The effect of different treatment durations of clopidogrel in patients with non-ST-segment elevation acute coronary syndromes: a systematic review and value of information analysis

W Rogowski, J Burch, S Palmer, C Craigs, S Golder and N Woolacott
How to obtain copies of this and other HTA programme reports

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
Email: orders@hta.ac.uk
c/o Direct Mail Works Ltd
Tel: 02392 492 000
4 Oakwood Business Centre
Fax: 02392 478 555
Downley, HAVANT PO9 2NP, UK
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA programme and lists the membership of the various committees.
The effect of different treatment durations of clopidogrel in patients with non-ST-segment elevation acute coronary syndromes: a systematic review and value of information analysis

W Rogowski,1 J Burch,2* S Palmer,3 C Craigs,2 S Golder2 and N Woolacott2

1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Neuherberg
2Centre for Reviews and Dissemination, University of York
3Health Economics Centre for Health Economics, University of York

*Corresponding author

Declaration of competing interests: none

Published June 2009
DOI: 10.33/hta13310

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
NIHR Health Technology Assessment programme

The Health Technology Assessment (HTA) programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA programme then commissions the research by competitive tender.

Second, the HTA programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series *Health Technology Assessment*.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this issue of the journal was commissioned and funded by the HTA programme on behalf of NICE as project number 07/19/01. The protocol was agreed in April 2007. The assessment report began editorial review in May 2008 and was accepted for publication in December 2008. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA programme or the Department of Health.

Editor-in-Chief: Professor Tom Walley CBE
Series Editors: Dr Aileen Clarke, Dr Chris Hyde, Dr John Powell, Dr Rob Riemsma and Professor Ken Stein

© 2009 Queen’s Printer and Controller of HMSO
This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.
Applications for commercial reproduction should be addressed to: NETSCC, Health Technology Assessment, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.
Published by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk), on behalf of NETSCC, HTA.
Printed on acid-free paper in the UK by Henry Ling Ltd, The Dorchester Press, Dorset.
Abstract

The effect of different treatment durations of clopidogrel in patients with non-ST-segment elevation acute coronary syndromes: a systematic review and value of information analysis

W Rogowski,1 J Burch,2* S Palmer,3 C Craigs,2 S Golder2 and N Woolacott2

1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Neuherberg
2Centre for Reviews and Dissemination, University of York
3Health Economics Centre for Health Economics, University of York

*Corresponding author

Objective: To update the previous systematic review of the use of clopidogrel in combination with aspirin for patients with non-ST-elevation acute coronary syndrome (NSTE-ACS), investigating the optimal duration of treatment and effects of withdrawal from treatment.

Data sources: Ten electronic databases and internet resources were searched from 2003 to February 2007, including MEDLINE, MEDLINE In-Process, EMBASE, BIOSIS, CENTRAL and CINAHL.

Review methods: Randomised controlled trials (RCTs) of clopidogrel plus aspirin compared with aspirin alone were used to evaluate clinical effectiveness and safety. Inclusion criteria included any comparator trial for duration of treatment studies, and any study design conducted in patients with NSTE-ACS, percutaneous coronary intervention (PCI), stroke, peripheral artery disease (PAD) or ST-elevation myocardial infarction (STEMI) for evidence of rebound on withdrawal of treatment. The existing model was updated to provide a more robust approach to evaluating the cost-effectiveness of alternative durations of clopidogrel and to assess the potential value of further research using value of information approaches.

Results: Two RCTs were included for the review of clinical effectiveness and safety. The only RCTs identified that evaluated different durations of clopidogrel treatments were conducted in patients with stroke, PAD, STEMI or PCI. Two small RCTs and one uncontrolled retrospective cohort study were identified for the review of rebound after thienopyridine withdrawal in patients with medically-treated NSTE-ACS. On broadening the criteria, five RCTs, two observational cohorts, nine case series and 33 case reports were identified in patients post-PCI, and two case series and two case reports were identified in patients with stroke, PAD or STEMI. The CURE trial reported that the proportion of patients experiencing cardiovascular death, myocardial infarction or stroke was lower in the clopidogrel group at 30 days [relative risk (RR) 0.79; 95% confidence interval (CI) 0.67–0.92] and from 30 days to 12 months (RR 0.82; 95% CI 0.70–0.95). Clopidogrel seems to be effective in reducing adverse cardiovascular events in patients with NSTE-ACS at intermediate and high risk of ischaemic events, and appears to increase the risk of bleeding when compared with aspirin in patients with intermediate risk of ischaemic events. In terms of the cost-effectiveness of alternative durations of clopidogrel, the updated model reinforced the conclusions from the earlier analysis, i.e. a policy of 12 months of clopidogrel for patients with NSTE-ACS appears to be cost-effective in both ‘average’ patients and higher-risk patients. The incremental cost-effectiveness (ICER) of 12 months’ duration ranged from £13,380 to £20,661 per additional quality-adjusted life-year (QALY) across the different scenarios. For lower-risk patients, treatment beyond 3 months does not appear to be cost-effective. The ICER of 12 months’ treatment with clopidogrel varied between £49,436 and £58,691 per QALY. Estimates of expected value of perfect information (EVPI) were higher for the combined analysis and for analysis of high-risk patients alone (between £48.69 million and £108.4 million at a threshold of £30,000 per QALY). At a threshold of £20,000–£30,000 per QALY, total EVPI ranged between £3.27 million and £20.38 million in the lower-risk group.
Conclusions: The review was limited by the lack of available data. There is considerable variation in the costs of uncertainty surrounding the different scenarios and populations considered. The validity of these may also be less reliable in the higher-risk groups owing to changes in clinical practice. An adequately powered, well-conducted RCT that directly compares different durations of clopidogrel treatment in patients with NSTE-ACS would ideally be required to provide more robust evidence in relation to the impact of clopidogrel withdrawal.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Aim of the review</td>
<td>1</td>
</tr>
<tr>
<td>2 Background</td>
<td>3</td>
</tr>
<tr>
<td>Description of health problem</td>
<td>3</td>
</tr>
<tr>
<td>Current service provision</td>
<td>3</td>
</tr>
<tr>
<td>Definition of problem</td>
<td>4</td>
</tr>
<tr>
<td>3 Assessment of clinical effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>Methods for reviewing clinical effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>Results of the clinical evaluation</td>
<td>8</td>
</tr>
<tr>
<td>4 Assessment of cost-effectiveness evidence</td>
<td>19</td>
</tr>
<tr>
<td>Summary of approach</td>
<td>19</td>
</tr>
<tr>
<td>Overview of existing decision model</td>
<td>19</td>
</tr>
<tr>
<td>Review of published cost-effectiveness analyses</td>
<td>25</td>
</tr>
<tr>
<td>5 Economic model and value of information analysis</td>
<td>27</td>
</tr>
<tr>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>Methods</td>
<td>27</td>
</tr>
<tr>
<td>Assumptions and data inputs</td>
<td>29</td>
</tr>
<tr>
<td>Scenarios</td>
<td>33</td>
</tr>
<tr>
<td>Results</td>
<td>33</td>
</tr>
<tr>
<td>Conclusions</td>
<td>41</td>
</tr>
<tr>
<td>6 Discussion</td>
<td>43</td>
</tr>
<tr>
<td>Statement of principal findings</td>
<td>43</td>
</tr>
<tr>
<td>Strengths and limitations of the assessment</td>
<td>43</td>
</tr>
<tr>
<td>Uncertainties</td>
<td>45</td>
</tr>
<tr>
<td>Feasibility of further research</td>
<td>45</td>
</tr>
<tr>
<td>7 Conclusions</td>
<td>47</td>
</tr>
<tr>
<td>Implications for service provision</td>
<td>47</td>
</tr>
<tr>
<td>Recommendations for research</td>
<td>47</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>49</td>
</tr>
<tr>
<td>References</td>
<td>51</td>
</tr>
<tr>
<td>Appendix 1 Search strategy</td>
<td>57</td>
</tr>
<tr>
<td>Appendix 2 Investigation of a rebound effect following clopidogrel withdrawal: results of studies evaluating withdrawal of thienopyridine treatment in populations other than NSTE-ACS</td>
<td>65</td>
</tr>
<tr>
<td>Appendix 3 Details of clopidogrel efficacy RCTs conducted in populations other than patients with NSTE-ACS</td>
<td>71</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td>79</td>
</tr>
<tr>
<td>Health Technology Assessment programme</td>
<td>99</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>acute coronary syndrome</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>BCIS</td>
<td>British Cardiac Intervention Society</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CEAC</td>
<td>cost-effectiveness acceptability curve</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHE</td>
<td>Centre for Health Economics</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclo-oxygenase-2 (enzyme responsible for inflammation)</td>
</tr>
<tr>
<td>CRD</td>
<td>Centre for Reviews and Dissemination</td>
</tr>
<tr>
<td>CURE</td>
<td>Clopidogrel in Unstable angina to prevent Recurrent Events trial</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EVPI</td>
<td>expected value of perfect information</td>
</tr>
<tr>
<td>EVPPI</td>
<td>expected value of partial perfect information</td>
</tr>
<tr>
<td>F1+2</td>
<td>prothrombin fragment 1 + 2</td>
</tr>
<tr>
<td>HTA</td>
<td>Health Technology Assessment</td>
</tr>
<tr>
<td>ICER</td>
<td>incremental cost-effectiveness ratio</td>
</tr>
<tr>
<td>IHD</td>
<td>ischaemic heart disease</td>
</tr>
<tr>
<td>IQR</td>
<td>interquartile range</td>
</tr>
<tr>
<td>IRR</td>
<td>incidence rate ratio</td>
</tr>
<tr>
<td>ITT</td>
<td>intention to treat</td>
</tr>
<tr>
<td>MACE</td>
<td>major adverse cardiovascular event</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NHAR</td>
<td>Nottingham Heart Attack Register</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NNT</td>
<td>number needed to treat</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>NSTE-ACS</td>
<td>non-ST-elevation acute coronary syndrome</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>non-ST-elevation myocardial infarction</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>P2Y12-ADP</td>
<td>receptor on the surface of platelets inhibited by clopidogrel</td>
</tr>
<tr>
<td>PA</td>
<td>platelet aggregation</td>
</tr>
<tr>
<td>PAD</td>
<td>peripheral artery disease</td>
</tr>
<tr>
<td>PAI</td>
<td>plasminogen activator inhibitor</td>
</tr>
<tr>
<td>PCI</td>
<td>percutaneous coronary intervention</td>
</tr>
<tr>
<td>PRAIS-UK</td>
<td>Prospective Registry of Acute Ischaemic Syndromes in the UK</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>RRI</td>
<td>relative risk increase</td>
</tr>
<tr>
<td>RRR</td>
<td>relative risk reduction</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST-elevation myocardial infarction</td>
</tr>
<tr>
<td>TAT</td>
<td>thrombin–antithrombin complex</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischaemic attack</td>
</tr>
<tr>
<td>TIMI</td>
<td>thrombolysis in myocardial infarction</td>
</tr>
<tr>
<td>tPA</td>
<td>tissue-type plasminogen activator antigen</td>
</tr>
<tr>
<td>VOI</td>
<td>value of information</td>
</tr>
<tr>
<td>VWF</td>
<td>von Willebrand factor</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices, in which case the abbreviation is defined in the figure legend or in the notes at the end of the table.
Executive summary

Background

Acute coronary syndrome (ACS) is a fissuring or rupturing of atheromatous plaques leading to occlusive thrombi in the arteries. Non-ST-elevation-ACS (NSTE-ACS) can be classified as unstable angina with undetectable markers but with electrocardiogram changes, or non-ST-elevation myocardial infarction (NSTEMI) where there is evidence of myocardial necrosis. Sixteen-year survival rates for men aged 50–59 years are 34% with a history of myocardial infarction (MI) and 53% with a history of angina, compared with 72% of those with no history of coronary disease. For patients with confirmed NSTE-ACS, UK guidelines recommend early treatment with antiplatelets, which are effective in preventing ischaemic vascular events in patients at increased risk. Guidance by the National Institute for Health and Clinical Excellence (NICE) in 2004 was based in part on a Technology Assessment Report undertaken by the Centre for Reviews and Dissemination (CRD) and the Centre for Health Economics (CHE), and published as a Health Technology Assessment (HTA) report (Main et al., 2004). The report presented the results of a systematic review assessing the clinical effectiveness and cost-effectiveness of clopidogrel in combination with aspirin for people with NSTE-ACS. Only one relevant trial was identified for inclusion in the systematic review [the Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial]. For patients with NSTE-ACS at moderate to high risk of ischaemic events treated with clopidogrel, the NICE guidance recommended that it be given in combination with aspirin.

Objectives

The objective of this research project was to update the previous model, and formally assess the potential value and feasibility of further research to address the optimal duration of clopidogrel treatment using value of information (VOI) analysis and a Bayesian decision theoretic approach. In line with this we aimed to update the previous systematic review of the use of clopidogrel in combination with aspirin for patients with NSTE-ACS, investigating the optimal duration of treatment and effects of withdrawal from treatment.

Methods

We conducted a systematic review of the clinical effectiveness and cost-effectiveness literature. Ten electronic databases and internet resources were searched from 2003 to February 2007, including MEDLINE, MEDLINE In-Process, EMBASE, BIOSIS, CENTRAL and CINAHL. Randomised controlled trials (RCTs) of clopidogrel plus aspirin compared with aspirin alone were used to evaluate clinical effectiveness and safety. Inclusion criteria were broadened to include any comparator trial for duration of treatment studies, and any study design conducted in patients with NSTE-ACS, percutaneous coronary intervention (PCI), stroke, peripheral artery disease (PAD) or ST-elevation myocardial infarction (STEMI) for evidence of rebound (a reactivation of the condition or concentration of adverse events) on withdrawal of treatment. The primary outcomes for the evaluation of efficacy, safety and the duration of treatment were non-fatal MI, ischaemic heart disease (IHD) without MI, death and bleeding complications.

The systematic reviews were used to assist in updating the existing model in order to provide a more robust approach to evaluating the cost-effectiveness of alternative durations of clopidogrel. The previous work was also extended to include a formal assessment of the potential value of further research using VOI approaches. These approaches were applied to estimate the expected costs of decision uncertainty predicted by the model and the maximum value that can be placed on additional research aimed at reducing this uncertainty. The costs of decision uncertainty were quantified using the expected value of perfect information (EVPI). These were used to help identify the potential design and value of further research which could be undertaken in this area. Consideration was also given to the potential impact that the introduction of a generic version of clopidogrel may have on the VOI results.
Results

Two RCTs were included for the review of clinical effectiveness and safety. The only RCTs identified that evaluated different durations of clopidogrel treatments were conducted in patients with stroke, PAD, STEMI or PCI. Two small RCTs and one uncontrolled retrospective cohort study were identified for the review of rebound after thienopyridine withdrawal in patients with medically-treated NSTE-ACS. When the criteria were broadened, five RCTs, two observational cohorts, nine case series and 33 case reports were identified in patients post-PCI, and two case series and two case reports were identified in patients with stroke, PAD or STEMI.

The CURE trial reported that the proportion of patients experiencing cardiovascular death, MI or stroke was lower in the clopidogrel group at 30 days [relative risk (RR) 0.79; 95% confidence interval (CI) 0.67–0.92] and from 30 days to 12 months (RR 0.82; 95% CI 0.70–0.95). Overall, clopidogrel seems to be effective in reducing adverse cardiovascular events in patients with NSTE-ACS at intermediate (RR 0.86; 95% CI 0.75–0.98) and high (RR 0.77; 95% CI 0.64–0.93) risk of ischaemic events, and there is evidence that clopidogrel increases the risk of bleeding when compared with aspirin in patients with intermediate risk of ischaemic events (RR 1.44; 95% CI 1.12–1.86). A post hoc analysis indicated that the treatment effect in the first 3 months may be greater than in later periods; however, this analysis comprised non-randomised comparisons. There were no direct comparisons of the effectiveness of different durations of clopidogrel treatment in patients with NSTE-ACS. The evidence available relating to the potential rebound effect on withdrawal of clopidogrel therapy in patients with NSTE-ACS was limited and provided no conclusive evidence of its presence or absence.

In terms of the cost-effectiveness of alternative durations of clopidogrel, the updated model reinforced the conclusions from the earlier analysis. That is, a policy of 12 months of clopidogrel for patients with NSTE-ACS appears to be cost-effective both in ‘average’ patients (i.e. based on the average across all patient risks considered) and in the subgroup of higher-risk patients (presence of any of the following: age > 70, presence of ST depression or diabetes), compared with shorter-term durations. The incremental cost-effectiveness ratio (ICER) of 12 months’ duration ranged from £13,380 to £20,661 per additional quality-adjusted life-year (QALY) across the different scenarios considered. However, for lower-risk patients (absence of any of the risk factors) treatment with clopidogrel beyond 3 months does not appear to be cost-effective. The ICER of 12 months’ treatment with clopidogrel varied between £49,436 and £58,691 per QALY. These conclusions appeared robust to alternative assumptions related to whether the relative effect of clopidogrel was assumed to remain constant over time or where the treatment effect in the first 3 months was assumed to be greater than in later periods.

Estimates of EVPI were markedly higher for the combined analysis of all patients (representing an average of the risks) and for analysis of high-risk patients alone, compared with those for lower-risk patients (ranging between £48.69 million and £108.4 million at a threshold of £30,000 per QALY). It was also acknowledged that more recent changes in routine clinical practice in the UK has shifted to the extent that the CURE trial itself (or the model presented here) may no longer be considered to be representative of current practice for groups at high risk, and as such the EVPI results for this group of patients may be overstated.

At a threshold of £20,000–£30,000 per QALY, total EVPI ranged between £3.27 million and £20.38 million in the lower-risk group. Given that a trial is unlikely to be able to report until after the entry of generic clopidogrel, equivalent EVPI estimates for this scenario ranged between £10.8 million and £11.9 million. The expected value of partial perfect information (EVPP) calculations demonstrated that approximately 40–45% of this value was related to the treatment effectiveness parameters for clopidogrel (i.e. those for which an RCT would be required).

Limitations and uncertainties

Our review was limited by the lack of available data. Although one additional trial was identified that provided information on the clinical effectiveness of clopidogrel in patients with NSTE-ACS, this trial was likely to be underpowered and reported limited results. Thus the CURE trial remains the primary source of data.

No studies directly compared different durations of clopidogrel treatment, and insufficient evidence was identified to adequately assess the clinical significance of any rebound effect after withdrawal of clopidogrel in these patients. Therefore, there is
still a large degree of uncertainty surrounding both
the optimal duration of clopidogrel treatment and
the impact of withdrawal of clopidogrel treatment,
which can only be addressed by further research.

The cost-effectiveness and VOI analyses are subject
to a number of potential limitations. These relate
not only to the limitations noted above pertaining
to the clinical effectiveness data, representing
important assumptions and parameters of the
model, but also to the uncertainty surrounding
a range of other factors. Firstly, the issue of risk
stratification is clearly an important consideration.
However, it should be noted that the pragmatic
approach to risk stratification applied in the
decision model (due to limited patient numbers
and information available from the epidemiological
data used) dichotomised the population into two
separate risk categories (higher- and lower-risk
patients). This meant that consideration could not
be given to a wider categorisation (i.e. including a
third group to represent patients at intermediate
risk). Similarly, these definitions are not directly
comparable with other risk stratification
approaches that have been applied elsewhere.
Indeed, it should be recognised that the sample
of patients included in the epidemiological data
set were all hospitalised for NSTE-ACS and hence
are likely to be more representative of patients
at intermediate to high risk using conventional
classifications. Thus, the interpretation of the
results in low- and high-risk groups should be
seen in this context. Secondly, changes in routine
clinical practice (particularly for the high-risk
group) may mean that the results presented here
are more reliable for the lower-risk group. Finally,
the results of the VOI demonstrate considerable
variation in the potential value of further research.

Conclusions

• Clopidogrel combined with aspirin reduces
adverse cardiovascular events in comparison
with aspirin alone in patients with NSTE-ACS,
but may increase the risk of bleeding.

• The optimal duration of clopidogrel treatment
in patients with NSTE-ACS is uncertain and
requires further research.

• There is some evidence that a rebound
effect occurs following the withdrawal of
thienopyridine treatment, but its clinical
significance is uncertain.

• The results of the updated decision model
suggest that durations of clopidogrel treatment
beyond 3 months do not appear to be cost-
effective in patients at lower risk. However,
for an average-risk patient (and in higher-
risk patients), 12 months of treatment with
clopidogrel appear to be cost-effective.

• These conclusions appeared robust to
alternative assumptions related to whether
the treatment effect remained constant over
a 12-month period or was assumed to decline
after 3 months.

• There is considerable variation in the costs
of uncertainty surrounding the different
scenarios and populations considered. The
validity of these may also be less reliable in the
higher-risk groups owing to changes in clinical
practice. The results in the lower-risk group
suggested that the upper bound of the value
of a future trial was between £10.8 million and
£11.9 million (and of this total, approximately
40–45% related to parameters for which a
randomised design would be essential).

Recommendations
for research

An adequately powered, well-conducted RCT
that directly compares different durations of
clopidogrel treatment in patients with NSTE-ACS
would ideally be required to provide more robust
evidence in relation to the impact of clopidogrel
withdrawal. The use of an RCT would minimise
possible biases associated with establishing causality
with any potential rebound effect and providing
robust estimates of the relative effect of alternative
durations of treatment. However, the design and
cost of this trial need to be evaluated carefully in
relation to the VOI estimates reported here and
against other uses of NHS resources. In lower-risk
groups, for which shorter durations of clopidogrel
appear more cost-effective, it would seem unlikely
that an adequately powered RCT would be
considered to provide value for money owing to the
significant cost that would be required to undertake
such a study and the cost of the uncertainty that
such a trial might resolve.
Chapter 1

Aim of the review

The aim of this review was to update previous guidance and to establish the potential value and feasibility of future research into the optimal duration of clopidogrel treatment, by means of value of information analysis (VOI) and a Bayesian decision theoretic approach. Our intention was to build on the previous systematic review of the use of clopidogrel in combination with aspirin for patients with a non-ST-elevation acute coronary syndrome (NSTE-ACS). Additionally, we proposed to investigate both the optimal duration of treatment and the effects of withdrawal from treatment.
Chapter 2
Background

Description of health problem

Pathology
Ischaemic heart disease (IHD) refers to a wide range of conditions resulting from a reduced blood supply to the heart usually due to atherosclerosis, plaques and thrombosis. Acute coronary syndrome (ACS) is caused by a fissuring or rupturing of these atheromatous plaques leading to occlusive thrombi in the arteries.1 Symptoms can include chest pain and pressure, tightness, or heaviness radiating to the neck, jaw, shoulders, back or arms.2 The primary focus in this review is patients who have experienced an NSTE-ACS. NSTE-ACS can be further classified as unstable angina, characterised by undetectable markers but with electrocardiogram (ECG) changes, or non-ST-segment elevation myocardial infarction (NSTEMI); a diagnosis of NSTEMI is given only where there is evidence of myocardial necrosis.

Epidemiology and risk factors
Unstable angina and NSTEMI are major causes of morbidity and mortality worldwide.1 Data for the UK suggest that an estimated 178,500 men and 159,500 women are newly diagnosed with angina, and that 147,000 men and 121,000 women experience a myocardial infarction (MI) each year.3 The Health Survey for England (2003) reported that approximately 7.5% of men and 5% of women have experienced symptoms of a possible MI at some point in their lives.4 The prevalence of these symptoms increase with age in men, ranging from 2.3% in the 16–24 years age group to 16.4% in the 75+ years age group. The association with age was less evident in women, with prevalence ranging from 2.7% in the 25–34 years age group to 8.5% in the 75+ years age group.4 Risk also appears to vary by socioeconomic status, ethnic group and geographical area; factors associated with an increased risk of heart disease include smoking, alcohol consumption, unhealthy diet, lack of exercise and psychosocial factors, such as work-related stress and depression.3–5

The risk of death, MI or stroke for patients with ACS is considerable. Long-term prevention is important, given that after a first attack of unstable angina or NSTEMI, patients are at an increased risk of subsequent acute ischaemic events.6 Up to 20% of people die or suffer a further infarction within the first month.1 At 6 months, the estimated risk of dying is 5–8% following an episode of unstable angina and 12–15% following an acute MI.7 Looking at long-term survival, one study calculated 16-year survival rates for males aged 50–59 years to be only 34% for those with a history of MI and 53% for those with a history of angina, compared with 72% of those with no history of coronary disease.8 Patients with ACS are categorised as having high, intermediate or low risk of a further adverse event, based on their risk factors in terms of background risk (age, history of previous coronary events), current clinical presentation, electrocardiogram results and biochemical markers.9

Burden of disease
The economic burden of heart disease is high. The last 5 years have seen a 76% increase in the prescription of drugs to prevent and treat heart disease to nearly 50 million per quarter, with the cost of these drugs increasing fivefold to £529 million per quarter.10 It is estimated that heart disease cost the UK £7.06 billion in 1999 in direct and indirect costs, including informal care and loss of productivity.11

Current service provision
For patients with confirmed NSTE-ACS, UK guidelines recommend early treatment with antiplatelets,12 which have been shown to be effective in preventing ischaemic vascular events in patients at increased risk.13 They work by inhibiting platelet thrombus formation and by protecting the distal tissues through inhibiting microembolisation.12 Aspirin is the ‘gold standard’ antiplatelet therapy for the long-term treatment and prevention of ischaemic vascular events. It was the only antiplatelet drug recommended by the National Service Framework for Coronary Heart Disease in 20009 and accounts for 86% of all prescribed antiplatelet drugs.10 It prevents
platelet aggregation by deactivating the enzyme cyclo-oxygenase (COX) which, in turn, blocks the production of thromboxane A2. Newer thienopyridine derivative drugs, which include clopidogrel, ticlopidine and prasugrel, inhibit the P2Y₁₂ ADP receptor, which interferes with the function of the platelet membrane and inhibits both platelet aggregation and the release of platelet granule constituents.14 Clopidogrel is said to be six times more effective than its predecessor, ticlopidine, with fewer haematological side effects.15 Clopidogrel is the second-most commonly prescribed antiplatelet drug, accounting for nearly 10% of all antiplatelet drug prescriptions.10

Definition of problem

Guidance by the National Institute for Health and Clinical Excellence (NICE) in 2004 recommended that clopidogrel be taken in combination with aspirin in the management of NSTE-ACS for people at moderate to high risk of ischaemic events.16 This guidance was based in part on a Technology Assessment Report undertaken by the Centre for Reviews and Dissemination (CRD) and the Centre for Health Economics (CHE) in 2004 and published as a Health Technology Assessment (HTA) report.12 The report presented the results of a systematic review assessing the clinical effectiveness and cost-effectiveness of clopidogrel in combination with aspirin for people with NSTE-ACS. It also included an economic model of the cost-effectiveness of clopidogrel in combination with aspirin from a National Health Service (NHS) perspective.

Only one relevant trial was identified for inclusion in the systematic review. The Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial, was a large multicentre, randomised, double-blind, placebo-controlled trial of 12,562 patients who presented at one of 482 hospital centres in 28 countries within 24 hours of experiencing an NSTE-ACS event. The trial compared clopidogrel (300 mg initially followed by 75 mg each day) in combination with aspirin (75–325 mg/day) with aspirin alone (75–325 mg/day).17–22 The trial reported that the proportion of patients experiencing cardiovascular death, MI or stroke was greater in the aspirin-only group at 30 days (relative risk (RR) 0.79; 95% confidence interval (CI) 0.67–0.92) and from 30 days to 12 months (RR 0.82; 95% CI 0.70–0.95).18 Clopidogrel also reduced the overall incidence of Q-wave MI (RR 0.60; 95% CI 0.48–0.76).21 In terms of adverse effects, clopidogrel increased the risk of major bleeding (RR 1.38; 95% CI 1.13–1.67), but not of life-threatening bleeds.18,21 The economic model was developed to assess the short- and long-term cost-effectiveness of 12 months’ treatment with clopidogrel in addition to aspirin, compared with aspirin alone in the UK. The model estimated the short-term costs over a period of 12 months following NSTE-ACS and the long-term costs over a patient’s lifetime, conditional on surviving the first 12 months. The incremental cost-effectiveness ratio (ICER) of clopidogrel plus aspirin compared with treatment with aspirin alone was estimated to be £6078 per quality-adjusted life-year (QALY) gained. At a threshold willingness to pay of £30,000 per QALY, the probability that clopidogrel in combination with aspirin was cost-effective was 0.79. As the absolute benefit of clopidogrel, relative to standard care, appeared to decline over the course of the initial 12-month period, the incremental cost-effectiveness of providing clopidogrel for a range of durations was evaluated. In addition to the base-case analysis, which evaluated a strategy of 12 months’ treatment with clopidogrel, a series of sensitivity analysis were undertaken to explore the potential cost-effectiveness of shorter treatment durations, on the basis that cost-effectiveness may be sensitive to the absolute risk at different follow-up periods. This analysis comprised five strategies: lifetime treatment with aspirin, or clopidogrel as an adjunct to aspirin for 1 month, 3 months, 6 months or 12 months. While treatment with clopidogrel for 12 months appeared to remain cost-effective for the overall cohort, the provisional findings indicated that the shorter treatment durations may be more cost-effective in patients at lower risk at the start of treatment (defined as < 70 years of age, with an absence of ST depression and diabetes). For lower-risk patients, the ICER of providing treatment with clopidogrel for 6 months compared with only 3 months was approximately £30,786 per QALY. The ICER of providing clopidogrel for 12 months compared with only 6 months was £34,629 per QALY. These results indicated that the optimal duration of clopidogrel, based on cost-effectiveness considerations, appeared potentially sensitive to the risk stratification applied. However, the authors also concluded that these results should be seen as provisional for a number of reasons. Firstly, in the absence of appropriate RR data for these separate risk groups, and for the separate time periods, a common RR was applied throughout the model. In other words, the cost-effectiveness of alternative durations was evaluated by varying the baseline risk itself. Secondly, the effect of withdrawing
from clopidogrel treatment was not formally considered (aside from reverting back to the risk associated with standard care) and the possibility of a ‘rebound’ effect following early discontinuation of treatment with clopidogrel was not systematically evaluated.

There are a number of generic definitions of the rebound effect:

• ‘A spontaneous reaction, especially a return to a previous state or condition following removal of a stimulus or cessation of treatment’

• ‘The return of original symptoms when treatment stops’

• ‘The characteristic of a drug to produce reverse effects when the effect of the drug has passed or the patient no longer responds to it’

• ‘A reactivation of a condition or concentration of adverse events after withdrawal of a treatment’.

There is thought to be a rebound response in platelet activity with the withdrawal of aspirin, non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 inhibitors. A recent systematic review reported a statistically significant (almost twofold) increase in the incidence of major adverse cardiovascular events (MACEs) in patients with ACS or those being treated for secondary prevention of coronary artery disease who did not adhere to aspirin therapy [odds ratio (OR) 1.82; 95% CI 1.52–2.18; \(p < 0.0001 \); 3 studies]. Interestingly, the mean time from discontinuation of aspirin and the MACEs was 10.66 days (95% CI 10.25–11.07), a similar time to the half-life of platelets. One study reported significant median increases in the production of 12-\(\eta \)-hydroxy-5,8,10-heptadecatrienoic acid (which can be indicative of increased thromboxane A2) in angina patients 1 week (from 40 to 240 g/\(750 \times 10^6 \) platelets; \(p < 0.001 \)) and 2 weeks (to 390 g/\(750 \times 10^6 \) platelets) after withdrawal of aspirin. Withdrawal from aspirin has also reportedly increased the risk of stroke or transient ischaemic attack (TIA) (OR 3.4; 95% CI 1.08–10.63; \(p < 0.05 \)) and lower limb ischaemia in patients with stable peripheral artery disease (PAD).

There is some evidence from biochemical markers for rebound platelet activity after withdrawal from heparin, NSAIDs and COX-2 inhibitors. This response tended to occur within hours of discontinuing heparin, and was still evident at least 14 days after withdrawal of NSAIDs and COX-2 inhibitors.

It is unclear whether a similar rebound response occurs after clopidogrel withdrawal, and if so, what the time lapse would be from withdrawal to maximum platelet activity. The authors of the previous HTA report recommended a prospective trial that would randomise patients to various durations of clopidogrel therapy to estimate its optimum duration of use for patients with NSTE-ACS. Such a trial would also confirm the existence or not of a rebound phenomenon in patients following withdrawal of clopidogrel. However, no formal consideration was made as to the potential value and/or feasibility of conducting such a trial. The present work was undertaken, therefore, to update the previous model and to formally assess the potential value and feasibility of further research to address the optimal duration of clopidogrel treatment.
Chapter 3

Assessment of clinical effectiveness

Methods for reviewing clinical effectiveness

Search strategy

The first searches were carried out to retrieve systematic reviews, randomised controlled trials (RCTs) and economic evaluations of clopidogrel and prasugrel. A date limit of entry on to the databases of 2003 onwards was applied to the searches for clopidogrel where possible, as these searches updated a previous published systematic review. No date limits were applied to the searches for prasugrel, as this was developed more recently.

A second set of searches was carried out to retrieve papers relating to the withdrawal of clopidogrel. No language or date restrictions were applied to any of these searches. The following databases were searched; full details of all the searches are contained in Appendix 1.

Databases of systematic review

- Cochrane Database of Systematic Reviews (CDSR).
- Database of Abstracts of Reviews of Effects (DARE).
- HTA Database.

Health-related bibliographic databases

- CENTRAL.
- Cumulative Index to Nursing & Allied Health Literature (CINAHL).
- EMBASE.
- MEDLINE.
- MEDLINE In-Process & Other Non-Indexed Citations.

Databases of economic evaluations

- NHS Economic Evaluation Database (NHS EED).
- Health Economic Evaluations Database (HEED).

Shortly after the submission of this report to the HTA in December 2007, a retrospective cohort study was published; data from this study were added subsequently. The literature searches were not updated.

Inclusion and exclusion criteria

The clinical review had three main aims: to identify and update the data relating to the efficacy and safety of clopidogrel; to investigate the optimal duration of clopidogrel treatment; and to examine the evidence relating to a possible rebound effect associated with the withdrawal of clopidogrel. Inclusion criteria were developed a priori for each part of the review question.

Study designs

Only RCTs were used to evaluate the efficacy and safety of clopidogrel. When investigating the duration of treatment, this was broadened to include any comparator trial that directly compared the outcomes of patients receiving different durations of clopidogrel treatment. This criterion was broadened still further to include any study design when seeking evidence of the rebound effect, as it was assumed that much of the evidence would be presented as case studies.

Interventions and comparators

For the evaluation of efficacy, safety and duration of treatment of clopidogrel, studies had to administer the drug in combination with aspirin, reflecting its use in clinical practice in the NSTE-ACS population, and compare this with placebo combined with aspirin or aspirin alone. When evaluating the evidence for the potential rebound effect after withdrawal, studies evaluating any thienopyridine (clopidogrel, ticlopidine or prasugrel), with or without aspirin, were included.

Population

For the evaluation of efficacy, safety and duration of treatment of clopidogrel, studies had to recruit patients with NSTE-ACS, namely unstable angina or NSTEMI. Where no studies evaluating different durations of clopidogrel in the preferred population were found, the search was broadened to patients having undergone a percutaneous coronary intervention (PCI), stroke, PAD and STElevation myocardial infarction (STEMI). For the
assessment of the potential rebound effect, patients with NSTE-ACS, PCI, stroke, PAD and STEMI were eligible.

Outcomes
The primary outcomes for the evaluation of efficacy, safety and duration of treatment were non-fatal MI, IHD without MI, death and bleeding complications. Secondary outcomes included refractory ischaemia, severe ischaemia, heart failure, revascularisation, unstable angina and other vascular or adverse events. When evaluating the potential rebound effect, the main outcomes were changes in biomarkers. A conservative definition of rebound was used, i.e. platelet biomarkers returned to at least their original levels following discontinuation of treatment. The occurrence/rates of adverse events post-withdrawal were also included.

Review process
Titles and abstracts were screened by two independent reviewers for potentially relevant studies (JB and CC). Disagreements regarding which studies should be retrieved as full papers were resolved by consensus. Where resolution could not be achieved, the paper was retrieved for detailed assessment. The inclusion criteria were applied to full papers by two independent reviewers (JB and CC). Disagreements at final stage screening and data extraction were resolved by discussion, or where consensus could not be reached, by consultation with a third reviewer (NW).

Quality assessment strategy
RCTs were assessed in terms of randomisation, allocation concealment, blinding, the reporting of withdrawals, reporting of a sample size calculation and the use of an intention-to-treat (ITT) analysis. RCTs in which patients were randomised to receive different types of stent and went on to receive the same thienopyridine therapy were treated as case series and did not undergo this assessment. The quality of included RCTs was assessed by two independent reviewers (JB and CC); all disagreements were resolved by consensus.

Data analysis
Given the clinical heterogeneity in relation to the study designs, populations recruited, medication regimens prescribed and outcome measures reported, the results of the included studies are summarised in tables and discussed in a narrative.

Results of the clinical evaluation

Quantity of research available
Two RCTs, across seven publications, were included for the review of clinical effectiveness and safety. Six of these publications were related to the CURE trial. No RCTs evaluating different durations of clopidogrel treatments were identified in patients with NSTE-ACS. When the search was broadened to include patients with PCI, stroke, PAD and STEMI, four RCTs were identified, across seven publications.

The searches for evidence of rebound after thienopyridine withdrawal identified two small RCTs published in Russian and reported across three publications that assessed the changes in biomarkers following clopidogrel or ticlopidine initiation and withdrawal for patients with NSTE-ACS. An additional study, a retrospective cohort of 3137 patients, was published after completion of this report; the report has been updated to incorporate this new information. No further studies were identified in patients with medically-treated NSTE-ACS. When the criteria were broadened to include patients with PCI, stroke, PAD and STEMI, most of the retrieved data were for patients who had undergone PCI. Of these: five RCTs, two observational cohorts, nine case series, and 35 case reports across 17 publications investigated clopidogrel and ticlopidine therapy. Only two case series and two case reports in a single publication were identified for patients who had not undergone PCI.

Quality of research available

Table 1 shows the results for each criterion of the assessment of the quality for each included RCT. Two RCTs were included in the efficacy and safety section. The CURE trial was a good-quality RCT, failing only on the criterion relating to the reporting of withdrawals; there was some indication from the publications that withdrawals did occur during the course of the trial. The second RCT did not blind patients or carers, but did report an appropriate method of randomisation and blinding of outcome assessors.
TABLE 1 Results of quality assessment of included RCTs; each criterion was described as ‘Yes’ (reported and considered adequate), ‘No’ (reported but considered inadequate) or ‘Unclear’ (not reported or not used)

<table>
<thead>
<tr>
<th>Study</th>
<th>Efficacy and safety</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Patients blinded</th>
<th>Care givers blinded</th>
<th>Outcome assessors blinded</th>
<th>Sample size calculation</th>
<th>ITT analysis used</th>
<th>Withdrawals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURE trial [2]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yavuranakis (2006)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Vavuranakis (2006)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duration of clopidogrel treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akbulut (2004)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bernardi (2007)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pekdemir (2003)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CREDO trial (2002)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rebound</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Berger (1999)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bottani-Zocca (2006)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Jürgens (2004)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mueller (2003)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Slavina (2003/2005)</td>
<td>Yes</td>
<td>Published in Russian</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ITT, intention-to-treat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2009 Queen’s Printer and Controller of HMSO. All rights reserved.
The quality of the RCTs included in the duration section of the review was variable, with one good-quality RCT being the only study to have reported adequate allocation concealment and blinding of patients.43–45

The quality of the RCTs included in the rebound section of the review was mainly low. The one RCT that appeared to be of good quality did not report the method of randomisation used.53 The largest and most directly relevant study was a retrospective uncontrolled cohort study.38 It utilised data from all eligible patients over an 18-month period, but the cohort was obtained from Veterans Affairs hospital discharges, consisting predominantly of male veterans (99%; mean age 66 years). Data were abstracted from electronic and paper medical records using standardised forms and then entered into a database. The duration of clopidogrel use was calculated from the day of discharge to the final day supplied at the last refill date. Data on adherence to statins were used as a surrogate for adherence to clopidogrel treatment. The remaining studies included in the rebound section were primarily case series and case reports.

Assessment of the clinical evidence

Effectiveness and safety

Two RCTs evaluated the effectiveness of clopidogrel in patients with NSTE-ACS: the CURE trial,17–22 and a trial by Vavuranakis et al. (2006).39

The CURE trial

The CURE trial,17–22 is discussed extensively in the previous HTA report.12 Briefly, the CURE trial was a multicentre, double-blinded RCT that recruited 12,562 patients who presented within 24 hours of experiencing an NSTE-ACS event. The trial compared clopidogrel (300 mg initially followed by 75 mg daily) in combination with aspirin (75–325 mg/day), with placebo plus aspirin (75–325 mg/day). The dose of aspirin prescribed was < 100 mg in 42%, 101–199 mg in 25% and > 200 mg in 33% of patients.17 Table 2 provides an overview of the published outcomes for the CURE trial. The CURE trial reported that the proportion of patients experiencing cardiovascular death, MI or stroke was greater in the aspirin-only group at 30 days (RR 0.79; 95% CI 0.67–0.92) and from 30 days to 12 months (RR 0.82; 95% CI 0.70–0.95).

In summary, the previous HTA report concluded that the results of the CURE trial indicate that clopidogrel in combination with aspirin was significantly more effective than placebo combined with aspirin, and this benefit was related largely to a reduction in Q-wave MI. The risk of cardiovascular death, non-fatal MI or stroke was reduced with up to 3 months of clopidogrel treatment, with a further small benefit over the remaining 9 months of chronic treatment. There was no statistically significant benefit in relation to mortality.

A further analysis of the originally reported CURE data was presented in the recent Scottish Intercollegiate Guidelines Network (SIGN) guidelines (No. 93).85 The results are presented in Table 3, along with 95% CIs calculated by the review team. These results indicate that the event rate is statistically significantly lower in the clopidogrel group compared with the placebo group for the periods 0–1 month, 1–3 months and 0–12 months, but not for the periods 3–6 months, 6–9 months and 9–12 months. It should be noted that this was a post hoc, exploratory analysis and comprises non-randomised comparisons. Patients were randomised to treatment at time 0, but not at the start of later time periods; differential selection pressures may well have acted upon the treatment groups so that they were not comparable at 1, 3, 6 or 9 months.

Results of the CURE trial, stratified by the thrombolysis in myocardial infarction (TIMI) risk score, have been published.19,86 Patients were categorised as low risk (score of 0–2), intermediate risk (score of 3–4) or high risk (score of 5–7); results reported are shown in Table 4 (with RRs and 95% CIs for the composite outcome cardiovascular death, MI or stroke calculated by the reviewers using the reported rates of events and total number of patients).19 The results show that there was still a significant reduction in the risk of the composite outcome cardiovascular death, MI or stroke in patients with an intermediate risk of ACS, but a significant increase in the risk of major bleeding.19

Vavuranakis et al. (2006)39

The second RCT, conducted by Vavuranakis et al.39 was not available for the previous HTA report.12 Vavuranakis and colleagues reported changes in biomarkers, the incidence of MACEs (defined as non-fatal MI, recurrent ischaemia and cardiovascular-related death), the number of patients requiring hospitalisation for ACS and the number dying as a result of cardiovascular causes in 86 patients with NSTE-ACS. Of these, 43 patients
TABLE 2 Results available from publications relating to CURE trial (clopidogrel, \(n = 6259 \); placebo, \(n = 6303 \)).\(^{17–22}\) \(n \) (%)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Time point</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI, stroke, cardiovascular death</td>
<td>0–24 hours</td>
<td>27 (0.4)</td>
<td>34 (0.5)</td>
<td>131 (2.1)(^a)</td>
<td>158 (2.5)(^a)</td>
<td>270 (4.3)</td>
<td>343 (5.4)</td>
<td>326 (5.2)(^a)</td>
<td>397 (6.3)(^a)</td>
<td>582 (9.3)</td>
<td>719 (11.4)</td>
</tr>
<tr>
<td>MI, stroke, cardiovascular death, refractory ischaemia</td>
<td>0–7 days</td>
<td>53 (0.9)</td>
<td>70 (1.1)</td>
<td>219 (3.5)(^a)</td>
<td>265 (4.2)(^a)</td>
<td>480 (7.7)</td>
<td>580 (9.2)</td>
<td>601 (9.6)(^a)</td>
<td>668 (10.6)(^a)</td>
<td>1035 (16.5)</td>
<td>1187 (18.8)</td>
</tr>
<tr>
<td>MI, stroke, cardiovascular death, severe ischaemia</td>
<td>0–30 days</td>
<td>89 (1.4)</td>
<td>135 (2.1)</td>
<td>325 (5.2)(^a)</td>
<td>422 (6.7)(^a)</td>
<td>602 (9.6)</td>
<td>740 (11.7)</td>
<td>–</td>
<td>–</td>
<td>324 (5.2)</td>
<td>419 (6.6)</td>
</tr>
<tr>
<td>MI: fatal/non-fatal unspecified</td>
<td>31 days to 1 year</td>
<td>–</td>
</tr>
<tr>
<td>Refractory ischaemia</td>
<td>0 days to 1 year</td>
<td>1035 (16.5)</td>
<td>1187 (18.8)</td>
<td>232 (3.7)(^a)</td>
<td>271 (4.3)(^a)</td>
<td>232 (3.7)(^a)</td>
<td>340 (5.4)(^a)</td>
<td>544 (8.7)</td>
<td>587 (9.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe ischaemia</td>
<td>31 days to 1 year</td>
<td>89 (1.4)</td>
<td>135 (2.1)</td>
<td>325 (5.2)(^a)</td>
<td>422 (6.7)(^a)</td>
<td>602 (9.6)</td>
<td>740 (11.7)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Unstable angina: rehospitalisation</td>
<td>0 days to 1 year</td>
<td>89 (1.4)</td>
<td>135 (2.1)</td>
<td>325 (5.2)(^a)</td>
<td>422 (6.7)(^a)</td>
<td>602 (9.6)</td>
<td>740 (11.7)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stroke: fatal/non-fatal unspecified</td>
<td>0 days to 1 year</td>
<td>89 (1.4)</td>
<td>135 (2.1)</td>
<td>325 (5.2)(^a)</td>
<td>422 (6.7)(^a)</td>
<td>602 (9.6)</td>
<td>740 (11.7)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mortality: cardiovascular</td>
<td>0 days to 1 year</td>
<td>89 (1.4)</td>
<td>135 (2.1)</td>
<td>325 (5.2)(^a)</td>
<td>422 (6.7)(^a)</td>
<td>602 (9.6)</td>
<td>740 (11.7)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mortality: non-cardiovascular</td>
<td>0 days to 1 year</td>
<td>89 (1.4)</td>
<td>135 (2.1)</td>
<td>325 (5.2)(^a)</td>
<td>422 (6.7)(^a)</td>
<td>602 (9.6)</td>
<td>740 (11.7)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bleeding: life threatening</td>
<td>0 days to 1 year</td>
<td>30 (0.5)(^a)</td>
<td>28 (0.4)(^a)</td>
<td>80 (1.3)(^a)</td>
<td>61 (1.0)(^a)</td>
<td>57 (0.9)(^a)</td>
<td>52 (0.8)(^a)</td>
<td>135 (2.2)</td>
<td>112 (1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding: major</td>
<td>31 days to 1 year</td>
<td>5 (0.1)</td>
<td>6 (0.1)</td>
<td>54 (0.9)(^a)</td>
<td>46 (0.7)(^a)</td>
<td>126 (2.0)(^a)</td>
<td>97 (1.5)(^a)</td>
<td>110 (1.8)(^a)</td>
<td>74 (1.2)(^a)</td>
<td>231 (3.7)</td>
<td>169 (2.7)</td>
</tr>
<tr>
<td>Bleeding: causing haemorrhagic stroke</td>
<td>0 days to 1 year</td>
<td>5 (0.1)</td>
<td>6 (0.1)</td>
<td>54 (0.9)(^a)</td>
<td>46 (0.7)(^a)</td>
<td>126 (2.0)(^a)</td>
<td>97 (1.5)(^a)</td>
<td>110 (1.8)(^a)</td>
<td>74 (1.2)(^a)</td>
<td>231 (3.7)</td>
<td>169 (2.7)</td>
</tr>
<tr>
<td>Bleeding: requiring inotropics</td>
<td>0 days to 1 year</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued
TABLE 2 Results available from publications relating to CURE trial (clopidogrel, n = 6259; placebo, n = 6303).17–22 n (%) (continued)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Time point</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
<th>Clopidogrel</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–24 hours</td>
<td></td>
</tr>
<tr>
<td>Bleeding: requiring transfusion ≥ 2 units</td>
<td>–</td>
</tr>
<tr>
<td>Bleeding: requiring transfusion ≥ 4 units</td>
<td>–</td>
</tr>
<tr>
<td>Bleeding: major non-life threatening</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>96 (1.5)</td>
<td>57 (0.9)</td>
</tr>
<tr>
<td>Bleeding: gastrointestinal</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>83 (1.3)</td>
<td>47 (0.8)</td>
</tr>
<tr>
<td>Bleeding: retroperitoneal</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8 (0.1)</td>
<td>5 (0.1)</td>
</tr>
<tr>
<td>Bleeding: urinary</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4 (0.1)</td>
<td>5 (0.1)</td>
</tr>
<tr>
<td>Bleeding: arterial puncture</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>36 (0.5)</td>
<td>22 ()</td>
</tr>
<tr>
<td>Bleeding: surgical site</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>56 (0.9)</td>
<td>53 (0.8)</td>
</tr>
<tr>
<td>Major bleeding: TIMI</td>
<td>1 (0.1)</td>
<td>0</td>
<td>12 (0.2)a</td>
<td>11 (0.2)a</td>
<td>36 (0.6)a</td>
<td>36 (0.6)a</td>
<td>33 (0.5)a</td>
<td>37 (0.6)a</td>
<td>68 (1.1)</td>
<td>73 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Major bleeding: GUSTO</td>
<td>0</td>
<td>2 (0.05)</td>
<td>13 (0.2)a</td>
<td>13 (0.2)a</td>
<td>44 (0.7)a</td>
<td>36 (0.6)a</td>
<td>35 (0.6)a</td>
<td>35 (0.6)a</td>
<td>78 (1.3)</td>
<td>70 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>322 (5.1)</td>
<td>153 (2.4)</td>
</tr>
</tbody>
</table>

–, data not available in published reports; GUSTO, global utilisation of streptokinase and tPA for occluded coronary arteries; MI, myocardial infarction; TIMI, thrombolysis in myocardial infarction.

a Extrapolated from graph.
TABLE 3 Incidence, and absolute and relative risk reductions for composite outcome of cardiovascular death, non-fatal MI or stroke, using data from the CURE trial as reported in the SIGN guidelines\(^85\)

<table>
<thead>
<tr>
<th>Time interval, months</th>
<th>Clopidogrel, %</th>
<th>Placebo, %</th>
<th>ARR, % (95% CI)</th>
<th>RRR, % (95% CI)</th>
<th>NNT, per interval (95% CI)</th>
<th>NNT, per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>4.35</td>
<td>5.54</td>
<td>1.19 (0.43–1.95)</td>
<td>21.5 (8.39–32.76)</td>
<td>84 (51–231)</td>
<td>84</td>
</tr>
<tr>
<td>> 1–3</td>
<td>1.84</td>
<td>2.67</td>
<td>0.83 (0.30–1.37)</td>
<td>31.2 (12.47–45.88)</td>
<td>120 (73–333)</td>
<td>240</td>
</tr>
<tr>
<td>> 3–6</td>
<td>1.73</td>
<td>1.79</td>
<td>0.06 (–0.42 to 0.54)</td>
<td>3.2 (–27.01 to 26.28)</td>
<td>1725 (186–(\infty))</td>
<td>5174</td>
</tr>
<tr>
<td>> 6–9</td>
<td>1.27</td>
<td>1.36</td>
<td>0.09 (–0.37 to 0.56)</td>
<td>6.9 (–32.22 to 34.50)</td>
<td>1057 (179.59–(\infty))</td>
<td>3171</td>
</tr>
<tr>
<td>> 9–12</td>
<td>1.09</td>
<td>1.28</td>
<td>0.19 (–0.32 to 0.69)</td>
<td>14.7 (–30.69 to 44.82)</td>
<td>534 (144.72–(\infty))</td>
<td>1601</td>
</tr>
<tr>
<td>0–12</td>
<td>9.30</td>
<td>11.41</td>
<td>2.11 (1.04–3.17)</td>
<td>18.5 (9.59–26.50)</td>
<td>47 (32–96)</td>
<td>508</td>
</tr>
</tbody>
</table>

ARR, absolute risk reduction; NNT, number needed to treat; RRR, relative risk reduction.

TABLE 4 Risk of cardiovascular death, MI or stroke, and bleeding, in patients stratified by risk as reported in the CURE trial\(^19\)

<table>
<thead>
<tr>
<th></th>
<th>Low risk (TIMI 0–2)</th>
<th>Intermediate risk (TIMI 3–4)</th>
<th>High risk (TIMI 5–7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clopidogrel (n = 1602)</td>
<td>Placebo (n = 1674)</td>
<td>Clopidogrel (n = 3671)</td>
</tr>
<tr>
<td>Cardiovascular death, MI or stroke</td>
<td>4.1% (p < 0.04)</td>
<td>5.4% (p < 0.03)</td>
<td>9.8% (p < 0.03)</td>
</tr>
<tr>
<td>RR</td>
<td>0.77 (95% CI 0.56–1.04) (a)</td>
<td>0.86 (95% CI 0.75–0.98) (a)</td>
<td>0.77 (95% CI 0.64, 0.93) (a)</td>
</tr>
<tr>
<td>NNT</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2.6%</td>
<td>1.9%</td>
<td>3.8%</td>
</tr>
<tr>
<td>RR</td>
<td>1.34 (95% CI 0.85–2.11)</td>
<td>1.44 (95% CI 1.12–1.86)</td>
<td>1.24 (95% CI 0.83–1.86)</td>
</tr>
<tr>
<td>(p)</td>
<td>0.21</td>
<td> </td>
<td>0.005</td>
</tr>
</tbody>
</table>

ARR, absolute risk reduction; NNT, number needed to treat; RR, relative risk; TIMI, thrombolysis in myocardial infarction.

\(a\) Calculated by the reviewers using estimated numbers of patients calculated from the rates of events and total number of patients as reported in the publication.\(^19\)

received a 300 mg loading dose of clopidogrel followed by 75 mg daily for 36 weeks plus 325 mg aspirin for 1 week followed by 100 mg aspirin. The placebo group of 43 patients received aspirin alone at the same regimen as those receiving clopidogrel. Table 5 shows the incidence of MACEs over a 1-year period and Table 6 reports the cumulative incidence; these data were extracted from the Kaplan–Meier graph presented in the published paper. Table 7 provides the number of patients requiring hospitalisation due to ACS and the number who died from cardiovascular causes; the time point at which the latter data were measured is uncertain.\(^39\) This trial showed that treatment with clopidogrel reduced the incidence of MACEs and the proportion of patients requiring hospital admission for ACS over the 12-month period. Using data extracted, the RR for MACEs was 0.56 (95% CI 0.28–1.13) and the relative risk reduction (RRR) was 44% (95% CI –13.13 to 72.03); the RR for requiring hospitalisation was 0.67 (95% CI 0.37–1.21) and the RRR was 33% (95% CI –20.96–63.26). None of these results were statistically significant, possibly indicating that the study was underpowered. The hazard ratio calculated from the Kaplan–Meier graph is 0.79 (95% CI 0.31–2.04).

Duration of clopidogrel therapy

No studies that directly compared the effect of different durations of clopidogrel therapy for patients with NSTE-ACS were identified. Yusuf *et al.*\(^18\) used the results from the CURE trial to assess the early and late effects of clopidogrel use. Results from Yusuf *et al.* were reported in the original HTA report,\(^12\) but do not compare different durations of clopidogrel use.
TABLE 5 Number of patients experiencing a MACE over a 12-month period (n = 43 per treatment arm) (extrapolated from a Kaplan–Meier graph)39

<table>
<thead>
<tr>
<th>Time point</th>
<th>Clopidogrel</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3 months</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5 months</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6 months</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.5 months</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8 months</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9 months</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11 months</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12 months</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 6 Cumulative number of patients (%) experiencing a MACE over a 12-month period (extrapolated from a Kaplan–Meier graph)39

<table>
<thead>
<tr>
<th>Time point</th>
<th>Clopidogrel</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>1 (2.3)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>3 months</td>
<td>1 (2.3)</td>
<td>2 (4.7)</td>
</tr>
<tr>
<td>5 months</td>
<td>1 (2.3)</td>
<td>4 (9.3)</td>
</tr>
<tr>
<td>6 months</td>
<td>2 (4.7)</td>
<td>7 (16.3)</td>
</tr>
<tr>
<td>7.5 months</td>
<td>4 (9.3)</td>
<td>8 (18.6)</td>
</tr>
<tr>
<td>8 months</td>
<td>8 (18.6)</td>
<td>10 (23.3)</td>
</tr>
<tr>
<td>9 months</td>
<td>8 (18.6)</td>
<td>13 (30.2)</td>
</tr>
<tr>
<td>11 months</td>
<td>9 (20.9)</td>
<td>16 (37.2)</td>
</tr>
</tbody>
</table>

TABLE 7 Number (%) of patients requiring hospitalisation for ACS or who died from cardiovascular causes (time point unclear)39

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Clopidogrel</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requiring hospitalisation</td>
<td>12 (28)</td>
<td>18 (42)</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td>1 (2)</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

When the inclusion criteria were widened to include participants with STEMI, PAD, stroke and PCI, four RCTs across six publications were identified (Table 8).40–45 These RCTs compared the effect of different durations of clopidogrel therapy following PCI with three studies comparing 1 month with 6 months of therapy, and one study comparing 1 month with 12 months of therapy. Two of these studies42,43-45 reported statistically significant reductions in ischaemic events for participants taking clopidogrel for longer periods following PCI, and a third43 reported significantly fewer incidents of restenosis and the need for revascularisation with longer durations of clopidogrel treatment. These studies indicate that a longer duration of antiplatelet therapy may be beneficial in patients after stent implantation. The fourth study40 reported no significant differences between 1 and 6 months of clopidogrel therapy post-stent implantation.

Rebound in patients with NSTE-ACS

Two small RCTs reported across three publications47–49 assessed the changes in biomarkers following clopidogrel or ticlopidine initiation and withdrawal for patients with NSTE-ACS. Patients were prescribed clopidogrel 300 mg on day 1 then 75 mg a day for a further 6 days (n = 10), or ticlopidine 500 mg twice daily for 2 days then 250 mg twice daily for a further 5 days (n = 19). These groups were compared with patients who were not prescribed clopidogrel (n = 9) or ticlopidine (n = 18). To investigate the potential for rebound, only data from the treatment arms were extracted. Adenosine diphosphate (ADP)-induced platelet aggregation (PA), spontaneous PA, prothrombin fragment 1 + 2 (F1 + 2), thrombin–antithrombin complex (TAT), von Willebrand factor (VWF), fibrinogen, tissue-type plasminogen activator antigen (tPA), plasminogen activator inhibitor (PAI) activity, D-dimer, and platelet count (Table 9) were measured at baseline, 7 days and 14 days (1 week after withdrawal).

The trial reported no significant difference in results between the three time points and does not provide any evidence in support of rebound effects following clopidogrel withdrawal.47–49 However, this was a very small trial with only 10 patients taking...
TABLE 8 Number of patients experiencing adverse cardiovascular events, mortality or revascularisation post-PCI (p-value where statistical significance was reported)

|------------------------------|-----------------|----------------|-----------------|-------------
| Clopidogrel dose | 300 mg loading dose; 75 mg daily | 75 mg starting at least 3 days before procedure | 300 mg loading dose; appears to be 75 mg daily | 300 mg loading dose; 75 mg daily |
| Duration of treatment | 1 month (n = 140); 6 months (n = 138) | 4 weeks (n = 39); 24 weeks (n = 39) | 30 days (n = 502); 180 days (n = 502) | 4 weeks (n = 1053); 12 months (n = 1063) |
| Follow-up | 6 months | 24 weeks | 180 days | 1 year |
| All-cause death | 2 vs 1 | Not reported | 12 vs 4 (p < 0.05) | 24 vs 18 |
| Cardiovascular death | Not reported | 3 vs 3 | 13 vs 7 | 90 vs 70 |
| MI | Not reported | 3 vs 1 | 8 vs 4 | Not reported |
| Stroke | Not reported | 0 vs 0 | 1 vs 0 | 12 vs 9 |
| Death, MI, stroke | Not reported | Not reported | 23 vs 8 (p < 0.05) | 122 vs 89 (p < 0.05) |
| Revascularisation | 16 vs 17 | 4 vs 1 (p < 0.05) | 26 vs 18 | 223 vs 225 |
| MACE | 18 vs 19 | Not reported | 40 vs 25 | Not reported |
| Stent occlusion | 8 vs 5 | Not reported | Not reported | Not reported |
| Restenosis | 29 vs 33 | 4 vs 2 (p < 0.05) | Not reported | Not reported |

MACE, major adverse cardiovascular event; MI, myocardial infarction.

TABLE 9 Study assessing biomarkers following discontinuation of clopidogrel and ticlopidine [mean (SD)]

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Clopidogrel</th>
<th>Baseline</th>
<th>7 days</th>
<th>14 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels of F1+2</td>
<td>1.57 (0.4)</td>
<td>1.52 (0.47)</td>
<td>1.4 (0.32)</td>
<td></td>
</tr>
<tr>
<td>TAT (ng/ml)</td>
<td>3.19 (1.0)</td>
<td>3.18 (1.4)</td>
<td>2.89 (0.87)</td>
<td></td>
</tr>
<tr>
<td>VWF (%)</td>
<td>158 (39)</td>
<td>141 (30)</td>
<td>145 (30)</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen (g/l)</td>
<td>3.51 (0.76)</td>
<td>3.46 (0.76)</td>
<td>4.59 (1.7)</td>
<td></td>
</tr>
<tr>
<td>tPA (ng/ml)</td>
<td>15.8 (9.8)</td>
<td>26.5 (3.8)</td>
<td>24.6 (3.2)</td>
<td></td>
</tr>
<tr>
<td>PAI activity (U/l)</td>
<td>23.8 (9.1)</td>
<td>21.3 (5.5)</td>
<td>20.6 (5.1)</td>
<td></td>
</tr>
<tr>
<td>d-dimer (ng/ml)</td>
<td>761 (284)</td>
<td>970 (378)</td>
<td>806 (177)</td>
<td></td>
</tr>
<tr>
<td>Platelet count (fl)</td>
<td>Not reported</td>
<td>9.6 (not reported)</td>
<td>9.4 (not reported)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Ticlopidine</th>
<th>Baseline</th>
<th>7 days</th>
<th>14 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels of F1+2</td>
<td>1.42 (0.47)</td>
<td>1.48 (0.43)</td>
<td>1.42 (0.38)</td>
<td></td>
</tr>
<tr>
<td>TAT (ng/ml)</td>
<td>3.12 (0.8)</td>
<td>3.03 (1.0)</td>
<td>2.77 (0.92)</td>
<td></td>
</tr>
<tr>
<td>VWF (%)</td>
<td>162 (20)</td>
<td>155 (20)</td>
<td>144 (22)</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen (g/l)</td>
<td>2.94 (0.79)</td>
<td>3.44 (0.9)</td>
<td>3.16 (0.78)</td>
<td></td>
</tr>
<tr>
<td>tPA (ng/ml)</td>
<td>15.3 (5.5)</td>
<td>17.0 (5.9)</td>
<td>17.2 (4.5)</td>
<td></td>
</tr>
<tr>
<td>PAI activity (U/l)</td>
<td>20.8 (11.4)</td>
<td>13.6 (7.2)</td>
<td>10.0 (10.7)</td>
<td></td>
</tr>
<tr>
<td>d-dimer (ng/ml)</td>
<td>595 (267)</td>
<td>515 (254)</td>
<td>435 (179)</td>
<td></td>
</tr>
</tbody>
</table>

F1 + 2, prothrombin fragment 1 + 2; fl, femtolitre; PAI, plasminogen activator inhibitor; TAT, thrombin–antithrombin complex; tPA, tissue-type plasminogen activator antigen; VWF, von Willebrand factor.
clopidogrel and 19 patients taking ticlopidine. In addition, these therapies were prescribed for only 1 week, which is not comparable to the use of clopidogrel or ticlopidine in patients with NSTE-ACS in clinical practice.

A retrospective cohort of 3137 patients (1568 medical and 1569 PCI patients over an 18-month period) with acute MI, unstable angina or other evidence of ACS, who were discharged on clopidogrel therapy and did not experience an adverse event while taking clopidogrel, assessed the incidence, timing and clustering of mortality and acute MI after stopping clopidogrel treatment, and the association between the duration of clopidogrel treatment and event rates after cessation of treatment. The median duration of follow-up for the cohort of medical patients was 155 days [interquartile range (IQR) 98; 254 days]. Of the 1568 medical patients, 268 (17.1%) suffered an acute MI or died, with 163 (60.8%) of these incidents occurring within the first 90 days post-withdrawal of clopidogrel. This translates into an incidence rate per 1000 patient days of follow-up of 1.31 (95% CI 1.12–1.53) for the first 90 days, 0.69 (95% CI 0.53–0.89) for 91–180 days and 0.64 (95% CI 0.44–0.94) for 181–270 days’ follow-up. Using multivariate analysis, a significantly increased risk of adverse events was demonstrated in the 0–90 day post-withdrawal period compared with the 91–180 day period [incidence rate ratio (IRR) 1.98; 95% CI 1.46–2.69]. The finding was similar when only acute MI was considered (IRR 1.98; 95% CI 1.46–2.69). In addition, the increased risk for acute MI and all-cause mortality in the 0–90 day period was found for all durations of clopidogrel after hospital discharge: 3 months or less (IRR 2.13; 95% CI 1.36–3.24), 6 months or less (IRR 2.20; 95% CI 1.49–3.26), 9 months or less (IRR 2.00; 95% CI 1.41–2.85) or over 9 months (IRR 1.79; 95% CI 0.96–3.34).

Rebound in other patient populations
For completeness, studies of rebound with clopidogrel were sought for populations other than those with NSTE-ACS, namely patients with PAD, stroke, post-PCI and MI. A detailed summary of the findings from these studies is provided in Appendix 2. In brief, these studies provide no evidence to suggest that a rebound effect is associated with clopidogrel withdrawal. There is some indication that long-term antiplatelet therapy is required in patients fitted with a coronary stent.

Summary
Overall, there is evidence that clopidogrel is effective in reducing adverse cardiovascular events in patients with NSTE-ACS; this benefit may be most evident in the first 3 months. There is some evidence that there is an increased risk of bleeding with clopidogrel when compared with aspirin. When stratified by the TIMI risk score, patients of intermediate risk had a significant reduction in the risk of cardiovascular death, MI or stroke, but a significant increase in the risk of major bleeding.

There were no direct comparisons of the effectiveness of different durations of clopidogrel treatment in patients with NSTE-ACS. The evidence available relating to the potential rebound effect on withdrawal of clopidogrel therapy in patients with NSTE-ACS was limited: two very small RCTs provide no suggestion of rebound effects following either clopidogrel or ticlopidine withdrawal. Results from one small case series, measuring platelet biomarkers after withdrawal of clopidogrel in patients with PCI, showed significant increases in some biomarkers 1 month post-withdrawal, but that in itself is not evidence of rebound. The strongest evidence came from a retrospective cohort study indicating that the risk of acute MI or mortality was higher in the first 90 days following withdrawal of clopidogrel than in later periods. This finding held for all durations of clopidogrel therapy and for both medically-treated and PCI-treated patients.

Discussion of the clinical evaluation
Effectiveness and safety
Since the previous HTA report, only one RCT has been conducted in the patients with NSTE-ACS for whom data are available. This RCT recruited only 43 patients per treatment arm and therefore was likely to be underpowered. Furthermore, it reported a limited number of outcomes, and results were primarily extrapolated from a Kaplan–Meier graph. Data from this trial show that the rate of non-fatal MI, recurrent ischaemia and cardiovascular-related death over a 12-month period was nearly twice as high for patients on placebo (16 patients; 37.2%) as for patients on clopidogrel (9 patients; 20.9%). However, the CURE trial is still the primary source of data in the NSTE-ACS population. Results from the CURE trial show clopidogrel to be significantly more effective than placebo at reducing the risk of the composite outcome, cardiovascular death, non-fatal MI or stroke, for a treatment duration of 1 month (and possibly treatment durations of up to 3 months) and across the whole 12-month follow-up period.
Previous systematic reviews evaluating clopidogrel included trials conducted in various patient populations: patients with ischaemic stroke, MI or symptomatic atherosclerotic PAD;^87–92 stable coronary heart disease (CHD);^93 planned PCI or coronary angiogram;^43–46 documented MI, with or without ST elevation;^94 acute STEMI, left bundle branch block or ST depression;^95,96 and multiple atherothrombotic risk factors or documented coronary, cerebrovascular or symptomatic PAD disease. In our review of clopidogrel plus aspirin in NSTE-ACS, these trials did not meet our inclusion criteria, and the results of these other systematic reviews are not comparable with those of our review. Given that there are so few data to inform our review, it might be argued that a broader range of trials ought to be drawn upon. However, a comparison between these other studies and the CURE trial found that, in addition to being conducted in non-ACS populations, the trials were not comparable with the CURE trial in terms of study size, treatment regimen, time to follow-up and outcomes reported. Where similar outcomes were measured across the trials, results varied greatly in magnitude and sometimes direction of effect. This reflects the clinical heterogeneity between the trials, and demonstrates that results from these populations are not generalisable to the NSTE-ACS population. The details of these trials and their results, on which this comparison was made, are provided in Appendix 3.

Duration of treatment and rebound

There were no studies that directly compared different durations of clopidogrel treatment. There was some evidence from the CURE trial that benefits of clopidogrel treatment, such as a reduction in MI, stroke and death, may be most apparent within the first 3 months of treatment. An exhaustive search for evidence to support the suggestion that clopidogrel withdrawal is associated with a rebound effect in patients with NSTE-ACS yielded few studies. One retrospective cohort study reported an increased risk of adverse events within the first 90 days post withdrawal of clopidogrel. However, the cohort was obtained from Veterans Affairs hospital discharges, consisting predominantly of male veterans (99%; mean age 66 years), and the generalisability of these results to a wider population is uncertain. Furthermore, even if reliable, these data cannot confirm whether the risk of acute MI or mortality following clopidogrel withdrawal is higher or lower than that in patients not treated with clopidogrel. Much of the evidence available showed that, as expected, the time lag between withdrawal and increases in biomarkers reflects the lifespan of platelets, which is approximately 10 days. This would reflect the...
expected physiological process rather than any adverse effect of clopidogrel therapy.

Changes in service provision

Since the CURE trial was conducted, there has been a substantial increase in the use of PCI in the UK. This rise in PCI use over 16 years is demonstrated in *Figure 1*, constructed from data from the British Cardiac Intervention Society (BCIS) audit reports.\(^{101}\) According to the BCIS audit reports, 73,612 PCI procedures were undertaken across 91 UK centres (1216 per million) in 2006, compared with 20,511 PCI procedures across 53 UK centres in 1996 (359 per million). Of those undertaken in 2006, 94.4% involved stent placement, compared with approximately 45% in 1996.\(^{101}\) It is likely that many of the higher-risk patients included in the CURE trial would now undergo an early PCI rather than prolonged medical management or a late PCI procedure. Given this, it seems appropriate to determine the effectiveness of clopidogrel treatment in patients at intermediate risk of ACS, rather than in the entire ACS population. Results from the CURE trial show that patients with intermediate risk do benefit from clopidogrel treatment in terms of cardiovascular death, MI or stroke, but that they have an increased risk of major bleeding.\(^{19}\)

Further factors for consideration regarding future service provision are the expiry of the patent for clopidogrel in 2013, the associated availability of cheaper generic brands and the emergence of new, possibly more effective, drugs such as prasugrel. It may be argued that if clopidogrel is to be superseded by a more effective or safer drug in the near future, a trial of clopidogrel may not be advisable or cost-effective. However, if the cost of clopidogrel is likely to decrease markedly, this will make its use in both a future trial and clinical practice more cost-effective.

Conclusions

There is evidence that clopidogrel is effective in reducing adverse cardiovascular events in patients with NSTE-ACS, and that this benefit may be most evident in the first 3 months. There is insufficient evidence to determine the effectiveness of different durations of clopidogrel treatment, or the presence or absence of a rebound effect on withdrawal of clopidogrel therapy, in these patients.
Chapter 4

Assessment of cost-effectiveness evidence

Summary of approach

The search strategy outlined in Chapter 3 was used to identify published cost-effectiveness studies, in order to assist in updating an existing decision model evaluating alternative durations of clopidogrel treatment in patients with NSTE-ACS. The objective was to examine other published decision models evaluating the cost-effectiveness of clopidogrel in NSTE-ACS, with the aim of identifying alternative structural assumptions, parameter estimates and key areas of uncertainty. These studies were not subject to a formal review, but were used to inform the overall development of the existing model in relation to structural assumptions and parameter estimates. These findings were used in conjunction with the results of the clinical effectiveness review to provide a basis for updating the existing decision model and the assumptions and parameter inputs applied therein.

Overview of existing decision model

Main and colleagues developed a decision model to assess the long-term cost-effectiveness of 12 months of treatment with clopidogrel in addition to aspirin in comparison with aspirin alone in the UK NHS. This model forms the basis of the updated analyses presented in Chapter 5. The model comprised two parts: a short-term element, which relates to a period of 12 months after a patient presents with NSTE-ACS, and a long-term element which extrapolates a patient’s lifetime costs and outcomes conditional on surviving the first 12 months after the acute episode. It was developed to estimate costs from the perspective of the NHS and health outcomes in terms of QALYs. For the base-case analysis, a lifetime time horizon was used.

To avoid excessive duplication, only a brief overview of the data sources and input parameters is reported here. Full details are published elsewhere. The model is probabilistic in that all input parameters are entered as probability distributions to reflect their imprecision, and Monte Carlo simulation is used to reflect this uncertainty in the model’s results. A 2001–2 price base was used, and annual discount rates of 6% for costs and 1.5% for benefits were applied.

In the base-case analysis, two alternative strategies were considered:

• Strategy 1: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 12 months, followed by standard therapy for the remainder of a patient’s lifetime
• Strategy 2: Lifetime treatment with standard therapy (including aspirin) alone.

A range of sensitivity analyses were also undertaken to assess the robustness of the results of the base-case model to the use of alternative assumptions and parameter inputs. Two of these analyses have particular relevance to the question being addressed within this review. The first element is related to risk stratification, exploring the impact of heterogeneity in baseline event data between higher-risk (defined as the presence of one or more of the following characteristics: age 70 years or more; ST depression and diabetes) and lower-risk patients (absence of all of these). The second element considered a range of alternative strategies representing shorter durations of clopidogrel, in addition to the two main strategies included in the base-case analysis.

The following section summarises the main structural issues and assumptions related to the short- and long-term models.

Short-term model

The short-term model was developed using a decision tree and characterised the period up
to 12 months following an episode of ACS. The structure of this model is outlined in Figure 2. Baseline probabilities of death, non-fatal MI and revascularisation as well as resource use data were taken from the Prospective Registry of Acute Ischaemic Syndrome in the UK (PRAIS-UK)102. This is an observational cohort registry of 1046 patients admitted to 56 UK hospitals with ACS between 23 May 1998 and 3 February 1999. Baseline data reported in PRAIS-UK were
only reported at 6 months’ follow-up. In order to provide input parameters for the short-term model, these data were extrapolated to 12 months to reflect the follow-up period reported in the CURE trial. These data were used to represent the probabilities of these events associated with Strategy 2.

For patients who experience a non-fatal MI during the 6-month period, resource use and cost were based on costs estimated in NHS hospitals in England. In addition, the costs of adverse events related to major bleeding and stroke were incorporated into the short-term model with the respective probabilities of incurring these events taken from PRAIS-UK. The drug costs were based on undiscounted prices from the British National Formulary. Other data used to evaluate resource use were taken from the literature.

Three mutually exclusive outcomes were modelled: non-fatal MI, death (cardiovascular and non-cardiovascular) and IHD without non-fatal MI during the 12-month period. These outcomes also represented the starting health states for the long-term model. The RRs for the use of clopidogrel in addition to aspirin compared with aspirin alone were taken from the CURE trial. Separate RRs for each of the major end points in the short-term model (as well as those for the adverse events) were modelled as log-normal distributions. These RRs were applied to the baseline probabilities to estimate the respective probabilities of the outcomes (and adverse events) associated with Strategy 1 (12 months of clopidogrel treatment).

Long-term model

A long-term (extrapolation) model estimated the subsequent prognosis for patients who finished the short-term (12-month) model in one of two disease states: those having experienced a non-fatal MI and those who have not (well but with IHD and hereafter referred to as IHD). This was used to quantify the remaining quality-adjusted life expectancy and costs of patients exiting the short-term model in the two non-fatal states. It took the form of a four-state Markov process as illustrated in Figure 3.

Depending on progress through the short-term model, patients entered the long-term model in either the IHD state or the non-fatal MI state. Patients entering the IHD state could subsequently experience a non-fatal MI, in which case they moved to the non-fatal MI state for 1 year, after which they could die or move to the post-MI state. Patients experiencing any subsequent non-fatal MIs remained in the post-MI state, although the costs of such events were reflected in the model. The transitions from the IHD, non-fatal MI and post-MI states to death reflected the all-cause mortality risk (including both cardiovascular and non-cardiovascular mortality). These transitions were estimated from data on two cohorts from the Nottingham Heart Attack Register (NHAR) from 1992 (n = 979) and 1998 (n = 300).

Based on a cycle of 1 year, the annual percentage probability of non-fatal MI and death for IHD patients was estimated to be 1.8% and 7.2% respectively. The probability of death in the first year following non-fatal MI was 19%, and for subsequent years was 7%. The uncertainty associated with each transition probability was characterised by assigning a normal distribution to the (log) hazard.

Health-state costs were incorporated into the Markov model by attaching a mean annual cost to the IHD, non-fatal MI and post-MI states. An additional (one-off) transition cost was also

![FIGURE 3 Structure of the long-term model. MI, myocardial infarction.](image)
TABLE 10 Base-case estimates of mean lifetime costs and QALYs for clopidogrel (in combination with standard therapy) and standard therapy alone, together with incremental analysis

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>QALYs</th>
<th>ICER (£)</th>
<th>Probability cost-effective for maximum WTPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel –12 months</td>
<td>12,695</td>
<td>8.2795</td>
<td>6078</td>
<td>£20,000: 0.68, £30,000: 0.79, £40,000: 0.81</td>
</tr>
<tr>
<td>2: Standard therapy</td>
<td>12,225</td>
<td>8.2022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; QALYs, quality-adjusted life-years; WTP, willingness to pay.

a The probability that each strategy is more cost-effective than the others is conditional on a different maximum willingness to pay for an additional QALY.
While patients with ACS remain at continued risk of death and non-fatal MI over the 12-month period of the short-term model, the majority of these events occur early after the acute event. Evidence from observational sources indicates that the highest risk of cardiac death is at the time of presentation, and that after 2 months this risk declines to the same level as for patients with chronic stable angina. A similar decline in the risk of non-fatal cardiac events (MI, recurrent angina) has been reported after the initial hospitalisation. From an efficiency perspective, this was considered to have important implications concerning the optimal duration of treatment with clopidogrel. Treatment with clopidogrel for shorter durations was thus considered to represent relevant alternative strategies to those included in the base-case analysis.

A series of three separate strategies, representing alternative treatment durations with clopidogrel, was considered in addition to the main strategies included in the base-case analysis. The five strategies evaluated in this sensitivity analysis were as follows:

- Strategy 1: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 12 months.
- Strategy 2: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 6 months.
- Strategy 3: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 3 months.
- Strategy 4: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 1 month.
- Strategy 5: Lifetime treatment with standard therapy (including aspirin) alone.

Table 11 reports the cost-effectiveness of different durations of treatment with clopidogrel calculated in the sensitivity analysis. The use of clopidogrel over longer periods is associated with both increased costs and increased QALYs in comparison with shorter durations, such that the ICER rises as the duration of treatment with clopidogrel increases. The ICER of Strategy 4 (1 month of treatment with clopidogrel) compared with Strategy 5 (standard care alone) is £895 per QALY. The ICER of Strategy 3 compared with Strategy 4 is £5625. The ICER of Strategy 2 compared with Strategy 3 is £6951. Finally, the ICER of Strategy 1 compared with Strategy 2 is £13,988. Hence, the results of this analysis indicate that a decision concerning the optimal duration of treatment with clopidogrel is dependent upon the amount the NHS is prepared to pay per additional QALY. As the amount the NHS is prepared to pay increases, the more cost-effective treatment with clopidogrel for longer durations becomes. At a threshold of £30,000 per QALY, Strategy 1 (12 months’ duration) was cost-effective with an associated probability of 0.74, making it the optimal strategy.

The effect of patient heterogeneity using risk stratification in baseline events was investigated to explore the potential impact this had on the relative cost-effectiveness of alternative treatment durations with clopidogrel. The expected costs and QALYs and the ICER of the alternative strategies, based on this approach for the high-risk and low-risk groups, are reported in Tables 12.
TABLE 12 Estimates of mean lifetime costs and QALYs for clopidogrel (in combination with standard therapy) and standard therapy alone, together with incremental analysis (higher-risk patients)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>QALYs</th>
<th>ICER (£)</th>
<th>Probability cost-effective for maximum WTP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>£10,000</td>
<td>£30,000</td>
</tr>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>12,637</td>
<td>7.9972</td>
<td>8756</td>
<td>0.55</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>12,418</td>
<td>7.9723</td>
<td>4852</td>
<td>0.19</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>12,301</td>
<td>7.9479</td>
<td>4281</td>
<td>0.03</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>12,213</td>
<td>7.9275</td>
<td>588</td>
<td>0.15</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>12,189</td>
<td>7.8864</td>
<td></td>
<td>0.09</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; QALYs, quality-adjusted life-years; WTP, willingness to pay.

TABLE 13 Estimates of mean lifetime costs and QALYs for clopidogrel (in combination with standard therapy) and standard therapy alone, together with incremental analysis (lower-risk patients)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (£)</th>
<th>QALYs</th>
<th>ICER (£)</th>
<th>Probability cost-effective for maximum WTP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>£10,000</td>
<td>£30,000</td>
</tr>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>13,928</td>
<td>8.9964</td>
<td>34,629</td>
<td>0.01</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>13,705</td>
<td>8.9899</td>
<td>30,786</td>
<td>0.03</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>13,597</td>
<td>8.9864</td>
<td>11,816</td>
<td>0.31</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>13,528</td>
<td>8.9805</td>
<td>1732</td>
<td>0.54</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>13,506</td>
<td>8.9680</td>
<td>NA</td>
<td>0.11</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years; WTP, willingness to pay.

and 13 respectively. In both risk groups, none of the five strategies was ruled out on the grounds of dominance/extended dominance. Again, the use of clopidogrel over longer periods was associated with both increased costs and increased QALYs in comparison with shorter durations. However, the ICERs between the various strategies were markedly different among the separate risk groups.

In the high-risk group, the ICERs ranged from £588 per QALY for Strategy 4 (1 month of treatment with clopidogrel) compared with Strategy 5 (standard care alone) to a maximum of £8756 per QALY for the comparison of Strategy 1 with Strategy 2. In the low-risk group, the ICER between each strategy was considerably higher. The ICER of Strategy 4 compared with Strategy 5 was £1732. The ICER increased to £11,816 between Strategy 3 and Strategy 4. The most marked difference between the separate risk groups was seen in the ICER for continuing treatment with clopidogrel beyond 3 months. The ICER for Strategy 2 compared with Strategy 3 rose to £30,786, and the ICER for Strategy 1 compared with Strategy 2 increased to £34,629.

The differences between the high- and low-risk groups was also evident in the probability that each strategy was cost-effective at various threshold willingness-to-pay values. At £10,000 per QALY, the probability that 12 months of treatment with clopidogrel was cost-effective was 55% in the high-risk group and only 1% in the low-risk group. At £30,000 per QALY, the probabilities were 80% and 31% respectively.

While these results indicated that the optimal duration of clopidogrel appears sensitive to the risk stratification applied, the authors noted at the time that it was important to treat these results with some caution owing to the assumptions applied in the model. Two major issues were highlighted: (1) in the absence of appropriate RR data for these
separate risk groups and the separate time periods, a common RR was applied throughout the model; and (2) no systematic evaluation of the extent of any possible rebound effect due to early withdrawal from clopidogrel was undertaken. As such, the conclusions that could be drawn were considered to be tentative, and were seen primarily as generating hypotheses to be explored more robustly with a more rigorous approach or by conducting an additional trial.

Review of published cost-effectiveness analyses

The following section provides an overview of published studies on the cost-effectiveness of clopidogrel in patients with NSTE-ACS. The searches identified two economic models analysing cost per life-year gained104,105 and three additional cost–utility models.106–108 The studies were also included in a recent comprehensive pharmacoeconomic review that was identified during the search process.109

The models were reviewed in relation to the assumptions and parameter inputs applied. In particular, close attention was paid to aspects related to the assumption of a constant RR or to issues that may be related to a rebound effect.

Input parameters

All studies were consistent in the use of RRs from the CURE or the PCI–CURE trial to populate the relative treatment effects applied in the model. Similarly, all models assumed a constant relative treatment effect over time. No study was identified that assumed a rebound effect after withdrawal of clopidogrel.

Baseline risks were taken consistently from epidemiological databases specific to the countries under investigation. Costs were assessed from the perspective of a health-care payer and/or society and were obtained from the CURE study, published sources and/or expert opinion.

The three cost–utility analyses identified applied different utility values for health states which are of limited comparability. The only study consistent with the health states represented by the model developed by Main et al.12 applied differential utilities to the respective states according to the time they were experienced.106 A utility of 0.8 (95% CI 0.72–0.88) was applied for the ACS event-free, year 1 and MI, year 1 stages. For subsequent years in the ACS event-free and post-MI stages, a utility weight of 0.93 (95% CI 0.89–0.97) was applied.

Structural assumptions and results

The analyses of cost per life-year gained for both Spain104 and Sweden,105 as well as additional studies included in the pharmacoeconomic review109 based on conference abstracts, are homogeneous in approaches and assumptions. Both studies assessed a treatment duration with clopidogrel of 1 year and included health states representing ‘individuals at risk’, non-fatal MI, stroke and death. These studies concluded that, in comparison with commonly-accepted thresholds of cost-effectiveness, the addition of clopidogrel to aspirin compared with aspirin alone provided good value for money in all countries or was cost saving from a societal perspective; no estimate of cost-effectiveness exceeded a value of €11,000 per additional life-year gained.

Despite some differences in the structure and inputs of the cost–utility analyses, these studies appeared to follow similar principles to those based on cost per life-year gained. They concluded that, in comparison with commonly applied thresholds of cost-per-QALY estimates, clopidogrel provided good value for money in the base-case analyses and, in particular, across different parameter assumptions as part of the sensitivity analyses. The recent pharmacoeconomic review109 provides a more comprehensive overview of the different studies’ structural assumptions and parameter inputs. In the context of our review, only issues related specifically to the aim of this study are reported.

Apart from the previous HTA report, only one other study has evaluated the cost-effectiveness of alternative treatment durations of clopidogrel,108 evaluating the cost-effectiveness of different durations of clopidogrel as part of a deterministic sensitivity analysis. Treatment durations for periods both less than and greater than the 12-month duration assumed in the base-case analysis were considered. For the first 12 months, the additional costs and effects of administering clopidogrel were assessed in monthly increments. Each additional month of clopidogrel treatment added approximately 0.005 QALYs and an additional cost of US$140 (ICER = US$26,100 per QALY) relative to the next-shortest duration of therapy. This approach assumed both constant relative treatment
effects and constant baseline event rates over the initial 12 months. Given this, the ICER remained constant over the first 12 months.

However, after the initial 12 months, the authors assumed a declining event rate for MI, cardiovascular death and revascularisation which led to a decrease in effectiveness. As a consequence, the ICER of continuing treatment with clopidogrel beyond 1 year increased to US$31,600 per QALY in the second year and to US$730,000 per QALY in the fifth year. For longer durations of clopidogrel, the impact of bleeding, in terms of its impact on cost-effectiveness, appeared to offset the effect of clopidogrel in reducing other events.

Implications of other published studies

The previous HTA report was largely consistent with other studies in this area; all studies assumed constant relative treatment effects over a 12-month duration, based on data from the CURE trial. Resource utilisation, costs and baseline event risks were typically taken from country-specific data. The main difference between the models relates to the utility values applied to the health states of the various models, with considerable variation between studies.

With respect to modelling alternative treatment durations of clopidogrel, none of the assumptions employed in the separate models contradicted the basis of the approach used in our earlier model. All studies assumed that the RR of clopidogrel remained constant over the duration of treatment. However, only one other study explicitly considered the cost-effectiveness of alternative durations of clopidogrel treatment. The approach employed was largely consistent with our previous work. As such, the variation in cost-effectiveness reported was a function of changes in the baseline events over time associated with standard care as opposed to any variation in the relative treatment effect of clopidogrel. This study found that treatment durations beyond 12 months became markedly less cost-effective as the underlying event rate reduced over time. In addition, the impact of adverse events (e.g. bleeding) became more important in the cost-effectiveness estimates for durations of clopidogrel therapy of longer than 12 months.

Although there have been a number of previous cost-effectiveness analyses evaluating the cost-effectiveness of clopidogrel, only two studies have explicitly considered the cost-effectiveness of alternative durations in patients with NSTE-ACS. Both of these studies evaluated alternative durations as part of a sensitivity analysis, and neither attempted to systematically identify relevant literature to inform this specific question. Similarly, neither of these studies attempted to quantify the impact of uncertainty surrounding the decision regarding the optimal treatment duration of clopidogrel in terms of whether additional research (e.g. a trial) may itself be cost-effective in providing further information. Chapter 5 reports on the revisions made to the existing cost-effectiveness model, based on the findings of the clinical effectiveness and cost-effectiveness reviews, and extends the original work to consider an explicit assessment of the costs of decision uncertainty using VOI approaches.
Chapter 5

Economic model and value of information analysis

Introduction

The existing economic model was revised, based on the updated review of clinical effectiveness data reported in Chapter 3 and the review of economic studies in Chapter 4. The changes made to the original model are reported in the following sections. The objective was to update the model inputs and assumptions, and to extend the previous work to address two related analyses concerning the optimal duration of clopidogrel treatment:

1. A revised assessment of the relative cost-effectiveness of alternative treatment durations based on the updated reviews of clinical effectiveness and cost-effectiveness data. This requires an estimation of mean lifetime costs and QALYs of the different strategies and their cost-effectiveness to be compared using ICERs as appropriate. Uncertainty in the cost-effectiveness of the alternative strategies will be reflected by means of cost-effectiveness acceptability curves (CEACs). These show the probability that each strategy is cost-effective, using alternative values for the maximum (or threshold) value the health service is willing to pay for an additional QALY in these patients.

2. A formal assessment of the potential value of further research using VOI analyses. Bayesian VOI analysis is used to estimate the expected costs of decision uncertainty predicted by the model and the maximum value that can be placed on additional research aimed at reducing this uncertainty. This analysis will be used as the basis for identifying research priorities in this area and to establish an upper bound on the value of a future trial in this area. This will provide a necessary condition for establishing whether a trial is likely to provide value for money for the HTA programme.

Cost-effectiveness

The existing decision model provides the basis for estimating the costs and cost-effectiveness of alternative durations of treatment with clopidogrel. The analysis compares five different strategies based on alternative treatment durations with clopidogrel compared with standard care with aspirin. The previous model assumed that the relative treatment effect was constant across different time periods and hence only the baseline risk was varied in the cost-effectiveness analysis. This assumption is revisited on the basis of the updated clinical effectiveness review, and alternative scenarios are explored. The study was conducted from an NHS perspective with a discount rate of 3.5% for both costs and effects (as opposed to 6% for costs and 1.5% for effects in the previous model). Costs were updated to reflect 2005–6 prices.

The model is probabilistic; that is, each input in the model is entered as an uncertain, rather than a fixed, parameter. Using Monte Carlo simulation, this parameter uncertainty is then translated into uncertainty in the overall results. This ultimately helps decision-makers understand the probability that, in choosing to fund an intervention, they are making the wrong decision, i.e. decision uncertainty. This is to be presented graphically using CEACs which show the probability that each intervention is cost-effective, conditional on a range of possible threshold values that NHS decision-makers attach to an additional QALY. The Monte Carlo simulation was conducted using 5000 simulations.

Value of information

A VOI framework is used to provide an explicit measure of the cost associated with uncertainty surrounding the decision related to the optimal duration of clopidogrel, through formal consideration and valuation of the consequences associated with this uncertainty. This analysis
is used as the basis to inform future research priorities and, in particular, is used to establish the potential value of a future trial. A similar approach to informing research priorities using a VOI framework has recently been applied to several case studies in the NHS HTA programme and for NICE.111,112 VOI analyses have also been conducted in related areas, such as the use of glycoprotein IIb/IIIa antagonists in ACS113 and the use of clopidogrel in the secondary prevention of occlusive vascular events.112

In probabilistic modelling, the expected cost of uncertainty surrounding the adoption decision can be determined using the expected value of perfect information (EVPI). The expected costs of uncertainty represent the consequences in terms of costs incurred and lost benefits that would have occurred should it later transpire that the adoption decision was not correct. VOI analysis involves establishing the difference between the expected value of a decision made on the basis of existing evidence and, following the collection of further information, the expected value of a decision made on the basis of new evidence. The EVPI values the resolution of all uncertainty, through the provision of perfect information, and provides a measure of the maximum return to further research. The EVPI represents the maximum a decision-maker should be willing to pay for additional evidence to inform this decision in the future. If the EVPI exceeds the expected costs of additional research, then it is potentially cost-effective to acquire more information by conducting such research.

Within the framework, the EVPI for the decision can be determined directly from the results of the probabilistic analysis, with each iteration representing a possible future resolution of the existing uncertainty for which the optimal decision (the intervention which maximises net benefit) can be identified. For a decision involving j interventions, where net benefit is dependent upon a set of unknown parameters θ, the EVPI is simply the difference between the expected value of the decision made on the basis of existing information (maxj [Eθ (NB(j, θ))]) and the value of the decision made with perfect information (maxj (Eθ |ϕ{NB(j, θ)})), averaged over all possible realisations of uncertainty (Eθ [maxj (NB(j, θ))]):

\[\text{EVPI} = E_\theta [\max_j \{\text{NB}(j, \theta)\}] - \max_j [E_\theta \{\text{NB}(j, \theta)\}] \]

As information is a public good, generation of perfect information for one instance of a decision ensures that the information is available for other instances of the decision. Hence, the overall value of perfect information surrounding a health-care policy decision depends upon the number of times that the decision is faced over the lifetime of the technology.111 The population-level EVPI is determined by scaling up the individual EVPI according to the number of people who would be affected by the information over the anticipated lifetime of the technology:

where \(I = \text{incidence in period}, t = \text{period}, T = \text{total number of periods for which information} \]

\[\text{EVPI} \times \sum_{t=1}^{T} \frac{I_t}{(1+r)} \]

from research would be useful and \(r = \text{discount rate} \).

In addition to determining the EVPI surrounding the decision as a whole, VOI approaches can also be used for particular elements of the decision in order to direct and focus research towards the areas where the elimination of uncertainty has the most value. The EVPPI can be calculated for individual or subsets of parameters. The process involves determining the expected value of a decision made with and without perfect information for the subset of parameters of interest. For a subset of parameters \(\phi \), the expected value of partial perfect information (EVPPI) is simply the difference between the expected value of the decision made on the basis of existing information (maxj [Eθ \{NB(j, θ)\}]) (as with the calculation of decision EVPI) and the value of the decision made with perfect information about \(\phi \) (maxj [E_{\theta |\phi} \{NB(j, θ)\}]). Where perfect information about the subset of parameters has no impact on the decision, the information has no value. The value of the decision made with perfect information about \(\phi \) is averaged over all possible realisations of uncertainty (E_{\theta |\phi} [maxj (E_{\theta |\phi} \{NB(j, θ)\})]) to reflect the fact that the subset of parameters can resolve at any point within the distributions:

\[\text{EVPPI}_{\phi} = E_\theta [\max_j (E_{\theta |\phi} \{NB(j, θ)\})] - \max_j [E_\theta \{NB(j, θ)\}] \]

On the basis of EVPI and EVPPI calculations, the potential value of a future trial (or other research designs) will be evaluated. The VOI which could be acquired by conducting further research depends crucially on the number of future patients who could benefit from it, i.e. the time horizon over which the information would be useful. It has
recently been suggested that selecting a value for the time horizon is essentially a proxy for a more complex and uncertain process of future changes to the decision problem which impact on the EVPI. One future change that is likely will be the price of clopidogrel when it comes off patent. The potential impact on EVPI estimates of this change was therefore an important consideration.

Assumptions and data inputs

Treatment strategies

In line with the previous model, five separate strategies were assessed, including four strategies that reflected alternative durations of clopidogrel:

- **Strategy 1**: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 12 months.
- **Strategy 2**: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 6 months.
- **Strategy 3**: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 3 months.
- **Strategy 4**: Treatment with clopidogrel as an adjunct to standard therapy (including aspirin) for 1 month.
- **Strategy 5**: Lifetime treatment with standard therapy (including aspirin) alone.

Epidemiological parameters

(baseline events)

In common with the existing model, baseline probabilities of death, non-fatal MI and revascularisation were taken from PRAIS-UK and extrapolated to a duration of 12 months. Data on baseline events were also stratified by risk group. As reported by Main and colleagues, high risk was defined by age ≥ 70, ST depression or diabetes (and low risk was defined as the absence of all of these), on the basis of discussion with clinical collaborators and the results of a previous analysis of the relationship between prognostic indicators and outcomes based on the PRAIS-UK data. Fifty-eight per cent of all patients belonged to the high-risk group.

The data reported at 6 months from PRAIS-UK were extrapolated to 12 months using the observed relationship between these periods reported in the CURE trial illustrated in the previous report. This approach was employed as a result of the more consistent findings that this approach provided, as opposed to the alternatives considered.

The probabilities of death, non-fatal MI and IHD (i.e. no event) occurring during each interval were modelled using the Dirichlet distribution. This is the multidimensional generalisation of the beta distribution and can be used to represent polychotomous (i.e. more than two events) transition probabilities to ensure that the sum of probabilities across multiple events equals 1. During the first 30 days in PRAIS-UK (Table 14), a total of 33 patients died, 41 patients had a non-fatal MI and the remainder (959 patients) were classified as IHD. The probabilities of each event were thus modelled using a Dirichlet (33,41,959) distribution. Of the 959 patients with IHD at 1 month, the probabilities of death, non-fatal MI or remaining in the IHD state during the next interval (1–3 months) were then modelled using a Dirichlet (21,4,934) distribution, reflecting the number of observed events in PRAIS-UK during this interval. A similar process was used to determine the probabilities between 3 and 6 months. The event rates between 6 and 12 months were then estimated, based on the percentage of additional events reported in the CURE trial. These probabilities were used to represent the transition probabilities for standard care alone (i.e. Strategy 5) across each time period.

Relative treatment effects

The earlier model was populated using estimates of the relative treatment effect of clopidogrel from the CURE trial. Although the updated clinical effectiveness review reported in Chapter 3 identified one additional trial that provided information on the clinical effectiveness of clopidogrel in patients with NSTE-ACS, this trial was considered to be underpowered, and reported limited results. Thus the CURE trial remains the primary source of data used in the updated model.
The RRs taken from the CURE trial that were applied in the previous model are shown in Table 16 for the use of clopidogrel in addition to aspirin compared with aspirin alone. Separate RRs for each of the major end points in the short-term model are reported. To account for uncertainty in these estimates, the (log) RRs were modelled as normal distributions. These results were then exponentiated to provide estimates of the RRs applied in the probabilistic analysis. The RRRs were assumed to remain constant throughout the duration of the clopidogrel treatment period.

The use of clopidogrel over alternative durations was then modelled by applying the RRs reported to the baseline probabilities estimated for Strategy 5 across each separate time period. The RRs for clopidogrel were applied only to those periods where treatment with clopidogrel was continued. For treatment periods of less than 6 months’ duration (Strategies 3 and 4), patients were assumed to revert back to the transition probabilities associated with standard care after the initial treatment period. Consequently, for Strategy 4 (clopidogrel for 30 days only), the RRs were applied only to the first 30 days; patients were then assumed to follow the same transition probabilities as standard care for the periods 1–3 months and 3–6 months. For Strategy 3 (clopidogrel for 3 months), the RRs were applied to both the first 30 days and the period between 1 and 3 months.

The updated clinical effectiveness review identified a more recent analysis of the CURE data presented in the SIGN guidelines (No. 93).85 Post hoc analysis of different time periods indicated that the treatment effect in the first 3 months of treatment may be greater than in later periods. While it was noted that this was a post hoc, exploratory analysis and hence comprises non-randomised comparisons, these data do provide a level of evidence which may question the validity of assuming that the treatment effect of clopidogrel remains constant over time. Additional exploratory work was therefore undertaken to examine the robustness of the model results and the VOI estimates to this alternative assumption.

The data reported in the SIGN guidelines were based on the composite end point of cardiovascular death, non-fatal MI and stroke. Disaggregated data for the individual end points of the decision model were not reported. Similarly, the time intervals reported in the SIGN guidance were not consistent.
with the separate strategies considered in the model. Consequently, it was not possible to apply these data directly to the existing structure of the decision model. In order to include the relative treatment effect on the composite end point, the model structure and parameterisation had to be altered. Instead of using a Dirichlet distribution to estimate the probability of each individual end point (to which the RR associated with each individual end point was subsequently applied), a beta distribution was assigned to estimate the probability of the composite end point in the model at each time interval. The RR associated with the combined end point was applied to this probability for the clopidogrel strategies. A separate Dirichlet distribution was then used to apportion the events into the separate health states of the model. This approach assumes that the effect of clopidogrel is equivalent in terms of reducing the probability of the individual end points that constitute the composite end point. As bleeding events were not part of the composite end point, a separate analysis was undertaken, assuming that the risk of these particular events remained constant over the period of treatment being evaluated.

In addition to the structural problems, another issue was that the time intervals reported in the SIGN guidance did not match up completely with the time intervals represented by the separate strategies. However, it was noted that variation in the RR estimates were most evident in the first 3-month period, which was also the period for which these RRs were reported to be statistically significant. In the intervals reported after 3 months, there was less variation and none of the differences were reported to be statistically significant. As such, it was decided to pool the time intervals after 3 months to estimate one single treatment effect to be applied to these separate intervals. In the absence of the patient-level data, these calculations were re-estimated assuming no loss to follow-up. While this approach will tend to overestimate the precision of this estimate, it will not affect the central estimate.

Table 17 reports the RR estimates for the composite outcome considered as a separate scenario to the base-case assumption of constant relative effects. Log-normal distributions were applied to these varying RRs as to the constant RRs for differing health outcomes. To account for uncertainty in these estimates, the (log) RRs were modelled as normal distributions.

Rebound assumptions

The updated clinical effectiveness review concluded that existing evidence available that related to the potential rebound effect on withdrawal of clopidogrel therapy in patients with NSTE-ACS was limited. In the absence of robust data identified from the clinical effectiveness review, the potential impact of rebound was modelled by assuming that patients who withdrew from clopidogrel reverted...
back instantaneously to the equivalent risk faced by patients on aspirin alone. That is, any additional treatment effect conferred by clopidogrel was assumed to cease immediately at the time of withdrawal and hence patients were assumed to rebound to the same prognosis as an equivalent patient on aspirin alone. Patients were assumed to continue with long-term aspirin therapy in all strategies. However, in those strategies of less than 12 months’ duration, patients faced a higher risk of subsequent events for the remainder of the 12-month period than in the strategy in which clopidogrel was given for the entire 12-month duration.

Costs and utility estimates

Unit costs reported for the previous model were updated to reflect 2005–6 prices. A number of minor changes were required to deal with the revised structure of the model, although none of these made any significant difference to the main results.

Owing to the resources and time available for the short report, it was not considered feasible to update the existing utility estimates using systematic approaches. We therefore proposed to use the existing utility estimates applied in the current model as the basis for estimating quality of life. However, assuming that each health state has the same underlying quality of life was acknowledged as a potential limitation. The review of existing models in Chapter 4 identified one study which was considered to provide a reasonable alternative source of utility values that could partially address the limiting assumption that health states had the same underlying utility value. Hence the values for this study which applied differential utility weights for first and subsequent years for the separate states were utilised. The utility estimates were modelled as beta distributions (with alpha and beta parameters). Table 18 shows the mean utility values and the resulting parameters of the beta distribution.

Value of information and patent expiry

As previously noted, the VOI estimates that could be acquired by conducting further research will depend on the time horizon considered to reflect the lifespan of the decision under investigation. The analysis reported here is undertaken on the assumption of a 10-year time horizon. A finite time horizon is conventionally applied in order to represent a period of time over which it is anticipated that there will not be substantial changes which will significantly alter the nature of the decision problem under investigation (e.g. the emergence of new comparators, etc.). However, one future change that is known is that clopidogrel will come off patent in 2011, and hence it was considered important to reflect this in the EVPI estimates.

The EVPI calculations were undertaken assuming an annual incidence of 60,000. Assuming a time horizon of 10 years and a discount rate of effects of 3.5%, the total population multiplier amounts to approximately 515,000. The population multiplier for high-risk patients equates to 58% of this, i.e. 298,478 (and 217,983 for low-risk patients).

Clearly, the price of generic clopidogrel is subject to considerable uncertainty. The only direct evidence available for the potential future price of generic clopidogrel is from the US, where generic clopidogrel was temporarily supplied by Apotex in 2006 at a price of 80% of the branded product. However, it is unlikely that this figure can be generalised to a UK context for two reasons:

1. In general, generic prices are highly dependent on policy environment and it has been shown that generic prices differ substantially across countries.
2. In the event of generic competition, prices can be expected to fall over time as generic prices typically depend on the time since the patent expired. The case in the US reflected an off-patent period of 1 month only with one single generic market entrant.

The impact factors on generic prices identified in the literature included the following:

- average revenue per brand name extended unit
- number of extended units sold before patent loss
- age of market in terms of time the brand-name product was sold
- time since the patent expired
- average revenue per generic extended unit.

As clopidogrel is among the world’s best-selling drugs and as the Apotex case proved that there are already manufacturers of generics who are prepared for market entry, substantial generic competition can be expected. It therefore seems highly likely that the price of generic clopidogrel in
the UK will be below the level charged by Apotex. As such, a price of 25% of the original product, corresponding with the ratio of the average price of generic (£4.83) to branded (£19.33) drugs in the UK, was considered to be more appropriate.

Scenarios

Cost-effectiveness and VOI estimates are presented for a number of scenarios. All scenarios consider a cohort of non-ST-elevation ACS patients (at a starting age of 60) over a time horizon of 40 years. The base-case analysis (Scenario 1) assumes a constant treatment for the different durations of clopidogrel. Separate analyses are presented for all patients and also for high- and low-risk groups. Two further individual scenarios are then considered:

- **Scenario 2:** Applying separate treatment effects for the different durations of clopidogrel based on the data reported in the SIGN guidelines. As in Scenario 1, results are presented for all patients and for the high- and low-risk groups.
- **Scenario 3:** Investigating the impact of the introduction of generic clopidogrel. This scenario is undertaken only for the VOI analysis, as the implementation decision about the cost-effectiveness of clopidogrel should be based on prevailing prices, and a separate decision should be taken following the emergence of generic clopidogrel.

In this scenario, none of the 5 strategies is ruled out on the grounds of dominance/extended dominance. The use of clopidogrel over longer periods is associated with both increased costs and increased QALY's in comparison with shorter durations, such that the ICER rises as the duration of treatment with clopidogrel increases. The ICER of Strategy 4 (1-month treatment with clopidogrel) compared with Strategy 5 (standard care alone) is £4790 per QALY. The ICER of Strategy 3 compared with Strategy 4 is £9489. The

TABLE 18 Parameters for the distribution of utility values

<table>
<thead>
<tr>
<th>Health state</th>
<th>Mean utility</th>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHD year 1</td>
<td>0.8</td>
<td>76.03</td>
<td>19.01</td>
</tr>
<tr>
<td>Post-IHD</td>
<td>0.93</td>
<td>144.43</td>
<td>10.87</td>
</tr>
<tr>
<td>MI year 1</td>
<td>0.8</td>
<td>76.03</td>
<td>19.01</td>
</tr>
<tr>
<td>Post-MI</td>
<td>0.93</td>
<td>144.43</td>
<td>10.87</td>
</tr>
</tbody>
</table>

IHD, ischaemic heart disease; MI, myocardial infarction.

Results

Cost-effectiveness of different treatment durations of clopidogrel assuming constant effects

Base-case scenario (Scenario 1)

Table 19 presents the analysis of the ICER for the base-case scenario assuming constant relative treatment effects for clopidogrel in all patients. Where more than two programmes are being compared, the ICERs are calculated using the following process:

- The strategies are ranked in terms of cost (from the least expensive to the most costly).
- If a strategy is more expensive and less effective than the previous strategy, then this strategy is said to be dominated and is excluded from the calculation of the ICERs.
- The ICERs are calculated for each successive alternative, from the cheapest to the most costly. If the ICER for a given strategy is higher than that of the next most effective strategy, then this strategy is ruled out on the basis of extended dominance.
- Finally, the ICERs are recalculated, excluding any strategies that are ruled out using the notions of dominance and extended dominance.

In this scenario, none of the 5 strategies is ruled out on the grounds of dominance/extended dominance. The use of clopidogrel over longer periods is associated with both increased costs and increased QALY's in comparison with shorter durations, such that the ICER rises as the duration of treatment with clopidogrel increases. The ICER of Strategy 4 (1-month treatment with clopidogrel) compared with Strategy 5 (standard care alone) is £4790 per QALY. The ICER of Strategy 3 compared with Strategy 4 is £9489. The
ICER of Strategy 2 compared with Strategy 3 is £10,482. The ICER of Strategy 1 compared with Strategy 2 is £18,712. Hence, the results of this analysis indicate that a decision concerning the optimal duration of treatment with clopidogrel is dependent upon the amount the NHS is prepared to pay per additional QALY. As the amount the NHS is prepared to pay increases, the more cost-effective treatment with clopidogrel for longer durations becomes. At conventional thresholds of between £20,000 and £30,000 per QALY, the optimal duration of clopidogrel appears to be 12 months.

In comparison with the earlier model, the ICERs associated with the clopidogrel strategies are higher in the updated model. The reasons for this are: (1) the increase in costs due to applying current prices, and (2) the changes to the discount rates, employing 3.5% for both costs and outcomes (as opposed to 1.5% for outcomes and 6% for costs in the previous model). However, despite the less favourable ICERs, the conclusions arising from the updated model are consistent with those reported previously.

Figures 4 and 5 present the CEACs and associated frontier for Scenario 1. The CEACs demonstrate that the probability that Strategy 1 is cost-effective increases as the maximum willingness to pay increases: if society is prepared to pay £20,000 for an additional QALY, the probability that Strategy 1 is cost-effective is approximately 52%, increasing to 74% if the maximum willingness to pay is £40,000.

Although the CEAC provides a useful graphical representation of the uncertainty associated with the probability that individual strategies are cost-effective over a range of threshold values, the results of the CEAC can only be used to identify

TABLE 19 Cost-effectiveness results for all patients (Scenario 1)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>QALYs</th>
<th>Cost (£)</th>
<th>ICER (£)</th>
<th>£20,000</th>
<th>£30,000</th>
<th>£40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>8.1236</td>
<td>19,758</td>
<td>18,712</td>
<td>51.7</td>
<td>67.5</td>
<td>73.8</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>8.1094</td>
<td>19,493</td>
<td>10,482</td>
<td>18.9</td>
<td>9.9</td>
<td>6.4</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>8.0954</td>
<td>19,347</td>
<td>9489</td>
<td>2.0</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>8.0835</td>
<td>19,233</td>
<td>4790</td>
<td>7.5</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>8.0642</td>
<td>19,141</td>
<td>NA</td>
<td>15.7</td>
<td>16.8</td>
<td>15.7</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years.

FIGURE 4 CEAC of different clopidogrel strategies (Scenario 1, all patients). QALY, quality-adjusted life-year; WTP, willingness to pay.
the optimal implementation decision under a restrictive set of assumptions. This is because the strategy with the highest probability of being cost-effective does not necessarily have the highest expected pay-off (i.e. net benefit), and will only have this when the distribution of these pay-offs is symmetrical. This limitation can be overcome by using a cost-effectiveness frontier to indicate which strategy is optimal (and the associated probability that this strategy is the most cost-effective) across the range of values representing the maximum amount the NHS is prepared to pay for an additional QALY. The frontier for this analysis is provided in Figure 5.

The expected costs and QALYs and the ICER of the alternative strategies based on the high-risk and low-risk groups are reported in Tables 20 and 21 respectively. In both risk groups, none of the five strategies were ruled out on the grounds of dominance/extended dominance. As before, the use of clopidogrel over longer periods was associated with both increased costs and increased QALYs in comparison with shorter durations. However, the ICER between the various strategies was markedly different between the two risk groups.

In high-risk patients, the ICER of Strategy 1 (12-month duration of clopidogrel) was more favourable than in the combined analysis of all patients. This was to be expected as the number of events represented by the baseline was higher, and as such the application of the same treatment effect would result in proportionally more absolute benefit. Hence, the ICER was decreased to £13,380 per QALY and, at conventional thresholds, Strategy 1 appears cost-effective. In turn, the lower number of baseline events in low-risk patients had a less favourable effect on the cost-effectiveness of longer durations of clopidogrel. At conventional thresholds of cost-effectiveness, Strategy 3 (3 months of clopidogrel) appears to be the optimal decision and longer durations do not appear cost-effective.

Cost-effectiveness of different durations of clopidogrel treatment assuming varying treatment effects

Scenario 2

Table 22 reports the ICER estimates employing the composite outcome based on the data reported in the SIGN guidelines. As shown in Table 17, the RRs assigned in this analysis do not assume a constant treatment effect, with more favourable estimates assigned to months 0–1 and 1–3 compared with periods beyond 3 months’ duration. The results show less favourable ICER estimates, although these do not vary significantly from those reported in Scenario 1. The resulting ICER increased marginally to £20,661 per QALY (compared with £18,712 in Scenario 1). As expected, the associated ICERs of the shorter durations (Strategy 3 = 3
TABLE 20 Cost-effectiveness in high-risk patients (Scenario 1)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>QALYs</th>
<th>Cost (£)</th>
<th>ICER (£)</th>
<th>£20,000</th>
<th>£30,000</th>
<th>£40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>7.7710</td>
<td>19,187</td>
<td>13,380</td>
<td>65.8</td>
<td>75.1</td>
<td>78.9</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>7.7496</td>
<td>18,900</td>
<td>7971</td>
<td>9.3</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>7.7300</td>
<td>18,744</td>
<td>7930</td>
<td>0.7</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>7.7123</td>
<td>18,604</td>
<td>4846</td>
<td>4.8</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>7.6882</td>
<td>18,487</td>
<td>NA</td>
<td>16.5</td>
<td>17.3</td>
<td>16.5</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years.

TABLE 21 Cost-effectiveness in low-risk patients (Scenario 1)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>QALYs</th>
<th>Cost (£)</th>
<th>ICER (£)</th>
<th>£20,000</th>
<th>£30,000</th>
<th>£40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>8.6850</td>
<td>21,244</td>
<td>49,436</td>
<td>4.9</td>
<td>16.7</td>
<td>28.7</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>8.6802</td>
<td>21,005</td>
<td>36,226</td>
<td>14.8</td>
<td>20.2</td>
<td>22.8</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>8.6769</td>
<td>20,886</td>
<td>17,826</td>
<td>31.3</td>
<td>30.0</td>
<td>23.7</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>8.6713</td>
<td>20,786</td>
<td>4891</td>
<td>31.6</td>
<td>20.2</td>
<td>13.7</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>8.6600</td>
<td>20,731</td>
<td>NA</td>
<td>11.1</td>
<td>13.0</td>
<td>11.1</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years.

TABLE 22 Cost-effectiveness estimates for all patients (Scenario 2)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>QALYs</th>
<th>Cost (£)</th>
<th>ICER (£)</th>
<th>£20,000</th>
<th>£30,000</th>
<th>£40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>8.2019</td>
<td>20,094</td>
<td>20,661</td>
<td>42.9</td>
<td>56.3</td>
<td>62.6</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>8.1887</td>
<td>19,820</td>
<td>11,917</td>
<td>32.5</td>
<td>26.6</td>
<td>23.0</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>8.1753</td>
<td>19,661</td>
<td>4095</td>
<td>24.6</td>
<td>17.1</td>
<td>14.4</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>8.1236</td>
<td>19,449</td>
<td>3632</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>8.0686</td>
<td>19,250</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years.

months, Strategy 4 = 1 month) improved markedly owing to the more favourable RR estimates applied to the earlier periods of treatment with clopidogrel. However, assuming a threshold of between £20,000 and £30,000 per QALY, Strategy 1 appeared to remain the optimal strategy in all patients.

It should be recognised that the structural alterations required to model the composite end point, will have a potentially important effect on the results if there are differences between the effect of clopidogrel on the composite end point and its effect on individual end points. The constant effects model assumes a larger treatment effect for non-fatal MI (RR 0.70) and stroke (RR 0.73), while the effect on mortality was comparatively low (RR 0.93). In contrast, the use of the composite end point assumes that the effects on mortality, non-fatal MI and stroke are equal (although these vary with time), with RRs of 0.78 (0–1 month), 0.69 (months 1–3) and 0.92 (after month 3). Consequently, while the impact
of applying the composite end points results in less favourable RRs across each of the time intervals beyond 1 month for stroke and non-fatal MI, the estimate for mortality remains higher at each interval. While these two effects are likely to counter each other to some degree, the impact of assuming a higher treatment effect on mortality could be important. However, it is unclear whether this was sufficient to markedly bias the results.

Figures 6 and 7 report the CEACs and associated frontier for Scenario 2 and demonstrate that there is higher decision uncertainty related to the use of clopidogrel over 12 months compared with Scenario 1. This may have important implications for the VOI estimates reported separately, as while Strategy 1 appears to remain cost-effective in this scenario, the uncertainty surrounding this was no higher and, assuming all other things remain equal, should result in a higher value associated with obtaining further information.

The expected costs and QALYs and the ICER of the alternative strategies based on the high-risk and low-risk groups are reported in Tables 23 and 24 respectively. In the high-risk group, none of the five strategies were ruled out on the grounds of dominance/extended dominance. As before, the use of clopidogrel over longer periods was associated with both increased costs and increased QALYs in comparison with shorter durations. Similarly, the ICERs for longer durations of clopidogrel were less favourable for durations of longer than 3 months (and vice versa for durations of 3 months or less), although the ICER for Strategy 1 was below conventional thresholds.

In contrast, in the low-risk group, Strategy 2 was ruled out by extended dominance by Strategy 1. The ICER for Strategy 1 was considerably higher (£58,691 per QALY) than conventional thresholds. The results reinforced the findings from Scenario 1 in low-risk patients, that durations of clopidogrel treatment of longer than 3 months do not appear to be cost-effective.

Value of information associated with the decision problem

Separate estimates of total EVPI and EVPPI were estimated for Scenarios 1 and 2. A third scenario was considered based on the VOI following patent expiry. As the patent of clopidogrel is due to expire in 2011, a price reduction of 75% was assumed, which corresponds with the average price of a generic compared with a branded drug in the UK. Rather than reporting the results of the third scenario separately, EVPI results are presented for Scenarios 1 and 2, applying the current price of clopidogrel (‘on patent’ results) and applying the potential generic price of clopidogrel (‘off patent’ results). These results are reported across a range of potential thresholds of cost-effectiveness.
TABLE 23 Cost-effectiveness based on Scenario 2, high-risk patients

<table>
<thead>
<tr>
<th>Strategy</th>
<th>QALYs</th>
<th>Cost (£)</th>
<th>ICER (£)</th>
<th>£20,000</th>
<th>£30,000</th>
<th>£40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>7.7878</td>
<td>19.664</td>
<td>15,063</td>
<td>59.3</td>
<td>69.2</td>
<td>73.0</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>7.7858</td>
<td>19.368</td>
<td>9144</td>
<td>11.9</td>
<td>6.4</td>
<td>4.3</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>7.7653</td>
<td>19.197</td>
<td>3809</td>
<td>28.7</td>
<td>24.4</td>
<td>22.6</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>7.6906</td>
<td>18.913</td>
<td>3615</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>7.6906</td>
<td>18.643</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years.

FIGURE 7 Cost-effectiveness frontier for clopidogrel strategies (Scenario 2, all patients). QALY, quality-adjusted life-year; WTP, willingness to pay.

TABLE 24 Cost-effectiveness based on Scenario 2, low-risk patients

<table>
<thead>
<tr>
<th>Strategy</th>
<th>QALYs</th>
<th>Cost (£)</th>
<th>ICER (£)</th>
<th>£20,000</th>
<th>£30,000</th>
<th>£40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Clopidogrel – 12 months</td>
<td>8.7079</td>
<td>21.065</td>
<td>58,691</td>
<td>4.6</td>
<td>13.8</td>
<td>23.5</td>
</tr>
<tr>
<td>2: Clopidogrel – 6 months</td>
<td>8.7037</td>
<td>20.821</td>
<td>ED</td>
<td>6.0</td>
<td>8.7</td>
<td>10.1</td>
</tr>
<tr>
<td>3: Clopidogrel – 3 months</td>
<td>8.7018</td>
<td>20.695</td>
<td>6780</td>
<td>81.9</td>
<td>74.8</td>
<td>65.2</td>
</tr>
<tr>
<td>4: Clopidogrel – 1 month</td>
<td>8.6825</td>
<td>20.564</td>
<td>3936</td>
<td>6.1</td>
<td>2.3</td>
<td>1.1</td>
</tr>
<tr>
<td>5: Standard therapy</td>
<td>8.6589</td>
<td>20.471</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

ED, extendedly dominated; ICER, incremental cost-effectiveness ratio; NA, not applicable; QALYs, quality-adjusted life-years.
Total EVPI

Tables 25 and 26 report the total population EVPI for a range of cost-effectiveness thresholds for Scenarios 1 and 2 respectively. Estimates of total EVPI ranged between £3.27 million and £123.17 million across the different scenarios, risk groups and range of thresholds. The calculation demonstrates that there was significant variability in the potential value of research, depending upon the scenario (and risk group) or threshold considered most relevant to the particular decision-maker. At a more conventional threshold of cost-effectiveness between £20,000 and £30,000 per QALY, the range was reduced to between £3.27 million and £108.45 million. However, the potential value of a trial to address the current decision problem clearly remains highly uncertain and may be considered to be potentially worthwhile at the top end of the scale and not at the lower end.

The estimates of total EVPI for the high- and low-risk groups differed markedly. At a threshold of cost-effectiveness between £20,000 and £30,000 per QALY, total EVPI ranged from £34.11 million to £77.10 million in high-risk patients (and from £3.27 million to £20.38 million in low-risk patients). As expected, for the majority of analyses, estimates of total EVPI based on the scenario of total EVPI

<table>
<thead>
<tr>
<th>TABLE 25</th>
<th>Total EVPI for Scenario 1 (constant treatment effects)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EVPI at a willingness to pay per QALY (£)</td>
</tr>
<tr>
<td></td>
<td>£20,000</td>
</tr>
<tr>
<td>EVPI while on patent</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>102,442,841</td>
</tr>
<tr>
<td>High-risk patients</td>
<td>65,803,244</td>
</tr>
<tr>
<td>Low-risk patients</td>
<td>15,007,631</td>
</tr>
<tr>
<td>EVPI while off patent</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>50,691,302</td>
</tr>
<tr>
<td>High-risk patients</td>
<td>42,274,257</td>
</tr>
<tr>
<td>Low-risk patients</td>
<td>11,597,014</td>
</tr>
</tbody>
</table>

EVPI, expected value of perfect information; QALY, quality-adjusted life-year.

<table>
<thead>
<tr>
<th>TABLE 26</th>
<th>Total EVPI for Scenario 2 (varying treatment effects)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EVPI at a willingness to pay per QALY (£)</td>
</tr>
<tr>
<td></td>
<td>£20,000</td>
</tr>
<tr>
<td>EVPI while on patent</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>77,630,538</td>
</tr>
<tr>
<td>High-risk patients</td>
<td>57,425,624</td>
</tr>
<tr>
<td>Low-risk patients</td>
<td>3,265,709</td>
</tr>
<tr>
<td>EVPI while off patent</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>50,413,420</td>
</tr>
<tr>
<td>High-risk patients</td>
<td>34,107,321</td>
</tr>
<tr>
<td>Low-risk patients</td>
<td>11,903,071</td>
</tr>
</tbody>
</table>

EVPI, expected value of perfect information; QALY, quality-adjusted life-year.
generic clopidogrel (EVPI while off patent) reduced the total EVPI range to between £30.41 million and £69.90 million in all patients (and between £34.11 million and £57.94 million in high-risk patients and £10.76 million and £11.90 million in low-risk patients).

The separation of the results according to different risk groups, and the subsequent variability in the total EVPI estimates, may have important policy implications, particularly in relation to a future trial. As the cost-effectiveness estimates have demonstrated, the cost-effectiveness of alternative durations of clopidogrel differed markedly between the risk groups. While a strategy of 12 months of clopidogrel treatment appeared potentially cost-effective compared with shorter durations in all patients and in the subgroup of patients at high risk, strategies of treating beyond 3 months were not considered cost-effective for patients at low risk. It should also be recognised that since the CURE trial has been published, routine clinical practice has shifted towards greater use of invasive investigation in medium- to high-risk patients.25 Given this, recent guidance from SIGN has suggested that the benefits of clopidogrel are likely to be overestimated in the case of more widespread application invasive investigation. The implications of this remain somewhat unclear. While, it is apparent that this may have an effect on the cost-effectiveness of longer treatment durations and potentially alter the conclusions based on cost-effectiveness regarding the optimal duration of clopidogrel in high-risk patients, it is also possible that this in itself could increase the decision uncertainty and hence the associated VOI. However, if routine clinical practice has shifted markedly in the UK to the extent that the CURE trial itself (or the model presented here) is no longer considered to be representative of current practice, then the results for this group of patients may be misleading.

Given the uncertainty surrounding changing practice, the result for the lower-risk group may be considered more reliable in terms of informing a future trial on the basis of the current model and the data inputs. At a threshold of £20,000–£30,000 per QALY, total EVPI ranged between £3.27 million and £20.38 million. These results are considerably lower than the EVPI results for all patients or the high-risk group. A separate analysis of EVPI in low-risk patients was also undertaken that looked at various combinations of strategies. This may assist in informing the potential design of any future trial, as it may not be feasible to run a trial with the five strategies outlined.

Figure 8 reports the EVPI estimates for different combinations of strategies in low-risk patients. The combinations of strategies with the highest EVPI were Strategies 1 (12 months of clopidogrel) versus 5 (standard care alone) and Strategies 1 (12 months of clopidogrel) versus 4 (1 month of clopidogrel). While the results of the cost-effectiveness analysis suggest that the question of most apparent interest would be a comparison of Strategies 1 (12 months of treatment based on current NICE guidelines) and 3 (3 months of treatment based on the results of the cost-effectiveness analysis and the recent SIGN guidelines), the value of a trial to inform this question appears to be markedly lower than other combinations (£8.13 million).

EVPPi

Although estimates of the total EVPI provide a useful global estimate of the uncertainty surrounding the adoption decision, they do not provide an indication of where further research would be of most value. EVPPi can be used to consider particular elements of the decision problem in order to direct and focus research towards the specific areas where the elimination of uncertainty has the most value. The EVPPi can be calculated for individual or subsets of parameters. This can be particularly relevant to the design of any future research, as subsets of parameters can be grouped according to related areas, and may also be used to separate out parameters for which a randomised design is necessary and those where this may not be essential (e.g. effectiveness parameters are likely to need a randomised design to minimise bias; however, issues of bias are likely to be less critical for obtaining epidemiological or cost data and observational design may be more appropriate). Given the computational time required to perform these calculations, they were undertaken using an assumption of constant relative effect (Scenario 1) at a threshold of £30,000 per QALY.

Parameters in the model were separated into three distinct areas:

1. effectiveness parameters – comprising the RR estimates applied in the model
2. epidemiology – comprising the baseline events and long-term prognosis parameters
3. costs – comprising the short- and longer-term cost inputs applied in the model.

Table 27 reports the results for EVPPi (also represented graphically in Figure 9). The results indicate the uncertainty surrounding the effectiveness parameters (hence the requirement...
for a randomised trial) contribute much more significantly to all patients and the high-risk group. In both of these groups, the effectiveness parameters account for the majority of the uncertainty surrounding the total EVPI estimates. However, for the low-risk group, the effectiveness parameters constitute less than 50% of the total EVPI estimates. Consequently, while the total EVPI (Scenario 1) ranges between £10.76 million and £20.38 million for the low-risk group, the VOI associated with the effectiveness parameters ranges between £4.25 million and £8.80 million.

Conclusions

From a cost-effectiveness perspective, the optimal duration of clopidogrel is clearly an important consideration, particularly in relation to issues of risk stratification. The updated model reinforced the conclusions from the earlier analysis. That is, a policy of 12 months of clopidogrel for patients with NSTE-ACS appears to be cost-effective both in ‘average’ patients (i.e., based on the average across all patient risks considered) and in the subgroup of higher-risk patients, compared with shorter-
term durations. However, for lower-risk patients, treatment with clopidogrel beyond 3 months does not appear to be cost-effective. These conclusions appeared robust to alternative assumptions related to whether the relative effect of clopidogrel was assumed to remain constant over time or whether the treatment effect in the first 3 months was assumed to be greater than in later periods.

The major extension to the earlier work was a formal consideration of the VOI surrounding the decision problem. This was undertaken to assist in identifying future research priorities and, in particular, is used to establish the potential value of a future trial. This was done by estimating the EVPI associated with various scenarios in order to provide an upper bound to the amount a decision-maker should be willing to pay to obtain further information (and also assuming that this information will resolve all remaining uncertainty). Account was also taken of the potential impact when a generic version of clopidogrel becomes available. The analysis revealed considerable variation in the EVPI estimates. Estimates of EVPI were markedly higher for an ‘average’ patient and for high-risk patients compared with those for lower-risk patients. Similarly, consideration of the EVPI for parameter groups revealed that the contribution of the relative effectiveness parameters was less significant in the lower-risk patients. It was also acknowledged that if routine clinical practice has shifted markedly in the UK to the extent that the CURE trial itself (or the model presented here) is no longer considered to be representative of current practice for groups at high risk, then the results for this group of patients may be misleading.

At a threshold of £20,000–£30,000 per QALY, total EVPI ranged from £3.27 million to £20.38 million in the low-risk group. Given that a trial is unlikely to be able to report until after the market entry of generic clopidogrel; equivalent EVPI estimates for this scenario ranged between £10.8 million and £11.9 million. The EVPPI calculations demonstrated that approximately 40–45% of this value related to the relative effectiveness parameters (i.e. those for which an RCT would be required). Given that the estimates of EVPI represent upper bounds to further research and that some uncertainty will remain, then the true economic value will be even lower than those reported here.
Chapter 6
Discussion

Statement of principal findings

Clinical evaluation
There is evidence that clopidogrel is effective in reducing adverse cardiovascular events in patients with NSTE-ACS, with some indication that this benefit may be most evident in the first 3 months. There is some evidence that clopidogrel increases the risk of bleeding when compared with aspirin.17–22 When stratified by the TIMI risk score, there was a significant reduction in the risk of the composite outcome cardiovascular death, MI or stroke in patients with low, intermediate and high risk of ACS, and a significant increase in the risk of major bleeding in patients classified as intermediate risk.19 There was no direct evidence relating to the effectiveness of different durations of clopidogrel treatment in patients with NSTE-ACS.

Two small RCTs provided no suggestion of rebound effects following either clopidogrel or ticlopidine withdrawal in patients with NSTE-ACS.47–49 One retrospective cohort suggested an increased risk of adverse events in the first 90 days after the withdrawal of clopidogrel. One small case series showed significant increases in some biomarkers 1 month after clopidogrel withdrawal in patients with PCI, but this was not evidence of rebound.56

Economic evaluation
In terms of the cost-effectiveness of alternative durations of clopidogrel, the updated model reinforced the conclusions from the earlier analysis. That is, a policy of 12 months of clopidogrel for patients with NSTE-ACS appears cost-effective both in ‘average’ patients (i.e. based on the average across all patient risks considered) and in the subgroup of higher-risk patients (the presence of any of the following: age > 70, ST depression or diabetes) compared with shorter-term durations. The ICER of 12 months’ duration from £13,380 to £20,661 per additional QALY across the different scenarios considered. However, for lower-risk patients (absence of any of the risk factors), treatment with clopidogrel beyond 3 months did not appear to be cost-effective. The ICER of 12 months of treatment with clopidogrel varied between £49,436 and £58,691 per QALY). These conclusions appeared robust to alternative assumptions related to whether the relative effect of clopidogrel was assumed to remain constant over time or was one in which the treatment effect in the first 3 months was assumed to be greater than in later periods.

Estimates of EVPI were markedly higher for an ‘average’ patient (i.e. based on all patients) and for high-risk patients than for those for lower-risk patients (ranging between £48.69 million and £108.4 million at a threshold of £30,000 per QALY). It was also acknowledged that more recent changes in routine clinical practice in the UK have shifted markedly in the UK to the extent that the CURE trial itself (or the model presented here) may no longer be considered to be representative of current practice for groups at high risk, and as such the EVPI results for this group of patients may be overstated.

At a threshold of £20,000–£30,000 per QALY, total EVPI ranged from £3.27 million to £20.38 million in the low-risk group. Given that a trial is unlikely to be able to report until after the market entry of generic clopidogrel, equivalent EVPI estimates for this scenario ranged between £10.8 million and £11.9 million. The EVPPI calculations demonstrated that approximately 40–45% of this value related to the treatment effectiveness parameters for clopidogrel (i.e. those for which an RCT would be required).

Strengths and limitations of the assessment

Strengths
We conducted an extensive search to locate appropriate published and unpublished research in any language to address a clear research question using predefined inclusion criteria. The study selection, data extraction, and quality assessment were conducted in duplicate, reducing the potential for error and bias. Efforts were made to obtain additional data on clinical effectiveness by contacting the authors of included studies.
The search was used to assist in the development of the updated decision model. The updated cost-effectiveness results represent the most systematic approach to date to address the cost-effectiveness of alternative durations of treatment with clopidogrel. The analysis was also extended to consider the cost of decision uncertainty to assist in identifying priorities (and equally importantly the potential value) for further research.

Limitations

From necessity, our review was limited by the available data. Only one additional RCT was identified that provided information on the clinical effectiveness of clopidogrel in patients with NSTE-ACS. However, this trial was likely to be underpowered, and reported limited results, with these being extrapolated primarily from a Kaplan–Meier graph. Therefore, the CURE trial remains the primary source of effectiveness and safety data in the NSTE-ACS population.

There were no studies that directly compared different durations of clopidogrel treatment. Despite the lack of evidence directly comparing different durations of clopidogrel it should be recognised that trials in related patient populations may provide additional evidence which could be considered in relation to the benefits of longer durations of clopidogrel treatment. As part of the inclusion criteria applied in our review, only studies evaluating clopidogrel in patients with unstable angina or non-ST-elevation myocardial infarction were considered. Consequently, RCTs in patients with stable CHD were excluded. However, clearly the natural history of CHD is characterised by periods of stability (asymptomatic or stable angina) and periods of acute instability (ACS). Hence, for durations of clopidogrel over 3 months, during which time many patients will be back in the stable state, evidence of the effectiveness of clopidogrel in stable patients may be relevant. The CHARISMA trial in patients with stable CHD failed to find a significant additional benefit associated with the use of clopidogrel plus aspirin versus aspirin alone (RR of primary end point 0.93; 95% CI 0.86–0.995; \(p = 0.04 \)).37–39 Interestingly, the RR estimate reported in the CHARISMA trial was very similar to the RR estimate applied in Scenario 2 of the model (RR 0.92; 95% CI 0.78–1.10). Hence, it is unlikely that the inclusion of the CHARISMA trial would significantly alter the conclusions based on this particular scenario. However, a more detailed consideration of the full range of evidence from trials in stable CHD may be a useful approach in future research.

With regard to the perceived rebound effect on the withdrawal of clopidogrel, there was only limited evidence in medically-treated patients to support this. Despite extensive searches for evidence in NSTE-ACS, there were no studies reporting events or levels in biomarkers before and after thienopyridine treatment withdrawal. The strongest evidence came from one retrospective cohort, indicating an increased risk of adverse events (acute MI or all-cause mortality) in the first 90 days after the withdrawal of clopidogrel. However, these data cannot confirm if the risk of adverse events following clopidogrel withdrawal was higher or lower than that in patients not treated with clopidogrel. Additional evidence relating to rebound following clopidogrel withdrawal came from studies of populations other than medically-treated NSTE-ACS reported cardiovascular event rates. This included the same retrospective cohort that reported an increased risk of adverse events in medically-treated patients, which also found an increased risk of adverse events in the first 90 days after the withdrawal of clopidogrel in patients who had undergone PCI.

The cost-effectiveness and VOI analyses are subject to a number of potential limitations. These relate both to the limitations noted in relation to the effectiveness parameters and to the limited evidence on the potential rebound effect, but also to the uncertainty surrounding a range of other factors. Firstly, the issue of risk stratification is clearly an important consideration. However, it should be noted that the pragmatic approach to risk stratification applied in the decision model (due to limited patient numbers and data available in the epidemiological data used) dichotomised the population into two separate risk categories (higher- and lower-risk patients). This meant that consideration could not be given to a wider categorisation (i.e. including a third group to represent patients at intermediate risk). Secondly, these definitions are not directly comparable with other risk stratification approaches that have been applied elsewhere. Indeed, it should be recognised that the sample of patients included in the epidemiological data set were all hospitalised for NSTE-ACS and hence are likely to be more representative of patients at intermediate to high risk using conventional classifications. Hence, the interpretation of the results in low- and high-risk groups should be seen in this context.
The results of the VOI demonstrate considerable variation in the potential value of further research. While the potential impact of the emergence of a generic version of clopidogrel was considered, there remains significant uncertainty about the actual price difference that will be realised, given that generic prices are highly dependent on regulatory environment, which is currently under reform in the UK. While a 10-year time horizon was chosen for the VOI calculations, there is clearly uncertainty in relation to the typical duration of health technology life cycles.

More importantly, the EVPI results present an upper bound to further research and hence do not provide both a necessary and sufficient condition, even if the cost of a trial fell below this amount. This is because a trial will resolve only a proportion of the uncertainty and as such the amount of uncertainty that is likely to be resolved would have to be assessed against the cost of the trial to ensure that any further research was considered an efficient use of resources. Finally, it is worth noting that even should research appear to provide a worthwhile use of NHS resources, the true opportunity cost of this research remains unclear. Indeed, there may be numerous other research areas, for which comparable EVPI estimates are not available, which would provide greater value for money than the specific application presented here. Hence, the more widespread use of VOI approaches to a broader range of applications would provide additional benchmarks with which to evaluate the value for money associated with research into a range of alternative decision problems.

Uncertainties

There is still a large degree of uncertainty surrounding both the optimal duration of clopidogrel treatment and the impact of withdrawal of clopidogrel treatment, which can only be addressed by further research. The most appropriate study design would be an RCT that directly compared different durations of clopidogrel treatment in patients with NSTE-ACS. Such a trial would compare the effects of 3 months’ and 12 months’ treatment with clopidogrel and would follow patients up after discontinuation of clopidogrel. Ideally, in order to definitively answer the possibility of a rebound effect with clopidogrel, outcomes would include with the measurement of biomarkers for platelet activity before, during and after clopidogrel treatment.

The proportion of patients who would have been treated with thienopyridines at the time of the CURE trial, who would now routinely undergo early PCI, is unclear. Since the completion of the CURE trial in 2000 and 2006, there was over a 100% increase in the number of PCIs conducted in the UK (see Figure 1). It is not unreasonable to presume that many of the higher-risk patients that were included in the CURE trial would undergo an early PCI if treated today, rather than prolonged medical management or a late PCI procedure.

Changes in routine clinical practice (particularly for the high-risk group) may mean that the cost-effectiveness and VOI results may be less generalisable in particular risk groups. The implications of this remain uncertain. While it may clearly impact on the cost-effectiveness of longer-treatment durations and potentially alter the conclusions based on cost-effectiveness regarding the optimal duration of clopidogrel in high-risk patients, it is also possible that this itself could increase the decision uncertainty and hence the associated VOI. However, if routine clinical practice has shifted markedly in the UK to the extent that the CURE trial itself (or the model presented here) is no longer considered to be representative of current practice, then the results for this group of patients may be inaccurate.

Feasibility of further research

Ideally, an adequately powered, well-conducted RCT that directly compares different durations of clopidogrel treatment in patients with NSTE-ACS would be required to provide more robust evidence in relation to the impact of clopidogrel withdrawal. The use of an RCT would minimise possible biases associated with establishing causality of any potential rebound effect, and provide robust estimates of the relative effect of alternative durations of treatment. Such an RCT would also address the question of a possible rebound effect associated with clopidogrel withdrawal. However, the design and cost of this trial need to be evaluated carefully, both in relation to the VOI estimates reported here and to issues that may affect the feasibility of such research.

Clearly, an RCT which was sufficiently powered to address alternative durations of clopidogrel would inevitably have to be at least as large as the CURE study ($n = 12,562$), if not several times greater in magnitude, owing to the smaller effect sizes that would be predicted between different durations.
of clopidogrel. The feasibility and timeliness of such a trial would therefore need to be questioned. Even if such a trial could be undertaken, it appears unlikely that such a study would be able to report prior to the market entry of a generic version of clopidogrel. As such, the off-patent results from the VOI analysis suggest that the value of further research would be markedly lower than research which would be available currently. Furthermore, should investigation of the physiological basis of any rebound effect be considered to be warranted, this could be accommodated by including assessment of biomarkers as one of the trial outcomes. Realistically, such additional demands would further militate against the feasibility of such a trial.

In addition to the costs and logistics of undertaking such an RCT, other considerations would also need to be taken into account. Owing to the potential for a lengthy delay between commissioning an RCT and the availability of the results, other factors relevant to the current decision problem may have markedly altered which could further limit the ‘realisable’ value of such research. Clearly, the emergence of alternative treatments which could represent relevant comparators to clopidogrel may significantly alter both the cost-effectiveness and VOI estimates presented here. In addition, practice could also significantly change during this period. Indeed, the use of coronary intervention is increasing markedly. If such a trend continues, then the VOI results presented here could significantly over-estimate the value of research, as these results related primarily to the use of clopidogrel in patients who are managed without coronary intervention. The EVPI estimates are likely to decline as the population multiplier applied in the calculations will become smaller as a higher proportion of patients are managed with coronary interventions. It should also be recognised that the more widespread use of coronary interventions and, in particular, the greater use of drug-eluting stents may mean that patients will not be eligible for earlier clopidogrel withdrawal owing to the risk of stent thrombosis.119
Chapter 7

Conclusions

Implications for service provision

- Clopidogrel combined with aspirin is more effective in reducing adverse cardiovascular events than aspirin alone in patients with NSTE-ACS.
- Clopidogrel combined with aspirin may increase the risk of bleeding compared with aspirin alone.
- The optimal duration of clopidogrel treatment in patients with NSTE-ACS is uncertain.
- There was some evidence that a rebound effect occurs following the withdrawal of clopidogrel, but its clinical significance was unclear.
- Cost-effectiveness results suggest that longer durations of clopidogrel (greater than 3 months) do not appear cost-effective in patients at lower risk. However, for an average-risk patient (and in higher-risk patients), 12 months’ treatment of clopidogrel appears to be more cost-effective than shorter durations.

Recommendations for research

To determine optimal duration of clopidogrel treatment, a large, well-conducted RCT that directly compares different durations of clopidogrel treatment in patients with NSTE-ACS is ideally required. However, both the design and cost of this trial need to be evaluated carefully in relation to the VOI estimates reported here. In lower-risk groups, for which shorter durations of clopidogrel appear more cost-effective, it would seem unlikely that an adequately powered RCT would be considered to provide value for money owing to the significant cost that would be required to undertake such a study and the cost of the uncertainty that such a trial might resolve. In addition, to the potential value of such research, there remains a number of other issues which could affect the feasibility and timeliness of such research.
Acknowledgements

We would like to thank Professors Karl Claxton and Mark Sculpher for their advice on the economic model and VOI analysis, and the Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), which is an independent organisation funded by the German and Bavarian government, for supporting Wolf Rogowski’s visit. In addition, the authors would like to thank: those authors who responded to our requests for further information; the translators of the several foreign language papers we retrieved; and Lindsey Myers for taking over as information officer during the latter stages of the review.

Contribution of authors

Wolf Rogowski (Visiting Research Fellow) was involved in the cost-effectiveness section, study selection, development of the economic model and report writing. Jane Burch (Research Fellow) was responsible for study selection, data extraction, validity assessment, data analysis and writing the report. Stephen Palmer (Senior Research Fellow) was involved in the cost-effectiveness section, study selection, development of the economic model and report writing and took overall responsibility for the economic component. Cheryl Craigs (Research Fellow) was involved in study selection, data extraction, validity assessment, data analysis and writing of the report. Su Golder (Information Officer) devised the search strategy, carried out the literature searches and wrote the search methodology sections of the report. Nerys Woolacott (Senior Research Fellow) provided input at all stages of the review, commented on drafts of the report and took overall responsibility for the review.
References

21. Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK. Effects of clopidogrel in addition to...

References

68. Kerriakes DJ, Choo JK, Young JJ, Broderick TM. Combination antiplatelet therapy following brachytherapy with restenting: 'It ain’t over ‘til the fat lady sings'. J Invasive Cardiol 2002;14:115–17.

References

Appendix I

Search strategy

Searches for systematic reviews of clopidogrel
Cochrane Database of Systematic Reviews (CDSR)
Search via The Cochrane Library, www.thecochranelibrary.com
Version: 2007 Issue 1
Date searched: 27/02/07

#1. (clopidogrel or ticlopidine or plavix):ti,ab,kw
#2. MeSH descriptor Ticlopidine
#3. (#1 OR #2), from 2002 to 2007
#4. (myocard* near/4 (infarct* or acute)) or (without near/2 st near/2 elevation*) or (non near/2 st near/2 elevation*) or nstemi or (non next stemi) or (heart next attack*) or (acute next coronary next syndrome*) or acs or (unstable near/2 angina) or pci or (percutaneous next coronary next intervention*) or (coronary next heart next disease*) or chd or (myocard* near/2 (isch?emia)) or ptca or (percutaneous next transluminal next coronary next angioplasty)
#5. MeSH descriptor Myocardial Infarction explode all trees
#6. MeSH descriptor Angina, Unstable, this term only
#7. MeSH descriptor Coronary Disease, this term only
#8. MeSH descriptor Myocardial Ischemia, this term only
#9. MeSH descriptor Angioplasty, Transluminal, Percutaneous Coronary, this term only
#10. (#4 OR #5 OR #6 OR #7 OR #8 OR #9)
#11. (#3 AND #10)

This retrieved six records.

Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment (HTA) Database
Search via www.crd.york.ac.uk/crdweb/
Date searched: 01/03/07

#1. clopidogrel or ticlopidine or plavix
#2. MeSH descriptor Ticlopidine
#3. (#1 OR #2), from 2002 to 2007

This retrieved 43 records in DARE, and 14 records in the HTA database.

Searches for randomised controlled trials of clopidogrel
CENTRAL
Search via The Cochrane Library
Version: 2007 Issue 1
Date searched: 27/02/07

#1. clopidogrel or ticlopidine or plavix
#2. MeSH descriptor Ticlopidine
#3. (#1 OR #2), from 2002 to 2007
#4. (myocard* near/4 (infarct* or acute)) or (without near/2 st near/2 elevation*) or (non near/2 st near/2 elevation*) or nstemi or (non next stemi) or (heart next attack*) or (acute next coronary next syndrome*) or acs or (unstable near/2 angina) or pci or (percutaneous next coronary next intervention*) or (coronary next heart next disease*) or chd or (myocard* near/2 (isch?emia)) or ptca or (percutaneous next transluminal next coronary next angioplasty)
#5. MeSH descriptor Myocardial Infarction explode all trees
#6. MeSH descriptor Angina, Unstable, this term only
#7. MeSH descriptor Coronary Disease, this term only
#8. MeSH descriptor Myocardial Ischemia, this term only
#9. MeSH descriptor Angioplasty, Transluminal, Percutaneous Coronary, this term only
#10. (#4 OR #5 OR #6 OR #7 OR #8 OR #9)
#11. (#3 AND #10)

This retrieved 184 records.

CINAHL – Cumulative Index to Nursing & Allied Health Literature
Date range: 1982 to February week 3 2007
Search via OVID Biomed
Date searched: 27/02/07
Search strategy:

1. exp Myocardial Infarction/(9236)
2. mi.ti. (646)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (5971)
4. (without adj2 st adj2 elevation$).ti,ab. (24)
5. (non adj2 st adj2 elevation$).ti,ab. (233)
6. nstemi.ti,ab. (19)
7. non-stemi.ti,ab. (4)
Appendix 1

8. heart attack$.ti,ab. (947)
9. acute coronary syndrome$.ti,ab. (949)
10. acs.ti,ab. (381)
11. (unstable adj2 angina).ti,ab. (545)
12. unstable angina/ (797)
13. pci.ti,ab. (250)
14. percutaneous coronary intervention$.ti,ab. (629)
15. Coronary Disease/(6847)
16. coronary heart disease$.ti,ab. (3000)
17. chd.ti,ab. (1216)
18. (myocard$adj2 ischaemia).ti,ab. (72)
19. (myocard$adj2 ischemia).ti,ab. (484)
20. myocardial ischemia/(1337)
21. pta.ti,ab. (241)
22. percutaneous transluminal coronary angioplasty.ti,ab. (301)
23. Angioplasty, Transluminal, Percutaneous Coronary/(1655)
24. or/1–23 (20664)
25. Ticlopidine/(109)
26. Ticlopidine.ti,ab. (59)
27. clopidogrel.ti,ab. (263)
28. plavix.ti,ab. (15)
29. Clopidogrel Bisulfate/(343)
30. 2007$.ew. (37438)
31. 2006$.ew. (146153)
32. 2005$.ew. (151990)
33. 2004$.ew. (130480)
34. 2003$.ew. (127720)
35. or/30–34 (592470)
36. 24 and (or/26–29) and 35 (216)
37. exp random sample/(28663)
38. random assignment/(14687)
39. exp prospective studies/(53768)
40. exp Clinical Trials/(42343)
41. clinical trial.pt. (19954)
42. (clin$adj25 trial$).ti,ab. (12803)
43. ((single$or double$or triple$or treble$) adj25 (blind$or mask$)).ti,ab. (6121)
44. placebos/(3376)
45. placebo$.ti,ab. (8367)
46. random$.ti,ab. (40555)
47. rct.ti,ab. (637)
48. Research Methodology/(6574)
49. quantitative studies/(3075)
50. or/37–49 (131546)
51. 36 and 50 (92)

EMBASE

Date range: 1996 to 2007 week 8
Search via OVID Biomed
Date searched: 27/02/07
Search strategy:

1. exp Heart Infarction/(62298)
2. mi.ti. (561)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (44006)
4. (without adj2 st adj2 elevation$).ti,ab. (404)
5. (non adj2 st adj2 elevations$).ti,ab. (1139)
6. nstemi.ti,ab. (222)7 non-stemi.ti,ab. (30)
7. heart attack$.ti,ab. (1060)
8. acute coronary syndrome$.ti,ab. (6236)
9. acs.ti,ab. (2979)
10. (unstable adj2 angina).ti,ab. (4882)
11. exp Unstable Angina Pectoris/(6153)
12. pci.ti,ab. (3478)
13. percutaneous coronary intervention$.ti,ab. (4500)
14. Ischemic Heart Disease/(27358)
15. coronary artery disease/(34422)
16. coronary heart disease$.ti,ab. (14352)
17. chd.ti,ab. (6083)
18. (myocard$adj2 ischaemia).ti,ab. (1533)
19. (myocard$adj2 ischemia).ti,ab. (7078)
20. heart muscle ischemia/(24337)
21. pta.ti,ab. (3349)
22. percutaneous transluminal coronary angioplasty.ti,ab. (2999)
23. Transluminal Coronary Angioplasty/(9877)
24. or/1–24 (140029)
25. Ticlopidine/(5381)
26. Ticlopidine.ti,ab. (1272)
27. clopidogrel.ti,ab. (2143)
28. Clopidogrel/(8373)
29. plavix.ti,ab. (72)
30. or/26–30 (11249)
31. 2007$.em. (85039)
32. 2006$.em. (630103)
33. 2005$.em. (563462)
34. 2004$.em. (535805)
35. 2003$.em. (509598)
36. or/32–36 (2324007)
37. prasugrel.af. (85)
38. cs-747.af. (48)
39. LY640315.af. (7)
40. or/38–40 (103)
41. Randomized Controlled Trial/(100635)
42. randomization/(19605)
43. Double-Blind Procedure/(44058)
44. single-blind procedure/(3460)
45. Crossover Procedure/(14358)
46. rct$.ti,ab. (2887)
47. random$ed control$trial$.ti,ab. (20969)
48. (clin$adj2 trial$).ti,ab. (71951)
49. *clinical trial/(1280)
50. random allocation.ti,ab. (318)
51. randomly allocated.ti,ab. (5381)
52. (random adj2 allocated).ti,ab. (139)
53. ((single or double or treble or triple) adj blind$).ti,ab. (43118)
54. placebo$.ti,ab. (56566)
55. 25 and 31 and 41 (4117)
56. or/42–55 (218594)
Searches for systematic reviews of prasugrel
Cochrane Database of Systematic Reviews (CDSR)

There was no need to limit by disease terms as so few records were retrieved with the following search strategy.

#1. prasugrel
#2. cs-747
#3. LY640315
#4. #1 or #2 or #3 or #4

This retrieved no records in CDSR and four in CENTRAL.
Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment (HTA) Database

Searched via www.crd.york.ac.uk/crdweb/
Date searched: 27/02/07

#1. prasugrel
#2. cs-747
#3. LY640315
#4. #1 or #2 or #3 or #4

This retrieved one record in HTA.

Searches for randomised controlled trials of prasugrel CENTRAL

Searched via The Cochrane Library
Version: 2007 Issue 1
Date searched: 27/02/07

There was no need to limit by disease terms as so few records were retrieved with the following search strategy.

#1. prasugrel
#2. cs-747
#3. LY640315
#4. #1 or #2 or #3 or #4

This retrieved 4 records.

CINAHL – Cumulative Index to Nursing & Allied Health Literature

Date range: 1982 to February week 3 2007
Searched via OVID Biomed
Date searched: 27/02/07

Search strategy:

1. prasugrel.af. (1)
2. cs-747.af. (1)
3. LY640315.af. (1)
4. or/1–3 (1)

EMBASE

Date range: 1996 to 2007 week 8
Searched via OVID Biomed
Date searched: 27/02/07

Search strategy:

1. exp Heart Infarction/(62298)
2. mi.ti. (561)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (44006)
4. (without adj2 st adj2 elevation$).ti,ab. (404)
5. (non adj2 st adj2 elevation$).ti,ab. (1139)
6. nstemi.ti,ab. (222)
7. non-stemi.ti,ab. (30)
8. heart attack$.ti,ab. (1060)
9. acute coronary syndrome$.ti,ab. (6236)
10. aces.ti,ab. (2979)
11. (unstable adj2 angina).ti,ab. (4882)
12. exp Unstable Angina Pectoris/(6153)
13. pci.ti,ab. (3478)
14. percutaneous coronary intervention$.ti,ab. (4500)
15. Ischemic Heart Disease/(27358)
16. coronary artery disease/(34422)
17. coronary heart disease$.ti,ab. (14352)
18. chd.ti,ab. (6083)
19. (myocard$adj2 ischaemia).ti,ab. (1533)
20. (myocard$adj2 ischemia).ti,ab. (7078)
21. heart muscle ischemia/(24337)
22. ptca.ti,ab. (3349)
23. percutaneous transluminal coronary angioplasty.ti,ab. (2999)
24. Transluminal Coronary Angioplasty/(9877)
25. or/1–24 (140029)
26. prasugrel.af. (85)
27. cs-747.af. (48)
28. LY640315.af. (7)
29. or/26–28 (103)
30. Randomized Controlled Trial/(100635)
31. randomization/(19605)
32. Double-Blind Procedure/(44058)
33. single-blind procedure/(5460)
34. Crossover Procedure/(14358)
35. rct$.ti,ab. (2887)
36. randomi?ed control$trial$.ti,ab. (20969)
37. (clin$adj2 trial$).ti,ab. (71951)
38. *clinical trial/(1280)
39. random allocation.ti,ab. (318)
40. randomly allocated.ti,ab. (5381)
41. (random adj2 allocated).ti,ab. (139)
42. ((single or double or treble or triple) adj blind$).ti,ab. (43118)
43. placebo$.ti,ab. (56566)
44. or/30–43 (218594)
45. 25 and 29 and 44 (21)

MEDLINE

Date range: 1996 to February week 2 2007
Searched via OVID Biomed
Date searched: 27/02/07

Search strategy:

1. prasugrel.af. (26)
2. cs-747.af. (11)
3. LY640315.af. (6)
4. or/1–3 (28)
MEDLINE In-Process & Other Non-Indexed Citations

Date range: up to 26 February 2007
Search via OVID Biomed
Date searched: 27/02/07
Search strategy:

1. prasugrel.af. (8)
2. cs-747.af. (0)
3. LY640315.af. (0)
4. or/1–3 (8)

Searches for economic evaluations of clopidogrel
NHS Economic Evaluation Database (NHS EED)

Search via www.crd.york.ac.uk/crdweb/
Date searched: 01/03/07

#1. clopidogrel or ticlopidine or plavix
#2. MeSH descriptor Ticlopidine
#3. (#1 OR #2), from 2002 to 2007

This retrieved 45 records.

Health Economic Evaluations Database (HEED)
March 2007
Date searched: 01/03/07

clopidogrel or ticlopidine or plavix

This retrieved 97 records.

Searches for economic evaluations of prasugrel
NHS Economic Evaluation Database (NHS EED)

Search via www.crd.york.ac.uk/crdweb/
Date searched: 27/02/07

#1. prasugrel
#2. cs-747
#3. LY640315
#4. #1 or #2 or #3 or #4

This retrieved one record in HTA.

Health Economic Evaluations Database (HEED)
March 2007
Date searched: 01/03/07

Prasugrel or cs-747 or LY640315

This retrieved no records.

Searches for withdrawal/rebound/discontinuation of clopidogrel
CINAHL – Cumulative Index to Nursing & Allied Health Literature

Date range: 1982 to May week 1 2007
Search via OVID Biomed
Date searched: 09/05/07
Search strategy:

1. exp myocardial infarction/(9476)
2. mi.ti. (663)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (6108)
4. (without adj2 st adj2 elevation$).ti,ab. (24)
5. (non adj2 st adj2 elevation$).ti,ab. (238)
6. nstemi.ti,ab. (20)
7. non-stemi.ti,ab. (5)
8. heart attack$.ti,ab. (966)
9. acute coronary syndrome$.ti,ab. (983)
10. acs.ti,ab. (395)
11. (unstable adj2 angina).ti,ab. (550)
12. unstable angina/(821)
13. pci.ti,ab. (261)
14. percutaneous coronary intervention$.ti,ab. (651)
15. coronary disease/(6993)
16. coronary heart disease$.ti,ab. (3059)
17. chd.ti,ab. (1240)
18. (myocard$adj2 ischaemia).ti,ab. (73)
19. (myocard$adj2 ischemia).ti,ab. (496)
20. myocardial ischemia/(1376)
21. ptc.ti,ab. (244)
22. percutaneous transluminal coronary angioplasty.ti,ab. (305)
23. angioplasty, transluminal, percutaneous coronary/(1716)
24. stroke$.ti,ab. (11870)
25. Cerebrovascular Accident/(11975)
26. (cerebrovascular adj2 accident$).ti,ab. (423)
27. cva.ti,ab. (244)
28. Ischemic Attack, Transient/(0)
29. (transient adj2 (ischemic or ischaemic)).ti,ab. (415)
30. tia.ti,ab. (209)
31. Peripheral Vascular Diseases/(1027)
32. ((peripheral adj (arter$or vascular) adj disease) or PAD).ti,ab. (1314)
33. or/1–32 (36570)
34. ticlopidine/(111)
35. ticlopidine.ti,ab. (59)
36. clopidogrel.ti,ab. (276)
37. plavix.ti,ab. (18)
38. clopidogrel bisulfate/(362)
39. or/34–38 (502)
Appendix 1

40. 33 and 39 (352)
41. rebound.ti,ab. (251)
42. withdraw$.ti,ab. (3500)
43. discontinu$.ti,ab. (2759)
44. or/41–43 (6311)
45. 40 and 44 (5)

EMBASE
Date range: 1996 to 2007 week 18
Searched via OVID Biomed
Date searched: 08/05/07
Search strategy:
1. exp heart infarction/(64253)
2. mi.ti. (570)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (45144)
4. (without adj2 st adj2 elevation$).ti,ab. (419)
5. (non adj2 st adj2 elevation$).ti,ab. (1192)
6. nstemi.ti,ab. (230)
7. non-stemi.ti,ab. (35)
8. heart attack$.ti,ab. (1084)
9. acute coronary syndrome$.ti,ab. (6489)
10. acs.ti,ab. (3120)
11. (unstable adj2 angina).ti,ab. (4941)
12. exp unstable angina pectoris/(6270)
13. pci.ti,ab. (3676)
14. percutaneous coronary intervention$.ti,ab. (4752)
15. ischaemic heart disease/(28100)
16. coronary heart disease/(28100)
17. coronary heart disease$.ti,ab. (14674)
18. chd.ti,ab. (6243)
19. (myocard$adj2 ischaemia).ti,ab. (1557)
20. (myocard$adj2 ischemia).ti,ab. (7242)
21. heart muscle ischemia/(24916)
22. ptca.ti,ab. (3372)
23. percutaneous transluminal coronary angioplasty.ti,ab. (3019)
24. transhumal coronary angioplasty/(10027)
25. Stroke/(42540)
26. stroke$.ti,ab. (50200)
27. Cerebrovascular Accident/(13500)
28. (cerebrovascular adj2 accident$).ti,ab. (1638)
29. cva.ti,ab. (612)
30. Transient Ischemic Attack/(5784)
31. (transient adj2 (ischemic or ischaemic)).ti,ab. (3428)
32. tia.ti,ab. (1907)
33. Peripheral Vascular Disease/(4030)
34. ((peripheral adj (arter$or vascular) adj disease) or PAD).ti,ab. (8221)
35. or/1–34 (188519)
36. ticlopidine/(5530)
37. ticlopidine.ti,ab. (1291)
38. clopidogrel/(8879)
39. clopidogrel.ti,ab. (2255)
40. plavix.ti,ab. (77)
41. or/36–40 (11794)
42. 35 and 41 (7418)
43. rebound.ti,ab. (3286)
44. drug treatment failure/or drug withdrawal/or rebound/(26343)
45. withdraw$.ti,ab. (32781)
46. discontinu$.ti,ab. (28240)
47. or/43–46 (77342)
48. 42 and 47 (346)

MEDLINE
Date range: 1996 to April week 4 2007
Searched via OVID Biomed
Date searched: 09/05/07
Search strategy:
1. exp myocardial infarction/(39803)
2. mi.ti. (428)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (44780)
4. (without adj2 st adj2 elevation$).ti,ab. (394)
5. (non adj2 st adj2 elevation$).ti,ab. (1118)
6. nstemi.ti,ab. (171)
7. non-stemi.ti,ab. (31)
8. heart attack$.ti,ab. (1456)
9. acute coronary syndrome$.ti,ab. (6228)
10. acs.ti,ab. (3075)
11. (unstable adj2 angina).ti,ab. (4907)
12. unstable angina/(4516)
13. pci.ti,ab. (3281)
14. percutaneous coronary intervention$.ti,ab. (4453)
15. coronary disease/(33867)
16. coronary heart disease$.ti,ab. (14790)
17. chd.ti,ab. (6154)
18. (myocard$adj2 ischaemia).ti,ab. (1397)
19. (myocard$adj2 ischemia).ti,ab. (7198)
20. myocardial ischemia/(16745)
21. ptca.ti,ab. (3143)
22. percutaneous transluminal coronary angioplasty.ti,ab. (2970)
23. angioplasty, transluminal, percutaneous coronary/(14170)
24. stroke$.ti,ab. (48243)
25. Cerebrovascular Accident/(21784)
26. (cerebrovascular adj2 accident$).ti,ab. (1637)
27. cva.ti,ab. (606)
28. Ischemic Attack, Transient/(4891)
29. (transient adj2 (ischemic or ischaemic)).ti,ab. (3219)
30. tia.ti,ab. (1800)
31. Peripheral Vascular Diseases/(3892)
32. ((peripheral adj (arter$or vascular) adj disease) or PAD).ti,ab. (8295)
33. or/1–32 (171966)
16. coronary heart disease$.ti,ab. (623)
17. chd .ti,ab. (336)
18. (myocard$adj2 ischaemia).ti,ab. (52)
19. (myocard$adj2 ischemia).ti,ab. (290)
20. myocardial ischemia/(0)
21. pica .ti,ab. (61)
22. percutaneous transluminal coronary angioplasty .ti,ab. (55)
23. angioplasty, transluminal, percutaneous coronary/(0)
24. stroke$.ti,ab. (2496)
25. Cerebrovascular Accident/(0)
26. (cerebrovascular adj2 accident$).ti,ab. (69)
27. cva .ti,ab. (37)
28. Ischemic Attack, Transient/(0)
29. (transient adj2 (ischemic or ischaemic)).ti,ab. (129)
30. tia .ti,ab. (81)
31. Peripheral Vascular Diseases/(0)
32. ((peripheral adj (arter$or vascular) adj disease) or PAD).ti,ab. (433)
33. or/1–32 (6225)
34. ticlopidine/(0)
35. ticlopidine .ti,ab. (1136)
36. clopidogrel .ti,ab. (1939)
37. plavix .ti,ab. (71)
38. or/34–37 (3337)
39. 33 and 38 (2089)
40. rebound .ti,ab. (3131)
41. withdraw$.ti,ab. (31006)
42. discontinu$.ti,ab. (27225)
43. or/40–42 (59032)
44. 39 and 43 (112)

MEDLINE In-Process & Other Non-Indexed Citations
Date range: up to 8 May 2007
Searched via OVID Biomed
Date searched: 09/05/07
Search strategy:
1. [exp myocardial infarction/] (0)
2. mi .ti. (88)
3. (myocard$adj4 (infarct$or acute)).ti,ab. (1914)
4. (without adj2 st adj2 elevation$).ti,ab. (18)
5. (non adj2 st adj2 elevation$).ti,ab. (70)
6. nstemi .ti,ab. (16)
7. non-stemi .ti,ab. (8)
8. heart attack$.ti,ab. (61)
9. acute coronary syndrome$.ti,ab. (411)
10. acs .ti,ab. (267)
11. (unstable adj2 angina).ti,ab. (166)
12. unstable angina/(0)
13. pci .ti,ab. (351)
14. percutaneous coronary intervention$.ti,ab. (356)
15. coronary disease/(0)

<table>
<thead>
<tr>
<th>Database</th>
<th>Results</th>
<th>After deduplication</th>
<th>Custom 4 field</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBASE</td>
<td>346</td>
<td>344</td>
<td>EMBASE 09/05/07</td>
</tr>
<tr>
<td>MEDLINE</td>
<td>112</td>
<td>38</td>
<td>MEDLINE 09/05/07</td>
</tr>
<tr>
<td>MEDLINE In-Process</td>
<td>6</td>
<td>4</td>
<td>MEDLINE In-Process 09/05/07</td>
</tr>
<tr>
<td>CINAHL</td>
<td>5</td>
<td>1</td>
<td>CINAHL 09/05/07</td>
</tr>
<tr>
<td>Total</td>
<td>469</td>
<td>387</td>
<td></td>
</tr>
</tbody>
</table>

Results were then deduplicated against RCTs main library (as these have already been screened) and saved as rebound minus rcts main library.enl (345 results).
Appendix 2

Investigation of a rebound effect following clopidogrel withdrawal: results of studies evaluating withdrawal of thienopyridine treatment in populations other than NSTE-ACS

Most of the additional studies retrieved were of patients who had undergone stent implantation; therefore, given the introduction of a foreign body into the cardiovascular system, the risk of adverse clinical events was thought not likely to be comparable to that of the general ACS population, or more generally of cardiovascularly compromised patients. Results from the few studies of patients with PAD, stroke or MI, or who had discontinued therapy to undergo surgery other than PCI, were thought most likely to be more representative of the NSTE-ACS population and are therefore discussed first; however, these do not offer any conclusive evidence of a rebound effect following withdrawal of clopidogrel.

PAD, stroke, MI and discontinuation for non-PCI surgery

Only three studies reported event rates in patients who had not undergone PCI.82–84 One reported a case series of 23 patients who were to undergo lithotripsy and who were taking antiplatelet therapy, owing to previous MI, coronary artery bypass graft (CABG), TIA, chronic atrial fibrillation or PAD.83 Antiplatelet therapy was discontinued 8 days before lithotripsy and haemorrhagic and thromboembolic events were reported. Of these 23 patients, three received ticlopidine (the remaining patients received either aspirin or dipyridamole), none of whom showed any thromboembolic complications. A second case series comprised 320 patients hospitalised after a TIA or stroke; the drugs administered to the patients during the month prior to admission were recorded.82 Of the 22 patients who had been administered clopidogrel during the month prior to admission, one had discontinued antiplatelet therapy 10 days prior to an ischaemic stroke. Finally, there were two case reports; both patients discontinued therapy 1 week prior to Mohs micrographic surgery (a technique using a microscope to ensure the complete removal of cancerous skin cells).84 One patient with prior stroke and MI receiving ticlopidine suffered a deep vein thrombosis 36 hours post-surgery. The second patient had a history of atherosclerosis, CABG, aortic valve replacement and breast cancer and suffered a clotted prosthetic aortic valve 3 days post-surgery. These reports do not provide any evidence to confirm or reject the existence of rebound following clopidogrel withdrawal.

PCI RCTs

Five RCTs compared clopidogrel and ticlopidine therapy for patients undergoing a PCI. One RCT administered clopidogrel (n = 355) or ticlopidine (n = 347) for 1 month following PCI; the incidence of cardiovascular death and ischaemic events was recorded at long-term follow-up.80 The trial reported that, approximately 2 years after the PCI, 40 (11.3%) participants in the clopidogrel group and 19 (5.5%) participants in the ticlopidine group either died due to cardiovascular problems or experienced a non-fatal MI. While this result shows a significantly lower risk of cardiovascular mortality or non-fatal MI in the ticlopidine group than in the clopidogrel group, it does not provide any evidence for rebound effects. The four remaining trials described occurrences of stent thrombosis following the unplanned discontinuation of clopidogrel or ticlopidine therapy (Table 28); these trials also offer no evidence of a rebound effect.

Cohort studies

One observational cohort study evaluated 2226 consecutive patients who had undergone a successful stent implantation, and then received either clopidogrel or ticlopidine for 3–6 months.55 Of these, 17 discontinued their treatment prematurely, five of whom went on to develop a stent thrombosis (29.4%). This rate of thrombosis was higher than that for the study population as a whole, with 49 (2.2%) patients developing a
Appendix 2

TABLE 28 Number of patients experiencing stent occlusion following unplanned/premature discontinuation of clopidogrel after PCI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention and its duration</td>
<td>Clopidogrel</td>
<td>Ticlopidine</td>
<td>Clopidogrel</td>
<td>Ticlopidine</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>150 mg loading dose; 75 mg daily (n = 154)</td>
<td>500 mg loading dose; 250 mg twice daily (n = 153)</td>
<td>75 mg daily (n = 335) or 300 mg loading dose; 75 mg daily (n = 345)</td>
<td>250 mg twice daily (n = 340) or 500 mg loading dose; 250 mg twice daily (n = 827)</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>Dose not stated (n = 393)</td>
<td>Dose not stated (n = 112)</td>
<td>28 days</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Duration of treatment</td>
<td>2 weeks</td>
<td>8 months</td>
<td>28 days</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>

Number of cases of premature discontinuation

<table>
<thead>
<tr>
<th>Intervention and its duration</th>
<th>Clopidogrel</th>
<th>Ticlopidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cases of premature discontinuation</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not reported</td>
<td>17 and 7</td>
<td>28</td>
</tr>
</tbody>
</table>

Number of cases of stent occlusion

<table>
<thead>
<tr>
<th>Intervention and its duration</th>
<th>Clopidogrel</th>
<th>Ticlopidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cases of stent occlusion</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0 and 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>None reported</td>
<td></td>
</tr>
</tbody>
</table>

stent thrombosis. Premature discontinuation of thienopyridine therapy was identified as a risk factor for subsequent stent thrombosis.

The retrospective cohort study described in Chapter 3 provided results for patients who had undergone PCI as well as for those who were treated medically. Of the 1569 patients who received PCI for ACS and discontinued clopidogrel therapy during the follow-up period, 984 received bare metal stents and 585 received drug-eluting stents. Of these, 124 (7.9%) suffered an acute MI or died, with 73 (58.9%) of these incidents occurring within the first 90 days post withdrawal of clopidogrel. This translates into an incidence rate per 1000 patient days of follow-up of 0.57 (95% CI 0.45–0.72) for the first 90 days, 0.33 (95% CI 0.23–0.47) for 91–180 days and 0.19 (95% CI 0.09–0.37) for 181–270 days’ follow-up. Using multivariate analysis, a significantly increased risk of adverse events was demonstrated in the 0–90 day post-withdrawal period compared with the 91–180 day period (IRR 1.82; 95% CI 1.17–2.83). When analysed separately, the result for patients whose PCI involved a bare metal stent was IRR 2.14; 95% CI 1.23–3.74.

Case series

Eight case series provided information relating to outcomes after discontinuation of thienopyridine therapy (five of clopidogrel, two of ticlopidine and one not specified). One case series of 54 long-term clopidogrel users reported the results of biomarkers 1 month after clopidogrel withdrawal. This study showed significant increases in some biomarkers (Table 29). This study was conducted in diabetic patients who were considered to be more susceptible to atherothrombotic events due to increased platelet reactivity and proinflammatory status.

The remaining four case series evaluating clopidogrel reported clinical outcomes between 5 months and 2.5 years post-withdrawal (Table 30). One trial reported outcomes for 13 patients who discontinued treatment prematurely. This study reported a higher rate of stent occlusion in these patients (3/13; 23.1%) than that reported in the overall study population (6/404; 1.5%), and concluded that the discontinuation of clopidogrel was associated with a poorer outcome.

Three studies reported outcomes for ticlopidine, or data for thienopyridine therapy generally (Table 31). Two studies compared the clinical outcomes for those who completed the prescribed regimen with those who discontinued early; both showed a much higher rate of reported events in the patients that discontinued therapy early, and concluded that premature discontinuation of thienopyridine therapy was strongly associated with an increased mortality or stent thrombosis. The third reported outcomes...
TABLE 29 Comparison of mean (SD) levels of biomarkers for 54 long-term clopidogrel users at baseline and 1 month after clopidogrel withdrawal

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Baseline vs 1 month post-withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>hs-CRP (mg/dl)</td>
<td>30 vs 40<sup>a</sup></td>
</tr>
<tr>
<td>P-selectin resting: % positive platelets</td>
<td>16 vs 28<sup>a</sup></td>
</tr>
<tr>
<td>P-selectin ADP stimulated: % positive platelets</td>
<td>31 vs 58<sup>a</sup></td>
</tr>
<tr>
<td>% Platelet aggregation following ADP stimuli</td>
<td></td>
</tr>
<tr>
<td>6 µmol/l ADP</td>
<td>45 vs 69<sup>a</sup></td>
</tr>
<tr>
<td>20 mol/l ADP</td>
<td>55 vs 77<sup>a</sup></td>
</tr>
<tr>
<td>HbA1C levels, % (SD)</td>
<td>7.1 (1.3) vs 7.1(1.9)</td>
</tr>
<tr>
<td>Haematocrit, % (SD)</td>
<td>40.5 (3.8) vs 41.2 (3.3)</td>
</tr>
<tr>
<td>Platelet count, 10<sup>9</sup>/ml (SD)</td>
<td>222.3 (58.9) vs 232.2 (51.5)</td>
</tr>
<tr>
<td>Mean platelet volume, fl (SD)</td>
<td>8.9 (1.0) vs 8.8 (1.2)</td>
</tr>
</tbody>
</table>

ADP, adenosine diphosphate; HbA1C, glycosylated haemoglobin; fl, femtolitre; hs-CRP, high-sensitivity C-reactive protein; SD, standard deviation.

^a Extrapolated from a graph.

TABLE 30 Number of patients (%) experiencing adverse cardiac events, stent thrombosis or occlusion, or revascularisation at follow-up after discontinuation of clopidogrel post-PCI

<table>
<thead>
<tr>
<th>Study</th>
<th>Pfisterer (2006)<sup>57</sup></th>
<th>Han (2007)<sup>58</sup></th>
<th>Rau (2005)<sup>59</sup></th>
<th>Carlsson (2007)<sup>60</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention – clopidogrel dose</td>
<td>300 mg loading dose; 75 mg daily (n = 743)</td>
<td>300–600 mg loading dose; 75 mg daily (n = 200)</td>
<td>300 mg loading dose; 75 mg daily (n = 62)</td>
<td>600 mg loading dose; 75 mg daily (n = 1377)</td>
</tr>
<tr>
<td>Duration of treatment</td>
<td>6 months</td>
<td>4 months</td>
<td>6 months</td>
<td>1–12 months</td>
</tr>
<tr>
<td>Follow-up</td>
<td>1 year</td>
<td>150–340 days</td>
<td>6 months</td>
<td>1 month to 2.5 years</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>6 (0.8)</td>
<td>1 (0.5)</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>MI</td>
<td>23 (3.1)</td>
<td>1 (0.5)</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Revascularisation</td>
<td>Not reported</td>
<td>18 (9.0)</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>MACE</td>
<td>Not reported</td>
<td>21 (10.5)</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Stent occlusion</td>
<td>16 (2.2)</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Late thrombosis</td>
<td>65 (8.7)</td>
<td>Not reported</td>
<td>1 (1.6)</td>
<td>9 (0.65)</td>
</tr>
</tbody>
</table>

MACE, major adverse cardiovascular event; MI, myocardial infarction.

at 1 month, 2 weeks after discontinuing a 2-week course of ticlopidine; although two patients were reported to have died, neither death was ischaemia-related.⁶³

Case reports

Thirty-three case reports relating to patients receiving antiplatelet therapy post-stenting, across 17 publications, were identified (Table 32). Where reported, the duration of antiplatelet treatment ranged from 2 days to 31 months, and the time lapse post discontinuation of the event ranged from 4 days to 4 years. Of the 27 events where the lapse between discontinuation and the event was reported, four occurred within 7 days of discontinuation, 13 within 14 days, and 17 within 21 days; 10 events occurred after 21 days. The most common event was stent thrombosis (30 events), with 17 cardiovascular events reported. When considering the occurrence of MI, the most common cardiovascular event, 12 of the 15 MIs reported occurred within 14 days.
TABLE 31 Outcomes for non-clopidogrel therapies following PCI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Unspecified thienopyridine for 3–6 months ($n = 500$) vs discontinuation before 1 month ($n = 68$)</td>
<td>250 mg ticlopidine twice daily for 4 weeks ($n = 226$) vs discontinuation before 4 weeks ($n = 18$)</td>
<td>250 mg ticlopidine twice daily for 14 days ($n = 827$)</td>
</tr>
<tr>
<td>Follow-up</td>
<td>12 months</td>
<td>1 month</td>
<td>30 days</td>
</tr>
<tr>
<td>Results</td>
<td>All-cause death 7.5% vs 0.7% ($p < 0.05$)</td>
<td>Subacute stent thrombosis 3 (17%) vs 4 (1.8%)</td>
<td>All-cause death 2 (0.2%)</td>
</tr>
<tr>
<td></td>
<td>Cardiac re-hospitalisation 23% vs 14% (NS)</td>
<td></td>
<td>Cardiovascular death 0</td>
</tr>
</tbody>
</table>

| NS, not significant. |

after discontinuation of therapy; there seemed to be no relationship between the duration of thienopyridine treatment and the period of time between discontinuation and the MI.

The only case study to report changes in biomarkers, and therefore provide a direct assessment of any potential rebound effect, was that of the patient with angina who withdrew from both prasugrel (a newer thienopyridine than clopidogrel) and aspirin treatment.73 This patient was reported to have had at least a twofold increase in all platelet measures, with platelet activation biomarkers being higher than those observed at presentation of acute vascular event, suggesting a rebound effect in this patient.73
TABLE 32 Case reports of adverse outcomes following discontinuation of antiplatelet therapy prescribed after PCI

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration of antiplatelet treatment</th>
<th>Time lapse between discontinuation and event</th>
<th>No adverse outcomes</th>
<th>Stent thrombosis</th>
<th>MI</th>
<th>Cardiogenic shock</th>
<th>Clotted prosthetic aortic valve</th>
<th>Pulmonary embolism</th>
<th>High platelet biomarkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>Discontinued 'in hospital'</td>
<td>8 days</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>2 days</td>
<td>6 days</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puri (2006)</td>
<td>2 weeks</td>
<td>13 months</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang (2006)</td>
<td>2 weeks</td>
<td>20 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helft (2003)</td>
<td>2 weeks</td>
<td>Unknown</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerner (2003)</td>
<td>1 month</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>1 month</td>
<td>4 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>1 month</td>
<td>8 days</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimarino (2004)</td>
<td>3 months</td>
<td>15 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waters (2005)</td>
<td>6 months</td>
<td>14 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassin (2007)</td>
<td>6 months</td>
<td>5 months</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabile (2004)</td>
<td>6 months</td>
<td>6.5 months</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>7–8 months</td>
<td>4 weeks</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waters (2005)</td>
<td>8 months</td>
<td>7 days</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>9 months</td>
<td>14 days</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabile (2004)</td>
<td>11 months</td>
<td>4 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>12 months</td>
<td>14 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrissoheris (2006)</td>
<td>12 months</td>
<td>4 weeks</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Berg (2006)</td>
<td>13 months</td>
<td>15 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrissoheris (2006)</td>
<td>13 months</td>
<td>7 weeks</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimenez-Quevedo (2004)</td>
<td>15 months</td>
<td>17 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waters (2005)</td>
<td>16 months</td>
<td>13 days</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kereiakes (2002)</td>
<td>31 months</td>
<td>10 days</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
TABLE 32 Case reports of adverse outcomes following discontinuation of antiplatelet therapy prescribed after PCI (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration of antiplatelet treatment</th>
<th>Time lapse between discontinuation and event</th>
<th>No adverse outcomes</th>
<th>Stent thrombosis</th>
<th>MI</th>
<th>Cardiogenic shock</th>
<th>Clotted prosthetic aortic valve</th>
<th>Pulmonary embolism</th>
<th>High platelet biomarkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Werkum (2006)(^7^8)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Werkum (2006)(^7^8)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Werkum (2006)(^7^8)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasugrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serebruany (2006)(^7^1)</td>
<td>Non-compliant</td>
<td>3–4 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naber (2001)(^7^1)</td>
<td>1 month</td>
<td>14 days</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassin (2007)(^6^5)</td>
<td>2 months</td>
<td>14 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabuchi (1998)(^7^5)</td>
<td>2 months</td>
<td>7 days</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeda (2007)(^7^6)</td>
<td>3 months</td>
<td>2.5 months</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unspecified thienopyridine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kereakes (2002)(^6^9)</td>
<td>6 months</td>
<td>10 months</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Total number of cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

MI, myocardial infarction.
Appendix 3

Details of clopidogrel efficacy RCTs conducted in populations other than patients with NSTE-ACS

Our searches identified a number of trials that evaluated the effectiveness of clopidogrel compared with aspirin in populations other than NSTE-ACS (patients with ischaemic stroke, MI or symptomatic atherosclerotic PAD;87–92 stable CHD;93 planned PCI or coronary angiogram;43–46 documented MI, with or without ST elevation;94 acute STEMI, left bundle branch block or ST depression;95–96 multiple atherothrombotic risk factors or documented coronary, cerebrovascular or symptomatic PAD disease97–99). One of these trials provided data for the rebound section of the current review.43–46 As well as being conducted in a different population, none of these trials are directly comparable with the CURE trial in terms of study size, treatment regime, time to follow-up and outcomes reported:

- **CAPRIE:**87–92 aspirin was not prescribed in conjunction with clopidogrel, with 325 mg aspirin prescribed to the placebo arm (only 33\% of patients in the CURE trial were prescribed > 200 mg); mean follow-up was longer than the CURE trial, at 1.9 years.
- **ASCET:**93 a small trial (\(n = 206\)); 160 mg or less of aspirin prescribed to all patients (67\% of patients prescribed < 200 mg aspirin in the CURE trial); only reported changes in biomarkers (outcomes which were not reported in the CURE trial).
- **CREDO:**43–46 the placebo group were prescribed clopidogrel for 28 days post-PCI (clopidogrel not administered to placebo group in the CURE trial); 325 mg aspirin prescribed to all patients (33\% of patients in the CURE trial prescribed > 200 mg).
- **CADET:**94 a small trial (\(n = 184\)); aspirin was not prescribed in conjunction with clopidogrel, and only 75 mg aspirin was prescribed to the placebo group (42\% received < 100 mg aspirin in the CURE trial); only reported changes in biomarkers (outcomes which were not reported in the CURE trial); follow-up was shorter than the CURE trial, at 6 months.
- **COMMIT:**95,96 162 mg aspirin prescribed to all patients (67\% of patients were prescribed < 200 mg aspirin in the CURE trial); follow-up was substantially shorter than the CURE trial, at only 28 days.
- **CHARISMA:**97–99 75–160 mg aspirin prescribed to all patients (33\% of patients in the CURE trial were prescribed > 200 mg); follow-up was longer than the CURE trial, at 22 months.

Table 33 provides the results reported in each of the trials. *Table 34* shows the results of outcome measures comparable across the five trials that reported clinical outcomes as reported in the trials, and *Table 35* shows these converted to RRs, RRRs or relative risk increases (RRIs). Across all the trials, clopidogrel reduces the risk of the composite outcomes of MI/stroke/(all-cause or cardiovascular) death, and where reported reduces the risk of fatal and non-fatal MI and stroke; however, the magnitude of these effects varies. There is less consistency across trials for the other comparative outcomes. These differences are likely to be due to the clinical heterogeneity seen between the trials as outlined above. Other clopidogrel trials identified did not compare clopidogrel with aspirin, but were considered for inclusion in the rebound section of the current review: TRUE (ticlopidine versus clopidogrel);52 CLASSICS (ticlopidine versus two clopidogrel regimes; included in the rebound section of the current review);53 JUMBO (prasugrel versus clopidogrel);121 MATCH (aspirin plus clopidogrel versus placebo plus clopidogrel).122
TABLE 33 Results of outcome measures comparable across the six trials that reported clinical outcome

<table>
<thead>
<tr>
<th>Trial</th>
<th>Population and design</th>
<th>Interventions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPRIE87–92</td>
<td>19,185 patients with ischaemic stroke, MI or symptomatic atherosclerotic PAD</td>
<td>Clopidogrel 75mg plus aspirin placebo daily (n = 9599)</td>
<td>Two years: RRR (95% CI)</td>
</tr>
<tr>
<td></td>
<td>Randomised; double-blinded</td>
<td>vs Clopidogrel placebo plus 325mg aspirin daily (n = 9586)</td>
<td>Ischaemic stroke, MI or vascular death: RRR 8.7% (95% CI 0.3–16.5)</td>
</tr>
<tr>
<td></td>
<td>Follow-up: mean 1.91 years</td>
<td></td>
<td>Ischaemic stroke, MI, amputation or vascular death: RRR 7.67% (95% CI 0.8 to 15.3)</td>
</tr>
<tr>
<td></td>
<td>Complete for 99% of patients in both arms of the trial</td>
<td></td>
<td>Vascular death: RRR 7.6% (95% CI 6.9 to 20.1)</td>
</tr>
<tr>
<td></td>
<td>Sample size calculation: yes</td>
<td></td>
<td>Any stroke, MI or death: RRR 7.0% (95% CI 0.9 to 14.2)</td>
</tr>
<tr>
<td></td>
<td>ITT analysis: yes</td>
<td></td>
<td>All-cause mortality: RRR 2.2% (95% CI 0.9 to 2.9)</td>
</tr>
<tr>
<td>ASCET93</td>
<td>206 patients with stable coronary heart disease verified with coronary angiography not responding to aspirin</td>
<td>Clopidogrel 75mg plus 160 mg aspirin daily (n = 101)</td>
<td>2 years: n</td>
</tr>
<tr>
<td></td>
<td>Randomised; laboratory staff blinded</td>
<td>vs 160 mg aspirin daily (n = 105)</td>
<td>Non-fatal ischaemic stroke: clopidogrel: 472; aspirin: 504</td>
</tr>
<tr>
<td></td>
<td>Follow-up: 1 year</td>
<td></td>
<td>Non-fatal MI: clopidogrel: 255; aspirin: 301</td>
</tr>
<tr>
<td></td>
<td>Appears complete</td>
<td></td>
<td>Non-fatal primary intracranial haemorrhage: clopidogrel: 14; aspirin: 24</td>
</tr>
<tr>
<td></td>
<td>Sample size calculation: no</td>
<td></td>
<td>Amputation: clopidogrel: 52; aspirin: 47</td>
</tr>
<tr>
<td></td>
<td>ITT analysis: appear to have compete follow-up</td>
<td></td>
<td>Fatal ischaemic stroke: clopidogrel: 37; aspirin: 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fatal MI: clopidogrel: 53; aspirin: 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Haemorrhagic death: clopidogrel: 23; aspirin: 27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other vascular death: clopidogrel: 260; aspirin: 261</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-vascular death: clopidogrel: 187; aspirin: 166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 month: median (25, 75 percentiles)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRP (mg/l): clopidogrel: 3.10 (1.45, 6.25); aspirin: 3.72 (1.68, 7.14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TNF-α (pg/ml): clopidogrel: 1.05 (0.84, 1.56); aspirin: 1.07 (0.88, 1.57)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-6 (pg/ml): clopidogrel: 2.5 (1.5, 4.30); aspirin: 2.60 (2.00, 3.80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-10 (pg/ml): clopidogrel: 2.11 (1.30, 3.56); aspirin: 2.26 (1.34, 3.73)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCP-I (pg/ml): clopidogrel: 2.26 (2.22, 321); aspirin: 2.77 (228, 350)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P-SEL (ng/ml): clopidogrel: 37.7 (31.8, 44.6); aspirin: 37.6 (31.2, 43.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 year: median (25, 75 percentiles)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRP (mg/l): clopidogrel: 3.46 (1.77, 6.40); aspirin: 3.02 (1.63, 6.57)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TNF-α (pg/ml): clopidogrel: 0.99 (0.78, 1.34); aspirin: 1.00 (0.75, 1.36)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-6 (pg/ml): clopidogrel: 2.60 (1.50, 3.80); aspirin: 2.60 (1.70, 3.80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-10 (pg/ml): clopidogrel: 1.75 (1.14, 3.43); aspirin: 1.77 (1.17, 2.98)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCP-I (pg/ml): clopidogrel: 241 (2.02, 3.03); aspirin: 245 (196, 298)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P-SEL (ng/ml): clopidogrel: 37.3 (30.5, 46.6); aspirin: 37.4 (30.5, 46.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD40L (pg/ml): clopidogrel: 468 (318, 859); aspirin: 515 (347, 863)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGF-β (pg/ml): clopidogrel: 1003 (548, 1404); aspirin: 1105 (592, 1543)</td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>Population and design</td>
<td>Interventions</td>
<td>Results</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| CREDO 43–46 | 2116 patients referred for planned PCI or coronary angiogram
Randomised; double-blinded
Follow-up: 1 year
Complete for 63% and 61% of patients in the clopidogrel and placebo groups respectively
Sample size calculation: yes
ITT analysis: yes | Clopidogrel 300 mg then clopidogrel 75 mg plus 325 mg aspirin daily
(n = 1053)
vs
Placebo prior to PCI, then 75 mg clopidogrel for 28 days, then placebo for up to 1 year; 325 mg aspirin was prescribed throughout
(n = 1063) | 28 days: RRR (95% CI)
Death, MI, stroke: RRR 19.7% (95% CI –13.3 to 43.1)
Any major bleeding: clopidogrel: 4.7%; aspirin: 3.6%
Non-procedural major bleeding: clopidogrel: 0.18%; aspirin: 0.3%
Procedural major bleeding: clopidogrel: 4.7%; aspirin: 3.37%
Any minor bleeding: clopidogrel: 3.1%; aspirin: 2.3%
Non-procedural minor bleeding: clopidogrel: 0.3%; aspirin: 0.1%
Procedural minor bleeding: clopidogrel: 2.9%; aspirin: 2.2%
1 year (RRR (95% CI)
Death, MI, stroke: RRR 37.4% (95% CI 1.8–60.1)
Any major bleeding: clopidogrel: 8.8%; aspirin: 6.7%
Non-procedural major bleeding: clopidogrel: 1.2%; aspirin: 0.8%
Procedural major bleeding: clopidogrel: 7.7%; aspirin: 5.9%
Any minor bleeding: clopidogrel: 4.7%; aspirin: 3.6%
Non-procedural minor bleeding: clopidogrel: 0.3%; aspirin: 0.1%
Procedural minor bleeding: clopidogrel: 2.9%; aspirin: 2.2% |
| CADET 94 | 184 patients aged at least 21 years with documented MI (with or without ST elevation) within the previous 3–7 days
Randomised; double-blinded
Follow-up: 6 months
Complete for 82% of patients
Sample size calculation: yes
ITT analysis: yes | Clopidogrel 75 mg daily
(n = 94)
vs
Aspirin 75 mg daily
(n = 90) | 6 months: difference from baseline (first quartile, third quartile)
Fibrinogen – Clauss (g/l): clopidogrel: 0.70 (0.09, 2.40); aspirin: 1.01 (0, 2.16)
Fibrinogen – nephelometric (g/l): clopidogrel: 0.58 (–0.13, 1.91); aspirin: 0.60 (–0.10, 1.80)
CRP (mg/l): clopidogrel: 21.0 (5.5, 55.1); aspirin: 17.8 (8.5, 42.1)
D-dimer (ng/ml): clopidogrel: 35 (0, 120); aspirin: 21 (–18, 103)
VWF (IU/dl): clopidogrel: 64 (38, 99); aspirin: 55 (31, 83)
Factor VIII (IU/dl): clopidogrel: 43 (16, 75); aspirin: 50 (27, 76)
Plasma viscosity (mPa.s): clopidogrel: 0.03 (–0.02, 0.10); aspirin: 0.06 (–0.01, 0.10)
Tissue plasma activator (ng/ml): clopidogrel: 1.1 (–1.9, 4.4); aspirin: 1.4 (–2.7, 4.5)
Adverse events: patients ever reporting
Chest pain: clopidogrel: 14; aspirin: 13
Surgical intervention: clopidogrel: 11; aspirin: 13
Angina: clopidogrel: 9; aspirin: 11
Coughing: clopidogrel: 5; aspirin: 11
Dizziness: clopidogrel: 6; aspirin: 10 |
TABLE 33 Results of outcome measures comparable across the six trials that reported clinical outcome (continued)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Population and design</th>
<th>Interventions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMIT</td>
<td>45,852 patients hospitalised within 24 hours of onset of symptoms of acute STEMI, left bundle branch block or ST depression</td>
<td>Clopidogrel 75 mg plus 162 mg aspirin daily (n = 22,961) vs Placebo plus 162 mg aspirin (n = 22,891)</td>
<td>Dyspnoea: clopidogrel: 9; aspirin: 8; Diarrhoea: clopidogrel: 4; aspirin: 6; MI: clopidogrel: 1; aspirin: 6; Indigestion: clopidogrel: 5; aspirin: 5; Lower respiratory tract infection: clopidogrel: 2; aspirin: 5; Other: clopidogrel: 58; aspirin: 49. Serious (fatal or life-threatening) adverse events occurring</td>
</tr>
<tr>
<td>Trial</td>
<td>Population and design</td>
<td>Interventions</td>
<td>Results</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| CHARISMA97–99 | At least 45 years of age with either multiple atherothrombotic risk factors or documented coronary, cerebrovascular or symptomatic PAD disease | Clopidogrel 75mg plus 75–162 mg aspirin daily (n = 7802) vs Placebo plus 75–162 mg aspirin daily (n = 7801) | **22 months:** RR (95% CI)
First occurrence MI, stroke, cardiovascular death: RR 0.93 (95% CI 0.83–1.05)
All-cause mortality: RR 0.99 (95% CI 0.86–1.14)
Cardiovascular mortality: RR 1.04 (95% CI 0.87–1.25)
MI: RR 0.94 (95% CI 0.75–1.18)
Ischaemic stroke (non-fatal): RR 0.81 (95% CI 0.64–1.02)
Stroke (non-fatal): RR 0.79 (95% CI 0.64–0.98)
First occurrence MI, stroke, cardiovascular death, hospitalisation for unstable angina, TIA or revascularisation: RR 0.92 (95% CI 0.86–0.995)
Hospitalisation for unstable angina, TIA or revascularisation: RR 0.90 (95% CI 0.82–0.98)
Severe bleeding: RR 1.25 (95% CI 0.97–1.61)
Fatal bleeding: RR 1.53 (95% CI 0.83–2.82)
Primary intracranial haemorrhage: RR 0.96 (95% CI 0.56–1.65)
Moderate bleeding: RR 1.62 (95% CI 1.27–2.08) |

CD40L, CD40 ligand; CI, confidence interval; CRP, C-reactive protein; IL, interleukin; ITT, intention to treat; MCP, member cofactor protein; MI, myocardial infarction; NNT, number needed to treat; P-SEL, P-selectin; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; RR, relative risk; RRR, relative risk reduction; STEMI, ST-elevation myocardial infarction; TGF, transforming growth factor; TIA, transient ischaemic attack; TNF, tumour necrosis factor; VWF, von Willebrand factor.
TABLE 34 Results of outcome measures comparable across the five trials evaluating clopidogrel and aspirin as reported in the papers

<table>
<thead>
<tr>
<th>Outcome</th>
<th>CAPRIE87–92 (2 years)</th>
<th>CREDO43-44 (1 year)</th>
<th>COMMIT95,96 (28 days)</th>
<th>CHARISMA97–99 (22 months)</th>
<th>CURE17–22 (1 year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clopidogrel</td>
<td>Aspirin</td>
<td>Clopidogrel</td>
<td>Aspirin</td>
<td>Clopidogrel</td>
</tr>
<tr>
<td></td>
<td>RRR 7.0% (95% CI –0.9 to 14.2)</td>
<td>RRR 37.4% (95% CI 1.8–60.1)</td>
<td>RRR 8.2% (95% CI 2.7–13)</td>
<td>RR 0.93 (95% CI 0.83–1.05)</td>
<td>582 (9.3%)</td>
</tr>
<tr>
<td>MI/stroke/all-cause or cardiovascular death</td>
<td>All death</td>
<td>All death</td>
<td>All death</td>
<td>Cardiovascular death</td>
<td>Cardiovascular death</td>
</tr>
<tr>
<td>MI (fatal/non fatal unspecified)</td>
<td>–</td>
<td>–</td>
<td>RR 1.4% (95% CI 2.9–24)</td>
<td>RR 0.94 (95% CI 0.75–1.18)</td>
<td>324 (5.2%)</td>
</tr>
<tr>
<td>Stroke (fatal/non-fatal unspecified)</td>
<td>509 (5.3%) (5.7%)</td>
<td>546</td>
<td>–</td>
<td>RR 1.4% (95% CI 3.0 to 28)</td>
<td>–</td>
</tr>
<tr>
<td>Mortality (cardiovascular)</td>
<td>RRR 7.6% (95% CI –6.9 to 20.1)</td>
<td>–</td>
<td>–</td>
<td>RR 1.04 (95% CI 0.87–1.25)</td>
<td>318 (5.1%)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>–</td>
<td>93 (8.8%)</td>
<td>71 (6.7%)</td>
<td>RR 6.9% (95% CI –16 to 36)</td>
<td>231 (3.7%)</td>
</tr>
<tr>
<td>Bleeding (fatal)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>RR 1.53 (95% CI 0.83–2.82)</td>
<td>11 (0.2%)</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>–</td>
<td>50 (4.7%)</td>
<td>38 (3.6%)</td>
<td>–</td>
<td>322 (5.1%)</td>
</tr>
</tbody>
</table>

CI, confidence interval; MI, myocardial infarction; RR, relative risk; RRR, relative risk reduction.
TABLE 35 Results of outcome measures comparable across the five trials evaluating clopidogrel and aspirin expressed as RRs and/or RRRs or RRIs with 95% CIs where provided or calculable

<table>
<thead>
<tr>
<th>Trial (follow-up)</th>
<th>CAPRIE87–92 (2 years)</th>
<th>CREDO41–44 (1 year)</th>
<th>COMMIT95,96 (28 days)</th>
<th>CHARISMA97–99 (22 months)</th>
<th>CURE17–22 (1 year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI/stroke/cardiovascular death</td>
<td>RRR 7.0% (95% CI –0.9 to 14.2)</td>
<td>RRR 37.4% (95% CI 1.8–60.1)</td>
<td>RRR 8.2% (95% CI 2.7–13)</td>
<td>RR 0.93 (95% CI 0.83–1.05); RRR 7% (95% CI –5.0 to 17.0)</td>
<td>RR 0.82 (95% CI 0.73–0.90); RRR 18.5% (95% CI 9.6–26.5)</td>
</tr>
<tr>
<td>MI (fatal/non-fatal unspecified)</td>
<td>–</td>
<td>–</td>
<td>RR 1.4% (95% CI 2.9–24)</td>
<td>RR 0.94 (95% CI 0.75–1.18); RRR 6% (95% CI 18.0 to 25.0)</td>
<td>RR 0.78 (95% CI 0.68–0.90); RRR 22% (95% CI 10.4–32.4)</td>
</tr>
<tr>
<td>Stroke (fatal/non-fatal unspecified)</td>
<td>RR 0.93 (95% CI 0.83–1.05); RRR 7% (95% CI –6.9 to 20.1)</td>
<td>–</td>
<td>RR 1.4% (95% CI –3.0 to 28)</td>
<td>–</td>
<td>RR 0.87 (95% CI 0.64–1.18); RRR 13% (95% CI 18.0 to 36.1)</td>
</tr>
<tr>
<td>Mortality (cardiovascular)</td>
<td>RRR 7.6% (95% CI 14.9 to 20.1)</td>
<td>–</td>
<td>–</td>
<td>RR 1.04 (95% CI 0.87–1.25); RRI 4% (95% CI 13.0 to 25.0)</td>
<td>RR 0.93 (95% CI 0.80–1.08); RRR 7% (95% CI 7.7 to 20.0)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>–</td>
<td>RR 1.32 (95% CI 0.98–1.78); RRI 32% (95% CI 1.74–78.0)</td>
<td>RR 6.9% (95% CI 16–36)</td>
<td>RR 1.25 (95% CI 0.97–1.61); RRI 25% (95% CI 3.0 to 61.0)</td>
<td>RR 1.38 (95% CI 1.13–1.67); RRI 38% (95% CI 13.2–67.3)</td>
</tr>
<tr>
<td>Bleeding (fatal)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>RR 1.53 (95% CI 0.83–2.82); RRI 53% (95% CI 17.0 to 182)</td>
<td>RR 0.74 (95% CI 0.34–1.61); RRI 26% (95% CI –60.7 to 66.1)</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>–</td>
<td>RR 1.33 (95% CI 0.88–2.01); RRI 33% (95% CI 12.1–100.8)</td>
<td>–</td>
<td>–</td>
<td>RR 2.12 (95% CI 1.75–2.56); RRI 112% (95% CI 75.4–156.1)</td>
</tr>
</tbody>
</table>

CI, confidence interval; MI, myocardial infarction; RR, relative risk; RRI, relative risk increase; RRR, relative risk reduction.
Health Technology Assessment reports published to date

Volume 1, 1997

No. 1
Home parenteral nutrition: a systematic review.
- By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
- A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
- A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
- A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Systematic review of outpatient services for chronic pain control.
- By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8
Preschool vision screening.
- A review by Snowdon SK, Stewart-Brown SL.

No. 9
Implications of socio-cultural contexts for the ethics of clinical trials.
- A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10
A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
- By Davis A, Bamford J, Wilson I, Ramkalawon T, Forsshaw M, Wright S.

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
Routine preoperative testing: a systematic review of the evidence.
- By Munro J, Booth A, Nicholl J.

No. 13
Systematic review of the effectiveness of laxatives in the elderly.
- By Petticrew M, Watt I, Sheldon T.

No. 14
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
- A review by Mowatt G, Bower DJ, Brebner JA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998

No. 1
Antenatal screening for Down’s syndrome.
- A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
- By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Consensus development methods, and their use in clinical guideline development.

No. 4

No. 5
Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews.
- By MacLeod A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
- By Song F, Glenny AM.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
- A review by Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
- By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
- By Sculpher MJ, Petticrew M, Kelland J L, Elliott RA, Holdbright DR, Buxton M J.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
- By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
- By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
- By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
- A review by Fitzpatrick R, Davey C, Buxton M J, Jones D R.
No. 15
Ethical issues in the design and conduct of randomised controlled trials.
 A review by Edwards SJL, Lilford RJ, Braunholz DA, Jackson JC, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.
 By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.
 By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.
 By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prosthesis.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.
 A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
 By Ukoumunne OC, Gulliford MC, Chinn S, Sterne JAC, Burney PG.

No. 6
Assessing the costs of healthcare technologies in clinical trials.
 A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.
 By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.
 A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.
 By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10
 A review by Billingham LJ, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.
 By Zeuner D, Ades AE, Karnon J, Brown J, Dezateux C, Anionwu EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
‘Early warning systems’ for identifying new healthcare technologies.
 By Robert G, Stevens A, Gabbay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.
 By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.
 A review by Robert G, Milne R.

No. 17 (Pt 1)
The debridement of chronic wounds: a systematic review.
 By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
 By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.
 A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kiatuka S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.
 By Glenny AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.
 By Lister-Sharp D, Chapman S, Stewart-Brown S, Sowden A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.
Volume 4, 2000

No. 1
The estimation of marginal time preference in a UK-wide sample (TEMPUS) project.
A review by Cairns JA, van der Pol MM.

No. 2
Geriatric rehabilitation following fractures in older people: a systematic review.

No. 3
Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
By Davies SC, Cronin E, Gill M, Greenough P, Hickman M, Normand C.

No. 4
Community provision of hearing aids and related audiology services.
A review by Reeves DJ, Alborz A, Hickson FS, Bamford JM.

No. 5
False-negative results in screening programmes: systematic review of impact and implications.
By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6
Costs and benefits of community postnatal support workers: a randomised controlled trial.
By Morrell CJ, Spilby H, Stewart P, Walters S, Morgan A.

No. 7
Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8
An introduction to statistical methods for health technology assessment.
A review by White SJ, Ashby D, Brown PJ.

No. 9
Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
By Clegg A, Bryant J, Milne R.

No. 10
Publication and related biases.
A review by Song F, Eastwood AJ, Gilbody S, Daley L, Sutton AJ.

No. 11
Cost and outcome implications of the organization of vascular services.
By Michaels J, Brazier J, Palfreyman S, Shackley P, Slack R.

No. 12
Monitoring blood glucose control in diabetes mellitus: a systematic review.
By Coster S, Gulliford MC, Seed PT, Powrie JK, Swaminathan R.

No. 13
The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14
The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15
The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
A rapid review by Song F, O’Meara S, Wilson P, Goldie S, Kleijnen J.

No. 16

No. 17
A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
By Lister-Sharp D, McDonagh MS, Khan KS, Kleijnen J.

No. 18
Liquid-based cytology in cervical screening: a rapid and systematic review.
By Payne N, Chilcott J, McGovern E.

No. 19
Randomised controlled trial of non-directive counselling, cognitive– behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20
Routine referral for radiography of patients presenting with low back pain: is patients’ outcome influenced by GPs’ referral for plain radiography?
By Perry S, Hilton S, Patel S, Dundas D, Rink E, Lord J.

No. 21
Systematic review of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
By O’Meara S, Callum N, Majid M, Sheldon T.

No. 22
Using routine data to complement and enhance the results of randomised controlled trials.
By Lewis JD, Leyland AH, Murray G, Boddy FA.

No. 23
Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
By Meads C, Cummins C, Jolly K, Stevens A, Burlis A, Hyde C.

No. 24
Outcome measures for adult critical care: a systematic review.
By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25
A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
By Fairbank L, O’Meara S, Refnrew MJ, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26
Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
By Parkes J, Bryant J, Milne R.

No. 27
Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
By Briafas P, Jordan R, Fry-Smith A, Burlis A, Hyde C.

No. 28
Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29
Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
By Marks D, Wonderling D, Thorgood M, Lambert H, Humphries SE, Neil HAW.

No. 30
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoglycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
By McDonagh MS, Bachmann LM, Golder S, Kleijnen J, ter Riet G.
No. 51
A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
By Turner J, Nicholl J, Webber L, Cox H, Dixon S, Yates D.

No. 52
Intrathecal pumps for giving opioids in chronic pain: a systematic review.
By Williams JE, Louw G, Towler T G.

No. 53
Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
By Shepherd J, Waugh N, Hewston P.

No. 54
A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
By MacLehose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 55
 Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
By Berry E, Kelly S, Hutton J, Lindsay HSJ, Blaxill JM, Evans JA, et al.

No. 56
A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 57
Systematic review of treatments for atopic eczema.
By Hoare C, Li Wan Po A, Williams H.

No. 58
Bayesian methods in health technology assessment: a review.
By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 59
The management of dyspepsia: a systematic review.

No. 60
A systematic review of treatments for severe psoriasis.
By Griffiths CEM, Clark CM, Chalmers R J G, Li Wan Po A, Williams HC.

Volume 5, 2001
No. 1
Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review.

No. 2
The clinical effectiveness and cost-effectiveness of riluzole for motor neurone disease: a rapid and systematic review.

No. 3
Equity and the economic evaluation of healthcare.
By Sassi F, Archard L, Le Grand J.

No. 4
Quality-of-life measures in chronic diseases of childhood.
By Eiser C, Morse R.

No. 5
Eliciting public preferences for healthcare: a systematic review of techniques.

No. 6
General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
By Riemsma RP, Forbes CA, Glanville JM, Eastwood AJ, Kleijnen J.

No. 7
An assessment of screening strategies for fragile X syndrome in the UK.
By Pembrey ME, Barnicoat AJ, Carmichael B, Bobrow M, Turner G.

No. 8
Issues in methodological research: perspectives from researchers and commissioners.

No. 9
Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
By Cullum N, Nelson EA, Fleming K, Sheldon T.

No. 10
Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.
By Hampson SE, Skinner TC, Hart J, Storey L, Gage H, Foxcroft D, et al.

No. 11
Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
By Jobanputra P, Parry D, Fry-Smith A, Burks A.

No. 12
Statistical assessment of the learning curves of health technologies.
By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13
The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
By Dinnes J, Cave C, Huang S, Major K, Milne R.

No. 14
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debriding agents in treating surgical wounds healing by secondary intention.
By Lewis R, Whiting P, ter Riet G, O’Meara S, Glanville J.

No. 15
Home treatment for mental health problems: a systematic review.

No. 16
How to develop cost-conscious guidelines.
By Eccles M, Mason J.

No. 17
The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
By De Broe S, Christopher F, Waugh N.

No. 18
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
By O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 19
The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 20
Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.

No. 22 The measurement and monitoring of surgical adverse events. By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23 Action research: a systematic review and guidance for assessment. By Waterman H, Tillen D, Dickson R, de Koning K.

No. 25 A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer. By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 29 Superseded by a report published in a later volume.

No. 30 The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial. By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 33 Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. By Brooks TE, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34 Depot antipsychotic medication in the treatment of patients with schizophrenia: (1) Meta-review; (2) Patient and nurse attitudes. By David AS, Adams C.

No. 36 Cost analysis of child health surveillance. By Sanderson D, Wright D, Acton C, Duree D.

Volume 6, 2002

No. 1 A study of the methods used to select review criteria for clinical audit. By Hearshaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 5 The clinical effectiveness and cost-effectiveness of inhaler devices used in the routine management of chronic asthma in older children: a systematic review and economic evaluation. By Peters J, Stevenson M, Beverley C, Lim J, Smith S.

No. 8 Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’. By Carroll B, Ali N, Azam N.

No. 10 A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models. By Richards RG, Sampson FC, Beard SM, Tappenden P.

No. 11 Screening for gestational diabetes: a systematic review and economic evaluation. By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 15 A systematic review of the effectiveness and cost-effectiveness of metal-on-metal hip resurfacing arthroplasty for treatment of hip disease.
By Vale L, Wyness L, McCormack K, McKenzie L, Brazzelli M, Stearns SC.

No. 16 The clinical effectiveness and cost-effectiveness of bupropion and nicotine replacement therapy for smoking cessation: a systematic review and economic evaluation.
By Woolacott NF, Jones L, Forbes CA, Mather LC, Sowden AJ, Song FJ, et al.

No. 17 A systematic review of effectiveness and economic evaluation of new drug treatments for juvenile idiopathic arthritis: etanercept.
By Cummins C, Connock M, Fry-Smith A, Burlis A.

No. 18 Clinical effectiveness and cost-effectiveness of growth hormone in children: a systematic review and economic evaluation.

By Bryant J, Loveman E, Chase D, Mihaylova B, Cave C, Gerard K, et al.

No. 20 Clinical medication review by a pharmacist of patients on repeat prescriptions in general practice: a randomised controlled trial.
By Zermansky AG, Petty DR, Raynor DK, Lowe CJ, Freemantle N, Vail A.

No. 21 The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation.
By Jobanputra P, Barton P, Bryan S, Burlis A.

No. 22 A systematic review and economic evaluation of computerised cognitive behaviour therapy for depression and anxiety.
By Kaltenhauler E, Shackley P, Stevens K, Beverley C, Parry G, Chilcott J.

No. 23 A systematic review and economic evaluation of pegylated liposomal doxorubicin hydrochloride for ovarian cancer.
By Forbes C, Wilby J, Richardson G, Sculptor M, Mather L, Reimsma R.

No. 24 A systematic review of the effectiveness of interventions based on a stages-of-change approach to promote individual behaviour change.

No. 25 A systematic review update of the clinical effectiveness and cost-effectiveness of glycoprotein Iib/IIIa antagonists.

No. 26 A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapy for acute ischaemic stroke in the NHS.

No. 27 A randomised controlled crossover trial of nurse practitioner versus doctor-led outpatient care in a bronchiectasis clinic.

No. 28 Clinical effectiveness and cost–consequences of selective serotonin reuptake inhibitors in the treatment of sex offenders.
By Adi Y, Ashcroft D, Browne K, Beech A, Fry-Smith A, Hyde C.

No. 29 Treatment of established osteoporosis: a systematic review and cost–utility analysis.
By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

No. 30 Which anaesthetic agents are cost-effective in day surgery? Literature review, national survey of practice and randomised controlled trial.

No. 31 Screening for hepatitis C among injecting drug users and in genitourinary medicine clinics: systematic reviews of effectiveness, modelling study and national survey of current practice.

No. 32 The measurement of satisfaction with healthcare: implications for practice from a systematic review of the literature.

No. 33 The effectiveness and cost-effectiveness of imatinib in chronic myeloid leukaemia: a systematic review.
By Garside R, Round A, Dalziel K, Stein K, Royle R.

No. 34 A comparative study of hypertonic saline, daily and alternate-day rhDNase in children with cystic fibrosis.

No. 35 A systematic review of the costs and effectiveness of different models of paediatric home care.

Volume 7, 2003

No. 1 How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study.
By Egger M, Juni P, Bartlett C, Holenstein F, Sterne J.

No. 2 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of home versus hospital or satellite unit haemodialysis for people with end-stage renal failure.

No. 3 Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease.
By Clark W, Raftery J, Barton P, Song F, Fry-Smith A, Burlis A.

No. 4 A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus negative.

No. 5 Systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing’s sarcoma and neuroblastoma.

No. 6 The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.
No. 7
The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8
A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9
Clinical effectiveness and cost–utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10
Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.

No. 11
First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
By Wald NJ, Rodeck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12
The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13
A systematic review of atypical antipsychotics in schizophrenia.

No. 14
Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15
Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16
Screening for fragile X syndrome: a literature review and modelling.
By Song FJ, Barton P, Sleightholme V, Yao GJ, Fry-Smith A.

No. 17
Systematic review of endoscopic sinus surgery for nasal polyps.
By Dalziel K, Stein K, Round A, Garside R, Royle P.

No. 18
Towards efficient guidelines: how to monitor guideline use in primary care.
By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19
Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
By Bagnall A-M, Jones L, Richardson G, Duffy S, Riemsma R.

No. 20
Prioritisation of health technology assessment. The PATHS model: methods and case studies.
By Townsend J, Buxton M, Harper G.

No. 21

No. 22
By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23
The role of modelling in prioritising and planning clinical trials.
By Chikoti J, Brennan A, Booth A, Karron J, Tappenden P.

No. 24
Cost–benefit evaluation of routine influenza immunisation in people 65–74 years of age.
By Allsup S, Gosney M, Haycox A, Regan M.

No. 25
The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
By Wight J, Chikoti J, Holmes M, Brewer N.

No. 26
Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27
Evaluating non-randomised intervention studies.

No. 28
A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29
The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30
The value of digital imaging in diabetic retinopathy.

No. 31
Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
By Law M, Wald N, Morris J.

No. 32
By Ward S, Kaltenthaler E, Cowan J, Brewer N.

No. 33
By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.
No. 35
Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36
A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37
Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women’s physical and psychological health needs.

No. 38
Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

No. 39
Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling.
By Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40
Treatments for spasticity and pain in multiple sclerosis: a systematic review.
By Beard S, Humm A, Wight J.

No. 41
The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42
The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

Volume 8, 2004

No. 1
What is the best imaging strategy for acute stroke?
By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sandercock PAG, Dennis MS, et al.

No. 2
Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.
By Mant J, McManus RJ, Oakes RAI, Delaney BC, Barton PM, Deeks JJ, et al.

No. 3
The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4
A systematic review of the role of bisphosphonates in metastatic disease.

No. 5
Systematic review of the clinical effectiveness and cost-effectiveness of capetabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6
Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7
Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
By Bryant J, Clegg AJ, Sidhu MK, Brodin H, Royle P, Davidson P.

No. 8
Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
By Morgan K, Dixon S, Mathers N, Thompson J, Tomeny M.

No. 9
Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
By Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ.

No. 10
A systematic review and economic evaluation of magnetic resonance cholangiopancreatography compared with diagnostic endoscopic retrograde cholangiopancreatography.

No. 11
The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis.

No. 12
By Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S.

No. 13
By Czolaski-Murray C, Warren E, Chilcott J, Beverley C, Pyllak MA, Cowan J.

No. 14
Routine examination of the newborn: the EMREN study. Evaluation of an extension of the midwife role including a randomised controlled trial of appropriately trained midwives and paediatric senior house officers.

No. 15
Involving consumers in research and development agenda setting for the NHS: developing an evidence-based approach.

No. 16
A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery.

No. 17
Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial.
By Gilbert FJ, Grant AM, Gillan MGC, Vale L, Scott NW, Campbell MK, et al.

No. 18
The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
By Clark W, Jovanputra P, Barton P, Burls A.
No. 19
A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20
Laparoscopic hysterectomy: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

By Eggington S, Oakley J, McCabe C, et al.

No. 21
Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22

By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

No. 23
Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.

By Dretzke J, Sandercoc J, Bayliss S, Burls A.

No. 24
Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25
Development and validation of methods for assessing the quality of diagnostic accuracy studies.

By Whiting P, Rutjes AWS, Dinnes J, Reitsma JB, Bossuyt PMM, Kleijnen J.

No. 26
EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27

By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

No. 28

By Dalziel K, Round A, Stein K, Gardsle R, Price A.

No. 29
VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.

By Iglesias C, Nelson EA, Cullum NA, Torgerson DJ, on behalf of the VenUS Team.

No. 30
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31
A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.

By Claxton K, Ginnelly L, Sculpher M, Philip Z, Palmer S.

No. 32
The Social Support and Family Health Study: a randomised controlled trial and economic evaluation of two alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33
Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.

By Green JM, Hewison J, Bekker HL, Bryant, Cuckle HS.

No. 34
Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35
Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36
Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37
Rituximab (MabThera®) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.

By Knight C, Hind D, Brewer N, Abbott V.

No. 38
Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation.

By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpher M, et al.

No. 39
Pegylated interferon α-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.

By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40
Clodipogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.

By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpher M, et al.

No. 41
Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.

By Beswick AD, Rees K, Griesbsch I, Taylor FC, Burke M, West RR, et al.

No. 42
Involving South Asian patients in clinical trials.

By Hussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43
Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.

By Colquitt JL, Green C, Siddhu MK, Hartwell D, Waugh N.

No. 44
Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45
Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.

By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.
No. 46
Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

Volume 9, 2005

No. 1
Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrosurgical modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenefine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor P, Champssee J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH, et al.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEM-QOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinesse J, Deeks J, Kirby J, Rodrick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BH, Barton P, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and loperamide.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kafra L, Evans A, Perez I, Knupp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of clinical incidents and adverse events in healthcare.
By Wolsohnowycz M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Rafferty J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.
No. 23 A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma. By Smith JR, Mugford M, Holland R, Candy B, Noble MJ, Harrison BDW, et al.

No. 28 Outcomes of electrically stimulated gracilis neosiphincter surgery. By Tillin T, Chambers M, Feldman R.

No. 31 Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis. By Cochrane T, Davey RC, Matthews Edwards SM.

No. 33 Cost-effectiveness and safety of epidural steroids in the management of sciatica. By Price C, Arden N, Coglan L, Rogers P.

No. 34 The British Rheumatoid Outcome Study Group (BROSQ) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis. By Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 36 The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review. By Bryant J, Brodin H, Loveman E, Payne E, Clegg A.

No. 41 Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty. By Heating JF, Grant A, Masson M, Scott NW, Forbes JF.

No. 43 The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation. By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 46 The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma. By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

Volume 10, 2006

No. 1 The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.

No. 2 FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.

No. 3 The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.

No. 4 A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5 Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.

No. 6 Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7 The clinical effectiveness and cost-effectiveness of newer drugs for children with epilepsy. A systematic review.

No. 8 Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.

No. 9 Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10 Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.

No. 11 Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study.

No. 12 A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13 Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14 The cost-effectiveness of screening for oral cancer in primary care.

No. 17 Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.

No. 18 Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19 Cognitive behavioural therapy in addition to antispasmodic therapy for irritable bowel syndrome in primary care: randomised controlled trial.

No. 20 A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type 1.

No. 21 Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.

No. 22 Pressure relieving support surfaces: a randomised evaluation.
No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamfetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher's disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29
By Harvey S, Stevens K, Harrison D, Ashton D, Bittencourt R, Cullis H, et al.

No. 30
Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31
Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32
The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33
Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35
Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36
Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37
Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O'Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 38

No. 39
The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.
By Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hills G.

No. 40
What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 41
The clinical and cost-effectiveness of oxaliplatin and capcitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pansador A, Egginton S, Paisley S, Tappenden P, Sutcliffe P.

No. 42
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43
Telemedicine in dermatology: a randomised controlled trial.
By Bowns IR, Collins K, Walters SJ, McDonagh AJG.

No. 44

No. 45
Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46
Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47
Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48
Evaluation of the ventricular assist device programme in the UK.
No. 49

No. 50
Ammiocentesis results: investigation of anxiety. The ARIA trial.

Volume 11, 2007

No. 1
Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3
A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4
The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.

No. 5
A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6
Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7
Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8
Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9
Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10
Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11
Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12
Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13
A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14
A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15
A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16
Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17
Screening for type 2 diabetes: literature review and economic modelling.

No. 18
The effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.

No. 19
The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.
By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 20
A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 21
The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22
A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23
Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.
24. The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

25. A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.

 By Boyle J, McCartney E, Forbes J, O’Hare A.

 By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

27. Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.

 By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

29. Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

31. A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population. The PRIME trial.

33. The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.

 By Black C, Cummins E, Royle P, Philip S, Waugh N.

34. Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

35. The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Homebased compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.

37. A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

40. Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.

 By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

41. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

42. Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.

 By Davis A, Smith P, Ferguson M, Stephens D, Gianopoulos I.

43. Contamination in trials of educational interventions.

44. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.

 By Facey K, Bradbury I, Laking G, Payne E.

45. The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

46. Drug-eluting stents: a systematic review and economic evaluation.

47. The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

 By Campbell MK, Snowden C, Francis D, Elbourne D, McDonald AM, Knight R, et al.
No. 50
Evaluation of diagnostic tests when there is no gold standard. A review of methods.
By Rutjes AWS, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PMM.

No. 51
Systematic reviews of the clinical effectiveness and cost-effectiveness of proton pump inhibitors in acute upper gastrointestinal bleeding.

No. 52
A review and critique of modelling in prioritising and designing screening programmes.

No. 53
An assessment of the impact of the NHS Health Technology Assessment Programme.
By Hamney S, Buxton M, Green C, Coulson D, Raftery J.

Volume 12, 2008

No. 1
A systematic review and economic model of switching from nonglycopeptide to glycopeptide antibiotic prophylaxis for surgery.

No. 2
‘Cut down to quit’ with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis.
By Wång D, Connock M, Barton P, Fry-Smith A, Aveyard P, Moore D.

No. 3
A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management.

No. 4
By Charlesworth G, Shepstone L, Wilson E, Thalanany M, Mugford M, Boland P.

No. 5
A multi-centre retrospective cohort study comparing the efficacy, safety and cost-effectiveness of hysterectomy and uterine artery embolisation for the treatment of symptomatic uterine fibroids. The HOPEFUL study.

No. 6
Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 7
The use of economic evaluations in NHS decision-making: a review and empirical investigation.
By Williams I, McIver S, Moore D, Bryan S.

No. 8
Stapled haemorrhoidectomy (haemorrhoidopexy) for the treatment of haemorrhoids: a systematic review and economic evaluation.

No. 9
The clinical effectiveness of diabetes education models for Type 2 diabetes: a systematic review.
By Loveman E, Frampton GK, Clegg AJ.

No. 10
Payment to healthcare professionals for patient recruitment to trials: systematic review and qualitative study.
By Raftery J, Bryant J, Powell J, Kerr C, Hawker S.

No. 11
Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation.

No. 12
The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation.

No. 13
Stepped treatment of older adults on laxatives. The STOOL trial.

No. 14
A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial.

No. 15
The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation.
By Hind D, Tappenden P, Tumur I, Eggington E, Sutcliffe P, Ryan A.

No. 16
Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation.

No. 17
Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease.

No. 18
Structural neuroimaging in psychosis: a systematic review and economic evaluation.

No. 19
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta agonists for the treatment of chronic asthma in adults and children aged 12 years and over.
No. 20
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta2 agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21
Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.

No. 22
Topical or oral ibuprofen for chronic knee pain in older people. The TOIB study.

No. 23
A prospective randomised comparison of minor surgery in primary and secondary care. The MiSTIC trial.

No. 24
A review and critical appraisal of measures of therapist–patient interactions in mental health settings.

No. 25
The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.
By Carlton J, Karnon J, Czoski-Murray C, Smith KJ, Marr J.

No. 26
A systematic review of the clinical effectiveness and cost-effectiveness and economic modelling of minimal incision total hip replacement approaches in the management of arthritic disease of the hip.

No. 27
A preliminary model-based assessment of the cost–utility of a screening programme for early age-related macular degeneration.

No. 28
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 29
Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 30
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

No. 31
The effectiveness and cost-effectiveness of minimal access surgery amongst people with gastro-oesophageal reflux disease – a UK collaborative study. The Reflex trial.

No. 32
Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review.
By Takeda A, Loveman E, Harris P, Hartwell D, Welch K.

No. 33
Performance of screening tests for child physical abuse in accident and emergency departments.
By Woodman J, Pitt M, Wentz R, Taylor B, Hodes D, Gilbert RE.

No. 34
Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation.

No. 35
Systematic review and economic modelling of effectiveness and cost utility of surgical treatments for men with benign prostate enlargement.

No. 36
Immunophrophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: a systematic review and economic evaluation.
By Wang D, Cummins C, Bayliss S, Sandercock J, Burls A.
No. 10 Routine antenatal anti-D prophylaxis for RhD-negative women: a systematic review and economic evaluation.
 By Pilgrim H, Lloyd-Jones M, Rees A.

No. 11 Amantadine, oseltamivir and zanamivir for the prophylaxis of influenza (including a review of existing guidance no. 67): a systematic review and economic evaluation.

No. 12 Improving the evaluation of therapeutic interventions in multiple sclerosis: the role of new psychometric methods.
 By Hobart J, Cano S.

No. 13 Treatment of severe ankle sprain: a pragmatic randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of three types of mechanical ankle support with tubular bandage. The CAST trial.
 By Cooke MW, Marsh JL, Clark M, Nakash R, Jarvis RM, Hutton JL, et al., on behalf of the CAST trial group.

No. 14 Non-occupational postexposure prophylaxis for HIV: a systematic review.
 By Bryant J, Baxter L, Hird S.

No. 15 Blood glucose self-monitoring in type 2 diabetes: a randomised controlled trial.

No. 16 How far does screening women for domestic (partner) violence in different health-care settings meet criteria for a screening programme? Systematic reviews of nine UK National Screening Committee criteria.

No. 17 Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation.
 By Simpson, EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J.

No. 18 The role of magnetic resonance imaging in the identification of suspected acoustic neuroma: a systematic review of clinical and cost-effectiveness and natural history.

No. 19 Dipsticks and diagnostic algorithms in urinary tract infection: development and validation, randomised trial, economic analysis, observational cohort and qualitative study.

No. 20 Systematic review of respite care in the frail elderly.

No. 21 Neuroleptics in the treatment of aggressive challenging behaviour for people with intellectual disabilities: a randomised controlled trial (NACHBID).

No. 22 Randomised controlled trial to determine the clinical effectiveness and cost-effectiveness of selective serotonin reuptake inhibitors plus supportive care versus supportive care alone, for mild to moderate depression with somatic symptoms in primary care: the THREAD (THRESHold for AntiDepressant response) study.

No. 23 Diagnostic strategies using DNA testing for hereditary haemochromatosis in at-risk populations: a systematic review and economic evaluation.

No. 24 Enhanced external counterpulsation for the treatment of stable angina and heart failure: a systematic review and economic analysis.

No. 25 Development of a decision support tool for primary care management of patients with abnormal liver function tests without clinically apparent liver disease: a record-linkage population cohort study and decision analysis (ALFIE).

No. 26 A systematic review of presumed consent systems for deceased organ donation.
 By Rithalia A, McDaid C, Suekarran S, Norman G, Myers L, Sowden A.

No. 27 Paracetamol and ibuprofen for the treatment of fever in children: the PITCH randomised controlled trial.

No. 28 A randomised controlled trial to compare minimally invasive glucose monitoring devices with conventional monitoring in the management of insulin-treated diabetes mellitus (MITRE).

No. 29 Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making.
 By Andronis L, Barton P, Bryan S.

Suppl. 1 Trastuzumab for the treatment of primary breast cancer in HER2-positive women: a single technology appraisal.
 By Ward S, Pilgrim H, Hind D.

Docetaxel for the adjuvant treatment of early node-positive breast cancer: a single technology appraisal.
 By Chilcott J, Lloyd Jones M, Wilkinson A.

The use of paclitaxel in the management of early stage breast cancer.

Rituximab for the first-line treatment of stage III/IV follicular non-Hodgkin’s lymphoma.

Bortezomib for the treatment of multiple myeloma patients.

Fludarabine phosphate for the first-line treatment of chronic lymphocytic leukaemia.

Erlotinib for the treatment of relapsed non-small cell lung cancer.

Cetuximab plus radiotherapy for the treatment of locally advanced squamous cell carcinoma of the head and neck.

Infliximab for the treatment of adults with psoriasis.
 By Loveman E, Turner D, Hartwell D, Cooper K, Clegg A.
No. 30
Psychological interventions for postnatal depression: cluster randomised trial and economic evaluation. The PoNDER trial.
Health Technology Assessment programme

Director,
Professor Tom Walley,
Director, NIHR HTA
programme, Professor of
Clinical Pharmacology,
University of Liverpool

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research
Unit, University of Sheffield

Prioritisation Strategy Group

Chair,
Professor Tom Walley,
Director, NIHR HTA
programme, Professor of
Clinical Pharmacology,
University of Liverpool

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research
Unit, University of Sheffield

Dr Bob Coates,
Consultant Advisor, NETSCC,
HTA

Dr Andrew Cook,
Consultant Advisor, NETSCC,
HTA

Dr Peter Davidson,
Director of Science Support,
NETSCC, HTA

Professor Robin E Fener,
Consultant Physician and
Director, West Midlands Centre
for Adverse Drug Reactions,
City Hospital NHS Trust,
Birmingham

Professor Paul Glasziou, Professor
of Evidence-Based Medicine,
University of Oxford

Dr Nick Hicks,
Director of NHS Support,
NETSCC, HTA

Dr Edmund Jessop,
Medical Adviser, National
Specialist, National
Commissioning Group (NGC),
Department of Health, London

Ms Lynn Kertridge,
Chief Executive Officer,
NETSCC and NETSCC, HTA

Dr Ruairidh Milne,
Director of Strategy and
Development, NETSCC

Dr Andrew Farmer,
Senior Lecturer in General
Practice, Department of
Primary Health Care,
University of Oxford

Professor Ann Ashburn,
Professor of Rehabilitation
and Head of Research,
Southampton General Hospital

Professor John Cairns,
Professor of Health Economics,
London School of Hygiene and
Tropical Medicine

Professor Peter Croft,
Director of Primary Care
Sciences Research Centre, Keele
University

Professor Nicky Cullum,
Director of Centre for Evidence-
Based Nursing, University of
York

Professor Jenny Donovan,
Professor of Social Medicine,
University of Bristol

Professor Steve Halligan,
Professor of Gastrointestinal
Radiology, University College
Hospital, London

Professor Freddie Handys,
Professor of Urology,
University of Sheffield

Professor Allan House,
Professor of Liaison Psychiatry,
University of Leeds

Dr Martin J Landray,
Reader in Epidemiology,
Honorary Consultant Physician,
Clinical Trial Service Unit,
University of Oxford

Professor Stuart Logan,
Director of Health & Social
Care Research, The Peninsula
Medical School, Universities of
Exeter and Plymouth

Dr Rafael Perera,
Lecturer in Medical Statistics,
Department of Primary Health
Care, University of Oxford

Professor Ian Roberts,
Professor of Epidemiology &
Public Health, London School
of Hygiene and Tropical
Medicine

Professor Mark Sculpher,
Professor of Health Economics,
University of York

Professor Helen Smith,
Professor of Primary Care,
University of Brighton

Professor Kate Thomas,
Professor of Complementary &
Alternative Medicine Research,
University of Leeds

Professor David John
Torgerson,
Director of York Trials Unit,
University of York

Professor Hywel Williams,
Professor of Dermato-
Epidemiology, University of
Nottingham

Members

Programme Director,
Professor Tom Walley,
Director, NIHR HTA
programme, Professor of
Clinical Pharmacology,
University of Liverpool

Chair,
Professor Jon Nicholl,
Director, Medical Care Research
Unit, University of Sheffield

Deputy Chair,
Dr Andrew Farmer,
Senior Lecturer in General
Practice, Department of
Primary Health Care,
University of Oxford

Professor Ann Ashburn,
Professor of Rehabilitation
and Head of Research,
Southampton General Hospital

Professor Deborah Ashby,
Professor of Medical Statistics,
Queen Mary, University of
London

Professor John Cairns,
Professor of Health Economics,
London School of Hygiene and
Tropical Medicine

Professor Peter Croft,
Director of Primary Care
Sciences Research Centre, Keele
University

Professor Nicky Cullum,
Director of Centre for Evidence-
Based Nursing, University of
York

Professor Jenny Donovan,
Professor of Social Medicine,
University of Bristol

Professor Steve Halligan,
Professor of Gastrointestinal
Radiology, University College
Hospital, London

Professor Freddie Handys,
Professor of Urology,
University of Sheffield

Professor Allan House,
Professor of Liaison Psychiatry,
University of Leeds

Dr Martin J Landray,
Reader in Epidemiology,
Honorary Consultant Physician,
Clinical Trial Service Unit,
University of Oxford

Professor Stuart Logan,
Director of Health & Social
Care Research, The Peninsula
Medical School, Universities of
Exeter and Plymouth

Dr Rafael Perera,
Lecturer in Medical Statistics,
Department of Primary Health
Care, University of Oxford

Professor Ian Roberts,
Professor of Epidemiology &
Public Health, London School
of Hygiene and Tropical
Medicine

Professor Mark Sculpher,
Professor of Health Economics,
University of York

Professor Helen Smith,
Professor of Primary Care,
University of Brighton

Professor Kate Thomas,
Professor of Complementary &
Alternative Medicine Research,
University of Leeds

Professor David John
Torgerson,
Director of York Trials Unit,
University of York

Professor Hywel Williams,
Professor of Dermato-
Epidemiology, University of
Nottingham

Observers

Ms Kay Pattison,
Section Head, NHS R&D
Programme, Department of
Health

Dr Morven Roberts,
Clinical Trials Manager,
Medical Research Council

© 2009 Queen’s Printer and Controller of HMSO. All rights reserved.
Diagnostic Technologies & Screening Panel

Members

<table>
<thead>
<tr>
<th>Chair</th>
<th>Professor Paul Glasziou, Professor of Evidence-Based Medicine, University of Oxford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Chair</td>
<td>Dr David Elliman, Consultant Paediatrician and Honorary Senior Lecturer, Great Ormond Street Hospital, London</td>
</tr>
<tr>
<td></td>
<td>Professor Judith F Adams, Consultant Radiologist, Manchester Royal Infirmary, and Professor of Diagnostic Radiology, Imaging Science and Biomedical Engineering, Cancer & Imaging Sciences, University of Manchester</td>
</tr>
<tr>
<td></td>
<td>Ms Jane Bates, Consultant Ultrasound Practitioner, Ultrasound Department, Leeds Teaching Hospital NHS Trust</td>
</tr>
<tr>
<td></td>
<td>Dr Stephanie Dancer, Consultant Microbiologist, Hairmyres Hospital, East Kilbride</td>
</tr>
<tr>
<td></td>
<td>Professor Glyn Eblyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales</td>
</tr>
<tr>
<td></td>
<td>Dr Ron Gray, Consultant Clinical Epidemiologist, Department of Public Health, University of Oxford</td>
</tr>
<tr>
<td></td>
<td>Professor Paul D Griffiths, Professor of Radiology, University of Sheffield</td>
</tr>
<tr>
<td></td>
<td>Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford</td>
</tr>
<tr>
<td></td>
<td>Dr Susanne M Ludgate, Medical Director, Medicines & Healthcare Products Regulatory Agency, London</td>
</tr>
<tr>
<td></td>
<td>Dr Anne Mackie, Director of Programmes, UK National Screening Committee</td>
</tr>
<tr>
<td></td>
<td>Dr Michael Millar, Consultant Senior Lecturer in Microbiology, Barts and The London NHS Trust, Royal London Hospital</td>
</tr>
<tr>
<td></td>
<td>Mr Stephen Pilling, Director, Centre for Outcomes, Research & Effectiveness, Joint Director, National Collaborating Centre for Mental Health, University College London</td>
</tr>
<tr>
<td></td>
<td>Mrs Una Rennard, Service User Representative</td>
</tr>
</tbody>
</table>

Observers

| Dr Tim Elliott, Team Leader, Cancer Screening, Department of Health |
| Dr Catherine Moody, Programme Manager, Neuroscience and Mental Health Board |
| Dr Ursula Wells, Principal Research Officer, Department of Health |

Pharmaceuticals Panel

Members

<table>
<thead>
<tr>
<th>Chair</th>
<th>Professor Robin Fennern, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Chair</td>
<td>Professor Imti Choonara, Professor in Child Health, University of Nottingham</td>
</tr>
<tr>
<td></td>
<td>Mrs Nicola Carey, Senior Research Fellow, School of Health and Social Care, The University of Reading</td>
</tr>
<tr>
<td></td>
<td>Mr John Chapman, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Dr Peter Elton, Director of Public Health, Bury Primary Care Trust</td>
</tr>
<tr>
<td></td>
<td>Dr Ben Goldacre, Research Fellow, Division of Psychological Medicine and Psychiatry, King’s College London</td>
</tr>
<tr>
<td></td>
<td>Mrs Barbara Greggains, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Dr Bill Gutteridge, Medical Adviser, London Strategic Health Authority</td>
</tr>
<tr>
<td></td>
<td>Dr Dyfrig Hughes, Reader in Pharmacoepidemiology and Deputy Director, Centre for Economics and Policy in Health, IMScAr, Bangor University</td>
</tr>
<tr>
<td></td>
<td>Professor Jonathan Ledermann, Professor of Medical Oncology and Director of the Cancer Research UK and University College London Cancer Trials Centre</td>
</tr>
<tr>
<td></td>
<td>Dr Yoon K Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia</td>
</tr>
<tr>
<td></td>
<td>Professor Femi Oyebode, Consultant Psychiatrist and Head of Department, University of Birmingham</td>
</tr>
<tr>
<td></td>
<td>Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician and Gynaecologist, The Rosie Hospital, University of Cambridge</td>
</tr>
<tr>
<td></td>
<td>Dr Martin Shelly, General Practitioner, Leeds, and Associate Director, NHS Clinical Governance Support Team, Leicester</td>
</tr>
<tr>
<td></td>
<td>Dr Gillian Shepherd, Director, Health and Clinical Excellence, Merck Serono Ltd Centre, Liverpool</td>
</tr>
<tr>
<td></td>
<td>Mrs Katrina Sinmeter, Assistant Director New Medicines, National Prescribing Centre, Liverpool</td>
</tr>
<tr>
<td></td>
<td>Mr David Symes, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Dr Lesley Wise, Unit Manager, Pharmacoepidemiology Research Unit, VRMM, Medicines and Healthcare Products Regulatory Agency</td>
</tr>
</tbody>
</table>

Observers

| Ms Kay Pattison, Section Head, NHS R&D Programme, Department of Health |
| Mr Simon Reeve, Head of Clinical and Cost-Effectiveness, Medicines, Pharmacy and Industry Group, Department of Health |
| Dr Heike Weber, Programme Manager, Medical Research Council |
| Dr Ursula Wells, Principal Research Officer, Department of Health |

Current and past membership details of all HTA Programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
Therapeutic Procedures Panel

Members

Chair,
Dr John C Pounsford,
Consultant Physician, North Bristol NHS Trust

Deputy Chair,
Professor Scott Weich,
Professor of Psychiatry, Division of Health in the Community, University of Warwick, Coventry

Professor Jane Barlow,
Professor of Public Health in the Early Years, Health Sciences Research Institute, Warwick Medical School, Coventry

Ms Maree Barnett,
Acting Branch Head of Vascular Programme, Department of Health

Mrs Val Carlill,
Service User Representative

Mrs Anthea De Barton-Watson,
Service User Representative

Mr Mark Emberton,
Senior Lecturer in Oncological Urology, Institute of Urology, University College Hospital, London

Professor Steve Goodacre,
Professor of Emergency Medicine, University of Sheffield

Professor Christopher Griffiths,
Professor of Primary Care, Barts and The London School of Medicine and Dentistry

Mr Paul Hilton,
Consultant Gynaecologist and Urogynaecologist, Royal Victoria Infirmary, Newcastle upon Tyne

Professor Nicholas James,
Professor of Clinical Oncology, University of Birmingham, and Consultant in Clinical Oncology, Queen Elizabeth Hospital

Dr Peter Martin,
Consultant Neurologist, Addenbrooke’s Hospital, Cambridge

Mrs Val Carlill,
Service User Representative

Mrs Anthea De Barton-Watson,
Service User Representative

Mr Mark Emberton,
Senior Lecturer in Oncological Urology, Institute of Urology, University College Hospital, London

Professor Steve Goodacre,
Professor of Emergency Medicine, University of Sheffield

Professor Christopher Griffiths,
Professor of Primary Care, Barts and The London School of Medicine and Dentistry

Mr Paul Hilton,
Consultant Gynaecologist and Urogynaecologist, Royal Victoria Infirmary, Newcastle upon Tyne

Professor Nicholas James,
Professor of Clinical Oncology, University of Birmingham, and Consultant in Clinical Oncology, Queen Elizabeth Hospital

Dr Peter Martin,
Consultant Neurologist, Addenbrooke’s Hospital, Cambridge

Observers

Dr Phillip Leech,
Principal Medical Officer for Primary Care, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool

Mr Jim Reece
Service User Representative

Dr Karen Roberts,
Nurse Consultant, Dunston Hill Hospital Cottages

Disease Prevention Panel

Members

Chair,
Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), London

Deputy Chair,
Dr David Pencheon,
Director, NHS Sustainable Development Unit, Cambridge

Dr Elizabeth Fellow-Smith,
Medical Director, West London Mental Health Trust, Middlesex

Dr John Jackson,
General Practitioner, Parkway Medical Centre, Newcastle upon Tyne

Professor Mike Kelly,
Director, Centre for Public Health Excellence, NICE, London

Dr Chris McCall,
General Practitioner, The Hadleigh Practice, Corfe Mullen, Dorset

Ms Jeannet Martin,
Director of Nursing, BarnDoc Limited, Lewisham Primary Care Trust

Ms Christine McGuire,
Research & Development, Department of Health

Dr Caroline Stone,
Programme Manager, Medical Research Council

Dr Julie Mytton,
Locum Consultant in Public Health Medicine, Bristol Primary Care Trust

Miss Nicky Mullaney,
Service User Representative

Professor Ian Roberts,
Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine

Professor Ken Stein,
Senior Clinical Lecturer in Public Health, University of Exeter

Ms Christine McGuire,
Research & Development, Department of Health

Dr Caroline Stone,
Programme Manager, Medical Research Council

Dr Julie Mytton,
Locum Consultant in Public Health Medicine, Bristol Primary Care Trust

Miss Nicky Mullaney,
Service User Representative

Professor Ian Roberts,
Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine

Professor Ken Stein,
Senior Clinical Lecturer in Public Health, University of Exeter

Observers

Dr Philip Leech,
Principal Medical Officer for Primary Care, Department of Health

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool

Mr Jim Reece
Service User Representative

Dr Karen Roberts,
Nurse Consultant, Dunston Hill Hospital Cottages

Dr Phillip Leech,
Principal Medical Officer for Primary Care, Department of Health

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool

Mr Jim Reece
Service User Representative

Dr Karen Roberts,
Nurse Consultant, Dunston Hill Hospital Cottages

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Ursula Wells,
Principal Research Officer, Department of Health

Dr Kieran Sweeney,
Honorary Clinical Senior Lecturer, Peninsula College of Medicine and Dentistry, Universities of Exeter and Plymouth

Professor Carol Tannahill,
Glasgow Centre for Population Health

Professor Margaret Thorogood,
Professor of Epidemiology, University of Warwick Medical School, Coventry

© 2009 Queen's Printer and Controller of HMSO. All rights reserved.
Expert Advisory Network

Members

Professor Douglas Altman, Professor of Statistics in Medicine, Centre for Statistics in Medicine, University of Oxford

Professor John Bond, Professor of Social Gerontology & Health Services Research, University of Newcastle upon Tyne

Professor Andrew Bradbury, Professor of Vascular Surgery, Solihull Hospital, Birmingham

Mr Shaun Brogan, Chief Executive, Ridgeway Primary Care Group, Aylesbury

Mrs Stella Burnside OBE, Chief Executive, Regulation and Improvement Authority, Belfast

Ms Tracy Bury, Project Manager, World Expert Advisory Network, Sutton

Professor Iain T Cameron, Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton

Dr Christine Clark, Medical Writer and Consultant Pharmacist, Rossendale

Professor Collette Clifford, Professor of Nursing and Head of Research, The Medical School, University of Birmingham

Professor Barry Cookson, Director, Laboratory of Hospital Infection, Public Health Laboratory Service, London

Dr Carl Counsell, Clinical Senior Lecturer in Neurology, University of Aberdeen

Professor Howard Cuckle, Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds

Dr Katherine Darton, Information Unit, MIND – The Mental Health Charity, London

Professor Carol Deicateu, Professor of Paediatric Epidemiology, Institute of Child Health, London

Mr John Dunning, Consultant Cardiothoracic Surgeon, Papworth Hospital NHS Trust, Cambridge

Mr Jonathan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester

Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne

Professor Pam Enderby, Dean of Faculty of Medicine, Institute of General Practice and Primary Care, University of Sheffield

Professor Gene Feder, Professor of Primary Care Research & Development, Centre for Health Sciences, Barts and The London School of Medicine and Dentistry

Mr Leonard R Fenwick, Chief Executive, Freeman Hospital, Newcastle upon Tyne

Mrs Gillian Fletcher, Antenatal Teacher and Tutor and President, National Childbirth Trust, Henfield

Professor Jayne Franklyn, Professor of Medicine, University of Birmingham

Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London

Professor Fiona Gilbert, Consultant Radiologist and NCRN Member, University of Aberdeen

Professor Paul Gregg, Professor of Orthopaedic Surgical Science, South Tees Hospital NHS Trust

Bec Hanley, Co-director, TwoCan Associates, West Sussex

Dr Maryann L Hardy, Senior Lecturer, University of Bradford

Mrs Sharon Hart, Healthcare Management Consultant, Reading

Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester

Professor Richard Hobbs, Head of Department of Primary Care & General Practice, University of Birmingham

Professor Alan Horwich, Dean and Section Chairman, The Institute of Cancer Research, London

Professor Allen Hutchinson, Director of Public Health and Deputy Dean of ScHARR, University of Sheffield

Professor Peter Jones, Professor of Psychiatry, University of Cambridge, Cambridge

Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Royal Marsden Hospital and Institute of Cancer Research, Surrey

Dr Duncan Keeley, General Practitioner (Dr Burch & Pinns), The Health Centre, Thame

Dr Donna Lamping, Research Degrees Programme Director and Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London

Mr George Levy, Chief Executive, Motor Neurone Disease Association, Northampton

Professor James Lindesay, Professor of Psychiatry for the Elderly, University of Leicester

Professor Julian Little, Professor of Human Genome Epidemiology, University of Ottawa

Professor Alistaire McGuire, Professor of Health Economics, London School of Economics

Professor Rajan Madhok, Medical Director and Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York

Professor Alexander Markham, Director, Molecular Medicine Unit, St James’s University Hospital, Leeds

Dr Peter Moore, Freelance Science Writer, Ashhead

Dr Andrew Mortimore, Public Health Director, Southampton City Primary Care Trust

Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton

Professor Miranda Mugford, Professor of Health Economics and Group Co-ordinator, University of East Anglia

Professor Jim Neilson, Head of School of Reproductive & Developmental Medicine and Professor of Obstetrics and Gynaecology, University of Liverpool

Mrs Julietta Patnick, National Co-ordinator, NHS Cancer Screening Programmes, Sheffield

Professor Robert Peveler, Professor of Liaison Psychiatry, Royal South Hants Hospital, Southampton

Professor Chris Price, Director of Clinical Research, Bayer Diagnostics Europe, Stoke Poges

Professor William Rosenberg, Professor of Hepatology and Consultant Physician, University of Southampton

Professor Peter Sandercocck, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh

Dr Susan Schomfeld, Consultant in Public Health, Hillingdon Primary Care Trust, Middlesex

Dr Eamonn Sheridan, Consultant in Clinical Genetics, St James’s University Hospital, Leeds

Dr Margaret Somerville, Director of Public Health Learning, Peninsula Medical School, University of Plymouth

Professor Sarah Stewart-Brown, Professor of Public Health, Division of Health in the Community, University of Warwick, Coventry

Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick, Coventry

Mrs Joan Webster, Consumer Member, Southern Derbyshire Community Health Council

Professor Martin Whittle, Clinical Co-director, National Co-ordinating Centre for Women’s and Children’s Health, Lyonington
Feedback

The HTA programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.