Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis

EL Simpson, MD Stevenson, A Rawdin and D Papaioannou
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
Email: orders@hta.ac.uk
c/o Direct Mail Works Ltd
Tel: 02392 492 000
4 Oakwood Business Centre
Fax: 02392 478 555
Downley, HAVANT PO9 2NP, UK
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis

EL Simpson,* MD Stevenson, A Rawdin and D Papaioannou

The University of Sheffield, School of Health and Related Research (ScHARR), UK

*Corresponding author

Declared competing interests of authors: none

Published January 2009
DOI: 10.3310/hta13020

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in *Index Medicus/MEDLINE*, *Excerpta Medica/EMBASE*, *Science Citation Index Expanded (SciSearch)* and *Current Contents/Clinical Medicine*.
The Health Technology Assessment (HTA) Programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA Programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA Programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA Programme then commissions the research by competitive tender.

Second, the HTA Programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series Health Technology Assessment.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this issue of the journal was commissioned and funded by the HTA Programme on behalf of NICE as project number 06/66/01. The protocol was agreed in November 2006. The assessment report began editorial review in July 2007 and was accepted for publication in May 2008. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme or the Department of Health.

Editor-in-Chief: Professor Tom Walley
Series Editors: Dr Aileen Clarke, Dr Peter Davidson, Dr Chris Hyde, Dr John Powell, Dr Rob Riemsma and Professor Ken Stein

ISSN 1366-5278

© 2009 Queen’s Printer and Controller of HMSO

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to: NCCHTA, Alpha House, Enterprise Road, Southampton Science Park, Chilworth, Southampton SO16 7NS, UK.

Published by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk), on behalf of NCCHTA.

Printed on acid-free paper in the UK by the Charlesworth Group.
Abstract

Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis

EL Simpson,* MD Stevenson, A Rawdin and D Papaioannou

The University of Sheffield, School of Health and Related Research (ScHARR), UK

*Corresponding author

Objectives: To assess whether thrombophilia testing following a venous thrombotic event is clinically effective and cost-effective in the management of thrombosis compared with no testing for thrombophilia.

Data sources: Major electronic databases were searched from September to November 2006.

Review methods: A systematic review of the clinical effectiveness and cost-effectiveness literature was undertaken according to standard methods. A discrete event simulation model was constructed to assess the cost-effectiveness of changing the standard 3-month duration of warfarin treatment to 10 years, 20 years or lifelong.

Results: No clinical studies were identified that met the inclusion criteria for the systematic review. Further literature searches and clinical opinion were therefore used to inform the cost-effectiveness analysis. Thrombophilia testing in patients with pulmonary embolism (PE) had an estimated mean cost per quality-adjusted life-year (QALY) of below £20,000 regardless of sex or age. In patients with a previous deep vein thrombosis (DVT), thrombophilia testing had an estimated mean cost per QALY of below £20,000 in men aged 69 years or less and in women aged 49 years or less. The estimated duration of warfarin treatment (lifelong, 20 years, 10 years or no extended treatment) that was most cost-effective is presented for each age, sex, initial venous thromboembolism (VTE) event and type of thrombophilia.

Conclusions: In terms of determining the duration of anticoagulation management, scenarios were found in which the cost per QALY of thrombophilia testing was below £20,000. However, these results are subject to great uncertainty, largely because of lack of knowledge about the increased risk of recurrence with each type of thrombophilia. Results are influenced by the fact that men have a greater risk of recurrence than women and by the fact that the frequency of adverse events associated with warfarin treatment increases with age. Further research, for example on the likely sensitivity and specificity of the tests for specific types of thrombophilia, is needed to reduce the uncertainty associated with these results. Studies comparing patients with VTE tested for thrombophilia with those whose risk assessment was based on personal and family history of thrombosis would also be beneficial.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary and list of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Background</td>
<td>1</td>
</tr>
<tr>
<td>Description of the health problem</td>
<td>1</td>
</tr>
<tr>
<td>Current service provision</td>
<td>3</td>
</tr>
<tr>
<td>Description of technology under assessment</td>
<td>4</td>
</tr>
<tr>
<td>2 Definition of the decision problem</td>
<td>5</td>
</tr>
<tr>
<td>Decision problem</td>
<td>5</td>
</tr>
<tr>
<td>Overall aims and objectives of assessment</td>
<td>5</td>
</tr>
<tr>
<td>3 Assessment of clinical effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>Methods for reviewing effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>Methods for finding clinical data for the cost-effectiveness model</td>
<td>8</td>
</tr>
<tr>
<td>Clinical data for the cost-effectiveness model</td>
<td>9</td>
</tr>
<tr>
<td>4 Assessment of cost-effectiveness</td>
<td>11</td>
</tr>
<tr>
<td>Systematic review of existing cost-effectiveness evidence</td>
<td>11</td>
</tr>
<tr>
<td>Independent economic assessment</td>
<td>11</td>
</tr>
<tr>
<td>5 Assessment of factors relevant to the NHS and other parties</td>
<td>39</td>
</tr>
<tr>
<td>Patient information</td>
<td>39</td>
</tr>
<tr>
<td>Implications of testing</td>
<td>39</td>
</tr>
<tr>
<td>Cost implications</td>
<td>39</td>
</tr>
<tr>
<td>6 Discussion</td>
<td>41</td>
</tr>
<tr>
<td>Statement of principal findings</td>
<td>41</td>
</tr>
<tr>
<td>Strengths and limitations of the assessment</td>
<td>41</td>
</tr>
<tr>
<td>Uncertainties</td>
<td>41</td>
</tr>
<tr>
<td>Areas for future research</td>
<td>42</td>
</tr>
<tr>
<td>7 Conclusions</td>
<td>43</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>Appendix 1 Examples of thrombophilia tests and their CE marked indications for use</td>
<td>51</td>
</tr>
<tr>
<td>Appendix 2 Literature search terms for MEDLINE</td>
<td>53</td>
</tr>
<tr>
<td>Appendix 3 Critique of the retrieved cost-effectiveness papers</td>
<td>57</td>
</tr>
<tr>
<td>Appendix 4 Detailed results from the mid-point analyses</td>
<td>59</td>
</tr>
<tr>
<td>Appendix 5 Additional information on the calculation of costs used within the model</td>
<td>83</td>
</tr>
<tr>
<td>Appendix 6 Mean values and probability distributions for parameters used in the model</td>
<td>85</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td>93</td>
</tr>
<tr>
<td>Health Technology Assessment Programme</td>
<td>111</td>
</tr>
</tbody>
</table>
Glossary and list of abbreviations

Glossary

Anticoagulation therapy Medication that prevents formation of blood clots in blood vessels or prevents existing clots from growing

Antiphospholipid antibodies Anticardiolipin antibodies and lupus anticoagulant

Antithrombin deficiency A reduction in the quantity of normal antithrombin protein or production of abnormal protein

Dysfibrinogenemia Fibrinogen abnormalities

Factor V Leiden A point mutation in the gene for clotting factor V

Heterozygous Having two different alleles of a gene for a particular trait (e.g. an individual who is heterozygous for factor V Leiden has one gene with the factor V Leiden mutation and one normal copy of the gene)

Homozygous Having two identical alleles of a gene for a particular trait (e.g. an individual who is homozygous for factor V Leiden has both genes with the factor V Leiden mutation)

Hyperhomocysteinaemia Elevated levels of homocysteine

Idiopathic venous thromboembolism Venous thromboembolism of no known cause, which is not linked to known risk factors. Alternatively may be referred to as spontaneous or unprovoked

Index venous thromboembolism First venous thromboembolic event

Protein C deficiency A reduction in the quantity of normal protein C or production of abnormal protein C

Protein S deficiency A reduction in the quantity of normal protein S or production of abnormal protein S

Prothrombin G20210A mutation Mutation by a G to A transition at nucleotide position 20210 in the prothrombin gene

Prothrombotic Predisposition to thrombosis

Thrombophilia A heritable (genetic) or acquired defect in blood coagulation that leads to a predisposition towards thrombosis

Transient risk factors Factors that increase the risk of thromboembolism for a time-limited period

Unselected venous thromboembolism Venous thromboembolism that may include those that have been provoked by known risk factors, for example surgery
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>APC</td>
<td>activated protein C</td>
</tr>
<tr>
<td>AT</td>
<td>antithrombin</td>
</tr>
<tr>
<td>CEAC</td>
<td>cost-effectiveness acceptability curve</td>
</tr>
<tr>
<td>DES</td>
<td>discrete event simulation</td>
</tr>
<tr>
<td>DVT</td>
<td>deep vein thrombosis</td>
</tr>
<tr>
<td>FVL</td>
<td>factor V Leiden</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>HRQoL</td>
<td>health-related quality of life</td>
</tr>
<tr>
<td>INR</td>
<td>international normalised ratio</td>
</tr>
<tr>
<td>MAICER</td>
<td>maximum acceptable incremental cost-effectiveness ratio</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PC</td>
<td>protein C</td>
</tr>
<tr>
<td>PE</td>
<td>pulmonary embolism</td>
</tr>
<tr>
<td>PS</td>
<td>proteins</td>
</tr>
<tr>
<td>PTG20210A</td>
<td>prothrombin G20210A mutation</td>
</tr>
<tr>
<td>PTS</td>
<td>post-thrombotic syndrome</td>
</tr>
<tr>
<td>PSA</td>
<td>probabilistic sensitivity analysis</td>
</tr>
<tr>
<td>PS</td>
<td>protein S</td>
</tr>
<tr>
<td>QALY(s)</td>
<td>quality-adjusted life-year(s)</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>RRR</td>
<td>relative risk reduction</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>VTE</td>
<td>venous thromboembolism</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once or it is a non-standard abbreviation used only in figures/tables/appendices, in which case the abbreviation is defined in the figure legend or in the notes at the end of the table.
Executive summary

Background

Thrombophilias are heritable [such as factor V Leiden and the prothrombin G20210A mutation (PTG20210A)] or acquired (such as lupus anticoagulant) defects in blood coagulation that lead to a predisposition towards thrombosis. A thrombus is a solid mass of blood constituents that can fragment and block vessels downstream (thromboembolism). Depending on the blood vessel occluded, venous thromboemboli can lead to pulmonary embolism (PE) or, rarely, stroke.

Objectives

This review addresses the following question: 'Is thrombophilia testing following a venous thrombotic event clinically effective and cost-effective in the management of thrombosis compared with no testing for thrombophilia?'

Methods

A comprehensive search was undertaken to systematically identify clinical effectiveness and cost-effectiveness literature comparing thrombophilia testing of patients with thrombosis with no testing, and the resulting long-term anticoagulation management and outcomes. A discrete event simulation model was constructed that assessed the cost-effectiveness of changing the standard 3-month duration of warfarin treatment to 10 years, 20 years or lifelong. The model was run for both sexes, using hypothetical cohorts of patients assumed to be 30, 40, 50, 60 and 70 years of age. Separate analyses were conducted for patients in whom the initial venous thromboembolic event (VTE) was a deep vein thrombosis (DVT) and for those in whom the initial VTE was a PE.

Results

No trials were identified that met the inclusion criteria for the clinical effectiveness review. A number of papers were identified that investigated the cost-effectiveness of interventions for managing patients who may have thrombophilia, but none was appropriate to use in its published form.

There is a great deal of uncertainty in the cost per quality-adjusted life-year (QALY) of thrombophilia testing, largely because of the wide uncertainty regarding the increased risk of recurrence in patients with each thrombophilia, which is log-normally distributed. Our results are based on the mean cost per QALY taken from probabilistic sensitivity analyses (PSAs), which are generally less than £20,000, but it is noted that the chance of obtaining cost per QALY values greater than £100,000 is not remote. With this caveat thrombophilia testing in patients with PE had an estimated mean cost per QALY of below £20,000 regardless of sex or age. In patients with a previous DVT, thrombophilia testing had an estimated mean cost per QALY of below £20,000 in men aged 69 years or less and in women aged 49 years or less. The estimated duration of warfarin treatment (either lifelong, 20 years, 10 years or no extended treatment) that was most cost-effective is presented for each age, sex, initial VTE event and type of thrombophilia. The results are influenced by the fact that the risk of recurrence is greater in men than in women and by the fact that the frequency of adverse events associated with warfarin treatment increases as patients become older.

Uncertainty around some of the parameters, such as the prevalence of thrombophilia type, was not included within the model and, thus, whilst this is not expected to alter the mean cost per QALY it is expected that the range of cost per QALY values that could be correct is wider than those presented in this report.

Discussion

This report focuses on the cost-effectiveness of thrombophilia testing in determining whether the duration of warfarin treatment should be extended. No other anticoagulation therapies or interventions to prevent VTE have been modelled. Additional benefits of knowing the thrombophilia status of a person, such as pregnancy or the use of oral contraceptives or hormone replacement therapy, have been excluded as they are outside
Because of the lack of data on the additional expense of conducting tests for some types of thrombophilia, these have been omitted from the modelling work. If it can be proven that the marginal costs of undertaking these tests are small, the most cost-effective duration of warfarin treatment (3 months, 10 years, 20 years or lifelong) could be approximated from thrombophilia types with similar increased risks of recurrence. Our work additionally estimates which tests may be omitted from the battery of tests, if this is logistically possible, as their outcomes would not alter the management of the patient.

Conclusions

No clinical studies were identified that met the inclusion criteria for the review.

Our mathematical model estimates that undertaking thrombophilia testing on patients with PE has a mean cost per QALY below £20,000 regardless of sex or age, although there is great uncertainty around these values. In patients with a previous DVT, thrombophilia testing has an estimated mean cost per QALY below £20,000 in men aged 69 years or less and in women aged 49 years or less, but again there is great uncertainty in the values.
Chapter 1

Background

Description of the health problem

Thrombophilia

Thrombophilia is a heritable (genetic) or acquired defect in blood coagulation that leads to a predisposition towards thrombosis. A thrombus is a solid mass of blood constituents that can fragment and block vessels downstream (thromboembolism). Depending on the blood vessel occluded, venous thromboemboli can lead to pulmonary embolism (PE) or, rarely, stroke. Venous thrombosis often occurs in normal vessels, with the majority of venous thrombi forming in the deep veins of the leg (deep vein thrombosis, DVT).

Physiological blood coagulation is complex and is mediated through the interaction of numerous plasma proteins. These circulate in an inactive form to prevent unwanted clot formation, but when activated contribute to a potent cascade of interactions culminating in the generation of thrombin. The initiating event is interaction of factor VII/VIIa with tissue factor. Tissue factor is present in most cells and is made available as a result of injury. When factor VIIa binds to tissue factor this initiates the coagulation cascade, in which factors IX and X are activated. Through activated factors IX and X, in the presence of activated factors VIII and V, thrombin is generated from prothrombin (factor II). Thrombin converts factor I (fibrinogen) to insoluble fibrin, the principal component of thrombus. Thrombin also acts as a catalyst and inhibitor in its own formation by feedback activation of factors VIII and V. In addition, thrombin recruits platelets and promotes cross-linking of fibrin strands through activation of factor XIII.

There is a regulatory system to prevent uncontrolled coagulation. Tissue factor pathway inhibitor inhibits the early events. Antithrombin inhibits thrombin as well as activated factors IX, X and XI. When thrombin binds to thrombomodulin it is redirected to an anticoagulant role through activation of protein C. Activated protein C, together with the free form of protein S that acts as a cofactor for protein C, inactivates factors Va and VIIIa. Finally, a parallel system controls the generation of plasmin, the principal enzyme capable of lysis of fibrin.1–6

Thrombophilia can be genetic, acquired or mixed (due to a mixture of genetic and environmental factors). Heritable (genetic) thrombophilia is caused most commonly by mutations in the genes for coagulation factors II and V. Acquired thrombophilia refers to conditions in which individuals without genetic defects in coagulation factors are at increased risk of thrombosis, for example those with lupus anticoagulant or anticardiolipin antibodies. Examples of mixed-type thrombophilias are elevation of factor VIII or homocysteine levels. Malignancy can lead to an increased risk of thrombosis. Transient risk factors for thrombosis are conditions in which individuals are temporarily at increased risk of thrombosis, for example pregnancy, oestrogen therapy from combined oral contraceptives or hormone replacement therapy, obesity, fractures and major surgery. There is an increased risk of thrombosis with increasing age.7

Factor V Leiden (FVL) and the prothrombin G20210A mutation (PTG20210A) are genetic thrombophilias associated with increased procoagulant (promoting coagulation) activity. The FVL mutation is a point mutation in the gene for clotting factor V (1691G−A). Activated protein C (APC) is one of the major inhibitors of the coagulation system. An impairment in plasma anticoagulant response to APC is known as APC resistance. FVL is the most frequent cause, although not the only cause, of inheritable APC resistance. PTG20210A is a mutation of the prothrombin gene that is associated with elevated plasma prothrombin levels. In the general population the prevalence of FVL heterozygosity is 1−15%,8 of FVL homozygosity is 0.02−0.05%9 and of PTG20210A is 2−5%.8 The prevalence of FVL and PTG20210A is higher in Caucasian populations than in African or Asian populations.10

Compared with people without the mutation there is an increased risk of experiencing VTE of 3–8 times for heterozygous carriers of FVL, 80 times for homozygous carriers of FVL and 3 times for carriers of PTG20210A.11
Antithrombin (AT), protein C (PC) and protein S (PS) are physiological anticoagulants and a deficiency of any of these can be heritable. AT inhibits thrombin and also some activated clotting factors. AT deficiency can be caused by either a reduction in the quantity of normal AT protein or production of abnormal protein. PC, when activated, is a major inhibitor of the coagulation system. PC deficiency can be caused by either a lower level of PC or less functional PC. PS is a cofactor for APC. PS deficiency can be caused by reduced production of PS, a defect in PS or reduced availability of PS. In the general population the prevalence of AT deficiency is 0.02–0.04%,9 of PC deficiency is 0.2–0.4%9 and of PS deficiency is 0.003–2%.11,12 The low prevalence of these deficiencies makes it more difficult to accurately assess the relative risk (RR) of VTE, but estimates suggest an increased risk of first VTE compared with people without the deficiency of 19–50 times for individuals with AT deficiency,11,13 6.5–15 times for PC deficiency,11,12 and 5–10 times for PS deficiency,11,12 although this risk had been estimated to be 32 times as high by a retrospective study.13

Antiphospholipid antibodies, that is anticardiolipin antibodies and lupus anticoagulant, are forms of acquired thrombophilia. The mix of genes and environmental factors can cause elevated levels of homocysteine, fibrinogen or clotting factors VIII, IX and XI. Sufficiently elevated levels of these can increase the risk of VTE. The prevalence of hyperhomocysteinaemia (levels > 18.5 µmol/l) in the general population is 5–7%,11 that of elevated factor VIII (> 150 IU/dl) is 11%,8 of elevated factor IX (> 129 IU/dl) is 3%8 and of elevated factor XI (> 120.8 IU/dl) is 10%.8 Dysfibrinogenaemia is rare in the general population.11

It is possible to have more than one type of thrombophilia. Most types of thrombophilia are considered neither necessary nor sufficient cause for thrombosis. Individuals can have thrombophilia without experiencing a thrombotic event. Thrombosis can occur in people without thrombophilia.

Venous thrombosis

The estimated annual incidence of VTE (not restricted to patients with thrombophilia) is 1 in 1000 individuals in the general population.14 The incidence is higher in older age groups than in younger age groups.7

VTE can be associated with, for example, pregnancy, oestrogen therapy, fractures and major surgery. When there is no known cause, VTE is referred to as idiopathic. Within a group of VTE patients it is estimated that approximately 30–50%10,11 will have a known form of heritable thrombophilia, depending on the population.

A higher prevalence of some types of thrombophilia has been found in patients with venous thrombosis than in the general population, although there is considerable variation in reported prevalence rates according to study/population. The prevalence rates of thrombophilia in unselected (including idiopathic and non-idiopathic) patients with VTE are shown in Table 1.

Venous thrombosis is an important cause of morbidity and mortality; approximately 90% of PEs are caused by dislodged fragments from asymptomatic DVTs.19 PE can be fatal. Estimates of mortality rates vary widely, from 2.3%, based on patients enrolled in clinical studies, to 28%, based on a cohort study.20 Post-thrombotic syndrome (PTS) is a long-term complication of DVT. Approximately 30–50%21,22 of DVT patients may suffer post-thrombotic symptoms in the long term. These symptoms include pain, swelling and venous ulceration of the affected leg. The risk of developing PTS has not been found to be affected by thrombophilia, as shown for FVL, PTG20210A or elevated factor VIII.23

In the UK approximately 500,000 patients are being prescribed oral anticoagulants.24

<table>
<thead>
<tr>
<th>TABLE 1 Prevalence of thrombophilia in unselected VTE patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombophilia</td>
</tr>
<tr>
<td>FVL heterozygous</td>
</tr>
<tr>
<td>FVL homozygous</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
</tr>
<tr>
<td>AT deficiency</td>
</tr>
<tr>
<td>PC deficiency</td>
</tr>
<tr>
<td>PS deficiency</td>
</tr>
<tr>
<td>Hyperhomocysteinaemia</td>
</tr>
<tr>
<td>Dysfibrinogenaemia</td>
</tr>
<tr>
<td>Elevated factor VIII</td>
</tr>
<tr>
<td>Elevated factor IX</td>
</tr>
<tr>
<td>Elevated factor XI</td>
</tr>
<tr>
<td>Anticardiolipin antibodies</td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
</tr>
</tbody>
</table>
Anticoagulants suppress the synthesis of clotting factors in the blood and therefore prolong the time it takes for the blood to clot. Warfarin is the most commonly prescribed anticoagulant, but other oral anticoagulants include acenocoumarol and phenindione. Warfarin interferes with the vitamin K-dependent synthesis of factors II, VII, IX and X, and also affects proteins C and S. The dose of warfarin prescribed is determined by the international normalised ratio (INR), which is a measure of coagulability. Patients on oral anticoagulants need to be monitored regularly, with INR testing. The INR is derived from measurements of the time that it takes for a sample of the patient’s blood to clot, for example an INR of 2 means that the blood takes twice as long as normal to clot. Usual practice is to give a large initial loading dose of warfarin and adjust the daily dose according to the INR results from blood samples taken over the following days. Because there is a delay before the onset of the clinical effects of warfarin, in the initial stages of treatment, heparin is often given concomitantly as it has an immediate effect. Once the patient has achieved the target INR, the patient continues treatment with a maintenance dose of warfarin. The patient must undergo periodic blood tests to ensure that the target INR is maintained. Monitoring is time-consuming for patients and clinicians. The dose of warfarin is adjusted to maintain the INR within a target therapeutic range, which is determined by the indication for treatment. The recommended target INR for VTE is 2.5.

The benefits of anticoagulation in terms of a reduction in the risk of thromboembolic events must be balanced against the increased risk of haemorrhage. While taking oral anticoagulants long term there is an annual risk of haemorrhage of approximately 1–15%, with the risk increasing with higher INR. The risk of haemorrhage is not affected by the presence of thrombophilia.

Current service provision

The National Screening Committee, considering screening women for heritable thrombophilia, concluded that there was no evidence to support routine screening of women of childbearing age, those about to be prescribed oestrogen preparations or those with a family history of thrombophilia. A recent Health Technology Assessment report found that thrombophilia screening was not indicated in patients undergoing major orthopaedic surgery, nor in women during pregnancy or prior to prescribing oestrogen.

This report suggests that selective testing based on a history of VTE may be more cost-effective than universal screening.

Thrombophilia testing can be conducted by specialist laboratories, although some hospitals perform some tests on site. Thrombophilia testing is not currently restricted to patients with thrombosis. Asymptomatic relatives of patients with thrombophilia may be tested. Testing may follow recurrent miscarriage, other obstetric conditions or certain neurological symptoms.

For first episode of VTE in non-pregnant, non-surgical patients, the British Committee for Standards in Haematology (BCSH) recommends anticoagulant prophylaxis producing an INR of 2.5 for 3 months for patients with DVT or PE, or at least 6 months for patients with idiopathic VTE. The same recommendation applies to those with a diagnosis of heritable thrombophilia. Recurrent idiopathic VTE requires consideration of indefinite anticoagulation, whether or not a patient is diagnosed with heritable thrombophilia.

Some randomised controlled trials of anticoagulation therapy duration or intensity have illustrated the similarity in reaction to anticoagulation between VTE whether or not heritable thrombophilia was diagnosed. The PREVENT trial compared placebo with low-intensity warfarin in idiopathic VTE. The risk reduction for recurrence of VTE for warfarin versus placebo was similar for those with or without FVL or PTG20210A. The WODIT trial compared 3 months of warfarin therapy with 12 months of warfarin therapy in patients with idiopathic VTE. There was a borderline significant higher risk of recurrence of VTE in thrombophilia for patients on 3 months of warfarin, accounted for by patients with the acquired thrombophilias hyperhomocysteinaemia and antiphospholipid antibodies and not by the heritable thrombophilias FVL, PTG20210A, and antithrombin, protein C or protein S deficiencies. The ELATE trial compared low-intensity with normal-intensity warfarin in idiopathic VTE. Recurrence rates of VTE did not differ according to whether or not patients had FVL or PTG20210A. The THRIVE III trial, comparing ximelagatran to placebo, studied VTE that was not restricted to idiopathic events. It found no significant interactions between treatment group and thrombophilia (FVL, PTG20210A, antithrombin, protein C or protein S deficiencies, or cardiolipin antibodies). Overall,
thrombophilia does not seem to alter the efficacy of anticoagulation therapy.

A diagnosis of thrombophilia may affect advice given on transient risk factors, for example oestrogen therapy, or may influence decisions about targeted thromboprophylaxis in high-risk situations such as surgery.

Description of technology under assessment

Thrombophilia testing refers to a panel of tests that are performed on individuals who are believed to be at high risk of thrombosis. A blood sample is taken and a panel of diagnostic tests are performed to detect deficiencies in blood coagulation.

Diagnostic tests that may be predictive for an increased risk of venous thrombosis include those for factor V Leiden, prothrombin G20210A, clotting factors and the physiological anticoagulants antithrombin, protein C and protein S. Examples of CE marked indications for use are shown in Appendix 1 (CE marking is a declaration by the manufacturer that the product meets all of the appropriate provisions of the relevant legislation implementing certain European directives).

Thrombophilia testing may follow thrombosis, recurrent miscarriage, other obstetric conditions or certain neurological symptoms. For this review we consider thrombophilia testing following thrombosis, and focus on testing as a means of identifying those who may benefit from a prolonged course of anticoagulant therapy to prevent thrombosis.

Informed consent from the patient should precede testing. When thrombophilia testing follows thrombosis the test should not be performed during the acute phase and should be delayed until at least 1 month after completion of anticoagulation. Some thrombophilia tests are influenced by post-thrombotic state and anticoagulation therapy. Tests should not be conducted during pregnancy or oestrogen therapy. If testing while on anticoagulants is unavoidable, this necessitates repeat testing at a later date. Abnormal tests should be confirmed by testing on fresh blood samples. The Royal College of Physicians of Edinburgh recommends that thrombophilia testing is supervised by experienced haematologists informed of relevant factors that may influence test results in each individual.

Genetic tests for FVL and PTG20210A are considered robust. Significant difficulties are encountered in the accurate diagnosis and classification of deficiencies of natural anticoagulants. Errors may occur in testing, making quality assurance important.

Thrombophilia testing can be conducted by specialist laboratories, although some hospitals perform some tests on site. Different departments use different panels of tests in a thrombophilia screen. The BCSH recommends that thrombophilia testing is restricted to expert haemostasis units. The Royal College of Physicians of Edinburgh recommends that molecular testing be carried out in a central laboratory but that coagulometers in hospitals are adequate for thrombophilia tests and avoid frozen plasma samples being transported, which is costly and may disadvantage sample stability.

In 1999, UK National External Quality Assessment Scheme (NEQAS) Blood Coagulation surveyed UK laboratories and determined that a minimum of 37,800 thrombophilia screens were performed across the UK in that year (Dr I. Jennings, Scientific Programme Manager, UK NEQAS Blood Coagulation, personal communication). In the UK, 25,000 tests for APC resistance were conducted within 12 months in 1996/7.

Sources of requests for tests vary according to laboratory. Data from one hospital coagulation department found 2700 requests for thrombophilia testing annually, most frequently (45%) from regional hospitals, with other requests from inpatients (16%), haematology clinics (10%), other outpatient clinics (12%), general practice (8%) and obstetrics (9%). Some requests (11%) were not appropriately timed as patients were on oral anticoagulation therapy. Only 17% of these tests had abnormal results, most of which were detected by the haematology clinic on the basis of family history of VTE. The Royal College of Nursing (RCN) recommends that requests for thrombophilia testing should be made only by health-care professionals trained to understand the implications and usefulness of testing.
Chapter 2

Definition of the decision problem

Decision problem

The intervention for this review was thrombophilia tests performed on individuals with venous thrombosis, including the resulting anticoagulation management.

The comparator for this review was individuals with thrombosis who are not subject to thrombophilia testing, and their anticoagulation management.

The review originally aimed to discover whether anticoagulation management is altered according to thrombophilia test results, and the effect on subsequent thrombotic event rates. The review also aimed to investigate adverse events resulting from anticoagulation management, specifically rates of haemorrhage, and effect on health-related quality of life (HRQoL). It was found that anticoagulation management is not generally altered according to diagnosis of thrombophilia and so the focus of the review was to assess the cost-effectiveness of thrombophilia testing in determining the duration of warfarin treatment following a VTE.

Overall aims and objectives of assessment

Objectives

The review addresses the following question: ‘Is thrombophilia testing following a venous thrombotic event clinically effective and cost-effective in the management of thrombosis compared with not testing for thrombophilia?’

Areas outside the scope of this appraisal

Screening of individuals exposed to conditions that are transient risk factors (e.g. major surgery and pregnancy) has been excluded from the scope of this appraisal, as have pregnancy outcomes. Case finding by testing of asymptomatic individuals with a family history of thrombophilia or thrombosis but no personal history of thrombosis is also outside the scope of this review. These are important issues but it was not feasible to appraise all of these within a single technology assessment report.
Chapter 3
Assessment of clinical effectiveness

Methods for reviewing effectiveness
Identification of studies
A comprehensive search was undertaken to systematically identify clinical effectiveness literature concerning thrombophilia testing of patients with thrombosis and the resulting long-term anticoagulation management. The search strategy comprised searching of electronic databases, scrutiny of bibliographies of retrieved papers and contact with the project advisory group to identify key papers.

Searches of electronic databases were not restricted by language, publication date or publication type. Searches included arterial as well as venous thrombotic events as the review initially aimed to investigate these. Searches were conducted between September and November 2006. The MEDLINE search strategy is shown in Appendix 2 and was adapted for use on the other databases. The following electronic databases were searched from inception: MEDLINE (Ovid), CINAHL, EMBASE, PreMEDLINE, Cochrane Library including the Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register (CENTRAL), DARE, NHS EED and HTA databases, Science Citation Index (SCI), National Research Register (NRR), Current Controlled Trials, BIOSIS, Centre for Reviews and Dissemination (ongoing reviews database), Research Findings Register, Web of Science.

Inclusion criteria
Population
- Individuals with venous thrombosis.
 Thrombotic events had to be confirmed by objective testing. Thromboses were included whether first event or recurrent episode. The following subgroups were to be considered: smoking status; sex; age at first event; site of first thrombosis.

Intervention
- Thrombophilia testing using a panel of diagnostic tests and the resulting anticoagulation management. Any panel of diagnostic tests for thrombophilia was considered. Examples of thrombophilia tests include those for factor V Leiden, prothrombin G20210A, APC resistance, protein C, protein S and antithrombin levels, antiphospholipid antibodies and homocysteine levels, dysfibrinogenaemia, and levels of factor VIII, factor IX and factor XI. Anticoagulation management comprised any prescription of anticoagulants and follow-up of the patient.

Comparator
- Current standard care, that is risk assessment based on personal and family history of thrombosis, and the resulting long-term anticoagulation management.

Outcomes
- Venous thrombotic events (including fatal events) including DVT, PE, venous stroke.
- Mortality (death from any cause).
- Adverse effects of anticoagulation treatment (e.g. haemorrhage).
- Health-related quality of life.
- Anticoagulation management measures, including whether or not an anticoagulant is prescribed, frequency of INR testing, INR target, duration of anticoagulant prescription, duration of follow-up of patient.

Study types
- According to the accepted hierarchy of evidence, randomised controlled trials and meta-analyses from systematic reviews were searched initially as they provide the most authoritative forms of evidence. Data were not available from these types of study and so the search was broadened to include non-randomised controlled trials and cohort and case–control studies.

Exclusion criteria
- Publications in languages other than English.
- Thrombophilia tests conducted while patient was taking warfarin.
- Thrombosis in pregnancy or pregnancy complications associated with thrombophilia.
- Thrombosis related to temporary risk factors, including major surgery or oestrogen therapy.
• Case finding by testing individuals with a family history of thrombosis or thrombophilia but no personal experience of thrombosis.

Based on the above inclusion/exclusion criteria, study selection was made by one reviewer.

Data extraction, critical appraisal and data synthesis

It had been planned for one reviewer to extract data using a standardised form, with no blinding to authors or journal, for the purpose of providing a narrative account of trial quality for the reader. Planned quality assessment was with criteria based on those proposed by the NHS Centre for Reviews and Dissemination for randomised controlled trials, or using the Downs and Black checklist for randomised and non-randomised studies if other study types had been accepted into the review.

The lack of data made any kind of data synthesis impossible. It had been planned that prespecified outcomes would be tabulated and discussed within a descriptive synthesis, or, if statistical synthesis had been appropriate, meta-analysis would have been conducted using fixed- and random-effect models.

Results

Following removal of duplicates the search yielded 10,341 citations. Of these, 38 were database citations of ongoing studies, all of which were excluded by title.

Of the remaining 10,303 published articles 10,185 were rejected from titles and abstracts. A total of 118 articles were accepted by title search, many of which did not have abstracts available. Of these retrieved papers none met the inclusion criteria for intervention and comparator for the review; that is there were no comparisons available of patients tested for thrombophilia with patients whose risk assessment was based on a personal and family history of thrombosis. This is illustrated in the flow diagram (Figure 1).

Discussion

There were no studies available comparing patients tested for thrombophilia with patients whose risk assessment was based on a personal and family history of thrombosis. Thus, there were no studies meeting the inclusion criteria that could have provided data on any of the outcomes for which data were sought. Therefore clinical data for the cost-effectiveness model were not obtained from this clinical effectiveness systematic review. It may be that studies of this kind have not been conducted because thrombophilia testing is not routine after a first thrombotic event or because thrombophilia diagnosis does not alter anticoagulation management. A potential limitation of the search was that it excluded publications in languages other than English.

Methods for finding clinical data for the cost-effectiveness model

Given the lack of data from the systematic review of clinical effectiveness it was agreed with NICE that the cost-effectiveness model would consider the cost-effectiveness of thrombophilia testing in determining the duration of warfarin treatment following a VTE, and that data for the parameters to build the cost-effectiveness model would be derived not from a systematic literature review of all model parameters but from references identified

FIGURE 1 Flow diagram of study selection.
from the extensive literature searches conducted (see Methods for reviewing effectiveness) and recommendations from the clinical advisory group.

Clinical data for the cost-effectiveness model

Prevalence
The prevalence of thrombophilias in patients with venous thrombosis was taken from the prevalence in unselected patients, as data restricted to idiopathic thrombosis were not identified. The prevalence rates of thrombophilia in unselected VTE patients (idiopathic and non-idiopathic VTE) are shown in Table 1.

Recurrence rate following VTE in patients without thrombophilia

For patients without prothrombotic abnormalities (FVL, PTG20210A, AT, PC or PS deficiency, hyperhomocysteinaemia, hyperfibrinogenemia, or elevated factor VIII, IX or XI), the recurrence rate following first idiopathic VTE was found to be 32.4 per 1000 patient-years [95% confidence interval (CI) 19.2–51.2 per 1000 patient-years] with a mean follow-up of 7.3 years.41

Relative risk of recurrence in thrombophilia

Following a venous thrombotic event, the risk of VTE recurrence after discontinuation of anticoagulants may be higher for patients with some types of thrombophilia than for those without. The relative risk (RR) of recurrence following idiopathic VTE was sought for each form of thrombophilia (Table 2) but was not available for all types of thrombophilia. The RR of recurrence following unselected (including idiopathic and non-idiopathic) VTE was sought to allow conversion of the RRs in unselected VTE to risks for idiopathic VTE (Table 3).

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygous for FVL</td>
<td>1.0 (0.5–2.0)42</td>
</tr>
<tr>
<td>Heterozygous for PTG20210A</td>
<td>1.4843</td>
</tr>
<tr>
<td>Heterozygous for both FVL and PTG20210A</td>
<td>5.4 (2.0–14.1)42</td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td>6.8 (1.5–31)18</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.3 (0.5–11)18</td>
</tr>
<tr>
<td>Hyperhomocysteinaemia</td>
<td>2.744</td>
</tr>
<tr>
<td>Elevated factor VIII</td>
<td>5.436/6.2145c</td>
</tr>
<tr>
<td>Elevated factor IX</td>
<td>3.064</td>
</tr>
<tr>
<td>Elevated factor XI</td>
<td>2.146</td>
</tr>
</tbody>
</table>

a With reference to heterozygous FVL.
b Chromogenic factor VIII.
c Clotting factor VIII.

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygous for FVL</td>
<td>1.4647</td>
</tr>
<tr>
<td>Homozygous for FVL4</td>
<td>2.26 (0.93–5.46)46</td>
</tr>
<tr>
<td>Heterozygous for PTG20210A</td>
<td>1.7347</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>1.44 (1.02–2.01)49</td>
</tr>
</tbody>
</table>

a With reference to non-carriers or heterozygous FVL.
In idiopathic DVT, a retrospective cohort study found no increased risk of recurrence for heterozygous FVL based on 43 patients with recurrence (RR 1.0; 95% CI 0.5–2.0). A recent meta-analysis looking at heterozygous FVL pooled 10 studies of VTE recurrence following first episode of VTE in 3104 patients. Patients were unselected apart from the exclusion of malignancy. The meta-analysis found an increased odds of recurrence for patients with FVL (odds ratio (OR) 1.41; 95% CI 1.14–1.75), which resulted in a RR of 1.46. A prospective study found that the odds of recurrence in homozygous FVL, with reference to non-carriers or heterozygous FVL, was 4.1 (95% CI 0.97–15.5), which resulted in a RR of 2.3.

In idiopathic DVT, a retrospective cohort study found that patients heterozygous for PTG20210A had no significant difference in hazard from patients without the abnormality, based on 41 patients with recurrence (hazard ratio (HR) 1.5; 95% CI 0.7–3.1; RR 1.5). A recent meta-analysis looking at PTG20210A pooled nine studies of VTE recurrence following first episode of VTE in 2903 patients. Patients were unselected apart from the exclusion of malignancy. The meta-analysis found an increased odds of recurrence for patients heterozygous for PTG20210A (OR 1.72; 95% CI 1.27–2.31).

In idiopathic VTE, a retrospective cohort study found that patients heterozygous for both FVL and PTG20210A had an increased risk of recurrence (RR 5.4; 95% CI 2.0–14.1) with reference to patients heterozygous for FVL, based on 17 patients with recurrence. In unselected (including idiopathic and non-idiopathic) VTE, the presence of AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants was associated with a RR of recurrence of 1.44 (95% CI 1.02–2.01). An anticoagulant study found that lupus anticoagulant was associated with an increased risk of recurrence following idiopathic VTE (RR 6.8; 95% CI 1.5–31), and that the RR for anticardiolipin antibodies did not reach significance (RR 2.3; 95% CI 0.5–11).

In idiopathic VTE, hyperhomocysteinaemia had an increased risk of recurrence (RR 2.7; 95% CI 1.3–5.8). Data were not found that indicated the RR of recurrence for patients with dysfibrinogenemia. A prospective study found that elevated factor VIII was associated with a RR of VTE recurrence of 5.43 (chromogenic factor VIII) or 6.21 (clotting factor VIII) following first idiopathic VTE. This study found lower rates of recurrence and lower RRs, 2.62 for chromogenic factor VIII and 1.72 for clotting factor VIII, for patients with non-idiopathic VTE. A prospective study in idiopathic VTE found an increased risk of recurrence (RR 3.06; 95% CI 1.29–7.28) in patients with elevated factor IX. This study also found a RR of recurrence of 2.14 (95% CI 1.01–4.58) in patients with elevated factor XI.

There may be a higher risk of recurrence in men than in women. This may be explained by women whose first VTE event was related to pregnancy or oestrogen therapy and so would not apply in idiopathic thrombosis. However, this explanation is not supported in all studies, and a higher risk of recurrence in men than women following idiopathic VTE has been found.
Chapter 4
Assessment of cost-effectiveness

Systematic review of existing cost-effectiveness evidence

A systematic review of the cost-effectiveness literature was undertaken using the search terms provided in Appendix 2. The search identified 2499 citations, of which 2492 were rejected from titles and abstracts. A total of seven articles were therefore retrieved; however, none was directly relevant to the question we were asked to evaluate. We have given the reasons why each paper was insufficient in Appendix 3.

Independent economic assessment

Methods

Although no literature was found concerning thrombophilia testing of patients with thrombosis and the resulting long-term anticoagulation management, enough data were found on the increased risk of VTE associated with each thrombophilia type, the prevalence of thrombophilia, the efficacy of warfarin, the risks of haemorrhage associated with warfarin, the outcomes of VTE and haemorrhages, and the costs and utilities to be able to provide cost-effectiveness analyses. No data have been found within a UK context on the benefits of treatment compared with the risks of warfarin coupled to costs and utility. Our analysis may provide clinicians with an evidence-based approach within which to evaluate the period of warfarin treatment to be provided.

Modelling structure

An individual patient-based discrete event simulation (DES) model was constructed in Simul8® (Simul8 Corporation). The rationale for this approach is that it provides more flexibility than a cohort model as the history of the patient can be incorporated. This allows risks that are dependent on time since an event, such as the risk of a haemorrhage being greater in the initial months of warfarin treatment or the risks of VTE being highest immediately after a VTE, to be considered. Thus, a more accurate determination of the costs and quality-adjusted life-years (QALYs) associated with each treatment option is possible. Additionally, the cohort approach relies on an arbitrary definition of cycle duration, which is not needed within the DES model. Note that the only intervention evaluated to prevent recurrence of a VTE is warfarin.

The model simulates the experiences of hypothetical patients who have just suffered an index DVT or index non-fatal PE. The events that can occur are an additional VTE, a warfarin-induced haemorrhage or death due to a non-VTE-related cause (which can be reached from any non-absorbing state). Each outcome is associated with a cost and utility impact that, because of the individual patient modelling structure, can be incorporated into future time periods. At the resolution of a non-fatal event the time to the next event is simulated. This continues until all patients are in an absorbing state (fatal PE, fatal haemorrhage or death through non-VTE-related causes). A representation of the model is given in Figure 2.

In accordance with clinical advice, lifelong warfarin therapy would be prescribed following a subsequent VTE event. If a patient sustained a haemorrhage, warfarin treatment would be discontinued but would be restarted following a subsequent VTE if the patient had not bled intracranially.

Because of the differential rate of recurrence between men and women, the differential ratio of PE and DVT in those whose initial VTE was a DVT and in those in whom it was a PE, and the increased rates of haemorrhage as a patient becomes older, a large number of analyses were conducted.

Population of the model

The literature retrieved from the cost-effectiveness review was used to identify sources for the economic model that were not covered within the review of clinical effectiveness or the increased risk of recurrence associated with thrombophilia. The source used for populating the parameters within the model and the rationale for using this value are provided in the accompanying text.

Population start age and life expectancy

Hypothetical cohorts of men aged 30, 40, 50, 60 and 70 years were simulated. Life expectancies
FIGURE 2 A flow diagram representation of the mathematical model. Shaded cells represent absorbing states. The state of mortality unrelated to a VTE or haemorrhage event can be reached from any non-absorbing state. The arrows are omitted for clarity.
have been obtained from interim life tables published by the Office for National Statistics.53 We have assumed that a previous DVT or non-fatal PE will not affect life expectancy except through VTE or a haemorrhage, events that are explicitly modelled. The life expectancy and starting utility associated with age are given in Table 4. The underlying utility for patients aged 30 and 40 years is not provided and has been assumed to increase in a fairly linear manner with respect to the values for 50 and 70 years.

Risk of recurrent VTE

To accurately assess the implications of increased risks associated with thrombophilia, the recurrence rates of VTE associated with patients without thrombophilia must be known. The most appropriate data found come from Christiansen et al.,41 who followed up an untreated cohort of patients without FVL mutation, PTG20210A, anticoagulation deficiency, elevated levels of factors VII, IX and XI, hyperfibrinogenemia or hyperhomocysteinemia. The Christiansen et al. data may include patients with lupus anticoagulant and anticardiolipin antibodies and could thus overestimate the risk for non-thrombophilic patients. The rate of recurrence of VTE for these patients was 3.24 per 100 patient-years, which we have assumed to be applicable regardless of whether the patient had previously sustained a DVT or a PE. Although this paper discusses correcting results for the age of the patient, no data were presented that showed how rates change according to age of the patient, and we have assumed that the probability of recurrence is independent of age, although data7 show that the risk of an initial VTE increases as a person ages. The likely effect of an increased risk of recurrence as a patient ages has been included in the discussion.

It is reported that men have an increased HR of 2.7 (95% CI 1.8–4.2).41 This value has been combined with the percentage of males within the study to calculate that the risk of recurrence for males would be 5.1 per 100 patient-years, with the corresponding value for females 1.9 per 100 patient-years.

The data from Christiansen et al.41 show a non-significant decrease in risk with time since VTE, which may then increase beyond 6 years of follow-up. Smaller studies by Prins et al.,55 Kearon et al.,58 and Simioni et al.,56 all suggest that the risk might be increased in the initial 3 months following a short course of warfarin treatment. The data available are insufficient and too heterogeneous to conclusively determine whether the risks are higher in this period, and we do not dismiss the notion that 6 months of warfarin treatment may be as appropriate as 3 months of treatment. This decision is, however, largely independent of any known thrombophilic status and has been excluded from our analyses. We have assumed that 3 months of treatment is the standard course of treatment but note that the decision on whether to provide lifelong treatment or not will be equally valid if the initial course of treatment is for 6 months.

Data were not found related to the increased probability of subsequent VTE in the high-risk period immediately following a VTE in patients who did not receive warfarin, either because the VTE was undetected or because of a previous intracranial haemorrhage. In the absence of better data we have assumed that for a patient who does not receive warfarin treatment following a VTE there is a 20% probability of a recurrent VTE in the next 6 months, which is independent of gender. This risk is double that which has been estimated to occur in patients who have taken a course of warfarin following a VTE,57 with the magnitude of the increase tempered in the expectation that the VTEs that remain undetected will be less severe and less likely to recur. This value is altered in the sensitivity analyses. Beyond this time period the risks of recurrent VTE in patients not receiving

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Life expectancy (years)53</th>
<th>Starting utility54</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>47.75</td>
<td>0.950a</td>
</tr>
<tr>
<td>40</td>
<td>38.24</td>
<td>0.900a</td>
</tr>
<tr>
<td>50</td>
<td>29.04</td>
<td>0.850</td>
</tr>
<tr>
<td>60</td>
<td>20.49</td>
<td>0.829</td>
</tr>
<tr>
<td>70</td>
<td>13.09</td>
<td>0.727</td>
</tr>
</tbody>
</table>

a Author-estimated values.
warfarin taken from Christiansen et al. have been used.\(^41\)

The increased risk of VTE due to thrombophilia

Some forms of thrombophilia may increase the risk of recurrent VTE, with the RR being dependent upon the cause of the condition. Because of the scarcity of data received regarding the marginal costs of individual tests, we have assumed the cost characteristics of the thrombophilia tests as detailed in Wu et al.,\(^30\) i.e. tests for FVL, PTG20210A, AT deficiency, PC deficiency, PS deficiency, lupus anticoagulants and anticardiolipin antibodies. Thus, only these types of thrombophilia are included within our modelling. Ideally we require data on the increased risks of recurrent idiopathic VTE, and these data, where available, are summarised in Table 5; however, where data are available only for unselected (including idiopathic and non-idiopathic) VTE, these are given in Table 6. These tables also provide estimates of the prevalence of the thrombophilia in patients with VTE. It is assumed that these prevalences are independent of age, sex and previous VTE event; however, no data were found to support or refute this assumption.

We have to convert the RR in unselected VTE to risks for idiopathic VTE. To do this we need to use a thrombophilia that has data for both idiopathic and unselected VTE to estimate a relationship between the two groups. These data are available for heterozygous FVL, which has a RR of 1.0 in idiopathic and 1.46 in unselected VTE. These values are 1.48 and 1.73, respectively, for heterozygous PTG20210A. As unselected VTE includes provoked VTEs, such as those that occur in surgical patients, which are less likely to spontaneously recur, the RRs are higher in patients with unselected VTE than in those with idiopathic VTE. We have arbitrarily assumed that the RR of 2.6 for unselected VTE in patients homozygous for FVL compared with non-carriers or patients heterozygous for FVL would be reduced to 2.0 for idiopathic VTE in patients homozygous for FVL compared with non-carriers or patients heterozygous for FVL. Similarly we have assumed that the RR of idiopathic VTE for patients with AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants is 1.25, reduced from 1.44 when compared with unselected VTE. The risks for patients with AT deficiency, PC deficiency or PS deficiency may be overestimated if the lupus-like anticoagulants have a similar RR to lupus anticoagulant, and the RR may indeed be 1. We have modelled using the value of 1.25 but have commented on the difference in treatment between patients with AT deficiency, PC deficiency or PS deficiency and those who are FVL heterozygous, which has an estimated RR of 1.

Efficacy of warfarin treatment in preventing VTE

Warfarin reduces the risk of subsequent VTE. We do not make comment on the quantity of warfarin

TABLE 5 The relative risk of recurrence following idiopathic VTE for thrombophilic people compared with people without thrombophilia

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Relative risk (95% CI)</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygous for FVL</td>
<td>1.0 (0.5–2.0)(^42)</td>
<td>10–50(^a)</td>
</tr>
<tr>
<td>Heterozygous for PTG20210A</td>
<td>1.48 (0.84–2.62)(^47)</td>
<td>5–18(^b)</td>
</tr>
<tr>
<td>Heterozygous for both FVL and PTG20210A(^a)</td>
<td>5.4 (2.0–14.1)(^42)</td>
<td>3.45(^a)</td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td>6.8 (1.5–31)(^18)</td>
<td>3(^b)</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.3 (0.5–11)(^18)</td>
<td>3(^b)</td>
</tr>
</tbody>
</table>

\(^a\) With reference to heterozygous FVL.

TABLE 6 The relative risk of unselected VTE for thrombophilic people compared with people without thrombophilia

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Relative risk (95% CI)</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous for FVL(^a)</td>
<td>2.26 (0.93–5.46)(^48)</td>
<td>1.5(^a)</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>1.44 (1.02–2.01)(^49)</td>
<td>13(^a)</td>
</tr>
</tbody>
</table>

\(^a\) With reference to non-carriers or heterozygous FVL.
prescribed to a patient and have assumed that this decision is made by the clinician. The exact relative risk reduction (RRR) in recurrent VTE is not known, with estimates ranging from 90% to 95%. These are given in Table 7, with a decision made to use 95% as our mean estimate. It is assumed that this RRR is applicable throughout the duration of warfarin treatment and that this effect is instantly removed following the cessation of warfarin treatment.

The outcomes following a recurrent VTE

The outcome following a VTE is dependent on whether or not the person receives warfarin treatment on the detection of the VTE. Because of scarce data we have assumed that the effect of warfarin on the VTE is independent of whether the patient has a course of warfarin prescribed following the VTE or remains on lifelong warfarin. A person with a VTE will not receive warfarin if the VTE remains undetected or if there has been a history of intracranial haemorrhage. We have assumed that the sensitivity of clinical tests in detecting a VTE is 95% as this value is representative of current detection methods for DVT and it is assumed that patients with a previous VTE will receive more sensitive tests before a decision to prescribe lifelong warfarin is taken. We have assumed that this value is also applicable for the detection of PE. It was further assumed that all patients with a non-fatal VTE will see a clinician and be referred for testing.

The outcome of a VTE is additionally dependent on whether the previous VTE manifested in a DVT or a PE. Among patients with a previous PE, 81.1% of VTE resulted in PE, whereas for patients with a previous DVT 78.6% of VTE resulted in DVT. The fatality rates were also markedly different, with 26.4% of VTE resulting in death after a previous PE, compared with 7.6% after a DVT.

The probability of a fatal, or non-fatal, PE following a recurrent VTE for a patient on warfarin after a VTE has been taken from Douketis et al. Following a subsequent DVT there were 19 fatalities in 250 VTE events (7.6%) and there were 19 fatalities in 72 events (26.4%) following a subsequent PE. The probability of a VTE that is a DVT resulting in PTS for patients receiving warfarin has been taken from Goodacre et al.

Data on patients with a VTE who do not receive warfarin are by definition scarce, as these are patients in whom the VTE has been unidentified or who have sustained an intracranial haemorrhage. The probability of a fatal, or non-fatal, PE or PTS in patients who remain untreated following a DVT has been taken from Goodacre et al. Data on patients with a PE who do not receive warfarin treatment were not found and had to be estimated by the authors. Data from Goodacre et al. showed that the probability of a VTE progressing to a PE was 10 percentage points higher in those who do not receive warfarin treatment (68.6% DVT and 31.4% PE) than in those who receive warfarin treatment (78.6% DVT and 21.4% PE). We have assumed that this increase in PE without treatment is also applicable following a PE. We further assume that two-thirds of PEs are fatal compared with the one-third observed in treated patients. These assumptions are tested in sensitivity analyses.

For all outcomes following a VTE it is assumed that any cost and disutility associated with the event occur immediately.

These assumptions result in the risks provided in Tables 8 and 9.

Risk of haemorrhage due to warfarin use

The rate of haemorrhage is greater in the initial months of anticoagulation therapy, which may be due to factors that predispose the patient to haemorrhage, a patient initially being prescribed too great a dose of anticoagulant whilst the optimal level is determined, or co-prescribed medication. During the initiation period the INR of the patient is closely monitored, resulting in

TABLE 7 The efficacy of warfarin in preventing VTE

<table>
<thead>
<tr>
<th>Publication</th>
<th>RRR of warfarin in preventing VTE (95% CI or reported range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prins et al.</td>
<td>0.900</td>
</tr>
<tr>
<td>Marchetti et al.</td>
<td>0.950 (0.65–1.00)</td>
</tr>
<tr>
<td>Kearon et al.</td>
<td>0.950 (0.63–0.99)</td>
</tr>
</tbody>
</table>

For sources see accompanying text.
Assessment of cost-effectiveness

To analyse specificity the following assumptions were made: that 50% of the idiopathic VTE population were non-thrombophilic (as may be the case from Tables 10 and 11); that, of those misdiagnosed, the proportion of false positives by thrombophilia type would be equal to their corresponding proportion in a population with an idiopathic VTE. Results are shown assuming 100% sensitivity and specificity and with the base-case values of 99% so that the magnitude of the change in results when sensitivity and specificity are changed can be gauged. Such high values are likely in DNA-based tests such as those for FVL or PTG20210A66 but are likely to be overestimates for tests for other types of thrombophilia; however, values were not found for individual thrombophilia types. It is noted that, where thrombophilia testing has been suggested to be cost-effective, these results are driven by those patients with lupus anticoagulant or who are heterozygous for both FVL and PTG20210A. Although the estimate of 99% for both sensitivity and specificity is likely to be relatively accurate for FVL and PTG20210A, if the true sensitivity and specificity of the tests for detecting patients with lupus anticoagulant were markedly lower than 99%, the cost-effectiveness ratios for thrombophilia testing produced in this report will be favourable to thrombophilia testing.

Costs of VTE-related events
Costs have been extracted from standard literature sources67–69 where available. When these costs are not readily available for a specific event we have used data from the literature updating to 2005–6 prices using the inflation indices in Curtis and Netten.68 The summarised costs used in the model are presented in Table 12, with detailed calculations given in Appendix 5.

Utility
The utility multipliers for the VTE-related health states are presented in Table 13.
Utility scores are combined multiplicatively within the model so that a patient receiving warfarin after sustaining a non-fatal PE would have a utility

TABLE 9 The outcome of a recurrent VTE in patients who have had a previous PE related to whether the person receives warfarin treatment

<table>
<thead>
<tr>
<th></th>
<th>Treated (%)</th>
<th>Untreated (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal PE</td>
<td>26.40</td>
<td>60.73</td>
</tr>
<tr>
<td>Non-fatal PE</td>
<td>54.70</td>
<td>30.37</td>
</tr>
<tr>
<td>PTS</td>
<td>1.01</td>
<td>3.31</td>
</tr>
<tr>
<td>Resolved VTE</td>
<td>17.89</td>
<td>5.59</td>
</tr>
</tbody>
</table>

For sources see accompanying text.

TABLE 10 The rates of haemorrhage associated with the initial 3 months of warfarin treatment

<table>
<thead>
<tr>
<th>Haemorrhage location/type</th>
<th>Absolute rate in the initial 3 months of treatment with warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal haemorrhage</td>
<td>0.0034</td>
</tr>
<tr>
<td>Non-fatal intracranial haemorrhage</td>
<td>0.0009</td>
</tr>
<tr>
<td>Non-fatal non-intracranial haemorrhage</td>
<td>0.0175</td>
</tr>
</tbody>
</table>
TABLE 11 The annual rates of haemorrhage associated with warfarin treatment after the initial 3-month period

<table>
<thead>
<tr>
<th>HAEMORRHAGE LOCATION/TYPE</th>
<th>PATIENT AGE (YEARS)</th>
<th>LESS THAN 40</th>
<th>40–49</th>
<th>50–59</th>
<th>60–69</th>
<th>OVER 69</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL HAEMORRHAGES</td>
<td>0.0060</td>
<td>0.0100</td>
<td>0.0150</td>
<td>0.0220</td>
<td>0.0320</td>
<td></td>
</tr>
<tr>
<td>FATAL HAEMORRHAGE</td>
<td>0.0014</td>
<td>0.0009</td>
<td>0.0014</td>
<td>0.0051</td>
<td>0.0074</td>
<td></td>
</tr>
<tr>
<td>NON-FATAL INTRACRANIAL HM</td>
<td>0.0008</td>
<td>0.0011</td>
<td>0.0017</td>
<td>0.0028</td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>NON-FATAL NON-INTRACRANIAL HM</td>
<td>0.0038</td>
<td>0.0080</td>
<td>0.0119</td>
<td>0.0141</td>
<td>0.0205</td>
<td></td>
</tr>
</tbody>
</table>

For sources see accompanying text.

TABLE 12 Cost of VTE-related events (all costs are in 2005–6 prices)

<table>
<thead>
<tr>
<th>DESCRIPTION OF VARIABLE</th>
<th>MEAN VALUE (£)</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of a resolving deep vein thrombosis</td>
<td>183.46</td>
<td>See Appendix 5</td>
</tr>
<tr>
<td>Warfarin treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of warfarin, first quarter</td>
<td>538.48</td>
<td>See Appendix 5</td>
</tr>
<tr>
<td>Cost of warfarin, subsequent quarters</td>
<td>211.38</td>
<td>See Appendix 5</td>
</tr>
<tr>
<td>Cost of treating post-thrombotic syndrome</td>
<td>3284.70</td>
<td>See Appendix 5</td>
</tr>
<tr>
<td>Cost of treating a fatal pulmonary embolism</td>
<td>1803.86</td>
<td>NHS reference costs</td>
</tr>
<tr>
<td>Cost of treating a non-fatal pulmonary embolism</td>
<td>1390.54</td>
<td>NHS reference costs</td>
</tr>
<tr>
<td>Cost of treating a fatal haemorrhage</td>
<td>6792.65</td>
<td>Sandercock et al.</td>
</tr>
<tr>
<td>Cost of treating a non-fatal intracranial haemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial one-off cost</td>
<td>5774.78</td>
<td>See Appendix 5</td>
</tr>
<tr>
<td>Ongoing cost per year</td>
<td>4798.19</td>
<td>See Appendix 5</td>
</tr>
<tr>
<td>Cost of treating a non-fatal non-intracranial haemorrhage</td>
<td>736.93</td>
<td>NHS reference costs</td>
</tr>
<tr>
<td>Cost of thrombophilia test that detects FVL, PTG20210A, AT deficiency, PC deficiency, PS deficiency, lupus anticoagulants and anticardiolipin antibodies</td>
<td>70.60</td>
<td>Wu et al.</td>
</tr>
</tbody>
</table>

TABLE 13 Utility multipliers for VTE-related health states

<table>
<thead>
<tr>
<th>HEALTH STATE</th>
<th>UTILITY MULTIPLIER</th>
<th>CHOSEN SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post DVT receiving warfarin</td>
<td>0.987</td>
<td>Gage et al.</td>
</tr>
<tr>
<td>Post DVT not receiving warfarin</td>
<td>1.000</td>
<td>Assumption</td>
</tr>
<tr>
<td>PTS</td>
<td>0.977</td>
<td>O’Meara et al.</td>
</tr>
<tr>
<td>Non-fatal PE</td>
<td>0.940</td>
<td>Goodacre et al.</td>
</tr>
<tr>
<td>Non-fatal intracranial haemorrhage</td>
<td>0.290</td>
<td>O’Meara et al.</td>
</tr>
<tr>
<td>Non-fatal non-intracranial haemorrhage</td>
<td>0.997</td>
<td>Goodacre et al.</td>
</tr>
</tbody>
</table>
multiplier of 0.931 (0.990×0.940). This value is then multiplied by the average utility for patients at the specified age as reported by Kind et al. and presented in Table 4.

The utility for a patient who has recovered from a DVT without any adverse effect and is no longer receiving warfarin could not be determined from the literature. The assumption made is that this patient has recovered to the utility associated with people of that age within the general population as reported by Kind et al.

Another reported utility multiplier for PTS was 0.995. However, we chose to use the value of O’Meara et al. because it was the value assumed to be most appropriate by the authors in the recent review of diagnostic tests for detecting DVT and because the effect assumed in the former paper was so negligible.

Discount rates

The discount rates for both the costs and QALYs were set at 3.5% per annum in accordance with published guidelines.

Results

Methodology for calculating cost-effectiveness ratios

In evaluating the cost-effectiveness of introducing any testing policy the resultant outcome is that either all patients or no patients receive the test. It needs to be emphasized that, even in a situation in which testing is not cost-effective, this may not be the optimal decision on an individual basis, as there may be patients who would have received different care if their thrombophilic status were able to be determined without cost. However, once all of the costs of tests to find such patients are incorporated the decision will be cost-effective from a societal perspective.

To estimate the cost-effectiveness of any screening programme the initial step is to calculate the increased costs and QALYs associated with any change in treatment of individuals that occurs as a result of information obtained from the screening test, whilst excluding the costs of the test. As an example, the cost per QALY of extending the warfarin treatment period to 10 years, 20 years or lifelong is calculated for women aged 50 years with a previous DVT who are known to have lupus anticoagulant. These costs per QALY are provided and the most cost-effective duration highlighted in the results. This procedure will be repeated for each classification of thrombophilia investigated (FVL, PTG20210A, AT deficiency, PC deficiency, PS deficiency, lupus anticoagulants and anticardiolipin antibodies), allowing the most cost-effective duration of warfarin treatment (3 months, 10 years, 20 years or lifelong) to be determined. The incremental costs and QALYs of moving to the most cost-effective period of warfarin treatment are calculated for each thrombophilia. These are summed to find the total costs incurred and total QALYs accrued associated with a change in treatment. The total costs and total QALYs gained associated with changes in treatment duration must be cost-effective for the following logic: changes in the recommended treatment period are by definition cost-effective as otherwise the patient would remain on the standard duration of warfarin, which affects neither costs nor QALYs. The addition of costs and QALYs that are all associated with cost-effectiveness can produce only an overall cost-effectiveness ratio.

However, the costs of identification need to be incorporated because, using the same example, thrombophilia testing must be undertaken in all women aged 50 years with a previous DVT to identify those in whom changes in treatment duration are cost-effective. The estimated costs of performing the tests in all women aged 50 with a previous DVT, with a repeat test if a thrombophilia that could be treated cost-effectively is found, as opposed to all thrombophilic patients, as reported by Wu et al., would then be added to the summed costs incurred through changes in warfarin treatment period. This total cost is then divided by the total QALYs accrued through changes in warfarin treatment period to find the cost per QALY of undertaking thrombophilia testing in females aged 50 with a previous DVT.

This is not necessarily cost-effective because when few patients may benefit from changes in treatment the relative costs of undertaking thrombophilia testing may result in a high cost per QALY. This calculation is performed for both sexes at initial VTE ages of 30, 40, 50, 60 and 70 years and for both those whose initial VTE was a DVT and those whose initial VTE was a PE.

To undertake these analyses, the maximum acceptable incremental cost-effectiveness ratio (MAICER) must be estimated so that it can be ascertained for which thrombophilia changes in the warfarin treatment period are cost-effective. For example, if the cost per QALY of moving to a warfarin treatment period of 10 years was £25,000 (costing £2500 and accruing 0.1 QALYs) and the MAICER was £30,000, then changing to a 10-year treatment period would be cost-effective, allowing
some benefits to be gained from the thrombophilia test conducted on this individual. If, however, the MAICER was £20,000, the patient would remain on the standard 3 months of warfarin and the money spent on conducting this test would not influence clinical management and no benefits would be gained from conducting the test. Thus, calculating the cost-effectiveness of a screening programme is predicated on assuming a given MAICER.

In accordance with NICE guidelines we have assumed primarily that the MAICER is £20,000 per QALY. However, sensitivity analyses have been conducted showing the results that would be achieved if it was viewed that there were additional factors associated with thrombophilia testing that would warrant an increase in the MAICER to £30,000.

Deterministic results using 20,000 hypothetical patients and the mid-point estimate for each parameter were calculated for all combinations of age (30, 40, 50, 60 or 70 years), sex (male or female), previous VTE (DVT or PE) and duration of warfarin treatment (3 months, 10 years, 20 years or lifetime). These results are presented in the next section.

When probabilistic sensitivity analyses (PSAs) were undertaken, it became evident that the deterministic results were systematically smaller (i.e. more beneficial to testing) than those when PSA were conducted. This was primarily due to parameters such as the increased risk of VTE associated with thrombophilia type, the efficacy of warfarin at reducing VTE, the underlying risk of recurrent VTE, the outcome following a VTE and a number of disutilities contained within the model being non-normally distributed. To reduce computational time it was decided that PSA would be conducted only on those combinations for which the mean costs per QALY from the deterministic analyses were below £20,000.

Deterministic analyses conducted using the mean value for each parameter

For brevity this scenario will henceforth be termed a ‘mid-point analysis’. The results from the mid-point analyses assuming a MAICER of £20,000 are summarised in Tables 14–17. The detailed analyses that are combined to form these tables are provided in Appendix 4. Additional data showing the results from the mid-point analyses assuming a MAICER of £30,000 are summarised in Tables 18–21.

These tables include the cost per QALY, with thrombophilia testing assumed to be 99% sensitive and specific. As few data were found on the costs of undertaking a thrombophilia test, apart from those reported in Wu et al., analyses were undertaken to calculate the price of thrombophilia testing at which the cost per QALY rose above a specific MAICER. This allows some indication of the likely cost per QALY if new data on the costs of undertaking thrombophilia testing become available.

We provide an example to aid understanding of the data, which is summarised in Table 14. This example looks at men with a previous DVT and assumes a threshold of £20,000 per QALY. For such patients the mid-point analyses estimate that it is cost-effective to undertake thrombophilia testing at all ages as the costs per QALY are below £20,000 at all ages. The mid-point analyses estimate that the following durations of warfarin treatment are the most cost-effective for patients aged 30–39 years: patients with all types of thrombophilia should receive more than 3 months of treatment; patients who have lupus anticoagulant or who are heterozygous for both FVL and PTG20210A should receive lifelong treatment; patients with anticardiolipin antibodies, who are homozygous for FVL or who are heterozygous for PTG20210A should receive 20 years of treatment; patients who are deficient in either AT, PC or PS or who are heterozygous for FVL should receive 10 years of treatment.

Note that we have assumed that the standard treatment is 3 months of warfarin, which was used to determine the cost-effectiveness of thrombophilia testing. If the standard management is significantly different, for example lifelong treatment being routine for all patients with an initial PE, then the results could also be significantly different, as thrombophilia testing would not be recommended in Table 16 for men aged 30–39 years as the management of the patient would not alter. We did not investigate this because alternative management strategies, if they exist, were not sufficiently detailed and we assumed that clinicians would tend to be risk averse when prescribing medications with potentially fatal side effects.
TABLE 14 Cost per QALY of thrombophilia testing for men with a previous idiopathic DVT assuming that treatment is provided when the cost per QALY is below £20,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per QALY of thrombophilia testinga</td>
<td>£10,740</td>
<td>£9,894</td>
<td>£9,194</td>
<td>£10,239</td>
<td>£16,641</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testingb</td>
<td>£10,804</td>
<td>£10,135</td>
<td>£9,502</td>
<td>£10,665</td>
<td>£17,377</td>
</tr>
<tr>
<td>Cost of thrombophilia testing per individual at which the cost per QALY becomes > £20,000b</td>
<td>£1,700</td>
<td>£950</td>
<td>£600</td>
<td>£350</td>
<td>£150</td>
</tr>
</tbody>
</table>

- a Assuming 100% sensitivity and specificity.
- b Assuming 99% sensitivity and specificity.
<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>Lifelong treatment</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testinga</td>
<td>£9329</td>
<td>£14,384</td>
</tr>
<tr>
<td></td>
<td>£20,746</td>
<td>N/A</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testingb</td>
<td>£9656</td>
<td>£14,986</td>
</tr>
<tr>
<td></td>
<td>£21,755</td>
<td>N/A</td>
</tr>
<tr>
<td>Cost of thrombophilia testing per individual at which the</td>
<td>£500</td>
<td>£250</td>
</tr>
<tr>
<td>cost per QALY becomes > £20,000b</td>
<td>£50</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a Assuming 100% sensitivity and specificity.

b Assuming 99% sensitivity and specificity.
TABLE 16 Cost per QALY of thrombophilia testing for men with a previous idiopathic PE assuming that treatment is provided when the cost per QALY is below £20,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Cost per QALY of thrombophilia testinga</th>
<th>Cost per QALY of thrombophilia testingb</th>
<th>Cost of thrombophilia testing per individual at which the cost per QALY becomes > £20,000b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>£5682</td>
<td>£5683</td>
<td>£11,200</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>£6137</td>
<td>£6158</td>
<td>£7850</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>£7620</td>
<td>£7627</td>
<td>£4950</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>£9494</td>
<td>£9516</td>
<td>£2250</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>£9635</td>
<td>£9877</td>
<td>£950</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifelong treatment</td>
</tr>
<tr>
<td>20 years’ treatment</td>
</tr>
<tr>
<td>10 years’ treatment</td>
</tr>
<tr>
<td>3 months’ treatment</td>
</tr>
</tbody>
</table>

- **a** Assuming 100% sensitivity and specificity.
- **b** Assuming 99% sensitivity and specificity.
TABLE 17 Cost per QALY of thrombophilia testing for women with a previous idiopathic PE assuming that treatment is provided when the cost per QALY is below £20,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Lifelong treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost per QALY of thrombophilia testing^a	£10,366	£9,590	£7,447	£8,544	£10,782
Cost per QALY of thrombophilia testing^b	£10,415	£9,766	£7,663	£8,783	£11,147
Cost of thrombophilia testing per individual at which the cost per QALY becomes > £20,000^b	£2,650	£1,950	£1,400	£850	£400

^a Assuming 100% sensitivity and specificity.

^b Assuming 99% sensitivity and specificity.
TABLE 18 Cost per QALY of thrombophilia testing for men with a previous idiopathic DVT assuming that treatment is provided when the cost per QALY is below £30,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Cost per QALY of thrombophilia testing<sup>a</sup></th>
<th>Cost per QALY of thrombophilia testing<sup>b</sup></th>
<th>Cost of thrombophilia testing per individual at which the cost per QALY becomes > £30,000<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>30</td>
<td>£11,411</td>
<td>£11,487</td>
<td>£3500</td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td>40</td>
<td>£12,016</td>
<td>£12,326</td>
<td>£1,800</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>50</td>
<td>£14,307</td>
<td>£14,842</td>
<td>£950</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>60</td>
<td>£11,802</td>
<td>£12,330</td>
<td>£650</td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td>70</td>
<td>£16,641</td>
<td>£17,371</td>
<td>£250</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **Lifelong treatment**
- **20 years’ treatment**
- **10 years’ treatment**
- **3 months’ treatment**

^a Assuming 100% sensitivity and specificity.

^b Assuming 99% sensitivity and specificity.
TABLE 19 Cost per QALY of thrombophilia testing for women with a previous idiopathic DVT assuming that treatment is provided when the cost per QALY is below £30,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td></td>
<td>Lifelong treatment</td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td>20 years’ treatment</td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10 years’ treatment</td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing(^a)</td>
<td>£12,755</td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing(^b)</td>
<td>£13,066</td>
<td></td>
</tr>
<tr>
<td>Cost of thrombophilia testing per individual at which the cost per QALY becomes > £30,000(^b)</td>
<td>£1000</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Assuming 100% sensitivity and specificity.
\(^b\) Assuming 99% sensitivity and specificity.
TABLE 20 Cost per QALY of thrombophilia testing for men with a previous idiopathic PE assuming that treatment is provided when the cost per QALY is below £30,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per QALY of thrombophilia testinga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£5682</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£6935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£7620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£10,066</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£13,030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per QALY of thrombophilia testingb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£5683</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£6935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£7627</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£10,105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£13,310</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of thrombophilia testing per individual at which the cost per QALY becomes > £30,000b</td>
<td>£18,850</td>
<td>£13,450</td>
<td>£8900</td>
<td>£4450</td>
</tr>
</tbody>
</table>

a Assuming 100% sensitivity and specificity.
b Assuming 99% sensitivity and specificity.
TABLE 21 Cost per QALY of thrombophilia testing for women with a previous idiopathic PE assuming that treatment is provided when the cost per QALY is below £30,000

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifelong treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing<sup>a</sup></td>
<td>£11,143</td>
<td>£13,974</td>
<td>£10,817</td>
<td>£9,247</td>
<td>£10,782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing<sup>b</sup></td>
<td>£11,200</td>
<td>£14,058</td>
<td>£11,073</td>
<td>£9,482</td>
<td>£11,124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of thrombophilia testing per individual at which the cost per QALY becomes > £30,000<sup>b</sup></td>
<td>£5,450</td>
<td>£3,250</td>
<td>£2,350</td>
<td>£1,500</td>
<td>£700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Assuming 100% sensitivity and specificity.
^b Assuming 99% sensitivity and specificity.
Additionally, we have assumed that all tests will be run as a complete battery for logistical reasons. If it is possible to easily omit tests from the battery then *Tables 14–21* provide information on which tests can be excluded. For example, in *Table 14* it is seen that management for men aged 70 years or over would be changed only in patients who have lupus anticoagulant or who are heterozygous for both FVL and PTG20210A. Tests that do not report on these characteristics could be omitted to reduce expenditure.

Furthermore, some thrombophilia types have not been included in these analyses, for example elevation of factor VIII, because of uncertainties in the marginal costs of performing tests for them. This thrombophilia has an increased risk of recurrence that is very similar to that of being heterozygous for both FVL and PTG20210A. If a test for factor VIII was inexpensive, then this could be added to the results and the management strategy approximated by the results for being heterozygous for both FVL and PTG20210A. Similar approximations can be made for all of the remaining omitted thrombophilia types.

Note that it is uncommon for the treatment duration for patients with AT deficiency, PC deficiency or PS deficiency to be different from that for patients who are heterozygous for FVL. Thus, should the RR of recurrence for the former group of patients have been overestimated, this rarely affects the management strategy.

Univariate sensitivity analyses

In general, univariate sensitivity analyses are of limited value as they fail to account for interactions between variables within the model and have limited interpretability. As such, extensive univariate sensitivity analyses were not undertaken. The results from PSAs, described in the following section, are preferable as, by simultaneously varying the values for all uncertain parameters, any non-linearity within the model will be incorporated into the estimation of mean cost per QALY.74

Some parameters, however, do not lend themselves to PSA as they are characteristics of the starting population and therefore two univariate sensitivity analyses were conducted: the first regarding the number of patients with a previous DVT who had sustained PTS; the second on the distribution of outcomes for patients who remain untreated following a VTE. When analyses were conducted assuming that all patients with a history of a DVT had sustained PTS, the results did not markedly change. This is because of the small residual disutility associated with PTS, which was assumed to be represented by a multiplier of 0.977 (*Table 13*).

Because of the scarcity of data, the distribution of events in patients untreated with warfarin following a VTE is uncertain and assumptions were needed to populate the base-case analyses. Sensitivity analyses have been carried out with the very conservative assumption that patients who remain untreated following a VTE have the same outcomes as patients who are treated. This did not markedly affect the results of the base-case analyses, mainly because of the relatively small number of people who were assumed to not receive treatment, namely those patients who had previously suffered an intracranial haemorrhage whilst on warfarin or those who were not on lifelong warfarin who sustained a VTE that was undetected.

Our threshold analyses have been conducted with respect to the costs of thrombophilia testing. The costs of tests whilst still remaining under a MAICER of £30,000 per QALY have been given in *Tables 14–21*.

A post-hoc analysis of the relationship between the sampled value for the increased risk of recurrence and the costs and QALYs accrued within the PSA was undertaken as it was believed that the risk of recurrence would be a key driver of the modelled results. The PSA results for 60-year-old men with lupus anticoagulant and a previous DVT who do not receive extended treatment and the PSA results for 70-year-old women with lupus anticoagulant and a previous PE who do not receive extended treatment were analysed. In all cases the adjusted R^2 coefficient in a linear regression between risk of recurrence and either total costs or total QALYs was greater than 0.5, showing that this variable explained over 50% of the variation in the results, despite the remaining variables also varying. This offers evidence that the risk of recurrence is likely to be the key driver of the modelled results.

Probabilistic sensitivity analyses

PSA was conducted on the parameters included in Appendix 6 using a Monte Carlo methodology as detailed in Claxton *et al.*74 This approach samples once from the probability distribution for each variable contained within the model to produce a parameter configuration. This process is repeated until a predetermined number of parameter configurations have been sampled. The model is then run using the parameter configuration to...
generate the prespecified number of estimates of cost-effectiveness. This is recognized by NICE and is a requirement in the reference case.73 In our analyses, 100 parameter configurations were generated for each combination of age, sex, previous VTE and thrombophilia type.

For each parameter configuration the model was run simulating 5000 hypothetical patients. The results produced by each parameter configuration were then ranked in order of cost-effectiveness to produce a cost-effectiveness acceptability curve (CEAC),75 which shows the likelihood of a given intervention having a cost per QALY below a given MAICER. The PSA results shown in Tables 14-21 have been based on the assumption that thrombophilia testing was both 100% specific and 100% sensitive. The changes in the cost per QALY were the tests assumed to have both sensitivity and specificity of 99% are also shown, and it is noted that the cost per QALY does not markedly change.

The rationale for the groups of patients on which PSAs were conducted was based on those with cost per QALY ratios that are most borderline cost-effective with reference to published guidelines.73 Thus, we initially analysed women aged 50 years with a previous idiopathic DVT, as the cost per QALY of conducting thrombophilia testing on such patients was approximately £20,000. When it was determined that the PSAs were systematically producing cost per QALY values that were less favourable to thrombophilia testing than the mid-point analyses, we analysed subgroups of patients with cost per QALY ratios below £20,000 until the cost per QALY of thrombophilia testing remained below £20,000 in the PSA.

Women aged 50 years with a previous idiopathic DVT

The CEAC for thrombophilia testing women with a previous idiopathic DVT who are aged 50 years is given in Figure 3. This assumes that those who were found to have lupus anticoagulant or who were heterozygous for both FVL and PTG20210A would be treated with the course of warfarin treatment indicated in our mid-point results (10 years for both). It is seen that the median value of cost-effectiveness is dominated, with the mean value calculated as £37,671. This value is markedly higher than the £20,746 estimated in the mid-point analyses, showing that the combination of sampled values produces a non-linear model. The cause of this is the non-normal distributions assigned to key parameters such as the increased risk of a recurrent VTE associated with each type of thrombophilia, the disutility associated with warfarin use and the efficacy of warfarin in preventing VTE.

To explain these results the distributions for the increased risks of recurrence associated with each thrombophilia type must be noted. Figure 4 shows this for lupus anticoagulant, and a wide uncertainty in the true RR compared with patients without thrombophilia is seen. For women aged 50 years with a previous DVT, with an increased risk of 5.4, as seen for patients who are heterozygous for both FVL and PTG2021A, and analysing the mid-point results, a cost per QALY of £18,034 is seen (Table 41), whilst with an increased risk of 2.3, as seen for patients with anticardiolipin antibody, extended warfarin treatment is dominated by the standard treatment period for warfarin (Table 42). A value of increased risk of approximately

FIGURE 3 The cost-effectiveness acceptability curve (CEAC) for women aged 50 years with a previous idiopathic DVT, and who have lupus anticoagulant or are heterozygous for both FVL and PTG20210A and who are receiving treatment.
Assessment of cost-effectiveness

FIGURE 4 The distribution of increased relative risk associated with lupus anticoagulant.

5.2 (authors’ estimation) would be needed for treatment to have a cost per QALY of £20,000. The mode and median values associated with the distribution for the increased risk associated with lupus anticoagulant (Figure 4) are 2.05 and 4.55, respectively, resulting in the majority of simulations having a cost per QALY of more than £20,000 and a sizeable proportion being dominated by the standard course of warfarin. The additional costs associated with thrombophilia testing will also increase the incremental cost-effectiveness of testing at this age.

The effect of the non-normal distributions for the increased risk of thrombophilia becomes less influential as the difference between the mean of the log-normal distribution for lupus anticoagulant and the increased risk required for treatment to be deemed cost-effective becomes greater. This is seen in the additional examples provided.

Further analyses were undertaken assuming that only those women with lupus anticoagulant would receive treatment. This reduced the cost per QALY of thrombophilia testing to a mean of £39,525, with a median value of approximately £75,000, as shown in Figure 5. The mean is slightly higher than when patients who are heterozygous for both FVL and PTG20210A are additionally treated. This is because the number of thrombophilia tests undertaken remains relatively constant and no QALYs are gained or costs accrued from treatment of patients who are heterozygous for both FVL and PTG20210A.

FIGURE 5 The cost-effectiveness acceptability curve (CEAC) for women aged 50 years with a previous idiopathic DVT, who have lupus anticoagulant and who are receiving treatment.
Men aged 70 years with a previous idiopathic DVT

The cost per QALY of thrombophilia testing had a mean value of £27,006, with a median value of approximately £30,000, as shown in Figure 6. For reference the mean cost per QALY from the mid-point analysis was £16,641 (Table 14).

Women aged 40 years with a previous idiopathic DVT

The cost per QALY of thrombophilia testing had a mean value of £18,689, with a median value of approximately £18,000, as shown in Figure 7. For reference the mean cost per QALY from the mid-point analysis was £14,384 (Table 15).

Men aged 60 years with a previous idiopathic DVT

The cost per QALY of thrombophilia testing had a mean value of £13,516 and a median value of approximately £16,000, as shown in Figure 8. For reference the mean cost per QALY from the mid-point analysis was £10,239 (Table 14).

Women aged 70 years with a previous idiopathic PE

The cost per QALY of thrombophilia testing had a mean value of £14,692 and a median value of approximately £15,000, as shown in Figure 9. For reference the mean cost per QALY from the mid-point analysis was £10,782 (Table 17).

Given the PSA results presented above it was assumed that all remaining combinations of age, sex and previous idiopathic VTE that had cost per QALY ratios of below £20,000 in the mid-point analyses would also remain below £20,000 when PSA was conducted.
FIGURE 8 The cost-effectiveness acceptability curve (CEAC) for men aged 60 years with a previous idiopathic DVT, who have lupus anticoagulant or who are heterozygous for both FVL and PTG20210A and who are receiving treatment.

FIGURE 9 The cost-effectiveness acceptability curve (CEAC) for women aged 70 years with a previous idiopathic PE, who have lupus anticoagulant or who are heterozygous for both FVL and PTG20210A and who are receiving treatment.

Calculating the cost per QALY ratios from PSA for the thrombophilia type that had the lowest increased risk of recurrence whilst having a cost per QALY of treatment of below £20,000 in the mid-point analyses and for which global thrombophilia testing had a cost per QALY of below £20,000 in the mid-point analyses

Having determined that the cost per QALY ratios provided in the mid-point analyses were systematically lower than the cost per QALY values generated in the PSA, analyses were undertaken on the thrombophilia type that had the lowest increased risk of recurrence whilst having a cost per QALY of treatment of below £20,000 for each age, sex and type of previous idiopathic VTE event, denoted in Tables 14–21 as the lightest shaded box at each age. Thus, for example, for men aged 50 years with a previous DVT event, being homozygous for FVL had the lowest risk of recurrence whilst remaining under a cost per QALY of £20,000 for treatment (Table 14), and PSA was undertaken assuming the treatment durations provided in Table 14 to calculate a cost per QALY ratio for thrombophilia testing. Only the cost of the repeat thrombophilia test to determine the specific thrombophilia is included in these calculations as it is assumed that the costs of global testing are borne by thrombophilia with greater mean chances of VTE recurrence.

All other thrombophilia types that can be successfully treated at this age, sex and previous VTE combination are assumed to have cost per QALY values that are lower than this figure. These analyses were conducted for all age, sex and previous VTE combinations that were not included in the previous sections on PSA. The cost per QALY values from these analyses are presented in
Tables 22 and 23 for a previous DVT and Tables 24 and 25 for a previous PE.

Summary of the results

From our analyses it appears that undertaking thrombophilia testing on patients with PE has a mean cost per QALY of below £20,000 regardless of sex or age. It is also estimated that, for men aged 69 years or younger with a previous DVT and for women aged 49 years or younger with a previous DVT, thrombophilia testing has a cost per QALY of below £20,000. Thrombophilia testing is also indicated to be cost-effective in men aged over 70 years with a previous DVT if a MAICER of £50,000 per QALY is employed. These results are influenced by the fact that men have a greater risk of recurrence than women and by the fact that the frequency of adverse events associated with warfarin treatment increases as patients become older.

We have summarised the estimated duration of warfarin treatment for each thrombophilia type for which global thrombophilia testing is cost-effective using a MAICER of £20,000 per QALY in Tables 26 and 27. Note however, that these results are subject to a great deal of uncertainty, as discussed in the following section.

Discussion

Our work has enabled an evidence-based assessment of the most cost-effective duration (3 months, 10 years, 20 years or lifelong) of warfarin treatment based upon age, sex and previous VTE type, which may help clinicians decide on the most appropriate treatment length by indicating the scenarios in which our results suggest that thrombophilia testing is cost-effective. However, as depicted in the CEACs presented, there is a great deal of uncertainty in the cost-effectiveness of thrombophilia testing. As the prevalence of each thrombophilia type was not altered within the model the uncertainty around the cost-effectiveness of thrombophilia testing is likely to be greater than that shown. Figure 7 shows that, even in circumstances in which the expected cost per QALY ratio is below £20,000, there is a sizeable probability (20%) that the cost per QALY exceeds £100,000. This uncertainty is driven primarily by the wide confidence intervals associated with the increased risk of recurrence for each

TABLE 22

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Thrombophilia type</th>
<th>Treatment duration (years)</th>
<th>Mean cost per QALY of treatment (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>FVL heterozygous</td>
<td>10</td>
<td>22,385</td>
</tr>
<tr>
<td>40</td>
<td>PTG20210A</td>
<td>10</td>
<td>25,026</td>
</tr>
<tr>
<td>50</td>
<td>FVL homozygous</td>
<td>10</td>
<td>23,502</td>
</tr>
<tr>
<td>60</td>
<td>Heterozygous for both FVL and PTG20210A</td>
<td>20</td>
<td>13,516</td>
</tr>
<tr>
<td>70</td>
<td>Heterozygous for both FVL and PTG20210A</td>
<td>10</td>
<td>20,506</td>
</tr>
</tbody>
</table>

TABLE 23

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Thrombophilia type</th>
<th>Treatment duration (years)</th>
<th>Mean cost per QALY of treatment (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Heterozygous for both FVL and PTG20210A</td>
<td>20</td>
<td>11,626</td>
</tr>
<tr>
<td>40</td>
<td>Heterozygous for both FVL and PTG20210A</td>
<td>20</td>
<td>15,144</td>
</tr>
</tbody>
</table>

Note that the thrombophilia for women aged 50 years with a previous DVT has been omitted because of a cost per QALY of greater than £40,000. See section, Women aged 50 years with a previous idiopathic DVT, p.29, for further explanation.
TABLE 24 The mean cost per QALY ratios from PSA for the thrombophilia type that had the lowest increased risk of recurrence whilst having a cost per QALY of treatment below £20,000 in the mid-point analyses and for which global thrombophilia testing had a cost per QALY of below £20,000 in the mid-point analyses: men with a previous idiopathic PE event

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Thrombophilia type</th>
<th>Treatment duration (years)</th>
<th>Mean cost per QALY of treatment (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>FVL heterozygous</td>
<td>Lifelong</td>
<td>8396</td>
</tr>
<tr>
<td>40</td>
<td>FVL heterozygous</td>
<td>Lifelong</td>
<td>10,898</td>
</tr>
<tr>
<td>50</td>
<td>FVL heterozygous</td>
<td>20</td>
<td>12,613</td>
</tr>
<tr>
<td>60</td>
<td>FVL heterozygous</td>
<td>10</td>
<td>17,482</td>
</tr>
<tr>
<td>70</td>
<td>PTG20210A</td>
<td>10</td>
<td>16,784</td>
</tr>
</tbody>
</table>

TABLE 25 The mean cost per QALY ratios from PSA for the thrombophilia type that had the lowest increased risk of recurrence whilst having a cost per QALY of treatment below £20,000 in the mid-point analyses and for which global thrombophilia testing had a cost per QALY of below £20,000 in the mid-point analyses: women with a previous idiopathic PE event

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Thrombophilia type</th>
<th>Treatment duration (years)</th>
<th>Mean cost per QALY of treatment (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>FVL heterozygous</td>
<td>10</td>
<td>19,106</td>
</tr>
<tr>
<td>40</td>
<td>Deficiency in either AT, PC or PS</td>
<td>10</td>
<td>19,427</td>
</tr>
<tr>
<td>50</td>
<td>FVL homozygous</td>
<td>10</td>
<td>14,440</td>
</tr>
<tr>
<td>60\a</td>
<td>Anticardiolipin antibody</td>
<td>10</td>
<td>38,010</td>
</tr>
<tr>
<td>70\b</td>
<td>Anticardiolipin antibody</td>
<td>10</td>
<td>230,335</td>
</tr>
</tbody>
</table>

\a Note that the thrombophilia with the next lowest increased risk of recurrence was heterozygous for both FVL and PTG20210A, with a cost per QALY of £6898.

\b Note that the thrombophilia with the next lowest increased risk of recurrence was heterozygous for both FVL and PTG20210A, with a cost per QALY of £13,855.

thrombophilia, particularly those with the higher mean RRs, such as lupus anticoagulant and being heterozygous for both FVL and PTG20210A.

The sensitivity and specificity of tests for each thrombophilia type could not be obtained. In the model we used a sensitivity and specificity of 99%, which are the values reported for DNA tests such as those for FVL or PTG20210A; however, this is likely to overestimate the accuracy of other tests. This will be favourable to thrombophilia testing, particularly if the sensitivity and specificity of the tests for identifying lupus anticoagulant are markedly lower than 99%. This casts further uncertainty around the robustness of the results produced.

We have not considered the extended use of warfarin after an initial VTE event without the diagnosis of thrombophilia. The results for men aged less than 39 years with a previous PE suggest that, using a MAICER of £20,000, patients who are heterozygous for FVL would benefit from extended warfarin treatment (Table 27). As the mean RR for these patients compared with patients without thrombophilia is 1, any conclusion on the use of extended warfarin for patients who are heterozygous for FVL would also apply to those patients without thrombophilia. If a MAICER of £30,000 per QALY were adopted then this age limit is estimated to increase to men aged 49 years or less. Further research would need to be conducted to estimate the numbers of people that such a policy would affect.

Our results have been predicated on the assumption that 3 months of treatment is the standard duration of warfarin treatment. Were the standard treatment under certain circumstances to be lifelong, for example in young men with a PE, then our estimate of the cost-effectiveness of thrombophilia testing could markedly change. Such analyses were not conducted as there was no clear guidance on when alternative treatment strategies would be employed, and it was assumed that clinicians would be risk averse when prescribing medications with potentially fatal side effects.

Not all types of thrombophilia have been evaluated in this report, primarily because no information
TABLE 26 The calculated duration of warfarin treatment by age and sex for people presenting with an idiopathic DVT assuming a MAICER of £20,000 per QALY

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td>Lifelong treatment</td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td>20 years'</td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>10 years'</td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>3 months'</td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that thrombophilia testing is not estimated to be cost-effective in women aged 50 years or older and in men aged 70 years or older and hence the standard duration of warfarin treatment is prescribed for all of these patients. Note also that if the MAICER is increased to £30,000 per QALY then thrombophilia testing would become cost-effective in men aged 70 years, with those shown to have lupus anticoagulant or who are heterozygous for both FVL and PTG20210A recommended to receive 10 years of warfarin treatment. All other recommended treatment periods remain as for a MAICER of £20,000 per QALY.
TABLE 27 The calculated duration of warfarin treatment by age and sex for people presenting with an idiopathic PE assuming a MAICER of £20,000 per QALY

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Patient age (years)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>FVL and PTG20210A (both heterozygous)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency in either AT, PC or PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>20 years’ treatment</td>
<td></td>
</tr>
<tr>
<td>Lifelong treatment</td>
<td>10 years’ treatment</td>
<td></td>
</tr>
<tr>
<td>3 months’ treatment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that these results remain constant if the MAICER is increased to £30,000 per QALY.
was found on the marginal cost of performing tests for them. If this marginal cost is small then these tests should be considered, with an approximation of the duration of warfarin treatment taken from a thrombophilia with a similar increased risk of recurrence. For instance, factor VIII has not been considered in this report; however, the increased risk of recurrence is very similar to that for patients who are heterozygous for both FVL and PTG20210A (Table 2) and the duration of warfarin treatment associated with factor VIII would be assumed to be equal to that in patients who are heterozygous for both FVL and PTG20210A. Were it feasible to include additional tests at a relatively small marginal cost then it is likely that the cost-effectiveness results produced in this report have been unfavourable to thrombophilia testing.

We assumed that the risk of recurrence of VTE was constant with respect to age. There were limited data that indicated that the risk may increase with age. Although we have not explicitly modelled this relationship, it will have the effect of increasing the cost-effectiveness of extended warfarin treatment in the elderly and thus the cost-effectiveness of thrombophilia testing in patients of this age. At the age of 70 years or older only those patients who present with an idiopathic PE are recommended for thrombophilia testing; if there is an increased risk of recurrence associated with increasing age it is possible that thrombophilia testing in men aged 70 years or older who present with a DVT could also become cost-effective. Conversely, if the risk of recurrence is age related, the cost-effectiveness of thrombophilia testing in younger patients would become less favourable.

We have also not investigated the costs saved by omitting tests from the panel of tests in cases in which it is shown that even if the patient were to have a particular thrombophilia then management would not change. For example, analysis of men aged 70 years with a DVT (Table 18) suggests that only tests for lupus anticoagulant and FVL and PTG20210A need to be undertaken. We have left the logistics of removing redundant tests, if it is deemed appropriate, for those in the field.

The average population utilities for people aged 30 and 40 years were estimated by the authors, as these were not reported in the source used for utilities. It is possible that these utilities may slightly overestimate the true utilities. If this is the case, the cost-utility ratios predicted for thrombophilia testing at these ages would be slightly favourable to thrombophilia testing as the QALYs lost because of an adverse event or mortality would be lower. It is not expected that this would alter the conclusions produced by the modelling as the cost per QALY ratios at these ages were not bordering on the £20,000 threshold.

Only warfarin has been evaluated as an intervention aimed at reducing recurrent VTE. The cost-effectiveness of other potential interventions is an area for future research.
Chapter 5

Assessment of factors relevant to the NHS and other parties

Patient information

It is important that people receive information about the tests, including why testing is indicated, the nature of the procedure and the time required for testing, as well as the consequences of testing, before deciding whether to consent to testing. Patients undergoing thrombophilia testing should receive advice on the limitations of the tests and the implications of a diagnosis. Trained health professionals should inform patients about thrombophilia testing. Information leaflets may be useful to patients and their families. Anticoagulant or VTE specialists, mainly nurses but also pharmacists, biomedical scientists and doctors, have a role in educating patients about testing and the impact of the results.

Implications of testing

There can be negative implications of testing, such as inappropriate testing causing stress to patients. Patients with negative test results may be given false reassurance. However, a positive diagnosis of thrombophilia may be beneficial to a patient’s psychological health by providing an explanation as to why they developed thrombosis. A diagnosis of thrombophilia may influence decisions about targeted thromboprophylaxis in high-risk situations such as surgery or pregnancy, and also may affect advice given on transient risk factors, for example oestrogen therapy.

A diagnosis of heritable thrombophilia may impact on the patient’s family. Family members may wish to be tested for thrombophilia. Asymptomatic family members with a positive diagnosis would then be subject to advice and potentially to targeted thromboprophylaxis without having experienced a thrombosis.

Cost implications

Thrombophilia testing is currently conducted for indications other than thrombosis, e.g. recurrent miscarriage. Antiphospholipid antibodies are tested for by other clinicians, e.g. rheumatologists. The numbers of thrombophilia tests undertaken in the population covered in this assessment is not known and thus the impact on total expenditure cannot be accurately estimated.
Chapter 6
Discussion

Statement of principal findings

No trials were identified that studied the clinical effectiveness of thrombophilia testing by comparing a patient population tested for thrombophilias with a population who did not undergo testing.

Our results estimate that undertaking thrombophilia testing on patients with PE may have a mean cost per QALY of below £20,000 regardless of sex or age; however, there is great uncertainty in these values. For men aged 69 years or less with a previous DVT and for women aged 49 years or less with a previous DVT it is estimated that the mean cost per QALY is below £30,000; however, there is also a great deal of uncertainty in these results. Examples exist in which the mean cost per QALY is below £20,000 yet there is a sizeable probability that the cost per QALY could be greater than £100,000. This uncertainty is driven primarily by the wide confidence intervals associated with the increased risk of recurrence for each thrombophilia, particularly those with the higher mean RRs, such as lupus anticoagulant and being heterozygous for both FVL and PTG20210A.

These broad results are influenced by the fact that men have a greater risk of recurrence than women and by the fact that the frequency of adverse events associated with warfarin treatment increases as patients become older.

Strengths and limitations of the assessment

Strengths

There was a comprehensive literature search, which was unlikely to have missed any relevant articles. A mathematical model was constructed that allowed the risks of recurrence to vary by age, sex, previous VTE event and type of thrombophilia. The individual patient approach allowed the increased risks in the period immediately following a VTE to be considered throughout the lifetime of a patient. To our knowledge this is the first model that incorporates these features. If the estimated results from our model are correct then the most cost-effective period of warfarin treatment from those considered can easily be interpreted from two tables, one for patients presenting with an idiopathic DVT and one for those presenting with an idiopathic PE. However, these results come with the caveat that there is a great deal of uncertainty in key parameters, which has resulted in wide confidence intervals for the cost per QALY of thrombophilia testing.

Limitations

The question of whether alterations in anticoagulation management result from thrombophilia testing is flawed as, at the time of writing this report, a change in anticoagulation management is not currently undertaken according to a diagnosis of heritable thrombophilia.17,26 The data for the model population are limited with wide confidence intervals around many key parameters, which limits the robustness of the cost per QALY ratios. Only warfarin has been evaluated as an intervention to prevent recurrent VTE. We did not undertake systematic reviews for all of the parameters in the model, relying on previous economic evaluations and non-systematic reviews when necessary. It is possible that some relevant data were missed. A paper published after the search dates for this review indicated that there would be little advantage in increasing the duration of oral anticoagulant therapy from 3 to 6 months;77 however, the paper is not of direct relevance to this review because it excluded patients with known thrombophilia, was not restricted to first events and was not restricted to idiopathic events.

Uncertainties

When possible the modelling work has tried to address the uncertainties associated with evaluating the cost-effectiveness of thrombophilia testing; however, some uncertainties that relate to gaps within the knowledge base still remain. The length of the period following a VTE during which a patient is at high risk is not known, with conflicting results in the literature. The authors have not tried to determine the optimal duration of warfarin treatment following the initial VTE, for example 3 or 6 months, and will leave this to clinicians. Our
work has focused on whether thrombophilia testing followed by extended warfarin treatment, when appropriate, is a cost-effective policy.

The sensitivity and specificity of thrombophilia tests to identify thrombophilia types that are non-genetic were unknown. We have produced results assuming that the sensitivity and specificity were both 100% or 99%; however, if these values were in reality considerably lower than this then the robustness of the results would be weakened.

We have also assumed that the increased risk associated with thrombophilia remains constant over time. Were this risk to attenuate then the benefits associated with longer-term treatment would be overestimated.

We have excluded patients with multiple types of thrombophilia with the exception of patients who are heterozygous for both FVL and PTG20210A. Patients with other combinations of multiple thrombophilia may benefit from extended warfarin treatment, and excluding these patients from our model may be unfavourable to thrombophilia testing. However, the proportion of patients with multiple thrombophilia excluding those who are heterozygous for both FVL and PTG20210A will be small and thus the results are unlikely to change.

The modelling work has excluded any benefit that may be accrued from thrombophilia testing beyond that associated with the duration of warfarin treatment, and thus we have excluded factors such as the management of pregnancy or the prescription of medications such as combined oral contraceptives or hormone replacement therapy for which knowledge of the thrombophilic status of a patient may be advantageous. Conversely, any disutility associated with undertaking genetic tests, such as anxiety or adverse implications of undertaking a genetic test, have been excluded, as have any costs associated with counselling patients shown to have thrombophilia.

We incorporated the sensitivity of clinicians to detect VTE within the model, which was assumed to be 95% for both DVT and PE. These data, together with outcome data for patients who do not receive treatment following a VTE, are uncertain and require further research.

The marked differences between the results produced deterministically using the mean value for each parameter and those produced by PSA show the great deal of uncertainty around key parameters in the model, in particular the wide confidence intervals for the increased risk of recurrence associated with each thrombophilia type. Reducing these confidence intervals is an area for future research and will allow more accurate assessments of the cost per QALY of thrombophilia testing to be undertaken.

Areas for future research

The results from the PSA have shown that there is a great deal of uncertainty in the mean incremental cost-effectiveness ratios, primarily because of uncertainties in key input parameters. Future research aimed at reducing the uncertainty around the increased risks of VTE recurrence for each thrombophilia type, the uncertainty in the underlying rate of recurrence following an idiopathic VTE, the haemorrhage rate of those on warfarin, the sensitivity and specificity of tests to identify each thrombophilia type, and the relationship between increased risk, time since the VTE event and the sensitivity and specificity of clinicians to detect a VTE event should be considered. Strengthening this knowledge base would allow more accurate assessments of the cost per QALY of thrombophilia testing to be undertaken. Whether or not gathering such information would be a cost-effective use of resources can be determined using expected value of sample information techniques. Applying such a methodology is a further area for future research.

Evaluating the cost-effectiveness of interventions other than warfarin that reduce the risk of recurrent VTE is also an area for future research.
Chapter 7

Conclusions

No clinical studies were identified that met the inclusion criteria for the review and so the model parameters were searched for from within the literature search and with input from the clinical advisory group. Studies comparing VTE patients tested for thrombophilia with VTE patients whose risk assessment was based on personal and family history of thrombosis would be beneficial.

In terms of determining the duration of anticoagulation management, scenarios were found in which the cost per QALY of thrombophilia testing was below £20,000; however, these results are subject to great uncertainty. Undertaking thrombophilia testing on all patients with a PE was estimated to have a mean cost per QALY below £20,000 regardless of sex or age. In patients with a previous DVT, thrombophilia testing had an estimated mean cost per QALY below £20,000 in men aged 69 years or younger and in women aged 49 years or younger. These results are influenced by the fact that men have a greater risk of recurrence than women and by the fact that the frequency of adverse events associated with warfarin treatment increases with age. Further research is needed to enable the uncertainty associated with these results to be reduced.
Acknowledgements

Clinical advisory group

Professor M. Greaves, Head of School of Medicine, University of Aberdeen; Dr T. Baglin, Chairman, Haemostasis and Thrombosis Task Force, British Society for Haematology; Dr I. Jennings, Deputy Manager, UK NEQAS (Blood Coagulation); Dr S. Kitchen, Clinical Scientist, Sheffield Haemophilia and Thrombosis Centre; Dr M. Makris, Reader in Haemostasis and Thrombosis, Royal Hallamshire Hospital, Sheffield.

The authors also wish to thank Andrea Shippam for her help in preparing and formatting the report. We are grateful to Dr D. Keeling, Professor I. Walker and Dr S. Twaddle for providing feedback on the draft version of this report. Dr Twaddle is a member of the TREATS research group that has received funding from the NHS R&D Programme to investigate screening for thrombophilia in high-risk situations.

Contribution of authors

E.L. Simpson was the review lead and undertook the clinical effectiveness review. M.D. Stevenson and A. Rawdin undertook the cost-effectiveness review. D. Papaioannou conducted the literature searches. Jim Chilcott and Eva Kaltenthaler are guarantors.

About ScHARR

The School of Health and Related Research (ScHARR) is one of the four schools that constitute the Faculty of Medicine at the University of Sheffield. ScHARR brings together a wide range of medical and health-related disciplines including public health, general practice, mental health, epidemiology, health economics, management sciences, medical statistics, operational research and information science. It includes the Sheffield unit of the Trent RDSU, which is funded by NIHR to facilitate high-quality health services research and capacity development.

The ScHARR Technology Assessment Group (ScHARR-TAG) synthesises research on the effectiveness and cost-effectiveness of health-care interventions for the NIHR Health Technology Assessment Programme on behalf of a range of policy makers, including the National Institute for Health and Clinical Excellence. ScHARR-TAG is part of a wider collaboration of six units from other regions, namely Southampton Health Technology Assessment Centre (SHTAC), University of Southampton; Aberdeen Health Technology Assessment Group (Aberdeen HTA Group), University of Aberdeen; Liverpool Reviews and Implementation Group (LRiG), University of Liverpool; Peninsula Technology Assessment Group (PenTAG), University of Exeter; NHS Centre for Reviews and Dissemination, University of York; and West Midlands Health Technology Assessment Collaboration (WMHTAC), University of Birmingham.

References

40. Royal College of Nursing (RCN) submission to the National Institute of Health and Clinical Excellence – thrombophilia testing evidence submission. 2006.

46. Legnani C, Mattarozzi S, Cini M, Cosmi B, Favaretto E, Palareti G. Abnormally short activated partial thromboplastin time values are associated with increased risk of recurrence of venous

76. Royal College of Physicians and Royal College of Pathologists submission to the National Institute of Health and Clinical Excellence – thrombophilia testing. 2006.

78. Sysmex UK Ltd and Dade Behring submission to the National Institute of Health and Clinical Excellence – thrombophilia. 2006.

80. CDG UK submission to the National Institute of Health and Clinical Excellence – thrombophilia. 2006.

83. Instrumentation Laboratory submission to the National Institute of Health and Clinical Excellence – thrombophilia. 2006.

Appendix 1
Examples of thrombophilia tests and their CE marked indications for use

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Test</th>
<th>CE marked indication for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dade Behring78</td>
<td>Protein S Ac</td>
<td>Determination of the functional activity of protein S in plasma for the diagnosis of hereditary or acquired protein S deficiencies</td>
</tr>
<tr>
<td>Dade Behring78</td>
<td>Berichrom™ Antithrombin III (A)</td>
<td>For the quantitative determination of the functional activity of antithrombin III in plasma on autoanalysers for the diagnosis of diminished antithrombin III synthesis and increased consumption and for monitoring substitution therapy</td>
</tr>
<tr>
<td>Dade Behring78</td>
<td>Berichrom™ Protein C</td>
<td>For the detection of congenital and acquired protein C deficiency; in conjunction with other methods (antigenic determination, protein C coagulometric method) for the differential diagnosis of different protein C deficiency states; or for the monitoring of substitution therapy with protein C concentrates in congenital protein C deficiency</td>
</tr>
<tr>
<td>Dade Behring78</td>
<td>ProC Global</td>
<td>For the determination of the anticoagulatory capacity of the protein C system in human plasma and to diagnose hereditary or acquired deficiency states of the protein C system. Used in conjunction with coagulation factor V-deficient plasma, is suitable for the determination of FVL</td>
</tr>
<tr>
<td>Dade Behring78</td>
<td>Protein C reagent</td>
<td>A coagulation test for the quantitative determination of protein C activity in human plasma</td>
</tr>
<tr>
<td>Dade Behring78</td>
<td>LA 1 screening reagent/ LA 2 confirmation reagent</td>
<td>Simplified, one-stage, dilute Russell’s viper venom time reagents intended to specifically detect lupus anticoagulants (LA), a type of antiphospholipid antibody. Can also be used to study defects in the interactions of clotting factors in the common pathway</td>
</tr>
<tr>
<td>Bio-Rad79</td>
<td>Anticardiolipin IgA test</td>
<td>An enzyme-linked immunosorbent assay (ELISA) for the semi-quantitative determination of anticardiolipin IgA antibodies in human serum or plasma. For the detection and semi-quantitation of anticardiolipin antibodies in individuals with systemic lupus erythematosus (SLE) and lupus-like disorders (antiphospholipid syndrome). For in vitro diagnostic use</td>
</tr>
<tr>
<td>Bio-Rad79</td>
<td>Anticardiolipin IgG test</td>
<td>An enzyme-linked immunosorbent assay (ELISA) for the semi-quantitative determination of anticardiolipin IgG antibodies in human serum or plasma. For the detection and semi-quantitation of anticardiolipin antibodies in individuals with systemic lupus erythematosus (SLE) and lupus-like disorders (antiphospholipid syndrome). For in vitro diagnostic use</td>
</tr>
<tr>
<td>Bio-Rad79</td>
<td>Homocysteine test</td>
<td>For the quantitative determination of total l-homocysteine in human serum or plasma. The device can assist in the diagnosis and treatment of patients suspected of having hyperhomocysteinemia and homocystinuria. For in vitro diagnostic use</td>
</tr>
<tr>
<td>Bio-Rad79</td>
<td>Homocysteine by high-performance liquid chromatography (HPLC)</td>
<td>The Bio-Rad homocysteine by HPLC test is intended for the quantitative determination of homocysteine in human plasma or serum. For in vitro diagnostic use</td>
</tr>
<tr>
<td>CDG UK80</td>
<td>Homocysteine by HPLC</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>CDG UK80</td>
<td>Homocysteine by enzyme immunoassay (EIA)</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>CDG UK80</td>
<td>Anticardiolipin IgG</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>CDG UK80</td>
<td>Anticardiolipin IgM</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>CDG UK80</td>
<td>Anticardiolipin IgA</td>
<td>(CE marked – details not provided)</td>
</tr>
</tbody>
</table>
Manufacturer Test CE marked indication for use

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Test</th>
<th>CE marked indication for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxisShield™</td>
<td>Staclot Protein S</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Asserachrom Protein S</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Liatest Protein S</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Asserachrom Free Protein S</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Liatest Free Protein S</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Stachrom Protein C</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Acticlot aPCR</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Liatest AT III Ag</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>AxisShield™</td>
<td>Stachrom AT III</td>
<td>(CE marked – details not provided)</td>
</tr>
<tr>
<td>Trinity Biotech™</td>
<td>Bioclot® Protein S-300ACT</td>
<td>For the quantitative determination of protein S activity in citrated human plasma using a clotting assay. For in vitro diagnostic use only</td>
</tr>
<tr>
<td>Trinity Biotech™</td>
<td>Bioclot® Protein C</td>
<td>For the quantitative determination of protein C in human plasma by clotting assay. For in vitro diagnostic use only</td>
</tr>
<tr>
<td>Trinity Biotech™</td>
<td>Spectrolyse®</td>
<td>For the quantitative determination of antithrombin III in human plasma by chromogenic assay. For in vitro diagnostic use only</td>
</tr>
<tr>
<td>Trinity Biotech™</td>
<td>Bioclot® FVa-aPC Resistance</td>
<td>For the determination of resistance to activated protein C in human plasma using a clotting assay. For in vitro diagnostic use only</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Test™ Liquid Antithrombin</td>
<td>Automated chromogenic assay for the quantitative determination of antithrombin in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL ProClot</td>
<td>Automated functional clotting protein C assay for the quantitative determination of protein C in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Liquid Antithrombin</td>
<td>Automated chromogenic assay for the quantitative determination of antithrombin in human citrated plasma on the ACL Futura/ACL Advance and ACL TOP Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Free Protein S</td>
<td>Automated latex ligand immunoassay for the quantitative determination of free protein S in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Plasminogen</td>
<td>Automated chromogenic assay for the quantitative determination of plasminogen in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Homocysteine</td>
<td>Automated latex enhanced immunoassay for the quantitative determination of total L-homocysteine in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>IL Test TM Protein C</td>
<td>Automated chromogenic assay for the quantitative determination of protein C in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL ProS</td>
<td>Automated coagulation functional assay for the quantitative determination of free protein S in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Plasmin Inhibitor</td>
<td>Automated chromogenic assay for the quantitative determination of plasmin inhibitor in human citrated plasma on IL Coagulation Systems</td>
</tr>
<tr>
<td>Instrumentation Laboratory™</td>
<td>HemosIL Factor V Leiden (APC™ Resistance V)</td>
<td>For determination of resistance to activated protein C caused by the factor V:Q506 (factor V Leiden) mutation, in plasma from untreated individuals and from patients on oral anticoagulant or heparin therapy</td>
</tr>
</tbody>
</table>

All above data provided by sponsor submissions to NICE.
Appendix 2

Literature search terms for MEDLINE

Clinical effectiveness
1. clinical trial.pt. (225210)
2. meta$.pt. (11138)
3. review.pt. (683286)
4. exp review literature/(2443)
5. exp clinical trials/(87937)
6. meta-analysis/(4893)
7. exp guidelines/(47776)
8. health planning guidelines/(916)
9. or/1–8 (992360)
10. randomized controlled trials/(36135)
11. controlled clinical trial.pt. (26436)
12. randomized controlled trials/(36135)
13. random allocation/(21037)
14. double blind method/(42876)
15. single blind method/(7621)
16. or/10–15 (128447)
17. clinical trial.pt. (225210)
18. exp clinical trials/(87937)
19. (clin$adj25 trial$).tw. (79059)
20. ((singl$or doubl$or trebl$or tripl$) adj25 (blind$or mask$)).tw. (41776)
21. placebos/(7536)
22. placebo$.tw. (52195)
23. random$.tw. (220009)
24. research design/(23074)
25. or/17–24 (475260)
26. Comparative Study/(560069)
27. exp evaluation studies/(279253)
28. follow-up studies/(157398)
29. prospective studies/(131914)
30. (control$or prospectiv$or volunteer$).tw. (894853)
31. or/26–30 (1600442)
32. 16 or 25 or 31 (1758984)
33. animal/(1390937)
34. human/(3698913)
35. 33 not 34 (936064)
36. 32 not 35 (1425207)
37. exp "Sensitivity and Specificity"/(167664)
38. sensitivity.tw. (151370)
39. specificity.tw. (97754)
40. ((pre-test or pretest) adj probability).tw. (454)
41. post-test probability.tw. (131)
42. predictive value$.tw. (22089)
43. likelihood ratio$.tw. (2584)
44. or/37–43 (331092)
45. exp case-control studies/(222729)
46. case control stud$.mp. (70352)
47. exp cohort studies/(323926)
48. cohort analysis.mp. (796)
49. exp longitudinal studies/(288791)
50. exp prospective studies/(151914)
51. exp follow-up studies/(157398)
52. cohort$.tw. (71183)
53. or/45–52 (523956)
54. meta-analysis/(4893)
55. meta analy$.tw. (12804)
56. metaanaly$.tw. (469)
57. meta analysis.pt. (11138)
58. (systematic adj (review$1 or overview$1)).tw. (8999)
59. exp review literature/(2443)
60. or/54–59 (27802)
61. cochrane.ab. (6521)
62. embase.ab. (4721)
63. (psychlit or psyclit).ab. (655)
64. (psychinfo or psycinfo).ab. (864)
65. (cinal or cinal).ab. (1773)
66. science citation index.ab. (556)
67. bids.ab. (168)
68. cancercit.ab. (312)
69. or/61–68 (9349)
70. reference list$.ab. (2752)
71. bibliograph$.ab. (4046)
72. hand-search$.ab. (1317)
73. relevant journals.ab. (222)
74. manual search$.ab. (664)
75. or/70–74 (7994)
76. selection criteria.ab. (6672)
77. data extraction.ab. (2971)
78. 76 or 77 (9084)
79. review.pt. (683286)
80. 78 and 79 (6373)
81. comment.pt. (214279)
82. letter.pt. (259780)
83. editorial.pt. (112306)
84. animal/(1390937)
85. human/(3698913)
86. 84 not (84 and 85) (936064)
87. or/81–83,86 (1328208)
88. 60 or 69 or 75 or 78 (38808)
89. 88 not 87 (35917)
90. 9 or 36 or 44 or 45 or 46 or 53 or 89 (2257794)
91. factor v Leiden.mp. (2486)
92. activated protein c resistance.mp. or exp activated protein c resistance/(1007)
93. apc resistance.mp. (468)
94. exp protein c deficiency/(565)
95. protein c deficiency.tw. (410)
96. exp protein s deficiency/(591)
97. protein s deficiency.tw. (549)
98. exp antithrombin III deficiency/(259)
99. anti thrombin deficiency.tw. (0)
100. antithrombin deficiency.tw. (200)
101. antiphospholipid antibodies.mp. or exp Antibodies, Antiphospholipid/(4074)
102. exp Antibodies, Anticardiolipin/(2015)
103. homocysteine.mp. or exp Homocysteine/(8131)
104. dysfibrinogenemia.mp. (13)
105. factor VIII.mp. or exp Factor VIII/(5055)
106. factor 8.mp. (1036)
107. d-dimer.mp. (2315)
108. factor IX.mp. or exp Factor IX/(1523)
109. factor 9.mp. (323)
110. factor XI.mp. or exp Factor XI/(450)
111. factor 11.mp. (39)
112. dilute russell viper venom time.mp. (33)
113. prothrombin G20210A.mp. (385)
114. MTHFR C677T.mp. (435)
115. kaolin clotting time.mp. (38)
116. or/91–117 (26120)
117. thrombophilia.mp. or exp Thrombophilia/(7295)
118. mass screening.mp. or exp Mass Screening/(43753)
119. screen$.mp. (159255)
120. test$.mp. (765004)
121. or/120–124 (1024968)
122. diagnostic techniques and procedures/.or/128–148 (292284)
123. test$.mp. (10235)
124. embol$.mp. (94723)
125. thrombo$.mp. (10415)
126. thromboembolism$.mp. (38)
127. thrombo$.mp. (28066)
128. embol$.mp. (32214)
129. or/128–148 (292284)
130. occlus.mp. (57340)
131. or/128–148 (292284)
132. or/150–153 (55019)
133. 90 and 127 and 149 and 154 (3411)
134. *Pregnancy Complications/(10779)
135. *Pregnancy Outcome/(5261)
136. *Abortion, Spontaneous/(1519)
137. *Contraceptives, Oral/(1495)
138. *Hormone Replacement Therapy/(2483)
139. *Estrogen Replacement Therapy/(5519)
140. coronary heart disease.mp. or exp Coronary Disease/(62297)
141. chd.mp. (5642)
142. exp Lateral Sinus Thrombosis/or exp Hepatic Vein Thrombosis/or exp Sagittal Sinus Thrombosis/or exp Thrombosis/or exp Coronary Thrombosis/or exp Sinus Thrombosis, Intracranial/or exp Cavernous Sinus Thrombosis/or exp “Intracranial Embolism and Thrombosis”/or exp Carotid Artery Thrombosis/or exp Venous Thrombosis/or exp Intracranial Thrombosis/(37174)
143. exp Embolism/(20440)
144. exp Thromboembolism/(10415)
145. thrombo$.mp. (94723)
146. thromboembolism$.mp. (10235)
147. embol$.mp. (32214)
148. occlus.mp. (57340)
149. or/128–148 (292284)
150. exp Anticoagulants/(43413)
151. anticoag.mp. (28066)
152. warfarin.mp. or exp Warfarin/(6252)
153. or/150–153 (55019)
154. or/150–153 (55019)
155. 90 and 127 and 149 and 154 (3411)
156. *Pregnancy Complications/(10779)
157. *Pregnancy Outcome/(5261)
158. *Abortion, Spontaneous/(1519)
159. *Contraceptives, Oral/(1495)
160. *Hormone Replacement Therapy/(2483)
161. *Estrogen Replacement Therapy/(5519)
162. or/156–161 (25911)
163. pregnancy complication$.ti. (141)
164. pregnancy outcome$.ti. (1336)
165. pregnancy loss$.ti. (437)
166. miscarriage$.ti. (644)
167. foet$.ti. (1044)
168. puerperium$.ti. (257)
169. oral contraceptive$.ti. (1781)
170. oral contraception$.ti. (125)
171. hormone replacement therap$.ti. (0)
172. oestrogen therap$.ti. (26)
173. estrogen therap$.ti. (209)
174. oestrogen replacement$.ti. (60)
175. estrogen replacement$.ti. (606)
176. or/163–175 (6620)
177. 162 or 176 (28991)
178. 155 not 177 (4908)

Cost-effectiveness

1. factor v leiden.mp.
2. activated protein c resistance.mp. or exp activated protein c resistance/
3. apc resistance.mp.
4. exp protein c deficiency/
5. protein c deficiency.tw.
6. exp protein s deficiency/
7. protein s deficiency.tw.
8. exp antithrombin III deficiency/
9. anti thrombin deficiency.tw.
10. antithrombin deficiency.tw.
11. antiphospholipid antibodies.tw.
12. antiphospholipid antibodies.mp. or exp Antibodies, Antiphospholipid/
13. lupus anticoagulant.mp. or exp lupus coagulation inhibitor/
14. anticardiolipin antibodies.mp. or exp Antibodies, Anticardiolipin/
15. homocysteine.mp. or exp Homocysteine/
16. dysfibrinogenemia.mp.
17. factor VIII.mp. or exp Factor VIII/
18. factor 8.mp.
19. d-dimer.mp.
20. factor IX.mp. or exp Factor IX/
22. factor XI.mp. or exp Factor XI/
23. factor 11.mp.
24. dilute russell viper venom time.mp.
25. prothrombin G20210A.mp.
26. MTHFR C677T.mp.
27. kaolin clotting time.mp.
28. or/1–27
29. thrombophilia.mp. or exp Thrombophilia/
30. mass screening.mp. or exp Mass Screening/
31. screen$.mp.
32. test$.mp.
33. exp “diagnostic techniques and procedures”/ or diagnostic tests, routine/
34. (diagnostic test$and procedure$).mp.
35. or/30–34
36. 29 and 35
37. 28 or 36
38. deep vein thrombosis.mp. or exp Venous Thrombosis/
39. dvt.mp.
40. pulmonary embolism.mp. or exp Pulmonary Embolism/
41. pe.mp.
42. venous thromboembolism.mp.
43. vte.mp.
44. stroke.mp. or exp Cerebrovascular Accident/
45. cva.mp.
46. peripheral vascular disease$.mp. or exp Peripheral Vascular Diseases/
47. pvd.mp.
48. myocardial infarction.mp. or exp Myocardial Infarction/
49. mi.mp.
50. coronary heart disease.mp. or exp Coronary Disease/
51. chd.mp.

52. exp Lateral Sinus Thrombosis/or exp Hepatic Vein Thrombosis/or exp Sagittal Sinus Thrombosis/or exp Thrombosis/or exp Coronary Thrombosis/or exp Sinus Thrombosis, Intracranial/or exp Cavernous Sinus Thrombosis/or exp “Intracranial Embolism and Thrombosis”/or exp Carotid Artery Thrombosis/or exp Venous Thrombosis/or exp Intracranial Thrombosis/
53. exp Embolism/
54. exp Thromboembolism/
55. thrombo$.mp.
56. thromboembolism$.mp.
57. embol$.mp.
58. occlu$.mp.
59. or/38–58
60. exp Anticoagulants/
61. anticoag$.mp.
62. warfarin.mp. or exp Warfarin/
63. blood coagulation test$.mp. or exp Blood Coagulation Tests/
64. or/60–63
65. *Pregnancy Complications/
66. *Pregnancy Outcome/
67. *Abortion, Spontaneous/
68. *Contraceptives, Oral/
69. *Hormone Replacement Therapy/
70. *Estrogen Replacement Therapy/
71. or/65–70
72. pregnancy complication$.ti.
73. pregnancy outcome$.ti.
74. pregnancy loss$.ti.
75. miscarriage$.ti.
76. foet$.ti.
77. puerenium$.ti.
78. oral contraceptive$.ti.
79. oral contraception$.ti.
80. hormone replacement therapy$.ti.
81. oestrogen therapy$.ti.
82. estrogen therapy$.ti.
83. oestrogen replacement.ti.
84. estrogen replacement.ti.
85. or/72–84
86. 71 or 85
87. Economics/
88. exp “Costs and Cost Analysis”/
89. economic value of life/
90. exp economics hospital/
91. exp economics medical/
92. economics nursing/
93. exp models economic/
94. Economics, Pharmaceutical/
95. exp “Fees and Charges”/
96. exp budgets/
97. ec.ls.
98. (cost or costs or costed or costly or costing$).tw.
99. (economic$ or pharmacoeconomic$ or price$ or pricing$).tw.
100. quality adjusted life years/
101. (qaly or qaly$).af.

102. or/87–101
103. 37 and 59 and 64 and 102
104. 103 not 86
Appendix 3

Critique of the retrieved cost-effectiveness papers

We have summarised the cost-effectiveness literature that was retrieved from our systematic review. In this section we have concentrated on key structural differences between the models in the published literature and our mathematical model. We do not explicitly discuss minor differences in the values of common parameters as these will be discussed in the section describing the population of the model. Differences between our model and all of those previously published are contained in the following paragraph, with differences relating to specific papers detailed thereafter.

No paper reviewed employed a model using an individual patient approach. These models could not then increase the risk of subsequent VTE in the period immediately after a VTE and may thus underestimate the number of subsequent DVTs. No published model considered the sensitivity of detection of VTE, which will overestimate the survival of patients with VTE and may also leave patients untreated in the high-risk period immediately following a VTE. Models that explicitly considered haemorrhages did not subdivide these so that warfarin treatment would be reinitiated following a VTE in patients with a previous non-intracranial haemorrhage but not in patients who had suffered an intracranial haemorrhage.

Auerbach et al.65
This paper does not give results by gender and the base rate of VTE amongst patients without thrombophilia has been taken from a population that is unselected for cause of VTE and is only known to be without the FVL mutation so may contain all other types of thrombophilia. There also appears to be uncertainty in how the recurrent VTE rates were extracted from the source paper.64

Aujesky et al.65
This paper calculates the cost-effectiveness of oral anticoagulation strategies after a first VTE but does not distinguish between thrombophilic and non-thrombophilic patients.

Eckman et al.66
This paper considers only the cost-effectiveness of testing for patients with the FVL mutation. The results are not divided between men and women and are provided only for patients aged 35 years. The base rate of VTE amongst patients without thrombophilia has been taken from a population that is only known to be without the FVL mutation and so may contain all other types of thrombophilia.

Marchetti et al.58
This paper considers the cost-effectiveness of testing for patients with the FVL mutation but no other types of thrombophilia. The population is men with VTE, not just those with idiopathic VTE, aged 60 years. The rates of recurrence of VTE have not been taken from patients without thrombophilia.

Marchetti et al.87
This paper considers the cost-effectiveness of testing for patients with both the FVL mutation and PTG20210A but no other types of thrombophilia. The population is men with VTE, not just those with idiopathic VTE, aged 60 years. The rates of recurrence of VTE have not been taken from patients without thrombophilia.

Keeling et al.57
This paper does not perform a cost–utility analysis but reports the number of years of treatment needed to avoid a fatal event, divided by age but not by gender. The RRs associated with each type of thrombophilia have not been applied within the model.

Prins et al.55
This paper does not perform a cost–utility analysis but reports the number of years of treatment needed to avoid a fatal event, divided by age but not by gender. The RRs associated with each type of thrombophilia have not been applied within the model.
Appendix 4

Detailed results from the mid-point analyses

These results assume that the sensitivity and specificity of thrombophilia testing are 100%.

Men with a previous DVT

The cost per QALY of alternative treatment periods was compared with a standard 3-month treatment period assuming that the thrombophilic status of the patient is known without cost.

The most cost-effective strategy at each age assuming a MAICER of £20,000 is shaded and was established by undertaking incremental analyses (data not shown). No shading denotes that the standard 3-month treatment period is most cost-effective.

TABLE 28 Lupus anticoagulant

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£2397</td>
<td>£3341</td>
<td>£4567</td>
<td>£5525</td>
<td>£9489</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£2865</td>
<td>£3966</td>
<td>£5169</td>
<td>£6723</td>
<td>£11,007</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£3707</td>
<td>£4484</td>
<td>£5583</td>
<td>£6791</td>
<td>£11,007</td>
</tr>
</tbody>
</table>

TABLE 29 FVL heterozygous and PTG20210A

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£3011</td>
<td>£4000</td>
<td>£5296</td>
<td>£6946</td>
<td>£12,838</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£3386</td>
<td>£4856</td>
<td>£6343</td>
<td>£8707</td>
<td>£15,776</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£4520</td>
<td>£5811</td>
<td>£7331</td>
<td>£8839</td>
<td>£15,776</td>
</tr>
</tbody>
</table>

TABLE 30 Anticardiolipin antibodies

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£5946</td>
<td>£8955</td>
<td>£16,346</td>
<td>£23,201</td>
<td>£115,552</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£7359</td>
<td>£11,147</td>
<td>£18,435</td>
<td>£37,456</td>
<td>£149,434</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£11,185</td>
<td>£15,537</td>
<td>£25,356</td>
<td>£36,147</td>
<td>£149,434</td>
</tr>
</tbody>
</table>

TABLE 32 PTG20210A

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£8977</td>
<td>£16,225</td>
<td>£28,990</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£1,803</td>
<td>£20,750</td>
<td>£43,623</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£20,274</td>
<td>£34,937</td>
<td>£73,822</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>
Appendix 4

TABLE 33 AT deficiency, PC deficiency, PS deficiency

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£12,070</td>
<td>£21,510</td>
<td>£48,293</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£15,331</td>
<td>£30,494</td>
<td>£30,494</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£28,127</td>
<td>£58,641</td>
<td>£58,641</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

TABLE 34 FVL heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£16,571</td>
<td>£35,078</td>
<td>£35,078</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£21,757</td>
<td>£54,919</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£47,817</td>
<td>£213,729</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

This risk of recurrent thrombosis is the same as for patients without thrombophilia as the relative risk of FVL heterozygous compared with no thrombophilia is 1.

Cost per QALY of thrombophilia testing when the costs of the tests are incorporated

TABLE 35 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 30 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7(^{18})</td>
<td>Lifelong</td>
<td>5590</td>
<td>1.508</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma(^a) and Dickey(^a)</td>
<td>Lifelong</td>
<td>6202</td>
<td>1.372</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7(^{18})</td>
<td>20 years</td>
<td>5333</td>
<td>0.725</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5(^a)</td>
<td>20 years</td>
<td>5553</td>
<td>0.677</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18(^a) (assumed 11.5)</td>
<td>20 years</td>
<td>6308</td>
<td>0.534</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13(^{49})</td>
<td>10 years</td>
<td>3704</td>
<td>0.307</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50(^a) (assumed 30)</td>
<td>10 years</td>
<td>4119</td>
<td>0.249</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombilia prevalence(^a)</td>
<td></td>
<td></td>
<td>3033</td>
<td>0.293</td>
</tr>
<tr>
<td>Cost of tests(^b)</td>
<td></td>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>3149</td>
<td>0.293</td>
</tr>
<tr>
<td>Cost per QALY of thrombilia testing</td>
<td></td>
<td></td>
<td>£10,740</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) These values are obtained by summating the products of prevalence and costs (or QALYs).

\(^b\) Assuming that patients with thrombophilia who would change the duration of warfarin treatment are retested as in Wu et al.\(^{30}\)

It is seen that introducing thrombophilia testing in men aged 30 years with a previous DVT has a cost per QALY gained of £8670 compared with no thrombophilia testing.
TABLE 36 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 40 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.71⁸</td>
<td>Lifelong</td>
<td>4926</td>
<td>1.099</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma⁹ and Dickey⁹</td>
<td>Lifelong</td>
<td>5564</td>
<td>0.957</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.71⁸</td>
<td>20 years</td>
<td>5623</td>
<td>0.504</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5⁷</td>
<td>20 years</td>
<td>5941</td>
<td>0.444</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18⁸ (assumed 11.5)</td>
<td>10 years</td>
<td>3727</td>
<td>0.230</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13⁹⁹</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50⁸ (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence</td>
<td>993</td>
<td>0.109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of testsb</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>1079</td>
<td></td>
<td>0.109</td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£9894</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summating the products of prevalence and costs (or QALYs).
b Assuming that patients with thrombophilia who would change the duration of warfarin treatment are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in men aged 40 years with a previous DVT has a cost per QALY gained of £9742 compared with no thrombophilia testing.
TABLE 37 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 50 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7²</td>
<td>Lifelong</td>
<td>4433</td>
<td>0.794</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma³ and Dickey⁴</td>
<td>20 years</td>
<td>4872</td>
<td>0.665</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7²</td>
<td>10 years</td>
<td>3359</td>
<td>0.205</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5⁵</td>
<td>10 years</td>
<td>3489</td>
<td>0.224</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18⁶ (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>1.3⁷</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50⁸ (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence¹</td>
<td></td>
<td></td>
<td>400</td>
<td>0.052</td>
</tr>
<tr>
<td>Cost of tests²</td>
<td></td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>478</td>
<td>0.052</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£9194</td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summating the products of prevalence and costs (or QALYs).
b Assuming that patients with thrombophilia who would change the duration of warfarin treatment are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in men aged 50 years with a previous DVT has a cost per QALY gained of £9110 compared with no thrombophilia testing.
<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7(^a)</td>
<td>20 years</td>
<td>3610</td>
<td>0.537</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma(^a) and Dickey(^b)</td>
<td>20 years</td>
<td>4038</td>
<td>0.464</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7(^a)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5(^a)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18(^\star) (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13(^a)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50(^\star) (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence(^a)</td>
<td></td>
<td></td>
<td>236</td>
<td>0.030</td>
</tr>
<tr>
<td>Cost of tests(^b)</td>
<td></td>
<td></td>
<td>75</td>
<td>0.030</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>311</td>
<td>0.030</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£10,239</td>
<td></td>
</tr>
</tbody>
</table>

\(a\) These values are obtained by summating the products of prevalence and costs (or QALYs).
\(b\) Assuming that patients with thrombophilia who would change the duration of warfarin treatment are retested as in Wu et al.\(^b\)
It is seen that introducing thrombophilia testing in men aged 60 years with a previous DVT has a cost per QALY gained of £10,052 compared with no thrombophilia testing.
Women with a previous DVT

The cost per QALY of alternative treatment periods was compared with a standard 3-month treatment period assuming that the thrombophilic status of the patient is known without cost.

The most cost-effective strategy at each age assuming a MAICER of £20,000 is shaded and was established by undertaking incremental analyses (data not shown). No shading denotes that the standard 3-month treatment period is most cost-effective.

TABLE 39 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 70 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.71a</td>
<td>10 years</td>
<td>2375</td>
<td>0.250</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma8 and Dickey9</td>
<td>10 years</td>
<td>2654</td>
<td>0.207</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.71a</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5a</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–189 (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13a (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–508 (assumed 30)</td>
<td>3 months</td>
<td>155</td>
<td>0.014</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalencea</td>
<td></td>
<td></td>
<td>230</td>
<td>0.014</td>
</tr>
<tr>
<td>Cost of testsb</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>230</td>
<td>0.014</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£16,641</td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summing the products of prevalence and costs (or QALYs).
b Assuming that patients with thrombophilia who would change the duration of warfarin treatment are retested as in Wu et al.30

It is seen that introducing thrombophilia testing in men aged 70 years with a previous DVT has a cost per QALY gained of £16,259 compared with no thrombophilia testing.

TABLE 40 Lupus anticoagulant

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£5598</td>
<td>£3095</td>
<td>£12,551</td>
<td>£21,295</td>
<td>£66,880</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£6493</td>
<td>£3439</td>
<td>£15,289</td>
<td>£27,651</td>
<td>£100,287</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£9738</td>
<td>£3980</td>
<td>£19,965</td>
<td>£34,239</td>
<td>£100,287</td>
</tr>
</tbody>
</table>

TABLE 41 FVL heterozygous and PTG20210A heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£7238</td>
<td>£11,191</td>
<td>£18,034</td>
<td>£33,032</td>
<td>£480,510</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£8694</td>
<td>£13,446</td>
<td>£21,826</td>
<td>£58,552</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£13,731</td>
<td>£20,318</td>
<td>£34,062</td>
<td>£61,055</td>
<td>Dominated</td>
</tr>
</tbody>
</table>
TABLE 42 Anticardiolipin antibodies

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£22,206</td>
<td>£55,466</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£34,151</td>
<td>£129,487</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£125,499</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

TABLE 43 FVL homozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£28,474</td>
<td>£99,290</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£45,678</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£227,631</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

TABLE 44 PTG20210A

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£55,979</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£326,890</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

TABLE 45 One of AT deficiency, PC deficiency or PS deficiency

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£501,798</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

TABLE 46 FVL heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

This risk of recurrent thrombosis is the same as for patients without thrombophilia as the relative risk of FVL heterozygous compared with no thrombophilia is 1.
Cost per QALY of thrombophilia testing when the costs of the tests are incorporated

TABLE 47 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 30 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.718</td>
<td>20 years</td>
<td>5194</td>
<td>0.800</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma and Dickey</td>
<td>20 years</td>
<td>5683</td>
<td>0.654</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.718</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.59</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18% (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13%</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50% (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence</td>
<td>335</td>
<td>0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of testsb</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>410</td>
<td></td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£9329</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summating the products of prevalence and costs (or QALYs).
b Assuming that patients with the above thrombophilia are retested as in Wu et al.30

It is seen that introducing thrombophilia testing in women aged 30 years with a previous DVT has a cost per QALY gained of £9173 compared with no thrombophilia testing.
TABLE 48 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 40 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.718</td>
<td>20 years</td>
<td>5570</td>
<td>0.544</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma⁸ and Dickey⁹</td>
<td>20 years</td>
<td>6112</td>
<td>0.455</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.718</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5⁸</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18⁸ (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13⁴⁹</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50⁸ (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence⁹</td>
<td>360</td>
<td>–</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>Cost of tests⁸</td>
<td></td>
<td>75</td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>435</td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£14,384</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summating the products of prevalence and costs (or QALYs).
b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰
It is seen that introducing thrombophilia testing in women aged 40 years with a previous DVT has a cost per QALY gained of £14,159 compared with no thrombophilia testing.

TABLE 49 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 50 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7⁸</td>
<td>10 years</td>
<td>3236</td>
<td>0.258</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma⁸ and Dickey⁹</td>
<td>10 years</td>
<td>3567</td>
<td>0.198</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7⁸</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5⁸</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18⁸ (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13⁴⁹</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50⁸ (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence⁹</td>
<td>209</td>
<td>–</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Cost of tests⁸</td>
<td></td>
<td>75</td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>284</td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£20,746</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summating the products of prevalence and costs (or QALYs).
b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰
It is seen that introducing thrombophilia testing in women aged 50 years with a previous DVT has a cost per QALY gained of £20,283 compared with no thrombophilia testing.
TABLE 50 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 60 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7[8]</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma[8] and Dickey[9]</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7[8]</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5[9]</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18[9] (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13[9]</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50[9] (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence[9]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cost of tests[b]</td>
<td>70.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Totals</td>
<td>70.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Cost per QALY of thrombophilia testing

Dominated

Notes:

- a These values are obtained by summating the products of prevalence and costs (or QALYs).
- b Assuming that patients with the above thrombophilia are retested as in Wu et al.\[9\].

It is seen that introducing thrombophilia testing in women aged 60 years with a previous DVT is dominated by no thrombophilia testing.
TABLE 51 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 70 years with a previous DVT

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7<sup>a</sup></td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma<sup>a</sup> and Dickey<sup>b</sup></td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7<sup>a</sup></td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5<sup>a</sup></td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18<sup>c</sup> (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13<sup>c</sup></td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50<sup>d</sup> (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence<sup>a</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cost of tests<sup>b</sup></td>
<td>–</td>
<td>70.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Totals</td>
<td>–</td>
<td>70.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>Dominated</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

^a These values are obtained by summating the products of prevalence and costs (or QALYs).

^b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in women aged 70 years with a previous DVT is dominated by no thrombophilia testing.
Men with a previous PE
Cost per QALY of alternative treatment periods was compared with a standard 3-month treatment period assuming that the thrombophilic status of the patient is known without cost.

The most cost-effective strategy at each age assuming a MAICER of £20,000 is shaded and was established by undertaking incremental analyses (data not shown). No shading denotes that the standard 3-month treatment period is most cost-effective.

TABLE 52 Lupus anticoagulant

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£1551</td>
<td>£1836</td>
<td>£2065</td>
<td>£2319</td>
<td>£3051</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£1685</td>
<td>£1976</td>
<td>£2242</td>
<td>£2494</td>
<td>£3208</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£1874</td>
<td>£2089</td>
<td>£2284</td>
<td>£2522</td>
<td>£3208</td>
</tr>
</tbody>
</table>

TABLE 53 FVL heterozygous and PTG20210A heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£1718</td>
<td>£1983</td>
<td>£2294</td>
<td>£2622</td>
<td>£3560</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£1868</td>
<td>£2164</td>
<td>£2494</td>
<td>£2931</td>
<td>£3953</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£2129</td>
<td>£2360</td>
<td>£2680</td>
<td>£2967</td>
<td>£3953</td>
</tr>
</tbody>
</table>

TABLE 54 Anticardiolipin antibodies

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£2690</td>
<td>£3188</td>
<td>£3965</td>
<td>£4991</td>
<td>£8839</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£2960</td>
<td>£3571</td>
<td>£4334</td>
<td>£6377</td>
<td>£10,326</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£3601</td>
<td>£4190</td>
<td>£4992</td>
<td>£6468</td>
<td>£10,326</td>
</tr>
</tbody>
</table>

TABLE 55 FVL homozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£2919</td>
<td>£3633</td>
<td>£4385</td>
<td>£5714</td>
<td>£10,634</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£3235</td>
<td>£4042</td>
<td>£4937</td>
<td>£7507</td>
<td>£12,341</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£3954</td>
<td>£4716</td>
<td>£5684</td>
<td>£7556</td>
<td>£12,341</td>
</tr>
</tbody>
</table>
Table 56 PTG20210A

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>10 years</td>
<td>£3666</td>
</tr>
<tr>
<td>20 years</td>
<td>£4076</td>
</tr>
<tr>
<td>Lifelong</td>
<td>£5148</td>
</tr>
</tbody>
</table>

Table 57 One of AT deficiency, PC deficiency or PS deficiency

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>10 years</td>
<td>£4078</td>
</tr>
<tr>
<td>20 years</td>
<td>£4674</td>
</tr>
<tr>
<td>Lifelong</td>
<td>£5977</td>
</tr>
</tbody>
</table>

Table 58 FVL heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>10 years</td>
<td>£5230</td>
</tr>
<tr>
<td>20 years</td>
<td>£5941</td>
</tr>
<tr>
<td>Lifelong</td>
<td>£7612</td>
</tr>
</tbody>
</table>

This risk of recurrent thrombosis is the same as for patients without thrombophilia as the relative risk of FVL heterozygous compared with no thrombophilia is 1.
Cost per QALY of thrombophilia testing when the costs of the tests are incorporated

TABLE 59 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 30 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7(^{18})</td>
<td>Lifelong</td>
<td>6689</td>
<td>3.568</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma(^{4}) and Dickey(^{9})</td>
<td>Lifelong</td>
<td>7222</td>
<td>3.392</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7(^{18})</td>
<td>Lifelong</td>
<td>9487</td>
<td>2.634</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5(^{9})</td>
<td>Lifelong</td>
<td>9810</td>
<td>2.481</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18(^{9}) (assumed 11.5)</td>
<td>Lifelong</td>
<td>10,779</td>
<td>2.094</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13(^{19})</td>
<td>Lifelong</td>
<td>11,355</td>
<td>1.900</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50(^{9}) (assumed 30)</td>
<td>Lifelong</td>
<td>12,238</td>
<td>1.608</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence(^{a})</td>
<td></td>
<td></td>
<td>7218</td>
<td>1.291</td>
</tr>
</tbody>
</table>

Cost of tests\(^{b}\)

<table>
<thead>
<tr>
<th></th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td>7344</td>
</tr>
</tbody>
</table>

Cost per QALY of thrombophilia testing

£5682

\(^{a}\) These values are obtained by summing the products of prevalence and costs (or QALYs).

\(^{b}\) Assuming that patients with the above thrombophilia are retested as in Wu et al.\(^{30}\)

It is seen that introducing thrombophilia testing in men aged 30 years with a previous PE has a cost per QALY gained of £4550 compared with no testing.
TABLE 60
The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 40 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7<sup>16</sup></td>
<td>Lifelong</td>
<td>5895</td>
<td>2.822</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma<sup>8</sup> and Dickey<sup>9</sup></td>
<td>Lifelong</td>
<td>6387</td>
<td>2.706</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7<sup>14</sup></td>
<td>Lifelong</td>
<td>8501</td>
<td>2.029</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5<sup>9</sup></td>
<td>Lifelong</td>
<td>8927</td>
<td>1.893</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18<sup>4</sup> (assumed 11.5)</td>
<td>Lifelong</td>
<td>9861</td>
<td>1.597</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13<sup>4</sup></td>
<td>Lifelong</td>
<td>10,471</td>
<td>1.396</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50<sup>4</sup> (assumed 30)</td>
<td>20 years</td>
<td>7899</td>
<td>1.051</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence<sup>a</sup></td>
<td>5606</td>
<td>0.932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of tests<sup>b</sup></td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>5722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£6137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a These values are obtained by summating the products of prevalence and costs (or QALYs).

^b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in men aged 40 years with a previous PE has a cost per QALY gained of £5394 compared with no testing.

TABLE 61
The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 50 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7<sup>16</sup></td>
<td>Lifelong</td>
<td>4988</td>
<td>2.184</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma<sup>8</sup> and Dickey<sup>9</sup></td>
<td>Lifelong</td>
<td>5494</td>
<td>2.050</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7<sup>14</sup></td>
<td>Lifelong</td>
<td>7532</td>
<td>1.509</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5<sup>9</sup></td>
<td>Lifelong</td>
<td>7864</td>
<td>1.383</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18<sup>4</sup> (assumed 11.5)</td>
<td>20 years</td>
<td>7156</td>
<td>1.099</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13<sup>4</sup></td>
<td>20 years</td>
<td>7576</td>
<td>0.908</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50<sup>4</sup> (assumed 30)</td>
<td>20 years</td>
<td>8036</td>
<td>0.728</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence<sup>a</sup></td>
<td>4863</td>
<td>0.635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of tests<sup>b</sup></td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>4979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£7620</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a These values are obtained by summating the products of prevalence and costs (or QALYs).

^b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in men aged 50 years with a previous PE has a cost per QALY gained of £5919 compared with no testing.
TABLE 62
The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 60 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.718</td>
<td>20 years</td>
<td>4033</td>
<td>1.617</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma¹ and Dickey⁹</td>
<td>20 years</td>
<td>4430</td>
<td>1.511</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.718</td>
<td>20 years</td>
<td>6257</td>
<td>0.981</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5⁹</td>
<td>20 years</td>
<td>6549</td>
<td>0.872</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18⁸ (assumed 11.5)</td>
<td>10 years</td>
<td>4479</td>
<td>0.648</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13⁹</td>
<td>10 years</td>
<td>4787</td>
<td>0.452</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50⁸ (assumed 30)</td>
<td>10 years</td>
<td>5181</td>
<td>0.321</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence¹</td>
<td></td>
<td></td>
<td>3219</td>
<td>0.351</td>
</tr>
<tr>
<td>Cost of tests²</td>
<td></td>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>3336</td>
<td>0.351</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£9494</td>
<td></td>
</tr>
</tbody>
</table>

¹ These values are obtained by summating the products of prevalence and costs (or QALYs).
² Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in men aged 60 years with a previous PE has a cost per QALY gained of £6978 compared with no testing.

TABLE 63
The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for men aged 70 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7¹⁸</td>
<td>20 years</td>
<td>3107</td>
<td>0.968</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma¹ and Dickey⁹</td>
<td>20 years</td>
<td>3487</td>
<td>0.882</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7¹⁸</td>
<td>10 years</td>
<td>4170</td>
<td>0.472</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5⁹</td>
<td>10 years</td>
<td>4433</td>
<td>0.417</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18⁸ (assumed 11.5)</td>
<td>10 years</td>
<td>4883</td>
<td>0.275</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13⁹</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50⁸ (assumed 30)</td>
<td>3 months</td>
<td>944</td>
<td>0.107</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence¹</td>
<td></td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Cost of tests²</td>
<td></td>
<td></td>
<td>1030</td>
<td>0.107</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>1030</td>
<td>0.107</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£9635</td>
<td></td>
</tr>
</tbody>
</table>

¹ These values are obtained by summating the products of prevalence and costs (or QALYs).
² Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in men aged 70 years with a previous PE has a cost per QALY gained of £9444 compared with no testing.
Women with a previous PE

The cost per QALY of alternative treatment periods was compared with a standard 3-month treatment period assuming that the thrombophilic status of the patient is known without cost.

The most cost-effective strategy at each age assuming a MAICER of £20,000 is shaded and was established by undertaking incremental analyses (data not shown). No shading denotes that the standard 3-month treatment period is most cost-effective.

TABLE 64 Lupus anticoagulant

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£2525</td>
<td>£3095</td>
<td>£3796</td>
<td>£4525</td>
<td>£6876</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£2794</td>
<td>£3439</td>
<td>£4108</td>
<td>£5265</td>
<td>£8202</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£3393</td>
<td>£3980</td>
<td>£4688</td>
<td>£5611</td>
<td>£8202</td>
</tr>
</tbody>
</table>

TABLE 65 FVL heterozygous and PTG20210A heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£2914</td>
<td>£3598</td>
<td>£4369</td>
<td>£5659</td>
<td>£8981</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£3234</td>
<td>£4023</td>
<td>£4853</td>
<td>£6828</td>
<td>£11,061</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£4016</td>
<td>£4800</td>
<td>£5672</td>
<td>£7307</td>
<td>£11,061</td>
</tr>
</tbody>
</table>

TABLE 66 Anticardiolipin antibodies

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£6232</td>
<td>£7868</td>
<td>£10,664</td>
<td>£19,098</td>
<td>£53,897</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£6936</td>
<td>£9096</td>
<td>£12,760</td>
<td>£26,641</td>
<td>£67,191</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£9310</td>
<td>£11,921</td>
<td>£16,198</td>
<td>£29,111</td>
<td>£67,191</td>
</tr>
</tbody>
</table>

TABLE 67 FVL homozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td></td>
<td>£7134</td>
<td>£9188</td>
<td>£13,938</td>
<td>£22,563</td>
<td>£93,161</td>
</tr>
<tr>
<td>20 years</td>
<td></td>
<td>£7925</td>
<td>£10,944</td>
<td>£17,284</td>
<td>£36,182</td>
<td>£124,806</td>
</tr>
<tr>
<td>Lifelong</td>
<td></td>
<td>£10,592</td>
<td>£14,497</td>
<td>£22,685</td>
<td>£37,948</td>
<td>£124,806</td>
</tr>
</tbody>
</table>
TABLE 68 PTG20210A

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td>£9675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£77,627</td>
</tr>
<tr>
<td>20 years</td>
<td>£11,595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£133,981</td>
</tr>
<tr>
<td>Lifelong</td>
<td>£16,473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£158,898</td>
</tr>
</tbody>
</table>

TABLE 69 One of AT deficiency, PC deficiency or PS deficiency

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td>£13,107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£208,351</td>
</tr>
<tr>
<td>20 years</td>
<td>£15,416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£1,900,759</td>
</tr>
<tr>
<td>Lifelong</td>
<td>£22,311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dominated</td>
</tr>
</tbody>
</table>

TABLE 70 FVL heterozygous

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>Age (years)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td>£16,651</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dominated</td>
</tr>
<tr>
<td>20 years</td>
<td>£20,736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dominated</td>
</tr>
<tr>
<td>Lifelong</td>
<td>£32,864</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dominated</td>
</tr>
</tbody>
</table>

This risk of recurrent thrombosis is the same as for patients without thrombophilia as the relative risk of FVL heterozygous compared with no thrombophilia is 1.
Cost per QALY of thrombophilia testing when the costs of the tests are incorporated

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7±</td>
<td>Lifelong</td>
<td>9633</td>
<td>2.839</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma and Dicke</td>
<td>Lifelong</td>
<td>10,216</td>
<td>2.544</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7±</td>
<td>20 years</td>
<td>8177</td>
<td>1.179</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5±</td>
<td>20 years</td>
<td>8473</td>
<td>1.069</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18± (assumed 11.5)</td>
<td>20 years</td>
<td>9212</td>
<td>0.794</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13±</td>
<td>10 years</td>
<td>5492</td>
<td>0.419</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50± (assumed 30)</td>
<td>10 years</td>
<td>5712</td>
<td>0.343</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence</td>
<td></td>
<td></td>
<td>4444</td>
<td>0.440</td>
</tr>
<tr>
<td>Cost of tests</td>
<td></td>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>4561</td>
<td>0.440</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£10,366</td>
<td></td>
</tr>
</tbody>
</table>

These values are obtained by summing the products of prevalence and costs (or QALYs).

Assuming that patients with the above thrombophilia are retested as in Wu et al. 30

It is seen that introducing thrombophilia testing in women aged 30 years with a previous PE has a cost per QALY gained of £8362 compared with no testing.
TABLE 72 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 40 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7<sup>11</sup></td>
<td>Lifelong</td>
<td>8783</td>
<td>2.207</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma<sup>a</sup> and Dickey<sup>b</sup></td>
<td>Lifelong</td>
<td>9402</td>
<td>1.959</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7<sup>11</sup></td>
<td>20 years</td>
<td>8428</td>
<td>0.927</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5<sup>9</sup></td>
<td>20 years</td>
<td>8721</td>
<td>0.797</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18<sup>9</sup> (assumed 11.5)</td>
<td>10 years</td>
<td>5571</td>
<td>0.373</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13<sup>9</sup></td>
<td>10 years</td>
<td>5624</td>
<td>0.325</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50<sup>9</sup> (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence<sup>a</sup></td>
<td></td>
<td></td>
<td>2289</td>
<td>0.249</td>
</tr>
<tr>
<td>Cost of tests<sup>b</sup></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>2384</td>
<td>0.249</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£9590</td>
<td></td>
</tr>
</tbody>
</table>

^a These values are obtained by summating the products of prevalence and costs (or QALYs).

^b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in women aged 40 years with a previous PE has a cost per QALY gained of £9428 compared with no testing.
TABLE 73 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 50 years with a previous PE.

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7<sup>a</sup></td>
<td>Lifelong</td>
<td>7661</td>
<td>1.634</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>3.45; calculated from Franco and Reitsma<sup>a</sup> and Dickey<sup>b</sup></td>
<td>Lifelong</td>
<td>8407</td>
<td>1.482</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7<sup>a</sup></td>
<td>20 years</td>
<td>8544</td>
<td>0.670</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5<sup>a</sup></td>
<td>10 years</td>
<td>5325</td>
<td>0.382</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18<sup>b</sup> (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13<sup>a</sup></td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50<sup>b</sup> (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence<sup>a</sup></td>
<td></td>
<td></td>
<td>805</td>
<td>0.119</td>
</tr>
<tr>
<td>Cost of tests<sup>b</sup></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>883</td>
<td>0.119</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£7447</td>
<td></td>
</tr>
</tbody>
</table>

^a These values are obtained by summing the products of prevalence and costs (or QALYs).

^b Assuming that patients with the above thrombophilia are retested as in Wu et al.³⁰

It is seen that introducing thrombophilia testing in women aged 50 years with a previous PE has a cost per QALY gained of £7417 compared with no testing.
TABLE 74 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 60 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7a</td>
<td>6010</td>
<td>1.142</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsmab and Dickeyc</td>
<td>6602</td>
<td>0.967</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7a</td>
<td>5384</td>
<td>0.282</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5a</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18c (assumed 11.5)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13a</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50c (assumed 30)</td>
<td>534</td>
<td>0.071</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalenced</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cost of testsb</td>
<td>77</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Totals</td>
<td>610</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td>£8544</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

a These values are obtained by summating the products of prevalence and costs (or QALYs).
b Assuming that patients with the above thrombophilia are retested as in Wu et al.30
c It is seen that introducing thrombophilia testing in women aged 60 years with a previous PE has a cost per QALY gained of £8505 compared with no testing.
TABLE 75 The weighted cost incurred and QALYs gained from the most cost-effective warfarin duration associated with each thrombophilia, for women aged 70 years with a previous PE

<table>
<thead>
<tr>
<th>Type of thrombophilia</th>
<th>Estimated prevalence among patients with idiopathic VTE (%)</th>
<th>Most cost-effective treatment duration</th>
<th>Cost per person (£)</th>
<th>QALYs accrued per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupus anticoagulant</td>
<td>2.7%</td>
<td>20 years</td>
<td>5340</td>
<td>0.651</td>
</tr>
<tr>
<td>FVL heterozygous and PTG20210A heterozygous</td>
<td>3.45; calculated from Franco and Reitsma and Dickey</td>
<td>10 years</td>
<td>4343</td>
<td>0.484</td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>2.7%</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL homozygous</td>
<td>1.5%</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PTG20210A heterozygous</td>
<td>5–18% (assumed 11.5)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT deficiency, PC deficiency or PS deficiency or lupus-like anticoagulants</td>
<td>13%</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FVL heterozygous</td>
<td>10–50% (assumed 30)</td>
<td>3 months</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All patients with idiopathic DVT weighted by thrombophilia prevalence</td>
<td></td>
<td></td>
<td>291</td>
<td>0.034</td>
</tr>
<tr>
<td>Cost of tests</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>367</td>
<td>0.034</td>
</tr>
<tr>
<td>Cost per QALY of thrombophilia testing</td>
<td></td>
<td></td>
<td>£10,782</td>
<td></td>
</tr>
</tbody>
</table>

a These values are obtained by summing the products of prevalence and costs (or QALYs).

b Assuming that patients with the above thrombophilia are retested as in Wu et al.

It is seen that introducing thrombophilia testing in women aged 70 years with a previous PE has a cost per QALY gained of £10,636 compared with no testing.
Appendix 5

Additional information on the calculation of costs used within the model

TABLE 76 Calculation of costs of treating a resolved DVT and of warfarin treatment

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Mean value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of further resolving deep vein thrombosis</td>
<td>£183.46</td>
<td></td>
</tr>
<tr>
<td>Based on:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days on heparin</td>
<td>8.6</td>
<td>Boccalon et al.88</td>
</tr>
<tr>
<td>Unit cost per dose of low-molecular-weight heparin</td>
<td>£11.10</td>
<td>BNF67</td>
</tr>
<tr>
<td>Number of anticoagulant clinic reviews</td>
<td>4</td>
<td>Goodacre et al.59</td>
</tr>
<tr>
<td>Unit cost per anticoagulant clinic review</td>
<td>£22</td>
<td>NHS reference costs69</td>
</tr>
<tr>
<td>Cost of warfarin, first quarter</td>
<td>£538.48</td>
<td></td>
</tr>
<tr>
<td>Based on:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of warfarin treatment for one quarter</td>
<td>£4.88</td>
<td>BNF67</td>
</tr>
<tr>
<td>Number of nursing visits during treatment</td>
<td>17.2</td>
<td>Boccalon et al.88</td>
</tr>
<tr>
<td>Unit cost per nursing visit</td>
<td>£23.00</td>
<td>Curtis and Netten68</td>
</tr>
<tr>
<td>Number of GP visits during treatment</td>
<td>2</td>
<td>Goodacre et al.59</td>
</tr>
<tr>
<td>Unit cost per GP visit</td>
<td>£69.00</td>
<td>Curtis and Netten68</td>
</tr>
<tr>
<td>Cost of warfarin, subsequent quarters</td>
<td>£211.38</td>
<td></td>
</tr>
<tr>
<td>Based on:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of 90 days’ warfarin treatment</td>
<td>£4.88</td>
<td>BNF67</td>
</tr>
<tr>
<td>Number of nursing visits during treatment</td>
<td>6</td>
<td>Assumption</td>
</tr>
<tr>
<td>Unit cost per nursing visit</td>
<td>£23.00</td>
<td>Curtis and Netten68</td>
</tr>
<tr>
<td>Number of GP visits during treatment</td>
<td>1</td>
<td>Assumption</td>
</tr>
<tr>
<td>Unit cost per GP visit</td>
<td>£69.00</td>
<td>Curtis and Netten68</td>
</tr>
<tr>
<td>Implementation cost of warfarin treatment</td>
<td>£327.10</td>
<td></td>
</tr>
<tr>
<td>Ongoing cost of warfarin treatment per year</td>
<td>£847.52</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 77 Calculation of costs of treating post-thrombotic syndrome and a non-fatal intracranial haemorrhage

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Mean value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of treating post-thrombotic syndrome</td>
<td>£3284.70</td>
<td></td>
</tr>
<tr>
<td>Based on:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit cost for new vascular surgery outpatient</td>
<td>£163.62</td>
<td>NHS reference costs^69</td>
</tr>
<tr>
<td>Number of follow-up outpatient clinic reviews</td>
<td>31</td>
<td>Goodacre et al.^19</td>
</tr>
<tr>
<td>Unit cost for follow-up vascular surgery outpatient</td>
<td>£100.68</td>
<td>NHS reference costs^69</td>
</tr>
<tr>
<td>Cost of treating a non-fatal intracranial haemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial one-off cost</td>
<td>£5774.78</td>
<td></td>
</tr>
<tr>
<td>Ongoing cost per year</td>
<td>£4798.19</td>
<td></td>
</tr>
<tr>
<td>Based on:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of severe haemorrhage, first year</td>
<td>£10572.97</td>
<td>Sandercock et al.^70</td>
</tr>
<tr>
<td>Treatment of severe haemorrhage, subsequent years</td>
<td>£4798.19</td>
<td>Sandercock et al.^70</td>
</tr>
</tbody>
</table>
Appendix 6

Mean values and probability distributions for parameters used in the model
TABLE 78 Probability of events

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Mean value</th>
<th>Probability distribution</th>
<th>Parameters</th>
<th>Initial source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of recurrent VTE in men</td>
<td>0.0507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of recurrent VTE in women</td>
<td>0.0188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline risk recurrence</td>
<td>0.0324</td>
<td>Beta</td>
<td>$a = 22.36$</td>
<td>$b = 667.779$</td>
</tr>
<tr>
<td>Increase in risk recurrence in men</td>
<td>2.7</td>
<td>Log-normal</td>
<td>$m = 0.936$</td>
<td>$s = 0.340$</td>
</tr>
<tr>
<td>Risk of recurrence in first 6 months</td>
<td>0.20</td>
<td>Uniform</td>
<td>Min = 0.1</td>
<td>Max = 0.3</td>
</tr>
<tr>
<td>Proportion of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated DVTs that result in resolving DVT at next VTE</td>
<td>0.7438</td>
<td>Dirichlet</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Treated DVTs that result in PTS at next VTE</td>
<td>0.0422</td>
<td>Dirichlet</td>
<td>74.38</td>
<td>4.22</td>
</tr>
<tr>
<td>Treated DVTs that result in non-fatal PE at next VTE</td>
<td>0.1380</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated DVTs that result in fatal PE at next VTE</td>
<td>0.0760</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated DVTs that result in resolving DVT at next VTE</td>
<td>0.3939</td>
<td>Dirichlet</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Untreated DVTs that result in PTS at next VTE</td>
<td>0.2921</td>
<td>Dirichlet</td>
<td>39.39</td>
<td>29.21</td>
</tr>
<tr>
<td>Untreated DVTs that result in non-fatal PE at next VTE</td>
<td>0.1047</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated DVTs that result in fatal PE at next VTE</td>
<td>0.2093</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated PEs that result in resolving DVT at next VTE</td>
<td>0.1789</td>
<td>Dirichlet</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Treated PEs that result in PTS at next VTE</td>
<td>0.0101</td>
<td>Dirichlet</td>
<td>17.89</td>
<td>1.01</td>
</tr>
<tr>
<td>Treated PEs that result in non-fatal PE at next VTE</td>
<td>0.5470</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated PEs that result in fatal PE at next VTE</td>
<td>0.2640</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated PEs that result in resolving DVT at next VTE</td>
<td>0.0559</td>
<td>Dirichlet</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Untreated PEs that result in PTS at next VTE</td>
<td>0.0331</td>
<td>Dirichlet</td>
<td>5.59</td>
<td>3.31</td>
</tr>
<tr>
<td>Untreated PEs that result in non-fatal PE at next VTE</td>
<td>0.3037</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated PEs that result in fatal PE at next VTE</td>
<td>0.6073</td>
<td>Dirichlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description of variable</td>
<td>Mean value</td>
<td>Probability distribution</td>
<td>Parameters</td>
<td>Initial source</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Probability of haemorrhage in initial 3 months of treatment</td>
<td>0.02187</td>
<td>Normal</td>
<td>SE = 0.00145</td>
<td>Linkins et al.</td>
</tr>
<tr>
<td>Probability of haemorrhage subsequently</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of haemorrhage between the ages of 40 and 49</td>
<td>0.006</td>
<td>Exponential</td>
<td></td>
<td>Keeling</td>
</tr>
<tr>
<td>Probability of haemorrhage between the ages of 50 and 59</td>
<td>0.010</td>
<td>Exponential</td>
<td></td>
<td>Keeling</td>
</tr>
<tr>
<td>Probability of haemorrhage between the ages of 50 and 59</td>
<td>0.015</td>
<td>Exponential</td>
<td></td>
<td>Keeling</td>
</tr>
<tr>
<td>Probability of haemorrhage between the ages of 60 and 69</td>
<td>0.022</td>
<td>Exponential</td>
<td></td>
<td>Keeling</td>
</tr>
<tr>
<td>Probability of haemorrhage at age 70 and above</td>
<td>0.032</td>
<td>Exponential</td>
<td></td>
<td>Keeling</td>
</tr>
<tr>
<td>Proportion of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemorrhage in initial 3 months that are fatal</td>
<td>0.15766</td>
<td>Dirichlet</td>
<td>A B C</td>
<td>Linkins et al.</td>
</tr>
<tr>
<td>Haemorrhage in initial 3 months that are non-fatal intracranial</td>
<td>0.04148</td>
<td>Dirichlet</td>
<td>35 9.21 177.79</td>
<td>Linkins et al.</td>
</tr>
<tr>
<td>Haemorrhage in initial 3 months that are non-fatal, non-intracranial</td>
<td>0.80086</td>
<td>Dirichlet</td>
<td></td>
<td>Linkins et al.</td>
</tr>
<tr>
<td>Haemorrhage subsequently that are fatal</td>
<td>0.11364</td>
<td>Dirichlet</td>
<td>A B C</td>
<td>Linkins et al.</td>
</tr>
<tr>
<td>Haemorrhage subsequently that are non-fatal intracranial</td>
<td>0.09091</td>
<td>Dirichlet</td>
<td>5 4 35</td>
<td>Linkins et al.</td>
</tr>
<tr>
<td>Haemorrhage subsequently that are non-fatal, non-intracranial</td>
<td>0.79545</td>
<td>Dirichlet</td>
<td></td>
<td>Linkins et al.</td>
</tr>
</tbody>
</table>
TABLE 80 Costs

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Mean value</th>
<th>Probability distribution</th>
<th>Parameters</th>
<th>Initial source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs associated with warfarin therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation of warfarin therapy</td>
<td>£327.10</td>
<td>None</td>
<td></td>
<td>See Appendix 2</td>
</tr>
<tr>
<td>Maintenance of warfarin therapy (yearly)</td>
<td>£847.52</td>
<td>None</td>
<td></td>
<td>See Appendix 2</td>
</tr>
<tr>
<td>Cost of treating a further resolving deep vein thrombosis, based on:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days on heparin</td>
<td>8.6</td>
<td>Log-normal</td>
<td>$m = 2.15, s = 0.043$</td>
<td>Boccalon et al. 88</td>
</tr>
<tr>
<td>Unit cost per dose of low-molecular-weight heparin</td>
<td>£11.10</td>
<td>None</td>
<td></td>
<td>BNF67</td>
</tr>
<tr>
<td>Number of anticoagulant clinic reviews</td>
<td>4</td>
<td>None</td>
<td></td>
<td>Curtis and Netten 68</td>
</tr>
<tr>
<td>Unit cost per anticoagulant clinic review</td>
<td>£22.00</td>
<td>None</td>
<td></td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Treating post-thrombotic syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit cost of new vascular surgery outpatient appointment</td>
<td>£163.62</td>
<td>Normal</td>
<td>SEM = £5.67</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Unit cost of follow-up vascular surgery outpatient reviews</td>
<td>£100.68</td>
<td>Normal</td>
<td>SEM = £3.64</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Number of follow-up vascular surgery outpatient reviews</td>
<td>31</td>
<td>None</td>
<td></td>
<td>Goodacre et al. 59</td>
</tr>
<tr>
<td>Treating a fatal pulmonary embolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard unit cost</td>
<td>£1,692.99</td>
<td>Normal</td>
<td>SEM = £42.13</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Excess bed-day chargea</td>
<td>£192.11</td>
<td>Normal</td>
<td>SEM = £3.69</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Treating a non-fatal pulmonary embolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard unit cost</td>
<td>£1,326.05</td>
<td>Normal</td>
<td>SEM = £30.86</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Excess bed-day chargea</td>
<td>£199.35</td>
<td>Normal</td>
<td>SEM = £3.29</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Treating a fatal haemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard unit cost</td>
<td>£6,792.65</td>
<td>Normal</td>
<td>SEM = £169.82</td>
<td>Sandercock et al. 70</td>
</tr>
<tr>
<td>Treating a non-fatal intracranial haemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact cost</td>
<td>£5,774.78</td>
<td>Normal</td>
<td>SEM = £14.37</td>
<td>Sandercock et al. 70</td>
</tr>
<tr>
<td>Maintenance cost (yearly)</td>
<td>£4,798.19</td>
<td>Normal</td>
<td>SEM = £119.95</td>
<td>Sandercock et al. 70</td>
</tr>
<tr>
<td>Treating a non-fatal non-intracranial haemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard unit cost</td>
<td>£652.45</td>
<td>Normal</td>
<td>SEM = £17.37</td>
<td>NHS reference costs 69</td>
</tr>
<tr>
<td>Excess bed-day costa</td>
<td>£206.75</td>
<td>Normal</td>
<td>SEM = £3.44</td>
<td>NHS reference costs 69</td>
</tr>
</tbody>
</table>

a The excess bed-day cost is sampled and then the cost per case is determined before being added to the standard cost.
TABLE 81 Parameters associated with treatment and diagnosis

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Mean value</th>
<th>Probability distribution</th>
<th>Parameters</th>
<th>Initial source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy of warfarin</td>
<td>0.95</td>
<td>Beta</td>
<td>$a = 40.777$ $b = 2.146$</td>
<td>Kearon et al.18</td>
</tr>
<tr>
<td>Diagnosis of DVT</td>
<td>0.95</td>
<td>Uniform</td>
<td>Min = 0.93 Max = 0.97</td>
<td>Assumption</td>
</tr>
<tr>
<td>Description of variable</td>
<td>Mean value</td>
<td>Probability distribution</td>
<td>Parameters</td>
<td>Initial source</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Post VTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiving warfarin</td>
<td>0.987</td>
<td>Beta</td>
<td>(a = 22.06648); (b = 0.29064)</td>
<td>Gage et al.(^{71})</td>
</tr>
<tr>
<td>Not receiving warfarin</td>
<td>1</td>
<td>None</td>
<td></td>
<td>Assumption</td>
</tr>
<tr>
<td>Adverse events associated with VTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-thrombotic syndrome</td>
<td>0.977</td>
<td>Beta</td>
<td>(a = 232.64); (b = 5.48)</td>
<td>O’Meara et al.(^{72})</td>
</tr>
<tr>
<td>Non-fatal pulmonary embolism</td>
<td>0.94</td>
<td>Beta</td>
<td>(a = 19.43); (b = 1.24)</td>
<td>Goodacre et al.(^{59})</td>
</tr>
<tr>
<td>Severity of haemorrhage associated with warfarin treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-fatal intracranial haemorrhage</td>
<td>0.29</td>
<td>Beta</td>
<td>(a = 8.34); (b = 20.41)</td>
<td>O’Meara et al.(^{72})</td>
</tr>
<tr>
<td>Non-fatal non-intracranial haemorrhage</td>
<td>0.997</td>
<td>Uniform(^{a})</td>
<td>Min = 0.996; Max = 0.998</td>
<td>Goodacre et al.(^{59})</td>
</tr>
</tbody>
</table>

\(^{a}\) Authors’ assumption.
TABLE 83 Prevalence of thrombophilia

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Mean value</th>
<th>Probability distribution</th>
<th>Parameters</th>
<th>Initial source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor V Leiden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous</td>
<td>0.015</td>
<td>Normal</td>
<td>SD = 0.0038<sup>a</sup></td>
<td>Dickey<sup>a</sup></td>
</tr>
<tr>
<td>Heterozygous</td>
<td>0.3</td>
<td>Normal</td>
<td>SD = 0.0758<sup>b</sup></td>
<td>Franco and Reitsma<sup>b</sup></td>
</tr>
<tr>
<td>PTG20210A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterozygous</td>
<td>0.115</td>
<td>Normal</td>
<td>SD = 0.0246<sup>a</sup></td>
<td>Dickey<sup>a</sup></td>
</tr>
<tr>
<td>Lupus anticoagulant</td>
<td>0.0267</td>
<td>Normal</td>
<td>SD = 0.0132<sup>c</sup></td>
<td>Kearon et al.<sup>18</sup></td>
</tr>
<tr>
<td>Anticardiolipin antibody</td>
<td>0.0270</td>
<td>Normal</td>
<td>SD = 0.0134<sup>c</sup></td>
<td>Kearon et al.<sup>18</sup></td>
</tr>
<tr>
<td>Antithrombin, protein C or protein S deficiency</td>
<td>0.13</td>
<td>Normal</td>
<td>SD = 0.0328<sup>a</sup></td>
<td>Prandoni et al.<sup>49</sup></td>
</tr>
</tbody>
</table>

^a Assuming that the ratio between the standard deviation and the reported mean is equal to that seen in heterozygous factor V Leiden.

^b Assuming that the reported ranges were 99% confidence intervals around the mean, which is the mid-point of the range.

^c Calculated from the published data.
Health Technology Assessment reports published to date

Volume 1, 1997
No. 1
Home parenteral nutrition: a systematic review.
By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Routine preoperative testing: a systematic review of the evidence.
By Munro J, Booth A, Nicholl J.

No. 7
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 8
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 9
Consensus development methods, and their use in clinical guideline development.

No. 10

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
A review by Mowatt G, Bower DJ, Brehiner JA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998
No. 1
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 4

No. 5
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 6
Effectiveness of antibiotic prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Song F, Glenny AM.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
A review by Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
By Sculpher MJ, Petticrew M, Kelland JL, Elliott RA, Holdright DR, Buxton MJ.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
No. 15 Ethical issues in the design and conduct of randomised controlled trials.
 A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JC, Hewison J, Thornton J.

No. 16 Qualitative research methods in health technology assessment: a review of the literature.
 By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17 The costs and benefits of paramedic skills in pre-hospital trauma care.
 By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18 Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19 Systematic reviews of trials and other studies.
 By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20 Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses.

Volume 3, 1999

No. 1 Informed decision making: an annotated bibliography and systematic review.

No. 2 Handling uncertainty when performing economic evaluation of healthcare interventions.
 A review by Briggs AH, Gray AM.

No. 3 The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4 A randomised controlled trial of different approaches to universal antenatal HIV testing: uptake and acceptability. Annex: Antenatal HIV testing – assessment of a routine voluntary approach.

No. 5 Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
 By Ukoumunne OC, Gulliford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6 Assessing the costs of healthcare technologies in clinical trials.
 A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7 Co-operatives and their primary care emergency centres: organisation and impact.
 By Hallam L, Henthorne K.

No. 8 Screening for cystic fibrosis.
 A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9 A review of the use of health status measures in economic evaluation.
 By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10 Methods for the analysis of quality-of-life and survival data in health technology assessment.
 A review by Billingham LJ, Abrams KR, Jones DR.

No. 11 Antenatal and neonatal haemoglobino-pathy screening in the UK: review and economic analysis.
 By Zeuner D, Ades AE, Karon J, Brown J, Dezateux C, Anionwu EN.

No. 12 Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13 'Early warning systems' for identifying new healthcare technologies.
 By Robert G, Stevens A, Gabbay J.

No. 14 A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15 Near patient testing in diabetes clinics: appraising the costs and outcomes.
 By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16 Positron emission tomography: establishing priorities for health technology assessment.
 A review by Robert G, Milne R.

No. 17 (Pt 1) The debridement of chronic wounds: a systematic review.
 By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2) Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
 By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18 A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19 What role for statins? A review and economic model.

No. 20 Factors that limit the quality, number and progress of randomised controlled trials.
 A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kiatuka S, et al.

No. 21 Antimicrobial prophylaxis in total hip replacement: a systematic review.
 By Glenny AM, Song F.

No. 22 Health promoting schools and health promotion in schools: two systematic reviews.
 By Lister-Sharp D, Chapman S, Stewart-Brown S, Sowden A.

No. 23 Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.
Volume 4, 2000

No. 1
The estimation of marginal time preference in a UK-wide sample (TEMPUS) project.
A review by Cairns JA, van der Pol MM.

No. 2
Geriatric rehabilitation following fractures in older people: a systematic review.

No. 3
Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
By Davies SC, Cronin E, Gill M, Greengross P, Hickman M, Normand C.

No. 4
Community provision of hearing aids and related audiology services.
A review by Reeves DJ, Alborz A, Hickson FS, Bamford JM.

No. 5
False-negative results in screening programmes: systematic review of impact and implications.
By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6
Costs and benefits of community postnatal support workers: a randomised controlled trial.
By Morrell CJ, Spiby H, Stewart P, Walters S, Morgan A.

No. 7
Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8
An introduction to statistical methods for health technology assessment.
A review by White SJ, Ashby D, Brown PJ.

No. 9
Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
By Clegg A, Bryant J, Milne R.

No. 10
Publication and related biases.
A review by Song F, Eastwood AJ, Gilbody S, Daley L, Sutton AJ.

No. 11
Cost and outcome implications of the organisation of vascular services.
By Michaels J, Brazier J, Palfreyman S, Shackley P, Slack R.

No. 12
Monitoring blood glucose control in diabetes mellitus: a systematic review.
By Coster S, Guillford MC, Seed PT, Powrie JK, Swaminathan R.

No. 13
The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14
The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15
The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
A rapid review by Song F, O’Meara S, Wilson E, Goldar S, Kleijnen J.

No. 16

No. 17
A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
By Lister-Sharp D, McDonagh MS, Khan KS, Kleijnen J.

No. 18
Liquid-based cytology in cervical screening: a rapid and systematic review.
By Payne N, Chikott J, McGoogan E.

No. 19
Randomised controlled trial of non-directive counselling, cognitive–behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20
Routine referral for radiography of patients presenting with low back pain: is patients’ outcome influenced by GPs’ referral for plain radiography?
By Berry S, Hilton S, Patel S, Dundas D, Rink E, Lord J.

No. 21
Systematic review of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
By O’Meara S, Cullum N, Majid M, Sheldon T.

No. 22
Using routine data to complement and enhance the results of randomised controlled trials.
By Lewsey JD, Leyland AH, Murray GD, Boddy FA.

No. 23
Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
By Meadows C, Cummins C, Jolly K, Stevens A, Burls A, Hyde C.

No. 24
Outcome measures for adult critical care: a systematic review.
By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25
A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
By Fairbank L, O’Meara S, Rendle M, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26
Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
By Parkes J, Bryant J, Milne R.

No. 27
Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
By Bhatia P, Jordan R, Fry-Smith A, Burls A, Hyde C.

No. 28
Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29
Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
By Marks D, Wonderling D, Thorogood M, Lambert H, Humphries SE, Neil HAW.

No. 30
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
By McDonagh MS, Bachmann LM, Goldar S, Kleijnen J, ter Riet G.
No. 31 A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma. By Turner J, Nicholl J, Webber L, Cox H, Dixon S, Yates D.

No. 32 Intrathecal pumps for giving opioids in chronic pain: a systematic review. By Williams JE, Louw G, Towler T G.

No. 33 Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review. By Shepherd J, Waugh N, Hewitson P.

No. 34 A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies. By MacLehose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 36 A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression. By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37 Systematic review of treatments for atopic eczema. By Hoare C, Li Wan Po A, Williams H.

No. 38 Bayesian methods in health technology assessment: a review. By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 40 A systematic review of treatments for severe psoriasis. By Griffiths CEM, Clark CM, Chalmers R J G, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 3 Equity and the economic evaluation of healthcare. By Sassi F, Archard L, Le Grand J.

No. 4 Quality-of-life measures in chronic diseases of childhood. By Eiser C, Morse R.

No. 8 Issues in methodological research: perspectives from researchers and commissioners. By Lilford RJ, Forbes CA, Glanville JM, Eastwood AJ, Kleijnen J.

No. 9 Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy. By Cullum N, Nelson EA, Fleming K, Sheldon T.

No. 11 Effectiveness of autologous chondrobyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review. By Jobanputra P, Parry D, Fry-Smith A, Burd A.

No. 12 Statistical assessment of the learning curves of health technologies. By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 16 How to develop cost-conscious guidelines. By Eccles M, Mason J.

No. 17 The role of specialist nurses in multiple sclerosis: a rapid and systematic review. By De Broe S, Christopher F, Waugh N.

No. 19 The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review. By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 21

No. 22
The measurement and monitoring of surgical adverse events. By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23
Action research: a systematic review and guidance for assessment. By Waterman H, Tillen D, Dickson R, de Koning K.

No. 24

No. 25
A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer. By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 26

No. 27

No. 28

No. 29
Superseded by a report published in a later volume.

No. 30
The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial. By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 31

No. 32

No. 33
Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. By Brooks ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34
Depot antipsychotic medication in the treatment of patients with schizophrenia: (1) Meta-review; (2) Patient and nurse attitudes. By David AS, Adams C.

No. 35

No. 36
Cost analysis of child health surveillance. By Sanderson D, Wright D, Acton C, Durce D.

Volume 6, 2002

No. 1
A study of the methods used to select review criteria for clinical audit. By Hearshaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 2

No. 3

No. 4

No. 5

No. 6

No. 7

No. 8
Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’. By Carroll B, Ali N, Azam N.

No. 9

No. 10
A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models. By Richards RG, Sampson FC, Beard SM, Tappenden P.

No. 11
Screening for gestational diabetes: a systematic review and economic evaluation. By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 12

No. 13

No. 14
No. 15 A systematic review of the effectiveness and cost-effectiveness of metal-on-metal hip resurfacings arthroplasty for treatment of hip disease.
 By Vale L, Wyness L, McCormack K, McKenzie L, Brazzelli M, Stearns SC.

No. 16 The clinical effectiveness and cost-effectiveness of bupropion and nicotine replacement therapy for smoking cessation: a systematic review and economic evaluation.
 By Woolacott NF, Jones L, Forbes CA, Mather LC, Sowden AJ, Song FJ, et al.

No. 17 A systematic review of effectiveness and economic evaluation of new drug treatments for juvenile idiopathic arthritis: etanercept.
 By Cummins C, Connock M, Fry-Smith A, Burl A.

No. 18 Clinical effectiveness and cost-effectiveness of growth hormone in children: a systematic review and economic evaluation.

 By Bryant J, Loveman E, Chase D, Mihaylova B, Cave C, Gerard K, et al.

No. 20 Clinical medication review by a pharmacist of patients on repeat prescriptions in general practice: a randomised controlled trial.
 By Zermansky AG, Petty DR, Raynor DK, Lowe CJ, Freementle N, Vail A.

No. 21 The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation.
 By Jobanputra P, Barton P, Bryan S, Burl A.

No. 22 A systematic review and economic evaluation of computerised cognitive behaviour therapy for depression and anxiety.
 By Kaltenhauser E, Shackley P, Stevens K, Beverley C, Parry G, Chilcott J.

No. 23 A systematic review and economic evaluation of pegylated liposomal doxorubicin hydrochloride for ovarian cancer.
 By Forbes C, Wilby J, Richardson G, Sculptor M, Mather L, Reimens R.

No. 24 A systematic review of the effectiveness of interventions based on a stages-of-change approach to promote individual behaviour change.

No. 25 A systematic review update of the clinical effectiveness and cost-effectiveness of glycoprotein Iib/IIia antagonists.

No. 26 A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapy for acute ischaemic stroke in the NHS.

No. 27 A randomised controlled crossover trial of nurse practitioner versus doctor-led outpatient care in a bronchiectasis clinic.

No. 28 Clinical effectiveness and cost – consequences of selective serotonin reuptake inhibitors in the treatment of sex offenders.
 By Adi Y, Ashcroft D, Browne K, Beech A, Fry-Smith A, Hyde C.

No. 29 Treatment of established osteoporosis: a systematic review and cost-utility analysis.
 By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

No. 30 Which anaesthetic agents are cost-effective in day surgery? Literature review, national survey of practice and randomised controlled trial.

No. 31 Screening for hepatitis C among injecting drug users and in genitourinary medicine clinics: systematic reviews of effectiveness, modelling study and national survey of current practice.

No. 32 The measurement of satisfaction with healthcare: implications for practice from a systematic review of the literature.

No. 33 The effectiveness and cost-effectiveness of imatinib in chronic myeloid leukaemia: a systematic review.
 By Garside R, Round A, Dalziel K, Stein K, Royle R.

No. 34 A comparative study of hypertonic saline, daily and alternate-day rhDNase in children with cystic fibrosis.

No. 35 A systematic review of the costs and effectiveness of different models of paediatric home care.

Volume 7, 2003

No. 1 How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study.
 By Egger M, Jüni P, Bartlett C, Holenstein F, Sterne J.

No. 2 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of home versus hospital or satellite unit haemodialysis for people with end-stage renal failure.

No. 3 Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease.
 By Clark W, Raftery J, Barton P, Song F, Fry-Smith A, Burl A.

No. 4 A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus negative.

No. 5 Systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing’s sarcoma and neuroblastoma.

No. 6 The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.
No. 7
The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8
A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9
Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10
Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.

No. 11
First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
By Wald NJ, Rodreck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12
The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13
A systematic review of atypical antipsychotics in schizophrenia.

No. 14
Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15
Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16
Screening for fragile X syndrome: a literature review and modelling.
By Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A.

No. 17
Systematic review of endoscopic sinus surgery for nasal polyps.
By Dalziel K, Stein K, Round A, Garside R, Royle P.

No. 18
Towards efficient guidelines: how to monitor guideline use in primary care.
By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19
Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
By Bagnall A-M, Jones L, Richardson G, Duffy S, Riemsma R.

No. 20
Priorityisation of health technology assessment. The PATHS model: methods and case studies.
By Townsend J, Buxton M, Harper G.

No. 21

No. 22
By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23
The role of modelling in prioritising and planning clinical trials.
By Chilcott J, Brennan A, Booth A, Karnon J, Tappenden P.

No. 24
Cost–benefit evaluation of routine influenza immunisation in people 65–74 years of age.
By Allsup S, Gosney M, Haycox A, Regan M.

No. 25
The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
By Wight J, Chilcott J, Holmes M, Brewer N.

No. 26
Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27
Evaluating non-randomised intervention studies.

No. 28
A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29
The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30
The value of digital imaging in diabetic retinopathy.

No. 31
Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
By Law M, Wald N, Morris J.

No. 32
Clinical and cost-effectiveness of capetitabine and tegafur with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
By Ward S, Kaltenthaler E, Cowan J, Brewer N.

No. 33
By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.
No. 35
Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36
A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37
Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women's physical and psychological health needs.

No. 38
Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

No. 39
Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling.
By Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40
Treatments for spasticity and pain in multiple sclerosis: a systematic review.
By Beard S, Hum A, Wight J.

No. 41
The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42
The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

Volume 8, 2004

No. 1
What is the best imaging strategy for acute stroke?
By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sandercrook PAG, Dennis MS, et al.

No. 2
Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.
By Mant J, McManus RJ, Oakes RAI, Delaney BC, Barton PM, Deeks JJ, et al.

No. 3
The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4
A systematic review of the role of bisphosphonates in metastatic disease.

No. 5
Systematic review of the clinical effectiveness and cost-effectiveness of capecitabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6
Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7
Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
By Bryant J, Clegg AJ, Sidhu MK, Brodin H, Royle P, Davidson P.

No. 8
Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
By Morgan K, Dixon S, Mathers N, Thompson J, Tomeny M.

No. 9
Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
By Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ.

No. 10
A systematic review and economic evaluation of magnetic resonance cholangiopancreatography compared with diagnostic endoscopic retrograde cholangiopancreatography.

No. 11
The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis.

No. 12
By Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S.

No. 13
By Czoski-Murray C, Warren E, Chilcott J, Beverley C, Pyllaki MA, Cowan J.

No. 14
Routine examination of the newborn: the EMREN study. Evaluation of an extension of the midwife role including a randomised controlled trial of appropriately trained midwives and paediatric senior house officers.

No. 15
Involving consumers in research and development agenda setting for the NHS: developing an evidence-based approach.

No. 16
A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery.

No. 17
Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial.
By Gilbert FJ, Grant AM, Gillan MGC, Vale L, Scott NW, Campbell MK, et al.

No. 18
The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
By Clark W, Jobanputra P, Barton P, Burls A.
No. 19
A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20
Liquor-based cytology in cervical screening: an updated rapid and systematic review and economic analysis.

No. 21
Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22
Autoantibody testing in children with newly diagnosed type 1 diabetes mellitus.
By Dretzke J, Cummins C, Sandercock J, Fry-Smith A, Barrett T, Burls A.

No. 23
Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercock J, Bayliss S, Burls A.

No. 24
Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25
Development and validation of methods for assessing the quality of diagnostic accuracy studies.
By Whiting P, Rutjes AWS, Dinnes J, Reitsma JB, Bossuyt PMM, Kleijnen J.

No. 26
EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27

No. 28
By Dalziel K, Round A, Stein K, Garside R, Price A.

No. 29
VenUS I: a randomised controlled trial of two types of handage for treating venous leg ulcers.
By Iglesias C, Nelson EA, Callum NA, Torgerson DJ, on behalf of the VenUS Team.

No. 30
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31
A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.
By Claxton K, Ginnelly L, Sculpher M, Philips Z, Palmer S.

No. 32
The Social Support and Family Health Study: a randomised controlled trial and economic evaluation of two alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33
Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.
By Green JM, Hewison J, Bekker HL, Bryant, Cuckle HS.

No. 34
Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35
Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36
Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37
Rituximab (MabThera®) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38
Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation.
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpher M, et al.

No. 39
Pegylated interferon α-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40
Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpher M, et al.

No. 41
Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Griesbach I, Taylor FC, Burke M, West RR, et al.

No. 42
Involving South Asian patients in clinical trials.
By Hussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43
Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Colquitt JL, Green C, Sidhu MK, Hartwell D, Waugh N.

No. 44
Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45
Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.
Health Technology Assessment reports published to date

No. 46
Supplementation of a home-based exercise programme with a classroom-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

Volume 9, 2005

No. 1
Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castellnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrosurgical modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenefine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor P, Champs J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Derbyshire JH, et al.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhough J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQoL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinnes J, Deeks J, Kirby J, Roderick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BHE, Barton F, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and lopolenam.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kafra L, Evans A, Perez I, Knupp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Woloshynowych M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Raftery J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of adalimumab, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.
No. 23
A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma.

No. 24
An evaluation of the costs, effectiveness and quality of renal replacement therapy provision in renal satellite units in England and Wales.

No. 25
Imatinib for the treatment of patients with unresectable and/or metastatic gastrointestinal stromal tumours: systematic review and economic evaluation.

No. 26
Indirect comparisons of competing interventions.

No. 27
Cost-effectiveness of alternative strategies for the initial medical management of non-ST elevation acute coronary syndrome: systematic review and decision-analytical modelling.

No. 28
Outcomes of electrically stimulated gracilis neosaphenectomy surgery.
By Tillin T, Chambers M, Feldman R.

No. 29
The effectiveness and cost-effectiveness of pimecrolimus and tacrolimus for atopic eczema: a systematic review and economic evaluation.

No. 30
Systematic review on urine albumin testing for early detection of diabetic complications.

No. 31
Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis.
By Cochrane T, Davey RC, Matthes Edwards SM.

No. 32
Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain.

No. 33
Cost-effectiveness and safety of epidural steroids in the management of sciatica.
By Price C, Arden N, Coglan L, Rogers P.

No. 34
The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis.
By Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 35
Conceptual framework and systematic review of the effects of participants’ and professionals’ preferences in randomised controlled trials.

No. 36
The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review.
By Bryant J, Brodlin H, Loveman E, Payne E, Clegg A.

No. 37
A trial of problem-solving by community mental health nurses for anxiety, depression and life difficulties among general practice patients. The CPN-GP study.

No. 38
The causes and effects of socio-demographic exclusions from clinical trials.

No. 39
Is hydrotherapy cost-effective?
A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis.

No. 40
A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study.

No. 41
Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty and total hip arthroplasty.
By Heating JF, Grant A, Masson M, Scott NW, Forbes JF.

No. 42
Long-term outcome of cognitive behaviour therapy clinical trials in central Scotland.

No. 43
The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradyarrhythmia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation.
By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 44
Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis.

No. 45
The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.

No. 46
The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma.
By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

No. 47
Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.
No. 48 Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49 Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thromboprophylaxis.

No. 50 The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006

No. 1 The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.

No. 2 FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranwick G, Forbes J.

No. 3 The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.

No. 4 A systematic review of the effectiveness and cost-effectiveness of neurotransignalling assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5 Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.
By Dandar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR.

No. 6 Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7 The clinical effectiveness and cost-effectiveness of newer drugs for children with epilepsy. A systematic review.

No. 8 Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.
By Garside R, Pitt M, Somerville M, Stein K, Price A, Gilbert N.

No. 9 Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10 Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.
By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11 Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study.

No. 12 A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13 Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14 The cost-effectiveness of screening for oral cancer in primary care.
By Speight PM, Palmer S, Motes DR, Downer MC, Smith DH, Henriksson M, et al.

No. 17 Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.
By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 18 Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19 Cognitive behavioural therapy in addition to antispasmodic therapy for irritable bowel syndrome in primary care: randomised controlled trial.

No. 20 A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type 1.

No. 21 Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.
By Wright M, Grieve R, Roberts J, Main J, Thomas HC, on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 22 Pressure relieving support surfaces: a randomised evaluation.
No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexmethylamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29
By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30
Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31
Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32
The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33
Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35
Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36
Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37
Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O’Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 38

No. 39
The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.
By Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hillis G.

No. 40
What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 41
The clinical and cost-effectiveness of oxaliplatin and capecitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pandor A, Eggington S, Paisley S, Tappenden P, Sutcliffe P.

No. 42
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43
Telemedicine in dermatology: a randomised controlled trial.
By Bowns IR, Collins K, Walters SJ, McDonagh AJG.

No. 44

No. 45
Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46
Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47
Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48
Evaluation of the ventricular assist device programme in the UK.

No. 50 A systematic review and economic evaluation.
 By Jowett S, Frew E, Day E, et al.

Volume II, 2007

No. 1 Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2 A systematic review and economic model of the clinical effectiveness and cost-effectiveness ofdocetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3 A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4 The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
 By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.

No. 5 A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6 Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7 Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
 By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8 Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9 Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10 Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11 Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
 By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12 Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
 By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13 A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14 A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15 A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16 Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
 By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17 Screening for type 2 diabetes: literature review and economic modelling.

No. 18 The effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.

No. 19 The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.
 By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 20 A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 21 The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
 By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22 A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23 Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.
No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.
By Boyle J, McCartney E, Forbes J, O’Hare A.

No. 26
Hormonal therapies for early breast cancer: systematic review and economic evaluation.
By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.
By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.

No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population. The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.
By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

No. 35

No. 36
A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

No. 37
A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

No. 38
Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anti-coagulation therapy: a systematic review and economic modelling.

No. 39
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder.

No. 40
Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.
By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

No. 41
The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

No. 42
Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.
By Davis A, Smith P, Fergusson M, Stephens D, Gianopoulos I.

No. 43
Contamination in trials of educational interventions.

No. 44
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.
By Facey K, Bradford I, Laking G, Payne E.

No. 45
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

No. 46
Drug-eluting stents: a systematic review and economic evaluation.

No. 47
The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

No. 48
Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study.
By Campbell MK, Snowdon C, Francis D, Elbourne D, McDonald AM, Knight R, et al.
No. 20
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta, agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21
Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.

No. 22
Topical or oral ibuprofen for chronic knee pain in older people. The TOIB study.

No. 23
A prospective randomised comparison of minor surgery in primary and secondary care. The MiSTIC trial.

No. 24
A review and critical appraisal of measures of therapist–patient interactions in mental health settings.

No. 25
The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.

No. 26
A systematic review of the clinical effectiveness and cost-effectiveness and economic modelling of minimal incision total hip replacement approaches in the management of arthritic disease of the hip.

No. 27
A preliminary model-based assessment of the cost-utility of a screening programme for early age-related macular degeneration.

No. 28
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 29
Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 30
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

No. 31
Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation.

No. 32
Systematic review and economic modelling of effectiveness and cost utility of surgical treatments for men with benign prostatic enlargement.

No. 33
Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: a systematic review and economic evaluation.
By Wang D, Cummins C, Bayliss S, Sandercock J, Burls A.

No. 34
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 35
Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 36
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

Volume 13, 2009
No. 1
Deferasirox for the treatment of iron overload associated with regular blood transfusions (transfusional haemosiderosis) in patients suffering with chronic anaemia: a systematic review and economic evaluation.
Health Technology Assessment Programme

Director,
Professor Tom Walley,
Director, NIHR HTA
Programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Prioritisation Strategy Group

Chair,
Professor Tom Walley,
Director, NIHR HTA
Programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Dr Bob Coates,
Consultant Advisor, NCCHTA

Dr Andrew Cook,
Consultant Advisor, NCCHTA

Dr Peter Davidson,
Director of Science Support, NCCHTA

Professor Robin E Fennel,
Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions,
City Hospital NHS Trust,
Birmingham

Professor Paul Glaznov,
Professor of Evidence-Based Medicine, University of Oxford

Dr Nick Hicks,
Director of NHS Support, NCCHTA

Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London

Ms Lynn Kertridge,
Chief Executive Officer, NETSCC and NCCHTA

Dr Ruairidh Mhne,
Director of Strategy and Development, NETSCC

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Dr Pamela Young,
Specialist Programme Manager, NCCHTA

HTA Commissioning Board

Programme Director,
Professor Tom Walley,
Director, NIHR HTA
Programme, Professor of Clinical Pharmacology,
University of Liverpool

Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Deputy Chair,
Dr Andrew Farmer,
Senior Lecturer in General Practice, Department of Primary Health Care,
University of Oxford

Professor Ann Ashburn,
Professor of Rehabilitation and Head of Research,
Southampton General Hospital

Professor Deborah Ashby,
Professor of Medical Statistics, Queen Mary, University of London

Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine

Professor Peter Croft,
Director of Primary Care Sciences Research Centre, Keele University

Professor Nicky Cullum,
Director of Centre for Evidence-Based Nursing, University of York

Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol

Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London

Professor Freddie Hamdy,
Professor of Urology, University of Sheffield

Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds

Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford

Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth

Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford

Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine

Professor Mark Sculpher,
Professor of Health Economics, University of York

Professor Helen Smith,
Professor of Primary Care, University of Brighton

Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds

Professor David John Torgerson,
Director of York Trials Unit, University of York

Professor Hywel Williams,
Professor of Dermato-Epidemiology, University of Nottingham

Observers

Ms Kay Pattison,
Section Head, NHS R&D Programmes, Research and Development Directorate, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

© 2009 Queen’s Printer and Controller of HMSO. All rights reserved.
Diagnostic Technologies & Screening Panel

Members

Chair,
Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford

Dr Stephanie Dancer,
Consultant Microbiologist,
Hairmyres Hospital, East Kilbride

Dr Anne Mackie,
Director of Programmes, UK National Screening Committee

Deputy Chair,
Dr David Elliman,
Consultant Paediatrician and Honorary Senior Lecturer,
Great Ormond Street Hospital, London

Professor Glyn Eblyn,
Primary Medical Care Research Group, Swansea Clinical School, University of Wales

Dr Michael Millar,
Consultant Senior Lecturer in Microbiology, Barts and The London NHS Trust, Royal London Hospital

Members

Ms Jane Bates,
Consultant Ultrasound Practitioner, Ultrasound Consultant Ultrasound

Dr Ron Gray,
Consultant Clinical Epidemiologist, Department of Public Health, University of Oxford

Mr Stephen Pilling,
Director, Centre for Outcomes, Research & Effectiveness, Joint Director, National Collaborating Centre for Mental Health, University College London

Observers

Dr Tim Elliott,
Team Leader, Cancer Screening, Department of Health

Ms Jane Bates,
Consultant Ultrasound Practitioner, Ultrasound Department, Leeds Teaching Hospital NHS Trust

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Mrs Nicola Carey,
Senior Research Fellow, Division of Psychological Medicine and Psychiatry, King’s College London

Observers

Dr Ben Goldacre,
Research Fellow, Division of Psychological Medicine and Psychiatry, King’s College London

Dr Phil Shackley,
Senior Lecturer in Health Economics, School of Population and Health Sciences, University of Newcastle upon Tyne

Mr John Chapman,
Service User Representative, Service User Representative

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Ms Dawn Talbot,
Service User Representative, Service User Representative

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Mr Simon Reeve,
Head of Clinical and Cost-Effectiveness, Medicines, Pharmacy and Industry Group, Department of Health

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Catherine Moody,
Programme Manager, Neuroscience and Mental Health Board

Dr Ursula Wells,
Principal Research Officer, Department of Health

Pharmaceuticals Panel

Chair,
Professor Robin Ferner,
Professor in Child Health, University of Nottingham

Dr Peter Elton,
Director of Public Health, Bury Primary Care Trust

Professor Jonathan Ledermann,
Professor of Medical Oncology and Director of the Cancer Research UK and University College London Cancer Trials Centre

Deputy Chair,
Professor Imti Choonara,
Professor in Child Health, University of Nottingham

Dr Ben Goldacre,
Research Fellow, Division of Psychological Medicine and Psychiatry, King’s College London

Dr Yoon K Loke,
Senior Lecturer in Clinical Pharmacology, University of East Anglia

Mrs Barbara Greggains,
Service User Representative

Professor Femi Oyebode,
Consultant Psychiatrist and Head of Department, University of Birmingham

Observers

Dr Bill Gutteridge,
Medical Adviser, London Strategic Health Authority

Dr Andrew Prentice,
Senior Lecturer and Consultant Obstetrician and Gynaecologist, The Rosie Hospital, University of Cambridge

Mr John Chapman,
Service User Representative

Dr Dyfrig Hughes,
Reader in Pharmacoconomics and Deputy Director, Centre for Economics and Policy in Health, IMSiCaR, Bangor University

Dr Martin Shelly,
General Practitioner, Leeds, and Associate Director, NHS Clinical Governance Support Team, Leicester

Mrs Katrina Simister,
Assistant Director New Medicines, National Prescribing Centre, Liverpool

Mr David Symes,
Service User Representative

Dr Lesley Wise,
Unit Manager, Pharmacoeconomics Research Unit, VRMM, Medicines & Healthcare Products Regulatory Agency
Therapeutic Procedures Panel

Members

Chair,
Dr John C Pounsford,
Consultant Physician, North Bristol NHS Trust

Deputy Chair,
Professor Scott Weich,
Professor of Psychiatry, Division of Health in the Community, University of Warwick, Coventry

Professor Jane Barlow,
Professor of Public Health in the Early Years, Health Sciences Research Institute, Warwick Medical School, Coventry

Ms Maree Barnett,
Acting Branch Head of Vascular Programme, Department of Health

Mrs Val Carlill,
Service User Representative

Mrs Anthea De Barton-Watson,
Service User Representative

Mr Mark Emberton,
Senior Lecturer in Oncological Urology, Institute of Urology, University College Hospital, London

Professor Steve Goodacre,
Professor of Emergency Medicine, University of Sheffield

Professor Christopher Griffiths,
Professor of Primary Care, Barts and The London School of Medicine and Dentistry

Mr Paul Hilton,
Consultant Gynaecologist and Urogynaecologist, Royal Victoria Infirmary, Newcastle upon Tyne

Professor Nicholas James,
Professor of Clinical Oncology, University of Birmingham, and Consultant in Clinical Oncology, Queen Elizabeth Hospital

Dr Peter Martin,
Consultant Neurologist, Addenbrooke's Hospital, Cambridge

Dr Kate Radford,
Senior Lecturer (Research), Clinical Practice Research Unit, University of Central Lancashire, Preston

Mr Jim Reece
Service User Representative

Dr Karen Roberts,
Nurse Consultant, Dunston Hill Hospital Cottages

Observers

Dr Phillip Leech,
Principal Medical Officer for Primary Care, Department of Health

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

Professor Tom Walley,
Director, NIHR HTA Programme, Professor of Clinical Pharmacology, University of Liverpool

Dr Ursula Wells,
Principal Research Officer, Department of Health

Disease Prevention Panel

Members

Chair,
Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), London

Deputy Chair,
Dr David Pencheon,
Director, NHS Sustainable Development Unit, Cambridge

Dr Elizabeth Fellow-Smith,
Medical Director, West London Mental Health Trust, Middlesex

Dr John Jackson,
General Practitioner, Parkway Medical Centre, Newcastle upon Tyne

Professor Mike Kelly,
Director, Centre for Public Health Excellence, NICE, London

Dr Chris McCall,
General Practitioner, The Hadleigh Practice, Corfe Mullen, Dorset

Ms Jeannett Martin,
Director of Nursing, BarnDoc Limited, Lewisham Primary Care Trust

Dr Julie Mytton,
Locum Consultant in Public Health Medicine, Bristol Primary Care Trust

Miss Nicky Mullany,
Service User Representative

Professor Ian Roberts,
Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine

Professor Ken Stein,
Senior Clinical Lecturer in Public Health, University of Exeter

Dr Kieran Sweeney,
Honorary Clinical Senior Lecturer, Peninsula College of Medicine and Dentistry, Universities of Exeter and Plymouth

Professor Carol Tannahill,
Glasgow Centre for Population Health

Professor Margaret Thorogood,
Professor of Epidemiology, University of Warwick Medical School, Coventry

Observers

Ms Christine McGuire,
Research & Development, Department of Health

Dr Caroline Stone,
Programme Manager, Medical Research Council
Members

| Professor Douglas Altman, Professor of Statistics in Medicine, Centre for Statistics in Medicine, University of Oxford |
| Professor John Bond, Professor of Social Gerontology & Health Services Research, University of Newcastle upon Tyne |
| Professor Andrew Bradbury, Professor of Vascular Surgery, Solihuill Hospital, Birmingham |
| Mr Shaun Brogan, Chief Executive, Ridgeway Care & General Practice, Head of Department of Primary Care & General Practice, University of Newcastle upon Tyne |
| Mr Tracy Bury, Project Manager, World Confederation for Physical Therapy, London |
| Professor Iain T Cameron, Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton |
| Dr Christine Clarke, Medical Writer and Consultant Pharmacist, Rosendale |
| Professor Collette Clifford, Professor of Nursing and Head of Research, The Medical School, University of Birmingham |
| Professor Barry Cookson, Director, Laboratory of Hospital Infection, Public Health Laboratory Service, London |
| Dr Carl Connell, Clinical Senior Lecturer in Neurology, University of Aberdeen |
| Professor Howard Cuckle, Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds |
| Dr Katherine Darnton, Information Unit, MIND – The Mental Health Charity, London |
| Professor Carol Dezateux, Professor of Paediatric Epidemiology, Institute of Child Health, London |
| Mr John Dunning, Consultant Cardiologist, Surgeon, Papworth Hospital NHS Trust, Cambridge |
| Mr Jonathan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester |
| Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne |
| Professor Pam Enderby, Dean of Faculty of Medicine, Institute of General Practice and Primary Care, University of Sheffield |
| Professor Gene Feder, Professor of Primary Care Research & Development, Centre for Health Sciences, Barts and The London School of Medicine and Dentistry |
| Mr Leonard R Fenwick, Chief Executive, Freeman Hospital, Newcastle upon Tyne |
| Mrs Gillian Fletcher, Antenatal Teacher and Tutor and President, National Childbirth Trust, Henfield |
| Professor Jayne Franklyn, Professor of Medicine, University of Birmingham |
| Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London |
| Professor Fiona Gilbert, Consultant Radiologist and NCRN Member, University of Aberdeen |
| Professor Paul Gregg, Professor of Orthopaedic Surgical Science, South Tees Hospital NHS Trust |
| Bev Hanley, Co-director, TwoCan Associates, West Sussex |
| Dr Marvann L Hardy, Senior Lecturer, University of Bradford |
| Mrs Sharon Hart, Healthcare Management Consultant, Reading |
| Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester |
| Professor Richard Hobbs, Head of Department of Primary Care & General Practice, University of Birmingham |
| Professor Alan Horwich, Dean and Section Chairman, The Institute of Cancer Research, London |
| Professor Allen Hutchinson, Director of Public Health and Deputy Dean of SCHARR, University of Sheffield |
| Professor Peter Jones, Professor of Psychiatry, University of Cambridge, Cambridge |
| Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Royal Marsden Hospital and Institute of Cancer Research, Surrey |
| Dr Duncan Keesey, General Practitioner (Dr Burch & Pimm), The Health Centre, Thame |
| Dr Donna Lamping, Research Degrees Programme Director and Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London |
| Mr George Levy, Chief Executive, Motor Neurone Disease Association, Northampton |
| Professor James Lindesay, Professor of Psychiatry for the Elderly, University of Leicester |
| Professor Julian Little, Professor of Human Genome Epidemiology, University of Ottawa |
| Professor Alistra McGuire, Professor of Health Economics, London School of Economics |
| Professor Rajan Madhok, Medical Director and Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York |
| Professor Alexander Markham, Director, Molecular Medicine Unit, St James’s University Hospital, Leeds |
| Dr Peter Moore, Freelance Science Writer, Ashhead |
| Dr Andrew Mortimore, Public Health Director, Southampton City Primary Care Trust |
| Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton |
| Professor Miranda Mugford, Professor of Health Economics and Group Co-ordinator, University of East Anglia |
| Professor Jim Neilson, Head of School of Reproductive & Developmental Medicine and Professor of Obstetrics and Gynaecology, University of Liverpool |
| Mrs Julietta Patrick, National Co-ordinator, NHS Cancer Screening Programmes, Sheffield |
| Professor Robert Peveler, Professor of Liaison Psychiatry, Royal South Hants Hospital, Southampton |
| Professor Chris Price, Director of Clinical Research, Bayer Diagnostics Europe, Stoke Poges |
| Professor William Rosenberg, Professor of Hepatology and Consultant Physician, University of Southampton |
| Professor Peter Sandercock, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh |
| Dr Susan Schonfield, Consultant in Public Health, Hillingdon Primary Care Trust, Middlesex |
| Dr Eamonn Sheridan, Consultant in Clinical Genetics, St James’s University Hospital, Leeds |
| Dr Margaret Somerville, Director of Public Health Learning, Peninsula Medical School, University of Plymouth |
| Professor Sarah Stewart-Brown, Professor of Public Health, Division of Health in the Community, University of Warwick, Coventry |
| Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick, Coventry |
| Mrs Joan Webster, Consumer Member, Southern Derbyshire Community Health Council |
| Professor Martin Whittle, Clinical Co-director, National Co-ordinating Centre for Women’s and Children’s Health, Lymington |
Feedback

The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.