Vitamin K to prevent fractures in older women: systematic review and economic evaluation

M Stevenson, M Lloyd-Jones and D Papaioannou

University of Sheffield, School of Health and Related Research (ScHARR), UK

September 2009
DOI: 10.3310/hta13450
How to obtain copies of this and other HTA programme reports
An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:
– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:
HTA Despatch
Tel: 02392 492 000
Fax: 02392 478 555
Email: orders@hta.ac.uk

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

Payment methods
Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?
Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA programme and lists the membership of the various committees.
Vitamin K to prevent fractures in older women: systematic review and economic evaluation

M Stevenson,* M Lloyd-Jones and D Papaioannou

University of Sheffield, School of Health and Related Research (ScHARR), UK

*Corresponding author

Declared competing interests of authors: none

Published September 2009
DOI: 10.3310/hta13450

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The Health Technology Assessment (HTA) programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA programme then commissions the research by competitive tender.

Second, the HTA programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series Health Technology Assessment.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.
Objective: To determine the clinical and cost-effectiveness of vitamin K in preventing osteoporotic fractures in postmenopausal women.

Data sources: Searches were conducted in May 2007 in MEDLINE, MEDLINE In-Process, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, BIOSIS, CINAHL, DARE, NHS EED and HTA databases, AMED, NRR, Science Citation Index and Current Controlled Trials. The MEDLINE search was updated in March 2009.

Review methods: Selected studies were assessed and subjected to data extraction and quality assessment using standard methods. Where appropriate, meta-analysis was carried out. A mathematical model was constructed to estimate the cost-effectiveness of vitamin K1.

Results: The electronic literature searches identified 1078 potentially relevant articles. Of these, 14 articles relating to five trials that compared vitamin K with a relevant comparator in postmenopausal women with osteoporosis or osteopenia met the review inclusion criteria. The double-blind ECKO trial compared 5 mg of phylloquinone (vitamin K1) with placebo in Canadian women with osteopenia but without osteoporosis. Four open-label trials used 45 mg of menatetrenone (vitamin K2) in Japanese women with osteoporosis; the comparators were no treatment, etidronate or calcium. The methodological quality of the ECKO trial was good; however, all four menatetrenone trials were poorly reported and three were very small (n < 100 in each group). Phylloquinone was associated with a statistically significant reduction in the risk of clinical fractures relative to placebo [relative risk 0.46, 95% confidence interval (CI) 0.22 to 0.99]; morphometric vertebral fractures were not reported. The smaller menatetrenone trials found that menatetrenone was associated with a reduced risk of morphometric vertebral fractures relative to no treatment or calcium; however, the larger Osteoporosis Fracture (OF) study found no evidence of a reduction in vertebral fracture risk. The three smaller trials found no significant difference between treatment groups in non-vertebral fracture incidence. In the ECKO trial, phylloquinone was not associated with an increase in adverse events. In the menatetrenone trials, adverse event reporting was generally poor; however, in the OF study, menatetrenone was associated with a significantly higher incidence of skin and skin appendage lesions.

No published economic evaluations of vitamin K were found and a mathematical model was thus constructed to estimate the cost-effectiveness of vitamin K1. Comparators were alendronate, risedronate and strontium ranelate. Vitamin K1 and alendronate were markedly more cost-effective than either risedronate or strontium ranelate. The base-case results favoured vitamin K1, but this relied on many assumptions, particularly on the efficacy of preventing hip and vertebral fractures. Calculation of the expected value of sampled information was conducted assuming a randomised controlled trial of 5 years’ duration comparing alendronate with vitamin K1. The costs incurred in obtaining updated efficacy data from a trial with 2000 women per arm were estimated to be a cost-effective use of resources.

Conclusions: There is currently large uncertainty over whether vitamin K1 is more cost-effective than alendronate; further research is required. It is unlikely that the present prescribing policy (i.e. alendronate as first-line treatment) would be altered.
Contents

Glossary and list of abbreviations vii

Executive summary ix

1 The aim of the review 1

2 Background 3
 Description of osteoporosis, osteopenia and
 severe (established) osteoporosis 3
 Description of new intervention 5

3 Clinical effectiveness 9
 Methods for reviewing effectiveness 9
 Results ... 12
 Discussion 23

4 Economic analysis 25
 Methods for economic analyses 25
 The incidence of hip, vertebral, wrist and
 proximal humerus fractures by age 28
 The incidence of fractures other than hip,
 vertebral, wrist and proximal humerus
 fractures .. 29
 The increased risk of fracture following a
 previous fracture 30
 The increased risk of fracture for patients
 with low bone mass 34
 Calculating the risk of fracture for populations
 with average BMD and without a previous
 fracture ... 35
 Fracture risk at the threshold for
 osteoporosis 36
 Mortality following fracture 36
 Death due to causes other than fracture .. 38
 Entry into nursing home following an
 osteoporotic fracture 38
 The health state values associated with
 osteoporosis used within the model 39
 Cost data used in the treatment model 39
 The costs of the interventions 40
 The duration and efficacy of treatment and
 associated adverse events 40
 Summarising changes between parameters
 used in this report and those used in
 preceding work 43
 Comparison and calibration of the model
 against previously published work 43
 The expected net benefit of sampling of a
 proposed RCT comparing alendronate
 and vitamin K1 43

5 Results .. 51
 Results for women without a previous
 fracture ... 51
 Conclusions from the analyses given current
 information .. 51
 Results of the EVSI analyses 53
 Sensitivity analyses undertaken for the
 EVSI analyses 54

6 Discussion 55

7 Conclusions 57

Acknowledgements 59

References 61

Appendix 1 MEDLINE clinical effectiveness
search strategy 69

Appendix 2 Randomised controlled trial
data extraction form 71

Appendix 3 Publications relating to the
trials that met the inclusion criteria for the
review ... 73

Appendix 4 References excluded from
the review of clinical effectiveness after a
full reading 75

Appendix 5 Evidence tables 77

Appendix 6 Calculation of the additional
QALYs lost through a death from a hip
fracture, vertebral fracture or proximal
humerus fracture 85

Appendix 7 Calculating the risk of fracture
for women with a Z-score of 0 and no
previous fracture 87

Appendix 8 Systematic searching for
evidence relating to Vitamin K and adverse
effects in osteoporotic patients 89

Appendix 9 Strontium ranelate for the
prevention of osteoporotic fracture in
postmenopausal women 91
<table>
<thead>
<tr>
<th>Appendix 10</th>
<th>The second-generation bisphosphonates alendronate and risedronate for the prevention of osteoporotic fracture in postmenopausal women</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 11</td>
<td>The calculation of the costs of fracture using Healthcare Resource Groups (HRGs)</td>
<td>111</td>
</tr>
<tr>
<td>Appendix 12</td>
<td>Detailed results</td>
<td>115</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Health Technology Assessment programme</td>
<td></td>
<td>155</td>
</tr>
</tbody>
</table>
Glossary and list of abbreviations

Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteopenia</td>
<td>Bone mineral density between 1 and 2.5 standard deviations below the young adult mean ((T)-score (-1) to (-2.5)).</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Bone mineral density 2.5 standard deviations or more below the young adult mean ((T)-score (-2.5) or less).</td>
</tr>
<tr>
<td>Severe osteoporosis</td>
<td>Bone mineral density 2.5 standard deviations or more below the young adult mean ((T)-score (-2.5) or less) plus at least one documented fracture.</td>
</tr>
<tr>
<td>(T)-score</td>
<td>The number of standard deviations from the average bone mineral density of healthy young women.</td>
</tr>
<tr>
<td>Z-score</td>
<td>The number of standard deviations that a woman is from the average bone mineral density of women of the same age.</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AiC</td>
<td>academic-in-confidence</td>
</tr>
<tr>
<td>BMD</td>
<td>bone mineral density</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>ENBS</td>
<td>expected net benefit of sampling</td>
</tr>
<tr>
<td>EVSI</td>
<td>expected value of sample information</td>
</tr>
<tr>
<td>FIT</td>
<td>Fracture Intervention Trial</td>
</tr>
<tr>
<td>GDG</td>
<td>(NICE Osteoporosis) Guideline Development Group</td>
</tr>
<tr>
<td>HRG</td>
<td>Healthcare Resource Group</td>
</tr>
<tr>
<td>HRT</td>
<td>hormone replacement therapy</td>
</tr>
<tr>
<td>MK-4</td>
<td>menaquinone-4</td>
</tr>
<tr>
<td>MK-7</td>
<td>menaquinone-7</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>OF study</td>
<td>Osteoporosis Fracture study</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>PSA</td>
<td>probabilistic sensitivity analysis</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SHEMO</td>
<td>Sheffield Health Economic Model for Osteoporosis</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>YOPS</td>
<td>Yamaguchi Osteoporosis Prevention Study</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices, in which case the abbreviation is defined in the figure legend or in the notes at the end of the table.
Description of proposed service

The focus of this report is to establish whether vitamin K can be used cost-effectively in the treatment of women who are osteoporotic and who have a previous fracture.

Epidemiology and background

Osteoporosis is a common disease in the elderly, with an estimated 0.95 million female sufferers in England and Wales. It is defined as possessing a T-score (the number of standard deviations from the average bone mineral density of healthy young women) of –2.5 standard deviations or lower. The main consequence of osteoporosis is an increased incidence of fractures, which increase as a woman ages. These result not only in morbidity for the patient (with a risk of mortality following fractures at some sites) but also in the consumption of scarce NHS resources. A recent estimate of the projected cost of osteoporotic fractures in women in the UK by 2010 put this figure at £2.1 billion.

Methods

The scope of this assessment was to determine the clinical effectiveness and cost-effectiveness of vitamin K in preventing osteoporotic fractures in postmenopausal women compared with either no vitamin K or specific drugs licensed in the UK for the prevention or treatment of postmenopausal osteoporosis. Relevant outcome measures included incident vertebral and non-vertebral fractures; health-related quality of life; all-cause mortality; and adverse effects of treatment.

Searches to identify relevant studies were conducted in 14 electronic databases [MEDLINE, MEDLINE In-Process, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, BIOSIS, CINAHL, DARE, NHS EED and HTA databases, AMED, NRR (National Research Register), Science Citation Index and Current Controlled Trials]. The searches were undertaken in May 2007 and the MEDLINE search was updated in March 2009. The searches were not restricted by publication type, date of publication or language.

The inclusion criteria were as follows:

- **Population**: postmenopausal women with osteoporosis/osteopenia.
- **Intervention**: oral vitamin K (any dose).
- **Comparators**:
 - placebo or no treatment for bone health other than ensuring that the patient is replete of calcium and vitamin D.
 - the following drugs, which are licensed in the UK for the prevention or treatment of postmenopausal osteoporosis: alendronate, etidronate, risedronate and strontium ranelate.
- **Outcomes**: all-cause mortality; incident vertebral fracture; incident non-vertebral fracture; adverse effects; continuance; compliance; health-related quality of life; costs incurred.
- **Study design**: randomised controlled trials; economic evaluations.

Only randomised controlled trials (RCTs) that reported fracture outcomes were included in the review of clinical effectiveness; however, this criterion was relaxed for consideration of adverse events, allowing inclusion of observational studies or RCTs that did not report fracture outcomes.

The following studies were excluded: those that were considered methodologically unsound in terms of either study design or method used to assess fractures, or those that did not report results in the necessary detail; or those in which the participants were not vitamin D replete and/or had insufficient calcium intake.

Where appropriate, meta-analysis was carried out, using Review Manager software (REVMAN).
Number and quality of studies and direction of evidence

Five randomised controlled trials were identified that compared vitamin K with a relevant comparator in postmenopausal women with osteoporosis or osteopenia. The double-blind ECKO trial compared 5 mg of phylloquinone (vitamin K₁) with placebo in Canadian women with osteopenia but without osteoporosis. Four open-label trials used 45 mg of menatetrenone (vitamin K₂) in Japanese women with osteoporosis; the Osteoporosis Fracture (OF) study and that by Shiraki et al. compared menatetrenone with no treatment, the Yamaguchi Osteoporosis Prevention Study (YOPS) compared it with etidronate or no treatment, and the trial by Iwamoto compared it with etidronate or calcium.

The methodological quality of the ECKO trial was good. By contrast, all four trials of menatetrenone were poorly reported, making it impossible to exclude the possibility that their methodological quality was low; moreover, three were very small (< 100 women in each group).

Phylloquinone was associated with a statistically significant reduction in the risk of clinical fractures relative to placebo [relative risk (RR) 0.46, 95% confidence interval (CI) 0.22 to 0.99]; morphometric vertebral fractures were not reported. Although the smaller trials found that menatetrenone was associated with a reduction in the risk of morphometric vertebral fractures relative to no treatment or calcium, the much larger OF study found no evidence of a reduction in vertebral fracture risk. The three smaller trials found no significant difference between treatment groups in non-vertebral fracture incidence. OF study data relating to non-vertebral and clinical vertebral fractures have not been published.

Safety

In the ECKO trial, phylloquinone was not associated with an increase in adverse events; moreover, it was possible that it demonstrated anticancer efficacy. In the menatetrenone trials, the reporting of adverse events was generally poor; however, in the OF study, menatetrenone was associated with a significantly higher incidence of skin and skin appendage lesions.

Summary of benefits

Benefits have been measured in terms of quality-adjusted life-years (QALYs). Vitamin K provided gains in QALYs compared with no treatment in women with sufficient calcium and vitamin D intakes. The size of the QALY gain for each intervention was strongly related to the absolute risk of fracture.

Cost-effectiveness of identification and treatment strategies

No published economic evaluations of vitamin K were found. A mathematical model was thus constructed to estimate the cost-effectiveness of vitamin K₁; the efficacy data for other types of vitamin K were considered too poor to be included. Comparators were two bisphosphonates (alendronate and risedronate) and strontium ranelate. Vitamin K₁ and alendronate were seen to be markedly more cost-effective than either risedronate or strontium ranelate. The base-case results favoured vitamin K₁, but this relied on many assumptions, particularly on the efficacy of preventing hip and vertebral fractures.

Evaluation of further research

Calculation of the expected value of sampled information was conducted assuming a randomised controlled trial of 5 years’ duration comparing alendronate with vitamin K₁. This showed that the costs incurred in obtaining updated efficacy data from a trial with 2000 women per arm, which would be used to influence future prescribing policy, were estimated to be a cost-effective use of resources.

Costs

It is unlikely that the present prescribing policy (i.e. alendronate as first-line treatment) would be altered, thus there would be no change in NHS expenditure. Even if vitamin K₁ was used, the acquisition prices of alendronate and vitamin K₁ are similar and thus there is unlikely to be a marked impact on NHS expenditure.
Conclusions/need for further research

There is currently large uncertainty over whether vitamin K₁ is more cost-effective than alendronate; further research is required. A calculation of the expected value of sampled information has shown that an RCT of 2000 women per arm would be a cost-effective use of resources.
The aim of the review was to address the question, ‘What is the clinical and cost-effectiveness of vitamin K in preventing fractures in postmenopausal women at high risk of fracture?’ The cost-effectiveness of vitamin K must be discussed with reference to the costs and clinical effectiveness of other licensed interventions in order to provide advice on the likely position of vitamin K within a treatment algorithm.

Vitamin K has been explicitly compared with two bisphosphonates (alendronate and risedronate) and strontium ranelate.

The authors of the review have been involved with several evaluations of the clinical and cost-effectiveness of interventions for preventing fractures.1–5 In the more recent work,4,5 data on the risk of osteoporotic fracture were provided under an academic-in-confidence agreement; permission to use these data were not granted for this report and therefore a different methodology has been adopted for calculating fracture risk.
The internationally agreed definition of osteoporosis is a systemic skeletal disease characterised by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture.6

The clinical significance of osteoporosis lies in the fractures that arise; without a fracture a woman suffering from osteoporosis will not suffer morbidity. The most common fractures include vertebral compression fractures and fractures of the distal radius and the proximal femur (hip fracture). In addition, when the skeleton is osteoporotic, fractures occur more commonly at many other sites including the pelvis, proximal humerus, distal femur and ribs. The incidence of fracture is strongly related to age, with a steady increase in incidence as a woman ages.7

Fractures of the spine often go undetected; it is estimated that only one-third of fractures seen in trials in which morphometric criteria are used to establish the presence of a fracture come to clinical attention.8 There is a good deal of uncertainty surrounding the impact of undetected ‘morphometric’ fractures on the quality of life of the sufferer, and any cost impacts that such fractures have.

Osteoporotic fractures occurring at the spine and the distal radius are associated with significant morbidity, but the most serious consequences arise in patients with hip fracture, which is associated with an increase in mortality in the year following the hip fracture.9

It has been estimated that the cost of treating osteoporotic fractures in female postmenopausal patients in the UK in 2000 was approximately £1.5–1.8 billion per annum.10,11 It has been estimated that these costs will increase to £2.1 billion by 2010.11 The key components of the costs associated with osteoporotic fractures are hip fractures and subsequent nursing home care that is required for a proportion of these patients.

This report is focused on postmenopausal women because of the deterioration of bone quality following the menopause.

Description of osteoporosis, osteopenia and severe (established) osteoporosis

The definition of osteoporosis based on bone mineral density (BMD) has been developed because BMD can be measured with precision and accuracy, allowing definitive diagnoses of osteoporosis. However, it is acknowledged that other factors such as abnormalities within the skeleton and risk of falls are also important in determining the risks of fracture. Nevertheless, BMD alone forms the basis for the diagnosis of osteoporosis.

The units used in this report for assessing the BMD of a woman will be T-scores and Z-scores. A T-score is defined as the number of standard deviations (SD) from the average BMD of healthy young women. A Z-score is defined as the number of SDs from the average BMD of women of the same age as the patient.

Two thresholds of BMD have been proposed for Caucasian women based on the T-score.12,13 The first, osteoporosis, denotes a value for BMD that is 2.5 SD or more below the young adult mean value (T-score –2.5 SD or less). The second, osteopenia, denotes a T-score that lies between –1 and –2.5 SD below the young adult mean value. These values refer to the use of dual X-ray absorptiometry at the lumbar spine, hip (total hip or femoral neck) and the forearm. Other measurement methods, such as quantitative ultrasound or quantitative computerised tomography, or other sites, such as the calcaneus, do not produce comparable results.

The class of osteoporosis is further divided into patients with severe (or established) osteoporosis, which is defined as a T-score of –2.5 SD or less plus at least one documented fracture. In this report severe osteoporosis will be used to define...
patients who have a T-score of –2.5 SD or less with a previous fracture. The term osteoporosis will be used to define patients with a T-score of –2.5 SD or less without a previous fracture.

Since the introduction of working definitions of osteoporosis, much attention has focused on their application to epidemiology, clinical trials and patient care. Several problems have emerged, however, largely because of the development of new measurement techniques applied to many different sites. It is now clear that the same T-score derived from different sites and techniques yields different information on fracture risk, even when adjustments are made for age. Thus, the T-score cannot be used interchangeably with different techniques and at different sites.

The site that we have chosen to use is measurement at the femoral neck, as this is the reference site for diagnosis because of the limitations of early dual X-ray absorptiometry machines. Accordingly, the statistical relationships that have been established between increased fracture risk at the hip and Z-score (the T-score of the women minus average T-score for that age and sex) have been undertaken at this site.

The prevalence of osteoporosis within the UK has also been estimated from these data. This data set contained observations on 5713 women aged between 50 and 85 years and used the National Health and Nutritional Evaluation Study III (NHANES III) reference data for women aged 20–29 years.

The percentage of women with a T-score of –2.5 SD or less, as measured at the femoral neck, was recorded. These data are shown in Figure 1; there is a marked increase in the percentage with a T-score of –2.5 SD or less with age. The database taken from the Holt et al. study had relatively few women aged between 80 and 84 years (n = 40). The confidence interval around the prevalence at this age is wide (Figure 1). Assuming, however, that the midpoint values are correct, and multiplying these prevalence rates by the respective population of England and Wales, it is estimated that there are 0.95 million women suffering with osteoporosis. Assuming that the lower 95% confidence intervals are correct would result in a predicted 0.69 million women with osteoporosis; conversely, assuming that the upper 95% confidence intervals are correct would result in a predicted 1.22 million women with osteoporosis.

The average T-score at the femoral neck at each age band was calculated from the UK population data in the Holt et al. study. A linear relationship was assumed and the T-score was assumed to be 2.0251–(0.0512 \times \text{age in years}). The assumed average T-score at the midpoint of each age band

FIGURE 1 The estimated prevalence of female osteoporosis by age band.
TABLE 1 Average T-scores for women by age band

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Average UK T-score(^a)</th>
<th>Z-score at threshold of osteoporosis (T-score of –2.5 SD)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>–0.66</td>
<td>–1.84</td>
</tr>
<tr>
<td>55–59</td>
<td>–0.92</td>
<td>–1.58</td>
</tr>
<tr>
<td>60–64</td>
<td>–1.17</td>
<td>–1.33</td>
</tr>
<tr>
<td>65–69</td>
<td>–1.43</td>
<td>–1.07</td>
</tr>
<tr>
<td>70–74</td>
<td>–1.69</td>
<td>–0.81</td>
</tr>
<tr>
<td>75–79</td>
<td>–1.94</td>
<td>–0.56</td>
</tr>
<tr>
<td>80–84</td>
<td>–2.20</td>
<td>–0.3</td>
</tr>
<tr>
<td>85–89</td>
<td>–2.45</td>
<td>–0.05</td>
</tr>
</tbody>
</table>

\(^a\) Compared with the NHANES III reference data for women aged 20–29 years.

is given in Table 1. It is seen that, above 85 years of age, the average T-score for women almost reaches the threshold for osteoporosis.

Fractures considered to be osteoporotic

Historically, four fracture sites were considered in estimating the cost-effectiveness of interventions to reduce fractures. These were the hip, spine, wrist and proximal humerus. Recent modelling work\(^4\) has increased the number of sites included because of evidence that further sites are considered to be related to osteoporosis.\(^19\) The additional fracture types included are fractures of the pelvis, humeral shaft, tibia, fibula, scapula, ribs and sternum and other femoral fractures.

Description of new intervention

Vitamin K is a fat-soluble vitamin that occurs naturally in two forms, K\(_1\) and K\(_2\). Vitamin K has also been synthesised in the forms K\(_3\)-K\(_7\).

In most parts of the world, including Europe and the USA, the primary dietary source of vitamin K is vitamin K\(_1\) (also known as phylloquinone).\(^20\) Phylloquinone occurs naturally in a range of foodstuffs, especially green leafy vegetables.\(^21\) The commercially prepared versions of vitamin K\(_1\), phytonadione\(^22\) and phytomenadione, are chemically identical to phylloquinone.

The term vitamin K\(_2\) embraces a family of compounds known as the menaquinones. These are of microbial origin\(^23\) and occur in nutritionally significant amounts only in meat, liver and some fermented foods, including cheese.\(^24\) The richest known dietary source of vitamin K is natto, a product derived from fermented soya beans. Almost all of the vitamin K in natto takes the form of menaquinone-7 (MK-7).\(^25\) Although natto is a traditional food in eastern Japan,\(^23\) it is not popular elsewhere.\(^25\) Vitamin K\(_2\) is also synthesised in the colon, but absorption of this synthesised vitamin K is probably so poor as to make only a minor contribution to overall vitamin K status.\(^21\) Menaquinone-4 (MK-4, also known as menatetrenone) is also produced synthetically.

Vitamin K\(_1\) (menadione) is a synthetic form of vitamin K that is converted to menatetrenone (MK-4) in the body.\(^26\) Vitamin K\(_4\) (menadiol sodium diphosphate) is a synthetic water-soluble preparation for use in patients with fat malabsorption.\(^27\)

Vitamin K: function

The first identified function of vitamin K was its role in blood coagulation. Because insufficiency results in a tendency to bleed as a result of the malfunction of vitamin K-dependent clotting factors,\(^28\) it was defined as vitamin K-responsive hypoprothrombinaemia, measured clinically by the prothrombin time (the time it takes for blood to clot). Such ‘classic’ (‘clinical’) insufficiency is rare and severe.\(^29\) Because neonates are relatively deficient in vitamin K it is recommended that they be given a single intramuscular injection of 1 mg of vitamin K\(_1\) (as phytomenadione) at birth, to prevent vitamin K deficiency bleeding.\(^27\) Because of its role in coagulation, vitamin K is contraindicated in patients on anticoagulant therapy as it may reduce its efficacy. However, it has been claimed that doses below 100 µg/day do not appear to cause problems in such patients.\(^26\)
More recently, it has been recognised that vitamin K plays a role in the absorption of calcium into the bone.²⁷ Because of evidence that a low dietary intake of phylloquinone is associated with an increased risk of hip fracture in older women,¹⁰,⁴¹ it has been suggested that vitamin K deficiency is subclinical in terms of blood clotting but nonetheless be associated with the development of osteoporosis. Such deficiency is likely to be considerably more common than classic clinical deficiency measured by the prothrombin time.³⁹ However, a recent Danish observational study of a cohort of perimenopausal women found no significant difference in BMD between the 5% with the lowest vitamin K₁ intake and the 5% with the highest vitamin K₁ intake at baseline (< 24.5 µg/day versus > 209 µg/day) or after 5 years (< 17 µg/day versus > 214 µg/day); the nested case–control study found no difference in fracture risk between the 5% with the lowest vitamin K₁ intake (< 46 µg/day) and the 5% with the highest vitamin K₁ intake (> 210 µg/day). The apparent association identified in epidemiological studies between a low dietary intake of phylloquinone and an increased risk of hip fracture may thus reflect the poor nutritional status of women with hip fracture rather than a specific effect of vitamin K deficiency on bone.²³,⁴²

Although vitamins K₁ and K₂ appear to have very similar actions in relation to haemostasis, they may have different roles in relation to bone function.²⁸

Vitamin K: recommended daily intake

There is no precise UK recommended daily intake for vitamin K. COMA (the UK Department of Health’s Committee on Medical Aspects of Food Policy) has suggested that a daily intake of 1 µg/kg body weight [approximately 64 µg/day for a 64-kg (10-stone) woman] is probably adequate for blood clotting,²³ and UK vitamin supplements intended for general consumption may contain up to 0.045 mg (45 µg) of vitamin K as either vitamin K₁ or vitamin K₂.³⁵ However, it has been suggested that dietary intakes that are sufficient to maintain normal blood coagulation may be suboptimal for bone health.²⁴ The US recommended daily dietary intake is somewhat higher than the suggested UK intake, at 90 µg/day of phylloquinone for women aged 19 years and over, a figure based on reported intakes in apparently healthy US population groups.²⁴ As there is currently insufficient evidence to differentiate between vitamin K₁ and vitamin K₂ requirements,²⁶ there is no UK or US recommended daily intake specifically for vitamin K₂. Although the majority of efficacy evidence for vitamin K has come from Japanese studies, it has not been possible to identify the Japanese recommended dietary intake for vitamin K.

The safe upper limit for vitamin K consumption is not clear. The safe maximal daily intake of vitamin K₁ has previously been claimed to be 32.5 mg,³⁶ but in 2003 the Expert Group on Vitamins and Minerals²⁵ concluded that there were insufficient data to establish a safe upper limit. However, it is claimed that intakes of up to 1 mg/day of vitamin K₁ and 45 mg/day of menatetrenone have been used with no apparent adverse effects in patients not requiring oral anticoagulation.²⁰ The Expert Group on Vitamins and Minerals³⁵ noted no toxicity related to oral vitamin K₁ or K₂, although toxicity was associated with high doses of vitamin K₂.

Because the body only stores enough vitamin K to meet its needs for a few days, these stores, unlike those of other fat-soluble vitamins, are rapidly depleted.²⁹ Deficiency may therefore occur within a short period either when dietary intake is insufficient or when the intestinal bacteria that synthesise vitamin K₂ are disrupted,²³ for instance after prolonged treatment with oral antibiotics. Deficiency may also occur in patients with fat malabsorption.²⁷ There is also evidence to suggest that, in women, oestrogen levels may influence vitamin K status regardless of diet; however, the mechanisms involved are currently not known.²⁴

Vitamin K: actual daily intake in elderly women in the UK

Phylloquinone forms the main source of dietary vitamin K in Western countries, with a lesser contribution from the menaquinones. The fraction of the daily vitamin K requirement provided by menaquinones produced by bacteria in the bowel is unknown.²³

Some research has sought to assess the extent to which elderly people in Britain achieve the guideline dietary intake of phylloquinone. In 1994–5, in a nationally representative sample of women aged 65 years and over living independently in mainland Britain, the geometric mean daily phylloquinone intake was 61 µg [95% confidence interval (CI) 57 to 64 µg], equivalent to 0.99 µg/kg body weight (95% CI 0.93, 1.05 µg/kg),²⁶ an intake very close to the UK recommended daily intake of 1 µg/kg body weight. However, average daily body weight-adjusted intakes decreased significantly with age and also varied by geographical location.
TABLE 2 Daily phylloquinone intake in British women living in the community and aged 65 years and over

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>µg/day (geometric mean)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>65–74</td>
<td>66</td>
<td>61 to 71</td>
</tr>
<tr>
<td>75–84</td>
<td>57</td>
<td>52 to 63</td>
</tr>
<tr>
<td>85+</td>
<td>45</td>
<td>38 to 55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>µg/day (geometric mean)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>London and South East</td>
<td>74</td>
<td>66 to 83</td>
</tr>
<tr>
<td>Central, South West and Wales</td>
<td>61</td>
<td>56 to 66</td>
</tr>
<tr>
<td>Scotland and North</td>
<td>49</td>
<td>46 to 53</td>
</tr>
</tbody>
</table>

(Table 2). Overall, approximately half of the women studied had daily intakes below the guideline level of 1 µg/kg body weight.38

Some studies suggest that the absorption of vitamin K is increased when it is consumed with a meal containing fat. A small experimental study in healthy volunteers found that absorption of phylloquinone (vitamin K$_1$) from boiled spinach was increased three-fold by the addition of butter, whereas another experimental study in healthy young Japanese men found that, for optimum absorption, 15 mg of supplementary menatetrenone should be consumed with a meal containing 35 g of fat [approximately half the recommended daily fat intake (60 g) for a 20-year-old Japanese male]. However, the Expert Group on Vitamins and Minerals has stated that the bioavailability of vitamin K$_1$ is not affected by the fat content of the accompanying meal.

Vitamin K: actual daily intake in elderly women in Japan

Because the evidence for the antifracture efficacy of menatetrenone comes entirely from Japanese studies, it is important to consider the extent to which the daily vitamin K intake of elderly women in Japan resembles that of elderly women in the UK. The traditional Japanese diet differs considerably from the British diet, as does the daily dietary vitamin K intake. Research has shown that the serum concentration of phylloquinone is somewhat higher in postmenopausal Japanese women than in postmenopausal English women (Table 3); this is independent of the habit of eating natto, a foodstuff that is very popular in eastern Japan but seldom eaten in western Japan. However, serum MK-7 is 14 times as high in postmenopausal women living in Tokyo as in English women, and this difference is largely attributable to natto intake.38 As seen in Table 3, serum MK-7 is also over four times higher in Tokyo (eastern Japan) than in Hiroshima (western Japan), and in 1987 the incidence of hip fracture in women was lower in eastern Japan than in western Japan.39

Vitamin K: commercial preparations

Vitamin K is currently licensed within the EU for two indications:

- to prevent deficiency in people with fat malabsorption, using the water-soluble formulation, menadiol sodium phosphate, at a dose of about 10 mg/day
- to prevent vitamin K deficiency bleeding in neonates (haemorrhagic disease of the newborn), using phytomenadione usually given at birth as a single intramuscular injection of 1 mg.

Vitamin K is available for oral administration in five formulations:

- Phytonadione – A form of phylloquinone produced commercially by Merck and marketed as 5-mg tablets under the brand name Mephyton. It is marketed for use in coagulation disorders, and the specified dosage (a single initial dose of 2.5–25 mg or, rarely, 50 mg, the frequency and size of subsequent doses depending on the patient’s response) relates to that application only. No UK price has been identified for this product.
- Phytomenadione – A synthetic form of phylloquinone used in nearly all vitamin
TABLE 3 Serum concentration of vitamin K in postmenopausal women in England, Hiroshima and Tokyo23

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean serum concentration of vitamin K ± SD ylloquinone (ng/ml)</th>
<th>MK-7 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>0.497 ± 0.537</td>
<td>0.371 ± 0.204</td>
</tr>
<tr>
<td>Hiroshima (western Japan)</td>
<td>0.741 ± 0.581</td>
<td>1.221 ± 1.848</td>
</tr>
<tr>
<td>Tokyo (eastern Japan)</td>
<td>0.727 ± 0.461</td>
<td>5.268 ± 6.132</td>
</tr>
</tbody>
</table>

MK-7, menaquinone-7.

K-containing food supplements and multivitamins available in the Western world.25,26 Phytonadione is produced commercially by Roche and marketed as 10-mg tablets under the brand name Konakion®, at a price of £1.65 per 10-tablet pack.43 Konakion is marketed for the treatment of haemorrhage or threatened haemorrhage associated with a low blood level of prothrombin or factor VII; the specified dosage (a single dose of 10–20 mg, repeated if necessary 8–12 hours later) relates to that application only.44

• Menatetrenone (MK-4) – A synthetic menaquinone almost exclusively used in Japan25 where it is produced commercially by Eisai and marketed in 15-mg capsules under the brand name Glakay®.45 As menatetrenone has a half-life in the circulation of 1–2 hours,46 it is recommended that it be taken three times a day, giving a total daily dose of 45 mg.45 The product information leaflet states that Glakay should be taken after meals because its absorption is decreased when taken on an empty stomach and that absorption is also decreased if the meal has a low fat content.45 Menatetrenone is currently not permitted as a food supplement in the EU because there is no evidence for its independent role in health.26 No UK price has been identified for this product.

• MK-7 – A natural menaquinone extracted from natto, which has only recently become commercially available.25 As MK-7 has a half-life in the circulation of 3 days, it may be more effective than menatetrenone as a low-dose supplement.46 MK-7 currently appears to be marketed in the UK only by Solgar, in 100-µg tablets; it is available online at a cost of £20.69 for 50 tablets.17

• Menadiol phosphate – Menadiol phosphate is produced by Cambridge Laboratories as menadiol sodium phosphate tablets, equivalent to 10 mg of menadiol phosphate.27 It is marketed for the treatment of haemorrhage or threatened haemorrhage associated with a low blood level of prothrombin or factor VII, generally caused by obstructive jaundice (before and after surgery); the specified dosage (10–40 mg daily) relates to that application only.45 The net price per 100-tablet pack is £48.25.27

The length of time for which these formulations are taken will vary according to the purpose for which they are being used. In principle, their use for osteoporosis prophylaxis could be lifelong.

Contraindications

Vitamin K is contraindicated in patients on anticoagulant therapy as it may reduce its efficacy. However, it has been claimed that vitamin K doses below 100 µg/day do not appear to cause problems in such patients.26

The product leaflet for Glakay capsules (menatetrenone) states that treatment should be discontinued should rash, redness, pruritus or other symptoms occur.45
Chapter 3
Clinical effectiveness

Methods for reviewing effectiveness

Identification of studies
Systematic searches were undertaken to identify studies relating to the clinical effectiveness of vitamin K in preventing osteoporotic fractures. The search strategy comprised the following main elements:

- searching of electronic databases
- contact with experts in the field
- hand searching of bibliographies of retrieved papers.

Sources searched
The electronic databases searched included MEDLINE, MEDLINE In-Process, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, BIOSIS, CINAHL, DARE, NHS EED and HTA databases, AMED, NRR (National Research Register), Science Citation Index and Current Controlled Trials. The Food Standards Agency website was browsed. The searches were undertaken in May 2007; in addition, the MEDLINE search was updated in March 2009.

Keyword strategies
The search strategies included subject headings and free text terms, combined using Boolean logic, to identify all published and unpublished data relating to the prevention of fractures using vitamin K. The MEDLINE search strategy is presented in Appendix 1. Search strategies for the other databases are available on request.

Search restrictions
Searches were not restricted by publication type, date of publication or language.

Inclusion and exclusion criteria

Inclusion criteria
Participants
Postmenopausal women with osteoporosis/osteopenia [defined as BMD 1.5 SD or more below the young female adult mean value (T-score –1.5 SD or less) or a previous osteoporotic fracture].

Intervention
• Oral vitamin K (any dose).

Comparators
• Placebo or no treatment for bone health other than ensuring that the patient is replete of calcium and vitamin D.
• The following drugs, which are licensed in the UK for the prevention or treatment of postmenopausal osteoporosis: alendronate, etidronate, risedronate and strontium ranelate.

Although raloxifene and teriparatide are also licensed in the UK for the prevention or treatment of postmenopausal osteoporosis, they were excluded as comparators because of the restrictions placed on their use in the recent National Institute for Health and Clinical Excellence (NICE) guidance regarding the use of treatments for osteoporosis.

Outcome measures
The main outcome measures were:

- all-cause mortality
- incident vertebral fracture
- incident non-vertebral fracture
- adverse effects
- continuance
- compliance
- health-related quality of life
- costs incurred.

Only randomised controlled trials (RCTs) that reported fracture outcomes were included in the review of clinical effectiveness. However, this criterion was relaxed for consideration of adverse events, allowing inclusion of observational studies or RCTs that did not report fracture outcomes.

Study design
• RCTs.
• Economic evaluations.

Discussion of outcome measures
Vertebral fractures
Vertebral fractures may be symptomatic or asymptomatic. Symptomatic, or clinical, vertebral fractures cause either sufficient discomfort for
the patient to bring them to the attention of a health professional or a measurable loss of height. Their presence can be confirmed by radiography. Radiography can also identify asymptomatic fractures. Most studies of antosteoporotic agents report radiographically identified vertebral fractures (also termed radiographic or morphometric); these will include symptomatic as well as asymptomatic fractures. However, some studies either report only clinical fractures or present separate data on clinical and radiographic fractures. Data from the Fracture Intervention Trial (FIT), a large placebo-controlled trial of alendronate, suggest that, in postmenopausal osteoporosis, the relative risk (RR) of the two types of fracture is very similar.

None of the various different approaches that have been developed to identify radiographic vertebral osteoporotic fractures has been agreed to be the gold standard. The purely qualitative approach, which depends on the visual identification of abnormalities in vertebral shape or height, is a subjective method with poor inter- and intrarater reliability; however, unlike a purely quantitative method, when performed by an expert it can exclude vertebral abnormalities that are not osteoporotic in origin. More recently, Jiang et al. have developed an algorithm-based qualitative approach that aims to facilitate differentiation between osteoporotic fracture and deformity due to other causes. Quantitative methods are more objective and reproducible than qualitative methods but they may identify non-fracture deformities as fractures whilst failing to recognise mild end-plate fractures. However, the number of false positives may be reduced if the definition of incident fracture requires a 20% or greater reduction in anterior, central or posterior vertebral height. The semiquantitative method developed by Genant et al. grades each vertebra according to the visually apparent degree of reduction in vertebral height and area, irrespective of the type of deformity, but also gives careful attention to changes in vertebral shape, enabling non-fracture deformities to be excluded whilst end-plate fractures that are not associated with a 20% reduction in vertebral height can be identified. The semiquantitative method is more objective and reproducible than the qualitative method and has better specificity and sensitivity than the quantitative method because it reduces the number of false positives while identifying mild deformities that the quantitative method would exclude. However, some researchers claim that the semiquantitative method can be difficult to apply accurately and that it overestimates fracture prevalence by failing to differentiate adequately between true fractures and non-fracture deformities.

Non-vertebral fractures
Traditionally, most studies of antosteoporosis interventions have reported only those non-vertebral fractures that are so-called fragility fractures, defined as low trauma fractures (e.g. those sustained by falling from standing height or less). However, more recently, the prospective Study of Osteoporotic Fractures found that decreases in BMD increase the risk of fracture occurring as a result of severe trauma such as motor vehicle accidents, and therefore recommended that traumatic fractures should be included as outcome measures in osteoporosis trials.

Adverse events
Randomised controlled trials whose main focus is the efficacy of the study intervention have limited ability to assess drug toxicity because they are generally not powered to reliably detect rare, though potentially serious, adverse drug reactions and because their follow-up period is not long enough to permit the detection of either adverse drug reactions widely separated in time from the original use of the drug or delayed consequences associated with long-term therapy. In addition, their populations may not be wholly typical of the target population, as they tend to exclude older participants and those with comorbidities. Moreover, they do not always measure all potential side effects. For this reason, although studies reporting survival and adverse effects were included in the systematic review only if they also reported either fracture outcomes or health-related quality of life, the use of relevant evidence from other sources was not excluded in relation to adverse events. A systematic search was therefore carried out in MEDLINE to identify evidence of the adverse effects of vitamin K therapy in osteoporotic patients in the form of RCTs designed specifically for this purpose and other types of studies that are important in identifying drug-related adverse events: retrospective analyses of large databases (e.g. prescription-event monitoring studies), cohort studies (including postmarketing surveillance studies), case–control studies, cross-sectional surveys and case reports.

Continuance and compliance
The efficacy of a therapy is clearly affected by the extent to which patients take it in the intended manner. This has two aspects:
• continuance: the length of time for which a patient continues to take a prescribed medication (sometimes termed persistence)
• compliance: the extent to which a patient takes the medication each day in accordance with the prescribed dosage regimen.

Some patients may demonstrate good continuance, in that they persist with the medication for a long period, but poor compliance. Other patients may demonstrate perfect compliance for a relatively short period but then completely cease taking the medication. Yet other patients may demonstrate partial compliance, occasionally missing doses or taking extra doses; such partial compliance may be erratic or may be consistent but different from what the physician prescribed. It has been suggested that partial compliance (defined as taking 20–79% of the prescribed medication) is associated with inconsistent dosing, whereby the patient takes the drug in an erratic pattern of near-perfect compliance interspersed with multiple omissions of single doses or of 2 or more consecutive days’ doses.

Compliance and continuance can be assessed by a number of methods, including:
• patient recall (e.g. self-reported questionnaire)
• pill counts
• self-recorded diaries
• electronic devices that record the date and time of opening of the drug containers
• direct measurements of therapeutic response, such as blood tests
• repeat prescriptions.

However, none of these methods is ideal in terms of determining whether or when the patients actually took the medication; direct measurements such as blood tests may be confounded by an unknown degree of variation in therapeutic response, whereas the remainder depend on the reliability of self-reporting or the assumption that dispensed medication has actually been used by the patient. For example, it has been estimated that careful questioning will detect over 50% of non-compliant patients, but even patients who admit to missing medication during the previous day or week tend to overestimate their actual rate of compliance. Moreover, a study of the proportion of medication taken would not necessarily identify partial compliance that involved either extra doses or deviations from the prescribed time of dose. In a random sample of patients participating in a controlled trial of fluvastatin versus placebo, electronic monitoring found that, although mean compliance as measured by the number of doses taken was found to be 94% (range 54–110%), mean compliance as measured by the number of days on which the correct number of doses was taken was only 81% (range 36–100%), and mean compliances to the prescribed morning and evening dosing schedules (i.e. within ±6 hours) were only 71% (range 23–100%). Thus, compliance measured by pill counts is likely to overestimate the actual degree of compliance with medication.

Unsurprisingly, continuance and compliance with a medication are related to a number of the properties of that medication, including its tolerability, its convenience of administration, the patient’s perception of its safety, and quality of life while on treatment. Thus, compliance decreases as the complexity, cost and duration of the regimen increase. The risk of non-continuance or non-compliance with prescribed medication is particularly high in patients with asymptomatic chronic diseases or risk factors that require long-term preventive medication – in other words, patients with conditions such as osteopenia, or osteoporosis without previous fracture. Because treatment brings no immediately apparent benefits to such patients, they are less well motivated to comply long term, and find any minor side effects less acceptable.

Continuance and compliance are clearly important in assessing the actual, rather than theoretical, efficacy of a medication. It is recognised that, for a number of reasons, continuance at least is likely to be substantially better in clinical trials than in real life. Therefore, as with adverse effects, we did not exclude the use of relevant evidence from other sources to supplement that drawn from the studies under review.

Exclusion criteria
The following publication types were excluded from the review:
• non-randomised studies (except for adverse effects or continuance and compliance)
• animal models
• preclinical and biological studies
• narrative reviews, editorials, opinions
• reports published as meeting abstracts only when insufficient methodological details were reported to allow critical appraisal of study quality.

Systematic reviews of primary studies were also excluded from the review but were read in case...
they led to the identification of additional relevant trials.

In addition, studies were excluded if:

- they were considered methodologically unsound in terms of either study design or method used to assess fractures, or if they did not report results in the necessary detail
- the participants were not vitamin D replete and/or had insufficient calcium intake.

Sifting

The references identified by the literature searches were sifted in three stages. They were screened for relevance first by title and then by abstract. Those papers that seemed from their abstracts to be relevant were then read in full, as were those for which abstracts were not available. At each step, studies that did not satisfy the inclusion criteria were excluded.

Data extraction strategy

Data were extracted by one reviewer using a customised data extraction form based on that proposed by the NHS Centre for Reviews and Dissemination. When multiple publications of the same study were identified, data were extracted and reported as a single study. Any disagreements were resolved by discussion.

When available, data relating to the following outcomes were extracted:

- survival
- incident vertebral fractures
- incident non-vertebral fractures
- incident hip fractures
- incident wrist fractures
- incident humeral fractures
- adverse effects
- continuance and compliance.

Quality assessment strategy

The methodological quality of all trials that met the inclusion criteria was assessed according to criteria based on those proposed by the NHS Centre for Reviews and Dissemination (see Appendix 2). In addition, the quality of identification of incident fractures was assessed using the criteria proposed by Gillespie et al. When a study was reported in more than one publication, its quality was assessed on the basis of the combined data from all relevant publications.

It is recognised that the quality assessment tool inevitably assesses the reported quality, and not necessarily the true methodological quality, of each study.

The quality assessment of studies included in the review of clinical effectiveness was carried out by one researcher. Blinding of the quality assessor to author, institution or journal was not considered necessary.

Meta-analysis strategy

Studies that met the review’s entry criteria were eligible for inclusion in the meta-analysis if this was appropriate (i.e. if the study populations, interventions and outcomes were comparable) and if they reported fracture incidence in terms of the number of subjects suffering fractures, as only this will enable the calculation of the RR of subjects in the intervention group developing a new fracture or fractures compared with subjects in the control group. Studies that reported only the number of fractures in each group, or the proportion of subjects in each group who suffered fractures, could not be included in the meta-analysis unless it was possible to obtain from the authors unpublished information on the actual number of subjects in each group who were known to have either suffered or not suffered fractures.

Meta-analysis was carried out using Review Manager software (REVMAN). Both fixed- and random-effects models were used, and heterogeneity was explored through consideration of the study populations, methods and interventions, by visualisation of the results and, in statistical terms, using the chi-squared test for homogeneity and the I^2 statistic.

Relative risks for individual studies have also been calculated using Review Manager.

Results

Quantity and quality of research available

Number of studies of clinical efficacy identified

The electronic literature searches identified 1078 potentially relevant articles. Of these, 14 articles related to five trials that compared vitamin K with a relevant comparator in postmenopausal women with osteoporosis or osteopenia (Figure 2).
FIGURE 2 Clinical effectiveness: summary of study selection and exclusion – electronic literature searches.

Number and type of studies included
A total of five individual RCTs met the review inclusion criteria. The various publications relating to these studies are listed in Appendix 3.

Number and type of studies excluded, with reasons
As may be seen, a substantial number of the references identified by the electronic searches related to studies that did not meet the inclusion criteria and were thus excluded as part of the sifting process. Details are therefore given only of those references that were excluded at the full paper stage. These references are listed in Appendix 4 together with the reasons for their exclusion.

Quantity and quality of research available
Phylloquinone (vitamin K₁)
Only one study of phylloquinone met the review’s inclusion criteria. This was the ECKO study, a double-blind placebo-controlled trial that used a daily dose of phylloquinone of 5 mg, nearly 60 times the US recommended daily phylloquinone intake of 90 µg/day for adult women. The study population of postmenopausal women with osteopenia but without osteoporosis was predominantly (88%) European Canadian (i.e. Caucasian). The daily dietary calcium and vitamin D intakes of all participants were assessed and supplements were given as required to bring these to 1500 mg and 800 IU respectively.

The ECKO trial was originally planned as a 2-year study. However, because of interest in the long-term safety and antifracture efficacy of vitamin K, participants enrolled before 15 March 2004 were subsequently invited to continue in a 2-year extension. In total, 325 participants who had completed the first 24 months were invited to participate in this extension, and 261 (80%) agreed. However, because the extension study terminated before 66% (172/261) of those who had been enrolled had completed it, only 17% (73/440) of the original study participants completed the full 4 years.

For further details of study design and reporting quality see Appendix 4.

Menatetrenone (vitamin K₂)
Four trials of menatetrenone met the review’s inclusion criteria: these were the studies by Iwamoto et al. and Shiraki et al., the Osteoporosis Fracture (OF) study, and the Yamaguchi Osteoporosis Prevention Study (YOPS). All were open-label trials that had as their population postmenopausal women with osteoporosis. All were carried out in Japan and,
Clinical effectiveness

as none commented on the ethnicity of the study populations, probably all participants, but certainly the majority, were likely to be of Japanese ethnic origin. The trial by Shiraki et al. was originally planned as a 2-year study, but subsequently an extension study was carried out for 3 years, thus apparently bringing the total study period to 5 years.

Three trials (OF study, Shiraki et al. study73,74 and YOPS76) essentially compared menatetrene with no treatment. Two of these trials stated that calcium was given to both the intervention and control groups. The dose of calcium used in the OF study was not specified.75 The Shiraki et al. trial originally gave participants a daily dose of 150 mg of elemental calcium,73 although the later extension study74 used a dose of 200 mg/day. The trial by Iwamoto et al.72 strictly encouraged all participants (apparently including those randomised to calcium) to consume 800 mg of calcium and 400 IU of vitamin D a day in their meals. The YOPS trial76 made no mention of the use of calcium in any of the treatment groups.

In addition, two trials, the Iwamoto trial72 and the YOPS trial,76 compared menatetrene alone with etidronate alone, and the Iwamoto trial compared menatetrene alone with calcium alone. The YOPS trial also compared menatetrene with hormone replacement therapy (HRT), calcitonin and alfacalcidol; these comparisons are not reported here.

All of the trials used a daily dose of 45 mg of menatetrene (although this was not clear from the published data relating to the OF study, clarification was obtained from Eisai UK). Although there is no recommended dietary intake for menatetrene, 45 mg appears to be a high dose.

Menatetrene is available in the form of Glakay capsules, which contain no more than 175 mg of hydrogenated oil, substantially less than the 35 g of fat said to be required for the optimum absorption of menatetrene.40 However, none of the trials specified that participants were advised to consume the study medication with a meal containing fat.

Three of the four trials were published as journal articles. However, the extension study of Shiraki et al.74 was only published in abstract form, whereas the results of the OF study75 were only reported in a press release.

For further details of study design and reporting quality see Appendix 4.

Assessment of effectiveness

Phylloquinone (vitamin K1)

Phylloquinone: antifracture efficacy

The ECKO trial71 reported only clinical fractures. These included all fragility and non-fragility fractures except those of the fingers and toes. Phylloquinone was associated with a significant reduction in the risk of such clinical fractures (Table 4). As the trial was carried out in women with osteopenia, not osteoporosis, relatively few fractures were reported.

The study was not powered to identify a significant reduction in the risk of clinical fragility fractures (defined as low trauma fractures such as those sustained by falling from standing height).

Phylloquinone: adverse effects

In the ECKO trial,71 no serious adverse events were attributed to phylloquinone therapy. Indeed, it was suggested that phylloquinone might have anticancer effects as only three women in the phylloquinone group developed cancer compared with 12 in the placebo group (RR 0.26, 95% CI 0.07 to 0.90). The incidence of nausea and vomiting was similar in the intervention and placebo groups (5.1% versus 4.5%, p = 0.77).

The MEDLINE search identified no large, long-term studies of the safety of phylloquinone therapy in the treatment of osteoporosis, and no postmarketing surveillance data could be identified. The Expert Group on Vitamins and Minerals35 noted no toxicity related to oral vitamin K1, although a review by Vermeer et al.26 referred to unpublished preliminary studies which suggested that vitamin K1 supplementation in doses higher than 1 mg/day might contribute to periodontal disease.

Phylloquinone: health-related quality of life

In the ECKO trial, health-related quality of life was not significantly different between the intervention and placebo groups.

Phylloquinone: continuance and compliance

In the ECKO trial, 91.2% of participants randomised to phylloquinone completed the first 2 years of the study, compared with 90.6% in the placebo group, suggesting relatively high continuance with study medication in both groups. However, 25% of eligible women in the phylloquinone group who were invited
TABLE 4 Phylloquinone in postmenopausal osteopenia: all clinical fractures

<table>
<thead>
<tr>
<th>Study</th>
<th>Dose</th>
<th>Numbers in each group suffering clinical fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECKO trial 200871</td>
<td>5 mg/day</td>
<td>All clinical fractures: Phylloquinone: 9/217 (4.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo: 20/223 (9.0%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: 0.46 (95% CI 0.22 to 0.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical fragility fractures: Phylloquinone: 4/217 (1.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo: 11/223 (4.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: 0.41 (95% CI 0.13 to 1.29)</td>
</tr>
</tbody>
</table>

The two trials that compared menatetrenone with cyclical etidronate found no difference between the two interventions in relation to vertebral fracture risk (Figure 3). However, it should be noted that both studies would have been substantially underpowered to demonstrate a difference in efficacy between two active interventions.

Of the trials that compared menatetrenone, with or without calcium, with no additional active treatment, only one, that by Shiraki et al.,73 reached statistical significance. In this trial, menatetrenone plus calcium was associated with a reduction in the risk of radiographic fractures relative to calcium alone. In two other trials, Iwamoto et al.72 and YOPS,76 the point estimates also favoured menatetrenone but neither trial was large enough to achieve statistical significance. However, interim analyses from the substantially larger OF study75 found no difference in the risk of vertebral fracture between women randomised to menatetrenone plus calcium and those randomised to calcium alone (Table 6).

Meta-analysis of data from all four trials suggests that menatetrenone is not associated with a significant reduction in the risk of vertebral fracture compared with no active treatment (Figure 4). However, this meta-analysis demonstrates substantial statistical heterogeneity, as indicated

TABLE 5 Compliance with phylloquinone (data from the ECKO trial71)

<table>
<thead>
<tr>
<th>Time point</th>
<th>Phylloquinone</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years</td>
<td>82.5%</td>
<td>83.9%</td>
</tr>
<tr>
<td>3 years</td>
<td>84.9%</td>
<td>89.9%</td>
</tr>
<tr>
<td>4 years</td>
<td>82.4%</td>
<td>93.3%</td>
</tr>
</tbody>
</table>
Clinical effectiveness

TABLE 6 Menatetrenone in postmenopausal osteoporosis or osteopenia: vertebral fracture data

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Menatetrenone n/N</th>
<th>Etidronate n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwamoto 200172</td>
<td>2/23</td>
<td>2/25</td>
<td>18.34</td>
<td>1.09 (0.17 to 7.10)</td>
<td></td>
</tr>
<tr>
<td>YOPS76</td>
<td>9/66</td>
<td>8/66</td>
<td>81.66</td>
<td>1.13 (0.46 to 2.74)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>89</td>
<td>91</td>
<td>100.00</td>
<td>1.12 (0.50 to 2.50)</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 0.00$, df = 1 ($p = 0.97$), $I^2 = 0$

Test for overall effect: $z = 0.27$ ($p = 0.79$)

by the chi-squared test for heterogeneity, with its very low p-value of 0.01, and the moderately high I^2 statistic of 71.4%, which measures the percentage of variation that is due to heterogeneity rather than chance. Meta-analysis of data from the three earlier trials indicates that this heterogeneity is due to the inclusion of the OF study (Figure 5); without data from this trial menatetrenone appears to be associated with a statistically significant reduction in the risk of radiographic vertebral fracture. This highlights the extent to which the results of the OF study differ from those of the other studies,

TABLE 6 Menatetrenone in postmenopausal osteoporosis or osteopenia: vertebral fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Dose</th>
<th>Fracture definition</th>
<th>Number in each group suffering vertebral fracture</th>
</tr>
</thead>
</table>
| Iwamoto 200172 | 45 mg/day | A decrease of at least 20% in any vertical height ratio; or central/anterior or central/posterior height less than 0.8; or anterior/posterior height less than 0.75 | Menatetrenone: 2/23 (8.7%)
Etidronate: 2/25 (8.0%)
Calcium: 6/24 (25.0%)
RR menatetrenone vs etidronate: 1.09 (95% CI 0.17 to 7.10)
RR menatetrenone vs calcium: 0.35 (95% CI 0.08 to 1.55) |
| OF study 200575 | 45 mg/day | Not specified | Menatetrenone + calcium: 227/1619 (14.0%)
Calcium: 223/1638 (13.6%)
RR: 1.03 (95% CI 0.87 to 1.22) |
| Shiraki 2000,73,200274 | 45 mg/day | 2000 data: semiquantitative; $\geq 20\%$ decline in any of the three vertebral heights compared with baseline
2002 data: clinical fractures only | 2000:
Menatetrenone + calcium: 13/91 (14.2%)
Calcium: 30/99 (30.3%)
RR: 0.47 (95% CI 0.26, 0.85)
2002:
Number of fractures:
Menatetrenone + calcium: 33
Calcium: 54 |
| YOPS 200476 | 45 mg/day | A decrease of at least 20% in one of the ratios of vertebral height in intact vertebrae, or a decrease of at least 4 mm in vertebrae fractured at baseline; also semiquantitative assessment | Menatetrenone: 9/66 (13.6%)
Etidronate: 8/66 (12.1%)
No treatment: 17/66 (25.8%)
RR menatetrenone vs etidronate: 1.13 (95% CI 0.46 to 2.74)
RR menatetrenone vs no treatment: 0.53 (95% CI 0.25 to 1.10) |
prompting exploration of the possible reasons for this difference and consideration of which results are more likely to represent the true antifracture efficacy of menatetrenone. Such an exploration can only be conjectural because of deficiencies in the published data relating to all four trials.

The OF study appears to differ from the other three trials in terms of its population (Table 7). All four trials took as an inclusion criterion the presence of osteoporosis diagnosed using the Japanese diagnostic criteria (see Appendix 5, Table 31). Despite this, the OF study appears to have recruited participants at substantially lower risk of vertebral fracture than did the smaller studies; the fracture rate in the control group of the OF study, at under 14%, is less than half the mean fracture rate (28%) seen in the control groups of the smaller trials (Table 6). Because the OF study has not published data relating to the baseline characteristics of its population, it is not possible to determine whether it recruited a lower proportion of patients with pre-existing fractures than did the smaller trials. However, it seems unlikely that the difference in the OF study results can be attributed to hypothetical differences in the study populations; data from the FIT trial fracture79 and non-fracture80 arms indicate that an intervention with antifracture efficacy will result in a very similar RR of vertebral fracture in populations at higher and lower risk of fracture.

Alternatively, the lower fracture rate seen in the control group of the OF study may be due not to a difference in the study populations but to the use of a different definition of vertebral fracture. Whereas the other trials stated that they reported radiographic fractures, the OF study did not provide a fracture definition; it is therefore possible that only clinical fractures have been reported. However, this seems unlikely as the OF study describes its primary end point as ‘new incidence of vertebral fracture’, in contrast to its secondary end point, ‘new incidence of clinical fracture’ of any sort, including vertebral fracture.25 Moreover, although the reporting of only clinical vertebral fractures would have resulted in lower absolute fracture rates, evidence from the FIT trial suggests that it should not have had a noticeable effect on the RR of fracture.

Because the results of the smaller trials are systematically different from those of the larger OF study, it is possible that the difference in antifracture efficacy may relate to differences in methodological quality, most probably relating to the methods of randomisation and allocation concealment. All four trials were poorly reported, making it impossible to exclude the possibility of low methodological quality, but it is perhaps more likely that the three smaller trials were of lower quality than the larger one.

Finally, the heterogeneity between the trials may derive from publication bias. Small trials are particularly vulnerable to the play of chance, and it is impossible to exclude the possibility that, in addition to the published studies that favour menatetrenone, there may be a number of small unpublished trials whose results are either neutral or unfavourable to menatetrenone. This conjecture is strengthened by the fact that the considerably

Review: Vitamin K
Comparison: 01 Vertebral fracture
Outcome: 01 Vertebral fracture

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Menatetrenone n/N</th>
<th>No active treatment n/N</th>
<th>RR (fixed) 95% CI</th>
<th>Weight %</th>
<th>RR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwamoto 200172</td>
<td>2/23</td>
<td>6/24</td>
<td>2.15 0.35 (0.08 to 1.55)</td>
<td>2.15</td>
<td>0.35 (0.08 to 1.55)</td>
</tr>
<tr>
<td>OF study73</td>
<td>227/1619</td>
<td>223/1638</td>
<td>81.12 1.03 (0.87 to 1.22)</td>
<td>81.12</td>
<td>1.03 (0.87 to 1.22)</td>
</tr>
<tr>
<td>Shiraki 200074,75</td>
<td>13/91</td>
<td>30/99</td>
<td>10.51 0.47 (0.26 to 0.85)</td>
<td>10.51</td>
<td>0.47 (0.26 to 0.85)</td>
</tr>
<tr>
<td>YOPS76</td>
<td>9/66</td>
<td>17/66</td>
<td>6.22 0.53 (0.25 to 1.10)</td>
<td>6.22</td>
<td>0.53 (0.25 to 1.10)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1799</td>
<td>1827</td>
<td>100.00 0.93 (0.75 to 1.08)</td>
<td>100.00</td>
<td>0.93 (0.75 to 1.08)</td>
</tr>
<tr>
<td>Total events: 251 (Menatetrenone), 276 (No active treatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity $\chi^2 = 10.48$, df = 3 ($p = 0.01$), $I^2 = 71.4%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $z = 0.96$ ($p = 0.34$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4 Menatetrenone vs calcium or no additional active treatment: vertebral fracture risk – meta-analysis using fixed-effects model.

© 2009 Queen's Printer and Controller of HMSO. All rights reserved.
larger OF study, which yielded non-significant results, has not been published in journal form. The number of studies is too small to allow publication bias to be assessed using a funnel plot.

Thus, there seems no reason why the OF study should be excluded from the meta-analysis on the basis of clinical heterogeneity and, indeed, it could be argued that its results should be prioritised above those of the smaller trials as being less vulnerable to the play of chance. However, if data from all four trials are combined in a meta-analysis, conservatively using the random-effects model, which gives considerably less weight to the larger OF study than does the fixed-effects model, menatetrenone is still not associated with a statistically significant reduction in vertebral fracture risk (RR 0.63, 95% CI 0.36 to 1.11; Figure 6).

Vertebral fracture: post-hoc subgroup analyses Post hoc subgroup analysis undertaken by the OF study analysts found that menatetrenone was associated with a statistically significant reduction in vertebral fracture in women with five or more fractures at baseline (Figure 7). This result should be treated with caution because post hoc subgroup analyses do not represent true randomised comparisons. Moreover, in this particular instance, the subgroup was extremely small, representing only 4% of those originally enrolled in the study.

The OF study analysts also claimed that menatetrenone was associated with less height
Review: Vitamin K
Comparison: 01 Vertebral fracture
Outcome: 01 Vertebral fracture

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Menatetrenone n/N</th>
<th>No active treatment n/N</th>
<th>RR (random) 95% Cl</th>
<th>Weight %</th>
<th>RR (random) 95% Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwamoto 2001 172</td>
<td>2/23</td>
<td>6/24</td>
<td>10.38 (0.35 to 1.55)</td>
<td>10.38</td>
<td>0.35 (0.08 to 1.55)</td>
</tr>
<tr>
<td>OF study 173</td>
<td>227/1619</td>
<td>223/1638</td>
<td>38.27 (1.03 to 1.22)</td>
<td>38.27</td>
<td>1.03 (0.87 to 1.22)</td>
</tr>
<tr>
<td>Shiraki 2000 172,174</td>
<td>13/91</td>
<td>30/99</td>
<td>27.70 (0.47 to 0.85)</td>
<td>27.70</td>
<td>0.47 (0.26 to 0.85)</td>
</tr>
<tr>
<td>YOPS 176</td>
<td>9/66</td>
<td>17/66</td>
<td>23.65 (0.53 to 1.10)</td>
<td>23.65</td>
<td>0.53 (0.25 to 1.10)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1799</td>
<td>1827</td>
<td>100.00 (0.63 to 1.11)</td>
<td>100.00</td>
<td>0.63 (0.36 to 1.11)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 10.48$, df = 3 ($p = 0.01$), $I^2 = 71.4\%$
Test for overall effect: $z = 1.60$ ($p = 0.11$)

FIGURE 6 Menatetrenone vs calcium or no additional active treatment: vertebral fracture risk – meta-analysis using random-effects model.

loss than no treatment in women aged 75 years and older, women more than 30 years past the menopause and women who had at least five vertebral fractures at study entry. These claims should again be treated with caution because they derive from post hoc subgroup analyses. Moreover, the underlying data were not presented, making it impossible to assess either the proportion of participants included in the first of the two subgroups or the magnitude of the treatment effect.

Non-vertebral fracture Three trials reported non-vertebral fracture data (Table 8 and Figure 8); however, none was powered to identify a statistically significant difference in the incidence of non-vertebral fracture. In 2002, Shiraki reported only the number of fractures,74 not the number of participants suffering a fracture, and therefore it was not possible to calculate a RR. The OF study took as its secondary outcome measure the incidence of all new clinical fractures of the upper forelimb, femur, radius and vertebrae81 but stated that these data would not be analysed until after completion of the 12-month observational follow-up period.25 Although almost 3 years have elapsed since Eisai announced the intermediate results of the OF study, the clinical fracture data do not appear to have been released, raising the suspicion that menatetrenone did not reduce the risk of fracture.

FIGURE 7 Menatetrenone vs no additional active treatment in women with at least five vertebral fractures at study entry: vertebral fracture.

© 2009 Queen’s Printer and Controller of HMSO. All rights reserved.
TABLE 8 Menatetrenone in postmenopausal osteoporosis or osteopenia: all non-vertebral fractures

<table>
<thead>
<tr>
<th>Study</th>
<th>Dose</th>
<th>Number in each group suffering non-vertebral fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45 mg/day</td>
<td></td>
</tr>
<tr>
<td>Iwamoto 200172</td>
<td>45 mg/day</td>
<td>Menatetrenone: 0/23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Etidronate: 0/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium: 0/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR menatetrenone vs etidronate: not estimable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR menatetrenone vs calcium: not estimable</td>
</tr>
<tr>
<td>Shiraki 200023</td>
<td>45 mg/day</td>
<td>2000:</td>
</tr>
<tr>
<td>200223</td>
<td></td>
<td>Menatetrenone + calcium: 1/91 (1.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium: 5/99 (5.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: 0.22 (95% CI 0.03 to 1.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of long bone fractures:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menatetrenone: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR not calculable as number of patients with fracture not reported</td>
</tr>
<tr>
<td>YOPS 200476</td>
<td>45 mg/day</td>
<td>Menatetrenone: 0/66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Etidronate: 1/66 (1.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No treatment: 3/66 (4.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR menatetrenone vs etidronate: 0.33 (95% CI 0.01 to 8.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR menatetrenone vs no treatment: 0.14 (95% CI 0.01 to 2.71)</td>
</tr>
</tbody>
</table>

a There were said to have been three fractures among women in this group and it is therefore possible that one woman may have suffered more than one fracture.

FIGURE 8 Menatetrenone vs calcium or no additional active treatment: non-vertebral fracture risk.
TABLE 9 Menatetrenone in postmenopausal osteoporosis or osteopenia: hip fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Dose</th>
<th>Number of women in each group suffering hip fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwamoto 2001‡</td>
<td>45 mg/day</td>
<td>Menatetrenone: 0/23
Etidronate: 0/25
Calcium: 0/24
RR menatetrenone vs etidronate: not estimable
RR menatetrenone vs calcium: not estimable</td>
</tr>
<tr>
<td>Shiraki 2000‡</td>
<td>45 mg/day</td>
<td>Menatetrenone + calcium: 0/91
Calcium: 2/99
RR: 0.22 (95% CI 0.01 to 4.47)</td>
</tr>
<tr>
<td>YOPS 2004¶</td>
<td>45 mg/day</td>
<td>Menatetrenone: 0/66
Etidronate: 0/66
No treatment: 1/66
RR menatetrenone vs etidronate: not estimable
RR menatetrenone vs no treatment: 0.33 (95% CI 0.01 to 8.04)</td>
</tr>
</tbody>
</table>

Hip, wrist and other non-vertebral fractures Three trials reported hip fracture data; however, none was big enough to yield a statistically significant result (Table 9), nor did their combined results achieve significance (Figure 9).

Three trials reported wrist or forearm fractures (Table 10). None reported fractures of the humerus. Again, none of the trials was big enough to yield a statistically significant result, nor did their combined results achieve significance (Figure 10).

Menatetrenone: adverse effects In the included trials of menatetrenone, reporting of adverse events was generally poor. The OF study‡ noted a significantly higher incidence of skin and skin appendage lesions in patients receiving menatetrenone (0.5 per 100 patient-years compared with 0.1 in the control group, $p < 0.001$).

Although the MEDLINE adverse events search identified no large, long-term studies of the safety of menatetrenone therapy in the treatment of postmenopausal osteoporosis or osteopenia, it

FIGURE 9 Menatetrenone vs calcium or no additional active treatment: hip fracture risk.
identified two relatively small studies of the effect of menatetrenone therapy on haemostatic activity in patients with osteoporosis or osteopenia. These suggested that menatetrenone, at a dose of 45 mg/day, did not induce a thrombotic tendency in such patients.

The Expert Group on Vitamins and Minerals noted no toxicity related to oral vitamin K₂, and the review by Vermeer et al. stated that menatetrenone had been used in Japan on a large scale and as yet no adverse side effects had been reported. However, the product leaflet for Glakay capsules stated that adverse reactions were reported in 81 of 1885 patients (4.3%) taking the product (Table 11).

Menatetrenone: health-related quality of life
Only one study of menatetrenone reported health-related quality of life. The OF study claimed that, in the first 12 months of the study, walking, and the degree and duration of back pain at rest, improved more in women who received menatetrenone and calcium than in those who received calcium alone. However, as the data underlying this claim were not presented, the improvements cannot be quantified.

TABLE 10 Menatetrenone in postmenopausal osteoporosis or osteopenia: wrist or forearm fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Dose</th>
<th>Number of women in each group suffering wrist or forearm fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwamoto 2001</td>
<td>45 mg/day</td>
<td>Menatetrenone: 0/23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Etidronate: 0/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium: 0/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: not calculable</td>
</tr>
<tr>
<td>Shiraki 2000</td>
<td>45 mg/day</td>
<td>Menatetrenone + calcium: 1/91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium: 2/99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: 0.54 (95% CI 0.05 to 5.90)</td>
</tr>
<tr>
<td>YOPS 2004</td>
<td>45 mg/day</td>
<td>Menatetrenone: 0/66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Etidronate: 1/66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No treatment: 2/66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: not calculable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR menatetrenone vs etidronate: 0.33 (95% CI 0.01 to 8.21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR menatetrenone vs no treatment: 0.20 (95% CI 0.01 to 4.09)</td>
</tr>
</tbody>
</table>

* It is possible that both of these fractures occurred in the same woman.

FIGURE 10 Menatetrenone vs calcium or no additional active treatment: wrist or forearm fracture risk.
TABLE 11 Glakay capsules (menatetrenone): adverse reactions

<table>
<thead>
<tr>
<th>Category</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 0.1% to 5%</td>
<td><0.1%</td>
</tr>
<tr>
<td>≥ 0.1% to 5%</td>
<td><0.1%</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Stomach discomfort, abdominal pain, nausea, diarrhoea, dyspepsia</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>Rash, pruritus, redness</td>
</tr>
<tr>
<td>Psychoneurological</td>
<td>Headache</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Elevation of AST (GOT), ALT (GPT) and γ-GPT, etc</td>
</tr>
<tr>
<td>Hepatic</td>
<td>Elevation of BUN, etc</td>
</tr>
<tr>
<td>Urinary</td>
<td>Oedema, eye abnormalities</td>
</tr>
<tr>
<td>Other</td>
<td>Urinary frequency</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic transaminase.

Moreover, it is not clear whether such data were only collected for the first 12 months of the study or whether they were collected for the full 36 months but only reported for the first 12 months; the latter would suggest that no difference between the groups in relation to these factors was seen following the first 12 months.

Menatetrenone: continuance and compliance

None of the trials of menatetrenone provided information on compliance with study medication. However, two trials provided information on the proportion of participants who completed follow-up for the planned length of the study (Table 12).

Discussion

The evidence summarised in the previous sections suggests that phylloquinone is associated with a significant reduction in the risk of clinical fractures in postmenopausal women with osteopenia but without osteoporosis, despite the fact that its benefits are likely to have been underestimated by the use of an osteopenic population rather than an osteoporotic population at higher risk of fracture. However, there is no evidence to suggest that menatetrenone is associated with a significant reduction in fracture risk in postmenopausal women with osteoporosis. Because there is no recommended daily intake for menatetrenone, it is not possible to directly compare the 45-mg dose used in the menatetrenone trials with the 5-mg dose of phylloquinone used in the ECKO trial, although superficially the dose of menatetrenone would seem to be considerably larger than that of phylloquinone. Moreover, because Japanese women are generally smaller than Caucasian women, Japanese studies of interventions for postmenopausal osteoporosis generally use half of the dose used in Western populations (so, in the trials reviewed here, both Iwamoto et al.72 and YOPS trial76 use a 200-mg dose of etidronate compared with the 400-mg dose used in Western trials such as those by Storm et al.85 and Watts et al.86). Thus, the 45-mg dose of menatetrenone used in the Japanese trials would presumably equate to a 90-mg dose in Western populations, 18 times...
the weight of phylloquinone used in the ECKO trial. This suggests that the failure of the combined menatetrenone trials to demonstrate a statistically significant reduction in vertebral fracture risk is unlikely to result from underdosing. However, it should be noted that the population of the ECKO trial was one-tenth that of the OF study, and consequently its results are more subject to the play of chance.

Asian women in general appear to have lower BMD than white women but similar vertebral fracture rates and lower hip fracture rates. This discrepancy may result from differences in bone structure or geometry and/or, in the case of hip fractures, a reduced risk of falling or a better ability to protect themselves in case of a fall. It may also be related to the use of dual energy X-ray absorptiometry to calculate BMD; this method underestimates BMD in small bones and overestimates it in large bones. As any differences in fracture rates between Asian and white women may derive from differences in hereditary factors and in lifestyle factors such as calcium intake, it is not clear to what extent data obtained from Japanese populations are relevant to Western populations.
Chapter 4

Economic analysis

The assessment group undertook a systematic literature review to identify any economic evaluations of vitamin K. No relevant papers were found and thus, to our knowledge, this report is the first assessment of the cost-effectiveness of vitamin K. We assess the cost-effectiveness of vitamin K compared with no treatment, two bisphosphonates (alendronate and risedronate) and strontium ranelate, at combinations of age and T-score, assuming that a BMD scan has already been undertaken and thus the T-score is known without cost. Previous modelling work has estimated the likely combinations of age and clinical risk factors at which BMD scanning would be cost-effective; this modelling work was updated following a fall in the price of alendronate, the intervention that appeared most cost-effective, from £301 to £54 per annum, and further updating of this work is beyond the remit of this project. It is assumed that all women in the model have an adequate baseline intake of calcium and vitamin D as RCT data on the effectiveness of interventions have been compared against such a population. It is noted that some of the parameters used in previous modelling work may have become outdated. These have been updated when appropriate in producing the results for this report. Any changes in parameters between the previously published work using an alendronate price of £54 per annum and this report are detailed within the text and are additionally summarised later in this chapter (see Summarising changes within the parameters used in this report and in preceding work).

Methods for economic analyses

The assessment group has constructed a peer-reviewed model to estimate the cost-effectiveness of osteoporosis interventions. The most recent work undertaken used academic-in-confidence data that were used in the development of the FRAX tool. Permission to re-use the academic-in-confidence data for this project was not granted. As such, an alternative model for predicting the risks of fracture was developed based on age, BMD and previous fracture history. The results produced by the model were compared, and recalibrated when appropriate, with the data provided in the recent work to try and ensure that the results were relatively consistent.

The key inputs to the model are the efficacy data for each intervention in terms of reducing the incidence of hip, vertebral, wrist and proximal humerus fractures. As detailed in Chapter 2, other fracture types are subsumed into these groups, but for reasons of brevity we will refer only to the four main fracture sites.

The model calculates the number of fractures that occur and provides as output data the costs associated with osteoporotic fractures and the quality-adjusted life-years (QALYs) accrued by a cohort of 100 osteoporotic women, with each fracture being detrimental to health and incurring a cost. When the costs of the intervention are included, the incremental cost compared with no treatment can be calculated and divided by the gain in QALYs to calculate a cost per QALY ratio.

The cost per QALY of vitamin K treatment has been evaluated against a no treatment option to provide information on whether vitamin K can be given cost-effectively in the absence of other osteoporosis interventions. Incremental analyses against alendronate, risedronate and strontium ranelate have also been conducted to provide information on the likely placement of vitamin K within a treatment algorithm.

As the results were being calculated it was apparent that vitamin K1 was potentially a cost-effective treatment for the prevention of osteoporotic fractures. The expected net benefit of sampling (ENBS) of conducting an RCT that compared alendronate and vitamin K1 was estimated. Such analysis will provide data on whether such a trial would be an efficient use of resources and, if so, on the number of patients that would need to be recruited to maximise the ENBS.

This section is divided into the following subsections:
Economic analysis

The structure of the model, which will discuss the formulation of the appraisal model and the modelling assumptions made

• the costs associated with each event contained within the model
• the utility multipliers associated with each event contained within the model
• comparison of the results produced using the new model with those produced by previous work
• changes in the parameters used for this evaluation compared with those used in previous evaluations
• methodology for calculating the ENBS of an RCT comparing vitamin K with alendronate.

The structure of the cost-effectiveness model

The individual patient model

The model used to calculate cost-effectiveness ratios is an updated version of the previously reported Sheffield Health Economic Model for Osteoporosis (SHEMO).4,88,90 This model deviated from approaches previously used, which have been based on cohort analyses using the standard techniques of decision analysis and state transition models.91,92

The basic design of SHEMO is similar in many ways to the conventional state transition models used in the area of osteoporosis, in which women pass through states using a set of time-dependent transition probabilities and each state has its associated costs, mortality rates and health state utility values. However, it differs in a crucial respect to the conventional cohort design as individual women pass through the model one at a time. The model simulates for each patient whether or not an event occurs in the forthcoming year that would impact on the costs and utility associated with the woman.

The full patient history is recorded and factors such as previous fractures and current residential status can therefore be used to determine the likelihood of events in the next time period. Following the simulated event, the quality of life of the patient and costs incurred in that time period are calculated. These values have taken into account any residual costs or quality of life impacts from previous fractures. The model simulates at 1-year intervals until either the patient dies or a user-defined time horizon is reached. This process is repeated until the chosen number of women has been simulated. The rationale for using the individual patient approach is that it provides more accuracy and flexibility than a cohort approach, which is bounded by a limited number of transition states.4,90 A diagram of the model structure is provided in Figure 11.

The exact values of p_2: p_{14} will be determined by patient age, patient history regarding the presence of previous fracture at each site, and the residential status of the patient. These probabilities are calculated for each individual at the beginning of each year. The cycle is repeated for all non-absorbing states until the time horizon is reached.

The basic probabilities for moving from transition state to transition state have been taken from epidemiological data, as described later in this chapter. Once a fracture is sustained within the model the risk is increased in accordance with the data reported by Klotzbuecher et al.,93 as described later in this chapter.

As a patient moves into a transition state there is an initial one-off cost incurred and an ongoing cost that is assumed to last until the end of the simulation. By using such a methodology, states with high ongoing costs can be distinguished from those in which the costs incurred are all in the initial year. In circumstances in which a patient has already been in the state being entered, it has been assumed that only the one-off costs will be incurred, with the ongoing costs from that state remaining constant. For example, if the consequences of a vertebral fracture comprised an initial cost of £600 and a recurrent cost of £300 per year, a further vertebral fracture in the same individual would cost a further £600 but the recurrent costs would not increase from £300 per year. This may underestimate the costs involved, but few data were found on the additional ongoing costs of second events. Following the introduction of additional fracture sites, the methodology of not duplicating the long-term fracture costs may be slightly unfavourable to the intervention. As a tibia fracture is now grouped with a proximal humerus fracture, if both fractures had been sustained then only one long-term cost would be included.

When a patient moves into a transition state this affects their quality of life. It has been assumed that there will be a QALY multiplier effect within the first year and a separate QALY multiplier that will apply for the remaining years of the simulation. By using this methodology, states from which the patient will recover but not to the level prior to the event can be modelled. It is assumed that, when a patient suffers a transition state for a second or more time, only the first year reduction
FIGURE 11 The structure of the individual patient model.90

in quality of life will be taken into consideration, using similar logic to that employed for costs. It is noted that in some cases this will underestimate the loss in QALYs, for example second hip or wrist fractures on a different side to the first, or a second vertebral fracture. However, because of insufficient data the approach of assuming no extra residual QALY loss from a second incident was taken. As in the explanation given when discussing costs, the inclusion of more than one fracture in some states may be slightly unfavourable to the intervention.

It has been assumed that, for a year in which death occurs, the QALY’s gained are half those for the previous year, costs incurred are equal to half of the ongoing annual costs, and only half of the drug acquisition cost is paid.

Having established a baseline ‘no treatment’ cost for the cohort the incremental effects from pharmaceutical treatments have been calculated. The efficacy of each treatment is modelled by the use of RRs in entering a transition state. It is expected that a cohort using a treatment with a RR of 0.5 for hip fracture would, in the next time period, have half the number of hip fractures as the same cohort receiving no treatment (RR 1) assuming an equal death rate. For each intervention the RRs were sampled from the relevant meta-analysis of efficacy undertaken.

The effect of treatment on fracture probability was assumed to be instantaneous and to persist unchanged throughout the treatment period. A 5-year treatment period was assumed, which corresponds to the duration of exposure in RCTs, particularly those undertaken in the past 10 years. In addition to the treatment RR, the model incorporates fall times, which have been defined as the time from when the treatment is stopped to the time that the RR returns to 1 compared with no treatment. It is assumed that the RR returns to 1 in a linear manner during a fall time period of 5 years.

The time horizon of the individual patient model was constrained to a 10-year period because of the likely treatment effects being confined within this period, the uncertainty around future medical costs and technologies that may become available, and the gap in the evidence base concerning the effect of fractures on quality of life after a period of 10 years.

Diseases for which possible links with osteoporosis treatments may exist, such as Alzheimer’s disease,
venous thrombotic events and cancer, were excluded from this cost-effectiveness analysis.

The construction of a meta-model

Gaussian process modelling was used to transform the results of the individual patient model into a meta-model that allowed instantaneous calculation of the incremental costs and QALYs associated with an input parameter configuration.88 The advantage of the Gaussian process technique is that given the same starting assumptions the results for a new drug with defined RRs can be instantly calculated with the benefits associated with an individual patient methodology retained.

Subsequent adjustments to the results produced by the meta-model

Limiting the time horizon of the model to 10 years will underestimate the effect of mortality, particularly in younger women, which has been shown to markedly impact on the cost-effectiveness ratio.1–5 The benefits of reduced mortality beyond the initial 10-year time horizon have been estimated. The methodology for estimating the QALYs gained through prevented mortality is explained in Appendix 6.

The discount rates used for the individual patient model2,4 were 6% per annum for costs and 1.5% per annum for utility in accordance with the prevailing NICE rates at the commissioning of the initial project. In the interim period the discount rates have been set to 3.5% per annum for both costs and utility94 and therefore the results need to be adjusted to take the discount rate change into consideration. The summated discounted value of 10 single units over 10 years is 7.36, 8.32 and 9.22 when using discount rates of 6%, 3.5% and 1.5% respectively. These values were used to adjust the model outputs, with QALYs for each scenario multiplied by 0.90 (8.32/9.22) and costs associated with fracture multiplied by 1.13 (8.32/7.36). Intervention costs (drug costs, GP visits and BMD scans) that were assumed to be incurred only in the first 5 years were multiplied by 1.07 to reflect the shorter time horizon of such costs, using the discounted values of five single units over 5 years. Although the methodology used for altering the discount rates is likely to introduce some inaccuracies, as the costs and QALYs will not be equally spread across the 10-year period (as the intervention is used only in the initial 5-year period), it is a pragmatic solution and is not expected to markedly change the conclusions.

Each treatment option has also been assigned GP costs in addition to drug acquisition costs. Following (NICE Osteoporosis) Guideline Development Group (GDG) advice, and considering that elderly women have their complete medication (for all diseases reviewed) annually, it was assumed that, following initiation, osteoporosis treatment would result in no additional costs for women aged 75 years or over, and would result in one-third of women below 75 years of age requiring an additional GP appointment per annum. It was also assumed that no follow-up BMD scans would be required.

Compliance has been modelled at 50% in line with published estimates.9 Women who are non-compliant are assumed to incur the costs of 3 months of treatment whilst receiving no benefit.

The individual patient model assumed a 5-year treatment period and a residual benefit that declined linearly to zero over a 5-year period. For vitamin K, which has a short duration in the body, a 5-year residual benefit was not deemed appropriate and it was assumed that any protective benefit would cease upon discontinuation of treatment. Analyses of the results from the individual patient model were undertaken to determine the effect of a decrease in residual benefit from 5 years to 0 years. Multiplicative factors were estimated that would be applied to the incremental costs (excluding intervention costs) and incremental QALYs associated with 5 years of residual benefit. For women with a T-score of –2.5 SD, these factors ranged from 0.73 for costs and 0.67 for QALYs at 50 years of age to corresponding values of 0.78 and 0.75 at 75 years of age.

The incidence of hip, vertebral, wrist and proximal humerus fractures by age

Data on the incidence of hip, vertebral, wrist and proximal humerus fractures were taken from a large-scale Scottish study.7 Exponential distributions have been applied to these distributions to smooth the data. The distributions are shown in Figures 12–15; all R-squared values are greater than 0.90, showing that these are good fits. These distributions are also plausible as the rates do not decrease as a woman ages. The summarised risks are provided in Table 13 and Figure 16.
The incidence of fractures other than hip, vertebral, wrist and proximal humerus fractures

As detailed in Stevenson et al., other fracture sites considered were incorporated into the four main fracture types in order to use the previously calculated meta-model. The earlier modelling work used the raw data without adjustment to estimate the increase in the expected numbers of fractures at each site. For this report it was decided to smooth these data by fitting statistical distributions, which were used to estimate the increased fracture risk. The goodness of each fit between a statistical relationship and the raw data is shown in Figures 17–19. Whereas the increase against age was presumed to be linear for hip and proximal humerus fracture, the best fit for increasing the number of wrist fractures was seen to be parabolic. The estimated increase in fracture risk at each age is given in Table 14. This would adjust the average risk of fracture for the female
population in the UK at each age to those given in Table 15 and Figure 20.

The increased risk of fracture following a previous fracture

There is a breadth of published literature, meta-analysed in Klotzbuecher et al., which indicates that an initial fracture greatly increases the risk of subsequent fractures independently of BMD. The results from Klotzbuecher et al. are summarised in Table 16. These data were used in the meta-model that forms the foundation for the cost-effectiveness analyses.

The meta-model assumed that the risk of secondary fracture at the proximal humerus is equivalent to that of the pooled non-spinal fractures category reported by Klotzbuecher et al. It was also assumed that the proximal humerus had the predictive power equal to that of the ‘other’ category reported by Klotzbuecher et al. There have been no studies on the future effect that hip fractures have upon wrist fractures. As a conservative estimate this risk was set at 1.4,
TABLE 13 The female population risk of hip, vertebral, proximal humerus and wrist fractures estimated from the smoothed Singer et al. data\(^7\)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Probability of hip fracture</th>
<th>Probability of vertebral fracture</th>
<th>Probability of proximal humerus fracture</th>
<th>Probability of wrist fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>0.03%</td>
<td>0.09%</td>
<td>0.31%</td>
<td>0.07%</td>
</tr>
<tr>
<td>55–59</td>
<td>0.06%</td>
<td>0.13%</td>
<td>0.36%</td>
<td>0.09%</td>
</tr>
<tr>
<td>60–64</td>
<td>0.11%</td>
<td>0.19%</td>
<td>0.43%</td>
<td>0.12%</td>
</tr>
<tr>
<td>65–69</td>
<td>0.20%</td>
<td>0.28%</td>
<td>0.51%</td>
<td>0.15%</td>
</tr>
<tr>
<td>70–74</td>
<td>0.38%</td>
<td>0.40%</td>
<td>0.61%</td>
<td>0.20%</td>
</tr>
<tr>
<td>75–79</td>
<td>0.73%</td>
<td>0.59%</td>
<td>0.72%</td>
<td>0.26%</td>
</tr>
<tr>
<td>80–85</td>
<td>1.38%</td>
<td>0.85%</td>
<td>0.86%</td>
<td>0.35%</td>
</tr>
<tr>
<td>85–89</td>
<td>2.62%</td>
<td>1.23%</td>
<td>1.02%</td>
<td>0.46%</td>
</tr>
</tbody>
</table>

FIGURE 16 The annual female population risk of hip, vertebral, proximal humerus and wrist fractures estimated from the smoothed Singer et al. data.\(^7\)

\[y = -0.003x + 0.4136 \]
\[r^2 = 0.9714 \]

Data from Stevenson et al.\(^4\)

FIGURE 17 The goodness of fit when replacing the increased incidence of hip fracture type as detailed in Stevenson et al.\(^4\) with a statistical distribution.

© 2009 Queen’s Printer and Controller of HMSO. All rights reserved.
It is assumed that for women who have suffered fractures in two different sites only the greatest risk adjustment will be applied in calculating the risks of subsequent fractures. For example, if a woman has both previous hip and wrist fractures, the RR adjustment for a subsequent vertebral fracture would be 2.5 (from the hip fracture) rather than 1.9 (from the wrist fracture). The RR adjustment for a subsequent wrist fracture would be 3.3 (from the wrist fracture) rather than 1.4 (from the hip fracture).

Klotzbuecher et al. did not adjust these values for the effects of BMD as most of the studies incorporated within the meta-analysis did not adjust for it; those studies that controlled for baseline BMD reported that adjusting for BMD reduced the magnitude of the association, although the reduction was slight. Thus, any errors due to
TABLE 14 The increase in incidence of hip, wrist and proximal humerus fractures to incorporate fractures at other sites, as used in the model

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Increase in hip fracture incidence to incorporate pelvis and other femoral fractures</th>
<th>Increase in proximal humerus fracture incidence to incorporate tibia and fibula fractures</th>
<th>Increase in wrist fracture incidence to incorporate rib, sternum, clavicle and scapula fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>26%</td>
<td>87%</td>
<td>63%</td>
</tr>
<tr>
<td>55–59</td>
<td>25%</td>
<td>75%</td>
<td>33%</td>
</tr>
<tr>
<td>60–64</td>
<td>23%</td>
<td>63%</td>
<td>17%</td>
</tr>
<tr>
<td>65–69</td>
<td>22%</td>
<td>51%</td>
<td>14%</td>
</tr>
<tr>
<td>70–74</td>
<td>20%</td>
<td>39%</td>
<td>24%</td>
</tr>
<tr>
<td>75–79</td>
<td>19%</td>
<td>27%</td>
<td>48%</td>
</tr>
<tr>
<td>80+</td>
<td>17%</td>
<td>15%</td>
<td>86%</td>
</tr>
</tbody>
</table>

Note that the incidence of vertebral fractures was not increased.

TABLE 15 The female population risk of hip, vertebral, proximal humerus and wrist fractures estimated from the smoothed Singer et al. data and incorporating other osteoporotic fractures

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Probability of hip fracture</th>
<th>Probability of vertebral fracture</th>
<th>Probability of proximal humerus fracture</th>
<th>Probability of wrist fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>0.04%</td>
<td>0.09%</td>
<td>0.50%</td>
<td>0.12%</td>
</tr>
<tr>
<td>55–59</td>
<td>0.07%</td>
<td>0.13%</td>
<td>0.48%</td>
<td>0.15%</td>
</tr>
<tr>
<td>60–64</td>
<td>0.13%</td>
<td>0.19%</td>
<td>0.50%</td>
<td>0.19%</td>
</tr>
<tr>
<td>65–69</td>
<td>0.25%</td>
<td>0.28%</td>
<td>0.58%</td>
<td>0.23%</td>
</tr>
<tr>
<td>70–74</td>
<td>0.46%</td>
<td>0.40%</td>
<td>0.75%</td>
<td>0.28%</td>
</tr>
<tr>
<td>75–79</td>
<td>0.87%</td>
<td>0.59%</td>
<td>1.07%</td>
<td>0.34%</td>
</tr>
<tr>
<td>80–85</td>
<td>1.62%</td>
<td>0.85%</td>
<td>1.59%</td>
<td>0.40%</td>
</tr>
</tbody>
</table>

FIGURE 20 The average annual female population risk of hip, vertebral, proximal humerus and wrist fractures estimated from the smoothed Singer et al. data and incorporating other osteoporotic fractures. ph, proximal humerus; vert, vertebral.
TABLE 16 The relative risk of subsequent fracture following an initial fracture

<table>
<thead>
<tr>
<th>Previous fracture site</th>
<th>Location of subsequent fractures</th>
<th>Hip</th>
<th>Vertebral</th>
<th>Wrist</th>
<th>Proximal humerus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>2.3</td>
<td>2.5</td>
<td>1.4</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Vertebral</td>
<td>2.3</td>
<td>4.4</td>
<td>1.4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td>1.9</td>
<td>1.7</td>
<td>3.3</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Proximal humerus(^a)</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Assumed equal to the value for all non-spinal fractures in Klotzbuecher et al.\(^93\)

double counting the effects of BMD are likely to be small.

Previous modelling work\(^2\) has assumed that the initial risk of fracture for a woman following a previous fracture is double that of a woman of identical age and BMD who has not sustained a fracture. This assumption was investigated when the mathematical model developed was calibrated. The section below, Comparison and calibration of the model against previously published work, details the methodology used; it appears that increasing the initial risk of a woman who has sustained a fracture by 50% compared with a woman of identical age and BMD who has not sustained a fracture produces a more accurate estimation. The reduction in increased risk may be explained by the fact that there is some interaction between BMD and previous fracture history.

The increased risk of fracture for patients with low bone mass

BMD status is a significant factor in estimating the risk of fracture for a patient. Work conducted by Marshall et al.\(^15\) assessed the increased probability of fracture associated with a Z-score of −1 when measured at the femoral neck. The point estimates of this increased risk of fracture are presented in Table 17. Data for proximal humerus were assumed to equal data reported by Marshall et al.\(^15\) for all fractures.

The equations presented in Marshall et al.\(^15\) are of the form (relative risk) raised to the power of −Z-score difference, hence the increased risk of a vertebral fracture for patients with a Z-score of −2 would be 3.24 times (1.8\(^2\)). The increased risk would be 4.19 times (1.8\(^1.5\)) for a patient with a Z-score of −1.5.

More recent work undertaken by Johnell et al.\(^16\) has shown that the increased risk of hip fracture in relation to Z-score is age dependent. (Table 18) These newer data have been used in the model. It is noted that, for the ages at which the majority of osteoporosis trials have been conducted (70–80 years), the increased risks per Z-score are similar for Marshall et al.\(^15\) and Johnell et al.\(^16\)

TABLE 17 Increased risk of fracture associated with a Z-score of −1, as reported by Marshall et al.\(^15\)

<table>
<thead>
<tr>
<th>Fracture site</th>
<th>Increased risk of fracture per Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>2.6</td>
</tr>
<tr>
<td>Vertebral</td>
<td>1.8</td>
</tr>
<tr>
<td>Wrist</td>
<td>1.4</td>
</tr>
<tr>
<td>Proximal humerus(^a)</td>
<td>1.6</td>
</tr>
</tbody>
</table>

\(^a\) Assumed equal to the value for all fractures.\(^15\)

TABLE 18 Increased risk of hip fracture associated with a Z-score of −1, as reported by Johnell et al.\(^16\)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Increased risk of hip fracture per Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>3.68</td>
</tr>
<tr>
<td>55–59</td>
<td>3.35</td>
</tr>
<tr>
<td>60–64</td>
<td>3.07</td>
</tr>
<tr>
<td>65–69</td>
<td>2.89</td>
</tr>
<tr>
<td>70–74</td>
<td>2.78</td>
</tr>
<tr>
<td>75–79</td>
<td>2.58</td>
</tr>
<tr>
<td>80–84</td>
<td>2.28</td>
</tr>
<tr>
<td>85–90</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Although it is also likely that there is a correlation between the increased risks per Z-score of fracture at the vertebrae, proximal humerus and wrist, such a relationship is unknown and we have assumed that the values reported by Marshall et al.15 are constant with age.

Calculating the risk of fracture for populations with average BMD and without a previous fracture

The increase in fracture associated with a previous fracture and low BMD is reported compared with the risk in women without fracture and with average BMD. To accurately estimate the fracture risk for patients with low BMD and/or previous fracture, the risk for women with average BMD and without previous fracture needs to be calculated. Use of average population values would overestimate the number of fractures because these average figures already contain a subset of females with osteoporosis and/or previous fractures. So that the overall average risk equals that reported in epidemiological studies when subgroups of women with low BMD and previous fracture are included, the risk for women with average BMD and no previous fracture must be reduced below the average population risk.

The percentage reduction by age group is influenced by two factors. At younger ages there will be relatively few osteoporotic and severely osteoporotic women (see Figure 1). However, the Z-score required to reach an absolute T-score of 2.5 SD is greater in younger women (see Table 17), which will increase the influence of the osteoporotic women on the risk of fracture for women with average BMD values compared with more elderly women (see Table 17). This is more pronounced for hip fracture for which a relationship between age and the increased risk per Z-score has been established (see Table 18). As the number of osteoporotic women and the increased risk due to Z-score adjust the risk of fracture in women with average BMD in different directions, the magnitude of the reduction between the average population risk and that of a woman with average BMD at different age bands cannot be predicted intuitively.

The estimated fracture risks for a woman with average BMD and without previous fracture are shown in Table 19. The methodology behind these calculations is given in Appendix 7.

It is seen that for vertebral, wrist and proximal humerus fractures, which have relatively low increases because of Z-score differentials (Tables 17 and 18), the increased proportion of women with osteoporosis dominates the effect due to the greater Z-score between average BMD and a T-score of –2.5 SD. As the cohort age increases the percentage reductions compared with the average values increase.

For hip fracture, which has a relatively high risk of fracture in relation to Z-score at younger ages (Table 18), the percentage reduction values are large even at younger ages and no clear trend is observed.

These data from Table 19 will be used within the model and multiplied as appropriate to take into account the extra risks for the assumed BMD value and previous fracture status for each patient.

Table 19 The estimated fracture risk by age for a woman with average BMD and no previous fracture. The percentage reduction in fracture incidence compared with the average for all women in that age band is contained in parentheses.

<table>
<thead>
<tr>
<th>Age band (years)</th>
<th>Fracture site (including fractures grouped with the main site)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hip</td>
</tr>
<tr>
<td>50–54</td>
<td>0.02% (37%)</td>
</tr>
<tr>
<td>55–59</td>
<td>0.04% (40%)</td>
</tr>
<tr>
<td>60–64</td>
<td>0.07% (44%)</td>
</tr>
<tr>
<td>65–69</td>
<td>0.13% (48%)</td>
</tr>
<tr>
<td>70–74</td>
<td>0.21% (54%)</td>
</tr>
<tr>
<td>75–79</td>
<td>0.42% (52%)</td>
</tr>
<tr>
<td>80–84</td>
<td>0.81% (50%)</td>
</tr>
<tr>
<td>85–89</td>
<td>1.62% (47%)</td>
</tr>
</tbody>
</table>
Fracture risk at the threshold for osteoporosis

Table 20 and Figure 21 give the estimated fracture risk at each site by age for women at the threshold of osteoporosis (T-score –2.5 SD). No data on the fracture risks for patients with severe osteoporosis have been given, as the risks would be dependent upon the site of the previous fracture, as detailed in Table 6. As the population age increases, the risk at the threshold for osteoporosis may become lower than that of the average population (compare Tables 19 and 20). This is due both to the large proportion of women with severe osteoporosis and to the small differential between the average population BMD and the T-score of –2.5.

It is seen that at a T-score of –2.5 SD the risk of hip fracture greatly increases from 70 years of age. The rate of proximal humerus fractures remains fairly stable regardless of age, whereas that of vertebral fractures exhibits a relatively steady increase as the woman ages. The risk of a ‘wrist’ fracture initially decreases (as the influence of tibia and fibula fractures wanes) but this effect is overridden by the large natural increase in wrist fractures that are estimated to occur in the elderly.

Mortality following fracture

There is a risk of mortality following a fracture, which is dependent on the site of the incident fracture.

Mortality following hip fracture

Excess mortality is well described after hip fracture. In the first year following hip fracture, the relative mortality risk varies in women from 2 to greater than 10 depending on age. However, case-control studies that adjust for prefracture morbidity indicate that a substantial component can be attributed to comorbidity.

The data used in the cost-effectiveness model are taken from unpublished data from the second Anglian audit of hip fracture, which recorded deaths up to 90 days following hip fracture.

To account for mortality that was not related to the hip fracture, data were taken from Parker and Anand. It was estimated that 33% of deaths 1 year after hip fracture were totally unrelated to the hip fracture, 42% were possibly related and 25% were directly related. These figures were not, however, available stratified by age, sex or residential status but have been assumed to be constant for all population subsets.

It is likely that there was further mortality between 91 days and 365 days that was not recorded by the audit. An estimate of this can be inferred from the graph in Parker and Anand, with the further mortality between 91 days and 365 days estimated to be 40% of the mortality up to 91 days.

It was further assumed that attributing all of the deaths possibly due to hip fractures as directly attributable to hip fracture and including only the data to 90 days would provide a reasonably accurate estimation of the true mortality rate. The mortality rates that were assumed attributable to hip fracture are given in Table 21. No data were available for the age band 50–59 years and it was assumed that, as suggested by Swedish data, this value was one-third that of the rate between 60 and 69 years.

Table 20: The estimated annual fracture risk by age for a woman with a T-score of –2.5 and no previous fracture

<table>
<thead>
<tr>
<th>Age band (years)</th>
<th>Hip</th>
<th>Vertebral</th>
<th>Wrist</th>
<th>Proximal humerus</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>0.26%</td>
<td>0.25%</td>
<td>0.88%</td>
<td>0.27%</td>
</tr>
<tr>
<td>55–59</td>
<td>0.29%</td>
<td>0.29%</td>
<td>0.75%</td>
<td>0.28%</td>
</tr>
<tr>
<td>60–64</td>
<td>0.33%</td>
<td>0.33%</td>
<td>0.68%</td>
<td>0.29%</td>
</tr>
<tr>
<td>65–69</td>
<td>0.40%</td>
<td>0.37%</td>
<td>0.67%</td>
<td>0.29%</td>
</tr>
<tr>
<td>70–74</td>
<td>0.48%</td>
<td>0.41%</td>
<td>0.73%</td>
<td>0.28%</td>
</tr>
<tr>
<td>75–79</td>
<td>0.71%</td>
<td>0.49%</td>
<td>0.90%</td>
<td>0.28%</td>
</tr>
<tr>
<td>80–84</td>
<td>1.04%</td>
<td>0.58%</td>
<td>1.17%</td>
<td>0.28%</td>
</tr>
<tr>
<td>85–89</td>
<td>1.67%</td>
<td>0.70%</td>
<td>1.55%</td>
<td>0.29%</td>
</tr>
</tbody>
</table>
FIGURE 21 The estimated annual fracture risk by age for a woman with a T-score of −2.5 and no previous fracture. ph, proximal humerus; vert, vertebral.

TABLE 21 Percentage of hip fractures that result directly in mortality

<table>
<thead>
<tr>
<th>Residential status</th>
<th>Age band (years)</th>
<th>Percentage of hip fractures that result directly in mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>50–59</td>
<td>2%</td>
</tr>
<tr>
<td>Community</td>
<td>60–69</td>
<td>6%</td>
</tr>
<tr>
<td>Community</td>
<td>70–79</td>
<td>6%</td>
</tr>
<tr>
<td>Community</td>
<td>80–89</td>
<td>11%</td>
</tr>
<tr>
<td>Community</td>
<td>90+</td>
<td>16%</td>
</tr>
<tr>
<td>Nursing home</td>
<td>50–59</td>
<td>0%</td>
</tr>
<tr>
<td>Nursing home</td>
<td>60–69</td>
<td>0%</td>
</tr>
<tr>
<td>Nursing home</td>
<td>70–79</td>
<td>13%</td>
</tr>
<tr>
<td>Nursing home</td>
<td>80–89</td>
<td>22%</td>
</tr>
<tr>
<td>Nursing home</td>
<td>90+</td>
<td>23%</td>
</tr>
</tbody>
</table>

Mortality following vertebral fracture

Several studies have shown an increase in mortality following vertebral fracture.8,101–103 In one study,8 women with one or more vertebral fractures had a 1.23-fold greater age-adjusted mortality rate (95% CI 1.10 to 1.37). This study used morphometric rather than clinical definitions of vertebral fracture. In contrast, other studies that examined mortality after vertebral fracture using clinical criteria have shown more marked increases in mortality. In one study from Australia,101 vertebral fractures in women were associated with an age-standardised risk of 1.92 (95% CI 1.70 to 2.14) and, in another study,105 the risk was more than eightfold higher. A study on clinical fractures from the UK102 compared mortality in women with osteoporosis (and no fracture) with mortality in women with osteoporosis and a previous vertebral fracture. The hazard ratio was 4.4 (95% CI 1.85 to 10.6) and was used for the present model.

The pattern of mortality after clinical vertebral fracture is non-linear, suggesting, as is the case for hip fracture, that a fraction of deaths would not have occurred in the absence of a fracture. Using the patient register for hospital admissions in Sweden, 28% of all deaths associated with vertebral fracture were judged to be causally related.104 This value for causality was used for all ages.
Death due to other fractures

We have assumed no increase in mortality from forearm fractures, consistent with published surveys.\(^8,103,105\) For humeral fractures we conservatively assumed a twofold increase in mortality and that 28% of deaths associated with humeral fractures are causally related.\(^104\)

For pelvis and other femoral fractures we have assumed a mortality rate equal to that for hip fractures. For tibia, fibula and humeral shaft fractures we have assumed a mortality rate equal to that of proximal humerus fractures. For rib, sternum, scapula and clavicle fractures, no excess mortality was assumed.

Death due to causes other than fracture

These data have been taken from 1999 interim life tables.\(^106\) These data could not be updated as they were used within the individual patient model that formed the meta-model. It is unlikely that life expectancy has changed markedly over the last decade and thus it is expected that little bias has been introduced.

Several studies\(^107,108\) have shown an increased mortality associated with low BMD of similar magnitude derived from measurements at the radius or heel. At the radius, the increase in RR was 1.22 per SD decrease in BMD adjusted for age,\(^107\) and this factor has been used within the model, although it is unsure how much excess mortality may be related to comorbidities. Ideally, a factor for BMD at the femoral neck would be used, but these data were not found when the model was constructed. The authors are not aware of any relevant data that have been published since.

Entry into nursing home following an osteoporotic fracture

It was assumed that only fractures of the hip or pelvis or other femoral fractures could result in nursing home entry. Data were sought to estimate what percentage of women who suffer a hip fracture move from living in the community into nursing home accommodation. The mathematical model used tracks the living status of individual patients, rather than assuming a constant percentage as has been used in some models;\(^110\) this second methodology would allow nursing home costs to be incorrectly allocated to women already residing in such care. The model also allows the risks of entering a nursing home to be dependent on age. Models that use an average value for all

TABLE 22 The mortality rate due to other causes in the general female population and in women at the threshold for osteoporosis

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>General population</th>
<th>Population at the threshold for osteoporosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>0.24%</td>
<td>0.34%</td>
</tr>
<tr>
<td>55–59</td>
<td>0.39%</td>
<td>0.54%</td>
</tr>
<tr>
<td>60–64</td>
<td>0.65%</td>
<td>0.85%</td>
</tr>
<tr>
<td>65–69</td>
<td>1.13%</td>
<td>1.40%</td>
</tr>
<tr>
<td>70–74</td>
<td>1.86%</td>
<td>2.19%</td>
</tr>
<tr>
<td>75–79</td>
<td>3.07%</td>
<td>3.43%</td>
</tr>
<tr>
<td>80–84</td>
<td>5.28%</td>
<td>5.60%</td>
</tr>
<tr>
<td>85–89</td>
<td>9.18%</td>
<td>9.27%</td>
</tr>
</tbody>
</table>
ages, such as that of Burge et al.,11 would be likely to significantly overestimate the proportion of younger patients with a hip fracture who enter a nursing home as the data set would be dominated by older patients.

Data from the second Anglian audit of hip fracture99 were used in the model. These data are shown in Table 23. It is assumed that women who enter a nursing home will remain there for the remainder of their lives.

A recent estimate of the costs associated with osteoporotic fractures assumed that 10% of all women with a hip fracture would reside in a nursing home for the remainder of their lives.11 This figure looks plausible within the age range of 70 years and above but appears, as expected, to be too high for those aged 50–69 years. Data from Kanis et al.104 used values ranging from 7% for 50- to 59-year-olds to 23% for those aged 90 years or over, but it is not stated how applicable these values are to the UK. It is likely that the values we have assumed for entering a nursing home are underestimates as women who were initially discharged to the community but who subsequently have to reside in a nursing home are unlikely to be included within the audit. However, this may be balanced by the fact that a significant proportion of patients who sustain a hip fracture may already reside in a nursing home; Johnell et al.112 report that 22% of patients with a hip fracture were admitted from a nursing home or a hospital.

The health state values associated with osteoporosis used within the model

The utilities used in this model are those detailed in Stevenson et al.,4 which were heavily influenced by work undertaken by Kanis et al.104 This comprehensive study provided a coherent source of health state utility multipliers for all of the fracture types. A utility multiplier is combined multiplicatively with the general population utility to provide an estimate of the utility for patients in that state, and results in the absolute disutility becoming less as a person ages and their underlying utility lower. The baseline values used in these analyses are taken from Kind et al.113

The utilities reported by Kanis et al.104 suggested that fractures of the pelvis and femoral shaft should be allocated to hip, fractures at the tibia and fibula should be allocated to proximal humerus and fractures of the scapula, ribs and sternum should be allocated to wrist. The only case for which the utility data did not match closely was for tibia and fibula fractures (multiplier of 0.926) compared with proximal humerus fractures (multiplier of 0.973) in the second year. To prevent the disutility of tibia and fibula fractures being underestimated we have calculated a weighted mean using the incidences of tibia and fibula fractures relative to proximal humerus fractures at each age.7 This varies the utility multiplier in the second year for proximal humerus, tibia and fibula fractures from 0.949 at 50–54 years to 0.966 at 80 years and over.

One deviation from the data of Kanis et al.104 was that the fractures grouped as similar to wrist were not assumed to affect utility in the second year, which was an assumption contained in the individual patient model.90 A utility multiplier of 0.999 is reported in Kanis et al.; this is very slightly unfavourable to the intervention. The utility data used within the model are shown in Table 24.

It is noted that we are using a greater disutility for vertebral fracture in the initial year than that in previous work for NICE,7 which increased the value to that associated with hip fracture (0.792). We have used the values reported by Kanis et al.104 for consistency, acknowledging that the adjustment requested by the NICE appraisal committee was arbitrary.

Cost data used in the treatment model

This report is based on the costs calculated by Stevenson and Davis114 and uses Healthcare Resource Group (HRG) costs with the inclusion of home help costs as used in a NICE assessment.4 The calculations are replicated in Appendix 11. A summary is provided in Table 25 with the values inflated from 2006 prices to 2008 prices by using a factor of 8%, as appears reasonable based on

TABLE 23 The percentage of women who move from the community to a nursing home following a hip fracture

<table>
<thead>
<tr>
<th>Age band (years)</th>
<th>Percentage of women</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–59</td>
<td>0%</td>
</tr>
<tr>
<td>60–69</td>
<td>4%</td>
</tr>
<tr>
<td>70–79</td>
<td>4%</td>
</tr>
<tr>
<td>80–89</td>
<td>12%</td>
</tr>
<tr>
<td>90+</td>
<td>17%</td>
</tr>
</tbody>
</table>
Economic analysis

TABLE 24 Utility data used within the model

<table>
<thead>
<tr>
<th>Fracture type</th>
<th>Utility in first year following fracture</th>
<th>Utility in second year following fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine (clinical)</td>
<td>0.626</td>
<td>0.909</td>
</tr>
<tr>
<td>Hip</td>
<td>0.792</td>
<td>0.813</td>
</tr>
<tr>
<td>Wrist</td>
<td>0.977</td>
<td>1.000</td>
</tr>
<tr>
<td>Proximal humerus</td>
<td>0.794</td>
<td>Dependent upon age, ranging from 0.949 to 0.966</td>
</tr>
</tbody>
</table>

All taken from Kanis et al.104 except for wrist fracture in the second and subsequent years, which is an assumption.

historic inflation indices.115 The ongoing cost of pharmaceutical treatment following a vertebral fracture was maintained at £222 per annum.

The costs of fatality were inadvertently omitted from the parameters that were varied in the construction of the Gaussian process model; thus, these have had to remain constant at the 1999/2000 value. This error is not expected to have a significant impact on the cost-effectiveness ratios but will slightly favour no treatment over interventions with beneficial effects on fracture.

The costs presented have been divided, when possible, into first year costs and costs that are assumed to be paid for the remainder of a patient’s lifetime. The costs have also been weighted by patient age, based on data regarding the length of stay in hospital and patient age.

The cost of a visit to a GP has been estimated at £30.115 The cost of a BMD scan has been estimated at £34 in 2001/2 prices; this has been assumed to be £48 in 2008 prices with reference to published inflation indices.115

The duration and efficacy of treatment and associated adverse events

The treatment duration for bisphosphonates and strontium ranelate has been maintained at 5 years; however, there is evidence which suggests that, for bisphosphonates, courses of 10 years may be cost-effective.117

The treatment duration for vitamin K is unknown as it is not listed in the BNF as a treatment for osteoporosis. We have assumed that a 5-year course will be undertaken. Data on the fall time of vitamins are also unknown; we have used 5 years in the base case but adjust this to an immediate loss of effect (i.e. a fall time of 0 years) in sensitivity analyses.

The efficacy data for each intervention used within the model

As detailed, a systematic review of the clinical efficacy of vitamin K has been conducted. The efficacies for strontium ranelate and for bisphosphonates have been updated and are contained in Appendices 9 and 10 respectively. These differ slightly from those reported in Stevenson et al.4 For all interventions we assume that the efficacy for all non-vertebral fractures is applicable for ‘wrist’ and ‘proximal humerus’ fractures. Data for vitamin K, came from an

The price of vitamin K, at 5 mg per day is not listed in the BNF although 10-mg formulations are listed. No evidence has been found on the effects of 10 mg of vitamin K daily and it has been assumed that the efficacy in fracture prevention is equivalent to that of the 5-mg formulation.

Vitamin K, is not listed in any formulation, probably because of the fact that menatetrenone is currently not permitted as a food supplement in the EU because there is no evidence for its independent role in health.26
TABLE 25 The cost (£) of each event, by age and by initial and subsequent years, used within the model (2008 prices)

<table>
<thead>
<tr>
<th>State</th>
<th>50–54 years</th>
<th>55–59 years</th>
<th>60–64 years</th>
<th>65–69 years</th>
<th>70–74 years</th>
<th>75–80 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First-year costs</td>
<td>Subsequent annual costs</td>
<td>First-year costs</td>
<td>Subsequent annual costs</td>
<td>First-year costs</td>
<td>Subsequent annual costs</td>
</tr>
<tr>
<td>Hip fracture a,b</td>
<td>34,385</td>
<td>25,447</td>
<td>34,385</td>
<td>25,447</td>
<td>34,385</td>
<td>25,447</td>
</tr>
<tr>
<td>Vertebral fracture</td>
<td>2525</td>
<td>222</td>
<td>2525</td>
<td>222</td>
<td>2525</td>
<td>222</td>
</tr>
</tbody>
</table>

a Assumed applicable for pelvis and other femoral fractures.
b Leading to nursing home admission.
c Assumed applicable for rib, sternum, clavicle and scapula fractures.
d Assumed applicable for tibia, fibula and humeral shaft fractures.
For sources of data see main text and Appendix 11.
TABLE 26 The cost for each intervention per annum

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Assumed dosage</th>
<th>Cost per annum (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronic acid (non-proprietary)</td>
<td>70mg once weekly</td>
<td>51.00</td>
</tr>
<tr>
<td>Risedronate sodium (Actonel®)</td>
<td>5mg once daily</td>
<td>249.15</td>
</tr>
<tr>
<td>Risedronate sodium (Actonel®)</td>
<td>35mg once weekly</td>
<td>264.80</td>
</tr>
<tr>
<td>Strontium ranelate (Protelos®)</td>
<td>2g once daily</td>
<td>333.94</td>
</tr>
<tr>
<td>Vitamin K₁ (Konakion®)</td>
<td>10mg once daily</td>
<td>60.27</td>
</tr>
<tr>
<td>Vitamin K₂</td>
<td>Not in the BNF43 – see text for comment</td>
<td></td>
</tr>
</tbody>
</table>

a This is double the dose used in the RCT¹⁶ – see text for more discussion.

exclusively osteopenic population and have been assumed to be applicable to women with osteoporosis.⁷¹

All data have been calculated using a random-effects model. We have used efficacy for the prevention of all clinical fractures rather than clinical fragility fractures when both data were presented to be consistent between interventions (Table 27).

These RRs were assumed applicable regardless of whether the risk of fracture was conferred by age, gender, T-score or previous fracture status. It is noted that there are no specific fracture data at the hip or the vertebrae for vitamin K₁. As these fractures are associated with relatively large costs and disutilities, if the efficacy of vitamin K₁ was substantially different this would affect the cost–utility results produced.

A decision was taken not to model vitamin K₂ for a number of reasons. This intervention is currently not permitted as a food supplement in the EU because there is no evidence for its independent role in health.²⁶ The price of the intervention is unknown and the fracture efficacy data had wide confidence intervals, all of which spanned unity. The only large (n > 1500 patients per arm) RCT reported a RR of 1.01 for vitamin K₂ compared with calcium or no active intervention, which may be disproportionately weighted because of the assumption of a random-effects model and the presence of a number of small (n > 100 per arm) RCTs.

Two scenarios for vitamin K₁ were modelled: the base-case scenario and an exploratory analysis assuming that vitamin K₁ had no effect at the hip or vertebrae.

Because of limited data on the efficacy of interventions for fracture in the very elderly, it has been assumed that the results for women aged 75–79 years would approximate those for women aged 80 years and older, which is in line with previous modelling work.⁴

Adverse events associated with treatment

We have assumed that the adverse events associated with bisphosphonates are equal to those reported in Stevenson and Davis.¹¹⁴ These result in a QALY loss per woman over a 5-year treatment period ranging from 0.0016 at 50 years of age to 0.0013 at 75 years of age. The NICE appraisal committee requested that these values be increased by a factor of 10 in the base case for some analyses;² however, the authors believe that the utility detriment had already been overestimated and did not need to be increased further. Strontium ranelate is associated

TABLE 27 The assumed relative risks of fracture for each intervention in women with osteoporosis

<table>
<thead>
<tr>
<th></th>
<th>Vertebral fracture</th>
<th>‘Hip’ fracture</th>
<th>All other fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>0.46 (95% CI 0.22 to 0.99)</td>
<td>0.46 (95% CI 0.22 to 0.99)</td>
<td>0.46 (95% CI 0.22 to 0.99)</td>
</tr>
<tr>
<td>Vitamin K₂</td>
<td>0.63 (95% CI 0.36 to 1.11)</td>
<td>0.27 (95% CI 0.03 to 2.38)</td>
<td>0.19 (95% CI 0.03 to 1.06)</td>
</tr>
<tr>
<td>Alendronate/risedronate</td>
<td>0.58 (95% CI 0.50 to 0.67)</td>
<td>0.72 (95% CI 0.58 to 0.88)</td>
<td>0.82 (95% CI 0.74 to 0.90)</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>0.63 (95% CI 0.56 to 0.71)</td>
<td>0.89 (95% CI 0.67 to 1.18)</td>
<td>0.86 (95% CI 0.75 to 0.98)</td>
</tr>
</tbody>
</table>
with a different set of adverse events but was assumed to have the same disutility as that used for bisphosphonates, values that have been previously used.5

We have assumed that there are no adverse events associated with vitamin K treatment.

Summarising changes between parameters used in this report and those used in preceding work

Work has previously been undertaken for NICE on the cost-effectiveness of bisphosphonates and strontium ranelate,5 with the results used in calibration and discussion of the parameters that predict fracture risk. Table 28 summarises the changes that have been made in calculating the cost-effectiveness ratios in this report with respect to this previous work.

Comparison and calibration of the model against previously published work

Recent modelling work4,5 undertaken using SHEMO for NICE and the National Coordinating Centre for Health Technology Assessment used data regarding the risks of fracture that were provided under an academic-in-confidence agreement. These data were not permitted to be used for this report and, as previously described, the model has reverted to estimating the risks of fracture based on age, gender and T-score alone, with increases in risks associated with clinical risk factors (including previous fracture).

Analyses have been carried out to compare the results of the new model with those of the model that used academic-in-confidence data. The most recent work5 incorporating the current price of alendronate could not be used for the comparison as different efficacies were used for some of the clinical risk factors. Instead the results are compared with previous work in which the price of alendronate was £173 per annum.119 With the exception of the underlying risks of fracture, which have now been calculated using age, gender, T-score and previous fracture status, and a slight adjustment in the costs, because of different proportions of additional fractures (see Table 4), the input parameters were identical. These results are shown in Figures 22 and 27. It is seen that the change in cost per QALY in relation to age is less pronounced in the new model compared with the model using academic-in-confidence data, with similar results being obtained for women aged 70 years and older with a T-score of –2.5 SD to –3.0 SD (Figure 22). This is favourable to the interventions as the cost per QALY in the younger patients has been underestimated.

Additional analyses were undertaken to determine an appropriate level of increased fracture risk when a previous fracture has been sustained.

The new model was rerun using four different ratios for the initial fracture risk due to a previous fracture. These were increases of 25%, 50%, 75% and 100%. The results produced by these factors were compared with the results for women with a previous fracture and a T-score of –2.5 SD to –3.0 SD.119 These data are depicted in Figure 23. It is seen that increases of 100% and 75% underestimate the cost per QALY at all ages, whereas an increase of 25% overestimates the cost per QALY at all ages. An increase of 50% appears the most appropriate as it produces similar results in those aged 70 years and over. This factor still underestimates the cost per QALY in younger ages, which will be favourable to the interventions.

The expected net benefit of sampling of a proposed RCT comparing alendronate and vitamin K₁

The rationale for conducting an RCT

Both alendronate and vitamin K₁ are relatively cheap compared with risendronate and strontium ranelate, with the former group priced below £61 per annum and the latter group priced at more than £250 per annum (Table 26). Both alendronate and vitamin K₁ have relatively good midpoint estimates for efficacy at preventing fracture (Table 27), although the evidence base for alendronate is much stronger because of the large number of RCTs conducted with bisphosphonates and the wide confidence intervals for vitamin K. Given these mid-point efficacy estimates, it is thus not surprising that, as detailed later, the most cost-effective intervention using standard cost per QALY thresholds91 appears to be either vitamin K₁ or alendronate.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Change</th>
<th>Reason</th>
<th>Further description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount rate (per annum)</td>
<td>From 6% for costs and 1.5% for benefits to 3.5% for both costs and benefits</td>
<td>Recommendation from NICE</td>
<td>See Epidemiological data used in the model</td>
</tr>
<tr>
<td>Efficacy of bisphosphonate/strontium ranelate</td>
<td>Adjustment in the assumed efficacy</td>
<td>New evidence</td>
<td>Appendix 9 and Appendix 10</td>
</tr>
<tr>
<td>Effect of adverse events for bisphosphonates</td>
<td>From 10 times that reported in a systematic review to that reported in the systematic review</td>
<td>We do not believe that the multiplying factor of 10 adopted by the NICE appraisal committee is justifiable</td>
<td>See Adverse events associated with treatment</td>
</tr>
<tr>
<td>Cost of a GP consultation</td>
<td>Increased from £18 to £30</td>
<td>New evidence</td>
<td>See Epidemiological data used in the model</td>
</tr>
<tr>
<td>Cost of a BMD scan</td>
<td>Increased from £34 to £48</td>
<td>New evidence</td>
<td>See Epidemiological data used in the model</td>
</tr>
<tr>
<td>Utility in the initial year of a vertebral fracture</td>
<td>Reduced from 0.792 to 0.626</td>
<td>The NICE appraisal committee did not believe that vertebral fractures could cause a greater utility loss than hip fractures in the initial year of fracture. This is not supported by clinicians on the NICE GDG and the data from published literature were used</td>
<td>See The structure of the cost-effectiveness model</td>
</tr>
<tr>
<td>Cost of fractures</td>
<td>Inflated to 2008 prices</td>
<td>New evidence</td>
<td>See Epidemiological data used in the model</td>
</tr>
<tr>
<td>The adoption of a different set of predictive values for estimating the risk of fractures</td>
<td>Calculating the risk of fracture based on age, gender, T-score and previous fracture status alone</td>
<td>Permission was not granted to use the academic-in-confidence data previously used</td>
<td>See The increased risk of fracture following a previous fracture, The increased risk of fracture for patients with low bone mass, Calculating the risk of fracture for populations with average BMD and without a previous fracture and Fracture risk at the threshold for osteoporosis</td>
</tr>
<tr>
<td>The underlying rate of fractures</td>
<td>We have smoothed the underlying fracture rates of Singer et al. and the increases associated with the four main fractures to incorporate other fracture types</td>
<td>The results of Singer et al. would have been associated with noise, which would affect the data collected. Our methodology of smoothing the data will hopefully provide more coherent answers</td>
<td>See The incidence of hip, vertebral, wrist and proximal humerus fractures by age</td>
</tr>
<tr>
<td>The efficacy of bisphosphonates is assumed to be the same, independent of the constituents of risk</td>
<td>The efficacy of bisphosphonates is constant for all levels of risk. On the request of the NICE appraisal committee previous work used, differential efficacies depending on the risk factors used to calculate absolute risk</td>
<td>As permission to use the academic-in-confidence data previously used was not granted, differentiating between different constituents of risk was not possible</td>
<td>See Methods for economic analyses</td>
</tr>
</tbody>
</table>

GDG, (NICE Osteoporosis) Guideline Development Group.
To address the uncertainty in the decision regarding which treatment to prescribe, an RCT directly comparing alendronate and vitamin K$_1$ would be beneficial, although there has been no previous work undertaken on whether such a trial would be cost-effective. We employ expected value of sample information (EVSI) techniques. The method is fully described elsewhere$^{120-122}$ and has recently been employed to determine the cost-effectiveness of an RCT to look at the long-term efficacy of bisphosphonates117 it will be summarised in this report.

A major unknown in the knowledge base is the uncertainty around the efficacy of vitamin K$_1$ in preventing fractures. An RCT of vitamin K$_1$ against calcium alone would provide these data but may be unethical as patients allocated to the
calcium arm would be denied alendronate, which, as shown later, is estimated to be cost-effective in postmenopausal women. Thus, ethically an RCT should compare vitamin K\textsubscript{1} directly against alendronate. The information that would be provided by the RCT would be the number of patients who fracture at each site in the two arms of the study. This would allow a RR of fracture at each site to be computed for alendronate compared with vitamin K\textsubscript{1}. Note that as there is not a ‘no treatment’ arm the RCT would not provide any direct additional data on the efficacy of either alendronate or vitamin K\textsubscript{1} against no treatment.

The analyses undertaken assume that the proposed RCT would have a duration of 5 years and that an equal number of patients would be randomised to the alendronate and vitamin K\textsubscript{1} arms. It is recommended that within the proposed trial it is ensured that women are replete of calcium as is standard in trials of osteoporosis interventions.

Simulating the prior expectation of the comparative efficacy of alendronate and vitamin K\textsubscript{1}

To undertake EVSI a prior expectation of the RR of fracture for alendronate compared with vitamin K\textsubscript{1} is required. This was obtained at each fracture site by sampling 1000 RRs for alendronate compared with no treatment and 1000 RRs for vitamin K\textsubscript{1} compared with no treatment (Table 27). The RRs for each intervention were combined to form 1000 estimates of the RR of alendronate compared with vitamin K\textsubscript{1}. Note that this assumes independence between the efficacy of alendronate and the efficacy of vitamin K\textsubscript{1}.

A statistical distribution was fitted to the generated RRs of alendronate compared with vitamin K\textsubscript{1}. Figure 24 shows the underlying simulated data on the RR of alendronate compared with vitamin K\textsubscript{1} at the hip and the statistical distribution fitted. Figures 25 and 26 give corresponding data for vertebral and the combined wrist and proximal humerus fractures respectively. A summary of the assumed distribution is provided in Table 29.

Calculating the expected value of sample information

The optimal decision given current information is that which yields the greatest expected net benefit,123 defined as max\textsubscript{t} E\{\theta \} NB(t, \theta) where t represents the treatments being compared (t = 1, 2, … T), \theta a multivariate probability distribution based on current evidence and NB(t, \theta) the net benefit of treatment t associated with \theta. Undertaking an RCT will provide additional data on a subset of the unknown parameters \theta/\epsilon (in this example the RR of alendronate compared with vitamin K\textsubscript{1} in preventing fracture at each site) but no direct evidence on the complimentary parameters denoted \theta/\epsilon, for example the disutility

FIGURE 24 The fitted distribution for the relative risk of alendronate compared with vitamin K\textsubscript{1} for hip fracture.
FIGURE 25 The fitted distribution for the relative risk of alendronate compared with vitamin K₁ for vertebral fracture.

FIGURE 26 The fitted distribution for the relative risk of alendronate compared with vitamin K₁ for wrist and proximal humerus fracture.

TABLE 29 The summarised prior distribution of the relative risk of alendronate compared with vitamin K₁.

<table>
<thead>
<tr>
<th>Site</th>
<th>Distribution</th>
<th>Mean (SD) of the log of the value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>Log-normal</td>
<td>0.4463 (0.3821)</td>
</tr>
<tr>
<td>Vertebral</td>
<td>Log-normal</td>
<td>0.2287 (0.3941)</td>
</tr>
<tr>
<td>Wrist and proximal humerus</td>
<td>Log-normal</td>
<td>0.5558 (0.3924)</td>
</tr>
</tbody>
</table>
of a hip fracture. Calculation of EVSI involves simulating the collection of data samples and for each simulated sample data set examining the potential effect on the decision between treatment options. The data collected, which will be affected by both the underlying uncertainty in the parameters and the lack of precision associated with finite sample sizes, are denoted X_{θ_I} and a posterior distribution of $\theta_r | X_{\theta_I}$ is calculated, which synthesises the prior distribution with the information produced by the RCT. Further ‘inner level’ Monte Carlo sampling then quantifies the effect of the simulated data obtained from the RCT on the decision, that is, whether the RCT would produce evidence to change the decision from that which is estimated to be optimal given current information. The optimal decision following data is the treatment option $t_{\text{optimal}}(X_{\theta_I})$ which maximises the expected net benefit $\max_{t} E(\theta_r | X_{\theta_I})$. From this, the expected net benefit, given the updated data, of the treatment that was optimal using current information $E(\theta_r | X_{\theta_I}) | X_{\theta_I}) N(B(t, \theta_r, \theta_r))$, where t_{baseline} is that which maximises $E \theta N(B(t, \theta))$ is subtracted to provide the additional expected net benefit obtained by making a decision after obtaining the sample data set X_{θ_I}. It is noted that when updating the data does not change the optimal decision the EVSI for that value of X_{θ_I} is zero. The expected EVSI for the RCT is calculated as the average EVSI across all sampled data sets X_{θ_I}. That is:

$$\text{EVSI} = E_{X_{\theta_I}} \left[\max_{t} E(\theta_r | X_{\theta_I}) | X_{\theta_I}) - \frac{E(\theta_r | X_{\theta_I}) | X_{\theta_I}) - \frac{E(\theta_r | X_{\theta_I}) | X_{\theta_I})}{\text{baseline}} t_{\text{baseline}} \right]$$

For this case study, the process of simulating the number of fractures expected in a proposed RCT of specified size, updating the prior distribution and calculating which is the better treatment duration from an inner probabilistic sensitivity analysis (PSA) process was undertaken for each of the 1000 parameter configurations previously used in calculating the better duration of treatment given current information. This produced a range of 1000 different simulated results for the specified trial design. To estimate the likely number of fractures in each arm the likely fracture risks of women recruited to the RCT needed to be estimated. It was assumed that the risks of those recruited would be equivalent to the risks associated with women aged 70–74 years with a T-score of -3 SD but no previous fracture, which are 0.93%, 0.84%, 0.80% and 0.31% per annum for vertebral, hip, wrist and proximal humerus fractures respectively.

Estimating the number of fractures in the RCT

For simplicity, we consider only trials with equal numbers of women, denoted n, in the two arms. The number of fractures simulated to occur in each arm of an RCT was estimated using a normal distribution with a mean equal to n multiplied by the probability of having a fracture, and variance equal to n multiplied by the product of the probability of fracture and the probability of not fracturing. The simulated trial results provide the number of people who fracture in the alendronate arm (x_1) and the number of people who fracture in the vitamin K$_1$ arm (x_2).

Updating the prior distribution with the data from the RCT to form a posterior distribution

The prior distributions of the RR of alendronate compared with vitamin K$_1$ were seen to be log-normal, thus the natural log of the RR of alendronate compared with vitamin K$_1$ is distributed normally with a mean m_1 and a variance of v_1. We approximate the distribution of the log RR from the hypothetical RCT by a normal distribution with mean z, where z is the log RR of alendronate compared with vitamin K$_1$, and variance s, where $s = (n - x_1)/(n.x_1) + (n - x_2)/(n.x_2)$. Note that this approximation has used an estimate of the true sampling variance based on the data x_1 and x_2, and so uncertainty in the sampling variance has been ignored. The posterior distribution of the log of the RR of alendronate compared with vitamin K$_1$ is then approximately normal, with mean m_1 and variance v_1, given by $v_1 = 1/(1/v_1 + 1/s)$ and $m_2 = v_1 \times (m_1/v_1 + z/s)$. Note that, as the number of women in the RCT increases, the posterior distribution becomes less sensitive to the choice of prior distribution and moves closer to that observed from the RCT.

An illustrative example of forming a posterior distribution

An illustrative example is provided using the prior distribution of the RR of alendronate compared with vitamin K$_1$ for vertebral fractures (Table 27). The natural log of the prior distribution of the RR of alendronate compared with vitamin K$_1$ is distributed normally with a mean of 0.2287 and a variance of 0.1553. It is assumed that we sample a ‘true’ log RR of alendronate compared with vitamin K$_1$, of 0.3; however, due to lack of precision from a finite sample size, this value of the log RR...
of alendronate compared with vitamin K₁ may not be observed. For illustrative purposes we assume that a simulated RCT of 1000 women produced 25 vertebral fractures in the alendronate cohort and 20 vertebral fractures in the vitamin K₁ cohort (thus exhibiting a RR of alendronate compared with vitamin K₁ of 0.2231 [log (25/20)] rather than the ‘true’ value of 0.3). The distribution of z is thus estimated to be normally distributed with a mean of 0.2231 and a variance of 0.0880 [(1000–20)/ (1000 × 20) + (1000–25)/(1000 × 25)]. The posterior distribution of the natural log of the RR of alendronate compared with vitamin K₁ would then be estimated to be normal with a variance of 0.0561 [1/(1/0.1553 + 1/0.0880)] and a mean of 0.2251 [0.0561 × (0.2287/0.1553 + 0.2231/0.0880)]. Monte Carlo sampling would be based on this distribution to provide estimates of the log RR of alendronate compared with vitamin K₁. These values would be used in a standard PSA to determine which of the two treatments was optimal.

Transforming the posterior distribution into RRs compared with no treatment for alendronate and vitamin K₁

Our mathematical model has been constructed whereby the efficacy of an intervention compared with no treatment is used to calculate the incremental costs and QALYs associated with treatment. The posterior distribution is for the log RR of alendronate compared with vitamin K₁. This must be converted into a RR for each intervention compared with no treatment. To do this it is assumed that the RRs for alendronate compared with no treatment are correct, because of the large number of patients (almost 5000 per arm) recruited to the bisphosphonate RCTs. In the PSA, the RR of alendronate is sampled and the RR of vitamin K₁ compared with no treatment is directly derived from a sampled RR of alendronate compared with vitamin K₁ and a RR of alendronate compared with no treatment. For example, if alendronate was sampled to have a RR of 0.8 compared with no treatment and a RR of 2 compared with vitamin K₁ then the RR of vitamin K₁ compared with no treatment would be estimated to be 0.4 (0.8/2).

Calculating the optimal decision following the RCT data

Given the simulated data from the RCT and the resulting posterior distribution of the natural log of the RR of alendronate compared with vitamin K₁, the optimal decision was re-evaluated using PSA and the expected net benefit of the optimal decision obtained. This expected net benefit was compared with the expected net benefit of the optimal decision based on prior information alone. The average of the increase in mean net benefit across all 1000 simulated trial results gives the estimated EVSI. To calculate if the RCT is a cost-effective use of resources two further sets of data are needed: how much the RCT will cost and how many patients will benefit from the additional information.

The costs of recruiting to the RCT

The cost of running the proposed RCT has been assumed to be £1000 per recruit (Clinical Trials Research Unit, ScHARR, University of Sheffield, 2007, personal communication) with additional intervention acquisition costs of £111.27 (£51 + £60.27) per annum. Although in reality there will be fixed costs and some form of economies of scale to be exploited, this value appears to be a reasonable approximation to the costs of successfully funded bids in the UK.

The expected number of women who will benefit from the increased knowledge

Estimating the number of women who may benefit from the extra research is more complicated. Table 40 in Appendix 7 reports that an estimated 20.9% of women aged 70–74 years are osteoporotic; as the number of women in this age range is estimated to be 1,130,516¹²⁴ this would equate to approximately 236,000 women who could benefit from the better information regarding the relative efficacy of alendronate and vitamin K₁. Assuming that one of these interventions is likely to remain the mainstay of treatment for 10 years and with an assumed 50,000 women becoming eligible for treatment per year, this would equate to approximately 736,000 women who would benefit, which has been rounded up to 1,000,000 to account for patients over 75 years of age or under 70 years of age who may also be eligible. It is believed that compliance with osteoporosis interventions is in the region of 50%³⁵ and, thus, the estimated number of women who could benefit from an RCT assessing the relative efficacy of alendronate and vitamin K₁ is approximately 500,000. This value is adjusted to 200,000 and 1,000,000 in sensitivity analyses.
The scenarios undertaken

Two scenarios were run, the first using a cost per QALY threshold of £20,000 and the second using a cost per QALY threshold of £30,000. In both scenarios RCTs were evaluated assuming that 1000, 2000, 5000 or 10,000 women were recruited per arm. Sensitivity analyses were undertaken on the number of women who would benefit from the better data and the underlying fracture risks of those recruited within the trial.
Chapter 5

Results

Results for women with and without a previous fracture

The results from the cost-effectiveness analyses are provided in detail in Appendix 11, with summary values provided in Figures 27–30. Note that, for ease of interpretation, when an intervention dominates no treatment the value in the figure has been shown as zero.

Conclusions from the analyses given current information

The following conclusions can be drawn from the cost-effectiveness analyses undertaken:

1. Vitamin K₁ shows potential to be a cost-effective treatment for preventing fractures. Incremental analyses suggest that it is the most cost-effective intervention if the efficacy data are assumed applicable at the hip and vertebrae. However, the results for alendronate are similar, as shown by the cost-effectiveness acceptability curves in Appendix 11.

2. If vitamin K₁ is not effective at preventing fractures at the hip or vertebrae then it does not appear to be a cost-effective intervention. As such, robust data on the efficacy of vitamin K at these fracture sites are urgently needed.

3. Both vitamin K₁, assuming efficacy at the hip and vertebrae, and alendronate are relatively much more cost-effective than either risedronate or strontium ranelate. Vitamin K₁ is estimated to have a cost per QALY of below £20,000 in all osteoporotic women aged 50 years and older.

4. The results for women with a T-score of −2.5 SD and a previous fracture are relatively similar to those for women with a T-score of −3.0 SD and no previous fracture. Although the analyses have shown that vitamin K₁ is potentially the most cost-effective intervention when the efficacy data are assumed to be applicable to all sites, caution must be applied when interpreting the results. In the absence of vitamin K₁, the most cost-effective treatment is alendronate, a bisphosphonate, which is a class of drugs that has been evaluated in numerous RCTs, approaching 5000 patients per arm. In contrast, vitamin K₁ has

![Figure 27](image-url)

FIGURE 27 The cost-effectiveness of osteoporosis interventions compared with no treatment in women with a T-score of −2.5 SD and without a previous fracture.
Results

been evaluated in only one RCT, the ECKO study, in which there were less than 250 patients per arm, with the efficacy not detailed by fracture site. Although the small patient numbers are reflected in the wide confidence intervals, the low midpoint results in vitamin K\(_1\) appearing to be the most cost-effective intervention. Were data to become available which showed that the efficacy at the hip and vertebrae were lower than that reported for all fractures (excluding fingers and toes), the cost-effectiveness results could substantially alter, as shown in Figures 27–30. Observational data from Denmark found no association between dietary vitamin K\(_1\) intake and fracture risk, although it should be noted that the reported dietary intakes (median 67 µg/day at baseline and 60 µg/day at year 5) were considerably lower than the 5-mg daily dose used in the ECKO study.

For this reason we have undertaken EVSI analyses to determine if an RCT of alendronate versus vitamin K\(_1\) would represent an efficient use of

FIGURE 28 The cost-effectiveness of osteoporosis interventions compared with no treatment in women with a T-score of −3.0 SD and without a previous fracture.

FIGURE 29 The cost-effectiveness of osteoporosis interventions compared with no treatment in women with a T-score of −2.5 SD and with a previous fracture.
resources, compared with a decision to prescribe all osteoporotic women with vitamin K₁.

Results of the EVSI analyses

Two scenarios were examined, which differed in the cost per QALY threshold used (£20,000 or £30,000). In all cases it was assumed that the efficacy data from the ECKO study were applicable at all fracture sites. The results are presented graphically in Figures 31 and 32. In both figures the expected EVSI is given, which is seen to decline as the marginal addition of patients provides less information (i.e. moving from 1000 to 2000 patients per arm is expected to provide more benefit than moving from 9000 to 10,000 patients as at 9000 patients the uncertainty in the relative efficacies will have been substantially reduced). The costs of the trial are linear. The ENBS, which is the

![Figure 30: The cost-effectiveness of osteoporosis interventions compared with no treatment in women with a T-score of −3.0 SD and with a previous fracture.](image)

![Figure 31: The expected net benefit of sampling (ENBS) assuming a £20,000 cost per QALY threshold. EVSI, expected value of sample information.](image)
EVSI minus the costs of the trial, is curved, with the optimal number of patients per arm shown by the turning point. It is seen that in both scenarios an RCT of 2000 women per arm appears to be optimal.

Sensitivity analyses undertaken for the EVSI analyses

A number of sensitivity analyses were undertaken. Changing the number of patients who would benefit from the data collected to 1,000,000 rather than 500,000 resulted in the optimal trial size from among those evaluated becoming 5000 women per arm. However, there was little difference in the ENBS produced between trial sizes of 2000 women per arm and 5000 women per arm, with the average increase being 1%. If the number of women assumed to benefit was decreased to 250,000 then 2000 women per arm remained the optimal number from among those evaluated. Similarly, increasing the cost of recruiting a patient to a trial to £2000 did not change the conclusion that 2000 women per arm was optimal amongst those trial sizes evaluated.

When the assumed fracture risks were reduced to those of a 70-year-old woman without a previous fracture and with a T-score of –2.5 SD the optimal size of study arm from among those evaluated remained at 2000 women at a cost per QALY threshold of £20,000, but rose to 5000 women at a cost per QALY threshold of £30,000. However, there was little difference in the ENBS produced between trial sizes of 2000 women per arm and 5000 women per arm, with the average increase being 2%.

When the risks were changed to those of a 70-year-old woman with a T-score of –3.5 SD and without a previous fracture, a trial size of 2000 patients per arm remained optimal amongst the trial sizes evaluated, for both scenarios. From the sensitivity analyses undertaken it appears that an RCT of 2000 patients per arm would continually provide data that were cost-effective to obtain.
Vitamin K\textsubscript{1} has the potential to be a cost-effective intervention for preventing osteoporotic fractures, as it is likely to have a relatively inexpensive acquisition cost and a low RR of fracture prevention. However, this conclusion is heavily dependent on the efficacy of the intervention at the hip and the spine. At present there has been only one RCT of vitamin K\textsubscript{1}116 which has reported efficacy in the reduction of fractures as one group rather than at different sites. Analyses assuming that this efficacy is applicable at all sites indicate that vitamin K\textsubscript{1} would be the most cost-effective intervention. However, supplementary analyses that took an extreme position that vitamin K\textsubscript{1} had no effect on hip or vertebral fractures indicated that alendronate, the cheapest bisphosphonate, would be more cost-effective in this scenario. Data are urgently needed on the efficacy of vitamin K\textsubscript{1} at individual sites. It is noted that vitamin K\textsubscript{1} in the preparation used in the RCT is not currently available in the UK, although preparations at double this dose do exist. We have used the price of the higher-strength formulation but indicate that the price of 5 mg of vitamin K\textsubscript{1} is likely to be different to that used in this evaluation.

Expected value of sampling information has been conducted, which shows that an RCT comparing alendronate with vitamin K\textsubscript{1} and recruiting 2000 patients per arm would represent a cost-effective use of resources and would allow a more informed decision to be made over which drug, alendronate or vitamin K\textsubscript{1}, is the more cost-effective. Although this analysis necessarily made assumptions regarding the likely efficacy of both drugs compared with no treatment the choice of 2000 women per arm consistently produced high ENBS. It has been assumed that clinicians and osteoporotic women are sufficiently in equipoise between the benefits of alendronate and vitamin K\textsubscript{1} to allow an RCT to be conducted, although it is recognised that some clinicians may have strong prevalent opinions on the relative merits of the two interventions. The authors note that the uncertainty in the efficacy of vitamin K\textsubscript{1}, particularly in Western women, will not be resolved unless an RCT is undertaken, and that it would be ethically more appropriate to provide alendronate rather than placebo in the comparator arm.

The model constructed for this analysis differed from that used in recent NICE appraisals4,5 (Table 28). However, comparison of the results produced by the two modelling approaches shows that the cost per QALY ratios are unlikely to be substantially changed by the alternative methodology; however, it is noted that the cost-effectiveness ratios produced in this report may be favourable to the intervention for younger women (50–60 years of age).

Our analysis has not tried to position interventions within a care pathway as this has been the focus of a recent NICE appraisal125 which has drawn on our earlier work5 and considered the costs of identifying women who should receive BMD scans. However, alendronate (and vitamin K\textsubscript{1} when efficacy is assumed to be equal at all sites) has a cost per QALY of below £20,000 for all women aged 50 years and over who are osteoporotic, which implies that these treatments would normally be considered cost-effective106.

No formal evaluation of vitamin K\textsubscript{2} has been undertaken for a number of reasons. This intervention is currently not permitted as a food supplement in the EU because there is no evidence for its independent role in health26 and the price of the intervention is unknown. Additionally, the fracture efficacy data have wide confidence intervals, all of which spanned unity, and the only large (n > 1500 patients per arm) RCT reported a RR of 1.01 for vitamin K\textsubscript{2} compared with calcium or no active intervention.

No evaluation of treating with a combination of alendronate alongside vitamin K\textsubscript{1} has been undertaken. If vitamin K\textsubscript{1} is shown to be efficacious in future RCTs then the cost-effectiveness of combination treatment is a subject for future research.
Chapter 7
Conclusions

It would not be prudent to recommend the position of vitamin K₁ within a treatment algorithm without further information. EVSI analyses have been undertaken and it is recommended that an RCT comparing alendronate and vitamin K₁ and recruiting 2000 women per arm would represent a cost-effective use of resources. The cost implications to the NHS of undertaking such a trial have been estimated to be in the region of £4 million.

Vitamin K₂ has not been evaluated as it is not licensed as a food supplement in the EU and there is no statistically significant evidence that this intervention is effective at reducing fractures.
Acknowledgements

The clinical experts on the team who commented on the draft report were Professor Tahir Masud, Professor in Musculoskeletal Gerontology, University of Derby, and Dr Peter Selby, Senior Lecturer in Medicine, Department of Medicine, Manchester Royal Infirmary. Andrea Shippam, Project Administrator, ScHARR, organised the retrieval of papers and helped in preparing and formatting the report. The authors wish to thank all of the above.

Contribution of authors

Dr Matt Stevenson (Senior Research Fellow) led the project and was responsible for constructing, running and interpreting the output from the mathematical model. Myfanwy Lloyd Jones (Senior Research Fellow) carried out the review of the clinical effectiveness of each intervention. Diana Papaioannou (Systematic Reviews Information Officer) undertook the electronic literature searches.
References

References

77. C Underhay, Medical Information Pharmacist, Eisai Ltd. Study NCT00165667. Personal communication, 18 February 2008.

89. FRAX. FRAX 2008. URL: www.sheffield.ac.uk/FRAX

118. Lloyd Jones M, Wilkinson A. Adverse effects and persistence with therapy in patients taking oral alendronate, etidronate or risedronate: a systematic review. Sheffield: ScHARR, University of Sheffield; 2006.

119. Stevenson M. Analyses of cost-effective BMD scanning and treatment strategies for generic alendronate, risedronate, strontium ranelate, raloxifene and teriparatide following corrections to the methodology associated with lower efficacy in some risk factors. NICE 2006.

References

129. Ishida Y, Kawai S. A two-year randomized controlled trial of hormone replacement therapy, etidronate, calcitonin, vitamin d, or vitamin K, in women with postmenopausal osteoporosis. *J Bone Miner Res* 2002;17:S478.

135. Radecki TE. Calcium and vitamin D in preventing fractures: vitamin K supplementation has powerful effect. *BMJ* 2003;331:108.

139. Ishida Y, Kawai S. A two-year randomized controlled trial of hormone replacement therapy, etidronate, calcitonin, vitamin d, or vitamin k, in women with postmenopausal osteoporosis. *J Bone Miner Res* 2002;17:S478.

162. Kaadan N. The preventive effect of alendronate on bone looses (sic) and vertebral fractures in postmenopausal osteoporosis in Aleppo City. *Bone* 2002;30:50S.

Appendix 1

MEDLINE clinical effectiveness search strategy

1. exp osteoporosis/
2. Osteoporos$.tw.
3. Bone diseases, metabolic/
4. 1 or 2 or 3
5. (Bone adj6 densit$).tw.
6. Bone density/
7. (Bone or bones).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
8. exp Densitometry/
9. Tomography, x-ray computed/
10. Densit$.tw.
11. 9 and 10
12. 8 or 11
13. 7 and 12
14. 4 or 5 or 6 or 13
15. exp Vitamin K/
16. vitamin k1.tw.
17. vitamin k 1.tw.
18. menaquinone$.tw.
19. phylloquinone$.tw.
20. phytomenadione$.tw.
21. phytonadione$.tw.
22. aquamephyton$.tw.
23. konakion$.tw.
24. phyllohydroquinone$.tw.
25. vitamin k2.tw.
26. vitamin k 2.tw.
27. menaquinone$.tw.
28. vitamin k quinone$.tw.
29. vitamin k3.tw.
30. vitamin k 3.tw.
31. vitamin k sodium bisulfite.tw.
32. menadione$.tw.
33. 2-methyl-1, 4-napthalenedione.tw.
34. 2-methyl-1, 4-napthoquinone$.tw.
35. menadione bisulfite$.tw.
36. menadione sodium bisulfite$.tw.
37. vicasol.tw.
38. vikasol.tw.
39. phytonadione.tw.
40. or/15–39
41. 14 and 40
Appendix 2

Randomised controlled trial data extraction form

<table>
<thead>
<tr>
<th>Study and design</th>
<th>Data extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
<td>Review details</td>
</tr>
<tr>
<td></td>
<td>Author, year</td>
</tr>
<tr>
<td>Study design</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>Publication type (i.e. full report or abstract)</td>
</tr>
<tr>
<td></td>
<td>Country of corresponding author</td>
</tr>
<tr>
<td></td>
<td>Language of publication</td>
</tr>
<tr>
<td></td>
<td>Sources of funding</td>
</tr>
</tbody>
</table>

Interventions

Focus of interventions (comparisons)

Description:
- T1: Intervention group, dose, timings
- T2: Control group, dose, timings

Intervention site (health-care setting, country)

Duration of intervention

Length of follow-up

Study characteristics

Method of randomisation:
- Description
- Generation of allocation sequences
- Allocation concealment?
- Blinding level

Numbers included in the study

Numbers randomised

Population characteristics

Target population (describe)

Inclusion/exclusion criteria (n)

Recruitment procedures used (participation rates if available)

Characteristics of participants at baseline:
- Age (mean, years)
- Years since menopause
- Ethnicity
- BMD at lumbar spine:
 - Mean (g/cm²)
 - T-score

continued
<table>
<thead>
<tr>
<th>Study and design</th>
<th>Data extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD at femoral neck:</td>
<td></td>
</tr>
<tr>
<td>Mean (g/cm²)</td>
<td>T-score</td>
</tr>
<tr>
<td>BMD of total hip:</td>
<td></td>
</tr>
<tr>
<td>Mean (g/cm²)</td>
<td>T-score</td>
</tr>
<tr>
<td>Prevalent vertebral fracture:</td>
<td></td>
</tr>
<tr>
<td>No. of women</td>
<td>Mean no. of fractures</td>
</tr>
<tr>
<td>Previous osteoporosis-related non-vertebral fracture:</td>
<td></td>
</tr>
<tr>
<td>No. of women</td>
<td>Mean no. of fractures</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
</tr>
<tr>
<td>Were intervention and control groups comparable?</td>
<td></td>
</tr>
</tbody>
</table>

Outcomes
- Definition of primary outcomes
- Definition of secondary outcomes
- Definition of tertiary outcomes
- Definition of other outcomes

Analysis
- Statistical techniques used
- Intention to treat analysis
- Does technique adjust for confounding?
- Power calculation (priori sample calculation)
- Attrition rates (overall rates), i.e. loss to follow-up
- Was attrition adequately dealt with?
- Number (%) followed-up from each condition
- Compliance with study treatment
- Adherence to study treatment

Results
- Adverse events
- Other information
- Summary
- Authors’ overall conclusions
- Reviewers’ comments

Based on NHS CRD Report No. 4.66
Appendix 3
Publications relating to the trials that met the inclusion criteria for the review

The major publication for each study is indicated with an asterisk.

ECKO study

Iwamoto 2001

Osteoporosis Fracture (OF) study

Shiraki

Yamaguchi Osteoporosis Prevention Study (YOPS)
1. Ishida Y, Kawai S. Comparative efficacy of hormone replacement therapy, etidronate, calcitonin, vitamin D and vitamin K in postmenopausal osteoporosis. *Bone* 2003;33(Suppl.1):S220.
2. Ishida Y, Kawai S. A two-year randomized controlled trial of hormone replacement therapy, etidronate, calcitonin, vitamin D, or vitamin K, in women with postmenopausal osteoporosis. *J Bone Miner Res* 2000;17(Suppl.1):S478.

7. Ishida Y, Soh H, Tsuchida S, Kawahara S, Murata H, Kawai S. Effectiveness of hormone replacement therapy, etidronate, calcitonin, vitamin D, and vitamin K in postmenopausal women with osteoporosis. *Bone* 2002;30(Suppl. 3):S0S.
Appendix 4

References excluded from the review of clinical effectiveness after a full reading

<table>
<thead>
<tr>
<th>Reference/study name</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alper 2007126</td>
<td>Not primary research</td>
</tr>
<tr>
<td>Clouatre and Shastri 2004127</td>
<td>Not primary research</td>
</tr>
<tr>
<td>Ishida and Kawai 2003128</td>
<td>Although this abstract states that it reports the findings of one RCT, the first author has clarified that it in fact combines the data from three trials (one of which was YOPS)</td>
</tr>
<tr>
<td>Iwamoto et al. 1999129</td>
<td>Population of women not selected for low BMD</td>
</tr>
<tr>
<td>Iwamoto et al. 2000130</td>
<td>Does not report fracture outcomes</td>
</tr>
<tr>
<td>Kenney 2006131</td>
<td>Not primary research</td>
</tr>
<tr>
<td>Meunier 1999132</td>
<td>Review</td>
</tr>
<tr>
<td>NCT00165698133</td>
<td>Wrong comparator (alfacalcidol). Results not published although the study is said to have been completed in January 2007</td>
</tr>
<tr>
<td>Purwosunu et al. 2006134</td>
<td>Does not report fracture outcomes</td>
</tr>
<tr>
<td>Radecki 2005135</td>
<td>Not primary research</td>
</tr>
<tr>
<td>Rejnmark et al. 2005136</td>
<td>Cross-sectional study</td>
</tr>
<tr>
<td>Rejnmark et al. 2006137</td>
<td>Cross-sectional study</td>
</tr>
<tr>
<td>Shiraki 2006138</td>
<td>Population not said to be postmenopausal women; participants not said to be randomised to treatment groups</td>
</tr>
</tbody>
</table>
Appendix 5
Evidence tables
<table>
<thead>
<tr>
<th>Study</th>
<th>Study site</th>
<th>Length of study</th>
<th>Primary outcome measure/s</th>
<th>Population</th>
<th>Mean age, years (range)</th>
<th>Intervention/dose</th>
<th>Comparison/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylloquinone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECKO study</td>
<td>Canada</td>
<td>2 years, with 2-year extension</td>
<td>Changes in BMD from baseline to 2 years</td>
<td>Postmenopausal women with osteopenia</td>
<td>59 (40–82)</td>
<td>Phylloquinone 5 mg/day</td>
<td>Identical-looking and -tasting placebo</td>
</tr>
<tr>
<td>Menatetrenone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwamoto 2001</td>
<td>Japan</td>
<td>2 years</td>
<td>Changes in BMD</td>
<td>Postmenopausal women with osteoporosis</td>
<td>65 (53–78)</td>
<td>Menatetrenone 45 mg/day</td>
<td>Etidronate 200 mg/day for the first 2 weeks of a 12-week cycle</td>
</tr>
<tr>
<td>OF study 2005</td>
<td>Japan</td>
<td>3 years</td>
<td>Incidence of vertebral fracture</td>
<td>Women aged ≥ 50 with primary osteoporosis</td>
<td>No data</td>
<td>Menatetrenone 45 mg/day</td>
<td>Calcium lactate 2 g/day</td>
</tr>
<tr>
<td>Shiraki 2000</td>
<td>Japan</td>
<td>Initially 2 years. Extension study 3 years (mean follow-up in extension study 1.8 years)</td>
<td>Changes in BMD</td>
<td>Ambulatory women with primary osteoporosis</td>
<td>67 in the original study; 69 in the extension study</td>
<td>Menatetrenone 45 mg/day + elemental calcium (150 mg/day in the original study; 200 mg/day in the extension study)</td>
<td>Elemental calcium (150 mg/day in the original study; 200 mg/day in the extension study)</td>
</tr>
<tr>
<td>YOPS 2004</td>
<td>Japan</td>
<td>2 years</td>
<td>Changes in BMD</td>
<td>Ambulatory postmenopausal women with osteoporosis</td>
<td>69 (50–75)</td>
<td>Menatetrenone 45 mg/day</td>
<td>Etidronate 200 mg/day for the first 2 weeks of a 12-week cycle</td>
</tr>
</tbody>
</table>

a Interim publications variously report the age range as 45–75\(^1\) and 46–96\(^2\).
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Baseline comparability</th>
<th>Definition of incident vertebral fracture</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylloquinone</td>
<td>ECKO study71 Female; postmenopausal (at least 1 year after last menses); lowest T-score in lumbar spine, total hip or femoral neck between −1.0 and −2.0</td>
<td>Osteoporosis; fragility fracture after the age of 40 years; known metabolic bone disease; any bone medication use in last 3 months; any bisphosphonate use for more than 6 months; decompensated diseases of the liver, kidney, pancreas, lung or heart; history of active cancer in past 5 years; chronic oral steroid or warfarin use; taking high doses of vitamins A (> 10,000 IU/day) or E (> 400 IU/day)</td>
<td>The groups were comparable at baseline</td>
<td>Not applicable. Only clinical fractures were studied</td>
<td>All women had a dietary assessment for calcium and vitamin D intake and were given supplements to approximate to a total intake of 1500 mg of calcium and 800 IU of vitamin D per day</td>
</tr>
<tr>
<td>Menatetrenone</td>
<td>Iwamoto 2001 Female; at least 5 years after menopause; diagnosis of osteoporosis based on the Japanese criteria [i.e. either BMD at distal one-third radius 30% below mean for young adults (a T-score of −3.7) or BMD 20% below young adult mean (a T-score of −2.5) plus one or more vertebral fractures]</td>
<td>History of HRT or medication that affects bone metabolism</td>
<td>The groups were comparable at baseline</td>
<td>A decrease of at least 20% in any vertical height ratio; or central/anterior or central/posterior height less than 0.8; or anterior/posterior height less than 0.75</td>
<td>All women had a dietary assessment for calcium and vitamin D intake and were strictly encouraged to consume 800 mg of calcium and 400 IU of vitamin D per day in their meals</td>
</tr>
<tr>
<td>OF study 200575 Female; postmenopausal; age ≥ 50 years; primary osteoporosis according to the Japanese diagnostic criteria81</td>
<td>On warfarin therapy; hypercalcaemia or renal calculus; known history of hypersensitivity to calcium or menatetrenone preparations; severe complication in the hepatic, renal, gastrointestinal, cardiovascular or cerebrovascular system; bilateral ovariectomy; radiotherapy in the pelvis or paraaortic area; radiographic evidence of osteophytes connecting with adjacent vertebral osteophytes; hyperostosis of ligament around the vertebral body; interbody fusion; surgical intervention(s) in the spine, or scoliosis, that would hinder diagnosis of vertebral fracture; treatment with antiosteoporotic agents, other than calcium, within 8 months of study treatment (unless discontinued, not treated or shifted to calcium monotherapy for ≥ 8 weeks before starting study treatment); previous bisphosphonate use; likely to show insufficient absorption of liposoluble agents, e.g. bilirubin, impaired bile secretion, etc; other patients judged to be ineligible by the investigator/s81</td>
<td>No data</td>
<td>'Morphological transformation'81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 31 Summary of study characteristics: inclusion and exclusion criteria, etc. (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Baseline comparability</th>
<th>Definition of incident vertebral fracture</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiraki 2000,73</td>
<td>Female; ambulatory; diagnosis of primary osteoporosis by Japanese criteria (i.e., lumbar BMD < 70% of young adult mean, or one or more non-traumatic vertebral fractures and lumbar BMD < 80% of young adult mean); apparently postmenopausal although this is not specifically stated</td>
<td>Treatment for osteoporosis within 3 months of study entry; fractures in the L2–L4 region</td>
<td>In the original study the groups were broadly comparable at baseline. In the extension study they were said to be comparable but insufficient data were presented to enable this to be assessed</td>
<td>≥ 20% decline in any of the three vertebral heights compared with baseline</td>
<td>Participants were given no specific instructions regarding daily calcium, vitamin D and vitamin K intake, or exercise</td>
</tr>
<tr>
<td>Shiraki 200274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YOPS 200476</td>
<td>Female; age 50–75 years; at least 5 years since natural or surgical menopause; osteoporosis, defined as either BMD at distal one-third radius 30% below mean for young adults (a T-score of –3.7) or BMD 20% below young adult mean (a T-score of –2.5) plus one or more vertebral fractures</td>
<td>Recent history of cancer; metabolic bone disease other than osteoporosis; important abnormalities in routine laboratory tests; recent use of drugs known to affect bone; history of bilateral hip fractures; any physical or mental condition that would preclude participation</td>
<td>The groups were broadly comparable at baseline</td>
<td>Quantitative and semiquantitative. The quantitative assessment defined incident fracture as a decrease of at least 20% in any vertical height ratio in vertebrae intact at baseline, or at least 4 mm in vertebrae fractured at baseline. Radiographs were evaluated independently by two physicians; if the diagnosis of fracture was not unanimous, an independent radiologist adjudicated</td>
<td>Participants were allocated to one of six groups; only data from the three relevant groups are summarised here. 26% of women in the no treatment group suffered at least one incident vertebral fracture over a 2-year period; this rate is high but is said by the authors to be consistent with other Japanese findings</td>
</tr>
</tbody>
</table>
TABLE 32 Summary of study characteristics: key aspects of methodological quality

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylloquinone</td>
<td></td>
</tr>
<tr>
<td>ECKO study</td>
<td>Yes; study pills labelled and dispensed by research pharmacy in blocks of 10 according to a computer-generated random number table</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Yes</td>
<td>440</td>
<td>91% (400/440) to 2 years. 74% (325/440) were eligible to enter the 2-year extension and 59% (261/440) did so. Only 17% (73/440) completed the full 4 years; this was because the study terminated before 39% (172/440) had the opportunity to do so</td>
<td>Yes</td>
<td>Various, mainly government or charities (including the Wyeth Foundation). Vitamin K provided by Roche Vitamins</td>
</tr>
<tr>
<td>Menatetrenone</td>
<td></td>
</tr>
<tr>
<td>Iwamoto 2001</td>
<td>Not clear</td>
<td>Not clear</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Yes</td>
<td>Not clear</td>
<td>72</td>
<td>Not stated</td>
<td>No withdrawals reported</td>
<td>Not specified</td>
</tr>
<tr>
<td>OF study</td>
<td>Not clear</td>
<td>Not clear</td>
<td>Not clear</td>
<td>Not clear</td>
<td>Not clear</td>
<td>Not clear</td>
<td>4378</td>
<td>Not stated; 3257 (74%) included in analysis of incident vertebral fracture</td>
<td>No</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

continued
TABLE 32 Summary of study characteristics: key aspects of methodological quality (continued)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiraki 2000,73 200274</td>
<td>Not clear</td>
<td>Not clear</td>
<td>Broadly in the original study. Said to be comparable in the extension study but details not presented</td>
<td>Not clear</td>
<td>Yes</td>
<td>Yes</td>
<td>241 in the original study; 362 in the extension study</td>
<td>89% (215/241) in the original study in relation to the BMD analysis, and 79% (190/241) in relation to the fracture analysis. Not stated in the extension study</td>
<td>No</td>
<td>Not specified</td>
</tr>
<tr>
<td>YOPS 200476</td>
<td>Not clear. Modified minimisation method used with two balancing factors: age and baseline prevalence of vertebral fracture</td>
<td>Not clear</td>
<td>Yes</td>
<td>Not clear</td>
<td>Yes</td>
<td>Yes</td>
<td>396 of whom 198 received treatments relevant to this review</td>
<td>94% (372/396) overall 93% (185/198) of those receiving treatments relevant to this review</td>
<td>Yes</td>
<td>Not specified</td>
</tr>
</tbody>
</table>
TABLE 33 Vitamin K: toxicity

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of participants reporting adverse events</th>
<th>Withdrawal/discontinuation of study medication because of adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylloquinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECKO study71</td>
<td>During the first 2 years of the study, 384/440 women (87.3%) reported one or more adverse events; there were said to be no significant differences between groups. 11/217 (5.1%) women on phylloquinone and 10/223 (4.5%) on placebo reported nausea and vomiting ($p=0.77$)</td>
<td>Withdrawn during first 2 years or ineligible for 2-year extension: phylloquinone: 3/217 (1 breast cancer, 2 thyroid cancer); placebo: 7/223 (3 breast cancer, 1 endometrial cancer, 1 thyroid cancer, 1 vaginal cancer, 1 oesophageal cancer) 2-year extension: phylloquinone: 1/121 (heart failure); placebo: 3/140 (2 breast cancer, 1 uterine cancer)</td>
</tr>
<tr>
<td></td>
<td>During the extension study, 91/126 (72.2%) women on phylloquinone and 97/144 (67.4%) on placebo reported one or more adverse event ($p=0.46$)</td>
<td></td>
</tr>
<tr>
<td>Menatetrenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwamoto 200172</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>OF study 200575</td>
<td>Not stated. The overall incidence of adverse events was 10.1 per 100 person-years, and the incidence of adverse drug reactions was 3.6 per 100 person-years</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Incidence of skin and skin appendage lesions per 100 patient-years: menatetrenone: 0.5; control: 0.1 ($p<0.001$)</td>
<td></td>
</tr>
<tr>
<td>Shiraki 2000,73 200274</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>YOPS 200474</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Appendix 6

Calculation of the additional QALYs lost through a death from a hip fracture, vertebral fracture or proximal humerus fracture

The initial individual patient model runs used a time horizon of 10 years. This, however, would mean that any mortality prevented within this period would not be given full weight, which would bias against beneficial treatments, and adjustments were needed to correct for this error.

To adjust for this factor, an estimation of the QALYs that could be gained by the prevention of mortality at each age was made. Calculations were only needed from the end of the 10-year modelling horizon as any QALY impacts within this period would be explicitly calculated within the model. The methodology for this was as follows.

The life expectancy for a patient at the threshold of osteoporosis was calculated from standard life tables. It was assumed that any increase in mortality rate due to low bone mass would continue until death or an age of 110 years.

As the final utility value of each patient within the individual patient model was not estimated by the Gaussian model, it was assumed, slightly favouring the interventions, that individuals would have a utility equal to that of the general population as reported by Kind et al.113 QALYs were discounted at 1.5% per annum, starting from the time of intervention, so that the results were consistent with those produced by the individual patient model.

Using these assumptions it was estimated that an average patient alive at the end of the model would accrue QALYs as given in Table 34.

<table>
<thead>
<tr>
<th>Age (years) at start of intervention</th>
<th>Expected QALYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>12.443</td>
</tr>
<tr>
<td>60</td>
<td>6.636</td>
</tr>
<tr>
<td>70</td>
<td>3.225</td>
</tr>
<tr>
<td>80</td>
<td>0.663</td>
</tr>
</tbody>
</table>

TABLE 34 The expected lifetime QALYs for women alive at the end of the model

Having established the gains associated with preventing mortality, the expected number of potentially preventable deaths through hip fracture was calculated. The methodology for this was based on the standard rate of hip fracture at each age and the expected mortality associated with hip fracture at that age.

For example, the expected hip fracture rate at age 60 years for healthy women at the threshold of osteoporosis is estimated to be 0.1%. For women with severe osteoporosis it is assumed that this risk can be doubled in accordance with data reported by Klotzbuecher et al.93 This would equate to an estimate of the hip fracture rate of 0.2% per annum, or 1.0% over a 5-year treatment period, assuming no additional mortality, which is one hip fracture for a cohort of 100 women.

The mortality rate following hip fracture is estimated to be 6% at age 60 years (Table 21), resulting in an estimated maximum of 0.06 hip fractures that were preventable over the intervention period. The number that were preventable is assumed to be equal to the sampled RR for each treatment; thus, if a RR of hip fracture of 0.5 was estimated then it was assumed that 0.03 deaths associated with hip fractures would be saved. When the RR was greater than 1, the model assumed that an additional number of deaths would occur and subtracted the expected QALYs from that estimated for the intervention.

The expected numbers of additional QALYs for women with severe osteoporosis suffering death from hip fracture are given in Table 35.

An alternative methodology had to be employed for deaths assumed to be associated with vertebral fractures because unlike mortalities associated with hip fracture these were not explicitly calculated within the 10-year time horizon.

It was assumed that all deaths from vertebral fracture would happen in year 3, the midpoint
of the treatment period. A 66% increase in the mortality rate in the year of a vertebral fracture was assumed, as reported by Center et al.\(^\text{101}\) and assuming that all of these deaths were attributable to the vertebral fracture. By calculating the expected number of vertebral fractures per year and the expected associated mortality, assuming 5 years of no treatment, the maximum number of QALYs that could be prevented were estimated. These are shown in Table 36.

TABLE 36 The maximum number of QALYs gained per 100 women at the threshold of osteoporosis from preventing vertebral fracture and subsequent mortality

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Maximum QALYs gained per 100 women</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.174</td>
</tr>
<tr>
<td>60</td>
<td>0.398</td>
</tr>
<tr>
<td>70</td>
<td>0.832</td>
</tr>
<tr>
<td>80</td>
<td>0.807</td>
</tr>
</tbody>
</table>

It was assumed that the number of mortalities that could be prevented is proportional to the RR of the treatment. Hence, a treatment with a RR of 0.5 for vertebral fracture would be assumed to prevent 50% of the mortalities from vertebral fracture.

A similar methodology has been used for mortality associated with fractures of the proximal humerus. The maximum number of QALYs lost because of proximal humerus fracture and assumed to be preventable are shown in Table 37.

TABLE 37 The maximum number of QALYs gained per 100 women at the threshold of osteoporosis from preventing proximal humerus fracture and subsequent mortality

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Maximum QALYs gained per 100 women</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.062</td>
</tr>
<tr>
<td>60</td>
<td>0.098</td>
</tr>
<tr>
<td>70</td>
<td>0.686</td>
</tr>
<tr>
<td>80</td>
<td>0.544</td>
</tr>
</tbody>
</table>
Appendix 7
Calculating the risk of fracture for women with a Z-score of 0 and no previous fracture

An estimate of the fracture risk for women with average BMD and no previous fracture has been calculated assuming that there are three sets of patient type at each age: women with a T-score of –2.5 SD or less with a previous fracture (group A), women with a T-score of –2.5 SD or less without a previous fracture (group B) and women with an average BMD and without previous fracture (group C).

The T-score values of the average female population and of those that are osteoporotic are provided in Table 38.

It is assumed that a previous fracture will increase the risk of subsequent fractures (at all sites) twofold compared with group C. The increased risk due to a woman being osteoporotic will be calculated from the data in Table 38 and Tables 17 and 18 of the main report. An example of how to calculate the RRs for hip fracture in groups A and B is provided for women aged 70–74 years.

At 70–74 years of age the average T-score is –1.69 SD and the decrease in Z-score to those who are osteoporotic is 1.31 (Table 38). This will equate to an increased risk of hip fracture in group B of $2.78 \times 1.31 = 3.82$ (see Table 18).

The RR of women in group A is assumed to be double that of group B, i.e. $2 \times 2.78 = 7.63$.

The calculated RRs of groups A and B, by age and fracture site, are given in Table 39.

To estimate the risk of fracture within group C the percentages of patients suffering osteoporosis and severe osteoporosis must be estimated. Data on the percentage of women who are osteoporotic (including severe) at each age have been calculated from the average BMD, assuming that BMD is normally distributed and has a SD of 1. Estimates of the percentage of women with severe osteoporosis at each age have been calculated using data from Kanis et al., which indicate that the percentages of all fractures that are first fractures are approximately 90% below the age of 70 years and 80% above the age of 70 years. Assuming these figures to be applicable in the UK the percentage of the population with severe osteoporosis can be estimated from the incidence of fracture since age 50 years and expected mortality rates, assuming that all fractures at the hip, spine, wrist or proximal humerus were caused by osteoporosis. The estimated proportions of the female population with osteoporosis and severe osteoporosis are given in Table 40 (calculations not shown).

At 70 years of age it is expected that 15.6% of women will have severe osteoporosis and 5.3% will have osteoporosis; 79.1% of women will not be osteoporotic (Table 40).

Table 38

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Average UK T-score, Holt et al.</th>
<th>Average T-score for patients with a T-score of –2.5 SD or less, calculated from Holt et al.</th>
<th>The fall in Z-score between those women who are osteoporotic and those with average BMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>–0.66</td>
<td>–2.82</td>
<td>2.16</td>
</tr>
<tr>
<td>55–59</td>
<td>–0.92</td>
<td>–2.72</td>
<td>1.80</td>
</tr>
<tr>
<td>60–64</td>
<td>–1.17</td>
<td>–2.78</td>
<td>1.61</td>
</tr>
<tr>
<td>65–69</td>
<td>–1.43</td>
<td>–2.84</td>
<td>1.41</td>
</tr>
<tr>
<td>70–74</td>
<td>–1.69</td>
<td>–3.00</td>
<td>1.31</td>
</tr>
<tr>
<td>75–79</td>
<td>–1.94</td>
<td>–2.97</td>
<td>1.03</td>
</tr>
</tbody>
</table>

a Compared with the NHANES III reference data for women aged 20–29 years.
TABLE 39 The relative risk of fracture for osteoporotic women with or without a previous fracture

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Hip Group A</th>
<th>Hip Group B</th>
<th>Vertebral Group A</th>
<th>Vertebral Group B</th>
<th>Wrist Group A</th>
<th>Wrist Group B</th>
<th>Proximal humerus Group A</th>
<th>Proximal humerus Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>33.36</td>
<td>16.68</td>
<td>7.12</td>
<td>3.56</td>
<td>4.14</td>
<td>2.07</td>
<td>5.52</td>
<td>2.76</td>
</tr>
<tr>
<td>55–59</td>
<td>17.62</td>
<td>8.81</td>
<td>5.76</td>
<td>2.88</td>
<td>3.66</td>
<td>1.83</td>
<td>4.66</td>
<td>2.33</td>
</tr>
<tr>
<td>60–64</td>
<td>12.17</td>
<td>6.09</td>
<td>5.15</td>
<td>2.58</td>
<td>3.44</td>
<td>1.72</td>
<td>4.26</td>
<td>2.13</td>
</tr>
<tr>
<td>65–69</td>
<td>8.93</td>
<td>4.47</td>
<td>4.58</td>
<td>2.29</td>
<td>3.21</td>
<td>1.61</td>
<td>3.88</td>
<td>1.94</td>
</tr>
<tr>
<td>70–74</td>
<td>7.63</td>
<td>3.82</td>
<td>4.32</td>
<td>2.16</td>
<td>3.11</td>
<td>1.55</td>
<td>3.70</td>
<td>1.85</td>
</tr>
<tr>
<td>75–79</td>
<td>5.31</td>
<td>2.65</td>
<td>3.66</td>
<td>1.83</td>
<td>2.83</td>
<td>1.41</td>
<td>3.25</td>
<td>1.62</td>
</tr>
</tbody>
</table>

TABLE 40 The assumed proportion of women with osteoporosis by age

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Population of women with osteoporosis (including severe)</th>
<th>Population of women with severe osteoporosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>3.29%</td>
<td>0.49%</td>
</tr>
<tr>
<td>55–59</td>
<td>5.71%</td>
<td>2.40%</td>
</tr>
<tr>
<td>60–64</td>
<td>9.18%</td>
<td>5.28%</td>
</tr>
<tr>
<td>65–69</td>
<td>14.23%</td>
<td>9.46%</td>
</tr>
<tr>
<td>70–74</td>
<td>20.90%</td>
<td>15.60%</td>
</tr>
<tr>
<td>75–79</td>
<td>28.77%</td>
<td>22.40%</td>
</tr>
</tbody>
</table>

The average incidence of hip fracture (ignoring fractures at the pelvis and other femoral fractures) at age 70–74 years is estimated to be 0.38% per annum (Table 2).

This will comprise:

\[
\text{Percentage in group A} \times \text{RR} \times \text{group A risk} + \text{percentage in group B} \times \text{RR} \times \text{group B risk} + \text{percentage in group C} \times \text{group C risk}
\]

which equates to:

\[
15.6\% \times 7.63 \times \text{group C risk} + 5.3\% \times 3.82 \times \text{group C risk} + 97.9\% \times \text{group C risk} = 218\% \times \text{group C risk}
\]

As 218%×group C risk equals the average incidence of 0.38% per annum, the risk in group C must equal 0.38%/2.18 = 0.18%. The risks in group A and group B will be 0.18%×7.63 and 0.18%×3.82, respectively, which correspond to 1.34% and 0.67%, respectively, per annum.

The risk for a woman aged 70–74 years can now be estimated at any T-score. Thus, at the threshold of osteoporosis, the Z-score decrease is 0.81 (see Table 1) and the risk of a hip fracture will be 0.18%×2.78×0.81 = 0.40% per annum.

When fractures at the pelvis and other femoral fractures are considered the fracture risk is increased by 20% (see Table 14), which would increase the risk of fracture to 0.48% per annum.

This methodology was repeated for all fracture sites and all ages. Sensitivity analyses previously conducted showed that the average risk for a healthy woman did not change markedly with small changes in the percentages of patients with severe osteoporosis.
Appendix 8

Systematic searching for evidence relating to Vitamin K and adverse effects in osteoporotic patients

An electronic search of MEDLINE was conducted in January 2008. This sought to identify studies of any type that dealt with the adverse effects associated with the administration of any type of supplementary vitamin K to adults with primary osteoporosis or osteopenia. The following search strategy was used:

1. (ae or po or to or co or de).fs.
2. adverse event$.tw.
3. adverse effect$.tw.
4. side effect$.tw.
5. safe$.tw.
6. 1 or 2 or 3 or 4 or 5
7. exp Vitamin K/
8. vitamin k1.tw.
9. vitamin k 1.tw.
10. menaquinone$.tw.
11. phylloquinone$.tw.
12. phytenadione$.tw.
13. phytonadione$.tw.
14. aquamephyton$.tw.
15. konakion$.tw.
16. phyllohydroquinone$.tw.
17. vitamin k2.tw.
18. vitamin k 2.tw.
19. vitamin k quinone$.tw.
20. vitamin k3.tw.
21. vitamin k 3.tw.
22. vitamin k sodium bisulfite.tw.
23. menadione$.tw.
24. 2-methyl-1, 4-napthalenedione.tw.
25. 2-methyl-1, 4-napthoquinone$.tw.
26. menadione bisulfite$.tw.
27. menadione sodium bisulfite$.tw.
28. vicasol.tw.
29. vikasol.tw.
30. phytonadione.tw.
31. or/7–30
32. 6 and 31
33. exp osteoporosis/
34. Osteoporosis$.tw.
35. Bone diseases, metabolic/
36. 33 or 34 or 35
37. (Bone adj6 densit$).tw.
38. Bone density/
39. (Bone or bones).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
40. exp Densitometry/
41. Tomography, x-ray computed/
42. Densit$.tw.
43. 41 and 42
44. 40 or 43
45. 39 and 44
46. 36 or 37 or 38 or 45
47. 32 and 46
FIGURE 33 Adverse effects: summary of study selection and exclusion – electronic literature searches.
A systematic review of the clinical effectiveness of strontium ranelate for the prevention of osteoporotic fracture in postmenopausal women was carried out on behalf of NICE in 2005. Three studies that compared strontium ranelate with placebo met the review’s inclusion criteria. These were:

- the STRATOS study, a randomised, multicentre, double-blind, 2-year phase II dose-ranging study whose aim was to identify the smallest dose of strontium ranelate that was effective in treating postmenopausal vertebral osteoporosis, using BMD of the lumbar spine adjusted for bone strontium content as the primary end point
- the SOTI study, a randomised, multicentre, double-blind, phase III study designed to evaluate the efficacy of strontium ranelate against vertebral fracture in postmenopausal women with osteoporosis and a history of vertebral fracture (although only 86.9% of the study population actually had prevalent vertebral fractures)
- the TROPOS study, a randomised, multicentre, double-blind, phase III study designed to assess the efficacy of strontium ranelate in reducing the incidence of osteoporosis-related non-vertebral fractures in postmenopausal women with osteoporosis with or without fracture.

At that time, only 3-year data were available for the SOTI and TROPOS studies.

In August 2008, the search strategy used for the previous review was rerun in MEDLINE. No new trials were identified, but four publications were identified that presented new data from two of the three studies previously identified:

- 5-year results from the TROPOS study
- quality of life data from the SOTI study
- 4-year vertebral fracture data from the SOTI study (presented in a review article). Marquis et al., in their article on quality of life data from the SOTI study, variously describe SOTI as a 5-year and a 3-year study, and Roux included in his review 4-year data from the SOTI study. However, Roux did not reference the source of those data and we have been unable to identify any publication relating specifically to the SOTI study that presents data relating to efficacy at 4 or 5 years.

The additional data from the publications listed above have been incorporated into our earlier assessments of clinical effectiveness and the results relating to the licensed 2-g daily dose of strontium ranelate are summarised in the following sections.

Strontium ranelate: fracture data

Vertebral fracture

All three studies reported only those fractures that occurred in previously intact vertebrae. In the TROPOS study, vertebral radiographs were not mandatory; although they were taken in as many patients as possible, baseline and follow-up radiographs were available for only 71% of the study population.

Meta-analysis of the 3-year fracture data from the SOTI and TROPOS studies found a RR of radiographic fracture over that period of 0.63 (95% CI 0.56 to 0.71) (Figure 34). It was not possible to include in the meta-analysis the results of the STRATOS study or the 5-year data from the TROPOS study because of the way that the data were published. However, the 5-year RR calculated by the authors for the TROPOS study (0.76, 95% CI 0.65 to 0.88) is not inconsistent with the 3-year results, although the point estimate is rather less favourable to strontium ranelate.
TABLE 41 Strontium ranelate: vertebral fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Fracture definition</th>
<th>Number in each group suffering vertebral fracture</th>
<th>Number needed to treat for a given period to avoid an event (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS143</td>
<td>A decrease of at least 20% in one of the ratios of vertebral height</td>
<td>Radiographic fracture, 2 years: SR: 42.0%; placebo: 54.7%; RR (calculated by study investigators): 0.77 (95% CI 0.54 to 1.09)</td>
<td>Not calculable</td>
</tr>
<tr>
<td>SOTI144</td>
<td>Semiquantitative (method of Genant et al.15)</td>
<td>Radiographic fracture, 3 years: SR: 139/719 (19.3%); placebo: 222/723* (30.7%); RR 0.63 (95% CI 0.52 to 0.76), p < 0.0001 Clinical fracture, 3 years: SR: 117/723 (16.2%); placebo: 117/723 (16.2%); RR 0.64 (95% CI 0.49 to 0.85), p < 0.001 Unspecified fracture, 4 years (author’s calculation):150 RR 0.67 (95% CI 0.53 to 0.81), p < 0.001</td>
<td>Radiographic fracture, 3 years: 9 (6 to 14) Clinical fracture, 3 years: 18 (11 to 44) Unspecified fracture, 4 years: not calculable</td>
</tr>
<tr>
<td>TROPOS146</td>
<td>Semiquantitative (method of Genant et al.15)</td>
<td>3 years:150 SR: 202/1817 (11.1%); placebo: 321/1823 (17.6%); RR 0.63 (95% CI 0.54 to 0.74) 5 years:147 SR: 307/? (20.8%); placebo: 384/? (24.9%); RR 0.76 (95% CI 0.65 to 0.88), p < 0.001</td>
<td>3 years: 16 (11 to 24) 5 years: not calculable</td>
</tr>
</tbody>
</table>

SR, strontium ranelate.

The pooled data from the SOTI and TROPOS studies suggest that it would be necessary to treat 13 women for 3 years to avoid a radiographic vertebral fracture (95% CI 10 to 17). However, because the number needed to treat is related to the absolute rather than the relative risk of fracture, the number needed to treat for 3 years is noticeably lower in the SOTI study than in the TROPOS study (9 versus 16), even though the relative risk of fracture is very similar in both studies. This is because the absolute risk of a fracture is higher in the SOTI study, which set out to recruit only participants with osteoporosis with previous fracture; the 3-year radiographic fracture rate in the placebo group in the SOTI study is 30.7%, whereas in the TROPOS study, which recruited participants with osteoporosis with or without previous fracture, it is 17.6% (Table 41).

FIGURE 34 Strontium ranelate: incident radiographic vertebral fracture.
TABLE 42 Strontium ranelate: all non-vertebral fractures

<table>
<thead>
<tr>
<th>Study</th>
<th>Number in each group suffering non-vertebral fracture</th>
<th>Number needed to treat for 3 years to avoid an event (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS143</td>
<td>SR: 2 g: 9.2%; placebo: 7.7%</td>
<td>Not calculable</td>
</tr>
<tr>
<td></td>
<td>As the number of women in each group was not stated, it was not possible to calculate the RR, nor was this reported by the study investigators</td>
<td></td>
</tr>
<tr>
<td>SOTI144</td>
<td>All non-vertebral fractures: SR: 112/826; placebo: 122/814; RR 0.90 (95% CI 0.71 to 1.15), p = 0.41</td>
<td>71a</td>
</tr>
<tr>
<td>TROPOS146</td>
<td>3 years: SR: 233/2479; placebo: 276/2453; RR 0.84 (95% CI 0.71–0.99)</td>
<td>3 years: 54 (28–647)</td>
</tr>
<tr>
<td></td>
<td>5 years: SR: 312/2479; placebo: 359/2456; RR 0.86 (95% CI 0.75 to 0.99), p = 0.04</td>
<td>5 years: 50 (25–839)</td>
</tr>
</tbody>
</table>

Note: TT

95% CI not calculated because the 95% CI for the absolute risk reduction extends from a negative number (indicating that treatment may be harmful) to a positive number (indicating that treatment may be beneficial).

Non-vertebral fracture

All three studies reported non-vertebral fractures, although only the SOTI and TROPOS studies presented the data in such a way as to enable them to be included in a meta-analysis (Table 42). Meta-analysis of the 3-year data from these studies indicated that strontium ranelate was associated with a RR of any non-vertebral fracture of 0.86 (95% CI 0.75 to 0.98, p = 0.03) (Figure 35), with the number needed to treat for 3 years to avoid an event being 58 (95% CI 31 to 471).

Hip, wrist and other non-vertebral fractures

None of the studies was powered to identify a statistically significant difference in the incidence of fracture at any specific peripheral fracture site, and none reported a significant reduction in hip or wrist fracture in relation to its full intention to treat population (Tables 43 and 44).

Adverse effects

In the STRATOS, SOTI and TROPOS studies, a 2-g daily dose of strontium ranelate was not associated with a statistically significant increase in all-cause mortality (RR 0.99, 95% CI 0.64 to 1.53). However, there was an increased death rate due to cardiac disorders in patients receiving active treatment during the first year of therapy, but not thereafter, and deaths that could be related to thrombosis/embolism (including pulmonary embolism, cerebrovascular accident and intestinal infarction) were also more common in patients receiving active treatment. The 2-g dose of strontium ranelate was not associated with a statistically significant increase in serious adverse events.
TABLE 43 Strontium ranelate in postmenopausal osteoporosis or osteopenia: hip fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of women in each group suffering hip fracture</th>
<th>Number needed to treat for 3 years to avoid an event (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS143</td>
<td>Not reported</td>
<td>–</td>
</tr>
<tr>
<td>SOTI144</td>
<td>Not reported</td>
<td>–</td>
</tr>
<tr>
<td>TROPOS147</td>
<td>3-year data (actual numbers not reported):150 RR 0.85 (95% CI 0.61 to 1.19)</td>
<td>3 years: not calculable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 years: 228a</td>
</tr>
<tr>
<td></td>
<td>5-year data:147 SR: 88/2479; placebo: 98/2456; RR 0.89 (95% CI 0.67 to 1.18)</td>
<td></td>
</tr>
</tbody>
</table>

a 95% CI not calculated because the 95% CI for the absolute risk reduction extends from a negative number (indicating that treatment may be harmful) to a positive number (indicating that treatment may be beneficial).

TABLE 44 Strontium ranelate in postmenopausal osteoporosis or osteopenia: wrist fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of women in each group suffering wrist fracture</th>
<th>Number needed to treat for 3 years to avoid an event (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS143</td>
<td>Not reported</td>
<td>–</td>
</tr>
<tr>
<td>SOTI144</td>
<td>Not reported</td>
<td>–</td>
</tr>
<tr>
<td>TROPOS147</td>
<td>5-year data:147 SR: 86/2479; placebo: 87/2456; RR 0.98 (95% CI 0.73 to 1.31), p = 0.89</td>
<td>1367a</td>
</tr>
</tbody>
</table>

a 95% CI not calculated because the 95% CI for the absolute risk reduction extends from a negative number (indicating that treatment may be harmful) to a positive number (indicating that treatment may be beneficial).

TABLE 45 Strontium ranelate in postmenopausal osteoporosis or osteopenia: humerus fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of women in each group suffering humerus fracture</th>
<th>Number needed to treat for 3 years to avoid an event (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS143</td>
<td>Not reported</td>
<td>–</td>
</tr>
<tr>
<td>SOTI144</td>
<td>Not reported</td>
<td>–</td>
</tr>
<tr>
<td>TROPOS147</td>
<td>5-year data:147 SR: 26/2479; placebo: 43/2456; RR 0.60 (95% CI 0.37–0.97), p = 0.04</td>
<td>143 (74–2157)</td>
</tr>
</tbody>
</table>

Quality of life

The SOTI and TROPOS studies both recorded health-related quality of life every 6 months using the Short-Form 36 (SF-36) health questionnaire; the SOTI study also used the QUALIOST questionnaire.152 No quality of life results have been published for the TROPOS study. In the SOTI study strontium ranelate therapy was associated with a slight improvement and placebo with a slight deterioration in quality of life as assessed by the QUALIOST specific scale; the difference between the groups, although small, was statistically significant. No significant differences were seen between the strontium ranelate and placebo groups on the SF-36 before imputation of missing data.
and after imputation of missing data only the general health perception score was significantly better in the strontium ranelate group than in the placebo group. Strontium ranelate was also associated with a 31% reduction relative to placebo in the number of patients reporting back pain ($p = 0.023$).\(^{148}\)

Continuance and compliance

All three studies presented data relating to compliance (Table 46).

All three studies provided information on the proportion of participants who completed follow-up (see Table 47). Although it is clear that, in the STRATOS study, this figure represents the proportion who continued to take the study medication for the length of the study period, it is not clear what proportion of participants who completed follow-up in the SOTI and TROPOS studies were still taking the study medication at the end of the study period. However, the publication of the 5-year TROPOS data\(^{147}\) gives the mean overall length of exposure to study medication, slightly over 3 years (Table 47). In total, 19% of participants were said to have discontinued study medication or withdrawn from the study because of adverse events, 21% for non-medical reasons, 0.2% because of protocol deviations and 0.3% because of aggravated osteoporosis.\(^{147}\)

TABLE 46 Compliance with study treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Definition of compliance</th>
<th>How measured</th>
<th>Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS(^{143})</td>
<td>Not given</td>
<td>Unused tablets returned at study visits</td>
<td>Mean global compliance: 93 ± 13%; said to be no relevant differences between groups</td>
</tr>
<tr>
<td>SOTI(^{144})</td>
<td>Not given</td>
<td>Not reported</td>
<td>Number compliant in each group: strontium ranelate: 83%; placebo: 85%</td>
</tr>
<tr>
<td>TROPOS(^{147})</td>
<td>Percentage of sachets of study medication given to the patient that were actually taken</td>
<td>Unused sachets of study medication returned at each 6-monthly visit</td>
<td>Global compliance: 81.6%</td>
</tr>
</tbody>
</table>

TABLE 47 Proportion of participants completing study

<table>
<thead>
<tr>
<th>Study</th>
<th>Proportion of participants completing study protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATOS(^{143})</td>
<td>Proportion of participants completing study protocol (2 years): SR 0.5 g: 77%; SR 1 g: 73%; SR 2 g: 77%; placebo: 81%</td>
</tr>
<tr>
<td>SOTI(^{144})</td>
<td>Proportion of participants completing follow-up at 3 years: SR 2 g: 76%; placebo: 77%</td>
</tr>
<tr>
<td>TROPOS(^{146})</td>
<td>Proportion of participants completing follow-up at 3 years: SR 2 g: 66%; placebo: 64%</td>
</tr>
<tr>
<td></td>
<td>Proportion of participants completing follow-up at 5 years: SR 2 g: 1384/2554 (54%); placebo: 1330/2537 (52%)</td>
</tr>
<tr>
<td></td>
<td>Mean duration of exposure to randomised treatment: 1126 ± 668 days</td>
</tr>
</tbody>
</table>

(\(p = 0.023\)).\(^{148}\)
Appendix 10

The second-generation bisphosphonates alendronate and risedronate for the prevention of osteoporotic fracture in postmenopausal women

A systematic review of the clinical effectiveness of the second-generation bisphosphonates alendronate and risedronate for the prevention of osteoporotic fragility fractures in postmenopausal women was undertaken in 2007 on behalf of the NCCHTA. This review updated that carried out for NICE in 2003.²

In total, 23 randomised controlled studies were identified that met the inclusion criteria of the 2007 review. These compared alendronate or risedronate (or, in the case of Hosking et al.,¹⁵³ either) with either placebo or no treatment in postmenopausal women with osteoporosis or osteopenia, and reported fracture outcomes. The studies were as follows:

- **alendronate:**
 - Adami et al.¹⁵⁴
 - Bone et al.¹⁵⁵
 - Bone et al.¹⁵⁶
 - Carfora et al.¹⁵⁷
 - Chesnut et al.¹⁵⁸
 - Durson et al.¹⁵⁹
 - the Fracture Intervention Trial (FIT) fracture arm⁷⁹
 - the Fracture Intervention Trial (FIT) non-fracture arm⁸⁰
 - the FLEX trial¹⁶⁰
 - Greenspan et al.¹⁶¹
 - Hosking et al.¹⁵⁵
 - Kaadan¹⁶²
 - Liberman et al.¹⁶³
 - Lindsay et al.¹⁶⁴
 - Or et al.¹⁶⁵
 - Pols et al.¹⁶⁶
 - Rossini et al.¹⁶⁷

- **risedronate:**
 - Clemmesen et al.¹⁶⁸
 - Fogelman et al.¹⁶⁹
 - Harris et al.¹⁷⁰
 - Hosking et al.¹⁵³
 - McClung et al.¹⁷¹
 - McClung et al.¹⁷² (the Hip Intervention Program)
 - Reginster et al.¹⁷³

All studies except the FLEX trial appear to have evaluated the efficacy of alendronate or risedronate in women who were essentially bisphosphonate naive. The FLEX trial evaluated the efficacy of a further 5 years of alendronate therapy in participants in the FIT study who had already received alendronate for at least 3, and for a mean of 5, years during and after that study.¹⁶⁰ It therefore did not seem appropriate to include the results of the FLEX trial in meta-analyses of studies that recruited bisphosphonate-naive women.

All studies of alendronate except that by Hosking et al.¹⁵⁵ used a daily dose. Hosking et al. compared weekly alendronate both with placebo and with daily risedronate.

A number of articles presented data relating to extensions of earlier studies. These were:

- a 4-year extension¹⁷⁴ followed by a 3-year extension¹⁷⁵,¹⁷⁶ of the study by Liberman et al.;¹⁶⁵ only 247 of the original 994 participants (25%) took part in the final extension study
- a 2-year extension of the study by Harris et al.,¹⁷⁰ open only to women who had both successfully completed the original study and undergone iliac crest bone biopsies at baseline and 36 months;¹⁷⁷ only 86 of the 2458 original participants (3%) took part in the extension
- two extensions¹⁷⁸,¹⁷⁹ of the study by Reginster et al.;¹⁷³ these included only 265 (33%) and 164 (20%), respectively, of the 814 women randomised in the original study to either placebo or a 5-mg dose of risedronate.
<table>
<thead>
<tr>
<th>Study</th>
<th>Disease status*</th>
<th>Length of intervention</th>
<th>Bisphosphonate dose</th>
<th>Calcium/vitamin D supplementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adami 1995</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>2 years</td>
<td>10 and 20 mg/day</td>
<td>Elemental calcium 500 mg/day</td>
</tr>
<tr>
<td>Bone 1997</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>2 years</td>
<td>1, 2.5 and 5 mg/day</td>
<td>Elemental calcium 500 mg/day</td>
</tr>
<tr>
<td>Bone 2000</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>2 years</td>
<td>10 mg/day</td>
<td>Elemental calcium 500 mg/day</td>
</tr>
<tr>
<td>Carfora 1998</td>
<td>Osteoporosis, with or without previous fracture</td>
<td>30 months</td>
<td>5 and 10 mg/day; 20 mg/day for 15 months/placebo for 15 months</td>
<td>Elemental calcium 500 mg/day</td>
</tr>
<tr>
<td>Chesnut 1995</td>
<td>Osteoporosis or osteopenia, without previous fracture</td>
<td>2 years</td>
<td>5, 10, 20 and 40 mg/day</td>
<td>Elemental calcium 500 mg/day</td>
</tr>
<tr>
<td>Durson 2001</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>1 year</td>
<td>10 mg/day</td>
<td>Elemental calcium 1000 mg/day</td>
</tr>
<tr>
<td>FIT fracture arm 1996</td>
<td>Osteoporosis or osteopenia, with previous fracture</td>
<td>Mean of 2.9 years</td>
<td>5 mg/day increased after 2 years to 10 mg/day</td>
<td>Elemental calcium 500 mg/day plus vitamin D 250 IU/day if baseline dietary calcium intake at baseline < 1000 mg/day</td>
</tr>
<tr>
<td>FIT non-fracture arm 1998</td>
<td>Osteoporosis or osteopenia, without previous fracture</td>
<td>Mean of 4.2 years</td>
<td>5 mg/day increased after 2 years to 10 mg/day</td>
<td>Elemental calcium 500 mg/day plus vitamin D 250 IU/day if baseline dietary calcium intake at baseline < 1000 mg/day</td>
</tr>
<tr>
<td>FLEX 2004, 2006</td>
<td>Osteoporosis or osteopenia, with or without previous fracture, prior to at least 3 years of alendronate therapy</td>
<td>5 years</td>
<td>5 or 10 mg/day</td>
<td>All participants strongly encouraged to take calcium 500 mg/day and vitamin D 250 IU/day</td>
</tr>
<tr>
<td>Greenspan 2002</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>2 years</td>
<td>10 mg/day</td>
<td>Vitamin D 400 IU/day; elemental calcium 500 mg/day if baseline dietary calcium intake at baseline < 1500 mg/day</td>
</tr>
<tr>
<td>Hosking 2003</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>1 year</td>
<td>70 mg/week</td>
<td>Vitamin D 400 IU/day if baseline 25-hydroxy-vitamin D below 15 ng/ml (without evidence of vitamin D deficiency); participants required to maintain calcium intake of 1000 mg/day</td>
</tr>
<tr>
<td>Kaadan 2002</td>
<td>Osteoporosis, fracture status unspecified</td>
<td>2 years</td>
<td>10 mg/day</td>
<td>None reported</td>
</tr>
<tr>
<td>Study</td>
<td>Disease status*</td>
<td>Length of intervention</td>
<td>Bisphosphonate dose</td>
<td>Calcium/vitamin D suppletionation</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Liberman 1995</td>
<td>Osteoporosis, with or without previous fracture</td>
<td>3 years</td>
<td>5, 10 and 20 mg/day decreased to 5 mg/day after 2 years</td>
<td>Elemental calcium 500 mg/day</td>
</tr>
<tr>
<td>Lindsay 1999</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>1 year</td>
<td>10 mg/day</td>
<td>Vitamin D 400 IU/day; if baseline dietary calcium intake at baseline < 1000 mg/day, supplements provided to achieve intake of at least 1000 mg/day</td>
</tr>
<tr>
<td>Pols 2001</td>
<td>Osteoporosis, with previous fracture</td>
<td>1 year</td>
<td>10 mg/day</td>
<td>Calcium 1200 mg/day</td>
</tr>
<tr>
<td>Rossini 1994</td>
<td>Osteoporosis or osteopenia</td>
<td>6 months</td>
<td>20 mg/day</td>
<td>All participants counselled to achieve calcium intake of 1200 mg/day, using supplements if necessary</td>
</tr>
<tr>
<td>Risedronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clemmesen 1997</td>
<td>Osteoporosis or osteopenia with previous fracture</td>
<td>2 years</td>
<td>2.5 mg daily or cyclically</td>
<td>Elemental calcium 1000 mg/day</td>
</tr>
<tr>
<td>Fogelman 2000</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>2 years</td>
<td>2.5 and 5 mg/day</td>
<td>Elemental calcium 1000 mg/day</td>
</tr>
<tr>
<td>Harris 1999</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>3 years</td>
<td>2.5 and 5 mg/day</td>
<td>Elemental calcium 1000 mg/day</td>
</tr>
<tr>
<td>Hosking 2003</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>1 year</td>
<td>5 mg/day</td>
<td>Vitamin D 400 IU/day if baseline 25-hydroxyvitamin D below 15 ng/ml (without evidence of vitamin D deficiency); participants required to maintain daily calcium intake of 1000 mg/day</td>
</tr>
<tr>
<td>McClung 1998</td>
<td>Osteoporosis or osteopenia, with or without previous fracture</td>
<td>18 months</td>
<td>2.5 and 5 mg/day</td>
<td>Elemental calcium 1000 mg/day</td>
</tr>
<tr>
<td>McClung 2001</td>
<td>Hip Intervention Program</td>
<td>3 years (mean duration of therapy 2 years)</td>
<td>2.5 and 5 mg/day</td>
<td>Elemental calcium 1000 mg/day; vitamin D 500 IU/day given if baseline serum 25-hydroxyvitamin D concentration below 16 ng/ml</td>
</tr>
<tr>
<td>Reginster 2000</td>
<td>Osteoporosis or osteopenia, with previous fracture</td>
<td>3 years</td>
<td>2.5 and 5 mg/day</td>
<td>Elemental calcium 1000 mg/day; vitamin D ≤ 500 IU/day given if baseline 25-hydroxyvitamin D below 40 nmol/l</td>
</tr>
</tbody>
</table>
These extension studies were not included in the 2007 review because the attrition rates were such that they could no longer be considered truly randomised.

Details of the included studies are summarised in Table 48.

Nine studies154–156,159,161,164,167,168,173 stated that they recruited women with osteoporosis but used definitions that included women who, by the current World Health Organization (WHO) definition, had osteopenia rather than osteoporosis; they are therefore classified as such in Table 48. Harris et al.170 sought to include women who had either two or more vertebral fractures, regardless of T-score, or one vertebral fracture and a T-score at the lumbar spine of −2 or below; however, at baseline, only 79% of the placebo group, 80% of the 5-mg risedronate group and 85% of the 2.5-mg group had prevalent vertebral fractures, and it is therefore possible that some of the participants had osteopenia without prevalent fracture. Kaadan162 and Or et al.165 did not specify the definition of osteoporosis used.

The 2001 study by McClung et al.172 was designed specifically to study the effect of risedronate on the risk of hip fracture in elderly women with osteoporosis or other risk factors for hip fracture. Two distinct groups were recruited: women aged 70–79 years with osteoporosis, and women aged 80 years or older with either at least one non-skeletal risk factor for hip fracture or osteoporosis. Each group was randomised separately to treatment, and the proportion of younger and older women with various risk factors was said to be balanced among the treatment groups. Only 16% of the older stratum was recruited on the basis of low femoral neck BMD; 58% were recruited solely on the basis of clinical risk factors such as a recent fall-related injury. In total, 39% of the younger stratum had evidence of at least one vertebral fracture at baseline.172

Alendronate and risedronate: fracture data

Vertebral fracture

Eleven studies of alendronate and four studies of risedronate provided information on the incidence of radiographic vertebral fractures. However, only seven of the alendronate studies and three of the risedronate studies used throughout a dose currently licensed in the UK for the treatment of postmenopausal osteoporosis (i.e. 10 mg/day or 70 mg/week of alendronate or 5 mg/day of risedronate), and two of those (the FLEX study160 and Liberman et al.165) used a range of doses that included a licensed dose but only presented pooled data relating to all doses (Table 49). In the Fracture Intervention Trial79,80 the alendronate dose was increased from 5 mg to 10 mg after 2 years.

Ideally, only data relating to the licensed doses of alendronate and risedronate would have been included in the meta-analysis of vertebral fracture data. However, only one study, the small 1-year study by Durson et al.,156 provided usable data relating to alendronate taken at a licensed dose throughout the study, and it did not produce a statistically significant result. Despite using a dose of only 5 mg for the first 2 years, both arms of the longer, and much larger, high-quality Fracture Intervention Trial79,80 demonstrated a greater treatment effect, as did the study by Liberman et al.165 (the latter pooled data relating to alendronate given at doses of either 5 or 10 mg for 3 years or 20 mg for 2 years followed by 5 mg for 1 year). Data from these studies have therefore been included in the meta-analysis of vertebral fracture risk, together with data from the arms of the risedronate studies by Fogelman et al.,169 Harris et al.170 and Reginster et al.172 that used the licensed 5-mg dose.

The meta-analysis indicates that the second-generation bisphosphonates alendronate and risedronate are associated with a risk of vertebral fracture relative to placebo of 0.58 (95% CI 0.50 to 0.67) in women with osteoporosis or osteopenia (Figure 36).

Those studies that could not be incorporated into the meta-analysis because they only presented rates and not actual numbers of women with fracture (Carfora et al.,171 Kaadan162 and Or et al.165) also found that a 10-mg dose of alendronate was associated with a reduction in vertebral fracture rate (Table 49).

Non-vertebral fracture

Thirteen studies of alendronate and seven studies of risedronate presented data relating to non-vertebral fracture (Table 50).

As in the case of vertebral fractures, ideally only data relating to the current licensed doses of alendronate and risedronate would have been included in the meta-analysis. However, as before, data from the FIT fracture and non-fracture arms and from the study by Liberman et al. have been included. In addition, data have been included
<table>
<thead>
<tr>
<th>Study</th>
<th>Bisphosphonate dose</th>
<th>Definition of morphometric fracture</th>
<th>Number of women in each group suffering vertebral fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adami 1995</td>
<td>10 and 20 mg/day</td>
<td>Not applicable</td>
<td>Clinical fracture data only presented; site not specified</td>
</tr>
<tr>
<td>Bone 1997</td>
<td>1, 2.5 and 5 mg/day</td>
<td>20%</td>
<td>Alendronate 1 mg: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alendronate 2.5 mg: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alendronate 5 mg: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RRs not calculable as denominators not available; difference between groups said by investigators not to be statistically significant</td>
</tr>
<tr>
<td>Bone 2000</td>
<td>10 mg/day</td>
<td>Not applicable</td>
<td>Clinical fracture data only presented</td>
</tr>
<tr>
<td>Carfora 1998</td>
<td>5 and 10 mg/day; 20 mg/day for 15 months/placebo for 15 months</td>
<td>Not given</td>
<td>Alendronate 5 mg: 5.88%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alendronate 10 mg: 2.94%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alendronate 20 mg: 8.82%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 11.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RRs not calculable as the actual numbers of women suffering fracture were not stated</td>
</tr>
<tr>
<td>Chesnut 1995</td>
<td>5, 10, 20 and 40 mg/day</td>
<td>Not given</td>
<td>There were no vertebral fractures in any subject</td>
</tr>
<tr>
<td>Durson 2001</td>
<td>10 mg/day</td>
<td>20%</td>
<td>Alendronate: 12/38 (31.6%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control: 14/35 (40.0%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.79 (95% CI 0.42 to 1.47)</td>
</tr>
<tr>
<td>FIT fracture arm</td>
<td>5 mg/day, increased after 2 years to 10 mg/day</td>
<td>20%</td>
<td>Alendronate: 78/981 (8.0%)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td>Placebo: 145/965 (15.0%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.53 (95% CI 0.41 to 0.69)</td>
</tr>
<tr>
<td>FIT non-fracture</td>
<td>5 mg/day, increased after 2 years to 10 mg/day</td>
<td>20%</td>
<td>Alendronate: 43/2057 (2.1%)</td>
</tr>
<tr>
<td>arm 1998</td>
<td></td>
<td></td>
<td>Placebo: 78/2077 (3.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.56 (95% CI 0.39 to 0.80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[The reduction in RR was significant in those women whose initial T score was –2.5 or less (RR 0.50, 95% CI 0.31 to 0.82), but not in those with initial T-scores greater than –2.5]</td>
</tr>
<tr>
<td>FLEX 2006</td>
<td>5 or 10 mg/day</td>
<td>>20% with a semiquantitative confirmation</td>
<td>Denominator not specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alendronate: 60 (9.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 46 (11.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.86 (95% CI 0.60 to 1.22) (authors’ calculation, adjusted for centre and risk stratum)</td>
</tr>
<tr>
<td>Greenspan 2002</td>
<td>10 mg/day</td>
<td>Not applicable</td>
<td>Clinical fracture data only presented; site not specified</td>
</tr>
<tr>
<td>Hosking 2003</td>
<td>70 mg/week</td>
<td>Not applicable</td>
<td>Clinical fracture data only presented; site not specified</td>
</tr>
</tbody>
</table>

continued
Table 49

Alendronate in postmenopausal osteoporosis or osteopenia: comparisons with placebo or no treatment – radiographic vertebral fracture data (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Bisphosphonate dose</th>
<th>Definition of morphometric fracture</th>
<th>Number of women in each group suffering vertebral fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaadan 2002†42</td>
<td>10 mg/day</td>
<td>Not stated</td>
<td>Alendronate: 3.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 6.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR not calculable as the actual numbers of women suffering fracture were not stated</td>
</tr>
<tr>
<td>Liberman 1995†63</td>
<td>5, 10 and 20 mg/day, decreased to 5 mg/day after 2 years</td>
<td>20%</td>
<td>Pooled alendronate groups: 17/526 (3.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 22/355 (6.2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.52 (95% CI 0.28 to 0.97)</td>
</tr>
<tr>
<td>Lindsay 1999†64</td>
<td>10 mg/day</td>
<td>Not applicable</td>
<td>No symptomatic vertebral fractures were identified in either group</td>
</tr>
<tr>
<td>Or 2001†65</td>
<td>10 mg/day</td>
<td>Not stated</td>
<td>Alendronate: 2.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 9.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR not calculable as the actual numbers of women suffering fracture were not stated</td>
</tr>
<tr>
<td>Pols 1999†66</td>
<td>10 mg/day</td>
<td>Not applicable</td>
<td>Vertebral fractures not investigated</td>
</tr>
<tr>
<td>Rossini 1994†67</td>
<td>20 mg/day</td>
<td>Not stated</td>
<td>No subjects suffered vertebral fracture during the study period</td>
</tr>
<tr>
<td>Risedronate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clemmesen 1997†68</td>
<td>2.5 mg daily or cyclically</td>
<td>15% or 25% (different fracture definitions used by the Danish and Belgian centres)</td>
<td>Gives number of vertebral fractures identified at each centre but not number of women suffering those fractures. States that there was a tendency towards a lower incidence and rate of new vertebral fractures in the group taking daily continuous risedronate, but this was not statistically significant</td>
</tr>
<tr>
<td>Fogelman 2000†69</td>
<td>2.5 and 5 mg/day</td>
<td>Any vertebral height ratio below 3 SD of the mean for the study population</td>
<td>Risedronate 2.5 mg: 8/60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risedronate 5 mg: 8/112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 17/125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR, 5 mg vs placebo, 0.53 (95% CI 0.24 to 1.17)</td>
</tr>
<tr>
<td>Harris 1999†70</td>
<td>2.5 and 5 mg/day</td>
<td>15% + semiquantitative method</td>
<td>Risedronate 5 mg: 61/696</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 93/678</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.64 (95% CI 0.47 to 0.87)</td>
</tr>
<tr>
<td>Hosking 2003†53</td>
<td>5 mg/day</td>
<td>Not applicable</td>
<td>Clinical fracture data only presented; site not specified</td>
</tr>
<tr>
<td>McClung 1998†71</td>
<td>2.5 and 5 mg/day</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>McClung 2001†72</td>
<td>2.5 and 5 mg/day</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Reginster 2000†73</td>
<td>2.5 and 5 mg/day</td>
<td>15% + semiquantitative method</td>
<td>Risedronate 5 mg: 53/344</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo: 89/346</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR 0.60 (95% CI 0.44 to 0.81)</td>
</tr>
</tbody>
</table>
Review: Bisphosphonates trial
Comparison: 05 Osteoporosis with or without prior fracture, osteopenia, or high risk of hip fracture
Outcome: 01 Incident vertebral fracture

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>RR (random)</th>
<th>Weight %</th>
<th>RR (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Alendronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dursun 2001<sup>160</sup></td>
<td>12/38</td>
<td>14/35</td>
<td>5.17</td>
<td>0.79</td>
<td>(0.42 to 1.47)</td>
</tr>
<tr>
<td>FIT fracture arm<sup>179</sup></td>
<td>78/981</td>
<td>145/965</td>
<td>29.25</td>
<td>0.53</td>
<td>(0.41 to 0.69)</td>
</tr>
<tr>
<td>FIT non-fracture arm<sup>20</sup></td>
<td>43/2057</td>
<td>78/2077</td>
<td>14.72</td>
<td>0.56</td>
<td>(0.39 to 0.80)</td>
</tr>
<tr>
<td>Liberman 1995<sup>144</sup></td>
<td>17/526</td>
<td>22/355</td>
<td>5.19</td>
<td>0.52</td>
<td>(0.28 to 0.97)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>3602</td>
<td>3432</td>
<td>54.33</td>
<td>0.56</td>
<td>(0.46 to 0.67)</td>
</tr>
<tr>
<td>Total events:</td>
<td>150 (Treatment)</td>
<td>259 (Control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 1.42$, df = 3 ($p = 0.70$), $I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $z = 6.01$ ($p < 0.00001$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>02 Risedronate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fogelman 2000<sup>178</sup></td>
<td>8/112</td>
<td>17/125</td>
<td>3.10</td>
<td>0.53</td>
<td>(0.24 to 1.17)</td>
</tr>
<tr>
<td>Reginster 2000<sup>174</sup></td>
<td>53/344</td>
<td>89/346</td>
<td>21.26</td>
<td>0.60</td>
<td>(0.44 to 0.81)</td>
</tr>
<tr>
<td>Harris 1999<sup>101</sup></td>
<td>61/696</td>
<td>93/678</td>
<td>21.32</td>
<td>0.64</td>
<td>(0.47 to 0.87)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1152</td>
<td>1149</td>
<td>46.67</td>
<td>0.61</td>
<td>(0.50 to 0.75)</td>
</tr>
<tr>
<td>Total events:</td>
<td>122 (Treatment)</td>
<td>199 (Control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 0.24$, df = 2 ($p = 0.89$), $I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $z = 4.62$ ($p < 0.00001$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Total (95% CI)** | 4754 | 4881 | 100.00 | 0.58 (0.50 to 0.67) |
| **Total events:** | 272 (Treatment) | 458 (Control) |
| Test for heterogeneity: $\chi^2 = 2.09$, df = 6 ($p = 0.91$), $I^2 = 0\%$ |
| Test for overall effect: $z = 7.55$ ($p < 0.00001$) |

FIGURE 36 Alendronate or risedronate: incident vertebral fracture in postmenopausal osteoporosis (with or without previous fracture) or osteopenia.

As may be seen, the results are less consistent than those for vertebral fracture. There is no apparent reason why, in the study by Lindsay et al.,¹⁶⁴ the fracture rate should have been higher in women receiving HRT plus alendronate than in those receiving alendronate alone. In the study by McClung et al.,¹⁷² risedronate appears less effective (RR 0.84, 95% CI 0.74 to 0.96) than is suggested by meta-analysis of data from the studies by Fogelman et al.,¹⁶⁹ Harris et al.¹⁷⁰ and Reginster et al.,¹⁷³ relating to the 5-mg risedronate dose in women with osteoporosis or osteopenia, with or without previous fracture (RR 0.66, 95% CI 0.50 to 0.87). This finding may be spurious, as the confidence intervals around the two point estimates overlap. Alternatively, in the study by McClung et al.¹⁷² the estimated efficacy of risedronate may have been reduced by the inclusion of data relating either from one large risedronate study (McClung et al.¹⁷²), which only reported pooled data relating to participants receiving 2.5-mg and 5-mg doses of risedronate. Their reason for doing so was that the study by Reginster et al.¹⁷³ had shown that both doses were effective in reducing the risk of vertebral fractures. However, Reginster et al.¹⁷³ discontinued the 2.5-mg dose after 2 years on the basis that McClung et al.¹⁷¹ had shown that the 5-mg dose had a more consistent effect on BMD and a similar safety profile, and both they and Harris et al.¹⁷⁰ published only 1-year data relating to the 2.5-mg dose and 3-year data relating only to the 5-mg dose. Consequently, the meta-analysis includes the 3-year data from the studies by Harris et al.¹⁷⁰ and Reginster et al.,¹⁷³ which relate to the licensed 5-mg dose, and does not include data relating to the 2.5-mg dose either from those studies or from the study by Clemmesen et al.¹⁶⁸

The meta-analysis indicates that the second-generation bisphosphonates alendronate and risedronate are associated with a risk of non-vertebral fracture relative to placebo of 0.82 (95% CI 0.74 to 0.90) in women with osteoporosis or osteopenia or at high risk of hip fracture (Figure 37).
TABLE 50 Alendronate or risedronate in postmenopausal osteoporosis or osteopenia: comparisons with placebo or no treatment – non-vertebral fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Bisphosphonate dose</th>
<th>Fracture definition</th>
<th>Number of women in each group suffering non-vertebral fracture</th>
</tr>
</thead>
</table>
| Adami 1995¹⁵⁴ | 10 and 20 mg/day | Not given; may include clinical vertebral fractures | Alendronate 10 mg: 1/68 (1.5%)
Alendronate 20 mg: 1/72 (1.4%)
Placebo: 3/71 (4.2%)
RR, 10 mg vs placebo, 0.35 (95% CI 0.04 to 3.26) |
| Bone 1997¹⁵⁵ | 1, 2.5 and 5 mg/day | Not given | Alendronate 1 mg: 15/86 (17.4%)
Alendronate 2.5 mg: 9/89 (10.1%)
Alendronate 5 mg: 9/93 (9.7%)
Placebo: 16/91 (17.6%)
RR, 5 mg vs placebo, 0.55 (95% CI 0.26 to 1.18) |
| Bone 2000¹⁵⁶ | 10 mg/day | Any clinical fracture (most were said to be non-vertebral, occurring at sites such as foot, ankle and rib; most occurred as a result of trauma) | Alendronate 10 mg: 4/92 (4.3%)
Placebo: 4/50 (8.0%)
RR 0.68 (95% CI 0.19 to 2.42) |
| Carfora 1998¹⁵⁷ | 5, 10 and 20 mg/day | Not given | RR, alendronate vs placebo, 0.55 (authors’ calculation; confidence intervals and numbers of women suffering fractures not supplied) |
| Chesnut 1995¹⁵⁸ | 5, 10, 20 and 40 mg/day | Not given | 13 non-vertebral fractures occurred in 12 subjects. These were evenly distributed across treatment groups and were not considered related to therapy |
| FIT fracture arm 1996⁷⁹ | 5 mg/day, increased after 2 years to 10 mg/day | Any clinical non-vertebral fracture that was not pathological (e.g. due to malignant disease), due to excessive trauma or involving the face or skull | Alendronate: 122/1022 (11.9%)
Placebo: 148/1005 (14.7%)
RR 0.81 (95% CI 0.65 to 1.01) |
| FIT non-fracture arm 1998⁸⁰ | 5 or 10 mg/day | Any non-vertebral fracture other than pathological, skull and excessive trauma fractures | Alendronate: 261/2214 (11.8%)
Placebo: 294/2218 (13.3%)
RR 0.89 (95% CI 0.76 to 1.04) |
| FLEX 2006¹⁶⁰ | 5 or 10 mg/day | Any non-vertebral fracture other than pathological, skull and excessive trauma fractures | Alendronate: 132/662 (19.9%)
Placebo: 93/437 (21.3%)
RR 0.93 (95% CI 0.71 to 1.21) (authors’ calculation, adjusted for centre and risk stratum) |
| Greenspan 2002¹⁴¹ | 10 mg/day | Not given | Alendronate: 13 (8%)
Placebo: 18 (11%)
RR not calculable as the number of women in each group was not stated |
| Hosking 2003¹⁴³ | 70 mg/week | Not given; may include clinical vertebral fractures | Alendronate: 6/219 (2.7%)
Placebo: 2/108 (1.9%) |
TABLE 50 Alendronate or risedronate in postmenopausal osteoporosis or osteopenia: comparisons with placebo or no treatment – non-vertebral fracture data (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Bisphosphonate dose</th>
<th>Fracture definition</th>
<th>Number of women in each group suffering non-vertebral fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberman 1995</td>
<td>5, 10 and 20 mg/day, decreased to 5 mg/day after 2 years</td>
<td>All symptomatic fractures, not excluding those due to trauma</td>
<td>Alendronate: 45/597 (7.5%) Placebo: 38/397 (9.6%) RR 0.79 (95% CI 0.52 to 1.19)</td>
</tr>
<tr>
<td>Lindsay 1999</td>
<td>10 mg/day</td>
<td>Any clinically apparent fracture</td>
<td>Alendronate: 15/214 (7.0%) Control: 9/214 (4.2%) RR 1.67 (95% CI 0.75 to 3.73)</td>
</tr>
<tr>
<td>Pols 1999</td>
<td>10 mg/day</td>
<td>Any clinically confirmed fracture</td>
<td>Alendronate: 19/950 (2.0%) Control: 37/958 (3.9%) RR 0.52 (95% CI 0.30 to 0.89)</td>
</tr>
<tr>
<td>Clemmesen 1997</td>
<td>2.5 mg daily or cyclically</td>
<td>Not given, but all fractures occurred after falls</td>
<td>Continuous risedronate: 4/44 (9.1%) Cyclical risedronate: 9/44 (20.5%) Placebo: 4/44 (9.1%) RR, continuous risedronate vs placebo, 1.00 (95% CI 0.27 to 3.75)</td>
</tr>
<tr>
<td>Fogelman 2000</td>
<td>2.5 and 5 mg/day</td>
<td>Not given</td>
<td>Risedronate 2.5 mg: 4/184 (2.2%) Risedronate 5 mg: 7/177 (4.0%) Placebo: 13/180 (7.2%) RR, 5 mg vs placebo, 0.55 (95% CI 0.22 to 1.34)</td>
</tr>
<tr>
<td>Harris 1999</td>
<td>2.5 and 5 mg/day</td>
<td>All radiographically confirmed fractures of the clavicle, humerus, wrist, pelvis, hip or leg, whether or not associated with trauma</td>
<td>Risedronate 5 mg: 33/812 (4.1%) Placebo: 52/815 (6.4%) RR 0.64 (95% CI 0.42 to 0.97)</td>
</tr>
<tr>
<td>Hosking 2003</td>
<td>5 mg/day</td>
<td>Not given; may include clinical vertebral fractures</td>
<td>Risedronate: 6/222 (2.7%) Placebo: 2/108 (1.9%) RR 1.46 (95% CI 0.30 to 7.11)</td>
</tr>
<tr>
<td>McClung 1998</td>
<td>2.5 and 5 mg/day</td>
<td>Not given</td>
<td>Non-vertebral fractures were said to be few in number and comparable between groups. More specific data were not available</td>
</tr>
<tr>
<td>McClung 2001</td>
<td>2.5 and 5 mg/day</td>
<td>All radiographically confirmed fractures of the clavicle, humerus, wrist, pelvis, hip or leg</td>
<td>Risedronate: 583/6197 (9.4%) Placebo: 351/3134 (11.2%) RR 0.84 (95% CI 0.74 to 0.95)</td>
</tr>
<tr>
<td>Reginster 2000</td>
<td>2.5 and 5 mg/day</td>
<td>All radiographically confirmed fractures of the clavicle, humerus, wrist, pelvis, hip or leg, whether or not associated with trauma</td>
<td>Risedronate 5 mg: 36/406 (8.9%) Placebo: 51/406 (12.6%) RR 0.71 (95% CI 0.47 to 1.06)</td>
</tr>
</tbody>
</table>
to women receiving a 2.5-mg dose of risedronate or to women selected for risk factors other than low BMD, or both. However, although McClung et al.172 did not publish the data for all non-vertebral fractures in such a way as to enable the inclusion in the meta-analysis of only those women selected for low BMD (or indeed only those receiving a 5-mg dose), they did publish an analysis which indicated that the RR of non-vertebral fracture in women in the younger osteoporotic stratum who received risedronate was not very different, at 0.8 (95% CI 0.7 to 1.0), from that in the study as a whole.

Subgroup data from the FIT non-fracture arm80 suggest that alendronate may have a significant effect on non-vertebral fractures in osteoporotic women (RR 0.64, 95% CI 0.58 to 0.82), but not in those who are only osteopenic (RR 1.08, 95% CI 0.87 to 1.35).

\textbf{Hip fracture}

Few studies reported specifically on hip fracture (Table 51).

Studies were included in the meta-analysis on the same basis as for the meta-analysis of all non-vertebral fractures. Pooled data for all participants for both the 2.5-mg and 5-mg doses of risedronate from the 2001 study by McClung et al.172 were again included as usable data were not provided separately for the two doses. However, the authors calculated that, in the younger osteoporotic stratum, the risk of hip fracture relative to placebo was 0.5 (95% CI 0.3 to 0.9) in women receiving 2.5 mg of risedronate and 0.7 (95% CI 0.4 to 1.1) in those receiving 5 mg, suggesting that the higher dose did not confer increased protection.

The meta-analysis indicates that the second-generation bisphosphonates alendronate and risedronate are associated with a risk of hip fracture relative to placebo of 0.72 (95% CI 0.58 to 0.88) in women with osteoporosis (with or without previous fracture) or osteopenia or at high risk of hip fracture (Figure 38).
TABLE 51 Alendronate or risedronate in postmenopausal osteoporosis or osteopenia: comparisons with placebo or no treatment – hip fracture data

<table>
<thead>
<tr>
<th>Study</th>
<th>Bisphosphonate dose</th>
<th>Number of women in each group suffering hip fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIT fracture arm 199679</td>
<td>5 mg/day, increased after 2 years to 10 mg/day</td>
<td>Alendronate: 11/1022 (1.1%) Placebo: 22/1005 (2.2%) RR 0.49 (95% CI 0.24 to 1.01)</td>
</tr>
<tr>
<td>FIT non-fracture arm 199880</td>
<td>5 mg/day, increased after 2 years to 10 mg/day</td>
<td>Alendronate: 19/2214 (0.9%) Placebo: 24/2218 (1.1%) RR 0.79 (95% CI 0.44 to 1.44)</td>
</tr>
<tr>
<td>FLEX 2006180</td>
<td>5 or 10 mg/day</td>
<td>Alendronate: 20/662 (3.0%) Placebo: 13/437 (3.0%) RR 1.02 (95% CI 0.51 to 2.10) (authors’ calculation, adjusted for centre and risk stratum)</td>
</tr>
<tr>
<td>Greenspan 2002161</td>
<td>10 mg/day</td>
<td>Alendronate: 2 Placebo: 4 As the number of women in each group was not stated, it was not possible to calculate a RR</td>
</tr>
<tr>
<td>Liberman 1995163</td>
<td>5, 10 and 20 mg/day, decreased to 5 mg/day after 2 years</td>
<td>Alendronate: 1/597 (0.2%) Placebo: 3/397182 (0.8%) RR 0.22 (95% CI 0.02 to 2.12)</td>
</tr>
<tr>
<td>Risedronate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris 1999170</td>
<td>2.5 and 5 mg/day</td>
<td>Risedronate 5 mg: 12/812 (1.5%) Placebo: 15/815 (1.8%) RR 0.80 (95% CI 0.38 to 1.70)</td>
</tr>
<tr>
<td>McClung 2001172</td>
<td>2.5 and 5 mg/day</td>
<td>Risedronate: 137/6197 (2.2%) Placebo: 95/3134 (3.0%) RR 0.73 (95% CI 0.56 to 0.94) Older osteoporotic group: Risedronate: 55/3624 (1.5%) Placebo: 46/1821 (2.5%) RR 0.60 (95% CI 0.41 to 0.89)</td>
</tr>
<tr>
<td>Reginster 2000173</td>
<td>2.5 and 5 mg/day</td>
<td>Risedronate 5 mg: 9/406 (2.2%) Placebo: 11/406 (2.7%) RR 0.82 (95% CI 0.34 to 1.95)</td>
</tr>
</tbody>
</table>
Review: Bisphosphonates trial

Comparison: 05 Osteoporosis with or without prior fracture, osteopenia, or high risk of hip fracture

Outcome: 02 Incident hip fracture

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>RR (random) 95% Cl</th>
<th>Weight %</th>
<th>RR (random) 95% Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Alendronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIT fracture arm⁷⁷</td>
<td>11/1022</td>
<td>22/1005</td>
<td>8.42</td>
<td>0.49</td>
<td>(0.24 to 1.01)</td>
</tr>
<tr>
<td>FIT non-fracture arm⁶⁰</td>
<td>19/2214</td>
<td>24/2218</td>
<td>12.11</td>
<td>0.79</td>
<td>(0.44 to 1.44)</td>
</tr>
<tr>
<td>Liberman 1995</td>
<td>1/597</td>
<td>3/397</td>
<td>0.85</td>
<td>0.22</td>
<td>(0.02 to 2.12)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>3833</td>
<td>3620</td>
<td>21.38</td>
<td>0.62</td>
<td>(0.40 to 0.98)</td>
</tr>
<tr>
<td>Total events: 31 (Treatment), 49 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 1.85$, df = 2 ($p = 0.40$), $I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $z = 2.05$ ($p = 0.04$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 Risedronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McClung 2001¹³³</td>
<td>137/6197</td>
<td>95/3134</td>
<td>65.21</td>
<td>0.73</td>
<td>(0.56 to 0.94)</td>
</tr>
<tr>
<td>Reginster 2000⁶⁶</td>
<td>9/406</td>
<td>11/406</td>
<td>5.74</td>
<td>0.82</td>
<td>(0.34 to 1.95)</td>
</tr>
<tr>
<td>Harris 1999</td>
<td>12/812</td>
<td>15/815</td>
<td>7.67</td>
<td>0.80</td>
<td>(0.38 to 1.70)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>7415</td>
<td>4355</td>
<td>78.62</td>
<td>0.74</td>
<td>(0.59 to 0.94)</td>
</tr>
<tr>
<td>Total events: 158 (Treatment), 121 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 0.11$, df = 2 ($p = 0.95$), $I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $z = 2.48$ ($p = 0.01$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>11,248</td>
<td>7975</td>
<td>100.00</td>
<td>0.72</td>
<td>(0.58 to 0.88)</td>
</tr>
<tr>
<td>Total events: 189 (Treatment), 170 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 2.40$, df = 5 ($p = 0.79$), $I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $z = 3.15$ ($p = 0.002$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 38 Alendronate or risedronate: incident hip fracture in women with postmenopausal osteoporosis (with or without previous fracture) or osteopenia or at high risk of hip fracture.

Adverse events

The studies included in our 2003 review² generally did not identify an increase in adverse events in women taking bisphosphonates. Moreover, Steinbuch et al.¹⁸¹ undertook a retrospective cohort study in which they used routinely collected data to compare mortality rates in women enrolled in the risedronate and placebo groups of the North American risedronate trials (Harris et al.,¹⁷⁰ McClung et al.,¹⁷¹ and the Hip Intervention Program¹⁷²) over the period from initiation of study medication to 31 December 1997. They found no association between risedronate and an increase in all-cause mortality, cancer mortality or stroke mortality; although risedronate was associated with a non-significant increase in mortality from coronary artery disease, it was associated with a significant decrease in stroke mortality.

The more recent studies summarised here do not suggest that second-generation bisphosphonates are associated with an increase in adverse events other than gastrointestinal disturbances. Hosking et al.¹⁵³ found that, although there was no significant increase in serious upper gastrointestinal adverse events in women randomised to weekly alendronate or daily risedronate compared with those randomised to placebo, women randomised to either bisphosphonate were more likely than those randomised to placebo to discontinue study medication because of upper gastrointestinal adverse events. Or et al.¹⁶⁵ also found that gastrointestinal disturbances were more common in the alendronate than in the placebo group.

A systematic review¹⁸³ has indicated that bisphosphonates are associated with an increased risk of osteonecrosis of the jaw. Although this risk appears to be linked primarily to intravenous bisphosphonates, some cases were reported in patients taking daily alendronate (10mg) for osteoporosis. However, no cases of osteonecrosis of the jaw were identified in the long-term users of oral alendronate in the FLEX study.¹⁶⁰

Quality of life

Only one study, that by Durson et al.,¹⁵⁹ set out to measure the effect of alendronate treatment on...
health-related quality of life, as measured by the Nottingham Health Profile (NHP). At 12 months they found statistically significant improvements in the NHP scores for pain, social isolation, energy level and physical ability in the alendronate group, but not in the control group; pain, as measured on a visual analogue scale, decreased significantly from baseline in the alendronate group but not in the control group. Or et al.165 noted no obvious improvement in quality of life in the alendronate group compared with the placebo group, but did not state how this was measured.

The FIT fracture arm collected data on the effects of alendronate on back pain and days of functional limitation or bed rest.184 Women in the alendronate group had significantly fewer days in bed because of back pain than women in the placebo group (mean of 1.9 days over a 3-year period versus 5.1 days, $p = 0.001$), and fewer days of limited activity because of such pain (mean of 61.8 days versus 73.2, $p = 0.04$).

None of the studies of risedronate reported on its effect on quality of life.

Continuance and compliance

Continuance with medication decreases over time. In the studies reviewed here, the percentage of subjects receiving daily alendronate who completed the study protocol ranged from 100\% at 1 year in the very small study by Rossini et al. to 81\% at 4 years in the FIT non-fracture arm and 72\% at 6 years in the FLEX trial; surprisingly, the figure for weekly alendronate was lower, at 78\% at 3 months (Table 52). The figures for daily risedronate ranged from 82\% at 1 year to 60\% at 3 years (Table 52). The FIT trial found that discontinuation of study medication was greatest in the first month post randomisation: 4.8\% of participants had withdrawn at 3 months, and 11.1\% at 12 months. Although clinical adverse events formed the most common reason for withdrawal, causing 6.9\% of women to withdraw, the proportion of women discontinuing

<table>
<thead>
<tr>
<th>Study</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate 10 mg/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone 2000156</td>
<td>NR</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIT fracture arm 199679 (5 mg/day, increased to 10 mg/day after 2 years)</td>
<td>NR</td>
<td>NR</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIT non-fracture arm 199880 (5 mg/day, increased to 10 mg/day after 2 years)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEX 2006160</td>
<td>92</td>
<td>89</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberman 1995163</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindsay 1999164</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pols 1999166</td>
<td>100a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rossini 1994167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alendronate 70 mg/week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosking 2003153</td>
<td>78a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risedronate 5 mg/week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fogelman 2000149</td>
<td>NR</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris 1999170</td>
<td>NR</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosking 2003153</td>
<td>80a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reginster 2000171</td>
<td>82</td>
<td>NR</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR, not reported.

a 6 months of blinded treatment followed by 6 months of blinded follow-up.

b First 12 weeks only.
treatment was comparable in the alendronate and placebo groups (RR 2.10, 95% CI 1.47 to 2.99).185

Four studies defined compliance as taking at least 75% of the study medication since the last clinic visit. In both arms of the FIT trial,79,80 96% of participants who continued to take the study medication (alendronate or placebo) were found to be compliant with that medication at the final clinic visit, as were 96% of participants in the FLEX trial160 who were still taking the study medication at 36 months. Hosking et al.153 also found that, although in their study continuance at 12 weeks was perhaps disappointing, 95% of those taking either bisphosphonate were compliant with that medication over that period according to patient-completed medication diaries validated by tablet counts.

Summary
The aggregated results suggest that the second-generation bisphosphonates alendronate and risedronate have a protective effect in relation to vertebral fracture in women with osteoporosis or osteopenia, with or without previous fracture, and that they also have a protective effect in relation to non-vertebral fracture generally, and hip fracture specifically, in women with osteoporosis or osteopenia, with or without previous fracture, or who are at increased risk of hip fracture.
Healthcare Resource Groups (HRGs) detail the costs that are expected to be incurred by a trust when treating a patient with a certain condition. These costs can be modified if the patient has an exceptionally long duration of stay, which is defined as beyond the ‘trim point’, with additional costs per day after this period. These costs have been centrally calculated, across a large number of NHS trusts, and this is the approach recommended by NICE for calculating costs.

The HRGs used in the estimation of costs are shown in the following table.

The costs estimated for a hip, clinical vertebral, wrist and proximal humerus fracture have been provided.

Based on the work previously undertaken it has been assumed that:

- the costs for a hip fracture will also incorporate pelvis and other femoral fractures
- the costs for a wrist fracture will also incorporate rib, scapula, sternum and clavicle fractures
- the costs for a proximal humerus fracture will also incorporate tibia, fibula and humeral shaft fractures.

Home help costs

The costs for home help following a fracture will be heavily dependent on the health resources within a region and on whether the patient chooses to pay for their own help. Questioning a small number of clinicians on the NICE Appraisal Committee and on the NICE Osteoporosis Guideline Development Group it appeared that home help for 2 hours a day for 8 weeks following a hip fracture would not be unreasonable. Similar resources are required for vertebral fractures and for wrist and proximal humerus fractures when the dominant arm has been fractured. Assuming costs of £14 per hour for home care115 this would imply additional home help costs of £1568 for hip and vertebral fractures and £784 for wrist and proximal humerus fractures. An alternative source of data for the amount of home help required is the Swedish study by Borgstrom et al.186 This estimates home help costs to be £1143, £1699 and £85 for hip, vertebral and wrist fractures respectively. We have used the Borgstrom data as these have been empirically collected and are likely to be conservative compared with our estimated UK values.
Hip fracture costs (not requiring nursing home admission)

The average cost from HRGs H82–H89, which represent hip fracture, is £5419, with a range from £4357 to £7136. The average cost for pelvis and lower limb fracture is dependent on age. For those patients aged over 70 years the cost is £4582 (H36). For patients under 69 years the cost is £4582 (H36) if there are complications and £2417 if there are no complications (H37).

In the absence of data on the frequency of fractures in relation to HRG code we have assumed that the cost of a hip fracture is that of the cost of an average hip fracture or £5419. We have also assumed that an additional 11% of this cost is incurred from outpatient appointments, as indicated by Swedish data, resulting in an average cost of £6015. We have age weighted this figure in accordance with data reported by Borgstrom et al.

Some additional costs will be borne for patients who stay longer than the trim point. We do not have data on this and have instead arbitrarily added £50 to the cost of a ‘hip’ fracture, which is approximately 1 additional day’s stay beyond the trim point for every three patients. An additional £93 has been added to each case as a high-cost A&E attendance patient. We have assumed an additional £1568 for home help as previously described.

The costs at each age band are shown in the following table.

<table>
<thead>
<tr>
<th>Age range (years)</th>
<th>HRG costs for hip fracture including home help (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>5696</td>
</tr>
<tr>
<td>55–59</td>
<td>5696</td>
</tr>
<tr>
<td>60–64</td>
<td>5696</td>
</tr>
<tr>
<td>65–69</td>
<td>6426</td>
</tr>
<tr>
<td>70–74</td>
<td>6750</td>
</tr>
<tr>
<td>75–79</td>
<td>6750</td>
</tr>
<tr>
<td>80–84</td>
<td>6750</td>
</tr>
</tbody>
</table>

Note that these figures are markedly different from those reported in Lawrence et al., in which the average hip fracture cost at a Nottingham hospital was approximately £12,000 for direct medical costs only, and from that reported in Stevenson et al. (£10,760 excluding home help costs).

Additional costs associated with admission to a nursing home following a hip fracture

The additional costs associated with admission to a nursing home and the ongoing treatment costs per year have been taken from Stevenson et al. These are approximately £26,000 in the year of fracture and between £23,000 and £25,000 per annum thereafter.

Vertebral fracture costs

For patients aged over 69 years we have used the R15 HRG, at a cost of £2269. For patients aged below 70 years we have arbitrarily assumed that 20% have complications (and used HRG R15) and that 80% do not (and used HRG R16, at a cost of £1069). This gives a weighted cost of £1309.

Some additional costs will be borne for patients who stay longer than the trim point. We do not have data on this and have instead arbitrarily added £50 to the cost of a vertebral fracture, which is approximately 1 additional day’s stay beyond the trim point per three patients. An additional £93 has been added to each case as a high-cost A&E attendance patient. This equates to costs of £1452 and £2412 for hospitalised vertebral fractures for patients aged below 70 years and above 70 years respectively. Assuming that 35% of clinical vertebral fractures are hospitalised, this results in costs of £508 and £844, respectively, on average for all clinical vertebral fractures.

We have assumed additional outpatient costs of 9% of inpatient costs, which are assumed applicable to all patients with a clinical vertebral fracture. This results in costs of £639 for patients below 70 years and £1061 for patients over 69 years.

We have assumed an additional £1568 for home help. As in our previous modelling work it is assumed that all clinical vertebral fractures will receive medication, at a cost of £222 per annum.

The costs at each age band are shown in the following table.

<table>
<thead>
<tr>
<th>Age range (years)</th>
<th>Costs for a clinical vertebral fracture including home help (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–59</td>
<td>2338</td>
</tr>
<tr>
<td>60–69</td>
<td>2338</td>
</tr>
<tr>
<td>70–79</td>
<td>2760</td>
</tr>
<tr>
<td>80–89</td>
<td>2760</td>
</tr>
</tbody>
</table>
Note that these costs are lower than those in Puffer et al.,190 which are over £2500 for clinical vertebral fracture, excluding home help costs. These costs may be seen as conservative as length of stay was assumed to be 6 days, whereas Hospital Episode Statistics (HES) data record 10.8 days. These are UK data and have been attempted to be case-matched to try and ensure that only the costs of the vertebral fractures are included.

It is possible that these costs may be underestimated if patients with a vertebral fracture also sustain a hip fracture in the 2-year collection period, as these costs would also be calculated in the model at the time of the hip fracture.

The costs of a ‘wrist’ fracture

For patients aged over 69 years we have used HRG H39, which has a cost of £2762. For patients aged below 70 years, we have arbitrarily assumed that 20% have complications (and used H39) and that 80% do not (and used H40, at a cost of £1447). This gives a weighted cost of £1692 for patients under 70 years.

Some additional costs will be borne for patients who stay longer than the trim point. We do not have data on this but have arbitrarily added £50 to the cost of a wrist fracture, which is approximately 1 additional day’s stay beyond the trim point per three patients. An additional £61 has been added to each case as a standard A&E attendance patient. This equates to costs of £1803 and £2873 for hospitalised wrist fractures for patients aged below 70 years and above 70 years respectively. Assuming that 25% of wrist fractures are hospitalised, this results in costs of £451 and £718, respectively, on average for all wrist fractures.

We have assumed additional outpatient costs of 31% of inpatient costs,186 which are assumed applicable to all patients with a wrist fracture. This results in costs of £1010 for patients below 70 years and £1609 for patients over 69 years. We have further assumed an additional £85 for home help.

Rib, clavicle, scapula and sternum fractures have been classified as HRG H45, at a cost of £1232. We have arbitrarily added £50 to the cost of a wrist fracture, which is approximately 1 additional day’s stay beyond the trim point per three patients. An additional £61 has been added to each case as a standard A&E attendance patient. This equates to costs of £1343 per hospitalised fracture.

Using Swedish hospitalisation, incidence and census data, it is assumed that 7% of such fractures are hospitalised112,186,191 and that 10% of inpatient costs are borne by all fractures as outpatient costs.186 This equates to £340 per fracture including £85 for home help costs.

The costs at each age band have been weighted to take the proportion of each fracture type into account.

<table>
<thead>
<tr>
<th>Age range (years)</th>
<th>Costs for ‘wrist’ fracture including home help costs (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>762</td>
</tr>
<tr>
<td>55–59</td>
<td>887</td>
</tr>
<tr>
<td>60–64</td>
<td>964</td>
</tr>
<tr>
<td>65–69</td>
<td>903</td>
</tr>
<tr>
<td>70–74</td>
<td>1261</td>
</tr>
<tr>
<td>75–79</td>
<td>1109</td>
</tr>
<tr>
<td>80+</td>
<td>1004</td>
</tr>
</tbody>
</table>

The costs for ‘proximal humerus’ fractures

For patients aged over 69 years we have used HRG H39, which has a cost of £2762. For patients aged below 70 years we have arbitrarily assumed that 20% have complications (and used H39) and that 80% do not (and used H40, at a cost of £1447). This gives a weighted cost of £1692. Humerus shaft fractures are assumed to cost the same as proximal humerus fractures.

Some additional costs will be borne for patients who stay longer than the trim point. We do not have data on this but have arbitrarily added £50 to the cost of a proximal humerus fracture, which is approximately 1 additional day’s stay beyond the trim point per three patients. An additional £61 has been added to each case as a standard A&E attendance patient. This equates to costs of £1803 and £2873 for hospitalised proximal humerus fractures for patients aged below 70 years and above 70 years respectively. Assuming that 32% of proximal humerus fractures are hospitalised,112,186,191 this results in costs of £577 and £919, respectively, on average for proximal humerus fractures.

We have assumed additional outpatient costs of 10% of inpatient costs,186 which are assumed applicable to all patients with a proximal humerus fracture. This results in costs of £757 for patients below 70 years and £1207 for patients over 69.
years. We have further assumed an additional £85 for home help.

Tibia and fibula fractures have been assumed to cost the same as pelvis and other femoral fractures, which is £4582 for patients over 69 years or with complications (H36) and £2850 for patients under 70 years without complications (H37). At all ages an additional £50 has been added for patients staying beyond the trim point. An additional £61 per patient has been included as the cost of a standard A&E admission.

Assuming that 90% of tibia and fibula fractures are hospitalised,112,186,191 this results in costs of £2665 for those below 70 years and £4224 for those above 69 years.

We have assumed additional outpatient costs of 10% of inpatient costs,186 which are assumed applicable to all patients with a proximal humerus fracture. This results in costs of £2950 for patients below 70 years and £4682 for patients over 69 years. We have further assumed an additional £1143 for home help for tibia and fibula fractures, equal to that associated with a hip fracture.

The costs at each age band have been weighted to take the proportion of each fracture type into account.

<table>
<thead>
<tr>
<th>Age range (years)</th>
<th>Costs for a 'proximal humerus' fracture including home help costs (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–54</td>
<td>2357</td>
</tr>
<tr>
<td>55–59</td>
<td>2237</td>
</tr>
<tr>
<td>60–64</td>
<td>2100</td>
</tr>
<tr>
<td>65–69</td>
<td>1941</td>
</tr>
<tr>
<td>70–74</td>
<td>2565</td>
</tr>
<tr>
<td>75–79</td>
<td>2256</td>
</tr>
<tr>
<td>80+</td>
<td>1882</td>
</tr>
</tbody>
</table>
Appendix 12

Detailed results

This appendix will be subdivided into results for osteoporotic women without a previous fracture and results for osteoporotic women with a previous fracture. These results will be reported by combinations of age and \(T \)-score.

Results for women without a previous fracture

Women aged 50–54 years without previous fracture

The mean results for each intervention compared with no treatment for women aged 50–54 years with a \(T \)-score of \(-2.5\) SD are given in Table 53.

It is seen that both alendronate and vitamin K\(_1\) have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K\(_1\) is the most cost-effective intervention. The dominance of alendronate and vitamin K\(_1\) is shown in Figure 39. However, it is seen that if the efficacy associated with vitamin K\(_1\) is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

The mean results for each intervention compared with no treatment for women aged 50–54 years with a \(T \)-score of \(-3.0\) SD are given in Table 54.

It is seen that both alendronate and vitamin K\(_1\) have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K\(_1\) is the most cost-effective intervention. The dominance of alendronate and vitamin K\(_1\) is shown in Figure 40. However, it is seen that if the efficacy associated with vitamin K\(_1\) is only applicable to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 55–59 years without previous fracture

The mean results for each intervention compared with no treatment for women aged 55–59 years with a \(T \)-score of \(-2.5\) SD are given in Table 55.

It is seen that both alendronate and vitamin K\(_1\) have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K\(_1\) is the most cost-effective intervention. The dominance of alendronate and vitamin K\(_1\) is shown in Figure 41. However, it is seen that if the efficacy associated with vitamin K\(_1\) is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

TABLE 53 Cost-effectiveness of interventions in women aged 50–54 years with a \(T \)-score of \(-2.5\) SD and no previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K(_1)</td>
<td>25,985</td>
<td>1.71</td>
<td>15,239</td>
<td>8804 to 40,684</td>
</tr>
<tr>
<td>Alendronate</td>
<td>23,947</td>
<td>1.36</td>
<td>17,653</td>
<td>12,091 to 28,137</td>
</tr>
<tr>
<td>Risedronate</td>
<td>125,793</td>
<td>1.36</td>
<td>92,727</td>
<td>73,093 to 126,186</td>
</tr>
<tr>
<td>Strontium</td>
<td>164,317</td>
<td>0.90</td>
<td>182,942</td>
<td>115,564 to 540,523</td>
</tr>
<tr>
<td>Strontium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranelate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin K(_1)</td>
<td>40,263</td>
<td>0.47</td>
<td>84,842</td>
<td>54,355 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominated means that less health is provided at a higher or equal acquisition cost.
Cost-effectiveness acceptability curves for interventions in women aged 50–54 years with a T-score of –2.5 SD and no previous fracture.

Cost-effectiveness acceptability curves for interventions in women aged 50–54 years with a T-score of –3.0 SD and no previous fracture.

Cost-effectiveness of interventions in women aged 50–54 years with a T-score of –3.0 SD and no previous fracture

<table>
<thead>
<tr>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>14,825</td>
<td>2.60</td>
<td>5694</td>
</tr>
<tr>
<td>Alendronate</td>
<td>15,171</td>
<td>2.14</td>
<td>7097</td>
</tr>
<tr>
<td>Risedronate</td>
<td>116,966</td>
<td>2.14</td>
<td>54,728</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>160,368</td>
<td>1.35</td>
<td>118,627</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>40,430</td>
<td>0.60</td>
<td>67,481</td>
</tr>
</tbody>
</table>

a Per 100 women.

b Assuming no effect on hip or vertebral fractures.

Dominated means that less health is provided at a higher or equal acquisition cost.

Cost-effectiveness acceptability curves for interventions in women aged 50–54 years with a T-score of –3.0 SD and no previous fracture.
TABLE 55 Cost-effectiveness of interventions in women aged 55–59 years with a T-score of –2.5 SD and no previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>23,594</td>
<td>1.90</td>
<td>12,407</td>
<td>6825 to 34,856</td>
</tr>
<tr>
<td>Alendronate</td>
<td>20,879</td>
<td>1.47</td>
<td>14,185</td>
<td>9412 to 23,095</td>
</tr>
<tr>
<td>Risedronate</td>
<td>122,721</td>
<td>1.47</td>
<td>83,375</td>
<td>65,777 to 112,756</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>161,455</td>
<td>0.99</td>
<td>163,585</td>
<td>104,850 to 450,867</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>38,674</td>
<td>0.50</td>
<td>77,149</td>
<td>38,256 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 41 Cost-effectiveness acceptability curves for interventions in women aged 55–59 years with a T-score of –2.5 SD and no previous fracture.

The mean results for each intervention compared with no treatment for women aged 55–59 years with a T-score of –3.0 SD are given in Table 56.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 42. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 60–64 years without previous fracture

The mean results for each intervention compared with no treatment for women aged 60–64 years with a T-score of –2.5 SD are given in Table 57.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 43. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.
Appendix 12

TABLE 56 Cost-effectiveness of interventions in women aged 55–59 years with a T-score of –3.0 SD and no previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K$_1$</td>
<td>11,583</td>
<td>2.84</td>
<td>4075</td>
<td>Dominating to 21,912</td>
</tr>
<tr>
<td>Alendronate</td>
<td>10,622</td>
<td>2.26</td>
<td>4700</td>
<td>909 to 11,670</td>
</tr>
<tr>
<td>Risedronate</td>
<td>112,442</td>
<td>2.26</td>
<td>49,750</td>
<td>37,506 to 73,282</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>155,739</td>
<td>1.46</td>
<td>106,789</td>
<td>62,990 to 467,595</td>
</tr>
<tr>
<td>Vitamin K$_1$ b</td>
<td>37,512</td>
<td>0.63</td>
<td>59,266</td>
<td>38,256 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 42 Cost-effectiveness acceptability curves for interventions in women aged 55–59 years with a T-score of –3.0 SD and no previous fracture.

TABLE 57 Cost-effectiveness of interventions in women aged 60–64 years with a T-score of –2.5 SD and no previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K$_1$</td>
<td>22,238</td>
<td>2.17</td>
<td>10,235</td>
<td>Dominating to 21,912</td>
</tr>
<tr>
<td>Alendronate</td>
<td>20,846</td>
<td>1.70</td>
<td>12,270</td>
<td>7731 to 20,594</td>
</tr>
<tr>
<td>Risedronate</td>
<td>122,683</td>
<td>1.70</td>
<td>72,209</td>
<td>56,644 to 98,655</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>162,628</td>
<td>1.14</td>
<td>142,055</td>
<td>90,743 to 386,976</td>
</tr>
<tr>
<td>Vitamin K$_1$ b</td>
<td>37,512</td>
<td>0.56</td>
<td>72,608</td>
<td>46,719 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating means that less health is provided at a higher or equal acquisition cost.
The mean results for each intervention compared with no treatment for women aged 60–64 years with a T-score of –3.0 SD are given in Table 58.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 44. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

TABLE 58 Cost-effectiveness of interventions in women aged 60–64 years with a T-score of –3.0 SD and no previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)°</th>
<th>Incremental QALYs compared with no treatment°</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>10,354</td>
<td>3.19</td>
<td>3244</td>
<td>Dominating to 20,762</td>
</tr>
<tr>
<td>Alendronate</td>
<td>11,522</td>
<td>2.55</td>
<td>4517</td>
<td>691 to 11,443</td>
</tr>
<tr>
<td>Risedronate</td>
<td>113,337</td>
<td>2.55</td>
<td>44,435</td>
<td>33,317 to 65,618</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>158,284</td>
<td>1.66</td>
<td>95,172</td>
<td>55,947 to 383,786</td>
</tr>
<tr>
<td>Vitamin K₁b</td>
<td>40,771</td>
<td>0.71</td>
<td>57,815</td>
<td>37,307 to dominated</td>
</tr>
</tbody>
</table>

° Per 100 women.

b Assuming no effect on hip or vertebral fractures.

Dominating denotes more health provided at a lower or equal acquisition cost.

Dominated means that less health is provided at a higher or equal acquisition cost.

Women aged 65–69 years without previous fracture

The mean results for each intervention compared with no treatment for women aged 65–69 years with a T-score of –2.5 SD are given in Table 59.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 45. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.
TABLE 59 Cost-effectiveness of interventions in women aged 65–69 years with a T-score of −2.5 SD and no previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>16,300</td>
<td>2.43</td>
<td>6719</td>
<td>1689 to 28,573</td>
</tr>
<tr>
<td>Alendronate</td>
<td>16,306</td>
<td>1.95</td>
<td>8349</td>
<td>3816 to 16,248</td>
</tr>
<tr>
<td>Risedronate</td>
<td>118,135</td>
<td>1.95</td>
<td>60,492</td>
<td>46,580 to 85,872</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>160,538</td>
<td>1.31</td>
<td>122,893</td>
<td>75,829 to 370,798</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>40,351</td>
<td>0.52</td>
<td>77,817</td>
<td>49,921 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominated means that less health is provided at a higher or equal acquisition cost.
The mean results for each intervention compared with no treatment for women aged 65–69 years with a \(T \)-score of \(-3.0\) SD are given in Table 60.

It is seen that both alendronate and vitamin \(K_1 \) have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin \(K_1 \) is the most cost-effective intervention. The dominance of alendronate and vitamin \(K_1 \) is shown in Figure 46. However, it is seen that if the efficacy associated with vitamin \(K_1 \) is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

TABLE 60 Cost-effectiveness of interventions in women aged 65–69 years with a \(T \)-score of \(-3.0\) SD and no previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin (K_1)</td>
<td>1309</td>
<td>3.55</td>
<td>368</td>
<td>Dominating to 21,912</td>
</tr>
<tr>
<td>Alendronate</td>
<td>4641</td>
<td>2.91</td>
<td>1596</td>
<td>Dominating to 14,305</td>
</tr>
<tr>
<td>Risedronate</td>
<td>106,444</td>
<td>2.91</td>
<td>36,613</td>
<td>26,528 to 55,835</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>155,174</td>
<td>1.89</td>
<td>82,245</td>
<td>45,579 to 380,423</td>
</tr>
<tr>
<td>Vitamin (K_1)(b)</td>
<td>40,488</td>
<td>0.65</td>
<td>61,838</td>
<td>39,753 to dominated</td>
</tr>
</tbody>
</table>

\(a \) Per 100 women.
\(b \) Assuming no effect on hip or vertebral fractures.

Dominating denotes more health provided at a lower or equal acquisition cost. Dominated means that less health is provided at a higher or equal acquisition cost.

Women aged 70–74 years without previous fracture

The mean results for each intervention compared with no treatment for women aged 70–74 years with a \(T \)-score of \(-2.5\) SD are given in Table 61.

It is seen that both alendronate and vitamin \(K_1 \) have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin \(K_1 \) is the most cost-effective intervention. The dominance of alendronate and vitamin \(K_1 \) is shown in Figure 47. However, it is seen that if the efficacy associated with vitamin \(K_1 \) is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

![FIGURE 46 Cost-effectiveness acceptability curves for interventions in women aged 65–69 years with a \(T \)-score of \(-3.0\) SD and no previous fracture.](image)
TABLE 61 Cost-effectiveness of interventions in women aged 70–74 years with a T-score of –2.5 SD and no previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)¹</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>11,426</td>
<td>2.78</td>
<td>4113</td>
<td>Dominating to 25,268</td>
</tr>
<tr>
<td>Alendronate</td>
<td>12,560</td>
<td>2.23</td>
<td>5635</td>
<td>1335 to 13,269</td>
</tr>
<tr>
<td>Risedronate</td>
<td>114,683</td>
<td>2.23</td>
<td>51,319</td>
<td>38,900 to 74,558</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>158,787</td>
<td>1.48</td>
<td>107,188</td>
<td>63,930 to 354,275</td>
</tr>
<tr>
<td>Vitamin K₁b</td>
<td>41,571</td>
<td>0.57</td>
<td>73,312</td>
<td>47,802 to dominating</td>
</tr>
</tbody>
</table>

¹ Per 100 women.

b Assuming no effect on hip or vertebral fractures.

Dominated means that less health is provided at a higher or equal acquisition cost.

Dominating denotes more health provided at a lower or equal acquisition cost.

FIGURE 47 Cost-effectiveness acceptability curves for interventions in women aged 70–74 years with a T-score of –2.5 SD and no previous fracture.

The mean results for each intervention compared with no treatment for women aged 70–74 years with a T-score of –3.0 SD are given in Table 62.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 48. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 75–79 years without previous fracture

The mean results for each intervention compared with no treatment for women aged 75–79 years with a T-score of –2.5 SD are given in Table 63.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 49. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.
TABLE 62 Cost-effectiveness of interventions in women aged 70–74 years with a T-score of −3.0 SD and no previous fracture

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment a</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K1</td>
<td>−6325</td>
<td>4.05</td>
<td>Dominating</td>
<td>Dominating to 14,915</td>
</tr>
<tr>
<td>Alendronate</td>
<td>−933</td>
<td>3.28</td>
<td>Dominating</td>
<td>Dominating to 6350</td>
</tr>
<tr>
<td>Risedronate</td>
<td>100,860</td>
<td>3.28</td>
<td>30,714</td>
<td>21,512 to 48,318</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>152,594</td>
<td>2.12</td>
<td>71,955</td>
<td>38,418 to 367,355</td>
</tr>
<tr>
<td>Vitamin K1 b</td>
<td>42,007</td>
<td>0.72</td>
<td>58,702</td>
<td>38,495 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 48 Cost-effectiveness acceptability curves for interventions in women aged 70–74 years with a T-score of −3.0 SD and no previous fracture.

TABLE 63 Cost-effectiveness of interventions in women aged 75–79 years with a T-score of −2.5 SD and no previous fracture

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Incremental cost compared with no treatment (£) a</th>
<th>Incremental QALYs compared with no treatment a</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K1</td>
<td>−2020</td>
<td>3.48</td>
<td>Dominating</td>
<td>Dominating to 17,433</td>
</tr>
<tr>
<td>Alendronate</td>
<td>3383</td>
<td>2.76</td>
<td>1226</td>
<td>Dominating to 8757</td>
</tr>
<tr>
<td>Risedronate</td>
<td>105,184</td>
<td>2.76</td>
<td>30,714</td>
<td>27,362 to 58,785</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>154,586</td>
<td>1.78</td>
<td>71,955</td>
<td>47,443 to 438,311</td>
</tr>
<tr>
<td>Vitamin K1 b</td>
<td>40,795</td>
<td>0.53</td>
<td>77,424</td>
<td>49,981 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.
The mean results for each intervention compared with no treatment for women aged 75–79 years with a T-score of −3.0 SD are given in Table 64. It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 50. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Results for women with a previous fracture

Women aged 50–54 years with a previous fracture

The mean results for each intervention compared with no treatment for women aged 50–54 years with a T-score of −2.5 SD are given in Table 65. It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 51. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

| TABLE 64 Cost-effectiveness of interventions in women aged 75–79 years with a T-score of −3.0 SD and no previous fracture |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Incremental cost compared with no treatment (£)¹ | Incremental QALYs compared with no treatment ² | Cost per QALY compared with no treatment (£) | 95% CI for range in cost per QALY (£) |
| Vitamin K₁ | −25,815 | 5.06 | Dominating | Dominating to 14,915 |
| Alendronate | −14,001 | 4.02 | Dominating | Dominating to 6350 |
| Risedronate | 87,759 | 4.02 | 21,807 | 13,434 to 38,567 |
| Strontium ranelate | 146,678 | 2.53 | 58,090 | 27,634 to 470,415 |
| Vitamin K₁ ³ | 41,316 | 0.89 | 46,674 | 38,495 to dominated |

¹ Per 100 women.
² Assuming no effect on hip or vertebral fractures.
³ Dominating denotes more health provided at a lower or equal acquisition cost.
⁴ Dominated means that less health is provided at a higher or equal acquisition cost.
FIGURE 50 Cost-effectiveness acceptability curves for interventions in women aged 75–79 years with a T-score of −3.0 SD and no previous fracture.

TABLE 65 Cost-effectiveness of interventions in women aged 50–54 years with a T-score of −2.5 SD and with a previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>18,911</td>
<td>2.52</td>
<td>7500</td>
<td>2761 to 26,132</td>
</tr>
<tr>
<td>Alendronate</td>
<td>18,062</td>
<td>2.09</td>
<td>8625</td>
<td>4720 to 15,615</td>
</tr>
<tr>
<td>Risedronate</td>
<td>119,902</td>
<td>2.09</td>
<td>57,255</td>
<td>44,474 to 79,065</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>161,219</td>
<td>1.41</td>
<td>114,241</td>
<td>72,240 to 320,586</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>40,327</td>
<td>0.68</td>
<td>59,678</td>
<td>38,270 to dominated</td>
</tr>
</tbody>
</table>

*Per 100 women.
*Assuming no effect on hip or vertebral fractures.
*Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 51 Cost-effectiveness acceptability curves for interventions in women aged 50–54 years with a T-score of −2.5 SD and with a previous fracture.
proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

The mean results for each intervention compared with no treatment for women aged 50–54 years with a T-score of –3.0 SD are given in Table 66.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 52. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Table 66 Cost-effectiveness of interventions in women aged 50–54 years with a T-score of –3.0 SD and with a previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)*</th>
<th>Incremental QALYs compared with no treatment*</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>2170</td>
<td>3.86</td>
<td>562</td>
<td>Dominating to 16,895</td>
</tr>
<tr>
<td>Alendronate</td>
<td>4898</td>
<td>3.26</td>
<td>1502</td>
<td>Dominating to 7812</td>
</tr>
<tr>
<td>Risedronate</td>
<td>106,706</td>
<td>3.26</td>
<td>32,721</td>
<td>23,719 to 50,372</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>155,294</td>
<td>2.09</td>
<td>74,373</td>
<td>41,314 to 384,617</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>40,579</td>
<td>0.85</td>
<td>47,537</td>
<td>30,596 to dominated</td>
</tr>
</tbody>
</table>

* Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

Women aged 55–59 years with a previous fracture

The mean results for each intervention compared with no treatment for women aged 55–59 years with a T-score of –2.5 SD are given in Table 67.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 53. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Figure 52 Cost-effectiveness acceptability curves for interventions in women aged 50–54 years with a T-score of –3.0 SD and with a previous fracture.
TABLE 67 Cost-effectiveness of interventions in women aged 55–59 years with a T-score of –2.5 SD and with a previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>15,324</td>
<td>2.82</td>
<td>5441</td>
<td>1388 to 21,588</td>
</tr>
<tr>
<td>Alendronate</td>
<td>13,460</td>
<td>2.27</td>
<td>5935</td>
<td>2459 to 11,751</td>
</tr>
<tr>
<td>Risedronate</td>
<td>115,294</td>
<td>2.27</td>
<td>50,833</td>
<td>39,453 to 70,322</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>156,925</td>
<td>1.55</td>
<td>101,563</td>
<td>65,044 to 267,052</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>37,945</td>
<td>0.72</td>
<td>53,007</td>
<td>34,025 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 53 Cost-effectiveness acceptability curves for interventions in women aged 55–59 years with a T-score of –2.5 SD and with a previous fracture.

The mean results for each intervention compared with no treatment for women aged 55–59 years with a T-score of –3.0 SD are given in Table 68.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 54. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 60–64 years with a previous fracture

The mean results for each intervention compared with no treatment for women aged 60–64 years with a T-score of –2.5 SD are given in Table 69.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 55. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.
TABLE 68 Cost-effectiveness of interventions in women aged 55–59 years with a T-score of −3.0 SD and with a previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>−2692</td>
<td>4.22</td>
<td>Dominating</td>
<td>Dominating to 11,688</td>
</tr>
<tr>
<td>Alendronate</td>
<td>−1926</td>
<td>3.45</td>
<td>Dominating</td>
<td>Dominating to 4547</td>
</tr>
<tr>
<td>Risedronate</td>
<td>99,876</td>
<td>3.45</td>
<td>28,985</td>
<td>20,968 to 44,285</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>148,351</td>
<td>2.25</td>
<td>65,972</td>
<td>37,095 to 282,316</td>
</tr>
<tr>
<td>Vitamin K₁</td>
<td>34,807</td>
<td>1.27</td>
<td>27,329</td>
<td>38,495 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 54 Cost-effectiveness acceptability curves for interventions in women aged 55–59 years with a T-score of −3.0 SD and with a previous fracture.

TABLE 69 Cost-effectiveness of interventions in women aged 60–64 years with a T-score of −2.5 SD and with a previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>13,290</td>
<td>3.20</td>
<td>4149</td>
<td>Dominating to 20,229</td>
</tr>
<tr>
<td>Alendronate</td>
<td>13,411</td>
<td>2.60</td>
<td>5161</td>
<td>1833 to 11,565</td>
</tr>
<tr>
<td>Risedronate</td>
<td>115,237</td>
<td>2.60</td>
<td>44,347</td>
<td>34,351 to 62,489</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>158,684</td>
<td>1.77</td>
<td>89,445</td>
<td>57,137 to 246,718</td>
</tr>
<tr>
<td>Vitamin K₁</td>
<td>40,791</td>
<td>0.78</td>
<td>52,159</td>
<td>33,663 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.
FIGURE 55 Cost-effectiveness acceptability curves for interventions in women aged 60–64 years with a T-score of –2.5 SD and with a previous fracture.

The mean results for each intervention compared with no treatment for women aged 60–64 years with a T-score of –3.0 SD are given in Table 70.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 56. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 65–69 years with a previous fracture
The mean results for each intervention compared with no treatment for women aged 65–69 years with a T-score of –2.5 SD are given in Table 71.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 57. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

The mean results for each intervention compared with no treatment for women aged 65–69 years with a T-score of –3.0 SD are given in Table 72.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 58. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 70–74 years with a previous fracture
The mean results for each intervention compared with no treatment for women aged 70–74 years with a T-score of –2.5 SD are given in Table 73.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 59. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

The mean results for each intervention compared with no treatment for women aged 70–74 years with a T-score of –3.0 SD are given in Table 74.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the
FIGURE 56 Cost-effectiveness acceptability curves for interventions in women aged 60–64 years with a T-score of –3.0 SD and with a previous fracture.

TABLE 71 Cost-effectiveness of interventions in women aged 65–69 years with a T-score of –2.5 SD and with a previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in Cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>4383</td>
<td>3.60</td>
<td>1217</td>
<td>Dominating to 16,987</td>
</tr>
<tr>
<td>Alendronate</td>
<td>6600</td>
<td>2.99</td>
<td>2208</td>
<td>Dominating to 8117</td>
</tr>
<tr>
<td>Risedronate</td>
<td>108,415</td>
<td>2.99</td>
<td>36,263</td>
<td>27,068 to 53,153</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>155,549</td>
<td>2.02</td>
<td>76,845</td>
<td>45,675 to 230,525</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>40,458</td>
<td>0.74</td>
<td>54,549</td>
<td>35,050 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 57 Cost-effectiveness acceptability curves for interventions in women aged 65–69 years with a T-score of –2.5 SD and with a previous fracture.
TABLE 72 Cost-effectiveness of interventions in women aged 65–69 years with a T-score of −3.0 SD and with a previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>−18,103</td>
<td>5.29</td>
<td>Dominating</td>
<td>Dominating to 9277</td>
</tr>
<tr>
<td>Alendronate</td>
<td>−10,987</td>
<td>4.42</td>
<td>Dominating</td>
<td>Dominating to 2851</td>
</tr>
<tr>
<td>Risedronate</td>
<td>90,879</td>
<td>4.42</td>
<td>20,576</td>
<td>18,617 to 33,783</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>147,504</td>
<td>2.89</td>
<td>51,015</td>
<td>33,130 to 238,938</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>40,665</td>
<td>0.94</td>
<td>43,398</td>
<td>27,971 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.

Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 58 Cost-effectiveness acceptability curves for interventions in women aged 65–69 years with a T-score of −3.0 SD and with a previous fracture.

TABLE 73 Cost-effectiveness of interventions in women aged 70–74 years with a T-score of −2.5 SD and with a previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>−2927</td>
<td>4.11</td>
<td>Dominating</td>
<td>Dominating to 14,924</td>
</tr>
<tr>
<td>Alendronate</td>
<td>981</td>
<td>3.39</td>
<td>289</td>
<td>6122</td>
</tr>
<tr>
<td>Risedronate</td>
<td>102,787</td>
<td>3.39</td>
<td>30,307</td>
<td>21.865 to 45,710</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>152,923</td>
<td>2.28</td>
<td>67,144</td>
<td>38.251 to 224,900</td>
</tr>
<tr>
<td>Vitamin K₁ b</td>
<td>42,291</td>
<td>0.79</td>
<td>53,522</td>
<td>35,219 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.

Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.
TABLE 74 Cost-effectiveness of interventions in women aged 70–74 years with a T-score of –3.0 SD and with a previous fracture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>–29,554</td>
<td>6.00</td>
<td>Dominating</td>
<td>Dominating to 8391</td>
</tr>
<tr>
<td>Alendronate</td>
<td>–19,258</td>
<td>4.97</td>
<td>Dominating</td>
<td>Dominating to 1426</td>
</tr>
<tr>
<td>Risedronate</td>
<td>82,503</td>
<td>4.97</td>
<td>16,612</td>
<td>9843 to 29,107</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>143,633</td>
<td>3.23</td>
<td>44,457</td>
<td>21,477 to 227,060</td>
</tr>
<tr>
<td>Vitamin K₁</td>
<td>42,944</td>
<td>1.00</td>
<td>43,039</td>
<td>28,552 to dominated</td>
</tr>
</tbody>
</table>

Note:				
a Per 100 women.				
b Assuming no effect on hip or vertebral fractures.				
Dominating denotes more health provided at a lower or equal acquisition cost.				
Dominated means that less health is provided at a higher or equal acquisition cost.				

FIGURE 59 Cost-effectiveness acceptability curves for interventions in women aged 70–74 years with a T-score of –2.5 SD and with a previous fracture.

FIGURE 59 shows the cost-effectiveness acceptability curves for interventions in women aged 70–74 years with a T-score of –2.5 SD and with a previous fracture. The dominance of alendronate and vitamin K₁ is shown in Figure 60. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

Women aged 75–79 years with a previous fracture

The mean results for each intervention compared with no treatment for women aged 75–79 years with a T-score of –2.5 SD are given in Table 75.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the most cost-effective intervention. The dominance of alendronate and vitamin K₁ is shown in Figure 61. However, it is seen that if the efficacy associated with vitamin K₁ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.

The mean results for each intervention compared with no treatment for women aged 75–79 years with a T-score of –3.0 SD are given in Table 76.

It is seen that both alendronate and vitamin K₁ have relatively low cost per QALY ratios. Incremental analyses suggest that vitamin K₁ is the
FIGURE 60 Cost-effectiveness acceptability curves for interventions in women aged 70–74 years with a T-score of –3.0 SD and with a previous fracture.

TABLE 75 Cost-effectiveness of interventions in women aged 75–79 years with a T-score of –2.5 SD and with a previous fracture

<table>
<thead>
<tr>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K₁</td>
<td>–23,097</td>
<td>5.18</td>
<td>Dominating</td>
</tr>
<tr>
<td>Alendronate</td>
<td>–12,784</td>
<td>4.20</td>
<td>Dominating</td>
</tr>
<tr>
<td>Risedronate</td>
<td>88,988</td>
<td>4.20</td>
<td>21,187</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>143,633</td>
<td>3.23</td>
<td>53,727</td>
</tr>
<tr>
<td>Vitamin K₁, b</td>
<td>41,125</td>
<td>0.75</td>
<td>54,524</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 61 Cost-effectiveness acceptability curves for interventions in women aged 75–79 years with a T-score of –2.5 SD and with a previous fracture.
TABLE 76 Cost-effectiveness of interventions in women aged 75–79 years with a T-score of –3.0 SD and with a previous fracture

<table>
<thead>
<tr>
<th></th>
<th>Incremental cost compared with no treatment (£)</th>
<th>Incremental QALYs compared with no treatment</th>
<th>Cost per QALY compared with no treatment (£)</th>
<th>95% CI for range in cost per QALY (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K$_1$</td>
<td>–58,789</td>
<td>7.54</td>
<td>Dominating</td>
<td>Dominating to 6220</td>
</tr>
<tr>
<td>Alendronate</td>
<td>–38,860</td>
<td>6.09</td>
<td>Dominating</td>
<td>Dominating to dominating</td>
</tr>
<tr>
<td>Risedronate</td>
<td>62,851</td>
<td>6.09</td>
<td>10,314</td>
<td>4232 to 22,238</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>134,759</td>
<td>3.85</td>
<td>35,006</td>
<td>13,506 to 295,993</td>
</tr>
<tr>
<td>Vitamin K$_1$ b</td>
<td>41,503</td>
<td>0.95</td>
<td>43,554</td>
<td>28,397 to dominated</td>
</tr>
</tbody>
</table>

a Per 100 women.
b Assuming no effect on hip or vertebral fractures.
Dominating denotes more health provided at a lower or equal acquisition cost.
Dominated means that less health is provided at a higher or equal acquisition cost.

FIGURE 62 Cost-effectiveness acceptability curves for interventions in women aged 75–79 years with a T-score of –3.0 SD and with a previous fracture.

most cost-effective intervention. The dominance of alendronate and vitamin K$_1$ is shown in Figure 62. However, it is seen that if the efficacy associated with vitamin K$_1$ is applicable only to wrist and proximal humerus fractures and not to hip or vertebral fractures then the QALYs gained are dramatically reduced.
Health Technology Assessment reports published to date

Volume 1, 1997

No. 1
Home parenteral nutrition: a systematic review.
By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Systematic review of outpatient services for chronic pain control.
By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8
Preschool vision screening.
A review by Snowdon SK, Stewart-Brown SL.

No. 9
Implications of socio-cultural contexts for the ethics of clinical trials.
A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10
A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
By Davis A, Bamford J, Wilson I, Ramkalawan T, Forsshaw M, Wright S.

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
Routine preoperative testing: a systematic review of the evidence.
By Munro J, Booth A, Nicholl J.

No. 13
Systematic review of the effectiveness of laxatives in the elderly.
By Petticrew M, Watt I, Sheldon T.

No. 14
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
A review by Mowatt G, Bower DJ, Brehm JA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998

No. 1
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Consensus development methods, and their use in clinical guidelines development.

No. 4

No. 5
Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews.
By MacLeod A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Song F, Glenny AM.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
A review by Johnson P, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
By Sculpher MJ, Petticrew M, Kelland JL, Elliott RA, Holdright DR, Buxton MJ.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
No. 15
Ethical issues in the design and conduct of randomised controlled trials.
A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JC, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.
By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.
By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.
By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.
A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
By Ukoumunne OC, Gulliford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6
Assessing the costs of healthcare technologies in clinical trials.
A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.
By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.
A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.
By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10
A review by Billingham LJ, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.
By Zeuner D, Ades AE, Karnon J, Brown J, Dezateux C, Anionwu EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
‘Early warning systems’ for identifying new healthcare technologies.
By Robert G, Stevens A, Gabbay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.
By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.
A review by Robert G, Milne R.

No. 17 (Pt 1)
The debridement of chronic wounds: a systematic review.
By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.
A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kainuka S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.
By Glenny AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.
By Lister-Sharp D, Chapman S, Stewart-Brown S, Sowden A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.
Volume 4, 2000

No. 1
The estimation of marginal time preference in a UK-wide sample (TEMPUS) project.
A review by Cairns JA, van der Pol MM.

No. 2
Geriatric rehabilitation following fractures in older people: a systematic review.

No. 3
Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
By Davies SC, Cronin E, Gill M, Greenberg P, Hickman M, Normand C.

No. 4
Community provision of hearing aids and related audiology services.
A review by Reeves DJ, Alborz A, Hickson FS, Bambford J M.

No. 5
False-negative results in screening programmes: systematic review of impact and implications.
By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6
Costs and benefits of community postnatal support workers: a randomised controlled trial.
By Morrell CJ, Spilby H, Stewart P, Walters S, Morgan A.

No. 7
Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8
An introduction to statistical methods for health technology assessment.
A review by White SJ, Ashby D, Brown PJ.

No. 9
Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
By Clegg A, Bryant J, Milne R.

No. 10
Publication and related biases.
A review by Song F, Eastwood AJ, Gilbody S, Dudley L, Sutton AJ.

No. 11
Cost and outcome implications of the organisation of vascular services.
By Michaels J, Brazier J, Palfreyman S, Shackley P, Slack R.

No. 12
Monitoring blood glucose control in diabetes mellitus: a systematic review.
By Coster S, Gulliford MC, Seed PT, Powrie JK, Swaminathan R.

No. 13
The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14
The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15
The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
A rapid review by Song F, O'Meara S, Wilson P, Golder S, Kleijn J.

No. 16

No. 17
A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
By Lister-Sharp D, McDonagh MS, Khan KS, Kleijn J.

No. 18
Liquid-based cytology in cervical screening: a rapid and systematic review.
By Payne N, Chikcott J, McGoogan E.

No. 19
Randomised controlled trial of non-directive counselling, cognitive–behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20
Routine referral for radiography of patients presenting with low back pain: is patients' outcome influenced by GPs' referral for plain radiography?
By Kerry S, Hilton S, Patel S, Dundas D, Rink E, Lord J.

No. 21
Systematic reviews of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
By O'Meara S, Callum N, Majid M, Sheldon T.

No. 22
Using routine data to complement and enhance the results of randomised controlled trials.
By Leesey JD, Leyland AH, Murray GD, Boddy FA.

No. 23
Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
By Meads C, Cummins C, Jolly K, Stevens A, Burls A, Hyde C.

No. 24
Outcome measures for adult critical care: a systematic review.
By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25
A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
By Fairbank L, O'Meara S, Renfrew MJ, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26
Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
By Parkes J, Bryant J, Milne R.

No. 27
Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
By Bristas P, Jordan R, Fry-Smith A, Burls A, Hyde C.

No. 28
Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29
Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
By Marks D, Wonderling D, Thorogood M, Lambeth H, Humphries SE, Neil HAW.

No. 30
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
By McDonagh MS, Bachmann LM, Golder S, Kleijn J, ter Riet G.
No. 31 A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
 By Turner J, Nicholl J, Webber I, Cox H, Dixon S, Yates D.

No. 32 Intrathecal pumps for giving opioids in chronic pain: a systematic review.
 By Williams JE, Louw G, Towlerton G.

No. 33 Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
 By Shepherd J, Waugh N, Hewitson P.

No. 34 A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
 By MacLehose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 35 Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
 By Berry E, Kelly S, Hutton J, Lindsay HSJ, Blaxill JM, Evans JA, et al.

No. 36 A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
 By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37 Systematic review of treatments for atopic eczema.
 By Hoare C, Li Wan Po A, Williams H.

No. 38 Bayesian methods in health technology assessment: a review.
 By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 39 The management of dyspepsia: a systematic review.

No. 40 A systematic review of treatments for severe psoriasis.
 By Griffiths CEM, Clark CM, Chalmers R JM, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 1 Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review.

No. 2 The clinical effectiveness and cost-effectiveness of riluzole for motor neurone disease: a rapid and systematic review.

No. 3 Equity and the economic evaluation of healthcare.
 By Sassi F, Archard L, Le Grand J.

No. 4 Quality-of-life measures in chronic diseases of childhood.
 By Eiser C, Morse R.

No. 5 Eliciting public preferences for healthcare: a systematic review of techniques.

No. 6 General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
 By Riemsma RP, Forbes CA, Glanville JM, Eastwood AJ, Kleijnen J.

No. 7 An assessment of screening strategies for fragile X syndrome in the UK.
 By Pembrey ME, Barnicoat AJ, Carmichael B, Bobrow M, Turner G.

No. 8 Issues in methodological research: perspectives from researchers and commissioners.

No. 9 Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
 By Callum N, Nelson EA, Fleming K, Sheldon T.

No. 10 Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.
 By Hampson SE, Skinner TC, Hart J, Storey L, Gage H, Foxcroft D, et al.

No. 11 Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
 By Jobanputra P, Parry D, Fry-Smith A, Burks A.

No. 12 Statistical assessment of the learning curves of health technologies.
 By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13 The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
 By Dinnes J, Cave C, Huang S, Major K, Milne R.

No. 14 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debriding agents in treating surgical wounds healing by secondary intention.
 By Lewis R, Whiting P, ter Riet G, O’Meara S, Glanville J.

No. 15 Home treatment for mental health problems: a systematic review.

No. 16 How to develop cost-conscious guidelines.
 By Eccles M, Mason J.

No. 17 The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
 By De Broe S, Christopher F, Waugh N.

No. 18 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
 By O’Meara S, Riemsma R, Shrram L, Mather L, ter Riet G.

No. 19 The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
 By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 20 Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.
No. 21
Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) Acute day hospital versus admission; (2) Vocational rehabilitation; (3) Day hospital versus outpatient care.

No. 22
The measurement and monitoring of surgical adverse events.
By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23
Action research: a systematic review and guidance for assessment.
By Waterman H, Tillen D, Dickson R, de Koning K.

No. 24
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer.

No. 25
A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer.
By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 26
Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature.

No. 27
The cost-effectiveness of magnetic resonance imaging for investigation of the knee joint.

No. 28
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.
By Forbes C, Shirran L, Bagnall A-M, Duffy S, ter Riet G.

No. 29
Superseded by a report published in a later volume.

No. 30
The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial.
By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 31
Design and use of questionnaires: a review of best practice applicable to surveys of health service staff and patients.

No. 32
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.
By Clegg A, Scott DA, Sidhu M, Hewitson P, Waugh N.

No. 33
Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
By Brooks ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34
Depot antipsychotic medication in the treatment of patients with schizophrenia: (1) Meta-review; (2) Patient and nurse attitudes.
By David AS, Adams C.

No. 35
A systematic review of controlled trials of the effectiveness and cost-effectiveness of brief psychological treatments for depression.

No. 36
Cost analysis of child health surveillance.
By Sanderson D, Wright D, Acton C, Duree D.

Volume 6, 2002

No. 1
A study of the methods used to select review criteria for clinical audit.
By Hearshaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 2
Fludarabine as second-line therapy for B cell chronic lymphocytic leukaemia: a technology assessment.

No. 3
Rituximab as third-line treatment for refractory or recurrent Stage III or IV follicular non-Hodgkin’s lymphoma: a systematic review and economic evaluation.

No. 4
A systematic review of discharge arrangements for older people.

No. 5
The clinical effectiveness and cost-effectiveness of inhaler devices used in the routine management of chronic asthma in older children: a systematic review and economic evaluation.
By Peters J, Stevenson M, Beverley C, Lim J, Smith S.

No. 6
The clinical effectiveness and cost-effectiveness of sibutramine in the management of obesity: a technology assessment.
By O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 7
The cost-effectiveness of magnetic resonance angiography for carotid artery stenosis and peripheral vascular disease: a systematic review.

No. 8
Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’.
By Carroll B, Ali N, Azam N.

No. 9
Zanamivir for the treatment of influenza in adults: a systematic review and economic evaluation.

No. 10
A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models.
By Richards RG, Sampson FC, Beard SM, Tappenden P.

No. 11
Screening for gestational diabetes: a systematic review and economic evaluation.
By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 12
The clinical effectiveness and cost-effectiveness of surgery for people with morbid obesity: a systematic review and economic evaluation.

No. 13
The clinical effectiveness of trastuzumab for breast cancer: a systematic review.

No. 14
The clinical effectiveness and cost-effectiveness of vinorelbine for breast cancer: a systematic review and economic evaluation.
No. 24 A systematic review of the effectiveness of interventions based on a stages-of-change approach to promote individual behaviour change.

No. 25 A systematic review update of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists.

No. 26 A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapy for acute ischaemic stroke in the NHS.

No. 27 A randomised controlled crossover trial of nurse practitioner versus doctor-led outpatient care in a bronchiectasis clinic.

No. 28 Clinical effectiveness and cost – consequences of selective serotonin reuptake inhibitors in the treatment of sex offenders.
 By Adi Y, Ashcroft D, Browne K, Beech A, Fry-Smith A, Hyde C.

No. 29 Treatment of established osteoporosis: a systematic review and cost-utility analysis.
 By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

No. 30 Which anaesthetic agents are cost-effective in day surgery? Literature review, national survey of practice and randomised controlled trial.

No. 31 Screening for hepatitis C among injecting drug users and in genitourinary medicine clinics: systematic reviews of effectiveness, modelling study and national survey of current practice.

No. 32 The measurement of satisfaction with healthcare: implications for practice from a systematic review of the literature.

No. 33 The effectiveness and cost-effectiveness of imatinib in chronic myeloid leukaemia: a systematic review.
 By Garside R, Round A, Dalziel K, Stein K, Royle R.

No. 34 A comparative study of hypertonic saline, daily and alternate-day rhDNase in children with cystic fibrosis.

No. 35 A systematic review of the costs and effectiveness of different models of paediatric home care.

Volume 7, 2003

No. 1 How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study.
 By Egger M, Juni P, Bartlett C, Holenstein F, Sterne J.

No. 2 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of home versus hospital or satellite unit haemodialysis for people with end-stage renal failure.

No. 3 Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease.
 By Clark W, Raftery J, Barton P, Song F, Fry-Smith A, Burls A.

No. 4 A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus negative.

No. 5 Systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing’s sarcoma and neuroblastoma.

No. 6 The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.
No. 7
The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8
A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9
Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10
Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.

No. 11
First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
By Wald NJ, Rodreck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12
The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13
A systematic review of atypical antipsychotics in schizophrenia.
By Bagnall A-M, Jones L, Richardson G, Dufy S, Riemsma R.

No. 14
Prostate Testing for Cancer and Treatment (Protect) feasibility study.
By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15
Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16
Screening for fragile X syndrome: a literature review and modelling.
By Song FJ, Barton P, Sleightholme V, Yao GI, Fry-Smith A.

No. 17
Systematic review of endoscopic sinus surgery for nasal polyps.
By Dahlzef K, Stein K, Round A, Garside R, Royle P.

No. 18
Towards efficient guidelines: how to monitor guideline use in primary care.
By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19
Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
By Bagnall A-M, Jones L, Richardson G, Dufy S, Riemsma R.

No. 20
Prioritisation of health technology assessment. The PATHS model: methods and case studies.
By Townsend J, Buxton M, Harper G.

No. 21

No. 22
By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23
The role of modelling in prioritising interventions. A systematic review of the literature.
By Chilcott J, Brennan A, Booth A, Kunnun J, Tappenden P.

No. 24
Cost–benefit evaluation of routine influenza immunisation in people 65–74 years of age.
By Albutt S, Gosney M, Haycox A, Regan M.

No. 25
The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
By Wight J, Chilcott J, Holmes M, Brewer N.

No. 26
Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27
Evaluating non-randomised intervention studies.

No. 28
A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29
The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30
The value of digital imaging in diabetic retinopathy.

No. 31
Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
By Law M, Wald N, Morris J.

No. 32
Clinical and cost-effectiveness of capetibamine and tegafur with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
By Ward S, Kelentenhaler E, Cowan J, Brewer N.

No. 33
By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.
No. 35 Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36 A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37 Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women’s physical and psychological health needs.

No. 38 Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

By Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40 Treatments for spasticity and pain in multiple sclerosis: a systematic review.
By Beard S, Hum A, Wight J.

No. 41 The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42 The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

Volume 8, 2004

No. 1 What is the best imaging strategy for acute stroke?
By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sanderson PG, Dennis MS, et al.

No. 2 Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.
By Mant J, McManus RJ, Oakes RAI, Delaney BC, Barton PM, Deeks JJ, et al.

No. 3 The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4 A systematic review of the role of bisphosphonates in metastatic disease.

No. 5 Systematic review of the clinical effectiveness and cost-effectiveness of capetitabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6 Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7 Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
By Bryant J, Clegg AJ, Siddhu MK, Brodin H, Royle P, Davidson P.

No. 8 Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
By Morgan K, Dixon S, Mathers N, Thompson J, Tomeny M.

No. 9 Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
By Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ.

No. 10 A systematic review and economic evaluation of magnetic resonance cholangiopancreatography compared with diagnostic endoscopic retrograde cholangiopancreatography.

No. 11 The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis.

By Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S.

By Czoski-Murray C, Warren E, Chilcott J, Beverley C, Pyllaki MA, Cowan J.

No. 14 Routine examination of the newborn: the EMREN study. Evaluation of an extension of the midwife role including a randomised controlled trial of appropriately trained midwives and paediatric senior house officers.

No. 15 Involving consumers in research and development agenda setting for the NHS: developing an evidence-based approach.

No. 16 A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery.

No. 17 Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial.
By Gilbert FJ, Grant AM, Gillan MGC, Vale L, Scott NW, Campbell MK, et al.

No. 18 The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
By Clark W, Jovanpuria P, Barton P, Burls A.
No. 19
A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20
Liquor-based cytology in cervical screening: an updated rapid and systematic review and economic analysis.

No. 21
Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22
Autoantibody testing in children with newly diagnosed type 1 diabetes mellitus.
By Dretzke J, Cummins C, Sandercock J, Fry-Smith A, Barrett T, Burs A.

No. 23
Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercock J, Bayliss S, Burs A.

No. 24
Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25
Development and validation of methods for assessing the quality of diagnostic accuracy studies.
By Whiting P, Rutjes AWS, Dinnes J, Reitsma JB, Bossuyt PMM, Kleijnen J.

No. 26
EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27
By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

No. 28
By Dalziel K, Round A, Stein K, Garside R, Price A.

No. 29
VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.
By Iglesias C, Nelson EA, Cullum NA, Torgerson DJ, on behalf of the VenUS Team.

No. 30
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31
A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.
By Claxton K, Ginnelly L, Sculpher M, Philips Z, Palmer S.

No. 32
The Social Support and Family Health Study: a randomised controlled trial and economic evaluation of two alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33
Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.
By Green JM, Hewison J, Bekker HL, Bryant, Cuckle HS.

No. 34
Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35
Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36
Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37
Rituximab (MabThera®) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38
Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation.
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpher M, et al.

No. 39
Pegylated interferon α-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40
Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpher M, et al.

No. 41
Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Griebsch I, Taylor FC, Burke M, West RR, et al.

No. 42
Involving South Asian patients in clinical trials.
By Hussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43
Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Colquitt JL, Green C, Sidhu MK, Hartwell D, Waugh N.

No. 44
Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45
Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.
No. 46
Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

Volume 9, 2005

No. 1
Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrosurgical modalities to treat bladder outflow obstruction in men with benign prostate hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of palliative therapies for patients with inoperable oesophageal cancer.
By Shenfine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH, et al.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEM-QOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinnes J, Deeks J, Kirby J, Roderick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BH, Barton PE, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and loperamide.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Wolsynowszych M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Raftery J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.
No. 23	A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma. By Smith JR, Mugford M, Holland R, Candy B, Noble MJ, Harrison BDW, et al.
No. 28	Outcomes of electrically stimulated gracilis neosphincter surgery. By Tillin T, Chambers M, Feldman R.
No. 31	Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis. By Cochrane T, Davey RC, Matties Edwards SM.
No. 33	Cost-effectiveness and safety of epidural steroids in the management of sciatica. By Price C, Arden N, Coglan L, Rogers P.
No. 34	The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis. By Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.
No. 36	The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review. By Bryant J, Brodin H, Loveman E, Payne E, Clegg A.
No. 41	Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty. By Heating JF, Grant A, Masson M, Scott NW, Forbes JF.
No. 43	The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation. By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.
No. 46	The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma. By Kwart A, Henson DB, Harper RA, Spencer AF, McLeod D.
No. 48
Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49
Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thromboprophylaxis.

No. 50
The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006

No. 1
The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.

No. 2
FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranswick G, Forbes J.

No. 3
The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.

No. 4
A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5
Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.
By Dundar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR.

No. 6
Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7

No. 8
Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.
By Garside R, Pitt M, Somerville M, Stein K, Price A, Gilbert N.

No. 9
Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10
Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.
By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11

No. 12
A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13
Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14
The cost-effectiveness of screening for oral cancer in primary care.
By Speight PM, Palmer S, Moles DR, Downer MC, Smith DH, Henriksson M, et al.

No. 15

No. 16

No. 17
Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.
By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 18
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19
Cognitive behavioural therapy in addition to antispasmodic therapy for irritable bowel syndrome in primary care: randomised controlled trial.

No. 20
A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type 1.

No. 21
Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.
By Wright M, Grieve R, Roberts J, Main J, Thomas HC, on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 22
Pressure relieving support surfaces: a randomised evaluation.
No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexametanfime and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29
By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30
Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31
Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and evidence evaluation.

No. 32
The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33
Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.
By Kaltenhaier E, Brazier J, De Nigris E, Tumor I, Ferrier M, Beverley C, et al.

No. 34
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35
Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36
Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37
Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O'Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 38
Clinical effectiveness and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 39
The clinical and cost-effectiveness of oxaliplatin and capcitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pandslo A, Egginton S, Paisley S, Tappenden P, Sutcliffe P.

No. 40
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 41
Telemedicine in dermatology: a randomised controlled trial.
By Bowns IR, Collins K, Walters SJ, McDonagh AJG.

No. 42

No. 43
Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 44
Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 45
Cost-effectiveness of laparoscopic surgery for colorectal cancer: randomised controlled trial.

No. 46
Evaluation of the ventricular assist device programme in the UK.

No. 50 Amniocentesis results: investigation of anxiety. The ARIA trial.

Volume 11, 2007

No. 1 Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2 A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3 A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4 The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
 By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.

No. 5 A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6 Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7 Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
 By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8 Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9 Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10 Exercise Evaluation Randomised Trial (EXERT1): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11 Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
 By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12 Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
 By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13 A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14 A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15 A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16 Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
 By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17 Screening for type 2 diabetes: literature review and economic modelling.

No. 18 The effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.

No. 19 The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.
 By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 20 A systematic review of duplex ultrason, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 21 The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
 By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22 A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23 Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing perioperative catheter-related infections.
No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.

By Boyle J, McCartney E, Forbes J, O’Hare A.

No. 26
Hormonal therapies for early breast cancer: systematic review and economic evaluation.

By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.

By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.

By O’Hare A.

No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population. The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.

By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

No. 35
The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Homebased compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.

No. 36
A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

No. 37
A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

No. 38
Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anti-coagulation therapy: a systematic review and economic modelling.

No. 39
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder.

No. 40
Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.

By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

No. 41
The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

No. 42
Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.

By Davis A, Smith P, Ferguson M, Stephens D, Gianopoulos I.

No. 43
Contamination in trials of educational interventions.

No. 44
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.

By Facey K, Bradbury I, Laking G, Payne E.

No. 45
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

No. 46
Drug-eluting stents: a systematic review and economic evaluation.

No. 47
The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

No. 48
Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study.

By Campbell MK, Snowdon C, Francis D, Elbourne D, McDonald AM, Knight R, et al.
No. 49
Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial.

No. 50
Evaluation of diagnostic tests when there is no gold standard: A review of methods.
By Rutjes AWS, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PMM.

No. 51
Systematic reviews of the clinical effectiveness and cost-effectiveness of proton pump inhibitors in acute upper gastrointestinal bleeding.

No. 52
A review and critique of modelling in prioritising and designing screening programmes.

No. 53
An assessment of the impact of the NHS Health Technology Assessment Programme.
By Hanney S, Buxton M, Green C, Coulson D, Raftery J.

Volume 12, 2008

No. 1
A systematic review and economic model of switching from nonglycopeptide to glycopeptide antibiotic prophylaxis for surgery.

No. 2
'Cut down to quit' with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis.
By Wang D, Connock M, Barton P, Fry-Smith A, Aveyard P, Moore D.

No. 3
A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management.

No. 4
By Charlesworth G, Shepstone L, Wilson E, Thalanan M, Mugford M, Poland F.

No. 5

No. 6
Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 7
The use of economic evaluations in NHS decision-making: a review and empirical investigation.
By Williams I, McLver S, Moore D, Bryan S.

No. 8
Stapled haemorrhoidectomy (haemorrhoidopexy) for the treatment of haemorrhoids: a systematic review and economic evaluation.

No. 9
The clinical effectiveness of diabetes education models for Type 2 diabetes: a systematic review.
By Loveman E, Frampton GK, Clegg AJ.

No. 10
Payment to healthcare professionals for patient recruitment to trials: systematic review and qualitative study.
By Raftery J, Bryant J, Powell J, Kerr C, Hawker S.

No. 11
Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation.

No. 12
The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation.

No. 13
Stepped treatment of older adults on laxatives. The STOOL trial.

No. 14
A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial.

No. 15
The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation.
By Hind D, Tappenden P, Tumor I, Eggington E, Sutchiffe P, Ryan A.

No. 16
Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation.

No. 17
Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease.

No. 18
Structural neuroimaging in psychosis: a systematic review and economic evaluation.

No. 19
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta, agonists for the treatment of chronic asthma in adults and children aged 12 years and over.
No. 20
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta
tagged agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21
Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.

No. 22
Topical or oral ibuprofen for chronic knee pain in older people. The TOIB study.

No. 23
A prospective randomised comparison of minor surgery in primary and secondary care. The MiSTIC trial.

No. 24
A review and critical appraisal of measures of therapist–patient interactions in mental health settings.

No. 25
The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.
By Carlton J, Karnon J, Czoski-Murray C, Smith KJ, Marr J.

No. 26
A systematic review of the clinical effectiveness and cost-effectiveness and economic modelling of minimal incision total hip replacement approaches in the management of arthritic disease of the hip.

No. 27
A preliminary model-based assessment of the cost–utility of a screening programme for early age-related macular degeneration.

No. 28
Intravenous magnesium sulphate and fentanyl for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 29
Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 30
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

No. 31
The effectiveness and cost-effectiveness of minimal access surgery amongst people with gastro-oesophageal reflux disease – a UK collaborative study. The REFLUX trial.

No. 32
Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review.
By Takeda A, Loveman E, Harris P, Hartwell D, Welch K.

No. 33
Performance of screening tests for child physical abuse in accident and emergency departments.
By Woodman J, Pitt M, Wentz R, Taylor B, Hodes D, Gilbert RE.

No. 34
Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation.

No. 35
Systematic review and economic modelling of effectiveness and cost utility of surgical treatments for men with benign prostatic enlargement.

No. 36
Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: a systematic review and economic evaluation.
By Wang D, Cummins C, Bayliss S, Sandrock J, Burks A.

Volume 13, 2009

No. 1
Deferasirox for the treatment of iron overload associated with regular blood transfusions (transfusional haemosiderosis) in patients suffering with chronic anaemia: a systematic review and economic evaluation.

No. 2
Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis.
By Simpson EL, Stevenson MD, Rawlin A, Papaioannou D.

No. 3
Surgical procedures and non-surgical devices for the management of non-apnoeic snoring: a systematic review of clinical effects and associated treatment costs.
By Main C, Liu Z, Welk K, Weiner G, Quentin Jones S, Stein K.

No. 4
Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea–hypopnoea syndrome: a systematic review and economic analysis.

No. 5
Use of classical and novel biomarkers as prognostic risk factors for localised prostate cancer: a systematic review.

No. 6
The harmful health effects of recreational ecstasy: a systematic review of observational evidence.

No. 7
Systematic review of the clinical effectiveness and cost-effectiveness of oesophageal Doppler monitoring in critically ill and high-risk surgical patients.

No. 8
The use of surrogate outcomes in model-based cost-effectiveness analyses: a survey of UK Health Technology Assessment reports.
By Taylor RS, Elston J.

No. 9
Controlling Hypertension and Hypotension Immediately Post Stroke (CHHIPS) – a randomised controlled trial.
No. 30
Psychological interventions for postnatal depression: cluster randomised trial and economic evaluation. The PoNDER trial.

No. 31
The effect of different treatment durations of clopidogrel in patients with non-ST-segment elevation acute coronary syndromes: a systematic review and value of information analysis.

No. 32
Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care.

No. 33
A multicentre randomised controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the SCPO trial.
By Gray AJ, Goodacre S, Newby DE, Masson MA, Sampson F, Dixon S, et al., on behalf of the SCPO study investigators.

No. 34
Early high-dose lipid-lowering therapy to avoid cardiac events: a systematic review and economic evaluation.
By Ara R, Pandor A, Stevens J, Rees A, Rafa R.

No. 35
Adefovir dipivoxil and pegylated interferon alpha for the treatment of chronic hepatitis B: an updated systematic review and economic evaluation.

No. 36
Methods to identify postnatal depression in primary care: an integrated evidence synthesis and value of information analysis.

No. 37
A double-blind randomised placebo-controlled trial of topical intranasal corticosteroids in 4- to 11-year-old children with persistent bilateral otitis media with effusion in primary care.

No. 38
The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model.
By Bond M, Pitt M, Akoh J, Moxham T, Hyole M, Anderson R.

No. 39
Rehabilitation of older patients: day hospital compared with rehabilitation at home. A randomised controlled trial.
By Parker SG, Oliver P, Pennington M, Bond J, Jagger C, Enderby PM, et al.

No. 40
Breastfeeding promotion for infants in the neonatal unit: a systematic review and economic analysis.

No. 41
The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation.

No. 42
Rapid testing for group B streptococcus during labour: a test accuracy study with evaluation of acceptability and cost-effectiveness.

No. 43
Screening to prevent spontaneous preterm birth: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 44
The effectiveness and cost-effectiveness of cochlear implants for severe to profound deafness in children and adults: a systematic review and economic model.

Suppl. 2
Gemcitabine for the treatment of metastatic breast cancer.
By Jones J, Takeda A, Tan SC, Cooper K, Loveman E, Clegg A.

Varenicline in the management of smoking cessation: a single technology appraisal.
By Hind D, Tappenden P, Peters J, Kenjegaliava K.

Alteplase for the treatment of acute ischaemic stroke: a single technology appraisal.
By Lloyd Jones M, Holmes M.

Rituximab for the treatment of rheumatoid arthritis.

Omalizumab for the treatment of severe persistent allergic asthma.

Rituximab for the treatment of relapsed or refractory stage III or IV follicular non-Hodgkin’s lymphoma.
By Boland A, Bagust A, Hockenhull J, Davis H, Chu F, Dickson R.

Adalimumab for the treatment of psoriasis.
By Turner D, Picot J, Cooper K, Loveman E.

Dabigatran etexilate for the prevention of venous thromboembolism in patients undergoing elective hip and knee surgery: a single technology appraisal.
By Holmes M, C Carroll C, Papaioannou D.

Romiplostim for the treatment of chronic immune or idiopathic thrombocytopenic purpura: a single technology appraisal.

Sunitinib for the treatment of gastrointestinal stromal tumours: a critique of the submission from Pfizer.
By Bond M, Hoyle M, Moxham T, Napier M, Anderson R.
Health Technology Assessment

programme

Director,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Prioritisation Strategy Group

Chair,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Dr Bob Coates,
Consultant Advisor, NETSCC, HTA

Dr Andrew Cook,
Consultant Advisor, NETSCC, HTA

Dr Peter Davidson,
Director of Science Support, NETSCC, HTA

Professor Robin E. Fernet,
Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford

Dr Nick Hicks,
Director of NHS Support, NETSCC, HTA

Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London

Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NETSCC, HTA

Dr Ruairidh Milne,
Director of Strategy and Development, NETSCC

Dr Nick Hicks,
Director of NHS Support, NETSCC, HTA

Dr Andrew Farmer,
Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford

Professor Deborah Ashby,
Professor of Medical Statistics, Queen Mary, University of London

Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine

Professor Peter Croft,
Director of Primary Care Sciences Research Centre, Keele University

Professor Nicky Cullum,
Professor of Evidence-Based Nursing, University of York

Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol

Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London

Professor Freddie Handys

Professor of Urology, University of Sheffield

Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds

Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford

Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth

Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford

Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine

Professor Mark Sculpher,
Professor of Health Economics, University of York

Professor Helen Smith,
Professor of Primary Care, University of Brighton

Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds

Professor David John Torgerson,
Director of York Trials Unit, University of York

Professor Hywel Williams,
Professor of Dermato-Epidemiology, University of Nottingham

HTA Commissioning Board

Chair,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Dr Andrew Farmer,
Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford

Professor Deborah Ashby,
Professor of Medical Statistics, Queen Mary, University of London

Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine

Professor Peter Croft,
Director of Primary Care Sciences Research Centre, Keele University

Professor Nicky Cullum,
Professor of Evidence-Based Nursing, University of York

Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol

Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London

Professor Freddie Handys

Professor of Urology, University of Sheffield

Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds

Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford

Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth

Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford

Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine

Professor Mark Sculpher,
Professor of Health Economics, University of York

Professor Helen Smith,
Professor of Primary Care, University of Brighton

Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds

Professor David John Torgerson,
Director of York Trials Unit, University of York

Professor Hywel Williams,
Professor of Dermato-Epidemiology, University of Nottingham

Observers

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

© 2009 Queen’s Printer and Controller of HMSO. All rights reserved.
Diagnostic Technologies & Screening Panel

Members

<table>
<thead>
<tr>
<th>Chair, Professor Paul Glasziou, Professor of Evidence-Based Medicine, University of Oxford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Stephanie Dancer, Consultant Microbiologist, Hairmyres Hospital, East Kilbride</td>
</tr>
<tr>
<td>Professor Glyn Ewlyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales</td>
</tr>
<tr>
<td>Dr Ron Gray, Consultant Clinical Epidemiologist, Department of Public Health, University of Oxford</td>
</tr>
<tr>
<td>Professor Paul D Griffiths, Professor of Radiology, University of Sheffield</td>
</tr>
<tr>
<td>Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford</td>
</tr>
<tr>
<td>Dr Susanne M Ludgate, Medical Director, Medicines & Healthcare Products Regulatory Agency, London</td>
</tr>
<tr>
<td>Dr Anne Mackie, Director of Programmes, UK National Screening Committee</td>
</tr>
<tr>
<td>Dr Michael Millar, Consultant Senior Lecturer in Microbiology, Barts and The London NHS Trust, Royal London Hospital</td>
</tr>
<tr>
<td>Mr Stephen Pilling, Director, Centre for Outcomes, Research & Effectiveness, Joint Director, National Collaborating Centre for Mental Health, University College London</td>
</tr>
<tr>
<td>Mrs Una Rennard, Service User Representative</td>
</tr>
<tr>
<td>Dr Phil Shackley, Senior Lecturer in Health Economics, School of Population and Health Sciences, University of Newcastle upon Tyne</td>
</tr>
</tbody>
</table>

Deputy Chair, Dr David Elliman, Consultant Paediatrician and Honorary Senior Lecturer, Great Ormond Street Hospital, London

| Professor Judith E Adams, Consultant Radiologist, Manchester Royal Infirmary, Central Manchester & Manchester Children’s University Hospitals NHS Trust, and Professor of Diagnostic Radiology, Imaging Science and Biomedical Engineering, Cancer & Imaging Sciences, University of Manchester |
| Ms Jane Bates, Consultant Ultrasound Practitioner, Ultrasound Department, Leeds Teaching Hospital NHS Trust |

Observers

| Dr Tim Elliott, Team Leader, Cancer Screening, Department of Health |
| Dr Catherine Moody, Programme Manager, Neuroscience and Mental Health Board |
| Dr Ursula Wells, Principal Research Officer, Department of Health |

Pharmaceuticals Panel

Members

<table>
<thead>
<tr>
<th>Chair, Professor Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Peter Elton, Director of Public Health, Bury Primary Care Trust</td>
</tr>
<tr>
<td>Dr Ben Goldacre, Research Fellow, Division of Psychological Medicine and Psychiatry, King’s College London</td>
</tr>
<tr>
<td>Mrs Barbara Greggains, Service User Representative</td>
</tr>
<tr>
<td>Dr Bill Gutteridge, Medical Adviser, London Strategic Health Authority</td>
</tr>
<tr>
<td>Dr Dyfrig Hughes, Reader in Pharmacoepidemiology and Deputy Director, Centre for Economics and Policy in Health, IMSCAr, Bangor University</td>
</tr>
<tr>
<td>Professor Jonathan Ledermann, Professor of Medical Oncology and Director of the Cancer Research UK and University College London Cancer Trials Centre</td>
</tr>
<tr>
<td>Dr Yoon K Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia</td>
</tr>
<tr>
<td>Professor Femi Oyebode, Consultant Psychiatrist and Head of Department, University of Birmingham</td>
</tr>
<tr>
<td>Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician and Gynaecologist, The Rosie Hospital, University of Cambridge</td>
</tr>
<tr>
<td>Dr Martin Shelly, General Practitioner, Leeds, and Associate Director, NHS Clinical Governance Support Team, Leicester</td>
</tr>
<tr>
<td>Dr Gillian Shepherd, Director, Health and Clinical Excellence, Merck Serono Ltd</td>
</tr>
<tr>
<td>Mrs Katrina Sinister, Assistant Director New Medicines, National Prescribing Centre, Liverpool</td>
</tr>
<tr>
<td>Mr David Symes, Service User Representative</td>
</tr>
<tr>
<td>Dr Lesley Wise, Unit Manager, Pharmacoepidemiology Research Unit, VRMM, Medicines & Healthcare Products Regulatory Agency</td>
</tr>
</tbody>
</table>

Deputy Chair, Professor Imti Choonara, Professor in Child Health, University of Nottingham

| Mrs Nicola Carey, Senior Research Fellow, School of Health and Social Care, The University of Reading |
| Mr John Chapman, Service User Representative |

Observers

| Ms Kay Pattison, Section Head, NHS R&D Programme, Department of Health |
| Mr Simon Reeve, Head of Clinical and Cost-Effectiveness, Medicines, Pharmacy and Industry Group, Department of Health |
| Dr Heike Weber, Programme Manager, Medical Research Council |
| Dr Ursula Wells, Principal Research Officer, Department of Health |
Therapeutic Procedures Panel

<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair, Dr John C Pounsford, Consultant Physician, North Bristol NHS Trust</td>
</tr>
<tr>
<td>Deputy Chair, Professor Scott Weich, Professor of Psychiatry, Division of Health in the Community, University of Warwick, Coventry</td>
</tr>
<tr>
<td>Professor Jane Barlow, Professor of Public Health in the Early Years, Health Sciences Research Institute, Warwick Medical School, Coventry</td>
</tr>
<tr>
<td>Ms Maree Barnett, Acting Branch Head of Vascular Programme, Department of Health</td>
</tr>
<tr>
<td>Mrs Val Carlill, Service User Representative</td>
</tr>
<tr>
<td>Mrs Anthea De Barton-Watson, Service User Representative</td>
</tr>
<tr>
<td>Mr Mark Emberton, Senior Lecturer in Oncological Urology, Institute of Urology, University College Hospital, London</td>
</tr>
<tr>
<td>Professor Steve Goodacre, Professor of Emergency Medicine, University of Sheffield</td>
</tr>
<tr>
<td>Professor Christopher Griffiths, Professor of Primary Care, Barts and The London School of Medicine and Dentistry</td>
</tr>
<tr>
<td>Mr Paul Hilton, Consultant Gynaecologist and Urogynaecologist, Royal Victoria Infirmary, Newcastle upon Tyne</td>
</tr>
<tr>
<td>Professor Nicholas James, Professor of Clinical Oncology, University of Birmingham, and Consultant in Clinical Oncology, Queen Elizabeth Hospital</td>
</tr>
<tr>
<td>Dr Peter Martin, Consultant Neurologist, Addenbrooke's Hospital, Cambridge</td>
</tr>
<tr>
<td>Dr Kate Radford, Senior Lecturer (Research), Clinical Practice Research Unit, University of Central Lancashire, Preston</td>
</tr>
<tr>
<td>Mr Jim Reece, Service User Representative</td>
</tr>
<tr>
<td>Dr Karen Roberts, Nurse Consultant, Dunston Hill Hospital Cottages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Phillip Leech, Principal Medical Officer for Primary Care, Department of Health</td>
</tr>
<tr>
<td>Ms Kay Pattison, Section Head, NHS R&D Programme, Department of Health</td>
</tr>
<tr>
<td>Dr Morven Roberts, Clinical Trials Manager, Medical Research Council</td>
</tr>
<tr>
<td>Professor Tom Valley, Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool</td>
</tr>
<tr>
<td>Ms Christine McGuire, Research & Development, Department of Health</td>
</tr>
<tr>
<td>Dr Caroline Stone, Programme Manager, Medical Research Council</td>
</tr>
<tr>
<td>Dr Ursula Wells, Principal Research Officer, Department of Health</td>
</tr>
</tbody>
</table>

Disease Prevention Panel

<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair, Dr Edmund Jessop, Medical Adviser, National Specialist, National Commissioning Group (NCG), London</td>
</tr>
<tr>
<td>Deputy Chair, Dr David Pencheon, Director, NHS Sustainable Development Unit, Cambridge</td>
</tr>
<tr>
<td>Dr Elizabeth Fellow-Smith, Medical Director, West London Mental Health Trust, Middlesex</td>
</tr>
<tr>
<td>Dr John Jackson, General Practitioner, Parkway Medical Centre, Newcastle upon Tyne</td>
</tr>
<tr>
<td>Professor Mike Kelly, Director, Centre for Public Health Excellence, NICE, London</td>
</tr>
<tr>
<td>Dr Chris McCall, General Practitioner, The Hadleigh Practice, Corfe Mullen, Dorset</td>
</tr>
<tr>
<td>Ms Jeannet Martin, Director of Nursing, BarnDoc Limited, Lewisham Primary Care Trust</td>
</tr>
<tr>
<td>Dr Julie Mytton, Locum Consultant in Public Health Medicine, Bristol Primary Care Trust</td>
</tr>
<tr>
<td>Miss Nicky Mullany, Service User Representative</td>
</tr>
<tr>
<td>Professor Ian Roberts, Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine</td>
</tr>
<tr>
<td>Professor Ken Stein, Senior Clinical Lecturer in Public Health, University of Exeter</td>
</tr>
<tr>
<td>Dr Kieran Sweeney, Honorary Clinical Senior Lecturer, Peninsula College of Medicine and Dentistry, Universities of Exeter and Plymouth</td>
</tr>
<tr>
<td>Professor Carol Tannahill, Glasgow Centre for Population Health</td>
</tr>
<tr>
<td>Professor Margaret Thorogood, Professor of Epidemiology, University of Warwick Medical School, Coventry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Christine McGuire, Research & Development, Department of Health</td>
</tr>
<tr>
<td>Dr Caroline Stone, Programme Manager, Medical Research Council</td>
</tr>
</tbody>
</table>

© 2009 Queen's Printer and Controller of HMSO. All rights reserved.
Expert Advisory Network

Members

Professor Douglas Altman,
Professor of Statistics in Medicine, Centre for Statistics in Medicine, University of Oxford
Professor John Bond,
Professor of Social Gerontology & Health Services Research, University of Newcastle upon Tyne
Professor Andrew Bradbury,
Professor of Vascular Surgery, Solihull Hospital, Birmingham
Mr Shaun Brogan,
Chief Executive, Ridgeway Primary Care Group, Aylesbury
Mrs Stella Burnside OBE,
Principal Executive, Regulation & Development, University of Birmingham
Ms Tracy Bury,
Project Manager, World Confederation for Physical Therapy, London
Professor Iain T Cameron,
Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Aberdeen
Dr Carl Counsell,
Consultant Surgical Science, South Tees Hospitals
Professor Barry Cookson,
Director, Laboratory of Hospital Infection, Public Health Laboratory Service, London
Dr Carl Counsell,
Clinical Senior Lecturer in Neurology, University of Aberdeen
Professor Howard Cuckle,
Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds
Dr Katherine Barton,
Information Unit, MIND – The Mental Health Charity, London
Professor Carol Dezeuke,
Professor of Paediatric Epidemiology, Institute of Child Health, London
Mr John Dunning,
Consultant Cardiothoracic Surgeon, Papworth Hospital NHS Trust, Cambridge
Mr Jonathan Earnshaw,
Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester
Professor Martin Eccles,
Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne
Professor Pam Enderby,
Dean of Faculty of Medicine, Institute of General Practice and Primary Care, University of Sheffield
Professor Gene Feder,
Professor of Primary Care Research & Development, Centre for Health Sciences, Barts and The London School of Medicine and Dentistry
Mr Leonard F renwick,
Chief Executive, Freeman Hospital, Newcastle upon Tyne
Mrs Gillian Fletcher,
Antenatal Teacher and Tutor and President, National Childbirth Trust, Henfield
Professor Jayne Franklyn,
Professor of Medicine, University of Birmingham
Mr Tam Fry,
Honorary Chairman, Child Growth Foundation, London
Professor Fiona Gilbert,
Consultant Radiologist and NCNR Member, University of Aberdeen
Professor Paul Gregg,
Professor of Orthopaedic Surgical Science, South Tees Hospital NHS Trust
Bez Hanley,
Co-director, TwoCan Associates, West Sussex
Dr MaryAnn L Hardy,
Senior Lecturer, University of Bradford
Mrs Sharon Hart,
Healthcare Management Consultant, Reading
Professor Robert E Hawkins,
CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester
Professor Richard Hobbs,
Head of Department of Primary Care & General Practice, University of Birmingham
Professor Alan Horvich,
Dean and Section Chairman, The Institute of Cancer Research, London
Professor Allen Hutchinson,
Director of Public Health and Deputy Dean of SCHARR, University of Sheffield
Professor Peter Jones,
Professor of Psychiatry, University of Cambridge, Cambridge
Professor Stan Kaye,
Cancer Research UK Professor of Medical Oncology, Royal Marsden Hospital and Institute of Cancer Research, Surrey
Dr Duncan Kesley,
General Practitioner (Dr Butch & Pinnr), The Health Centre, Thame
Dr Donna Lamping,
Research Degrees Programme Director and Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London
Mr George Levy,
Chief Executive, Motor Neurone Disease Association, Northampton
Professor James Lindley,
Professor of Psychiatry for the Elderly, University of Leicester
Professor Julian Little,
Professor of Human Genome Epidemiology, University of Ottawa
Professor Alister McIntyre,
Professor of Health Economics, London School of Economics
Professor Rajan Madhok,
Medical Director and Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York
Professor Alexander Markham,
Director, Molecular Medicine Unit, St James’s University Hospital, Leeds
Dr Peter Moore,
Freelance Science Writer, Ashhead
Dr Andrew Mortimore,
Public Health Director, Southampton City Primary Care Trust
Dr Sue Moss,
Assistant Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton
Professor Miranda Mugford,
Professor of Health Economics and Group Co-ordinator, University of East Anglia
Professor Jim Neilson,
Head of School of Reproductive & Developmental Medicine and Professor of Obstetrics and Gynaecology, University of Liverpool
Mrs Julietta Patnick,
National Co-ordinator, NHS Cancer Screening Programmes, Sheffield
Professor Robert Peveler,
Professor of Liaison Psychiatry, Royal South Hants Hospital, Southampton
Professor Chris Price,
Director of Clinical Research, Bayer Diagnostics Europe, Stoke Poges
Professor William Rosenberg,
Professor of Hepatology and Consultant Physician, University of Southampton
Professor Peter Sandercoc,
Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh
Dr Susan Schonfeld,
Consultant in Public Health, Hillingdon Primary Care Trust, Middlesex
Dr Eamonn Sheridan,
Consultant in Clinical Genetics, St James’s University Hospital, Leeds
Dr Margaret Somerville,
Director of Public Health Learning, Peninsula Medical School, University of Plymouth
Professor Sarah Stewart-Brown,
Professor of Public Health, Division of Health in the Community, University of Warwick, Coventry
Professor Ala Szczepura,
Professor of Health Service Research, Centre for Health Services Studies, University of Warwick, Coventry
Mrs Joan Webster,
Consumer Member, Southern Derbyshire Community Health Council
Professor Martin Whittle,
Clinical Co-director, National Co-ordinating Centre for Women’s and Children’s Health, Lymington
Feedback

The HTA programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.