Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review

A Takeda, E Loveman, P Harris, D Hartwell and K Welch

October 2008
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
Email: orders@hta.ac.uk
c/o Direct Mail Works Ltd
Tel: 02392 492 000
4 Oakwood Business Centre
Fax: 02392 478 555
Downley, HAVANT PO9 2NP, UK
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review

A Takeda,* E Loveman, P Harris, D Hartwell and K Welch

Southampton Health Technology Assessments Centre (SHTAC), University of Southampton, UK

*Corresponding author

Declared competing interests of authors: none

Published October 2008

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The Health Technology Assessment (HTA) Programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA Programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA Programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA Programme then commissions the research by competitive tender.

Second, the HTA Programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series Health Technology Assessment.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this issue of the journal was commissioned and funded by the HTA Programme on behalf of NICE as project number 07/55/01. The protocol was agreed in October 2007. The assessment report began editorial review in April 2008 and was accepted for publication in May 2008. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme or the Department of Health.

Editor-in-Chief: Professor Tom Walley
Series Editors: Dr Aileen Clarke, Dr Peter Davidson, Dr Chris Hyde, Dr John Powell, Dr Rob Riemsma and Professor Ken Stein

© Queen’s Printer and Controller of HMSO 2008

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to: NCCHTA, Alpha House, Enterprise Road, Southampton Science Park, Chilworth, Southampton SO16 7NS, UK.

Published by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk), on behalf of NCCHTA.

Printed on acid-free paper in the UK by the Charlesworth Group.
Abstract

Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review

A Takeda,* E Loveman, P Harris, D Hartwell and K Welch

Southampton Health Technology Assessments Centre (SHTAC), Southampton, UK

*Corresponding author

Objectives: To identify the expected delay between publication of conference abstracts and full publication of results from trials of new anti-cancer agents for breast cancer and to identify whether there are any apparent biases in publication and reporting.

Data sources: Major electronic databases were searched to identify randomised controlled trials (RCTs) of the selected interventions for the treatment of breast cancer.

Review methods: A systematic review was conducted according to standard methods. Data were extracted from the included studies using a predesigned and piloted data extraction template.

Results: Six anti-cancer treatments for breast cancer were included in the review: docetaxel, paclitaxel, trastuzumab, gemcitabine, lapatinib and bevacizumab. The literature searches generated 1556 references, from which 71 publications were retrieved and screened for inclusion. Screening identified 41 publications of 18 RCTs with at least one arm of treatment meeting the inclusion criteria for the review. Of the 18 included RCTs, only four publications (from three RCTs) reported the same outcomes in both an abstract and a full publication. Time between the abstract and full publication was 5 months in two cases, 7 months in one case and 19 months in one case (overall mean delay = 9 months). Eleven trials were identified that have not currently published in a full publication the data presented in an abstract or conference proceeding. The duration between publication of the abstracts and the end of August 2007 varied from 3 months to 38 months (mean delay 16.5 months). The longest delays in publication were for trials investigating gemcitabine (38 months) or bevacizumab (33 months). Observational analysis of the published and unpublished trials did not indicate any particular biases in terms of whether positive results were more likely to be fully published than non-significant ones.

Conclusions: It was surprising that only three of the 18 relevant RCTs had one or more full papers that reported the same outcome measures (and stage of analysis) as an earlier conference abstract. However, a limitation of this review is the small number of studies included. With a larger sample size than that in the present report, investigation into the effect of publication delay on decision-making might be feasible. Future research should include extension of this work to other anti-cancer drugs and investigation into the reasons for lengthy delays to full publication noted for some trials.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Aim of the review</td>
<td>1</td>
</tr>
<tr>
<td>2 Background</td>
<td>3</td>
</tr>
<tr>
<td>Description of underlying health problem and treatments</td>
<td>3</td>
</tr>
<tr>
<td>Current NICE guidance for breast cancer</td>
<td>3</td>
</tr>
<tr>
<td>Publication bias</td>
<td>4</td>
</tr>
<tr>
<td>Rationale for the study</td>
<td>5</td>
</tr>
<tr>
<td>3 Research methods</td>
<td>7</td>
</tr>
<tr>
<td>Identification of anti-cancer drugs for breast cancer</td>
<td>7</td>
</tr>
<tr>
<td>Search strategy</td>
<td>7</td>
</tr>
<tr>
<td>Study inclusion</td>
<td>8</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>8</td>
</tr>
<tr>
<td>Data extraction</td>
<td>8</td>
</tr>
<tr>
<td>4 Results</td>
<td>9</td>
</tr>
<tr>
<td>Interventions included</td>
<td>9</td>
</tr>
<tr>
<td>Included RCTs</td>
<td>9</td>
</tr>
<tr>
<td>Assessment of mean time between publication of abstracts and publication of full paper</td>
<td>9</td>
</tr>
<tr>
<td>Comparison of results of abstracts and full papers</td>
<td>12</td>
</tr>
<tr>
<td>Ongoing trials</td>
<td>14</td>
</tr>
<tr>
<td>5 Discussion</td>
<td>15</td>
</tr>
<tr>
<td>Time to publication</td>
<td>15</td>
</tr>
<tr>
<td>Direction of effect</td>
<td>16</td>
</tr>
<tr>
<td>Limitations of the report</td>
<td>16</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>Research recommendations</td>
<td>17</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>19</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>Appendix 1 MEDLINE search strategy for gemcitabine</td>
<td>25</td>
</tr>
<tr>
<td>Appendix 2 Data extractions</td>
<td>27</td>
</tr>
<tr>
<td>Appendix 3 Flow chart of systematic review process</td>
<td>43</td>
</tr>
<tr>
<td>Appendix 4 Details of related ongoing trials</td>
<td>45</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td>47</td>
</tr>
<tr>
<td>Health Technology Assessment Programme</td>
<td>65</td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>adjuvant chemotherapy</td>
</tr>
<tr>
<td>ASCO</td>
<td>American Society of Clinical Oncology</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>DFS</td>
<td>disease-free survival</td>
</tr>
<tr>
<td>EMeA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EPAR</td>
<td>European Public Assessment Reports</td>
</tr>
<tr>
<td>ER</td>
<td>estrogen receptor</td>
</tr>
<tr>
<td>HER2+</td>
<td>HER2 protein positive</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>HTA</td>
<td>Health Technology Assessment</td>
</tr>
<tr>
<td>IAUC</td>
<td>incremental ara under the curve</td>
</tr>
<tr>
<td>ITT</td>
<td>intention to treat</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>ORR</td>
<td>overall response rate</td>
</tr>
<tr>
<td>PFS</td>
<td>progression-free survival</td>
</tr>
<tr>
<td>PP</td>
<td>PowerPoint presentation</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>RT</td>
<td>radiotherapy</td>
</tr>
<tr>
<td>STA</td>
<td>Single Technology Appraisal</td>
</tr>
<tr>
<td>TDR</td>
<td>time to distant recurrence</td>
</tr>
<tr>
<td>TTP</td>
<td>time to (disease) progression</td>
</tr>
<tr>
<td>TTR</td>
<td>time to recurrence</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS) or it has been used only once or it is a non-standard abbreviation used only in figures/tables/appendices, in which case the abbreviation is defined in the figure legend or in the notes at the end of the table.
Executive summary

Background

In recent years the development of targeted therapies has led to an increase in the number of specialised anti-cancer treatments. The National Institute for Health and Clinical Excellence (NICE) has issued guidance on many such treatments and continues to assess new drugs as they become licensed. Because the technologies are often undergoing market authorisation or have only recently been licensed, the evidence base is usually limited. Often there will be only one randomised controlled trial assessing efficacy, and this may not be fully published at the time of appraisal. It is therefore important to establish the pattern of full publications to inform the developing methodology for reviews in this fast moving area.

Methods

The methodology for this project was constrained by the tight timescales and limited resources allowed for a short report (i.e. approximately one-third of that allowed for a full technology appraisal). A full search of existing NICE technology appraisals of anti-cancer drugs for breast cancer was undertaken by one reviewer and checked by a second. Because of time constraints these were then restricted to those that had been, or were due to be, appraised under the Single Technology Appraisal (STA) programme at NICE.

A comprehensive search strategy was developed to identify RCTs of the selected interventions for the treatment of breast cancer. The following databases were searched for published RCTs: Ovid MEDLINE; EMBASE; Database of Abstracts of Reviews of Effectiveness; Cochrane Database for Systematic Reviews; the Cochrane Central Register of Controlled Trials; and ISI Proceedings. As there were previous NICE technology assessments for many of the interventions, the searches were limited to studies published after the cut-off dates of searching in the previous publications until August 2007. Dates were therefore from 2002 for capecitabine, from 2005 for docetaxel, from 2006 for paclitaxel, and from 2000 for trastuzumab and vinorelbine. For those technologies that are currently in the process of being appraised by NICE, searches were undertaken from 5 years before the date of the first license of the technology up until August 2007.

The National Research Register and a US National Institutes of Health register (ClinicalTrials.gov) were searched to identify RCTs in progress. Websites of international conferences were also searched, from 5 years prior to the date of marketing authorisation until the present date.

Titles and abstracts of identified references were screened systematically against the inclusion criteria by one reviewer and checked by a second. Inclusion criteria detailed the patient groups, interventions and comparators defined by NICE, with no restriction on the outcome measures used. Full manuscripts of all selected citations were retrieved and assessed by one reviewer and checked by a second reviewer against the inclusion criteria. Disagreements over study inclusion were resolved by consensus or if necessary through arbitration by a third reviewer. Data were extracted from the included studies by one reviewer and checked by a second reviewer. Any disagreements were resolved by consensus, if necessary involving a third reviewer.

Results

Six anti-cancer treatments for breast cancer were included in the review. Interventions for early breast cancer were docetaxel, paclitaxel and trastuzumab and interventions for advanced or metastatic breast cancer were gemcitabine, lapatinib and bevacizumab. The literature searches and checking of reference lists generated 1556 references, of which 71 publications were retrieved and screened for inclusion. Screening identified 41 publications of 18 RCTs with at least one arm of treatment meeting the inclusion criteria for the review.

Of the 18 included RCTs, only four publications (from three RCTs) reported the same outcomes in both an abstract and a full publication. Time between the abstract and full publications was 5
months in two cases, 7 months in one case and 19 months in one case (overall mean delay = 9 months).

Eleven trials were identified that have not currently published in a full publication the data presented in an abstract or conference proceeding. The duration between publication of the abstracts and the end of August 2007 varied from 3 months to 38 months (mean delay 16.5 months). The longest delays in publication were for trials investigating gemcitabine (38 months) or bevacizumab (33 months).

Conclusions

Given that the searches identified 18 relevant RCTs it was rather surprising that only three of these had one or more full papers which reported the same outcome measures (and stage of analysis) as an earlier conference abstract. Observational analysis of the published and unpublished trials did not indicate any particular biases in terms of whether positive results were more likely to be fully published than non-significant ones. However, a limitation here was the small number of studies included in this report.
Chapter 1

Aim of the review

The aim of this short report, which was commissioned by the NIHR Health Technology Assessment (HTA) Programme, was to identify the expected delay between publication of conference abstracts and full publication of results from trials of new anti-cancer agents for breast cancer. A secondary aim of the research was to identify whether there are any apparent biases in publication and reporting.
Chapter 2

Background

Description of underlying health problem and treatments

In 2004 there were 36,939 new cases of breast cancer in women in England, which represents a crude rate of 144.6 per 100,000 women. Figures for Wales are available for 2005, when there were 2,564 new registrations or a rate of 155.4 per 100,000 women. These figures equate to age-standardised rates per 100,000 population of 120.7 (95% CI 119.5–121.9) for England and 120.8 (95% CI 115.9–125.7) for Wales. A recent review by the Office for National Statistics found a 20-year survival rate of 64% for women diagnosed with breast cancer between the ages of 50 and 69.

The survival rates for breast cancer have shown great improvements since 1991 and these changes are consistent with earlier and better diagnosis and improvements in the management of breast cancer with the use of more effective treatments. Recent advances in molecular oncology and sequencing of the human genome have led to greater understanding of the transformation and growth of malignant cells. Drug development is therefore moving away from systemic cytotoxic chemotherapy towards novel targeted agents. These act by inhibiting specific requirements or functions of tumour cells, and some are inhibitory to normal tissues such as vascular endothelial cells.

Targeted cancer therapies include several types of drugs such as monoclonal antibodies and apoptosis-inducing drugs. For example, trastuzumab and lapatinib target the HER2 gene, whereas bevacizumab targets the new blood vessels that allow tumours to grow. Most targeted therapies work in the same way as antibodies made by the immune system and so they are often referred to as immune-targeted therapies.

In the last 10–15 years the development of targeted therapies has led to an increase in the number of specialised anti-cancer treatments. The first monoclonal antibody to be licensed in the UK for cancer was rituximab, for high-grade lymphoma in 1998. Trastuzumab was approved by the National Institute for Health and Clinical Excellence (NICE) for the treatment of advanced breast cancer in 2002 and for early breast cancer in 2006. Other treatments for breast cancer that have emerged in recent years include antimetabolites such as gemcitabine and a microtubule-interacting agent (vinorelbine), in addition to older drugs such as the taxanes paclitaxel and docetaxel. NICE has issued guidance on all of these drugs and continues to assess new treatments as they become licensed. Many more targeted therapies are still in the preclinical testing stage and it is likely that these will be used in combined therapy with existing cytotoxic drugs. The addition of these treatments considerably increases the cost to the health service of treating the disease. In addition to the costs of the drugs themselves there may also be the costs of administration and monitoring. Timely appraisal of such drugs is therefore of interest to NICE.

Current NICE guidance for breast cancer

The NICE Single Technology Appraisal (STA) Programme aims to provide a rapid appraisal of new technologies and to allow guidance to be made available to the NHS. Chemotherapy drugs have been among the first technologies to be appraised under this new system. To make a fair and transparent appraisal of a technology it is important to evaluate all of the available evidence on its clinical effectiveness and cost-effectiveness. This should include an appraisal of the methods and results of studies. Because the technologies are often undergoing market authorisation or have only recently been licensed, the evidence base is usually limited. Often there will be only one randomised controlled trial (RCT) assessing efficacy. This may not be fully published at the time of appraisal (e.g. the recent appraisal of gemcitabine for metastatic breast cancer) and may never be fully published in a peer-reviewed publication.
Publication bias

There are four main areas of the literature relevant to this review: time to publication; publication bias in terms of direction of results; differences in results reported in abstracts and full publications; and differences in quality of reporting between abstracts and full publications.

A recently published Cochrane review\(^1\) investigated the time lag to publication for results of clinical trials. The systematic review identified two review articles of 196 trials. The systematic review found that studies with results that statistically significantly favoured the experimental arm tended to take 4–5 years to publish, whereas trials with null or negative results (i.e. not statistically significant or statistically significantly favouring the control arm) were generally published 6–8 years following trial inception. One of the included reviews investigated AIDS trials and the other examined the time interval between the date of a trial’s ethics committee approval (in Australia, between 1979 and 1988) and the date of first publication in a peer-reviewed journal. The Cochrane review\(^1\) did not include any reviews that were specifically investigating publication bias in anti-cancer drug trials. The reviewers did identify one such study, published in 1987, but excluded it because the analysis of time to publication was not available separately for the registered and published cohorts of the trials.

Krzyzanowska and colleagues\(^2\) conducted a survey of 510 abstracts from large phase III RCTs presented at American Society of Clinical Oncology (ASCO) meetings between 1989 and 1998. Their searches found that 26% of the trials reported in abstracts were not published in full within 5 years of presentation at a meeting. Krzyzanowska and colleagues found considerable evidence of bias in favour of full publication of significant results (\(p \leq 0.05\) for primary outcome), with 81% being published within 5 years compared with 68% of studies with non-significant results. The authors followed up a number of studies that had not been published in full to find the reasons for this; the most frequent reason given was lack of time, funding or other resources.

A recent Cochrane review\(^3\) found that only 63% of results from 79 reports (29,729 abstracts) describing randomised or controlled clinical trials were published in full. Results that showed statistical significance, favoured the experimental treatment or were from randomised or controlled clinical trials were more frequently published as full publications than other kinds of results. The review included summary reports that examined the subsequent rate of full publication of results related to biomedical science which were initially published in abstract or summary forms. The review included subject areas as far-ranging as marine biology, gastroenterology and emergency medicine. It is therefore not possible to draw any specific conclusions relating to anti-cancer therapies from this review.\(^3\)

Other work on publication bias followed the fate of abstracts from the 1984 ASCO meeting.\(^4\) However, this study followed up all conference abstracts to assess publication bias and did not specifically focus on time to full publication of RCTs. It is also likely that trends in publication time have changed over the past 15–20 years. A systematic review published in 2003 investigated publication bias around the acceptance rates of abstracts and their subsequent full publication.\(^5\) The review searched for studies that identified the publication route of abstracts submitted to conferences. Again, this study was concerned with following all abstracts, not just those reporting RCTs.

Chan and colleagues\(^6\) investigated selective reporting and publication bias in 102 randomised trials, comparing registered protocols with published reports. Their review included all clinical studies approved by an ethical committee in a particular time period, and results were not presented separately for oncology trials.

Previous HTA methodology work has assessed the link between data in conference abstracts and data in full publications. Dundar and colleagues\(^7,8\) carried out an audit to assess the use of conference abstracts in Technology Assessment Reports compiled for NICE, and investigated whether data presented in the conference abstract differed substantially from that reported in the full publication. Rosmarakis and colleagues\(^9\) have also documented differences in outcomes reported by abstracts and full publications in the fields of infectious diseases and microbiology.

Quality of reporting in abstracts is generally more limited than that in full papers. Hopewell and colleagues\(^10\) identified RCTs presented at the 1992 ASCO conference and searched the literature to find corresponding full publications. The focus of their work was on identifying differences between quality of reporting in conference abstracts and quality of reporting in the later full
publications. Their results found that only 46% of the 37 identified trials had the same number of participants randomised in the abstract and full publication, and only 22% reported the same number analysed. The majority of abstracts reported results from ongoing trials, whereas 82% of the trials in the full publication were closed to follow-up. Hopewell and colleagues reported great limitations in assessing trial quality based on information presented in abstracts. Only 14% of the abstracts reported intention to treat (ITT) analysis, compared with 46% of the full publications. In an attempt to encourage more complete reporting in abstracts, Krzyzanowska and colleagues modified the guidelines for the conduct and reporting of randomised trials to apply to abstracts submitted to ASCO meetings.

Rationale for the study

With the development of new chemotherapy agents the NICE STA process is likely to see a rise in the number of drugs gaining marketing authorisation over the coming years. This will lead to a concurrent increase in the number of systematic reviews being carried out on more limited evidence bases, compared with standard technology appraisals in which more fully published trial data are usually available. NICE has already issued guidance for cases when full peer-reviewed trial data are not available. It is therefore important to establish the pattern of full publications to inform the developing methodology for reviews in this fast-moving area.
Chapter 3
Research methods

A systematic review was conducted according to the methods outlined in a research protocol submitted to the HTA programme in July 2007. The key objective of the review was to identify the delay between publication of conference abstracts and full publication of results from RCTs of new anti-cancer agents for breast cancer. The secondary objective was to identify whether there are any apparent biases in publication and reporting.

Identification of anti-cancer drugs for breast cancer

A full search of existing NICE technology appraisals of anti-cancer drugs for breast cancer was undertaken by one reviewer and checked by a second. This included technologies that were currently in the process of being appraised by NICE. Eleven areas of NICE guidance were identified for eight anti-cancer drugs (three drugs had guidance both for early breast cancer and for advanced/metastatic breast cancer). As such, the number of related references likely to require screening was beyond the capacity available for this short report. During this early stage of the review a decision was therefore taken to limit the number of technologies to those that had been, or were due to be, appraised under the STA programme at NICE. Such drugs tend to be appraised closer to their marketing authorisation dates than those considered under the more established Multiple Technology Appraisal (MTA) programme, and there is generally less published evidence available for them. Given the limited time available it was therefore deemed more relevant to focus on drugs appraised under these conditions, to obtain an indication of the data available and any publication bias that might affect the STA programme.

This reduced the number to six interventions that had received, or were being considered for, NICE guidance. The list of anti-cancer drugs that were identified and included is shown in Table 1. For each technology identified a search of the European Medicines Agency (EMeA) website, the British National Formulary (BNF) and the relevant manufacturers’ websites was made to clarify the UK license details. The NICE website and the EMeA website [and the European Public Assessment Reports (EPARs) identified from the EMeA website] were also used to search for any additional information on the licensed agents and to identify RCTs of the relevant drugs.

Search strategy

A comprehensive search strategy was developed to identify RCTs of the interventions for the treatment of breast cancer. The search strategy aimed to systematically identify all relevant studies that met the inclusion criteria given in Table 1. The strategy for MEDLINE, shown in Appendix 1, was modified for use in other databases. The following databases were searched for published RCTs: Ovid MEDLINE; EMBASE; Database of Abstracts of Reviews of Effectiveness (DARE); Cochrane Database for Systematic Reviews (CDSR); Cochrane Central Register of Controlled Trials; and ISI Proceedings. The National Research Register (NRR) and ClinicalTrials.gov were searched to identify RCTs in progress. Bibliographies of retrieved articles were also checked for additional studies.

Websites of international conferences such as the American Society of Clinical Oncology (ASCO) and the San Antonio Breast Cancer Symposium (SABCS) were also searched to identify relevant conference proceedings and abstracts. These were searched from 5 years prior to the date of marketing authorisation until the present date. The internet was also searched using trial names/identifiers in internet search engines such as Google.

As there were previous NICE technology assessments for many of the interventions, the searches were limited to studies published after the cut-off dates of searching in the previous publications until August 2007. Dates were therefore from 2002 for capecitabine, from 2005 for docetaxel, from 2006 for paclitaxel, and from 2000 for trastuzumab and vinorelbine. For those technologies that are currently in the process of being appraised by NICE, searches were undertaken from 5 years before the date of the first license of the technology up until August 2007.
Study inclusion

All references identified by the literature searches were imported into a Reference Manager bibliographic database. After deleting duplicate references from the database, the title and (where available) abstract of each reference was screened systematically against the inclusion criteria reported in Table 1, to assess the relevance of the study for inclusion in the review. This was undertaken by one reviewer and checked by a second reviewer. Full manuscripts of all selected citations were retrieved and assessed by one reviewer and checked by a second reviewer against the inclusion criteria. Disagreements over study inclusion were resolved by consensus or if necessary through arbitration by a third reviewer.

Inclusion criteria

The planned inclusion/exclusion criteria for the systematic review are shown in Table 1. There was no restriction placed on the outcome measures used at this stage of the project.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Adults (over 18 years of age) with breast cancer (meeting specific disease stage criteria as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventions (alone or in combination according to licensed indications)</td>
<td>Gemcitabine for advanced/metastatic cancer</td>
</tr>
<tr>
<td></td>
<td>Docetaxel for early cancer</td>
</tr>
<tr>
<td></td>
<td>Paclitaxel for early cancer</td>
</tr>
<tr>
<td></td>
<td>Trastuzumab for early cancer</td>
</tr>
<tr>
<td></td>
<td>Bevacizumab for advanced/metastatic cancer</td>
</tr>
<tr>
<td></td>
<td>Lapatinib for advanced/metastatic cancer</td>
</tr>
<tr>
<td>Comparator</td>
<td>Any, including placebo</td>
</tr>
<tr>
<td>Design</td>
<td>Randomised controlled trials</td>
</tr>
</tbody>
</table>

Data extraction

Data were extracted from the included studies using a predesigned and piloted data extraction template to report information on the month and year of publication of each included study, the numbers of participants in each study arm (to allow identification of linked studies) and key outcome data from each study (see Appendix 2). Data from each study were extracted by one reviewer and checked by a second reviewer. Any disagreements were resolved by consensus, if necessary involving a third reviewer. Given the limited resources available it was only possible to extract data on the key outcomes of studies, giving preference to overall survival and any measures relating to time to disease progression. Full publications and abstracts were linked by reference to trial identifiers, trial arms, numbers of participants and any other available information. For each intervention, information on the date of any decisions made by NICE was also noted.
Interventions included

Six anti-cancer treatments for breast cancer were included in the review. Of these treatments three were for early breast cancer and three were for advanced or metastatic breast cancer. Interventions for early breast cancer were docetaxel, paclitaxel and trastuzumab and interventions for advanced or metastatic breast cancer were gemcitabine, lapatinib and bevacizumab. Docetaxel, paclitaxel, trastuzumab and gemcitabine have been appraised by NICE; two were used as monotherapy and two were used in combination with other treatments (Table 2). Bevacizumab and lapatinib have appraisals in process. To keep this review relevant to the NICE appraisal process, only these applications for each of the respective drugs were used. For the two interventions that are appraisals in process we have reported all of the treatment combinations identified in the literature for bevacizumab, and restricted lapatinib to the treatment combination described in the ongoing STA. For two of the anti-cancer drugs for early breast cancer an additional indication (as per the NICE guidance) required the diagnosis to include node-positive disease (Table 2).

<table>
<thead>
<tr>
<th>Breast cancer drug</th>
<th>Indications considered by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early breast cancer</td>
<td></td>
</tr>
<tr>
<td>Docetaxel</td>
<td>In combination with doxorubicin and cyclophosphamide for women diagnosed with operable node-positive breast cancer</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>As monotherapy for node-positive breast cancer</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>Monotherapy as second-line treatment</td>
</tr>
<tr>
<td>Advanced/metastatic cancer</td>
<td></td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>In combination with paclitaxel</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>In combination with capecitabine</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>In combination with capecitabine, docetaxel, paclitaxel or cyclophosphamide and methotrexate</td>
</tr>
</tbody>
</table>

a Lapatinib and bevacizumab are currently ‘appraisals in progress’; therefore, indications considered here reflect those identified in the literature for bevacizumab and the combination in NICE’s scope for lapatinib.

Included RCTs

The literature searches (including checking reference lists) generated 1556 references, whose titles and abstracts were inspected. The full process is documented in the flow chart in Appendix 3. A total of 71 publications were retrieved and screened for inclusion. Of these, 30 publications were excluded according to the review criteria and 41 publications of 18 RCTs included at least one arm of treatment meeting the indications noted in Table 2 and therefore met the inclusion criteria for the review. The breakdown in respect to each individual treatment was as follows: docetaxel, three RCTs; paclitaxel, two RCTs; trastuzumab, three RCTs; gemcitabine, two RCTs; lapatinib, three RCTs; bevacizumab, five RCTs.

Assessment of mean time between publication of abstracts and publication of full paper

Tables 3–8 illustrate, for each intervention, the mean time between publication of an abstract and
Results

In some cases a trial has reported key outcomes in abstract form but no full publication of these results has been identified; for these a calculation of the mean time between publication of the abstract and the present date has been made. Some trials have reported outcomes in more than one abstract and full publication; where this has occurred careful matching of each abstract with its respective full publication was made and a calculation undertaken for each. Matching was based on the trial identifier number, where available, numbers of participants, description of treatment arms and outcomes and any other information available. Calculation of time to publication was restricted to abstracts and corresponding full papers that reported measures of overall survival or aspects of disease progression. Abstracts that only reported baseline characteristics, adverse events or quality of life scores were not included in the analysis.

TABLE 3 Time between publication of abstract and publication of full paper for docetaxel trials

<table>
<thead>
<tr>
<th>Trial identifier and interventions</th>
<th>Publication details and status</th>
<th>Date published</th>
<th>Estimated time delay between abstract and full paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCIRG 001</td>
<td>(1) Nabholtz30 – Abstract (first interim analysis)</td>
<td>May 2002</td>
<td>37 months</td>
</tr>
<tr>
<td></td>
<td>(2) Martin31 – Full paper (second interim analysis)</td>
<td>June 2005</td>
<td></td>
</tr>
<tr>
<td>NSABP B-27</td>
<td>(1) Bear32 – Abstract</td>
<td>December 2001</td>
<td>These studies do not report a common outcome</td>
</tr>
<tr>
<td></td>
<td>(2) Bear33 – Full paper</td>
<td>November 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Bear34 – Abstract</td>
<td>December 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) Bear35 – Full paper</td>
<td>May 2006</td>
<td></td>
</tr>
<tr>
<td>GEPARDUO</td>
<td>(1) von Minckwitz36 – Abstract (reporting pathological response)</td>
<td>May 2002</td>
<td>5 months</td>
</tr>
<tr>
<td></td>
<td>(2) Jackisch37 – Full paper (reporting pathological response)</td>
<td>October 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) von Minckwitz38 – Full paper. No overall survival or time to progression data</td>
<td>April 2005</td>
<td>Not applicable (no corresponding abstract)</td>
</tr>
<tr>
<td></td>
<td>(4) Blohmer39 – Abstract (analysis of overall survival data)</td>
<td>March 2006</td>
<td>Time awaiting full publication = 18 months as of 31 August 2007</td>
</tr>
</tbody>
</table>

As can be seen in the above tables, of the 18 included trials only three trials (GEPARDUO,36,37 HERA48–51 and INT 014812,43) had a conference abstract and full publication sharing a common outcome (the HERA trial has two different abstracts linked to two full publications). Some of the trials reported interim analyses of their data in one publication (usually the abstract) and full analysis in another linked publication.30,31,40,41,45,46 In others, abstracts and full publications simply reported different outcomes from the range assessed within the trial.52–55,58,59,64,65 Therefore it would be inappropriate to include these in any overall assessment of length of time between publications.

Of the four sets of publications (from three trials) that reported the same outcomes in both an abstract and full publication, the time between the abstract and full publications was 5 months for two RCTs (docetaxel, GEPARDUO,36,37 trastuzumab, HERA48–49), 7 months for one RCT (trastuzumab, HERA50,51) and 19 months for the other RCT (paclitaxel, INT 014812,43). The mean time to full publication for these four sets of publications from the three trials is therefore 9 months.

Eleven trials were identified that have not currently published in a full publication the data presented in an abstract or conference proceeding. The duration between publication of the abstracts and the end of August 2007 varies from 3 months to 38 months (see Table 9). Seven trials have not published their data in full after at least 12 months.
TABLE 4 Time between publication of abstract and publication of full paper for paclitaxel trials

<table>
<thead>
<tr>
<th>Trial identifier and interventions</th>
<th>Publication details and status</th>
<th>Date published</th>
<th>Estimated time delay between abstract and full paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT 0148</td>
<td>(1) Henderson40 – Abstract (interim analysis)</td>
<td>May 1998</td>
<td>58 months</td>
</tr>
<tr>
<td>Cyclophosphamide, doxorubicin and paclitaxel vs cyclophosphamide and doxorubicin</td>
<td>(2) Henderson41 – Full paper</td>
<td>March 2003</td>
<td>19 months</td>
</tr>
<tr>
<td></td>
<td>(3) Sartor42 – Abstract (subgroup analysis 1)</td>
<td>June 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) Sartor43 – Full publication (subgroup analysis 1)</td>
<td>January 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) Hayes44 – Abstract (subgroup analysis 2)</td>
<td>June 2006</td>
<td>Time awaiting full publication = 15 months as of 31 August 2007</td>
</tr>
<tr>
<td>NSABP B-28</td>
<td>(1) Mamounas45 – Abstract (interim analysis)</td>
<td>November 2000</td>
<td>55 months</td>
</tr>
<tr>
<td>Cyclophosphamide, doxorubicin and paclitaxel vs cyclophosphamide and doxorubicin</td>
<td>(2) Mamounas46 – Full paper</td>
<td>June 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Mamounas47 – Abstract (adverse events)</td>
<td>June 2003</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

TABLE 5 Time between publication of abstract and publication of full paper for trastuzumab trials

<table>
<thead>
<tr>
<th>Trial identifier and interventions</th>
<th>Publication details and status</th>
<th>Date published</th>
<th>Estimated time delay between abstract and full paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERA</td>
<td>(1) HERA group48 – Abstract (interim analysis)</td>
<td>May 2005</td>
<td>5 months</td>
</tr>
<tr>
<td>Trastuzumab vs observation</td>
<td>(2) Piccart-Gebhart49 – Full paper (interim analysis)</td>
<td>October 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Smith50 – Abstract</td>
<td>June 2006</td>
<td>7 months</td>
</tr>
<tr>
<td></td>
<td>(4) Smith51 – Full paper</td>
<td>January 2007</td>
<td></td>
</tr>
<tr>
<td>BCIRG 006</td>
<td>(1) Slamon52 – Abstract (first interim analysis)</td>
<td>December 2005</td>
<td>Time awaiting full publication of most recent abstract (2) = 5 months as of 31 August 2007</td>
</tr>
<tr>
<td>Doxorubicin and cyclophosphamide plus docetaxel vs doxorubicin and cyclophosphamide plus docetaxel plus trastuzumab, vs docetaxel plus carboplatin plus trastuzumab (TCH)</td>
<td>(2) Slamon53 – Abstract (second interim analysis)</td>
<td>April 2007</td>
<td></td>
</tr>
<tr>
<td>PACS 04</td>
<td>(1) Spielmann54 – Abstract</td>
<td>June 2006</td>
<td>Time awaiting full publication = 15 months as of 31 August 2007</td>
</tr>
<tr>
<td>Trastuzumab vs observation (second randomisation following adjuvant treatments)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

since the abstract data were presented, and four of these remain unpublished after 21 months or more. The data in Table 9 are presented under subcategories of the interventions evaluated in the trials, showing that the trials for the two drugs gemcitabine and bevacizumab have the longest time without full publication. The range of results found in this investigation makes it difficult to establish what an estimated time to publication for these sorts of drugs might be. The mean time awaiting publication for these drugs is 16.5 months, to the end of August 2007. This estimate is based on a small sample that has a large range (3–38 months). The calculation
TABLE 6 Time between publication of abstract and publication of full paper for gemcitabine trials

<table>
<thead>
<tr>
<th>Trial identifier and interventions</th>
<th>Publication details and status</th>
<th>Date published</th>
<th>Estimated time delay between abstract and full paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>JHQG Gemcitabine and paclitaxel vs paclitaxel</td>
<td>(1) O’Shaughnessy55 – Abstract</td>
<td>June 2003</td>
<td>Time awaiting full publication of most recent abstract (3) = 38 months as of 31 August 2007</td>
</tr>
<tr>
<td></td>
<td>(2) Albain56 – Abstract</td>
<td>July 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Moinpour57 – Abstract</td>
<td>July 2004</td>
<td></td>
</tr>
<tr>
<td>B9E-MC-S197 Gemcitabine and paclitaxel (two groups) vs gemcitabine and docetaxel</td>
<td>(1) Khoo58 – Abstract (no efficacy data)</td>
<td>July 2004</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>(2) Khoo59 – Full paper</td>
<td>August 2006</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7 Time between publication of abstract and publication of full paper for lapatinib trials

<table>
<thead>
<tr>
<th>Trial identifier and interventions</th>
<th>Publication details and status</th>
<th>Date published</th>
<th>Estimated time delay between abstract and full paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00078572 Lapatinib plus capecitabine vs capecitabine</td>
<td>(1) Geyer60 – Full publication (interim data)</td>
<td>December 2006</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>(2) Geyer61 – Abstract</td>
<td>June 2007</td>
<td>Time awaiting full publication (from abstract) = 3 months as of 31 August 2007</td>
</tr>
<tr>
<td>Sherill Lapatinib plus capecitabine vs capecitabine</td>
<td>(1) Sherrill62 – Abstract</td>
<td>June 2007</td>
<td>Time awaiting full publication = 3 months as of 31 August 2007</td>
</tr>
<tr>
<td>Cameron Lapatinib plus capecitabine vs capecitabine</td>
<td>(1) Cameron63 – Abstract</td>
<td>December 2006</td>
<td>Time awaiting full publication = 9 months as of 31 August 2007</td>
</tr>
</tbody>
</table>

does not take into account any differences in the interventions, the manufacturers or the trial sponsors and any publication bias due to positive or negative results. However, it would appear that for the majority of the trials there is at least a 12-month delay for full publication, to the end of August 2007.

Comparison of results of abstracts and full papers

Four sets of publications from three trials (GEPARDUO,56,57 HERA48–51 and INT 014842,43) reported the same outcome in an abstract and a full publication. Of these, only two (both sets of publications from the HERA trial48–51) reported data on overall survival and time to disease progression. Of the other two linked studies, one was a publication of a secondary outcome (pathological complete response36,57) and one was a subgroup analysis of radiotherapy delivery.42,43 Because of the limitations of this review as a short report, these last two outcomes were not data extracted. The interim analysis of data in the HERA trial48,49 for overall survival and for time to disease progression was the same in the abstract and the linked full publication. The 2-year follow-up analysis of data from patients receiving a years’ treatment in the HERA trial50,51 was also the same in the abstract and the corresponding full publication.

Trials reporting interim results in abstracts and final results in full publication

Outcomes reported within linked publications in which one paper reported interim results and one reported full results have also been investigated
<table>
<thead>
<tr>
<th>Trial identifier and interventions</th>
<th>Publication details and status</th>
<th>Date published</th>
<th>Estimated time delay between abstract and full paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab plus capecitabine vs capecitabine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Miller64 – Abstract (baseline data only)</td>
<td>December 2002</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>(2) Miller65 – Full paper</td>
<td>February 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overmoyer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab plus docetaxel vs docetaxel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Overmoyer66 – Abstract (reports tumour size)</td>
<td>July 2004</td>
<td>Time awaiting full publication since most recent abstract = 33 months as of 31 August 2007</td>
<td></td>
</tr>
<tr>
<td>(2) Overmoyer67 – Abstract (reports tumour size)</td>
<td>December 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab plus paclitaxel vs paclitaxel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Miller68 – Abstract</td>
<td>December 2005</td>
<td>Time awaiting full publication (from abstract (1) reporting overall survival data) = 21 months as of 31 August 2007</td>
<td></td>
</tr>
<tr>
<td>(2) Wagner69 – Abstract (quality of life outcomes)</td>
<td>December 2006</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Lyons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab plus docetaxel vs docetaxel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Lyons70 – Abstract (reports tumour size)</td>
<td>June 2006</td>
<td>Time awaiting full publication = 15 months as of 31 August 2007</td>
<td></td>
</tr>
<tr>
<td>Burstein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab plus cyclophosphamide and methotrexate vs cyclophosphamide and methotrexate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Burstein71 – Abstract (reports tumour size)</td>
<td>December 2005</td>
<td>Time awaiting full publication = 21 months as of 31 August 2007</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 9 Length of time since publication of trial data in abstract form to the end of August 2007

<table>
<thead>
<tr>
<th>Trial identifier</th>
<th>Time since abstract published</th>
<th>Statistical significance of trial results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docetaxel for early breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEPAIROU39</td>
<td>18 months</td>
<td>Not significant</td>
</tr>
<tr>
<td>Trastuzumab for early breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCIRG 00652,53</td>
<td>5 months</td>
<td>Significant</td>
</tr>
<tr>
<td>PACS 044</td>
<td>15 months</td>
<td>No overall survival data</td>
</tr>
<tr>
<td>Gemcitabine for advanced/metastatic breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JHQG55–57</td>
<td>38 months</td>
<td>Significant</td>
</tr>
<tr>
<td>Lapatinib for advanced/metastatic breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT0007857250,61</td>
<td>3 months</td>
<td>Not significant</td>
</tr>
<tr>
<td>Sherrill82</td>
<td>3 months</td>
<td>Significant</td>
</tr>
<tr>
<td>Cameron83</td>
<td>9 months</td>
<td>Not reported</td>
</tr>
<tr>
<td>Bevacizumab for advanced/metastatic breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyons70</td>
<td>15 months</td>
<td>Not reported</td>
</tr>
<tr>
<td>E210058,69</td>
<td>21 months</td>
<td>Significant</td>
</tr>
<tr>
<td>Burstein71</td>
<td>21 months</td>
<td>Not reported</td>
</tr>
<tr>
<td>Overmoyer66,67</td>
<td>33 months</td>
<td>Not reported</td>
</tr>
</tbody>
</table>
for direction of the effect shown. Although it would not be meaningful to compare the actual results of these publications, because one is clearly published at an interim point in time, it is meaningful to consider if the direction of the results is similar. Three trials reported interim data in an abstract and final data in a full publication. Two of these were trials of paclitaxel (INT0148; 40,41 NSABP-B28;45,46) and one was of docetaxel (BCIRG 001;30,31). Although the docetaxel trial BCIRG001 reported a second interim analysis rather than a full final analysis, it has been included here as it reports the same outcome measures as the abstract. The full paper acknowledges that a further analysis would be required to confirm and extend their estimated 5-year survival rate.31

Paclitaxel

Data presented for overall survival in the INT0148 trial40,41 were positive for treatment with paclitaxel in both the abstract40 and the full results.41 Observation of the data suggests that there was a better effect on survival at the point of the interim analysis than in the full publication (see Appendix 2 for further details). Time to disease progression was reported in the full publication. These data were not reported in the abstract, although it was stated that the addition of paclitaxel had a significant impact on disease-free survival. The NSABP-B28 trial45,46 reported no statistically significant differences between treatment arms in survival or death at the interim analysis in the abstract.45 There was a non-statistically significant reduction in the death rate reported in the full publication.46 Disease-free survival in this trial was reported as not statistically significantly different at the interim (abstract) analysis but statistically significantly different (in favour of paclitaxel) at the full analysis.

Docetaxel

The BCIRG 001 trial30,31 reported overall survival and time to disease progression as interim data in an abstract and full data in a peer-reviewed publication. For overall survival, the risk ratio (adjusted for node status) was not statistically significant in the abstract30 but had reached statistical significance by the 5-year results reported in the full publication.31 For disease-free survival, the risk ratios (adjusted for node status) presented in both the abstract and the full 5-year publication were statistically significant.

Direction of results reporting in abstract form

Of the 11 trials that are not yet published in a full publication (see Table 9), only six reported overall survival or an outcome measuring time to disease progression. In the small sample of RCTs considered here, the statistical significance of results did not appear to affect the likelihood of full publication of data previously reported in a conference abstract. Indeed, four of the six trials included here reported statistically significant results. Similarly, statistical significance did not appear to influence the length of time to publication (or to the present date for unpublished studies).

Ongoing trials

A number of trials in progress were identified in searches of the National Research Register and ClinicalTrials.gov, and these were assessed against the inclusion criteria for this review to see if they would be of relevance for any future update of this review. These trials are summarised in Appendix 4; some may be related to trials included in this review.
Chapter 5
Discussion

The methodology for this short report was developed with a focus on relevance to the NICE appraisal process, i.e. assessment of published RCTs. As such, we identified publications from literature searches in the same way as for a systematic review, with additional searching of websites. Other work in this area has taken a different approach, by identifying trials from registers and following up for publications, or by following all abstracts from particular conferences to see when they became fully published. Although these approaches are more comprehensive, time restrictions and the focus on the NICE appraisal process led us to adopt the different methodology discussed in Chapter 3.

There were 41 publications of 18 RCTs that met the inclusion criteria for this review: three RCTs for docetaxel; two for paclitaxel; three for trastuzumab; two for gemcitabine; three for lapatinib; and five for bevacizumab.

Time to publication

The main focus of this review was the calculation of time from conference abstract to full publication for RCTs of paclitaxel, docetaxel, gemcitabine, trastuzumab, lapatinib and bevacizumab.

For docetaxel, time to full publication varied from 5 months for pathological response outcomes in the GEPARDUO trial, to 37 months for publication of interim survival in another trial. Overall survival for the GEPARDUO trial was published in March 2006 as a conference abstract but has not yet been published in full. The other trial had two conference abstracts and two full papers, but these did not report the same outcome measures and so could not be compared directly.

The publication delay for paclitaxel trials tended to be longer than that for docetaxel trials, although it was difficult to compare the abstracts and full publications directly as both paclitaxel trials reported interim analyses in abstracts and final analyses in the full papers. For one trial the delay between the interim analysis appearing in an abstract and the final analysis being published in a full paper was 58 months, and there was a 55-month delay in the other trial. One set of subgroup analyses was published more quickly (19 months), and another was still unpublished after 15 months as of August 2007.

For one of the trastuzumab trials there was only a 5-month delay between the interim analyses being published in a conference abstract and as a full paper, and a 7-month delay between the abstract and full publication of the 2-year follow-up analysis of patients who received a year of treatment. However, other trials have been published only as abstracts so far, with delays of 5–21 months as of August 2007. One of the gemcitabine RCTs identified by the literature searches has not yet been published in full, despite a delay of 38 months since the most recent abstract was presented at a conference. For the other identified gemcitabine trial, both a full paper and an abstract were identified, but the abstract did not present any efficacy data.

The two most recent breast cancer drugs to be in the process of NICE appraisal are lapatinib and bevacizumab. Although one full paper was identified for a lapatinib trial, this only presented interim analysis. A more recent abstract of this trial and two of another trial had not been published in full as of August 2007. Only one full paper was presented for a bevacizumab trial, and the only abstract linked with this presented baseline data rather than any results. None of the other four bevacizumab trials have yet been published in full, with delays in publication of between 15 and 33 months as of August 2007.

Overall, very few of the identified trials had both a conference abstract and a full publication that reported the same results. Mean time to publication for the three paclitaxel and docetaxel trials that had both an abstract and a full paper reporting the same outcome measures was 9 months. Mean time without full publication for those trials that have only published as abstracts was 16.5 months to the end of August 2007. The longest delays in publication were for trials investigating gemcitabine (38 months) or bevacizumab (33 months).
Direction of effect

Overall survival and time to disease progression were of particular interest in this review as they are the measures most commonly used by NICE for analysis of an anti-cancer drug’s effectiveness. Only three trials reported the same outcome measures in both abstracts and a full publication, and only two sets of abstracts and publications (from the HERA trastuzumab trial) reported outcomes of overall survival and time to disease progression. For the HERA trial, the overall survival and time to disease progression results were consistent between the abstracts and corresponding full publications.

Trials that published interim analysis in an abstract and final analysis in a full publication were examined separately from those discussed above. There were two paclitaxel trials and one docetaxel trial that fell into this category. One of the paclitaxel trials (INT0148) reported a positive effect on survival in both the abstract and the full publication. The other paclitaxel trial (NSABP B-28) reported no significant difference at either the interim analysis or the final analysis. Disease-free survival was reported to be statistically better with paclitaxel by the time of the final analysis but not at the time of the interim analysis. The docetaxel trial reported statistically significant benefits of treatment with docetaxel in terms of overall survival and time to disease progression in both the abstract and full publication. The trials were therefore consistent in the direction of effect reported in the abstracts and full publications, with the exception of disease-free survival in the NSABP B-28 trial.

Overall, it would appear that, when linkage of abstracts and full publications was possible, the results presented in the abstracts were in line with the results presented later in a full publication. It is important to note that this is based on observation of the data only (no statistical analysis was undertaken) and on a small sample of trials.

Limitations of the report

This short report was written within a tight timescale and as such there were a number of limitations that restricted the review at key stages. It was not possible to include studies beyond those drug combinations and patient groups appraised under the NICE STA programme. This restricted the available evidence and, although it allowed us to focus on the types of published evidence available to NICE under the STA programme, it resulted in a rather small sample size. No statistical analysis was performed because of the small sample size and the short time frame for this report.

Data extraction resources were focused on the key outcomes of overall survival and disease-free survival or time to progression. These were thought to be of most relevance to the NICE review process, but consideration of other outcomes could have yielded interesting data if resources had allowed.

We calculated the mean time from abstract to full publication or to the time of writing if no full publication had occurred, i.e. the data were censored at the time of this analysis. This is a limitation of the project as mean times would be affected by the subsequent publication of full articles if the analysis were to be repeated at a later date.
Chapter 6
Conclusions

The aim of this short report was to identify the delay between conference abstracts and full publication of results from RCTs of new anti-cancer agents for breast cancer. The secondary aim was to identify any apparent biases in publication and reporting.

Given that the searches identified 18 relevant RCTs it was rather surprising that only three of these had one or more full papers that reported the same outcome measures (and stage of analysis) as an earlier conference abstract. The trials that had fully published their results did so within a mean time frame of 9 months, which seems reasonable. Of the trials that have not yet published in full following earlier conference presentations, a longer mean delay of 16.5 months as of August 2007 was found. There did not appear to be any particular biases in terms of whether statistically significant results were more likely to be fully published than non-significant ones. However, a limitation here is the small number of studies included in this report and the consequent lack of statistical analysis.

This report has examined the data that is publicly available, of the kind that would be included in a systematic review of the literature carried out as part of the NICE appraisal process. Docetaxel, paclitaxel and trastuzumab all had at least one full publication reporting overall survival prior to NICE guidance being issued (although the overall survival data for the HERA trial appears to have been only interim analysis). For gemcitabine, no fully published data on overall survival was published prior to NICE guidance being produced. At the time of writing, NICE had not yet issued guidance on the use of bevacizumab or lapatinib.

A further important source of evidence for the evidence review groups and NICE’s appraisal committee is the manufacturer’s submission. Such submissions usually contain unpublished data of trials that may be available publicly only as conference abstracts. Although the body of evidence reviewed by NICE therefore extends beyond that in the public domain, there is still the issue of whether or not such data is of the same quality as that published in peer-reviewed journals.

Research recommendations

- Extension of this work to other anti-cancer drugs that have been through NICE’s MTA or earlier technology appraisal processes. With a larger sample size than that in the present report, investigation into the effect of publication delay on decision-making might be feasible.
- Investigation into the reasons for lengthy delays to full publication noted for some trials.
- Investigation of publications appearing as ‘online early’, which may not appear in databases such as MEDLINE until a later date.
- Investigation of trials that publish as full papers but which do not have associated conference abstracts.
Acknowledgements

We are grateful to the following experts for reviewing the protocol and a draft of the report: Ms Suzie Paisley, School of Health and Related Research, University of Sheffield; Dr Stephen Johnston, Royal Marsden Hospital, Sutton; and Dr Sally Hopewell, the UK Cochrane Centre, Oxford.

We would also like to acknowledge Jackie Bryant of SHTAC, Wessex Institute, University of Southampton, for reviewing a draft of the report; Professor Andrew Clegg, Director of SHTAC, Wessex Institute, University of Southampton, for writing the research protocol; and Ms Liz Hodson, Information Officer, Wessex Institute, University of Southampton, for retrieving papers for inclusion in the systematic review.

This short report was commissioned by the HTA Programme. The authors have no personal or unit pecuniary relationship with sponsors.

Contribution of authors

Andrea Takeda co-ordinated the project, developed the protocol and background, performed the inclusion screening, and drafted the report. Emma Loveman developed the protocol and background, performed the inclusion screening and data extraction, and drafted the report. Petra Harris developed the background, performed the inclusion screening and data extraction, and drafted the report. Debbie Hartwell performed the inclusion screening and data extraction, and drafted the report. Karen Welch carried out the literature search.

22. de Bellefeuille C, Morrison C, Tannock I. The fate of abstracts submitted to a cancer meeting: factors...

40. Henderson IC, Berry D, Demetri GD. Improved disease free and overall survival from the addition of sequential paclitaxel but not from the escalation of doxorubicin dose level in the adjuvant chemotherapy of patients with node-positive primary breast cancer. *Proc Am Soc Clin Oncol* 1998;17:390A.

48. The HERA study team. Trastuzumab (H: Herceptin (R)) following adjuvant chemotherapy (CT) significantly improves disease-free survival (DFS) in early breast cancer (BC) with HER2 overexpression: the HERA Trial. *Breast Cancer Res Treat* 2005;94:59.

50. Smith IE, on behalf of the HERA study team. Trastuzumab following adjuvant chemotherapy in HER2-positive early breast cancer (HERA trial): disease-free and overall survival after 2 year median follow-up. ASCO Annual Meeting, Scientific Special Session, 2006. URL: www.asco.org/portal/site/ASCO/template.RAW/menuitem.34d60f5624ba07fd506fe310ee7a01d?javax.portlet.jsp=0e116779df458209ada2be0ace37a01d_ws_RW&javax.portlet.prp_0e116779df458209ada2be0ace37a01d_viewID=abst_detail_rawview&javax.portlet.begCacheTok=com.vignette.cachetoken&javax.portlet.endCacheTok=com.vignette.cachetoken&kindex=nn&confID=40&abstractID=90003.

Appendix 1

MEDLINE search strategy for gemcitabine

Other interventions used the same search strategy, with replacement of drug names. The MEDLINE strategy was adapted for the other databases searched.

<table>
<thead>
<tr>
<th>Database and years searched</th>
<th>Searched 31 July 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDLINE 1996–2007</td>
<td>1 exp breast neoplasms/(74210)</td>
</tr>
<tr>
<td></td>
<td>2 (breast$adj4 (cancer$or tumor$or malignan$or carcinoma$or neoplasm$or oncolog$or sarcoma$or adenocarcinoma$)).ti,ab. (73935)</td>
</tr>
<tr>
<td></td>
<td>3 1 or 2 (90093)</td>
</tr>
<tr>
<td></td>
<td>4 randomized controlled trial.pt. (140941)</td>
</tr>
<tr>
<td></td>
<td>5 exp randomized controlled trials/(41205)</td>
</tr>
<tr>
<td></td>
<td>6 random allocation/(23124)</td>
</tr>
<tr>
<td></td>
<td>7 double blind method/(47144)</td>
</tr>
<tr>
<td></td>
<td>8 single blind method/(8464)</td>
</tr>
<tr>
<td></td>
<td>9 ((singl$or doubl$or trebl$or tripl$) adj3 (blind$or mask$)).ti,ab. (44877)</td>
</tr>
<tr>
<td></td>
<td>10 placebo$.ti,ab. (58048)</td>
</tr>
<tr>
<td></td>
<td>11 placebos/(8229)</td>
</tr>
<tr>
<td></td>
<td>12 random$.ti,ab. (248330)</td>
</tr>
<tr>
<td></td>
<td>13 or/4–12 (338240)</td>
</tr>
<tr>
<td></td>
<td>14 3 and 13 (7691)</td>
</tr>
<tr>
<td></td>
<td>15 (gemcitabine or gemcytabine or gemzar).mp. (4167)</td>
</tr>
<tr>
<td></td>
<td>16 14 and 15 (53)</td>
</tr>
<tr>
<td></td>
<td>17 limit 16 to humans (53)</td>
</tr>
<tr>
<td></td>
<td>18 limit 17 to yr = “2006 – 2007” (8)</td>
</tr>
<tr>
<td></td>
<td>19 from 18 keep 1–8 (8)</td>
</tr>
</tbody>
</table>

Search dates for other drugs

- 2002–2007: Capecitabine
- 2005–2007: Docetaxel
- 2006–2007: Paclitaxel
- 2000–2007: Vinorelbine
- 2000–2007: Trastuzumab
- 5 years pre-license – 2007: Bevacizumab
- 5 years pre-license – 2007: Lapatinib
Appendix 2

Data extractions

Docetaxel (Taxotere®, Sanofi-Aventis)

TABLE 10 Docetaxel: data extractions from STA (early breast cancer)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCIRG 001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin et al., 2005</td>
<td>Intervention: n = 745 TAC (docetaxel plus doxorubicin and cyclophosphamide)</td>
<td>Overall survival: at 5 years 87% of TAC vs 81% of FAC patients, with a 30% reduction in risk of death for TAC (hazard ratio 0.70, 95% CI 0.53–0.91, p < 0.008)</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: June</td>
<td>Comparator: n = 746 FAC (fluorouracil plus doxorubicin and cyclophosphamide)</td>
<td>Time to disease progression: disease-free survival at 5 years was 75% for TAC vs 68% for FAC patients, with a 28% reduction in the risk of relapse (hazard ratio 0.72, 95% CI 0.59–0.88, p = 0.001) for the TAC group</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery.</td>
</tr>
<tr>
<td>Full publication: second interim analysis (median follow-up 55 months)</td>
<td></td>
<td></td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: BCIRG 001 (Breast Cancer International Research Group)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nabholtz et al., 2002</td>
<td>Intervention: n = 745 TAC (docetaxel plus doxorubicin and cyclophosphamide)</td>
<td>Overall survival: RR TAC/FAC (95% CI):</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: May</td>
<td>Comparator: n = 746 FAC (fluorouracil plus doxorubicin and cyclophosphamide)</td>
<td>Adjusted for nodal status: 0.76 (0.54–1.07), p = 0.11</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery.</td>
</tr>
<tr>
<td>Abstract (interim analysis)</td>
<td></td>
<td>Unadjusted: 0.75 (0.53–1.06), p = 0.10</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: BCIRG 001</td>
<td>Patients were stratified by nodes (1–3, 4+)</td>
<td>1–3 nodes: 0.46 (0.26–0.80), p = 0.006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4+ nodes: 1.08 (0.69–1.69), p = 0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time to disease progression: disease-free survival RR TAC/FAC (95% CI):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjusted for nodal status: (first end point) 0.68 (0.54–0.86), p = 0.0011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unadjusted: 0.67 (0.53–0.85), p = 0.0008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–3 nodes: 0.50 (0.35–0.72), p = 0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4+ nodes: 0.86 (0.63–1.17), p = 0.33</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; RR, relative risk.
Table 11: Docetaxel: identified from new searches

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B-27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bear et al., 2006<sup>33</sup></td>
<td>$n = 2411$ randomised, $n = 2404$ with end point data</td>
<td></td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: May</td>
<td></td>
<td>Overall survival (reviewer reported as group population minus deaths): group 1: 645 (80%), group 2: 647 (81%), group 3: 628 (79%). No statistically significant differences between groups</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td>Full publication (first published report)</td>
<td>Group 1: $n = 802$ doxorubicin and cyclophosphamide for four cycles followed by surgery</td>
<td>Addition of docetaxel had no significant impact</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: NSABP B-27</td>
<td>Group 2: $n = 803$ doxorubicin and cyclophosphamide for four cycles plus docetaxel followed by surgery</td>
<td>Time to disease progression: no statistically significant differences between groups for DFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: $n = 799$ doxorubicin and cyclophosphamide followed by surgery followed by docetaxel</td>
<td>Improved DFS for preoperative docetaxel but not for postoperative in patients with clinical partial response after doxorubicin and cyclophosphamide (HR = 0.71, 95% CI 0.55–0.91, $p = 0.007$)</td>
<td></td>
</tr>
<tr>
<td>Bear et al., 2004<sup>34</sup></td>
<td>$n = 2411$ randomised, no breakdown</td>
<td></td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: December</td>
<td></td>
<td>Overall survival: not reported</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td>Abstract</td>
<td>Intervention: preoperative doxorubicin/ cyclophosphamide plus preoperative docetaxel</td>
<td>Time to disease progression: not reported</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: NSABP B-27</td>
<td>Comparator 1: preoperative doxorubicin/ cyclophosphamide</td>
<td>Results of tumour size and key characteristics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparator 2: preoperative doxorubicin/ cyclophosphamide plus postoperative docetaxel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bear et al., 2003<sup>36</sup></td>
<td>Intervention: $n = 805$, preoperative doxorubicin/ cyclophosphamide plus docetaxel (group 2)</td>
<td>Overall survival: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: November</td>
<td></td>
<td>Time to disease progression: not reported</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td>Full publication</td>
<td>Comparators: $n = 804$, preoperative doxorubicin/ cyclophosphamide (group 1); $n = 802$, preoperative doxorubicin/ cyclophosphamide plus postoperative docetaxel (group 3)</td>
<td>Reports on clinical and pathological complete and partial response rates and tumour size – follow-up data may report overall survival and DFS</td>
<td>Decision prior to this publication: no</td>
</tr>
</tbody>
</table>
Table 11: Docetaxel: identified from new searches

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bear et al., 2001<sup>32</sup></td>
<td>n = 2500 randomised</td>
<td>Overall survival: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: December</td>
<td>Intervention: preoperative doxorubicin/cyclophosphamide (group 1)</td>
<td>Time to disease progression: not reported</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td>Abstract</td>
<td>Comparators: preoperative doxorubicin/cyclophosphamide followed by four cycles of preoperative docetaxel (group 2); preoperative doxorubicin/cyclophosphamide followed by postoperative docetaxel (group 3)</td>
<td>No data presented</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: NSABP B-27</td>
<td>All received tamoxifen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GEPARDUO

<table>
<thead>
<tr>
<th>von Minckwitz et al., 2005<sup>38</sup></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Month: April</td>
<td>Intervention: n = 455 randomised, doxorubicin plus docetaxel every 14 days for four cycles with filgrastim support (group 1)</td>
<td>Overall survival and time to disease progression: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Full publication (first phase of trial)</td>
<td>Comparator (detail): n = 458 randomised, doxorubicin plus cyclophosphamide every 21 days followed by docetaxel every 21 days for four cycles (group 2)</td>
<td>Disease progression or occurrence of new lesion detected in 14 in group 1 (3.2%) and 16 in group 2 (3.7%)</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td>Trial identifier: GEPARDUO</td>
<td></td>
<td>Decision prior to this publication: no</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blohmer et al., 2006<sup>39</sup></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Month: March</td>
<td>Intervention: n = 455 randomised, doxorubicin plus docetaxel every 14 days for four cycles with G-CSF (filgrastim) support (group 1)</td>
<td>Overall survival: 57 deaths (group 1) vs 48 deaths (group 2) at 5-year follow-up; 5-year overall survival rates are estimated at 81.0% (group 1) vs 84.8% (group 2), log-rank p = 0.24</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Abstract (first analysis of event-free and overall survival)</td>
<td>Comparator: n = 458 randomised, doxorubicin plus cyclophosphamide every 21 days followed by docetaxel every 21 days for four cycles (group 2)</td>
<td>5-year event-free survival rate was 65.0% (group 1) vs 66.1% (group 2), log-rank p = 0.66.</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td>Trial identifier: GEPARDUO</td>
<td>Time to disease progression: not reported</td>
<td>Decision prior to this publication: no</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 11 Docetaxel: identified from new searches (continued)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>von Minckwitz et al., 2002<sup>66</sup></td>
<td>Intervention: n = 198 randomised, 8-week schedule of doxorubicin (Adriamycin<sup>®</sup>, Pharmacia SpA) plus docetaxel with G-CSF (filgrastim) support (group 1); tamoxifen given simultaneously</td>
<td>Overall survival: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: May Abstract (second interim analysis, n = 395)</td>
<td>Comparator: n = 197 randomised, sequential 24-week schedule of doxorubicin plus cyclophosphamide followed by docetaxel (group 2); tamoxifen given simultaneously</td>
<td>Time to disease progression: not reported</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Jackisch et al., 2002<sup>17</sup></td>
<td>Intervention: n = 191, four cycles of doxorubicin + docetaxel ± tamoxifen (group 1)</td>
<td>Overall survival: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: October Full paper (second interim analysis)</td>
<td>Comparator: n = 178, sequential doxorubicin/cyclophosphamide followed by docetaxel over 24 weeks (group 2)</td>
<td>Time to disease progression: not reported</td>
<td>Decision: docetaxel, when given concurrently with doxorubicin and cyclophosphamide (the TAC regimen) in accordance with its licensed indication, is recommended as an option for the treatment of women with early node-positive breast cancer following surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results on pathological remission and toxicity</td>
<td>Decision prior to this publication: no</td>
</tr>
</tbody>
</table>

ADOC, adriamycin + docetaxel; CI, confidence interval; DFS, disease-free survival; G-CSF, granulocyte-colony stimulating factor; HR, hazard ratio.
Paclitaxel (Taxol®, Bristol-Myers Squibb; Paxene®, Norton Healthcare)

<table>
<thead>
<tr>
<th>Table 12 Paclitaxel: from STA (early breast cancer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication details</td>
</tr>
<tr>
<td>INT 0148 (intergroup trial) and CALGB-9344</td>
</tr>
<tr>
<td>Henderson et al., 2003</td>
</tr>
<tr>
<td>Month: March</td>
</tr>
<tr>
<td>Full publication</td>
</tr>
<tr>
<td>Trial identifier: INT 0148 (intergroup trial) and CALGB-9344</td>
</tr>
<tr>
<td>Henderson et al., 1998</td>
</tr>
<tr>
<td>Month: May</td>
</tr>
<tr>
<td>Abstract (first interim analysis)</td>
</tr>
<tr>
<td>Trial identifier: INT 0148/CALGB-9344</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
Table 12: Paclitaxel: from STA (early breast cancer) (continued)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sartor et al., 2003</td>
<td>n = 1111, data for n = 996</td>
<td>Overall survival: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: June</td>
<td></td>
<td>Time to disease progression: not reported</td>
<td>Decision: paclitaxel, within its licensed indication, is not recommended for the adjuvant treatment of women with early node-positive breast cancer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Comparator: four cycles of doxorubicin/Cytoxan (Neosar; cyclophosphamide) – 60, 75 or 90 mg/m² – followed by four cycles of paclitaxel</td>
<td>Data for radiotherapy delivery only</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: CALGB-9344 (INT 0148)</td>
<td>Subgroup analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes et al., 2006</td>
<td>n ~ 2800, two sets of 750 patients randomly selected – set 1 to test hypothesis, set 2 for validation</td>
<td>Overall survival: not reported, refers to original publication</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: June</td>
<td></td>
<td>Time to disease progression: not reported</td>
<td>Decision: paclitaxel, within its licensed indication, is not recommended for the adjuvant treatment of women with early node-positive breast cancer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Intervention: four cycles of doxorubicin/cyclophosphamide – 60, 75 or 90 mg/m² – followed by four cycles of paclitaxel</td>
<td>Only for both sets combined, significant differences in 5-year DFS rates (95% CI) for paclitaxel vs no paclitaxel by HER2 and estrogen receptor (ER)</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: CALGB-9344</td>
<td>Subgroup analysis</td>
<td>Benefits of adding paclitaxel greater for HER2+ tumours with ER+</td>
<td></td>
</tr>
<tr>
<td>Sartor et al., 2005</td>
<td>Subgroups: mastectomy patients treated with radiotherapy (RT), mastectomy patients not treated with RT and patients with breast-conserving therapy and RT; also subgroups by number of nodes</td>
<td>Overall survival: not reported</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: January</td>
<td></td>
<td>Time to disease progression: not reported</td>
<td>Decision: paclitaxel, within its licensed indication, is not recommended for the adjuvant treatment of women with early node-positive breast cancer</td>
</tr>
<tr>
<td>Full publication</td>
<td></td>
<td>Results on 5-year cumulative incidence of isolated locoregional recurrence</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: INT 0148/ CALGB-9344</td>
<td>Subgroup analysis</td>
<td>Comparator: doxorubicin/cyclophosphamide – 60, 75 or 90 mg/m²</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 12 Paclitaxel: from STA (early breast cancer)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B-28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamounas et al., 2005(^{46})</td>
<td>Intervention: (n = 1531), doxorubicin plus cyclophosphamide plus paclitaxel (group 1)</td>
<td>Overall survival: a non-statistically significant 7% reduction in death rate with addition of paclitaxel (RR 0.93, 95% CI 0.78–1.12, (p = 0.46)); 5-year overall survival rate 85% (±2%) for both groups</td>
<td>Date: September 2006</td>
</tr>
<tr>
<td>Month: June</td>
<td>Comparator: (n = 1529), doxorubicin plus cyclophosphamide (group 2)</td>
<td>Time to disease progression: addition of paclitaxel significantly reduced the risk of a DFS event by 17% (RR 0.83, 95% CI 0.72–0.95, (p = 0.006)); 5-year DFS 76% (±2%) for group 1 vs 72% (±2%) for group 2</td>
<td>Decision: paclitaxel, within its licensed indication, is not recommended for the adjuvant treatment of women with early node-positive breast cancer</td>
</tr>
<tr>
<td>Full publication</td>
<td></td>
<td></td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: NSABP B-28 (national surgical adjuvant breast and bowel cancer project)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mamounas et al., 2003\(^{47}\)	Randomised: \(n = 3060\)	Overall survival: not reported	Date: September 2006
Month: June	Intervention: doxorubicin plus cyclophosphamide plus paclitaxel	Time to disease progression: not reported	Decision: paclitaxel, within its licensed indication, is not recommended for the adjuvant treatment of women with early node-positive breast cancer
Abstract	Comparator: doxorubicin plus cyclophosphamide	(As of 18 December 2002, 472 deaths and 827 events reported)	Decision prior to this publication: no
Trial identifier: NSABP B-28			

Mamounas 2000\(^{45}\)	Randomised: \(n = 3060\)	Overall survival: no statistically significant difference between arms for survival or death (deaths: 113 group 2/136 group 1; relative risk 1.0, 95% CI 0.78–1.27, \(p = 0.98\)); Estimated survival at 36 months is 92% group 2 and 90% group 1	Date: September 2006
Month: November	Intervention: four cycles of doxorubicin and cyclophosphamide followed by four cycles of paclitaxel (group 1)	Time to disease progression: no statistically significant difference between arms for DFS (events: 282 group 2/269 group 1; relative risk 0.93, 95% CI 0.78–1.10, \(p = 0.38\)); Estimated DFS at 36 months is 81% for both arms	Decision: paclitaxel, within its licensed indication, is not recommended for the adjuvant treatment of women with early node-positive breast cancer
Abstract	Comparator: four cycles of doxorubicin and cyclophosphamide (group 2)		Decision prior to this publication: no
Trial identifier: NSABP B-28 (interim analysis)			

CI, confidence interval; DFS, disease-free survival.
Trastuzumab

TABLE 13 Trastuzumab: from STA (early breast cancer)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piccart-Gebhart et al., 200549</td>
<td>Intervention group 1: $n = 1694$, 2 years of trastuzumab – not reported here</td>
<td>Overall survival: 96.0% trastuzumab group vs 95.1% observation group; hazard ratio 0.76 (95% CI 0.47–1.23, $p = 0.26$)</td>
<td>Date: August 2006</td>
</tr>
<tr>
<td>Month: October</td>
<td>Intervention group 2: $n = 1694$, 1 year of trastuzumab</td>
<td>Time to disease progression: DFS 127 events in the trastuzumab group vs 220 events in the observation group; hazard ratio for risk of an event in trastuzumab group vs observation group 0.54 (95% CI 0.43–0.67, log-rank test $p < 0.0001$) – equivalent to DFS of 8.4% points at 2 years (95% CI 2.1–14.8)</td>
<td>Decision: trastuzumab is recommended as a treatment option for women with early-stage HER2-positive breast cancer following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable)</td>
</tr>
<tr>
<td>Full publication (interim analysis – median 1-year follow-up)</td>
<td>Comparator: $n = 1693$, observation</td>
<td></td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: HERA (BIG 01–01)</td>
<td></td>
<td>Hazard ratio for time to distant recurrence for trastuzumab vs observation 0.49 (95% CI 0.38–0.63, $p < 0.0001$) – reduced rate of recurrence approximately 50% higher for trastuzumab</td>
<td></td>
</tr>
<tr>
<td>The HERA study team, 200548</td>
<td>$n = 5090$ enrolled</td>
<td>Overall survival: at 2 years 96.0% (1 year of trastuzumab) vs 95.1% (observation); hazard ratio 0.76 (95% CI 0.47–1.23, $p = 0.26$). Events 29 (1 year of trastuzumab) vs 37 (observation)</td>
<td>Date: August 2006</td>
</tr>
<tr>
<td>Month: May</td>
<td>Intervention group 1: $n = 1694$, 1 year of trastuzumab</td>
<td>Time to disease progression: DFS at 2 years 85.8% (1 year of trastuzumab) vs 77.4% (observation); hazard ratio 0.54 (95% CI 0.43–0.67, $p < 0.0001$). Events 127 (1 year of trastuzumab) vs 220 (observation)</td>
<td>Decision: trastuzumab is recommended as a treatment option for women with early-stage HER2-positive breast cancer following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable)</td>
</tr>
<tr>
<td>Abstract (interim analysis)</td>
<td>Intervention group 2: $n = not reported$, 2 years of trastuzumab</td>
<td></td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: HERA (BIG 01–01)</td>
<td>Comparator: $n = 1693$, observation</td>
<td>2-year trastuzumab arm improved DFS compared with observation ($p < 0.0001$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DFS at 2 years 89.7% (1 year of trastuzumab) vs 81.8% (observation); hazard ratio 0.51 (95% CI 0.40–0.66, $p < 0.0001$). Events 98 (1 year of trastuzumab) vs 179 (observation)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 13 Trastuzumab from STA: (early breast cancer)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith, 2006<sup>10</sup></td>
<td>n = 5102 enrolled</td>
<td>2-year median follow-up time of 1 year of treatment – overall survival: hazard ratio 0.59 (95% CI 0.43–0.82, (p = 0.0016)); events 59 vs 90; 2 year 96.9% vs 93.6%</td>
<td>Date: August 2006; Decision: trastuzumab is recommended as a treatment option for women with early-stage HER2-positive breast cancer following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable)</td>
</tr>
<tr>
<td>Month: June</td>
<td>Intervention group 1: n = 1703, 1 year of trastuzumab</td>
<td>Comparator: n = 1698, observation</td>
<td>Decision prior to this publication: yes</td>
</tr>
<tr>
<td>Abstract</td>
<td>Intervention group 2: 2 years of trastuzumab, not reported here</td>
<td>2-year median follow-up time of 1 year of treatment – disease progression: DFS hazard ratio 0.60 (95% CI 0.50–0.71, (p = 0.0001)); events 218 vs 321; 2 year 86.1% vs 78.0%</td>
<td></td>
</tr>
<tr>
<td>Trial identifier: HERA</td>
<td></td>
<td>TTR: hazard ratio 0.57 (95% CI 0.48–0.69, (p = 0.0001)); events 198 vs 305; 2 year 87.3% vs 79.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTDR: hazard ratio 0.56 (95% CI 0.46–0.68, (p = 0.0001)); events 160 vs 255; 2 year 90.1% vs 82.2%</td>
<td></td>
</tr>
<tr>
<td>Smith et al., 2007<sup>11</sup></td>
<td>Intervention: n = 1703, trastuzumab for 1 year</td>
<td>2 year follow-up time of 1 year of treatment</td>
<td>Date: August 2006; Decision: trastuzumab is recommended as a treatment option for women with early-stage HER2-positive breast cancer following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable)</td>
</tr>
<tr>
<td>Month: January</td>
<td>Comparator: n = 1698, observation alone</td>
<td>Overall survival: 59 (3%) versus 90 (5%) deaths in the trastuzumab group and observation group respectively. The unadjusted hazard ratio for the risk of death in the trastuzumab group compared with the observation group was 0.66 (95% CI 0.47–0.91, (p = 0.0115)), which corresponds to an absolute overall survival benefit of 2.7% (92.4% vs 89.7%) at 3 years</td>
<td>Decision prior to this publication: yes</td>
</tr>
<tr>
<td>Full publication</td>
<td></td>
<td>Time to disease progression: 218 DFS events were reported with trastuzumab compared with 321 for observation. The unadjusted hazard ratio for the risk of an event in the trastuzumab group compared with the observation group was 0.64 (95% CI 0.54–0.76, (p < 0.0001)), which corresponds to an absolute DFS benefit of 6.3% (80.6% vs 74.3%)</td>
<td></td>
</tr>
<tr>
<td>Trial identifier: HERA</td>
<td></td>
<td>continued</td>
<td></td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
TABLE 13 Trastuzumab: from STA (early breast cancer) (continued)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCIRG 006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slamon et al., 2005</td>
<td>Intervention: n = 1073, doxorubicin and cyclophosphamide plus docetaxel</td>
<td>Overall survival: not reported</td>
<td>Date: August 2006</td>
</tr>
</tbody>
</table>
| Month: December | Comparator 1: n = 1074, doxorubicin and cyclophosphamide plus docetaxel plus trastuzumab (AC-TH) | Time to disease progression: DFS hazard ratio 0.49 with comparator 1
(p = 0.00000048) and 0.61 with comparator 2
(p = 0.00015) compared with intervention. No significant difference between the two trastuzumab-containing arms | Decision: trastuzumab is recommended as a treatment option for women with early-stage HER2-positive breast cancer following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable). |
| Abstract (first interim analysis) | Comparator 2: n = 1075, docetaxel plus carboplatin plus trastuzumab (TCH) | | |
| Trial identifier: BCIRG 006 | | | |
| Slamon 2007 | Intervention: n = 1073, doxorubicin and cyclophosphamide plus docetaxel (AC-T) | Overall survival at year 4: intervention 86%, comparator 2 91%, comparator 1 92%. Hazard ratio 0.59 (95% CI 0.42–0.85) with comparator 1
(p = 0.004) and 0.66 (95% CI 0.47–0.93) with comparator 2
(p = 0.017), compared with intervention | Date: August 2006 |
| Month: April | Comparator 1: n = 1074, doxorubicin and cyclophosphamide plus docetaxel plus trastuzumab (AC-TH) | Time to disease progression: DFS hazard ratio 0.61 (95% CI 0.48–0.76) with comparator 1
(p < 0.0001) and 0.67 (95% CI 0.54–0.83) with comparator 2
(p = 0.0003) compared with intervention. Absolute DFS benefits (from year 2 to year 4): comparator 1 vs intervention 6%; comparator 2 vs intervention 5% | Decision prior to this publication: no |
| Abstract (second interim analysis – taken from PP) | Comparator 2: n = 1075, docetaxel plus carboplatin plus trastuzumab (TCH) | Disease free at year 4: intervention 77%, comparator 2 82%, comparator 1 83% | Decision prior to this publication: yes |
| Trial identifier: BCIRG 006 | | | |

CI, confidence interval; DFS, disease-free survival; PP, PowerPoint presentation; TTDR, time to distant recurrence; TTR, time to recurrence.

TABLE 14 Trastuzumab: new studies

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spielmann et al., 2006</td>
<td>First randomisation: intervention: n = 1518, 5-fluorouracil–epirubicin–cyclophosphamide (FEC100) vs n = 1492, epirubicin–docetaxel (ET75)</td>
<td>Overall survival: not reported</td>
<td>Date: August 2006</td>
</tr>
<tr>
<td>Month: June</td>
<td>Followed by second randomisation of HER2-positive patients to two groups: n = 259 trastuzumab 1 year vs n = 241 observation only</td>
<td>Time to disease progression: not reported</td>
<td>Decision: trastuzumab is recommended as a treatment option for women with early-stage HER2-positive breast cancer following surgery, chemotherapy (neoadjuvant or adjuvant) and radiotherapy (if applicable).</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>Results for toxicity and safety only for first randomisation</td>
<td>Decision prior to this publication: yes</td>
</tr>
<tr>
<td>Trial identifier: PACS 04 (clinical trial number: FRE-FNCLCC-PACS-04/0005)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 15 Gemcitabine: from STA

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>JHQG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O’Shaughnessy et al., 2003<sup>15</sup></td>
<td>Intervention: n = 267, gemcitabine plus paclitaxel (group 1)</td>
<td>Overall survival: reports insufficient events for overall survival, which will be determined at final analysis</td>
<td>Date: Jan 2007</td>
</tr>
<tr>
<td>Month: June</td>
<td>Comparator: n = 262, paclitaxel alone (group 2)</td>
<td>Median time to disease progression: 5.4 months (95% CI 4.6–6.1) group 1 vs 3.5 months (95% CI 2.9–4.0) group 2 (p = 0.0013)</td>
<td>Decision: gemcitabine plus paclitaxel is recommended as a treatment option for women with metastatic breast cancer; but only in cases when docetaxel monotherapy or docetaxel plus capecitabine are also appropriate</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>Hazard ratio 0.734 (95% CI 0.607–0.889, p = 0.0015) with an increased probability of approximately 50% for group 1 of being progression free at 6 months. PFS was significantly better with group 1 (p = 0.0021)</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: B9E-MC-JHQG, referred to as JHQG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albain et al., 2004<sup>14</sup></td>
<td>Intervention: n = 267, gemcitabine plus paclitaxel (group 1)</td>
<td>Median overall survival: group 1 18.5 months (95% CI 16.5–21.2) vs group 2 15.8 months (95% CI 14.4–17.4). Hazard ratio 0.775 (95% CI 0.627–0.959) in favour of group 1 (p = 0.018). 1-year survival was group 1 70.7% (95% CI 65.1–76.3) versus group 2 60.9% (95% CI 54.8–66.9) (p = 0.019)</td>
<td>Date: Jan 2007</td>
</tr>
<tr>
<td>Month: July</td>
<td>Comparator: n = 262, paclitaxel alone (group 2)</td>
<td>Time to disease progression: as reported above</td>
<td>Decision: gemcitabine plus paclitaxel is recommended as a treatment option for women with metastatic breast cancer; but only in cases when docetaxel monotherapy or docetaxel plus capecitabine are also appropriate</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td></td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: B9E-MC-JHQG, referred to as JHQG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moinpour et al., 2004<sup>17</sup></td>
<td>Intervention: n = 267, gemcitabine plus paclitaxel</td>
<td>Overall survival: as reported in above</td>
<td>Date: Jan 2007</td>
</tr>
<tr>
<td>Month: July</td>
<td>Comparator: n = 262, paclitaxel alone</td>
<td>Time to disease progression: as reported in above</td>
<td>Decision: gemcitabine plus paclitaxel is recommended as a treatment option for women with metastatic breast cancer; but only in cases when docetaxel monotherapy or docetaxel plus capecitabine are also appropriate</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>This abstract reports pain and QoL</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: B9E-MC-JHQG, referred to as JHQG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; PFS, progression-free survival; QoL, quality of life.
<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B9E-MC-S197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khoo et al., 2004a</td>
<td>n = 210 enrolled, n = 204</td>
<td>Overall survival: not reported</td>
<td>Date: Jan 2007</td>
</tr>
<tr>
<td>Month: July</td>
<td>for response assessment</td>
<td>Time to disease progression: not reported</td>
<td>Decision: gemcitabine plus paclitaxel is recommended as a treatment option for women with metastatic breast cancer, but only in cases when docetaxel monotherapy or docetaxel plus capecitabine are also appropriate</td>
</tr>
<tr>
<td>Abstract</td>
<td>(breakdown in table not abstract)</td>
<td>Efficacy outcomes were similar in the three arms – no data reported. Results for toxicity, side-effects and adverse events</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Trial identifier: B9E-MC-S197</td>
<td>Intervention 1: n = 72, gemcitabine 1250 mg/m² days 1 and 8 plus paclitaxel 175 mg/m² as 3-hour infusion day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intervention 2: n = 67, gemcitabine 1000 mg/m² days 1 and 8 plus paclitaxel 100 mg/m² as 1-hour infusion days 1 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intervention 3: n = 65, gemcitabine 1000 mg/m² days 1 and 8 plus docetaxel 40 mg/m² as 1-hour infusion days 1 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 210 randomised, n = 204</td>
<td>Overall survival: not reported</td>
<td>Date: Jan 2007</td>
</tr>
<tr>
<td></td>
<td>for response assessment</td>
<td>Time to disease progression: group 1 7.5 months, group 2 7.0 months, group 3 7.4 months</td>
<td>Decision: gemcitabine plus paclitaxel is recommended as a treatment option for women with metastatic breast cancer, but only in cases when docetaxel monotherapy or docetaxel plus capecitabine are also appropriate</td>
</tr>
<tr>
<td></td>
<td>Intervention 1: n = 73 (72) group 1, gemcitabine 1250 mg/m² days 1 and 8 plus paclitaxel 175 mg/m² as 3-hour infusion day 1</td>
<td>Hazard ratio estimate (95% CI): group 1 vs group 2, 0.96 (0.65–1.42); group 1 vs group 3, 0.97 (0.65–1.44); group 2 vs group 3, 1.01 (0.68–1.51)</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td></td>
<td>Intervention 2: n = 69 (67) group 2, gemcitabine 1000 mg/m² days 1 and 8 plus paclitaxel 100 mg/m² as 1-hour infusion days 1 and 8</td>
<td>Comparator: n = 68 (65) group 3, gemcitabine 1000 mg/m² days 1 and 8 plus docetaxel 40 mg/m² as 1-hour infusion days 1 and 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparator: n = 68 (65) group 3, gemcitabine 1000 mg/m² days 1 and 8 plus docetaxel 40 mg/m² as 1-hour infusion days 1 and 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval.
Lapatinib (Tykerb®, GlaxoSmithKline)

TABLE 17 Lapatinib: no previous NICE guidance

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00078572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geyer et al., 2006(^a)</td>
<td>Intervention: (n = 163), lapatinib plus capecitabine</td>
<td>Overall survival: not reported per se but 22% deaths for dual therapy and 22% deaths for monotherapy; hazard ratio 0.92 (95% CI 0.58–1.46, (p = 0.72))</td>
<td>Date: NA
Decision: none
Decision prior to this publication: no</td>
</tr>
<tr>
<td>Month: December</td>
<td>Comparator: (n = 161), capecitabine</td>
<td>Median time to disease progression: 8.4 months, 49 disease progression events (dual therapy) vs 4.4 months, 72 events (monotherapy); hazard ratio 0.49 (95% CI 0.34–0.71, (p < 0.001))</td>
<td></td>
</tr>
<tr>
<td>Full publication (interim analysis – early reporting on the basis of superiority of combination treatment)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial identifier: clinical trial number: NCT00078572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geyer et al., 2007(^b)</td>
<td>Intervention: lapatinib plus capecitabine (group 1)</td>
<td>Overall survival: group 1 vs group 2 hazard ratio 0.78 (95% CI 0.55–1.12, (p = 0.177))</td>
<td>Date: NA
Decision: none
Decision prior to this publication: no</td>
</tr>
<tr>
<td>Month: June</td>
<td>Comparator: capecitabine (group 2)</td>
<td>Time to disease progression: TTP: group 1 27 weeks vs group 2 19 weeks; hazard ratio 0.57 (95% CI 0.43–0.77, (p = 0.00013))</td>
<td></td>
</tr>
<tr>
<td>Abstract (updated efficacy analysis and interim correlative analysis of gene expression levels)</td>
<td>Data available for (n = 217/399) so far</td>
<td>ORR: group 1 24% vs group 2 14%; odds ratio 1.90 (95% CI 1.00–1.34, (p = 0.017))</td>
<td></td>
</tr>
<tr>
<td>Trial identifier: EGF100151</td>
<td></td>
<td>Progression in CNS metastases: group 1 2% vs group 2 11% ((p = 0.0445))</td>
<td></td>
</tr>
<tr>
<td>Sherrill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sherrill et al., 2007(^c)</td>
<td>Intervention: (n = 198) (ITT), lapatinib plus capecitabine (group 1)</td>
<td>Overall median survival: 67 weeks (based on 2006 data); 7 weeks’ difference in quality-adjusted survival favouring group 1 ((p = 0.0013)). Time to disease progression: not reported</td>
<td>Date: NA
Decision: none
Decision prior to this publication: no</td>
</tr>
<tr>
<td>Month: June</td>
<td>Comparator: (n = 201) (ITT), capecitabine (group 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 17 Lapatinib: no previous NICE guidance (continued)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameron et al., 2006</td>
<td>Intervention: lapatinib plus capecitabine (group 1)</td>
<td>Overall survival: not reported</td>
<td>Date: NA</td>
</tr>
<tr>
<td>Month: December</td>
<td>Comparator: capecitabine alone (group 2)</td>
<td>Median PFS: group 1 36.9 weeks vs group 2 17.9 weeks; hazard ratio 0.48 (95% CI 0.33–0.70, log-rank (p = 0.000045))</td>
<td>Decision: none</td>
</tr>
<tr>
<td>Abstract (interim analysis)</td>
<td>(n = 321) to date, randomised 1:1 – no breakdown</td>
<td>Median time to disease progression: group 1 36.9 weeks vs group 2 19.7 weeks; hazard ratio 0.51 (95% CI 0.35–0.74, log-rank (p = 0.00016))</td>
<td>Decision prior to this publication: no</td>
</tr>
</tbody>
</table>

CI, confidence interval; CNS, central nervous system; ITT, intention to treat; NA, not applicable; ORR, overall response rate; PFS, progression-free survival; TTP, time to progression.
Bevacizumab (Avastin®, Roche)

TABLE 18 Bevacizumab: no previous NICE guidance

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller et al., 2005</td>
<td>Intervention: n = 232, capcitabine with bevacizumab (group 1)</td>
<td>Median overall survival: 15.1 months group 1 vs 14.5 months group 2 – comparable in both treatment groups</td>
<td>No NICE guidance at present</td>
</tr>
<tr>
<td>Month: February</td>
<td>Comparator: n = 230, capcitabine (group 2)</td>
<td>Time to disease progression: median PFS: 4.86 months group 1 vs 4.17 months group 2; hazard ratio 0.98</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Full publication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller et al., 2002</td>
<td>Intervention: capcitabine with bevacizumab (group 1)</td>
<td>Overall survival: not reported</td>
<td>No NICE guidance at present</td>
</tr>
<tr>
<td>Month: December</td>
<td>Comparator: capcitabine (group 2)</td>
<td>Time to disease progression: not reported</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Abstract</td>
<td>n = 462 randomised, no breakdown</td>
<td>Results on baseline data only. Full analysis due September 2002</td>
<td></td>
</tr>
<tr>
<td>Overmoyer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overmoyer et al., 2004</td>
<td>Intervention: n = 20, bevacizumab and docetaxel (group 1)</td>
<td>Overall survival: not reported</td>
<td>No NICE guidance at present</td>
</tr>
<tr>
<td>Month: December</td>
<td>Comparator: n = 18, docetaxel (group 2)</td>
<td>Time to disease progression: not reported</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>Results on tumour size, toxicity, IAUC and serum VCAM-1 levels</td>
<td></td>
</tr>
<tr>
<td>Overmoyer et al., 2004</td>
<td>Intervention: bevacizumab and docetaxel (group 1)</td>
<td>Overall survival: not reported</td>
<td>No NICE guidance at present</td>
</tr>
<tr>
<td>Month: July</td>
<td>Comparator: docetaxel (group 2)</td>
<td>Time to disease progression: not reported</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Abstract</td>
<td>n = 33 randomised to date, no breakdown</td>
<td>Results on tumour size and toxicity</td>
<td></td>
</tr>
<tr>
<td>E2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller et al., 2005</td>
<td>Intervention: paclitaxel with bevacizumab (group 1)</td>
<td>Overall survival: data are immature – early follow-up suggests that group 1 has improved overall survival (hazard ratio 0.674, (p = 0.01))</td>
<td>No NICE guidance at present</td>
</tr>
<tr>
<td>Month: December</td>
<td>Comparator: paclitaxel (group 2)</td>
<td>Time to disease progression: group 1 has significantly prolonged PFS (10.97 months vs 6.11 months; hazard ratio 0.498, (p < 0.001))</td>
<td>Decision prior to this publication: no</td>
</tr>
<tr>
<td>Abstract</td>
<td>n = 722 enrolled, no breakdown</td>
<td>Group 1 significantly increased response rates in all patients (28.2% vs 14.2%; (p < 0.0001)) and in the subset of patients with measurable disease (34.3% vs 16.4%; (p < 0.0001))</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 18 Bevacizumab: no previous NICE guidance (continued)

<table>
<thead>
<tr>
<th>Publication details</th>
<th>Number of participants</th>
<th>Key outcomes</th>
<th>Decisions by NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagner et al., 2006</td>
<td>Intervention: n = 368, paclitaxel with bevacizumab (group 1) Comparator: n = 354, paclitaxel (group 2)</td>
<td>Overall survival: not reported Time to disease progression: not reported Results on self-reported symptom burden and HRQoL – improvement in clinical outcomes stated but data not reported</td>
<td>No NICE guidance at present Decision prior to this publication: no</td>
</tr>
<tr>
<td>Lyons et al., 2006</td>
<td>Intervention: n = 24, bevacizumab and docetaxel (group 1) Comparator: n = 25, docetaxel (group 2)</td>
<td>Overall survival: not reported Time to disease progression: not reported Phase II study – results on tumour size, toxicity, wound healing and changes in LVEF</td>
<td>No NICE guidance at present Decision prior to this publication: no</td>
</tr>
<tr>
<td>Burstein et al., 2005</td>
<td>Intervention: (n = 34) cyclophosphamide and methotrexate plus bevacizumab Comparator: (n = 21) cyclophosphamide and methotrexate</td>
<td>Overall survival: not reported Time to disease progression: not reported</td>
<td>No NICE guidance at present Decision prior to this publication: no</td>
</tr>
</tbody>
</table>

HRQoL, health-related quality of life; IAUC, incremental area under the curve; LVEF, left ventricular ejection fraction; PS, progression-free survival; VCAM-1, vascular cell adhesion molecule-1.
Appendix 3

Flow chart of systematic review process

1. Identified on searching (after duplicates removed) $n = 1556$

2. Titles and abstracts inspected using protocol screening criteria

3. Excluded $n = 1365$

4. References for retrieval $n = 191$

5. PROTOCOL AMENDMENT, LIMITING TO NICE STA DRUGS

6. Excluded $n = 121$

7. Papers inspected $n = 71$

8. Excluded $n = 30$

9. Included references $n = 41$, of which $n = 18$ RCTs
Appendix 4
Details of related ongoing trials

Paclitaxel
NCT00041119. A trial comparing cyclophosphamide and doxorubicin (CA) (four versus six cycles) versus paclitaxel (four versus six cycles) as adjuvant therapy for breast cancer in women with 0–3 positive auxiliary lymph nodes. Study type: 2 × 2 factorial phase III RCT. Sample size: 4646. Start date: May 2002. End date: not reported. Status: currently recruiting patients. Funding: Cancer and Leukemia Group B, National Cancer Institute. Funding amount: not reported.

Lapatinib
N0051189183. This trial is an open-label expanded access study of lapatinib and capecitabine therapy in women with HER2 (ErbB2) overexpressing locally advanced or metastatic breast cancer. Study type: multicentre, single-arm, open-label, expanded access study. Sample size: approximately eight. Start date: September 2006. End date: not reported [the study will continue to run and enrol subjects until the Medicines and Healthcare Products Regulatory Agency (MHRA) gives approval for lapatinib]. Status: ongoing. Funding: GlaxoSmithKline. Funding amount: not reported.

N0258184664/NCT00347919. A phase II, open-label, randomised, multicentre trial of GW786034 (pazopanib) in combination with lapatinib (GW572016) compared with lapatinib alone as first-line therapy in women with advanced or metastatic breast cancer with ErbB2 fluorescence in situ hybridisation (FISH)-positive tumours. Study type: open-label, multicentre, phase II safety/efficacy RCT. Sample size: 140. Start date: June 2006. End date: not reported. Status: currently recruiting patients. Funding: GlaxoSmithKline. Funding amount: not reported.

Docetaxel
NCT00408408. A randomised phase III trial of neoadjuvant therapy in patients with palpable and operable breast cancer, evaluating the effect on the pathological complete response (pCR) of adding capecitabine or gemcitabine to docetaxel when administered before adjuvant chemotherapy (AC) with or without bevacizumab. Study type: phase III RCT. Sample size: 1200. Start date: November 2006. End date: not reported. Status: currently recruiting patients. Funding: National Surgical Adjuvant Breast and Bowel Project (NSABP), National Cancer Institute. Funding amount: not reported.

NCT00391092. A randomised open-label study to compare the effect of first-line treatment with Avastin in combination with Herceptin/docetaxel with Herceptin/docetaxel alone on progression-free survival in patients with HER2-positive locally recurrent or metastatic breast cancer. Study type: open-label, phase III, safety/efficacy RCT. Sample size: target 100–500. Start date: September 2006. End date: not reported. Status: currently recruiting patients. Funding: Hoffmann-La Roche. Funding amount: not reported.

Bevacizumab

NCT00433511. A double-blind phase III trial of doxorubicin hydrochloride liposome and cyclophosphamide followed by paclitaxel with bevacizumab or placebo in patients with lymph node-positive and high-risk lymph node-negative breast cancer. Study type: phase III, open-label, multicentre RCT. Sample size: 4950. Start date:
January 2006. End date: not reported. Status: not yet open for patient recruitment. Funding: Eastern Cooperative Oncology Group, National Cancer Institute (NCI), North Central Cancer Treatment Group, Cancer and Leukemia Group B. Funding amount: not reported.

Trastuzumab

MREC reference MREC01/1/68 (N025810789, N0265110588, N0143108959 N0205108841). The HERA trial is a phase III multicentre RCT with three arms, comparing 1 and 2 years of Herceptin with no Herceptin in women with HER2-positive primary breast cancer who have completed adjuvant chemotherapy. Sample size: 3192. Start date: 1 November 2001. End date: 31 January 2015. Status: project ongoing. Some funding is provided by Roche, as well as NIHR (N0265110588 only). Funding amount: only reported for N0265110588: £140,000 Roche, NIHR £12,500.24.

NCT00381901 (study ID numbers: CDR0000509793; INCA-PHARE; INCA-REC0146; EUDRACT-2006–000070–67). A randomised phase III trial comparing 6 or 12 months of adjuvant trastuzumab treatment in women with non-metastatic breast cancer that can be removed by surgery, stratified according to participating centre, modality of adjuvant chemotherapy (concurrent versus sequential), and adjuvant hormonal therapy (yes versus no), with a 5-year follow-up. Study design: phase III, treatment, randomised, active control. Sample size: 7000. Start date: May 2006. End date: not reported. Status: currently recruiting. Funding provided by the National Cancer Institute, France. Funding amount: not reported.

Adjuvant lapatinib and/or trastuzumab

NCT00490139 (study ID numbers: EGF106708; BIG 2–06/N063D); ALTTO: A trial comparing lapatinib alone versus trastuzumab alone versus trastuzumab followed by lapatinib versus lapatinib concomitantly with trastuzumab in the adjuvant treatment of patients with HER2/ErbB2-positive primary breast cancer. Study design: phase III, treatment, randomised, open-label, active control, parallel assignment, safety/efficacy study (Breast International Group, North Central Cancer Treatment Group). Sample size: 8000. Start date: May 2007. End date: not reported. Status: currently recruiting in some countries. Funded by GlaxoSmithKline. Funding amount: not reported.
Health Technology Assessment reports published to date

Volume 1, 1997

No. 1
Home parenteral nutrition: a systematic review.
By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Systematic review of outpatient services for chronic pain control.
By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8
Preschool vision screening.
A review by Snowdon SK, Stewart-Brown SL.

No. 9
Implications of socio-cultural contexts for the ethics of clinical trials.
A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10
A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
By Davis A, Bamford J, Wilson I, Ramkalawan T, Forsaw M, Wright S.

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
Routine preoperative testing: a systematic review of the evidence.
By Munro J, Booth A, Nicholl J.

No. 13
Systematic review of the effectiveness of laxatives in the elderly.
By Petticrew M, Watt I, Sheldon T.

No. 14
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
A review by Mowatt G, Bower DJ, Brenner JA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998

No. 1
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Consensus development methods, and their use in clinical guideline development.

No. 4
A cost-utilty analysis of interferon beta for multiple sclerosis.

No. 5
Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews.
By MacLeod A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Song F, Glenny AM.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
A review by Johnson PVM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
By Sculpher MJ, Petticrew M, Kelland JL, Elliott RA, Holdright DR, Buxton MJ.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
Health Technology Assessment reports published to date

No. 15
Ethical issues in the design and conduct of randomised controlled trials.
A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JC, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.
By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.
By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.
By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different protheses.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.
A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
By Ukoumunne OC, Gulliford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6
Assessing the costs of healthcare technologies in clinical trials.
A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.
By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.
A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.
Byrazier J, Deverill M, Green C, Harper R, Booth A.

No. 10
A review by Billingham Lj, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.
By Zeuner D, Ales AE, Karnon J, Brown J, Dezateux C, Anionwu EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
‘Early warning systems’ for identifying new healthcare technologies.
By Robert G, Stevens A, Gabhay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.
By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.
A review by Robert G, Milne R.

No. 17 (Pt 1)
The debridement of chronic wounds: a systematic review.
By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.
A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kiatuka S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.
By Glenny AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.
By Lister-Sharp D, Chapman S, Stewart-Brown S, Sowden A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.
Volume 4, 2000

No. 1 The estimation of marginal time preference in a UK-wide sample (TEMPUS) project.
By Cairns JA, van der Pol MM.

No. 2 Geriatric rehabilitation following fractures in older people: a systematic review.

No. 3 Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
By Davies SC, Cronin E, Gill M, Greengross P, Hickman M, Normand C.

No. 4 Community provision of hearing aids and related audiology services.
By Reeves DJ, Alborz A, Hickson FS, Bamford JM.

No. 5 False-negative results in screening programmes: systematic review of impact and implications.
By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6 Costs and benefits of community postnatal support workers: a randomised controlled trial.
By Morrell CJ, Spiby H, Stewart P, Walters S, Morgan A.

No. 7 Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8 An introduction to statistical methods for health technology assessment.
By White SJ, Ashby D, Brown PJ.

No. 9 Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
By Clegg A, Bryant J, Milne R.

No. 10 Publication and related biases.
By Song F, Eastwood AJ, Gilbody S, Daley L, Sutton AJ.

No. 11 Cost and outcome implications of the organisation of vascular services.
By Michaels J, Brazier J, Palfreyman S, Shacklely P, Slack R.

No. 12 Monitoring blood glucose control in diabetes mellitus: a systematic review.
By Coster S, Guillford MC, Seed PT, Powrie JK, Swaminathan R.

No. 13 The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14 The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15 The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
A rapid review by Song F, O'Meara S, Wilson E, Golder S, Kleijnen J.

No. 16 Ultrasound screening in pregnancy: a systematic review of the clinical effectiveness, cost-effectiveness and women's views.

No. 17 A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
By Lister-Sharp D, McDonagh MS, Khan KS, Kleijnen J.

No. 18 Liquid-based cytology in cervical screening: a rapid and systematic review.
By Payne N, Chikott J, McGoogan E.

No. 19 Randomised controlled trial of non-directive counselling, cognitive-behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20 Routine referral for radiography of patients presenting with low back pain: is patients' outcome influenced by GPs' referral for plain radiography?
By Kerry S, Hilton S, Patel S, Dundas D, Rink E, Lord J.

No. 21 Systematic reviews of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
By O'Meara S, Cullum N, Majid M, Sheldon T.

No. 22 Using routine data to complement and enhance the results of randomised controlled trials.
By Lewsey JD, Leyland AH, Murray GD, Boddy FA.

No. 23 Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
By Meads C, Cummings C, Jolly K, Stevens A, Burls A, Hyde C.

No. 24 Outcome measures for adult critical care: a systematic review.
By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25 A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
By Fairbank L, O'Meara S, Renfrew MJ, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26 Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
By Parkes J, Bryant J, Milne R.

No. 27 Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
By Britas P, Jordan R, Fry-Smith A, Burls A, Hyde C.

No. 28 Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29 Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
By Marks D, Wonderling D, Thorogood M, Lambert H, Humphries SE, Neil HAW.

No. 30 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
By McDonagh MS, Bachmann LM, Golder S, Kleijnen J, ter Riet G.
No. 31
A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
By Turner J, Nicholl J, Webber L, Cox H, Dixon S, Yates D.

No. 32
Intrathecal pumps for giving opioids in chronic pain: a systematic review.
By Williams JE, Louw G, Towerton G.

No. 33
Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
By Shepherd J, Waugh N, Hewiston P.

No. 34
A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
By MacLehose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 35
Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
By Berry E, Kelly S, Hutton J, Lindsay HSJ, Blaxill JM, Evans JA, et al.

No. 36
A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37
Systematic review of treatments for atopic eczema.
By Hoare C, Li Wan Po A, Williams H.

No. 38
Bayesian methods in health technology assessment: a review.
By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 39
The management of dyspepsia: a systematic review.

No. 40
A systematic review of treatments for severe psoriasis.
By Griffiths CEM, Clark CM, Chalmers RJG, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 1
Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review.

No. 2
The clinical effectiveness and cost-effectiveness of riluzole for motor neuron disease: a rapid and systematic review.

No. 3
Equity and the economic evaluation of healthcare.
By Sassi F, Archar L, Le Grand J.

No. 4
Quality-of-life measures in chronic diseases of childhood.
By Eiser C, Morse R.

No. 5
Eliciting public preferences for healthcare: a systematic review of techniques.

No. 6
General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
By Riemsma RP, Forbes CA, Glanville JM, Eastwood AJ, Kleijnen J.

No. 7
An assessment of screening strategies for fragile X syndrome in the UK.
By Pembrey ME, Barnicoat AJ, Carmichael B, Bobrow M, Turner G.

No. 8
Issues in methodological research: perspectives from researchers and commissioners.

No. 9
Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
By Cumming N, Nelson EA, Fleming K, Sheldon T.

No. 10
Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.
By Hampson SE, Skinner TC, Hart J, Storey L, Gage H, Foxcroft D, et al.

No. 11
Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
By Jobanputra P, Parry D, Fry-Smith A, Burls A.

No. 12
Statistical assessment of the learning curves of health technologies.
By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13
The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
By Dinnen J, Cave C, Huang S, Major K, Milne R.

No. 14
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debriding agents in treating surgical wounds healing by secondary intention.
By Lewis R, Whiting P, ter Riet G, O’Meara S, Glanville J.

No. 15
Home treatment for mental health problems: a systematic review.

No. 16
How to develop cost-conscious guidelines.
By Eccles M, Mason J.

No. 17
The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
By De Broe S, Christopher F, Waugh N.

No. 18
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
By O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 19
The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 20
Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.
No. 21 Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) Acute day hospital versus admission; (2) Vocational rehabilitation; (3) Day hospital versus outpatient care.

No. 22 The measurement and monitoring of surgical adverse events.
 By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23 Action research: a systematic review and guidance for assessment.
 By Waterman H, Tillen D, Dickson R, de Koning K.

No. 24 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer.

No. 25 A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer.
 By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 26 Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature.

No. 27 The cost-effectiveness of magnetic resonance imaging for investigation of the knee joint.

No. 28 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.
 By Forbes C, Shirran L, Bagnall A-M, Duffy S, ter Riet G.

No. 29 Superseded by a report published in a later volume.

No. 30 The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial.
 By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 31 Design and use of questionnaires: a review of best practice applicable to surveys of health service staff and patients.

No. 32 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.
 By Clegg A, Scott DA, Sidhu M, Hewitson P, Waugh N.

No. 33 Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
 By Brooks ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34 Depot antipsychotic medication in the treatment of patients with schizophrenia: (1) Meta-review; (2) Patient and nurse attitudes.
 By David AS, Adams C.

No. 35 A systematic review of controlled trials of the effectiveness and cost-effectiveness of brief psychological treatments for depression.

No. 36 Cost analysis of child health surveillance.
 By Sanderson D, Wright D, Acton C, Duree D.

Volume 6, 2002

No. 1 A study of the methods used to select review criteria for clinical audit.
 By Hearshaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 2 Fludarabine as second-line therapy for B cell chronic lymphocytic leukaemia: a technology assessment.

No. 3 Rituximab as third-line treatment for refractory or recurrent Stage III or IV follicular non-Hodgkin’s lymphoma: a systematic review and economic evaluation.

No. 4 A systematic review of discharge arrangements for older people.

No. 5 The clinical effectiveness and cost-effectiveness of inhaler devices used in the routine management of chronic asthma in older children: a systematic review and economic evaluation.
 By Peters J, Stevenson M, Beverley C, Lim J, Smith S.

No. 6 The clinical effectiveness and cost-effectiveness of sibutramine in the management of obesity: a technology assessment.
 By O’Meara S, Riemsma R, Shirran L, Mathier I, ter Riet G.

No. 7 The cost-effectiveness of magnetic resonance angiography for carotid artery stenosis and peripheral vascular disease: a systematic review.

No. 8 Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’.
 By Carroll B, Ali N, Azam N.

No. 9 Zanamivir for the treatment of influenza in adults: a systematic review and economic evaluation.

No. 10 A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models.
 By Richards RG, Sampson FC, Beard SM, Tappenden P.

No. 11 Screening for gestational diabetes: a systematic review and economic evaluation.
 By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 12 The clinical effectiveness and cost-effectiveness of surgery for people with morbid obesity: a systematic review and economic evaluation.

No. 13 The clinical effectiveness of trastuzumab for breast cancer: a systematic review.

No. 14 The clinical effectiveness and cost-effectiveness of vinorelbine for breast cancer: a systematic review and economic evaluation.

No. 17 A systematic review of effectiveness and economic evaluation of new drug treatments for juvenile idiopathic arthitis: etanercept. By Cummins C, Connock M, Fry-Smith A, Burls A.

No. 20 Clinical medication review by a pharmacist of patients on repeat prescriptions in general practice: a randomised controlled trial. By Zermansky AG, Petty DR, Raynor DK, Lowe CJ, Freementle N, Vail A.

No. 29 Treatment of established osteoporosis: a systematic review and cost-utility analysis. By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

Volume 7, 2003

No. 1 How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. By Egger M, Juni P, Bartlett C, Holenstein F, Sterne J.

No. 7
The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8
A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9
Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10
Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.

No. 11
First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
By Wald NJ, Rodreck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12
The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13
A systematic review of atypical antipsychotics in schizophrenia.

No. 14
Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15
Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16
Screening for fragile X syndrome: a literature review and modelling.
By Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A.

No. 17
Systematic review of endoscopic sinus surgery for nasal polyps.
By Dalziel K, Stein K, Round A, Garside R, Royle P.

No. 18
Towards efficient guidelines: how to monitor guideline use in primary care.
By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19
Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
By Bagnall A-M, Jones L, Richardson G, Duffy S, Riemsma R.

No. 20
Prioritisation of health technology assessment. The PATHS model: methods and case studies.
By Townsend J, Buxton M, Harper G.

No. 21

No. 22
By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23
The role of modelling in prioritising and planning clinical trials.
By Chilcott J, Brennan A, Booth A, Karnon J, Tappenden P.

No. 24
Cost–benefit evaluation of routine influenza immunisation in people 65–74 years of age.
By Allsup S, Gosney M, Haycox A, Regan M.

No. 25
The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
By Wight J, Chilcott J, Holmes M, Brewer N.

No. 26
Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27
Evaluating non-randomised intervention studies.

No. 28
A randomised controlled trial to assess the impact of a package comprising a patient-oriented, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29
The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30
The value of digital imaging in diabetic retinopathy.

No. 31
Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
By Law M, Wald N, Morris J.

No. 32
Clinical and cost-effectiveness of capecitabine and tegafur with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
By Ward S, Kaltenthaler E, Cowan J, Brewer N.

No. 33
By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.
No. 35 Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36 A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37 Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women’s physical and psychological health needs.

No. 38 Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

By Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40 Treatments for spasticity and pain in multiple sclerosis: a systematic review.
By Beard S, Hum A, Wight J.

No. 41 The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42 The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

Volume 8, 2004

No. 1 What is the best imaging strategy for acute stroke?
By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sandercrook PAG, Dennis MS, et al.

No. 2 Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.
By Mant J, McManus RJ, Oakes RAL, Delaney BC, Barton PM, Deeks JJ, et al.

No. 3 The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4 A systematic review of the role of bisphosphonates in metastatic disease.

No. 5 Systematic review of the clinical effectiveness and cost-effectiveness of capetabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6 Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7 Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
By Bryant J, Clegg AJ, Siddhu MK, Brodin H, Royle P, Davidson P.

No. 8 Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
By Morgan K, Dixon S, Mathers N, Thompson J, Tomeny M.

No. 9 Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
By Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ.

No. 10 A systematic review and economic evaluation of magnetic resonance cholangiopancreatography compared with diagnostic endoscopic retrograde cholangiopancreatography.

No. 11 The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis.

By Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S.

By Czoski-Murray C, Warren E, Chilcott J, Beverley C, Pyllålki MA, Cowan J.

No. 14 Routine examination of the newborn: the EMREN study. Evaluation of an extension of the midwife role including a randomised controlled trial of appropriately trained midwives and paediatric senior house officers.

No. 15 Involving consumers in research and development agenda setting for the NHS: developing an evidence-based approach.

No. 16 A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery.

No. 17 Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial.
By Gilbert FJ, Grant AM, Gillan MCG, Vale L, Scott NW, Campbell MK, et al.

No. 18 The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
By Clark W, Jibanputra P, Barton P, Burls A.
No. 19
A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20
Liquor-based cytology in cervical screening: an updated rapid and systematic review and economic analysis.

No. 21
Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22
Autoantibody testing in children with newly diagnosed type 1 diabetes mellitus.
By Dretzke J, Cummins C, Sandercock J, Fry-Smith A, Barrett T, Burls A.

No. 23
Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercock J, Bayliss S, Burls A.

No. 24
Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25
Development and validation of methods for assessing the quality of diagnostic accuracy studies.
By Whiting P, Rutjes AWS, Dinnes J, Reitsma JB, Bossuyt PMM, Kleijnen J.

No. 26
EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27
By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

No. 28
By Dalziel R, Round A, Stein K, Garside R, Price A.

No. 29
VenUS I: a randomised controlled trial of two types of handage for treating venous leg ulcers.
By Iglesias C, Nelson EA, Callum NA, Torgerson DJ, on behalf of the VenUS Team.

No. 30
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31
A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.
By Claxton K, Ginnelly L, Sculpher M, Philipis Z, Palmer S.

No. 32
The Social Support and Family Health Study: a randomised controlled trial and economic evaluation of two alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33
Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.
By Green JM, Hewson J, Bekker HL, Bryant, Cuckle HS.

No. 34
Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35
Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36
Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37
Rituximab (MabThera®) for aggressive non-Hodgkin's lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpher M, et al.

No. 39
Pegylated interferon α-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40
Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpher M, et al.

No. 41
Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Gribbsch I, Taylor FC, Burke M, West RR, et al.

No. 42
Involving South Asian patients in clinical trials.
By Huussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43
Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Coldquitt JL, Green C, Sidhu MK, Hartwell D, Waugh N.

No. 44
Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45
Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.
Health Technology Assessment reports published to date

No. 46
Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

Volume 9, 2005

No. 1
Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrotherapeutic modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenfine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH, et al.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEM-QOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinnes J, Deeks J, Kirby J, Roderick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis B, Barton E, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and lofepramine.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kalra L, Evans A, Perez I, Knapp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Woloshynowych M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Rafferty J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.
No. 23 A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma.

No. 24 An evaluation of the costs, effectiveness and quality of renal replacement therapy provision in renal satellite units in England and Wales.

No. 25 Imitinib for the treatment of patients with unresectable and/or metastatic gastrointestinal stromal tumours: systematic review and economic evaluation.

No. 26 Indirect comparisons of competing interventions.

No. 27 Cost-effectiveness of alternative strategies for the initial medical management of non-ST elevation acute coronary syndrome: systematic review and decision-analytical modelling.

No. 28 Outcomes of electrically stimulated gracilis neosphincter surgery.

By Tillin T, Chambers M, Feldman R.

No. 29 The effectiveness and cost-effectiveness of pimecrolimus and tacrolimus for gracilis neosphincter surgery.

No. 30 Systematic review on urine albumin testing for early detection of diabetic complications.

No. 31 Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis.

By Cochrane T, Davey RC, Mattheus Edwards SM.

No. 32 Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain.

No. 33 Cost-effectiveness and safety of epidural steroids in the management of sciatica.

By Price C, Arden N, Coglan L, Rogers P.

No. 34 The British Rheumatoid Outcome Study Group (BROSg) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis.

By Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 35 Conceptual framework and systematic review of the effects of participants’ and professionals’ preferences in randomised controlled trials.

No. 36 The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review.

By Bryant J, Brodin H, Loveman E, Payne E, Clegg A.

No. 37 A trial of problem-solving by community mental health nurses for anxiety, depression and life difficulties among general practice patients. The CPN-GP study.

No. 38 The causes and effects of socio-demographic exclusions from clinical trials.

No. 39 Is hydrotherapy cost-effective? A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis.

No. 40 A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study.

No. 41 Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty.

By Keating JF, Grant A, Masson M, Scott NW, Forbes JF.

No. 42 Long-term outcome of cognitive behaviour therapy clinical trials in central Scotland.

No. 43 The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation.

By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 44 Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis.

No. 45 The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.

No. 46 The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma.

By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

No. 47 Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.

No. 48
Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49
Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thromboprophylaxis.

No. 50
The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006
No. 1
The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.

No. 2
FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranwick G, Forbes J.

No. 3
The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.

No. 4
A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5
Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.
By Bundar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR.

No. 6
Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7

No. 8
Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.
By Garside R, Pitt M, Somerville M, Stein K, Price A, Gilbert N.

No. 9
Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10
Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.
By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11

No. 12
A series of systematic reviews to inform a decision analysis for sampling and assessment of cost-effectiveness of HealOzone® for the treatment of occlusal pit/fissure caries and root caries.

No. 13
Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.
By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 14
Cognitive behavioural therapy in addition to antispasmodic therapy for irritable bowel syndrome in primary care: randomised controlled trial.

No. 15
A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type I.

No. 16
Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.
By Wright M, Grieve R, Roberts J, Main J, Thomas HC, on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 17
Pressure relieving support surfaces: a randomised evaluation.
No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamfetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29
By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30
Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31
Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32
The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33
Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35
Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36
Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37
Cognitive Behavioural therapy for chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O'Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 38

No. 39
The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.
By Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hills G.

No. 40
What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 41
The clinical and cost-effectiveness of oxaliplatin and capcitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pandor A, Eggington S, Paisley S, Tappenden P, Sutcliffe P.

No. 42
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43
Telemedicine in dermatology: a randomised controlled trial.
By Bows IR, Collins K, Walters SJ, McDonagh AJG.

No. 44

No. 45
Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46
Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47
Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48
Evaluation of the ventricular assist device programme in the UK.

No. 50 Amniocentesis results: investigation of anxiety. The ARIA trial.

Volume 11, 2007

No. 1 Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2 A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3 A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4 The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.

No. 5 A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6 Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7 Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8 Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9 Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10 Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11 Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12 Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13 A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14 A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15 A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16 Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17 Screening for type 2 diabetes: literature review and economic modelling.

No. 18 The effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.

No. 19 The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.
By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 20 A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 21 The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
By Colquitt J, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22 A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23 Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.
No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.
By Boyle J, McCartney E, Forbes J, O’Hare A.

No. 26
Hormonal therapies for early breast cancer: systematic review and economic evaluation.
By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.
By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.

No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population. The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.
By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

No. 35
The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Homebased compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.

No. 36
A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

No. 37
A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

No. 38
Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anti-coagulation therapy: a systematic review and economic modelling.

No. 39
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder.

No. 40
Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.
By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

No. 41
The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

No. 42
Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.
By Davis A, Smith P, Ferguson M, Stephens D, Gianopoulos I.

No. 43
Contamination in trials of educational interventions.

No. 44
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.
By Facey K, Bradford I, Laking G, Payne E.

No. 45
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

No. 46
Drug-eluting stents: a systematic review and economic evaluation.

No. 47
The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

No. 48
Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study.
By Campbell MK, Snowden C, Francis D, Elbourne D, McDonald AM, Knight R, et al.
No. 49
Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CEaT trial.

No. 50
Evaluation of diagnostic tests when there is no gold standard. A review of methods.
By Rutjes AWS, Reitma JB, Coomarasamy A, Khan KS, Bossuyt PMM.

No. 51
Systematic reviews of the clinical effectiveness and cost-effectiveness of proton pump inhibitors in acute upper gastrointestinal bleeding.

No. 52
A review and critique of modelling in prioritising and designing screening programmes.

No. 53
An assessment of the impact of the NHS Health Technology Assessment Programme.
By Hamney S, Buxton M, Green C, Coulson D, Raftery J.

Volume 12, 2008

No. 1
A systematic review and economic model of switching from nonglycopeptide to glycopeptide antibiotic prophylaxis for surgery.

No. 2
‘Cut down to quit’ with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis.
By Wang D, Connock M, Barton P, Fry-Smith A, Aveyard P, Moore D.

No. 3
A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management.

No. 4
By Charlesworth G, Shepstone L, Wilson E, Thalanany M, Mugford M, Poland F.

No. 5
A multi-centre retrospective cohort study comparing the efficacy, safety and cost-effectiveness of hysterectomy and uterine artery embolisation for the treatment of symptomatic uterine fibroids. The HOPEFUL study.

No. 6
Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 7
The use of economic evaluations in NHS decision-making: a review and empirical investigation.
By Williams I, McIver S, Moore D, Bryan S.

No. 8
Stapled haemorrhoidectomy (haemorrhoidopexy) for the treatment of haemorrhoids: a systematic review and economic evaluation.

No. 9
The clinical effectiveness of diabetes education models for Type 2 diabetes: a systematic review.
By Loveman E, Frampton GK, Clegg AJ.

No. 10
Payment to healthcare professionals for patient recruitment to trials: systematic review and qualitative study.
By Raftery J, Bryant J, Powell J, Kerr C, Hawker S.

No. 11
Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation.

No. 12
The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-inflammatory agents in preventing bloodstream infections: a systematic review and economic evaluation.

No. 13
Stepped treatment of older adults on laxatives. The STOOL trial.

No. 14
A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial.

No. 15
The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation.
By Hind D, Tappenden P, Tumur I, Eggington E, Sutcliffe P, Ryan A.

No. 16
Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation.

No. 17
Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease.

No. 18
Structural neuroimaging in psychosis: a systematic review and economic evaluation.

No. 19
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta, agonists for the treatment of chronic asthma in adults and children aged 12 years and over.
No. 20
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta-agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21
Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.

No. 22
Topical or oral ibuprofen for chronic knee pain in older people. The TOIB study.

No. 23
A prospective randomised comparison of minor surgery in primary and secondary care. The MiSTIC trial.

No. 24
A review and critical appraisal of measures of therapist–patient interactions in mental health settings.

No. 25
The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.
By Carlton J, Karnon J, Czoski-Murray C, Smith KJ, Marr J.

No. 26
A systematic review of the clinical effectiveness and cost-effectiveness and economic modelling of minimal incision total hip replacement approaches in the management of arthritic disease of the hip.

No. 27
A preliminary model-based assessment of the cost-utility of a screening programme for early age-related macular degeneration.

No. 28
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 29
Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 30
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

No. 31
The effectiveness and cost-effectiveness of minimal access surgery amongst people with gastro-oesophageal reflux disease – a UK collaborative study. The reflux trial.
Health Technology Assessment Programme

Prioritisation Strategy Group

Chair,
Professor Tom Walley,
Director, NIHR HTA Programme, Professor of Clinical Pharmacology, University of Liverpool
Deputy Chair
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield
Dr Bob Coates,
Consultant Advisor, NCCHTA
Dr Andrew Cook,
Consultant Advisor, NCCHTA
Dr Peter Davidson,
Director of Science Support, NCCHTA
Professor Robin E. Ferner,
Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham
Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford
Dr Nick Hicks,
Director of NHS Support, NCCHTA
Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London
Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NCCHTA
Dr Ruairidh Milne,
Director of Strategy and Development, NETSCC
Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health
Ms Pamela Young,
Specialist Programme Manager, NCCHTA

HTA Commissioning Board

Programme Director,
Professor Tom Walley,
Director, NIHR HTA Programme, Professor of Clinical Pharmacology, University of Liverpool
Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield
Deputy Chair,
Dr Andrew Farmer,
Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford
Professor Ann Ashburn,
Professor of Rehabilitation and Head of Research, Southampton General Hospital
Professor Deborah Ashby,
Professor of Medical Statistics, Queen Mary, University of London
Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine
Professor Peter Crotty,
Director of Primary Care Sciences Research Centre, Keele University
Professor Nicky Cullum,
Director of Centre for Evidence-Based Nursing, University of York
Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol
Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London
Professor Freddie Hamdy,
Professor of Urology, University of Sheffield
Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds
Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trials Service Unit, University of Oxford
Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth
Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher,
Professor of Health Economics, University of York
Professor Helen Smith,
Professor of Primary Care, University of Brighton
Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds
Professor David John Torgerson,
Director of York Trials Unit, University of York
Professor Hywel Williams,
Professor of Dermato-Epidemiology, University of Nottingham

Observers
Ms Kay Pattison,
Section Head, NHS R&D Programmes, Research and Development Directorate, Department of Health
Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
Diagnostic Technologies & Screening Panel

Members

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Dr Stephanie Dancer, Consultant Microbiologist, Hairmyres Hospital, East Kilbride</td>
</tr>
<tr>
<td>Deputy Chair</td>
<td>Dr David Elliman, Consultant Paediatrician and Honorary Senior Lecturer, Great Ormond Street Hospital, London</td>
</tr>
<tr>
<td>Members</td>
<td>Professor Glyn Rhyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales</td>
</tr>
<tr>
<td></td>
<td>Dr Ron Gray, Consultant Clinical Epidemiologist, Department of Public Health, University of Oxford</td>
</tr>
<tr>
<td></td>
<td>Professor Paul D Griffiths, Professor of Radiology, University of Sheffield</td>
</tr>
<tr>
<td></td>
<td>Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford</td>
</tr>
</tbody>
</table>

Observers

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Catherine Moody, Programme Manager, Neuroscience and Mental Health Board</td>
<td></td>
</tr>
<tr>
<td>Dr Ursula Wells, Principal Research Officer, Department of Health</td>
<td></td>
</tr>
</tbody>
</table>

Pharmaceuticals Panel

Members

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Dr Peter Elton, Director of Public Health, Bury Primary Care Trust</td>
</tr>
<tr>
<td>Deputy Chair</td>
<td>Professor Jonathan Ledermann, Professor of Medical Oncology and Director of the Cancer Research UK and University College London Cancer Trials Centre</td>
</tr>
<tr>
<td>Members</td>
<td>Dr Yoon K Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia</td>
</tr>
<tr>
<td></td>
<td>Professor Femi Oyebode, Consultant Psychiatrist and Head of Department, University of Birmingham</td>
</tr>
<tr>
<td></td>
<td>Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician and Gynaecologist, The Rosie Hospital, University of Cambridge</td>
</tr>
<tr>
<td></td>
<td>Dr Martin Shelly, General Practitioner, Leeds, and Associate Director, NHS Clinical Governance Support Team, Leicester</td>
</tr>
<tr>
<td></td>
<td>Dr Gillian Shepherd, Director, Health and Clinical Excellence, Merck Serono Ltd</td>
</tr>
</tbody>
</table>

Observers

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Kay Pattison, Section Head, NHS R&D Programme, Department of Health</td>
<td></td>
</tr>
<tr>
<td>Mr Simon Reeve, Head of Clinical and Cost-Effectiveness, Medicines, Pharmacy and Industry Group, Department of Health</td>
<td></td>
</tr>
<tr>
<td>Dr Heike Weber, Programme Manager, Medical Research Council</td>
<td></td>
</tr>
<tr>
<td>Dr Ursula Wells, Principal Research Officer, Department of Health</td>
<td></td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA Programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
Therapeutic Procedures Panel

<table>
<thead>
<tr>
<th>Members</th>
<th>Observers</th>
</tr>
</thead>
</table>
| **Chair, Dr John C Pounsford**
Consultant Physician, North Bristol NHS Trust
Ms Maree Barnett, Acting Branch Head of Vascular Programme, Department of Health
Mrs Val Carlill, Service User Representative
Mrs Anthea De Barton-Watson, Service User Representative
Mr Mark Emberton, Senior Lecturer in Oncological Urology, Institute of Urology, University College Hospital, London
Professor Steve Goodacre, Professor of Emergency Medicine, University of Sheffield
Professor Christopher Griffths, Professor of Primary Care, Barts and The London School of Medicine and Dentistry | **Observers**
Dr Phillip Leech, Principal Medical Officer for Primary Care, Department of Health
Ms Kay Pattison, Section Head, NHS R&D Programme, Department of Health
Dr Morven Roberts, Clinical Trials Manager, Medical Research Council
Professor Tom Valley, Director, NIHR HTA Programme, Professor of Clinical Pharmacology, University of Liverpool
Dr Ursula Wells, Principal Research Officer, Department of Health |
| **Mr Paul Hilton,** Consultant Gynaecologist and Urogynaecologist, Royal Victoria Infirmary, Newcastle upon Tyne
Professor Nicholas James, Professor of Clinical Oncology, University of Birmingham, and Consultant in Clinical Oncology, Queen Elizabeth Hospital
Dr Peter Martin, Consultant Neurologist, Addenbrooke's Hospital, Cambridge | **Dr Kate Radford,** Occupational Therapist, Division of Rehabilitation and Ageing, University of Nottingham, Nottingham
Mr Jim Reece, Service User Representative
Dr Karen Roberts, Nurse Consultant, Dunston Hill Hospital Cottages
Professor Scott Weich, Professor of Psychiatry, Division of Health in the Community, University of Warwick, Coventry |

Disease Prevention Panel

<table>
<thead>
<tr>
<th>Members</th>
<th>Observers</th>
</tr>
</thead>
</table>
| **Chair, Dr Edmund Jessop,**
Medical Adviser, National Specialist, National Commissioning Group (NCG), London | **Observers**
Ms Christine McGuire, Research & Development, Department of Health |
| **Deputy Chair, Dr David Pencheon,**
Director, NHS Sustainable Development Unit, Cambridge
Dr Elizabeth Fellow-Smith, Medical Director, West London Mental Health Trust, Middlesx
Dr John Jackson, General Practitioner, Parkway Medical Centre, Newcastle upon Tyne
Professor Mike Kelly, Director, Centre for Public Health Excellence, NICE, London | **Dr Caroline Stone,** Programme Manager, Medical Research Council |
| **Dr Chris McCall,** General Practitioner, The Hadleigh Practice, Corfe Mullen, Dorset
Ms Jeanett Martin, Director of Nursing, BarnDoc Limited, Lewisham Primary Care Trust
Miss Nicky Mullany, Service User Representative | **Professor Ken Stein,** Senior Clinical Lecturer in Public Health, University of Exeter
Professor Carol Tannahill, Glasgow Centre for Population Health
Professor Margaret Thorogood, Professor of Epidemiology, University of Warwick Medical School, Coventry |
Members

Health Technology Assessment Programme

Expert Advisory Network

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr Jonathan Earnshaw</td>
<td>Consultant Vascular Surgeon</td>
<td>Gloucestershire Royal Hospital, Gloucester</td>
</tr>
<tr>
<td>Professor Martin Eccles</td>
<td>Professor of Clinical Effectiveness</td>
<td>Centre for Health Services Research, University of Newcastle upon Tyne</td>
</tr>
<tr>
<td>Professor Alan Horwich</td>
<td>Dean and Section Chairman</td>
<td>The Institute of Cancer Research, London</td>
</tr>
<tr>
<td>Professor Allen Hutchinson</td>
<td>Director of Public Health and Deputy Dean of SCHARP</td>
<td>University of Sheffield</td>
</tr>
<tr>
<td>Professor Peter Jones</td>
<td>Professor of Psychiatry</td>
<td>University of Cambridge, Cambridge</td>
</tr>
<tr>
<td>Professor Stan Kaye</td>
<td>Cancer Research UK Professor of Medical Oncology</td>
<td>Royal Marsden Hospital and Institute of Cancer Research, Surrey</td>
</tr>
<tr>
<td>Mr Leonard R Fenwick</td>
<td>General Practitioner</td>
<td>Dr Burch & Partners, The Health Centre, Thame</td>
</tr>
<tr>
<td>Mrs Gillian Fletcher</td>
<td>Antenatal Teacher and Tutor</td>
<td>National Childbirth Trust, Henfield</td>
</tr>
<tr>
<td>Professor Jayne Franklyn</td>
<td>Professor of Medicine</td>
<td>University of Birmingham</td>
</tr>
<tr>
<td>Mr Tam Fry</td>
<td>Honorary Chairman</td>
<td>Child Growth Foundation, London</td>
</tr>
<tr>
<td>Professor Fiona Gilbert</td>
<td>Consultant Radiologist and NCRN Member</td>
<td>University of Aberdeen</td>
</tr>
<tr>
<td>Professor Paul Gregg</td>
<td>Professor of Orthopaedic Surgical Science</td>
<td>South Tees Hospital NHS Trust</td>
</tr>
<tr>
<td>Dr Eamonn Sheridan</td>
<td>Consultant in Public Health</td>
<td>Royal South Hants Hospital, Southampton</td>
</tr>
<tr>
<td>Professor Richard Hobbs</td>
<td>Head of Department of Primary Care & General Practice</td>
<td>University of Birmingham</td>
</tr>
<tr>
<td>Professor of Health Economics</td>
<td>University of Sheffield</td>
<td></td>
</tr>
<tr>
<td>Professor Miranda Mugford</td>
<td>Professor of Health Economics and Group Co-ordinator</td>
<td>University of East Anglia</td>
</tr>
<tr>
<td>Professor Jim Neilson</td>
<td>Head of School of Reproductive Medicine and Professor of Obstetrics and Gynaecology</td>
<td>University of Liverpool</td>
</tr>
<tr>
<td>Professor of Primary Care Research & Development</td>
<td>Centre for Health Sciences, University of Newcastle upon Tyne</td>
<td></td>
</tr>
<tr>
<td>Professor of Liaison Psychiatry</td>
<td>Royal South Hants Hospital, Southampton</td>
<td></td>
</tr>
<tr>
<td>Professor of Medicine</td>
<td>University of Birmingham</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>Department of Clinical Neurosciences, University of Edinburgh</td>
<td></td>
</tr>
<tr>
<td>Professor of Primary Care Research</td>
<td>University of Birmingham</td>
<td></td>
</tr>
<tr>
<td>Professor Robert Peveler</td>
<td>Consultant in Clinical Genetics</td>
<td>University of Sheffield</td>
</tr>
<tr>
<td>Professor of Vascular Surgery</td>
<td>University of Edinburgh</td>
<td></td>
</tr>
<tr>
<td>Professor of Psychiatry</td>
<td>University of Cambridge, Cambridge</td>
<td></td>
</tr>
<tr>
<td>Professor of Reproductive Medicine</td>
<td>University of Birmingham</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>Professor of Vascular Surgery</td>
<td>University of Edinburgh</td>
<td></td>
</tr>
<tr>
<td>Professor of Medical Oncology</td>
<td>Royal Marsden Hospital and Institute of Cancer Research, Surrey</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>Professor of Primary Care Research</td>
<td>University of Birmingham</td>
<td></td>
</tr>
<tr>
<td>Professor Howard Cuckle</td>
<td>Professor of Reproductive Epidemiology</td>
<td>Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds</td>
</tr>
<tr>
<td>Professor of Obstetrics & Gynaecology, University of Sheffield</td>
<td>Division of Health in the Community, University of Warwick, Coventry</td>
<td></td>
</tr>
<tr>
<td>Professor of Obstetrics & Gynaecology, University of Sheffield</td>
<td>Division of Health in the Community, University of Warwick, Coventry</td>
<td></td>
</tr>
<tr>
<td>Professor of Obstetrics & Gynaecology, University of Sheffield</td>
<td>Division of Health in the Community, University of Warwick, Coventry</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>Professor of Social Gerontology</td>
<td>University of East Anglia</td>
<td></td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA Programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
Feedback

The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.