Systematic review and cost-effectiveness evaluation of ‘pill-in-the-pocket’ strategy for paroxysmal atrial fibrillation compared to episodic in-hospital treatment or continuous antiarrhythmic drug therapy

C Martin Saborido, J Hockenhull, A Bagust, A Boland, R Dickson and D Todd
How to obtain copies of this and other HTA programme reports
An electronic version of this title, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable DVD is also available (see below).

Printed copies of HTA journal series issues cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our despatch agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per issue and for the rest of the world £3 per issue.

How to order:
– fax (with credit card details)
– post (with credit card details or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you to either print out your order or download a blank order form.

Contact details are as follows:
Synergie UK (HTA Department) Email: orders@hta.ac.uk
Digital House, The Loddon Centre Tel: 0845 812 4000 – ask for ‘HTA Payment Services’
Wade Road (out-of-hours answer-phone service)
Basingstoke Fax: 0845 812 4001 – put ‘HTA Order’ on the fax header
Hants RG24 8QW

Payment methods
Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to University of Southampton and drawn on a bank with a UK address.

Paying by credit card
You can order using your credit card by phone, fax or post.

Subscriptions
NHS libraries can subscribe free of charge. Public libraries can subscribe at a reduced cost of £100 for each volume (normally comprising 40–50 titles). The commercial subscription rate is £400 per volume (addresses within the UK) and £600 per volume (addresses outside the UK). Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

How do I get a copy of HTA on DVD?
Please use the form on the HTA website (www.hta.ac.uk/htacd/index.shtml). HTA on DVD is currently free of charge worldwide.

The website also provides information about the HTA programme and lists the membership of the various committees.
Systematic review and cost-effectiveness evaluation of ‘pill-in-the-pocket’ strategy for paroxysmal atrial fibrillation compared to episodic in-hospital treatment or continuous antiarrhythmic drug therapy

C Martin Saborido,¹ J Hockenhull,¹ A Bagust,¹ A Boland,¹ R Dickson¹* and D Todd²

¹Liverpool Reviews and Implementation Group (LRiG), Liverpool, UK
²Liverpool Heart & Chest Hospital, Liverpool, UK

*Corresponding author

Declared competing interests of authors: none

Published June 2010
DOI: 10.3310/hta14310

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
NIHR Health Technology Assessment programme

The Health Technology Assessment (HTA) programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA programme then commissions the research by competitive tender.

Second, the HTA programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series Health Technology Assessment.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this issue of the journal was commissioned by the HTA programme as project number 08/46/01. The contractual start date was in May 2009. The draft report began editorial review in September 2009 and was accepted for publication in March 2010. As the funder, by devising a commissioning brief, the HTA programme specified the research question and study design. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA programme or the Department of Health.

Editor-in-Chief: Professor Tom Walley CBE
Series Editors: Dr Martin Ashton-Key, Dr Aileen Clarke, Professor Chris Hyde, Dr Tom Marshall, Dr John Powell, Dr Rob Riemsema and Professor Ken Stein
Editorial Contact: edit@southampton.ac.uk

© 2010 Queen’s Printer and Controller of HMSO

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (http://www.publicationethics.org/).

This journal may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to: NETSCC, Health Technology Assessment, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Published by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk), on behalf of NETSCC, HTA.

Printed on acid-free paper in the UK by the Charlesworth Group.
Abstract

Systematic review and cost-effectiveness evaluation of 'pill-in-the-pocket' strategy for paroxysmal atrial fibrillation compared to episodic in-hospital treatment or continuous antiarrhythmic drug therapy

C Martin Saborido, J Hockenhull, A Bagust, A Boland, R Dickson, and D Todd

Liverpool Reviews and Implementation Group (LRiG), Liverpool, UK
Liverpool Heart & Chest Hospital, Liverpool, UK

*Corresponding author

Background: Atrial fibrillation (AF) is a tachyarrhythmia characterised by unco-ordinated atrial activation with consequent deterioration of impairment of atrial function and a rapid, irregular heartbeat. The annual incidence rate of paroxysmal AF (PAF) has been estimated at 1.0 per 1000 person-years (95% confidence interval 0.9 to 1.1), and reported prevalence rates show wide variations depending on age and country. Conventional treatment strategies for PAF focus on the suppression of paroxysms of AF and return to normal sinus rhythm.

Objectives: To summarise the results of the rapid reviews of the clinical effectiveness and cost-effectiveness literature describing the pill-in-the-pocket (PiP) approach for the treatment of patients with PAF; and to develop an economic model to assess the cost-effectiveness of PiP compared with in-hospital treatment (IHT) or continuous antiarrhythmic drugs (AADs) for the treatment of patients with PAF.

Data sources: Ovid MEDLINE and Ovid OLDMEDLINE 1950 to present with Daily Update were searched. The following electronic databases were searched for ongoing trials: Health Services Research Projects in Progress, ClinicalTrials.gov, metaRegister of Current Controlled Trials, BioMed Central, World Health Organization International Clinical Trials Registry Platform, ClinicalStudyResults.org and the National Library of Medicine Gateway.

Review methods: Inclusion criteria, which included patients suffering from PAF, were independently applied to all identified references by two reviewers (JH and CMS). Electronic searches were conducted to identify clinical effectiveness and cost-effectiveness evidence describing the use of a PiP strategy for the treatment of PAF, published since the release of the Royal College of Physicians' national guidelines on AF in June 2006. A Markov model was constructed to examine differences between three PAF strategies (PiP, AAD and IHT) in terms of cost per quality-adjusted life-year (QALY). A Markov model structure was chosen because it is assumed that PAF is a condition that causes patients to move between a limited number of relevant health states during their lives.

Results: The search strategies for clinical studies identified 201 randomised controlled trials (RCTs). Of the 201 RCTs identified, 12 were deemed to be relevant to the decision problem as they included drugs used to treat PAF; summary data were abstracted from these studies in order to inform the development of the economic model only. The model results indicate that the PiP strategy is slightly less effective than the other two strategies, but also less costly (incremental cost-effectiveness ratio of £45,916 per QALY when compared to AAD, and £12,424 per QALY when compared to IHT). The one-way sensitivity analyses performed do not show substantial changes in relative cost-effectiveness except in relation to the age of patients, where PiP dominates AAD in men over 65 years and in women over 70 years. At a threshold of £25,000 per QALY, IHT has the maximum probability of being cost-effective at this threshold. For threshold values between £0 and £9266 per QALY, PiP is the option exhibiting the maximum probability of being cost-effective. The AAD strategy has a very poor probability of being cost-effective under any threshold. However, none of the strategies considered has more than a 40% probability of being cost-effective at a threshold of £25,000 per QALY at any threshold.
Abstract

level. This demonstrates the uncertainty around the parameters and its effect on the decision to choose any one strategy over the others.

Limitations: Most of the data used to populate the model have been taken from studies with populations that do not match the patient population specified in the decision problem. Populating the model in this way was unavoidable as there was a paucity of published clinical effectiveness and cost-effectiveness data describing a PiP strategy for this highly specific group of patients.

Conclusions: Overall, a PiP strategy seems to be slightly less effective (i.e. fewer QALYs gained) than AAD and IHT, but is associated with cost savings. A PiP strategy seems to be more efficacious and cost-effective than an AAD strategy in men over 65 years and women over 70 years, but this is principally due to a very slight difference in QALY gained by the PiP strategy. A change in clinical practice that includes the introduction of PiP may save costs, but also involves a reduction in clinical effectiveness compared to existing approaches used to treat patients with PAF. Uncertainty in the available clinical data means there was insufficient evidence to support a recommendation for the use of PiP strategy in patients with PAF. Further research should identify outcomes of interest such as adverse events and recurrent AF episodes in an RCT setting because the only clinical study addressing these issues, even partially, is not an RCT but a descriptive analysis. Patient preferences also need to be considered in any future research designs.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Research question and scope</td>
<td>1</td>
</tr>
<tr>
<td>Objectives of the project</td>
<td>1</td>
</tr>
<tr>
<td>2 Background</td>
<td>3</td>
</tr>
<tr>
<td>Overview</td>
<td>3</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>Paroxysmal atrial fibrillation</td>
<td>4</td>
</tr>
<tr>
<td>Overview of treatments</td>
<td>4</td>
</tr>
<tr>
<td>3 Methods for identifying published clinical effectiveness and cost-effectiveness evidence</td>
<td>7</td>
</tr>
<tr>
<td>Identification of evidence: clinical evidence</td>
<td>7</td>
</tr>
<tr>
<td>Methods for reviewing clinical effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>Identification of evidence: cost-effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>Methods for reviewing cost-effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>4 Review of published clinical effectiveness and cost-effectiveness evidence</td>
<td>9</td>
</tr>
<tr>
<td>Randomised controlled trial clinical evidence</td>
<td>9</td>
</tr>
<tr>
<td>Systematic review clinical evidence</td>
<td>9</td>
</tr>
<tr>
<td>Economic evidence</td>
<td>9</td>
</tr>
<tr>
<td>Implications of the evidence found</td>
<td>10</td>
</tr>
<tr>
<td>5 Methods for economic evaluation and development of an economic model</td>
<td>13</td>
</tr>
<tr>
<td>Objective</td>
<td>13</td>
</tr>
<tr>
<td>Economic evaluation framework</td>
<td>13</td>
</tr>
<tr>
<td>6 Economic evaluation and economic model: results</td>
<td>23</td>
</tr>
<tr>
<td>Base-case analysis</td>
<td>23</td>
</tr>
<tr>
<td>Deterministic sensitivity analysis</td>
<td>24</td>
</tr>
<tr>
<td>Probabilistic sensitivity analysis</td>
<td>28</td>
</tr>
<tr>
<td>7 Discussion</td>
<td>31</td>
</tr>
<tr>
<td>8 Conclusions</td>
<td>33</td>
</tr>
<tr>
<td>Research recommendations</td>
<td>33</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>35</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Appendix 1 Commissioning brief</td>
<td>41</td>
</tr>
<tr>
<td>Appendix 2 Drug information</td>
<td>51</td>
</tr>
<tr>
<td>Appendix 3 Search strategies</td>
<td>53</td>
</tr>
<tr>
<td>Appendix 4 Summary of evidence</td>
<td>57</td>
</tr>
<tr>
<td>Appendix 5 Quality assessment</td>
<td>63</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>69</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>71</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td>77</td>
</tr>
<tr>
<td>Health Technology Assessment programme</td>
<td>99</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>AAD</th>
<th>antiarrhythmic drug</th>
<th>NICE</th>
<th>National Institute for Health and Clinical Excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&E</td>
<td>accident and emergency</td>
<td>NETSCC</td>
<td>National Institute of Health Research Evaluation, Trials and Studies Coordinating Centre</td>
</tr>
<tr>
<td>AE</td>
<td>adverse event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAF</td>
<td>chronic atrial fibrillation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ-5D</td>
<td>European Quality of Life-5 Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>general practitioner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRQoL</td>
<td>health-related quality of life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSRProj</td>
<td>Health Services Research Projects in Progress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTA</td>
<td>Health Technology Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICER</td>
<td>incremental cost-effectiveness ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHT</td>
<td>in-hospital treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRiG</td>
<td>Liverpool Reviews and Implementation Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td>mean absolute error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>not applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices, in which case the abbreviation is defined in the figure legend or in the notes at the end of the table.
Objectives

1. To summarise the results of the rapid reviews of the clinical effectiveness and cost-effectiveness literature describing the pill-in-the-pocket (PiP) approach for the treatment of patients with paroxysmal atrial fibrillation (PAF).
2. To develop an economic model to assess the cost-effectiveness of PiP compared with in-hospital treatment (IHT) or continuous antiarrhythmic drugs (AADs) for the treatment of patients with PAF.

Background

Atrial fibrillation (AF) is a tachyarrhythmia characterised by unco-ordinated atrial activation with consequent deterioration of impairment of atrial function and a rapid, irregular heartbeat. The patient may experience palpitations, chest pain, dizziness or, in severe cases, loss of consciousness. In some cases, patients with AF may present without any symptoms. An incidence of AF may be self-terminating or require clinical intervention (for example, pharmacological or medical cardioversion). The annual incidence rate of PAF has been estimated at 1.0 per 1000 person-years (95% confidence interval 0.9 to 1.1), and reported prevalence rates show wide variations depending on age and country.

The classification of AF is called the 3 'P' classification: paroxysmal, persistent and permanent. When a patient experiences two or more AF episodes that terminate within 7 days (usually within 48 hours), AF is classified as paroxysmal. If a patient suffers more than one attack and the AF attack lasts longer than 7 days, the AF is classified as persistent. If the AF episode does not resolve for over a year and/or is not successfully terminated by cardioversion, the pattern is classified as permanent.

Conventional treatment strategies for PAF focus on the suppression of paroxysms of AF and return to normal sinus rhythm (NSR). AAD treatment can consist of (i) continuous prophylactic treatment or (ii) episodic IHT. Prophylactic treatment (daily dose) can include the use of beta-blockers, class Ic agents (e.g. flecainide, propafenone) or class III agents (sotalol, amiodarone). Episodic treatment of PAF consists of pharmacological cardioversion usually involving an intravenous infusion of AADs in a hospital setting or, if this fails, electrical direct current cardioversion.

Methods

Electronic searches were conducted to identify clinical effectiveness and cost-effectiveness evidence describing the use of a PiP strategy for the treatment of PAF, published since the release of the Royal College of Physicians' national guidelines on AF in June 2006. An additional search was also undertaken, excluding the term ‘pill-in-the-pocket’ in order to identify economic evaluations and costing studies describing the comparator treatments to support the development of the economic model.

A Markov model was constructed to examine differences between three PAF strategies (PiP, AAD and IHT) in terms of cost per quality-adjusted life-year (QALY). A Markov model structure was chosen because it is assumed that PAF is a condition that causes patients to move between a limited number of relevant health states during their lives. This type of model allows a large number of cycles to be simulated without having to create a new decision tree in each cycle. The three PAF strategies have the same five health states:

- NSR
- persistent/chronic atrial fibrillation (CAF)
- post-stroke without CAF
- post-stroke with CAF
- death state.

The economic evaluation has been undertaken from an NHS and Personal Social Services perspective. The model has been developed with a cycle length of 1 year and is simulated for the remaining lifetime of all patients.
Results

The search strategies for clinical studies identified 201 randomised controlled trials (RCTs). None of the identified RCTs compared PiP with any other treatment for PAF and therefore did not meet the inclusion criteria for the review. No relevant studies were identified by the search for ongoing trials.

Of the 201 RCTs identified, 12 were deemed to be relevant to the decision problem as they included drugs used to treat PAF; summary data were abstracted from these studies in order to inform the development of the economic model only. The 12 RCTs were all conducted in a hospital setting and prior to the publication of the current national guidelines. One additional study was identified that had informed the evidence considered in Atrial fibrillation: national clinical guideline for management in primary and secondary care developed by the National Collaborating Centre for Chronic Conditions in 2006.

The model results indicate that the PiP strategy is slightly less effective than the other two strategies, but also less costly (incremental cost-effectiveness ratio of £45,916 per QALY when compared to AAD, and £12,424 per QALY when compared to IHT). The one-way sensitivity analyses performed do not show substantial changes in relative cost-effectiveness except in relation to the age of patients, where PiP dominates AAD in men over 65 years and in women over 70 years.

The probabilistic sensitivity analysis demonstrates how close the three strategies are to each other, and the uncertainties in the data. All conclusions need to be considered in relation to these uncertainties.

Conclusions

The systematic review of clinical evidence did not identify any new studies that had not been included in the previously available guidelines.

Overall, a PiP strategy seems to be slightly less effective (i.e. fewer QALYs gained) than AAD and IHT, but is associated with cost savings.

A PiP strategy seems to be more efficacious and cost-effective than an AAD strategy in men over 65 years and women over 70 years, but this is principally due to a very slight difference in QALY gained by the PiP strategy.

A change in clinical practice that includes the introduction of PiP may save costs, but also involves a reduction in clinical effectiveness compared to existing approaches used to treat patients with PAF.

Uncertainty in the available clinical data means there was insufficient evidence to support a recommendation for the use of PiP strategy in patients with PAF. Further research should identify outcomes of interest such as adverse events and recurrent AF episodes in an RCT setting because the only clinical study addressing these issues, even partially, is not an RCT but a descriptive analysis.

Patient preferences also need to be considered in any future research designs.
Chapter 1

Introduction

In 2008, a scoping exercise was commissioned by the National Institute of Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC) in order to address the clinical effectiveness and cost-effectiveness of a pill-in-the-pocket (PiP) strategy for the treatment of patients with paroxysmal atrial fibrillation (PAF). This exercise was carried out by the Liverpool Reviews and Implementation Group (LRiG), Liverpool, UK and was submitted to the NETSCC in early 2009 (see Appendix 1). The scoping exercise concluded that the evidence base for recommending a PiP strategy was limited and that there were no new clinical effectiveness or cost-effectiveness data available to inform clinical decision-making. In order to make use of the limited data available, the NETSCC requested that the LRiG develop an economic model to assess the cost-effectiveness of the PiP strategy compared with other treatments. To inform the economic model, the original literature review searches were updated. This document reports the amalgamated results of the two rapid literature reviews and presents the development and findings of the de novo economic model.

Research question and scope

What is the cost-effectiveness of PiP treatment for those patients with PAF compared to in-hospital treatment (IHT) or antiarrhythmic drug (AAD) therapy?

Objectives of the project

1. To summarise the results of the rapid reviews of the clinical effectiveness and cost-effectiveness literature describing the PiP approach for the treatment of patients with PAF.
2. To develop an economic model to assess the cost-effectiveness of PiP compared with IHT or continuous AAD for the treatment of patients with PAF.
Overview

Atrial fibrillation (AF) is a tachyarrhythmia characterised by unco-ordinated atrial activation with consequent deterioration of impairment of atrial function and a rapid, irregular heartbeat. AF is characterised on the electrocardiogram (ECG) by the absence of consistent ‘P’ waves and the presence of irregular rough fibrillation or ‘f’ waves and irregular QRS complexes. The patient may experience palpitations, chest pain, dizziness or, in severe cases, loss of consciousness. In some cases, patients with AF may present without any symptoms. An AF attack may be self-terminating or require clinical intervention (for example, pharmacological or medical cardioversion).

Atrial fibrillation can result in a degree of haemodynamic instability which can represent a critical condition that requires immediate intervention to alleviate the symptoms. The adverse effects of AF are the result of the haemodynamic instability related to the rapid irregular heart rhythm, and thromboembolic complications (thrombus formation) related to a prothrombotic state (intra-atrial blood stasis, structural heart disease or blood vessel abnormalities, and abnormal platelets and haemostasis). This prothrombotic state is associated with a predisposition to stroke with an approximately threefold greater risk than for people without AF.1 Fast ventricular rates can cause heart failure in some patients, with a relative risk (RR) of 6.4 compared to people without AF;1 uncontrolled AF may even precipitate a coronary event with an RR of 2.1 compared to people without AF.1

Diagnosis and classification

Atrial fibrillation is sometimes only detected after the patient presents with serious complications of AF (for example, stroke or heart failure). AF is often asymptomatic and can be discovered incidentally during a clinical examination. AF can be detected by screening patients at risk (such as the elderly), or following presentation with symptoms such as breathlessness, palpitations, dizziness or chest pain. When any of the former symptoms are present, manual pulse palpation should be performed to assess the presence of an underlying AF. Once the irregular pulse has been detected, an ECG should be performed. Sometimes the clinician may suspect that AF is paroxysmal (PAF), and in this situation an event-based ECG record or a 24-hour ambulatory ECG monitor is then used. Echocardiography is normally performed in patients with AF in whom there is a suspicion of underlying structural/functional heart disease.

The classification of AF is called the 3 ‘P’ classification:2 paroxysmal, persistent and permanent (Table 1). When a patient experiences two or more AF episodes which terminate within 7 days (usually within 48 hours), AF is classified as paroxysmal. If a patient suffers more than one attack and the AF attack lasts longer than 7 days, the AF is classified as persistent. If the AF episode does not resolve for over a year and/or is not successfully terminated by cardioversion, the pattern is permanent.3

Paroxysmal AF, in which the frequency of paroxysms is low, may degenerate into either PAF with more frequent paroxysm, or persistent AF; similarly, persistent AF may degenerate into permanent AF. Persistent AF can be reverted to a normal sinus rhythm (NSR) in those cases where a disease is present and is causing the AF, by treating the underlying condition.

Epidemiology

There is an increasing incidence and prevalence of AF with the increasing age of the population, coupled with comorbidities such as diabetes, hypertension, valve disease, congestive heart failure and stroke. AF may also be caused by some coexisting cardiac and non-cardiac conditions such as acute pneumonia, pulmonary embolism and lung carcinoma. In addition, AF can appear after cardiothoracic surgery such as coronary artery bypass grafting.4

A retrospective cohort analysis of the UK General Practice Research Database estimated the incidence.
TABLE 1 Classification of AF subtypes

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Clinical features</th>
<th>Arrhythmia pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paroxysmal</td>
<td>Spontaneous termination < 7 days and most often</td>
<td>Recurrent</td>
</tr>
<tr>
<td></td>
<td>< 48 hours</td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>Not self-terminating</td>
<td>Recurrent</td>
</tr>
<tr>
<td></td>
<td>Lasting > 7 days or prior cardioversion</td>
<td></td>
</tr>
<tr>
<td>Permanent (‘accepted’)</td>
<td>Not terminated</td>
<td>Established</td>
</tr>
<tr>
<td></td>
<td>Terminated but relapsed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No cardioversion attempt</td>
<td></td>
</tr>
</tbody>
</table>

of chronic AF (CAF) to be 1.7 per 1000 person-years4 (40- to 89-year-old, and male and female population). It becomes more common with increasing age, occurring in about 5% of people aged over 65 years and in 17.5% of individuals aged over 80 years.6 The annual incidence rate of PAF has been estimated at 1.0 per 1000 person-years [95% confidence interval (CI) 0.9 to 1.1]. Reported prevalence rates vary (e.g. 22% in France in a cardiology practice setting: age 19–95 years; to 66% in a UK general practitioner (GP) setting: age 40–89 years).5,7

In a study by Benjamin et al.8 in 1998, AF was associated with an odds ratio for death of 1.5 for men and 1.9 for woman; the risk of mortality did not appear to be influenced by age. In PAF patients, there was no reported increased risk in case of mortality, compared to an age- and gender-matched sample of the general population.

Paroxysmal atrial fibrillation

In clinical practice the presentation of AF is variable. Some patients present with short episodes of AF that cease spontaneously. Others may develop a type of AF that can only be converted to normal NSR by chemical or electrical cardioversion; in some patients NSR cannot be restored. In PAF, each episode comes on suddenly, but will frequently convert to NSR without any treatment within 7 days (usually within 2 days).3 The period of time between each episode can vary greatly from case to case.

Clinical observation has suggested that PAF is a progressive condition resulting in persistent AF in between 6% and 9% of patients 6 months after the first episode, and persistent AF in up to 25% at 5 years.4,9 Although this progression may be caused by the deterioration of underlying heart disease in some patients, progression has also been noted in patients without heart disease.4

Paroxysmal AF is heterogeneous in presentation and may appear, for example, as an episode lasting 1 or 2 minutes once a year or as an episode which lasts for 10 hours twice a day; clearly the impact of PAF on the quality of life of patients can vary quite considerably. The treatment of PAF must therefore be tailored to meet the requirements of individual patients.

Patients eligible for PiP treatment must by necessity be symptomatic of AF. Therefore, the patients included in the decision problem (Table 2) are those diagnosed by a cardiologist with events treated in an accident and emergency (A&E) setting, with intravenous AADs. This is classified as an IHT approach as explained in the next section.

Overview of treatments

Treatment aims

The three main aims of treatment for PAF are:3

1. To suppress paroxysm of AF and maintain long-term NSR.
2. To control heart rate during paroxysms of AF if they occur.
3. To prevent the complications associated with PAF (for example, stroke – and tachycardia – induced cardiomyopathy).

Conventional treatment options

Conventional treatment strategies for PAF focus on the suppression of paroxysms of AF and return to
TABLE 2 Summary of the decision problem and key clinical outcomes

Population	People with PAF who:
	have no history of left ventricular dysfunction, or valvular or ischaemic heart disease
	have a history of infrequent symptomatic episodes of PAF
	have a systolic blood pressure > 100 mmHg and a resting heart rate > 70 beats per minute
	are able to understand how, and when, to take the medication
	have no history of atrial fluttera

Intervention	Pill-in-pocket strategy:
	flecainide
	propafenone

Comparator	In-hospital episodic antiarrhythmic treatment:
	propafenone
	flecainide
	sotalol
	amiodarone

Continuous prophylactic treatment:
propafenone
flecainide
sotalol
amiodarone

Radiofrequency ablation (secondary comparator)
Mean time to conversion (from AF to NSR)
Conversion rates (from AF to NSR)
Frequency of hospital visits
Frequency of recurrences
Health-related quality of life
All-cause death
Progression to persistent AF
Adverse events rate:
conversion to atrial flutter
proarrhythmia
thromboembolic events

AF, atrial fibrillation; PAF, paroxysmal atrial fibrillation.
a This criterion is not included in the National Institute for Health and Clinical Excellence guideline, but was suggested by one clinical expert.

NSR. AAD treatment can consist of (i) continuous prophylactic treatment or (ii) episodic IHT. Prophylactic treatment (daily dose) can include the use of beta-blockers, class Ic agents (e.g. flecainide, propafenone) or class III agents (sotalol, amiodarone).3 Episodic treatment of PAF consists of pharmacological cardioversion usually involving an intravenous infusion of AADs in a hospital setting, or if this fails electrical direct current (DC) cardioversion. Sometimes electrical DC cardioversion is used in cases where prophylactic treatment is not effective. Several studies have shown propafenone and flecainide can achieve similar efficacy rates in the restoration of NSR.10–16 Advice stated in the British National Formulary17 suggests that class I and III agents should be administered under the supervision of a hospital physician, but it is stressed that this does not necessarily mean that the patient has to be hospitalised and that it is the decision to administer the drug that requires the necessary expertise.

Pill-in-the-pocket strategy

Pharmacological cardioversion requires IHT; however, with the development of oral AADs, immediate out-of-hospital treatment is possible.
This strategy is referred to as PiP. Patients meeting pre-established criteria are provided with an oral dose of an AAD which they self-administer at the onset of an episode of PAF. No training is needed, but treatment advice is given during the consultant appointment. This allows for immediate intervention with the objective of converting to NSR without the need for hospital-based treatment. Such a strategy also avoids the need for continuous prophylactic treatment. Drugs used in the PiP strategy are mainly flecainide or propafenone, changing to daily sotalol if the former drugs fail.3

Interventional procedures

Recently published studies18–21 have described a new approach to the treatment of PAF: radiofrequency ablation (RFA). RFA has been described as an effective interventional treatment for PAF as it can reduce recurrence and costs. Despite the high costs of the procedure, this alternative has been reported to be cost-effective when compared with AAD therapy from as early as 2 years after the intervention.19 Unfortunately, there are no data available to allow assessment of the effectiveness of RFA in reducing progression as well as recurrence, as the currently available studies all have short follow-up periods.

Adverse events

The three options mentioned above (IHT, PiP and AAD) have a common adverse event (AE) which is proarrhythmia. This is an arrhythmia paradoxically precipitated by antiarrhythmic therapy, which means it is a side effect associated with the administration of some existing AADs. The treatment for proarrhythmia is electrical DC cardioversion.

Another AE related to the use of continuous AADs (mainly associated to amiodarone) is drug toxicity which mainly affects the lungs. In the case of episodic in-hospital AAD treatment, AEs could also occur due to the nature of intravenous administration and the risks associated with hospitalisation.

Licensed indications

The licensed indications of the drugs prescribed or administered in hospital to treat PAF are quite similar, with the exception of amiodarone, which should be initiated in hospital or under specialist supervision. A complete list of indications can be found in Table 32 in Appendix 2.

In 2006, the National Collaborating Centre for Chronic Conditions issued guidelines relating to the treatment of AF and PAF.5 The guidelines state that where patients have infrequent paroxysms and few symptoms, or where symptoms are induced by known precipitants (such as alcohol, caffeine), a ‘no drug treatment’ strategy or a PiP strategy should be considered and discussed with the patient. In patients with PAF, a PiP strategy should be considered in those who:

- have no history of left ventricular dysfunction, or valvular or ischaemic heart disease
- have a history of infrequent symptomatic episodes of PAF
- have a systolic blood pressure > 100mmHg and a resting heart rate above 70 beats per minute
- are able to understand how to, and when to, take the medication.

Costs

Costs of the drugs used in the treatment of PAF are included in the *British National Formulary*.17 Costs vary depending on the number of tablets dispensed and whether generic or branded formulations are used. A summary of the drug costs used for PAF treatment is presented in Table 33 of Appendix 2.

Overview

In summary, PAF is a condition that tends to progress to a chronic condition for many patients despite treatment. The current possible treatments for PAF are as follows:

- continuous prophylactic AAD treatment (class Ic agents such as flecainide, propafenone or class III agents such as sotalol, amiodarone).
- IHT with the same AADs.
- episodic PiP treatment with the same AADs.
Methods for identifying published clinical effectiveness and cost-effectiveness evidence

Electronic searches were conducted to identify clinical effectiveness and cost-effectiveness evidence describing the use of a PiP strategy for the treatment of PAF published since the release of the Royal College of Physicians’ national guidelines on AF in June 2006.3

Identification of evidence: clinical evidence

Search strategy
Using gold standard systematic review methodology, ‘Ovid MEDLINE® and Ovid OLDMEDLINE® 1950 to present with Daily Update’ was searched using the search strategies described in Appendix 3 to identify randomised controlled trials (RCTs), systematic reviews and economic evaluations. Search terms for electronic databases included a combination of index terms for AF and free text words for the technologies involved (e.g. drug names). Data from relevant papers were then extracted by one reviewer (JH) and cross checked by a second (CMS).

The following electronic databases were searched for ongoing trials:

- Health Services Research Projects in Progress (HSRProj).
- ClinicalTrials.gov.
- metaRegister of Current Controlled Trials (mRCT).
- BioMed Central.
- World Health Organization (WHO) International Clinical Trials Registry Platform.
- ClinicalStudyResults.org.
- National Library of Medicine (NLM) Gateway.

Reference lists of potentially relevant studies were searched to identify other relevant studies of clinical effectiveness, cost-effectiveness or costs. All of the references were exported to an ENDNOTE bibliographic database (Version X2, Thomson ISI ResearchSoft, CA, USA).

Methods for reviewing clinical effectiveness

Inclusion criteria
Inclusion criteria, as outlined in Table 3, were independently applied to all identified references by two reviewers (JH and CMS).

Exclusion criteria
Randomised controlled trials were excluded if they provided data on only a subgroup of the enrolled patients.

Data extraction
Where appropriate, data extraction was carried out by one reviewer (JH) and checked by another (CMS). Summary data were abstracted into pre-defined data extraction forms created within an ACCESS database (Microsoft Corporation). Data were abstracted under the following headings: study, treatment, comparator, number of patients, duration of AF prior to treatment, setting, follow-up, mean time to conversion, conversion rate, frequency of hospital visits, frequency of recurrence, health-related quality of life (HRQoL), progression to persistent AF, conversion to AF, proarrhythmia, thromboembolic events, death and AEs.

Quality assessment and data analysis
No studies met the inclusion criteria and therefore no quality assessment of the studies could be undertaken. Data relevant to other aspects of the project are presented in tables.

Identification of evidence: cost-effectiveness
The search used to identify relevant economic evaluations for inclusion in the review of cost-
methods for identifying published clinical effectiveness and cost-effectiveness evidence

TABLE 3 Inclusion criteria for RCTs and systematic review

<table>
<thead>
<tr>
<th>Population</th>
<th>Paroxysmal atrial fibrillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Pill-in-pocket treatment, i.e. single oral dose</td>
</tr>
<tr>
<td>Comparator</td>
<td>Continuous prophylactic treatment with:</td>
</tr>
<tr>
<td></td>
<td>propafenone</td>
</tr>
<tr>
<td></td>
<td>flecainide</td>
</tr>
<tr>
<td></td>
<td>beta blockers</td>
</tr>
<tr>
<td></td>
<td>sotalol</td>
</tr>
<tr>
<td></td>
<td>amiodarone</td>
</tr>
<tr>
<td></td>
<td>In-hospital episodic antiarrhythmic treatment:</td>
</tr>
<tr>
<td></td>
<td>propafenone</td>
</tr>
<tr>
<td></td>
<td>flecainide</td>
</tr>
<tr>
<td></td>
<td>beta-blockers</td>
</tr>
<tr>
<td></td>
<td>sotalol</td>
</tr>
<tr>
<td></td>
<td>amiodarone</td>
</tr>
<tr>
<td></td>
<td>Radiofrequency ablation (secondary comparator)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Mean time to conversion (from atrial fibrillation to normal sinus rhythm)</td>
</tr>
<tr>
<td></td>
<td>Conversion rates (from atrial fibrillation to normal sinus rhythm)</td>
</tr>
<tr>
<td></td>
<td>Number of hospital visits</td>
</tr>
</tbody>
</table>

effectiveness evidence is described in Appendix 3. An additional search was also undertaken, excluding the term ‘pill-in-the-pocket’ in order to identify economic evaluations and costing studies that include the comparator treatments (i.e. searches with the specific name of several drugs in order to capture all data about the interventions). It was envisaged that this information would be used to support the development of the economic model.

Methods for reviewing cost-effectiveness

Inclusion criteria

In addition to the inclusion criteria outlined in Table 3, the following criteria had to be met for inclusion in the review of cost effectiveness evidence:

Study design Full economic evaluations that compared two or more options and considered both costs and consequences including: cost-effectiveness analysis, cost-utility analysis, cost–benefit analysis and cost-minimisation analysis.

Data extraction

Where appropriate, data extraction was carried out by one reviewer (JH) and checked by another (CMS). Summary data were abstracted into predefined data extraction forms created within an ACCESS database.

Quality assessment and data analysis

No studies met the inclusion criteria and therefore no quality assessment of the studies could be undertaken. Data relevant to other aspects of the project are presented in tables.
Chapter 4
Review of published clinical effectiveness and cost-effectiveness evidence

Randomised controlled trial clinical evidence

The search strategies described in Appendix 3 identified 201 RCTs. None of the RCTs identified were appropriate for inclusion in the review as none of the studies compared PiP with any other treatment for PAF. No relevant studies were identified by the search for ongoing trials.

One of the 201 studies had been erroneously labelled as an RCT, but was in fact not a study, and included PiP as a treatment strategy; this investigation was conducted prior to the publication of the national guidelines. As it was not a study it was not considered to be eligible for inclusion in the review. However, this Italian paper looked specifically at the feasibility of a PiP strategy for the treatment of PAF and appears to be the sole evidence considered in Atrial fibrillation: national clinical guideline for management in primary and secondary care developed by the National Collaborating Centre for Chronic Conditions in 2006. The results of the Alboni et al. ‘before and after’ paper suggested that, in a carefully selected patient population, a PiP strategy could yield reduced inpatient admissions and A&E visits compared to IHT.

Of the 201 studies identified, 12 RCTs were deemed to be related to the decision problem as, although they did not include PiP as an intervention or comparator, they did include drugs used to treat PAF; summary data were abstracted from these studies (see Appendix 4, Table 39) in order to inform the development of the economic model only. The 12 RCTs were all conducted in a hospital setting prior to the publication of the national guidelines.

In summary, the evidence described in these studies indicates that flecainide and propafenone have similar effectiveness in relation to conversion to NSR up to 8 hours. Some studies report that intravenous flecainide shows higher conversion rates than oral flecainide and that oral flecainide shows similar conversion rates than intravenous propafenone. All studies assessing the efficacy of oral flecainide and propafenone reported favourable results in comparison to other treatment strategies. Oral sotalol was not found to be as efficacious as intravenous digoxin–quinidine.

Systematic review clinical evidence

The search strategies described in Appendix 3 identified 11 systematic reviews. Of these, five potentially relevant reviews were identified during the application of the inclusion/exclusion criteria (Table 4); only one of the reviews was published after the publication of the national guidelines. Again, none of the RCTs identified from these reviews were appropriate for inclusion in the review of clinical effectiveness as none compared PiP with any other treatment for PAF.

Four of the five reviews focused solely on oral AADs and, of these, three concluded that a single oral dose of propafenone was effective in converting PAF to NSR. One review also considered flecainide and concluded that as flecainide had more favourable pharmacokinetics it was preferred to propafenone.

Economic evidence

The search strategies described in Appendix 3 identified 11 potentially relevant economic evaluations. However, none of the economic evaluations identified were appropriate for inclusion in the review as none of the studies compared PiP with any other treatment for PAF.

An additional search of published references was undertaken to identify any relevant cost studies describing any treatment for PAF. This additional search was not restricted to studies only describing a PiP strategy, as the aim was to identify cost or cost-effectiveness studies that included other drugs used to treat PAF, with the objective of including any relevant data in the economic
In total, nine studies18–21,50–54 were identified and considered useful for the development of the economic model. Summary details of the nine studies are provided in Table 5. Only one of the studies21 was published prior to the publication of the national guidelines.3

\section*{Implications of the evidence found}

Owing to the lack of relevant information found in the published literature, we have had to use data from many different sources, which has lead us to make some assumptions. The resulting economic model has been built with these assumptions in mind and was based on the available information (e.g. probability of return to ‘post stroke no CAF’ health state after the second stroke, data from Lothian stroke registry)55 or extracting single probabilities from several studies which addressed similar, but not identical, objectives (e.g. probability of progressing to CAF from NSR, data taken from Kerr et al.9 and Ruigomez et al.4). Sometimes lack of available data might present some inconsistencies and these have been tested in the sensitivity analysis (SA) and probabilistic SA (PSA). In order to assess the quality of these studies, they have been classified in Table 41 according to the kind of study. The cohort studies have been assessed in Table 42, the RCT and non-RCT in Table 43 and the case–control study in Table 44 (all these tables are in Appendix 5). The Health Technology Assessment (HTA) report has been described in Table 5.
TABLE 5 Summary of relevant cost-effectiveness evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>Author</th>
<th>Relevancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-effectiveness of atrial fibrillation catheter ablation</td>
<td>Andrikopoulos et al. 2009</td>
<td>Review of studies describing the cost of AF catheter ablation</td>
</tr>
<tr>
<td>Epidemiology and economic burden of atrial fibrillation</td>
<td>Bajpai et al. 2007</td>
<td>Summary of data from other studies and focusing on US setting</td>
</tr>
<tr>
<td>Cost-effectiveness of radiofrequency catheter ablation for atrial fibrillation</td>
<td>Chan et al. 2006</td>
<td>Decision-analytic model to evaluate the cost-effectiveness of LACA in 55- and 65-year-old cohorts with AF at moderate and low stroke risk</td>
</tr>
<tr>
<td>Cost comparison of catheter ablation and medical therapy in atrial fibrillation</td>
<td>Khaykin et al. 2007</td>
<td>Cost-analysis of the population in CARAF registry</td>
</tr>
<tr>
<td>Cost comparison of ablation versus antiarrhythmic drugs as first-line therapy for atrial fibrillation: an economic evaluation of the RAAFT pilot study</td>
<td>Khaykin et al. 2009</td>
<td>Decision-analytic model using data on AF recurrence, hospitalisation rates, AAD use and treatment crossover rates derived directly from the Trial of RFA versus AAD as First-line Treatment of symptomatic atrial fibrillation (RAAFT)</td>
</tr>
<tr>
<td>The costs of care in atrial fibrillation and the effect of treatment modalities in Germany</td>
<td>McBride et al. 2009</td>
<td>A 6-month multicentre prospective observational cohort study with additional 3-month retrospective clinical data collection was performed in physician practices. Cost calculation was from the health-care payer perspective</td>
</tr>
<tr>
<td>Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation</td>
<td>Rodgers et al. 2008</td>
<td>Systematic review of clinical studies and economic evaluations of catheter ablation for AF and typical atrial flutter. A decision model was developed to evaluate a strategy of RFA compared with long-term AAD treatment alone in adults with paroxysmal AF</td>
</tr>
<tr>
<td>Costs of atrial fibrillation in five European countries: results from the Euro Heart Survey on atrial fibrillation</td>
<td>Ringborg et al. 2008</td>
<td>This is a bottom-up cost study conducted for the five largest contributors in terms of patients enrolled from the Euro Heart Survey on AF in 2003 and 2004</td>
</tr>
<tr>
<td>Cost analysis of catheter ablation for paroxysmal atrial fibrillation</td>
<td>Weerasooriya et al. 2003</td>
<td>The authors performed a retrospective cost comparison of RFA vs drug therapy for PAF</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drugs; AF, atrial fibrillation; CARAF, Canadian registry of atrial fibrillation; LACA, left atrial catheter ablation; PAF, paroxysmal atrial fibrillation; RFA, radiofrequency ablation.
Chapter 5

Methods for economic evaluation and development of an economic model

Objective

The objective of this economic evaluation was to build a long term economic model in order to examine differences between three PAF strategies (PiP, AAD and IHT) in terms of cost per quality-adjusted life-year (QALY).

Economic evaluation framework

Treatment strategies

The three strategies to be compared were:

1. Pill-in-the-pocket

When a patient first experiences an episode of PAF, he or she is treated in hospital or possibly by a GP. The patient is then directed by the hospital consultant to take a single oral dose of a drug (flecainide or propafenone) each time he or she feels symptoms of tachycardia in order to try to cardiovert new PAF event recurrences. The patient must rest after taking the drug for at least 4 hours or until the palpitations have stopped. After this, the PAF event usually resolves, but a range of scenarios can occur:

(i) The patient’s NSR returns.
(ii) The PiP does not work and the patient has to attend hospital for electrical DC cardioversion followed by 4 weeks of warfarin treatment.
(iii) The patient suffers a proarrhythmia event and needs to attend hospital for electrical DC cardioversion with warfarin treatment.
(iv) The patient suffers a minor AE (this is not included in the model).

Following events (ii) or (iii), the patient may either progress to persistent chronic AF (CAF in the model) or the patient may return to NSR. The patient could also suffer a stroke, a potentially serious consequence of PAF. If a stroke is suffered, the patient begins oral anticoagulation treatment with warfarin. After the first stroke, the patient will progress to the CAF state if the stroke is severe, or receive PiP treatment if the stroke is less severe. The model also allows a patient to suffer a subsequent stroke if the patient returned to PiP treatment after the first stroke. The reason for this is that the model is focused on the PiP strategy in PAF, not in CAF. As a consequence of oral anticoagulation treatment the patient can suffer bleeding events. Patients can also die from any cause. All patients in the three strategies who progress to CAF exchange their current drug treatment or episodic IHT for a rate control treatment consisting of a daily dose of beta-blocker or calcium-channel blocker (Appendix 6, Figure 4).

2. Antiarrhythmic drug treatment

In this strategy, the patient takes a drug (flecainide or propafenone) every day in order to reduce the frequency of PAF event recurrences. The possible scenarios are:

(i) The patient can suffer a proarrhythmia due to the drug intake and therefore may need treatment in hospital (electrical DC cardioversion) after which the patient may progress to CAF or return to NSR.
(ii) The patient can have a PAF event and need in-hospital chemical cardioversion (conversion to NSR with an intravenous drug treatment) or more likely an electrical DC cardioversion. After this cardioversion, the patient can return to NSR or progress to CAF if treatment fails. As in the PiP strategy, the patient can suffer from a stroke and stroke-related consequences (Appendix 6, Figure 5).

3. In-hospital treatment

This arm represents the patient going to hospital for emergency treatment whenever he or she feels symptoms to receive chemical cardioversion (conversion into a NSR with an intravenous drug treatment). The possible scenarios are then:

(i) The chemical cardioversion does not work (10–20% of patients) and the patient receives an electrical DC cardioversion, returning to NSR or progressing to CAF if DC cardioversion fails.
(ii) The patient can suffer a proarrhythmic AE during the treatment of the PAF event and need an electric DC cardioversion after which he or she moves to CAF or returns to NSR. The remaining pathways are similar to the other two strategies (Appendix 6, Figure 6).

Radiofrequency ablation was not considered as a strategy in the economic model for two reasons: firstly, there was very limited published evidence on clinical effectiveness, and secondly, the population characteristics of published economic evaluations and clinical studies describing RFA were very different from those described in the PiP protocol, i.e. the population in most of the RFA trials has been in AAD before randomisation and only a few of the trials have 100% of patients in PAF.

A summary of the different treatments at every stage is provided in Table 6. The pathways and events related to stroke events are not shown as there is no difference between strategies in relation to strokes.

Population

People with PAF who:

- have no history of left ventricular dysfunction, or valvular or ischaemic heart disease
- have a history of infrequent symptomatic episodes of PAF
- have a systolic blood pressure > 100 mmHg and a resting heart rate above 70 beats per minute
- are able to understand how, and when, to take the medication
- have no history of atrial flutter.

The patient characteristics described in the protocol are not matched by the patient populations described in any of the clinical or cost studies retrieved by the searches. The patient characteristics were extracted directly from the National Institute for Health and Clinical Excellence (NICE) clinical guideline on AF which defines the patient characteristics of people receiving PiP treatment. Consequently, all of the parameters used in the economic model are derived using the best data approximations from a range of available published clinical and cost studies.

The population in the economic model has a mean age of 60 years and includes 58% male patients as described in the Alboni et al. study. The model only takes account of gender in relation to risk of death, allowing the simulation of a cohort of women or men. The model is used to simulate a cohort of 1000 patients.

Study perspective

The economic evaluation has been undertaken from an NHS and Personal Social Services perspective.

<table>
<thead>
<tr>
<th>TABLE 6 Summary of stages in all strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategies</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>PiP</td>
</tr>
<tr>
<td>AAD</td>
</tr>
<tr>
<td>IHT</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drugs; CAF, chronic atrial fibrillation; DC, direct current; IHT, in-hospital treatment; IV, intravenous; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.
Time horizon

The model has been developed with a cycle length of 1 year and is simulated for the remaining lifetime of all patients.

Model framework

A Markov model was constructed to carry out the economic evaluation. A Markov model structure was chosen because it is assumed that PAF is a condition that causes patients to move between a limited number of relevant health states during their lives. This type of model allows a large number of cycles to be simulated without the need to create a new decision tree in each cycle.

The three PAF strategies described above have the same five health states:

- **NSR**: Patients enter the model in this state following successful treatment of their first PAF event.

- **Persistent/chronic AF**: This state follows progression of the condition due to proarrhythmia or failure of PAF treatment, or simply because PAF naturally tends to progress over time. People in this state are switched from their initial treatment strategy to rate control treatment (beta-blocker or calcium-channel blocker). This change follows the current national clinical guideline for management of AF in primary and secondary care.3

- **Post-stroke without CAF (returning to PiP, AAD or IHT strategy)**: Any patient can suffer a mild stroke/transient ischaemic attack (remaining independent). In this health state, patients can suffer the same events as in NSR and may also experience bleeding events due to oral anticoagulation treatment (warfarin).

- **Post-stroke with CAF**: Patients enter this state after a moderate or severe stroke (dependent patient). Patients are similar to those patients in post-stroke without CAF, but patients are receiving both oral anticoagulation treatment and rate control treatment.

- **Death state**: This is the absorbent state. Patients may die from any other state with a general population mortality risk, or with a specific mortality risk related to a particular condition (e.g., stroke, AF).

While in these states patients may suffer from a variety of events depending on the strategy:

- **Initial stroke**: This event is common to all strategies and is one of the most important events affecting PAF patients.

- **Subsequent stroke**: Any event occurring after recovery from an initial stroke.

- **PAF**: PAF is a recurrent PAF event.

- **AE**: The main AE that a patient can suffer related to AADs is proarrhythmia. Other minor AEs can be present, but owing to their small cost and minor clinically importance, the model only takes account of proarrhythmia as an AE.

- **Bleeding events**: These can occur in all three strategies and are related to the warfarin treatment administered to all patients following a stroke.

Parameters

All the parameters used in the model are listed with their sources with details presented in Tables 7–12. Parameters are derived from different sources owing to the lack of a single RCT to provide data on all the events needed to reflect the natural pathways of the disease and its treatment. Although the best data approximation has been attempted, a number of assumptions have been made in the development of the model. In the three strategies, some transition probabilities have been calculated based on the progression to CAF and the risk of death: this is because the latter changes over time and therefore the former needs to be able to reflect these changes. All probabilities are shown in Table 7.

Costs

- The cost of a chemical cardioversion in IHT strategy has been assumed equivalent to the cost of an ‘Arrhythmia or Conduction Disorders without CC’ in the 2007–8 NHS Reference Costs56 and inflated to 2009 prices.

- The cost of being in the CAF state has been assumed to be the cost of treatment with sotalol 240mg/day, but following recommendations from the clinical advisor, SA has been carried out using atenolol 50mg or diltiazem LA 200mg once a day. The annual cost of being in NSR in the PiP and IHT strategies is assumed to be zero, because patients do not receive any drugs in the absence of PAF events.

- The cost of a PAF event depends on the strategy: PiP costs are related only to the drug dose. IHT and AAD costs are those associated with hospital treatment of the event as stated previously.
The cost associated with a stroke death has been included in order to reflect the use of resources from stroke until death, but no other costs for any other causes of death have been estimated. This is an acceptable approximation which has been found to have very little effect on the results of the model.

Utility
- The utility of death has been assumed to be zero.
- The disutility of suffering a PAF event has been assumed to be 7 days with the value of PAF (the maximum number of days a patient can be in AF before he or she progresses to CAF). 3
- The disutility of suffering a proarrhythmia event has been assumed to be equivalent to 1 additional day in hospital after a PAF event.
- The disutility associated with the failure of PAF treatment and consequent electrical DC cardioversion has been assumed to be equivalent to 1 additional day in hospital for patients in all strategies.
- The disutility value of having suffered a stroke is assumed to be 0.38 (the utility value associated with a dependent patient after a stroke). 5
- To estimate the disutility associated with a bleeding event, it is assumed that a patient’s previous utility value is reduced by 15% for 5 days. 6

Transition probabilities
The transition probabilities used in the economic model have been estimated from several sources, but are derived mainly from the Alboni et al. study. 22 The transition probabilities that relate to stroke events have been calculated from several registries. 55,58-60 To estimate the rates of disease progression, data from a UK general practice registry of AF 2 have been used alongside data from the Canadian AF registry. 2 These are the most populated published registries as well as the most cited in the economic evaluation study from Rodgers et al., 53 which is a systematic review and economic evaluation of curative catheter ablation in AF and atrial flutter, comparing ablation with long-term antiarrhythmic treatment. Some transition probabilities have been taken from a previous HTA report describing catheter ablation versus AAD. 53 This data source has been used primarily because of the limited data available to describe the PAF population specified in the NICE guidance 4 and also in the protocol.

The probability of remaining in NSR in the IHT and PiP strategies is assumed to be the same, but differs in the AAD strategy because (owing to the medication) the probability of remaining in NSR is higher. This is based on results of an RCT described by Pappone et al. 61 in which all the patients were in PAF and the main outcome was freedom from arrhythmia at 12 months.

The risk of bleeding has been calculated from a recent paper on bleeding risks associated with warfarin treatment, 62 which describes the risk of bleeding in people with AF in a UK setting. Because only 10% of the population in the published study had PAF and the mean age was 72.3 (standard deviation 10.3) years, an SA has been carried out as part of the economic evaluation to test the robustness of the model results to this parameter.

When treating PAF events, it is assumed that all of the available drugs are equally efficacious as used in all three strategies, because all the drugs (either oral or intravenous administration) achieve similar conversion rates within 24/48 hours. 10-16 It is also assumed that the probability of progressing from PAF to CAF is the same in the three strategies. The risk of death in the NSR state is taken to be the risk of death in the general population, taken from published mortality rates. 63 This assumption is based on the paper by Ruigomez et al. 4 which states that the RR of death from CAF versus PAF is 1.5. Finally, the transition probabilities from post-stroke without CAF (PiP, AAD or IHT) are assumed to be the same as in the NSR state, with the exception of the risk of bleeding, 62 risk of death 55 and risk of a new stroke 55,59 where the probabilities have been estimated from the published literature. All transition probabilities are listed in Tables 7-10.

The rate of progression from AF to CAF has been calculated from the paper by Ruigomez et al., 4 which relates to a follow-up period of more than 4 years, and appears to indicate the presence of a long-term plateau in risk. However, clinical advice suggests that in clinical practice this effect is not apparent, and there seems to be a continuous upward trend in the risk of progression to persistent AF. To take account of this advice, an exponential function has been fitted to the data from the Ruigomez et al. paper 4 as shown in Figure 1. The model employs the original data for the first 4 years, combined with exponential projections thereafter with a maximum probability of progression of 45% (year 10).
FIGURE 1 Progression chart – progression to chronic atrial fibrillation.

TABLE 7 Transition probabilities used in all strategies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of keeping an NSR in IHT and PiP</td>
<td>0.1952</td>
<td>Alboni 2004(^{22})</td>
</tr>
<tr>
<td>Probability of dying from post-stroke state in all strategies</td>
<td>0.25</td>
<td>Wardlaw 1998(^{58})</td>
</tr>
<tr>
<td>Probability of progressing after a (moderate and severe) stroke all strategies</td>
<td>0.3809</td>
<td>SPAF 1991(^{40})</td>
</tr>
<tr>
<td>Probability of first stroke in all strategies</td>
<td>0.022</td>
<td>SPAF 1998(^{57})</td>
</tr>
<tr>
<td>Probability of dying after being in post-stroke + CAF in all strategies</td>
<td>0.3750</td>
<td>Wardlaw 1998,(^{58}) Ruigomez 2005(^{4})</td>
</tr>
<tr>
<td>Probability of return to NSR after a stroke in all strategies</td>
<td>0.5714</td>
<td>SPAF 1991(^{40})</td>
</tr>
<tr>
<td>Probability of death from NSR in all strategies (all-cause death)</td>
<td>Death risk (life tables)</td>
<td>Mortality rates(^{63})</td>
</tr>
<tr>
<td>Probability of first stroke in all strategies</td>
<td>0.022</td>
<td>SPAF 1998,(^{58})</td>
</tr>
<tr>
<td>Probability of death from CAF (RR = 1.5 risk of death) in all strategies</td>
<td>RR × life tables</td>
<td>Ruigomez 2005(^{4})</td>
</tr>
<tr>
<td>Probability of progressing to CAF from NSR in all strategies</td>
<td>Mean_progression</td>
<td>Kerr 2005,(^{5}) Ruigomez 2005(^{4})</td>
</tr>
<tr>
<td>Probability of progressing to CAF from post-stroke in all strategies</td>
<td>Mean_progression</td>
<td>Kerr 2005,(^{5}) Ruigomez 2005(^{4})</td>
</tr>
<tr>
<td>Probability of suffering a second stroke from post-stroke in all strategies</td>
<td>0.0175</td>
<td>Wardlaw 1998,(^{58}) Birman-Deych 2006(^{59})</td>
</tr>
<tr>
<td>Probability of keeping post-stroke state in PiP and IHT strategies (after the first stroke)</td>
<td>0.1952</td>
<td>Alboni 2004(^{22})</td>
</tr>
<tr>
<td>Risk of a bleeding event in all strategies</td>
<td>0.0965</td>
<td>Wallerstedt 2009(^{62})</td>
</tr>
<tr>
<td>Probability of dying after the first stroke in all strategies</td>
<td>0.0476</td>
<td>SPAF 1991(^{40})</td>
</tr>
<tr>
<td>Probability of progress post-CAF after the second stroke</td>
<td>0.29</td>
<td>SPAF 1998(^{67})</td>
</tr>
<tr>
<td>Probability of dying after the second stroke</td>
<td>0.25</td>
<td>Wardlaw 1998(^{58})</td>
</tr>
<tr>
<td>Probability of return to post-stroke no CAF after the second stroke in all strategies</td>
<td>0.46</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

CAF, chronic atrial fibrillation; IHT, in-hospital treatment; NSR, normal sinus rhythm; PiP, pill-in-the-pocket; RR, relative risk; SPAF, Stroke Prevention in Atrial Fibrillation study.
TABLE 8 Transition probabilities used in the PiP strategy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of efficacy of the PAF treatment</td>
<td>0.9455</td>
<td>Alboni 200442</td>
</tr>
<tr>
<td>Probability of proarrhythmia</td>
<td>0.0061</td>
<td>Alboni 200442</td>
</tr>
<tr>
<td>Probability of return to NSR after proarrhythmia event</td>
<td>1.00</td>
<td>Alboni 200442</td>
</tr>
<tr>
<td>Probability of progressing to CAF after proarrhythmia event</td>
<td>0.00</td>
<td>Alboni 200442</td>
</tr>
<tr>
<td>Probability of PAF treatment fail</td>
<td>1 – probability of proarrhythmia Probability of efficacy</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of return to NSR after electrical DC cardioversion</td>
<td>0.7820</td>
<td>Dankner 200965</td>
</tr>
<tr>
<td>Probability of progressing to CAF after DC electrical cardioversion</td>
<td>0.2180</td>
<td>Dankner 200965</td>
</tr>
<tr>
<td>Probability of recurrences</td>
<td>1 – probability of keeping NSR Probability of a stroke Mean_progression Mortality risk</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of keeping CAF state</td>
<td>1 – relative risk × life table mortality risk</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of being in post-CAF</td>
<td>1 – probability of dying after being in post-stroke CAF</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of recurrences after post-stroke</td>
<td>1 – probability of keeping post + PiP Probability of suffering a new stroke in post + PiP Risk of bleeding event Probability of dying post + PiP Mean_progression risk</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

CAF, chronic atrial fibrillation; DC, direct current; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.

Model validation

The model has been validated clinically by a clinical advisor and methodologically by the LRiG team.

Clinical outcome data

Clinical outcomes in published studies

The main clinical effectiveness outcomes in the published studies and therefore considered in this economic evaluation were:

- mean time to conversion (from AF to NSR)
- conversion rates (from AF to NSR)
- frequency of hospital visits
- frequency of recurrences
- HRQoL
- all-cause death
- progression to chronic condition of AF
- AEs rate:
 - conversion to atrial flutter
 - proarrhythmia
 - thromboembolic events.

Efficacy

Conversion rates from AF to NSR appear to be very similar for each of the drugs employed in the three strategies,11–13,15–23,24 as described by the papers summarised in the literature search. In all cases, the conversion rates are very similar at 8 hours between intravenous and oral administration of flecainide and propafenone. However, there are no published studies that directly compare the three strategies in terms of clinical effectiveness.

In order to reflect the HRQoL associated with the three strategies, the number of PAF recurrences, rate of all-cause death, progression rate from PAF to CAF and a range of AEs are taken into account in the model as they affect the estimates of the QALYs used to calculate incremental cost-effectiveness ratios (ICERs) in the economic evaluation.
TABLE 9 Transition probabilities used in the IHT strategy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of efficacy of the PAF treatment</td>
<td>0.5920</td>
<td>Dankner 2009 (^{65})</td>
</tr>
<tr>
<td>Probability of proarrhythmia</td>
<td>0.006</td>
<td>Kaufman 2009 (^{66})</td>
</tr>
<tr>
<td>Probability of return to NSR after proarrhythmia</td>
<td>1.00</td>
<td>Alboni 2004 (^{22})</td>
</tr>
<tr>
<td>Probability of progressing to CAF after proarrhythmia</td>
<td>0.00</td>
<td>Alboni 2004 (^{22})</td>
</tr>
<tr>
<td>Probability of PAF treatment fail</td>
<td>(1 - \text{probability of proarrhythmia} \times \text{probability of efficacy})</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of return to NSR after DC electrical cardioversion</td>
<td>0.7820</td>
<td>Dankner 2009 (^{65})</td>
</tr>
<tr>
<td>Probability of progressing to CAF after electrical DC cardioversion</td>
<td>0.2180</td>
<td>Dankner 2009 (^{65})</td>
</tr>
<tr>
<td>Probability of recurrences</td>
<td>(1 - \text{mean progression} \times \text{mortality risk} \times \text{probability of keeping NSR} \times \text{probability of a stroke})</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of keeping CAF state</td>
<td>(1 - \text{relative risk} \times \text{life table mortality risk})</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of being in post-CAF</td>
<td>(1 - \text{probability of dying after being in post-stroke CAF})</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of recurrences after post-stroke</td>
<td>(1 - \text{probability of keeping post + IHT} \times \text{probability of suffering a new stroke in post + IHT})</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Risk of bleeding event</td>
<td>Probability of dying post + IHT \times \text{mean progression risk}</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

CAF, chronic atrial fibrillation; DC, direct current; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.

Health-related quality of life

Health-related quality of life data used in the model were estimated from several published papers that have reported the results of Short Form questionnaire-36 items (SF-36) and Short Form-6 Dimensions (SF-6D) surveys in patients with AF \(^{67,68}\). From the paper of Dorian et al.,\(^ {67}\) SF-6D scores were taken and transformed into a single index using the algorithm published by Ara et al.,\(^ {69}\) in order to calculate the utility value associated with being in AF. The utility value associated with being in NSR was taken from McKenna et al.;\(^ {70}\) this author reviewed the literature, searching for the best data related to the NSR state and this value was used in the model. The disutility associated with each event was calculated by estimating the number of days spent suffering from the event and multiplying the transformed utility value by this number of days. The number of days in every event was taken from McKenna et al.;\(^ {70}\) and the utility values for post-stroke health states from Dorman et al.\(^ {69}\) All HRQoL data are listed in Table 11.

All QALYs have been discounted using a 3.5% annual rate.

Costs

Where appropriate, costs have been extracted mainly from NHS reference cost 2008/09 documents\(^ {56}\) and the British National Formulary from 2009;\(^ {17}\) the costs of treatments and drugs were inflated as required.

To estimate the costs of stroke events, the number of days in hospital for patients after a mild stroke, after a severe or moderate stroke, and dying following a stroke, have been taken from the Lothian Stroke Registry\(^ {55}\) and have been multiplied by the daily average cost of inpatient treatment in a stroke unit and a general ward as described by Saka et al.,\(^ {71}\) The study by Saka et al.,\(^ {71}\) is a recent study of the cost of stroke in the UK using mean unit costs. All costs have been inflated to reflect 2009 prices.
TABLE 10 Transition probabilities used in the AAD strategy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of efficacy of PAF treatment (electrical DC cardioversion)</td>
<td>0.7820</td>
<td>Dankner 2009[65]</td>
</tr>
<tr>
<td>Probability of keeping an NSR</td>
<td>0.3535</td>
<td>Pappone 2006[61]</td>
</tr>
<tr>
<td>Probability of proarrhythmia</td>
<td>0.006</td>
<td>Kaufman 2009[66]</td>
</tr>
<tr>
<td>Probability of returning to NSR post proarrhythmia</td>
<td>1.00</td>
<td>Rodgers 2008[63]</td>
</tr>
<tr>
<td>Probability of progressing to CAF after proarrhythmia</td>
<td>0.00</td>
<td>Rodgers 2008[63]</td>
</tr>
<tr>
<td>Probability of recurrences</td>
<td>1 – mean progression</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of keeping CAF state</td>
<td>1 – relative risk × life table mortality risk</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of keeping post-stroke (after the first stroke)</td>
<td>0.3535</td>
<td>Alboni 2004[22]</td>
</tr>
<tr>
<td>Probability of being in post-CAF</td>
<td>1 – probability of dying after being in post-stroke CAF</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of recurrences after post-stroke</td>
<td>1 – probability of keeping post + AAD</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of suffering a new stroke in post + AAD</td>
<td>Probability of a stroke</td>
<td></td>
</tr>
<tr>
<td>Probability of dying post + AAD</td>
<td>Risk of bleeding event</td>
<td></td>
</tr>
<tr>
<td>Probability of dying post + AAD</td>
<td>0.00</td>
<td>Eckman 2009[63]</td>
</tr>
<tr>
<td>Probability of progression after DC cardioversion due to PAF event</td>
<td>0.2180</td>
<td>Dankner 2009[65]</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; CAF, chronic atrial fibrillation; DC, direct current; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation.

TABLE 11 Utility values used in the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility value of being in CAF state</td>
<td>0.71</td>
<td>Dorian 2000[67]</td>
</tr>
<tr>
<td>Utility of being dependent after a stroke</td>
<td>0.38</td>
<td>LSR-Dorman 2000[63]</td>
</tr>
<tr>
<td>Utility of being independent after a stroke</td>
<td>0.74</td>
<td>LSR-Dorman 2000[63]</td>
</tr>
<tr>
<td>Utility during AF event</td>
<td>0.71</td>
<td>Dorian 2000[67]</td>
</tr>
<tr>
<td>Utility in NSR</td>
<td>0.89</td>
<td>Rienstra 2006[72]</td>
</tr>
<tr>
<td>Utility of death</td>
<td>0</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Loss of utility for suffer a PAF event (7 days: maximum number of days in</td>
<td>0.0035</td>
<td>Author assumption</td>
</tr>
<tr>
<td>the definition of PAF in the national clinical guideline[3])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of utility for suffer a proarrhythmia event (1-day more with AF utility)</td>
<td>0.0005</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Loss of utility for suffer a bleeding (5 days with a 15% reduction in previous utility)</td>
<td>0.0015</td>
<td>Eckman 2009[63]</td>
</tr>
<tr>
<td>Loss of utility due to the fail of the PAF treatment</td>
<td>0.0005</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; CAF, chronic atrial fibrillation; LSR, Lothian Stroke Registry; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation.
The annual cost of being in a health state following either a mild stroke or a moderate-to-severe stroke has been calculated using the annual cost of stroke from Saka et al.71 and from the Chambers et al.73 model.

The costs of PAF events in the PiP strategy involve only the cost of a single dose of the drug treatment prescribed. In the AAD strategy, the PAF cost consists of the cost of an A&E visit and the cost of electrical DC cardioversion because the daily treatment has not prevented the event, or the cost of electrical DC cardioversion because the patient is experiencing symptoms. In the IHT strategy, the cost of the PAF event is the cost of a chemical cardioversion as first treatment, and an electrical DC cardioversion if the former fails (see Table 12).

The cost of treating proarrhythmia in all strategies has been assumed to be equal to the cost of an electrical DC cardioversion procedure plus the cost of the 4-week warfarin treatment as stated in the NHS reference costs 2008/09.51 Other relevant prices and costs have been taken from the published literature and are presented in Table 12.

All costs have been discounted using a 3.5% annual rate.

TABLE 12 Cost parameters used in the model in all strategies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>All strategies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual cost of long-term care in post-stroke CAF (dependent)</td>
<td>£9334.98</td>
<td>Chambers et al. model, Saka 200971</td>
</tr>
<tr>
<td>Annual cost of long-term care in post-stroke (independent)</td>
<td>£724.20</td>
<td>Chambers et al. model, Saka 200971</td>
</tr>
<tr>
<td>Cost of a stroke dependent event (51 days inpatient stay)</td>
<td>£8181.61</td>
<td>Wardlaw 1998, Saka 200971</td>
</tr>
<tr>
<td>Cost of a stroke independent event (14 days inpatient stay)</td>
<td>£2245.93</td>
<td>Wardlaw 1998, Saka 200971</td>
</tr>
<tr>
<td>Cost of a stroke event followed by death (33 days inpatient stay)</td>
<td>£5293.98</td>
<td>Wardlaw 1998, Saka 200971</td>
</tr>
<tr>
<td>Annual cost of being in CAF (rate control drug sotalol 240 mg daily)</td>
<td>£38.91</td>
<td>British National Formulary17</td>
</tr>
<tr>
<td>Annual cost of warfarin treatment</td>
<td>£3.95</td>
<td>Abdelhafiz 200374</td>
</tr>
<tr>
<td>Cost of bleeding events prices 2009</td>
<td>£102.93</td>
<td>Abdelhafiz 200374</td>
</tr>
<tr>
<td>PiP strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of PAF event in PiP (cost of flecainide 100 mg 60-tablet pack = £15.04) (2009)</td>
<td>£0.75</td>
<td>British National Formulary17</td>
</tr>
<tr>
<td>Cost of proarrhythmia event (electrical cardioversion plus warfarin)</td>
<td>£741.37</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Cost of PAF treatment fail (electrical cardioversion plus warfarin)</td>
<td>£741.37</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Annual cost of being in NSR in PiP</td>
<td>£0.00</td>
<td>Author assumption</td>
</tr>
<tr>
<td>AAD strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of PAF event in AAD (90% patients electrical cardioversion plus warfarin and 10% pharmacological cardioversion)</td>
<td>£703.55</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Cost of proarrhythmia event in AAD (electrical cardioversion plus warfarin)</td>
<td>£741.37</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Annual cost of being in NSR in AAD (200 mg daily of flecainide)</td>
<td>£182.99</td>
<td>British National Formulary17</td>
</tr>
<tr>
<td>IHT strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of PAF event in IHT returning to NSR (cost of an intravenous infusion A&E room)</td>
<td>£363.15</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Cost of proarrhythmia event (electrical cardioversion plus warfarin)</td>
<td>£741.37</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Cost of PAF treatment fail (electrical cardioversion plus warfarin)</td>
<td>£741.37</td>
<td>NHS reference costs 2008/0954</td>
</tr>
<tr>
<td>Annual cost of being in NSR in IHT</td>
<td>£0.00</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; A&E, accident and emergency; CAF, chronic atrial fibrillation; IHT, in-hospital treatment; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.
Chapter 6
Economic evaluation and economic model: results

The results of the cost-effectiveness analyses are summarised below showing mean costs, life-years and QALYs per patient and the resulting incremental ICERs.

Base-case analysis

The results of the simulated cohort of patients (1000 patients) are presented in Table 13.

In the base-case analysis, the PiP strategy results in lower costs (more than £800 per patient), but is less clinically effective (QALYs) than the other strategies. The main cost differences are due to the cost of daily prophylactic treatment in the AAD strategy and the cost of treating PAF events in the IHT strategy. The differences in ‘time in states’ (deaths, patients progressing to CAF and QALYs) between the three treatments are very small (Table 14). Also ‘time in state’ in NSR differs between strategies mainly because of the relative effectiveness of PAF treatment which is better in PiP and worse in AAD and in IHT.

The number of recurrences in the AAD strategy (Table 13) is low because the prophylactic treatment reduces the risk of new events. The number of proarrhythmia events in AAD strategy is higher than in the other two strategies because there are more patients at risk in the AAD option. There is a marked difference in the number of PAF treatment failures, as a consequence of the differences in efficacy between the three strategies (see Table 7).

Table 16 shows the proportion of patients returning to NSR following a proarrhythmia event, or PAF treatment failure or success. The main difference lies in the proportion of patients who return to NSR after successful treatment of a PAF recurrence. IHT has a poorer outcome because chemical cardioversion (used in the treatment of PAF events in the IHT strategy) is less effective than the PAF treatment used in the other two strategies (single drug dose in PiP, and electrical DC cardioversion in AAD).

Table 17 indicates that the majority of health costs are incurred while patients are in NSR, progressive

Table 13 Results from the model (per patient)

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Mean cost</th>
<th>Mean life-years</th>
<th>Mean QALYs</th>
<th>Incremental cost (vs PiP)</th>
<th>Incremental QALYs (vs PiP)</th>
<th>ICER (£/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>17.01</td>
<td>9.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>17.10</td>
<td>9.23</td>
<td>+£876.92</td>
<td>+0.02</td>
<td>£45,915.84</td>
</tr>
<tr>
<td>IHT</td>
<td>£2340.13</td>
<td>17.06</td>
<td>9.29</td>
<td>+£843.37</td>
<td>+0.07</td>
<td>£12,423.61</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket; QALY(s), quality-adjusted life-year(s).

Table 14 Time spent in health states in the model by strategy (months)

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>NSR</th>
<th>Progressive CAF</th>
<th>Post-stroke CAF</th>
<th>Post-stroke without CAF</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP</td>
<td>3220</td>
<td>13,588</td>
<td>98</td>
<td>100</td>
<td>29,993</td>
</tr>
<tr>
<td>AAD</td>
<td>2274</td>
<td>14,677</td>
<td>76</td>
<td>80</td>
<td>29,902</td>
</tr>
<tr>
<td>IHT</td>
<td>2683</td>
<td>14,198</td>
<td>86</td>
<td>89</td>
<td>29,943</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; CAF, chronic atrial fibrillation; IHT, in-hospital treatment; PiP, pill-in-the-pocket.
TABLE 15 Number of estimated events by strategy

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>PAF recurrences</th>
<th>PAF treatment failures</th>
<th>Proarrhythmia</th>
<th>Strokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP</td>
<td>2422</td>
<td>117</td>
<td>15</td>
<td>93</td>
</tr>
<tr>
<td>AAD</td>
<td>1403</td>
<td>306</td>
<td>20</td>
<td>72</td>
</tr>
<tr>
<td>IHT</td>
<td>2153</td>
<td>865</td>
<td>13</td>
<td>81</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; IHT, in-hospital treatment; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.

TABLE 16 Effectiveness of treatment strategies in restoring NSR following PAF recurrence or proarrhythmia

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>PAF recurrences</th>
<th>Number of patients Returning to NSR after proarrhythmia</th>
<th>Returning to NSR after PAF treatment failure</th>
<th>Returning to NSR after PAF treatment success</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP</td>
<td>2422</td>
<td>15 (100%)</td>
<td>92 (78.2%)</td>
<td>2290 (94.55%)</td>
</tr>
<tr>
<td>AAD</td>
<td>1403</td>
<td>20a (100%)</td>
<td>NAa (100%)</td>
<td>1097 (78.20%)</td>
</tr>
<tr>
<td>IHT</td>
<td>2153</td>
<td>13 (100%)</td>
<td>677 (78.2%)</td>
<td>1275 (59.20%)</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; IHT, in-hospital treatment; NA, not applicable; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.
a Proarrhythmia in AAD strategy occurs when the patient is in NSR with daily medication.
b In AAD strategy when PAF treatment fails patients progress to CAF.

CAF or post-stroke CAF states. PiP treatment costs in the NSR state are low because the cost of PAF treatment is cheap compared with the other two strategies (single drug dose versus electrical DC cardioversion or chemical cardioversion), avoiding most hospital admissions for PAF recurrences.

Costs in the progressive CAF state involve the cost of daily rate control treatment together with the transitional costs of patients suffering proarrhythmic events or PAF treatment failures.

In the post-stroke CAF health state, costs are higher for PiP than for the other two strategies, because PiP has more patients in this state (see Table 14).

Costs in the post-stroke without CAF state relate to patients suffering a non-fatal stroke who have NSR restored and return to their original treatment strategy.

Table 18 shows that the differences between treatment strategies in terms of estimated QALYs per patient are very small, and arise predominantly from the balance of time spent in NSR or with progressive CAF: PiP maximises utility in NSR, whereas AAD leads to the largest expected utility in the progressive CAF state.

Deterministic sensitivity analysis

Several SAs were conducted to test the influence of key assumptions and to investigate the impact of data uncertainty on the results of the cost-effectiveness analyses. One-way deterministic SA was carried out on the following parameters:

- risk of bleeding events
- effectiveness of proarrhythmia treatment in returning patients to the NSR state
- utility value of stroke
- gender and age of population
- annual cost of CAF drug treatment
- utility index value
- progression to CAF.

Risk of bleeding

In the source paper for the risk of bleeding, only 10% of the population had PAF. In order to explore the uncertainty around this parameter, the size of the risk was varied by 50% and the effect on the ICER (cost/QALY ratio) calculated. As Table 19 shows, there are no significant changes to cost-effectiveness in any of the strategies.
TABLE 17 Summary of estimated health-state costs per patient

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>NSR</th>
<th>Progressive CAF</th>
<th>Post-stroke CAF</th>
<th>Post-stroke without CAF</th>
<th>Death*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP (% of total)</td>
<td>£80.61 (4.50%)</td>
<td>£529.40 (29.54%)</td>
<td>£1019.23 (57%)</td>
<td>£158.21 (8.83%)</td>
<td>£30.04 (1.68%)</td>
<td>£1817.48</td>
</tr>
<tr>
<td>AAD (% of total)</td>
<td>£974.29 (36.17%)</td>
<td>£793.54 (29.46%)</td>
<td>£785.87 (29%)</td>
<td>£138.93 (5.19%)</td>
<td>£23.46 (0.87%)</td>
<td>£2712.16</td>
</tr>
<tr>
<td>IHT (% of total)</td>
<td>£974.16 (36.37%)</td>
<td>£670.80 (25.04%)</td>
<td>£886.87 (33.11%)</td>
<td>£138.93 (5.19%)</td>
<td>£26.37 (0.98%)</td>
<td>£2697.13</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; CAF, chronic atrial fibrillation; IHT, in-hospital treatment; NSR, normal sinus rhythm; PiP, pill-in-the-pocket.

*a The costs of death are only those related to the cost of a fatal stroke.

TABLE 18 Summary of estimated health-state QALYs per patient

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>NSR</th>
<th>Progressive CAF</th>
<th>Post-stroke CAF</th>
<th>Post-stroke without CAF</th>
<th>Death*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP (% of total)</td>
<td>2.784 (22.15%)</td>
<td>9.339 (74.30%)</td>
<td>0.030 (0.24%)</td>
<td>0.053 (0.42%)</td>
<td>0.353 (2.81%)</td>
<td>12.559</td>
</tr>
<tr>
<td>AAD (% of total)</td>
<td>1.904 (15.10%)</td>
<td>10.261 (81.41%)</td>
<td>0.024 (0.19%)</td>
<td>0.047 (0.37%)</td>
<td>0.360 (2.86%)</td>
<td>12.596</td>
</tr>
<tr>
<td>IHT (% of total)</td>
<td>2.381 (18.82%)</td>
<td>9.831 (77.69%)</td>
<td>0.027 (0.22%)</td>
<td>0.052 (0.41%)</td>
<td>0.353 (2.79%)</td>
<td>12.644</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; CAF, chronic atrial fibrillation; IHT, in-hospital treatment; NSR, normal sinus rhythm; PiP, pill-in-the-pocket.

*a The QALYs assigned to death are only those related to a fatal stroke episode.

TABLE 19 Sensitivity analysis: changing the risk of bleeding events

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Cost per patient</th>
<th>QALYs per patient</th>
<th>Incremental cost</th>
<th>Incremental QALYs</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case: risk = 0.0965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>9.211</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.230</td>
<td>+£876.92</td>
<td>+0.019</td>
<td>£45,916</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.279</td>
<td>+£843.37</td>
<td>+0.068</td>
<td>£12,424</td>
</tr>
<tr>
<td>50% increase: risk = 0.14475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.74</td>
<td>9.211</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AAD</td>
<td>£2391.17</td>
<td>9.232</td>
<td>+£878.43</td>
<td>+0.021</td>
<td>£42,542</td>
</tr>
<tr>
<td>IHT</td>
<td>£2356.63</td>
<td>9.279</td>
<td>+£843.89</td>
<td>+0.068</td>
<td>£12,434</td>
</tr>
<tr>
<td>50% decrease: risk = 0.04825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1511.92</td>
<td>9.211</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AAD</td>
<td>£2387.33</td>
<td>9.228</td>
<td>+£875.41</td>
<td>+0.017</td>
<td>£49,886</td>
</tr>
<tr>
<td>IHT</td>
<td>£2354.78</td>
<td>9.279</td>
<td>+£842.86</td>
<td>+0.068</td>
<td>£12,413</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket; QALYs, quality-adjusted life-years.
Effectiveness of proarrhythmia treatment in returning NSR state

Owing to the lack of published clinical evidence supporting the use of the PiP strategy, the clinical effectiveness of proarrhythmia treatment was extracted from Alboni et al. However, this paper reported only one patient suffering from proarrhythmia who returned to the NSR state after the AE occurred, suggesting 100% effectiveness for proarrhythmia treatment. To test this parameter, the probability of returning to NSR after proarrhythmia was reduced across a wide range. Table 20 shows that there was no significant impact on the size of the estimated ICER as the number of QALYs gained decreased by no more than 0.8%.

Utility value of stroke

Because some costs have been included in the pathway to death via a fatal stroke (see Table 12), it was considered appropriate to assign a utility value to this terminal episode of care. In the model, a utility value of 0.38 was assumed, similar to the utility value of being in a persistent AF-dependent stroke health state. To test uncertainty in this parameter, this value was increased and decreased by 50%. Table 21 shows the results of this SA which led to only minor changes to the size of the ICER.

Annual cost of chronic atrial fibrillation drug

In the base-case evaluation, the drug used to treat patients in CAF health state is sotalol (see Table 12), but two alternative drugs (diltiazem and atenolol) are used in clinical practice and should also be considered. Table 22 shows the results of SA using these two drugs; changes in the ICERs are minor in either case.

Gender and age of population

The base-case ICER has been calculated for a population aged 60 years. However, ICERS have also been calculated for a range of ages, and both genders. Table 23 indicates that the PiP strategy dominates AAD in men above 65 years of age and in women above 70 years of age, while PiP is never dominant compared to IHT. The alternative strategies are generally less cost-effective for older people. This is because when people are getting older, the probability of death from any cause is higher and the probability of death from CAF is 1.5 times higher than death from any cause. Because people in AAD spend more time in the CAF state than people in PiP, at some point between 60 and 65 years the QALYs gained in the CAF state by the AAD strategy begin to decrease, but people in the PiP strategy gain more QALYs from the NSR health state where the mortality risk is lower than in CAF.

Utility index value

As stated in Health-related quality of life, the single utility index for the AF state has been estimated using an algorithm from Ara and Brazier. Because all such calculations are subject to some error, an SA has been carried out using the mean absolute error (MAE) value taken from Ara and Brazier. Table 24 shows that when the MAE is used to reduce the utility value, the AAD strategy is dominated by the PiP strategy. When the MAE is used to increase the value of the utility index, both ICERs decrease. This indicates that using algorithms to

TABLE 20 Sensitivity analysis: changing the probability of recovering NSR after proarrhythmia

<table>
<thead>
<tr>
<th>Effectiveness of proarrhythmia treatment</th>
<th>ICER (AAD vs PiP) (£/QALY)</th>
<th>ICER (IHT vs PiP) (£/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case: 100%</td>
<td>£45,916</td>
<td>£12,424</td>
</tr>
<tr>
<td>90%</td>
<td>£45,309</td>
<td>£12,475</td>
</tr>
<tr>
<td>80%</td>
<td>£44,718</td>
<td>£12,526</td>
</tr>
<tr>
<td>70%</td>
<td>£44,140</td>
<td>£12,579</td>
</tr>
<tr>
<td>60%</td>
<td>£43,576</td>
<td>£12,631</td>
</tr>
<tr>
<td>50%</td>
<td>£43,026</td>
<td>£12,685</td>
</tr>
<tr>
<td>40%</td>
<td>£42,488</td>
<td>£12,738</td>
</tr>
<tr>
<td>30%</td>
<td>£41,963</td>
<td>£12,793</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket.
<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Cost per patient</th>
<th>QALYs per patient</th>
<th>Incremental cost</th>
<th>Incremental QALYs</th>
<th>ICER (£/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case: utility = 0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>9.211</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.230</td>
<td>+£876.92</td>
<td>+0.019</td>
<td>£45,916</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.279</td>
<td>+£843.37</td>
<td>+0.068</td>
<td>£12,424</td>
</tr>
<tr>
<td>50% increase: utility = 0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>9.211</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.230</td>
<td>+£876.92</td>
<td>+0.019</td>
<td>£46,161</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.279</td>
<td>+£843.37</td>
<td>+0.068</td>
<td>£12,451</td>
</tr>
<tr>
<td>50% decrease: utility = 0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£2355.00</td>
<td>9.210</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.230</td>
<td>+£876.92</td>
<td>+0.019</td>
<td>£45,673</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.278</td>
<td>+£843.37</td>
<td>+0.068</td>
<td>£12,396</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket; QALYs, quality-adjusted life-years.

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Cost per patient</th>
<th>QALYs per patient</th>
<th>Incremental cost</th>
<th>Incremental QALYs</th>
<th>ICER (£/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case: sotalol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>9.211</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.230</td>
<td>+£876.92</td>
<td>+0.019</td>
<td>£45,916</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.279</td>
<td>+£843.37</td>
<td>+0.068</td>
<td>£12,424</td>
</tr>
<tr>
<td>Alternative: atenolol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1262.44</td>
<td>9.211</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2115.16</td>
<td>9.230</td>
<td>+£852.72</td>
<td>+0.019</td>
<td>£44,649</td>
</tr>
<tr>
<td>IHT</td>
<td>£2093.59</td>
<td>9.279</td>
<td>+£831.19</td>
<td>+0.068</td>
<td>£12,244</td>
</tr>
<tr>
<td>Alternative: diltiazem LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1935.50</td>
<td>9.211</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2853.39</td>
<td>9.230</td>
<td>+£922.36</td>
<td>+0.019</td>
<td>£48,061</td>
</tr>
<tr>
<td>IHT</td>
<td>£2799.56</td>
<td>9.279</td>
<td>+£870.00</td>
<td>+0.068</td>
<td>£12,728</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket; QALYs, quality-adjusted life-years.
convert SF-36 values to European Quality of Life-5 Dimensions (EQ-5D) values when patient level data are not available could change the model results.

Progression to chronic atrial fibrillation

As stated in Chapter 5, Transition probabilities, we have assumed an exponential fit to reflect the advice from the clinical advisor concerning the progression rate to CAF. To test this parameter, an SA has been undertaken using data from the Ruigomez et al. paper which shows an increase in progression rates in the first 5 years after diagnosis and a plateau beyond this point. The results of the SA in Table 25 show that the flat trend beyond the fifth cycle changes the costs which increase slightly in the three strategies. QALYs also increase but less so in AAD than in PIP and IHT, resulting in a dominant situation for PIP versus AAD and in an increase in the ICER between PIP and IHT. The dominance of PIP is due to the fact that AAD patients spend more time in CAF states, and therefore the QALYs gained in this health state decrease if the progression rate is low.

Probabilistic sensitivity analysis

Owing to uncertainty around the input parameters of the model, a PSA has been performed to indicate how this uncertainty affects the mean economic results. The parameters subjected to stochastic uncertainty, the central parameter estimates and uncertainty distributions applied are shown in Tables 45–50 (see Appendix 7). These parameters have been calculated from the same
TABLE 24 Sensitivity analysis on utility index value

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Costs per patient</th>
<th>QALYs per patient</th>
<th>Incremental cost</th>
<th>Incremental QALYs</th>
<th>ICER (£/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case: 0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>9.211</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.230</td>
<td>+£876.92</td>
<td>+0.019</td>
<td>£45,916</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.279</td>
<td>+£843.37</td>
<td>+0.068</td>
<td>£12,424</td>
</tr>
<tr>
<td>Mean absolute error (–0.041): 0.669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>8.836</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>8.822</td>
<td>+£882.441</td>
<td>–0.014</td>
<td>PiP dominates</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>8.887</td>
<td>+£849.288</td>
<td>+0.051</td>
<td>£16,673</td>
</tr>
<tr>
<td>Mean absolute error (+0.041): 0.751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiP</td>
<td>£1512.33</td>
<td>9.585</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2389.25</td>
<td>9.638</td>
<td>+£882.441</td>
<td>+0.053</td>
<td>£16,525</td>
</tr>
<tr>
<td>IHT</td>
<td>£2355.70</td>
<td>9.671</td>
<td>+£849.288</td>
<td>+0.033</td>
<td>£9900</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket; QALYs, quality-adjusted life-years.

TABLE 25 Sensitivity analysis on progression to CAF rate

<table>
<thead>
<tr>
<th>Treatment strategy</th>
<th>Mean cost</th>
<th>Mean QALYs</th>
<th>Incremental cost (vs PiP)</th>
<th>Incremental QALYs (vs PiP)</th>
<th>ICER (£/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiP</td>
<td>£1638.65</td>
<td>9.27</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AAD</td>
<td>£2544.43</td>
<td>9.26</td>
<td>+£905.78</td>
<td>–0.01</td>
<td>PiP dominant</td>
</tr>
<tr>
<td>IHT</td>
<td>£2551.19</td>
<td>9.32</td>
<td>+£912.54</td>
<td>+0.05</td>
<td>£19,292.84</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; ICER, incremental cost-effectiveness ratio; IHT, in-hospital treatment; PiP, pill-in-the-pocket; QALY(s), quality-adjusted life-year(s).

The iterations are in the north-west quadrant which means the option is dominated. There does not seem to be a clear trend in the results of the PSA. The cost-effectiveness acceptability curve (with the cost-effectiveness acceptability frontier) (Figure 3) shows that at a threshold of £25,000 per QALY, the option chosen under the rule of maximising net benefit is IHT, i.e. IHT is the option that has the maximum probability of being cost-effective at this threshold. For threshold values between £0 and £9266 per QALY, PiP is the option exhibiting the maximum probability of being cost-effective. The AAD strategy has a very poor probability of being cost-effective under any threshold. However, none of the strategies considered has more than a 40% probability of being cost-effective at a threshold of £25,000 per QALY at any threshold level. This demonstrates the uncertainty around the sources as the deterministic values listed earlier. All the distributions chosen to address the uncertainty around probability parameters are Beta (α,β parameters) distributions. In the case of costs, the distributions chosen are Gamma (α,β parameters). For the utility parameters, Beta distributions have been chosen if the values are not close to zero. If the value is close to zero, the Gamma distribution is chosen.75
Economic evaluation and economic model: results

FIGURE 2 Cost-effectiveness plane comparing PiP with AAD and IHT.

FIGURE 3 Acceptability curve and cost-effectiveness acceptability frontier. CEAF, cost-effectiveness acceptability frontier.

parameters and its effect on the decision to choose any one strategy over the others.

None of the alternatives show a high probability of being cost-effective. The uncertainty around parameters is not equally shared; AE parameters are often poorly reported in trial reports, and event rates have been incorporated into the model with caution and managed in the deterministic SA (i.e. bleeding events) and in the PSA (i.e. risk of proarrhythmia and bleeding events). The proportion and frequencies of these AEs are low and do not lead to any important changes in the size of the ICER.
Chapter 7
Discussion

This economic evaluation appears to be the first of its kind to estimate the cost-effectiveness of a PiP strategy compared with alternative treatments for PAF.

The economic model reflects the relevant literature which states that a PiP strategy is a safe way to treat PAF and is as efficacious as intravenous alternatives. The results of the economic model are consistent with the conclusions of Alboni et al., who state that a PiP strategy is associated with a marked reduction in A&E visits and hospital admissions. The results of this economic evaluation show that a PiP strategy is less clinically effective than the other two strategies; however, the number of QALYs yielded by each of the three strategies is very similar (see Table 13). The results also show that the costs incurred by the adoption of a PiP strategy are the lowest of the three strategies.

The AAD strategy, despite its low recurrence rate compared to PiP and IHT, shows the highest number of A&E visits; all recurrences in the AAD strategy are resource intensive.

The IHT strategy, in spite of the need for hospital visits every time a new PAF event occurs, does not incur the highest costs. This is mainly because recurrences are treated in the first instance with chemical cardioversion which is less expensive than electrical DC cardioversion.

The numbers of strokes and bleeding events are also very similar across the three strategies and the impact on both QALYs and costs is negligible (see Table 14).

When age and gender subgroups are analysed, PiP is a dominant strategy in people over 65 years compared to AAD, and PiP is more cost-effective for both men and women aged below 65 years than AAD. This is because in the AAD strategy people tend to progress to CAF faster than in the PiP strategy, and mortality risk from the CAF state is higher than from the NSR health state, resulting in a decrease in QALYs gained in the AAD strategy.

The PSA indicates that for IHT the maximum probability of being cost-effective at a threshold of £25,000 per QALY is only 40%.

The most cost-effective treatment strategy is either PiP or IHT; if the willingness-to-pay threshold is below £9266 per QALY, PiP is more likely to be cost-effective. The AAD strategy is not cost-effective at any threshold level, as can be seen in Figure 3. There is a high level of uncertainty attached to these findings owing to two main causes: (1) small differences in cost and more importantly small differences in QALYs between the strategies; and (2) the lack of relevant evidence and the poor quality of the existing data.

Another relevant issue that must be taken into account when interpreting the results of the economic model is that most of the data used to populate the model have been taken from studies with populations that do not match the patient population specified in the decision problem. Populating the model in this way was unavoidable as there is a paucity of published clinical effectiveness and cost-effectiveness data describing a PiP strategy for this highly specific group of patients.

Most of the registry data that were used to source parameter values in the economic model are inclusive of patients of all ages with heart disease; again, this does not match the patient population specified in the decision problem. These issues have been managed by conducting extensive SA as part of the economic evaluation. In order to inform future long-term models in this clinical area, new clinical studies are required.

Finally, it should be mentioned that patient preferences are an important factor when making decisions regarding the most appropriate treatment option for PAF. The alternatives of episodic treatment interventions (individual or hospital based) versus continuous prophylactic treatment have significant impacts on the life of the patient and therefore future studies need to investigate patient preferences alongside clinical effectiveness. As the current treatments (IHT and AAD) are virtually cost equivalent and PiP is much cheaper, if PiP is deemed to be clinically acceptable and is preferred by specific patients, it can be confidently implemented in the knowledge that it will incur no net additional cost to the NHS.

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
Chapter 8

Conclusions

The systematic review of clinical evidence did not identify any new studies that had not been included in the previously available guidelines.

Overall, a PiP strategy seems to be slightly less effective in terms of QALYs than AAD and IHT, but is associated with cost savings.

A PiP strategy seems to be more efficacious and cost-effective than AAD in men over 65 years and women over 70 years, but this is due to a very slight difference in QALYs gained by the PiP strategy.

A change in clinical practice that includes the introduction of PiP may save costs, but also carries a reduction in clinical effectiveness in the treatment of patients with PAF.

Uncertainty in the available clinical data means there is not enough evidence to support the use of PiP strategy in patients with PAF. Further research should identify outcomes of interest such as AE events and recurrent AF episodes in an RCT setting if possible.

Patient preferences also need to be considered in any future research designs.

Research recommendations

Research recommendations are required to address the following uncertainties detailed in our report:

- long-term progression to CAF
- effectiveness of PiP in the treatment of patients with PAF
- AEs related to the treatment
- compliance with treatment
- PAF recurrence rates
- all-cause mortality rates in this population
- progression probabilities from PAF to CAF
- AE event rates
- direct EQ-5D values in NSR and during/after PAF events, and duration of the effects of PAF events.

Data from observational studies and registries could be used in addition to data from RCTs.

The current lack of published evidence would appear to justify not supporting the general use of a PiP strategy in patients with PAF. Further evidence on the clinical effectiveness of PiP and its preference by patients may lead to this technology being implemented in the knowledge that it will not incur net additional cost to the NHS.
Acknowledgements

The review team is pleased to acknowledge Nigel Fleeman who developed the search strategies used in the clinical review and Ms Janet Atkinson who provided administrative support to the project.

Contributions of authors

Dr Carlos Martin Saborido was the review co-ordinator, provided input into the background and was responsible for the development of the economic model and conduct of the economic evaluation. Ms Juliet Hockenhull was the author of the scoping report and gave input into all aspects of the clinical review. Professor Adrian Bagust supervised all aspects of the economic model and economic evaluation. Dr Angela Boland gave input into the economic model and overall report production. Ms Rumona Dickson was the project manager and gave input into all aspects of the clinical component of the review. Dr Derick Todd provided clinical input into the background and the economic model. All contributors took part in the editing and production of this report.

About the assessment group

The LRiG was established within the Department of Pharmacology and Therapeutics of The University of Liverpool, Liverpool, UK in April 2001. It is a multidisciplinary research group whose purpose, in the first instance, is to conduct health technology assessments commissioned by the HTA programme.
References

References

69. Ara R, Brazier J. Predicting the Short Form-6D Preference-Based Index Using the Eight Mean Short Form-36 Health Dimension Scores: Estimating Preference-Based Health-Related Utilities When Patient Level Data Are not Available. *Value Health* 2008. [Epub ahead of print.]

Appendix I

Commissioning brief

What are the clinical effectiveness and cost-effectiveness of ‘pill-in-the-pocket’ treatment for those with paroxysmal atrial fibrillation compared with hospital-based administration or continuous antiarrhythmic therapy?

NCCHTA commissioning brief

This commissioning brief was developed in response to recommendations from NICE guideline CG036 issued in June 2006: Atrial fibrillation: the management of atrial fibrillation.5 The full guideline produced by the National Coordinating Centre for Chronic Conditions states that 2 years after publication of the guidelines NICE will commission a national collaborating centre to determine whether the evidence base has progressed significantly to alter the guideline recommendations and warrant an early update. This scoping exercise therefore aims to determine whether there has been any expansion in the evidence base regarding PiP treatment of PAF since June 2006.

The NCCHTA (National Coordinating Centre for Health Technology Assessment; now known as National Institute of Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC)) commissioning brief outlines the aims of the research as: to compare the clinical effectiveness and cost-effectiveness of a PiP treatment strategy for those with PAF with hospital-based administration or continuous antiarrhythmic therapy. The suggested drug is flecainide. However, flecainide is not the only drug to have been considered for a PiP treatment strategy and therefore other drugs able to be taken in a single oral dose have been considered in this scoping exercise, e.g. propafenone and sotalol.

Introduction

Atrial fibrillation is a cardiac arrhythmia involving the two upper atria of the heart, the heart beat is irregular, frequently faster than normal and, if left untreated, a significant risk factor for stroke and other morbidities. PAF refers to an episode of AF which, without treatment, lasts for less than 7 days and often less than 48 hours. The episode may terminate as suddenly as it started with the heart returning to a normal rate and rhythm. Not all patients are symptomatic and episodes can be infrequent (e.g. less than once a month). However, some episodes require emergency room intervention or hospitalisation.

Conventional treatment strategies for PAF focus on the suppression of paroxysms of AF and the return of sinus rhythm. Treatment can consist of either continuous prophylactic treatment or episodic treatment. Prophylactic treatment can include the use of beta-blockers or low-dose sotalol, particularly as first-line or class Ic agents (e.g. flecainide, propafenone), or class III agents (sotalol, amiodarone).76

Treatment of an episode consists of pharmacological cardioversion usually involving an intravenous infusion of an AAD or, in cases where the episode lasts in excess of 7 days, electrical cardioversion. Both pharmacological and electrical cardioversion require IHT; however, with the development of oral AADs, immediate out of hospital treatment is possible. This strategy is referred to as PiP. Patients meeting pre-established criteria are provided with an oral dose of an AAD that they self-administer at the onset of an episode of PAF. This allows for immediate intervention with an objective of converting to sinus rhythm without the need for hospital admission. Such a strategy also precludes the need for continuous prophylactic treatment.

Advantages

The advantages of a PiP treatment strategy are suggested to include the following:
• **Faster treatment** Being able to treat an episode of PAF at onset enables early relief of symptoms and reduces the risk of thromboembolic complications.\(^7\)\(^7\)

• **Fewer visits to hospital** For the patient, fewer visits to hospital is of great importance in terms of both convenience and cost.\(^7\)\(^8\) For the hospital, the reduction in hospital visits is advantageous in terms of both physical and financial resources.\(^3\)\(^9\)

• **Patient compliance** A PiP treatment strategy negates the need for continuous prophylactic arrhythmic drug treatment, meaning that the issue of patient compliance in the taking of such medication is removed. In addition, the occurrence of side effects to prophylactic treatment, which often leads to either a change in dosage or indeed discontinuation of treatment, is also eliminated.

Disadvantages

The disadvantages of a PiP treatment strategy involve safety. Some commentators have raised concerns over the risk of proarrhythmias (a new or more frequent occurrence of pre-existing arrhythmias), paradoxically precipitated by antiarrhythmic therapy,\(^5\)\(^7\) thromboembolic events\(^7\)\(^9\),\(^8\)\(^0\) and drug interactions, particularly antithrombotic therapy.\(^8\)\(^1\) In the trials so far conducted on the efficacy of a single oral dose of an AAD in converting PAF to sinus rhythm, the patient populations have been well defined, and recommendations for the use of a PiP strategy highlight the need for strict selection criteria.\(^5\)\(^7\) In the one study assessing the efficacy of out of hospital treatment it was uncertain whether the PiP strategy was associated with more AEs, or reduced episode duration when compared to IHT.\(^2\)\(^1\)

Research on the safety of out of hospital treatment is limited.

NICE guidelines 2006

In 2006, NICE published guidelines on the management of AF.\(^3\) The full guideline was produced by the National Collaborating Centre for Chronic Conditions\(^7\)\(^6\) and included a section on the treatment of PAF; the recommendation was:

> Where patients have infrequent paroxysms and few symptoms, or where symptoms are induced by known precipitants (such as alcohol, caffeine), a no drug treatment strategy or a pill-in-the-pocket strategy should be considered and discussed with the patient.

In patients with PAF, a PiP strategy should be considered in those who:

• have no history of left ventricular dysfunction, or valvular or ischaemic heart disease
• have a history of infrequent symptomatic episodes of PAF
• have a systolic blood pressure > 100 mmHg and a resting heart rate above 70 beats per minute
• are able to understand how, and when, to take the medication.

Scoping methodology

This scoping exercise examined both the clinical effectiveness and cost-effectiveness evidence for the use of a PiP treatment of PAF, published since the release of the guidelines in June 2006.\(^3\) Using gold standard systematic review methodology ‘Ovid MEDLINE (R) and Ovid OLDMEDLINE (R) 1950 to present with Daily Update’ was searched using search strategies described in Appendices 2–4 to identify RCTs, systematic reviews and economic evaluations. Inclusion criteria, as outlined in Table 26, were independently applied to all identified references by two reviewers (JH and CMS). Data from relevant papers were then extracted by one reviewer (JH) and cross-checked by a second (CMS).

Ongoing trials were searched for using the following databases:

- HSRProj
- ClinicalTrials.gov
- mRCT
- BioMed Central
- WHO International Clinical Trials Registry Platform
- ClinicalStudyResults.org
- NLM Gateway.

Existing evidence base: scoping search for clinical effectiveness evidence

Controlled trials

The search strategy described in Table 27 identified 197 RCTs. By applying inclusion criteria (see Table 26), 11 RCTs and one non-study were identified and these are summarised in Table 28.

All studies assessing the efficacy of oral flecainide and propafenone found favourable results in comparison to other treatment strategies. Oral
TABLE 26 Inclusion criteria RCTs and reviews

<table>
<thead>
<tr>
<th>Population</th>
<th>Paroxysmal atrial fibrillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Pill-in-pocket, i.e. single oral dose</td>
</tr>
<tr>
<td>Comparator</td>
<td>Continuous treatment with Beta-blockers</td>
</tr>
<tr>
<td></td>
<td>Solatol</td>
</tr>
<tr>
<td></td>
<td>Amiodarone</td>
</tr>
<tr>
<td></td>
<td>Propafenone</td>
</tr>
<tr>
<td></td>
<td>Flecainide</td>
</tr>
<tr>
<td></td>
<td>In-hospital treatment</td>
</tr>
<tr>
<td></td>
<td>Infusion</td>
</tr>
<tr>
<td></td>
<td>Electro cardioversion</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Mean time to conversion (from atrial fibrillation to sinus rhythm)</td>
</tr>
<tr>
<td></td>
<td>Conversion rates (from atrial fibrillation to sinus rhythm)</td>
</tr>
<tr>
<td></td>
<td>Number of hospital visits</td>
</tr>
</tbody>
</table>

TABLE 27 Search strategy for clinical effectiveness: RCTs

<table>
<thead>
<tr>
<th>Term</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 exp Atrial Fibrillation/</td>
<td>22,324</td>
</tr>
<tr>
<td>2 atrial fibrillation.mp.</td>
<td>30</td>
</tr>
<tr>
<td>3 atrial fibrillation.mp.</td>
<td>28,939</td>
</tr>
<tr>
<td>4 1 or 3 or 2</td>
<td>28,953</td>
</tr>
<tr>
<td>5 pill in the pocket.tw.</td>
<td>12</td>
</tr>
<tr>
<td>6 pill in the pocket.mp.</td>
<td>12</td>
</tr>
<tr>
<td>7 episodic treatment.mp.</td>
<td>76</td>
</tr>
<tr>
<td>8 single oral dose.mp.</td>
<td>63377</td>
</tr>
<tr>
<td>9 exp Administration, Oral/</td>
<td>93,316</td>
</tr>
<tr>
<td>10 oral.mp.</td>
<td>369,659</td>
</tr>
<tr>
<td>11 5 or 6 or 7 or 8 or 9 or 10</td>
<td>371,084</td>
</tr>
<tr>
<td>12 exp Anti-Arrhythmia Agents/</td>
<td>172,834</td>
</tr>
<tr>
<td>13 flecainide.mp. or exp Flecainide/</td>
<td>1670</td>
</tr>
<tr>
<td>14 flecainide.mp.</td>
<td>7</td>
</tr>
<tr>
<td>15 propafenone.mp. or exp Propafenone/</td>
<td>1434</td>
</tr>
<tr>
<td>16 Amiodarone.mp. or exp Amiodarone/</td>
<td>7212</td>
</tr>
<tr>
<td>17 exp Sotalol/or sotalol.mp.</td>
<td>2527</td>
</tr>
<tr>
<td>18 quinidine.mp. or exp Quinidine/</td>
<td>7635</td>
</tr>
<tr>
<td>19 digoxin.mp. or exp Digoxin/</td>
<td>13,335</td>
</tr>
<tr>
<td>20 exp Disopyramide/or disopyramide.mp.</td>
<td>1932</td>
</tr>
<tr>
<td>21 verapamil.mp. or exp Verapamil/</td>
<td>22,002</td>
</tr>
<tr>
<td>22 exp Procanamide/or procanamide.mp.</td>
<td>3965</td>
</tr>
<tr>
<td>23 dofetilide.mp.</td>
<td>550</td>
</tr>
<tr>
<td>24 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23</td>
<td>185,177</td>
</tr>
<tr>
<td>25 4 and 11 and 24</td>
<td>671</td>
</tr>
<tr>
<td>26 exp Randomized Controlled Trial/</td>
<td>261,353</td>
</tr>
</tbody>
</table>

continued
TABLE 27 Search strategy for clinical effectiveness: RCTs (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Randomized controlled trial”.pt.</td>
<td>261,353</td>
</tr>
<tr>
<td>“controlled clinical trial”.pt.</td>
<td>77,884</td>
</tr>
<tr>
<td>(random$or placebo$).ti,ab,sh.</td>
<td>600,933</td>
</tr>
<tr>
<td>((singl$or double$or triple$or treble$) and (blind$or mask$)).zw,sh.</td>
<td>107,944</td>
</tr>
<tr>
<td>(retraction of publication or retracted publication).pt.</td>
<td>2100</td>
</tr>
<tr>
<td>30 or 27 or 31 or 26 or 29 or 28</td>
<td>665,038</td>
</tr>
<tr>
<td>25 and 32</td>
<td>231</td>
</tr>
<tr>
<td>limit 33 to (english language and humans)</td>
<td>197</td>
</tr>
</tbody>
</table>

TABLE 28 Summary of clinical evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Comparator</th>
<th>n</th>
<th>Duration of atrial fibrillation prior to treatment</th>
<th>Conversion rate data (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alboni 2004</td>
<td>Flecainide pill-in-pocket</td>
<td>Propafenone pill-in-pocket</td>
<td>F = 74 P = 136</td>
<td>280 ± 368 minutes</td>
<td>Fewer visits to A&E were reported compared with the year before</td>
</tr>
<tr>
<td>Alp 2000</td>
<td>Oral flecainide</td>
<td>IV flecainide</td>
<td>Oral F = 40 IV F = 39</td>
<td>Oral F = 10.8 hours IV F = 11.0</td>
<td>2 hours Oral F = 68% IV F = 64% 8 hours Oral F = 75% IV F = 72%</td>
</tr>
<tr>
<td>Blanc 1999</td>
<td>Oral propafenone</td>
<td>Oral amiodarone</td>
<td>Oral P = 43 Oral A = 43</td>
<td>1 day</td>
<td>4 hours Oral P = 37% Oral A = 16% 24 hours Oral P = 56% Oral A = 47%</td>
</tr>
<tr>
<td>Boriani 1995</td>
<td>Oral propafenone</td>
<td>IV propafenone</td>
<td>Oral P = 29 IV P = 29</td>
<td>Oral P = 9 ± 10 hours IV P = 8 ± 7 hours</td>
<td>1 hour Oral P = 3% IV P = 28% 3 hours Oral P = 55% IV P = 41% 8 hours Oral P = 69% IV P = 66%</td>
</tr>
</tbody>
</table>
TABLE 28 Summary of clinical evidence (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Comparator</th>
<th>n</th>
<th>Duration of atrial fibrillation prior to treatment</th>
<th>Conversion rate data (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boriani 1998<sup>11</sup></td>
<td>Oral flecainide</td>
<td>IV amiodarone</td>
<td>Oral F = 69</td>
<td>28–31 hours</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>IV A = 51</td>
<td></td>
<td>IV A = 6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>IV P = 57</td>
<td></td>
<td>IV P = 39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral flecainide</td>
<td>Oral P = 119</td>
<td></td>
<td>Oral P = 8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>Oral F = 69</td>
<td>1 hour</td>
<td>Oral F = 13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>IV P = 57</td>
<td></td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 119</td>
<td></td>
<td>IV A = 25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral flecainide</td>
<td>Oral F = 69</td>
<td>28–31 hours</td>
<td>IV P = 58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>IV P = 57</td>
<td></td>
<td>Oral P = 45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 119</td>
<td></td>
<td>Oral F = 56.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral flecainide</td>
<td>Oral F = 69</td>
<td>1 hour</td>
<td>8 hours</td>
</tr>
<tr>
<td>Botto 1998<sup>13</sup></td>
<td>Oral propafenone</td>
<td>IV propafenone</td>
<td>Oral P = 41</td>
<td>1 hour</td>
<td>IV P = 48%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>IV P = 40</td>
<td></td>
<td>Oral P = 15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 41</td>
<td>4 hours</td>
<td>IV P = 50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>IV P = 40</td>
<td></td>
<td>Oral P = 71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 41</td>
<td>8 hours</td>
<td>IV P = 53%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV propafenone</td>
<td>Oral P = 41</td>
<td>6 hours</td>
<td>Oral P = 78%</td>
</tr>
<tr>
<td>Capucci 1994<sup>14</sup></td>
<td>Oral quinidine</td>
<td>Oral propafenone</td>
<td>Oral Q = 29</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 29</td>
<td>Oral P = 62%</td>
<td>Oral Q = 14.7 ± 17.7 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 29</td>
<td>Oral P = 62%</td>
<td>Oral Q = 14.7 ± 17.7 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 29</td>
<td>Oral P = 62%</td>
<td>Oral Q = 14.7 ± 17.7 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 29</td>
<td>Oral P = 62%</td>
<td>Oral Q = 14.7 ± 17.7 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral propafenone</td>
<td>Oral P = 29</td>
<td>Oral P = 62%</td>
<td>Oral Q = 14.7 ± 17.7 hours</td>
</tr>
<tr>
<td>Capucci 1999<sup>16</sup></td>
<td>Oral propafenone</td>
<td>IV digoxin + oral quinidine</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV digoxin + oral propafenone</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV digoxin + oral propafenone</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV digoxin + oral propafenone</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV digoxin + oral propafenone</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV digoxin + oral propafenone</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV digoxin + oral propafenone</td>
<td>Oral P = 66</td>
<td>Oral P = 17 ± 20 hours</td>
<td>Oral P = 4.0 ± 4.1 hours</td>
</tr>
</tbody>
</table>

continued
TABLE 28 Summary of clinical evidence (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Comparator</th>
<th>n</th>
<th>Duration of atrial fibrillation prior to treatment</th>
<th>Conversion rate data (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capucci 1992</td>
<td>Oral flecainide</td>
<td>IV amiodarone followed by oral amiodarone</td>
<td>Oral F = 22 IV A + oral A = 19</td>
<td>Oral F = 28 ± 29.4 hours IV A + oral A = 29.8 ± 30.2 hours</td>
<td>3 hours Oral F = 68% IV A + oral A = 16% 8 hours Oral F = 91% IV A + oral A = 37%</td>
</tr>
<tr>
<td>Crijns 1988</td>
<td>Oral flecainide</td>
<td>IV flecainide</td>
<td>Oral F = 14 IV F = 13</td>
<td>68% < 24 hours</td>
<td>Achieved acute conversion, i.e. within 5 hours for oral and 30 minutes for IV Oral F = 10/14 IV A + Oral A = 10/13</td>
</tr>
<tr>
<td>Halinen 1995</td>
<td>Oral sotalol</td>
<td>IV digoxin–quinidine</td>
<td>Oral S = 33 IV DQ = 28</td>
<td>Oral S = 12.4 ± 10.8 hours IV DQ = 11.8 ± 11.5 hours</td>
<td>Mean time to conversion Oral S = 10.2 ± 7.6 hours IV DQ = 4.0 ± 2.9 hours 3 hours Oral S = 12% IV DQ = 36% 8 hours Oral S = 24% IV DQ = 71%</td>
</tr>
<tr>
<td>Kumagai 2000</td>
<td>Oral pilscainide</td>
<td>IV disopyramide</td>
<td>Oral Pi = 40 IV Di = 32</td>
<td>2 hours Oral Pi = 73% IV Di = 56%</td>
<td>Mean time to conversion Oral Pi = 60 ± 30 minutes IV Di = 23 ± 18 minutes 12 hours Overall = 83% 24 hours Overall = 98.9% % of patients converted at 1 hour and 3 hours significantly greater for IV (p < 0.001 and p = 0.001) At 6, 12 and 24 hours, no significant difference</td>
</tr>
<tr>
<td>Madonia 2000</td>
<td>Oral propafenone</td>
<td>IV propafenone</td>
<td>Oral P = 48 IV P = 49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A, amiodarone; D, digoxin; Di, disopyramide; F, flecainide; IV, intravenous; P, propafenone; Pi, pilscainide; Q, quinidine; S, sotalol.

As can be seen in Table 28, only one study has specifically looked at the feasibility of a PiP therapy for the treatment of PAF and was the sole evidence for a PiP treatment available for consideration by the National Collaborating Centre for Chronic Conditions in 2006. The 11 RCTs were all conducted in hospital and, as with the Alboni study, were all conducted prior to publication of the full guideline in 2006.

Ongoing trials

Seven databases of registered ongoing trials were searched and no relevant trials were found.

sotalol was not found to be as efficacious as intravenous digoxin–quinidine.
Systematic review evidence

The search strategy described in Table 29 identified 10 reviews, and after application of the inclusion criteria (see Table 26), five relevant reviews were identified and are summarised in Table 30. Four of the five reviews focused solely on oral AADs and, of these, three46,57,76 concluded that a single oral dose of propafenone was effective in converting PAF to NSR. One review30 also considered flecainide and concluded that as flecainide had more favourable pharmacokinetics it was preferred over propafenone.

Four of the reviews30,32,35,36 focused solely on oral AADs and of these three30,35,36 concluded that a single oral dose of propafenone was effective in converting PAF to NSR. One review also considered flecainide and concluded that as flecainide had more favourable pharmacokinetics it was preferred over propafenone.30 None of the five reviews were published after publication of the guidelines in 2006.76

Existing evidence base: scoping search for cost-effectiveness evidence

The search strategy described in Table 31 identified nine cost-effectiveness papers, only one of which included PiP treatment in PAF as a comparator; this paper was predominantly a clinical paper that also included a comment on the possible economic impact of home-based administration of oral propafenone.39 The paper was published in 1996 before the most recent guidelines76 were released.

Conclusion

A scoping search of MEDLINE by LRiG at the end of 2008 did not identify any new clinical effectiveness or cost-effectiveness evidence post publication of the full guideline76 by the National Collaborating Centre for Chronic Conditions in 2006.

TABLE 29 Search strategy for clinical effectiveness: reviews

<table>
<thead>
<tr>
<th>Term</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp Atrial Fibrillation/</td>
<td>22,324</td>
</tr>
<tr>
<td>atrial fibrillation.mp.</td>
<td>30</td>
</tr>
<tr>
<td>atrial fibrillation.mp.</td>
<td>28,939</td>
</tr>
<tr>
<td>1 or 3 or 2</td>
<td>28,953</td>
</tr>
<tr>
<td>pill in the pocket.tw.</td>
<td>12</td>
</tr>
<tr>
<td>pill in the pocket.mp.</td>
<td>12</td>
</tr>
<tr>
<td>episodic treatment.mp.</td>
<td>76</td>
</tr>
<tr>
<td>single oral dose.mp.</td>
<td>6377</td>
</tr>
<tr>
<td>exp Administration, Oral/</td>
<td>93,316</td>
</tr>
<tr>
<td>oral.mp.</td>
<td>369,659</td>
</tr>
<tr>
<td>5 or 6 or 7 or 8 or 9 or 10</td>
<td>371,084</td>
</tr>
<tr>
<td>exp Anti-Arrhythmia Agents/</td>
<td>172,834</td>
</tr>
<tr>
<td>flecainide.mp. or exp Flecainide/</td>
<td>1670</td>
</tr>
<tr>
<td>flecanide.mp.</td>
<td>7</td>
</tr>
<tr>
<td>propafenone.mp. or exp Propafenone/</td>
<td>1434</td>
</tr>
<tr>
<td>Amiodarone.mp. or exp Amiodarone/</td>
<td>7212</td>
</tr>
<tr>
<td>exp Sotalol/or sotalol.mp.</td>
<td>2527</td>
</tr>
<tr>
<td>quinidine.mp. or exp Quinidine/</td>
<td>7635</td>
</tr>
<tr>
<td>digoxin.mp. or exp Digoxin/</td>
<td>13,335</td>
</tr>
<tr>
<td>exp Disopyramide/or disopyramide.mp.</td>
<td>1932</td>
</tr>
<tr>
<td>verapamil.mp. or exp Verapamil/</td>
<td>22,002</td>
</tr>
<tr>
<td>exp Procainamide/or procainamide.mp.</td>
<td>3965</td>
</tr>
<tr>
<td>dofetilide.mp.</td>
<td>550</td>
</tr>
<tr>
<td>12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23</td>
<td>185,177</td>
</tr>
</tbody>
</table>

continued
TABLE 30 Summary of review evidence

<table>
<thead>
<tr>
<th>Review</th>
<th>Focus of review</th>
<th>Oral or IV</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deneer</td>
<td>Oral antiarrhythmic drugs in converting recent-onset AF</td>
<td>Oral</td>
<td>Propafenone and flecainide are effective in converting recent-onset AF</td>
</tr>
<tr>
<td>Ferreira</td>
<td>Effectiveness of sotalol in converting AF to sinus rhythm</td>
<td>Oral</td>
<td>Published studies did not support sotalol for conversion of AF to sinus rhythm</td>
</tr>
<tr>
<td>Hughes</td>
<td>Oral propafenone for rapid conversion of recent-onset AF</td>
<td>Oral</td>
<td>A single 600-mg oral dose of propafenone is highly effective at restoring sinus rhythm in patients with AF with few adverse effects</td>
</tr>
<tr>
<td>Khan</td>
<td>Single oral dose of propafenone for pharmacological cardioversion of recent-onset AF</td>
<td>Oral</td>
<td>Single oral dose of propafenone highly effective</td>
</tr>
<tr>
<td>Slavik</td>
<td>Pharmacological conversion of AF</td>
<td>Oral or IV</td>
<td>For recent-onset AF, procainamide is preferred IV agent and propafenone the preferred oral agent</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; IV, intravenous.
TABLE 31 Search strategy for cost-effectiveness

<table>
<thead>
<tr>
<th>Term</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 exp Atrial Fibrillation/</td>
<td>22,324</td>
</tr>
<tr>
<td>2 atrial fibrilation.mp.</td>
<td>30</td>
</tr>
<tr>
<td>3 atrial fibrillation.mp.</td>
<td>28,939</td>
</tr>
<tr>
<td>4 1 or 3 or 2</td>
<td>28,953</td>
</tr>
<tr>
<td>5 pill in the pocket.tw.</td>
<td>12</td>
</tr>
<tr>
<td>6 pill in the pocket.mp.</td>
<td>12</td>
</tr>
<tr>
<td>7 episodic treatment.mp.</td>
<td>76</td>
</tr>
<tr>
<td>8 single oral dose.mp.</td>
<td>6377</td>
</tr>
<tr>
<td>9 exp Administration, Oral/</td>
<td>93,316</td>
</tr>
<tr>
<td>10 oral.mp.</td>
<td>369,659</td>
</tr>
<tr>
<td>11 5 or 6 or 7 or 8 or 9 or 10</td>
<td>371,084</td>
</tr>
<tr>
<td>2 exp Anti-Arrhythmia Agents/</td>
<td>172,834</td>
</tr>
<tr>
<td>13 flecainide.mp. or exp Flecainide/</td>
<td>1670</td>
</tr>
<tr>
<td>14 flecanide.mp.</td>
<td>7</td>
</tr>
<tr>
<td>15 propafenone.mp. or exp Propafenone/</td>
<td>1434</td>
</tr>
<tr>
<td>16 Amiodarone.mp. or exp Amiodarone/</td>
<td>7212</td>
</tr>
<tr>
<td>17 exp Sotalol/or sotalol.mp.</td>
<td>2527</td>
</tr>
<tr>
<td>18 quinidine.mp. or exp Quinidine/</td>
<td>7635</td>
</tr>
<tr>
<td>19 digoxin.mp. or exp Digoxin/</td>
<td>13,335</td>
</tr>
<tr>
<td>20 exp Disopyramide/or disopyramide.mp.</td>
<td>1932</td>
</tr>
<tr>
<td>21 verapamil.mp. or exp Verapamil/</td>
<td>22,002</td>
</tr>
<tr>
<td>22 exp Procainamide/or procainamide.mp.</td>
<td>3965</td>
</tr>
<tr>
<td>23 dofetilide.mp.</td>
<td>550</td>
</tr>
<tr>
<td>24 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23</td>
<td>185,177</td>
</tr>
<tr>
<td>25 4 and 11 and 24</td>
<td>671</td>
</tr>
<tr>
<td>26 cost minimisation analysis.mp.</td>
<td>67</td>
</tr>
<tr>
<td>27 cost effectiveness analysis.mp.</td>
<td>3303</td>
</tr>
<tr>
<td>28 exp Cost-Benefit Analysis/</td>
<td>43,978</td>
</tr>
<tr>
<td>29 exp "Costs and Cost Analysis"/</td>
<td>138,930</td>
</tr>
<tr>
<td>30 cost utility analysis.mp.</td>
<td>623</td>
</tr>
<tr>
<td>31 cost benefit analysis.mp.</td>
<td>44,556</td>
</tr>
<tr>
<td>32 26 or 27 or 28 or 29 or 30 31</td>
<td>139,632</td>
</tr>
<tr>
<td>33 23 and 32</td>
<td>9</td>
</tr>
</tbody>
</table>
Appendix 2

Drug information

TABLE 32 Indications of drugs used in PAF treatment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flecaïnide</td>
<td>AV nodal reciprocating tachycardia, arrhythmias associated with accessory conducting pathways (e.g. Wolff–Parkinson–White syndrome), disabling symptoms of paroxysmal atrial fibrillation in patients without left ventricular dysfunction (arrhythmias of recent onset will respond more readily)</td>
</tr>
<tr>
<td>Propafenone</td>
<td>Ventricular arrhythmias; paroxysmal supraventricular tachyarrhythmias which include paroxysmal atrial flutter or fibrillation and paroxysmal re-entrant tachycardia involving the AV node or accessory pathway, where standard therapy is ineffective or contraindicated</td>
</tr>
<tr>
<td>Sotalol</td>
<td>Tablets and injection: life-threatening arrhythmias including ventricular tachyarrhythmias, symptomatic non-sustained ventricular tachyarrhythmias. Tablets only: prophylaxis of paroxysmal atrial tachycardia or fibrillation, paroxysmal AV re-entrant tachycardia (both nodal and involving accessory pathways), paroxysmal supraventricular tachycardia after cardiac surgery, maintenance of sinus rhythm following cardioversion of atrial fibrillation or flutter. Injection only: electrophysiological study of inducible ventricular and supraventricular arrhythmias; temporary substitution for tablets</td>
</tr>
<tr>
<td>Atenolol</td>
<td>By mouth: hypertension (25–50mg daily, higher doses rarely necessary), angina (100mg daily in one or two doses) and arrhythmias (50–100mg daily). By intravenous injection: arrhythmias (2.5mg at a rate of 1mg/minute, repeated at 5-minute intervals to a maximum of 10mg). By intravenous infusion: arrhythmias (150µm/kg over 20minutes, repeated every 12 hours if required)</td>
</tr>
<tr>
<td>Diltiazem LA</td>
<td>Prophylaxis and treatment of angina; hypertension</td>
</tr>
</tbody>
</table>

AV, atrioventricular.
TABLE 33 Costs of drugs used in PAF treatment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Costs and presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flecainide</td>
<td>Flecainide (non-proprietary): tablets, flecainide acetate 50 mg, net price 60-tablet pack = £9.81; 100 mg, 60-tablet pack = £15.04<sup>17</sup> (prices November 2008)</td>
</tr>
<tr>
<td></td>
<td>Flecainide Tambocor® (3M): Tablets, flecainide acetate 50 mg, net price 60-tablet pack = £14.46; 100 mg (scored), 60-tablet pack = £20.66</td>
</tr>
<tr>
<td></td>
<td>Injection, flecainide acetate 10 mg/ml, net price 15-ml amp = £4.40<sup>17</sup> (prices November 2008)</td>
</tr>
<tr>
<td>Propafenone</td>
<td>Propafenone Arythmol® (Abbott): tablets, f/c, propafenone hydrochloride 150 mg, net price 90-tablet pack = £7.37; 300 mg, 60-tablet pack = £9.34<sup>17</sup> (prices November 2008)</td>
</tr>
<tr>
<td>Sotalol</td>
<td>Sotalol (non-proprietary): tablets, sotalol hydrochloride 40 mg, net price 56-tablet pack = £1.34; 80 mg, 56-tablet pack = £1.99; 160 mg, 28-tablet pack = £2.21<sup>17</sup></td>
</tr>
<tr>
<td></td>
<td>Sotalol Beta-Cardon® (UCB Pharma): tablets, scored, sotalol hydrochloride 40 mg (green), net price 56-tablet pack = £1.34; 80 mg (pink), 56-tablet pack = £1.99; 200 mg, 28-tablet pack = £2.50<sup>17</sup></td>
</tr>
<tr>
<td></td>
<td>Sotalol Sotacor® (Bristol-Myers Squibb): tablets, scored, sotalol hydrochloride 80 mg, net price 28-tablet pack = £3.25; 160 mg, 28-tablet pack = £6.41. Injection, sotalol hydrochloride 10 mg/ml, net price 4-ml amp = £1.76<sup>17</sup> (all prices November 2008)</td>
</tr>
<tr>
<td>Atenolol</td>
<td>Atenolol: 50 mg, 28-tablet pack = £0.85<sup>17</sup></td>
</tr>
<tr>
<td>Diltiazem LA</td>
<td>Tildiam LA® (Sanofi-Synthelabo): capsules, m/r, diltiazem hydrochloride 200 mg (pink/grey, containing white pellets), net price 28-capsule pack = £6.66<sup>17</sup> (this is the only presentation containing 200 mg or fractions)</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>Amiodarone: tablets, amiodarone hydrochloride 100 mg, net price 28-tablet pack = £1.39; 200 mg, 28-tablet pack = £1.42</td>
</tr>
</tbody>
</table>

amp, ampule; f/c, film-coated; m/r, modified release.
Appendix 3

Search strategies

TABLE 34 Search strategy for clinical effectiveness: RCTs (run on 20 July 2009)

<table>
<thead>
<tr>
<th>Term</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 exp Atrial Fibrillation/</td>
<td>23,833</td>
</tr>
<tr>
<td>2 atrial fibrillation.mp.</td>
<td>32</td>
</tr>
<tr>
<td>3 atrial fibrillation.mp.</td>
<td>30,975</td>
</tr>
<tr>
<td>4 1 or 3 or 2</td>
<td>30,990</td>
</tr>
<tr>
<td>5 pill in the pocket.tw.</td>
<td>13</td>
</tr>
<tr>
<td>6 pill in the pocket.mp.</td>
<td>13</td>
</tr>
<tr>
<td>7 episodic treatment.mp.</td>
<td>80</td>
</tr>
<tr>
<td>8 single oral dose.mp.</td>
<td>6548</td>
</tr>
<tr>
<td>9 exp Administration, Oral/</td>
<td>96,704</td>
</tr>
<tr>
<td>10 oral.mp.</td>
<td>382,790</td>
</tr>
<tr>
<td>11 5 or 6 or 7 or 8 or 9 or 10</td>
<td>384,318</td>
</tr>
<tr>
<td>12 exp Anti-Arrhythmia Agents/</td>
<td>176,685</td>
</tr>
<tr>
<td>13 flecainide.mp. or exp Flecainide/</td>
<td>1742</td>
</tr>
<tr>
<td>14 flecanide.mp.</td>
<td>7</td>
</tr>
<tr>
<td>15 propafenone.mp. or exp Propafenone/</td>
<td>1478</td>
</tr>
<tr>
<td>16 Amiodarone.mp. or exp Amiodarone/</td>
<td>7581</td>
</tr>
<tr>
<td>17 exp Sotalol/or sotalol.mp.</td>
<td>2613</td>
</tr>
<tr>
<td>18 quinidine.mp. or exp Quinidine/</td>
<td>7614</td>
</tr>
<tr>
<td>19 digoxin.mp. or exp Digoxin/</td>
<td>13,564</td>
</tr>
<tr>
<td>20 exp Disopyramide/or disopyramide.mp.</td>
<td>1975</td>
</tr>
<tr>
<td>21 verapamil.mp. or exp Verapamil/</td>
<td>22,577</td>
</tr>
<tr>
<td>22 exp Procainamide/or procainamide.mp.</td>
<td>3986</td>
</tr>
<tr>
<td>23 doxetilide.mp.</td>
<td>567</td>
</tr>
<tr>
<td>24 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23</td>
<td>189,354</td>
</tr>
<tr>
<td>25 4 and 11 and 24</td>
<td>717</td>
</tr>
<tr>
<td>26 exp Randomized Controlled Trial/</td>
<td>275,701</td>
</tr>
<tr>
<td>27 “Randomized controlled trial”.pt.</td>
<td>275,701</td>
</tr>
<tr>
<td>28 “controlled clinical trial”.pt.</td>
<td>79,912</td>
</tr>
<tr>
<td>29 (random$or placebo$).ti,ab.sh.</td>
<td>636,559</td>
</tr>
<tr>
<td>30 ((singl$or double$or triple$or treble$) and (blind$or mask$)).tw,sh.</td>
<td>112,964</td>
</tr>
<tr>
<td>31 (retraction of publication or retracted publication).pt.</td>
<td>2380</td>
</tr>
<tr>
<td>32 30 or 27 or 31 or 26 or 29 or 28</td>
<td>702,976</td>
</tr>
<tr>
<td>33 25 and 32</td>
<td>239</td>
</tr>
<tr>
<td>34 limit 33 to (english language and humans)</td>
<td>203</td>
</tr>
<tr>
<td>Term</td>
<td>Hits</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>1 exp Atrial Fibrillation/</td>
<td>23,833</td>
</tr>
<tr>
<td>2 atrial fibrillation.mp.</td>
<td>32</td>
</tr>
<tr>
<td>3 atrial fibrillation.mp.</td>
<td>30,975</td>
</tr>
<tr>
<td>4 1 or 3 or 2</td>
<td>30,990</td>
</tr>
<tr>
<td>5 pill in the pocket.tw.</td>
<td>13</td>
</tr>
<tr>
<td>6 pill in the pocket.mp.</td>
<td>13</td>
</tr>
<tr>
<td>7 episodic treatment.mp.</td>
<td>80</td>
</tr>
<tr>
<td>8 single oral dose.mp.</td>
<td>6548</td>
</tr>
<tr>
<td>9 exp Administration, Oral/</td>
<td>96,704</td>
</tr>
<tr>
<td>10 oral.mp.</td>
<td>382,790</td>
</tr>
<tr>
<td>11 5 or 6 or 7 or 8 or 9 or 10</td>
<td>384,318</td>
</tr>
<tr>
<td>12 exp Anti-Arrhythmia Agents/</td>
<td>176,685</td>
</tr>
<tr>
<td>13 flecainide.mp. or exp Flecainide/</td>
<td>1742</td>
</tr>
<tr>
<td>14 flecainide.mp.</td>
<td>7</td>
</tr>
<tr>
<td>15 propafenone.mp. or exp Propafenone/</td>
<td>1478</td>
</tr>
<tr>
<td>16 Amiodarone.mp. or exp Amiodarone/</td>
<td>7581</td>
</tr>
<tr>
<td>17 exp Sotalol/or sotalol.mp.</td>
<td>2613</td>
</tr>
<tr>
<td>18 quinidine.mp. or exp Quinidine/</td>
<td>7614</td>
</tr>
<tr>
<td>19 digoxin.mp. or exp Digoxin/</td>
<td>13,564</td>
</tr>
<tr>
<td>20 exp Disopyramide/or disopyramide.mp.</td>
<td>1975</td>
</tr>
<tr>
<td>21 verapamil.mp. or exp Verapamil/</td>
<td>2257</td>
</tr>
<tr>
<td>22 exp Procainamide/or procainamide.mp.</td>
<td>3986</td>
</tr>
<tr>
<td>23 dofetilide.mp.</td>
<td>567</td>
</tr>
<tr>
<td>24 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23</td>
<td>189,354</td>
</tr>
<tr>
<td>25 4 and 11 and 24</td>
<td>717</td>
</tr>
<tr>
<td>26 ("review" or "review academic" or "review tutorial").pt.</td>
<td>1,468,120</td>
</tr>
<tr>
<td>27 (medline or medlars or embase or pubmed).tw,sh.</td>
<td>36,947</td>
</tr>
<tr>
<td>28 (scisearch or psychinfo or pscycinfo).tw,sh.</td>
<td>2938</td>
</tr>
<tr>
<td>29 (psychlit or psyclit).tw,sh.</td>
<td>782</td>
</tr>
<tr>
<td>30 cinahl.tw,sh.</td>
<td>3673</td>
</tr>
<tr>
<td>31 ((hand adj2 search$) or (manual$adj2 search$)).tw,sh.</td>
<td>3822</td>
</tr>
<tr>
<td>32 (electronic database$or bibliographic database$or computedi?ed database$or online database$).tw,sh.</td>
<td>2908</td>
</tr>
<tr>
<td>33 (pooling or pooled or mantzel haenszel).tw,sh.</td>
<td>30,206</td>
</tr>
<tr>
<td>34 (retraction of publication or retracted publication).pt.</td>
<td>2380</td>
</tr>
<tr>
<td>35 (peto or dersimonian or der simonian or fixed effecr).tw,sh.</td>
<td>794</td>
</tr>
<tr>
<td>36 31 or 29 or 32 or 30 or 28 or 34 or 27 or 35 or 33</td>
<td>70,936</td>
</tr>
<tr>
<td>37 26 and 36</td>
<td>30,331</td>
</tr>
<tr>
<td>38 meta-analysis.pt.</td>
<td>21,924</td>
</tr>
<tr>
<td>39 meta-analysis.sh</td>
<td>21,924</td>
</tr>
<tr>
<td>40 (meta-analy$or meta analys$or metalanalysis$).tw,sh.</td>
<td>37,989</td>
</tr>
<tr>
<td>41 (systematic$adj5 review$).tw,sh.</td>
<td>21,227</td>
</tr>
<tr>
<td>42 (systematic$adj5 overview$).tw,sh.</td>
<td>509</td>
</tr>
<tr>
<td>43 (quantitativ$adj5 overview$).tw,sh.</td>
<td>125</td>
</tr>
<tr>
<td>44 (methodologic$adj review$).tw,sh.</td>
<td>178</td>
</tr>
<tr>
<td>45 (methodologic$adj overview$).tw,sh.</td>
<td>40</td>
</tr>
<tr>
<td>46 (integrative research review$or research integration).tw.</td>
<td>62</td>
</tr>
<tr>
<td>47 (quantitativ$adj5 review$).tw,sh.</td>
<td>2634</td>
</tr>
<tr>
<td>48 (quantitativ$adj5 synthesis$).tw,sh.</td>
<td>913</td>
</tr>
<tr>
<td>49 38 or 42 or 43 or 39 or 44 or 41 or 45 or 48 or 40 or 46 or 47</td>
<td>55,558</td>
</tr>
<tr>
<td>50 37 or 49</td>
<td>73,874</td>
</tr>
<tr>
<td>51 25 and 50 (11)</td>
<td>11</td>
</tr>
</tbody>
</table>
TABLE 36 Search strategy for cost-effectiveness evidence (run on 27 July 2009)

<table>
<thead>
<tr>
<th>Term</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 exp Atrial Fibrillation/</td>
<td>23,861</td>
</tr>
<tr>
<td>2 atrial fibrillation.mp.</td>
<td>32</td>
</tr>
<tr>
<td>3 atrial fibrillation.mp.</td>
<td>31,017</td>
</tr>
<tr>
<td>4 1 or 3 or 2</td>
<td>31,032</td>
</tr>
<tr>
<td>5 pill in the pocket.tw.</td>
<td>13</td>
</tr>
<tr>
<td>6 pill in the pocket.mp.</td>
<td>13</td>
</tr>
<tr>
<td>7 episodic treatment.mp.</td>
<td>80</td>
</tr>
<tr>
<td>8 single oral dose.mp.</td>
<td>6557</td>
</tr>
<tr>
<td>9 exp Administration, Oral/</td>
<td>96,796</td>
</tr>
<tr>
<td>10 oral.mp.</td>
<td>383,134</td>
</tr>
<tr>
<td>11 5 or 6 or 7 or 8 or 9 or 10</td>
<td>384,664</td>
</tr>
<tr>
<td>12 exp Anti-Arrhythmia Agents/</td>
<td>176,750</td>
</tr>
<tr>
<td>13 flecainide.mp. or exp Flecainide/</td>
<td>1742</td>
</tr>
<tr>
<td>14 flecainide.mp.</td>
<td>7</td>
</tr>
<tr>
<td>15 propafenone.mp. or exp Propafenone/</td>
<td>1479</td>
</tr>
<tr>
<td>16 Amiodarone.mp. or exp Amiodarone/</td>
<td>7586</td>
</tr>
<tr>
<td>17 exp Sotalol/or sotalol.mp.</td>
<td>2615</td>
</tr>
<tr>
<td>18 quinidine.mp. or exp Quinidine/</td>
<td>7617</td>
</tr>
<tr>
<td>19 digoxin.mp. or exp Digoxin/</td>
<td>13,569</td>
</tr>
<tr>
<td>20 exp Disopyramide/or disopyramide.mp.</td>
<td>1975</td>
</tr>
<tr>
<td>21 verapamil.mp. or exp Verapamil/</td>
<td>22,588</td>
</tr>
<tr>
<td>22 exp Procainamide/or procainamide.mp.</td>
<td>3986</td>
</tr>
<tr>
<td>23 dofetilide.mp.</td>
<td>568</td>
</tr>
<tr>
<td>24 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23</td>
<td>189,430</td>
</tr>
<tr>
<td>25 4 and 11 and 24</td>
<td>718</td>
</tr>
<tr>
<td>26 cost minimisation analysis.mp.</td>
<td>75</td>
</tr>
<tr>
<td>27 cost effectiveness analysis.mp.</td>
<td>3526</td>
</tr>
<tr>
<td>28 exp Cost-Benefit Analysis/</td>
<td>46,187</td>
</tr>
<tr>
<td>29 exp “Costs and Cost Analysis”/</td>
<td>144,556</td>
</tr>
<tr>
<td>30 cost utility analysis.mp.</td>
<td>673</td>
</tr>
<tr>
<td>31 cost benefit analysis.mp.</td>
<td>46,793</td>
</tr>
<tr>
<td>32 30 or 29 or 26 or 31 or 27 or 28</td>
<td>145,282</td>
</tr>
<tr>
<td>33 25 and 32</td>
<td>12</td>
</tr>
</tbody>
</table>
Appendix 4

Summary of evidence

TABLE 37 Summary of RCT evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Comparator</th>
<th>n</th>
<th>Duration of atrial fibrillation prior to treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alp 2000</td>
<td>Oral flecainide</td>
<td>IV flecainide</td>
<td>Oral F = 40</td>
<td>Oral F = 10.8 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IV F = 39</td>
<td>IV F = 11.0 hours</td>
</tr>
<tr>
<td>Blanc 1999</td>
<td>Oral propafenone</td>
<td>Oral amiodarone</td>
<td>Oral P = 43</td>
<td>I day</td>
</tr>
<tr>
<td>Boriani 1995</td>
<td>Oral propafenone</td>
<td>IV propafenone</td>
<td>Oral P = 29</td>
<td>Oral P = 9 ± 10 hours</td>
</tr>
<tr>
<td>Boriani 1998</td>
<td>Oral flecainide</td>
<td>IV amiodarone</td>
<td>Oral F = 69</td>
<td>IV P = 8 ± 7 hours</td>
</tr>
<tr>
<td>Botto 1998</td>
<td>Oral propafenone</td>
<td>IV propafenone</td>
<td>Oral P = 41</td>
<td>28–31 hours</td>
</tr>
<tr>
<td>Capucci 1994</td>
<td>Oral quinidine</td>
<td>Oral propafenone</td>
<td>Oral Q = 29</td>
<td></td>
</tr>
<tr>
<td>Capucci 1999</td>
<td>Oral propafenone</td>
<td>IV digoxin + oral quinidine</td>
<td>Oral P = 66</td>
<td></td>
</tr>
<tr>
<td>Capucci 1992</td>
<td>Oral flecainide</td>
<td>IV amiodarone followed by</td>
<td>Oral F = 22</td>
<td></td>
</tr>
<tr>
<td>Crijns 1988</td>
<td>Oral flecainide</td>
<td>IV flecainide</td>
<td>Oral F = 14</td>
<td></td>
</tr>
<tr>
<td>Halinen 1995</td>
<td>Oral sotalol</td>
<td>IV digoxin–quinidine</td>
<td>Oral S = 33</td>
<td></td>
</tr>
<tr>
<td>Kumagai 2000</td>
<td>Oral pilsicainide</td>
<td>IV disopyramide</td>
<td>Oral Pi = 40</td>
<td></td>
</tr>
<tr>
<td>Madonia 2000</td>
<td>Oral propafenone</td>
<td>IV propafenone</td>
<td>Oral P = 48</td>
<td></td>
</tr>
</tbody>
</table>

A, amiodarone; D, digoxin; Di, disopyramide; F, flecainide; IV, intravenous; P, propafenone; Pi, pilsicainide; Q, quinidine; S, sotalol.

a Although not a single oral dose, the medication could still be taken as a pill-in-the-pocket strategy.

TABLE 38 Summary of key paper

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Comparator</th>
<th>n</th>
<th>Duration of atrial fibrillation prior to treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alboni 2004</td>
<td>Flecainide pill-in-pocket</td>
<td>Propafenone pill-in-pocket</td>
<td>Flecanide = 74</td>
<td>280 ± 368 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Propafenone = 136</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Setting</td>
<td>Follow-up</td>
<td>Mean time to conversion</td>
<td>Conversion rate</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Alboni 2004</td>
<td>Out of hospital treatment</td>
<td>15 ± 5 months</td>
<td>113 ± 84 minutes</td>
<td>534/569 in <6 hours</td>
</tr>
<tr>
<td>Alp 2000</td>
<td>Cardiac care unit</td>
<td>2 hours and 8 hours</td>
<td>Oral F = 110 ± 82.3 minutes IV F = 52 ± 54.5 minutes</td>
<td>2 hours Oral F = 27/40, 68% IV F = 25/39, 64% 8 hours Oral F = 30/40, 75% IV F = 28/39, 72%</td>
</tr>
<tr>
<td>Blanc 1999</td>
<td>Hospital</td>
<td>24 hours</td>
<td>Oral P = median 2.4 hours, 0.25–20.45 Oral A = median 6.9 hours, 0.05–19.5</td>
<td>By 48 hours Oral F = 25/43, 58% Oral A = 27/43, 63%</td>
</tr>
<tr>
<td>Boriani 1995</td>
<td>Hospital</td>
<td>89 hours</td>
<td>Oral P = 138 ± 140 minutes IV P = 163 ± 114 minutes</td>
<td>8 hours Oral P = 20/29, 69% IV P = 19/29, 66%</td>
</tr>
<tr>
<td>Boriani 1998</td>
<td>Hospital</td>
<td>8 hours</td>
<td>Up to 8 hours IV A = 225 ± 142 minutes IV P = 137 ± 139 minutes Oral P = 181 ± 118 minutes Oral F = 161 ± 110 minutes</td>
<td>Up to 8 hours IV A = 29/51, 57% IV P = 43/57, 75% Oral P = 91/119, 76% Oral F = 52/69, 75%</td>
</tr>
<tr>
<td>Botto 1998</td>
<td>Emergency medicine</td>
<td>8 hours</td>
<td>Within 4 hours</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Setting</td>
<td>Follow-up</td>
<td>Mean time to conversion</td>
<td>Conversion rate</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Capucci 1994<sup>14</sup></td>
<td>Hospital</td>
<td>48 hours</td>
<td>Within 48 hours Oral Q = 648 ± 631 minutes Oral P = 267 ± 238 minutes Placebo = 893 ± 622 minutes</td>
<td>6 hours Oral Q = 11/29, 38% Oral P = 18/29, 62% Placebo = 6/29, 17%</td>
</tr>
<tr>
<td>Capucci<sup>a</sup> 1999<sup>16</sup></td>
<td>Cardiac centre</td>
<td>24 hours</td>
<td>Oral P = 4.0 ± 4.1 hours IV D + oral Q = 5.4 ± 4.5 hours IV D + oral P = 5.0 ± 8.6 hours</td>
<td>NS</td>
</tr>
<tr>
<td>Capucci 1992<sup>15</sup></td>
<td>Hospital</td>
<td>24 hours</td>
<td>Within 24 hours Oral F = 190 ± 147 minutes IV A + oral A = 705 ± 418 minutes</td>
<td>Within 24 hours Oral F = 21/22, 95% IV A + oral A = 17/19, 89%</td>
</tr>
<tr>
<td>Crijns 1988<sup>33</sup></td>
<td>Outpatient department</td>
<td>24 hours</td>
<td>Oral F = 104 ± 86 minutes IV F = 14.1 ± 8 hours</td>
<td>Oral F within 5 hours = 10/14, 71% IV F within 30 minutes = 10/13, 77%</td>
</tr>
</tbody>
</table>

continued
TABLE 39 Summary of evidence from the key paper and RCTs (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Setting</th>
<th>Follow-up</th>
<th>Mean time to conversion</th>
<th>Conversion rate</th>
<th>Frequency of hospital visits</th>
<th>Frequency of reoccurrence</th>
<th>Health-related quality of life</th>
<th>Progression to persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halinen* 1995</td>
<td>Accident and emergency</td>
<td>24 hours</td>
<td>Oral S = 10.2 ± 7.6 hours</td>
<td>Oral S = 17/33, 52%</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Oral S = 13/33, 39.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IV DQ = 4.0 ± 2.9 hours</td>
<td>IV DQ = 24/28, 86%</td>
<td></td>
<td></td>
<td></td>
<td>IV DQ = 4/28, 14.3%</td>
</tr>
<tr>
<td>Kumagai 2000</td>
<td>NS</td>
<td>2 hours</td>
<td>Oral Pi = 60 ± 30 minutes</td>
<td>2 hours</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IV Di = 23 ± 18 minutes</td>
<td>Oral Pi = 73%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madonia* 2000</td>
<td>Emergency medicine</td>
<td>48 hours</td>
<td>NS</td>
<td>12 hours</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overall = 83%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overall = 98.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A, amiodarone; D, digoxin; Di, disopyramide; F, flecainide; IV, intravenous; NA, not applicable; NS, not stated; P, propafenone; Pi, pilsicainide; Q, quinidine; S, sotalol.

a Although not a single oral dose, the medication could still be taken as a pill-in-the-pocket strategy.
TABLE 40 Summary of evidence from the key paper and RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Conversion to atrial flutter</th>
<th>Proarrhythmia</th>
<th>Thromboembolic events</th>
<th>Death</th>
<th>Other adverse events, e.g. nausea, asthenia, vertigo</th>
<th>All adverse events</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alboni 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral F=0, IV F=1, 2.6%</td>
<td>Oral F=I asymptomatic ventricular tachycardia, IV F=0</td>
<td>NS</td>
<td>0</td>
<td>0</td>
<td>Oral F=1 digestive discomfort, 1 non-sustained tachycardia</td>
<td>12</td>
<td>569/618 episodes were treated</td>
</tr>
<tr>
<td>Alp 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral P=2, 4.7%, 2 to 1 atrial flutter</td>
<td>Oral A=0</td>
<td>Oral P=0, Oral A=1/43, 2.3% supraventricular tachycardia</td>
<td>0</td>
<td>0</td>
<td>Oral A=4 digestive discomfort, 1 non-sustained tachycardia</td>
<td>Oral P=7, Oral A=6</td>
<td></td>
</tr>
<tr>
<td>Blanc 1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral P=2</td>
<td>Oral A=0</td>
<td>NS</td>
<td>NS</td>
<td>Oral P=1 asymptomatic pause > 2 seconds, 1 gastrointestinal side effect</td>
<td>Oral P=4, IV P=3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boriani 1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral P=2, IV P=1</td>
<td>Oral P=2 left ventricular decomposition</td>
<td>0</td>
<td>0</td>
<td>Oral P=1 asymptomatic pause > 2 seconds, 1 hypotension, excessive QRS widening, 1 mild hypotension with bradycardia</td>
<td>Oral P=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boriani 1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral F=2</td>
<td>Oral F=2 regular tachycardia, 2:1 and 3:1 AV conduction</td>
<td>0</td>
<td>NS</td>
<td>Oral P=1 junctional rhythm</td>
<td>Oral P=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botto 1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Q=1, Oral P=4</td>
<td>Oral Q=1 asymptomatic pause > 2 seconds, 1 gastrointestinal side effect</td>
<td>NS</td>
<td>NS</td>
<td>Oral Q=3</td>
<td>Oral P=7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capucci 1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral P=4</td>
<td>Oral P=4</td>
<td>NS</td>
<td>NS</td>
<td>Oral P=1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 40 Summary of evidence from the key paper and RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Conversion to atrial flutter</th>
<th>Proarrhythmia</th>
<th>Thromboembolic events</th>
<th>Death</th>
<th>Other adverse events, e.g. nausea, asthenia, vertigo</th>
<th>All adverse events</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capucci<sup>a</sup> 1999<sup>16</sup></td>
<td>Oral P = 9, IV D + oral Q = 13, IV D + oral P = 12</td>
<td>Oral P = 3 complete left bundle branch block, 2 reversible asymptomatic Wenckebach II Degree sinus atrial block pauses < 3 seconds observed at the time of resinusisation</td>
<td>NS</td>
<td>NS</td>
<td>Oral P = 5 transient mild arterial hypotension</td>
<td>Oral P = 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV D + oral Q = 1 asymptomatic ventricular runs of 3–4 ventricular ectopic beats, 2 complete left bundle branch block, 2 reversible asymptomatic Wenckebach II Degree sinus atrial block pauses < 3 seconds observed at the time of reinusalisation</td>
<td></td>
<td></td>
<td>IV D + oral Q = 1 transient mild arterial hypotension</td>
<td>IV D + oral Q = 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV D + oral P = 4 transient mild arterial hypotension</td>
<td></td>
<td></td>
<td>IV D + oral P = 1 transient mild arterial hypotension</td>
<td>IV D + oral P = 19</td>
<td></td>
</tr>
<tr>
<td>Capucci 1992<sup>15</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Oral F = 1 mild light headedness</td>
<td>Oral F = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IV A + Oral A = 2 superficial phlebitis</td>
<td>IV A = 2</td>
<td></td>
</tr>
<tr>
<td>Crijns 1988<sup>23</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Oral F = 2 development of mild congestive heart failure</td>
<td>Oral F = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IV F = 2 development of mild congestive heart failure</td>
<td>IV F = 2</td>
<td></td>
</tr>
<tr>
<td>Halinen<sup>a</sup> 1995<sup>25</sup></td>
<td>NS</td>
<td>Oral S = 13% asymptomatic wide complex tachycardia (QRS > 0.12 seconds)</td>
<td>NS</td>
<td>NS</td>
<td>Oral S = 16 asymptomatic bradycardia or hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV DQ = 27% asymptomatic wide complex tachycardia (QRS > 0.12 seconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kumagai 2000<sup>14</sup></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Madonia<sup>a</sup> 2000<sup>27</sup></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>None resulting in treatment suspension</td>
<td>Non-valvular paroxysmal atrial fibrillation</td>
</tr>
</tbody>
</table>
Appendix 5

Quality assessment

TABLE 41 Classification of studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruigomez 2005*</td>
<td>Case–control study</td>
</tr>
<tr>
<td>Kerr 2005*</td>
<td>Cohort study</td>
</tr>
<tr>
<td>Alboni 200422</td>
<td>Non-randomised clinical trial</td>
</tr>
<tr>
<td>SPAF 199857</td>
<td>Cohort study</td>
</tr>
<tr>
<td>Wardlaw 199818</td>
<td>Cohort study</td>
</tr>
<tr>
<td>Birman-Deych 200659</td>
<td>Cohort study</td>
</tr>
<tr>
<td>SPAF 199160</td>
<td>Randomised clinical trial</td>
</tr>
<tr>
<td>Rodgers 200851</td>
<td>HTA report</td>
</tr>
<tr>
<td>Pappone 200661</td>
<td>Randomised clinical trial</td>
</tr>
<tr>
<td>Wallerstedt 200912</td>
<td>Cohort study</td>
</tr>
<tr>
<td>Kaufman 200444</td>
<td>Randomised clinical trial</td>
</tr>
</tbody>
</table>

HTA, *Health Technology Assessment* journal; SPAF, Stroke Prevention in Atrial Fibrillation study.
TABLE 42 Cohort studies quality assessment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did the study address a clearly focused issue?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Did the authors use an appropriate method to answer their question?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Was the cohort recruited in an acceptable way?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4. Was the exposure accurately measured to minimise bias?</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Was the outcome accurately measured to minimise bias?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6a. Have the authors identified all important confounding factors?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6b. Have they taken account of the confounding factors in the design and/or analysis?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7a. Was the follow-up of subjects complete enough?</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>7b. Was the follow-up of subjects long enough?</td>
<td>Yes</td>
<td>No</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
</tbody>
</table>
8. What are the results of this study?

- **SPAF 1998**
 - The rate of primary events was 2.2% per year (95% CI 1.6% to 3.0%). Those with a history of hypertension had a higher rate of primary events (3.6% per year) than those with no history of hypertension (1.1% per year) (*p* < 0.001).

- **Wardlaw 1998**
 - In 993 patients in the stroke registry, visible infarction increased the risk of being dead or dependent at 6 months (OR 2.5; 95% CI 1.9 to 3.3) or dead (OR 4.5; 95% CI 2.7 to 7.5), both on its own and after adjustment for time from stroke to CT, stroke symptoms, and other important clinical prognostic variables (OR for death or dependence in the predictive model 1.5; 95% CI 1.0 to 2.0; OR for death 2.4; 95% CI 1.4 to 4.1).

- **Birman-Deych 2006**
 - After adjusting for comorbid conditions, warfarin prescription was more frequent and monitoring more regular in white Medicare beneficiaries than in black or Hispanic beneficiaries (*p* < 0.0001). Warfarin use was associated with 35% fewer ischaemic strokes (HR 0.65; 95% CI 0.55 to 0.76) than no antithrombotic therapy but was less effective in black and Hispanic beneficiaries (*p* for interaction = 0.048).

- **Wallerstedt 2009**
 - The total incidences of bleedings per 1000 treatment-years were 51.4 (25.7–92.0) and 23.9 (13.1–40.1), respectively, and the unadjusted incidence rate ratio 2.15 (0.88 to 5.11). Cox regression analysis including first bleedings revealed an adjusted HR of 3.49 (1.37 to 8.91) for bleeding during treatment with a combination of SSRI and warfarin compared with treatment with warfarin only.

- **Kerr 2005**
 - The probability of progression to CAF by 1 year was 8.6% and thereafter there was a slow but steady progression to 24.7% by 5 years. By 5 years, the probability of documented recurrence of any AF (chronic or paroxysmal) was 63.2%. Increasing age, significant aortic stenosis or mitral regurgitation, left atrial enlargement, and diagnosis of cardiomyopathy were independently associated with progression to CAF. A more rapid heart rate during AF was associated with decreased risk of progression.

9. How precise are the results?

- **How precise is the estimate of the risk?**
 - All results are reported with a 95% CI and the *p*-values were lower than 0.05

10. Do you believe the results?

- **Yes**

11. Can the results be applied to the local population?

- **Yes**

12. Do the results of this study fit with other available evidence?

- **Yes**

AF, atrial fibrillation; CAF, chronic atrial fibrillation; CI, confidence interval; CT, computerised tomography; HR, hazard ratio; NS, not stated; OR, odds ratio; SPAF, Stroke Prevention in Atrial Fibrillation study; SSRI, selective serotonin reuptake inhibitors.
TABLE 43 Randomised and non-randomised studies assessment

<table>
<thead>
<tr>
<th>Checklist item</th>
<th>SPAF 1991<sup>46</sup></th>
<th>Pappone 2006<sup>41</sup></th>
<th>Kaufman 2004<sup>46</sup></th>
<th>Alboni 2004<sup>22</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was the randomisation method adequate?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Was the allocation of treatment adequately concealed?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Was the number of participants randomised stated?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Baseline comparability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were details of baseline comparability presented?<sup>23</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Were the groups similar for prognostic factors?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
</tr>
<tr>
<td>Eligibility criteria and co-interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were the eligibility criteria for study entry specified?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Were any co-interventions identified?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Blinding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were outcome assessors blinded to treatment allocation?</td>
<td>No</td>
<td>No</td>
<td>NS</td>
<td>No</td>
</tr>
<tr>
<td>Were administrators blinded to the treatment allocation?</td>
<td>NS</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Were patients blinded to the treatment allocation?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Was the method of the blinding procedure assessed?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Withdrawals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any unexpected imbalances in dropouts between groups?</td>
<td>No/NA</td>
<td>No/NA</td>
<td>No/NA</td>
<td>No/NA</td>
</tr>
<tr>
<td>Were they explained or adjusted for?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were ≥80% patients included in the final analysis?</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Were reasons for withdrawals stated?</td>
<td>Yes</td>
<td>No</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Was an intention-to-treat analysis included! Were this appropriate?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Were appropriate methods used to account for missing data?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of more outcomes measured than reported?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

NA, not applicable; NS, not stated; SPAF, Stroke Prevention in Atrial Fibrillation Study.
TABLE 44 Case–control studies assessment

<table>
<thead>
<tr>
<th>Screening questions</th>
<th>Ruigomez 2005<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did the study address a clearly focused issue?</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Did the authors use an appropriate method to answer their question?</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Were the cases recruited in an acceptable way?</td>
<td>Yes</td>
</tr>
<tr>
<td>4. Were the controls recruited in an acceptable way?</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Was the exposure accurately measured to minimise bias?</td>
<td>Yes</td>
</tr>
<tr>
<td>6a. What confounding factors have the authors accounted for?</td>
<td>Unspecific codes of supra-ventricular and sinus arrhythmias</td>
</tr>
<tr>
<td>6b. Have the authors taken account of the potential confounding factors in the design and/or in their analysis?</td>
<td>Yes</td>
</tr>
<tr>
<td>7. What are the results of this study?</td>
<td>During a mean follow-up of 2.7 years, 70 of 418 paroxysmal AF patients with complete information progressed to chronic AF. Risk factors associated with progression were valvular heart disease (OR 2.7, 95% CI 1.2 to 6.0) and moderate to high alcohol consumption (OR 3.0, 95% CI 1.1 to 8.0)</td>
</tr>
<tr>
<td>8a. How precise are the results?</td>
<td>CIs were wide (see question 7)</td>
</tr>
<tr>
<td>8b. How precise is the estimate of risk?</td>
<td>p-values were not reported</td>
</tr>
<tr>
<td>9. Do you believe the results?</td>
<td>Yes</td>
</tr>
<tr>
<td>10. Can the results be applied to the local population?</td>
<td>The results were taken from a GP registry</td>
</tr>
<tr>
<td>11. Do the results of this study fit with other available evidence?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; CI, confidence interval; GP, general practitioner; OR, odds ratio.
Appendix 6

FIGURE 4 Strategy of the PiP strategy in the model. SR, sinus rhythm.

FIGURE 5 Structure of the AAD strategy in the model. SR, sinus rhythm.
FIGURE 6 Structure of the IHT strategy in the model. SR, sinus rhythm.
Appendix 7

TABLE 45 Probabilistic values of probability parameters in all strategies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution (parameter)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of keeping an NSR in IHT and PiP</td>
<td>Beta (41,169)</td>
<td>Alboni 2004<sup>32</sup></td>
</tr>
<tr>
<td>Probability of dying from post-stroke state in all strategies</td>
<td>Beta (248,745)</td>
<td>Wardlaw 1998<sup>38</sup></td>
</tr>
<tr>
<td>Probability of progressing after a (moderate and severe) stroke all</td>
<td>Beta (16,26)</td>
<td>SPAF 1991<sup>60</sup></td>
</tr>
<tr>
<td>strategies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of first stroke in all strategies</td>
<td>Beta (20,872)</td>
<td>SPAF 1998<sup>57</sup></td>
</tr>
<tr>
<td>Probability of dying after being in post-stroke + CAF in all strategies</td>
<td>1.5 × [Beta (248,745)]</td>
<td>Wardlaw 1998,58</td>
</tr>
<tr>
<td>Probability of return to NSR after a stroke in all strategies</td>
<td>Beta (24,18)</td>
<td>SPAF 1991<sup>60</sup></td>
</tr>
<tr>
<td>Probability of death from NSR in all strategies (all-cause death)</td>
<td>Death risk (life tables)</td>
<td>Mortality rates<sup>45</sup></td>
</tr>
<tr>
<td>Probability of death from CAF (RR = 1.5 risk of death) in all strategies</td>
<td>RR × life tables</td>
<td>Ruigomez 2005<sup>4</sup></td>
</tr>
<tr>
<td>Probability of progressing to CAF from NSR in all strategies</td>
<td>Mean_progression</td>
<td>Kerr 2005<sup>3</sup>, Ruigomez 2005<sup>4</sup></td>
</tr>
<tr>
<td>Probability of progressing to CAF from post-stroke in all strategies</td>
<td>Mean_progression</td>
<td>Kerr 2005,3 Ruigomez 2005<sup>4</sup></td>
</tr>
<tr>
<td>Probability of suffering a second stroke from post-stroke in all</td>
<td>Beta (1,19)</td>
<td>SPAF 1998<sup>57</sup></td>
</tr>
<tr>
<td>strategies</td>
<td></td>
<td>Birman-Deych 2006<sup>59</sup></td>
</tr>
<tr>
<td>Probability of keeping post-stroke state in IHT and PiP (after the</td>
<td>Beta (41,169)</td>
<td>Alboni 2004<sup>32</sup></td>
</tr>
<tr>
<td>first stroke)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of a bleeding event in all strategies</td>
<td>Beta (39,363)</td>
<td>Wallerstedt 2009<sup>42</sup></td>
</tr>
<tr>
<td>Probability of dying after the first stroke in all strategies</td>
<td>Beta (2,40)</td>
<td>SPAF 1991<sup>60</sup></td>
</tr>
<tr>
<td>Probability of progress post-CAF after the second stroke</td>
<td>Beta (12,30)</td>
<td>SPAF 1998<sup>57</sup></td>
</tr>
<tr>
<td>Probability of dying after the second stroke</td>
<td>Beta (5,15)</td>
<td>SPAF 1998<sup>57</sup></td>
</tr>
<tr>
<td>Probability of return to post-stroke no CAF after the second stroke in</td>
<td>1 – [Beta (5,15)] – [Beta (12,30)]</td>
<td>Author assumption</td>
</tr>
<tr>
<td>all strategies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAF, chronic atrial fibrillation; IHT, in-hospital treatment; NSR, normal sinus rhythm; PiP, pill-in-the-pocket; RR, relative risk; SPAF, Stroke Prevention in Atrial Fibrillation study.
TABLE 46 Probabilistic values of probability parameters in PiP strategy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution (parameter)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of efficacy of the PAF treatment</td>
<td>Beta (538.31)</td>
<td>Alboni 2004(^{12})</td>
</tr>
<tr>
<td>Probability of proarrhythmia</td>
<td>Beta (1.164)</td>
<td>Alboni 2004(^{12})</td>
</tr>
<tr>
<td>Probability of return to NSR after proarrhythmia event</td>
<td>Beta (9.1)</td>
<td>Alboni 2004(^{12})</td>
</tr>
<tr>
<td>Probability of progressing to CAF after proarrhythmia event</td>
<td>I – [Beta (9.1)]</td>
<td>Alboni 2004(^{12})</td>
</tr>
<tr>
<td>Probability of PAF treatment fail</td>
<td>I – [Beta (2.40)] – [Beta (538.31)]</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of return to NSR after DC cardioversion</td>
<td>Beta (69.16)</td>
<td>Dankner 2009(^{65})</td>
</tr>
<tr>
<td>Probability of progressing to CAF after DC electrical cardioversion</td>
<td>I – [Beta (69.16)]</td>
<td>Dankner 2009(^{65})</td>
</tr>
<tr>
<td>Probability of recurrences</td>
<td>I – probability of keeping NSR</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of a stroke</td>
<td>Mean_progression</td>
<td></td>
</tr>
<tr>
<td>Mortality risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of keeping CAF state</td>
<td>I – relative risk × life table mortality risk</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of being in post-CAF</td>
<td>I – 1.5 × [Beta (5.15)]</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of recurrences after post-stroke</td>
<td>I – probability of keeping post + PiP</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of suffering a new stroke in post + PiP</td>
<td>Probability of dying post + PiP</td>
<td></td>
</tr>
<tr>
<td>Risk of bleeding event</td>
<td>Mean_progression</td>
<td></td>
</tr>
</tbody>
</table>
| CAF, chronic atrial fibrillation; DC, direct current; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.

TABLE 47 Probabilistic values of probability parameters in AAD strategy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution (parameter)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of efficacy of the PAF treatment</td>
<td>Beta (34,22)</td>
<td>Dankner 2009<sup>65</sup></td>
</tr>
<tr>
<td>Probability of proarrhythmia</td>
<td>Beta (12,2021)</td>
<td>Kaufman 2009<sup>66</sup></td>
</tr>
<tr>
<td>Probability of return to NSR after proarrhythmia</td>
<td>Beta (9,1)</td>
<td>Alboni 2004<sup>12</sup></td>
</tr>
<tr>
<td>Probability of progressing to CAF after proarrhythmia</td>
<td>1 – [Beta (9,1)]</td>
<td>Alboni 2004<sup>12</sup></td>
</tr>
<tr>
<td>Probability of PAF treatment fail</td>
<td>1 – [Beta (12,2021)] – [Beta (34,22)]</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of return to NSR after DC electrical cardioversion</td>
<td>Beta (69,16)</td>
<td>Dankner 2009<sup>65</sup></td>
</tr>
<tr>
<td>Probability of progressing to CAF after DC electrical cardioversion</td>
<td>1 – [Beta (69,16)]</td>
<td>Dankner 2009<sup>65</sup></td>
</tr>
<tr>
<td>Probability of recurrences</td>
<td>1 – Mean_progression</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of keeping CAF state</td>
<td>1 – relative risk × life table mortality risk</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of being in post-CAF</td>
<td>1 – 1.5 × [Beta (5,15)]</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of recurrences after post-stroke</td>
<td>1 – probability of keeping post + IHT</td>
<td>Author assumption</td>
</tr>
<tr>
<td></td>
<td>Probability of suffering a new stroke in post + IHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk of bleeding event</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability of dying post + IHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean_progression risk</td>
<td></td>
</tr>
</tbody>
</table>

CAF, chronic atrial fibrillation; DC, direct current; IHT, in-hospital treatment; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation.
Table 48: Probabilistic values of probability parameters in IHT strategy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution (parameter)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of efficacy of PAF treatment (DC electrical cardioversion)</td>
<td>Beta (69,16)</td>
<td>Dankner 2009<sup>63</sup></td>
</tr>
<tr>
<td>Probability of keeping an NSR</td>
<td>Beta (35,64)</td>
<td>Pappone 2006<sup>64</sup></td>
</tr>
<tr>
<td>Probability of proarrhythmia</td>
<td>Beta (12,2021)</td>
<td>Kaufman 2009<sup>64</sup></td>
</tr>
<tr>
<td>Probability of returning to NSR after proarrhythmia</td>
<td>Beta (9,1)</td>
<td>Rodgers 2008<sup>63</sup></td>
</tr>
<tr>
<td>Probability of progressing to CAF after proarrhythmia</td>
<td>1 – [Beta (9,1)]</td>
<td>Rodgers 2008<sup>63</sup></td>
</tr>
<tr>
<td>Probability of recurrences</td>
<td>1 – Mean_progression</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of keeping CAF state</td>
<td>1 – relative risk × life table mortality risk</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of being in post-CAF</td>
<td>1 – 1.5 × [Beta (5,15)]</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of recurrences after post-stroke</td>
<td>1 – probability of keeping post + AAD</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Probability of progression after DC cardioversion due to PAF event</td>
<td>1 – [Beta (69,16)]</td>
<td>Dankner 2009<sup>63</sup></td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; CAF, chronic atrial fibrillation; DC, direct current; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation.

Table 49: Probabilistic values of utility parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Distribution (parameter)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility value of being in CAF state</td>
<td>0.71</td>
<td>Beta (43.195,14.398)</td>
<td>Dorian 2000<sup>64</sup></td>
</tr>
<tr>
<td>Utility of being dependent after a stroke</td>
<td>0.38</td>
<td>Beta (41.930,68.412)</td>
<td>LSR-Dorman 2000<sup>64</sup></td>
</tr>
<tr>
<td>Utility of being independent after a stroke</td>
<td>0.74</td>
<td>Beta (209.875,73.740)</td>
<td>LSR-Dorman 2000<sup>64</sup></td>
</tr>
<tr>
<td>Utility during AF event</td>
<td>0.71</td>
<td>Beta (43.195,14.398)</td>
<td>Dorian 2000<sup>64</sup>, Lamotte 2007<sup>75</sup></td>
</tr>
<tr>
<td>Utility in NSR</td>
<td>0.89</td>
<td>Beta (26.482,4.858)</td>
<td>Rienstra 2006<sup>12</sup></td>
</tr>
<tr>
<td>Utility of death</td>
<td>0.005</td>
<td>Gamma (0.500,0.005)</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Loss of utility for suffer an PAF event (7 days: maximum number of days in the definition of PAF in the national clinical guideline<sup>3</sup>)</td>
<td>0.0035</td>
<td>Gamma (2.000,3.125 × 10<sup>-6</sup>)</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Loss of utility for suffer a proarrhythmia event (1 day more with AF utility)</td>
<td>0.0005</td>
<td>Gamma (2.000,0.001)</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Loss of utility for suffer a bleeding (5 days with a 15% reduction in previous utility)</td>
<td>0.0015</td>
<td>Gamma (18.18 × 10<sup>-4</sup>)</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Loss of utility due to the fail of the PAF treatment</td>
<td>0.0005</td>
<td>Gamma (2.000,0.001)</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; CAF, chronic atrial fibrillation; DC, direct current; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation.
TABLE 50 Probabilistic values of costs parameters

<table>
<thead>
<tr>
<th>Parameter (all strategies)</th>
<th>Distribution (parameter)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual cost of long-term care in post-stroke (independent)</td>
<td>Gamma (3.39,154.46)</td>
<td>Chambers model; Saka 2009</td>
</tr>
<tr>
<td>Cost of a stroke dependent event (51 days inpatient stay)</td>
<td>Gamma (24.57,388.43)</td>
<td>Wardlaw 1998; Saka 2009</td>
</tr>
<tr>
<td>Cost of a stroke independent event (14 days inpatient stay)</td>
<td>Gamma (4.97,662.52)</td>
<td>Wardlaw 1998; Saka 2009</td>
</tr>
<tr>
<td>Cost of a stroke event followed by death (33 days inpatient stay)</td>
<td>Gamma (172.59,29.11)</td>
<td>Wardlaw 1998; Saka 2009</td>
</tr>
<tr>
<td>Annual cost of being in CAF (rate control drug sotalol 240 mg daily)</td>
<td>Gamma (1.432,31.665)</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>Annual cost of warfarin treatment</td>
<td>Gamma (3.64,1.08)</td>
<td>Abdelhafiz 2003</td>
</tr>
<tr>
<td>Parameter (PiP strategy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of PAF event in PiP (cost of flecainide based on a 100-mg 60-tablet pack = £15.04) (2009)</td>
<td>Gamma (2.9,0.18)</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>Cost of proarrhythmia event (electrical cardioversion plus warfarin)</td>
<td>Gamma (2.08,357.22)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Cost of PAF treatment fail (electrical cardioversion plus warfarin)</td>
<td>Gamma (2.08,357.22)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Annual cost of being in NSR in PiP</td>
<td>0</td>
<td>Author assumption</td>
</tr>
<tr>
<td>Parameter (AAD strategy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of PAF event in AAD (90% patients electrical cardioversion plus warfarin and 10% pharmacological cardioversion)</td>
<td>Gamma (1.00,363.15)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Cost of proarrhythmia event in AAD (electrical cardioversion plus warfarin)</td>
<td>Gamma (2.08,357.22)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Annual cost of being in NSR in AAD (200 mg daily of flecainide)</td>
<td>Gamma (9.14,16215)</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>Parameter (IHT strategy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of PAF event in IHT returning to NSR (cost of an IV infusion in A&E room)</td>
<td>Gamma (1.00,363.15)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Cost of proarrhythmia event (electrical cardioversion plus warfarin)</td>
<td>Gamma (2.08,357.22)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Cost of PAF treatment fail (electrical cardioversion plus warfarin)</td>
<td>Gamma (2.08,357.22)</td>
<td>NHS reference costs 2008/09: collection guidance</td>
</tr>
<tr>
<td>Annual cost of being in NSR in IHT</td>
<td>0</td>
<td>Author assumption</td>
</tr>
</tbody>
</table>

AAD, antiarrhythmic drug; A&E, accident and emergency; CAF, chronic atrial fibrillation; IHT, in-hospital treatment; IV, intravenous; NSR, normal sinus rhythm; PAF, paroxysmal atrial fibrillation; PiP, pill-in-the-pocket.
Health Technology Assessment reports published to date

Volume 1, 1997

No. 1
Home parenteral nutrition: a systematic review.
By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Systematic review of outpatient services for chronic pain control.
By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8
Preschool vision screening.
A review by Snowdon SK, Stewart-Brown SL.

No. 9
Implications of socio-cultural contexts for the ethics of clinical trials.
A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10
A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
By Davis A, Bamford J, Wilson J, Ramkalawan T, Forsyth M, Wright S.

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
Routine preoperative testing: a systematic review of the evidence.
By Munro J, Booth A, Nicholl J.

No. 13
Systematic review of the effectiveness of laxatives in the elderly.
By Pettigrew M, Watt I, Sheldon T.

No. 14
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
A review by Mowatt G, Bower DJ, Brebner JA, Cairns JA, Grant AM, McKeel L.

Volume 2, 1998

No. 1
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Consensus development methods, and their use in clinical guideline development.

No. 4
A cost-utility analysis of interferon beta for multiple sclerosis.

No. 5
Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews.
By MacLeod A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Song F, Glenny AM.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
A review by Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
By Sculpher MJ, Petticrew M, Kelland J, Elliott RA, Holdright DR, Buxton MJ.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
By Britton A, McKeel M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
No. 15
Ethical issues in the design and conduct of randomised controlled trials.

A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JC, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.

By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.

By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.

By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.

A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.

By Ukoumunne OC, Gulliford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6
Assessing the costs of healthcare technologies in clinical trials.

A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.

By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.

A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.

By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10

A review by Billingham LJ, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.

By Zeuner D, Ades AE, Karnon J, Brown J, Dezauteux C, Anionwu EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
'Early warning systems' for identifying new healthcare technologies.

By Robert G, Stevens A, Gabbay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.

By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.

A review by Robert G, Milne R.

No. 17
The debridement of chronic wounds: a systematic review.

By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 1)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.

By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.

A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kintu S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.

By Glenny AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.

By Lister-Sharp D, Chapman S, Stewart-Brown S, Bowell A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.

Volume 4, 2000

No. 1
The estimation of marginal time preference in a UK-wide sample (TEMPUS) project.
By Cairns JA, van der Pol MM.

No. 2
Geriatric rehabilitation following fractures in older people: a systematic review.

No. 3
Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
By Davies SC, Cronin E, Gill M, Greengross P, Hickman M, Normand C.

No. 4
Community provision of hearing aids and related audiology services.
By Reeves DJ, Alborz A, Hickson FS, Bamford JM.

No. 5
False-negative results in screening programmes: systematic review of impact and implications.
By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6
Costs and benefits of community postnatal support workers: a randomised controlled trial.
By Morrell CJ, Spiby H, Stewart P, Walters S, Morgan A.

No. 7
Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8
Introduction to statistical methods for health technology assessment.
By White SJ, Ashby D, Brown P.

No. 9
Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
By Clegg A, Bryant J, Milne R.

No. 10
Publication and related biases.
By Song F, Eastwood AJ, Gilbody S, Dudley L, Sutton AJ.

No. 11
Cost and outcome implications of the organisation of vascular services.
By Michaels J, Brazier J, Palfreyman S, Shackyhead P, Slack R.

No. 12
Monitoring blood glucose control in diabetes mellitus: a systematic review.
By Coster S, Gulliford MC, Seed PT, Powrie J, Swamnathan R.

No. 13
The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14
The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15
The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
By Song F, O'Meara S, Wilson P, Golder S, Kleijnen J.

No. 16

No. 17
A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
By Lister-Sharp D, McDonagh MS, Khani KS, Kleijnen J.

No. 18
Liquid-based cytology in cervical screening: a rapid and systematic review.
By Payne N, Chikot J, McGoogan E.

No. 19
Randomised controlled trial of non-directive counselling, cognitive–behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20
Routine referral for radiography of patients presenting with low back pain: is patients’ outcome influenced by GPs’ referral for plain radiography?
By Perry S, Hilton S, Patel S, Dunlas D, Rink E, Lord J.

No. 21
Systematic reviews of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
By O'Meara S, Cullum N, Majid M, Sheldon T.

No. 22
Using routine data to complement and enhance the results of randomised controlled trials.
By Lewsey JD, Leyland AH, Murray GD, Boddy FA.

No. 23
Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
By Meads C, Cummings C, Jolly K, Stevens A, Burls A, Hyde C.

No. 24
Outcome measures for adult critical care: a systematic review.
By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25
A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
By Fairbank L, O’Meara S, Renfrew MJ, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26
Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
By Parkes J, Bryant J, Milne R.

No. 27
Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
By Brañas P, Jordan R, Fry-Smith A, Burls A, Hyde C.

No. 28
Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29
Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
By Marks D, Wonderling D, Thorogood M, Lambert H, Humphries SE, Neil HAW.

No. 30
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
By McDonagh MS, Bachmann LM, Golder S, Kleijnen J, ter Riet G.
No. 31 A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
By Turner J, Nicholl J, Webber L, Cox H, Dixon S, Yates D.

No. 32 Intrathecal pumps for giving opioids in chronic pain: a systematic review.
By Williams JE, Louw G, Towler G.

No. 33 Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
By Shepherd J, Waugh N, Hewitson P.

No. 34 A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
By MacLehose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 35 Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
By Berry E, Kelly S, Hutton J, Lindsay HSJ, Blaxill JM, Evans JA, et al.

No. 36 A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37 Systematic review of treatments for atopic eczema.
By Hoare C, Li Wan Po A, Williams H.

No. 38 Bayesian methods in health technology assessment: a review.
By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 39 The management of dyspepsia: a systematic review.

No. 40 A systematic review of treatments for severe psoriasis.
By Griffiths CEM, Clark CM, Chalmers R, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 1 Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review.

No. 2 The clinical effectiveness and cost-effectiveness of riluzole for motor neurone disease: a rapid and systematic review.

No. 3 Equity and the economic evaluation of healthcare.
By Sassi F, Archard L, Le Grand J.

No. 4 Quality-of-life measures in chronic diseases of childhood.
By Eiser C, Morse R.

No. 5 Eliciting public preferences for healthcare: a systematic review of techniques.

No. 6 General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
By Riemssma RP, Forbes CA, Cranville JM, Eastwood AJ, Kleijnen J.

No. 7 An assessment of screening strategies for fragile X syndrome in the UK.
By Pembrey ME, Barnicoat AJ, Carmichael B, Bobrow M, Turner G.

No. 8 Issues in methodological research: perspectives from researchers and commissioners.

No. 9 Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
By Cullum N, Nelson EA, Fleming K, Sheldon T.

No. 10 Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.

No. 11 Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
By Jobanputra P, Parry D, Fry-Smith A, Burd A.

No. 12 Statistical assessment of the learning curves of health technologies.
By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13 The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
By Dinnes J, Cave C, Huang S, Major K, Milne R.

No. 14 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debriding agents in treating surgical wounds healing by secondary intention.
By Lewis R, Whiting P, ter Riet G, O’Meara S, Cranville J.

No. 15 Home treatment for mental health problems: a systematic review.

No. 16 How to develop cost-conscious guidelines.
By Eccles M, Mason J.

No. 17 The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
By De Bruijn S, Christopher F, Waugh N.

No. 18 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
By O’Meara S, Riemssma R, Shrrain L, Mather L, ter Riet G.

No. 19 The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 20 Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.
No. 21 Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) Acute day hospital versus admission; (2) Vocational rehabilitation; (3) Day hospital versus outpatient care.

No. 22 The measurement and monitoring of surgical adverse events.
 By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23 Action research: a systematic review and guidance for assessment.
 By Waterman H, Tillen D, Dickson R, de Koning K.

No. 24 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer.

No. 25 A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer.
 By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 26 Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature.

No. 27 The cost-effectiveness of magnetic resonance imaging for investigation of the knee joint.

No. 28 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.
 By Forbes C, Shirran L, Bagnall A-M, Duffy S, ter Riet G.

No. 29 Superseded by a report published in a later volume.

No. 30 The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial.
 By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 31 Design and use of questionnaires: a review of best practice applicable to surveys of health service staff and patients.

No. 32 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.
 By Clegg A, Scott DA, Sidhu M, Hewitson P, Waugh N.

No. 33 Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
 By Brooks ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34 Depot antipsychotic medication in the treatment of patients with schizophrenia: (1) Meta-review; (2) Patient and nurse attitudes.
 By David AS, Adams C.

No. 35 A systematic review of controlled trials of the effectiveness and cost-effectiveness of brief psychological treatments for depression.

No. 36 Cost analysis of child health surveillance.
 By Sanderson D, Wright D, Acton C, Duree D.

Volume 6, 2002

No. 1 A study of the methods used to select review criteria for clinical audit.
 By Hearshaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 2 Fludarabine as second-line therapy for B cell chronic lymphocytic leukaemia: a technology assessment.

No. 3 Rituximab as third-line treatment for refractory or recurrent Stage III or IV follicular non-Hodgkin’s lymphoma: a systematic review and economic evaluation.

No. 4 A systematic review of discharge arrangements for older people.

No. 5 The clinical effectiveness and cost-effectiveness of inhaler devices used in the routine management of chronic asthma in older children: a systematic review and economic evaluation.
 By Peters J, Stevenson M, Beverley C, Lim J, Smith S.

No. 6 The clinical effectiveness and cost-effectiveness of sibutramine in the management of obesity: a technology assessment.
 By O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 7 The cost-effectiveness of magnetic resonance angiography for carotid artery stenosis and peripheral vascular disease: a systematic review.

No. 8 Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’.
 By Carroll B, Ali N, Azam N.

No. 9 Zanamivir for the treatment of influenza in adults: a systematic review and economic evaluation.

No. 10 A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models.
 By Richards KG, Sampson FC, Beard SM, Tappenden P.

No. 11 Screening for gestational diabetes: a systematic review and economic evaluation.
 By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 12 The clinical effectiveness and cost-effectiveness of surgery for people with morbid obesity: a systematic review and economic evaluation.

No. 13 The clinical effectiveness of trastuzumab for breast cancer: a systematic review.
No. 18 Clinical effectiveness and cost-effectiveness of growth hormone in children: a systematic review and economic evaluation.

By Bryant J, Loveman E, Chase D, Mihaylova B, Cave C, Gerard K, et al.

No. 20 Clinical medication review by a pharmacist of patients on repeat prescriptions in general practice: a randomised controlled trial.

No. 21 The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation.
By Jobaoth Kotaputra P, Barton P, Bryan S, Burls A.

No. 22 A systematic review and economic evaluation of computerised cognitive behaviour therapy for depression and anxiety.
By Kaltenthaler E, Shackley P, Stevens K, Beverley C, Parry G, Chilcott J.

No. 23 A systematic review and economic evaluation of pegylated liposomal doxorubicin hydrochloride for ovarian cancer.
By Forbes C, Wilby J, Richardson G, Sculpher M, Mather L, Riemsma R.

No. 24 A systematic review of the effectiveness of interventions based on a stages-of-change approach to promote individual behaviour change.

No. 25 A systematic review update of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists.

No. 26 A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapies for acute ischaemic stroke in the NHS.

No. 27 A randomised controlled crossover trial of nurse practitioner versus doctor-led outpatient care in a bronchiectasis clinic.

No. 28 Clinical effectiveness and cost—consequences of selective serotonin reuptake inhibitors in the treatment of sex offenders.
By Adi Y, Ashcroft D, Browne K, Beech A, Fry-Smith A, Hyde C.

No. 29 Treatment of established osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

No. 30 Which anaesthetic agents are cost-effective in day surgery? Literature review, national survey of practice and randomised controlled trial.

No. 31 Screening for hepatitis C among injecting drug users and in genitourinary medicine clinics: systematic reviews of effectiveness, modelling study and national survey of current practice.

No. 32 The measurement of satisfaction with healthcare: implications for practice from a systematic review of the literature.

No. 33 The effectiveness and cost-effectiveness of imatinib in chronic myeloid leukaemia: a systematic review.
By Garside R, Round A, Dalziel K, Stein K, Royle R.

No. 34 A comparative study of hypertonic saline, daily and alternate-day rhDNase in children with cystic fibrosis.

No. 35 A systematic review of the costs and effectiveness of different models of paediatric home care.

Volume 7, 2003

No. 1 How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study.
By Egger M, Juni P, Bartlett C, Holenstein F, Sterne J.

No. 2 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of home versus hospital or satellite unit haemodialysis for people with end-stage renal failure.

No. 3 Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease.
By Clark W, Raftery J, Barton P, Song F, Fry-Smith A, Burls A.

No. 4 A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus negative.

No. 5 Systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing’s sarcoma and neuroblastoma.
No. 6 The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.

No. 7 The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8 A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9 Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
 By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10 Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.

No. 11 First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
 By Wald NJ, Rodreck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12 The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
 By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13 A systematic review of atypical antipsychotics in schizophrenia.

No. 14 Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
 By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15 Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16 Screening for fragile X syndrome: a literature review and modelling.
 By Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A.

No. 17 Systematic review of endoscopic sinus surgery for nasal polyps.
 By Dalziel R, Stein K, Round A, Garside R, Royle P.

No. 18 Towards efficient guidelines: how to monitor guideline use in primary care.
 By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19 Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
 By Bagnall A-M, Jones L, Richardson G, Duffy S, Rensma R.

No. 20 Prioritisation of health technology assessment. The PATHS model: methods and case studies.
 By Townsend J, Buxton M, Harper G.

No. 22 The clinical and cost-effectiveness of patient education models for diabetes: a systematic review and economic evaluation.
 By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23 The role of modelling in prioritising and planning clinical trials.
 By Chikoti J, Brennan A, Booth A, Karnon J, Tappenden P.

No. 24 Cost-benefit evaluation of routine influenza immunisation in people 65–74 years of age.
 By Allsup S, Gosney M, Haycox A, Regan M.

No. 25 The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
 By Wight J, Chikoti J, Holmes M, Brewer N.

No. 26 Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
 By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27 Evaluating non-randomised intervention studies.

No. 28 A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29 The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
 By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30 The value of digital imaging in diabetic retinopathy.

No. 31 Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
 By Law M, Wald N, Morris J.

No. 32 Clinical and cost-effectiveness of capecitabine and tegafur with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
 By Ward S, Kaltenthaler E, Cowan J, Brewer N.

 By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.
No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.

No. 35
Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36
A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37
Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women's physical and psychological health needs.

No. 38
Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

No. 39
Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling.
By Cooper BS, Stone SF, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40
Treatments for spasticity and pain in multiple sclerosis: a systematic review.
By Beard S, Hunn A, Wight J.

No. 41
The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42
The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

Volume 8, 2004

No. 1
What is the best imaging strategy for acute stroke?
By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sandrock PAG, Dennis MS, et al.

No. 2
Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.
By Mant J, McManus RJ, Oakes RAL, Delaney BC, Barton PM, Deeks J, et al.

No. 3
The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4
A systematic review of the role of bisphosphonates in metastatic disease.

No. 5
Systematic review of the clinical effectiveness and cost-effectiveness of capetitabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6
Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7
Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
By Bryant J, Clegg AJ, Sidhu MK, Brodin H, Royle P, Davidson P.

No. 8
Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
By Morgan K, Dixon S, Mathers N, Thompson J, Tumney M.

No. 9
Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
By Hohart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ.

No. 10
A systematic review and economic evaluation of magnetic resonance cholangiopancreatography compared with diagnostic endoscopic retrograde cholangiopancreatography.

No. 11
The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis.

No. 12
By Czoski-Murray C, Warren E, Chilcott J, Beverley C, Pytlaki MA, Cowan J.

No. 14
Routine examination of the newborn: the EMREN study. Evaluation of an extension of the midwife role including a randomised controlled trial of appropriately trained midwives and paediatric senior house officers.

No. 15
Involving consumers in research and development agenda setting for the NHS: developing an evidence-based approach.

No. 16
A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery.

No. 17
Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial.
By Gilbert FJ, Grant AM, Gillan MJG, Vale L, Scott NW, Campbell MK, et al.

Health Technology Assessment reports published to date
No. 18 The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
By Clark W, Jobanputra P, Barton P, Burls A.

No. 19 A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20 Liquid-based cytology in cervical screening: an updated rapid and systematic review and economic analysis.

No. 21 Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22 Autoantibody testing in children with newly diagnosed type 1 diabetes mellitus.
By Dretzke J, Cummins C, Sandercock J, Fry-Smith A, Barrett T, Burls A.

No. 23 Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercock J, Bayliss S, Burls A.

No. 24 Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25 Development and validation of methods for assessing the quality of diagnostic accuracy studies.
By Whiting P, Rutjes AWS, Dines J, Reitsma JB, Bossuyt PPM, Kleijnen J.

No. 26 EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27 Methods for expected value of information analysis in complex health economic models: developments on the health economics of interferon-β and glatiramer acetate for multiple sclerosis.
By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

By Dalziel R, Round A, Stein K, Garside R, Price A.

No. 29 VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.
By Iglesias C, Nelson EA, Cullum NA, Torgerson DJ, on behalf of the VenUS Team.

No. 30 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31 A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.

No. 32 The Social Support and Family Health Services to under-represented groups: improving rehabilitation programmes: improving services to under-represented groups.
By Averill FC, Burke M, West RR, et al.

No. 33 Psychosocial aspects of genetic screening for pregnant women and newborns: a systematic review.
By Green JM, Hewison J, Bekker HL, Bryant, Cuckle HS.

No. 34 Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35 Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36 Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37 Rituximab (MabThera) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38 Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation.
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpher M, et al.

No. 39 Regulated interferon α2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40 Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Avenell A, Broom J, Brown J, Mason S, Tovey P, et al.

No. 41 Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Griebisch I, Taylor FC, Burke M, West RR, et al.

No. 42 Involving South Asian patients in clinical trials.

No. 43 Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Colquitt JL, Green C, Siddhu MK, Hartnell D, Waugh N.

No. 44 Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45 Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.
No. 46
Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritides of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

Volume 9, 2005

No. 1
Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrotherapeutical modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenefine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens PJ, Darbyshire JH, et al.

No. 8
Lay public's understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinnes J, Deeks J, Kirby J, Rodrick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BH, Barton E, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of trycyclic antidepressants, selective serotonin reuptake inhibitors and lopemprine.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kalra L, Evans A, Perez I, Knapp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Wodoszynowsy M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Raftery J, Rodrick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.
No. 23
A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma.

No. 24
An evaluation of the costs, effectiveness and quality of renal replacement therapy provision in renal satellite units in England and Wales.

No. 25
Imatinib for the treatment of patients with unresectable and/or metastatic gastrointestinal stromal tumours: systematic review and economic evaluation.

No. 26
Indirect comparisons of competing interventions.

No. 27
Cost-effectiveness of alternative strategies for the initial medical management of non-ST elevation acute coronary syndrome: systematic review and decision-analytical modelling.

No. 28
Outcomes of electrically stimulated gracilis neosphincter surgery.
By Tillin T, Chambers M, Feldman R.

No. 29
The effectiveness and cost-effectiveness of pimecrolimus and tacrolimus for atopic eczema: a systematic review and economic evaluation.

No. 32
Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain.

No. 33
Cost-effectiveness and safety of epidural steroids in the management of sciatica.
By Price C, Arden N, Coglan L, Rogers P.

No. 34
The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis.
By Symmonds D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 35
Conceptual framework and systematic review of the effects of participants’ and professionals’ preferences in randomised controlled trials.

No. 36
The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review.
By Bryant J, Brodin H, Loveman E, Payne E, Clegg A.

No. 37
A trial of problem-solving by community mental health nurses for anxiety, depression and life difficulties among general practice patients. The CPN-GF study.

No. 38
The causes and effects of socio-demographic exclusions from clinical trials.

No. 39
Is hydrotherapy cost-effective? A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis.

No. 40
A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study.

No. 41
Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty and total hip arthroplasty.
By Keating JF, Grant A, Masson M, Scott NW, Forbes JF.

No. 42
Long-term outcome of cognitive behaviour therapy clinical trials in central Scotland.

No. 43
The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation.
By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 44
Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis.

No. 45
The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.

No. 46
The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDxs) in detecting and monitoring glaucoma.
By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

No. 47
Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.
No. 48
Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49
Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thrombo prophylaxis.

No. 50
The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006

No. 1
The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease.

No. 2
FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranswick G, Forbes J.

No. 3
The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.

No. 4
A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5
Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.
By Dundar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR.

No. 6
Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7

No. 8
Surveillance of Barrett's oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.
By Garside R, Pitt M, Somerville M, Stein K, Price A, Gilbert N.

No. 9
Topotecan, pegylated liposomal doxorubicin and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10
Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.
By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11

No. 12
A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13
Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14
The cost-effectiveness of screening for oral cancer in primary care.
By Speight PM, Palmer S, Motes DR, Downer MC, Smith DH, Henriksson M, et al.

No. 15

No. 16

No. 17
Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.
By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 18
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19
Cognitive behavioural therapy in addition to antispasmodic therapy for irritable bowel syndrome in primary care: randomised controlled trial.

No. 20
A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry's disease and mucopolysaccharidosis type I.

No. 21
Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.
By Wright M, Grieve R, Roberts J, Main J, Thomas HC, on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 22
Pressure relieving support surfaces: a randomised evaluation.
No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamfetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29
By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30
Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31
Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32
The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33
Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35
Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36
Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37
Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O’Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 38

No. 39
The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.

No. 40
What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 41
The clinical and cost-effectiveness of oxaliplatin and capecitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pandor A, Eggington S, Paisley S, Tappenden P, Sutcliffe P.

No. 42
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43
Telemedicine in dermatology: a randomised controlled trial.
By Bowns IR, Collins K, Walters SJ, McDonagh AJG.

No. 44

No. 45
Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46
Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47
Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48
Evaluation of the ventricular assist device programme in the UK.
No. 49

No. 50
Amniocentesis results: investigation of anxiety. The ARIA trial.

Volume II, 2007

No. 1
Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3
A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4
The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.

No. 5
A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6
Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7
Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8
Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9
Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10
Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11
Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12
Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13
A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14
A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15
A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16
Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17
Screening for type 2 diabetes: literature review and economic modelling.

No. 18
The clinical effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.
By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 19
A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 20
The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.

No. 21
The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22
A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23
Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.
No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.
By Boyle J, McCartney E, Forbes J, O’Hare A.

No. 26
Hormonal therapies for early breast cancer: systematic review and economic evaluation.
By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyl W.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.
By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.

No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population. The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.
By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

No. 35
The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Home based compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.

No. 36
A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

No. 37
A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

No. 38
Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anti-coagulation therapy: a systematic review and economic modelling.

No. 39
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder.

No. 40
Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.
By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

No. 41
The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

No. 42
Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.
By Davis A, Smith P, Ferguson M, Stephens D, Gianopoulou I.

No. 43
Contamination in trials of educational interventions.

No. 44
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.
By Facey K, Bradbury I, Laking G, Payne E.

No. 45
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

No. 46
Drug-eluting stents: a systematic review and economic evaluation.

No. 47
The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

No. 48
Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study.
By Campbell MK, Snowden C, Francis D, Elbourne D, McDonald AM, Knight R, et al.

No. 49
Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CEaT trial.
No. 50
Evaluation of diagnostic tests when there is no gold standard: A review of methods.
By Rutjes AWS, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PMM.

No. 51
Systematic reviews of the clinical effectiveness and cost-effectiveness of proton pump inhibitors in acute upper gastrointestinal bleeding.

No. 52
A review and critique of modelling in prioritising and designing screening programmes.

No. 53
An assessment of the impact of the NHS Health Technology Assessment Programme.
By Hanney S, Buxton M, Green C, Coulson D, Raftery J.

Volume 12, 2008

No. 1
A systematic review and economic model of switching from nonglycopeptide to glycopeptide antibiotic prophylaxis for surgery.

No. 2
‘Cut down to quit’ with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis.
By Wang D, Connock M, Barton P, Fry-Smith A, Aveyard P, Moore D.

No. 3
A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management.

No. 4
By Charlesworth G, Shepstone L, Wilson E, Thalaman M, Mugford M, Poland F.

No. 5
A multi-centre retrospective cohort study comparing the efficacy, safety and cost-effectiveness of hysterectomy and uterine artery embolisation for the treatment of symptomatic uterine fibroids. The HOPEFUL study.

No. 6
Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 7
The use of economic evaluations in NHS decision-making: a review and empirical investigation.
By Williams I, McIver S, Moore D, Bryan S.

No. 8
Stapled haemorrhoidectomy (haemorrhoidopexy) for the treatment of haemorrhoids: a systematic review and economic evaluation.

No. 9
The clinical effectiveness of diabetes education models for Type 2 diabetes: a systematic review.
By Loveman E, Frampton GK, Clegg AJ.

No. 10
Payment to healthcare professionals for patient recruitment to trials: systematic review and qualitative study.
By Raftery J, Bryant J, Powell J, Kerr C, Hawker S.

No. 11
Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation.

No. 12
The clinical effectiveness and cost-effectiveness of central venous catheters and their usage with long-acting beta agonists for the treatment of chronic asthma in adults and children aged 12 years and over.

No. 13
A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial.

No. 15
The use of rizmoxime, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation.
By Hind D, Tappenden P, Tumur I, Eggington E, Sutcliffe P, Ryan A.

No. 16
Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation.

No. 17
Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease.

No. 18
Structural neuroimaging in psychosis: a systematic review and economic evaluation.

No. 19
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta agonists for the treatment of chronic asthma in adults and children aged 12 years and over.

No. 20
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21
Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.
No. 22
Topical or oral diclofenac for chronic knee pain in older people: The TOIB study.

No. 23
A prospective randomised comparison of minor surgery in primary and secondary care: The MISTIC trial.

No. 24
A review and critical appraisal of measures of therapist–patient interactions in mental health settings.

No. 25
The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.
By Carlson J, Karnon J, Czoski-Murray C, Smith KJ, Marr J.

No. 26
A systematic review of the clinical effectiveness and cost-effectiveness and economic modelling of minimal incision total hip replacement approaches in the management of arthritic disease of the hip.

No. 27
A preliminary model-based assessment of the cost-utility of a screening programme for early age-related macular degeneration.

No. 28
Intravenous magnesium sulphate and tosalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 29
Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 30
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

No. 31
The effectiveness and cost-effectiveness of minimal access surgery amongst people with gastro-oesophageal reflux disease – a UK collaborative study. The reflux trial.

No. 32
Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review.
By Takeda A, Loverman E, Harris P, Hartwell D, Welch K.

No. 33
Performance of screening tests for child physical abuse in accident and emergency departments.
By Woodman J, Pitt M, Wentz R, Taylor B, Hodes D, Gilbert RE.

No. 34
Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation.

No. 35
Systematic review and economic modelling of effectiveness and cost utility of surgical treatments for men with benign prostatic enlargement.

No. 36
Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: a systematic review and economic evaluation.
By Wang D, Cummins C, Bayliss S, Sandercock J, Burks A.

Volume 13, 2009

No. 1
Deferasirox for the treatment of iron overload associated with regular blood transfusions (transfusional haemosiderosis) in patients suffering with chronic anaemia: a systematic review and economic evaluation.

No. 2
Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis.
By Simpson EL, Stevenson MD, Rawdin A, Papaioannou D.

No. 3
Surgical procedures and non-surgical devices for the management of non-apnoeic snoring: a systematic review of clinical effects and associated treatment costs.
By Main C, Liu Z, Welch K, Weiner G, Quentin Jones S, Stein K.

No. 4
Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea–hypopnoea syndrome: a systematic review and economic analysis.

No. 5
Use of classical and novel biomarkers as prognostic risk factors for localised prostate cancer: a systematic review.

No. 6
The harmful health effects of recreational ecstasy: a systematic review of observational evidence.

No. 7
Systematic review of the clinical effectiveness and cost-effectiveness of oesophageal Doppler monitoring in critically ill and high-risk surgical patients.

No. 8
The use of surrogate outcomes in model-based cost-effectiveness analyses: a survey of UK Health Technology Assessment reports.
By Taylor RS, Elston J.

No. 9
Controlling Hypertension and Hypotension Immediately Post Stroke (CHHIPS) – a randomised controlled trial.

No. 10
Routine antenatal anti-D prophylaxis for RhD-negative women: a systematic review and economic evaluation.
By Pilgrim H, Lloyd-Jones M, Rees A apo- et al.

No. 11
Amanitadine, oseltamivir and zanamivir for the prophylaxis of influenza (including a review of existing guidance no. 67): a systematic review and economic evaluation.
No. 12
Improving the evaluation of therapeutic interventions in multiple sclerosis: the role of new psychometric methods.
By Hobart J, Cano S.

No. 13
Treatment of severe ankle sprain: a pragmatic randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of three types of mechanical ankle support with tubular bandage. The CAST trial.
By Cooke MW, Marsh JL, Clark M, Nakash R, Jarvis RM, Hutton JL, et al., on behalf of the CAST trial group.

No. 14
Non-occupational postexposure prophylaxis for HIV: a systematic review.
By Bryant J, Baxter L, Hird S.

No. 15
Blood glucose self-monitoring in type 2 diabetes: a randomised controlled trial.

No. 16
How far does screening women for domestic (partner) violence in different health-care settings meet criteria for a screening programme? Systematic reviews of nine UK National Screening Committee criteria.

No. 17
Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation.
By Simpson, EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J.

No. 18
The role of magnetic resonance imaging in the identification of suspected acoustic neuroma: a systematic review of clinical and cost-effectiveness and natural history.

No. 19
Dipsticks and diagnostic algorithms in urinary tract infection: development and validation, randomised trial, economic analysis, observational cohort and qualitative study.

No. 20
Systematic review of respite care in the frail elderly.

No. 21
Neuroleptics in the treatment of aggressive challenging behaviour for people with intellectual disabilities: a randomised controlled trial (NACHBID).

No. 22
Randomised controlled trial to determine the clinical effectiveness and cost-effectiveness of selective serotonin reuptake inhibitors plus supportive care, versus supportive care alone, for mild to moderate depression with somatic symptoms in primary care: the THREAD (THreshold for AntiDepressant response) study.

No. 23
Diagnostic strategies using DNA testing for hereditary haemochromatosis in at-risk populations: a systematic review and economic evaluation.

No. 24
Enhanced external counterpulsation for the treatment of stable angina and heart failure: a systematic review and economic analysis.

No. 25
Development of a decision support tool for primary care management of patients with abnormal liver function tests without clinically apparent liver disease: a record-linkage population cohort study and decision analysis (ALFIE).

No. 26
A systematic review of presumed consent systems for deceased organ donation.
By Rithalia A, McDaid C, Suekarran S, Norman G, Myers L, Sawdien A.

No. 27
Paracetamol and ibuprofen for the treatment of fever in children: the PITCH randomised controlled trial.

No. 28
A randomised controlled trial to compare minimally invasive glucose monitoring devices with conventional monitoring in the management of insulin-treated diabetes mellitus (MITRE).

No. 29
Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making.
By Andronis L, Barton P, Bryan S.

Suppl. 1
Trastuzumab for the treatment of primary breast cancer in HER2-positive women: a single technology appraisal.
By Ward S, Pilgrim H, Hind D.

Docetaxel for the adjuvant treatment of early node-positive breast cancer: a single technology appraisal.
By Chilcott J, Lloyd Jones M, Wilkinson A.

The use of paclitaxel in the management of early stage breast cancer.

Rituximab for the first-line treatment of stage III/IV follicular non-Hodgkin’s lymphoma.

Bortezomib for the treatment of multiple myeloma patients.

Fludarabine phosphate for the first-line treatment of chronic lymphocytic leukaemia.

Erlotinib for the treatment of relapsed non-small cell lung cancer.

Cetuximab plus radiotherapy for the treatment of locally advanced squamous cell carcinoma of the head and neck.

Infliximab for the treatment of adults with psoriasis.
By Loveman E, Turner D, Hartwell D, Cooper K, Clegg A.

No. 30
Psychological interventions for postnatal depression: cluster randomised trial and economic evaluation. The PoNDER trial.

No. 31
The effect of different treatment durations of clopidogrel in patients with non-ST-segment elevation acute coronary syndromes: a systematic review and value of information analysis.
No. 32
Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care.

No. 33
A multicentre randomised controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the 3CPO trial.
By Gray AJ, Goodacre S, Newby DE, Masson MA, Sampson F, Dixon S, et al., on behalf of the 3CPO study investigators.

No. 34
Early high-dose lipid-lowering therapy to avoid cardiac events: a systematic review and economic evaluation.
By Ara R, Pandor A, Stevens J, Rees A, Rafia R.

No. 35
Adefovir dipivoxil and pegylated interferon alpha for the treatment of chronic hepatitis B: an updated systematic review and economic evaluation.

No. 36
Methods to identify postnatal depression in primary care: an integrated evidence synthesis and value of information analysis.

No. 37
A double-blind randomised placebo-controlled trial of topical intranasal corticosteroids in 4- to 11-year-old children with persistent bilateral otitis media with effusion in primary care.

No. 38
The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model.
By Bond M, Pit M, Akoh J, Moxham T, Hoyle M, Anderson R.

No. 39
Rehabilitation of older patients: day hospital compared with rehabilitation at home. A randomised controlled trial.
By Parker SG, Oliver P, Pennington M, Bond J, Jagger C, Enderby PM, et al.

No. 40
Breastfeeding promotion for infants in neonatal units: a systematic review and economic analysis.

No. 41
The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation.

No. 42
Rapid testing for group B streptococcus during labour: a test accuracy study with evaluation of acceptability and cost-effectiveness.

No. 43
Screening to prevent spontaneous preterm birth: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 44
The effectiveness and cost-effectiveness of cochlear implants for severe to profound deafness in children and adults: a systematic review and economic model.

Suppl. 2
Gemcitabine for the treatment of metastatic breast cancer.
By Jones J, Takeda A, Tan SC, Cooper K, Loveman E, Clegg A.

Varenicline in the management of smoking cessation: a single technology appraisal.
By Hind D, Tappenden P, Peters J, Kenjegalieva K.

Alteplase for the treatment of acute ischaemic stroke: a single technology appraisal.
By Lloyd Jones M, Holmes M.

Rituximab for the treatment of rheumatoid arthritis.

Omalizumab for the treatment of severe persistent allergic asthma.

Rituximab for the treatment of relapsed or refractory stage III or IV follicular non-Hodgkin’s lymphoma.
By Boland A, Bagust A, Hockenhull J, Davis H, Chu P, Dickson R.

Adalimumab for the treatment of psoriasis.
By Turner D, Picot J, Cooper K, Loveman E.

Dabigatran etexilate for the prevention of venous thromboembolism in patients undergoing elective hip and knee surgery: a single technology appraisal.
By Holmes M, C Carroll C, Papaoannou D.

Romiplostim for the treatment of chronic immune or idiopathic thrombocytopenic purpura: a single technology appraisal.

Sumitomib for the treatment of gastrointestinal stromal tumours: a critique of the submission from Pfizer.
By Bond M, Hoyle M, Moxham T, Napier M, Anderson R.

No. 45
Vitamin K to prevent fractures in older women: systematic review and economic evaluation.
By Stevenson M, Lloyd-Jones M, Papaoannou D.

No. 46
The effects of biofeedback for the treatment of essential hypertension: a systematic review.
By Greenhalgh J, Dickson R, Dunlar Y.

No. 47
A randomised controlled trial of the use of aciclovir and/or prednisolone for the early treatment of Bell’s palsy: the BELLS study.

Suppl. 3
Lapatinib for the treatment of HER2-overexpressing breast cancer.
By Jones J, Takeda A, Picot J, von Keyserlingk C, Clegg A.

Infliximab for the treatment of ulcerative colitis.
By Hyde C, Bryan S, Juarez-Garcia A, Androms L, Fry-Smith A.

Rimobabant for the treatment of overweight and obese people.

Telbivudine for the treatment of chronic hepatitis B infection.
By Hartwell D, Jones J, Harris P, Cooper K.

Entecavir for the treatment of chronic hepatitis B infection.
By Shepherd J, Gospodarevskaya E, Frampton G, Cooper, K.

Fexofenadine for the treatment of hyperuricaemia in people with gout: a single technology appraisal.
By Stevenson M, Pandor A.
Rivaroxaban for the prevention of venous thromboembolism: a single technology appraisal.

By Stevenson M, Scope A, Holmes M, Rees A, Kaltenenthal E.

Cetuximab for the treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck.

Mifamurtide for the treatment of osteosarcoma: a single technology appraisal.

By Pandor A, Fitzgerald P, Stevenson M, Papaoannou D.

Ustekinumab for the treatment of moderate to severe psoriasis.

By Gospodarevskaya E, Picot J, Cooper K, Loveeman E, Takeda A.

No. 48
Endovascular stents for abdominal aortic aneurysm: a systematic review and economic model.

Clinical and cost-effectiveness of epoprostenol, iloprost, bosentan, sitaxentan and sildenafil for pulmonary arterial hypertension within their licensed indications: a systematic review and economic evaluation.

No. 50
Cessation of attention deficit hyperactivity disorder drugs in the young (CADDY) – a pharmacoepidemiological and qualitative study.

No. 51
ARTISTIC: a randomised trial of conventional diabetic screening and urine testing for retinopathy: a systematic review of diagnostic accuracy and economic evaluation.

No. 59
Development of a toolkit and glossary to aid in the adaptation of health technology assessment (HTA) reports for use in different contexts.

By Chase D, Rosten C, Turner S, Hicks N, Milne R.

No. 60
Colour vision testing for diabetic retinopathy: a systematic review of diagnostic accuracy and economic evaluation.

No. 61

By Bond M, Wyatt K, Lloyd J, Welch K, Taylor R.

No. 62
Are adverse effects incorporated into economic models? An initial review of current practice.

By Craig D, McDaid C, Fonseca T, Stock C, Duffy S, Woolacott N.

Volume 14, 2010

No. 1
Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE).

No. 2
Bevacizumab, sorafenib tosylate, sunitinib and temsirolimus for renal cell carcinoma: a systematic review and economic evaluation.

No. 3
The clinical effectiveness and cost-effectiveness of testing for cytochrome P450 polymorphisms in patients with schizophrenia treated with antipsychotics: a systematic review and economic evaluation.

No. 4
Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer.

No. 5
Effectiveness and cost-effectiveness of arthroscopic lavage in the treatment of osteoarthritis of the knee: a mixed methods study of the feasibility of conducting a surgical placebo-controlled trial (the KORAL study).

By Campbell MK, Skea ZC, Sutherland AG, Cuthbertson BH, Entwistle VA, McDonald AM, et al.

No. 6
A randomised 2 × 2 trial of community versus hospital pulmonary rehabilitation for chronic obstructive pulmonary disease followed by telephone or conventional follow-up.

By Waterhouse JC, Walters SJ, Oluboyede Y, Lawson RA.

No. 7

No. 8
Dissemination and publication of research findings: an updated review of related biases.

No. 9
The effectiveness and cost-effectiveness of biomarkers for the prioritisation of patients awaiting coronary revascularisation: a systematic review and decision model.

No. 10
Comparison of case note review methods for evaluating quality and safety in health care.
By Hutchinson A, Coster JE, Cooper KL, McIntosh A, Walters SJ, Bath PA, et al.

No. 11
Clinical effectiveness and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes: systematic review and economic evaluation.

No. 12
Self-monitoring of blood glucose in type 2 diabetes: systematic review.
By Clar C, Barnard K, Cummins E, Royle P, Waugh N.

No. 13

No. 14
Multicentre randomised controlled trial of the clinical and cost-effectiveness of a bypass-surgery-first versus a balloon-angioplasty-first revascularisation strategy for severe limb ischaemia due to infrainguinal disease. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial.

No. 15
A randomised controlled multicentre trial of treatments for adolescent anorexia nervosa including assessment of cost-effectiveness and patient acceptability – the TOuCAN trial.

No. 16
Randomised controlled trials for policy interventions: a review of reviews and meta-regression.

No. 17
Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review.
By McDaid C, Maund E, Rice S, Wright K, Jenkins B, Woolacott N.

No. 18
A systematic review of outcome measures used in forensic mental health research with consensus panel opinion.

No. 19
The clinical effectiveness and cost-effectiveness of topotecan for small cell lung cancer: a systematic review and economic evaluation.

No. 20
Antenatal screening for haemoglobinopathies in primary care: a cohort study and cluster randomised trial to inform a simulation model. The Screening for Haemoglobinopathies in First Trimester (SHIFT) trial.

No. 21

No. 22
A randomised controlled trial of cognitive behaviour therapy and motivational interviewing for people with Type 1 diabetes mellitus with persistent sub-optimal glycaemic control: A Diabetes and Psychological Therapies (Adapt) study.
By Ismail K, Maissi E, Thomas S, Chalder T, Schmidt U, Bartlett J, et al.

No. 23
A randomised controlled equivalence trial to determine the effectiveness and cost-utility of manual chest physiotherapy techniques in the management of exacerbations of chronic obstructive pulmonary disease (MATREX).

No. 24
A systematic review and economic evaluation of the clinical effectiveness and cost-effectiveness of aldosterone antagonists for postmyocardial infarction heart failure.

No. 25
Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.

No. 26
BoTULS: a multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A.

No. 27
Weighting and valuing quality-adjusted life-years using stated preference methods: preliminary results from the Social Value of a QALY Project.

Suppl. 1
Cetuximab for the first-line treatment of metastatic colorectal cancer.
By Meads C, Round J, Tubifex S, Moore D, Pennant M and Bayliss S.

Infliximab for the treatment of acute exacerbations of ulcerative colitis.

Sorafenib for the treatment of advanced hepatocellular carcinoma.
By Connock M, Round J, Bayliss S, Tubifex S, Greenfield W and Moore D.

Tenofovir disoproxil fumarate for the treatment of chronic hepatitis B infection.
By Jones J, Colquitt J, Shepherd J, Harris P and Cooper K.

Prasugrel for the treatment of acute coronary artery syndromes with percutaneous coronary intervention.

Alitretinoin for the treatment of severe chronic hand eczema.

Pemetrexed for the first-line treatment of locally advanced or metastatic non-small cell lung cancer.
Topotecan for the treatment of recurrent and stage IVB carcinoma of the cervix.

Trabectedin for the treatment of advanced metastatic soft tissue sarcoma.
 By Simpson EL, Rafia R, Stevenson MD and Papaioannou D.

Azacitidine for the treatment of myelodysplastic syndrome, chronic myelomonocytic leukaemia and acute myeloid leukaemia.

No. 28
The safety and effectiveness of different methods of earwax removal: a systematic review and economic evaluation.

No. 29
Systematic review of the clinical effectiveness and cost-effectiveness of rapid point-of-care tests for the detection of genital chlamydia infection in women and men.
 By Hislop J, Quayyum Z, Flett G, Boachie C, Fraser C, Mowatt G.

No. 30
School-linked sexual health services for young people (SSHYP): a survey and systematic review concerning current models, effectiveness, cost-effectiveness and research opportunities
Health Technology Assessment

programme

Director,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Prioritisation Strategy Group

Chair,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Dr Bob Coates,
Consultant Advisor, NETSCC, HTA

Dr Andrew Cook,
Consultant Advisor, NETSCC, HTA

Dr Peter Davidson,
Director of NETSCC, Health Technology Assessment

Professor Robin E Ferner,
Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford

Dr Nick Hicks,
Consultant Adviser, NETSCC, HTA

Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London

Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NETSCC, HTA

Dr Ruairidh Milne,
Director of NETSCC External Relations

Ms Kay Pattison,
Senior NIHR Programme Manager, Department of Health

Dr Nick Hicks,
Consultant Adviser, NETSCC, HTA

Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London

Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NETSCC, HTA

Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Members

Chair,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Dr Bob Coates,
Consultant Advisor, NETSCC, HTA

Dr Andrew Cook,
Consultant Advisor, NETSCC, HTA

Dr Peter Davidson,
Director of NETSCC, Health Technology Assessment

Professor Robin E Ferner,
Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford

Dr Nick Hicks,
Consultant Adviser, NETSCC, HTA

Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London

Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NETSCC, HTA

Dr Ruairidh Milne,
Director of NETSCC External Relations

Ms Kay Pattison,
Senior NIHR Programme Manager, Department of Health

Dr Nick Hicks,
Consultant Adviser, NETSCC, HTA

Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London

Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NETSCC, HTA

Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology,
University of Liverpool

Deputy Director,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Members

Programme Director,
Professor Deborah Ashby,
Professor of Medical Statistics, Queen Mary, University of London

Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine

Professor Peter Coft,
Director of Primary Care Sciences Research Centre, Keele University

Professor Nicky Cullum,
Director of Centre for Evidence-Based Nursing, University of York

Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol

Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London

Professor Freddie Hamdy,
Professor of Urology, University of Sheffield

Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds

Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford

Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth

Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford

Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine

Professor Mark Sculpher,
Professor of Health Economics, University of York

Professor Helen Smith,
Professor of Primary Care, University of Brighton

Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds

Professor David John Torgerson,
Director of York Trials Unit, University of York

Observers

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
Diagnostic Technologies and Screening Panel

Members

<table>
<thead>
<tr>
<th>Chair</th>
<th>Professor Paul Glasziou, Professor of Evidence-Based Medicine, University of Oxford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Chair</td>
<td>Dr David Elliman, Consultant Paediatrician and Honorary Senior Lecturer, Great Ormond Street Hospital, London</td>
</tr>
<tr>
<td></td>
<td>Professor Judith E Adams, Consultant Radiologist, Manchester Royal Infirmary, Central Manchester & Manchester Children’s University Hospitals NHS Trust, and Professor of Diagnostic Radiology, Imaging Science and Biomedical Engineering, Cancer & Imaging Sciences, University of Manchester</td>
</tr>
<tr>
<td></td>
<td>Mr A S Arunkalaivanan, Honorary Senior Lecturer, University of Birmingham and Consultant Urogynaecologist and Obstetrician, City Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr Dianne Baralle, Consultant & Senior Lecturer in Clinical Genetics, Human Genetics Division & Wessex Clinical Genetics Service, University of Southampton</td>
</tr>
<tr>
<td></td>
<td>Dr Stephanie Danger, Consultant Microbiologist, Hairmyres Hospital, East Kilbride</td>
</tr>
<tr>
<td></td>
<td>Dr Ron Gray, Consultant, National Perinatal Epidemiology Unit, Institute of Health Sciences, University of Oxford</td>
</tr>
<tr>
<td></td>
<td>Professor Paul D Griffiths, Professor of Radiology, Academic Unit of Radiology, University of Sheffield</td>
</tr>
<tr>
<td></td>
<td>Mr Martin Hooper, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Professor Anthony Robert Kendrick, Professor of Primary Medical Care, University of Southampton</td>
</tr>
<tr>
<td></td>
<td>Dr Susanne M Ludgate, Director, Medical Devices Agency, London</td>
</tr>
<tr>
<td></td>
<td>Dr Anne Mackie, Director of Programmes, UK National Screening Committee</td>
</tr>
<tr>
<td></td>
<td>Dr David Mathew, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Dr Michael Millar, Lead Consultant in Microbiology, Department of Pathology & Microbiology, Saint Mary’s Hospital, and the London NHS Trust, Royal London Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr Stephen Pilling, Director, Centre for Outcomes, Research & Effectiveness, University College London</td>
</tr>
<tr>
<td></td>
<td>Mrs Una Rennard, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Ms Jane Smith, Consultant Ultrasound Practitioner, Ultrasound Department, Leeds Teaching Hospital NHS Trust, Leeds</td>
</tr>
<tr>
<td></td>
<td>Dr W Stuart A Smellie, Consultant, Bishop Auckland General Hospital</td>
</tr>
<tr>
<td></td>
<td>Professor Lindsay Wilson Turnbull, Scientific Director of the Centre for Magnetic Resonance Investigations and YCR Professor of Radiology, Hull Royal Infirmary</td>
</tr>
<tr>
<td></td>
<td>Dr Alan J Williams, Consultant in General Medicine, Department of Thoracic Medicine, The Royal Bournemouth Hospital</td>
</tr>
</tbody>
</table>

Observers

| Dr Tim Elliott, Team Leader, Cancer Screening, Department of Health |
|-----------------------------|-----------------------------|
| Dr Catherine Moody, Programme Manager, Neuroscience and Mental Health Board |
| Dr Ursula Wells, Principal Research Officer, Department of Health |

Disease Prevention Panel

Members

<table>
<thead>
<tr>
<th>Chair</th>
<th>Dr Edmund Jessop, Medical Adviser, National Specialist Commissioning Advisory Group (NSCAG), Department of Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Chair</td>
<td>Professor Margaret Thorogood, Professor of Epidemiology, University of Warwick Medical School, Coventry</td>
</tr>
<tr>
<td></td>
<td>Dr Robert Cook, Clinical Programmes Director, Bazian Ltd, London</td>
</tr>
<tr>
<td></td>
<td>Dr Elizabeth Fellow-Smith, Medical Director, West London Mental Health Trust, Middlesex</td>
</tr>
<tr>
<td></td>
<td>Dr Colin Greaves, Senior Research Fellow, Peninsular Medical School (Primary Care)</td>
</tr>
<tr>
<td></td>
<td>Dr John Jackson, General Practitioner, Parkway Medical Centre, Newcastle upon Tyne</td>
</tr>
<tr>
<td></td>
<td>Dr Russell Jago, Senior Lecturer in Exercise, Nutrition and Health, Centre for Sport, Exercise and Health, University of Bristol</td>
</tr>
<tr>
<td></td>
<td>Dr Chris McCall, General Practitioner, The Hadleigh Practice, Corfe Mullen, Dorset</td>
</tr>
<tr>
<td></td>
<td>Miss Nicky Mullaney, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Dr Julie Myton, Lucum Consultant in Public Health Medicine, Bristol Primary Care Trust</td>
</tr>
<tr>
<td></td>
<td>Professor Irwin Nazareth, Professor of Primary Care and Director, Department of Primary Care and Population Sciences, University College London</td>
</tr>
<tr>
<td></td>
<td>Professor Ian Roberts, Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine</td>
</tr>
<tr>
<td></td>
<td>Professor Carol Tamahill, Glasgow Centre for Population Health</td>
</tr>
<tr>
<td></td>
<td>Mrs Jean Thurston, Service User Representative</td>
</tr>
<tr>
<td></td>
<td>Professor David Weller, Head, School of Clinical Science and Community Health, University of Edinburgh</td>
</tr>
</tbody>
</table>

Observers

| Ms Christine McGuire, Research & Development, Department of Health |
|-----------------------------|-----------------------------|
| Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health |
| Dr Caroline Stone, Programme Manager, Medical Research Council |

Current and past membership details of all HTA programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
External Devices and Physical Therapies Panel

Members

Chair,
Dr John Pounsford,
Consultant Physician North Bristol NHS Trust, Bristol

Deputy Chair,
Professor E Andrea Nelson,
Reader in Wound Healing and Director of Research, University of Leeds, Leeds

Dr Dawn Carnes,
Senior Research Fellow, Barts and the London School of Medicine and Dentistry, London

Mrs Penny Calder,
Service User Representative

Mrs Anthea De Barton-Watson,
Service User Representative

Professor Bipin Bhakta
Charterhouse Professor in Rehabilitation Medicine,
University of Leeds, Leeds

Dr Emma Clark,
Clinician Scientist Fellow & Cons. Rheumatologist,
University of Bristol, Bristol

Professor Christopher Griffths,
Professor of Primary Care,
Barts and the London School of Medicine and Dentistry, London

Dr Shaheen Hamdy,
Clinical Senior Lecturer and Consultant Physician,
University of Manchester, Manchester

Dr Peter Martin,
Consultant Neurologist, Addenbrooke’s Hospital, Cambridge

Dr Lorraine Pinnigton,
Associate Professor in Rehabilitation, University of Nottingham, Nottingham

Mrs Anthea De Barton-Watson,
Service User Representative

Professor Maria Stokes,
Professor of Neurorlomusculoskeletal Rehabilitation, University of Southampton, Southampton

Dr Pippa Tyrrell,
Stroke Medicine, Senior Lecturer/Consultant Stroke Physician, Salford Royal Foundation Hospitals’ Trust, Salford

Observers

Dr Phillip Leech,
Principal Medical Officer for Primary Care, Department of Health, London

Ms Kay Pattison
Senior NHSR Programme Manager, Department of Health

Dr Morven Roberts,
Clinical Trials Manager, MRC, London

Dr Ursula Wells
PRP, DH, London

Interventional Procedures Panel

Members

Chair,
Professor Jonathan Michaels,
Consultant Surgeon & Honorary Clinical Lecturer, University of Sheffield

Mr David P Britt,
Service User Representative, Cheshire

Mr Sankaran
ChandraNekkaran
Consultant Surgeon, Colchester Hospital University NHS Foundation Trust

Professor Nicholas Clarke,
Consultant Orthopaedic Surgeon, Southport University Hospitals NHS Trust

Mr Seamus Eckford,
Consultant in Obstetrics & Gynaecology, North Devon District Hospital

Professor David Taggart,
Consultant Cardiothoracic Surgeon, John Radcliffe Hospital

Dr Matthew Hatton,
Consultant in Clinical Oncology, Sheffield Teaching Hospital Foundation Trust

Dr John Holden,
General Practitioner, Garwood Surgery, Wigan

Dr Nadim Malik,
Consultant Cardiologist/ Honorary Lecturer, University of Manchester

Mr Hisham Mehanna,
Consultant & Honorary Associate Professor, University Hospitals Coventry & Warwickshire NHS Trust

Dr Jane Montgomery,
Consultant in Anaesthetics and Critical Care, South Devon Healthcare NHS Foundation Trust

Dr Simon Padley,
Consultant Radiologist, Chelsea & Westminster Hospital

Dr Ashish Paul,
Medical Director, Bedfordshire PCT

Dr Sarah Purey,
Consultant Senior Lecturer, University of Bristol

Mr Michael Thomas,
Consultant Colorectal Surgeon, Bristol Royal Infirmary

Professor Yit Chiu Yang,
Consultant Ophthalmologist, Royal Wolverhampton Hospitals NHS Trust

Mrs Isabel Boyer,
Service User Representative, London

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
Pharmaceuticals Panel

Members

Chair, Professor Imti Choonara, Professor in Child Health, University of Nottingham	Dr Peter Elton, Director of Public Health, Bury Primary Care Trust	Dr Dyfrig Hughes, Reader in Pharmacoeconomics and Deputy Director, Centre for Economics and Policy in Health, IMSCaR, Bangor University	Dr Martin Shelly, General Practitioner, Leeds, and Associate Director, NHS Clinical Governance Support Team, Leicester
Deputy Chair, Dr Lesley Wise, Unit Manager, Pharmacoepidemiology Research Unit, VRMM, Medicines & Healthcare Products Regulatory Agency	Professor Robin Fermer, Consultant Physician and Director, West Midlends Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham	Dr Yoon K Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia	Dr Gillian Shepherd, Director, Health and Clinical Excellence, Merck Serono Ltd
Mrs Nicola Carey, Senior Research Fellow, School of Health and Social Care, The University of Reading	Dr Ben Goldacre, Research Fellow, Division of Psychological Medicine and Psychiatry, King's College London	Professor Femi Oyebode, Consultant Psychiatrist and Head of Department, University of Birmingham	Mrs Katrina Simister, Assistant Director New Medicines, National Prescribing Centre, Liverpool
Mr John Chapman, Service User Representative	Dr Bill Gutteridge, Medical Adviser, London Strategic Health Authority	Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician and Gynaecologist, The Rosie Hospital, University of Cambridge	Mr David Symes, Service User Representative

Observers

| Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health | Mr Simon Reeve, Head of Clinical and Cost-Effectiveness, Medicines, Pharmacy and Industry Group, Department of Health | Dr Heike Weber, Programme Manager, Medical Research Council | Dr Ursula Wells, Principal Research Officer, Department of Health |
| Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health | Mr Simon Reeve, Head of Clinical and Cost-Effectiveness, Medicines, Pharmacy and Industry Group, Department of Health | Dr Heike Weber, Programme Manager, Medical Research Council | Dr Ursula Wells, Principal Research Officer, Department of Health |

Psychological and Community Therapies Panel

Members

Chair, Professor Scott Weich, Professor of Psychiatry, University of Warwick	Dr Steve Cunningham, Consultant Respiratory Paediatrician, Lothian Health Board	Ms Mary Nettle, Mental Health User Consultant, Gloucestershire	Dr Howard Ring, Consultant in Psychiatry, Lecturer in Psychiatry, University of Cambridge
Deputy Chair, Dr Jane Barlow, Professor of Public Health in the Early Years, Health Sciences Research Institute, Warwick Medical School	Dr Anne Hesketh, Senior Clinical Lecturer in Speech and Language Therapy, University of Manchester	Professor John Potter, Professor of Ageing and Stroke Medicine, University of East Anglia	Dr Karen Roberts, Nurse/Consultant, Dunston Hill Hospital, Tyne and Wear
Dr Sabasachy Bhauumik, Consultant Psychiatrist, Leicestershire Partnership NHS Trust	Dr Yann Lefevre, GP Partner, Burrage Road Surgery, London	Dr Greta Rait, Senior Clinical Lecturer and General Practitioner, University College London	Dr Karim Saad, Consultant in Old Age Psychiatry, Coventry & Warwickshire Partnership Trust
Mrs Val Carhill, Service User Representative, Gloucestershire	Dr Jeremy J Murphy, Consultant Physician & Cardiologist, County Durham & Darlington Foundation Trust	Dr Paul Ramchandani, Senior Research Fellow/Cons. Child Psychiatrist, University of Oxford	Dr Alastair Sutchiffe, Senior Lecturer, University College London
	Mr John Needham, Service User, Buckinghamshire		Dr Simon Wright, GP Partner, Walkden Medical Centre, Manchester

Observers

| Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health | Dr Morven Roberts, Clinical Trials Manager, MRC, London | Professor Tom Walley, HTA Programme Director, Liverpool | Dr Ursula Wells, Policy Research Programme, DH, London |
| Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health | Dr Morven Roberts, Clinical Trials Manager, MRC, London | Professor Tom Walley, HTA Programme Director, Liverpool | Dr Ursula Wells, Policy Research Programme, DH, London |

Current and past membership details of all HTA programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
Expert Advisory Network

Members

Mr Jonathan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester
Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne
Professor Pam Enderby, Dean of Faculty of Medicine, Institute of General Practice and Primary Care, University of Sheffield
Professor Gene Feder, Professor of Primary Care Research & Development, Centre for Health Sciences, Barts and The London School of Medicine and Dentistry
Mr Leonard R Fenwick, Chief Executive, Freeman Hospital, Newcastle upon Tyne
Mrs Gillian Fletcher, Antenatal Teacher and Tutor and President, National Childbirth Trust, Henfield
Professor Jayne Franklin, Professor of Medicine, University of Birmingham
Mr Tom Fry, Honorary Chairman, Child Growth Foundation, London
Professor Fiona Gilbert, Consultant Radiologist and NCRN Member, University of Aberdeen
Professor Paul Gregg, Professor of Orthopaedic Surgical Science, South Tees Hospital NHS Trust
Beck Hanley, Co-director, TwoCan Associates, West Sussex
Dr Maryann L Hardy, Senior Lecturer, University of Bradford
Mrs Sharon Hart, Healthcare Management Consultant, Reading
Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester
Professor Richard Hobbs, Head of Department of Primary Care & General Practice, University of Birmingham
Professor Alan Horwich, Dean and Section Chairman, The Institute of Cancer Research, London
Professor Jonathan Hutchinson, Director of Public Health and Deputy Dean of ScHARR, University of Sheffield
Professor Peter Jones, Professor of Psychiatry, University of Cambridge, Cambridge
Professor Stan Kave, Cancer Research UK Professor of Medical Oncology, Royal Marsden Hospital and Institute of Cancer Research, Surrey
Dr Duncan Keeley, General Practitioner (Dr Burch & Partners), The Health Centre, Thame
Dr Donna Lamping, Research Degrees Programme Director and Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London
Mr George Levy, Chief Executive, Motor Neurone Disease Association, Northampton
Professor James Lindsay, Professor of Psychiatry for the Elderly, University of Leicester
Professor Julian Little, Professor of Human Genome Epidemiology, University of Ottawa
Professor Alistaire McGuire, Professor of Health Economics, London School of Economics
Professor Rajan Madbok, Medical Director and Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York
Professor Alexander Markham, Director, Molecular Medicine Unit, St James’s University Hospital, Leeds
Dr Peter Moore, Freelance Science Writer, Ashfield
Dr Andrew Mortimore, Public Health Director, Southampton City Primary Care Trust
Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton
Professor Miranda Mugford, Professor of Health Economics and Group Co-ordinator, University of East Anglia
Professor Jim Neilson, Head of School of Reproductive & Developmental Medicine and Professor of Obstetrics and Gynaecology, University of Liverpool
Mrs Julietta Patnick, National Co-ordinator, NHS Cancer Screening Programmes, Sheffield
Professor Robert Peveler, Professor of Liaison Psychiatry, Royal South Hants Hospital, Southampton
Professor Chris Price, Director of Clinical Research, Bayer Diagnostics Europe, Stoke Poges
Professor Willem Rosenberg, Professor of Hepatology and Consultant Physician, University of Southampton
Professor Peter Sandercock, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh
Dr Susan Schonfield, Consultant in Public Health, Hillingdon Primary Care Trust, Middlesex
Dr Eamonn Sheridan, Consultant in Clinical Genetics, St James’s University Hospital, Leeds
Dr Margaret Somerville, Director of Public Health Learning, Peninsula Medical School, University of Plymouth
Professor Sarah Stewart-Brown, Professor of Public Health, Division of Health in the Community, University of Warwick, Coventry
Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick, Coventry
Mrs Joan Webster, Consumer Member, South Derbyshire Community Health Council
Professor Martin Whittle, Clinical Co-director, National Coordinating Centre for Women’s and Children’s Health, Lymington

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
Feedback

The HTA programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.