Cost-effectiveness of screening high-risk HIV-positive men who have sex with men (MSM) and HIV-positive women for anal cancer

C Czoski-Murray, J Karnon, R Jones, K Smith and G Kinghorn

1Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
2School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
3Royal Hallamshire Hospital, Sheffield, UK

*Corresponding author

Executive summary

Health Technology Assessment 2010; Vol. 14: No. 53
DOI: 10.3310/hta14530

Health Technology Assessment
NIHR HTA programme
www.hta.ac.uk
Executive summary

Introduction

Anal cancer is an uncommon cancer. It is a disease in which cancer (malignant) cells are found in the anus. Like most cancers, anal cancer is best treated when it is diagnosed soon after it develops. Primary treatment is generally concomitant radiotherapy (RT) and chemotherapy (if tolerated) to preserve the anal sphincter, but, despite these approaches, local disease failure is considerable and requires salvage radical surgery, which is associated with high morbidity and mortality. Anal cancer is predominantly a disease of the elderly and its occurrence is near to zero in early life. The human papillomavirus (HPV) has been implicated as a causal agent of anal cancer. HPV infection, for the majority of cases, is transmitted sexually. The vulnerability of individuals with human immunodeficiency virus (HIV) to HPV infections has seen an increase in the number of cases from this population presenting with anal cancer.

To decide whether the screening of groups of people for a specific condition is suitable, there are well-defined criteria that can be used to aid the decision process. The condition is an important health problem, and the natural history and epidemiology must be understood. The test itself should be safe, simple, accurate and acceptable to the general population.

Aim of the review

The aim of this review is to estimate the cost-effectiveness of screening for anal cancer in men and women who are HIV positive, and, in particular, men who have sex with men (MSM), who have been identified as being at greater risk of the disease, by developing a model that incorporates the national screening guidelines criteria.

Methods

Systematic literature reviews were undertaken of the epidemiology and natural history of anal cancer, screening technologies and screening policies, and cost-effectiveness of candidate technologies/programmes/policies. Two decision-analytical models were developed and populated to analyse the cost-effectiveness of screening in HIV-positive and HIV-negative MSM, and in HIV-positive women.

Results

The reference case cost-effectiveness model for MSM found that screening for anal cancer is very unlikely to be cost-effective. In the reference case, the individually minor, but relatively frequent, negative aspects of screening, including utility decrements associated with false-positive results and with treatment for high-grade anal intraepithelial neoplasia (HG-AIN), outweigh the larger and rarer positive effects of the prevention or early diagnosis of anal cancer.

Sensitivity analyses showed that removing the utility decrements associated with false-positive results and with treatment for HG-AIN improved the cost-effectiveness of screening. However, combined with higher regression rates from low-grade anal intraepithelial neoplasia (LG-AIN), the lowest expected incremental cost-effectiveness ratio remained at over £44,000 per quality-adjusted life-year (QALY) gained. With these assumptions in place, probabilistic sensitivity analysis showed that no screening retained over 50% probability of cost-effectiveness to a QALY value of £50,000.

The screening model for HIV-positive women showed an even lower likelihood of cost-effectiveness, with the most favourable sensitivity analyses reporting an incremental cost per QALY of £88,000.

Conclusions

From the review sections of this report, it is clear that many of the criteria for assessing the need for a population screening programme (UK National Screening Committee 2006) have not been met for anal cancer. There is limited knowledge about the epidemiology and natural history of the disease, along with a paucity of good-quality evidence concerning the effectiveness of screening for
anal cancer. The absence of such data, combined with the possible reluctance of high-risk groups to attend an anal cancer screening programme, makes introduction of population-based screening for anal cancer difficult.

The reported cost-effectiveness analyses of screening for anal cancer emphasise this conclusion. The results show little likelihood that screening any of the identified high-risk groups will generate health improvements at reasonable cost. These results could be further confirmed by updating some key parameters at little additional cost. The most efficient way to proceed would be to audit the accuracy of the cancer registries’ identification of cases of anal cancer, as well as to audit the proportion of cancer cases that occur in HIV-positive men and HIV-positive women, and/or MSM. If these data show that the screening model has underestimated the impact of anal cancer in any of the populations evaluated then an evaluative study of the effects of treatment for HG-AIN may be justified.

Publication

The Health Technology Assessment (HTA) programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA programme then commissions the research by competitive tender.

Second, the HTA programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series *Health Technology Assessment*.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.