%)</td>
<td>4 (7.1%)</td>
<td>31 (55.4%)</td>
</tr>
<tr>
<td>Takayasu et al., 1990369</td>
<td>Japan</td>
<td>1982–1987</td>
<td><2</td>
<td>(49)</td>
<td>27 (55.1%)</td>
<td>16 (32.7%)</td>
<td>6 (12.2%)</td>
</tr>
<tr>
<td>Oka et al., 199010</td>
<td>Japan</td>
<td>1983–1988</td>
<td><2</td>
<td>(25)</td>
<td>8 (32.0%)</td>
<td>15 (60.0%)</td>
<td>2 (8.0%)</td>
</tr>
<tr>
<td>Cottone et al., 1994287</td>
<td>Italy</td>
<td>1984–1992</td>
<td><2</td>
<td>(12)</td>
<td>6 (50.0%)</td>
<td>6 (50.0%)</td>
<td>0 –</td>
</tr>
<tr>
<td>Zoli et al., 1996293</td>
<td>Italy</td>
<td>1989–1995</td>
<td><2</td>
<td>(18)</td>
<td>8 (44.4%)</td>
<td>10 (55.6%)</td>
<td>0 –</td>
</tr>
<tr>
<td>Oka et al., 2001370</td>
<td>Japan</td>
<td>1996–1997</td>
<td><2</td>
<td>(126)</td>
<td>57 (45.2%)</td>
<td>57 (45.2%)</td>
<td>57 (45.2%)</td>
</tr>
<tr>
<td>Huo et al., 2004371</td>
<td>Taiwan</td>
<td>1996–2000</td>
<td><5</td>
<td>(386)</td>
<td>48 (27.4%)</td>
<td>48 (27.4%)</td>
<td>78 (20.2%)</td>
</tr>
<tr>
<td>Caturelli et al., 2004372</td>
<td>Italy</td>
<td>1992–2001</td>
<td><2</td>
<td>(259)</td>
<td>2 (7.7%)</td>
<td>2 (7.7%)</td>
<td>2 (7.7%)</td>
</tr>
</tbody>
</table>

Source selected

Pooled IPD4

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>Size (cm)</th>
<th>(n)</th>
<th><20 n (%)</th>
<th>20–400 n (%)</th>
<th>>400 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPD, individual patient data.

4 Collected from studies identified with an asterisk.

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
in Table 24. Twelve papers were excluded at initial review, mainly because they provided insufficient detail regarding the size of tumours.

Because we were seeking to inform nine parameters that are self-evidently correlated, we were keen to rely on a single source for the estimates. Unfortunately, none of the studies identified provided a meaningful sample size for each of the subgroups of interest. However, six of the studies under consideration\(^{10,287,293,326–328}\) reported patient-level data including AFP level and tumour size, so these data could be pooled to provide a larger sample of patients. In total, the pooled data include 171 patients (79 from Italy, 61 from Japan and 31 from Taiwan), comprising 88 small, 74 medium and nine large tumours. The resulting distribution of AFP levels according to tumour size is shown in Figure 5. Although, elsewhere, we have sought to avoid reliance on data originating in Asian populations, it was felt that, in this instance, the exclusion of studies from Japan and Taiwan would diminish an already limited sample size to an unacceptable degree. The inclusion of these cases raises the proportion of HBV-positive individuals in the pooled sample (55/171 = 32\%) to levels that exceed those in the UK population. However, the impact of this slight imbalance is uncertain (see below).

Analysis of the pooled sample suggested that AFP levels in HCC cases may be associated with the aetiology of underlying liver disease. In particular, individuals in the sample with ALD-related cirrhosis had a higher proportion of non-secreting tumours, whereas this was comparatively unusual in those with HBV (with HCV-related cases apparently lying somewhere between the two). The observation that HCCs arising in non-viral cirrhosis are less likely to be detectable by AFP assay is consistent with some published evidence.\(^{251,288}\) However, in contrast to the trend in the pooled sample, HCV-related tumours have been reported to be more readily AFP-detectable than those arising in HBV.\(^{251,285,288}\) Because of uncertainties such as this, it was felt that the evidence was insufficient to justify the adoption of separate, aetiology-specific estimates in the model; however, with a broader evidence base it may be possible to tailor model inputs to reflect any variation that is present.

Specificity

The literature was reviewed to provide an estimate of the specificity of AFP assay as a screening test (i.e. the likelihood that a patient without HCC will have AFP levels above specified thresholds). The searches identified 17 studies providing relevant information. On preliminary review, eight of these were excluded, in five cases because the reported
populations were not confined to individuals with cirrhosis. Patients with cirrhosis have a greater probability of raised AFP levels in the absence of HCC and, accordingly, false-positive diagnoses are less frequent in patients with less advanced liver disease.359 Therefore, it was judged important to exclude studies reporting patient groups whose characteristics did not match those of the simulated cohort, in this regard. The data extracted from the remaining nine studies are shown in Table 25.

Two main priorities informed the selection of parameters. First, we were again keen to derive the inputs from the same source, so studies that reported results for all three categories of AFP level used in the model were preferred. Secondly, we hoped to ensure that the reported populations on which we relied were not dominated by cases of postviral cirrhosis, in which non-HCC-related high levels of AFP, often coinciding with inflammatory ‘flares’, are often observed.152

Unfortunately, it was not possible to identify a single study that met both of these criteria. Of the studies that provided data for all three thresholds under consideration, the cohort presented by Nguyen and colleagues360 was rejected, as it comprised HCV-related cases only. We were also reluctant to use Maringhini and co-workers’ findings,368 as they report that 65% of their cases were HBV related. In addition, their paper pre-dates the identification of HCV, so they are unable to provide information about this aetiology. Trevisani and colleagues’ case–control study251 was also dominated by anti-HCV-positive individuals (70.6%). However, despite this, they had a relatively high proportion of non-secreting cases (90.6%). This figure compares quite closely to the percentage of cases below 20 ng/ml reported in the two US studies that were based on patient populations that most closely resembled the cohort under simulation (91\%262 and 87\%23). Consequently, we chose to rely on the data reported by Trevisani and co-workers,251 as it was felt that this would best approximate the specificity of AFP assay in the modelled patient group. The 95\% confidence intervals of the relevant proportions were used to inform the sensitivity analyses.

Once more, there is insufficient reliable evidence available to enable separate estimates to be adopted for each aetiology of cirrhosis.

Confirmatory imaging

The diagnostic algorithm simulated in the model specifies that patients will only receive confirmatory imaging following demonstration of a lesion on ultrasound or, in a few cases, if ultrasound has proved inconclusive in the presence of markedly elevated AFP (>400 ng/ml). Under these circumstances, it was assumed that the sensitivity of confirmatory imaging would be 100\% because, although the literature shows that CT is subject to a significant false-negative rate when used in blinded, first line assessments,208,270 such fallibility

TABLE 25 Selection of parameter estimates: AFP level in patients without HCC (specificity of test)

<table>
<thead>
<tr>
<th>Studies reviewed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 studies reviewed:</td>
</tr>
<tr>
<td>Studies excluded (7):</td>
</tr>
<tr>
<td>• Five studies contained a substantial proportion of patients without cirrhosis40,292,361–363</td>
</tr>
<tr>
<td>• Two studies did not report results for the thresholds adopted in the model6,373</td>
</tr>
<tr>
<td>Data extracted from nine studies:</td>
</tr>
<tr>
<td>Study</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Gambarin-Gelwan et al., 2000262</td>
</tr>
<tr>
<td>Cedrone et al., 2000359</td>
</tr>
<tr>
<td>Nguyen et al., 2002360</td>
</tr>
<tr>
<td>Maringhini et al., 1988368</td>
</tr>
<tr>
<td>Chalasani et al., 199932</td>
</tr>
<tr>
<td>Tremolda et al., 1989374</td>
</tr>
<tr>
<td>Oka et al., 199440</td>
</tr>
<tr>
<td>Zoli et al., 1996293</td>
</tr>
<tr>
<td>Studies selected</td>
</tr>
<tr>
<td>Trevisani et al., 2001251</td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
should not be apparent when the technique is adopted in a second line, confirmatory context.

Consequently, the only concern was to identify an estimate of the specificity of CT (that is, its ability to avoid false-positive results in cases where no HCC is present). Again, the search was confined to studies that used explant pathology as a reference standard. Seventeen such studies were identified, details of which are collected in Table 26.

Of the eight studies considered in detail, Brancatelli and colleagues’ series325 was readily chosen, as it clearly provides the strongest available evidence: it is recent, has a much larger sample size than any of the other papers, and was published as a dedicated investigation into false-positive results in CT diagnosis of HCC. These strengths substantially outweigh any increased applicability in the UK-specific data available in Saada and co-workers’ paper,269 as this study is quite old and based on a very small sample.

Mortality

Background (all-cause) mortality

The interim life tables (2002–2004) for England and Wales published by the Government Actuary’s Department (http://www.gad.gov.uk/Life_Tables/Interim_life_tables.htm) were used. These data are based on the mid-year population estimates for 2002, 2003 and 2004 and corresponding data on births, infant deaths and deaths by individual ages from these years. Data for males and females are presented separately.

Excess mortality associated with a diagnosis of compensated cirrhosis

Evidence from several studies suggests that there is no excess mortality associated with a diagnosis of compensated cirrhosis. Patients with compensated cirrhosis are therefore subject to the background mortality rate only.

Excess mortality associated with a diagnosis of decompensated cirrhosis

Ten studies were found reporting excess mortality associated with a diagnosis of decompensated cirrhosis (Table 27). On initial review, three papers were excluded, predominantly because they were confined to specific symptoms of decompensation.

The evidence base provided three reliable estimates for HBV and three for HCV. Because there was no reason to prefer the evidence from any of these studies, the middle of each set of three values was used in the base case, with the upper and lower estimates used to define the range adopted in sensitivity analyses.

Table 26 Selection of parameter estimates: CT specificity

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>N</th>
<th>HCC</th>
<th>False positive</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taourel et al., 1995380</td>
<td>France</td>
<td>1992–1994</td>
<td>35</td>
<td>9</td>
<td>3</td>
<td>88.5%</td>
</tr>
<tr>
<td>Saada et al., 1997269</td>
<td>UK</td>
<td>1993–1994</td>
<td>39</td>
<td>6</td>
<td>0</td>
<td>100.0%</td>
</tr>
<tr>
<td>Bizollon et al., 1998381</td>
<td>France</td>
<td>1993–1995</td>
<td>66</td>
<td>15</td>
<td>3</td>
<td>94.1%</td>
</tr>
<tr>
<td>Gambarin-Gelwan et al., 200062</td>
<td>USA</td>
<td>a</td>
<td>106</td>
<td>19</td>
<td>5</td>
<td>94.3%</td>
</tr>
<tr>
<td>Lim et al., 2000382</td>
<td>Korea</td>
<td>1996–1999</td>
<td>41</td>
<td>15</td>
<td>1</td>
<td>96.2%</td>
</tr>
<tr>
<td>Rode et al., 2001261</td>
<td>France</td>
<td>1996–1997</td>
<td>43</td>
<td>13b</td>
<td>3</td>
<td>94.6%b</td>
</tr>
<tr>
<td>Libbrecht et al., 2002383</td>
<td>Belgium</td>
<td>2000–2001</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>78.6%</td>
</tr>
<tr>
<td>Teefey et al., 2003384</td>
<td>USA</td>
<td>1996–1998</td>
<td>25</td>
<td>9</td>
<td>4–5c</td>
<td>68.8–75.0%c</td>
</tr>
<tr>
<td>Valls et al., 2004384</td>
<td>Spain</td>
<td>d</td>
<td>102</td>
<td>51</td>
<td>2</td>
<td>96.1%</td>
</tr>
<tr>
<td>Study selected</td>
<td>Brancatelli et al., 2003325</td>
<td>USA</td>
<td>d</td>
<td>430</td>
<td>59</td>
<td>38</td>
</tr>
</tbody>
</table>

a “Over a 1-yr period” (study submitted 1999).
b Lesion-by-lesion calculation (patient-specific data not reported).
c Data for two independent reviewers.
d “Over a 30-month period” (study submitted 2002).
No published evidence was found to inform the estimate of excess mortality associated with ALD-related decompensated cirrhosis. In the absence of aetiology-specific data, an average of the chosen HBV and HCV values (17.7% per annum) was used as the base-case estimate, with sensitivity analyses conducted over the full range of values reported for either hepatitis aetiology (12.7–32.5%).

Excess mortality associated with surgically untreatable HCC

In order to estimate the excess mortality associated with surgically untreatable large HCC the mortality rates following transarterial chemoembolisation and best supportive care were considered, as these are the treatment pathways most associated with large tumours. The sources and data are described in more detail below. The overall mortality rate for patients with untreatable large HCC was calculated using a weighted average in which one-third of patients receive TACE and two-thirds receive best supportive care only.

Mortality following TACE

In total, 26 studies were identified reporting long-term survival data of TACE; details are collected

TABLE 27 Selection of parameter estimates: excess mortality associated with decompensated cirrhosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>Aetiology</th>
<th>N</th>
<th>Survival</th>
<th>Equiv. monthly mortality rate</th>
<th>Equiv. annual mortality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>D’Amico et al., 1986</td>
<td>Italy</td>
<td>1974–1980</td>
<td>27–31% ALD, 19–24% HBV, 5% HCV</td>
<td>720</td>
<td>60% at 1 year 21% at 6 years</td>
<td>4.17% 2.14%</td>
<td>40.00% 22.90%</td>
</tr>
<tr>
<td>Ginés et al., 1987</td>
<td>Spain</td>
<td>1968–1980</td>
<td>41.6% ALD, 8.5% HBV, 5% HCV</td>
<td>121</td>
<td>c.62% at 1 year c.36% at 3 years c.17% at 5 years</td>
<td>3.91% 2.80% 2.91%</td>
<td>38.00% 28.86% 29.84%</td>
</tr>
<tr>
<td>de Jongh et al., 1992</td>
<td>Netherlands</td>
<td>1970–1990</td>
<td>HBV</td>
<td>21</td>
<td>70% at 1 year 35% at 3 years 14% at 5 years</td>
<td>2.93% 2.87% 3.22%</td>
<td>30.00% 29.53% 32.51%</td>
</tr>
<tr>
<td>Fattovich et al., 1995</td>
<td>Europe</td>
<td>1973–1991</td>
<td>HBV</td>
<td>88</td>
<td>c.59% at 1 year c.39% at 3 years c.35% at 5 years</td>
<td>4.30% 2.58% 1.73%</td>
<td>41.00% 26.94% 18.93%</td>
</tr>
<tr>
<td>Fattovich et al., 2002</td>
<td>Europe</td>
<td>1982–1992</td>
<td>HCV</td>
<td>49</td>
<td>82% at 1 year 60% at 3 years 47% at 5 years</td>
<td>1.64% 1.41% 1.25%</td>
<td>18.00% 15.66% 14.01%</td>
</tr>
<tr>
<td>Planas et al., 2004</td>
<td>Spain</td>
<td>1998–2001</td>
<td>HCV</td>
<td>200</td>
<td>c.83% at 1 year c.71% at 3 years 50.8% at 5 years</td>
<td>1.54% 0.95% 1.12%</td>
<td>17.00% 10.79% 12.66%</td>
</tr>
<tr>
<td>Fattovich et al., 2002</td>
<td>Europe</td>
<td>1982–1992</td>
<td>HBV</td>
<td>33</td>
<td>71% at 1 year 40% at 3 years 28% at 5 years</td>
<td>2.81% 2.51% 2.10%</td>
<td>29.00% 26.32% 22.47%</td>
</tr>
<tr>
<td>Fattovich et al., 1997</td>
<td>Europe</td>
<td>1982–1992</td>
<td>HCV</td>
<td>65</td>
<td>c.82% at 1 year c.59% at 3 years 50% at 5 years</td>
<td>1.64% 1.46% 1.15%</td>
<td>18.00% 16.13% 12.95%</td>
</tr>
</tbody>
</table>

* Range among retrospectively and prospectively enrolled patients.
* Study pre-dates identification of HCV.
* Proportion only reported for whole cohort (n = 293), which includes patients with compensated cirrhosis.
* Estimated from published Kaplan–Meier graph; precise figures not specified.
* Nine centres in Italy, Denmark, France, Greece, The Netherlands, Portugal and Spain.
in Table 28. Nineteen papers were excluded at initial review. Two papers reporting early experience of TACE from the 1980s were excluded, as they were unlikely to provide data that would fit the present-day perspective of the model.

Three of the studies under consideration were felt likely to overestimate the efficacy of TACE, from the perspective of the model. Llovet and colleagues’ estimate\(^405\) derives from an RCT with strict patient eligibility criteria, meaning that their mortality rate is very likely to reflect a younger, fitter cohort than the general population under simulation. In a similar way, Saccheri and colleagues’ 2002 case series\(^404\) would probably have limited applicability to the model, since these investigators explicitly excluded older patients, and those with complicated tumours and/or advanced liver disease. The treatment algorithm followed by Greten and co-workers\(^83\) specified TACE as first line therapy of choice for all unresectable patients; accordingly, their results are likely to overestimate the efficacy that this approach would be likely to have in the simulated cohort, in which RFA and PEI are used preferentially.

Notably, the four remaining studies reported relatively similar outcomes, with 3-year survival rates of 11–19%. Both because the point estimate of 14.8% represented a good average of this range and because it was based on UK-specific experience, we decided to adopt the survival rate provided by Shah and colleagues’ series.\(^409\) Although the sample size of 37 on which this result is based falls below the lower limit applied in some of the other parameter-choice criteria, it was felt that its comparability with the other, larger series could be seen as evidence of a relatively robust finding.

Mortality with best supportive care

To provide a parameter estimate for mortality arising from HCCs that are not amenable to any form of life-extending therapy, 13 series of untreated HCC were reviewed (Table 29). In general, these series represented the control arm in the analysis of an active treatment, or were derived from reviews (mostly retrospective) of individual units’ experience with all treatment strategies for HCC.

The survival rate published by Llovet and co-workers from the Barcelona clinic\(^143\) is, in relative...
terms, extremely high. This is doubtless because
their paper is based on the amalgamated control
arms of two RCTs \(^{412,413}\) that featured stringent
inclusion criteria, such that older patients with
more advanced disease were excluded from
analysis. The consequent inflation of apparent
survival, which has been noted by others, \(^{414}\) makes
this study an unsuitable source of parameters for
the model.

Conversely, it was felt that the one UK study on
the shortlist \(^{401}\) represented an unnecessarily
gloomy prognosis, probably because the
experience it reports is nearly 20 years old.
Although some improvement in symptomatic
management will have contributed to lengthening
survival times over this period, we suspect that
Ryder and colleagues’ estimate appears pessimistic
from today’s perspective largely as a result of the
extra lead-time provided by HCC surveillance (i.e.
‘lead-time bias’: patients being identified and
monitored from an earlier stage in their terminal
deterioration, thereby effectively increasing
apparent survival). Accordingly, it was decided that
a more up-to-date estimate would better inform
the treatment pathways being simulated by the
model.

There are some clear similarities between the
remaining two studies: both papers are
retrospective reports of a single European unit’s
experience in the management of HCC and,
especially as regards median survival estimates of
6 and 7 months, they also present similar results.
Ultimately, the German study of Greten and
coworkers \(^{83}\) was adopted, for three main reasons:

- the German population more closely resembles
 the UK than the Italian, especially as regards the
 relative contributions of the various causes of
 cirrhosis;
- the experience reported is more recent; and
- a more extensive treatment programme had been adopted in the German unit,
 with the untreated patients representing 49.9% of
 the whole cohort, compared with 70.2% of the
 patients reported by Buscarini and colleagues \(^{88}\),
 and it was felt that this was a more accurate
 reflection of the treatment algorithm being
 simulated (see the section ‘Treatment’, p. 25).

**Mortality following resection: perioperative and
long-term**

In total, 35 papers were identified presenting
detailed results of resective surgery for HCC,
details of which are shown in Table 30. All but
three of these studies were excluded from
consideration. Since, according to the assumptions
of the model, patients with HCCs greater than
5 cm in diameter would be rejected as candidates
for surgery, five studies that featured a substantial
proportion (>30%) of such cases were excluded.

Wayne and colleagues’ analysis \(^{431}\) is based on a
large sample drawn from an international
cooperative group. However, on close scrutiny, it
was noted that the data presented combine
patients with precirrhotic severe fibrosis with
cirrhotic cases. There was also concern that their
results, which represent experience stretching back
to 1980, might underestimate the efficacy of
present-day surgical standards. Similarly, the
cohort reported by Ercolani and co-workers \(^{174}\)
includes some operations undertaken more than

TABLE 29 Selection of parameter estimates: mortality with best supportive care

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>N</th>
<th>Survival Monthly rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies rejected (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llovet et al., 1999(^{143})</td>
<td>Spain</td>
<td>1992–1994</td>
<td>102</td>
<td>28% at 3 years 0.03474</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median survival 17 months 0.03995</td>
</tr>
<tr>
<td>Buscarini et al., 1996(^{88})</td>
<td>Italy</td>
<td>1989–1993</td>
<td>127</td>
<td>16% at 2 years 0.07352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.10% at 3 years 0.06196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median survival c.7 months 0.09428</td>
</tr>
<tr>
<td>Ryder et al., 1996(^{401})</td>
<td>UK</td>
<td>1988–1991</td>
<td>118</td>
<td>2% at 3 years 0.10297</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median survival 6 months 0.10910</td>
</tr>
<tr>
<td>Study selected</td>
<td>Greten et al., 2005(^{83})</td>
<td>Germany</td>
<td>1998–2004</td>
<td>194</td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
20 years ago. It also includes 19% of patients with tumours larger than 5 cm in diameter. Both of these features make it likely that these results are inferior to those that might be expected in the simulated cohort of current patients with cirrhosis. A bias in the opposite direction is introduced by the fact that cases of perioperative (30-day) mortality were excluded from analysis.

The other paper considered reports experience at the Barcelona unit in 1989–1997. The sample is quite small (n = 77) compared with some of the other papers reviewed and, once more, some patients had tumours larger than 5 cm in diameter, although the proportion (7.8%) is small. In addition, survival rates appeared quite high in comparison to the other papers under review; however, as a relatively recent series with selective inclusion criteria, this may well be more reflective of the experience modelled here. On a balance of these considerations, it was concluded that this study provided the most reliable and applicable data available for the model.

Mortality rate following liver transplant

To define short- and long-term mortality rates following OLT, this study used data supplied directly by UK Transplant from the National Transplant Database maintained on behalf of the transplant services in the UK and Republic of Ireland (Table 31).

The 90 day and 1-year outcomes are based on the most recent cohort in the database, who underwent OLT in 2000–2004. Because 5-year follow-up is not available for this cohort, data from the previous 5 years (1996–2000) were used. Although relying on two separate cohorts introduces additional heterogeneity to the data set, it was felt that the disadvantages of doing so were outweighed by the advantage of using the most current data available for 90-day and 1-year outcomes.

Waiting list for liver transplantation

UK Transplant’s National Transplant Database was also used to define waiting times for OLT (Table 32).

It should be noted that these data categorise patients according to the primary liver disease specified at the time of listing; this has the important implication that the ‘HCC’ category represents a minority of patients with tumours on

TABLE 30 Selection of parameter estimates: mortality following hepatic resection

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Years</th>
<th>N</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne et al., 2002</td>
<td>USA, China, France, Japan</td>
<td>1980–1998</td>
<td>182</td>
<td>c.79% at 1 year<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.54% at 3 years<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.36% at 5 years<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.13% at 10 years<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median survival 45.6 months</td>
</tr>
<tr>
<td>Ercolani et al., 2003</td>
<td>Italy</td>
<td>1983–1999</td>
<td>285</td>
<td>(Periop. mortality excluded)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83% at 1 year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.8% at 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.5% at 5 years</td>
</tr>
<tr>
<td>Study selected</td>
<td>Llovet et al., 1999</td>
<td>1989–1997</td>
<td>77</td>
<td>96.1% at 3 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85% at 1 year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62% at 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51% at 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median survival 65 months</td>
</tr>
</tbody>
</table>

^a Perioperative mortality across all stages of liver disease (no cirrhosis-specific numbers available).

^b Estimated from published Kaplan–Meier graph; precise figures not specified.
The list (in fact, UK Transplant data show that 282 patients with a primary or secondary diagnosis of HCC received OLTs during this period). Because of this ambiguity, and because of the difficulty in specifying a common protocol for waiting list prioritisation (see the section ‘Treatment’, p. 25), the overall average data were used to define the waiting times for patients with all indications for OLT.

If, as UK Transplant’s figures suggest, there is at least a subgroup of patients with HCC who receive de facto prioritisation on the waiting list, the model may slightly underestimate the effectiveness of OLT, as an intervention, for these individuals. This would also mean that there would be a very small extra advantage to surveillance, because patients with known HCCs will have a better chance of receiving OLT than those with occult tumours in the setting of decompensation. This raises the further complication that an assessment of the cost-effectiveness of surveillance for HCC among those already awaiting OLT for liver failure would be demanded. Taking these considerations into account, we were not prepared to implement very complicated modelling algorithms to capture a small difference, on which the evidence is uncertain.

Selection of parameters: resources

Costing was conducted using a mixed bottom–up and top–down costing approach from an NHS perspective. An NHS perspective ignores some costs to patients and their families that would inevitably follow from taking part in the surveillance programme; however, there are no reliable data on what these would be.

<table>
<thead>
<tr>
<th>Year of transplant</th>
<th>Liver disease at OLT</th>
<th>No. at risk on day 0</th>
<th>% Patient survival (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 day</td>
</tr>
<tr>
<td>2000–2004</td>
<td>HCC+HCV</td>
<td>136</td>
<td>92.6 (88.2, 97.0)</td>
</tr>
<tr>
<td></td>
<td>HCC+HBV</td>
<td>47</td>
<td>85.0 (74.7, 95.3)</td>
</tr>
<tr>
<td></td>
<td>HCC+ALD</td>
<td>50</td>
<td>94.0 (87.4, 100.0)</td>
</tr>
<tr>
<td>1996–2000</td>
<td>HCC+HCV</td>
<td>99</td>
<td>86.9 (80.2, 93.5)</td>
</tr>
<tr>
<td></td>
<td>HCC+HBV</td>
<td>44</td>
<td>93.1 (85.5, 100.0)</td>
</tr>
<tr>
<td></td>
<td>HCC+ALD</td>
<td>37</td>
<td>94.6 (87.3, 100.0)</td>
</tr>
</tbody>
</table>

Patient survival after first adult elective orthotopic liver only transplant in the UK using livers from deceased heartbeating donors, for patients with HCC and another liver disease (HCV or HBV or ALD) recorded at transplantation, 1 January 1996 to 31 December 2004.

Patients with missing follow-up data are excluded.
The HCC+HCV, HCC+HBV and HCC+ALD groups are not mutually exclusive.

<table>
<thead>
<tr>
<th>Primary liver disease at registration</th>
<th>Registrations</th>
<th>Transplanted</th>
<th>Died</th>
<th>Removeda</th>
<th>Removedb</th>
<th>Waiting</th>
<th>Median waiting time to transplant (days) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>HCC</td>
<td>79</td>
<td>71 (90)</td>
<td>5 (6)</td>
<td>0 (0)</td>
<td>3 (4)</td>
<td>0 (0)</td>
<td>39 (29, 45)</td>
</tr>
<tr>
<td>Other</td>
<td>2661</td>
<td>2188 (82)</td>
<td>238 (9)</td>
<td>93 (3)</td>
<td>101 (4)</td>
<td>41 (2)</td>
<td>73 (69, 78)</td>
</tr>
<tr>
<td>Overall</td>
<td>2740</td>
<td>2259 (82)</td>
<td>243 (9)</td>
<td>93 (3)</td>
<td>104 (4)</td>
<td>41 (1)</td>
<td>72 (68, 76)</td>
</tr>
</tbody>
</table>

Outcome of group 1 elective adult registrations on the UK liver transplant list for the registration period 1 January 2000 to 31 December 2004 (as at 10 October 2005). Data provided by UK Transplant.
a Removal due to ‘condition deteriorated’.
b Removal for reasons other than ‘condition deteriorated’.
c Calculated using the Kaplan–Meier method.
The source of cost estimates for each of the resources considered, together with the unit cost used in the base case and the range of values used in the sensitivity analyses and a justification for the estimates used, is provided below.

Unit costs of surveillance programme, diagnostic tests and treatments

Administration of the surveillance programme

We initially considered including the following additional resources that might be needed to operate a comprehensive surveillance programme in NHS liver units:

- extra clerical staff time (entering patient details, updating attendance records)
- telephone or postal costs to notify patients of next appointment
- materials development (e.g. information leaflet).

Few data are available to accurately estimate such costs. Also, on a per-patient basis it is likely that these costs will mostly be subsumed within the existing running costs of a hepatology specialist outpatient clinic. Therefore, no such costs were assumed in the analysis.

AFP test

In the NHS National Schedule of Reference Costs (NSRC) 2004 \(^{432}\) the cost of a biochemistry test (TPATH table in NSRC 2004) is cited as £1.15. This is an average figure for any biochemistry test; enquiries by this group indicate that the standard cost of an AFP test may be greater than this.

Data obtained from a small sample (October 2005) of NHS trust clinical biochemistry departments suggests a cost of between £2.70 and £6.40 (individual costs were £2.70, £4, £5 and £6.40). In the mild hepatitis C trial and cost-effectiveness analysis,\(^ {435}\) hospitals in London, Newcastle and Southampton provided estimates of the cost of an AFP test as £5.30, £4.50 and £8.30, respectively (2002/03 costs). Therefore, the base-case cost of an AFP test was set at £4, and varied between £2 and £8 in the sensitivity analysis (Table 33). It was assumed that the cost of obtaining the blood sample for the AFP test was so small as to be negligible.

Liver ultrasound

In the NHS NSRC 2004 \(^{432}\) the cost of an ‘other ultrasound’ (TRADIO table in NSRC 2004) is £32. Again, this is an average figure for ultrasound examinations and enquiries suggest that the standard cost of a liver ultrasound may be higher.

In the mild chronic hepatitis C trial and cost-effectiveness analysis \(^ {433}\) the procedure costs for a liver ultrasound examination were based on site visits, estimated staff time involved and consumables used, and included an allocation for overheads and capital (based on a previous study). The estimated costs of a liver ultrasound in the three hospitals were £44, £62 and £108, respectively (2002/03 costs).

Given these variable data, the cost of a liver ultrasound in the base case was set at £50, and the cost was varied widely between £26 and £100 in the sensitivity analysis (Table 34).

Confirmatory imaging (CT or MRI)

The NHS NSRC 2004 \(^ {432}\) provides a global cost estimate for all CT and MRI scans regardless of anatomical focus. Therefore, for consistency with the sources used for cost estimates of AFP tests and liver ultrasound, the costs described in the mild chronic hepatitis C trial and cost-effectiveness analysis \(^ {435}\) were used. These are shown in Table 35.

In the base case, all confirmatory imaging is by CT scan. A cost estimate of £110 per CT scan was used in the base case, and varied between £50 and £130 in the sensitivity analysis. This base-case assumption and range reflect the substantially lower cost of £49 from the NHS NSRC.\(^ {432}\)

TABLE 33 Selection of parameter estimates: cost estimates for AFP tests

<table>
<thead>
<tr>
<th>Resource</th>
<th>Unit cost (£)</th>
<th>Unit</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP test</td>
<td>4</td>
<td>per test</td>
<td>2</td>
<td>8</td>
<td>Various NHS trust clinical biochemistry departments, plus estimates from hospitals in London, Southampton and Newcastle included in the Mild Hepatitis C Trial(^ {433})</td>
</tr>
</tbody>
</table>

52
Other confirmatory imaging protocols were explored in sensitivity analyses. It was assumed that MRI or CT scan(s) performed during the assessment process for treatment are included in the inpatient cost of a liver transplant, resections and other treatments.

Liver transplantation and resection (including repeat resections)

The NHS NSRC 2004 provides an average unit cost for a liver transplant of £21,800. A large, recent study of the cost-effectiveness of liver transplantation in England and Wales reports other figures for the cost of the ‘transplant phase’ for all elective transplant patients (£29,957) and for elective transplant patients with hepatitis C (£27,330; n = 67) (as cited in Wright). Based on these figures, and the interquartile range of cost estimates within the NHS NSRC 2004, a cost estimate for liver transplant of £21,800 was used in the base case, and the estimate varied from £16,700 to £31,800 in the sensitivity analysis (Table 36).

There are two potentially appropriate cost estimates for liver resection in the NHS NSRC 2004: ‘Liver – complex procedures’ and ‘Liver – very major procedures’. It was assumed that ‘Liver – complex procedures’ would encompass most resection procedures that aim to remove HCC-affected lobes from cirrhotic livers. Example procedures from this category include right and left hemihepatectomy, resection of segment of liver and partial excision of liver. Therefore, a cost estimate for liver resection in the base case of £5400 was used, and the estimate varied from £1500 to £6000 in the sensitivity analysis (Table 37). (Although the 2004 national average unit cost of a complex liver procedure was £5396, the interquartile range across the ten UK liver transplant centres was £1484 to £5104.) Note also that the average unit cost of procedures within the

Table 34 Selection of parameter estimates: unit costs for liver ultrasound

<table>
<thead>
<tr>
<th>Resource</th>
<th>Unit cost (£)</th>
<th>Unit</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver ultrasound scan</td>
<td>50<sup>a</sup></td>
<td>per scan</td>
<td>26<sup>b</sup></td>
<td>100</td>
<td>Data from NSRC 2004<sup>c</sup> and estimates from hospitals in London, Southampton and Newcastle included in the mild hepatitis C trial<sup>d</sup></td>
</tr>
</tbody>
</table>

^a For comparison, the NSRC 2004^d “direct access” cost of an “other ultrasound” scan (Korner radiology band B3) is £32 (interquartile range (IQR) £26–39).

Table 35 Selection of parameter estimates: unit costs for confirmatory imaging

<table>
<thead>
<tr>
<th>Resource</th>
<th>From mild hepatitis C trial</th>
<th>Values chosen for model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>London</td>
<td>Newcastle</td>
</tr>
<tr>
<td>CT Abdomen</td>
<td>£111</td>
<td>£136</td>
</tr>
<tr>
<td>MRI Liver</td>
<td>£240</td>
<td>£193</td>
</tr>
</tbody>
</table>

^a For comparison, the NSRC 2004^d “direct access” cost of a CT scan (Korner radiology band C5) is £49.

^b For comparison, the NSRC 2004^d “direct access” cost of an MRI scan is £224 (IQR £194–465).

^c Based on the NSRC 2004^d IQR for the cost of CT and MRI scans.

Table 36 Selection of parameter estimates: cost estimates for liver transplantation

<table>
<thead>
<tr>
<th>Resource</th>
<th>Unit cost (£)</th>
<th>Unit</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver transplant</td>
<td>21,800</td>
<td>per operation</td>
<td>16,700</td>
<td>31,800</td>
<td>NSRC 2004 national average cost for liver transplant<sup>e</sup></td>
</tr>
</tbody>
</table>

^e For comparison, the NSRC 2004^d “direct access” cost of a CT scan (Korner radiology band C5) is £49.
category ‘Liver – very major procedures’ is £2498, which still lies within the broad range of values included in the sensitivity analysis.

Gastroenterology outpatient appointment
The assumed process of discovering false-positive surveillance results includes two hospital outpatient appointments, at a unit cost of £101 each (Table 38).

Annual medical costs of disease states

Compensated cirrhosis, decompensated cirrhosis and HCC
The medical costs of patients with compensated cirrhosis and decompensated cirrhosis were derived from a large study of the cost-effectiveness of liver transplantation in the UK. As part of this study, all patients listed for liver transplantation at the six UK liver transplant centres between 1995 and 1996 were followed while waiting for their transplant and for 2 years following postoperative discharge. Mean annual medical costs before transplantation were calculated and presented by stage of cirrhosis. Using the inflation indices for Hospital and Community Health Services (Pay and Prices) provided in Unit Costs for Health and Social Care 2004, this study used an annual cost estimate for compensated cirrhosis of £1171 and for decompensated cirrhosis of £9385. Further details are provided in Table 39.

The medical costs of patients with a diagnosis of HCC are dependent on whether a patient is deemed suitable for surgical intervention or not. Resource use and costs are detailed below.

Undiagnosed HCC
The annual medical cost of undiagnosed (occult) HCC is assumed to be the same as the annual medical cost for the underlying level of cirrhosis.

Transplant waiting list
In the mild hepatitis C clinical trial and cost-effectiveness study, the 20 patients with a diagnosis of HCC used an excess of resources over and above what might have been expected from their underlying stage of liver cirrhosis. Therefore, an increased cost and resource use associated with patients on the liver transplant waiting list with HCC was assumed, by calculating a cost increment that is added to the medical costs associated with the underlying level of cirrhosis.

TABLE 37 Selection of parameter estimates: cost estimates for liver resection

<table>
<thead>
<tr>
<th>Resource</th>
<th>Unit cost (£)</th>
<th>Unit</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver resection</td>
<td>5400</td>
<td>per operation</td>
<td>1500</td>
<td>6000</td>
<td>NSRC 2004 national average cost for liver procedures</td>
</tr>
</tbody>
</table>

TABLE 38 Selection of parameter estimates: cost estimates for outpatient appointment

<table>
<thead>
<tr>
<th>Resource</th>
<th>Unit cost (£)</th>
<th>Unit</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver transplant</td>
<td>101</td>
<td>per appointment</td>
<td>72</td>
<td>133</td>
<td>NSRC 2004 national average cost for medical gastroenterology follow-up visits</td>
</tr>
</tbody>
</table>

TABLE 39 Selection of parameter estimates: mean annual costs (£) by disease state

<table>
<thead>
<tr>
<th></th>
<th>2002/03<sup>a</sup></th>
<th>Inflated to 2003/04 prices<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Compensated cirrhosis (n = 115)</td>
<td>1138</td>
<td>2479</td>
</tr>
<tr>
<td>Decompensated cirrhosis (n = 40)</td>
<td>9120</td>
<td>9610</td>
</tr>
</tbody>
</table>

^a From mild hepatitis C trial.

^b Using inflation indices for Hospital and Community Health Services (Pay and Prices) from Unit Costs of Health and Social Care 2004.
Estimates of the differences in the number of inpatient days, hepatic angiographies, liver biopsies, outpatient visits and endoscopies that were carried out among the 20 hepatitis C patients with HCC are shown in Table 40. Following inflation of the unit costs with appropriate inflation indices, the total additional annual cost for a patient with HCC on the waiting list for a liver transplant is £1230. This was varied between £615 and £2460 in the sensitivity analyses.

Apart from these costs, the decision was made to include no additional costs due to time spent waiting for a transplant. In England and Wales, for the majority of patients on the liver transplant waiting list there are few specific tests or hospital outpatient appointments that are specific to being on the transplant waiting list (as opposed to tests or appointments that are related to their underlying disease) [Longworth L, health economist on the Department of Health’s Cost-Effectiveness of Liver Transplantation (CELT) study: personal communication, 11 November 2005]. The Department of Health’s economic evaluation of liver transplantation in England and Wales collected costs specific to the pretransplant ‘candidacy phase’ (between date of listing and date of admission for the transplant operation).\(^433,434\) However, there was no distinction between costs associated with the treatment of their underlying disease or symptoms, and those associated with monitoring in preparation for the transplantation.

Postresection

The annual medical cost assigned to patients following hepatic resection is assumed to be the same as the annual medical cost for the underlying level of cirrhosis, plus an amount to reflect HCC recurrence and treatment following resection.

The rates of HCC recurrence and likely treatment were taken from the same study as the postresection survival rate.\(^216\) The probability of HCC recurrence 5 years after resection was 70%, which is equivalent to a monthly probability of recurrence of 2%. Of these, one-quarter were assumed to be treated curatively (approximately one-third by a further resection, one-third by liver transplant and one-third by palliative treatments). Therefore, a quarter of 2% of the relevant costs implies a mean additional monthly cost due to HCC recurrence of £46 (lower £31; upper £65).

Post-transplantation

The Department of Health study into the cost-effectiveness of liver transplantation in England and Wales followed patients for 2 years post-transplantation, including their resource use during this time. The costs of care in this study (2002/03 costs) are: £9458 (SD £20,856) for months 0–12 post-transplantation and £1385 (SD £2906) for months 13–24 post-transplantation. Taking into account inflation to 2004, these costs are £9733 and £1425, respectively (as cited in Table 35 of Wright and colleagues’ subanalysis of those transplantations for people with hepatitis C\(^435\)).

A small amount was added to reflect HCC recurrence and treatment following transplantation. The probability of HCC recurrence 5 years after transplantation is 25% or less, which approximates to a monthly probability of 0.005. As with postresection treatment of recurrent HCC, it was assumed that only one-

Table 40 Selection of parameter estimates: cost estimate for the additional cost of a patient with HCC on the waiting list for a liver transplant

<table>
<thead>
<tr>
<th>Excess</th>
<th>Unit cost (2002/03) (£)</th>
<th>Unit cost (inflated to 2003/04 prices) (£)</th>
<th>Annual excess cost (inflated to 2003/04 prices) (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient days: liver unit</td>
<td>+1</td>
<td>198</td>
<td>203</td>
</tr>
<tr>
<td>Inpatient days: general</td>
<td>+7</td>
<td>136</td>
<td>140</td>
</tr>
<tr>
<td>Outpatient visits</td>
<td>+0.5</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Hepatic angiographies</td>
<td>+0.5</td>
<td>322</td>
<td>331</td>
</tr>
<tr>
<td>Liver biopsies</td>
<td>+0.15</td>
<td>249</td>
<td>256</td>
</tr>
<tr>
<td>Endoscopies</td>
<td>–1</td>
<td>164</td>
<td>169</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) Derived from Table 33 in mild hepatitis C clinical trial and cost-effectiveness analysis.\(^433\)

\(^{b}\) Using inflation indices for Hospital and Community Health Services (Pay and Prices) from Unit Costs of Health and Social Care 2004.\(^435,436\)
quarter would be treated curatively (approximately one-third by a further resection, one-third by liver transplant and one-third by palliative treatments). Therefore, a quarter of 0.5% of the relevant costs implies a mean additional monthly cost due to HCC recurrence of £12 (lower £8; upper £16). Relative to the other post-transplant costs (£9733 and £1425 annually) these are unlikely to make a substantial difference to the results, but they are included in the analysis for completeness.

Surgically untreatable HCC

Patients diagnosed with HCC that is deemed surgically untreatable may receive palliative treatment. Based on information sought from clinical expert advisors to the project, it was simply assumed that one-third of patients with small- and medium-sized tumours receive PEI and one-third receive RFA. One-third of patients with large tumours receive treatment with TACE in addition to best supportive care. The cost estimates for each of these treatment options are shown in Table 41.

Event-related costs

False-positive diagnosis

For the very small proportions of patients who experience a false-positive diagnosis, it was assumed that their discovery would involve an additional CT scan, an additional MRI scan and two additional outpatient visits. Together, these amount to £512 in the base case (range for sensitivity analyses £374–796). The sources of the unit costs for each of these have been described above.

Symptomatic/incidental diagnosis

It was assumed that confirming a symptomatic or an incidental HCC diagnosis (i.e. outside the surveillance programme) would entail one AFP test, one liver ultrasound and one CT scan. Together, these amount to £164 in the base case (range for sensitivity analyses £78–298). The sources of the unit costs for each of these have been described above. Although such symptomatic or incidental diagnoses may not always involve all three of these tests, we do not believe that this will overestimate the cost of no surveillance because some of these would probably involve a more costly MRI scan instead of the CT scan.

Selection of parameters: utilities

The decision model requires utility values for a number of disease states. Initially, the following

Table 41. Selection of parameter estimates: cost of palliative treatments used in patients with surgically untreatable HCC

<table>
<thead>
<tr>
<th>Resource</th>
<th>Unit cost (£)</th>
<th>Unit</th>
<th>Lower value (£)</th>
<th>Upper value (£)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACE</td>
<td>537</td>
<td>per procedure</td>
<td>268</td>
<td>1074</td>
<td>Estimates from hospitals in London, Southampton and Newcastle included in the Mild HCV Trial433</td>
</tr>
<tr>
<td>PEI</td>
<td>381</td>
<td>per procedure</td>
<td>190</td>
<td>762</td>
<td>Estimates from hospitals in London, Southampton and Newcastle included in the Mild HCV Trial433</td>
</tr>
<tr>
<td>RFA</td>
<td>754</td>
<td>per procedure</td>
<td>377</td>
<td>1508</td>
<td>Estimates from hospitals in London, Southampton and Newcastle included in the Mild HCV Trial433</td>
</tr>
<tr>
<td>Best supportive care (with untreatable HCC)</td>
<td>1230</td>
<td>Extra per year</td>
<td>615</td>
<td>2460</td>
<td>Mild HCV clinical trial and cost-effectiveness analysis431</td>
</tr>
<tr>
<td>Surgically untreatable HCC<sub>S</sub> and HCC<sub>T</sub></td>
<td>1619<sup>b</sup></td>
<td>Extra per year</td>
<td>809</td>
<td>3237</td>
<td>As above, plus stated assumptions regarding proportions receiving PEI and RFA</td>
</tr>
<tr>
<td>Surgically untreatable HCC<sub>L</sub></td>
<td>177<sup>c</sup></td>
<td>Extra per year</td>
<td>88</td>
<td>354</td>
<td>As above, plus stated assumptions regarding proportion receiving TACE</td>
</tr>
</tbody>
</table>

^a In addition to the medical costs associated with the underlying level of cirrhosis.

^b Derived as follows: [Unit cost of RFA × Proportion of patients receiving RFA (33%) × One RFA treatment per year (1)] + [Unit cost of PEI × Proportion of patients receiving PEI (33%) × Six PEI treatments per year (6)].

^c Derived as follows: Unit cost of TACE (£537) × Proportion of patients receiving TACE (33%) × One TACE treatment per year (1).

^d In addition to the medical costs associated with both the underlying level of cirrhosis and untreatable HCC.
Criteria were used to select the quality of life (utility) estimate for each health state. Estimates were preferred if:

- they were based on self-reported quality of life by patients with the relevant health state using validated, standard instruments for utility or quality of life assessment [e.g. EQ-5D, Health Utility Index (HUI) or SF-36]; and
- UK population ‘societal preference weights’ exist for the full range of health states described (e.g. EQ-5D), or an algorithm exists that enables the derivation of UK population-based preference weights (e.g. SF-6D from SF-36 responses).

Several additional factors were considered in determining the most appropriate utility estimates for use in the models:

- whether a patient’s health-related quality of life would be predominantly dependent on the severity of their cirrhosis or the presence and size of any HCC tumours (since most papers classify patients according to their cirrhosis or HCC status, but rarely both)
- whether the method of diagnosis of HCC (i.e. was the tumour discovered because a patient presented symptomatically or as a result of a surveillance programme) might impact on the utility estimate
- whether the clinical situation in which the estimate was obtained (e.g. on the transplant waiting list) might impact on the utility estimate
- whether the constitution of the patient group (i.e. patients with all types of cirrhosis or only patients with a diagnosis of HCV) might bias the utility estimate.

Compensated Cirrhosis, Decompensated Cirrhosis and HCC

Six papers were identified reporting the quality of life or utility of patients with compensated cirrhosis, decompensated cirrhosis and HCC (Table 42).

All studies were conducted either in patients with HCV or in patients with cirrhosis of mixed causes. We were unable to identify any studies that provided utility estimates from patients with HBV or alcoholic cirrhosis. However, in two studies, patient-based quality of life for different cirrhotic health states, there were no statistically significant differences in utility between respondents with viral versus non-viral cirrhosis in any of the health states assessed.

Therefore, utility estimates were applied from studies of patients with HCV-related cirrhosis to patients with cirrhosis due to HBV and alcohol.

Thein and colleagues conducted a systematic review of utility estimates for patients with different stages of chronic HCV in 2004. Within the systematic review, two studies considered patients with compensated and decompensated cirrhosis and eight studies considered patients with HCC (although most of these studies were complicated by additional factors such as coinfection with HIV, other co-morbidities and injecting drug use). Chong and colleagues considered...

Table 42 Selection of parameter estimates: utility for compensated cirrhosis, decompensated cirrhosis and HCC

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Instrument</th>
<th>Pop.</th>
<th>N</th>
<th>Utility estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study rejected</td>
<td>Thein et al., 2005</td>
<td>Canada, Spain</td>
<td>SF-36</td>
<td>HCV</td>
<td>64</td>
</tr>
<tr>
<td>Study selected</td>
<td>Chong et al., 2003</td>
<td>Canada</td>
<td>EQ-5D</td>
<td>HCV</td>
<td>24</td>
</tr>
</tbody>
</table>

^a Using combined data from studies by Chong³¹² and Cordoba.³¹³
^b Derived from SF-36 using the Nichol method.
^c Using UK social preference weights.⁴⁴¹

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
measured utilities in Canadian HCV patients with compensated cirrhosis, decompensated cirrhosis and HCC using four methods of utility estimation [visual analogue scales, standard gamble (SG), HUI version 3 and EQ-5D].

Cordoba and co-workers measured HRQoL using the SF-36 in patients with compensated and decompensated cirrhosis. Utility weights were derived from the SF-36 data using three different methods. The results from these two papers are shown in Table 43 and Figure 6.

It was assumed that patients with compensated cirrhosis or decompensated cirrhosis, diagnosed with a small or medium HCC tumour, would not experience any decrement in quality of life.

Although it might be reasonable to expect that patients with large (>5 cm) or diffuse tumours would experience reductions in quality of life in addition to those related to cirrhosis, Bianchi and colleagues compared the quality of life (SF-36 and Nottingham Health Profile) of patients with...

<table>
<thead>
<tr>
<th>Disease stage</th>
<th>SG</th>
<th>HUI</th>
<th>EQ-5D index</th>
<th>SF-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensated cirrhosis</td>
<td>0.80 (0.70,0.90)</td>
<td>0.74 (0.66,0.83)</td>
<td>0.75 (0.66,0.83)</td>
<td>0.77 (0.65,0.88)</td>
</tr>
<tr>
<td>Decompensated cirrhosis</td>
<td>0.60 (0.37,0.83)</td>
<td>0.69 (0.52,0.85)</td>
<td>0.66 (0.46,0.86)</td>
<td>0.68 (0.57,0.80)</td>
</tr>
<tr>
<td>HCC</td>
<td>0.72 (0.62,0.82)</td>
<td>0.51 (0.26,0.76)</td>
<td>0.64 (0.44,0.86)</td>
<td>-</td>
</tr>
</tbody>
</table>

Figures in parentheses show the 95% confidence interval.

Table 43. Selection of parameter estimates: mean utility for patients with compensated cirrhosis, decompensated cirrhosis and HCC

* Source: Chong et al.312
b After the application of UK social preference weights (the published estimates were age-standardised to facilitate comparison across patient groups; to avoid any unnecessary bias, we contacted the authors of the paper who supplied raw EQ-5D response data).

c Source: Cordoba et al.313 reported in Thein et al.440 (using the Nichol method for deriving utilities).
HCC to matched patients with cirrhosis and found few differences. Differences that were observed were not related to tumour size.

However, studies that have measured utility or quality of life in those with HCC have tended to produce utility estimates for people with HCC that are slightly lower than for decompensated cirrhosis (except when using the SG method; see Table 43). This utility value for HCC was allocated only to surgically untreatable HCC; in effect (in the Markov model), this means patients with HCC tumours which are large and known.

Pre- and post-transplantation

Transplant waiting list

A summary of the utility estimates used for pre-and post-transplantation states is shown in Table 44.

We were unable to identify any data relating to the quality of life of patients listed for transplantation as a result of a diagnosis of HCC. Therefore, quality of life estimates for people on the transplant waiting list were applied according to the underlying stage of cirrhosis (i.e. utility value for patients with compensated cirrhosis awaiting a transplant 0.75; utility value for patients with decompensated cirrhosis awaiting a transplant 0.66). This is consistent with the findings of several studies in patients with chronic liver disease, with cirrhosis or awaiting liver transplant which suggest that, in these patient groups, quality of life is associated with disease (i.e. cirrhosis) severity rather than the underlying cause of liver disease.

These figures are slightly higher than those reported in the UK NHS study of the cost-effectiveness of liver transplantation which reported utility estimates among all patients waiting for a liver transplant of 0.517 and 0.59. However, these studies included all patients listed for a liver transplant with no subanalysis of patients with cirrhosis or HCC. These lower estimates are within the range of values used in the sensitivity analyses for decompensated (0.46–0.86) cirrhosis.

We were unable to identify any data to suggest decrements in quality of life directly associated with being listed for a transplant, for example due to additional tests or anxiety associated with waiting for an available organ. Therefore, no ‘process utility’ decrements were assumed for patients on the waiting list.

Post-transplantation

Two recently published reports from the UK NHS study into the cost-effectiveness of liver transplantation were identified that include estimates of quality of life following liver transplantation. Both studies have large (and overlapping) sample sizes (n = 183 and n = 147), but do not provide subanalyses for patients listed for transplantation as a result of an HCC diagnosis. However, the mean utility estimates reported (0.615 and 0.77 at 12 months post-transplantation) are broadly similar to those from a small (n = 30) Canadian study of patients with HCV listed for transplantation (mean utility from EuroQol 0.69; from HUI 0.7).

Estimates were taken from the report published by Ratcliffe and colleagues in 2002 which shows that post-transplantation quality of life (as measured by the EQ-5D or SF-36D) seems to increase gradually for approximately 12 months after the transplant and then stabilise. Therefore, the utility estimates at 6 months post-transplantation were used as an estimate of mean utility during the first year post-transplantation. Using regression analysis (random-effects Tobit model) to adjust for other factors, Ratcliffe and

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Instrument</th>
<th>N</th>
<th>Population</th>
<th>Utility estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant waiting list</td>
<td>Chong et al., 2003</td>
<td>Canada</td>
<td>EQ-5D</td>
<td>24 HCV + compensated cirrhosis</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HCV + decompensated cirrhosis</td>
<td>0.66</td>
</tr>
<tr>
<td>1 year post-OLT</td>
<td>Ratcliffe et al., 2002</td>
<td>UK</td>
<td>EQ-5D</td>
<td>260 All patients undergoing OLT</td>
<td>0.69</td>
</tr>
<tr>
<td>2 years post-OLT</td>
<td>Ratcliffe et al., 2002</td>
<td>UK</td>
<td>EQ-5D</td>
<td>218 All patients undergoing OLT</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* 6 months post-OLT used as an estimate of mean utility during the first year post-OLT.
colleagues also showed that post-transplantation EQ-5D utility estimates had no statistically significant association with the type of previous underlying liver disease (patients with cirrhosis versus patients without cirrhosis).

We were unable to find any direct estimates of the quality of life experienced by patients during the month of the transplantation procedure; therefore, a utility value of 0.50 was assumed for this period.

It was assumed that the estimates adopted captured a range of patient experience following liver transplantation; consequently, the parameter was not adjusted to account for probabilities such as tumour recurrence or late graft failure.

Postresection

We were unable to identify any reliable estimates of utility for patients following liver resection.

Poon and colleagues produced quality of life data from China, using the FACT-G questionnaire, which suggest improvements in quality of life 3 months after the resection procedure, but currently there is no way of deriving utilities from these responses.

In the absence of direct estimates, a utility of 0.50 was assumed for the month in which resection occurs, and it was assumed that following this quality of life reverts to a weighted average of the values (i.e. 0.73) adopted for compensated (0.75) and decompensated cirrhosis (0.66), calculated to approximate the average clinical course. A similar assumption was made by Patel and colleagues in their cost-effectiveness analysis of surveillance for HCC among patients with HCV-related cirrhosis. No account was taken of any diminished quality of life that may accompany HCC recurrence, which is relatively common following resection (see the section ‘Treatment for hepatocellular carcinoma’, p. 7). This assumption will tend to bias the model in favour of surveillance.
Chapter 5
Cost-effectiveness model: results

For each set of outcomes, combined results for the notional mixed aetiology cohort are presented first, followed by a description of separate results for those with ALD-, HBV- and HCV-related cirrhosis. In the results, each of the modelled comparators is referred to using small capital letters (e.g. ANNUAL AFP TRIAGE) to emphasise that these results pertain to the specific operational definition of each screening strategy used in this analysis, rather than a more general interpretation of the screening strategy. Deterministic results (those based on the base-case point-estimate for each input parameter) are presented before the probabilistic results.

Effectiveness of surveillance

Number needed to be under surveillance
As a measure of the relative effectiveness of the various surveillance strategies, the number of people who need to be under surveillance (NNS) to prevent either a single death from HCC or a single premature death (defined as death prior to the age of 75 years) was calculated (Table 45 and Figure 7).

NNS to prevent one death from HCC
Under NO SURVEILLANCE, approximately 20% of the mixed aetiology cohort die as a result of HCC. The effectiveness of the AFP TRIAGE and ULTRASOUND (US) strategies at both annual (14.7% and 14.9%, respectively) and 6-monthly (12.0% and 12.3%, respectively) intervals is very similar. Increasing the frequency of either AFP TRIAGE or US to 6-monthly has a greater impact on the effectiveness of the surveillance programme than using both tests annually. The most effective surveillance strategy is 6-MONTHLY AFP+US, which reduces the proportion of the cohort dying from HCC to approximately 11%.

The number of people with cirrhosis who need to be under surveillance with either ANNUAL AFP TRIAGE or ANNUAL US in order to prevent one death from HCC is very similar: 19 and 20, respectively. This falls to 11 under combined surveillance with 6-MONTHLY AFP+US.

NNS to prevent one premature death (before the age of 75)
In the model, when NO SURVEILLANCE is performed, 69.3% of the mixed aetiology population die before they reach the age of 75 years. The impact of regular surveillance for HCC on this proportion is fairly small: the most effective strategy (6-MONTHLY AFP+US) reduces the proportion of people who die by less than two percentage points to 67.8%.

The number of people with cirrhosis who need to be under surveillance with either ANNUAL AFP TRIAGE or ANNUAL US in order to prevent one premature death is very similar: 114 and 117, respectively. This falls to 68 if 6-MONTHLY AFP+US is used.

TABLE 45 Effectiveness of surveillance: deaths and NNS in mixed aetiology cohort

<table>
<thead>
<tr>
<th></th>
<th>No surv.</th>
<th>AFP ANNUAL</th>
<th>US ANNUAL</th>
<th>AFP+US ANNUAL</th>
<th>AFP 6-MO</th>
<th>US 6-MO</th>
<th>AFP+US 6-MO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion dying of</td>
<td></td>
<td>19.9%</td>
<td>14.7%</td>
<td>14.9%</td>
<td>13.5%</td>
<td>12.0%</td>
<td>12.3%</td>
</tr>
<tr>
<td>HCC</td>
<td></td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>15</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>NNS to prevent one HCC death</td>
<td>69.3%</td>
<td>68.4%</td>
<td>68.5%</td>
<td>68.2%</td>
<td>68.0%</td>
<td>68.0%</td>
<td>67.8%</td>
</tr>
<tr>
<td>Proportion dead by</td>
<td></td>
<td>114</td>
<td>117</td>
<td>93</td>
<td>78</td>
<td>79</td>
<td>68</td>
</tr>
<tr>
<td>age 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNS to prevent one ‘premature’</td>
<td>70.08</td>
<td>70.29</td>
<td>70.29</td>
<td>70.34</td>
<td>70.38</td>
<td>70.38</td>
<td>70.43</td>
</tr>
<tr>
<td>death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No surv., no surveillance.
Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
Effectiveness of surveillance by cirrhosis aetiology

When the three aetiologies are considered separately, the same pattern of results is observed (Table 46); that is, regular surveillance with AFP TRIAGE or US is of approximately equal effectiveness at either frequency, and the most effective strategy is 6-MONTHLY AFP+US. Surveillance is most effective for people with HBV-related cirrhosis.

FIGURE 7 Effectiveness of surveillance: deaths and NNS in mixed-aetiology cohort. Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
Table 46: Effectiveness of surveillance: deaths and NNS in aetiology-specific cohorts

<table>
<thead>
<tr>
<th></th>
<th>NO SURV.</th>
<th>AFP ANNUAL</th>
<th>US ANNUAL</th>
<th>AFP+US ANNUAL</th>
<th>AFP 6-MO</th>
<th>US 6-MO</th>
<th>AFP+US 6-MO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion dying of HCC</td>
<td>17.0%</td>
<td>12.7%</td>
<td>12.9%</td>
<td>11.7%</td>
<td>10.6%</td>
<td>10.8%</td>
<td>9.5%</td>
</tr>
<tr>
<td>NNS to prevent one HCC death</td>
<td>23</td>
<td>24</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Proportion dead by age 75</td>
<td>65.6%</td>
<td>65.0%</td>
<td>65.0%</td>
<td>64.8%</td>
<td>64.7%</td>
<td>64.7%</td>
<td>64.5%</td>
</tr>
<tr>
<td>NNS to prevent one premature death</td>
<td>162</td>
<td>166</td>
<td>132</td>
<td>110</td>
<td>112</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Mean age of cohort at death</td>
<td>71.13</td>
<td>71.27</td>
<td>71.27</td>
<td>71.30</td>
<td>71.33</td>
<td>71.33</td>
<td>71.36</td>
</tr>
<tr>
<td>HBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion dying of HCC</td>
<td>23.0%</td>
<td>15.9%</td>
<td>16.1%</td>
<td>14.2%</td>
<td>12.4%</td>
<td>12.8%</td>
<td>10.8%</td>
</tr>
<tr>
<td>NNS to prevent one HCC death</td>
<td>14</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Proportion dead by age 75</td>
<td>69.8%</td>
<td>67.7%</td>
<td>67.8%</td>
<td>67.3%</td>
<td>66.8%</td>
<td>66.8%</td>
<td>66.4%</td>
</tr>
<tr>
<td>NNS to prevent one premature death</td>
<td>48</td>
<td>49</td>
<td>40</td>
<td>33</td>
<td>34</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Mean age of cohort at death</td>
<td>67.08</td>
<td>67.74</td>
<td>67.73</td>
<td>67.90</td>
<td>68.05</td>
<td>68.04</td>
<td>68.19</td>
</tr>
<tr>
<td>HCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion dying of HCC</td>
<td>24.1%</td>
<td>17.9%</td>
<td>17.9%</td>
<td>16.1%</td>
<td>14.4%</td>
<td>14.7%</td>
<td>12.8%</td>
</tr>
<tr>
<td>NNS to prevent one HCC death</td>
<td>16</td>
<td>16</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Proportion dead by age 75</td>
<td>75.3%</td>
<td>74.3%</td>
<td>74.3%</td>
<td>74.1%</td>
<td>73.8%</td>
<td>73.8%</td>
<td>73.6%</td>
</tr>
<tr>
<td>NNS to prevent one premature death</td>
<td>95</td>
<td>97</td>
<td>78</td>
<td>65</td>
<td>66</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Mean age of cohort at death</td>
<td>68.98</td>
<td>69.21</td>
<td>69.21</td>
<td>69.26</td>
<td>69.31</td>
<td>69.31</td>
<td>69.36</td>
</tr>
</tbody>
</table>

NNS to prevent one death from HCC

In terms of the NNS to prevent one death from HCC, the results from the three separate cohorts are quite similar. Surveillance is slightly more effective in patients with HBV (6-monthly AFP+US reduces the proportion of patients dying as a result of HCC by 52% from 23% to 10.8%; the NNS to prevent one death from HCC using this strategy is 8) than in patients with HCV, and both are more effective than surveillance of patients with ALD (6-monthly AFP+US reduces the proportion of patients dying as a result of HCC by 43% from 17.0% to 9.5%; the corresponding NNS to prevent one death from HCC is 13).

NNS to prevent one premature death

The effect of surveillance on the proportion of people dying before the age of 75 is more markedly different between the three aetiologies. Compared with NO SURVEILLANCE, 6-monthly AFP+US increased the number of people living beyond the age of 75 by 11.3% for patients with HBV-related cirrhosis, but only by 6.9% and 3.2% for patients with HCV- and ALD-related cirrhosis, respectively.

Intermediate model outputs

These outputs provide an indication of the fate of the individuals in the cohorts, and they are based on event counts at the end of the modelling period, when all members of the cohort are dead. They primarily serve as a reality check of what we would expect to happen as a result of the introduction of each type of surveillance programme. They could also be considered alongside the cost of each surveillance strategy as a form of cost–consequence analysis.

In each instance, the probabilities have been multiplied by 1000 to give an indication of how many of the events in question would be expected in a cohort of 1000 people.

Tumour size at detection

Figure 8 illustrates the size of the HCC tumour at detection under each surveillance strategy. All detected tumours are included: those found as a result of symptomatic presentation and surveillance. As might be expected, when no surveillance programme is in operation, there are fewer tumours discovered and most are identified when large in size.

As the intensity of the surveillance programme increases, the total number of tumours identified rises, as does the number of tumours identified while small and medium and potentially amenable to surgical intervention. These results share the main characteristics of the effectiveness outputs. First, increasing the frequency of either AFP TRiAGE or US testing from annual to 6-monthly identifies more tumours at an earlier stage than using both tests annually, and secondly, 6-monthly AFP+US results in the detection of the greatest...
number of tumours at a potentially ‘curable’ stage.

Indications for performed liver transplantations

Figure 9 illustrates one of the complicating features of the model. All members of the cohort have two potential indications for OLT: decompensation and detection of an HCC. It shows that, while the model is primarily interested in the treatment of HCC, the majority of people who receive an OLT do so as a result of decompensation rather than detection of a tumour. As would be expected,
surveillance for HCC has no effect on the number of OLTs undertaken for decompensation alone. Therefore, even with a proportion of people with newly diagnosed HCCs receiving hepatic resection (in the base case, 20% of those with small HCCs and 5% of those with medium HCCs), the overall effect of the introduction of any surveillance programme is to increase the number of liver transplants performed. The difference between surveillance strategies is relatively small. However, it appears that the frequency of surveillance is more important than the diagnostic tests adopted (e.g. when compared to ANNUAL AFP TRIAGE, 6-MONTHLY AFP TRIAGE provides a greater increase in transplants than can be achieved with ANNUAL AFP+US).

In the NO SURVEILLANCE strategy, only 8.3% of people receiving OLT have a known tumour, with this proportion rising to 27.9% under 6-MONTHLY AFP+US surveillance.

Number of patients with HCC listed for and receiving liver transplantation

Figure 10 shows the number of patients with HCC who are listed for OLT, the number who die while on the waiting list, the number who are removed from the waiting list because they are no longer eligible for OLT (e.g. if their tumour grows to a size that contraindicates the procedure) and the number who ultimately receive a transplant.

Similar relationships are observed between surveillance strategies as seen when considering indications for OLT, above.

Number of patients with HCC receiving resection

Figure 11 shows the number of patients with HCC who have their tumour resected. The absolute number undergoing resection is very small, ranging from 1.6 to 9.5 per 1000 surveilled, according to strategy. This is because, in the base case of the model, the probability of being chosen for resection has been set at a low value. One notable feature of the relationship between strategies is that more patients are assigned to resection under AFP TRIAGE surveillance than under strategies that use US as the primary test. This is because, according to the assumptions of the model, AFP assay is more sensitive at detecting the smallest HCCs than US and small tumours are more likely to receive resection than medium-sized ones. One would expect this relationship to be preserved if the likelihood of resection were raised, so long as the approach remains predominantly used in patients with small tumours.

Costs of surveillance

In the mixed aetiology cohort of cirrhosis patients, the discounted lifetime cost of maintenance in the absence of a surveillance programme is £26,900 per patient (undiscounted cost £38,200 per patient; see Table 48, p. 68). The lifetime cost of the various surveillance strategies ranges from £28,400 per patient for ANNUAL AFP TRIAGE to £30,400 per patient for 6-MONTHLY AFP+US (undiscounted costs £40,300 per patient to £42,900 per patient, respectively).

The incremental discounted cost of surveillance compared with NO SURVEILLANCE ranges from £1500 (ANNUAL AFP TRIAGE) to £3500 (6-MONTHLY AFP+US) per person who enters the surveillance programme (Table 50 and Figure 12). Six-monthly surveillance is always more costly than annual surveillance, regardless of the combination of tests used. At either of the surveillance frequencies, regular surveillance with AFP TRIAGE is always the cheapest, and surveillance using AFP+US the most expensive strategy.

Table 47 shows the breakdown of the undiscounted costs (per cohort member), according to whether they relate to surveillance tests, curative treatments (resection and liver transplantation) or the ongoing care costs of being in different disease/health states. It shows that the mean total cost of the surveillance tests are small compared with the routine care costs and curative treatment costs in this patient group. However, screening test costs comprise a much larger proportion of the incremental costs of switching to progressively more intensive surveillance strategies; for example, 7.6% of the £2100 cost of switching from NO SURVEILLANCE to ANNUAL AFP TRIAGE, 25.2% of the £1277 cost of switching from ANNUAL AFP TRIAGE to 6-MONTHLY AFP TRIAGE, and 66% of the £1301 cost of switching from 6-MONTHLY AFP TRIAGE to 6-MONTHLY AFP+US surveillance. Increasing transplant and post-transplant survival costs also comprise a substantial proportion of the incremental costs of switching to progressively more effective surveillance strategies.

Cost-effectiveness of surveillance

Cost per additional operable case of HCC identified by surveillance

For the mixed aetiology cohort, the model estimates that 5% of all patients in the cohort will have an HCC identified at an operable stage in the absence of a surveillance programme. All of
the surveillance programmes result in the identification of more tumours, ranging from approximately 12% with ANNUAL AFP TRIAGE or ANNUAL US to approximately 17% with 6-MONTHLY AFP+US. Regardless of the test or tests used, all of the 6-monthly surveillance strategies result in the identification of more tumours than the annual policies.

Compared with NO SURVEILLANCE, the number of additional operable cases identified ranges from 6.5% with ANNUAL US to 11.8% with 6-MONTHLY AFP+US. Compared with NO SURVEILLANCE, the most cost-effective surveillance strategy is ANNUAL AFP TRIAGE, with an incremental cost of £22,800 per additional operable case of HCC. The least cost-effective option is 6-MONTHLY AFP+US (£30,000 per additional operable case of HCC).

In the incremental analysis, which examines the cost-effectiveness of progressively more costly interventions, neither of the US strategies would be considered cost-effective, as they are both...
slightly less effective and more costly than surveillance at the same frequency with AFP TRIAGE.

For the mixed aetiology cohort, switching from a NO SURVEILLANCE policy to ANNUAL AFP TRIAGE identifies additional operable cases of HCC at an estimated cost of £22,800 per HCC identified. Switching from this surveillance policy to the next most effective (and non-dominated) policy of 6-MONTHLY AFP TRIAGE implies an incremental cost of £28,400 per operable HCC identified (Table 48).

TABLE 47 Deterministic cost-effectiveness analysis: breakdown of undiscounted costs in mixed aetiology cohort

<table>
<thead>
<tr>
<th></th>
<th>No surv.</th>
<th>AFP</th>
<th>US</th>
<th>AFP+US</th>
<th>AFP</th>
<th>US</th>
<th>AFP+US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests (£)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>43</td>
<td>85</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>US</td>
<td>0</td>
<td>65</td>
<td>545</td>
<td>543</td>
<td>121</td>
<td>1,061</td>
<td>1,054</td>
</tr>
<tr>
<td>CT</td>
<td>0</td>
<td>44</td>
<td>43</td>
<td>82</td>
<td>263</td>
<td>79</td>
<td>155</td>
</tr>
<tr>
<td>False-positive costs</td>
<td>0</td>
<td>6</td>
<td>19</td>
<td>23</td>
<td>12</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>Total tests (£)</td>
<td>0</td>
<td>159</td>
<td>607</td>
<td>691</td>
<td>481</td>
<td>1,176</td>
<td>1,339</td>
</tr>
<tr>
<td>Surgery (£)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resection</td>
<td>20</td>
<td>69</td>
<td>62</td>
<td>80</td>
<td>100</td>
<td>89</td>
<td>115</td>
</tr>
<tr>
<td>Transplantation</td>
<td>9,153</td>
<td>10,173</td>
<td>10,151</td>
<td>10,414</td>
<td>10,670</td>
<td>10,638</td>
<td>10,903</td>
</tr>
<tr>
<td>Total surgery (£)</td>
<td>9,173</td>
<td>10,241</td>
<td>10,212</td>
<td>10,494</td>
<td>10,770</td>
<td>10,727</td>
<td>11,017</td>
</tr>
<tr>
<td>Maintenance (£)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensated cirrhosis</td>
<td>15,823</td>
<td>15,565</td>
<td>15,583</td>
<td>15,503</td>
<td>15,421</td>
<td>15,449</td>
<td>15,354</td>
</tr>
<tr>
<td>Decompensated cirrhosis</td>
<td>4,856</td>
<td>4,820</td>
<td>4,823</td>
<td>4,811</td>
<td>4,797</td>
<td>4,802</td>
<td>4,786</td>
</tr>
<tr>
<td>HCC</td>
<td>47</td>
<td>66</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Postresection</td>
<td>85</td>
<td>309</td>
<td>277</td>
<td>362</td>
<td>456</td>
<td>405</td>
<td>523</td>
</tr>
<tr>
<td>Post-transplantation</td>
<td>8,126</td>
<td>9,034</td>
<td>9,014</td>
<td>9,249</td>
<td>9,478</td>
<td>9,448</td>
<td>9,686</td>
</tr>
<tr>
<td>Palliative/untreatable</td>
<td>96</td>
<td>111</td>
<td>115</td>
<td>109</td>
<td>104</td>
<td>109</td>
<td>97</td>
</tr>
<tr>
<td>**Total maintenance (£)</td>
<td>29,032</td>
<td>29,904</td>
<td>29,877</td>
<td>30,105</td>
<td>30,331</td>
<td>30,288</td>
<td>30,526</td>
</tr>
<tr>
<td>Total (£)</td>
<td>38,205</td>
<td>40,305</td>
<td>40,697</td>
<td>41,289</td>
<td>41,581</td>
<td>42,192</td>
<td>42,883</td>
</tr>
</tbody>
</table>

Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
Cost-effectiveness in people with different cirrhosis aetiology

Cost-effectiveness results for each of three aetiologies are presented in Table 49. Unlike the cost–utility results (presented below), surveillance is most likely to be cost-effective on the basis of this outcome in the HCV cohort, although results for all three cohorts are very similar.

The cheapest non-dominated surveillance strategy in all three aetiological subgroups is annual AFP testing, with an incremental cost per additional operable case of HCC identified of £21,900 in the HCV cohort and £23,500 and £24,100 in the ALD and HBV cohorts, respectively. Switching from this surveillance policy to the next most effective (and non-dominated) policy of 6-monthly testing with AFP implies an incremental cost of £25,500 per operable HCC identified in those with HCV-related cirrhosis. Among those with ALD- and HBV-related cirrhosis, the incremental cost-effectiveness of doubling the frequency of surveillance with AFP tests implies a cost per operable HCC case identified of between £30,000 and £31,000.

Cost per QALY

For the mixed aetiology cohort, the model estimates a total discounted quality-adjusted life expectancy of 9.021 QALYs per patient (undiscounted 12.999 QALYs per patient) in a strategy using either ANNUAL AFP TRIAGE or ANNUAL US to 9.148 QALYs per patient (undiscounted 13.100 QALYs per patient) with 6-MONTHLY AFP+US. All of the 6-monthly surveillance policies produce more QALYs than annual surveillance with any combination of tests.

In the incremental analysis, neither of the ultrasound strategies would be considered (since they are both slightly less effective and more costly than surveillance at the same frequency with AFP TRIAGE). For example, compared with NO SURVEILLANCE, ANNUAL AFP TRIAGE costs an additional £1500 per patient and provides 0.074 QALYs per patient, while ANNUAL US costs an additional £1900 per patient and provides 0.075 QALYs per patient. This pattern is evident in both the discounted and undiscounted results. However, it should be noted that joint parameter uncertainty is not taken into account in the deterministic analysis.
Therefore, in a mixed aetiology cohort (ALD:HBV:HCV = 57.6:7.3:35.1) the cheapest surveillance strategy is ANNUAL AFP TRIAGE, which confers QALYs at a cost of £20,700 each. Doubling the screening frequency would increase the mean number of QALYs by another 0.035 QALYs and, assuming a WTP threshold of £30,000 per QALY, 6-MONTHLY AFP TRIAGE would also be considered cost-effective at £27,600 per QALY (Figure 12).

Cost per QALY in people with different cirrhosis aetiology

Full discounted and undiscounted cost-utility results are presented for cohorts of individuals with ALD-related cirrhosis (Table 51 and Figure 13), those with HBV-related cirrhosis (Table 52 and Figure 14) and those with HCV-related cirrhosis (Table 53 and Figure 15). Surveillance in patients with HBV is the most effective and cost-effective, and surveillance in patients with ALD is least cost-effective.

When the three aetiologies are considered separately, a similar pattern of results is observed to that shown for the mixed aetiology cohort. In the incremental analyses, compared with the next most costly strategy, ANNUAL AFP TRIAGE is the cheapest non-dominated surveillance strategy, with ICERs of £10,200 per QALY in patients with HBV, £22,200 per QALY in patients with HCV and £24,800 per QALY in patients with ALD.

If only patients with HBV are considered, doubling the surveillance frequency from ANNUAL to 6-MONTHLY AFP TRIAGE gains extra QALYs at a cost of £12,700 per QALY, and 6-MONTHLY AFP+US produces further QALYs at a cost of £26,800 per QALY (discounted results). Overall, if 6-MONTHLY AFP+US were implemented, it would achieve an estimated 0.358 extra QALYs per individual with HBV-related cirrhosis (compared with NO SURVEILLANCE). In contrast, 6-MONTHLY AFP+US for people with ALD-related cirrhosis produces considerably lower QALY gains (0.086 per person) and at a much higher incremental cost. For example, QALYs gained by doubling the frequency of primary AFP assay

TABLE 49 Deterministic cost-effectiveness analysis: cost per additional operable case of HCC in aetiology-specific cohorts

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)a</th>
<th>Operable HCCs identifiedb</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. operable HCCs</td>
</tr>
<tr>
<td>ALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>26,100</td>
<td>0.044</td>
<td></td>
<td>1,300</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>27,400</td>
<td>0.097</td>
<td>1,600</td>
<td>0.052</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>27,700</td>
<td>0.110</td>
<td>2,000</td>
<td>0.066</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>28,100</td>
<td>0.124</td>
<td>2,100</td>
<td>0.081</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>28,200</td>
<td>0.137</td>
<td>2,600</td>
<td>0.078</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>28,800</td>
<td>0.121</td>
<td>3,100</td>
<td>0.093</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>29,200</td>
<td>0.137</td>
<td>3,100</td>
<td>0.093</td>
</tr>
<tr>
<td>HBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>29,600</td>
<td>0.061</td>
<td></td>
<td>2,100</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>31,700</td>
<td>0.150</td>
<td>2,500</td>
<td>0.086</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>32,100</td>
<td>0.170</td>
<td>3,100</td>
<td>0.109</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>32,700</td>
<td>0.192</td>
<td>3,400</td>
<td>0.131</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>33,000</td>
<td>0.188</td>
<td>4,000</td>
<td>0.127</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>33,600</td>
<td>0.188</td>
<td>4,000</td>
<td>0.127</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>34,200</td>
<td>0.212</td>
<td>4,700</td>
<td>0.151</td>
</tr>
<tr>
<td>HCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>27,600</td>
<td>0.062</td>
<td></td>
<td>1,900</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>29,500</td>
<td>0.148</td>
<td>2,100</td>
<td>0.084</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>29,700</td>
<td>0.169</td>
<td>2,700</td>
<td>0.107</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>30,300</td>
<td>0.192</td>
<td>3,000</td>
<td>0.130</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>30,600</td>
<td>0.192</td>
<td>3,400</td>
<td>0.126</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>31,000</td>
<td>0.188</td>
<td>4,000</td>
<td>0.151</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>31,600</td>
<td>0.213</td>
<td>4,000</td>
<td>0.151</td>
</tr>
</tbody>
</table>

a Average cost per patient (discounted at 3.5% per annum).
b Proportion of all patients in the cohort who have an HCC identified at an operable stage; not discounted.
TABLE 50 Baseline results of cost–utility analysis: cost per QALY in mixed aetiology cohort

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>Utility (QALYs)</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. utility (QALYs)</td>
<td>£/QALY (ICER)</td>
<td>Incr. cost (£)</td>
</tr>
<tr>
<td>Discounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Surveillance</td>
<td>26,900</td>
<td>9.021</td>
<td>1,500</td>
<td>0.075</td>
</tr>
<tr>
<td>AFP Annual</td>
<td>28,400</td>
<td>9.096</td>
<td>2,100</td>
<td>0.143</td>
</tr>
<tr>
<td>US Annual</td>
<td>29,200</td>
<td>9.114</td>
<td>2,500</td>
<td>0.188</td>
</tr>
<tr>
<td>AFP+US Annual</td>
<td>29,800</td>
<td>9.131</td>
<td>3,000</td>
<td>0.222</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>30,400</td>
<td>9.148</td>
<td>3,500</td>
<td>0.269</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>31,000</td>
<td>9.165</td>
<td>4,000</td>
<td>0.315</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>31,600</td>
<td>9.182</td>
<td>4,500</td>
<td>0.361</td>
</tr>
</tbody>
</table>

Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).

FIGURE 12 Baseline results of cost–utility analysis: cost–utility plane showing discounted cost per QALY in mixed aetiology cohort. Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV). C-E, cost-effectiveness.
from ANNUAL AFP TRIAGE to 6-MONTHLY AFP TRIAGE cost £35,500 each, and those gained by adding US (to provide 6-MONTHLY AFP+US) cost £88,000 each.

The results for HCV-related cirrhosis show that the cost-effectiveness of surveillance in this group lies between that for HBV- and ALD-related cirrhosis. At a WTP threshold of £30,000 per QALY, the strategy of 6-MONTHLY AFP TRIAGE would be deemed the most cost-effective, but the extra benefits of adding US for all to this strategy would be achieved at a cost of over £50,000 per QALY.
TABLE 52 Baseline results of cost–utility analysis: cost per QALY in HBV cohort

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>Utility (QALYs)</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discounted</td>
<td></td>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. utility (QALYs)</td>
</tr>
<tr>
<td>No SURVEILLANCE</td>
<td>29,600</td>
<td>10.858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>31,700</td>
<td>11.069</td>
<td>2,100</td>
<td>0.211</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>32,100</td>
<td>11.066</td>
<td>2,500</td>
<td>0.208</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>32,700</td>
<td>11.119</td>
<td>3,100</td>
<td>0.261</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>33,000</td>
<td>11.168</td>
<td>3,400</td>
<td>0.310</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>33,600</td>
<td>11.164</td>
<td>4,000</td>
<td>0.306</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>34,200</td>
<td>11.216</td>
<td>4,700</td>
<td>0.358</td>
</tr>
<tr>
<td>Undiscounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No SURVEILLANCE</td>
<td>45,800</td>
<td>17.073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>49,200</td>
<td>17.547</td>
<td>3,400</td>
<td>0.474</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>49,800</td>
<td>17.540</td>
<td>3,900</td>
<td>0.467</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>50,700</td>
<td>17.659</td>
<td>4,800</td>
<td>0.585</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>51,200</td>
<td>17.768</td>
<td>5,300</td>
<td>0.695</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>52,000</td>
<td>17.758</td>
<td>6,100</td>
<td>0.684</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>53,000</td>
<td>17.872</td>
<td>7,200</td>
<td>0.799</td>
</tr>
</tbody>
</table>

FIGURE 14 Baseline results of cost–utility analysis: cost–utility plane showing discounted cost per QALY in HBV cohort

Sensitivity analyses

One-way sensitivity analyses
The purpose of the one-way sensitivity analysis is to provide insight into which model inputs have the greatest impact on the cost-effectiveness results, and also to provide an indication of areas in which further exploration of the uncertainty in the results is warranted.

For simplicity, the analysis was performed in the mixed cohort using the comparison likely to demonstrate these effects most markedly: NO SURVEILLANCE compared with 6-MONTHLY AFP+US.
TABLE 53 Baseline results of cost–utility analysis: cost per QALY in HCV cohort

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>Utility (QALYs)</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. utility (QALYs)</td>
<td>Incr. £/QALY (ICER)</td>
<td>Incr. cost (£)</td>
</tr>
<tr>
<td>Discounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>27,600</td>
<td>8.087</td>
<td>1,900</td>
<td>0.085</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>29,500</td>
<td>8.172</td>
<td>2,100</td>
<td>0.085</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>29,700</td>
<td>8.172</td>
<td>2,100</td>
<td>0.085</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>30,300</td>
<td>8.193</td>
<td>2,700</td>
<td>0.106</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>30,600</td>
<td>8.212</td>
<td>3,000</td>
<td>0.126</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>31,000</td>
<td>8.213</td>
<td>3,400</td>
<td>0.126</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>31,600</td>
<td>8.232</td>
<td>4,000</td>
<td>0.145</td>
</tr>
<tr>
<td>Undiscounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>37,600</td>
<td>11.029</td>
<td>2,500</td>
<td>0.156</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>40,100</td>
<td>11.195</td>
<td>2,800</td>
<td>0.155</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>40,400</td>
<td>11.194</td>
<td>3,000</td>
<td>0.194</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>41,100</td>
<td>11.232</td>
<td>3,500</td>
<td>0.230</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>41,500</td>
<td>11.269</td>
<td>3,900</td>
<td>0.230</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>42,000</td>
<td>11.268</td>
<td>4,400</td>
<td>0.229</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>42,800</td>
<td>11.304</td>
<td>5,200</td>
<td>0.265</td>
</tr>
</tbody>
</table>

FIGURE 15 Baseline results of cost–utility analysis: cost–utility plane showing discounted cost per QALY in HCV cohort
Figure 16 shows the changes in the ICER of this comparison due to alterations in various input parameters. (The equivalent of Figure 16, but showing variation in net monetary benefit assuming a WTP of £30,000 per QALY for each change in single parameter values, reveals a similar pattern; see Appendix 6.)

The model appears to be most sensitive to changes in transition probabilities, most notably those relating to tumour growth rate, mortality following transplantation and the excess mortality associated with unknown large HCC tumours. Quality of life is also important; in particular, results are sensitive to the utility associated with compensated cirrhosis states and that associated with post-transplantation states. In terms of costs, the costs associated with ultrasound and transplantation appear to be important areas of uncertainty in the model.

Mean age at diagnosis of cirrhosis may be an important variable. Analysis (not shown) suggests that this finding may be particularly exaggerated in patients with HBV (who are likely to be diagnosed at a younger age than individuals with other types of cirrhosis).

Increasing the mortality rate in patients with compensated cirrhosis improves the cost-effectiveness of surveillance.

Sensitivity to discount rate

Table 54 shows the impact of discount rate on the results of the cost–utility analysis. In the base case, both costs and utilities are discounted at a rate of 3.5%, producing an ICER of £27,900 per QALY for surveillance with AFP and US compared with NO SURVEILLANCE. The results appear to be highly sensitive to the discount rate, with the ICER almost doubling from £19,400 per QALY if no discounting is applied, to £35,800 if equal rates of 6% are applied. This finding is probably to be expected in the setting of a programme that seeks to provide long-term benefit, and that also features an intervention as costly as OLT occurring some way into the future.

Probabilistic sensitivity analyses

PSA involves using Monte Carlo simulation to explore the impact on cost-effectiveness of the uncertainty in all model parameter values simultaneously. It generates a value for expected costs and expected QALYs for a large number of separately simulated cohorts, with the particular disease and treatment experiences for each cohort (and the resultant costs and effects) being determined by random selection of parameter values from predefined distributions. These incremental cost and incremental effectiveness pairs can be plotted as a joint distribution on the cost-effectiveness plane. In addition, the values from all simulated individual trials can be aggregated to give the mean expected ICER (which, for any pair of comparators, may be different from the result from the deterministic analysis).

Comparison of surveillance with AFP and US at 6-monthly intervals with no surveillance

As a simple illustration of the results of the PSA, the analysis was initially performed using the comparison likely to demonstrate the breadth of uncertainty in the model most markedly: NO SURVEILLANCE compared with 6-MONTHLY AFP+US. Figure 17(b) presents the aggregate results of 10,000 simulations per aetiology by using the joint distributions of incremental QALYs and incremental costs to predict the probability that this surveillance strategy is cost-effective when compared with NO SURVEILLANCE, given different WTP thresholds of up to £100,000 per QALY gained [i.e. the cost-effectiveness acceptability curve (CEAC)]. Figure 17(a) shows the joint distribution of the incremental costs and incremental QALYs on the cost-effectiveness plane for a random sample of 1000 simulations per aetiology.

Overall, the results confirm those produced in the deterministic analysis. When compared with NO SURVEILLANCE, 6-MONTHLY AFP+US is most likely to be considered cost-effective (assuming a maximum WTP threshold of £30,000 per QALY) in the HBV cohort and least likely to be considered cost-effective in the ALD cohort. When considering a mixed aetiology cohort, however (i.e. if there is no option of having separate surveillance strategies for people with cirrhosis of different aetiologies), 6-MONTHLY AFP+US can only be concluded as being cost-effective with greater than 50% certainty above a maximum WTP threshold of about £35,000 per QALY. Even with a maximum WTP threshold of £50,000 per QALY there remains a one-in-four chance that surveillance with 6-MONTHLY AFP+US is not cost-effective.

These results, and those for the three aetiologies presented in Appendix 7, should be treated with some caution, however, since they do not account for the costs and utility of less effective and less costly surveillance strategies. In other words, they effectively summarise average cost-effectiveness.
Baseline characteristics

Mean age of cohort at diagnosis (34–63)
Proportion of cohort male (50.0–90.2%)
Upper age limit of screening policy (60–80)

Transitions

Ann. incidence of cirrhosis decompensation (1.8–6.8%)
Ann. incidence of HCC (4.1–1.2%)
Monthly tumour growth rate: HCCS to HCCM (0.089–0.036)
Monthly tumour growth rate: HCCM to HCCL (0.056–0.023)
Proportion AFP >400 ng/ml in HCCS (3.9–15.5%)
Proportion AFP <20 ng/ml in HCCS (27.6–49.2%)
Proportion AFP >400 ng/ml in HCCM (21.5–6.5%)
Proportion AFP <20 ng/ml in HCCM (54.7–6.3%)
Proportion AFP >400 ng/ml in HCCL (12.1–64.6%)
No HCC secreting <20 ng/ml AFP (94.1–85.3%)
No HCC secreting >400 ng/ml AFP (0.1–3.3%)
Ultrasound detection rate for HCCS (3.7–27.2%)
Ultrasound detection rate for HCCM (64.1–8.2%)
Ultrasound detection rate for HCCL (30.1–95.4%)
False-positive rate for ultrasound (1.6–7.4%)
False-positive rate for CT (7.6–13.7%)
Ann. incid./sympt. presentation rate: HCCS (0.0–15.0%)
Ann. incid./sympt. presentation rate: HCCM (0.0–26.2%)
Ann. incid./sympt. presentation rate: HCCL (63.2–0.0%)
Probability HCCS to HCCM transplantable (0.800–1.000)
Probability HCCM to HCCL transplantable (0.950–0.800)
Probability HCCL transplantable (0.980–0.900)
Monthly probability of receiving a transplant (0.242–0.267)
Ann. excess mortality: comp. cirr. (5.0–0.0%)
Ann. excess mortality: decom. cirr. (32.5–12.7%)
Ann. excess mortality: occult HCCS (97.4–34.6%)
Ann. excess mortality: known HCCS (33.6–92.9%)
Mortality after OLT: proportion surviving 3 mo (100.0–74.7%)
Mortality after OLT: proportion surviving 1 yr (99.5–65.9%)
Mortality after OLT: proportion surviving 5 yrs (82.8–38.2%)
Mortality after Rx: proportion surviving 3 mo (98.7–89.2%)
Mortality after Rx: proportion surviving 1 yr (88.0–79.0%)
Mortality after Rx: proportion surviving 3 yrs (76.0–54.0%)
Mortality after Rx: proportion surviving 5 yrs (58.0–36.0%)

Utilities

Utility of comp. cirr. states (0.660–0.830)
Utility of decomp. cirr. states (0.460–0.860)
Utility of postresection states (high–low)
Utility of post-transplantation states (high–low)
Utility of known HCCS (0.440–0.860)

Costs

Unit cost of AFP test (£2–8)
Unit cost of CT scan (£50–130)
Unit cost of ultrasound scan (£26–100)
Ann. state costs of all comp. cirr. states (£1624–718)
Ann. state costs of all decomp. cirr. states (£12,363–6407)
Ann. state costs of all known HCC states (£615–2460)
State cost for HCC resection (£1500–6000)
State cost of transplantation (£16,700–31,800)
State costs of all post-transplantation states (high–low)
Ann. state costs of postresection states (£2338–4763)
Ann. state costs of all untreated HCC states (£2460–615)
Add. cost of PC for untreated HCCS and HCCM (£809–3217)
Add. cost of PC for untreated HCCM (£354–88)
Additional costs for false-positive diagnoses (£374–796)

FIGURE 16 One-way sensitivity analysis (mixed aetiology cohort). Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV). Where different ranges were used for different aetiologies, the range shown gives the minimum and maximum value used in any of the three analyses. add., additional; ann., annual; cirr., cirrhosis; comp., compensated; decom., decompensated; incid./sympt., incidental/symptomatic; PC, palliative care. Changes in the ICER (6-monthly AFP+US vs no surveillance) due to alterations in parameter values over specified ranges (mixed aetiology cohort).

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
TABLE 54 Impact of discount rate on cost–utility of surveillance (mixed aetiology cohort)

<table>
<thead>
<tr>
<th>Discount rate applied to QALYs</th>
<th>0.0%</th>
<th>1.5%</th>
<th>3.0%</th>
<th>3.5%</th>
<th>4.5%</th>
<th>6.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0%</td>
<td>£19,400</td>
<td>£17,000</td>
<td>£15,100</td>
<td>£13,600</td>
<td>£12,300</td>
<td></td>
</tr>
<tr>
<td>1.5%</td>
<td>£25,800</td>
<td>£22,700</td>
<td>£20,200</td>
<td>£18,100</td>
<td>£16,400</td>
<td></td>
</tr>
<tr>
<td>3.0%</td>
<td>£33,900</td>
<td>£29,800</td>
<td>£26,500</td>
<td>£23,800</td>
<td>£21,500</td>
<td></td>
</tr>
<tr>
<td>3.5%</td>
<td>£43,900</td>
<td>£38,700</td>
<td>£34,400</td>
<td>£30,900</td>
<td>£27,900</td>
<td></td>
</tr>
<tr>
<td>4.5%</td>
<td>£56,300</td>
<td>£49,500</td>
<td>£44,100</td>
<td>£39,600</td>
<td>£35,800</td>
<td></td>
</tr>
</tbody>
</table>

ICERs (6-monthly AFP+US surveillance vs no surveillance) generated with various combinations of discount rates for costs and QALYs. Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
FIGURE 17 PSA: incremental cost-effectiveness of 6-monthly AFP + US versus no surveillance. (a) Cost-effectiveness plane, showing incremental cost-effectiveness of 6-monthly surveillance with AFP and US, compared with no surveillance, in a subsample of 1000 Monte Carlo simulations per aetiology. (b) Cost-effectiveness acceptability curve, showing probability that 6-monthly surveillance with AFP and US is cost-effective, compared with no surveillance, at WTP thresholds of up to £100,000 per QALY gained. Weighted average calculated according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV). Based on simulation output for 10,000 trials per aetiology.
ratios that do not reflect the incremental costs and incremental QALYs achieved by changing to the most effective surveillance strategy from less effective (but also less costly) surveillance strategies.

ALD

In Figure 17(a), the clustering of results from the ALD cohort next to (and crossing) the cost (y) axis shows that, for most simulated trials, this surveillance strategy produces relatively modest QALY gains for the costs invested. Figure 17(b) suggests that, assuming a WTP value of £30,000 per QALY, 6-MONTHLY AFP+US would have a one-in-four chance of being considered cost-effective.

HBV

The horizontal spread of the results from the HBV cohort in Figure 17(a) suggests that, in most of the simulated trials, 6-MONTHLY AFP+US produces higher QALY gains for the extra costs invested. It would be highly unlikely, given the specified uncertainty across all parameters in the model, for people with HBV-related cirrhosis to experience a loss in QALYs under this surveillance strategy (compared with NO SURVEILLANCE). Figure 17(b) shows that 6-MONTHLY AFP+US would almost certainly be considered cost-effective for values of WTP above £20,000 per QALY.

HCV

Surveillance of the HCV cohort is likely to have similar cost implications as surveillance of the HBV cohort, but on average will result in the acquisition of fewer than half the number of QALYs. With a WTP threshold of £30,000 per QALY, there is an approximately equal chance that 6-MONTHLY AFP+US would be considered cost-effective or not.

An investigation of the probability that each surveillance strategy is cost-effective compared with NO SURVEILLANCE at various maximum WTP thresholds for the mixed cohort, ALD, HBV and HCV is presented in Appendix 7. Appendix 8 presents these outputs when derived from the pairwise comparisons implied by the deterministic analysis, that is, changing from NO SURVEILLANCE to ANNUAL AFP TRIAGE, changing from ANNUAL AFP TRIAGE to 6-MONTHLY AFP TRIAGE, and changing from 6-MONTHLY AFP TRIAGE to 6-MONTHLY AFP+US.

Relative probability of maximal cost-effectiveness among the surveillance strategies

Figures 18–21 show the probability that a given strategy is the most cost-effective in terms of the highest net monetary benefit (at different levels of WTP for a QALY), averaged across all 10,000 probabilistic simulations, for the mixed cohort, ALD, HBV and HCV, respectively. These graphs are similar to cost-effectiveness acceptability frontiers in that they identify the surveillance strategy that is most likely to generate the highest net benefits at each WTP threshold.

Figure 18 shows that, at normally accepted thresholds of willingness to pay for a QALY, surveillance using 6-MONTHLY AFP TRIAGE is the most likely strategy to maximise net benefits in the defined mixed aetiology cohort. Below a WTP threshold of about £29,000, NO SURVEILLANCE is likely to generate the highest net benefit. Although the strategy of 6-MONTHLY AFP TRIAGE has the best chance of being cost-effective at and above £30,000 per QALY, the joint uncertainty in the model’s parameters is such that only above £38,000 per QALY is there a greater than 50% chance that this strategy generates the highest net benefits. The likelihood that 6-MONTHLY AFP+US is the optimal strategy is only realistic when the WTP per QALY exceeds £80,000.

ALD

Figure 19 shows that for WTP levels of £30,000 per QALY or less, NO SURVEILLANCE is most likely to generate the highest net monetary benefit. However, at the upper end of this range (WTP = £28,000–30,000 per QALY), ANNUAL AFP TRIAGE is almost as likely to be the most cost-effective option as NO SURVEILLANCE. Above this WTP level, if incremental cost-effectiveness ratios from £31,000 to £82,000 were to be deemed acceptable, 6-MONTHLY AFP TRIAGE would be the strategy most likely to be considered cost-effective. Nevertheless, the combined parameter uncertainty in the ALD model is such that none of the surveillance strategies can be concluded as being the most cost-effective with more than 60% certainty (until WTP levels exceed £100,000 per QALY).

HBV

For those with HBV-related cirrhosis (Figure 20), a number of surveillance strategies would be cost-effective at different WTP thresholds. From approximately £10,000 to £13,000 per QALY, ANNUAL AFP+US would be the most likely to maximise net monetary benefit. From about £13,000 to about £28,000 per QALY, 6-MONTHLY AFP TRIAGE would be most likely to be considered cost-effective. Above £28,000 per QALY, 6-MONTHLY AFP+US becomes the strategy most likely to yield the highest net monetary benefit.
For those with HCV-related cirrhosis (Figure 21), the first surveillance strategy to become more cost-effective (i.e. yield more net monetary benefits on average, across all probabilistic simulations) than NO SURVEILLANCE is 6-MONTHLY AFP TRIAGE, for WTP values of between £27,000 and £64,000 per QALY. Above £64,000 per QALY, 6-MONTHLY AFP+US becomes the strategy most likely to yield the most net monetary benefit. In this cohort alone, there is a small probability that ultrasound-led surveillance strategies generate the most net benefit. This may be related to the higher incidence of HCC in this population, which would entail fewer ‘wasted’ scans (i.e. true-negative screening events).

In summary, these results show that, using a decision-making approach that relies on thresholds of maximum WTP for a QALY, different surveillance strategies are likely to be considered the most cost-effective in people with different cirrhosis aetiologies. Table 55 illustrates, for hypothetical maximum WTP values of £20,000, £30,000 and £50,000 per QALY, the optimum surveillance strategies identified by this analysis, taking into account the uncertainty in the model’s parameters.

EVPI analyses

Per-patient global EVPI estimates in aetiology-specific cohorts (assuming a WTP threshold of £30,000 per QALY) are presented in Appendix 9. These confirm that the cost-effectiveness of surveillance in the cohort with HBV-related cirrhosis is much less susceptible to parameter uncertainty. In particular, when each surveillance strategy is compared to the option of NO SURVEILLANCE, no EVPI value exceeds £27 (this is the estimated per-patient cost of establishing the superior cost-effectiveness of 6-MONTHLY AFP+US versus NO SURVEILLANCE).
In contrast, the identification of optimal decisions is associated with substantial uncertainty, which might be costly to resolve, in the ALD and HCV cohorts.

Population EVPI was not calculated, in the absence of any plausible data on the size of the populations in which these policies might be adopted (i.e. the prevalence of diagnosed ALD-, HBV- and HCV-related compensated cirrhosis in England and Wales).

Scenario analyses
The following sections present the cost–utility results relating to several scenarios, which have been chosen

- because they directly reflect gold-standard practice (e.g. liver transplantation only)
- to explore the implications of emerging technologies (e.g. contrast-enhanced ultrasound)
- to reflect the reality of patient behaviour (e.g. imperfect compliance with recommended surveillance intervals)
- to explore the impact of key simplifying modelling assumptions (such as the reliance on a single average tumour growth rate)
- to explore the impact of longer waiting times for liver transplantation.

Compliance
The base case assumes 100% compliance with the surveillance programme (that is, every individual attends every screening appointment). We made this decision because we were keen to observe the characteristics of the surveillance strategies themselves, and felt that non-compliance would introduce extraneous noise to the background from which we were attempting to detect a signal. In recognition of the fact that a perfectly compliant cohort is an extremely unlikely finding in practice, the impact of missed appointments was explored in the following scenario analyses.

FIGURE 19 PSA: relative probability of maximal cost-effectiveness among surveillance strategies (ALD cohort). Probability of each strategy being the most cost-effective, measured in terms of highest net monetary benefit, at WTP thresholds of up to £100,000 per QALY gained. Results are derived from simulation output for 10,000 trials.
The model recognises two kinds of non-compliance: there is a probability that any screening appointment will be missed, and there is an annual rate at which members of the surveillance cohort drop out of the programme entirely (this does not preclude them from subsequently developing symptomatic disease and requiring treatment). In these analyses, these two parameters were varied simultaneously. Table 56 shows cost–utility results for a scenario in which 50% of appointments are missed and members of the cohort drop out at a rate of 5% per annum.

Table 57 shows cost–utility results for a scenario in which 75% of appointments are missed and members of the cohort drop out at a rate of 10% per annum.

The results suggest that, under conditions of poor compliance, the cost-effectiveness of surveillance is improved. However, this has to be considered in the light of the very noticeable reduction in effectiveness. Examination of the outputs in terms of net monetary benefit (not shown), which takes into account the relative contributions of changes in benefits (QALYs) and costs, assuming a WTP of £30,000 per QALY, demonstrates that the loss of QALYs with decreasing compliance outweighs the gain in cost-effectiveness.

Stratified tumour growth rates

One-way sensitivity analysis suggested that the model is very sensitive to transition probabilities governing HCC progression. When tumour growth rates were slowed, cost-effectiveness fell appreciably; conversely, when the parameters were varied to suggest faster progression, surveillance appeared more cost-effective.

In reality, individual tumours do not grow at one homogeneous, average rate. Accordingly, this
scenario analysis was constructed to investigate the extent to which the cost–utility of surveillance is influenced by variability in the growth rate of HCCs (that is, the impact of the exact mixture of slow-growing and fast-growing tumours).

For each aetiology of cirrhosis, nine separate analyses were performed, with both of the tumour growth rates that are specified in the model (HCC_s to HCC_M and HCC_M to HCC_L) varied simultaneously over nine equal strata, corresponding to tumour volume doubling times from 80 to 203 days (the 95% confidence interval reported in the selected parameter source for tumour growth rate; see above). The results of these analyses were then pooled, with a weighted average cost, utility and cost–utility calculated according to three separate distributions: a normal

![Figure 21](image-url) - PSA: relative probability of maximal cost-effectiveness among surveillance strategies (HCV cohort). Probability of each strategy being the most cost-effective, measured in terms of highest net monetary benefit, at WTP thresholds of up to £100,000 per QALY gained. Results are derived from simulation output for 10,000 trials.

TABLE 55 Optimal decisions based on best chance of maximising net benefit while reflecting all parameter uncertainty

<table>
<thead>
<tr>
<th>Strategy</th>
<th>No Surveillance</th>
<th>6-Monthly AFP Triage</th>
<th>6-Monthly AFP+US Triage</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a separate surveillance strategy for each aetiology is feasible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALD</td>
<td>No Surveillance</td>
<td>6-Monthly AFP Triage</td>
<td>6-Monthly AFP+US Triage</td>
</tr>
<tr>
<td>HBV</td>
<td>6-Monthly AFP Triage</td>
<td>6-Monthly AFP+US Triage</td>
<td>6-Monthly AFP Triage</td>
</tr>
<tr>
<td>HCV</td>
<td>No Surveillance</td>
<td>6-Monthly AFP Triage</td>
<td>6-Monthly AFP Triage</td>
</tr>
<tr>
<td>With one surveillance strategy for all three aetiologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed aetiology cohort</td>
<td>No Surveillance</td>
<td>6-Monthly AFP Triage</td>
<td>6-Monthly AFP Triage</td>
</tr>
</tbody>
</table>

Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
The results that were pooled using a normal distribution (approximating a similar number of slow-growing and fast-growing tumours) and two beta distributions (approximating a preponderance of slow-growing and fast-growing tumours, respectively). The results of these analyses are shown in Table 58.

The results that were pooled using a normal distribution are fairly close to those generated in the deterministic base case, although a minor increase in cost-effectiveness is apparent. This suggests that fast-growing tumours improve the cost-effectiveness of surveillance interventions to an extent that slightly outweighs the negative effect of slow-growing tumours.

This conclusion is supported by the analyses that are weighted according to beta distributions. When slow-growing tumours predominate, people tend to live for longer (this is to be expected, as the natural history of the disease has effectively been slowed down), but the incremental benefit of surveillance is fairly slight. The analysis that simulates a preponderance of fast-growing tumours has the opposite characteristics: fewer QALYs are generated, on average, but the
incremental benefit of surveillance is noticeably greater. This is a predictable finding, since HCCs that develop rapidly are, in the model, unlikely to be detected at a treatable stage unless surveillance is efficient at identifying them.

In conclusion, the model may slightly underestimate the cost-effectiveness of surveillance, by adopting a single average growth rate. Given the relatively close agreement of these figures with the base case, we believe that any effect is likely to be minor, but a more sophisticated model of individual tumour growth rates would be necessary to investigate this relationship in detail.

Table 57 Scenario analyses: cost–utility with very poor compliance (75% of appointments missed; 10% per annum of surveillance cohort drop out entirely)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>Utility (QALYs)</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. utility (QALYs)</td>
<td>£/QALY (ICER)</td>
<td>Incr. cost (£)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Surveillance</td>
<td>26,900</td>
<td>9.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>27,200</td>
<td>9.037</td>
<td>300</td>
<td>0.016</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>27,300</td>
<td>9.037</td>
<td>400</td>
<td>0.016</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>27,300</td>
<td>9.042</td>
<td>500</td>
<td>0.020</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>27,400</td>
<td>9.041</td>
<td>400</td>
<td>0.020</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>27,400</td>
<td>9.043</td>
<td>500</td>
<td>0.021</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>27,500</td>
<td>9.048</td>
<td>600</td>
<td>0.026</td>
</tr>
<tr>
<td>ALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Surveillance</td>
<td>26,100</td>
<td>9.359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>26,400</td>
<td>9.370</td>
<td>300</td>
<td>0.011</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>26,400</td>
<td>9.370</td>
<td>300</td>
<td>0.011</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>26,500</td>
<td>9.372</td>
<td>400</td>
<td>0.014</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>26,500</td>
<td>9.373</td>
<td>400</td>
<td>0.015</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>26,500</td>
<td>9.372</td>
<td>400</td>
<td>0.014</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>26,700</td>
<td>9.377</td>
<td>500</td>
<td>0.018</td>
</tr>
<tr>
<td>HBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Surveillance</td>
<td>29,600</td>
<td>10.858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>30,000</td>
<td>10.900</td>
<td>400</td>
<td>0.042</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>30,000</td>
<td>10.900</td>
<td>500</td>
<td>0.041</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>30,100</td>
<td>10.910</td>
<td>500</td>
<td>0.052</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>30,200</td>
<td>10.909</td>
<td>600</td>
<td>0.051</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>30,200</td>
<td>10.914</td>
<td>600</td>
<td>0.056</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>30,300</td>
<td>10.925</td>
<td>800</td>
<td>0.067</td>
</tr>
<tr>
<td>HCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Surveillance</td>
<td>27,600</td>
<td>8.087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>28,000</td>
<td>8.106</td>
<td>400</td>
<td>0.019</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>28,100</td>
<td>8.106</td>
<td>500</td>
<td>0.019</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>28,200</td>
<td>8.111</td>
<td>600</td>
<td>0.024</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>28,200</td>
<td>8.111</td>
<td>600</td>
<td>0.024</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>28,200</td>
<td>8.112</td>
<td>600</td>
<td>0.025</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>28,400</td>
<td>8.119</td>
<td>800</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).

Transplantation as the only surgical treatment option

This scenario simplifies the decision problem by assuming that the only surgical treatment option available for HCC is liver transplantation.

The cost–utility results of this analysis are shown in Table 59.
These results are very similar to the main cost–utility outputs, doubtless because only a small proportion of individuals receive resection in the base case. In each case, surveillance is very slightly more effective, and very slightly more cost-effective, than in the main analysis. This is entirely as one would expect, and merely suggests that OLT has marginally superior cost-effectiveness than resection.

More effective, more expensive ultrasound

This is a speculative analysis, which seeks to account for anticipated improvements in the performance of ultrasound imaging. The parameters were loosely based on what might be expected if contrast-enhanced ultrasound (CEUS) were used in the surveillance of patients for HCC. Because it would have entailed substantial restructuring of the model to define new screening algorithms using CEUS in conjunction with unenhanced ultrasound, values approximating the performance of CEUS were substituted for the existing ultrasound parameters. Therefore, this scenario assumes that all ultrasound examinations are contrast enhanced.

There is no robust published evidence as to the sensitivity of CEUS for detecting HCCs, and none detailed enough to account for the impact of...
tumour size. It should be stressed that preliminary studies reporting the sensitivity of the technique as around 95% \(^444-447\) are irrelevant in this context, as they relate to characterisation (of known but unclassified nodules), rather than detection (of lesions that may or may not be present in a series of cirrhotic livers). One observational study has been published reporting the use of CEUS in a surveillance series; \(^448\) however, the reference standard used to establish ‘true’ diagnoses (long-term follow-up, including biopsy and CT) was suboptimal. Moreover, it is difficult to draw any conclusions about the accuracy of individual tests from such series, as they cannot account for the possibility that correctly identified lesions were missed in previous scans in the same patient.

There is an urgent need for well-designed studies, measuring the sensitivity of CEUS for detecting HCC in cirrhotic livers against a reliable reference standard (ideally, explant pathology in patients receiving OLT for liver failure).

For this scenario, in the absence of any relevant evidence, an increment was applied to the existing ultrasound sensitivity parameters. This increment was equivalent to assuming that, in the study informing the ultrasound parameter estimates, \(^256\) CEUS would have resulted in half as many false-negative findings in patients with tumours. This equates to a sensitivity of 55.4%, 64.3% and 87.5%.
in small, medium and large HCCs, respectively. The specificity of the test was not altered, as the evidence base is insufficient to support even the broadest assumption; it is possible that CEUS will reduce false-positive findings, but it is perhaps as likely that more non-cancerous nodules will cause suspicion under these circumstances. The unit cost of ultrasound was raised, to account for the extra expense entailed in performing these tests. This was approximated by assuming that operator time increases by 50% and the contrast agent costs £50 per test, amounting to a total of £125 per test.

The cost–utility results of this scenario analysis are shown in Table 60. For the reasons discussed above, this exploratory scenario should not be interpreted as a robust, evidence-based estimation of the cost–utility of CEUS. Nevertheless, it highlights one very important characteristic of the relationship between the kinds of surveillance strategy that will increasingly be considered as imaging technology advances. Although, in this scenario, ANNUAL US is substantially more effective than ANNUAL AFP TRIAGE (generating as many as 0.06 extra QALYs in...
the HBV cohort), the extra costs entailed are sufficient to make it more expensive than 6-MONTHLY AFP TRIAGE. As a result, the model predicts that, given the choice of a relatively expensive, relatively sensitive test versus a relatively inexpensive, relatively insensitive test performed at twice the frequency, the latter will detect more tumours, and do so at a lower cost. This possibility should be borne in mind; although the benefit of more sensitive imaging technology is obvious, it will always be worth questioning whether the resources demanded by innovative techniques might be more effectively deployed in using existing technology more often. These speculative results are insufficient to establish whether this pattern would be realised with the wider use of CEUS; however, this analysis demonstrates that, in this and other areas, the danger plainly exists.

Alternative AFP sensitivity data
While we were in the final stages of preparing this report, a comprehensive study reporting the diagnostic accuracy of AFP assay in a consecutive series of more than 1000 Italian HCC patients was published by Farinati and co-workers. Their data (see Figure 22) suggest that the estimates adopted in the present model (see pp. 43–44) may slightly underestimate the proportion of HCCs that secrete low levels of AFP (<20 ng/ml). Although these new data were published too late to be integrated throughout the analyses, a scenario analysis was performed in which the new values are used, to investigate the impact that this evidence might be expected to have on the present findings. The cost-utility outputs are shown in Table 61.

FIGURE 22 Alternative AFP data: secretion level according to tumour size (data extracted from Farinati et al., 2006)

This alteration has little obvious effect on the base-case results. The effectiveness of AFP-based surveillance diminishes very slightly (by 0.003 QALYs in both 6-MONTHLY AFP TRIAGE and ANNUAL AFP TRIAGE in the mixed aetiology cohort). This is a reflection of a raised false-negative rate caused by the larger proportion of non-secreting tumours. In contrast, the effectiveness of AFP+US strategies rises somewhat. This is because the number of high-AFP-secreting tumours is slightly higher in the new data, leading to increased detection of HCCs (especially medium-sized ones).

The most notable difference from the main analysis comes in the relative benefit of strategies that make primary use of AFP compared with those that rely on ultrasound. In the base case, ultrasound surveillance is frequently dominated by AFP TRIAGE surveillance at the same interval (that is, ultrasound is more costly and less effective than AFP TRIAGE). In the reanalyses with new AFP data, ultrasound is consistently more effective than AFP TRIAGE, although the extra costs incurred in ultrasound-led surveillance always outweigh the
benefit, and AFP-led and combined strategies remain the most cost-effective options.

Longer waiting times for liver transplantation

Liver transplantation is one of the two main treatments for HCCs discovered while they are still small or medium sized (<5 cm diameter). Clearly, the longer that people with compensated cirrhosis and HCC tumours are on a transplant waiting list, the greater the chance that either their cirrhosis or their tumour may progress to the point that they are no longer eligible for a transplant. In theory, therefore, the average length of time waiting for a liver transplant may impact on the effectiveness and cost-effectiveness of any surveillance programme.

However, as Table 62 shows, even doubling the median time on the transplant waiting list (from 72 to 144 days) only alters the various ICERS by a very small amount (£100–700).

Detailed one-way sensitivity analyses

In the following sensitivity analyses, related (usually correlated) parameters of interest are varied in the same direction while all other values.

Table 61: Scenario analyses: cost–utility when adopting alternative AFP sensitivity data

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>Utility (QALYs)</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. utility (QALYs)</td>
<td>£/QALY (ICER)</td>
<td>Incr. cost (£)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>26,900</td>
<td>9.021</td>
<td>1,400</td>
<td>20,300</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>28,300</td>
<td>9.093</td>
<td>1,900</td>
<td>25,000</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>28,800</td>
<td>9.096</td>
<td>2,300</td>
<td>24,600</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>29,200</td>
<td>9.116</td>
<td>2,800</td>
<td>25,000</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>29,300</td>
<td>9.128</td>
<td>3,400</td>
<td>27,500</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>29,900</td>
<td>9.131</td>
<td>4,000</td>
<td>28,400</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>30,400</td>
<td>9.149</td>
<td>4,300</td>
<td>27,600</td>
</tr>
<tr>
<td>ALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>26,100</td>
<td>9.359</td>
<td>1,200</td>
<td>24,900</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>27,300</td>
<td>9.407</td>
<td>1,600</td>
<td>31,700</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>27,700</td>
<td>9.410</td>
<td>2,000</td>
<td>31,000</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>28,100</td>
<td>9.432</td>
<td>2,400</td>
<td>27,700</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>28,600</td>
<td>9.468</td>
<td>2,900</td>
<td>27,000</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>28,800</td>
<td>9.476</td>
<td>3,300</td>
<td>27,400</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>29,200</td>
<td>9.506</td>
<td>3,800</td>
<td>27,600</td>
</tr>
<tr>
<td>HBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>29,600</td>
<td>10.858</td>
<td>2,000</td>
<td>12,100</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>31,000</td>
<td>11.066</td>
<td>2,400</td>
<td>11,800</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>31,400</td>
<td>11.123</td>
<td>2,900</td>
<td>11,400</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>32,000</td>
<td>11.156</td>
<td>3,400</td>
<td>11,000</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>32,800</td>
<td>11.184</td>
<td>4,000</td>
<td>10,600</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>33,600</td>
<td>11.164</td>
<td>4,600</td>
<td>10,200</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>34,300</td>
<td>11.219</td>
<td>5,200</td>
<td>10,000</td>
</tr>
<tr>
<td>HCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>27,600</td>
<td>8.087</td>
<td>0,800</td>
<td>21,700</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>29,400</td>
<td>8.168</td>
<td>1,200</td>
<td>25,000</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>29,700</td>
<td>8.172</td>
<td>1,600</td>
<td>24,800</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>30,300</td>
<td>8.195</td>
<td>2,000</td>
<td>23,400</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>30,500</td>
<td>8.209</td>
<td>2,400</td>
<td>26,700</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>31,000</td>
<td>8.213</td>
<td>2,900</td>
<td>27,300</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>31,600</td>
<td>8.234</td>
<td>3,400</td>
<td>27,700</td>
</tr>
</tbody>
</table>

Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
which may themselves be subject to uncertainty, are held at their base-case values. In contrast to the simple one-way analyses presented above, these analyses show the effect of the parameters of interest on all surveillance strategies.

These analyses have been conducted over very wide ranges of the selected parameters, either because of particular uncertainty about where the true value might lie (e.g. compliance with surveillance, average tumour growth rates), because the research literature-derived values of these parameters may not reflect current practice or technological developments (e.g. sensitivity of ultrasound), or because they are critical to some of the conclusions that differ from currently recommended surveillance strategies (e.g. the low cost of AFP testing has probably played a part in the finding that surveillance with AFP as the initial test is always cheaper and always more cost-effective than surveillance with ultrasound at the same frequency).

Compliance

In this analysis, the two parameters defining the probability that screening appointments will be met were varied over a range of correlated values. The likelihood of any individual test cycle being performed ranged from 25 to 100% and, simultaneously, the proportion of the cohort dropping out of the programme entirely was varied from 10% per annum to nil.

TABLE 62 Scenario analyses: cost–utility with doubled transplant waiting time (median 144 days)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>Utility (QALYs)</th>
<th>Compared to NO SURVEILLANCE</th>
<th>Compared to next cheapest cost-effective strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incr. cost (£)</td>
<td>Incr. utility (QALYs)</td>
<td>Incr. £/QALY (ICER)</td>
<td>Incr. cost (£)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>26,800</td>
<td>8.980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>28,300</td>
<td>9.051</td>
<td>1,500</td>
<td>0.071</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>28,600</td>
<td>9.050</td>
<td>1,800</td>
<td>0.070</td>
</tr>
<tr>
<td>AFP + US ANNUAL</td>
<td>29,000</td>
<td>9.068</td>
<td>2,200</td>
<td>0.088</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>29,200</td>
<td>9.085</td>
<td>2,400</td>
<td>0.105</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>29,700</td>
<td>9.084</td>
<td>2,900</td>
<td>0.104</td>
</tr>
<tr>
<td>AFP + US 6-MO</td>
<td>30,200</td>
<td>9.102</td>
<td>3,400</td>
<td>0.122</td>
</tr>
<tr>
<td>ALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>26,100</td>
<td>9.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>27,200</td>
<td>9.373</td>
<td>1,200</td>
<td>0.048</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>27,600</td>
<td>9.373</td>
<td>1,500</td>
<td>0.048</td>
</tr>
<tr>
<td>AFP + US ANNUAL</td>
<td>28,000</td>
<td>9.385</td>
<td>1,900</td>
<td>0.060</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>28,100</td>
<td>9.397</td>
<td>2,000</td>
<td>0.071</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>28,600</td>
<td>9.396</td>
<td>2,500</td>
<td>0.104</td>
</tr>
<tr>
<td>AFP + US 6-MO</td>
<td>29,000</td>
<td>9.408</td>
<td>3,000</td>
<td>0.122</td>
</tr>
<tr>
<td>HBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>29,100</td>
<td>10.719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>31,200</td>
<td>10.917</td>
<td>2,000</td>
<td>0.198</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>31,500</td>
<td>10.913</td>
<td>2,400</td>
<td>0.194</td>
</tr>
<tr>
<td>AFP + US ANNUAL</td>
<td>32,100</td>
<td>10.964</td>
<td>3,000</td>
<td>0.246</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>32,400</td>
<td>11.013</td>
<td>3,300</td>
<td>0.294</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>33,000</td>
<td>11.006</td>
<td>3,800</td>
<td>0.287</td>
</tr>
<tr>
<td>AFP + US 6-MO</td>
<td>33,600</td>
<td>11.058</td>
<td>4,500</td>
<td>0.340</td>
</tr>
<tr>
<td>HCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>27,700</td>
<td>8.054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>29,500</td>
<td>8.136</td>
<td>1,800</td>
<td>0.081</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>29,700</td>
<td>8.135</td>
<td>2,000</td>
<td>0.081</td>
</tr>
<tr>
<td>AFP + US ANNUAL</td>
<td>30,200</td>
<td>8.156</td>
<td>2,500</td>
<td>0.102</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>30,500</td>
<td>8.175</td>
<td>2,900</td>
<td>0.121</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>30,900</td>
<td>8.174</td>
<td>3,200</td>
<td>0.120</td>
</tr>
<tr>
<td>AFP + US 6-MO</td>
<td>31,500</td>
<td>8.195</td>
<td>3,800</td>
<td>0.141</td>
</tr>
</tbody>
</table>

Mixed aetiology cohort weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
The results of this analysis are predictable: increasingly reliable patient compliance is associated with higher effectiveness (Figure 23). When very poor patient compliance is simulated, the small effect of surveillance is equivalent to that which might be expected from a cohort with a small number of regular attendees and a small number of lucky individuals whose infrequent visits happen to coincide with early subclinical tumour growth.

Equally foreseeable is the effect that compliance has on the relationship between strategies. In particular, under conditions of poor patient compliance, the marginal benefit associated with 6-monthly surveillance programmes, compared with annual strategies, is fairly slight, and the strategies gradually diverge as patient compliance improves. It is clear that the expected benefits of frequent surveillance should be contingent upon the probability that any scheduled test will actually be undertaken.

Tumour growth rate

In addition to the stratified scenario analyses, above, which investigate the impact of variation in tumour growth rates, this one-way analysis examines the effect of varying the average rate at which all tumours in the base case of the model are assumed to grow.

Figure 24 shows the effectiveness (QALY) outputs that the model generates as tumour growth rates are varied over a range that represents a volume doubling time of 80 to 203 days. As would be expected, raising tumour growth rate effectively accelerates natural history and leads to smaller QALY outputs. In contrast, if slow-growing tumours are assumed to be the norm, the cohort generates larger QALYs, on average. It is also noticeable that, as progressively slower tumour growth rates are assumed, the effectiveness of all surveillance strategies converges, indicating a decreased marginal benefit. These findings are entirely consistent with the results of the stratified scenario analyses.

Sensitivity of ultrasound

In this analysis, the parameters defining the sensitivity of ultrasound for detecting tumours were simultaneously varied over a range of correlated values from 5 to 50%, 10 to 75% and 50 to 100% for small, medium and large HCCs, respectively.

As one would expect, increasing ultrasound sensitivity leads to improved effectiveness in all surveillance strategies (Figure 25). (It should be remembered that, according to the screening algorithms, the strategies that use AFP assay as a primary test also rely on ultrasound to confirm initial findings.) It is also predictable that, on the whole, the ultrasound-led strategies benefit most from increasing detection rates.

Although the absolute QALY outputs are very different across individual aetiologies, the interstrategy relationships are extremely similar (consequently, this homogeneity is reflected in the pooled cohort). At both annual and 6-monthly frequencies, ultrasound surveillance becomes more effective than AFP triage surveillance when it can be assumed that ultrasound is at least sensitive enough to detect one in five small tumours, one in three medium tumours and two in three large tumours.

It should be emphasised that this analysis overlooks cost considerations. Given the substantial difference in unit cost between AFP assay and ultrasound, it cannot be assumed that superior effectiveness would always come at an acceptable cost. To investigate this question, Figure 26 shows the cost-effectiveness of surveillance, expressed as net monetary benefit (using a conventional UK WTP threshold of £30,000 per QALY), relative to increasing ultrasound sensitivity. This metric captures the essential cost-effectiveness of each strategy: the higher the net monetary benefit, the more cost-effective the strategy.

The broad shape of cost-effectiveness results reflects the effectiveness-only outputs: increasing ultrasound sensitivity leads to improved cost-effectiveness in all surveillance strategies, most notably in ultrasound-led strategies. However, it is only in the HBV cohort that ultrasound becomes more cost-effective than AFP triage surveillance at the same frequencies. This is because the AFP triage strategies also benefit from increased ultrasound sensitivity in cases where AFP level raises suspicion of HCC, while retaining the favourable cost implications of limiting use of imaging.

It is notable that, in the ALD cohort, 6-MONTHLY US and 6-MONTHLY AFP+US never exceed the net monetary benefit (assuming a WTP of £30,000 per QALY) estimated for NO SURVEILLANCE. This suggests that, no matter how sensitive ultrasound detection is assumed to be, one would have to be prepared to pay more than £30,000 per QALY gained before it could be considered cost-effective.
Cost-effectiveness model: results

FIGURE 23 Detailed one-way sensitivity analyses: effectiveness of surveillance relative to compliance of individuals in programme
FIGURE 23 (continued) Detailed one-way sensitivity analyses: effectiveness of surveillance relative to compliance of individuals in programme
FIGURE 24 Detailed one-way sensitivity analyses: effectiveness of surveillance relative to tumour growth rate
FIGURE 24 (continued) Detailed one-way sensitivity analyses: effectiveness of surveillance relative to tumour growth rate
FIGURE 25 Detailed one-way sensitivity analyses: effectiveness of surveillance relative to sensitivity of ultrasound. l, sensitivity for large HCC; m, sensitivity for medium HCC; s, sensitivity for small HCC.
FIGURE 25 (continued) Detailed one-way sensitivity analyses: effectiveness of surveillance relative to sensitivity of ultrasound.

l, sensitivity for large HCC; m, sensitivity for medium HCC; s, sensitivity for small HCC.
FIGURE 26 Detailed one-way sensitivity analyses: cost-effectiveness of surveillance relative to sensitivity of ultrasound
FIGURE 26 (continued) Detailed one-way sensitivity analyses: cost-effectiveness of surveillance relative to sensitivity of ultrasound.
to offer people with ALD-related cirrhosis a routine ultrasound on a 6-monthly basis.

One unexpected feature, most apparent in the ALD and HCV plots, is a tendency for cost-effectiveness to decrease as sensitivity reaches very high levels in the two most expensive strategies (6-MONTHLY US and 6-MONTHLY AFP+US). Investigation of this characteristic has demonstrated that it is due to the effects of discounting, since undiscounted threshold analyses (not shown) preserve the trend for cost-effectiveness to increase as ultrasound sensitivity rises.

This finding is easily understood. Increasing ultrasound sensitivity effectively raises the probability that a tumour will be promptly detected; thus, the more effective the surveillance, the earlier costly interventions (most notably OLT) take place. When these costs are discounted, parameter sets that produce very similar effectiveness outputs may decline in cost-effectiveness because costs are being accrued at a progressively earlier stage in the simulated treatment pathway. The result of this phenomenon is that, to retain increasing cost-effectiveness in discounted analyses, surveillance strategies must find a higher number of treatable tumours, not just a similar number earlier.

The phenomenon is not apparent in HBV because, in this cohort, the absolute advantage of detection followed by OLT is so great that the improved detection of even a tiny number of additional tumours will always be cost-effective, within any except the most extremely implausible range of ultrasound sensitivity.

Taken together, the effectiveness and cost-effectiveness outputs of the model, when considered as a function of ultrasound sensitivity, depict a credible scenario. It only takes a slight increase in ultrasound sensitivity above the model’s base-case values to render ultrasound-led screening more effective than AFP TRIAGE. However, AFP TRIAGE strategies are cheaper and also benefit from increased ultrasound sensitivity, so it is only in the HBV cohort that ultrasound-led surveillance programmes exceed the cost-effectiveness of AFP TRIAGE at the same frequencies as ultrasound sensitivity is increased.

Cost of AFP test

In the base case, a cost value for AFP assay of £4 per test was used, and varied from £2 to £8 in sensitivity analyses. This choice was based on data obtained from a number of NHS clinical biochemistry departments (see the section ‘Unit costs of surveillance programme, diagnostic tests and treatments’, p. 52). Results of the one-way sensitivity analysis suggest that this is not an important area of uncertainty in the model. However, this cost does not take into account any resource use accompanying the performance of the test (e.g. consultation time with a hepatology nurse, consultant or general practitioner). Therefore, a threshold analysis was performed on the cost of AFP, which examines model outputs as this unit cost is increased.

Because this analysis examines the impact of a cost input, it is uninformative to concentrate on effectiveness outputs alone. Accordingly, cost-effectiveness, expressed as net monetary benefit at a WTP threshold of £30,000 per QALY, was plotted as a function of the parameter of interest.

When the cost of AFP assay exceeds approximately £35, 6-MONTHLY AFP TRIAGE becomes less cost-effective than 6-MONTHLY US. At a slightly higher threshold, around £43 per test, ANNUAL AFP TRIAGE becomes less cost-effective than ANNUAL US. Because equal numbers of AFP tests are used in the AFP TRIAGE and AFP+US algorithms, the marginal difference between strategies based on them is negligible (Figure 27).

It is important to remember that, owing to the one-way nature of analyses such as this one, all model inputs other than the parameter of interest are held constant during the calculation of these outputs. In the present instance, it might be extremely important that the cost of ultrasound has not been varied, especially as regards any inferences that might be drawn about the relative benefits of AFP TRIAGE strategies versus ultrasound-led surveillance. Although one might argue that the base-case parameters underestimate the true cost of AFP assay, it is less likely that the relationship between the two tests has been misrepresented (i.e. it is pretty certain that the cost of an ultrasound examination is greater than the cost of an AFP assay). For this reason, an indication of the estimated cost of ultrasound (£50 per scan) is provided in the graphs; outputs above this level can only be considered valid if one is happy to assume that the base cost of AFP assay exceeds the base cost of ultrasound.
FIGURE 27 Detailed one-way sensitivity analyses: cost-effectiveness of surveillance relative to cost of AFP test (continued overleaf)
Cost-effectiveness model: results

FIGURE 27 (continued) Detailed one-way sensitivity analyses: cost-effectiveness of surveillance relative to cost of AFP test
Chapter 6

Discussion

Summary and interpretation of main findings

Effectiveness and other consequences of surveillance

Table 63 shows the effectiveness and other intermediate impacts of the six surveillance strategies and NO SURVEILLANCE in a mixed aetiology cohort (57.6% ALD; 7.3% HBV; 35.1% HCV). It should be noted that the model only included people with a diagnosis of compensated cirrhosis who are also eligible to enter a surveillance programme, based on age and the absence of pre-existing medical conditions that would preclude treatment with liver transplantation or resection (e.g. current alcohol or intravenous drug abuse).

The strategy of surveillance 6-MONTHLY AFP+US was the most effective strategy on all measures. Compared with NO SURVEILLANCE, this strategy is estimated to more than triple the number of people with operable HCCs at diagnosis, and almost halve the number of people who die from HCC. However, the cheapest surveillance strategy, ANNUAL AFP TRIAGE, still achieved substantial gains compared with NO SURVEILLANCE; for example, more than doubling the number of operable HCC tumours found, and increasing the number of small tumours found more than six-fold. On all effectiveness measures (except for the proportion of the cohort who have medium HCCs at diagnosis), surveillance with AFP TRIAGE is as effective as or slightly more effective than surveillance with ultrasound at the same frequency.

Cost of surveillance

The undiscounted cost of the surveillance strategies varied from £40,300 per person for ANNUAL AFP TRIAGE to £42,900 per person for 6-MONTHLY AFP+US. Discounted (3.5%) costs ranged from £28,400 per person to £30,400 person, respectively. Six-monthly surveillance is always more costly than annual surveillance, regardless of the test or tests used.

Only a small proportion (<4% of undiscounted costs) of these total costs result from the cost of the screening tests. However, screening test costs, and the cost of liver transplants and caring for people post-transplantation, accounted for most of the incremental cost differences between alternative surveillance strategies.

Cost–utility of surveillance

Both the deterministic results and the PSA strongly suggest that different surveillance strategies would be considered the most cost-effective in cohorts of different cirrhosis aetiology.

Cost–utility of surveillance in aetiology-specific cohorts

Table 64 details the strategies that, according to the base-case deterministic analysis, represent the optimal surveillance protocols in each aetiology-specific cohort.

<table>
<thead>
<tr>
<th>TABLE 63 Summary of results: effectiveness of surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No surv.</td>
</tr>
<tr>
<td>% of cohort with operable HCCs at diagnosis</td>
</tr>
<tr>
<td>% of cohort with small HCCs at diagnosis</td>
</tr>
<tr>
<td>% of cohort with medium HCCs at diagnosis</td>
</tr>
<tr>
<td>% of cohort getting OLTs</td>
</tr>
<tr>
<td>% of OLTs which are for known HCC</td>
</tr>
<tr>
<td>Proportion of cohort dying of HCC</td>
</tr>
<tr>
<td>NNS to prevent one HCC death</td>
</tr>
<tr>
<td>Proportion of cohort dead by age 75</td>
</tr>
<tr>
<td>NNS to prevent one premature death</td>
</tr>
</tbody>
</table>
specific cohort, with reference to hypothetical
WTP thresholds of £20,000, £30,000, £40,000 and
£50,000 per QALY.

Similarly, Table 65 details the strategies which
probabilistic analysis indicates are the optimal
surveillance protocols in each aetiology-specific
cohort, with reference to the same WTP thresholds.

The most noteworthy implication of these results
is that, at any commonly adopted WTP threshold,
the combined testing strategy of 6-MONTHLY
AFP+US only appears cost-effective when used for
those with HBV-related cirrhosis. Both deterministic
and probabilistic analyses indicate that, for WTP
thresholds approaching or exceeding the
conventional UK level of £30,000 per QALY, 6-
MONTHLY AFP+US is very likely to be the most
cost-effective option in the HBV population.

For those with HCV-related cirrhosis, neither
deterministic nor probabilistic analyses support
the use of any surveillance strategy, unless WTP
can be assumed to be £30,000 or higher. At this
level, the optimally cost-effective strategy is
6-MONTHLY AFP TRIAGE. Deterministic analysis
suggests that the most intensive surveillance
policy, 6-MONTHLY AFP+US, is very close to
achieving cost-effectiveness at a WTP of £50,000
per QALY in this population (ICER = £50,400
per QALY). However, when parameter uncertainty
is considered in probabilistic analysis, results
indicate that WTP would have to rise still further,
to a level of around £65,000 per QALY, before
6-MONTHLY AFP+US becomes most likely to be
optimally cost-effective.

Evidence is most equivocal in the cohort of
individuals with ALD-related cirrhosis. No
surveillance strategy appears favourable, on the
basis of either deterministic or probabilistic
analysis, at a WTP of £20,000. At an assumed UK
WTP of £30,000 per QALY, deterministic analysis
indicates that minimal surveillance with ANNUAL
AFP TRIAGE should be cost-effective (ICER =
£24,800 per QALY). However, the results of
stochastic simulations suggest that NO
SURVEILLANCE may remain the optimal strategy at
this level, with ANNUAL AFP TRIAGE only becoming
the strategy of choice if a slightly higher WTP
(approximately £32,000 per QALY) is acceptable.
It is only when WTP approaches £40,000 per
QALY that the probability this strategy is
optimally cost-effective exceeds 0.5. Both
modes of analysis suggest that 6-MONTHLY
AFP+US could only be considered cost-effective
at very high levels of WTP (greater than £80,000
per QALY).

Cost–utility of surveillance in mixed aetiology
cohort
Although we believe that the above is robust
evidence, we recognise that the principle of
adopting different surveillance regimens for
patients with different aetiologies of cirrhosis may
be considered unacceptable for practical reasons.
Under these circumstances, the results of the pooled, ‘mixed aetiology’ cohort provide an
indication of the most cost-effective policy that
might be adopted across all three populations.
Table 66 details the optimal surveillance strategy in
the mixed aetiology cohort, as indicated by
deterministic and probabilistic analysis.
The implications of these findings are fairly clear: surveillance of any kind can only be recommended if WTP exceeds £20,000 per QALY. If WTP is assumed to be £30,000 per QALY or higher, 6-MONTHLY AFP TRIAGE appears to be the most cost-effective surveillance protocol. From a cost-effectiveness perspective, this strategy remains the foremost option until WTP levels reach very high levels. The deterministic ICER for the next most effective strategy, 6-MONTHLY AFP+US, is £60,100. Similarly, probabilistic analysis suggests that WTP would have to approach £70,000 per QALY before 6-MONTHLY AFP+US could confidently be assumed to be more cost-effective than 6-MONTHLY AFP TRIAGE.

Taken in conjunction with the analysis of effectiveness summarised above, these findings are unambiguous. If one decision rule has to be applied across cirrhosis cohorts of all aetiologies, 6-MONTHLY AFP TRIAGE is always the most effective option and, at all plausible levels of WTP, 6-MONTHLY AFP TRIAGE is the most cost-effective strategy. The practical implication of this is that, in pure effectiveness terms, the optimal surveillance strategy in a mixed aetiology cohort would be to provide each patient with AFP assay and ultrasound imaging on a 6-monthly basis. However, when cost-effectiveness considerations are acknowledged, it is doubtful whether ultrasound should be routinely offered to those with blood-AFP of less than 20 ng/ml, unless policy makers are prepared to pay a very high price (>£60,000 per QALY) for each of the few additional cases this would detect.

Interpretation of the results

Usefulness of AFP
For all of the chosen measures of effectiveness and cost-effectiveness, both the deterministic and the probabilistic results point to AFP TRIAGE surveillance producing better outcomes than surveillance with ultrasound at the same frequency. Given that current guidelines do not recommend surveillance with AFP as the initial screening test, this result requires further explanation and discussion.

- ** AFP tests appear to be substantially more effective than ultrasound at detecting small tumours.** According to the evidence used in the model, 65% of tumours less than 2 cm in diameter secrete 20 ng/ml or more AFP. Recently published data suggest that this may be an overestimate, with the true proportion around 46%, but this test is still markedly more sensitive than ultrasound, which will only detect 10.7% tumours less than 2 cm in diameter. Published evidence suggests that, even for medium-sized tumours, AFP assay is more sensitive than ultrasound (62% and 28.6% of tumours detected, respectively).
- ** AFP-led surveillance strategies use AFP assay as a triage step, with all those with AFP of 20 ng/ml or above receiving ultrasound as the second diagnostic step.** Therefore, the relatively high false-positive rate (of 9.4%) is largely corrected by the high specificity of ultrasound and CT and, according to the present screening algorithm, only around 1 per 1000 patients without HCC would be erroneously diagnosed.
- ** AFP is a very cheap test and, inevitably, this is a crucial consideration, from a cost-effectiveness perspective.** Although the base-case parameter set may slightly overestimate the sensitivity of AFP, reanalysis with updated values did not affect the conclusion that, except in patients with HBV, 6-MONTHLY AFP TRIAGE (i.e. reserving ultrasound for those with AFP >20 ng/ml) is the optimally cost-effective approach. Moreover, the inexpensiveness of AFP means it may be possible to use it more frequently: in some cases (e.g. in the speculative scenario approximating the use of contrast-enhanced ultrasound), AFP-led surveillance was found to be cheaper than imaging at half the frequency (in turn, this enables it to be more effective at less cost).

TABLE 66 Optimal decisions in mixed aetiology cohort, based on deterministic and probabilistic cost–utility results

<table>
<thead>
<tr>
<th>Cohort</th>
<th>WTP threshold (£ per QALY)</th>
<th>Deterministic</th>
<th>Probabilistic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approx. 20,000</td>
<td>NO SURVEILLANCE</td>
<td>NO SURVEILLANCE</td>
</tr>
<tr>
<td></td>
<td>Approx. 30,000</td>
<td>6-MONTHLY AFP TRIAGE</td>
<td>6-MONTHLY AFP TRIAGE</td>
</tr>
<tr>
<td></td>
<td>Approx. 40,000</td>
<td>6-MONTHLY AFP TRIAGE</td>
<td>6-MONTHLY AFP TRIAGE</td>
</tr>
<tr>
<td></td>
<td>Approx. 50,000</td>
<td>6-MONTHLY AFP TRIAGE</td>
<td>6-MONTHLY AFP TRIAGE</td>
</tr>
</tbody>
</table>
Discussion

with HCC will be identified and listed for transplantation but, when ultrasound-led surveillance is adopted, more patients are listed when their tumours are medium sized and a disproportionate number of these will subsequently be excluded from the list because their tumours grow to an extent that contraindicates OLT.

The fact that both the clinical guidelines currently applicable in the UK (Ryder, on behalf of the British Society of Gastroenterology) and those recently published by the American Association for the Study Liver Diseases (AASLD) 253 dismiss the use of AFP testing as the initial screening test may reflect a number of things. These include the poor quality of evidence available (i.e. very little from well-designed non-experimental studies), in particular a lack of evidence concerning the relative performance of the two candidate screening tests as HCC tumours become progressively smaller (and thereby, more treatable). In addition, processes for clinical guideline development rarely give as explicit attention to cost and cost-effectiveness considerations as they do to clinical effectiveness. 449

AFP- or ultrasound-led surveillance policy

A surveillance strategy that is led by either AFP or ultrasound runs the risk of serial false-negative findings. There is a proportion of tumours that never secrete AFP and will never be identified with the AFP TRIAGE approach. Equally, there is a proportion of potentially AFP-secreting tumours that will infiltrate diffusely and will remain undetectable by ultrasound. Guidelines recently issued by the AASLD suggest that combined strategies should be rejected and that ultrasound has the most favourable characteristics as a surveillance test. However, as described above, detection rates for AFP-led surveillance, despite the prevalence of non-secreting tumours, are more favourable for small tumours than ultrasound surveillance. This suggests that, if it is acceptable to tolerate the likelihood of serial false-negative results despite increasing tumour size in a minority of patients, an AFP-led strategy should be preferred over one led by ultrasound. Nevertheless, the precautionary principle might suggest that only a combined AFP and ultrasound strategy should be acceptable, to avoid serial false-negative results and the potential for patients to be fruitlessly subjected to inconvenient investigation with associated costs to health services. However, this study has shown that, across the whole population, such a strategy is unlikely to be considered cost-effective (at a WTP of £30,000 per QALY). In turn, this may lead to a paradoxical rejection of all surveillance strategies, meaning that the considerable benefits of surveillance over no surveillance would be lost. The current study has not been able to model alternative, more complex strategies, in which both modes of investigation are included, such as intermittent ultrasound surveillance in AFP-negative cases as a ‘rescue’ measure for non-secreting tumours. This would increase the cost of surveillance programmes for an uncertain benefit and further work is necessary to understand the trade-offs that could be expected.

Diagnosis versus surveillance test performance

In the development and implementation of the model, we adopted the performance characteristics of tests as defined in diagnostic studies and applied these to simulate the likely performance of those tests in a surveillance programme. It has been argued that it is inadvisable to draw such inferences from one setting to another. 253 Such authors contend that the performance of a test as a surveillance tool can only be reliably discerned from surveillance studies.

We do not believe this argument applies in the case of the present model. Because the model relied on blinded diagnostic series which compare test findings against an optimal reference standard (explant pathology), it may safely be concluded that the results of such studies reflect the likely performance of each test in any individual instance.

In contrast, sensitivity and specificity estimates drawn from surveillance studies have two notable shortcomings, from the perspective of a modelling study. First, results are fundamentally tied to the frequency with which surveillance has been undertaken, and it is impossible to infer anything about the likely performance of the same test or combination of tests at a different frequency. Under these circumstances, it would be necessary to identify a separate parameter estimate for each strategy being modelled and assume no underlying heterogeneity in the populations under surveillance in each study. Of course, this would also rule out the simulation of speculative scenarios that do not represent recorded practice. Secondly, the sensitivity of screening tests is almost certainly exaggerated when derived from surveillance literature, as such series fail to account for the possibility that correctly identified lesions were missed in previous tests in the same patient. (In other words, a surveillance
programme counts each accurately identified HCC as a true positive, thereby masking the likelihood that such identifications may follow a series of false-negative tests in any individual case.)

Compliance

In the evaluation of screening programmes, compliance with scheduled appointments and the means by which this is achieved are clearly important factors for consideration. Poor compliance with recommended screening policies can make the difference between an effective and cost-effective policy, and one which is neither effective nor cost-effective. The base-case analysis assumed 100% compliance with all scheduled appointments in an attempt to observe the characteristics of the surveillance strategies themselves without the added complications that reduced compliance might bring. The model did not include any measure of the administrative costs that might be associated with implementing such a programme, but assumed that on an individual basis these would be minimal.

To explore the effects of compliance on both the effectiveness and cost-effectiveness of surveillance, both a scenario analysis and a detailed one-way sensitivity analysis were performed. These reveal that higher levels of compliance, in terms of both a lower attrition rate from the programme and a higher proportion of appointments attended, result in a more effective surveillance programme (see the sections ‘Scenario analyses’, p. 80, and ‘Detailed one-way sensitivity analyses’, p. 89). As compliance is reduced, the cost-effectiveness of the strategies is improved, but this is at the considerable expense of effectiveness.

Tumour growth rate

Unsurprisingly, in a model that distinguishes several classes of tumour size, and where medium-sized tumours are simultaneously much more detectable than small ones and yet still mostly amenable to treatment, tumour growth rates from small to medium and from medium to large appear to have a notable influence on cost-effectiveness in the one-way sensitivity analysis.

To investigate the impact of growth rates in greater detail, stratified scenario analyses were performed, simulating three mixtures of slow-growing and fast-growing tumours, instead of applying one average growth rate throughout the model. The results of these analyses were surprisingly unremarkable. The combination of growth rates has an impact on the effectiveness and cost-effectiveness of surveillance (the more fast-growing the HCCs, the more cost-effective surveillance becomes). However, the incremental relationship between surveillance strategies is preserved, and the only practical implication of these extra findings is to suggest that, if the true mix of HCCs features a preponderance of slow-growing tumours, it may not be cost-effective to offer any sort of surveillance at a 6-monthly interval. Preliminary analyses were also performed using an alternative modelling approach, an individual sampling tumour growth model, in which individual differences in tumour growth rate were incorporated into the natural history of HCC. This model simulates individual patients with distinct characteristics, rather than a single, homogeneous cohort (further details of the methods used in developing this model can be found in Appendix 10). The preliminary outputs of this model confirm the provisional view that the Markov modelling approach may slightly underestimate the cost-effectiveness of surveillance.

Potential improvements in ultrasound test performance

Ultrasound technology is a fast-moving area and improvement in the test performance of ultrasound imaging is expected in the near future. We attempted to explore this potential improvement in two ways. First, a scenario analysis was performed in which the costs and performance of ultrasound were increased in line with what one might expect from contrast-enhanced ultrasound techniques. Unfortunately, there is very little evidence available on which to base these assumptions and this analysis is therefore speculative. Secondly, a threshold analysis was performed in which the parameters characterising ultrasound test performance were varied over a range of correlated values according to tumour size. Cost considerations were overlooked in the threshold analysis in an attempt to clarify the relationships between test performance and effectiveness of the various surveillance strategies. It is worth noting that the test performance of the AFP test will never improve as long as the proportion of AFP-secreting and non-secreting tumours within the population of interest remains constant.

These additional analyses highlight several important issues. Increases in ultrasound test performance increase the effectiveness of all surveillance strategies. Ultrasound-led surveillance policies become more effective than the AFP Triage policy when it can be assumed that
ultrasound is at least sensitive enough to detect one in five small tumours, one in three medium tumours and two in three large tumours. However, given the substantial difference in cost between AFP and ultrasound, it cannot be assumed that increases in ultrasound sensitivity will be possible at an acceptable cost; this is particularly evident in the ALD cohort. Indeed, the speculative scenario analysis using more sensitive but more expensive ultrasound suggests that it may be possible to detect more tumours at lower cost by increasing the frequency of a relatively inexpensive although insensitive test (e.g. AFP), rather than using a relatively expensive but more sensitive test (e.g. improved ultrasound) less often.

Surveillance by aetiology

Using the best available data in the literature, the model was used to perform analyses for three cirrhosis aetiologies, ALD, HBV and HCV, and suggestions have been produced for the optimal surveillance strategy in terms of cost-effectiveness for each aetiology and for a mixed cohort derived from these patient groups. The optimal decision may differ for different aetiologies, with patients with HBV clearly benefiting from more intensive surveillance strategies at presumed levels of WTP. This may be due to the younger age at diagnosis of cirrhosis in this group. Successful treatment of HCC at a younger age results in greater long-term benefits in this patient group. It may therefore be valuable to assess the cost-effectiveness of surveillance among people diagnosed with HCV- and ALD-related cirrhosis at a younger age.

Although it may not be considered practical to offer different surveillance policies to different patient groups, it should be remembered that the summary results for the mixed cohort consider patients with ALD, HBV and HCV only, and are therefore not a true approximation of the mixed cohort of patients with cirrhosis in England and Wales. To improve the generalisability of the mixed cohort, one would need to consider the effectiveness and cost-effectiveness of surveillance for HCC in other groups with cirrhosis, such as people with haemochromatosis and primary biliary cirrhosis.

Frequency of testing

In all of these analyses, the frequency of testing appears to be more important than the choice or number of tests used. One corollary of this is that surveillance at more frequent intervals than every 6 months may well be worthy of consideration. In much the same way that 6-MONTHLY AFP TRIAGE proves more cost-effective than ANNUAL AFP+US, it is quite possible that a quarterly AFP-led strategy, for instance, may prove to be superior to 6-MONTHLY AFP+US.

This was explored further using an individual sampling tumour growth model approach, which is able to investigate surveillance frequency as a variable. Figure 28 shows the effects on costs and benefits of increasing the frequency of screening from once per year to 12 times per year. For comparison, a non-surveillance situation is also shown. The graphs confirm results obtained from the Markov model in that screening at a frequency of once and twice per year would both be considered cost-effective at the £30,000 per QALY level. However, particularly in the HBV cohort, testing conducted at considerably more frequent intervals would also be considered cost-effective. These results highlight the need for further research into the optimum surveillance strategy in each disease aetiology, as it may not be confined within the conventional strategies to which the comparisons in this project are limited.

Discounting

The results from the model are extremely sensitive to the level of discounting applied to costs and benefits (see the section ‘Sensitivity to discount rate’, p. 74). The undiscounted base-case ICER for the comparison of NO SURVEILLANCE with 6-MONTHLY AFP+US is £19,400 per QALY. This increases to £27,900 per QALY using the currently recommended discount rate of 3.5% for costs and benefits. Using the previously recommended discount rates of 6% for costs and 1.5% for benefits would have produced markedly different results, reducing this ICER to £16,400 per QALY.

Strengths and weaknesses of the study

Strengths of the evaluation

This is the first analysis of the effectiveness and cost-effectiveness of surveillance of cirrhosis for HCC that has been conducted to inform policy in the UK NHS setting. Comprehensive literature searches were conducted to inform the model parameters, wherever possible choosing data either derived from the UK population or most likely to be applicable to a UK population.

The analyses include the consideration of a mixed aetiology cohort and three individual cirrhosis aetiologies (ALD, HBV and HCV) which comprise the majority of patients currently diagnosed with cirrhosis in the UK, extensive analysis of the
FIGURE 28 Cost–utility of surveillance in aetiology-specific cohorts as estimated by individual sampling tumour growth model. Numbers show frequency of screening (tests per annum); the diagonal line represents the ICER of £30,000 per QALY relative to no surveillance.
uncertainty of the model with one-way and probabilistic sensitivity analysis and a preliminary value of information analysis, and several scenario analyses to explore the impact of different levels of compliance with the programme, variations in tumour growth rate and the implications of enhanced imaging performance attributed to emerging technologies (contrast-enhanced ultrasound).

Extensive exploration of possible model structures has allowed careful consideration of the clinical situation. In particular, we believe that the following aspects of the model more appropriately capture the disease and surveillance process and impacts than previously published models in this field:

- **Heterogeneity in aetiology of cirrhosis**: the study has accounted for the substantial differences in age-related incidence, natural history and response to treatment that exist according to cirrhosis aetiology. As a result, the model is able to demonstrate that different approaches to surveillance may be justified according to different causes of cirrhosis.

- **Tumour size**: Three tumour sizes (<2, 2–5 and >5 cm) have been defined and modelled. Although this is not the first modelling analysis to simulate tumours of different size (e.g. see Arguedas and colleagues and Patel and colleagues), we believe that this is the first to simulate the likely impact of different tumour sizes on screening test performance, the likelihood of symptomatic/incidental diagnosis and the treatability of detected HCC tumours by either liver resection or transplantation.

- **Surveillance protocols**: the study has separately estimated the performance of various combinations of tests according to testing protocols believed to be used in the UK at the present time.

- **Symptomatic or incidental detection of HCC**: to capture the effects of a surveillance programme on the detection of HCC tumours within a given cohort appropriately, the model also allowed people to present with an HCC tumour outside the surveillance programme as a result of either symptomatic or incidental diagnosis. The rate at which this occurs is based on the best available evidence in the literature.

- **Treatment of HCC to reflect a mixture liver transplantation or resection**: since both liver transplantation and liver resection are currently the main surgical treatment options for newly diagnosed HCC tumours, the costs and long-term effectiveness of both have been modelled. This is particularly important because liver transplantation is substantially more expensive than liver resection, and one of the intended impacts of surveillance is to detect HCC tumours earlier (and therefore when they are smaller, and more amenable to treatments other than liver transplantation).

Limitations of the assessment

Model-based cost-effectiveness analyses are an inevitable consequence of the need to integrate data and assumptions about a wide variety of factors relating to the natural history of a disease process, the performance of screening and diagnostic tests, the care and treatment pathways for different diagnosed disease states, and the resultant life expectancy and quality of life of being in different disease states or having different treatments. There is always a balance to be struck between reflecting as many of the critical relationships and factors that impinge on a decision as possible, and keeping the model sufficiently simple and comprehensible that its results are believed. In addition, the degree of sophistication of any decision model is always constrained by the availability of valid and reliable research evidence to inform the parameter values in order to ‘work’.

There is very little published evidence available on which to base many of the parameter estimates for the model directly, and virtually none originates in the UK. Some parameters, such as the rates of symptomatic/incidental diagnosis of different sized tumours, were estimated indirectly through calibrating the model results against other data sources. Other estimates, such as those surrounding the natural history of HCC in HCV, have not been well characterised.

As the primary focus of this evaluation is the effectiveness and cost-effectiveness of surveillance of patients with cirrhosis for HCC, a simplified approach to modelling treatment was used, in which transplantation and liver resection are the only curative treatment options available. A small proportion of ‘small’ and ‘medium’ tumours and all ‘large’ tumours are deemed to be surgically untreatable. The costs of some palliative therapies for a proportion of people with surgically untreatable tumours were included, but any benefits attributed to these were only crudely incorporated (an assumed reduction in mortality rate).

Ablative therapies are available to patients in the UK both as well as and instead of transplantation and resection. Theoretically, ablative therapies administered to people on the waiting list serve to
slow down the disease process and result in fewer people becoming ineligible for treatment before a liver becomes available. However, unambiguous evidence about the effectiveness of this approach is still lacking. It remains possible that such therapies have little consequence for overall prognosis.452

It may be a limitation that the parameters of the model do not capture the effect of cirrhosis aetiology on AFP levels. In the model, AFP assays have the same sensitivity and specificity across all aetiologies. As discussed in the section ‘Test performance’, p. 41, this assumption may not be accurate. In particular, some evidence suggests that HCCs developing in posthepatitic cirrhosis are more likely to secrete significant levels of AFP than those that arise in livers with ALD-related cirrhosis. Similarly, raised AFP for reasons other than HCC development may be more common in those with HBV- and HCV-related cirrhosis. However, because the evidence base on these questions is insufficiently robust to support aetiology-specific estimates, the same AFP levels were applied to all three cirrhosis aetiologies.

Entry to the surveillance programme assumes that high-risk activity (e.g. alcohol abuse or injecting drug use) has discontinued, but this may not be a realistic assumption. The impact of this assumption being too optimistic could be three-fold. First, large numbers of people within the mixed or ALD cohorts who continued to abuse alcohol would result in unnecessary expenditure on surveillance producing no benefits, if identified patients were then ineligible for available treatment options. Secondly, continued alcohol abuse would lead to increased rates of decompensation not captured by the model.

Thirdly, no excess risk of mortality associated with compensated cirrhosis has been modelled; this may be too conservative in patients with past/current high-risk behaviour. For all of these reasons, this assumption would tend to bias the model in favour of surveillance in this patient group.

For simplicity, the model assumes that the various aetiologies of cirrhosis are mutually exclusive. In reality, many people develop cirrhosis following exposure to more than one risk factor. The present findings are unable to account for the likely effectiveness and cost-effectiveness of surveillance in individuals who are, for example, seropositive for both HBV and HCV, or those whose HCV coexists with a history of excessive alcohol consumption. However, if such subgroups could be accurately identified and appropriate data made available, the model could easily be used to simulate and evaluate the various surveillance strategies in these populations.

In terms of uncertainty to do with the model’s structure, the simplifying assumption was made that moving from compensated to decompensated cirrhosis is irreversible. While this may be a reasonable assumption for those with HCV-related or alcohol-related cirrhosis, it may not be the case for HBV-related cirrhosis, where some newer treatments show evidence of the reversibility of decompensated cirrhosis. Therefore, the estimates of HBV-related disease progression without surveillance may be too high. It was also assumed that there is no excess mortality associated with compensated liver cirrhosis, which differs from two previously published cost-effectiveness analyses.306,307

Costing was conducted using a pragmatic costing approach from an NHS perspective. In adopting an NHS perspective we acknowledge that this ignores some costs to patients and their families that would inevitably follow from taking part in the surveillance programme. There is no research to indicate how large these costs might be.

The Markov approach to modelling assumes ‘no memory’ from previous states. This means that, for example, the probability of moving from one disease state to another is dependent only upon the disease state that people are already in, and not on how long they have been in that state. This lack of memory may be important for analysing this disease process and decision problem in three main areas:

- In contrast with one of the other published modelling studies,306 it was assumed that the incidence of HCC is independent of how long people have been living with the compensated or decompensated cirrhosis.
- No relationship was assumed between the rate of progression from small to medium-sized HCC tumours, and that from medium-sized to large tumours (although it is believed that tumours that are fast- or slow-growing when they are small are likely to remain so as they get bigger). The implications of this modelling limitation were explored in a scenario analysis with stratified tumour growth rates.
- It was also assumed that the performance of follow-up diagnostic tests is unaffected by knowledge of the result of the initial screening test. For example, it is plausible that, following
an AFP result of >400 ng/ml, radiologists may look harder to find a possible HCC than when following a lower AFP result. However, in the absence of any reliable quantitative evidence concerning how initial screening test results may alter the sensitivity or specificity of subsequent tests, the performance of tests was kept the same throughout the model regardless of their position in the testing sequence.

Another possible departure from clinical reality is the model’s reliance upon absolute thresholds for serum AFP being exceeded at particular time-points. Not only may clinicians alter their diagnostic follow-up according to a larger number of notional AFP thresholds, but follow-up may differ according to a patient’s pattern of change in AFP levels (thus, low absolute but consistently increasing AFP levels may arouse clinical suspicion that a tumour is present). For modelling simplicity, and lacking reliable evidence on this possibility, we chose not to model such changes over time.

Finally, as stated in Chapter 3, owing to limitations of computational capacity and time, no value of perfect information analyses was performed in relation to particular parameters (or groups of related parameters). Were these resources available, a partial EVPI analysis would enable some notional upper bounds to be placed on the potential monetary value of research designed to increase the precision of these parameters. These EVPI estimates would therefore represent absolute upper limits on the amount that society should spend on any planned study (e.g. a trial or an observational study) to estimate them. However, it should also be noted that an important limitation on any further value of information analysis is the substantial uncertainty surrounding the number of people in the UK with a confirmed diagnosis of cirrhosis.

Comparison with other studies

As described in Chapter 1, three comparable cost-effectiveness analyses were identified in the literature. Appendix 11 illustrates some of the key differences in model assumptions between the present model (HCV cohort) and these previously published analyses. Although each of the models has its own strengths and weaknesses, we believe that the present model is more realistic in capturing some of the most critical assumptions that research evidence and logic suggest will impact on the cost and effectiveness of surveillance. The results of the cost-effectiveness analyses are summarised in Table 67.

Implications for policy

The results show that surveillance strategies for HCC are effective, and can often be considered cost-effective in patients with cirrhosis. We believe that the implementation of formal surveillance programmes should be considered where they do not currently exist.

| TABLE 67 Comparison of present study with other published cost-effectiveness analyses: results |
|---|-----------------|-----------------|-----------------|-----------------|
| Costs | PenTAG | Arguedas³⁰⁴ | Lin³⁰⁶ | Patel³⁰⁷ |
| No surveillance | £27,600 | ($190,655)^a | ($46,232)^b | ($53,200)^c |
| | £152,400^d | £32,000^d | £42,500^d |
| 6-monthly AFP+US | £31,900 | ($196,660)^e,^c | ($57,168)^e | ($173,500)^e |
| | £157,200^f | £39,500^d | £138,700^f |
| Annual AFP+US | £30,400 | NA | ($53,145)^d | NA |
| | £36,700^d | NA | NA |

QALYs

No surveillance	8.087	5.268	6.269	14.754
6-monthly AFP+US	8.238	5.493	6.650	15.243
Annual AFP+US	8.197	NA	6.369	NA

NA, not applicable.

^a In 2000 US dollars discounted at 3% per year.
^b In 2003 US dollars discounted at 3% per year.
^c 6-monthly screening, but alternating the AFP and US test.
^d Inflated and translated from US dollars to 2005 pounds sterling.
The results also suggest that different surveillance strategies in patient groups with different underlying causes of cirrhosis may provide the best value for money, if appropriate recall systems could be implemented, and also if this was judged to be ethically acceptable.

A surveillance strategy in which AFP testing is used as a triage step probably represents the best value for money.

These results also suggest a possible shift in the clinical settings where cirrhosis surveillance is conducted; as AFP triage appears to be a highly cost-effective strategy, either annually or 6-monthly, it may be more appropriate to perform the initial screening test in the primary care setting.

If effective surveillance programmes were to become widespread across the UK against a background of limited organ supply, the waiting list for liver transplants would undoubtedly increase. Detailed exploration of this was beyond the scope of this project, but preliminary findings suggest that this may be an important issue.

Recommendations for further research

Model development

- Extensive value of information analysis should be used to identify which parameters or groups of parameters contribute most to the uncertainty in the cost–utility results, and therefore suggest priorities for further primary research.
- Alternative modelling methods should be used to account for heterogeneity in the patient population, so that the impact of factors such as tumour growth rate, tumour characteristics and the variability in individual patients’ serial test results may be accurately assessed. Such methods could also be used to investigate the optimal surveillance strategy, optimal surveillance interval and the effects of surveillance on waiting lists for liver transplantation.
- Further investigation is needed into the accepted cut-off levels for AFP tests and how different cut-off levels impact on the effectiveness and cost-effectiveness of surveillance for HCC.
- Further modelling studies should investigate innovative surveillance strategies not currently undertaken in clinical practice.
- Further modelling studies are needed to investigate the impact of alternative treatment modalities, (e.g. more resection of small tumours, radiofrequency ablation as a ‘curative’ treatment of small tumours), because identifying more operable HCC tumours will probably lead to longer transplant waiting lists.
- Further modelling is needed of the impact of age at diagnosis of cirrhosis on the cost-effectiveness of surveillance strategies.
- Anecdotal reports suggest that non-alcoholic fatty liver disease is increasing in incidence and will soon represent the second largest cause of cirrhosis in the UK. Further modelling studies are needed to assess the effectiveness and cost-effectiveness of surveillance in this patient group.

Other research

- The effectiveness and cost-effectiveness of microbubble ultrasound technology to detect HCC tumours should be investigated, and the test performance in various stages of cirrhosis/aetiologies compared with explant pathology.
- Epidemiological research in the UK is needed to assess the incidence and rate of tumour growth of HCC in different cirrhosis aetiologies.
- The association between the level of AFP secreted and tumour size in different cirrhosis aetiologies needs to be assessed.
- Detailed observational research is needed on the epidemiology and natural history of ALD-related cirrhosis. Despite existing evidence that ALD accounts for the majority of the UK’s disease burden of cirrhosis, and emerging evidence that alcohol consumption is rising, ALD-related cirrhosis remains particularly poorly described in the literature.
- Observational studies could be conducted which collect AFP measurements on the same population of people with cirrhosis over time, and investigate the relationship between the emergence or presence of HCC tumours and patterns of change in AFP levels over time (as opposed to the predictive ability of particular absolute AFP thresholds).
- Quality of life studies should assess the utility of all stages of disease, during assessment for treatment, during and post-treatment in all cirrhosis aetiologies in a UK population.
We particularly acknowledge the help of the expert advisory group for the project. Any errors that remain are the responsibility of the authors.

We would like to acknowledge the assistance of Christopher Chong and Murray Krahn in supplying raw EQ-5D data which enabled us to calculate UK-specific utility estimates, and Professor Howard Thomas and his team for providing cost data from the NHS HTA RCT and cost-effectiveness model of combination therapy for mild hepatitis C.

We are extremely grateful to UK Transplant for their assistance in providing liver transplant-related data. Kerri Barber and Sue Pioli were especially helpful.

At PenTAG, Jo Perry provided invaluable administrative project support, and Martin Pitt, Stuart Mealing, Ruth Garside and Rod Taylor all offered useful insights.

This research was funded by the UK NHS HTA Programme. The views and opinions expressed in this report are those of the authors and do not necessarily represent those of the funding body.

Contribution of authors

Dr Jo Thompson Coon (Research Fellow) was project manager and contributed to model design, identification of inputs for model, interpretation of results and report preparation. Dr Rob Anderson (Senior Lecturer in Health Economics) gave project direction and contributed to model design, economic evaluation and interpretation of results and report preparation. Mr Gabriel Rogers (Research Assistant) supported the project by carrying out the systematic review and searches for parameter estimates, and contributed to model design, identification of inputs for the model, analysis and interpretation of results and report preparation. Dr Matthew Cramp (Senior Lecturer in Hepatology) gave clinical advice and contributed to model design and interpretation of results. Dr Simon Jackson (Consultant Gastrointestinal Radiologist) gave clinical advice and contributed to model design and interpretation of results. Dr Steve Ryder (Senior Lecturer in Hepatology) gave clinical advice. Mr Paul Hewson (Senior Lecturer in Statistics) developed and executed the Markov model and contributed to the analysis and interpretation of results. Dr Dave Wright (Reader in Applied Medical Statistics) contributed to the development and execution of the Markov model, developed and executed the individual patient model, and contributed to the analysis and interpretation of results. Ms Alison Price (Information Scientist) provided the literature search and retrieval. Dr Ken Stein (Senior Lecturer in Public Health) contributed to the study design and report preparation and gave methodological advice.
References

References

References

201. Chui AK, Rao AR, McLaughan GW, Waugh R, Verran DJ, Koorey D, et al. Liver transplantation...

References

434. Longworth L, Young T, Ratcliffe J, Bryan S, Buxton M. Economic evaluation of the liver transplantation programme in England and Wales:

Appendix 1

Assessment protocol

Project title
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

Planned investigation
Research aim and objectives
Aim
To evaluate the effectiveness, cost-effectiveness and cost-utility of surveillance of patients with cirrhosis, using periodic serum alpha-fetoprotein testing (AFP) and/or liver ultrasound examination (LUS) to detect hepatocellular carcinoma (HCC), followed by treatment with liver transplantation or resection, where appropriate.

Objectives
1. Carry out a systematic review of randomised controlled studies examining the effectiveness or cost-effectiveness of surveillance of cirrhosis for HCC.
2. Construct a decision-analytic model to estimate the cost-effectiveness and cost-utility (cost per QALY) of surveillance by synthesising available evidence on: sensitivity and specificity of AFP and LUS; natural history of cirrhosis; outcomes of transplantation and resection; acceptability of surveillance; quality of life and costs.

The model will allow the following comparisons to be made:
(a) surveillance using combined AFP/LUS (current guidelines) versus no surveillance and versus surveillance using AFP or LUS alone
(b) surveillance annually versus surveillance every 6 months using AFP or LUS or AFP+LUS.

Existing research
HCC is the fifth most common cause of cancer globally and incidence is rising, mainly as a consequence of epidemics of hepatitis B virus (HBV) and hepatitis C virus (HCV). Cirrhosis is the most important risk factor for development of HCC, although risk of HCC varies according to the underlying cause of liver disease. Risk appears to be higher in patients with HBV surface antigen (HBsAg) than in patients with HCV. Cirrhosis from either HCV or HBV carries a high risk of HCC, of around 3–5% per annum, although estimates above and below this range have been reported. HCC developing in the absence of cirrhosis is unusual; it may be seen in HBV disease, but is rare in chronic HCV disease. Incidence of HCC in people with alcoholic liver disease is similar to viral hepatitis, although survival is strongly affected by other consequences of alcohol misuse, such as cardiovascular disease.

Surveillance programmes are common, although variation exists in approaches taken and direct evidence on the effectiveness and cost-effectiveness of surveillance is scarce.

The British Society for Gastroenterology recommends screening using AFP and LUS at 6-monthly intervals, based on estimates of tumour doubling times. AFP and LUS are thought to identify tumours of smaller size than would present in the absence of surveillance. This may lead to improved survival. Neither AFP nor LUS is ideal for detecting HCC. Some tumours do not produce AFP, leading to false negatives. False-positive results may arise from nodule regeneration in viral hepatitis. Ultrasound, which is operator dependent, is sensitive and specific for large tumours, but sensitivity is low in small lesions (less than 2 cm diameter). Although surgical resection and tumour ablation (using a variety of techniques) are available, liver transplantation remains the treatment of choice in HCC. Recurrence is rare after transplantation in patients with small tumours and prognosis returns to that of the underlying liver disease. Resection, which is suitable only for people with good liver function owing to the risk of postoperative hepatic decompensation, has similar short-term effectiveness to transplant (up to 3 years), but longer term tumour-free survival is worse.

A Cochrane review, published in 2003 and based on searches carried out in 2000, identified two randomised trials of AFP and LUS for surveillance of people with chronic HBV disease. However, in one study the proportion of people with cirrhosis is not reported. Only 4% were cirrhotic in...
the other study. Initial searches have revealed no RCTs of surveillance programmes in people with cirrhosis. Modelling studies are therefore an appropriate next step in the development of a robust evidence base for this intervention.

Preliminary searches have identified one Markov modelling study of the cost-effectiveness of surveillance. Although published recently, this was carried out in the USA and is therefore unlikely to be directly relevant to the UK healthcare system.

Research methods

The project will have two elements. In the first, an exhaustive and systematic review will be carried out to identify and, where possible, synthesise the results of existing research into the effectiveness or cost-effectiveness of surveillance of cirrhosis for the development of HCC.

The second, and probably more fruitful approach, will be the development of a decision-analytic model to estimate the effectiveness and cost-effectiveness of surveillance.

Details of the methods to be used in these two aspects of the assessment are given in the following sections.

Systematic review

The systematic review will use a similar approach to the Cochrane review published in 2002, but the population of interest will be limited to people with cirrhosis. Although the commissioning brief suggests that no RCTs have been performed to address the research question, there is no evidence that this conclusion has been reached by a systematic review. We therefore propose carrying out a range of searches to confirm this finding.

Search sources

The following public electronic sources will be searched by a specialist information scientist:

- MEDLINE
- Embase
- Cochrane Controlled Trials Register
- BIOSIS
- DARE
- ISTP (Index to Scientific and Technical Proceedings)
- ISI Science Citation Index
- National Research Register.

In addition, the coordinating editor of the Cochrane Hepato-Biliary Group (Professor Christian Gluud) has agreed to carry out searches on the Review Group’s Controlled Trials Register.

Search terms used across all sources will include the following (with, where appropriate, truncation and use of wildcards): “cirrhosis”; “carcinoma, hepatocellular”; “hepatoma”; “alpha fetoprotein”; “ultrasonography AND liver”; “ultrasound AND liver”; “mass screening”; “sensitivity AND specificity”. Searches will be carried out with and without the use of thesaurus terms. Reference Manager software will be used to manage duplicate citations.

Inclusion criteria

Two reviewers will consider the outputs of searches against inclusion criteria with resolution of disagreement by recourse to a third reviewer where necessary.

Inclusion criteria will include:

- randomised controlled trials
- publication in English
- study population (total or separately reported) with cirrhosis of known underlying cause (HCV, HBV or alcohol)
- surveillance using AFP or LUS (separately or in combination) compared to no intervention or to either AFP or LUS alone with findings reported according to underlying cause of cirrhosis (HCV, HBV or alcohol).

Outcomes will include:

- overall mortality
- mortality from HCC
- number of cases of HCC detected
- number of cases of ‘small’ HCC detected (less than 3 cm diameter)
- number of surgically resected HCCs
- survival times
- technical performance of AFP and LUS (sensitivity, specificity, and positive and negative predictive value).

Data will be extracted by one reviewer and checked by a second. Methodological quality of RCTs will be assessed using the criteria reported in the CRD Report No. 4.
- blinding of participants
- cointervention
- loss to follow-up
- appropriateness of statistical methods
- intention-to-treat analysis.

Synthesis
Trial results will be tabulated and described. If sufficient studies are identified, publication bias will be explored using a funnel plot. Heterogeneity will be explored visually using a forest plot and by careful consideration of differences in the study populations and interventions used. If possible, meta-analysis will be carried out, using a random effects model. Heterogeneity will be assessed statistically using the \(I^2 \) statistic and \(\chi^2 \) test for homogeneity.

Decision analytic model
Model structure
The model will be developed in collaboration with two clinical academic hepatologists (Dr Matthew Cramp and Dr Steve Ryder, author of the British Society for Gastroenterology guidelines on diagnosis and treatment of HCC) and a gastrointestinal radiologist (Dr Simon Jackson). The technical performance of the surveillance tests will be modelled using simple decision trees. Inference will be made using a Markov chain Monte Carlo (MCMC) simulation approach. Consequences of cirrhosis will include: decompensation (which will be modelled as a single state, encapsulating ascites, encephalopathy and variceal haemorrhage), HCC and death.

Broadly, there are three treatment options for HCC (identified through surveillance or as a result of spontaneous presentation): liver transplantation, resection or, in some cases, ablation techniques. In the short term, resection and transplantation have similar efficacy, but in the longer term transplantation is associated with improved survival and is therefore the treatment of choice. However, the supply of donor organs remains limited and therefore a mixture of resection and transplantation is currently undertaken in the UK. We will model this mixed approach to treatment (i.e. transplantation and resection) in the base case by using summary estimates of the effectiveness and adverse events for each treatment approach and combining these using an estimate of the distribution of use for each. This may be difficult to obtain from published literature, in which case a limited search of the grey literature will be carried out through contact with clinical experts, seeking audit data. If no data are available on the distribution of treatment approaches, this will be estimated from expert opinion.

Three study populations will be modelled, according to the underlying cause of cirrhosis (HCV, HBV and alcohol). If sufficient information is available, the impact on risk of progression of other factors such as gender, age and severity of cirrhosis may be included. We will not consider cases of coinfection with HBV+HCV or with hepatitis+HIV.

As well as cause-specific mortality, ‘background’ mortality from all causes will be included. In the case of alcoholic cirrhosis, specific estimates for mortality from non-hepatic disease will be sought. For viral hepatitis, background mortality will be modelled on the basis of general population estimates.

The model will run for the lifetime of the populations.

Comparisons
The decision-analytic model will facilitate the following comparisons:

1. surveillance using combined AFP/LUS (current guidelines) versus no surveillance and versus surveillance using AFP or LUS alone
2. Surveillance annually versus surveillance every 6 months using AFP or LUS or AFP+LUS

Obtaining inputs
The commissioning brief states that:

> Secondary research is required in the form of a systematic review of the elements contributing to the effectiveness and cost-effectiveness of surveillance for hepatocellular carcinoma (HCC) including the effectiveness of early treatment.

This requires clarification on two counts. First, a range of reviews, and not a single review, would be required. Secondly, it is not clear how the term ‘systematic review’ should be interpreted in this context. There are concerns among researchers carrying out modelling studies, that if a requirement for demonstrable exhaustiveness in the identification of potential values for model parameters is imposed this will (a) greatly increase the work involved in developing an appropriate model, and (b) be inefficient because exhaustive pursuit of possible values for parameters which are not important to the decision model would add nothing to the evaluation but increase costs of production.
The HTA programme defines systematic review as follows: “Reviews ... are termed ‘systematic’ when the account of the search, appraisal and synthesis methods would, in theory, permit the replication of the review by others”.

We interpret this as meaning that transparency is the critical feature of ‘systematicity’ in this context which will therefore be applied to the identification and incorporation of inputs for the economic model of surveillance of cirrhosis.

Model parameter estimates and accompanying measures of precision will be retrieved from published or unpublished literature wherever possible. Relevant papers will be identified by searching electronic resources (listed above), inspecting reference lists from retrieved articles and contact with clinical experts.

Each search will be specified as the project develops. Where possible, the intensity of literature searches will be informed by the importance of model parameters to uncertainty in the outputs (cost-effectiveness and cost–utility). For each parameter in the model, separate research questions will be specified, potential inputs identified and the choice of parameter values made explicit.

The main areas for which values will be required in implementing the model will be:

- technical performance of AFP and LUS in people with cirrhosis and HCC
- progression from compensated cirrhosis to decompensation, HCC or death
- spontaneous presentation with HCC
- effectiveness and harms of liver transplantation and tumour resection for HCC
- mortality from HCC
- compliance with surveillance
- costs
- quality of life (utility) associated with cirrhosis, HCC and being under surveillance.

Studies will be selected on the basis of methodological quality and relevance to the overall research question. For example, for progression of cirrhosis, the best studies will be recent, large, cohorts, measuring progression to decompensation, HCC and death. International studies are more likely to have greater power, and are probably relevant to the progression of disease in the UK. However, resource use and cost estimates (a) are unlikely to be found in the published academic literature, and (b) must be specific to the UK NHS. Similarly, transplantation rates and outcomes vary internationally and so UK values, even if based on smaller numbers than, for example, North American series, would be preferred.

Where possible, existing authoritative systematic reviews and meta-analyses will be used to inform the model. In some cases, it may be appropriate to carry out quantitative synthesis (e.g. of epidemiological studies of progression to HCC). Random effects models will generally be used in such cases, unless heterogeneity is minimal. The choice of outcome measure and appropriate statistical approach will be dependent on the type of data to be synthesised.

Costs will be taken from routine sources (i.e. generally top–down methods), principally the National Schedule of Reference Costs and Unit Costs of Health and Social Care,455 based on Healthcare Resource Groups and other units. In some cases, notably diagnostic tests, unit costs may not be readily available from routine sources, and values from previous studies (appropriately inflated) or from individual NHS trusts may be required. Assumptions regarding resource use will be made explicit. Costs will be valued from the perspective of the NHS and based on 2004 values. Costs and benefits will be discounted at 3.5% in line with UK Treasury guidance.

Outputs

For each of the comparisons given above, model outputs will be:

- number needed to monitor to prevent one death from HCC
- number needed to monitor to prevent one death (all causes)
- total cost of surveillance
- incremental cost per additional operable case of HCC identified by surveillance
- incremental cost per QALY.

The cost utility of each strategy to be compared will be plotted on a cost-effectiveness plane and options subject to dominance or extended dominance identified. The incremental cost-effectiveness of the remaining options will then be described based on a deterministic analysis.

Analysis of uncertainty

A series of one-way sensitivity analyses will be carried out to identify the influence on model outputs of individual parameter inputs, holding all other inputs constant. In some cases parameters

Appendix 1
Project timetable

<table>
<thead>
<tr>
<th>Week beginning</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 September</td>
<td>Define search criteria and send to Southampton Health Technology Assessment Centre (Information Scientist)</td>
</tr>
<tr>
<td>19 September to 3 October</td>
<td>Set up Reference Manager database, assess search results and apply inclusion and exclusion criteria, request eligible papers</td>
</tr>
<tr>
<td>3 October to 24 October</td>
<td>Data extraction and checking</td>
</tr>
<tr>
<td>24 October to 5 December</td>
<td>Development of economic model</td>
</tr>
<tr>
<td>24 October to 20 February</td>
<td>Draft report</td>
</tr>
<tr>
<td>5 December to 6 February</td>
<td>Generate and interpret results</td>
</tr>
<tr>
<td>20 February</td>
<td>First complete draft to external advisory group</td>
</tr>
<tr>
<td>6 March to 31 March</td>
<td>Tabulate and incorporate changes, formatting and referencing checks</td>
</tr>
<tr>
<td>31 March</td>
<td>Deadline for submission</td>
</tr>
</tbody>
</table>

Project team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Rob Anderson¹</td>
<td>Senior Lecturer in Health Economics</td>
<td>Project direction, economic evaluation</td>
</tr>
<tr>
<td>Dr Jo Thompson Coon¹</td>
<td>Research Fellow in Health Technology Assessment</td>
<td>Project management, systematic review, report preparation</td>
</tr>
<tr>
<td>Dr Matthew Cramp²</td>
<td>Senior Lecturer in Hepatology</td>
<td>Clinical advice</td>
</tr>
<tr>
<td>Mr Paul Hewson³</td>
<td>Senior Lecturer in Statistics</td>
<td>Decision-analytic model</td>
</tr>
<tr>
<td>Dr Simon Jackson⁴</td>
<td>Consultant Gastrointestinal Radiologist</td>
<td>Clinical advice</td>
</tr>
<tr>
<td>Ms Alison Price⁵</td>
<td>Information Scientist</td>
<td>Literature search and retrieval</td>
</tr>
<tr>
<td>Dr Steve Ryder³</td>
<td>Senior Lecturer in Hepatology</td>
<td>Clinical advice</td>
</tr>
<tr>
<td>Mr Gabriel Rogers¹</td>
<td>Research Assistant in Health Technology Assessment</td>
<td>Project support, systematic review</td>
</tr>
<tr>
<td>Dr Ken Stein¹</td>
<td>Senior Lecturer in Public Health</td>
<td>Study design, report preparation, methodological advice</td>
</tr>
<tr>
<td>Dr Dave Wright³</td>
<td>Reader in Applied Medical Statistics</td>
<td>Decision-analytic model</td>
</tr>
</tbody>
</table>

¹ Peninsula Technology Assessment Group, Peninsula Medical School
² Hepatology Research Group, Peninsula Medical School
³ School of Mathematics and Statistics, University of Plymouth
⁴ Plymouth NHS Hospitals Trust, Plymouth
⁵ Southampton Health Technology Assessment Centre
⁶ Queen’s Medical Centre, University of Nottingham

may be varied together to reflect plausible scenarios. For example, if appropriate data can be identified within the constraints of the project, we may explore the potential impact of using contrast enhanced ultrasound scanning by adjusting assumptions on test performance and cost.

In addition, a Bayesian approach to the analysis of uncertainty inherent in the model will be taken within the framework of MCMC. A probabilistic sensitivity analysis will be carried out, in which parameter inputs will be drawn at random from appropriate distributions in a series of (at least 10,000) model ‘runs’. The resultant series of incremental cost-effectiveness ratios (ICERs) will be plotted on a cost-effectiveness plane and used to generate a cost-effectiveness acceptability curve. This shows, for a range of values which service
commissioners (or the public) might be willing to pay for an additional unit of outcome (in this case a QALY), the probability that a strategy would be cost-effective.

The probabilistic analysis will also yield an estimate of the expected value of perfect information (EVPI) at the level of the cohort or individual patient. An estimate for the EVPI to the target population will be obtained by multiplying the patient level EVPI by the size of the population in England and Wales who may be subject to surveillance and the expected time horizon for surveillance programmes in the UK. These two parameters are also uncertain and the range of values for the population EVPI which may be obtained from varying these inputs within plausible ranges will be explored. The contribution of selected parameter uncertainty to EVPI will be explored through estimation of partial EVPI and grouping of parameters where appropriate (to reduce computational expense).
Appendix 2

Systematic review: search strategies

Clinical searches

Cochrane Library (CDSR), Issue 3/2005
Search date: 13 July 2005
No. retrieved: 3; no. downloaded: 1

#1 MeSH descriptor Liver Cirrhosis explode all
trees in MeSH products (1412)
#2 (cirrhosis NEAR liver*) in All Fields in all
products (2081)
#3 MeSH descriptor Carcinoma, Hepatocellular
explode all trees in MeSH products (419)
#4 ((hepatocellular NEAR carcinoma*) or HCC
or hepatoma*) in All Fields in all products
(824)
#5 MeSH descriptor Liver Neoplasms explode
all trees in MeSH products (908)
#6 (#1 OR #2 OR #3 OR #4 OR #5) (3157)
#7 MeSH descriptor alpha-Fetoproteins explode
all trees in MeSH products (89)
#8 ((alfa?f?etoprotein* or alpha fetoprotein* or
AFP) NEAR (test*)) in All Fields in all
products (20)
#9 ((liver NEAR ultrasound) or (liver NEAR
ultrasonograph*) or LUS) in All Fields in all
products (200)
#10 MeSH descriptor Liver Neoplasms explode all
trees with qualifier: US in MeSH products (29)
#11 (#7 OR #8 OR #9 OR #10) (295)
#12 MeSH descriptor Mass Screening explode all
trees in MeSH products (2580)
#13 (surveillanc* or screen*) in All Fields in all
products (2580)
#14 (#12 OR #13) (12771)
#15 (#6 AND #11 AND #14) (25)

Cochrane Library (CENTRAL), Issue 3/2005
Search date: 13 July 2005
No. retrieved: 13; no. downloaded: 8
Search strategy as above

BIOSIS (meeting abstracts); limited
from 2002
Search date: 13 July 2005
No. retrieved: 48; no. downloaded: 14

(((al: (surveillanc* or screen*)) and (al: (alpha
fetoprotein* OR AFP) or al: ((liver w5
ultrasound*) or LUS) or al: ((liver w5
ultrasonograph*)))) and (al: (cirrhosis*) or al:
((hepatocellular w5 carcinoma*) or HCC) or al:
(hepatoma*))))

NHS-CRD databases

(HTA/DARE/NHSEED)
Search date: 13 July 2005
No. downloaded: 7
(surveillanc* or screen*) AND (cirrhosis* OR
hepatocellular carcinoma*)

Medline (OVID); 1966 to
July week 1 2005
Search date: 18 July 2005
No. retrieved: 52 RCTs, 3 SRs;
no. downloaded: 51 RCTs, 2 SRs

1 exp Liver Cirrhosis/ (46034)
2 exp FIBROSIS/ (9445)
3 (cirrhosis adj4 liver$).tw. (18245)
4 1 or 2 or 3 (60590)
5 exp Carcinoma, Hepatocellular/ (33454)
6 ((hepatocellular adj2 carcinoma$) or HCC
or hepatoma$).tw. (38621)
7 Liver Neoplasms/ (66684)
8 5 or 6 or 7 (82535)
9 exp fetal proteins/ or exp alpha-fetoproteins/
(13045)
10 ((alfa?f?etoprotein$ or alpha?f?etoprotein$ or
AFP) adj5 (test$ or exam$)).tw. (716)
11 9 or 10 (13227)
12 exp Ultrasonography/ec [Economics] (862)
13 LIVER/us [Ultrasonography] (1767)
14 ((liver adj5 ultrasound) or (liver adj5
ultrasonograph$) or LUS).tw. (3140)
15 12 or 13 or 14 (5348)
16 exp Mass Screening/ (69340)
17 (surveillanc$ or screen$ or predict$).ti,ab.
(607761)
18 16 or 17 (635185)
19 (11 or 15) and 18 (2899)
20 19 and (4 or 8) (628)
21 limit 20 to (humans and english language)
(506)
22 RANDOMIZED CONTROLLED TRIAL.pt.
(202468)
23 CONTROLLED CLINICAL TRIAL.pt. (68612)
24 RANDOMIZED CONTROLLED TRIALS.sh.
(37741)
25 RANDOM ALLOCATION.sh. (53250)
26 DOUBLE BLIND METHOD.sh. (81967)
27 SINGLE BLIND METHOD.sh. (9036)
28 or/22-27 (344270)
29 CLINICAL TRIAL.pt. (408163)
30 exp CLINICAL TRIALS/ (166723)
31 (clin$ adj25 trial$).ti,ab. (110895)
32 ((singl$ or doubl$ or trebl$ or tripl$) adj25
blind$ or mask$)).ti,ab. (81224)
33 PLACEBOS.sh. (23783)
34 placebo$.ti,ab. (89091)
35 random$.ti,ab. (311136)
36 RESEARCH DESIGN.sh. (40906)
37 or/29-36 (730854)
38 28 or 37 (751472)
39 38 and 21 (52)
40 (review or review-tutorial or review-academic).pt. (1113269)
41 (Medline or medlars or embase).ti,ab.sh. (17864)
42 (scisearch or psychinfo or pscinfo).ti,ab.sh. (746)
43 (Psychlit or psyclit).ti,ab.sh. (619)
44 cinahl.ti,ab.sh. (1379)
45 ((hand adj59 search$) or (manual$ adj9
search$)).mp. [mp=title, original title,
abstract, name of substance word, subject
heading word] (3281)
46 (electronic database$ or bibliographic
database$ or computeri#ed database$ or
online database$).mp. [mp=title, original title,
abstract, name of substance word, subject
heading word] (2976)
47 (pooling or pooled or mantel haenszel).mp.
[mp=title, original title, abstract, name of substance word, subject
heading word] (21773)
48 (peto or dersimonian or der simonian or fixed
effect).mp. [mp=title, original title, abstract, name of substance word, subject
heading word] (819)
49 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48
(42355)
50 40 and 49 (14239)
51 meta-analysis.pt. (10825)
52 meta-analysis.sh. (6007)
53 (meta-analysis$ or meta analy$ or
metaanalys$).mp. [mp=title, original title,
abstract, name of substance word, subject
heading word] (16105)
54 (systematic$ adj9 review$).mp. [mp=title, original title, abstract, name of substance word, subject
heading word] (9254)
55 (systematic$ adj9 overview$).mp. [mp=title, original title, abstract, name of substance word, subject
heading word] (380)
56 (quantitativ$ adj9 review$).mp. (1994)
57 (quantitativ$ adj9 overview$).mp. [mp=title, original title, abstract, name of substance word, subject
heading word] (167)
58 (quantitativ$ adj9 synthesis$).mp. (1831)
59 (methodologic$ adj9 review$).mp. (2780)
60 (methodologic$ adj9 overview$).mp. (181)
61 (integrative research review$ or research
integration).mp. (82)
62 or/51-61 (32368)
63 50 or 62 (42059)
64 63 and 21 (3)
65 39 not 64 (51)

EMBASE (OVID); 1980 to
2005 week 29
Search date: 13 July 2005
No. retrieved: 132; no. downloaded: 98 RCTs

1 exp Liver Cirrhosis/ (34325)
2 (cirrhosis adj4 liver$).ti,ab. (13772)
3 1 or 2 (37380)
4 exp Liver Cell Carcinoma/ (24446)
5 ((hepatocellular adj2 carcinoma$) or HCC or
hepatoma$).ti,ab. (31777)
6 Liver Tumors/ (0)
7 4 or 5 or 6 (36996)
8 alpha fetoproteins/ (9100)
9 ((alfa?f?etoprotein$ or alpha?f?etoprotein$ or
AFP) adj5 (test$ or exam$)).ti,ab. (596)
10 8 or 9 (9222)
11 ((liver adj5 ultrasound) or (liver adj5
ultrasonograph$) or LUS).ti,ab. (2810)
12 exp echography/ (170673)
13 11 or 12 (171718)
14 exp Mass Screening/ or cancer screening/
(42438)
15 (surveillanc$ or screen$).ti,ab. (210941)
16 14 or 15 (223457)
17 (10 or 13) and 16 (9612)
18 17 and (5 or 7) (476)
19 limit 18 to (humans and english language)
(409)
20 randomization/ (15521)
21 controlled study/ (1983394)
22 single blind procedure/ (5384)
23 placebo/ (78761)
24 double blind procedure/ (56282)
25 clinical trial/ (342080)
26 crossover procedure/ (16380)
27 placebo$.tw. (86301)
28 blind$ fashion.tw. (3253)
29 random$.tw. (279265)
30 clinical trial?.tw. (81431)
31 or/20-30 (2321729)
32 31 and 19 (132)
PreMedline, Ovid MEDLINE(R), In-Process & Other Non-Indexed Citations
Search date: 15 July 2005
No. retrieved: 13; no. downloaded: 7
1 (cirrhosis adj4 liver$).tw. (351)
2 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (911)
3 ((alfa? fetoprotein$ or alpha? fetoprotein$ or AFP) adj5 (test$ or exam$)).tw. (9)
4 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (67)
5 (surveillanc$ or screen$ or predict$).ti,ab. (25822)
6 (clin$ adj25 trial$).ti,ab. (4131)
7 ((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab. (1589)
8 placebo$.ti,ab. (2076)
9 randomized.ti,ab. (12663)
10 or/6-9 (16240)
11 1 or 2 (1162)
12 3 or 4 or 5 (25884)
13 11 and 12 (147)
14 13 and 10 (17)
15 limit 14 to english language (13)

ISI Science Citation Index; 1970–2005
Search date: 13 July 2005
No. retrieved: 68; no. downloaded: 45
#1 TS=(cirrhosis SAME liver*)
#2 TS=((hepatocellular SAME carcinoma*) or HCC or hepatoma)
#3 #1 or #2
#4 TS=((alpha fetoprotein* OR AFP)AND(test$))
#5 TS=((liver SAME ultrasound*) or (liver SAME ultrasonograph$) or LUS)
#6 #4 or #5
#7 TS=(surveillanc* or screen*)
#8 #3 and #6 and #7

DocType=All document types; Language=English

Web of Science Proceedings; 1990 to present
Search date: 13 July 2005
No. retrieved: 15; no. downloaded: 15
Search strategy as above

Total clinical effectiveness refs: 185
Keyworded clinical effectiveness and RCTs: 136
Keyworded clinical effectiveness and SRs: 4
Keyworded conference proceedings: 20

Cost-effectiveness searches
MEDLINE (OVID)
No. retrieved: 32; no. downloaded: 32
1 exp Liver Cirrhosis/ (46034)
2 exp FIBROSIS/ (9445)
3 (cirrhosis adj4 liver$).tw. (18245)
4 1 or 2 or 3 (60590)
5 exp Carcinoma, Hepatocellular/ (33454)
6 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (38621)
7 Liver Neoplasms/ (66684)
8 5 or 6 or 7 (82535)
9 exp fetal proteins/ or exp alpha-fetoproteins/ (13045)
10 ((alfa? fetoprotein$ or alpha? fetoprotein$ or AFP) adj5 (test$ or exam$)).tw. (716)
11 9 or 10 (13227)
12 exp Ultrasonography/ec [Economics] (862)
13 LIVER/us [Ultrasonography] (1767)
14 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (3140)
15 12 or 13 or 14 (5348)
16 exp Mass Screening/ (69340)
17 ((surveillanc$ or screen$ or predict$).ti,ab. (607761)
Appendix 2

EMBASE (OVID); 1980–2005
2005 week 29
No. retrieved: 45; no. downloaded: 45

PubMed; Ovid MEDLINE(R), In-Process & Other Non-Indexed Citations
Search date: 15 July 2005
No. retrieved: 3; no. downloaded: 3

Econlit
No. retrieved: 0; no. downloaded: 0
NHS EED
No. retrieved: 9; no. downloaded: 6
Search strategy as run in Cochrane Library

Total refs: 17 (17 records keyworded both clinical effectiveness and cost-effectiveness)

Updated clinical searches

Cochrane Library (CDSR), Issue 1/2006
No. retrieved: 0; no. downloaded: 0
MEDLINE search run

Cochrane Library (CENTRAL), Issue 3/2005
No. retrieved: 0; no. downloaded: 0
MEDLINE search run

Ovid MEDLINE(R); 1966 to March week 2 2006
Search date: 20 March 2006
No. retrieved: 11; no. downloaded: 11

1 exp Liver Cirrhosis/ (47211)
2 exp FIBROSIS/ (10155)
3 (cirrhosis adj4 liver$).tw. (17234)
4 1 or 2 or 3 (62106)
5 exp Carcinoma, Hepatocellular/ (34811)
6 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (39929)
7 Liver Neoplasms/ (69020)
8 5 or 6 or 7 (85236)
9 exp fetal proteins/ or exp alpha-fetoproteins/ (13218)
10 (alfa?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$).tw. (498)
11 9 or 10 (13337)
12 exp Ultrasonography/ec [Economics] (884)
13 LIVER/us [Ultrasonography] (1856)
14 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (2346)
15 12 or 13 or 14 (4754)
16 exp Mass Screening/ (73163)
17 (surveillanc$ or screen$ or predict$).ti,ab. (646968)
18 16 or 17 (675751)
19 (11 or 15) and 18 (2920)
20 19 and (4 or 8) (616)
21 limit 20 to (humans and english language) (506)
22 RANDOMIZED CONTROLLED TRIAL..pt. (213938)
23 CONTROLLED CLINICAL TRIAL..pt. (70827)
24 RANDOMIZED CONTROLLED TRIALS.sh. (41719)
25 RANDOM ALLOCATION.sh. (54818)
26 DOUBLE BLIND METHOD.sh. (85685)
27 SINGLE BLIND METHOD.sh. (9750)
28 or/22-27 (365742)
29 CLINICAL TRIAL..pt. (424238)
30 exp CLINICAL TRIALS/ (175708)
31 ((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab. (113981)
32 ((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab. (84254)
33 PLACEBOS.sh. (24604)
34 placebo$.ti,ab. (94201)
35 random$.ti,ab. (332233)
36 RESEARCH DESIGN.sh. (45231)
37 or/29-36 (771531)
38 28 or 37 (794492)
39 38 and 21 (56)
40 (review or review-tutorial or review-academic).pt. (1169826)
41 (Medline or medlars or embase).ti,ab.sh. (19974)
42 (scisearch or psychinfo or psycinfo).ti,ab.sh. (927)
43 (Psychlit or psychlit).ti,ab.sh. (662)
44 cinahl.ti,ab.sh. (1669)
45 ((hand adj59 search$) or (manual$ adj9 search$)).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (3307)
46 (electronic database$ or bibliographic database$ or computeri#ed database$ or online database$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (3382)
47 (pooling or pooled or mantel haenszel).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (23238)
48 (peto or dersimonian or der simonian or fixed effect).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (943)
49 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 (45899)
50 40 and 49 (16283)
51 meta-analysis.pt. (12428)
52 meta-analysis.sh. (6532)
53 (meta-analy$ or meta analys$ or metaanalys$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (22670)
54 (systematic$ adj9 review$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (10502)
55 (systematic$ adj9 overview$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (363)
56 (quantitativ$ adj9 review$).mp. (1523)
(quantitative adj9 overview).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (138)
(quantitative adj9 synthesis).mp. (1247)
(methodologic adj9 review).mp. (2198)
(methodologic adj9 overview).mp. (138)
(integrative research review or research integration).mp. (47)
or/51-61 (33941)
50 or 62 (44747)
63 and 21 (5)
65 or 64 (54)
66 or 56 (56)
67 limit 66 to yr="2005 - 2006" (9)
68 or 64 (5)
69 limit 68 to yr="2005 - 2006" (3)
70 or 67 or 69 (11)

EMBASE; 1996 to 2006 week 11
No. retrieved: 22; no. downloaded: 22

1 exp Liver Cirrhosis/ (19458)
2 (cirrhosis adj4 liver$).ti,ab. (7537)
3 1 or 2 (20775)
4 exp Liver Cell Carcinoma/ (15876)
5 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).ti,ab. (18538)
6 Liver Tumors/ (0)
7 4 or 5 or 6 (21806)
8 alpha fetoproteins/ (4716)
9 ((alfa?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).ti,ab. (256)
10 or 9 (4774)
11 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).ti,ab. (1738)
12 exp echography/ (113303)
13 11 or 12 (113959)
14 exp Mass Screening/ or cancer screening/ (35235)
15 (surveillanc$ or screen$).ti,ab. (147186)
16 14 or 15 (157420)
17 (10 or 13) and 16 (7165)
18 17 and (3 or 7) (358)
19 limit 18 to (humans and english language) (304)
20 randomization/ (16400)
21 controlled study/ (1570222)
22 single blind procedure/ (4865)
23 placebo/ (46574)
24 double blind procedure/ (40232)
25 clinical trial/ (303293)
26 crossover procedure/ (13921)
27 placebo$.tw. (50473)
28 blind$ fashion.tw. (1807)
29 random$.tw. (197574)
30 clinical trial?.tw. (61214)
31 or/20-30 (1801240)
32 31 and 19 (124)

Ovid MEDLINE(R), In-Process & Other Non-Indexed Citations
Search date: 17 March 2006
No. retrieved: 6; no. downloaded: 6

1 (cirrhosis adj4 liver$).tw. (340)
2 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (1014)
3 ((alfa?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).tw. (10)
4 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (64)
5 (surveillanc$ or screen$ or predict$).ti,ab. (30246)
6 (clin$ adj25 trial$).ti,ab. (4424)
7 ((singl$ or doubl$ or trebl$ or tripl$) adj25 blind$ or mask$).ti,ab. (1623)
8 placebo$.ti,ab. (2171)
9 random$.ti,ab. (14665)
10 or/6-9 (18489)
11 1 or 2 (1269)
12 3 or 4 or 5 (30298)
13 11 and 12 (150)
14 13 and 10 (11)
15 limit 14 to english language (6)

ISI Science Citation Index; 1970–2005
No. retrieved: 16; no. downloaded: 21

#1 TS=(cirrhosis SAME liver*) (1,260)
#2 TS=((hepatocellular SAME carcinoma*) or HCC or hepatoma$) (4,362)
#3 #1 or #2 (5,243)
#4 TS=((alpha fetoprotein* OR AFP)AND(test*)) (118)
#5 TS=((liver SAME ultrasound*) or (liver SAME ultrasonograph*) or LUS) (303)
#6 #4 or #5 (419)
#7 TS=(surveillanc* or screen*) (32,290)
#8 #3 and #6 and #7 (21)

DocType=All document types; Language=English; Database=SCI-EXPANDED; Timespan=2005-2006

Total updated clinical effectiveness refs: 29

Updated cost-effectiveness searches

Ovid MEDLINE (R); 1996 to March week 2 2006
Search date: 20 March 2006
No. retrieved: 2; no. downloaded: 1
1 exp Liver Cirrhosis/ (14393)
2 exp FIBROSIS/ (6056)
3 (cirrhosis adj4 liver$).tw. (6667)
4 1 or 2 or 3 (22882)
5 exp Carcinoma, Hepatocellular/ (15593)
6 ((hepatocellular adj2 carcinoma$) or HCC or hepatitis$).tw. (18850)
7 Liver Neoplasms/ (26942)
8 5 or 6 or 7 (34391)
9 exp fetal proteins/ or exp alpha-fetoproteins/(3560)
10 ((alfa?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).tw. (181)
11 9 or 10 (3627)
12 exp Ultrasonography/ec [Economics] (599)
13 LIVER/us [Ultrasonography] (1212)
14 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (1287)
15 12 or 13 or 14 (2872)
16 exp Mass Screening/ (40588)
17 (surveillanc$ or screen$).ti,ab. (154472)
18 16 or 17 (169987)
19 (11 or 15) and 18 (977)
20 19 and (4 or 8) (183)
21 limit 20 to (humans and english language) (143)
22 RANDOMIZED CONTROLLED TRIAL.pt. (117366)
23 CONTROLLED CLINICAL TRIAL.pt. (25106)
24 RANDOMIZED CONTROLLED TRIALS.sh. (33317)
25 RANDOM ALLOCATION.sh. (19806)
26 DOUBLE BLIND METHOD.sh. (40674)
27 SINGLE BLIND METHOD.sh. (7145)
28 or/22-27 (197624)
29 CLINICAL TRIAL.pt. (220803)
30 exp CLINICAL TRIALS/ (81478)
31 (clin$ adj5 trial$).ti,ab. (73095)
32 ((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab. (39471)
33 PLACEBOS.sh. (7140)
34 placebo$.ti,ab. (19063)
35 random$.ti,ab. (205145)
36 RESEARCH DESIGN.sh. (21607)
37 or/29-36 (447524)
38 28 or 37 (461568)
39 38 and 21 (21)
40 (review or review-tutorial or review-academic).pt. (64186)
41 (Medline or medlars or embase).ti,ab.sh. (16873)
42 (sci$earch or psychinfo or psychinfo).ti,ab.sh. (879)
43 (Psychlit or psychlit).ti,ab.sh. (631)
44 cinahl.ti,ab.sh. (1599)
45 ((hand adj5 search$) or (manual$ adj9 search$)).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (2706)
46 (electronic database$ or bibliographic database$ or computeri#ed database$ or online database$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (2932)
47 (pooling or pooled or mantel haenszel).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (12886)
48 (peto or dersimonian or der simonian or fixed effect).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (803)
49 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 (31739)
50 40 and 49 (14557)
51 meta-analysis.pt. (10053)
52 meta-analysis.sh. (4533)
53 (meta-analys$ or meta analys$ or metaanalys$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (18382)
54 (systematic$ adj9 review$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (9570)
55 (systematic$ adj9 overview$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (296)
56 (quantitativ$ adj9 review$).mp. (1004)
57 (quantitativ$ adj9 overview$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (88)
58 (quantitativ$ adj9 synthesis$).mp. (471)
59 (methodologic$ adj9 review$).mp. (1533)
60 (methodologic$ adj9 overview$).mp. (88)
61 (integrative research review$ or research integration).mp. (27)
62 or/51-61 (27129)
63 50 or 62 (36464)
64 63 and 21 (3)
65 39 not 64 (19)
66 from 64 keep 1-2 (2)
67 [from 65 keep 1-28] (0)
68 exp ECONOMICS/ (151088)
69 exp ECONOMICS, HOSPITAL/ (5633)
70 exp ECONOMICS, DENTAL/ (453)
71 exp ECONOMICS, MEDICAL/ (1494)
72 exp "Costs and Cost Analysis"/ (60722)
73 Cost-Benefit Analysis/ (21978)
74 VALUE OF LIFE/ (1526)
75 exp MODELS, ECONOMIC/ (3516)
76 exp FEES/ and CHARGES/ (2065)
77 exp BUDGETS/ (4528)
Appendix 2

80 (economic$ or price$ or pricing or financ$ or fee$ or pharmacoeconomic$ or pharma economic$).tw. (146112)
81 (cost$ or costly or costing$ or costed).tw. (101507)
82 (cost$ adj2 (benefit$ or utilit$ or minim$ or effective$)).tw. (28642)
83 (expenditure$ not energy).tw. (5188)
84 (value adj2 (money or monetary)).tw. (328)
85 budget$.tw. (5078)
86 (economic adj2 burden).tw. (978)
87 "resource use".ti,ab. (1400)
88 or/68-86 (330559)
89 news.pt. (63130)
90 letter.pt. (244785)
91 editorial.pt. (105133)
92 comment.pt. (200391)
93 or/89-92 (440426)
94 88 not 93 (300499)
95 94 and 21 (24)
96 95 not 39 (19)
97 95 (24)
98 limit 97 to yr="2005 - 2006" (2)
99 from 98 keep 2 (1)

EMBASE; 1996 to 2006 week 11
No. retrieved: 8; no. downloaded: 8

1 exp Liver Cirrhosis/ (19458)
2 (cirrhosis adj4 liver$).ti,ab. (7537)
3 1 or 2 (20755)
4 exp Liver Cell Carcinoma/ (15876)
5 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).ti,ab. (18538)
6 Liver Tumors/ (0)
7 4 or 5 or 6 (21806)
8 alpha fetoproteins/ (4716)
9 ((alpha?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).ti,ab. (256)
10 8 or 9 (4774)
11 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).ti,ab. (1738)
12 exp echography/ (113303)
13 11 or 12 (113959)
14 exp Mass Screening/ or cancer screening/ (35235)
15 (surveillanc$ or screen$ or predict$).ti,ab. (147186)
16 14 or 15 (157420)
17 (10 or 13) and 16 (7165)
18 17 and (3 or 7) (358)
19 limit 18 to (humans and english language) (304)
20 (cost$ adj2 effective$).ti,ab. (24424)
21 (cost$ adj2 benefit$).ti,ab. (5067)
22 cost effectiveness analysis/ (34291)
23 cost benefit analysis/ (17303)
24 budget$.ti,ab. (4317)
25 cost$.ti. (19912)

Ovid MEDLINE(R), In-Process & Other Non-Indexed Citations
Search date: 17 March 2006
No. retrieved: 4; no. downloaded: 2

1 (cirrhosis adj4 liver$).tw. (340)
2 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (1014)
3 ((alpha?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).tw. (10)
4 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (64)
5 (surveillanc$ or screen$ or predict$).ti,ab. (30246)
6 (clin$ adj25 trial$).ti,ab. (4424)
7 ((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab. (1623)
8 placebo$.ti,ab. (2171)
9 random$.ti,ab. (14665)
10 or/6-9 (18489)
11 1 or 2 (1269)
12 3 or 4 or 5 (30298)
13 11 and 12 (150)
14 13 and 10 (11)
15 limit 14 to english language (6)
16 from 15 keep 1-6 (6)
17 (economic$ or price$ or pricing or pharmacoeconomic$ or pharma economic$).tw. (2958)
NHS EED in Cochrane Library Issue 1/2006

No. retrieved: 7; no. downloaded: 7

#1 MeSH descriptor Liver Cirrhosis explode all trees in MeSH products (1470)
#2 (cirrhosis NEAR liver*) in All Fields in all products (2186)
#3 MeSH descriptor Carcinoma, Hepatocellular explode all trees in MeSH products (435)
#4 ((hepatocellular NEAR carcinoma*) or HCC or hepatoma*) in All Fields in all products (898)
#5 MeSH descriptor Liver Neoplasms explode all trees in MeSH products (971)
#6 (#1 OR #2 OR #3 OR #4 OR #5) (3336)
#7 MeSH descriptor alpha-Fetoproteins explode all trees in MeSH products (94)
#8 ((alfa?f?etoprotein* or alpha fetoprotein* or AFP) NEAR (test*)) in All Fields in all products (23)
#9 ((liver NEAR ultrasound) or (liver NEAR ultrasonograph*) or LUS) in All Fields in all products (216)
#10 MeSH descriptor Liver explode all trees with qualifier: US in MeSH products (30)
#11 (#7 OR #8 OR #9 OR #10) (314)
#12 MeSH descriptor Mass Screening explode all trees in MeSH products (2805)
#13 (surveillanc* or screen*) in All Fields in all products (13858)
#14 (#12 OR #13) (14000)
#15 (#6 AND #11 AND #14) (29)
#16 (#15), from 2005 to 2006 (7)

Total updated cost-effectiveness refs: 7

Parameter searches: natural history of cirrhosis and HCC

MEDLINE (OVID)

No. downloaded: 131

1 *Carcinoma, Hepatocellular/mo, ep, et [Mortality, Epidemiology, Etiology] (1698)
2 exp Epidemiology/sn [Statistics & Numerical Data] (164)
3 exp morbidity/ or incidence/ or prevalence/ or survival rate/ (239036)
4 "Prognosis"/ (216344)
5 2 or 3 or 4 (431317)
6 1 and 5 (459)
7 limit 7 to (english language and yr="2002 - 2005") (131)

Embase (OVID) 1980– Keywodred HCC NATURAL HISTORY

No. downloaded: 50

1 *Liver Cell Carcinoma/et, ep [Etiology, Epidemiology] (2314)
2 ((natural histor$ or survival or disease course or disease progress$) adj4 (cirrhosis or hepatocellular carcinoma$ or HCC or hepatoma)).ti,ab. (1091)
3 1 and 2 (172)
4 exp morbidity/ or incidence/ or prevalence/ or survival rate/ (178541)
5 "Prognosis"/ (89427)
6 4 or 5 (255124)
7 3 and 6 (96)
8 limit 7 to english language (94)
9 limit 8 to yr="2002 - 2005" (50)

Ovid MEDLINE(R), In-Process & Other Non-Indexed Citations; 29 July 2005

No. downloaded: 62

1 ((natural histor$ or survival or disease course or disease progress$) adj4 (cirrhosis or hepatocellular carcinoma$ or HCC or hepatoma)).ti,ab. (66)
2 incidence.ti. (720)
3 prevalence.ti. (1071)
4 epidemiol$.ti. (868)
5 (etiolog$ or aetiolog$).ti. (281)
6 or/2-5 (2884)
7 (cirrhosis or hepatocellular carcinoma$ or HCC or hepatoma).mp. [mp=title, original title, abstract, name of substance word] (1419)
8 6 and 7 (18)
9 1 or 8 (82)
10 limit 9 to english language (62)

Total refs in database after deduplication: 196

Parameter searches: effectiveness of treatments for HCC

Cochrane Library (CDSR); 2005 Issue 3

No. retrieved: 6; no. downloaded: CDSR 1

MEDLINE strategy run
Appendix 2

Cochrane Library (CENTRAL); 2004 Issue 4
No. downloaded: CENTRAL 86

MEDLINE (OVID)
No. downloaded: 214
1 "Carcinoma, Hepatocellular"/th [Therapy] (2137)
2 "Catheter Ablation"/mt [Methods] (2379)
3 "Embolization, Therapeutic"/mt [Methods] (4109)
4 "Liver Neoplasms"/th [Therapy] (3435)
5 "Liver Transplantation"/mt [Methods] (3006)
6 "Mass Screening"/mt [Methods] (10902)
7 metastectomy.ti,ab. (19)
8 metastasectomy.ti,ab. (329)
9 ((hepatic adj5 resection) or hepatectomy).ti,ab. (11166)
10 (liver adj5 transplant$).ti,ab. (24529)
11 (tumo?:r or liver) adj3 resect$.ti,ab. (11523)
12 or/2-11 (66292)
13 12 and 1 (2043)
14 limit 13 to (humans and english language) (1308)
15 (clinical trial or meta analysis or clinical trial phrase i or multicenter study or clinical trial phrase ii or clinical trial phase iii or clinical trial phase iv or practice guideline or controlled clinical trial or randomized controlled trial or "review multicase" or evaluation studies or guideline).pt. (520658)
16 14 and 15 (214)

PreMedline
No. retrieved: 6; no. downloaded: 6
1 ((hepatic adj5 resection) or hepatectomy).ti,ab. (221)
2 (liver adj5 transplant$).ti,ab. (835)
3 ((tumo?:r or liver) adj3 resect$).ti,ab. (550)
4 1 or 2 or 3 (1481)
5 (cirrhosis adj4 liver$).tw. (351)
6 ((hepatocelelular adj2 carcinoma$) or HCC or hepatoma$).tw. (935)
7 5 or 6 (1182)
8 (clin$ adj25 trial$).ti,ab. (4317)
9 ((singl$ or double$ or tre$ or tri$) adj25 (blind$ or mask$)).ti,ab. (1599)
10 placebo$.ti,ab. (2101)
11 random$.ti,ab. (13117)
12 or/8-11 (16872)
13 4 and 6 (146)
14 13 and 12 (8)
15 limit 14 to english language (6)

EMBASE (OVID)
No. downloaded: SRs 6, RCTs 145, cohorts 24
1 "Carcinoma, Hepatocellular"/th [Therapy] (1488)
2 "Liver Neoplasms"/th [Therapy] (268)
3 ((hepatic adj5 resection) or hepatectomy).ti,ab. (8784)
4 (liver adj5 transplant$).ti,ab. (22570)
5 exp liver transplantation/ (25595)
6 ((tumo?:r or liver) adj3 resect$).ti,ab. (17018)
7 1 or 2 (1745)
8 3 or 4 or 5 or 6 (51897)
9 7 and 8 (425)
10 limit 9 to (human and english language) (339)
11 randomization/ (15584)
12 controlled study/ (1987067)
13 single blind procedure/ (5394)
14 placebo/ (78929)
15 double blind procedure/ (56354)
16 clinical trial/ (342808)
17 crossover procedure/ (16404)
18 placebo$.tw. (86404)
19 blind$ fashion.tw. (3256)
20 random$.tw. (279745)
21 clinical trial?.tw. (81593)
22 or/11-21 (2326047)
23 limit 22 to human (1460045)
24 23 and 10 (145)
25 exp meta analysis/ (22268)
26 meta#abaly$.ab,sh,ti. (22269)
27 methodologic$ review$.ab,sh,ti. (115)
28 methodologic$ overview$.ab,sh,ti. (27)
29 (integrative research adj5 review$).mp. or research integration.ab,ti. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (46)
30 quantitat$ synthesis,ab,sh,ti. (84)
31 quantitat$ review$.ab,sh,ti. (224)
32 quantitat$ overview$.ab,sh,ti. (58)
33 systematic$ review$.ab,sh,ti. (10912)
34 systematic$ overview$.ab,sh,ti. (247)
35 25 or 26 or 27 or 28 or 29 or 30 or 32 or 33 or 34 (30137)
36 exp risk/ (355674)
37 odds ratio$.ab,sh,ti. (39291)
38 exp case control study/ (11942)
39 exp cohort analysis/ (27460)
40 exp longitudinal study/ (11049)
41 relative risk$.ab,sh,ti. (24975)
42 case control$.ab,sh,ti. (30796)
43 36 or 37 or 38 or 39 or 40 or 41 or 42 (423533)
44 35 and 10 (6)
45 35 and 10 (54)
46 44 not 24 (0)
47 45 not 24 (24)
48 from 44 keep 1-6 (6)
49 from 24 keep 1-145 (145)
50 from 47 keep 1-24 (24)
DARE
No. downloaded: 3
Search strategy: as MEDLINE

HTA
No. downloaded: 0

Total refs after deduplication: 448

Parameter searches: quality of life with cirrhosis or HCC
Ovid MEDLINE(R); 1966 to July week 2 2005
No. retrieved: 28; no. downloaded: 22

1 exp Liver Cirrhosis/ (46082)
2 exp FIBROSIS/ (9481)
3 (cirrhosis adj4 liver$).tw. (18266)
4 1 or 2 or 3 (60679)
5 exp Carcinoma, Hepatocellular/ (33497)
6 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (38681)
7 Liver Neoplasms/ (66746)
8 5 or 6 or 7 (82628)
9 exp fetal proteins/ or exp alpha-fetoproteins/ (13050)
10 ((alfa? fetoprotein$ or alpha?fetoprotein$ or AFP) adj5 (test$ or exam$)).tw. (716)
11 9 or 10 (13292)
12 exp Ultrasonography/ec [Economics] (862)
13 LIVER/us [Ultrasonography] (1770)
14 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (3145)
15 12 or 13 or 14 (3534)
16 exp Mass Screening/ (69439)
17 (surveillanc$ or screen$ or predict$).ti,ab. (608839)
18 16 or 17 (636295)
19 11 or 15 or 18 (651886)
20 19 and (4 or 8) (11580)
21 limit 20 to (humans and english language) (8630)
22 value of life/ (4479)
23 quality adjusted life year/ (2197)
24 quality adjusted life.ti,ab. (1526)
25 (galy$ or qald$ or qale$ or qtime$).ti,ab. (1192)
26 disability adjusted life.ti,ab. (264)
27 daly$.ti,ab. (340)
28 health status indicators/ (9256)
29 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or short form thirty six or short form thirty six or short form thirtysix or short form thirty six).ti,ab. (4444)
30 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sf six or shortform six or short form six).ti,ab. (615)
31 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve of sf twelve or short form twelve).ti,ab. (508)
32 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sf sixteen or shortform sixteen or short form sixteen).ti,ab. (22)
33 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty of sf twenty or short form twenty).ti,ab. (252)
34 (euroqol or euro qol or eq5d or eq 5d).ti,ab. (614)
35 (hql or hqol or h qol or hrqol or hr qol).ti,ab. (1444)
36 (hql or hqol or h qol or hrqol or hr qol).ti,ab. (1444)
37 health$ year$ equivalent$.ti,ab. (30)
38 health utilit$.ab. (278)
39 (hui or hui1 or hui2 or hui3).ti,ab. (307)
40 disutil$.ti,ab. (56)
41 rossert,ti,ab. (54)
42 quality of well being.ti,ab. (519)
43 quality of wellbeing.ti,ab. (2)
44 qwb.ti,ab. (95)
45 willingness to pay.ti,ab. (600)
46 standard gamble$.ti,ab. (355)
47 time trade off.ti,ab. (295)
48 time tradeoff.ti,ab. (109)
49 tto.ti,ab. (196)
50 (index adj2 well being).mp. (1336)
51 (quality adj2 well being).mp. (2647)
52 (health adj3 utilit$ ind$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (206)
53 ((multiattribute$ or multi attribute$) adj3 (health ind$ or theor$ or health state$ or utilit$ or analys$)).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (131)
54 quality adjusted life year$.mp. (2851)
55 (15D or 15 dimension$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (414)
56 (12D or 12 dimension$).mp. [mp=title, original title, abstract, name of substance word, subject heading word] (168)
57 rating scale$.mp. [mp=title, original title, abstract, name of substance word, subject heading word] (44322)
58 linear scal$.mp. [mp=title, original title, abstract, name of substance word, subject heading word] (246)
59 linear analog$.mp. [mp=title, original title, abstract, name of substance word, subject heading word] (622)
EMBASE; 1980 to 2005 week 30
No. retrieved: 22; no. downloaded: 22

1 exp Liver Cirrhosis/ (34380)
2 (cirrhosis adj4 liver$).ti,ab. (13786)
3 1 or 2 (37438)
4 exp Liver Cell Carcinoma/ (24487)
5 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).ti,ab. (31819)
6 Liver Tumors/ (0)
7 4 or 5 or 6 (37048)
8 alpha fetoproteins/ (9109)
9 ((alfa?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).ti,ab. (596)
10 8 or 9 (9231)
11 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).ti,ab. (2814)
12 exp echography/ (170955)
13 11 or 12 (172003)
14 exp Mass Screening/ or cancer screening/ (42527)
15 (surveillanc$ or screen$).ti,ab. (211298)
16 14 or 15 (223840)
17 (10 or 13) and 16 (9626)
18 17 and (3 or 7) (476)
19 limit 18 to (humans and english language) (409)
20 10 or 13 or 16 (394242)
21 20 and (3 or 7) (7387)
22 limit 21 to (human and english language) (5683)
23 quality adjusted life year/ (2020)
24 quality adjusted life.ti,ab. (1492)
25 (qaly$ or qald$ or qale$ or qtime$).ti,ab. (1123)
26 disability adjusted life.ti,ab. (243)
27 dalysi.ti,ab. (286)
28 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirty six or sf thirty six or short form thirty six).ti,ab. (4930)
29 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sf six or short form six or short form six).ti,ab. (722)
30 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve of sf twelve or short form twelve).ti,ab. (487)
31 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sf sixteen or short form sixteen or short form sixteen).ti,ab. (22)
32 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty of sf twenty or short form twenty).ti,ab. (172)
33 (euroqol or euro qol or eq5d or eq 5d).ti,ab. (624)
34 (hql or hqol or h qol or hrqol or hr qol).ti,ab. (1434)
35 (bye or hyes).ti,ab. (25)
36 health$ year$ equivalent$.ti,ab. (22)
37 health utilit$.ab. (266)
38 (hui or hu1 or hu12 or hu13).ti,ab. (233)
39 disutil$.ti,ab. (62)
40 rosser.ti,ab. (44)
41 quality of well being.ti,ab. (469)
42 quality of wellbeing.ti,ab. (5)
43 qwb.ti,ab. (87)
44 willingness to pay.ti,ab. (590)
45 standard gamble$.ti,ab. (317)
46 time trade off.ti,ab. (297)
47 time tradeoff.ti,ab. (104)
48 tto.ti,ab. (214)
49 (index adj2 well being).mp. (1231)
50 (quality adj2 well being).mp. (2445)
51 (health adj3 utilit$ ind$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (201)
52 ((multiattribute$ or multi attribute$) adj3 (health ind$ or theor$ or health state$ or utilit$ or analys$)).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (126)
53 quality adjusted life year$.mp. (2561)
54 (15D or 15 dimension$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (441)
55 (12D or 12 dimension$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (156)
56 rating scale$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (42132)
57 linear scal$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (223)
58 linear analog$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (603)
visual analog$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (13106)

categor$ adj2 scal$.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] (708)

or/23-60 (67900)

(letter or editorial or comment).pt. (433844)

not 62 (66321)

and 22 (22)

Ovid MEDLINE(R), In-Process & Other Non-Indexed Citations; 26 July 2005

No. retrieved: 1; no. downloaded: 1

1 (cirrhosis adj4 liver$).tw. (351)
2 ((hepatocellular adj2 carcinoma$) or HCC or hepatoma$).tw. (935)
3 1 or 2 (1182)
4 ((alpha?f?etoprotein$ or alpha?f?etoprotein$ or AFP) adj5 (test$ or exam$)).tw. (8)
5 ((liver adj5 ultrasound) or (liver adj5 ultrasonograph$) or LUS).tw. (70)
6 (surveillanc$ or screen$ or predict$).ti,ab. (26667)
7 3 or 4 or 5 (1246)
8 3 and 7 (1182)
9 quality adjusted life.ti,ab. (80)
10 (qaly$ or qald$ or qale$ or qtime$).ti,ab. (75)
11 disability adjusted life.ti,ab. (18)
12 daly$.ti,ab. (19)
13 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirty six or short form thirty six).ti,ab. (317)
14 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sf six or short form six or short form six).ti,ab. (56)
15 (sf12 or sf 12 or short form 12 or short form 12 or sf twelve of sf twelve or short form twelve).ti,ab. (35)
16 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sf sixteen or short form sixteen or short form sixteen).ti,ab. (0)
17 (sf20 or sf 20 or short form 20 or short form 20 or sf twenty of sf twenty or short form twenty or short form twenty).ti,ab. (6)
18 (euroqol or euro qol or eq5d or eq 5d).ti,ab. (60)
19 (hqol or hqol or h qol or hrqol or hr qol).ti,ab. (123)
20 (hye or hyes).ti,ab. (0)
21 health$ year$ equivalent$.ti,ab. (0)
22 health utilit$.ab. (14)
23 (hui or hui1 or hui2 or hui3).ti,ab. (21)
24 disutil$.ti,ab. (1)
25 rosser.ti,ab. (1)
26 quality of well being.ti,ab. (12)
27 quality of wellbeing.ti,ab. (0)
28 qwb.ti,ab. (0)
29 willingness to pay.ti,ab. (36)
30 standard gamble$.ti,ab. (8)
31 time trade off.ti,ab. (15)
32 time tradeoff.ti,ab. (6)
33 tto.ti,ab. (13)
34 (index adj2 well being).mp. (49)
35 (quality adj2 well being).mp. (111)
36 (health adj3 utilit$ ind$).mp. [mp=title, original title, abstract, name of substance word] (9)
37 ((multiattribute$ or multi attribute$) adj3 (health ind$ or theor$ or health state$ or utilit$ or analys$)).mp. [mp=title, original title, abstract, name of substance word] (1)
38 quality adjusted life year$.mp. (79)
39 (15D or 15 dimension$).mp. [mp=title, original title, abstract, name of substance word] (29)
40 (12D or 12 dimension$).mp. [mp=title, original title, abstract, name of substance word] (11)
41 rating scale$.mp. [mp=title, original title, abstract, name of substance word] (487)
42 linear scal$.mp. [mp=title, original title, abstract, name of substance word] (76)
43 linear analog$.mp. [mp=title, original title, abstract, name of substance word] (20)
44 visual analog$.mp. [mp=title, original title, abstract, name of substance word] (479)
45 (categor$ adj2 scal$.mp. [mp=title, original title, abstract, name of substance word] (21)
46 or/9-45 (1876)
47 (letter or editorial or comment).pt. (17443)
48 not 47 (1866)
49 and 8 (1)

Total refs after deduplication: 38
Appendix 3

Systematic review: identification, retrieval and inclusion/exclusion of studies

Initial literature searches (18 July 2005) = 185 studies
- Cochrane databases (9), MEDLINE (54), EMBASE (98), PreMEDLINE (7),
- ISI Science Citation Index (45), Web of Science Proceedings (15), BIOSIS
 (14), NHS-CRD databases (7)

Additional searches (17 March 2006) = 29 additional studies
- MEDLINE (11), EMBASE (22), MEDLINE In-Process & Other
- Non-Indexed Citations (6), ISI Science Citation Index (16)

Total number of papers identified = 214

207 studies excluded based on abstract:
- narrative review / editorial / opinion / letters / case reports (45); modelling study
 (5); observational study (36); abstract only available (5); not surveillance for
 HCC (44); surveillance other than AFP and/or conventional ultrasound (30);
 surveillance for outcomes other than HCC (12); not cirrhotic patients (or mixed
 population not reported separately) (14); population with cirrhosis other than
 alcohol-related/HBV/HCV (2); not relevant to the UK setting (1); in vitro/in
 vivo experimental models/biological study (3); not available in English (1)

7 papers obtained

7 papers excluded:
- narrative reviews (2); uncontrolled cohort study (1); modelling study (1); mixed
 population, with cirrhotic patients not reported separately (3)

0 papers included
Appendix 4

Systematic review: studies excluded at full-text stage

<table>
<thead>
<tr>
<th>Reference</th>
<th>Abstract</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen JK, Parkin DM, Chen QG, Lu JH, Shen QJ, Zhang BC, et al. Screening for liver cancer: results of a randomised controlled trial in Qidong, China. J Med Screen 2003;10:204–209.</td>
<td>Objectives: To investigate the effectiveness of screening for liver cancer in reducing mortality from the disease in a high-risk population in China. Setting: A randomised controlled trial was carried out among men aged 30–69 who were chronic carriers of hepatitis-B virus (HBsAg positive) during the period 1989–1995 in Qidong county, Jiangsu Province, China. Methods: 5581 HBsAg carriers were identified by population screening and randomly assigned to a screening group (group A, 3712 men), and controls (group B, 1869 men). Screening was planned to be six monthly alpha-fetoprotein (AFP) assays, with follow-up of subjects having an abnormal (greater than or equal to 20 μg/l) test. All subjects were followed up for liver cancer and/or death until 31 December 1995. Results: The overall sensitivity and specificity of the programme was 55.3% and 86.5%, respectively; in subjects who complied with all scheduled screening tests, the values were 80.0% and 80.9%. Three hundred and seventy-four primary liver cancer (PLC) cases were diagnosed. The percentage of cases in stage I was significantly higher in group A (29.6%) than in group B (6.0%). The one-, three-, and five-year relative survival rates were 23.7%, 7.0%, and 4.0% in group A, and 9.7%, 4.0%, and 4.1% in group B respectively, with no difference in five-year survival between the groups. The mortality rate in the screened group (1138 per 100,000 person-years) was not significantly different from that in the controls (1114 per 100,000). A Poisson regression model showed that the probability of death (rate ratio) in the screening group was 0.83 (95% CI 0.68–1.03) relative to the control group. Conclusions: Screening with AFP resulted in earlier diagnosis of liver cancer, but the gain in lead time did not result in any overall reduction in mortality, because therapy for the patients found by screening was ineffective. Further studies using improved methods of screening, diagnosis and treatment are indicated.</td>
<td>Mixed population, with cirrhotic patients not reported separately</td>
</tr>
<tr>
<td>Reference</td>
<td>Abstract</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>

Question: Does liver cancer screening reduce mortality from the disease in a high-risk Chinese population? **Study design:** Cluster randomised controlled trial. **Main results:** In people at high risk of liver cancer, screening did not significantly reduce the incidence of primary liver cancer or risk of death compared with no screening (see Table 1), despite earlier detection of the disease (see notes). A table is presented. Per 100,000 person years. **Authors’ conclusions:** Liver cancer screening in a high-risk population in China does not reduce mortality from the disease. © 2004 Elsevier Ltd. All rights reserved.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Abstract</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol 2004;130:417–22.</td>
<td>Purpose: Screening for hepatocellular carcinoma (HCC) has been conducted for over 20 years, but there is no conclusive evidence that screening may reduce HCC mortality. The aim of this study was to assess the effect of screening on HCC mortality in people at increased risk. Methods: This study included 18,816 people, aged 35–59 years with hepatitis B virus infection or a history of chronic hepatitis in urban Shanghai, China. Participants were randomly allocated to a screening (9373) or control (9443) group. Controls received no screening and continued to use health-care facilities. Screening group participants were invited to have an AFP test and ultrasonography examination every 6 months. Screening was stopped in December 1997; by that time screening group participants had been offered five to ten times. All participants were followed up until December 1998. The primary outcome measure was HCC mortality. Results: The screened group completed 58.2% of the screening offered. When the screening group was compared to the control group, the number of HCC was 86 versus 67; subclinical HCC being 52 (60.5%) versus 0; small HCC 39 (45.3%) versus 0; resection achieved 40 (46.5%) versus 5 (7.5%); 1-, 3-, and 5-year survival rate 65.9%, 52.6%, 46.4% versus 31.2%, 7.2%, 0, respectively. Thirty-two people died from HCC in the screened group versus 54 in the control group, and the HCC mortality rate was significantly lower in the screened group than in controls, being 83.2/100,000 and 131.5/100,000, respectively, with a mortality rate ratio of 0.63 (95% CI 0.41–0.98). Conclusions: Our finding indicated that biannual screening reduced HCC mortality by 37%</td>
<td>Mixed population, with cirrhotic patients not reported separately</td>
</tr>
</tbody>
</table>
Appendix 5

Expert advisory group

The members of the expert advisory group were:

Professor Graeme Alexander (Consultant Hepatologist, Cambridge Transplant Unit, Cambridge University Hospitals NHS Foundation Trust)

Professor Andrew Burroughs (Consultant Hepatologist, Liver Transplant Unit, Royal Free Hospital, London)

Mr Darius Mirza (Consultant Surgeon, The Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, Birmingham)

Dr John O’Grady (Consultant Hepatologist, Institute of Liver Studies, King’s College Hospital, London)

Professor William Rosenberg (Consultant Hepatologist and Facility Director, Wellcome Trust Clinical Research Facility, Southampton General Hospital)

Mr David Stell [Locum Consultant (Liver Surgeon), Derriford Hospital, Plymouth].
Appendix 6

One-way sensitivity analyses (net benefit)

![Diagram](image-url)

FIGURE 29 One-way sensitivity analysis using net monetary benefit (mixed cohort). Changes in net monetary benefit (NMB) (6-MONTHLY AFP+US vs NO SURVEILLANCE) due to alterations in parameter values over specified ranges (mixed aetiology cohort).

Where different ranges were used for different aetiologies, the range shown gives the minimum and maximum value used in any of the three analyses. **add.** additional; **ann.** annual; **cirr.** cirrhosis; **comp.** compensated; **decomp.** decompensated; **incid./sympt.** incidental/symptomatic; **PC** palliative care; **QALY** quality-adjusted life-year.
Figures 30–33 show the probability that each surveillance strategy is cost-effective when compared with no surveillance at various maximum WTP thresholds from £10,000 to £100,000 per QALY for the mixed cohort, ALD, HBV and HCV, respectively. These results are based on the results from 10,000 Monte Carlo simulations.

Overall, results for the mixed cohort appear to show that compared with no surveillance, the results for all surveillance strategies are similar. Compared with no surveillance, and with an assumed maximum WTP of £30,000 per QALY, surveillance with annual AFP testing would be considered the most cost-effective. However, the cost-effectiveness of more costly and more effective surveillance strategies should be judged with reference to the cost-effectiveness acceptability frontiers presented in the selection ‘Relative probability of maximal cost-effectiveness among the surveillance strategies’, p. 78.

The results for ALD and HBV follow a similar pattern, although one can be confident that all surveillance strategies would be considered cost-effective (when compared with no surveillance) at the £30,000 per QALY level in the HBV cohort. However, in the HCV cohort, compared with no surveillance, surveillance with annual ultrasound appears likely to be the most cost-effective strategy. The reason for the different ranking of results in this cohort is unclear, but could be related to the higher incidence of HCC within this population.

FIGURE 30 PSA: CEAC for all strategies compared with no surveillance in mixed aetiology cohort. Probability that each surveillance strategy is cost-effective, compared with no surveillance, at WTP thresholds of up to £100,000 per QALY gained. Based on 10,000 Monte Carlo simulations per aetiology, weighted according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV).
FIGURE 31 PSA: CEAC for all strategies compared with no surveillance in ALD cohort. Probability that each surveillance strategy is cost-effective, compared with no surveillance, at WTP thresholds of up to £100,000 per QALY gained. Based on 10,000 Monte Carlo simulations.

FIGURE 32 PSA: CEAC for all strategies compared with no surveillance in HBV cohort. Probability that each surveillance strategy is cost-effective, compared with no surveillance, at WTP thresholds of up to £100,000 per QALY gained. Based on 10,000 Monte Carlo simulations.
FIGURE 33 PSA: CEAC for all strategies compared with no surveillance in HCV cohort. Probability that each surveillance strategy is cost-effective, compared with no surveillance, at WTP thresholds of up to £100,000 per QALY gained. Based on 10,000 Monte Carlo simulations.
Appendix 8

Additional outputs from Monte Carlo simulations

Figures 34–36 summarise the PSAs for the main surveillance strategy shifts implied by the deterministic cost-effectiveness analysis, for each cirrhosis aetiology and the hypothetical mixed cohort. These are: changing from no surveillance to annual AFP triage; changing from annual AFP triage to 6-monthly AFP triage; and changing from 6-monthly AFP triage to 6-monthly AFP+US.

In order of increasing strategy effectiveness, and if it is assumed that to be acceptable a surveillance strategy must at least have a 50% chance of being cost-effective, then annual AFP triage would be chosen regardless of cirrhosis aetiology (and as long as the true WTP for a QALY exceeds approximately £25,000). However, doubling the frequency of this surveillance strategy to 6-monthly would only be judged cost-effective for those with HBV-related surveillance (although this strategy would still have an approximately 45% chance of being cost-effective for those with HCV-related cirrhosis, at a WTP threshold of £30,000 per QALY). Finally, while surveillance with 6-monthly AFP+US strategy would remain fairly likely to be considered cost-effective for those with HBV-related cirrhosis, this strategy would have a minimal chance of being cost-effective for either HCV- or alcohol-related cirrhosis or for a mixed aetiology cohort (which here comprises a minority of people with HBV-related cirrhosis).
Figure 34 PSA: incremental cost-effectiveness of Annual AFP Triage versus No Surveillance. (a) Cost-effectiveness plane showing incremental cost-effectiveness of Annual AFP Triage versus No Surveillance in a subsample of 1000 Monte Carlo simulations per aetiology. (b) CEAC showing probability that Annual AFP Triage is cost-effective compared with No Surveillance, at WTP thresholds of up to £100,000 per QALY gained. Weighted average calculated according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV). Based on simulation output for 10,000 trials per aetiology.
FIGURE 35 PSA: incremental cost-effectiveness of 6-MONTHLY AFP TRIAGE versus ANNUAL AFP TRIAGE. (a) Cost-effectiveness plane showing incremental cost-effectiveness of 6-MONTHLY AFP TRIAGE, compared with ANNUAL AFP TRIAGE in a subsample of 1000 Monte Carlo simulations per aetiology. (b) CEAC showing probability that 6-MONTHLY AFP TRIAGE is cost-effective compared with ANNUAL AFP TRIAGE, at WTP thresholds of up to £100,000 per QALY gained; weighted average calculated according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV). Based on simulation output for 10,000 trials per aetiology.
FIGURE 36 PSA: incremental cost-effectiveness of 6-MONTHLY AFP+US versus 6-MONTHLY AFP TRIAGE. (a) Cost-effectiveness plane showing incremental cost-effectiveness of 6-MONTHLY AFP+US compared with 6-MONTHLY AFP TRIAGE in a subsample of 1000 Monte Carlo simulations per aetiology. (b) CEAC showing probability that 6-MONTHLY AFP+US is cost-effective compared with 6-MONTHLY AFP TRIAGE, at WTP thresholds of up to £100,000 per QALY gained; weighted average calculated according to estimated relative prevalence (57.6% ALD; 7.3% HBV; 35.1% HCV). Based on simulation output for 10,000 trials per aetiology.
Appendix 9

Expected value of perfect information results

TABLE 68 EVPI analysis: per-patient global EVPI in aetiology-specific cohorts (WTP = £30,000 per QALY)

<table>
<thead>
<tr>
<th>Proposed strategy</th>
<th>Comparator strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No surv.</td>
</tr>
<tr>
<td>ALD</td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>–</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>£232</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>£383</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>£483</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>£459</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>£763</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>£948</td>
</tr>
<tr>
<td>HBV</td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>–</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>£6</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>£8</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>£12</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>£13</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>£18</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>£27</td>
</tr>
<tr>
<td>HCV</td>
<td></td>
</tr>
<tr>
<td>NO SURVEILLANCE</td>
<td>–</td>
</tr>
<tr>
<td>AFP ANNUAL</td>
<td>£665</td>
</tr>
<tr>
<td>US ANNUAL</td>
<td>£319</td>
</tr>
<tr>
<td>AFP+US ANNUAL</td>
<td>£815</td>
</tr>
<tr>
<td>AFP 6-MO</td>
<td>£978</td>
</tr>
<tr>
<td>US 6-MO</td>
<td>£578</td>
</tr>
<tr>
<td>AFP+US 6-MO</td>
<td>£1232</td>
</tr>
</tbody>
</table>
Appendix 10

Individual sampling tumour growth model: methods

Structure of the model

Overview
The population of interest is patients with a diagnosis of compensated cirrhosis (HBV, HCV or alcohol-related), deemed eligible to enter a surveillance programme, i.e. aged 70 years or less with no pre-existing medical conditions that would preclude treatment with transplant or resection (including current alcohol or intravenous drug abuse).

A Monte Carlo simulation model was constructed in which individual differences in tumour growth rate were incorporated into the natural history of HCC. The model was implemented in S-PLUS and R. Comparisons were made between the following surveillance strategies:

- no surveillance
- annual surveillance using AFP alone
- annual surveillance using ultrasound alone
- annual surveillance using AFP and ultrasound
- 6-monthly surveillance using AFP alone
- 6-monthly surveillance using ultrasound alone
- 6-monthly surveillance using AFP and ultrasound.

Technical performance of the testing strategies was modelled using simple decision trees (see Figure 4, pp. 24–5). Test sensitivity for ultrasound was varied according to tumour size. Expected costs and utilities were estimated for each surveillance strategy over the patients' life history and used as a basis for comparison. The model structure was developed in collaboration with the expert advisory group and is limited by the availability of reliable and valid parameter estimates against which to calibrate intermediate outputs.

The model runs for the lifetime of the population.

Model structure
The natural history model is represented by a five-state continuous time semi-Markov process (Figure 37). Surveillance and treatment modules are superimposed onto the natural history model, altering the natural history of the disease process.

Simulated populations
A separate variant of the model was developed for each of the three cirrhosis aetiologies (HCV, HBV and alcohol-related). Each variant of the model follows two hypothetical cohorts of people in which different surveillance strategies are used.

The age and gender distribution within the cohorts was based on evidence from appropriate studies in the literature. The size of the cohorts was adjusted according to the magnitude of the Monte Carlo error (with an acceptable error being less than 1% of the relevant parameter). For the base-case analysis, ten cohorts each containing 10,000 individuals were simulated.

Disease process/natural history
The disease process is time dependent and is represented using a five-state continuous time semi-Markov approach (Figure 37).

All individuals enter the model with compensated cirrhosis and are exposed to death from background causes according to age- and gender-specific death rates for the reference population. Incidence of decompensation and HCC occurs randomly at aetiology-specific constant rates. The rate of incidence of HCC is the same in compensated and decompensated livers. An aetiology-dependent excess mortality is applied to individuals with decompensated cirrhosis. Similarly, individuals with HCC are subject to an increased risk of death. Owing to the lack of evidence surrounding mortality in patients with a non-symptomatic tumour, the model assumes that the presence of an HCC tumour has no effect on mortality until it reaches a critical size (5 cm), at which point it becomes symptomatic and is associated with an additional mortality rate. Tumour volumes are assumed to grow exponentially. The rate of tumour growth varies from subject to subject according to a log-normal model fitted to individual patient-level data derived from the literature (Figure 38).

Surveillance programme
Probabilities for the correct and incorrect diagnosis of HCC were calculated according to the appropriate pathways in the testing algorithms.
FIGURE 37 Simulation model: influence diagram

FIGURE 38 Tumour growth rate
The surveillance programme is applied at 6- or 12-month intervals as appropriate. Other surveillance frequencies were also explored. Test sensitivities were sampled from the distributions shown in Figures 39 and 40.

As patients reach the ceiling age for surveillance (70 years old), they leave the surveillance programme and follow a natural history pathway without surveillance.

In the base case, 100% compliance with the surveillance programme was assumed.

Incidental/symptomatic presentation of HCC is permitted for patients with both compensated and decompensated cirrhosis at all stages of disease (e.g. small, medium and large tumours), although with significantly lower probabilities for those with small or medium-sized tumours.

In the base case, all confirmatory imaging is by CT scan.

Treatment

In the base case, the only treatment option available is liver transplantation. Some patients are deemed unsuitable for surgical treatment, including those who are diagnosed with a large tumour and those whose tumour becomes large while on the waiting list.

Other treatment options could also be explored.

The numbers of patients who receive transplantation or resection, or who are deemed unsuitable for surgical treatment are based on simple proportions and vary according to tumour size.

Patients can enter the transplant waiting list as a result of diagnosis of HCC or decompensated cirrhosis. Once on the waiting list, patients are subject to the disease process; that is, the tumour can progress from small to medium to large, a decompensated patient without HCC can develop a tumour that may then progress and a compensated patient with a tumour can become decompensated.

There is no prioritisation of patients waiting for a transplant; each patient is as likely to receive a liver as any other, regardless of the reason for listing.

It was assumed that there is no recurrence of HCC post-transplant.
Following treatment with transplantation or resection, individuals are subject to excess mortality rates, costs and utilities which encompass a spectrum of post-treatment experiences.

Patients who are deemed to have surgically untreatable HCC (small and medium-sized tumours) enter a series of states (palliative care) which mirror the natural history of the disease. Palliative treatments (radiofrequency thermoablation, percutaneous ethanol injection, transarterial chemoembolisation and best supportive care) are applied. Once patients progress to 'terminal HCC large', an excess mortality, which reflects the palliation provided by TACE for a proportion of patients, with associated costs and utilities is applied.

Selection of parameters

A full list of the parameters used in the simulation model appears in Tables 69–73. More detailed descriptions of the sources from which these estimates were obtained and a justification of their choice can be found in Chapter 4.
Baseline characteristics

TABLE 69 Parameters used in individual sampling tumour growth model: baseline characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Mean age of cohort</td>
<td>ALD</td>
<td>53.3</td>
<td>36</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>44.0</td>
<td>98</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>54.0</td>
<td>64</td>
<td>44.0</td>
</tr>
<tr>
<td>Gender mix of cohort (% male)</td>
<td>ALD</td>
<td>70.1%</td>
<td>ONS</td>
<td>50.0%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>86.5%</td>
<td>98</td>
<td>82.6%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>58.1%</td>
<td>64</td>
<td>53.1%</td>
</tr>
<tr>
<td>Composition of mixed aetiology cohort</td>
<td>ALD</td>
<td>50%</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>35%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point estimates

TABLE 70 Parameters used in individual sampling tumour growth model: point estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual incidence of cirrhosis decompensation</td>
<td>ALD</td>
<td>3.3%</td>
<td>a</td>
<td>1.8%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>3.3%</td>
<td>67</td>
<td>1.8%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>5.3%</td>
<td>67</td>
<td>3.9%</td>
</tr>
<tr>
<td>Annual incidence of HCC</td>
<td>ALD</td>
<td>1.7%</td>
<td>323</td>
<td>1.2%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>2.2%</td>
<td>323</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>3.7%</td>
<td>323</td>
<td>3.2%</td>
</tr>
<tr>
<td>Probability of AFP <20 ng/ml in patients with no HCC</td>
<td>All</td>
<td>0.906</td>
<td>251</td>
<td>0.853</td>
</tr>
<tr>
<td>Probability of AFP 20–400 ng/ml in patients with no HCC</td>
<td>All</td>
<td>0.088</td>
<td>251</td>
<td>0.054</td>
</tr>
<tr>
<td>Probability of AFP >400 ng/ml in patients with no HCC</td>
<td>All</td>
<td>0.006</td>
<td>251</td>
<td>0.001</td>
</tr>
<tr>
<td>False-positive rate for ultrasound</td>
<td>All</td>
<td>3.5%</td>
<td>256</td>
<td>1.6%</td>
</tr>
<tr>
<td>Probability of detection of HCC by CT</td>
<td>All</td>
<td>1.000</td>
<td>AA</td>
<td>0.605</td>
</tr>
<tr>
<td>False-positive rate for CT</td>
<td>All</td>
<td>0.898</td>
<td>325</td>
<td>7.6%</td>
</tr>
<tr>
<td>Proportion with decompensated cirrhosis who are listed for OLT</td>
<td>All</td>
<td>100%</td>
<td>AA</td>
<td>80%</td>
</tr>
<tr>
<td>Proportion with HCC <5 cm who are listed for OLT on detection</td>
<td>All</td>
<td>90%</td>
<td>AA</td>
<td>80%</td>
</tr>
<tr>
<td>Proportion with HCC <5 cm who receive resection on detection</td>
<td>All</td>
<td>0%</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>90-day mortality rate for patients undergoing OLT</td>
<td>ALD</td>
<td>6.0%</td>
<td>UKT</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>15.0%</td>
<td></td>
<td>4.7%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>7.4%</td>
<td></td>
<td>3.0%</td>
</tr>
<tr>
<td>Proportion of patients surviving 1 year following OLT</td>
<td>ALD</td>
<td>92.0%</td>
<td>UKT</td>
<td>84.5%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>78.0%</td>
<td></td>
<td>65.9%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>87.6%</td>
<td></td>
<td>81.9%</td>
</tr>
<tr>
<td>Proportion of patients surviving 5 years following OLT</td>
<td>ALD</td>
<td>54.7%</td>
<td>UKT</td>
<td>38.2%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>68.5%</td>
<td></td>
<td>54.3%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>55.8%</td>
<td></td>
<td>41.0%</td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
TABLE 70 Parameters used in individual sampling tumour growth model: point estimates (cont’d)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cohort</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual mortality rate due to decompensated cirrhosis</td>
<td>ALD</td>
<td>17.7%</td>
<td>c</td>
<td></td>
<td>12.7%</td>
<td>32.5%</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>22.5%</td>
<td>67</td>
<td></td>
<td>18.9%</td>
<td>32.5%</td>
</tr>
<tr>
<td></td>
<td>HCV</td>
<td>12.9%</td>
<td>64</td>
<td></td>
<td>12.7%</td>
<td>14.0%</td>
</tr>
<tr>
<td>Annual mortality rate due to compensated cirrhosis</td>
<td>All</td>
<td>0%</td>
<td>AA</td>
<td></td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Annual mortality rate due to HCC >5 cm</td>
<td>All</td>
<td>91.0%</td>
<td>ONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-day mortality rate for patients undergoing resection</td>
<td>All</td>
<td>3.9%</td>
<td>216</td>
<td></td>
<td>1.3%</td>
<td>10.8%</td>
</tr>
<tr>
<td>Proportion of patients surviving 1 year following resection</td>
<td>All</td>
<td>85.0%</td>
<td>216</td>
<td></td>
<td>79.0%</td>
<td>88.0%</td>
</tr>
<tr>
<td>Proportion of patients surviving 3 years following resection</td>
<td>All</td>
<td>62.0%</td>
<td>216</td>
<td></td>
<td>54.0%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Proportion of patients surviving 5 years following resection</td>
<td>All</td>
<td>51.0%</td>
<td>216</td>
<td></td>
<td>36.0%</td>
<td></td>
</tr>
</tbody>
</table>

a Assumed same as HBV in absence of a reliable ALD-specific estimate.
b Strategies including resection examined in scenario analyses.
c Average of HBV and HCV values in absence of a reliable ALD-specific estimate.

TABLE 71 Parameters used in individual sampling tumour growth model: data sets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Method of implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour growth rate</td>
<td>324</td>
<td>Random tumour growth rates assuming exponential growth according to a Gaussian distribution, fitted to reported individual patient-level data</td>
</tr>
<tr>
<td>Probability of detection of HCC by AFP</td>
<td>10,287,293,326–328</td>
<td>AFP levels sampled from distribution extracted from individual patient-level data and compared with threshold</td>
</tr>
<tr>
<td>Probability of detection of HCC by ultrasound</td>
<td>256</td>
<td>Detection rate a function of tumour diameter according to a logistic curve, fitted to reported point-estimates of ultrasound sensitivity for different tumour sizes</td>
</tr>
<tr>
<td>Probability of symptomatic/incidental presentation of HCC</td>
<td>278</td>
<td>Presentation rate proportional to tumour diameter, with exponential function calibrated to reported rates of symptomatic/incidental presentation</td>
</tr>
<tr>
<td>Time on OLT waiting lista</td>
<td>UKT</td>
<td>Waiting times sampled from distribution</td>
</tr>
</tbody>
</table>

a All patients have the same probability of receiving a transplant, regardless of reason for listing.
Resource use and costs

TABLE 72 Parameters used in individual sampling tumour growth model: values affecting costs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper</td>
</tr>
<tr>
<td>Unit costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP test</td>
<td>£4 per test</td>
<td>£2</td>
</tr>
<tr>
<td>CT scan</td>
<td>£110 per scan</td>
<td>£50</td>
</tr>
<tr>
<td>Ultrasound scan</td>
<td>£50 per scan</td>
<td>£26</td>
</tr>
<tr>
<td>MRI scan</td>
<td>£200 per scan</td>
<td>£180</td>
</tr>
<tr>
<td>Outpatient appointment</td>
<td>£101 per appointment</td>
<td>£72</td>
</tr>
<tr>
<td>PEI</td>
<td>£754 per procedure</td>
<td>£377</td>
</tr>
<tr>
<td>RFA</td>
<td>£381 per procedure</td>
<td>£190</td>
</tr>
<tr>
<td>TACE</td>
<td>£537 per procedure</td>
<td>£268</td>
</tr>
<tr>
<td>State costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All compensated cirrhosis states</td>
<td>£1,171 per year</td>
<td>£718</td>
</tr>
<tr>
<td>All decompensated cirrhosis states</td>
<td>£9,385 per year</td>
<td>£6,407</td>
</tr>
<tr>
<td>All known HCC states</td>
<td>£1,230 extra(^a) per year</td>
<td>£615</td>
</tr>
<tr>
<td>OLT</td>
<td>£21,800 per operation</td>
<td>£16,700</td>
</tr>
<tr>
<td>Post-OLT (year 1)</td>
<td>£9,872 per patient per year</td>
<td>£4,831</td>
</tr>
<tr>
<td>Post-OLT (year 2 onwards)</td>
<td>£1,564 per patient per year</td>
<td>£2,315</td>
</tr>
<tr>
<td>Resection</td>
<td>£3,400 per operation</td>
<td>£1,500</td>
</tr>
<tr>
<td>Postresection</td>
<td>£3,532 per patient per year</td>
<td>£2,338</td>
</tr>
<tr>
<td>Palliative care (HCC(_L) and HCC(_R))</td>
<td>£1,619 extra(^a) per year</td>
<td>£809</td>
</tr>
<tr>
<td>Palliative care (HCC(_L))</td>
<td>£177 extra(^a) per year</td>
<td>£88</td>
</tr>
<tr>
<td>Event costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False-positive diagnosis</td>
<td>£512 per false-positive diagnosis</td>
<td>£374</td>
</tr>
<tr>
<td>Symptomatic/incidental diagnosis</td>
<td>£164 per diagnosis</td>
<td>£78</td>
</tr>
</tbody>
</table>

\(^a\) In addition to costs of underlying cirrhosis.

Utilities

TABLE 73 Parameters used in individual sampling tumour growth model: utilities

<table>
<thead>
<tr>
<th>Health state</th>
<th>Markov states applied to</th>
<th>Value</th>
<th>Source</th>
<th>Range of values used in sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensated cirrhosis</td>
<td>All compensated cirrhosis states (± known or occult HCC(_R) or HCC(_L), including patients on the OLT waiting list)</td>
<td>0.75</td>
<td>312</td>
<td>0.66</td>
</tr>
<tr>
<td>Decompensated cirrhosis</td>
<td>All decompensated cirrhosis states (± known or occult HCC(_R) or HCC(_L), including patients on the OLT waiting list)</td>
<td>0.66</td>
<td>312</td>
<td>0.46</td>
</tr>
<tr>
<td>HCC</td>
<td>Terminal HCC(_L)</td>
<td>0.64</td>
<td>312</td>
<td>0.44</td>
</tr>
<tr>
<td>Post-OLT (year 1)</td>
<td>Post-OLT (year 1)</td>
<td>0.69</td>
<td>318</td>
<td>0.64</td>
</tr>
<tr>
<td>Post-OLT (year 2+)</td>
<td>Post-OLT (year 2 onwards)</td>
<td>0.73</td>
<td>318</td>
<td>0.67</td>
</tr>
<tr>
<td>Postresection</td>
<td>Postresection (survivors)</td>
<td>0.73</td>
<td>0.62</td>
<td>0.84</td>
</tr>
</tbody>
</table>

\(^a\) Weighted average of values adopted for compensated and decompensated cirrhosis, calculated to approximate average clinical course
Appendix 11

Comparison of present study with other published cost-effectiveness analyses

TABLE 74 Comparison of present study with other published cost-effectiveness analyses: design

<table>
<thead>
<tr>
<th></th>
<th>PenTAG (HCV)</th>
<th>Arguedas<sup>304</sup></th>
<th>Lin<sup>306</sup></th>
<th>Patel<sup>307</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial age of cohort</td>
<td>54</td>
<td>50</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Initial disease status of cohort</td>
<td>HCV-related compensated cirrhosis</td>
<td>HCV-related compensated (80%) and decompensated (20%) cirrhosis</td>
<td>HCV-related compensated cirrhosis</td>
<td>HCV-related compensated cirrhosis</td>
</tr>
<tr>
<td>Stopping criterion: model stopped</td>
<td>All dead</td>
<td>After 50 years, or all dead</td>
<td>Not stated</td>
<td>Until age 80 (i.e. 40 years) or dead</td>
</tr>
<tr>
<td>Cycle length</td>
<td>1 month</td>
<td>6 months</td>
<td>1 month</td>
<td>6 months</td>
</tr>
<tr>
<td>Comparison with no surveillance</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Comparison with 6-monthly AFP and US</td>
<td>Yes</td>
<td>No (policy in which AFP and US are alternated 6-monthly)</td>
<td>Yes, and screening stops at age 70</td>
<td>Yes</td>
</tr>
<tr>
<td>Comparison with annual AFP and US</td>
<td>Yes</td>
<td>No</td>
<td>Yes, and screening stops at age 70</td>
<td>No</td>
</tr>
<tr>
<td>Sensitivity of AFP with US</td>
<td>0.178 (HCC<sub>S</sub>)</td>
<td>0.373 (HCC<sub>M</sub>)</td>
<td>NA</td>
<td>0.85</td>
</tr>
<tr>
<td>Specificity of AFP with US</td>
<td>0.965</td>
<td>0.833 (HCC<sub>L</sub>)</td>
<td>NA</td>
<td>0.87</td>
</tr>
<tr>
<td>Distinction between different tumour sizes?</td>
<td>Yes: Small <2 cm, Medium 2–5 cm, Large >5 cm (or multifocal or complicated by PVT)</td>
<td>Yes: Small <5 cm, Large >5 cm, Resectable</td>
<td>Yes: Small <2 cm, Medium 2–5 cm, Large >5 cm, Unresectable</td>
<td>Yes</td>
</tr>
<tr>
<td>Distinction between known and unknown (or occult) HCC</td>
<td>Yes</td>
<td>No<sup>a</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rate of incidence of HCC?</td>
<td>Constant (same value regardless of stage of cirrhosis)</td>
<td>Increases with onset of decompensation</td>
<td>Increases with duration of cirrhosis and increased incidence postresection</td>
<td>Constant (same value regardless of stage of cirrhosis)</td>
</tr>
<tr>
<td>Allowance of incidental/symptomatic diagnosis of HCC?</td>
<td>Yes</td>
<td>Yes, with symptoms</td>
<td>Yes, but may be in no screening arm only</td>
<td>Only when large (>5 cm)</td>
</tr>
<tr>
<td>Excess mortality is associated with:</td>
<td>Large HCC (known and unknown), decompensated cirrhosis, post-transplant and postresection</td>
<td>Large HCC, various acute complications and resection</td>
<td>Compensated and decompensated cirrhosis, unresectable tumours</td>
<td>Compensated and decompensated cirrhosis, untreated HCC, post-transplant and postresection</td>
</tr>
</tbody>
</table>

^aYes only when large (>5 cm)
TABLE 74 Comparison of present study with other published cost-effectiveness analyses: design (cont’d)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of acute complications</td>
<td>Not separately modelled</td>
<td>Modelled separately; both a distinct possible pathway to decompensation, and acute events for those already decompensated</td>
<td>Not separately modelled</td>
</tr>
<tr>
<td>Treatment for decompensation (without HCC)?</td>
<td>Liver transplant</td>
<td>Liver transplant</td>
<td>Assume liver transplant, but not clearly stated</td>
</tr>
<tr>
<td>Treatment for HCC</td>
<td>Mixture of resection and transplant (in base case analysis); possibility of all getting transplant (no resection) modelled as a scenario analysis; palliative care for all large tumours</td>
<td>80% resection (small HCCs in comp. cirrh.)</td>
<td>80% CE/RFA (small tumours in decomp. cirrh.) followed by transplant; palliative care for all large tumours</td>
</tr>
<tr>
<td>Are untreated tumours modelled?</td>
<td>Yes</td>
<td>Yes, 20% of small HCCs; also, annual probability of getting OLT = 31%</td>
<td>Yes, unresectable tumours get palliative care</td>
</tr>
<tr>
<td>Possibility of incidental/symptomatic diagnosis in the no surveillance protocol?</td>
<td>Yes</td>
<td>Symptomatic diagnosis of large HCCs only Rate? 100%?</td>
<td>Yes</td>
</tr>
<tr>
<td>Possibility of postresection HCC recurrence</td>
<td>No (but have postresection-specific excess mortality)</td>
<td>Yes, treated by OLT</td>
<td>Yes (0.02–0.1 annual incidence dependent on duration of cirrhosis)</td>
</tr>
<tr>
<td>Costs included</td>
<td>Test costs (AFP, US, CT, MRI); procedure costs (resection and transplantation); ongoing care costs (comp. cirrhosis, decomp. cirrhosis, post-transplantation, postresection, palliative care)</td>
<td>Test costs; resection/transplantation CE/RFA; outpatient costs for acute complications; terminal care for HCC; outpatient visits and therapies</td>
<td>Test costs (AFP, US, triphasic CT, angiography, preoperative tests); procedures: resection, transplantation, biopsy, TACE, PEI; cirrhosis-related outpatient care; cancer-related terminal care</td>
</tr>
</tbody>
</table>

[^304]: Probability of HCC being small at diagnosis appears to be the same with and without screening; however, all small tumours are asymptomatic (and therefore only found by screening).

[^306]: CE, chemoembolisation; PVT, portal venous thrombosis.
Health Technology Assessment reports published to date

Volume 1, 1997

No. 1
Home parenteral nutrition: a systematic review.
By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Systematic review of outpatient services for chronic pain control.
By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8
Preschool vision screening.
A review by Snowdon SK, Stewart-Brown SL.

No. 9
Implications of socio-cultural contexts for the ethics of clinical trials.
A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10
A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
By Davis A, Bamford J, Wilson I, Ramkalawan T, Forshaw M, Wright S.

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
Routine preoperative testing: a systematic review of the evidence.
By Munro J, Booth A, Nicholl J.

No. 13
Systematic review of the effectiveness of laxatives in the elderly.
By Petticrew M, Watt I, Sheldon T.

No. 14
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
A review by Mouwatt G, Bower DJ, Brehm NA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998

No. 1
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Consensus development methods, and their use in clinical guideline development.

No. 4
A cost-utility analysis of interferon beta for multiple sclerosis.

No. 5
Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews.
By MacLeod A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Song F, Glenny AM.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
A review by Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
By Sculpher MJ, Petticrew M, Kelland JL, Elliott RA, Holdright DR, Buxton MJ.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
No. 15
Ethical issues in the design and conduct of randomised controlled trials.
A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JC, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.
By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.
By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.
By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.
A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
By Ukoumunne OC, Lilford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6
Assessing the costs of healthcare technologies in clinical trials.
A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.
By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.
A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.
By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10
A review by Billingham LJ, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.
By Zeuner D, Ades AE, Karmou J, Brown J, Dezateux C, Animouw EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
‘Early warning systems’ for identifying new healthcare technologies.
By Robert G, Stevens A, Gabbay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.
By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.
A review by Robert G, Milne R.

No. 17 (Pt 1)
The debridement of chronic wounds: a systematic review.
By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.
A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kianuka S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.
By Glenny AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.
By Lister-Sharp D, Chapman S, Stewart-Brown S, Powell A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.

Volume 4, 2000

No. 1
The estimation of marginal time preference in a UK-wide sample (TEMUS) project.
A review by Cairns JA, van der Pol MM.

No. 2
Geriatric rehabilitation following fractures in older people: a systematic review.
No. 3
Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
By Davies SC, Cronin E, Gill M, Greengross P, Hickman M, Normand C.

No. 4
Community provision of hearing aids and related audiology services.
A review by Reeves DJ, Alborz A, Hickson FS, Bamford JM.

No. 5
False-negative results in screening programmes: systematic review of impact and implications.
By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6
Costs and benefits of community postnatal support workers: a randomised controlled trial.
By Morrell CJ, Spilhy H, Stewart P, Walters S, Morgan A.

No. 7
Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8
An introduction to statistical methods for health technology assessment.
A review by White SJ, Ashby D, Brown PJ.

No. 9
Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
By Clegg A, Bryant J, Milne R.

No. 10
Publication and related biases.
A review by Song F, Eastwood AJ, Gilbody S, Duley L, Sutton AJ.

No. 11
Cost and outcome implications of the organisation of vascular services.
By Michaels J, Brazier J, Palfreyman S, Shackley P, Slack R.

No. 12
Monitoring blood glucose control in diabetes mellitus: a systematic review.
By Coster S, Guillford MC, Seed PT, Powrie JK, Swaminathan R.

No. 13
The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14
The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15
The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
A rapid review by Song F, O'Meara S, Wilson P, Golds S, Kleijnen J.

No. 16

No. 17
A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
By Lister-Sharp D, McDonagh MS, Khan KS, Kleijnen J.

No. 18
Liquid-based cytology in cervical screening: a rapid and systematic review.
By Payne N, Chilcott J, McGoogan E.

No. 19
Randomised controlled trial of non-directive counselling, cognitive–behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20
Routine referral for radiography of patients presenting with low back pain: is patients' outcome influenced by GPs' referral for plain radiography?
By Perry S, Hilton S, Patel S, Dunlops D, Rink E, Lord J.

No. 21
Systematic reviews of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
By O'Meara S, Cullum N, Majid M, Sheldon T.

No. 22
Using routine data to complement and enhance the results of randomised controlled trials.
By Lewsey JD, Leyland AH, Murray GD, Boddy FA.

No. 23
Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
By Meads C, Cummings C, Jolly K, Stevens A, Burks A, Hyde C.

No. 24
Outcome measures for adult critical care: a systematic review.
By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25
A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
By Fairbairn L, O'Meara S, Renfrew MJ, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26
Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
By Parkes J, Bryant J, Milne R.

No. 27
Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
By Brañas P, Jordan R, Fry-Smith A, Burks A, Hyde C.

No. 28
Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29
Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
By Marks D, Wonderling D, Thorogood M, Lambert H, Humphries SE, Neil HAW.

No. 30
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
By McDonagh MS, Bachmann LM, Golder S, Kleijnen J, ter Riet G.

No. 31
A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
By Turner J, Nicholl J, Webber L, Cox H, Dixon S, Yates D.

No. 32
Intrathecal pumps for giving opioids in chronic pain: a systematic review.
By Williams JE, Lous G, Towlerston G.

No. 33
Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
By Shepherd J, Waugh N, Hewitson P.
No. 34 A rapid and systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
By MacLeod RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 35 Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
By Berry E, Kelly S, Hutton J, Lindsay HSJ, Blaxill JM, Evans JA, et al.

No. 36 A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37 Systematic review of treatments for atopic eczema.
By Hoare C, Li Wan Po A, Williams H.

No. 38 Bayesian methods in health technology assessment: a review.
By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 39 The management of dyspepsia: a systematic review.

No. 40 A systematic review of treatments for severe psoriasis.
By Griffiths CEM, Clark CM, Chalmers RJG, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 1 Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer's disease: a rapid and systematic review.

No. 2 The clinical effectiveness and cost-effectiveness of riluzole for motor neurone disease: a rapid and systematic review.

No. 3 Equity and the economic evaluation of healthcare.
By Sassi F, Archard L, Le Grand J.

No. 4 Quality-of-life measures in chronic diseases of childhood.
By Eiser C, Morse R.

No. 5 Elliciting public preferences for healthcare: a systematic review of techniques.

No. 6 General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
By Riemsma RP, Forbes CA, Glenville JM, Eastwood AJ, Kleijnen J.

No. 7 An assessment of screening strategies for fragile X syndrome in the UK.
By Pembrey ME, Barnicoat A, Carmichael B, Bobrow M, Turner G.

No. 8 Issues in methodological research: perspectives from researchers and commissioners.

No. 9 Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
By Cullum N, Nelson EA, Flemming K, Sheldon T.

No. 10 Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.
By Hampson SE, Skinner TC, Hart J, Storey L, Gage H, Foxcroft D, et al.

No. 11 Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
By Johanputra P, Parry D, Fry-Smith A, Burds A.

No. 12 Statistical assessment of the learning curves of health technologies.
By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13 The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
By Dinnes J, Cave C, Huang S, Major K, Milne R.

No. 14 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debriding agents in treating surgical wounds healing by secondary intention.
By Lewis R, Whiting P, ter Riet G, O'Meara S, Glenville J.

No. 15 Home treatment for mental health problems: a rapid review.

No. 16 How to develop cost-conscious guidelines.
By Eccles M, Mason J.

No. 17 The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
By De Broe S, Christopher F, Waugh N.

No. 18 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
By O'Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 19 The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 20 Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.

No. 21 Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) Acute day hospital versus admission; (2) Vocational rehabilitation; (3) Day hospital versus outpatient care.

No. 22 The measurement and monitoring of surgical adverse events.
By Bruce J, Russell EM, Mollison J, Krukowszi ZH.

No. 23 Action research: a systematic review and guidance for assessment.
By Waterman H, Tillen D, Dickson R, de Koning K.

No. 24 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer.
No. 25
A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer.
By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 26
Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature.

No. 27
The cost-effectiveness of magnetic resonance imaging for investigation of the knee joint.

No. 28
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.
By Forbes C, Shirran L, Bagnall A-M, Duffy S, ter Riet G.

No. 29
Superseded by a report published in a later volume.

No. 30
The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial.
By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 31
Design and use of questionnaires: a review of best practice applicable to surveys of health service staff and patients.

No. 32
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.
By Clegg A, Scott DA, Sidhu M, Hewitson P, Waugh N.

No. 33
Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
By Brooks ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34
Depot antipsychotic medication in the treatment of patients with schizophrenia: (1) Meta-review; (2) Patient and nurse attitudes.
By David AS, Adams C.

No. 35
A systematic review of controlled trials of the effectiveness and cost-effectiveness of brief psychological treatments for depression.

No. 36
Cost analysis of child health surveillance.
By Sanderson D, Wright D, Acton C, Duree D.

Volume 6, 2002
No. 1
A study of the methods used to select review criteria for clinical audit.
By Hearshaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 2
Fludarabine as second-line therapy for B cell chronic lymphocytic leukaemia: a technology assessment.

No. 3
Rituximab as third-line treatment for refractory or recurrent Stage III or IV follicular non-Hodgkin’s lymphoma: a systematic review and economic evaluation.

No. 4
A systematic review of discharge arrangements for older people.

No. 5
The clinical effectiveness and cost-effectiveness of inhaler devices used in the routine management of chronic asthma in older children: a systematic review and economic evaluation.
By Peters J, Stevenson M, Beverley C, Lim J, Smith S.

No. 6
The clinical effectiveness and cost-effectiveness of sibutramine in the management of obesity: a technology assessment.
By O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 7
The cost-effectiveness of magnetic resonance angiography for carotid artery stenosis and peripheral vascular disease: a systematic review.

No. 8
Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’.
By Carroll B, Ali N, Azam N.

No. 9
Zanamivir for the treatment of influenza in adults: a systematic review and economic evaluation.

No. 10
A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models.
By Richards RG, Sampson FC, Beard SM, Tappenden P.

No. 11
Screening for gestational diabetes: a systematic review and economic evaluation.
By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 12
The clinical effectiveness and cost-effectiveness of surgery for people with morbid obesity: a systematic review and economic evaluation.

No. 13
The clinical effectiveness of trastuzumab for breast cancer: a systematic review.

No. 14
The clinical effectiveness and cost-effectiveness of vinorelbine for breast cancer: a systematic review and economic evaluation.

No. 15
A systematic review of the effectiveness and cost-effectiveness of metal-on-metal hip resurfacing arthroplasty for treatment of hip disease.
By Vale L, Wyness L, McCormack K, McKenzie L, Brazzelli M, Sterrals SC.

No. 16
The clinical effectiveness and cost-effectiveness of hupropion and nicotine replacement therapy for smoking cessation: a systematic review and economic evaluation.
By Woolacott NF, Jones L, Forbes CA, Mathur LC, Sowden AJ, Song FJ, et al.

No. 17
A systematic review of the effectiveness and economic evaluation of new drug treatments for juvenile idiopathic arthritis: etanercept.
By Cammins C, Connock M, Fry-Smith A, Burls A.

No. 18
Vol 7, 2003

No. 1
How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study.
By Egger M, Juni P, Bartlett C, Holenstein F, Sterne J.

No. 2
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of home versus hospital or satellite unit haemodialysis for people with end-stage renal failure.

No. 3
Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease.
By Clark W, Raftery J, Barton P, Song F, Fry-Smith A, Burls A.

No. 4
A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus negative.

No. 5
Systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing’s sarcoma and neuroblastoma.

No. 6
The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.

No. 7
The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8
A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9
Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10
Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.
No. 11
First and second trimester antenatal screening for Down's syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
By Wald NJ, Rodeck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12
The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13
A systematic review of atypical antipsychotics in schizophrenia.

No. 14
Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15
Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16
Screening for fragile X syndrome: a literature review and modelling.
By Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A.

No. 17
Systematic review of endoscopic sinus surgery for nasal polyps.
By Dalziel K, Stein K, Round A, Garside R, Royle P.

No. 18
Towards efficient guidelines: how to monitor guideline use in primary care.
By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19
Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
By Bagnall A-M, Jones L, Richardson G, Duffy S, Riemuma R.

No. 20
Prioritisation of health technology assessment. The PATHS model: methods and case studies.
By Townsend J, Buxton M, Harper G.

No. 21

No. 22
By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23
The role of modelling in prioritising and planning clinical trials.
By Chilcott J, Brennan A, Booth A, Karnon J, Tappenden P.

No. 24
Cost–benefit evaluation of routine influenza immunisation in people 65–74 years of age.
By Allsup S, Gosney M, Haycox A, Regan M.

No. 25
The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
By Wight J, Chilcott J, Holmes M, Brewer N.

No. 26
Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27
Evaluating non-randomised intervention studies.

No. 28
A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29
The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30
The value of digital imaging in diabetic retinopathy.

No. 31
Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
By Law M, Wald N, Morris J.

No. 32
Clinical and cost-effectiveness of capetaxibe and tegafur with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
By Ward S, Kaltenthaler E, Cowan J, Brewer N.

No. 33
By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.

No. 35
Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36
A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37
Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women’s physical and psychological health needs.

No. 38
Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

No. 40 Treatments for spasticity and pain in multiple sclerosis: a systematic review. By Beard S, Hunn A, Wight J.

No. 41 The inclusion of reports of randomised trials published in languages other than English in systematic reviews. By Moher D, Pham B, Lawson ML, Klassen TP.

Volume 8, 2004

No. 1 What is the best imaging strategy for acute stroke? By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sandercock PAG, Dennis MS, et al.

No. 5 Systematic review of the clinical effectiveness and cost-effectiveness of capcitabine (Xeloda®) for locally advanced and/or metastatic breast cancer. By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsmma R.

No. 8 Psychological treatment for insomnia in the regulation of long-term hypnotic drug use. By Morgan K, Dixon S, Mathers N, Thompson J, Tomeny M.

No. 17 Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial. By Gilbert FJ, Grant AM, Gillan MGC, Vale L, Scott NW, Campbell MK, et al.

No. 23 Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercocj J, Bayliss S, Burls A.

No. 24 Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25 Development and validation of methods for assessing the quality of diagnostic accuracy studies.
By Whiting P, Rutjes AWS, Dinnes J, Reitsma JB, Bossuyt PMM, Kleijnen J.

No. 26 EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27 Methods for expected value of information analysis in complex health economic models: developments on the health economics of interferon-2a and glatiramer acetate for multiple sclerosis.
By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

By Dalziel K, Round A, Stein K, Garside R, Price A.

No. 29 VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.
By Igelstas C, Nelson EA, Cullum NA, Torgerson DJ on behalf of the VenUS Team.

No. 30 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31 A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.
By Claxton K, Gimplley L, Sculpter M, Philips Z, Palmer S.

No. 32 The Social Support and Family Health Study: a randomised controlled trial and economic evaluation of two alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33 Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.
By Green JM, Hewison J, Bekker HL, Bryant, Cackle HS.

No. 34 Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35 Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36 Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37 Rituximab (MabThera®) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38 Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation.
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpter M, et al.

By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40 Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpter M, et al.

No. 41 Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Griebisch I, Taylor FC, Burke M, West RR, et al.

No. 42 Involving South Asian patients in clinical trials.
By Hussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43 Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Colquitt JL, Green C, Sidhu MK, Hartwell D, Waugh N.

No. 44 Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45 Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.

No. 46 Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47 Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson F, Payne E.

No. 48 Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49 Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50 Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.
Volume 9, 2005

No. 1
Randomised controlled multiple-treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Bound A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrosurgical modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenfine J, McNamie P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH, et al.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinnes J, Deeks J, Kirby J, Roderick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BH, Barton P, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and loperamide.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kalra L, Evans A, Perez I, Knapp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Wooshynowsycz M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Rafferty J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.

No. 23
A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma.

No. 24
An evaluation of the costs, effectiveness and quality of renal replacement therapy provision in renal satellite units in England and Wales.

No. 25
Imatinib for the treatment of patients with unresectable and/or metastatic gastrointestinal stromal tumours: systematic review and economic evaluation.

No. 26
Indirect comparisons of competing interventions.

No. 27
Cost-effectiveness of alternative strategies for the initial medical management of non-ST elevation acute coronary syndrome: systematic review and decision-analytical modelling.
No. 28
Outcomes of electrically stimulated gracilis neosphincter surgery.
By Tillin T, Chambers M, Feldman R.

No. 29
The effectiveness and cost-effectiveness of pimecrolimus and tacrolimus for atopic eczema: a systematic review and economic evaluation.

No. 30
Systematic review on urine albumin testing for early detection of diabetic complications.

No. 31
Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis.
By Cochrane T, Davey RC, Mattes Edwards SM.

No. 32
Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain.

No. 33
Cost-effectiveness and safety of epidural steroids in the management of sciatica.
By Price C, Arden N, Coglan L, Rogers P.

No. 34
The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis.
By Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 35
Conceptual framework and systematic review of the effects of participants’ and professionals’ preferences in randomised controlled trials.

No. 36
The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review.
By Bryant J, Brodin H, Loveman E, Payne E, Clegg A.

No. 37
A trial of problem-solving by community mental health nurses for anxiety, depression and life difficulties among general practice patients. The CPN-GP study.

No. 38
The causes and effects of socio-demographic exclusions from clinical trials.

No. 39
Is hydrotherapy cost-effective? A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis.

No. 40
A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study.

No. 41
Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty and total hip arthroplasty.
By Keating J, Grant A, Masson M, Scott NW, Forbes JF.

No. 42
Long-term outcome of cognitive behaviour therapy clinical trials in central Scotland.

No. 43
The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation.
By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 44
Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis.

No. 45
The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.

No. 46
The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDxs) in detecting and monitoring glaucoma.
By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

No. 47
Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.

No. 48
Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49
Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thromboprophylaxis.

No. 50
The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006

No. 1
The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.

No. 2
FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranswick G, Forbes J.

No. 3
The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.
No. 4
A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5
Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.
By Dandar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR.

No. 6
Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7

No. 8
Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.
By Garside R, Pit M, Somerville M, Stein K, Price A, Gilbert N.

No. 9
Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10
Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.
By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11

No. 12
A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13
Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14
The cost-effectiveness of screening for oral cancer in primary care.
By Speight PM, Palmer S, Moles DR, Downer MC, Smith DH, Henriksson M et al.

No. 15

No. 16

No. 17
Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.
By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 18
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19
Cognitive behavioural therapy in addition to antipsychotic therapy for irritable bowel syndrome in primary care: randomised controlled trial.

No. 20
A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidoses type 1.

No. 21
Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.
By Wright M, Grieve R, Roberts J, Main J, Thomas HC on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 22
Pressure relieving support surfaces: a randomised evaluation.

No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamphetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.
No. 28 Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29 An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial.
By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30 Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31 Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32 The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33 Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34 Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35 Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36 Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37 Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O'Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 39 The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.
By Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hills G.

No. 40 What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 41 The clinical and cost-effectiveness of oxaclinatin and capicainine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pandor A, Eggington S, Paisley S, Tappenden P, Sutcliffe P.

No. 42 A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43 Telemedicine in dermatology: a randomised controlled trial.
By Bowns IR, Collins K, Walters SJ, McDonagh AJG.

No. 44 Cost-effectiveness of cell salvage and alternative methods of minimising perioperative allogeneic blood transfusion: a systematic review and economic model.

No. 45 Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46 Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47 Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48 Evaluation of the ventricular assist device programme in the UK.

No. 50 Amniocentesis results: investigation of anxiety. The ARIA trial.

Volume 11, 2007

No. 1 Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2 A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3 A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4 The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.
No. 5
A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6
Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7
Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8
Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9
Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10
Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11
Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12
Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13
A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14
A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15
A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16
Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17
Screening for type 2 diabetes: literature review and economic modelling.

No. 18
The effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.

No. 19
The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.
By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 20
A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 21
The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22
A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23
Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.

No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.
By Boyle J, McCartney E, Forbes J, O’Hare A.

No. 26
Hormononal therapies for early breast cancer: systematic review and economic evaluation.
By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.
By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.
No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population. The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.
By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.
Health Technology Assessment Programme

Prioritisation Strategy Group

Members

Chair,
Professor Tom Walley,
Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool

Dr Edmund Jessop, Medical Adviser, National Specialist, Commissioning Advisory Group (NCCAG), Department of Health, London

Dr Ron Zimmern, Director, Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

Deputy Chair,
Dr Andrew Farmer,
University Lecturer in General Practice, Department of Primary Health Care, University of Oxford

Professor Deborah Ashby, Professor of Medical Statistics, Department of Environmental and Preventative Medicine, Queen Mary University of London

Professor Jenny Donovan, Professor of Social Medicine, Department of Social Medicine, University of Bristol

Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research

Professor Ann Bowling, Professor of Health Services Research, Primary Care and Population Studies, University College London

Professor Freddie Hamdy, Professor of Urology, University of Sheffield

Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Dr Jeffrey Aronson,
Reader in Clinical Pharmacology, Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford

Professor Nicky Cubbin, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York

Professor Miranda Mugford, Professor of Health Economics, University of East Anglia

Professor David John Torgerson, Director of York Trial Unit, Department of Health Sciences, University of York

Dr Jon Deeks,
Professor of Health Statistics, University of Birmingham

Dr Linda Patterson, Consultant Physician, Department of Medicine, Burnley General Hospital

Professor Hywel Williams, Professor of Dermato-Epidemiology, University of Nottingham

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)

© Queen’s Printer and Controller of HMSO 2007. All rights reserved.
Diagnostic Technologies & Screening Panel

<table>
<thead>
<tr>
<th>Members</th>
<th>Chair, Dr Ron Zimmern, Director of the Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Members</td>
<td>Ms Norma Armstrong, Freelance Consumer Advocate, Bolton</td>
</tr>
<tr>
<td>Members</td>
<td>Professor Max Bachmann, Professor of Health Care Interfaces, Department of Health Policy and Practice, University of East Anglia</td>
</tr>
<tr>
<td>Members</td>
<td>Professor Rudy Biliou, Professor of Clinical Medicine & Consultant Physician, The Academic Centre, South Tees Hospitals NHS Trust</td>
</tr>
<tr>
<td>Members</td>
<td>Ms Dea Birkett, Service User Representative, London</td>
</tr>
<tr>
<td>Members</td>
<td>Chair, Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Susanne M Ludgate, Clinical Director, Medicines & Healthcare Products Regulatory Agency, London</td>
</tr>
<tr>
<td>Members</td>
<td>Mr Stephen Pilling, Director, Centre for Outcomes, Research & Effectiveness, Joint Director, National Collaborating Centre for Mental Health, University College London</td>
</tr>
<tr>
<td>Members</td>
<td>Mrs Una Rennard, Service User Representative, Oxford</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Dr Phil Shackley, Senior Lecturer in Health Economics, Academic Vascular Unit, University of Sheffield</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Margaret Somerville, Director of Public Health Learning, Peninsula Medical School, University of Plymouth</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Graham Taylor, Scientific Director & Senior Lecturer, Regional DNA Laboratory, The Leeds Teaching Hospitals</td>
</tr>
<tr>
<td>Members</td>
<td>Professor Lindsay Wilson Turnbull, Scientific Director, Centre for MR Investigations & YCR Professor of Radiology, University of Hull</td>
</tr>
<tr>
<td>Members</td>
<td>Professor Martin J Whittle, Clinical Co-director, National Co-ordinating Centre for Women's and Child Health</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Dennis Wright, Consultant Biochemist & Clinical Director, The North West London Hospitals NHS Trust, Middlesex</td>
</tr>
</tbody>
</table>

Pharmaceuticals Panel

<table>
<thead>
<tr>
<th>Members</th>
<th>Chair, Professor Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Members</td>
<td>Professor Imti Choonara, Professor in Child Health, Academic Division of Child Health, University of Nottingham</td>
</tr>
<tr>
<td>Members</td>
<td>Professor John Geddes, Professor of Epidemiological Psychiatry, University of Oxford</td>
</tr>
<tr>
<td>Members</td>
<td>Mrs Barbara Greggains, Non-Executive Director, Greggains Management Ltd</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Bill Gutteridge, Medical Adviser, National Specialist Commissioning Advisory Group (NSCAG), London</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Dr Frances Rothblat, CPMP Delegate, Medicines & Healthcare Products Regulatory Agency, London</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Jonathan Karnon, Senior Research Fellow, Health Economics and Decision Science, University of Sheffield</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Yoon Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia</td>
</tr>
<tr>
<td>Members</td>
<td>Ms Barbara Meredith, Lay Member, Epsom</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge</td>
</tr>
<tr>
<td>Members</td>
<td>Mrs Sharon Hart, Consultant Pharmaceutical Adviser, Reading</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Martin Shelly, General Practitioner, Leeds</td>
</tr>
<tr>
<td>Members</td>
<td>Mrs Katrina Simister, Assistant Director New Medicines, National Prescribing Centre, Liverpool</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Richard Tiner, Medical Director, Medical Department, Association of the British Pharmaceutical Industry, London</td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
Therapeutic Procedures Panel

Members

Chair,
Professor Bruce Campbell,
Consultant Vascular and
General Surgeon, Department
of Surgery, Royal Devon &
Exeter Hospital

Professor Matthew Cooke,
Professor of Emergency
Medicine, Warwick Emergency
Care and Rehabilitation,
University of Warwick

Mr Mark Emberton, Senior
Lecturer in Oncological
Urology, Institute of Urology,
University College Hospital

Professor Paul Gregg,
Professor of Orthopaedic
Surgical Science, Department
of General Practice and Primary
Care, South Tees Hospital NHS
Trust, Middlesbrough

Ms Maryann L Hardy,
Lecturer, Division of
Radiography, University of
Bradford

Dr Simon de Lusignan,
Senior Lecturer, Primary Care
Informatics, Department of
Community Health Sciences,
St George’s Hospital Medical
School, London

Dr Peter Martin, Consultant
Neurologist, Addenbrooke’s
Hospital, Cambridge

Professor Neil McIntosh,
Edward Clark Professor of Child
Life & Health, Department of
Child Life & Health, University of
Edinburgh

Professor Jim Neilson,
Professor of Obstetrics and
Gynaecology, Department of
Obstetrics and Gynaecology,
University of Liverpool

Dr John C Bumsford,
Consultant Physician,
Directorate of Medical Services,
North Bristol NHS Trust

Dr Karen Roberts, Nurse
Consultant, Queen Elizabeth
Hospital, Gateshead

Dr Vimal Sharma, Consultant
Psychiatrist, Hon. Senior
Lecturer, Mental Health
Resource Centre, Cheshire and
Wirral Partnership NHS Trust,
Wallasey

Professor Scott Weich,
Professor of Psychiatry,
Division of Health in the
Community, University of
Warwick

Disease Prevention Panel

Members

Chair,
Dr Edmund Jessop, Medical
Adviser, National Specialist
Commissioning Advisory Group
(NSCAG), London

Dr Elizabeth Fellow-Smith,
Medical Director,
West London Mental Health
Trust, Middlesex

Mr Ian Flack, Director PPI
Forum Support, Council of
Ethnic Minority Voluntary
Sector Organisations,
Stratford

Dr John Jackson,
General Practitioner,
Newcastle upon Tyne

Mrs Veronica James, Chief
Officer, Horsham District Age
Concern, Horsham

Professor Mike Kelly,
Director, Centre for Public
Health Excellence,
National Institute for Health
and Clinical Excellence,
London

Professor Yi Mien Koh,
Director of Public Health and
Medical Director, London
NHS (North West London
Strategic Health Authority),
London

Ms Jeanett Martin,
Director of Clinical Leadership
& Quality, Lewisham PCT,
London

Dr Chris McCall, General
Practitioner, Dorset

Dr Carol Tannahill, Director,
Glasgow Centre for Population
Health, Glasgow

Professor Margaret Thorogood,
Professor of Epidemiology,
University of Warwick,
Coventry

Dr Ewan Wilkinson,
Consultant in Public Health,
Royal Liverpool University
Hospital, Liverpool

Mrs Sheila Clark, Chief
Executive, St James’s Hospital,
Portsmouth

Mr Richard Copeland,
Lead Pharmacist: Clinical
Economy/Interface,
Wansbeck General Hospital,
Northumberland

Dr David Pencheon, Director,
Eastern Region Public Health
Observatory, Cambridge

Dr Ken Stein, Senior Clinical
Lecturer in Public Health,
Director, Peninsula Technology
Assessment Group,
University of Exeter,
Exeter

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
Expert Advisory Network

Members

- **Professor Douglas Altman,** Professor of Statistics in Medicine, Centre for Statistics in Medicine, University of Oxford
- **Professor John Bond,** Director, Centre for Health Services Research, University of Newcastle upon Tyne, School of Population & Health Sciences, Newcastle upon Tyne
- **Professor Andrew Bradbury,** Professor of Vascular Surgery, Solihull Hospital, Birmingham
- **Mr Shaun Brogan,** Chief Executive, Ridgeway Primary Care Group, Aylesbury
- **Mrs Stella Burnside OBE,** Chief Executive, Regulation and Improvement Authority, Belfast
- **Ms Tracy Bury,** Project Manager, World Confederation for Physical Therapy, London
- **Professor Iain T Cameron,** Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton
- **Dr Christine Clark,** Medical Writer & Consultant Pharmacist, Rossendale
- **Professor Collette Clifford,** Professor of Nursing & Head of Research, School of Health Sciences, University of Birmingham, Edgbaston, Birmingham
- **Professor Barry Cookson,** Director, Laboratory of Healthcare Associated Infection, Health Protection Agency, London
- **Dr Carl Counsell,** Clinical Senior Lecturer in Neurology, Department of Medicine & Therapeutics, University of Aberdeen
- **Professor Howard Cuckle,** Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds
- **Dr Katherine Darton,** Information Unit, MIND – The Mental Health Charity, London
- **Professor Carol Dezateux,** Professor of Paediatric Epidemiology, London
- **Dr Keith Dodd,** Consultant Paediatrician, Derby
- **Mr John Dunning,** Consultant Cardiothoracic Surgeon, Cardiothoracic Surgical Unit, Papworth Hospital NHS Trust, Cambridge
- **Mr Jonathan Earnshaw,** Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester
- **Professor Martin Eccles,** Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne
- **Professor Pam Enderby,** Professor of Community Rehabilitation, Institute of General Practice and Primary Care, University of Sheffield
- **Professor Gene Feder,** Professor of Primary Care Research & Development, Centre for Health Sciences, Barts & The London Queen Mary’s School of Medicine & Dentistry, London
- **Mr Leonard R Fenwick,** Chief Executive, Newcastle upon Tyne Hospitals NHS Trust
- **Mrs Gillian Fletcher,** Antenatal Teacher & Tutor and President, National Childbirth Trust, Henfield
- **Professor Jayne Franklyn,** Professor of Medicine, Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham
- **Dr Neville Goodman,** Consultant Anaesthetist, Southend Hospital, Bristol
- **Professor Robert F Hawkins,** CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester
- **Professor Allen Hutchinson,** Director of Public Health & Deputy Dean of SchHARR, Department of Public Health, University of Sheffield
- **Professor Peter Jones,** Professor of Psychiatry, University of Cambridge, Cambridge
- **Professor Stan Kaye,** Cancer Research UK Professor of Medical Oncology, Section of Medicine, Royal Marsden Hospital & Institute of Cancer Research, Surrey
- **Dr Duncan Keeley,** General Practitioner (Dr Burch & Partners), The Health Centre, Thame
- **Dr Donna Lamping,** Research Degrees Programme Director & Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London
- **Mr George Levy,** Chief Executive, Motor Neurone Disease Association, Northampton
- **Professor James Lindesay,** Professor of Psychiatry for the Elderly, University of Leicester, Leicester General Hospital
- **Professor Julian Little,** Professor of Human Genome Epidemiology, Department of Epidemiology & Community Medicine, University of Ottawa
- **Professor Rajan Madhok,** Consultant in Public Health, South Manchester Primary Care Trust, Manchester
- **Professor Alexander Markham,** Director, Molecular Medicine Unit, St James’s University Hospital, Leeds
- **Professor Alistaire McGuire,** Professor of Health Economics, London School of Economics
- **Dr Peter Moore,** Freelance Science Writer, Ashtead
- **Dr Andrew Mortimore,** Public Health Director, Southamptom City Primary Care Trust, Southampton
- **Dr Sue Moss,** Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton
- **Mrs Julietta Patnick,** Director, NHS Cancer Screening Programmes, Sheffield
- **Professor Chris Price,** Visiting Professor in Clinical Biochemistry, University of Oxford
- **Professor William Rosenberg,** Professor of Hepatology and Consultant Physician, University of Southampton, Southampton
- **Professor Peter Sanderson,** Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh
- **Dr Susan Schonfield,** Consultant in Public Health, Hillingdon PCT, Middlesex
- **Dr Eamonn Sheridan,** Consultant in Clinical Genetics, Genetics Department, St James’s University Hospital, Leeds
- **Professor Sarah Stewart-Brown,** Professor of Public Health, University of Warwick, Division of Health in the Community Warwick Medical School, IWMs, Coventry
- **Professor Alzbeta Szczepura,** Professor of Health Service Research, Centre for Health Services Studies, University of Warwick
- **Dr Ross Taylor,** Senior Lecturer, Department of General Practice and Primary Care, University of Aberdeen
- **Mrs Joan Webster,** Consumer member, HTA – Expert Advisory Network

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
 c/o Direct Mail Works Ltd
 4 Oakwood Business Centre
 Downley, HAVANT PO9 2NP, UK
 Email: orders@hta.ac.uk
 Tel: 02392 492 000
 Fax: 02392 478 555
 Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?
Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis

J Thompson Coon, G Rogers, P Hewson, D Wright, R Anderson, M Cramp, S Jackson, S Ryder, A Price and K Stein

September 2007