Chemoprevention of colorectal cancer: systematic review and economic evaluation

K Cooper, H Squires, C Carroll, D Papaioannou, A Booth, RF Logan, C Maguire, D Hind and P Tappenden

June 2010
10.3310/hta14320
How to obtain copies of this and other HTA programme reports

An electronic version of this title, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable DVD is also available (see below).

Printed copies of HTA journal series issues cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our despatch agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per issue and for the rest of the world £3 per issue.

How to order:

– fax (with credit card details)
– post (with credit card details or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you to either print out your order or download a blank order form.

Contact details are as follows:

Synergie UK (HTA Department) Email: orders@hta.ac.uk
Digital House, The Loddon Centre Tel: 0845 812 4000 – ask for ‘HTA Payment Services’
Wade Road (out-of-hours answer-phone service)
Basingstoke
Hants RG24 8QW Fax: 0845 812 4001 – put ‘HTA Order’ on the fax header

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to University of Southampton and drawn on a bank with a UK address.

Paying by credit card
You can order using your credit card by phone, fax or post.

Subscriptions

NHS libraries can subscribe free of charge. Public libraries can subscribe at a reduced cost of £100 for each volume (normally comprising 40–50 titles). The commercial subscription rate is £400 per volume (addresses within the UK) and £600 per volume (addresses outside the UK). Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

How do I get a copy of HTA on DVD?

Please use the form on the HTA website (www.hta.ac.uk/htacd/index.shtml). HTA on DVD is currently free of charge worldwide.

The website also provides information about the HTA programme and lists the membership of the various committees.
Chemoprevention of colorectal cancer: systematic review and economic evaluation

K Cooper,1 H Squires,1 C Carroll,1 D Papaioannou,1 A Booth,1 RF Logan,2 C Maguire,1 D Hind1 and P Tappenden1*

1School of Health and Related Research (ScHARR), University of Sheffield, UK
2Department of Epidemiology and Public Health, University of Nottingham, UK

*Corresponding author

Declared competing interests of authors: none

Published June 2010
DOI: 10.3310/hta14320

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The Health Technology Assessment (HTA) programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, from the public and consumer groups and from professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA programme then commissions the research by competitive tender.

Second, the HTA programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Third, through its Technology Assessment Report (TAR) call-off contract, the HTA programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer reviewed by a number of independent expert referees before publication in the widely read journal series *Health Technology Assessment*.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.
Background: Colorectal cancer (CRC) is the third most common cancer in the UK: incidence increases with age, median age at diagnosis being over 70 years. Approximately 25% of cases occur in individuals with a family history of CRC, including 5% caused by familial adenomatous polyposis (FAP) or hereditary non-polyposis CRC (HNPCC). Most develop from adenomatous polyps arising from the intestine lining. Individuals with these polyps undergo polypectomy and are invited for endoscopic surveillance. Screening via faecal occult blood testing has been rolled out across the UK.

Objectives: To evaluate the clinical effectiveness and cost-effectiveness of drug and micronutrient interventions for the prevention of CRC and/or adenomatous polyps. Interventions considered include: non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclo-oxygenase-2 (COX-2) inhibitors; folic acid; calcium; vitamin D and antioxidants (including vitamin A, vitamin C, vitamin E, selenium and beta-carotene). Chemoprevention was assessed in the general population, in individuals at increased risk of CRC, and in individuals with FAP or HNPCC.

Data sources: A systematic review identified randomised controlled trials (RCTs) assessing drug and nutritional agents for the prevention of CRC or adenomatous polyps. A separate search identified qualitative studies relating to individuals’ views, attitudes and beliefs about chemoprevention. MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Database of Systematic Reviews, Cochrane CENTRAL Register of Controlled Trials, DARE, NHS-EED (NHS Economic Evaluation Database), HTA database, Science Citation Index, BIOSIS previews and the Current Controlled Trials research register were searched in June 2008. Data were extracted by one reviewer and checked by a second.

Methods: The synthesis methods used were systematic review and meta-analysis for RCTs and qualitative framework synthesis for qualitative studies. A health economic model was developed to assess the cost-effectiveness of chemoprevention for two populations with different levels of risk of developing CRC: the general population and an intermediate-risk population.

Results: The search identified 44 relevant RCTs and six ongoing studies. A small study of aspirin in FAP patients produced no statistically significant reduction in polyp number but a possible reduction in polyp size. There was a statistically significant 21% reduction in risk of adenoma recurrence [relative risk (RR) 0.79, 95% confidence interval (CI) 0.68 to 0.92] in an analysis of aspirin versus no aspirin in individuals with a history of adenomas or CRC. In the general population, a significant 26% reduction in CRC incidence was demonstrated in studies with a 23-year follow-up (RR 0.74, 95% CI 0.57 to 0.97). Non-aspirin NSAID use in FAP individuals produced a non-statistically significant reduction in polyp number and size. In individuals with a history of adenomas there was a statistically significant 34% reduction in adenoma recurrence risk (RR 0.66, 95% CI 0.60 to 0.72) and a statistically significant 55% reduction in advanced adenoma incidence (RR 0.45, 95% CI 0.35 to 0.58). No studies assessed the effect of non-aspirin NSAIDs in the general population. There were no studies of folic acid in individuals with FAP or HNPCC. There was no significant effect of folic acid versus placebo on adenoma recurrence (RR 1.16, 95% CI 0.97 to 1.39) or advanced adenoma incidence in individuals with a history of adenomas. In the general population there was no significant effect of folic acid on risk of CRC (RR 1.13, 95% CI
Abstract

0.77 to 1.64), although studies were of relatively short duration. Calcium use by FAP patients produced no significant reduction in polyp number or disease progression. In individuals with a history of adenomas there was a statistically significant 18% reduction in risk of adenoma recurrence (RR 0.82, 95% CI 0.69 to 0.98) and a non-significant reduction in risk of advanced adenomas (RR 0.77, 95% CI 0.50 to 1.17). In the general population there was no significant effect of calcium on risk of CRC (RR 1.08, 95% CI 0.87 to 1.34), although studies were of relatively short duration. There were no studies of antioxidant use in individuals with FAP or HNPCC, and in individuals with a history of adenomas no statistically significant differences in relative risk of adenoma recurrence were found. In the general population there was no difference in incidence of CRC (RR 1.00, 95% CI 0.88 to 1.13) with antioxidant use compared with no antioxidant use. Twenty studies reported qualitative findings concerning chemoprevention. People are more likely to use NSAIDs if there is a strong perceived need. Perceptions of risk and benefit also influence decision-making and use. People have fewer concerns about using antioxidants or other supplements, but their perception of the benefits of these agents is less well-defined. The model analysis suggested that the most cost-effective age-range policy in the general population would be to provide chemoprevention to all individuals within the general population from age 50 to 60 years. The use of aspirin in addition to screening within the general population is likely to result in a discounted cost per life-year gained of around £10,000 and a discounted cost per quality-adjusted life-year (QALY) gained of around £23,000 compared with screening alone. In the intermediate-risk group the most economically viable age-range policy would be to provide chemoprevention to individuals following polypectomy aged 61 to 70 years. Calcium is likely to have a discounted cost per QALY gained of around £8000 compared with screening alone. Although aspirin in addition to screening should be more effective and less costly than screening alone, under the current assumptions of benefits to harms of aspirin and calcium, aspirin is expected to be economically dominated by calcium.

Limitations: Whilst a number of studies were included in the review, the duration of follow-up was generally insufficient to detect an effect on cancer incidence. Given the uncertainties and ambiguities in the evidence base, the results of the health economic analysis should be interpreted with caution.

Conclusions: Aspirin and celecoxib may reduce recurrence of adenomas and incidence of advanced adenomas in individuals with an increased risk of CRC and calcium may reduce recurrence of adenomas in this group. COX-2 inhibitors may decrease polyp number in patients with FAP. There is some evidence for aspirin reducing the incidence of CRC in the general population. Both aspirin and NSAIDs are associated with adverse effects so it will be important to consider the risk–benefit ratio before recommending these agents for chemoprevention. The economic analysis suggests that chemoprevention has the potential to represent a cost-effective intervention, particularly when targeted at intermediate-risk populations following polypectomy.
Adenomatous polyp/adenoma Growth arising from the lining of the intestine, which may or may not develop into colorectal cancer. There are three types of adenomas according to histology: tubular, tubulovillous and villous. Tubular adenomas are the most common and have a tube-like structure. Villous adenomas are the least common and have a ‘frilly’ or cauliflower-like structure. Tubulovillous adenomas are a mix between the two. Villous adenomas are the most likely to become cancerous, followed by tubulovillous adenomas.

Advanced adenoma see High-risk or advanced adenoma.

Antioxidant Antioxidants prevent oxidation of molecules in the body, thereby reducing the number of free radicals. Free radicals are molecules with an unpaired electron, which are highly reactive and may cause damage to cells (oxidative stress) which may contribute to progression of various diseases, including tumour development. However, free radicals are also essential for various biological processes, including removal of damaged cells. The antioxidants examined in this review include vitamin A, vitamin C, vitamin E, selenium and beta-carotene.

Chemoprevention The use of natural or laboratory-made substances to prevent a disease such as cancer.

Colorectal cancer Malignant neoplasm arising from the lining of the large intestine (colon or rectum).

Cost-effectiveness The relationship between cost and effectiveness of an intervention, often expressed as the incremental cost per quality-adjusted life-year (QALY).

Cyclo-oxygenase-2 (COX-2) inhibitors Cyclo-oxygenase is an enzyme that converts arachidonic acid to prostaglandins. Cyclo-oxygenase-2 is elevated in colorectal adenomas and cancers, and may play a role in colorectal tumour growth and development. Cyclo-oxygenase-2 inhibitors are a subset of non-steroidal anti-inflammatory drugs (NSAIDs) that specifically inhibit cyclooxygenase-2.

Dominated (simple) Where a given treatment alternative is less effective and more expensive than its comparator.

Dominated (extended) Where the incremental cost-effectiveness ratio for a given treatment alternative is higher than that of the next most effective comparator.

Effectiveness The extent to which an intervention works in clinical practice.

Endoscopic surveillance Examination of the colon and rectum at regular intervals to check for adenomas and colorectal cancer in people at increased risk (e.g. those who have had a previous adenoma).

Familial adenomatous polyposis (FAP) FAP is caused by a mutation in the adenomatous polyposis coli gene and accounts for approximately 1% of all colorectal cancers. Individuals with FAP develop hundreds of polyps in the colon and, by the age of 40 years, most will have developed colorectal cancer unless they have surgery to remove the colon.

General population or ‘low risk’ for colorectal cancer For the purposes of this assessment, ‘general population’ refers to individuals with no increased risk for colorectal cancer. This population is also referred to as ‘low-risk’.

continued
Hereditary non-polyposis colorectal cancer (HNPCC) HNPCC (also called Lynch syndrome) is caused by a dominantly inherited alteration in one of a number of DNA mismatch repair genes, and accounts for approximately 2–5% of all colorectal cancers. HNPCC also conveys a higher risk of certain other cancers. People with HNPCC develop colorectal adenomas at an earlier age than the general population. The onset of colorectal cancer in these patients is typically earlier than that for the general population.

High-risk or advanced adenomas Adenomas that are either ≥1 cm or have villous or tubulovillous features or severe dysplasia.

‘High risk’ for colorectal cancer For the purposes of this assessment, ‘high risk’ refers to individuals at high risk for colorectal cancer because of the genetic syndromes familial adenomatous polyposis (FAP) or hereditary non-polyposis colorectal cancer (HNPCC).

Incidence The rate of occurrence of an outcome during a specified time period.

‘Intermediate risk’ for colorectal cancer For the purposes of this assessment, ‘intermediate risk’ refers to individuals at increased risk for colorectal cancer because of a personal history of adenomatous polyps, personal or family history of colorectal cancer, or inflammatory bowel disease.

Low-risk adenomas Adenomas that are < 1 cm and non-villous/tubulovillous without severe dysplasia.

Meta-analysis A statistical method by which the results of a number of studies are pooled to give a combined summary statistic.

Natural history The progression of a disease over time.

Non-steroidal anti-inflammatory drugs (NSAIDs) A class of anti-inflammatory drugs, which includes aspirin as well as cyclooxygenase-2 inhibitors such as celecoxib.

Relative risk (risk ratio) Ratio of the probability of an event occurring in a treatment group relative to a control group. The terms ‘relative risk’ (used in the text) and ‘risk ratio’ (shown on the forest plots) are interchangeable.

Screening Screening for colorectal cancer has been rolled out to 99% of the UK population aged 60–69 years, and is currently being extended to people aged up to 74 years. Cancers and large adenomas are identified via faecal occult blood testing which tests for blood in the stool. Individuals with a positive result are invited for endoscopic investigation.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&E</td>
<td>accident and emergency (department)</td>
</tr>
<tr>
<td>APACC</td>
<td>Association pour la Prévention par Aspirine du Cancer Colorectal (study)</td>
</tr>
<tr>
<td>APC</td>
<td>Adenoma Prevention with Celecoxib (study)</td>
</tr>
<tr>
<td>ATBC</td>
<td>Alpha-Tocopherol, Beta-Carotene Cancer Prevention (study)</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>CAM</td>
<td>complementary and alternative medicine</td>
</tr>
<tr>
<td>CAPP</td>
<td>Colorectal Adenoma/carcinoma Prevention Programme (study)</td>
</tr>
<tr>
<td>CARET</td>
<td>The Beta-Carotene and Retinol Efficacy Trial</td>
</tr>
<tr>
<td>CEAC</td>
<td>cost-effectiveness acceptability curve</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclo-oxygenase-2</td>
</tr>
<tr>
<td>CRC</td>
<td>colorectal cancer</td>
</tr>
<tr>
<td>DFMO</td>
<td>difluoromethylornithine</td>
</tr>
<tr>
<td>FAP</td>
<td>familial adenomatous polyposis</td>
</tr>
<tr>
<td>FOBT</td>
<td>faecal occult blood test</td>
</tr>
<tr>
<td>GP</td>
<td>general practitioner</td>
</tr>
<tr>
<td>HMIC</td>
<td>Health Management Information Consortium</td>
</tr>
<tr>
<td>HNPCC</td>
<td>hereditary non-polyposis colorectal cancer</td>
</tr>
<tr>
<td>HOPE-TOO</td>
<td>Heart Outcomes Prevention Evaluation – The Ongoing Outcomes (study)</td>
</tr>
<tr>
<td>HPS</td>
<td>Heart Protection Study</td>
</tr>
<tr>
<td>HRQoL</td>
<td>health-related quality of life</td>
</tr>
<tr>
<td>ICER</td>
<td>incremental cost-effectiveness ratio</td>
</tr>
<tr>
<td>LYG</td>
<td>life-year gained</td>
</tr>
<tr>
<td>LYS</td>
<td>life-year saved</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Headings</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NPCT</td>
<td>Nutritional Prevention of Cancer Trial</td>
</tr>
<tr>
<td>NPS</td>
<td>National Polyp Study</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>PHS</td>
<td>Physicians’ Health Study</td>
</tr>
<tr>
<td>PreSAP</td>
<td>Prevention of Sporadic Adenomatous Polyps (study)</td>
</tr>
<tr>
<td>PRISMA</td>
<td>Preferred Reporting Items for Systematic Reviews and Meta-Analyses (standard)</td>
</tr>
<tr>
<td>PSA</td>
<td>probabilistic sensitivity analyses</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>QUOROM</td>
<td>Quality of Reporting of Meta-analyses (standard)</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RD</td>
<td>absolute risk difference</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SEER</td>
<td>Surveillance, Epidemiology and End Results (database)</td>
</tr>
<tr>
<td>SELECT</td>
<td>Selenium and Vitamin E Cancer Prevention Trial</td>
</tr>
<tr>
<td>SU.VI.MAX</td>
<td>SUpplementation en VItamines et Minéraux AntioXydants (study)</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischaemic attack</td>
</tr>
<tr>
<td>TNM</td>
<td>tumour, node, metastasis (staging system)</td>
</tr>
<tr>
<td>ukCAP</td>
<td>United Kingdom Colorectal Adenoma Prevention (study)</td>
</tr>
<tr>
<td>UK-TIA</td>
<td>United Kingdom Transient Ischaemic Attack aspirin trial</td>
</tr>
<tr>
<td>WACS</td>
<td>Women’s Antioxidant Cardiovascular Study</td>
</tr>
<tr>
<td>WAFACS</td>
<td>Women’s Antioxidant and Folic Acid Cardiovascular Study</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices, in which case the abbreviation is defined in the figure legend or in the notes at the end of the table.
Background

Colorectal cancer is a malignant neoplasm arising from the lining of the large intestine (colon and rectum). Colorectal cancer is the third most common cancer in the UK, with approximately 32,000 new cases annually in England and Wales. Incidence increases with age, the median age at diagnosis being over 70 years. Environmental factors such as diet, exercise, obesity, smoking and alcohol intake are thought to affect the risk of developing colorectal cancer. Approximately 25% of colorectal cancers occur in individuals with a family history of the disease, including 5% caused by the genetic syndromes familial adenomatous polyposis (FAP) or hereditary non-polyposis colorectal cancer (HNPCC). Risk is also higher in individuals with inflammatory bowel disease. The overall 5-year survival rate for colorectal cancer in England and Wales is approximately 50% but varies according to the stage of disease at diagnosis. It is thought that most colorectal cancers develop from adenomatous polyps arising from the lining of the intestine. Most adenomas are asymptomatic and do not develop into cancer, with approximately one-third of the population developing at least one adenoma by the age of 60 years. Indirect evidence suggests that adenomas may be present for 10 years or more before malignancy develops. Colorectal cancer screening via faecal occult blood testing has been rolled out across the UK. Individuals in whom adenomatous polyps are identified undergo polypectomy (removal of polyps) and are invited for endoscopic surveillance, i.e. repeat examinations at regular intervals. Studies have assessed the effect of various interventions in preventing colorectal cancer.

Objectives

This assessment evaluates the clinical effectiveness and cost-effectiveness of drug and micronutrient interventions for the prevention of colorectal cancer and/or adenomatous polyps in populations at differing risks for developing colorectal cancer. The interventions considered include: non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclo-oxygenase-2 (COX-2) inhibitors; folic acid; calcium; vitamin D and antioxidants (including vitamin A, vitamin C, vitamin E, selenium and beta-carotene). Chemoprevention is assessed in the following population groups: (1) general population (or individuals with no increased risk for colorectal cancer); (2) individuals at increased risk of colorectal cancer because of a personal history of adenomatous polyps, personal or family history of colorectal cancer, or inflammatory bowel disease; and (3) individuals with FAP or HNPCC.

Methods

A systematic review was undertaken to identify randomised controlled trials (RCTs) assessing drug and nutritional agents for the prevention of colorectal cancer and/or adenomatous polyps. A separate literature search was undertaken to identify qualitative studies relating to individuals’ views, attitudes and beliefs about chemoprevention, to explore issues of expected compliance and other issues of implementation. The following electronic databases were searched for RCTs of clinical effectiveness: MEDLINE, Medline In-Process, EMBASE, CINAHL, the Cochrane Database of Systematic Reviews, Cochrane CENTRAL Register of Controlled Trials, DARE, NHS-EED (NHS Economic Evaluation Database), HTA database, Science Citation Index, and BIOSIS previews. The Current Controlled Trials research register was also searched; this includes the Medical Research Council trial register, UK Clinical Research Network, and the archives of the National Research Register. Searches were undertaken in June 2008. Data were extracted by one reviewer and checked by a second reviewer. The quality of included randomised trials was assessed using criteria based on recommendations from the Centre for Reviews and Dissemination. Qualitative studies were appraised using criteria from relevant critical appraisal checklists. The synthesis methods used were systematic review and meta-analysis for RCTs and qualitative framework synthesis for qualitative studies.
A health economic model was developed to assess the cost-effectiveness of chemoprevention for two populations with different levels of risk of developing colorectal cancer: (1) the general population (starting chemoprevention at age 50); (2) men and women at an intermediate risk of colorectal cancer due to previous polyps (starting chemoprevention at age 61). The model simulates the disease natural history of colorectal cancer and the impact of chemoprevention upon that natural history within a UK service pathway that includes screening, surveillance, diagnosis, treatment and follow-up. The results are presented in terms of the incremental cost per life-year gained and the incremental cost per quality-adjusted life-year (QALY) gained. The analysis adopted a UK NHS perspective and all costs and outcomes were discounted annually by 3.5%. There is considerable uncertainty associated with the analysis, particularly around the estimated effectiveness of chemoprevention over time. The results of the analysis should therefore be interpreted with caution.

Results

Summary of clinical effectiveness results

The search for RCTs of chemopreventive agents identified 116 references relating to 44 relevant RCTs: 10 RCTs of aspirin, nine RCTs of non-aspirin NSAIDs, six RCTs of calcium and/or vitamin D, six RCTs of folic acid, and 19 RCTs of antioxidants (six RCTs covered more than one intervention type). The search also identified a number of systematic reviews, which were screened to check for additional studies. In addition, six ongoing studies were identified.

Aspirin

 Individuals with FAP or HNPCC. Aspirin (600 mg/day) in a single study of FAP patients produced no statistically significant reduction in polyp number but a possible reduction in polyp size (however, data so far were only available in abstract form for 133 patients followed for 1 year). Aspirin (600 mg/day) was also assessed in a single study of HNPCC carriers (n = 746 analysed); at 2.5 years of follow-up, no statistically significant reduction was reported for adenoma incidence [relative risk (RR) 1.03, 95% confidence intervals (95% CI) 0.75 to 1.41] or colorectal cancer incidence (RR 0.87, 95% CI 0.39 to 1.96), but after 4 years of follow-up there was a significant reduction in time to first HNPCC cancer (hazard ratio 0.62, 95% CI 0.41 to 0.96).

Individuals with a history of adenomas or colorectal cancer. Four studies (all good quality; n = 2692) assessed aspirin (81–325 mg/day) in individuals with a history of adenomas (three studies) or history of colorectal cancer (one study) with a follow-up of 3 years in three of the studies. There was a statistically significant 21% reduction in the relative risk of adenoma recurrence (RR 0.79, 95% CI 0.68 to 0.92) in the analysis of aspirin versus no aspirin (in two studies, 50% of participants in both arms also received folic acid), and a similar result was obtained when comparing aspirin alone versus placebo alone. The incidence of advanced adenomas was also significantly reduced when comparing aspirin versus no aspirin (RR 0.66, 95% CI 0.51 to 0.84; this was no longer significant when comparing aspirin alone vs placebo alone). Aspirin combined with folic acid produced a non-statistically significant reduction in adenomas and advanced adenomas.

General population (individuals at no increased risk of colorectal cancer). Of the four studies of aspirin in the general population, two large studies of good quality administered a relatively low dose of aspirin (100–325 mg every other day) with a treatment and follow-up duration of 5–10 years. Two smaller studies, one of reasonable quality and one unblinded and of slightly lower quality, administered a higher dose of aspirin (300–1500 mg/day) for 1–7 years with follow-up to 23 years. Analysis of all four studies (n = 69,535) showed no effect on colorectal cancer over the first 10 years of follow-up (RR 1.01, 95% CI 0.84 to 1.21). However, analysis of the two smaller, higher-dose studies (n = 7588) demonstrated a significant 26% reduction in colorectal cancer incidence over the full 23-year follow-up period (RR 0.74, 95% CI 0.57 to 0.97). An even greater reduction was observed when analysing years 10–19 only (RR 0.61, 95% CI 0.43 to 0.88).

Adverse effects. Aspirin is associated with an increased risk of upper gastrointestinal toxicity, including nausea and dyspepsia, peptic ulcers and gastrointestinal bleeding, as demonstrated in the larger studies included here and in a review that collated systematic reviews of adverse effects of aspirin. Higher aspirin doses are associated with greater risk of toxicity. In the context of cardiovascular disease, a recent meta-analysis suggested that aspirin may reduce the risk of myocardial infarction and ischaemic stroke but increase the risk of haemorrhagic stroke and internal bleeding. Therefore, the benefits of aspirin may outweigh the risk of harm in individuals.
at higher risk of cardiovascular disease but not necessarily in primary prevention.

Non-aspirin NSAIDs

Individuals with FAP or HNPCC A small study of sulindac in patients with the FAP genotype (*n* = 41) reported a non-statistically significant reduction in adenoma incidence after 4 years of treatment and follow-up. Five studies of NSAIDs (sulindac, celecoxib or tiracoxib, *n* = 10 to *n* = 77 per study, quality low-to-reasonable, treatment and follow-up 4–12 months) in FAP patients with existing adenomas demonstrated reductions in polyp number and size, some of which were statistically significant.

Individuals with a history of adenomas Two studies of good quality assessed celecoxib (400 mg/day) in individuals with a history of adenomas (*n* = 2618) with treatment and follow-up of 3 years. There was a statistically significant 34% reduction in the relative risk of adenoma recurrence (RR 0.66, 95% CI 0.60 to 0.72) and a statistically significant 55% reduction in the relative risk of advanced adenoma incidence (RR 0.45, 95% CI 0.35 to 0.58).

General population (or individuals at no increased risk of colorectal cancer) No studies assessed the effect of non-aspirin NSAIDs in the general population.

Adverse effects The two celecoxib trials in individuals with a history of adenomas were terminated early because of an increased risk of serious cardiovascular events, which was statistically significant in one of the studies. A published review of systematic reviews of adverse effects also demonstrated increased risk of serious cardiovascular events with COX-2 inhibitors, the risk being greatest in patients with pre-existing cardiovascular risk factors. Two COX-2 inhibitors, rofecoxib and valdecoxib, were recently withdrawn from use as a result of concerns about their cardiovascular toxicity; a study of rofecoxib was therefore excluded from this review. COX-2 inhibitors may also increase the risks of hypertension and renal toxicity. NSAIDs can also cause upper gastrointestinal toxicity, although the risk is lower for COX-2 inhibitors than for some other types of NSAID.

Folic acid

Individuals with FAP or HNPCC There were no studies of folic acid in individuals with FAP or HNPCC.

Individuals with a history of adenomas Two studies of folic acid presented relevant data for individuals with a history of adenomas (dose 0.5–1.0 mg/day; *n* = 1840). Both were of good quality and had treatment and follow-up durations of 3 years. Both were 2 × 2 factorial studies in which 50% of participants in both arms also received aspirin. There was no significant effect of folic acid versus placebo on adenoma recurrence (RR 1.16, 95% CI 0.97 to 1.39). The results were similar when comparing folic acid (with or without aspirin) versus no folic acid (with or without aspirin). There was no significant effect on advanced adenoma incidence.

General population (or individuals at no increased risk of colorectal cancer) Three studies assessed folic acid plus B vitamins in populations with no increased baseline risk of colorectal cancer (*n* = 11,062); the dose was 2.5 mg/day in two studies (one good quality, one reasonable) and 20 mg/day in one study (low-to-reasonable quality). There was no statistically significant effect on the relative risk of colorectal cancer (RR 1.13, 95% CI 0.77 to 1.64). However, the duration of follow-up was 5 to 7 years, which may not be long enough to detect an effect on cancer incidence.

Calcium and/or vitamin D

Individuals with FAP or HNPCC One small low-quality study assessed calcium in patients with adenomas due to FAP (*n* = 28), and reported no significant reduction in polyp number or progression at 6 months.

Individuals with a history of adenomas Two good-quality studies of calcium (1200–2000 mg/day) in individuals with a history of adenomas (*n* = 1186) demonstrated a statistically significant 18% reduction in the risk of adenoma recurrence after 3–4 years of follow-up (RR 0.82, 95% CI 0.69 to 0.98) and a non-significant reduction in the risk of advanced adenomas (RR 0.77, 95% CI 0.50 to 1.17).

General population (or individuals at no increased risk of colorectal cancer) Two studies assessed
calcium (1000–1500 mg/day) plus vitamin D (400–1100 IU/day) in populations with no increased baseline risk of colorectal cancer (one good quality, one low-to-reasonable quality; n = 37,016). There was no significant effect on the relative risk of colorectal cancer (RR 1.08, 95% CI 0.87 to 1.34). However, the duration of follow-up was 4–7 years, which may be insufficient to detect an effect on cancer incidence.

Adverse effects No study reported any serious adverse events associated with calcium and/or vitamin D.

Antioxidants

Individuals with FAP or HNPCC There were no studies of antioxidants in individuals with FAP or HNPCC.

Individuals with a history of adenomas There were six studies of antioxidants (including vitamins A, C and E, beta-carotene or selenium) in individuals with a history of adenomas (n = 1706) with treatment and follow-up durations of 2–5 years. Doses and combinations varied between studies, as did study quality. No statistically significant differences in relative risk of adenoma recurrence were demonstrated, either when all antioxidants were analysed together (RR 0.78, 95% CI 0.54 to 1.14) or when specific combinations were assessed separately.

General population (or individuals at no increased risk of colorectal cancer) There were 12 studies of antioxidants in populations with no increased risk of colorectal cancer (n = 148,922), with treatment follow-up durations between 5 and 12 years. Study quality was variable. Across the nine studies comparing antioxidants to no antioxidants, there was no difference in incidence of colorectal cancer (RR 1.00, 95% CI 0.88 to 1.13). The single study that assessed the effect of antioxidants on adenoma incidence in the low-risk population also did not demonstrate a statistically significant effect. Of 14 discrete analyses for different combinations of antioxidants in the low-risk population, one study reported a statistically significant increase in relative risk of adenoma incidence in participants receiving vitamin E or vitamin E plus beta-carotene; however, this should be interpreted with caution because of the large number of analyses undertaken.

Adverse effects Reported side effects of antioxidants in the included studies were pruritus (vitamins A, C, E), epistaxis (vitamin E), a statistically significant increase in the risk of haemorrhagic stroke (vitamin E), alopecia and dermatitis (selenium), yellowing of the skin and belching (beta-carotene). Other reviews have shown that antioxidants did not reduce gastrointestinal cancer incidence (beta-carotene and vitamin A possibly increasing the risk), and that vitamin A, vitamin E and beta-carotene may increase overall mortality. Observational studies have shown possible detrimental effects of antioxidant supplements on cardiovascular mortality, prostate cancer and lung cancer.

Summary of qualitative findings on views, attitudes and beliefs

A literature search identified 20 studies reporting on individuals' views, attitudes and experiences relating to taking the various agents that may be used for chemoprevention. Both personal and external factors may affect people's decisions to use NSAIDs or supplements such as antioxidants, vitamins or minerals. People are more likely to use NSAIDs if there is a strong perceived need, principally determined by health status and age, and are most likely to be influenced by both health professionals and their family. Perceptions of risk and benefit also may influence the process of decision-making and use: there are greater perceived risks or side effects associated with NSAIDs than dietary supplements, and individuals who are required to take NSAIDs tend to weigh up the balance of benefits against risks and to modify their use of the agent accordingly. People have fewer concerns about using antioxidants or other supplements, but their perception of the benefits of these agents is less well-defined. They would like more information and advice from health professionals, but their use of these supplements tends to be governed more by input from family, friends, alternative therapists and the media.

Summary of cost-effectiveness results

General population results

The model analysis suggests that the most cost-effective age-range policy would be to provide chemoprevention to all individuals within the general population from age 50 to 60 years. This analysis suggests that the use of aspirin chemoprevention in addition to screening within the general population is likely to result in a discounted cost per life-year gained of around
£10,000 and a discounted cost per QALY gained of around £23,000 compared with screening alone. Assuming a willingness-to-pay threshold of £30,000 per QALY gained, the probability that screening plus aspirin chemoprevention results in more net benefit than screening alone is expected to be around 80%. All other age policies assessed for the general population resulted in an incremental cost-effectiveness ratio that was greater than £30,000 per QALY gained. This analysis is, however, subject to considerable uncertainty because of a paucity of evidence, particularly around the long-term effectiveness and long-term adverse events associated with aspirin chemoprevention. Although there was no evidence of other chemopreventive agents being effective, and hence potentially cost-effective, within the general population, this may be because of the relatively short-term follow-up of the trials.

Intermediate-risk group results

The model analysis suggests that the most economically viable age-range policy would be to provide chemoprevention to individuals following polypectomy aged 61 to 70 years. This model analysis suggests that calcium chemoprevention in addition to screening is expected to be more effective and less costly than screening alone, under the current assumptions of benefits to harms of aspirin and calcium, aspirin is expected to be extendedly dominated by calcium. Between thresholds of £10,000 and £100,000 per QALY gained, the probability that calcium chemoprevention produces the greatest level of net benefit is between 50 and 60%. Similarly, there is an estimated 20–30% probability that aspirin chemoprevention would be the most economically attractive option over these willingness-to-pay thresholds. There are no trials directly comparing aspirin and calcium, and because the quality of the trials of each agent is variable, the trial populations vary and the follow-up is relatively short, it is not possible to ascertain which of aspirin or calcium would be most effective or cost-effective within this intermediate-risk population. The model also suggests that the incremental cost-effectiveness of chemoprevention following polypectomy increases (becomes less favourable) as the chemoprevention start age increases. The results should be interpreted with considerable caution because of uncertainty in the model parameters.

Discussion

The majority of studies were of reasonable quality in terms of randomisation, blinding and allocation concealment. Some studies excluded a relatively large percentage of participants from the analysis of adenoma recurrence because this outcome could only be assessed in participants who underwent a follow-up colonoscopy. Approximately 60–100% of patients across studies were compliant with the majority of study medications, although some studies selected the most compliant participants during a run-in phase, which may have increased estimates of compliance relative to the general population. There was some heterogeneity in results, possibly as a result of differences in the duration of treatment and follow-up, sample sizes, differing doses and combinations of agents, and compliance rates.

The development of an adenoma into colorectal cancer may take an average of 10–15 years. Therefore, it is unclear whether interventions given for a relatively short duration can interrupt this sequence, and how long the follow-up duration of a trial would need to be to detect an effect on colorectal cancer incidence. For example, studies of aspirin use within the general population showed no effect on colorectal cancer over the first 10 years of follow-up but demonstrated a significant effect over years 10–19 (although this analysis was partly confounded by differing doses and durations of treatment). It is possible that, of the interventions included here, only aspirin was assessed over sufficient follow-up durations to detect an effect on colorectal cancer incidence. The majority of studies in individuals with a history of adenoma could not provide robust data on colorectal cancer incidence because of the relatively small number of participants and relatively short follow-up durations, as compared with those studies undertaken in the general population.

There is a marked disparity between the available evidence from clinical trials and the data requirements to populate a health economic model. The clinical trials do not provide evidence concerning the point at which chemoprevention begins to take effect relative to the start of treatment or the nature of this effect (whether this is gradual or constant). The relative risk associated with the incidence of polyps or cancers predicted by the clinical trials is assumed to be constant because of the lack of data to the
contrary, implying that chemoprevention offers no cumulative protection. It is not clear whether a protective effect continues when the interventions are stopped, although it appears likely that there will be a delay between any preventive effect on adenoma formation and later effects on colorectal cancer incidence. Moreover, within the model it is assumed that chemoprevention will continue to be taken for 10 or 20 years. However, the treatment duration in the majority of trials is considerably shorter than 10 or 20 years, hence the effectiveness of taking chemoprevention over this longer time frame is not known. These assumptions are likely to have an important impact on the cost-effectiveness results, particularly around the age at which to start and stop taking chemoprevention. Future clinical trials should focus on addressing questions concerning the optimal treatment duration, frequency, start age, end age and dose of chemoprevention.

The analysis of the harms resulting from the use of chemoprevention is limited by the paucity of evidence. The economic analysis assumes that the excess harms associated with chemoprevention are constant over time and by age, that their impact upon quality of life is no longer than 3 months and that there is no negative impact of chemoprevention upon mortality; hence harms may be slightly underestimated within the model. In addition, the economic analysis does not assess the possible impact of chemoprevention upon forms of cancer other than colorectal cancer (e.g. prostate or stomach cancers). In this sense, there are questions concerning the appropriateness of the boundary assumed around the model. This in turn points towards a methodological requirement for developing a modelling framework for modelling public-health interventions.

Given the uncertainties in the evidence base and ambiguities concerning the implementation of potential chemoprevention policy, the results of the health economic analysis should be interpreted with caution.

Conclusions

Implications for service provision

Aspirin and celecoxib may reduce recurrence of adenomas and incidence of advanced adenomas in individuals with an increased risk of colorectal cancer because of a history of adenomas, and COX-2 inhibitors may decrease polyp number in patients with FAP. There is some evidence for aspirin reducing the incidence of colorectal cancer in the general population, although this effect was only observed in studies of at least 300mg/day aspirin with a follow-up duration greater than 10 years. There is an absence of long-term follow-up data for lower doses of aspirin or for other NSAIDs. Both aspirin and NSAIDs are associated with adverse effects so it will be important to consider the risk–benefit ratio for each population before these agents can be recommended for chemoprevention. It will be important for health professionals to explain and clarify this balance to patients for any agents that are recommended. Calcium may also reduce adenoma recurrence in individuals with a history of adenomas. However, studies of calcium plus vitamin D in the general population did not demonstrate a significant effect on colorectal cancer, although follow-up durations were relatively short. Folic acid and antioxidants (vitamins A, C, E, beta-carotene and selenium) were not shown to reduce adenoma or colorectal cancer incidence, and recent studies have questioned the potential harms as well as benefits of these agents when given as dietary supplements.

The economic analysis presented here suggests that chemoprevention has the potential to represent a cost-effective intervention when targeted at the intermediate-risk populations following polypectomy, given levels of cost-effectiveness currently considered acceptable by NHS policy-makers. Within the general population, the most favourable cost-effectiveness ratio for chemoprevention is between £20,000 and £30,000 per QALY gained for individuals aged 50–60 years. These findings should be interpreted with caution given the uncertainties in the current evidence base.

Suggested research priorities

Some interventions (aspirin, NSAIDs and calcium) had a statistically significant effect in reducing adenoma recurrence in individuals with a history of adenoma. Further research would be useful to investigate the longer-term risk–benefit balance for potentially effective chemopreventive agents, e.g. whether there is a dose level that gives a significant benefit without unacceptable toxicity, necessary treatment durations required, whether an effect on colorectal cancer can be demonstrated, and for how long the benefits are maintained after the intervention is stopped. Larger studies that follow up participants over long time periods (e.g. 20 years) and assess
colorectal cancer incidence as an outcome would be valuable. Also, studies in which participants take these interventions for longer durations (e.g. 10 years or more) would be valuable in assessing the risk–benefit balance associated with long-term chemoprevention. Within the general population, even for studies with relatively short treatment duration, long-term follow-up is essential if the primary outcome is colorectal cancer incidence. Of the chemopreventive interventions included in this review, it is likely that only aspirin has so far been trialled over a sufficient follow-up duration to assess the effect on colorectal cancer incidence.

It would be informative to test combinations of chemopreventive agents for which effectiveness has been demonstrated individually (e.g. aspirin and calcium within the intermediate-risk population). It will also be important to test newer chemopreventive agents that have not yet been assessed in RCTs (e.g. preliminary reports have suggested possible chemopreventive effects of curcumin and omega-3 fatty acids). It may also be clinically useful to undertake trials in higher-risk patients for whom endoscopic surveillance is not sufficiently effective, e.g. patients with ulcerative colitis. Finally, it would be useful to consider the relative benefit of chemoprevention when compared with, e.g., action to increase compliance with screening programmes. Very few of these suggested research priorities will be addressed by current ongoing trials.
Description of health problem

Colorectal cancer

Colorectal cancer (CRC) is a malignant neoplasm arising from the lining (mucosa) of the large intestine (colon, rectum). Approximately two-thirds of CRCs occur in the colon and one-third in the rectum.

Epidemiology and incidence

Colorectal cancer is more common in developed countries than developing countries. The age-standardised incidence of CRC in England in 2006 was 54 per 100,000 in males and 34 per 100,000 in females, and the equivalent figures for Wales in 2007 were 62 per 100,000 in males and 40 per 100,000 in females (Table 1). The incidence of colon cancer is similar in males and females (39 and 36 per 100,000 respectively in England in 2006), whereas the incidence of rectal cancer is higher in males (22 per 100,000 in males and 13 per 100,000 in females). Colorectal cancer is the third most common cancer in the UK, with approximately 32,000 new cases annually in England and Wales in 2006–7.

Incidence of CRC increases with age. The incidence in England in 2006 was less than 6 per 100,000 in both men and women below the age of 40 years, rising to approximately 20–25 per 100,000 in people aged between 45 and 49 years. In people aged over 75 years, the annual incidence was over 300 per 100,000 for men and over 200 per 100,000 for women. The median age at diagnosis is over 70 years for both colon and rectal cancer patients.

Aetiology, pathology and prognosis

Aetiology

Colorectal cancer is thought to result from a complex interaction between inherited susceptibility and environmental factors, as indicated by genetics and experimental and epidemiological studies. Approximately 75% of patients have neither a clear family history nor any known predisposing condition. Observational studies...
studies suggest that development of CRC may be related to environmental factors including the following: high calorie intake, high consumption of red meat (especially if overcooked), high consumption of saturated fat, low consumption of fruit, vegetables and fibre, high alcohol intake, obesity, cigarette smoking, and a sedentary lifestyle. A family history of CRC (particularly with relatives diagnosed under the age of 45 years) is associated with an increased risk of developing CRC. Approximately 20% of CRCs occur in individuals who have a clear family history of the disease but for whom no specific disease-causing mutations can be identified. Risk of CRC is also higher in patients with a personal history of inflammatory bowel disease, with cancer risk increasing with increased duration and severity of the condition.

Approximately 5% of cases are associated with one of two genetic syndromes, familial adenomatous polyposis (FAP) or hereditary non-polyposis colorectal cancer (HNPPC or Lynch syndrome). FAP accounts for approximately 1% of all CRCs and is caused by a mutation in the adenomatous polyposis coli gene. Individuals with FAP develop hundreds of polyps in the colon and, by the age of 40 years, most will have developed CRC unless they have surgery to remove the colon. HNPPC accounts for approximately 2–5% of all CRCs and is caused by a dominantly inherited alteration in one of a number of DNA mismatch repair genes; HNPPC also conveys a higher risk of certain other cancers. People with HNPPC may develop CRC at an early age, but it is less often preceded by the growth of multiple polyps. People with HNPPC develop colorectal adenomas at an earlier age than the general population, and these adenomas have more villous components, are more dysplastic, and progress more rapidly to invasive CRC (over 2–3 years rather than approximately 10 years). The diagnosis of HNPPC is set out by the Amsterdam II criteria (at least three family members with CRC or HNPPC-related cancers, at least two generations affected, one person under 50 years of age at the time of diagnosis, and exclusion of FAP).

Pathology

Colorectal cancer includes malignant growths from the mucosa of the colon and rectum. Cancer cells may eventually spread to nearby lymph nodes (local metastases) and subsequently to more remote lymph nodes and other organs in the body (distant metastases), the most frequent site of metastasis being the liver. The pathology of the tumour is usually determined by analysis of tissue taken from a biopsy or surgery.

It is thought that most CRCs develop from adenomatous polyps (growths) arising from the lining of the intestine. Colorectal adenomas are common in older age groups, with approximately one-third of people developing at least one adenoma by the age of 60 years. Most adenomas are asymptomatic and do not develop into cancer. Indirect evidence suggests that adenomas may be present for 10 years or more before malignancy develops. The size and number of adenomas, as well as their histological type and presence of epithelial dysplasia, is thought to affect the risk of development to CRC.

Colorectal cancer stage can be described using the modified Dukes' staging system (based on postoperative findings) or the more precise Tumour, Node, Metastases (TNM) staging system, based on the depth of tumour invasion (T), lymph node involvement (N) and metastatic spread (M) assessed preoperatively by radiological examination. In the UK, approximately 11% of patients are diagnosed at TNM stage I, 32% at stage II, 26% at stage III (lymph node involvement), and 30% at stage IV (metastatic disease). It is estimated that around 30% of patients present with metastatic disease and a further 20% may eventually develop metastatic disease. Metastatic disease often develops first in the liver, but metastases may also occur at other sites including the lungs.

Prognosis

The treatment, prognosis and survival rate depend to a large extent on the stage of disease at diagnosis. The overall 5-year survival rate for CRC in England and Wales is approximately 50%. Approximate 5-year survival rates for the various stages of CRC, estimated in European clinical guidance from 2005, are shown in Table 2. For the 80% of patients who receive surgery to remove the primary tumour, approximately 40% will remain disease-free in the long term. In 20–30% of cases, the disease is too far advanced at initial presentation for curative intervention to be possible; many of these patients die within a few months.
TABLE 2 Five-year survival rates for colorectal cancer, by stage at diagnosis

<table>
<thead>
<tr>
<th>TNM status</th>
<th>Stage</th>
<th>Modified Dukes’ stage</th>
<th>5-year overall survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>T in situ N0 M0</td>
<td>0</td>
<td>–</td>
<td>Likely to be normal</td>
</tr>
<tr>
<td>T1 N0 M0</td>
<td>I</td>
<td>A</td>
<td>>90%</td>
</tr>
<tr>
<td>T2 N0 M0</td>
<td>I</td>
<td>B1</td>
<td>85%</td>
</tr>
<tr>
<td>T3 N0 M0</td>
<td>IIA</td>
<td>B2</td>
<td>70–80%</td>
</tr>
<tr>
<td>T4 N0 M0</td>
<td>IIB</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>T1–2 N1 M0/T2 N2 M0</td>
<td>III</td>
<td>C1</td>
<td>25–60%</td>
</tr>
<tr>
<td>T3 N1 M0/T3 N2 M0</td>
<td>III</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>T4 N1 M0</td>
<td>III</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>Any T any N M1</td>
<td>IV</td>
<td>D</td>
<td>5–30%</td>
</tr>
</tbody>
</table>

Reproduced from Van Cutsem and Kataja,24 with permission of Oxford University Press.

Significance in terms of ill-health (burden of disease)

Colorectal cancer is a significant cause of mortality. The age-standardised mortality rate for CRC in the UK in 2006 was 18 per 100,000 population.23 Colorectal cancer is also a significant cause of morbidity and may affect quality of life as a result of the disease itself and its treatment. Treatment of CRC has significant cost implications for the NHS. Prevention of CRC, for example through screening, also has significant associated costs.

Symptoms

Common symptoms of CRC or large polyps are abdominal pain, rectal bleeding, persisting change in bowel habit, and anaemia; more advanced tumours are likely to cause weight loss, nausea and anorexia, and abdominal pain. The early symptoms are common in the general population and can have a variety of other causes. In some patients, symptoms do not become apparent until the cancer is far advanced.8

Current service provision

A conceptual model of the current bowel cancer service for England has been previously developed as part of a bowel cancer simulation study to inform future priorities in service investment on behalf of the Department of Health (Figure 1).25 This service pathways model was developed through consultation with current national guidelines on the management of bowel cancer,8,26 relevant technology appraisals undertaken by the National Institute for Health and Clinical Excellence (NICE),27–31 associated literature on the treatment of bowel cancer,25,32 together with considerable clinical input from leading experts in the management of the disease. A condensed form of the conceptual model is described below.

Symptomatic presentation

Once an individual develops symptoms associated with CRC, there are a number of potential entry routes into the bowel cancer service. The most common route is symptomatic presentation either to a general practitioner (GP) or at an Accident and Emergency (A&E) Department. Around 71% patients present via their GP, 7% through A&E and 22% elsewhere in secondary care (Department of Health Waiting Times Database 2006).25 Of those presenting to their GP, around 13% are referred as emergency episodes (Department of Health, personal communication).25 Upon presentation, the patient would receive a general patient consultation and some form of investigation. Initial investigations before referral are likely to depend on the nature and severity of symptoms and may include the use of simple examinations such as per rectal examination, rigid sigmoidoscopy and proctoscopy. Patients with symptoms related to CRC may already be undergoing treatment for other conditions within a secondary-care setting and may be referred for colonoscopy. Individuals who are at high-risk of developing hereditary CRC may be identified through linkage (family history) analysis or genetic testing.25
Screening and surveillance

Cancers and large adenomas may bleed, so their presence can be detected via faecal occult blood testing (FOBT; guaiac test) which tests for blood in the stool. Meta-analysis of four randomised controlled trials (RCTs) has shown that screening by FOBT reduced the risk of death from CRC by 16% overall, and by 23% [relative risk (RR) 0.77, 95% confidence interval (95% CI) 0.57 to 0.89] in those who were actually screened.\(^\text{34}\) Colorectal cancer screening via FOBT has been rolled out across the UK for people aged 60–69 years, and is currently being extended to people aged up to 74 years. FOBT kits are sent out by post and can be undertaken by individuals in their own homes. Individuals with a negative FOBT result will be invited for repeat screening every 2 years, while those with a positive result will be invited for endoscopic follow-up.\(^\text{35,36}\)

Individuals in whom adenomatous polyps are identified may undergo polypectomy (removal of polyps) and may undergo endoscopic surveillance, i.e. repeat examinations at regular intervals. Guidelines published in 2002 advised that patients should undergo follow-up according to their risk level as follows:

- patients with one or two adenomas of < 1 cm diameter undergo either no repeat follow-up or 5-yearly follow-up until one negative examination
- patients with three or four adenomas of < 1 cm diameter or at least one adenoma > 1 cm undergo 3-yearly follow-up until two consecutive negative examinations
- patients with five or more adenomas or three or more adenomas at least one of which is \(\geq 1\) cm diameter undergo an examination after 12 months before returning to 3-yearly surveillance.\(^\text{19}\)

Routine endoscopic surveillance is also recommended for other groups of patients who are considered to be at an increased risk of developing CRC, including patients with FAP, HNPCC (and their family members), ulcerative colitis or Crohn’s disease.

Diagnostic investigations

Upon referral, diagnosis of CRC may involve the use of a variety of technologies depending on the symptoms present, the fitness of the patient and the results of previous investigations. These
may include haemoglobin checks, per rectal examination, proctoscopy, colonoscopy, flexible sigmoidoscopy, barium enema, computerised tomography, positron emission tomography, ultrasound, colonography, laparotomy with biopsy, X-ray and magnetic resonance imaging scans. Further tests may be undertaken to identify non-malignant colorectal disease, e.g. ulcerative colitis and Crohn’s disease. Endoscopic techniques include colonoscopy, which allows visualisation of the whole colon, and flexible sigmoidoscopy, which can reach far enough to detect approximately 60% of tumours. Colonoscopy is associated with some risks, including heavy bleeding (risk of approximately 1 in 150), bowel perforation (estimated as 1 in 1500) and, in very rare cases, death (estimated at 1 in 10,000).

Colorectal adenomas can be observed and removed by endoscopy before they become malignant. Approximately 90% of adenomas can be seen and removed during colonoscopy and approximately 70% during flexible sigmoidoscopy.

Treatment of colorectal cancer

In 2000, the NHS Executive published guidelines for the management of CRC in England and Wales; this guidance was updated in 2004. NICE has issued guidance on various chemotherapy regimens and biological agents for the treatment of metastatic CRC, as well as guidance on chemotherapy for adjuvant treatment of stage III colon cancer, and on laparoscopic surgery for CRC. In addition, a report on bowel cancer services was produced for the Department of Health in 2007.

Treatment of CRC may be curative or palliative depending on the location of the tumour and the degree to which the tumour has penetrated the bowel and spread to other organs in the body. Treatment options differ considerably for colon and rectal tumours. Curative treatment of colon cancer involves surgical resection; the majority of patients undergo open surgery, for example, left- or right-hemicolectomy. Surgery may be undertaken as an open procedure or laparoscopically. Patients may require a permanent or temporary stoma following resection. Patients with non-metastatic colon cancer may subsequently receive adjuvant chemotherapy using a variety of regimens (for example, 5-fluorouracil and folinic acid, capecitabine, oxaliplatin) either in an inpatient or outpatient setting.

Curative treatment of rectal cancer involves surgical resection, most commonly via anterior resection or abdominopereineal resection, depending on the location and fixity of the tumour. Surgical resection may be undertaken alongside total mesorectal excision and may be undertaken as either an open or laparoscopic procedure. Other adjuvant/neoadjuvant treatments include radiotherapy, chemotherapy and chemoradiation, each of which may be given according to a range of different regimens. Following surgical resection, patients may be followed up using a variety of diagnostic and imaging technologies including the use of ultrasound, carcinoembryonic antigen, magnetic resonance imaging, colonoscopy and computerised tomography scans. There is no currently accepted gold standard for the follow-up of patients with CRC, and schedules may differ considerably in terms of the modality and intensity according to local protocols.

Recurrence of CRC may be local or metastatic; however, local recurrence is less commonly reported in patients with colon cancer. Treatments of metastatic recurrence of CRC are typically palliative; however, hepatic resection and pulmonary resection may offer a chance of cure in a small proportion of patients. The mainstay of treatment for metastatic CRC involves chemotherapy; cytotoxic agents include 5-fluorouracil, capecitabine, oxaliplatin, irinotecan, tegafur with uracil, and mitomycin. Again, these may be given according to a variety of regimens across different lines of therapy. Cetuximab, a monoclonal antibody, has also been recommended for use within a specific subgroup of these patients. Supportive care may include a range of interventions for the alleviation of symptoms associated with the disease; this may include drug therapies such as antibiotics, analgesics, transfusions, corticosteroids, as well as localised radiation therapy and non-interventional therapies such as counselling and spiritual support.

Diagnosis and management of FAP patients

People who are FAP carriers are identified either through linkage analysis (family history) or genetic testing (direct mutation analysis) once they reach the age of around 12 years, or based on colonoscopic investigations undertaken because of symptomatic presentation. Genetic counselling may be required in families where FAP has been diagnosed. FAP patients in whom
malignant bowel tumours are not found are offered ongoing annual surveillance using flexible sigmoidoscopy from the age of 13–15 years. It is recommended that at the age of about 20 years, colonoscopic surveillance should be started, alternating between flexible sigmoidoscopy and colonoscopy thereafter. Following a diagnosis of CRC, or when the patient reaches the age of 25 without a diagnosis of cancer, FAP patients are offered prophylactic surgery to remove either the colon or both the colon and rectum. One surgical option is removal of the colon via colectomy followed by connection of the small intestine (ileum) to the rectum (ileorectal anastomosis). The other option is removal of the colon and rectum via proctocolectomy plus ileoanal pouch reconstruction. The choice of surgery depends on patient preference and the number and location of polyps or cancer. Following surgery, the patient will undergo surveillance of the small intestine (duodenum) via oesophagogastroduodenoscopy (6-monthly to 3-yearly depending on severity of duodenal polyposis). If the rectum is not removed, the patient will undergo surveillance of the rectum via flexible sigmoidoscopy every 6–12 months.11,25,43

Diagnosis and management of HNPCC patients

As with FAP, HNPCC patients are identified either through family history or through symptom-driven colonoscopy. Diagnosis of HNPCC may be based on a detailed family history (with the aid of the Amsterdam II criteria16) together with molecular screening via microsatellite instability and immunohistochemistry techniques. Genetic counselling may be required in families where HNPCC has been diagnosed. HNPCC patients undergo surveillance colonoscopy every 2 years from the age of 25 or from 5 years younger than the youngest HNPCC-affected relative (whichever is earlier). This surveillance continues until either: the patient reaches the age of 75, or until the causative mutation in that family has been excluded. Following a diagnosis of CRC, or prophylactically, patients with HNPCC are offered either surgical removal of the bowel and rectum via proctocolectomy (plus ileoanal pouch), or surgical removal of the bowel via colectomy plus ileorectal anastomosis followed by surveillance of the rectum using flexible sigmoidoscopy at 1- to 3-yearly intervals (this option is more usual than proctocolectomy). As with FAP, the choice of surgery depends on patient preferences and the location of the tumour.11,25,43

Current cost of colorectal cancer services

A 2007 report on CRC for the Department of Health estimated the total annual treatment costs in England to be approximately £1.1 billion, the largest component of which was the cost of diagnosis (accounting for 26.4% of the total cost), followed by the cost of follow-up (24.7% of the total cost). The mean cost per patient for colon cancer treatment was estimated at £8808, and the mean cost for rectal cancer treatment was estimated at £12,037. The additional cost of screening by FOBT for those aged 60–69 every 2 years was estimated to be £112.8 million in year 1.25

Variation in services and uncertainty about best practice

The NICE CRC guidance from 2004 states that a national survey of NHS patients carried out in 1999–2000 (just before the publication of 2-week referral guidelines for CRC) found that 34% of patients with CRC had had an appointment with a hospital doctor within 2 weeks of visiting their GP with symptoms, but 37% had waited over 3 months for their first hospital appointment and 13% waited 7 or more months.8,44 In addition, referrals from GPs did not always adhere correctly to national guidelines in terms of whether or not to classify cases as urgent. The NHS bowel screening programme has been rolled out in England and Wales for people aged 60–69 years, and is currently being extended to people aged up to 74 years.25

Description of technology under assessment

Summary of interventions

This study aims to assess various interventions for the prevention of CRC and/or adenomatous polyps in populations at differing risks for developing CRC. Decisions concerning the inclusion of interventions were taken through reference to clinical advice. The interventions included here are those which can be classed as a drug or a nutritional supplement. The assessment does not include whole-food interventions (such as fruit, vegetables, meat, fibre, garlic, green tea). Other agents such as curcumin45 and omega-3 fatty acids46 have also begun to be assessed for potential roles in chemoprevention, but were not included in this assessment because only preliminary data exist.
This study includes the following interventions: non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclo-oxygenase-2 (COX-2) inhibitors; antioxidants (including vitamin A, vitamin C, vitamin E, selenium and beta-carotene); calcium, vitamin D and folic acid. Rofecoxib was explicitly excluded from the assessment because its licence has been revoked and it has been withdrawn from the market.47

Mechanisms of action

The potential mechanisms of action of the various agents in terms of chemoprevention are as follows. One mechanism proposed for the chemopreventive effects of NSAIDs (including aspirin) is through the inhibition of COX-2. Cyclo-oxygenase is an enzyme required for the conversion of arachidonic acid to prostaglandins. Cyclo-oxygenase-1 is expressed in most tissues and produces prostaglandins which mediate normal physiological functions. Cyclo-oxygenase-2 is undetectable in most normal tissues but is elevated in colorectal adenomas and cancers. Animal models suggest that COX-2 may play a role in colorectal tumour growth and development, through its effects on apoptosis, cell migration, attachment, invasion and angiogenesis.48–50

Oxidation of molecules can produce free radicals (molecules with an unpaired electron). Free radicals are highly reactive and at high levels may cause oxidative stress, i.e. damage to cells which may contribute to progression of various diseases, including tumour development. However, free radicals are also essential for various biological processes, including removal of damaged cells. Antioxidants prevent oxidation, thereby reducing the number of free radicals.51–54 Calcium is thought to bind fatty acids and bile acids within the lumen of the colon and rectum, inhibiting the fat-induced hyperproliferation of colon epithelial cells. Calcium also has a direct antiproliferative effect on cells, as well as promoting cellular differentiation and cell death (apoptosis).55 Vitamin D has also been shown to inhibit cellular proliferation and promote differentiation and apoptosis.56 Folate may have a role in tumour prevention through its involvement in metabolic pathways for DNA methylation and biosynthesis.55

Licensed indications, cautions and contraindications

Aspirin

Aspirin is not currently licensed for cancer chemoprevention, although it is widely available as an over-the-counter medication. Aspirin (acetylsalicylic acid) is licensed for relief of mild to moderate pain and/or pyrexia in adults (age 16 years and over), at an oral dose of 300–900 mg every 4–6 hours when necessary (maximum 4 g daily). Aspirin can also be used as an antiplatelet agent (as a single dose of 300 mg following an ischaemic event, and as a long-term treatment of 75 mg/day in people with, or at high risk of, cardiovascular disease). Aspirin and other NSAIDs are contraindicated in patients with a history of hypersensitivity to aspirin or any other NSAID, which includes those in whom attacks of asthma, angioedema, urticaria or rhinitis have been precipitated by aspirin or any other NSAID. Aspirin should be avoided in individuals with severe hepatic impairment or severe renal impairment (creatinine clearance less than 10 ml/minute), and analgesic doses should be avoided if possible in the last few weeks of pregnancy. Aspirin should be used with caution in the elderly; in the event of concomitant use of drugs that increase risk of bleeding; and in individuals with glucose 6-phosphate dehydrogenase deficiency (aspirin at a dose greater than 1 g/day may increase the risk of acute haemolytic anaemia in these individuals). Adverse effects resulting from aspirin are reported to be generally mild.56 However, there is an increased frequency of dyspepsia and gastrointestinal bleeding which is dose-related. Bronchospasm and skin reactions are also well-described. Further evidence on adverse effects of aspirin is described in Chapter 3; Results: aspirin.

Non-aspirin NSAIDs

In terms of non-aspirin NSAIDs, celecoxib is the only drug that is currently licensed for cancer chemoprevention by the European Medicines Agency. Celecoxib is licensed under the brand name Onsenal™ (Pfizer Ltd, Sandwich, Kent, UK) for the reduction in the number of adenomatous polyps in FAP patients, as an adjunct to surgery and further endoscopic surveillance.57 In single doses, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol. In regular full dosage, NSAIDs have analgesic activity comparable to that of paracetamol.
respond to any NSAID in terms of gaining relief from pain and inflammation, and those who do not respond to one may well respond to another. COX-2 inhibitors, NSAIDs which selectively inhibit COX-2 but not COX-1, have fewer gastrointestinal side effects than non-selective NSAIDs. Several other factors also influence susceptibility to gastrointestinal effects, and a NSAID should be chosen on the basis of the incidence of gastrointestinal and other side effects.

The NSAIDs should be used with caution in the elderly (because of the risk of serious side effects and fatalities), in allergic disorders (they are contraindicated in patients with a history of hypersensitivity to aspirin or any other NSAID, which includes those in whom attacks of asthma, angioedema, urticaria or rhinitis have been precipitated by aspirin or any other NSAID), during pregnancy and breastfeeding, and in coagulation defects. Long-term use of some NSAIDs is associated with reduced female fertility, which is reversible on stopping treatment. In patients with renal, cardiac or hepatic impairment, caution is required because NSAIDs may impair renal function; the dose should be kept as low as possible and renal function should be monitored. All NSAIDs are contraindicated in severe heart failure. The COX-2 selective inhibitors (celecoxib, etoricoxib and parecoxib) are contraindicated in ischaemic heart disease, cerebrovascular disease, peripheral arterial disease and moderate or severe heart failure, and should be used with caution in patients with a history of cardiac failure, left ventricular dysfunction, hypertension, in patients with oedema for any other reason, and in patients with risk factors for heart disease. COX-2 selective inhibitors are associated with an increased risk of thrombotic events (e.g. myocardial infarction and stroke) and should not be used in preference to non-selective NSAIDs except when specifically indicated (i.e. for patients at a particularly high risk of developing gastroduodenal ulceration or bleeding) and after assessing cardiovascular risk. Non-selective NSAIDs may also be associated with a small increased risk of thrombotic events, particularly when used at high doses and for long-term treatment. The lowest effective dose of NSAID or COX-2 inhibitor should be prescribed for the shortest period allowing control of symptoms, and the need for long-term treatment should be reviewed periodically. Non-selective NSAIDs are contraindicated in patients with previous or active peptic ulceration and selective COX-2 inhibitors are contraindicated in active peptic ulceration.

Although it is preferable to avoid NSAIDs in patients with active or previous gastrointestinal ulceration or bleeding, and they should be withdrawn if gastrointestinal lesions develop; nevertheless, patients with serious rheumatic diseases (e.g. rheumatoid arthritis) are usually dependent on NSAIDs for effective relief of pain and stiffness.

Adverse events resulting from the use of NSAIDs include gastrointestinal discomfort, nausea, diarrhoea and occasionally bleeding and ulceration. Systemic as well as local effects of NSAIDs contribute to gastrointestinal damage; taking oral formulations with milk or food, or using enteric-coated formulations, or changing the route of administration may only partially reduce symptoms such as dyspepsia. Those at risk of duodenal or gastric ulceration (including the elderly) who need to continue NSAID treatment should receive either a selective inhibitor of COX-2 alone, or a non-selective NSAID with gastroprotective treatment. Other side effects include hypersensitivity reactions (particularly rashes, angioedema, bronchospasm, headache, dizziness, nervousness, depression, drowsiness, insomnia, vertigo, hearing disturbances such as tinnitus, photosensitivity and haematuria). Blood disorders have also occurred. Fluid retention may occur (rarely precipitating congestive heart failure), and blood pressure may be raised. Renal failure may be provoked by NSAIDs, especially in patients with renal impairment. Rarely, papillary necrosis or interstitial fibrosis associated with NSAIDs can lead to renal failure. Hepatic damage, alveolitis, pulmonary eosinophilia, pancreatitis, eye changes, Stevens–Johnson syndrome and toxic epidermal necrolysis are other rare side effects. Induction of or exacerbation of colitis has been reported. Aseptic meningitis has been reported rarely with NSAIDs; patients with connective-tissue disorders such as systemic lupus erythematosus may be especially susceptible. Further evidence on adverse effects of NSAIDs is described in Chapter 3; Results: non-aspirin NSAIDs.

Folic acid

Folic acid is not currently licensed for cancer chemoprevention. According to the BNF, folic acid has few indications for long-term therapy because most causes of folate deficiency are self-limiting or will respond to a short course of treatment. In folate-deficient megaloblastic anaemia (e.g. because of poor nutrition, pregnancy or antiepileptic drugs), daily folic acid supplementation for
Calcium chloride should be avoided in respiratory sarcoidosis or a history of nephrolithiasis, and caution in individuals with renal impairment. Calcium supplements should be used with may also be required in persistent hypocalcaemia. Given. Oral supplements of calcium and vitamin D hypocalcaemic tetany, intravenous calcium may be supplements. In severe acute hypocalcaemia or vitamin D deficiency and may benefit from corrected by increasing dietary intake of calcium and vitamin D and any deficiency may be precipitated. Folic acid may rarely cause gastrointestinal disturbances.56

Calcium
Calcium is not currently licensed for cancer chemoprevention. Calcium supplements are usually only required where dietary calcium intake is deficient. This dietary requirement varies with age and is relatively greater in childhood, pregnancy and lactation, because of increased demand, and in old age, because of impaired absorption. In osteoporosis, a calcium intake that is double the recommended amount reduces the rate of bone loss. If the actual dietary intake is less than the recommended amount, a supplement of as much as 40 mmol is appropriate. Those at risk of osteoporosis should maintain an adequate intake of calcium and vitamin D and any deficiency should be corrected by increasing dietary intake or taking supplements. Elderly patients, especially those who are housebound or live in residential or nursing homes, are at increased risk of calcium and vitamin D deficiency and may benefit from supplements. In severe acute hypocalcaemia or hypocalcaemic tetany, intravenous calcium may be given. Oral supplements of calcium and vitamin D may also be required in persistent hypocalcaemia. Calcium supplements should be used with caution in individuals with renal impairment, sarcoidosis or a history of nephrolithiasis, and calcium chloride should be avoided in respiratory acidosis or respiratory failure. Contraindications include conditions associated with hypercalcaemia and hypercalciuria (e.g. some forms of malignant disease). Adverse effects may include gastrointestinal disturbances; bradycardia and arrhythmias.56

Antioxidants
Antioxidants are not currently licensed for cancer chemoprevention. Antioxidants may be purchased as over-the-counter supplements. According to the British National Formulary (BNF), vitamin C therapy is essential for the prevention and treatment of scurvy, and may be required for other manifestations of vitamin C deficiency, especially in the elderly. It is rarely necessary to prescribe more than 100 mg daily except early in the treatment of scurvy. Deficiency of vitamin A is associated with ocular defects (particularly xerophthalmia) and an increased susceptibility to infections, but deficiency is rare in the UK (even in disorders of fat absorption). Massive overdose of vitamin A can cause rough skin, dry hair, an enlarged liver, and a raised erythrocyte sedimentation rate and raised serum calcium and serum alkaline phosphatase concentrations. In view of evidence suggesting that high levels of vitamin A may cause birth defects, women who are (or may become) pregnant advised not to take vitamin A supplements (including tablets and fish-liver oil drops), except on the advice of a doctor or an antenatal clinic; nor should they eat liver or products such as liver paté or liver sausage.56

The daily requirement of vitamin E has not been well defined but is probably approximately 3–15 mg daily. There is little evidence that oral supplements of vitamin E are essential in adults, even where there is fat malabsorption secondary to cholestasis. In young children with congenital cholestasis, abnormally low vitamin E concentrations may be found in association with neuromuscular abnormalities, which usually respond only to the parenteral administration of vitamin E. Vitamin E should be used with caution in individuals with a predisposition to thrombosis, and may cause an increased risk of necrotising enterocolitis in neonates weighing < 1.5 kg. Vitamin E may cause diarrhoea and abdominal pain at doses > 1 g daily.

Selenium deficiency can occur as a result of inadequate diet or prolonged parenteral nutrition. A selenium supplement should be given only when there is good evidence of deficiency. Selenium may be administered orally or by intramuscular
injection or by intravenous injection, at a dose of 100–500 µg daily.

According to the BNF, the term vitamin D is used for a range of compounds that possess the property of preventing or curing rickets. They include ergocalciferol (calciferol, vitamin D₂), colecalciferol (vitamin D₃), dihydrotachysterol, alfalcacidol (1-hydroxycholecalciferol) and calcitriol (1,25-dihydroxycholecalciferol). Simple vitamin D deficiency can be prevented by taking an oral supplement of only 10 µg (400 units) of ergocalciferol (calciferol, vitamin D₂) or colecalciferol (vitamin D₃) daily. Vitamin D deficiency can occur in people whose exposure to sunlight is limited and in those whose diet is deficient in vitamin D. In these individuals, ergocalciferol or colecalciferol in a dose of 20 µg (800 units) daily by mouth can prevent vitamin D deficiency. Preparations containing calcium with colecalciferol are available for the management of combined calcium and vitamin D deficiency, or for those at high risk of deficiency. Those at risk of osteoporosis should maintain an adequate intake of calcium and vitamin D and any deficiency should be corrected by increasing dietary intake or taking supplements. Elderly patients, especially those who are housebound or live in residential or nursing homes, are at increased risk of calcium and vitamin D deficiency and may benefit from supplements. Vitamin D deficiency caused by intestinal malabsorption or chronic liver disease usually requires vitamin D in pharmacological doses, such as ergocalciferol tablets up to 1 mg (40,000 units) daily; the hypocalcaemia of hypoparathyroidism often requires doses of up to 2.5 mg (100,000 units) daily to achieve normocalcaemia.

Vitamin D requires hydroxylation by the kidney to its active form, therefore the hydroxylated derivatives alfacalcidol or calcitriol should be prescribed if patients with severe renal impairment require vitamin D therapy. Calcitriol is also licensed for the management of postmenopausal osteoporosis. Paricalcitol, a synthetic vitamin D analogue, is licensed for the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure. All patients receiving pharmacological doses of vitamin D and its analogues should have their plasma calcium concentration checked at intervals (initially once or twice weekly) and whenever nausea or vomiting occur. Breastmilk from women taking pharmacological doses of vitamin D can cause

TABLE 3 Estimated acquisition costs of chemopreventive agent

<table>
<thead>
<tr>
<th>Chemopreventive agent</th>
<th>Dose, cap size</th>
<th>Cost</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>300 mg, 100-tab pack</td>
<td>£4.71</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>200 mg, 30-cap pack</td>
<td>£21.55</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Sulindac</td>
<td>200 mg, 56-tab pack</td>
<td>£35.48</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Tiarcicib</td>
<td>Unavailable</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Unavailable individually*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>500 mg, 28 tab pack</td>
<td>£3.12</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>100 ml (500 mg/5 ml)</td>
<td>£25.08</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Selenium</td>
<td>10-ml bottle*</td>
<td>£3.08</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Beta-carotene</td>
<td>Unavailable individually*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.25 g, 100-tab pack</td>
<td>£9.46</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>500 mg, 30-cap pack</td>
<td>£9.99</td>
<td>BNF 57, 2009</td>
</tr>
<tr>
<td>Folic acid</td>
<td>400 µg, 90-tab pack</td>
<td>£2.32</td>
<td>BNF 57, 2009</td>
</tr>
</tbody>
</table>

a Vitamin A is only available in combination with other vitamins. The acquisition cost of vitamin A 4000 units and vitamin D 400 units for an 84-cap pack is £3.14.

b Selenium appears to be unavailable in tablet form individually, but it is possible to obtain tablets of vitamins A, C and E in addition to selenium at a cost of 8p per cap (Boots online: www.boots.com). The dosing of selenium/each vitamin is not presented.

c 30 multivitamin tablets including beta-carotene are available at a cost of £7.99 (Boots online). The dosing of each vitamin is not presented.
hypercalcaemia if given to an infant. Vitamin D supplements are contraindicated in individuals with hypercalcaemia or metastatic calcification. Symptoms of overdosage of vitamin D include anorexia, lassitude, nausea and vomiting, diarrhoea, constipation, weight loss, polyuria, sweating, headache, thirst, vertigo and raised concentrations of calcium and phosphate in plasma and urine.56

Identification of important subgroups

The use of prophylactic interventions is assessed in various populations at differing risk of CRC. One subgroup is the general population (or individuals with no increased risk for CRC); this population is described in this assessment as the ‘low-risk’ subgroup. Another subgroup consists of individuals at an increased risk for CRC because of a personal history of adenomatous polyps, personal or family history of CRC, or inflammatory bowel disease; this population is described in this assessment as the ‘intermediate-risk’ subgroup. Finally, there are individuals who are at a high risk of CRC because of one of two genetic conditions, FAP or HNPCC; this population is described in this assessment as the ‘high-risk’ subgroup.

Current usage in the NHS

Neither NICE nor the Association of Coloproctology of Great Britain and Ireland have made either a positive or a negative recommendation for chemoprevention in any subgroup of patients.8,26 Use of NSAIDs in FAP patients has been discussed in recent reviews.58

Anticipated costs associated with intervention

The acquisition costs of the various interventions are described in Table 3. All the agents are self-administered in tablet form and do not require administration by a health-care professional. Aspirin is available over the counter, as are many of the antioxidants (either individually or as multivitamin tablets). It should be noted that combinations of antioxidants may result in lower acquisition costs than the sum of the individual antioxidants.
Chapter 2
Definition of the decision problem

Overall aims and objectives of assessment

The aim of this study is to assess the clinical effectiveness and cost-effectiveness of drug and micronutrient interventions for the prevention of CRC and adenomatous polyps in populations at differing risks for developing CRC.

Specifically, the objectives of the assessment are:

1. to conduct a systematic review of the published evidence on the clinical effectiveness and cost-effectiveness of agents for the prevention of CRC and adenomatous polyps
2. to use published data on epidemiology and compliance to model the expected benefits and harms of different chemoprevention agents in people with different baseline risks of developing CRC
3. to use decision-analytic modelling and probabilistic sensitivity analysis to assess the cost-effectiveness and cost-utility of chemoprevention agents in different risk groups
4. to identify areas in which further primary research would be valuable, based on the results of the systematic review and value-of-information analysis.

The rest of the report is organised as follows to address these aims and objectives. Chapter 3 describes the effectiveness reviews of each of the chemopreventive agents and Chapter 4 describes the qualitative review of chemopreventive use. Chapter 5 brings together the evidence from these reviews, together with information from the wider literature, to inform a health economic analysis of alternative chemoprevention options. A discussion of factors relevant to the NHS is presented in Chapter 6 and all the available evidence is discussed within Chapter 7. The conclusions of the analyses are presented within Chapter 8.

Decision problem

Population and relevant subgroups

The use of prophylactic interventions is assessed in the following populations:

- general population or individuals with no increased risk for CRC (described in this assessment as ‘low risk’)
- individuals at increased risk of CRC (described in this assessment as ‘intermediate risk’) because of:
 - history of adenomatous polyps
 - personal history of CRC
 - family history of CRC
 - inflammatory bowel disease
- individuals at high risk of CRC (described in this assessment as ‘high risk’) because of the following genetic conditions:
 - FAP
 - HNPCC.

Interventions

The scope of this study includes interventions that can be classed as drugs or nutritional supplements used as chemopreventive agents for CRC. The study excludes whole-food interventions (such as fruit, vegetables, meat, fibre, garlic, green tea). Decisions concerning the inclusion of interventions were taken through reference to clinical advice.

The following interventions are included in this assessment:

- aspirin
- non-aspirin NSAIDs (non-steroidal anti-inflammatory drugs), including COX-2 inhibitors
- folic acid
- calcium and/or vitamin D
- antioxidants: vitamin A, vitamin C, vitamin E, selenium and beta-carotene.
Definition of the decision problem

Relevant comparators

Studies were included if they compared the above interventions against placebo or some other chemopreventive agent.

Outcomes

Relevant outcomes include:

- incidence/recurrence of any adenoma
- incidence of advanced adenoma
- change in polyp burden, number and size (for secondary prevention trials in FAP/HNPCC patients in whom adenomas are already present)
- incidence of CRC
- compliance and discontinuation rates
- adverse effects
- health-related quality of life (HRQoL)
- cost-effectiveness and cost-utility.

It is thought that most CRCs develop from adenomatous polyps (growths) arising from the lining of the intestine.\(^{17,18}\) Therefore, adenoma incidence is used as an intermediate outcome in many trials of chemoprevention. The term ‘adenoma recurrence’ is used for studies in patients with a history of adenomas which were resected at baseline. Advanced adenomas are those which are thought to be of higher risk of developing into CRC, although there is some uncertainty about which properties are the greatest predictors of higher risk. Guidelines from 2002 advise that patients are at a higher risk if they have a higher number of adenomas or at least one adenoma with a diameter ≥1 cm, while there was uncertainty regarding the role of histology as a predictor of future risk.\(^{59}\) In several chemoprevention trials, advanced adenomas have been defined as those which are large (≥1 cm) or have villous or tubulovillous features or severe dysplasia.\(^{60-64}\)

Detection of CRC as an end point is likely to require trials with a larger sample size and a long follow-up duration because it is thought that adenomas may be present for 10 years or more before malignancy develops, and chemopreventive agents are thought to act mainly at the point of adenoma formation.\(^{20,21}\) However, it is possible that chemopreventive agents may also act at other points in the pathway, such as during the progression from adenomas to cancer.
The methods for identifying and reviewing the clinical literature are described in this chapter. The number of included studies relating to all interventions is described and the clinical effectiveness results for each intervention are described in separate sections then discussed in the final section. Qualitative data on views and attitudes relating to chemoprevention are described in Chapter 4.

Methods for reviewing effectiveness

A systematic review of the clinical effectiveness of drug and nutritional agents for the prevention of CRC and/or adenomatous polyps was undertaken according to the general principles recommended in the Quality of Reporting of Meta-analyses (QUOROM) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statements.

Identification of studies

The search strategy was comprised of two key elements: (1) systematic searches to identify RCTs that evaluate the clinical effectiveness of chemopreventive agents, and (2) systematic searches to identify qualitative studies relating to individuals’ perceptions and experiences of compliance with chemopreventive agents.

Identification of RCTs of clinical effectiveness

The following strategies were used to identify RCTs assessing the clinical effectiveness of agents for chemoprevention of CRC and adenomatous polyps:

- searching of electronic databases
- contact with experts in the field
- handsearching of bibliographies of retrieved papers
- identification of relevant studies included in other high-quality systematic reviews of chemoprevention.

The following electronic databases were searched for RCTs of clinical effectiveness: MEDLINE 1950 to June 2008 (via Ovid), MEDLINE In-Process & Other Non-Indexed Citations (via Ovid), EMBASE 1980 to June 2008 (via Ovid), CINAHL 1982 to June 2008 (via Ovid), Cochrane Database of Systematic Reviews 1991 to June 2008 (via Wiley), Cochrane CENTRAL Register of Controlled Trials 1991 to June 2008 (via Wiley), DARE 1991 to June 2008 (via Wiley), NHS EED 1991 to June 2008 (via Wiley), HTA database 1991 to June 2008 (via Wiley), Science Citation Index 1900 to June 2008 (via ISI), BIOSIS previews 1985 to June 2008 (via ISI). The following research registers were searched: Current Controlled Trials (which includes the Medical Research Council trial register, UK Clinical Research Network, the archives of the National Research Register). Searches were undertaken in June 2008. Subject headings and free text terms were used. The MEDLINE search strategy is shown in Appendix 1. Three sets of search terms were combined:

- terms for CRC or adenomatous polyps AND
- terms for the relevant interventions AND
- a search filter to identify RCTs.

Searches were restricted to RCTs. For all interventions except calcium, searches were restricted to studies published from 2003 onwards because studies published up to 2002 could be identified from recent systematic reviews (Cochrane reviews or other high-quality reviews). For calcium, the search was not restricted by publication date (because the existing Cochrane review excluded studies of calcium combined with other interventions and studies giving less than 1000 mg/day of calcium, and we did not wish to apply these exclusions). Searches were not restricted by language.

Identification of qualitative studies on compliance and views about chemoprevention

A separate literature search was undertaken to identify qualitative studies relating to people’s views, attitudes and beliefs about chemoprevention, to explore issues of expected compliance and
other issues of implementation for different types of chemopreventive agent in different risk populations. The search methods, analysis methods and results are described in Chapter 4 and the MEDLINE search strategy is shown in Appendix 1.

Inclusion and exclusion criteria

The following inclusion and exclusion criteria were used to identify relevant studies.

Population and relevant subgroups
The use of prophylactic interventions is assessed in the following populations:

- general population or individuals with no increased risk for CRC (described in this assessment as 'low risk')
- individuals at increased risk of CRC (described in this assessment as 'intermediate risk') due to:
 - history of adenomatous polyps
 - personal history of CRC
 - family history of CRC
 - inflammatory bowel disease
- individuals at high risk of CRC (described in this assessment as 'high risk') due to the following genetic conditions:
 - FAP
 - HNPCC.

Interventions
The following interventions are included in this assessment (at any dose, alone or in combination):

- aspirin
- non-aspirin NSAIDs, including COX-2 inhibitors
- folic acid
- calcium and/or vitamin D
- antioxidants: vitamin A, vitamin C, vitamin E, selenium and beta-carotene.

Relevant comparators
Relevant comparisons include the following:

- trials comparing the intervention of interest with placebo or no intervention
- trials comparing the intervention of interest with another intervention not included in this assessment
- trials which have adopted a factorial design, whereby the intervention of interest is compared with placebo or no prophylaxis, and some of the participants in both the intervention and control arms also received another intervention (which may be an intervention included in this assessment).

Approaches for analysing these different types of trial are described further (see Evidence synthesis methods).

Outcomes
Relevant outcomes include:

- incidence/recurrence of any adenoma
- incidence of advanced adenoma (generally defined as ≥1 cm in diameter, villous or tubulovillous, having severe dysplasia, or CRC)
- change in polyp burden, number and size (for secondary prevention trials in FAP/HNPCC patients in whom adenomas are already present)
- incidence of CRC
- compliance and discontinuation rates
- adverse events.

Study types
This review includes RCTs. Observational studies were excluded from the review because of the potential for bias through lack of randomisation. Dose-finding and administration studies without an alternative intervention or placebo control group were also excluded. Studies undertaken within low-risk and intermediate-risk populations (i.e. those assessing adenoma incidence and CRC incidence) were included only if they had a treatment and follow-up duration of at least 1 year. Studies undertaken within patients with FAP or HNPCC, which tended to assess other outcomes such as changes in polyp burden, were included irrespective of treatment and follow-up duration.

Screening references and data abstraction strategy
Titles and abstracts were screened by one reviewer and 10% of citations were double-checked by a second reviewer. A kappa of 0.76 was recorded for inter-rater reliability. Full papers were examined for inclusion by two reviewers. Data were extracted by one reviewer and checked by a second reviewer. Any discrepancies were resolved by discussion.

Critical appraisal strategy
The quality of included randomised trials was assessed using criteria based on recommendations from the Centre for Reviews and Dissemination. The following criteria were used:
• What was the number (and percentage) of randomised patients excluded from the main analyses (< 5%, between 5 and 20%, or > 20%)?
• Was the study randomised and was the method described?
• Was allocation concealed and was the method described?
• Were the following blinded to treatment allocation: participants, caregiver and analyst?
• Were the study groups comparable at baseline?
• Were there any co-interventions or other factors that may influence outcome?

Evidence synthesis methods

For discrete and numerical outcomes, relative risk (risk ratio) and risk difference are reported with 95% confidence intervals. For continuous outcomes, weighted mean differences were calculated using the inverse variance and reported with 95% confidence intervals. The studies were appraised in terms of clinical validity and methodological heterogeneity to determine whether statistical pooling of trial data within a meta-analysis was appropriate. Where studies were meta-analysed, the more conservative random effects model was used to account for clinical and methodological variations between trials. Statistical heterogeneity was described using the I-squared statistic, and potential reasons for any heterogeneity were discussed. Forest plots are presented for all analyses where there was more than one relevant study and sufficient data to undertake a meta-analysis. Results for all analyses, including those of single studies, are presented in summary tables.

For studies that include more than one intervention, two types of comparison are analysed and presented:

• the intervention of interest alone versus placebo alone
• the intervention of interest (plus or minus any other intervention) versus placebo (plus or minus any other intervention).

Where trials assess a combination of more than one relevant intervention versus placebo (e.g. all the participants in one trial arm received vitamin C plus vitamin E and all the participants in the other arm received placebo), outcomes data were analysed as a combined intervention. The data contributed to the meta-analysis of (for example) all antioxidants versus placebo, and also to the meta-analysis of vitamin C plus vitamin E versus placebo, but did not contribute to the meta-analysis of vitamin C alone versus placebo.

Factorial trials assessing more than one intervention of the same ‘intervention group’ (as listed, see Inclusion and exclusion criteria, e.g. ‘antioxidants’ or ‘NSAIDs’) were analysed as follows. For example, a factorial trial may include the following arms: 25% of participants receive vitamin C, 25% receive vitamin E, 25% receive both vitamins, and 25% receive placebo alone. If the trial report presented separate data on all trial arms including the placebo-alone arm, then the data contributed to the meta-analysis of all antioxidants versus placebo, and also to the meta-analyses of vitamin C versus placebo, vitamin E versus placebo, and combined vitamins C and E versus placebo. However, if the trial report only presented data on, for example, vitamin C (plus or minus other interventions) versus no vitamin C (plus or minus other interventions), and the ‘other interventions’ were of the same group (i.e. other antioxidants), then these data could not be used in the meta-analysis of all antioxidants versus placebo. These data were used in the meta-analysis of vitamin C versus placebo, as long as the study reported relative risks which were adjusted for the effects of the other antioxidants in the study; in this case, the data were meta-analysed using these adjusted relative risks directly (via the inverse variance method) rather than using event data.

Participant treatment and follow-up duration are stated to the nearest year within this report, for clarity. The way in which treatment and follow-up durations were measured was sometimes unclear in the study reports, but they generally referred to either the median value, or that which applied to the majority of patients.

With respect to the interpretation of clinical effectiveness evidence to inform the development of the health economic model, it was necessary to know the relative risks of both advanced adenomas and ‘low-risk’ adenomas (i.e. those that were not defined as advanced). ‘Low-risk’ adenoma rates were calculated by subtracting the rates of advanced adenomas from the rates of any adenomas, for studies which presented both outcomes (see Chapter 5).

Number of included studies

The search for RCTs of chemopreventive agents identified 3785 citations. Of these, 3518 were excluded at the title/abstract stage and 267 were obtained for examination of the full text. In total, 116 citations met the inclusion criteria. These citations related to 44 published RCTs as follows:
10 RCTs of aspirin, nine RCTs of non-aspirin NSAIDs, six RCTs of calcium and/or vitamin D, six RCTs of folic acid, and 19 RCTs of antioxidants (six RCTs covered more than one intervention type).

In addition there were 12 systematic reviews as follows: three reviews of aspirin only, two reviews of NSAIDs only, two reviews of both aspirin and NSAIDs, two reviews of calcium, and three reviews of antioxidants. These existing reviews were screened to check for additional studies. The search also identified six ongoing RCTs: one ongoing RCT of aspirin plus calcium plus vitamin D, one ongoing RCT of NSAIDs (celecoxib), three ongoing RCTs of folic acid, and one ongoing RCT of antioxidants (selenium). The included studies are summarised in the flow diagram of studies (Figure 2) and in Table 4.

Results: aspirin

Aspirin: high-risk population (FAP or HNPCC)

Study and population characteristics

Two existing systematic reviews were identified which addressed the use of aspirin in high-risk groups; Asano and McLeod48 and Wang et al.82 (Table 5). Through these, and the electronic searches, two controlled trials by Burn et al. were identified that compared aspirin with a control group in the high-risk group: the Colorectal Adenoma/carcinoma Prevention Programme 1 (CAPP 1, Burn 2003;21 available only as a conference abstract) and CAPP 2 (Burn 2008).67 These international multicentre studies randomised 206 and 1009 participants, respectively.

CAPP 1 recruited people with a genetic diagnosis of FAP;71 CAPP 2 recruited people with HNPCC, diagnosed either genetically or clinically.67 The age profile of the CAPP 1 study was not reported; the mean age of subjects analysed in the CAPP 2 trial was 46 years (range 25–79 years).

Both studies compared aspirin (600 mg daily), with or without resistant starch (30 g daily), to resistant starch alone or placebo. Participants in CAPP 1 were analysed if they had received treatment for 1 year or longer; participants in CAPP 2 received the study drug for a mean of 27 months (range 1–67 months) and were followed up for a mean of 29 months (range 7–74 months).

Quality assessment

The method of allocation concealment was unclear in CAPP 1 and adequate in CAPP 2 (treatments were prepared by a central pharmacy) (see Appendix 2, Table 51). The generation of the randomisation sequence was not described for

FIGURE 2 Flow diagram of study inclusion and exclusion.
TABLE 4 Summary of included studies

<table>
<thead>
<tr>
<th>RCTs: high-risk population (FAP/HNPPCC)</th>
<th>RCTs: intermediate-risk population (history of adenomas or CRC)</th>
<th>RCTs: low-risk population (no increased risk of CRC)</th>
<th>Systematic reviews (screened to identify additional studies)</th>
<th>Ongoing studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin: 10 RCTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 RCTs</td>
<td>4 RCTs</td>
<td>4 RCTs</td>
<td>5 reviews</td>
<td>1 ongoing study</td>
</tr>
<tr>
<td>Burn 2008 (CAPP2)</td>
<td>Logan 2008 (ukCAP)[0]</td>
<td>Cook 2005 (Women’s Health Study)[0,70]</td>
<td>Asano 2004 (Cochrane)[48]</td>
<td>Aspirin, calcium, vitamin D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wang 2005[82]</td>
<td></td>
</tr>
<tr>
<td>Non-aspirin NSAIDs: 9 RCTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 RCTs</td>
<td>3 RCTs</td>
<td>0 RCTs</td>
<td>4 reviews</td>
<td>1 ongoing study</td>
</tr>
<tr>
<td>Nugent 1993[93]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labayle 1991[94]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folic acid: 6 RCTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 RCTs</td>
<td>3 RCTs</td>
<td>3 RCTs</td>
<td>0 reviews</td>
<td>3 ongoing studies</td>
</tr>
<tr>
<td>Logan 2008 (ukCAP)[0]</td>
<td></td>
<td>Zhang 2008 Women’s Antioxidant and Folic Acid Cardiovascular Study: WAFACS[90]</td>
<td></td>
<td>Folic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Calcium and/or vitamin D: 6 RCTs</th>
<th>Antioxidants (vitamins A, C, E, beta-carotene, selenium): 19 RCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RCT</td>
<td>0 RCTs</td>
</tr>
<tr>
<td>Thomas 1993^95</td>
<td>Baron 2003/Greenberg 1994 (Antioxidant Polyp Prevention Study)^11,12</td>
</tr>
<tr>
<td>Bonithon-Kopp 2000^96</td>
<td>Bonelli 1998^13</td>
</tr>
<tr>
<td>Baron 1999 (Calcium Polyp Prevention Study)^99,100</td>
<td>Hofstad 1998^103,104</td>
</tr>
<tr>
<td>Hofstad 1998^103,104</td>
<td></td>
</tr>
<tr>
<td>Bonithon-Kopp 2000^96</td>
<td></td>
</tr>
<tr>
<td>Baron 1999 (Calcium Polyp Prevention Study)^99,100</td>
<td>Hofstad 1998^103,104</td>
</tr>
<tr>
<td>Hofstad 1998^103,104</td>
<td></td>
</tr>
<tr>
<td>Thomas 1993^95</td>
<td>Baron 2003/Greenberg 1994 (Antioxidant Polyp Prevention Study)^11,12</td>
</tr>
<tr>
<td>Bonithon-Kopp 2000^96</td>
<td>Bonelli 1998^13</td>
</tr>
<tr>
<td>Baron 1999 (Calcium Polyp Prevention Study)^99,100</td>
<td>Hofstad 1998^103,104</td>
</tr>
<tr>
<td>Hofstad 1998^103,104</td>
<td></td>
</tr>
<tr>
<td>Bonithon-Kopp 2000^96</td>
<td></td>
</tr>
<tr>
<td>Baron 1999 (Calcium Polyp Prevention Study)^99,100</td>
<td>Hofstad 1998^103,104</td>
</tr>
<tr>
<td>Hofstad 1998^103,104</td>
<td></td>
</tr>
<tr>
<td>Thomas 1993^95</td>
<td>Baron 2003/Greenberg 1994 (Antioxidant Polyp Prevention Study)^11,12</td>
</tr>
<tr>
<td>Bonithon-Kopp 2000^96</td>
<td>Bonelli 1998^13</td>
</tr>
<tr>
<td>Baron 1999 (Calcium Polyp Prevention Study)^99,100</td>
<td>Hofstad 1998^103,104</td>
</tr>
<tr>
<td>Hofstad 1998^103,104</td>
<td></td>
</tr>
<tr>
<td>2 RCTs</td>
<td>12 RCTs</td>
</tr>
<tr>
<td>Lappe 2007^17</td>
<td>Gaziano 2009 (PHS II)^113</td>
</tr>
<tr>
<td></td>
<td>Lippman 2009 (SELECT)^116</td>
</tr>
<tr>
<td></td>
<td>Lin 2009 (WACS)^18–120</td>
</tr>
<tr>
<td></td>
<td>Lee 2005/Lee 1999 (Women's Health Study)^88,90,122,123</td>
</tr>
<tr>
<td></td>
<td>Lonn 2005 (HOPE-TOO)^107,125</td>
</tr>
<tr>
<td></td>
<td>Goodman 2004 (CARET)^164,127,128</td>
</tr>
<tr>
<td></td>
<td>Hercberg 2004 (SU. VI.MAX)^14,150,122,123</td>
</tr>
<tr>
<td></td>
<td>Zhu 2003^109,110</td>
</tr>
<tr>
<td></td>
<td>Virtamo 2003/Malila 1999 (ATBC)^133–136</td>
</tr>
<tr>
<td></td>
<td>Duffield-Lillico 2002 (NPCT)^137–139</td>
</tr>
<tr>
<td></td>
<td>HPS 2002^114,140</td>
</tr>
<tr>
<td></td>
<td>Hennekens 1996 (PHS)^42</td>
</tr>
<tr>
<td>2 reviews</td>
<td>3 reviews</td>
</tr>
<tr>
<td>Weingarten 2008 (Cochrane)^98</td>
<td>Bjelakovic 2008 (gastrointestinal cancers, Cochrane)^14</td>
</tr>
<tr>
<td></td>
<td>Bjelakovic 2008 (gastrointestinal cancers, alimentary pharmacology and therapeutics)^17</td>
</tr>
<tr>
<td></td>
<td>Bjelakovic 2006 (adenomas)^5</td>
</tr>
<tr>
<td>1 ongoing study</td>
<td>Selenium</td>
</tr>
<tr>
<td>Aspirin, calcium, vitamin D</td>
<td></td>
</tr>
<tr>
<td>Ongoing study</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4 Summary of included studies (continued)
TABLE 5 Aspirin: study characteristics (FAP/HNPCC patients)

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary prevention (assessing adenoma incidence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn 2008 (CAPP2 Study)(^\text{a})</td>
<td>HNPCC carriers Age > 25 eligible (mean 46, range 25–79)</td>
<td>Aspirin 600 mg/day (n analysed = 427; n randomised not reported) (some also received starch)</td>
<td>Placebo (n analysed = 510; n randomised not reported) (some also received starch)</td>
<td>2.5 years (approx.)</td>
<td>2.5 years (approx.)</td>
</tr>
<tr>
<td>Secondary prevention (assessing reduction in adenoma burden)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn 2003 (CAPP1 Study)(^\text{a}),(^\text{b})</td>
<td>FAP and polyps</td>
<td>Aspirin 600 mg/day ± resistant starch 30 mg/day (n unknown; n = 133 analysed across both aspirin and placebo groups)</td>
<td>Placebo (n unknown; n = 133 analysed across both aspirin and placebo groups) (some also received starch)</td>
<td>At least 1 year</td>
<td>At least 1 year</td>
</tr>
</tbody>
</table>

CAPP 1, and was methodologically adequate in CAPP 2 (computer-generated sequence). Outcome assessors and participants were described as blinded in CAPP 1; investigators and participants were described as blinded in CAPP 2. Over 20% of randomised participants were excluded from the analyses in each trial (35.4% and 26.1%, respectively). In CAPP 1, at least some (it is not clear whether all) exclusions were made on the basis that they had not been followed up for 1 year at the time of analysis. In CAPP 2, the reasons for exclusions were not clear.

Outcome data

Effectiveness

Incidence of any adenoma and reduction in adenoma number and size

In the CAPP 1 study in FAP patients (133 analysed participants followed for at least 1 year), it was reported that aspirin did not result in a significant reduction in polyp number. The mean size of the largest polyps was reported as being significantly reduced in the aspirin-only group (\(p = 0.01\); no other data reported so far). However, this study was designed to recruit 400 participants\(^\text{2}\) and so far data have been reported for only 133 participants.\(^\text{2}\)

In the placebo-controlled CAPP 2 study in HNPCC carriers (746 analysed participants), aspirin use (with or without starch) did not result in a statistically significant reduction in the risk of developing new adenomas (RR 1.03, 95% CI 0.75 to 1.41, \(p = 0.85\)) (Table 6).\(^\text{67}\)

Incidence of advanced adenoma

The CAPP 1 study did not report data on advanced adenomas.\(^\text{21}\) In the CAPP 2 study (746 analysed participants), aspirin use (with or without starch) did not result in a statistically significant reduction in the risk of developing new advanced adenomas (RR 0.70, 95% CI 0.44 to 1.12, \(p = 0.14\)).\(^\text{67}\)

Incidence of colorectal cancer

The CAPP 1 study did not report data on CRC.\(^\text{21}\) In the CAPP 2 study (746 analysed participants), aspirin use (with or without starch) did not result in a statistically significant reduction in the risk of developing CRC at approximately 2.5 years of follow-up (RR 0.87, 95% CI 0.39 to 1.96, \(p = 0.74\)).\(^\text{67}\) However, after a mean of 4 years of follow-up (667 analysed participants having received aspirin or placebo for a mean of 2.4 years), the hazard ratio for time to first HNPCC cancer was 0.62 (95% CI 0.41 to 0.96, \(p = 0.03\); no data were presented for CRC specifically, and the effect was significant for patients receiving at least 2 years of treatment but not for those receiving less than 2 years of treatment.\(^\text{143}\)

Compliance

The CAPP 1 study did not report compliance data.\(^\text{21}\) In CAPP 2, the mean proportion of unused aspirin tablets was 10%.\(^\text{67}\)

Adverse effects

The CAPP 1 study did not report data on treatment harms.\(^\text{21}\) The CAPP 2 study reported the number of participants with gastric ulcers or bleeds (aspirin 11; placebo 9), cerebrovascular events (aspirin 2, placebo 3) and cardiovascular events (aspirin 1, placebo 5).\(^\text{67}\)

Ongoing studies

No ongoing studies of aspirin in this population group were identified.

Excluded studies

The authors did not exclude any studies that closely matched the eligibility criteria.
TABLE 6 Aspirin: summary of results (FAP/HNPCC)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn 2008 (CAPP2 Study)</td>
<td>Aspirin 600 mg/day vs placebo (some also received starch)</td>
<td>Placebo (some also received starch)</td>
<td>Adenoma</td>
<td>61</td>
<td>2.5 years (approx.)</td>
<td>350</td>
<td>67</td>
<td>396</td>
<td>1.03</td>
<td>0.75</td>
<td>1.41</td>
<td>N/C</td>
<td>0.01</td>
<td>−0.05</td>
<td>0.06</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>Burn 2008 (CAPP2 Study)</td>
<td>As above</td>
<td>As above</td>
<td>Advanced adenoma</td>
<td>26</td>
<td>2.5 years (approx.)</td>
<td>350</td>
<td>42</td>
<td>396</td>
<td>0.7</td>
<td>0.44</td>
<td>1.12</td>
<td>N/C</td>
<td>−0.03</td>
<td>−0.07</td>
<td>0.01</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>Burn 2008 (CAPP2 Study)</td>
<td>As above</td>
<td>As above</td>
<td>CRC</td>
<td>10</td>
<td>2.5 years (approx.)</td>
<td>350</td>
<td>13</td>
<td>396</td>
<td>0.87</td>
<td>0.39</td>
<td>1.96</td>
<td>N/C</td>
<td>0</td>
<td>−0.03</td>
<td>0.02</td>
<td>N/C</td>
<td></td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
Aspirin: intermediate-risk population (history of adenomas or colorectal cancer)

Study and population characteristics

Four studies were identified which compared aspirin against a control group in the intermediate-risk population (Table 7). Two studies were USA-based: the Aspirin/Folate Polyp Prevention Study reported by Cole et al. and Baron et al. and the study reported by Sandler et al. Two studies were European: the United Kingdom Colorectal Adenoma Prevention (ukCAP) study reported by Logan et al. and the Association pour la Prévention par Aspirine du Cancer Colorectal (APACC) trial reported by Benamouzig et al. All four studies were multicentre RCTs, which each randomised between 272 and 1121 participants.

In three studies, people with a history of adenomas were eligible, whereas the Sandler study enrolled people with a history of CRC. The included studies reported a median age between 57 and 65 years, a lower age limit of 21–30 years (one study had no lower limit) and an upper age limit of 75–80 years.

All studies compared aspirin (dose of 81–325 mg/day) to placebo. Two of the studies (Logan and Cole) also prescribed folic acid (dose of 0.5 or 1 mg/day) to 50% of the participants in both the aspirin and placebo arms within a 2 × 2 factorial design. The duration of treatment was 1 year in two studies (Benamouzig and Sandler) and 3 years in the other two studies (Logan and Cole). Participants were followed up for 3 years in three studies (Logan, Cole and Sandler). In the Benamouzig study, participants were treated for 1 year and followed up for 4 years, but only the 1-year data have been published and are included in this assessment, as in the Asano and McLeod Cochrane review. A recent meta-analysis by Cole et al. obtained the unpublished 4-year data from the Benamouzig trial. The 4-year data showed a lesser effect on adenoma recurrence than the 1-year data,

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logan 2008 (ukCAP trial: United Kingdom Colorectal Adenoma Prevention)</td>
<td>History of adenomas</td>
<td>Aspirin 300 mg/day only (n = 236)</td>
<td>Folic acid 0.5 mg/day only (n = 234)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td></td>
<td>Age < 75 eligible (mean 58, range 28–75)</td>
<td>Aspirin 300 mg/day only (n = 236)</td>
<td>Placebo only (n = 233)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td>Cole 2007/Baron 2003 (Aspirin/Folate Polyp Prevention Study)</td>
<td>History of adenomas</td>
<td>Aspirin 81 mg/day only (n = 169)</td>
<td>Folic acid 1 mg/day only (n = 170)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td></td>
<td>Age 21–80 eligible (mean 57 or 58 in all groups, range not reported)</td>
<td>Aspirin 325 mg/day only (n = 167)</td>
<td>Placebo only (n = 169)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td></td>
<td>Aspirin 81 mg/day + folic acid 0.5 mg/day (n = 236)</td>
<td>Aspirin 325 mg/day + folic acid 1 mg/day (n = 175)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspirin 325 mg/day + folic acid 1 mg/day (n = 171)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benamouzig 2003 (APACC Study)</td>
<td>History of adenomas</td>
<td>Aspirin 160 mg/day only (n = 73) or 300 mg/day (n = 67)</td>
<td>Placebo (n = 132)</td>
<td>1 year</td>
<td>1 year</td>
</tr>
<tr>
<td></td>
<td>Age 18–75 eligible (mean 58, range not reported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandler 2003</td>
<td>History of CRC</td>
<td>Aspirin 325 mg/day (n = 317)</td>
<td>Placebo (n = 318)</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td></td>
<td>Age 30–80 eligible (median age bracket 60–69, range not reported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Analysis of aspirin ± folic acid versus placebo ± folic acid includes an additional 100 patients randomised to aspirin or placebo before folic acid component was added, giving the following numbers of patients per group: aspirin, 81 mg/day (n = 377); aspirin 325 mg/day (n = 372); no aspirin (n = 372).
which may relate to the fact that aspirin treatment was only given for 1 year.

In addition, the effect of aspirin on adenomas and CRC in the intermediate-risk population was analysed in a Cochrane systematic review by Asano and McLeod and in a systematic review for the US Preventive Services Task Force by Dube et al., and the effect on adenoma recurrence in this population was meta-analysed by Cole et al. and Gao et al.

Quality assessment

Allocation concealment was considered adequate in all four studies (all were multicentre studies with treatment allocated via a central pharmacy), and all studies were randomised although the generation of the randomisation sequence was not described in two studies (see Appendix 2, Table 51). All studies reported adequate blinding. Randomised participants who did not have a follow-up colonoscopy to assess adenoma recurrence were excluded from the main analysis in all studies. In the study reported by Cole, fewer than 5% of randomised participants were excluded from the analysis, whereas in the other three studies, between 5 and 20% of randomised participants were excluded.

Outcome data

Effectiveness

Effectiveness results for aspirin in the intermediate-risk population (history of adenomas or CRC) are shown in Figure 3 and Table 8.

Incidence of advanced adenoma

Three of the studies (Logan, Cole and Benamouzig) reported incidence rates for advanced adenomas (generally defined as ≥ 1 cm in diameter, villous or tubulovillous, having severe dysplasia, or CRC; see Figure 3bii). When analysing aspirin versus no aspirin (n = 2175, including some participants who also received folic acid), a meta-analysis demonstrated a statistically significant 34% reduction in the relative risk of advanced adenoma incidence (RR 0.66, 95% CI 0.51 to 0.84, p = 0.0008) and a 5% reduction in the absolute risk (RD –0.05, 95% CI –0.07 to –0.02, p = 0.0008), with no statistical heterogeneity between the studies (I² = 0% for both analyses).

When comparing aspirin to placebo alone (three studies; n = 1662, excluding participants who also received folic acid, Figure 3biii), the risk of advanced adenoma incidence remained lower in the aspirin group but was no longer significant at the 5% level (meta-analysed RR 0.75, 95% CI 0.52 to 1.07, p = 0.12; RD –0.03, 95% CI –0.06 to 0.01, p = 0.14) with no heterogeneity (I² = 0% for both analyses).

In addition, two of the studies (Logan and Cole; 916 participants in analysis) compared aspirin plus folic acid versus placebo (Figure 3biii). The differences in the relative and absolute risks of developing an adenoma of any type were not statistically significant at the 5% level (meta-analysed RR 0.90, 95% CI 0.75 to 1.08, p = 0.27; RD –0.04, 95% CI –0.10 to 0.02, p = 0.23), and there was no statistical heterogeneity between the studies (I² = 0%).

Recurrence of any adenoma

In the intermediate-risk population (history of adenomas or CRC), all four studies (2692 analysed participants) compared aspirin to no aspirin (50% of participants in the aspirin and placebo arms also received folic acid in the Logan and Cole studies); see Figure 3ai. A meta-analysis demonstrated a statistically significant 21% reduction in the relative risk of recurrence of an adenoma of any type (RR 0.79, 95% CI 0.68 to 0.92, p = 0.002), with a moderate level of statistical heterogeneity (I² = 34%). There was a 7% reduction in the absolute risk [meta-analysed risk difference (RD) –0.07, 95% CI –0.11 to –0.04, p < 0.0001], with no statistical heterogeneity (I² = 0%).

These four studies also provided data comparing aspirin to placebo alone (n = 1662, excluding those participants who also received folic acid; Figure 3aii). The relative risk for adenoma recurrence remained similar and statistically significant at the 5% level (meta-analysed RR 0.80, 95% CI 0.65 to 0.98, p = 0.03) with a moderate level of statistical heterogeneity (I² = 47%), and the absolute risk difference remained similar.
(a) Recurrence of any adenoma (i)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin ± folic acid</th>
<th>Placebo ± folic acid</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Benamouzig 2003</td>
<td>38 126</td>
<td>46 112</td>
<td>14.5%</td>
<td>0.73 (0.52 to 1.04)</td>
</tr>
<tr>
<td>Cole 2007</td>
<td>300 721</td>
<td>171 363</td>
<td>44.0%</td>
<td>0.88 (0.77 to 1.02)</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>99 434</td>
<td>121 419</td>
<td>26.4%</td>
<td>0.79 (0.63 to 0.99)</td>
</tr>
<tr>
<td>Sandler 2003</td>
<td>43 259</td>
<td>70 258</td>
<td>15.1%</td>
<td>0.61 (0.44 to 0.86)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1540 1152</td>
<td>100.0%</td>
<td>0.79 (0.68 to 0.92)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>400 400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.02; \chi^2 = 5.68$, df = 3 ($p = 0.21$); $I^2 = 34$

Test for overall effect: $z = 3.13$ ($p = 0.002$)

(a) (ii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin alone</th>
<th>Placebo alone</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Benamouzig 2003</td>
<td>38 126</td>
<td>46 112</td>
<td>21.6%</td>
<td>0.73 (0.52 to 1.04)</td>
</tr>
<tr>
<td>Cole 2007</td>
<td>136 324</td>
<td>70 162</td>
<td>33.7%</td>
<td>0.97 (0.78 to 1.21)</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>49 217</td>
<td>56 204</td>
<td>22.6%</td>
<td>0.82 (0.59 to 1.15)</td>
</tr>
<tr>
<td>Sandler 2003</td>
<td>43 259</td>
<td>70 258</td>
<td>22.2%</td>
<td>0.61 (0.44 to 0.86)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>926 736</td>
<td>100.0%</td>
<td>0.80 (0.65 to 0.98)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>266 242</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.02; \chi^2 = 5.68$, df = 3 ($p = 0.13$); $I^2 = 47$

Test for overall effect: $z = 2.16$ ($p = 0.03$)

(a) (iii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin plus folic acid</th>
<th>Placebo alone</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Cole 2007</td>
<td>134 333</td>
<td>70 162</td>
<td>69.3%</td>
<td>0.93 (0.75 to 1.16)</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>50 217</td>
<td>56 204</td>
<td>30.7%</td>
<td>0.84 (0.60 to 1.17)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>550 366</td>
<td>100.0%</td>
<td>0.90 (0.75 to 1.08)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>184 126</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.00; \chi^2 = 0.27$, df = 1 ($p = 0.60$); $I^2 = 0$

Test for overall effect: $z = 1.11$ ($p = 0.27$)

FIGURE 3 Aspirin: meta-analyses (history of adenomas or colorectal cancer). (a) Recurrence of any adenoma: (i) aspirin ± folic acid versus placebo ± folic acid, (ii) aspirin alone versus placebo alone, (iii) aspirin + folic acid versus placebo alone; (b) Incidence of advanced adenoma: (i) aspirin ± folic acid versus placebo ± folic acid, (ii) aspirin alone versus placebo alone, (iii) aspirin + folic acid versus placebo alone; (c) Incidence of colorectal cancer: aspirin ± folic acid versus placebo ± folic acid.

Incidence of colorectal cancer

Two of the studies comparing aspirin to no aspirin also reported incidence of CRC (Logan and Cole; $n = 1937$, 50% of participants also received folic acid; Figure 3c). The differences in the relative risk and the absolute risk of CRC were not significant at the 5% level (meta-analysed RR 0.84, 95% CI 0.15 to 4.74, $p = 0.84$; RD 0.00, 95% CI –0.02 to 0.01, $p = 0.82$) with moderate-to-high heterogeneity ($I^2 = 49\%$ and 72\%, respectively).
(b) Incidence of advanced adenoma (i)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin ± folic acid</th>
<th>Placebo ± folic acid</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Benamouzig 2003</td>
<td>8</td>
<td>126</td>
<td>13</td>
</tr>
<tr>
<td>Cole 2007</td>
<td>66</td>
<td>721</td>
<td>47</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>41</td>
<td>434</td>
<td>63</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1281</td>
<td>894</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total events</td>
<td>115</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ² = 0.00; χ² = 1.49, df = 2 (p = 0.48); I² = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 3.37 (p = 0.0008)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) (ii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin alone</th>
<th>Placebo alone</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Benamouzig 2003</td>
<td>8</td>
<td>126</td>
<td>13</td>
</tr>
<tr>
<td>Cole 2007</td>
<td>28</td>
<td>324</td>
<td>14</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>22</td>
<td>217</td>
<td>30</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>667</td>
<td>478</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total events</td>
<td>58</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ² = 0.07; χ² = 1.82, df = 1 (p = 0.18); I² = 45%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 1.57 (p = 0.12)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) (iii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin plus folic acid</th>
<th>Placebo alone</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Cole 2007</td>
<td>30</td>
<td>333</td>
<td>14</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>19</td>
<td>217</td>
<td>30</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>550</td>
<td>366</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total events</td>
<td>49</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ² = 0.07; χ² = 1.82, df = 1 (p = 0.18); I² = 45%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 0.91 (p = 0.36)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Incidence of colorectal cancer

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin ± folic acid</th>
<th>Placebo ± folic acid</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Cole 2007</td>
<td>5</td>
<td>721</td>
<td>1</td>
</tr>
<tr>
<td>Logan 2008</td>
<td>3</td>
<td>434</td>
<td>7</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1155</td>
<td>782</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total events</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ² = 0.81; χ² = 1.97, df = 1 (p = 0.16); I² = 49%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 0.20 (p = 0.84)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3 (continued) Aspirin: meta-analyses (history of adenomas or colorectal cancer). (a) Recurrence of any adenoma: (i) aspirin ± folic acid versus placebo ± folic acid, (ii) aspirin alone versus placebo alone, (iii) aspirin + folic acid versus placebo alone; (b) Incidence of advanced adenoma: (i) aspirin ± folic acid versus placebo ± folic acid, (ii) aspirin alone versus placebo alone, (iii) aspirin + folic acid versus placebo alone; (c) Incidence of colorectal cancer: aspirin ± folic acid versus placebo ± folic acid.
TABLE 8 Aspirin: summary of results (history of adenomas or colorectal cancer)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence of any adenoma</td>
<td></td>
</tr>
<tr>
<td>Baron, Logan, Benamouzig, Sandler</td>
<td>Any aspirin (81–325 mg/day) (± folic acid 0.5–1 mg/day)</td>
<td>No aspirin (± folic acid)</td>
<td>Adenoma</td>
<td>4</td>
<td>1,3,3,3</td>
<td>480</td>
<td>1540</td>
<td>408</td>
<td>1152</td>
<td>0.79</td>
<td>0.68</td>
<td>0.92</td>
<td>34</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.04</td>
<td>0</td>
</tr>
<tr>
<td>Baron, Logan, Benamouzig, Sandler</td>
<td>Aspirin alone (81–325 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>4</td>
<td>1,3,3,3</td>
<td>266</td>
<td>926</td>
<td>242</td>
<td>736</td>
<td>0.80</td>
<td>0.65</td>
<td>0.98</td>
<td>47</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.03</td>
<td>4</td>
</tr>
<tr>
<td>Baron, Logan, Benamouzig, Sandler</td>
<td>Aspirin (81–325 mg/day) + folic acid (0.5–1 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td>3,3</td>
<td>184</td>
<td>550</td>
<td>126</td>
<td>366</td>
<td>0.90</td>
<td>0.75</td>
<td>1.08</td>
<td>0</td>
<td>-0.04</td>
<td>-0.10</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Incidence of advanced adenoma</td>
<td></td>
</tr>
<tr>
<td>Baron, Logan, Benamouzig</td>
<td>Any aspirin (81–325 mg/day) (± folic acid 0.5–1 mg/day)</td>
<td>No aspirin (± folic acid)</td>
<td>Advanced adenoma</td>
<td>3</td>
<td>1,3,3</td>
<td>115</td>
<td>1281</td>
<td>123</td>
<td>894</td>
<td>0.66</td>
<td>0.51</td>
<td>0.84</td>
<td>0</td>
<td>-0.05</td>
<td>-0.07</td>
<td>-0.02</td>
<td>0</td>
</tr>
<tr>
<td>Baron, Logan, Benamouzig</td>
<td>Aspirin alone (81–325 mg/day)</td>
<td>Placebo alone</td>
<td>Advanced adenoma</td>
<td>3</td>
<td>1,3,3</td>
<td>58</td>
<td>667</td>
<td>57</td>
<td>478</td>
<td>0.75</td>
<td>0.52</td>
<td>1.07</td>
<td>0</td>
<td>-0.03</td>
<td>-0.06</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Baron, Logan</td>
<td>Aspirin (81–325 mg/day) + folic acid (0.5–1 mg/day)</td>
<td>Placebo alone</td>
<td>Advanced adenoma</td>
<td>2</td>
<td>3,3</td>
<td>49</td>
<td>550</td>
<td>44</td>
<td>366</td>
<td>0.77</td>
<td>0.45</td>
<td>1.34</td>
<td>45</td>
<td>-0.03</td>
<td>-0.09</td>
<td>0.04</td>
<td>58</td>
</tr>
<tr>
<td>Incidence of colorectal cancer</td>
<td></td>
</tr>
<tr>
<td>Baron, Logan</td>
<td>Any aspirin (81–325 mg/day) (± folic acid 0.5–1 mg/day)</td>
<td>No aspirin (± Folic acid)</td>
<td>CRC</td>
<td>2</td>
<td>3,3</td>
<td>8</td>
<td>1155</td>
<td>8</td>
<td>782</td>
<td>0.84</td>
<td>0.15</td>
<td>4.74</td>
<td>49</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.01</td>
<td>72</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
As these studies were primarily designed to assess adenoma recurrence, analysis of cancer incidence is limited by the relatively short follow-up time (3 years) and the low number of CRC cases (n = 16 cases across both studies) and these results should therefore be treated with caution.

Compliance
Three of the four studies (Cole, Benamouzig and Sandler61,62,79) selected the most compliant participants during an aspirin run-in phase before randomisation, which may increase the observed compliance (and therefore effectiveness) relative to non-trial populations. Measures of compliance differed between studies, but in all three of the above studies, 87–90% of participants reported taking the majority of their study medications at the latest time point mentioned. In the Logan study (which did not report selecting for compliant participants),60 69–77% of participants in all study arms continued to take study medication (i.e. 23–31% discontinued medication), and during the time spent on medication, 76% reported taking the majority of their medications. Benamouzig reported no differences in compliance according to gender or to increased risk of CRC (e.g. because of family history, previous adenomas, adenoma number or size).62

Adverse effects
In terms of the studies of aspirin for adenoma prevention, event numbers were not sufficiently large to allow for a meaningful analysis of adverse event rates.60,61,79 Dyspepsia or gastric upset rates were similar between the groups in the Logan study.80 Included studies in the intermediate-risk population also reported data on bleeding events, gastrointestinal bleeding, peptic ulcers and cardiovascular adverse events, but event numbers were small.60,61,79

Larger studies and reviews of the adverse effects of aspirin are discussed in the section that relates to aspirin use in the low-risk population.

Ongoing studies
An ongoing multicentre study is assessing aspirin, calcium and vitamin D (as a combination treatment) versus placebo for prevention of adenomas in participants with a history of adenomas, and aims to enrol 1000 participants, with a treatment duration of 3 years and follow-up at 3 and 5 years. The dose of aspirin is lower than that in many chemoprevention studies, at 75 mg/day (www.clinicaltrials.gov, NCT00486512).

Excluded studies
No additional studies of aspirin in the intermediate-risk population were excluded on final examination of the full text.

Aspirin: low-risk population (general population or no increased risk of colorectal cancer)

Study and population characteristics
Four studies were identified that compared aspirin with a control group in participants without increased risk for CRC (Table 9).21,68,75,77,80 All included studies were multicentre RCTs. Two were large US population-based studies: the Women’s Health Study reported by Cook et al. (n = 39,876 female participants)68 and the Physician’s Health Study reported by Gann et al. (n = 22,071 male physicians).75 The two remaining studies were smaller trials: the United Kingdom Transient Ischaemic Attack Aspirin trial (UK-TIA) reported by Farrell et al. (n = 2435 participants from the UK and Ireland with a history of transient ischaemic attack (TIA) or minor ischaemic stroke)77 and the British Doctors’ Aspirin Trial reported by Peto et al. (n = 5139 male physicians from the UK).80 The included studies reported a mean age between 53 and 62 years, and three of the studies had a lower age limit of 40 or 45 years.

The two larger studies administered aspirin at a relatively low dose: 100 mg every other day for 10 years (Cook)68 and 325 mg every other day for 5 years (Gann).75 Both studies also administered antioxidants (beta-carotene and/or vitamin E) to 50% of the aspirin and placebo groups in a factorial design. These studies reported CRC outcomes after 10 years and 5 years of follow-up, respectively. Conversely, the two smaller studies gave aspirin at a higher dose of 300–500 mg/day for 1–7 years (Farrell)77 and 300–1500 mg/day for 5–6 years (Peto).80 These studies did not originally report CRC outcomes; however, data from the study participants were later reported by Flossmann and Rothwell91 in a long-term follow-up analysis over 23 years.

In addition, the effect of aspirin on adenomas and CRC in the low-risk population was analysed in a Cochrane systematic review by Asano and McLeod48 and in a systematic review for the US Preventive Services Task Force by Dube et al.76
TABLE 9 Aspirin: study characteristics (general population or low risk)

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook 2005 (Women’s Health Study)</td>
<td>General population (women only)</td>
<td>Aspirin 100 mg every other day, and/or vitamin E (600 IU every other day), and/or beta-carotene (50 mg every other day for 2 years, stopped early due to lack of effectiveness) Study groups with respect to aspirin and vitamin E were: – aspirin + vitamin E (n = 9966); aspirin only (n = 9968); vitamin E only (n = 9971); placebo only (n = 971)</td>
<td>Placebo (see groups on left)</td>
<td>10.1 years (aspirin and vitamin E) 2 years (beta-carotene)</td>
<td>10.1 years</td>
</tr>
<tr>
<td>Gann 1993 (Physicians’ Health Study, PHS)</td>
<td>General population (male physicians)</td>
<td>Aspirin 325 mg every other day (n = 11,037) (50% also received beta-carotene 50 mg every other day)</td>
<td>Placebo (n = 11,034) (50% also received beta-carotene 50 mg every other day)</td>
<td>5 years (for aspirin)</td>
<td>5 years (for aspirin)</td>
</tr>
<tr>
<td>Farrell 1991 (UK-TIA Aspirin Trial)</td>
<td>General population regarding CRC; history of TIA or minor ischaemic stroke Age > 40 eligible (mean 53, range not reported)</td>
<td>Aspirin 300 or 1200 mg/day (not analysed separately) (n = 1632)</td>
<td>Placebo (n = 817)</td>
<td>1 to 7 years</td>
<td>23 years</td>
</tr>
<tr>
<td>Peto 1988 (British Doctors Aspirin Trial)</td>
<td>General population (male physicians)</td>
<td>Aspirin 300 or 500 mg/day (not analysed separately) (n = 3429)</td>
<td>Open control (n = 1710)</td>
<td>5 to 6 years</td>
<td>23 years</td>
</tr>
</tbody>
</table>

TIA, transient ischaemic attack.

Quality assessment
Allocation concealment was considered adequate in three studies (multicentre studies with treatment allocated via a central pharmacy) and was unclear in one study (Peto). All studies were randomised; however, the generation of the randomisation sequence was not described in three studies (see Appendix 2, Table 51). Three studies reported adequate blinding while the Peto study was open-label with an untreated control group. All four studies included all randomised participants in the analyses.

Outcome data
Effectiveness results for aspirin in the general population are shown in Figure 4 and Table 10.

Effectiveness
Incidence of any adenoma
Of all studies assessing the use of aspirin within the general population (no increased risk for CRC), only one study (Gann; n = 22,071) reported adenoma incidence. The reduction in relative risk for adenoma incidence was not significant at the 5% level (RR 0.86, 95% CI 0.68 to 1.10, p = 0.24). No trend over time for adenoma incidence was noted over the 5 years. This outcome was measured as self-reported adenomas or cancer in situ, which contrasts with the studies in the intermediate-risk population in which adenomas were assessed via colonoscopy. The results should therefore be interpreted with caution.

Incidence of advanced adenoma
No studies of aspirin in the general population assessed advanced adenoma incidence.
6.1.1 Follow-up for 10 years or less: aspirin (any dose) ± antioxidants

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin</th>
<th>No aspirin</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook 2005</td>
<td>133</td>
<td>136</td>
<td>56.3%</td>
<td>0.98 (0.77 to 1.24)</td>
</tr>
<tr>
<td>Farrell 1991</td>
<td>18</td>
<td>8</td>
<td>5.6%</td>
<td>1.13 (0.49 to 2.58)</td>
</tr>
<tr>
<td>Gann 1993</td>
<td>63</td>
<td>55</td>
<td>27.5%</td>
<td>1.15 (0.80 to 1.64)</td>
</tr>
<tr>
<td>Peto 1988</td>
<td>28</td>
<td>17</td>
<td>10.6%</td>
<td>0.82 (0.45 to 1.50)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>36,032</td>
<td>33,503</td>
<td>100.0%</td>
<td>1.01 (0.84 to 1.21)</td>
</tr>
</tbody>
</table>

Total events 242 216
Heterogeneity: $\tau^2 = 0.00; \chi^2 = 1.06, df = 3 (p = 0.79); I^2 = 0$
Test for overall effect: $z = 0.10 (p = 0.92)$

6.1.2 Follow-up for 10 years or less: aspirin only (at least 300 mg/day)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin</th>
<th>No aspirin</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrell 1991</td>
<td>18</td>
<td>8</td>
<td>34.8%</td>
<td>1.13 (0.49 to 2.58)</td>
</tr>
<tr>
<td>Peto 1988</td>
<td>28</td>
<td>17</td>
<td>65.2%</td>
<td>0.82 (0.45 to 1.50)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>5061</td>
<td>2527</td>
<td>100.0%</td>
<td>0.92 (0.56 to 1.49)</td>
</tr>
</tbody>
</table>

Total events 46 25
Heterogeneity: $\tau^2 = 0.00; \chi^2 = 0.37, df = 1 (p = 0.55); I^2 = 0$
Test for overall effect: $z = 0.36 (p = 0.72)$

6.1.3 Follow-up for 20 years or more

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin</th>
<th>No aspirin</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrell 1991</td>
<td>37</td>
<td>23</td>
<td>28.7%</td>
<td>0.81 (0.48 to 1.35)</td>
</tr>
<tr>
<td>Peto 1988</td>
<td>92</td>
<td>64</td>
<td>71.3%</td>
<td>0.72 (0.52 to 0.98)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>5061</td>
<td>2527</td>
<td>100.0%</td>
<td>0.74 (0.57 to 0.97)</td>
</tr>
</tbody>
</table>

Total events 129 87
Heterogeneity: $\tau^2 = 0.00; \chi^2 = 0.14, df = 1 (p = 0.70); I^2 = 0$
Test for overall effect: $z = 2.21 (p = 0.03)$

6.1.4 Follow-up for years 10–19 only

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Aspirin</th>
<th>No aspirin</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrell 1991</td>
<td>15</td>
<td>15</td>
<td>26.6%</td>
<td>0.50 (0.25 to 1.02)</td>
</tr>
<tr>
<td>Peto 1988</td>
<td>50</td>
<td>38</td>
<td>73.4%</td>
<td>0.66 (0.43 to 1.00)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>5061</td>
<td>2527</td>
<td>100.0%</td>
<td>0.61 (0.43 to 0.88)</td>
</tr>
</tbody>
</table>

Total events 65 53
Heterogeneity: $\tau^2 = 0.00; \chi^2 = 0.41, df = 1 (p = 0.52); I^2 = 0$
Test for overall effect: $z = 2.67 (p = 0.008)$

FIGURE 4 Aspirin: meta-analyses (general population or low-risk population). Incidence of colorectal cancer: aspirin alone (or ± antioxidants) versus placebo.

Incidence of colorectal cancer

Available data on the incidence of CRC is described here according to duration of follow-up. The two larger studies of lower-dose aspirin (Cook and Gann) reported CRC incidence after 10 and 5 years of follow-up respectively. The two smaller studies of higher-dose aspirin (Farrell and Peto) were analysed in the report by Flossmann and Rothwell for CRC incidence over the first 10-year period since start of treatment, the second 10-year period (i.e. years 10–19), and the entire 23-year follow-up period.

The meta-analysis of data from all four studies comparing aspirin to no aspirin in the general population ($n = 69,535$) indicated no effect of aspirin on CRC incidence over a follow-up period of 10 years or less (RR 1.01, 95% CI 0.84 to 1.21, $p = 0.92$; RD 0.00, 95% CI 0.00 to 0.00, $p = 0.82$). The aspirin dose in these studies ranged from 100 mg every other day to 1200 mg/day. Data from the two smaller studies with a higher aspirin dose (Farrell and Peto; $n = 7588$; 300–1200 mg/day aspirin) was used to assess the effect of aspirin alone versus placebo, as the two larger studies also prescribed antioxidants to 50% of participants. The effect on CRC incidence over the first 10 years remained non-significant (RR 0.92, 95% CI 0.56 to 1.49, $p = 0.72$; RD 0.00, 95% CI –0.01 to 0.00, $p = 0.72$). There was no statistical heterogeneity in any of the above analyses ($I^2 = 0$).

However, when data from the two smaller studies (Farrell and Peto; $n = 7588$) with a higher aspirin dose (300–1200 mg/day) were analysed over a follow-up period of up to 23 years, there was a statistically significant 26% reduction in the relative risk of CRC incidence with aspirin versus placebo.
<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>P (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of colorectal cancer</td>
<td>Cook, Gann, Farrell, Peto</td>
<td>Any aspirin (100 mg every other day to 1500 mg/day) (± vitamin E ± beta-carotene)</td>
<td>No aspirin (± vitamin E ± beta-carotene)</td>
<td>4</td>
<td>5,10,10,12</td>
<td>242</td>
<td>36,032</td>
<td>216</td>
<td>33,503</td>
<td>1.01</td>
<td>0.84</td>
<td>1.21</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Farrell, Peto</td>
<td>Aspirin alone (300–1500 mg/day)</td>
<td>Placebo alone</td>
<td>CRC, ≤ 10 years FU</td>
<td>2</td>
<td>10,10</td>
<td>46</td>
<td>5061</td>
<td>25</td>
<td>2527</td>
<td>0.92</td>
<td>0.56</td>
<td>1.49</td>
<td>0</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Farrell, Peto</td>
<td>Aspirin alone (300–1500 mg/day)</td>
<td>Placebo alone</td>
<td>CRC, > 20 years FU</td>
<td>2</td>
<td>23,23</td>
<td>129</td>
<td>5061</td>
<td>87</td>
<td>2527</td>
<td>0.74</td>
<td>0.57</td>
<td>0.97</td>
<td>0</td>
<td>-0.01</td>
<td>-0.02</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Farrell, Peto</td>
<td>Aspirin alone (300–1500 mg/day)</td>
<td>Placebo alone</td>
<td>CRC, 10–19 years FU</td>
<td>2</td>
<td>Years 10–19 only</td>
<td>65</td>
<td>5061</td>
<td>53</td>
<td>2527</td>
<td>0.61</td>
<td>0.43</td>
<td>0.88</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

C, control; I, intervention; FU, follow-up; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
Assessment of clinical effectiveness

(\text{RR} 0.74, \text{95\% CI} 0.57 \text{ to} 0.97, \text{p} = 0.03), \text{and a 1\% reduction in absolute risk (RD} \text{–} 0.01, \text{95\% CI} \text{–} 0.02 \text{ to} 0.00, \text{p} = 0.04). \text{Interestingly, when this analysis was restricted to the second 10-year follow-up period only (i.e. years 10–19), there was an even greater 39\% reduction in relative risk (\text{RR} = 0.61, \text{95\% CI} 0.43 \text{ to} 0.88, \text{p} = 0.008). There was no statistical heterogeneity in these analyses (F^2 = 0\%).}

\textbf{Compliance}

Two of the four studies (Cook and Gann) selected the most compliant participants during an aspirin or placebo run-in phase before randomisation,68,75 which may increase the observed compliance (and therefore effectiveness) relative to non-trial populations. Measures of compliance differed between studies, but in all four studies 70–88\% of participants reported taking the majority of their study medications at the latest time point mentioned. In terms of changes in compliance over time, Cook reported that 76\% of participants were compliant after 5 years, decreasing to 67\% after 10 years.68 The non-blinded study by Peto reported that 81\% were compliant after 1 year but that a further 5\% discontinued study aspirin during each of the next 5 years, mainly as a result of gastrointestinal symptoms.80

\textbf{Adverse effects}

\textit{Adverse effect data from RCTs included in this review}

Dyspepsia or gastric upset was similar between the groups in the two larger studies (Cook and Gann).68,75 “The incidence of peptic ulcers was reported to be statistically significantly higher in the aspirin group than the control group in the studies by Cook (2.7\% vs 2.1\%; \text{p} \textless 0.001)68 and Peto (\text{p} \textless 0.05),80 and non-significantly higher in the study by Gann (1.5\% vs 1.3\%; \text{p} = 0.08).75

Gastrointestinal bleeding was statistically significantly higher in the aspirin group in one large study (Cook; 4.6\% vs 3.8\%; \text{p} \textless 0.001),68 and slightly higher in the aspirin group in the two smaller studies (one reported as not significant),77,80 whereas severe gastrointestinal bleeding was also reported to be statistically significantly higher in the aspirin group than (\text{p} = 0.02) within the study reported by Cook.68 Gann reported bleeding events overall to be statistically significantly higher in the aspirin group (\text{p} < 0.0001).75

No studies reported a significant between-group difference in overall incidence of stroke (Gann and Farrell)75,77 or in incidence of haemorrhagic stroke (Cook and Gann).68,75 However, fatal strokes and major/fatal haemorrhagic strokes75,77 were statistically significantly higher in the aspirin group in the studies by Farrell and Gann, although event numbers were small.

\textbf{Systematic reviews of adverse effects (and benefits) of aspirin}

There is a large existing literature regarding adverse effects (and benefits) associated with the use of aspirin. A previous systematic review of aspirin for chemoprevention of CRC prepared by Dube \textit{et al.}, for the US Preventive Services Task Force provides a summary of 12 good-quality systematic reviews assessing adverse effects and health benefits associated with aspirin use.76 All-cause mortality and mortality due to cardiovascular events were not statistically significantly affected when aspirin was given as primary prevention, yet both outcomes were reported to be statistically significantly lower for aspirin use in the secondary prevention of cardiovascular disease. Myocardial infarction was significantly reduced in both settings. Stroke incidence was not statistically significantly affected in the primary prevention setting, while in the secondary prevention of cardiovascular disease, aspirin appeared to significantly reduce the risk of ischaemic stroke but to significantly increase the risk of haemorrhagic stroke.76

In the review by Dube \textit{et al.}, aspirin was consistently associated with statistically significant increases in the risk of gastrointestinal bleeding (\text{RR} 1.6–2.5 in systematic reviews of RCTs) and in the risk of adverse gastrointestinal symptoms such as nausea and dyspepsia. A dose effect has been suggested for aspirin-induced gastrointestinal toxicity. In one systematic review, the risk of gastrointestinal bleeding was 2.5\% in patients taking more than 100\,mg aspirin per day, and 1.1\% in patients taking less than 100\,mg/day. In another, the risk of gastrointestinal bleeding was higher in patients taking 1600\,mg/day than in those taking 300\,mg/day.76

A recent meta-analysis of aspirin in the prevention of cardiovascular disease analysed six primary prevention trials (\textit{n} = 95,000 individuals at low cardiovascular risk) and 16 secondary prevention trials (\textit{n} = 17,000 individuals at high cardiovascular risk, i.e. history of myocardial infarction or stroke).115 In the primary prevention trials, the relative risk of serious vascular events per person-year was reduced by 12\% [incidence of 0.51\% per year in the aspirin groups and 0.57\% per year in
the control groups; RR 0.88 (95% CI 0.82 to 0.94); RD 0.07% per year). This was largely the result of a reduction of approximately one-fifth in the relative risk of non-fatal myocardial infarction. There was no significant difference in the risk of stroke or deaths from vascular causes. However, the risk of internal bleeding increased by approximately one-third in the primary prevention trials. In the secondary prevention trials, the relative risk of serious vascular events per person-year was reduced by 19% (incidence of 6.7% vs 8.2% per year; RR 0.81, 95% CI 0.75 to 0.87, RD 1.49% per year). There were reductions of approximately one-fifth in the relative risk of coronary events and total stroke, but a non-significant increase in risk of haemorrhagic stroke. Therefore, it was concluded that the benefits of aspirin outweighed the risk of harm in secondary prevention of cardiovascular disease, but not necessarily in primary prevention.

Ongoing studies

No ongoing studies of aspirin in the low-risk population were identified.

Excluded studies

No additional studies of aspirin in the low-risk population were excluded on final examination of the full text.

Summary of results for aspirin

Four studies of aspirin (81–325 mg/day) in individuals with a history of adenomas (three studies) or history of CRC (one study) demonstrated a statistically significant 21% reduction in the relative risk of adenoma recurrence. Incidence of advanced adenomas also showed a significant 34% reduction when comparing aspirin versus no aspirin (this was no longer significant when comparing aspirin alone with placebo alone). Aspirin combined with folic acid produced a non-statistically-significant reduction in adenomas and advanced adenomas. Of the four studies of aspirin in the general population, two large studies giving a relatively low dose of aspirin (100–325 mg every other day) showed no effect on CRC over a follow-up period of 5–12 years. Two smaller studies in which a higher dose of aspirin was administered (300–1500 mg/day) showed no effect on CRC over the first 10 years of follow-up, but demonstrated a significant 26% reduction in CRC incidence over the full 23-year follow-up period, and an even greater reduction when analysing years 10–19 only. In addition, aspirin (600 mg/day) was assessed in FAP patients in one study and in HNPCC patients in another study; both studies reported no statistically significant reduction in adenoma incidence. Aspirin is associated with an increased risk of upper gastrointestinal toxicity including nausea and dyspepsia, peptic ulcers and gastrointestinal bleeding, as demonstrated in the larger studies included here and in a review which collated systematic reviews of adverse effects of aspirin, with higher aspirin doses being associated with greater risk of toxicity. Previous studies, particularly in individuals at higher risk of cardiovascular disease, have indicated that aspirin may reduce the risk of myocardial infarction and ischaemic stroke but increase the risk of haemorrhagic stroke.

Results: non-aspirin NSAIDs

Non-aspirin NSAIDs: high-risk population (FAP or HNPCC)

Study and population characteristics

Two previous systematic reviews addressed the use of NSAIDs in high-risk groups: Asano and McLeod and Wang et al. Through these, and the electronic searches, 14 potentially relevant controlled trials were identified. Six controlled trials were included in the review (Table 1). Three were USA-based (Giardiello et al., 1993, Giardiello et al., 2002, and Steinbach et al., 2000), one was based in the UK (Nugent et al., 1993), one in France (Labayle et al., 1991) and one in Japan (Iwama et al., 2006). Three were single centre, three were multicentre trials. Each trial randomised between 10 and 77 participants.

One study evaluated the use of NSAIDs for the primary prevention of polyps in people who had the FAP genotype (Giardiello 2002). The remainder were secondary prevention studies in which at least some of the participants had undergone partial or total colectomy, and all currently had polyps. The mean age of subjects within the primary prevention study was 14.5 years (range 8–25). In the secondary prevention studies, the mean age of subjects ranged from 23 years (Giardiello 1993) to 45 years (Nugent). Only one study (Steinbach) identified a statistically significant difference in the age profile of subjects between treatment arms ($p = 0.04$).

One secondary prevention trial (Steinbach) compared celecoxib, in two doses (100 mg twice daily and 400 mg twice daily), with placebo. The
primary prevention study (Giardiello 2002)\(^{83}\) compared sulindac in two doses (75 mg or 150 mg twice daily) with placebo. Three placebo-controlled studies evaluated sulindac in the secondary prevention setting: Giardiello 1993 (150 mg twice daily);\(^ {91}\) Labayle (100 mg three times daily);\(^ {94}\) and Nugent (200 mg twice daily).\(^ {93}\) The final secondary prevention study compared tiracoxib (150 mg/day or 200 mg/day) against placebo (Iwama).\(^ {85}\) Participants were followed up with endoscopy at 4 years in the primary prevention study and at between 4 months (Labayle)\(^ {94}\) and 12 months (Giardiello 1993)\(^ {91}\) in the secondary prevention studies.

Quality assessment
Adequate concealment of the allocation sequence was described in only one study (Nugent);\(^ {93}\) in all other cases, the allocation method was unclear (see Appendix 2, Table 52). The method by which the allocation sequence was generated was unclear in all cases. Blinding was described as double blind (assumed to be participant and investigator) in all but one study, Nugent,\(^ {93}\) which described the use of placebo controls. The number of randomised participants excluded from the analysis was under 5% in three studies,\(^ {83,89,91}\) between 5 and 20% in two studies,\(^ {85,94}\) and unclear in the remainder.\(^ {93}\)

Outcome data
Effectiveness
Incidence of any adenoma (primary prevention only)
In a single study with 41 participants, after 4 years of follow-up, the difference between sulindac and placebo in the primary prevention of adenomas was not statistically significant at the 5% level (RR 0.78, 95% CI 0.41 to 1.47, \(p = 0.44\); Giardiello 2002)\(^ {83}\) (Table 12a).

Incidence of advanced adenoma (primary prevention only)
In the study evaluating sulindac for primary prevention, no participant had developed an advanced adenoma (defined as villous or tubulovillous adenomas) at the last follow-up (Giardiello 2002).\(^ {91}\)

Percentage change in the number of colorectal polyps
Three studies reported percentage change in the number of colorectal polyps: one used the

TABLE II Non-aspirin NSAIDs: study characteristics (FAP/HNPCC patients)

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary prevention (assessing adenoma incidence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giardiello 2002(^ {83})</td>
<td>FAP carriers but no current adenomas. Colorectal polyps assessed. Mean age 13–16 years (range 8–25)</td>
<td>Sulindac 150 or 300 mg/day (n = 21)</td>
<td>Placebo (n = 20)</td>
<td>4 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Secondary prevention (assessing reduction in adenoma burden)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwama 2006(^ {85})</td>
<td>FAP patients. Colorectal polyps assessed. Mean age 32–39 years</td>
<td>Tiracoxib 150 mg/day (n = 21) or 200 mg/day (n = 19)</td>
<td>Placebo (n = 21)</td>
<td>6 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Steinbach 2000(^ {99})</td>
<td>FAP patients. Not had entire colorectum removed, ≥ 5 adenomas of ≥ 2mm. Colorectal polyps assessed. Mean age 33–40 years</td>
<td>Celecoxib 200 mg/day (n = 32) or 800 mg/day (n = 30)</td>
<td>Placebo (n = 21)</td>
<td>6 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Giardiello 1993(^ {91})</td>
<td>FAP patients, intact colon or subtotal colectomy with ileorectal anastomosis. Colorectal polyps assessed. Mean age 33–40 years</td>
<td>Sulindac 300 mg/day (n = 11)</td>
<td>Placebo (n = 11)</td>
<td>9 months</td>
<td>9 and 12 months</td>
</tr>
<tr>
<td>Nugent 1993(^ {93})</td>
<td>FAP patients, prior colectomy and ileorectal anastomosis. Rectal polyps assessed. Mean age 45 years (range 27–70)</td>
<td>Sulindac 400 mg/day (n = 7)</td>
<td>Placebo (n = 7)</td>
<td>6 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Labayle 1991(^ {94})</td>
<td>FAP patients, prior colectomy and ileorectal anastomosis. Rectal polyps assessed. Mean age 37 years (range 24–52)</td>
<td>Sulindac 300 mg/day (n = 10; crossover design)</td>
<td>Placebo (n = 10; crossover design)</td>
<td>4 months (1 month washout)</td>
<td>4 months</td>
</tr>
</tbody>
</table>
TABLE 12a Non-aspirin NSAIDs: outcomes for studies in primary prevention of FAP

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardiello 2002<sup>23</sup> (FAP carriers but no current adenomas)</td>
<td>Sulindac 150mg/day or 300mg/day</td>
<td>Placebo</td>
<td>Adenoma</td>
<td>1</td>
<td>4 years</td>
<td>9</td>
<td>21</td>
<td>11</td>
<td>20</td>
<td>0.78</td>
<td>0.41</td>
<td>1.47</td>
<td>N/C</td>
<td>–0.12</td>
<td>–0.43</td>
<td>0.18</td>
<td>N/C</td>
</tr>
<tr>
<td>Giardiello 2002<sup>23</sup> As above</td>
<td>As above</td>
<td>Advanced adenoma</td>
<td>1</td>
<td>4 years</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>20</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
Table 12b: Non-aspirin NSAIDs: outcomes for studies in secondary prevention of FAP

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention and control (brief summary)</th>
<th>I: Mean</th>
<th>I:SD</th>
<th>I: N</th>
<th>C: Mean</th>
<th>C:SD</th>
<th>C: N</th>
<th>Mean Difference</th>
<th>UCI</th>
<th>LCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent change in number of colorectal polyps</td>
<td></td>
</tr>
<tr>
<td>Iwama 200685</td>
<td>Tiracoxib 150 mg/day vs placebo</td>
<td>1.0</td>
<td>9.0</td>
<td>20</td>
<td>6.0</td>
<td>17.0</td>
<td>19</td>
<td>−5.00</td>
<td>−13.60</td>
<td>3.60</td>
</tr>
<tr>
<td>Iwama 200685</td>
<td>Tiracoxib 200 mg/day vs placebo</td>
<td>0.0</td>
<td>7.0</td>
<td>18</td>
<td>6.0</td>
<td>17.0</td>
<td>19</td>
<td>−6.00</td>
<td>−14.30</td>
<td>2.30</td>
</tr>
<tr>
<td>Steinbach 200099</td>
<td>Celecoxib 200 mg/day vs placebo</td>
<td>−11.9</td>
<td>30.3</td>
<td>32</td>
<td>−4.5</td>
<td>16.4</td>
<td>15</td>
<td>−7.40</td>
<td>−20.78</td>
<td>5.98</td>
</tr>
<tr>
<td>Steinbach 200099</td>
<td>Celecoxib 800 mg/day vs placebo</td>
<td>−28.0</td>
<td>24.0</td>
<td>30</td>
<td>−4.5</td>
<td>16.4</td>
<td>15</td>
<td>−23.50</td>
<td>−35.44</td>
<td>−11.56</td>
</tr>
<tr>
<td>Giardiello 199391</td>
<td>Sulindac 300 mg/day vs placebo</td>
<td>−34.0</td>
<td>34.52</td>
<td>11</td>
<td>75.2</td>
<td>73.1</td>
<td>11</td>
<td>−109.20</td>
<td>−156.97</td>
<td>−61.43</td>
</tr>
<tr>
<td>Percentage change in colorectal polyp size</td>
<td></td>
</tr>
<tr>
<td>Giardiello 199391</td>
<td>Sulindac 300 mg/day vs placebo</td>
<td>−39.0</td>
<td>56.38</td>
<td>11</td>
<td>−1.0</td>
<td>26.53</td>
<td>11</td>
<td>−38.00</td>
<td>−74.82</td>
<td>−1.18</td>
</tr>
<tr>
<td>Iwama 200685</td>
<td>Tiracoxib 150 mg/day vs placebo</td>
<td>3.0</td>
<td>15.0</td>
<td>20</td>
<td>4.0</td>
<td>18.0</td>
<td>19</td>
<td>−1.00</td>
<td>−11.43</td>
<td>9.43</td>
</tr>
<tr>
<td>Iwama 200685</td>
<td>Tiracoxib 200 mg/day vs placebo</td>
<td>4.0</td>
<td>16.0</td>
<td>18</td>
<td>4.0</td>
<td>18.0</td>
<td>19</td>
<td>0.00</td>
<td>−10.96</td>
<td>10.96</td>
</tr>
<tr>
<td>Percentage change in colorectal polyp burden</td>
<td></td>
</tr>
<tr>
<td>Steinbach 200099</td>
<td>Celecoxib 200 mg/day vs placebo</td>
<td>−14.6</td>
<td>31.7</td>
<td>32</td>
<td>−4.9</td>
<td>17.3</td>
<td>15</td>
<td>−9.70</td>
<td>−23.75</td>
<td>4.35</td>
</tr>
<tr>
<td>Steinbach 200099</td>
<td>Celecoxib 800 mg/day vs placebo</td>
<td>−30.7</td>
<td>25.7</td>
<td>30</td>
<td>−4.9</td>
<td>17.3</td>
<td>15</td>
<td>−25.80</td>
<td>−38.50</td>
<td>−13.10</td>
</tr>
</tbody>
</table>

C, control; I, intervention; LCI, lower 95% confidence limit; UCI, upper 95% confidence limit.
circumference of the colorectum in the 20 cm from
the anal verge (Giardiello 1993);91 one selected
an area where five or more polyps existed in a
limited area of the colon or rectum (Iwama).85
the remaining study took a small area with a high
density of polyps (Steinbach).89 The percentage
change in number of colorectal polyps compared
with those receiving placebo was not statistically
significant at the 5\% level for the 100 mg
twice daily dose of celecoxib (mean difference
–7.40\%, 95\% CI −20.78 to 5.98, p = 0.28), but
was statistically significant for those receiving
the 150 mg twice daily dose of celecoxib (mean
difference –23.50\%, 95\% CI −35.44 to −11.56,
p = 0.0001; Steinbach).89 The percentage change
in number of colorectal polyps compared with
those receiving placebo was statistically significant
for those receiving the 150 mg twice daily dosage
of sulindac (mean difference −109.20\%, 95\% CI
−156.97 to −61.43, p < 0.00001; Giardiello 1993).91
The percentage change in number of colorectal
polyps compared with those receiving placebo was
not statistically significant for those receiving either
the 50 mg/day (mean difference −5.00\%, 95\% CI
−13.60 to 3.60, p = 0.28) or the 200 mg/day (mean
difference −6.00\%, 95\% CI −14.30 to 2.30, p = 0.16)
of tiracoxib (Iwama).85

\textbf{Percentage change in colorectal polyp size}
Two studies reported the percentage change in
colorectal polyp size: one reported measuring the
diameters of the first five polyps counted by the
endoscopist (Giardiello 1993);91 the other reported
measuring using a standardised endoscopic ruler
(Iwama).85 The percentage change in the size of
colorectal polyps compared with those receiving
placebo was statistically significant at the 5\%
level in those receiving sulindac (mean difference
−38.00\%, 95\% CI −74.82 to −1.18, p = 0.04;
Giardiello 1993).91 The percentage change in
the size of colorectal polyps compared with those
receiving placebo was not statistically significant
at the 5\% level in those receiving either the
150 mg/day dose (mean difference −1.00\% 95\% CI
−11.43 to 9.43, p = 0.85) or the 200 mg/day dose
(mean difference 0.00\% 95\% CI −10.96 to 10.96,
p = 1.00) of tiracoxib (Iwama).85

\textbf{Change in colorectal polyp burden}
Two studies reported change in colorectal polyp
burden: one used the sum of the polyp diameters
in a small area with a high density of polyps
(Steinbach);89 the other used a categorical system
(0; < 5; 5–10; 11–20; > 20 polyps) (Labayle).94
The change in colorectal polyp burden compared
with those receiving placebo was not statistically
significant at the 5\% level for the 100 mg twice
daily dose (mean difference −9.70, 95\% CI −23.75
to 4.35\%, p = 0.18), but was statistically significant
for those receiving the 400 mg twice daily dose of
celecoxib (mean difference −25.80, 95\% CI −38.50
to −13.10, p < 0.0001) (Steinbach).89 The other
study reported that the polyp burden was reduced
in all nine participants who received sulindac,
compared with two out of nine participants who
received placebo. The polyp burden increased in
five patients and was unchanged in two patients
receiving placebo.

\textbf{Incidence of colorectal cancer}
No studies reported incidence of CRC.

\textbf{Compliance}
In the primary prevention study (Giardiello
2002),83 compliance was assessed by means of
pill counts, review of participants’ diaries, and
telephone calls every other week. The mean
compliance rate was 86.9\%; all participants in the
sulindac group took more than 76\% of scheduled
doses.

In one study of secondary prevention by sulindac
(Giardiello 1993)91 compliance was assessed by
pill counts and weekly telephone contact; the
overall compliance rate was 85\%. Another sulindac
study reported that one participant was excluded
for non-compliance (not defined); general
compliance rates were not reported (Labayle).94
The other sulindac study (Nugent)93 did not
report compliance rates. In the celecoxib study
(Steinbach)99 compliance was assessed by means of
pill counts and review of patient-completed diaries.
Two patients were withdrawn for non-compliance
(not defined) and three further patients did not
complete the study (reasons: suicide, acute allergic
reaction and dyspepsia). In the tiracoxib study
(Iwama),85 compliance was monitored at each
clinical visit by counting the numbers of tablets not
taken and reviewing participant diary entries. At all
times, more than 90\% of the participants achieved
80\% compliance.

\textbf{Adverse effects}
In the primary prevention study (Giardiello
2002),83 one person was withdrawn as a result
of what was described as ‘mild’ drug-induced
leukopenia. The incidence of different categories of
adverse event did not differ significantly between
the sulindac group and the placebo group. The
only category of adverse event to affect more than
5\% of sulindac users was influenza-like illness
Assessment of clinical effectiveness

In one sulindac study (Giardiello 1993), the authors noted that no adverse events were attributed to sulindac, and reported no adverse events. The other sulindac studies (Nugent and Labayle) did not report adverse events. The differences between adverse events experienced in the treatment and control arms were reportedly not significant in the celecoxib trial (no summary statistics were reported); common adverse events included diarrhoea and abdominal pain (Steinbach). The tiracoxib study reported that symptoms of the common cold, diarrhoea, stomach-ache and decreased haemoglobin levels were more common in the research than the control arm (Iwama).

Excluded studies
One study was rejected because it was a dosage and administration study which did not have a non-NSAID comparator (Sheng et al. 2006). Two studies were rejected because they evaluated an intervention (rofecoxib) which has been withdrawn from the market on safety grounds. Three studies were excluded because they did not report any patient-important outcomes. One study was excluded because it was a dose-finding and administration study without an alternative intervention or placebo control group. One citation was identified through a published systematic review (Wang et al.); attempts to retrieve a copy of this trial report were unsuccessful and we believe that the original citation may be inaccurate.

Non-aspirin NSAIDs:
intermediate-risk population
(history of adenomas)

Study and population characteristics
Three included studies compared NSAIDs other than aspirin versus placebo in the intermediate-risk population: the Prevention of Colorectal Sporadic Adenomatous Polyps (PreSAP) study reported by Arber et al., the Adenoma Prevention with Celecoxib (APC) trial reported by Bertagnolli et al., and the study by Ladenheim et al. (Table 13). The Arber and Bertagnolli studies were multicentre studies, each randomising between 1561 and 2035 participants from several countries worldwide. The Ladenheim study enrolled 44 patients from three centres in the USA. [A study of rofecoxib and a study of sulindac plus difluoromethylornithine (DFMO) were excluded; see Excluded studies.]

The Arber and Bertagnolli trials enrolled participants with a history of adenomas, aged 30 years and over. The enrolled participants in the two studies had median ages of 59 and 61 years, a lower age range of 30–31 years, and an upper age range of 88–92 years. The Ladenheim study enrolled participants with colorectal polyps ≤ 1 cm in diameter; polyps were left in situ until

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arber 2006</td>
<td>History of adenomas</td>
<td>Celecoxib 400 mg/day (n = 933)</td>
<td>Placebo (n = 628)</td>
<td>2.5 years</td>
<td>1 and 3 years</td>
</tr>
<tr>
<td>(PreSAP Study)</td>
<td>Age ≥ 30 eligible (median 61, range 30–92)</td>
<td>Study drug discontinued slightly early because of possible increase in cardiovascular disease risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertagnolli 2006</td>
<td>History of adenomas</td>
<td>Celecoxib 400 mg/day (n = 685) or 800 mg/day (n = 671)</td>
<td>Placebo (n = 679)</td>
<td>3 years</td>
<td>1 and 3 years</td>
</tr>
<tr>
<td>(APC trial)</td>
<td>Age ≥ 30 eligible (median 59, range 31–88)</td>
<td>Study drug discontinued slightly early due to possible increase in cardiovascular disease risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladenheim 1995</td>
<td>History of colorectal polyps ≤ 1 cm in diameter (left in situ until end of study)</td>
<td>Sulindac 300 mg/day (n = 22)</td>
<td>Placebo (n = 22)</td>
<td>4 months</td>
<td>4 months</td>
</tr>
<tr>
<td></td>
<td>Age > 50 eligible (median 64, range not reported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the end of the study because the aim was to assess polyp regression rather than recurrence; eligible participants were aged over 50 years with a mean age of 64 years.90

The Arber and Bertagnolli studies both compared celecoxib to placebo (celecoxib dose 400 mg/day in Arber63 and either 400 mg/day or 800 mg/day in Bertagnolli64). The duration of treatment was 2.5 to 3 years. Participants were followed up using colonoscopy at 1 and 3 years in both studies, and the study authors used data from both time points to calculate the cumulative percentage of participants with adenoma recurrence. The Ladenheim study compared sulindac (300 mg/day) with placebo, with a treatment and follow-up duration of 4 months.90

In addition, the effect of NSAIDs on adenomas and CRC in the intermediate-risk population was analysed in a Cochrane systematic review by Asano and McLeod,48 a systematic review for the US Preventive Services’ Task Force by Rostom et al.88 and a meta-analysis by Abir et al.92

Quality assessment
Allocation concealment was considered adequate in the Arber and Bertagnolli studies63,64 (both were multicentre studies with treatment allocated via a central pharmacy) and was likely to be adequate in the Ladenheim study90 (because the investigators were blinded). All three studies were randomised although the generation of the randomisation sequence was not described (Appendix 2, Table 52). All three studies reported adequate blinding. In the Arber and Bertagnolli studies, 10–11% of randomised participants who did not have a follow-up colonoscopy to assess adenoma recurrence were excluded from the main analysis.63,64 In the Ladenheim study, all participants were included in the analyses.90

Outcome data
Effectiveness results for non-aspirin NSAIDs in the intermediate-risk population (history of adenomas) are shown in Figure 5 and Table 14. The Ladenheim study90 did not report the recurrence of adenoma or CRC (only adenoma regression) and was therefore excluded from meta-analyses.

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>log[Risk ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Risk ratio IV, random, 95% CI</th>
<th>Risk ratio IV, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arber 200663</td>
<td>−0.4462871</td>
<td>0.06812826</td>
<td>47.6%</td>
<td>0.64 (0.56 to 0.73)</td>
<td></td>
</tr>
<tr>
<td>Bertagnolli 200664</td>
<td>−0.40047757</td>
<td>0.06487509</td>
<td>52.4%</td>
<td>0.67 (0.59 to 0.76)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.66 (0.60 to 0.72)</td>
</tr>
<tr>
<td>Heterogeneity: t² = 0.00; χ² = 0.24, df = 1 (p = 0.63); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 8.99 (p < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>log[Risk ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Risk ratio IV, random, 95% CI</th>
<th>Risk ratio IV, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arber 200663</td>
<td>−0.71335</td>
<td>0.20169</td>
<td>40.7%</td>
<td>0.49 (0.33 to 0.73)</td>
<td></td>
</tr>
<tr>
<td>Bertagnolli 200664</td>
<td>−0.84397</td>
<td>0.166945</td>
<td>59.3%</td>
<td>0.43 (0.31 to 0.60)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.45 (0.35 to 0.58)</td>
</tr>
<tr>
<td>Heterogeneity: t² = 0.00; χ² = 0.25, df = 1 (p = 0.62); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: z = 6.15 (p < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5 Non-aspirin NSAIDs: meta-analyses (history of adenomas). (a) Recurrence of any adenoma: celecoxib versus placebo; (b) Incidence of advanced adenoma: celecoxib versus placebo.

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
TABLE 14 Non-aspirin NSAIDs: summary of results (history of adenomas)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence of any adenoma</td>
<td>Arber,63,84 Bertagnoli64,84,86,87</td>
<td>Celecoxib alone (400 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td>3</td>
<td>N/A 1453</td>
<td>N/A 1165</td>
<td>0.66</td>
<td>0.60</td>
<td>0.72</td>
<td>0</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of advanced adenoma</td>
<td>Arber,63,84 Bertagnoli64,84,86,87</td>
<td>Celecoxib alone (400 mg/day)</td>
<td>Placebo alone</td>
<td>Advanced adenoma</td>
<td>2</td>
<td>3</td>
<td>N/A 1453</td>
<td>N/A 1165</td>
<td>0.45</td>
<td>0.35</td>
<td>0.58</td>
<td>0</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of colorectal cancer</td>
<td>Arber63,84</td>
<td>Celecoxib alone (400 mg/day)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>3</td>
<td>6 933</td>
<td>1 628</td>
<td>4.03</td>
<td>0.48</td>
<td>33.4</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
Effectiveness

Recurrence of any adenoma

In the intermediate-risk population (history of adenomas or CRC), two studies (Arber and Bertagnolli; n = 2618 participants in analysis) compared celecoxib with placebo (Figure 5a). A meta-analysis demonstrated a statistically significant 34% reduction in the relative risk of recurrence of an adenoma of any type (RR 0.66, 95% CI 0.60 to 0.72, \(p < 0.00001 \)), with no statistical heterogeneity (\(I^2 = 0 \% \)). This was based on a meta-analysis of reported relative risks rather than on raw event data, because the study authors calculated the relative risk using data from both the 1-year and 3-year time points. Therefore, it was not possible to calculate an absolute risk difference.

Ladenheim\(^{88} \) reported the effect of sulindac compared with placebo on the regression of colorectal polyps ≤ 1 cm in diameter which were left in situ over the 4-month study duration. The number of participants whose polyps disappeared or regressed significantly was five of 22 (23%) in the sulindac group and three of 22 (14%) in the placebo group (risk ratio 1.67, 95% CI 0.45 to 6.14).

Incidence of advanced adenoma

Two studies (Arber and Bertagnolli; n = 2618 participants) also reported incidence rates for advanced adenomas (generally defined as adenoma ≥ 1 cm in diameter, villous or tubulovillous adenoma, adenoma with severe dysplasia, or CRC; Figure 5b). A meta-analysis demonstrated a statistically significant 55% reduction in the relative risk of advanced adenoma incidence (RR 0.45, 95% CI 0.35 to 0.58, \(p < 0.00001 \)), with no statistical heterogeneity (\(I^2 = 0 \% \)).

Incidence of colorectal cancer

One study (Arber)\(^{63} \) also reported incidence of CRC, with no significant difference in relative risk at the 5% level (RR 4.03, 95% CI 0.48 to 33.4). These data should be treated with caution because of the relatively short follow-up time in terms of detecting cancer (3 years) and the low number of CRC cases (six in the celecoxib arm and one in the placebo arm).

Compliance

Both studies selected the most compliant participants during a placebo run-in phase before randomisation, which may increase the compliance estimates relative to non-trial populations. In both studies, 68–79% of participants reported taking the majority of their study medications, with similar compliance between arms in each study.

Adverse effects

Adverse effect data from RCTs included in this review

In terms of the celecoxib studies included in this review, serious cardiovascular events were more frequent in the celecoxib groups than the placebo groups; this was significant in the Bertagnolli study\(^{64} \) whereas there was a non-significant increase in the Arber study.\(^{63} \) Both trials were stopped early because of this increased cardiovascular risk. Rates of gastrointestinal ulceration or haemorrhage were slightly, but not significantly, higher in the celecoxib groups in the Arber study,\(^{63} \) but Bertagnolli reported no difference between the groups.\(^{64} \) Renal or hypertensive disorders were significantly higher in the celecoxib group in the Arber study\(^{63} \) and in one of the two celecoxib groups in the Bertagnolli study.\(^{64} \) In the Ladenheim study of sulindac, four of 22 patients (18%) discontinued sulindac because of adverse events, three of which were thought to be related to sulindac (one anaemia, two moderate-to-severe heartburn) and one was thought to be unrelated (urosepsis); none of the 22 (0%) patients discontinued placebo.\(^{90} \)

Systematic reviews of adverse effects of NSAIDs

There is a large existing literature regarding adverse effects of NSAIDs. A previous systematic review of non-aspirin NSAIDs for chemoprevention of CRC prepared by Rostom et al. on behalf of the US Preventive Services Task Force provides a summary of systematic reviews assessing adverse effects associated with NSAID use.\(^{88} \) These data are summarised below.

All-cause and cardiovascular-specific mortality were not shown to be statistically significantly affected in the majority of reviews. Three reviews demonstrated an increased risk of serious cardiovascular events associated with COX-2 inhibitors; this risk was greatest in patients at higher cardiovascular risk. Six reviews demonstrated statistically significant increases in risk of acute myocardial infarction with COX-2 inhibitors. Five reviews demonstrated no statistically significant increase in risk of stroke with COX-2 inhibitors. Two COX-2 inhibitors, rofecoxib and valdecoxib, were recently withdrawn from use because of concerns about their cardiovascular toxicity. The risks of hypertension and renal toxicity may also be increased with COX-2 inhibitors.\(^{88} \)

In terms of NSAIDs as a whole, the systematic reviews summarised by Rostom et al.\(^{88} \) reported increased risk of peptic ulceration...
and gastrointestinal haemorrhage with non-aspirin NSAID use. The increase in absolute risk of complicated peptic ulcers (perforation, obstruction or bleeding) was 0.48% across RCTs and 0.22% across cohort studies, with a higher risk in individuals who were older or had a history of peptic ulcers or cardiovascular disease. The risk for upper gastrointestinal toxicity as a result of NSAID use can be reduced through use of a gastroprotective agent such as misoprostol. Twelve systematic reviews assessed gastrointestinal adverse effects of COX-2 inhibitors specifically (as opposed to all NSAIDs). Several of these reviews demonstrated no statistically significant difference in gastrointestinal bleeding or ulceration with COX-2 inhibitors compared with placebo. One review demonstrated a statistically significant increase in risk of ulcers in patients receiving celecoxib at a dose of 400 mg/day, but not at a dose of 200 mg/day. A trial of rofecoxib reported an increase in risk of peptic ulceration.88

Ongoing studies
An ongoing phase 3 RCT is assessing celecoxib versus placebo for prevention of adenoma incidence in participants with a history of resected stage 1 colon cancer (adenocarcinoma), and aims to enrol 1200 participants, with a treatment duration of 3 years; follow-up duration not specified (www.cancer.gov/clinicaltrials/NSABP-P-3; www.clinicaltrials.gov NCT00087256).

Excluded studies
A study by Meyskens et al. assessed sulindac plus DFMO (or eflornithine) versus placebo in participants with a history of adenomas.154 DFMO inhibits synthesis of polyamines which are involved in cell proliferation, inhibits colon carcinogenesis in animal models, and may act additively with sulindac. This study was excluded because the availability of oral DFMO is restricted (DFMO is available as a cream for hair removal).

A study by Baron et al. of rofecoxib versus placebo in participants with a history of adenomas was excluded because its licence has been revoked and it has been withdrawn from the market.15

Non-aspirin NSAIDs: low-risk population (general population or no increased risk of colorectal cancer)
No relevant published or ongoing studies were identified investigating NSAID use in populations without increased risk of CRC.

Summary of results for non-aspirin NSAIDs
In terms of non-aspirin NSAIDs, two studies of celecoxib (400 mg/day) in individuals with a history of adenomas demonstrated a statistically significant 34% reduction in the relative risk of adenoma recurrence and a statistically significant 55% reduction in the relative risk of advanced adenoma incidence. There were insufficient data to analyse the effect on CRC incidence. A small study of sulindac in patients with the FAP genotype showed a non-statistically significant reduction in adenoma incidence, whereas five studies of NSAIDs (sulindac, celecoxib or tiracoxib) in FAP patients with existing adenomas demonstrated reductions in polyp number and size, some statistically significant. The two celecoxib trials in individuals with a history of adenomas were stopped early because of an increased risk of serious cardiovascular events, which was statistically significant in one of the studies. A review that collated systematic reviews of adverse effects also demonstrated increased risk of serious cardiovascular events with COX-2 inhibitors, the risk being greatest in patients with pre-existing cardiovascular risk factors. Two COX-2 inhibitors, rofecoxib and valdecoxib, were recently withdrawn from use because of concerns about their cardiovascular toxicity; a study of rofecoxib was therefore excluded from this review. COX-2 inhibitors may also increase the risks of hypertension and renal toxicity. NSAIDs can also cause upper gastrointestinal toxicity, although the risk is lower for COX-2 inhibitors than for some other types of NSAID.

Results: folic acid
Folic acid: high-risk population (FAP or HNPCC)
No studies were identified that investigated the use of folic acid as a chemopreventive agent within high-risk populations for CRC (i.e. FAP and HNPCC).

Folic acid: intermediate-risk population (history of adenomas)

Study and population characteristics
Three studies that compared folic acid with a control group were identified (Table 15). The study by Logan et al. was UK-based, whereas the other two were USA-based. Two were multicentre studies randomising 945 participants (Logan) and
and 1021 participants (Cole et al.).61,73,74 The third trial was a single-centre study that randomised 137 participants (Jaszewski et al.).108

In all three study populations, subjects were eligible if they had a history of adenomas. The mean age reported ranged from 56 to 62 years across all study groups. Lower and upper age ranges were not reported in any of the trials.

Jaszewski conducted a comparison of folic acid versus placebo.108 The other two trials conducted 2 × 2 or 3 × 2 factorial comparisons using aspirin as a co-intervention or comparator. Folic acid doses in the three studies were 0.5 mg/day (Logan),60 1 mg/day (Cole)61 and 5 mg/day (Jaszewski).108 In the Jaszewski study,108 folic acid at 5 mg/day was compared with placebo. The interventions in the Logan study were folic acid alone (0.5 mg/day) and folic acid plus aspirin (300 mg/day); controls were aspirin alone or placebo.60 Interventions in the Cole study were folic acid alone (1 mg/day) and folic acid plus aspirin (85 mg/day or 325 mg/day); controls were aspirin alone or placebo.61 The duration of treatment in all three trials was 3 years. The follow-up of participants in all three trials was 3 years.

Quality assessment

Allocation concealment was adequate in two studies (Cole and Logan)60,61 and unclear in the third (Jaszewski)108 (see Appendix 2, Table 53). In terms of randomisation, two studies used a central, computer-generated randomisation sequence (Logan and Cole).60,61 stratified block randomisation was used in the third study (Jaszewski).108 All three studies reported blinding of patients and carers; one study also reported blinding of analysts.60 The methods of blinding were adequate in two studies, and unclear in the Jaszewski study. All studies experienced attrition. Attrition rates were 10% or less in two studies (Cole and Logan),60,61 and more than 20% in the Jaszewski study.108 Intention-to-treat analyses were performed within all three studies. Power calculations were performed in two studies (Cole and Logan); however, the required sample size was not achieved for the designated outcome within the Logan study.60 The Jaszewski study108 did not involve a power calculation and, in this study, the numbers of patients in each arm were not reported consistently. All within-study groups appear to be comparable at baseline.

Outcome data

Effectiveness

Effectiveness results for folic acid in the intermediate risk population (history of adenomas) are shown in Figure 6 and Table 16.

The Jaszewski study did not report event data (only mean numbers of adenomas) and was therefore excluded from meta-analysis.108 The Cole study reported follow-up data for two intervals (years 1–3 and years 4–8). Only the results from the first interval (3 years follow-up) are presented here.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaszewski 2008<sup>60</sup></td>
<td>History of adenomas, but not FAP or HNPCC Age 18–80 years eligible</td>
<td>Folic acid 5 mg/day (n = 80)</td>
<td>Placebo 5 mg/day (n = 97)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td>Logan 2008<sup>60</sup> (ukCAP trial: United Kingdom Colorectal Adenoma Prevention)</td>
<td>History of adenomas, but not FAP or HNPCC Age <75 years eligible (mean 58, range 28–75)</td>
<td>Folic acid 0.5 mg/day (n = 234)</td>
<td>Placebo only (n = 233)</td>
<td>Aspirin 300 mg/day (n = 236)</td>
<td>3 years</td>
</tr>
<tr>
<td>Cole 2007/Baron 2003<sup>61,73,74</sup> (Aspirin/Folate Polyp Prevention Study)</td>
<td>History of adenomas, but not FAP or HNPCC Age 21–80 years eligible (mean 57 or 58 in all groups)</td>
<td>Folic acid 1 mg/day only (n = 170)</td>
<td>Placebo only (n = 169)</td>
<td>Aspirin 81 mg/day (n = 169)</td>
<td>Aspirin 325 mg/day (n = 167)</td>
</tr>
</tbody>
</table>

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
Assessment of clinical effectiveness

Recurrence of any adenoma (i)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid ± aspirin</th>
<th>Placebo ± aspirin</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>Events</td>
</tr>
<tr>
<td>Cole 2007⁶⁰</td>
<td>221</td>
<td>501</td>
<td>206</td>
<td>486</td>
</tr>
<tr>
<td>Logan 2008⁶⁰⁵⁶</td>
<td>115</td>
<td>432</td>
<td>105</td>
<td>421</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>933</td>
<td>907</td>
<td>100.0%</td>
<td>1.05 (0.93 to 1.18)</td>
</tr>
<tr>
<td>Total events</td>
<td>336</td>
<td>311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ²</td>
<td>0.00; χ²</td>
<td>0.03, df</td>
<td>1 (p = 0.85); I²</td>
<td>0%</td>
</tr>
<tr>
<td>Test for overall effect: z</td>
<td>0.76 (p = 0.45)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) (ii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid plus aspirin</th>
<th>Placebo alone</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>Events</td>
</tr>
<tr>
<td>Cole 2007⁶⁰</td>
<td>87</td>
<td>168</td>
<td>70</td>
<td>162</td>
</tr>
<tr>
<td>Logan 2008⁶⁰⁵⁶</td>
<td>65</td>
<td>215</td>
<td>56</td>
<td>204</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>383</td>
<td>366</td>
<td>100.0%</td>
<td>1.16 (0.97 to 1.39)</td>
</tr>
<tr>
<td>Total events</td>
<td>152</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ²</td>
<td>0.00; χ²</td>
<td>0.20, df</td>
<td>1 (p = 0.66); I²</td>
<td>0%</td>
</tr>
<tr>
<td>Test for overall effect: z</td>
<td>1.61 (p = 0.11)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) (iii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid plus aspirin</th>
<th>Placebo alone</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>Events</td>
</tr>
<tr>
<td>Cole 2007⁶⁰</td>
<td>134</td>
<td>333</td>
<td>70</td>
<td>162</td>
</tr>
<tr>
<td>Logan 2008⁶⁰⁵⁶</td>
<td>50</td>
<td>217</td>
<td>56</td>
<td>204</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>550</td>
<td>366</td>
<td>100.0%</td>
<td>0.90 (0.75 to 1.08)</td>
</tr>
<tr>
<td>Total events</td>
<td>184</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: τ²</td>
<td>0.00; χ²</td>
<td>0.27, df</td>
<td>1 (p = 0.60); I²</td>
<td>0%</td>
</tr>
<tr>
<td>Test for overall effect: z</td>
<td>1.11 (p = 0.27)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 6 Folic acid: meta-analyses (history of adenomas). (a) Recurrence of any adenoma: (i) folic acid ± aspirin versus placebo ± aspirin, (ii) folic acid alone versus placebo alone, (iii) folic acid + aspirin versus placebo alone; (b) Incidence of advanced adenoma: (i) folic acid ± aspirin versus placebo ± aspirin, (ii) folic acid alone versus placebo alone, (iii) folic acid + aspirin versus placebo alone; (c) Incidence of colorectal cancer: folic acid ± aspirin versus placebo ± aspirin.

because only 607 of 1021 randomised patients (59%) agreed to be followed up beyond 3 years, and only 501 patients (49%) agreed to continue taking study medications beyond 3 years.

Recurrence of any adenoma

Two studies (Logan and Cole; 1840 participants in analysis) compared folic acid (with or without aspirin) versus no folic acid (Figure 6a). The relative risk and absolute risk difference for developing an adenoma of any type were not statistically significant at the 5% level (meta-analysed RR 1.05, 95% CI 0.93 to 1.18, p = 0.45; RD 0.02, 95% CI –0.03 to 0.06, p = 0.43), and there was no statistical heterogeneity (I² = 0%).

Two studies (Logan and Cole; 749 participants in analysis) compared folic acid alone versus placebo (Figure 6aii). The relative risk and absolute risk difference for developing an adenoma of any type...
(b) Incidence of advanced adenoma (i)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid ± aspirin</th>
<th>Placebo ± aspirin</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Cole 2007<sup>11</sup></td>
<td>57</td>
<td>501</td>
<td>42</td>
<td>486</td>
</tr>
<tr>
<td>Logan 2008<sup>16</sup></td>
<td>52</td>
<td>432</td>
<td>52</td>
<td>421</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>933</td>
<td>907</td>
<td>100.0%</td>
<td>1.13 (0.84 to 1.51)</td>
</tr>
</tbody>
</table>

Total events: 109

Heterogeneity: $\tau^2 = 0.01; \chi^2 = 1.27, df = 1 (p = 0.26); I^2 = 21$

Test for overall effect: $z = 0.79 (p = 0.43)$

(b) (ii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid</th>
<th>Placebo</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Cole 2007<sup>11</sup></td>
<td>27</td>
<td>168</td>
<td>14</td>
<td>162</td>
</tr>
<tr>
<td>Logan 2008<sup>16</sup></td>
<td>33</td>
<td>215</td>
<td>30</td>
<td>204</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>383</td>
<td>366</td>
<td>100.0%</td>
<td>1.34 (0.77 to 2.36)</td>
</tr>
</tbody>
</table>

Total events: 60

Heterogeneity: $\tau^2 = 0.09; \chi^2 = 2.22, df = 1 (p = 0.14); I^2 = 55$

Test for overall effect: $z = 1.03 (p = 0.30)$

(b) (iii)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid + aspirin</th>
<th>Placebo alone</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Cole 2007<sup>11</sup></td>
<td>30</td>
<td>333</td>
<td>14</td>
<td>162</td>
</tr>
<tr>
<td>Logan 2008<sup>16</sup></td>
<td>19</td>
<td>217</td>
<td>30</td>
<td>204</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>550</td>
<td>366</td>
<td>100.0%</td>
<td>0.77 (0.45 to 1.34)</td>
</tr>
</tbody>
</table>

Total events: 49

Heterogeneity: $\tau^2 = 0.07; \chi^2 = 1.82, df = 1 (p = 0.18); I^2 = 45$

Test for overall effect: $z = 0.91 (p = 0.36)$

(c) Incidence of colorectal cancer

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Folic acid ± aspirin</th>
<th>Placebo ± aspirin</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Cole 2007<sup>11</sup></td>
<td>3</td>
<td>516</td>
<td>4</td>
<td>505</td>
</tr>
<tr>
<td>Logan 2008<sup>16</sup></td>
<td>5</td>
<td>432</td>
<td>5</td>
<td>421</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>948</td>
<td>926</td>
<td>100.0%</td>
<td>0.87 (0.34 to 2.25)</td>
</tr>
</tbody>
</table>

Total events: 8

Heterogeneity: $\tau^2 = 0.00; \chi^2 = 0.08, df = 1 (p = 0.77); I^2 = 0$

Test for overall effect: $z = 0.29 (p = 0.77)$

FIGURE 6 (continued) Folic acid: meta-analyses (history of adenomas). (a) Recurrence of any adenoma: (i) folic acid ± aspirin versus placebo ± aspirin, (ii) folic acid alone versus placebo alone, (iii) folic acid + aspirin versus placebo alone; (b) Incidence of advanced adenoma: (i) folic acid ± aspirin versus placebo ± aspirin, (ii) folic acid alone versus placebo alone, (iii) folic acid + aspirin versus placebo alone; (c) Incidence of colorectal cancer: folic acid ± aspirin versus placebo ± aspirin.

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
TABLE 16 Folic acid: summary of results (history of adenomas)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence of any adenoma</td>
<td></td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Any folic acid (0.5–1 mg/day) (± aspirin 81–325 mg/day)</td>
<td>No folic acid (± aspirin)</td>
<td>Adenoma (two high-quality studies)</td>
<td>2</td>
<td>3</td>
<td>336</td>
<td>933</td>
<td>311</td>
<td>907</td>
<td>1.05</td>
<td>0.93</td>
<td>1.18</td>
<td>0</td>
<td>0.02</td>
<td>−0.03</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Folic acid alone (0.5–1 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma (two high-quality studies)</td>
<td>2</td>
<td>3</td>
<td>152</td>
<td>383</td>
<td>126</td>
<td>366</td>
<td>1.16</td>
<td>0.97</td>
<td>1.39</td>
<td>0</td>
<td>0.05</td>
<td>−0.02</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Folic acid (0.5–1 mg/day) + aspirin (81–325 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td>3</td>
<td>184</td>
<td>550</td>
<td>126</td>
<td>366</td>
<td>0.90</td>
<td>0.75</td>
<td>1.08</td>
<td>0</td>
<td>−0.04</td>
<td>−0.10</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Incidence of advanced adenoma</td>
<td></td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Any folic acid (0.5–1 mg/day) (± aspirin 81–325 mg/day)</td>
<td>No folic acid (± aspirin)</td>
<td>Advanced adenoma</td>
<td>2</td>
<td>3</td>
<td>109</td>
<td>933</td>
<td>94</td>
<td>907</td>
<td>1.13</td>
<td>0.84</td>
<td>1.51</td>
<td>21</td>
<td>0.01</td>
<td>−0.02</td>
<td>0.04</td>
<td>8</td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Folic acid alone (0.5–1 mg/day)</td>
<td>Placebo alone</td>
<td>Advanced adenoma</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>383</td>
<td>44</td>
<td>366</td>
<td>1.34</td>
<td>0.77</td>
<td>2.36</td>
<td>55</td>
<td>0.04</td>
<td>−0.03</td>
<td>0.11</td>
<td>46</td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Folic acid (0.5–1 mg/day) + aspirin (81–325 mg/day)</td>
<td>Placebo alone</td>
<td>Advanced adenoma</td>
<td>2</td>
<td>3</td>
<td>49</td>
<td>550</td>
<td>44</td>
<td>366</td>
<td>0.77</td>
<td>0.45</td>
<td>1.34</td>
<td>45</td>
<td>−0.03</td>
<td>−0.09</td>
<td>0.04</td>
<td>58</td>
</tr>
<tr>
<td>Incidence of colorectal cancer</td>
<td></td>
</tr>
<tr>
<td>Cole,61,73,74 Logan65</td>
<td>Any folic acid (0.5–1 mg/day) (± aspirin 81–325 mg/day)</td>
<td>No folic acid (± aspirin)</td>
<td>CRC</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>948</td>
<td>9</td>
<td>926</td>
<td>0.87</td>
<td>0.34</td>
<td>2.25</td>
<td>0</td>
<td>0.00</td>
<td>−0.01</td>
<td>0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
were not statistically significant at the 5% level, as demonstrated in a meta-analysis (RR 1.16, 95% CI 0.97 to 1.39, \(p = 0.11 \); RD 0.05, 95% CI -0.02 to 0.12, \(p = 0.14 \)), and there was no statistical heterogeneity (\(I^2 = 0\% \)).

Two studies (Logan and Cole; 916 participants in analysis) compared folic acid plus aspirin versus placebo (Figure 6a(ii)).\(^{60,61} \) The relative and absolute risk difference for developing an adenoma of any type were not statistically significant at the 5% level, as demonstrated in a meta-analysis (RR 0.90, 95% CI 0.75 to 1.08, \(p = 0.27 \); RD -0.04, 95% CI -0.10 to 0.02, \(p = 0.23 \)), and there was no statistical heterogeneity (\(I^2 = 0\% \)).

A third, lower-quality, smaller study (Jaszewski; 94 participants in analysis) reported that the mean number of recurrent adenomas was significantly higher in the placebo group (OR 2.77, 95% CI 0.06 to 0.84, \(p = 0.025 \)).\(^{108} \)

Incidence of advanced adenoma

Two studies (Logan and Cole; 1840 participants in analysis) compared folic acid (with or without aspirin) versus no folic acid (Figure 6b(i)).\(^{60,61} \) The relative and absolute risk difference between groups for developing an advanced adenoma were not statistically significant at the 5% level (meta-analysed RR 1.13, 95% CI 0.84 to 1.51, \(p = 0.43 \); RD 0.01, 95% CI -0.02 to 0.04, \(p = 0.034 \)), and these suggested moderate and low levels of statistical heterogeneity (\(I^2 = 21\% \) and \(8\% \) respectively).

Two studies (Logan and Cole; 749 participants in analysis) compared folic acid alone versus placebo (Figure 6b(ii)).\(^{60,61} \) The relative and absolute risk differences between groups for developing an advanced adenoma were not statistically significant at the 5% level (meta-analysed RR 1.34, 95% CI 0.77 to 2.36, \(p = 0.30 \); RD 0.04, 95% CI -0.03 to 0.11, \(p = 0.24 \)). These were subject to high (\(I^2 = 55\% \)) and moderate (\(I^2 = 46\% \)) levels of statistical heterogeneity respectively.

Two studies (Logan and Cole; 916 participants included in the analysis) compared folic acid plus aspirin versus placebo (Figure 6b(iii)).\(^{60,61} \) The relative and absolute risk differences between groups for developing an advanced adenoma were not statistically significant at the 5% level (meta-analysed RR 0.77, 95% CI 0.45 to 1.34, \(p = 0.36 \); RD -0.03, 95% CI -0.09 to 0.04, \(p = 0.41 \)). These analyses suggested moderate (\(I^2 = 45\% \)) and high (\(I^2 = 58\% \)) levels of statistical heterogeneity respectively.

Incidence of colorectal cancer

Two studies (Logan and Cole; 1874 participants included in the analysis) compared folic acid with or without aspirin versus controls without folic acid (Figure 6c).\(^{60,61} \) The differences in the relative and absolute risks of developing CRC were not statistically significant at the 5% level (meta-analysed RR 0.87, 95% CI 0.34 to 2.25, \(p = 0.77 \); RD 0.00, 95% CI -0.01 to 0.01, \(p = 0.72 \)), and there was no statistical heterogeneity (\(I^2 = 0\% \)). These results should be interpreted with caution because of the relatively short follow-up duration and the low event rate (total of eight cases in the folic acid arms and nine cases in the control arms).

Compliance

Two studies (Logan and Cole) reported a compliance rate of between 87 and 90%.\(^{60,61} \) The Jaszewski study required at least 90% of pills to be taken, but results were not reported for the trial period.\(^{108} \) Compliance was measured by periodic self-report in two studies\(^{60,61} \) and pill counting in two studies.\(^{60,61,108} \)

Adverse effects

Two studies (Logan and Cole) reported on serious adverse events.\(^{60,61} \) Neither study reported any significant differences between folate and non-folate groups in terms of death, bleeding, stroke, myocardial infarction, vascular events or dyspepsia. The Logan study reported no difference between groups for non-CRC but the Cole study did report a significant difference: incidence of non-CRC was higher in the folic acid (54/516) than the placebo group (32/505), \(p = 0.02 \). However, authors reported that this was a result of the high baseline rate of prostate cancer in the folic acid group (24/516 vs 9/505, \(p = 0.01 \)).

Ongoing studies

Two ongoing studies are assessing folic acid for prevention of adenomas in participants with a history of adenomas (www.clinicaltrials.gov, NCT00512850 and NCT00002650). One aims to enrol 1000 participants and has a planned follow-up duration of 4 years (NCT00512850). Another small study (80 participants planned) aims to assess the effect of high-dose folic acid (dose not specified), with treatment and follow-up durations of 1 year (NCT00002650).
Excluded studies
No additional studies of folic acid in the intermediate risk population were excluded on final examination of the full text.

Folic acid: low-risk population (general population or no increased risk of colorectal cancer)

Study and population characteristics
Three studies were identified that compared a folic acid intervention with a control group (Table 17). None of the studies were based in the UK; one study (Lonn et al.) was international including Canada, USA, Brazil, Slovakia and Western Europe;106,107 one study (Zhang et al.) was USA-based;105 and one study (Zhu et al.) was based in China.109 All three were multicentre studies; the Zhu study randomised 216 patients,109,110 whereas the studies reported by Zhang105 and Lonn106,107 were larger, randomising 5442 and 5522 participants, respectively.

Within all studies, the populations had no history of CRC or any risk greater than that of the general population. In the Lonn study, the population was composed of individuals with a history of vascular disease, diabetes or risk of atherosclerosis;106 in the Zhang study, postmenopausal women aged 40 or over with a history of cardiovascular disease or at least three coronary risk factors;105 and in the Zhu study, the population had atrophic gastritis.109 The mean age reported in the three studies ranged from 55 to 69 years. The lower and upper age ranges were not reported.

All three trials included comparisons with placebo. In the two larger studies (Zhang and Lonn), folic acid (2.5 mg/day) plus vitamin B12 (50 mg/ day), and vitamin B12 (1 mg/day) was compared with placebo.105,106 In the Zhu study, folic acid (20 mg/day) for 1 year, then 20 mg twice weekly for 1 year, were compared with placebo.109 The duration of treatment ranged from 2 to 5 years. The follow-up of participants ranged from 5 to 7 years.

TABLE 17 Folic acid: study characteristics (general population or low-risk population)

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang 2008 (Women’s Antioxidant and Folic Acid Cardiovascular Study: WAFACS)105</td>
<td>Women with or at high risk of cardiovascular disease Age > 40 years (mean 63 years)</td>
<td>Folic acid 2.5 mg/day, vitamin B12 50 mg/day, vitamin B12 1 mg/day (n = 2721)</td>
<td>Placebo (n = 2721)</td>
<td>7 years</td>
<td>7 years</td>
</tr>
<tr>
<td>Lonn 2006 (HOPE-TOO study)106,107</td>
<td>History of vascular disease or diabetes or risk of atherosclerosis Age 55 years or older (mean 69 years)</td>
<td>Folic acid 2.5 mg/day, vitamin B12 50 mg/day, vitamin B12 1 mg/day (n = 2758)</td>
<td>Placebo (n = 2764)</td>
<td>5 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Zhu 2003109,110</td>
<td>Patients with atrophic gastritis Age 28–77 years eligible (mean 55–57 years in all groups)</td>
<td>Folic acid 20 mg/day for 1 year then 20 mg twice weekly for 1 year; vitamin B12 1 mg/month for 1 year then 1 mg every 3 months for 1 year (n = 44)</td>
<td>Placebo (n = 54)</td>
<td>2 years</td>
<td>6 years</td>
</tr>
</tbody>
</table>

Beta-carotene (natural), 30 mg/day for 1 year then 30 mg twice/week for 1 year (n = 61) Beta-carotene (synthetic), doses as above (n = 57) WACS, Women’s Antioxidant Cardiovascular Study.
Quality assessment

Allocation concealment was considered adequate in one study (Lonn)106,107 and unclear in the other two studies (see Appendix 2, Table 53). In terms of randomisation, Lonn used a central, computer-generated randomisation sequence; the method of randomisation was unclear in the other two studies. Two studies reported blinding of patients, carers and investigators (Lonn and Zhang),105–107 however, blinding methods were only described in the Lonn study. Blinding was unclear in the study reported by Zhu.109 In all three studies, fewer than 5% of the randomised participants were excluded from the analysis of participants with adenomas, and all three studies applied an intention-to-treat analysis. A power calculation was performed by Zhang and the required sample size was achieved for the designated outcome.105 Lonn only performed a power calculation for the primary outcome, which was a composite of death from cardiovascular causes, myocardial infarction and stroke; no calculation was performed for secondary outcomes, which included CRC.107 Zhu did not perform a power calculation.109

Outcome data

Effectiveness

Effectiveness results for folic acid in the general population (or populations with no increased risk for CRC) are shown in Figure 7 and Table 18.

Incidence of any adenoma

No studies of folic acid in the general population reported adenoma incidence.

Incidence of advanced adenoma

No studies of folic acid in the general population reported advanced adenoma incidence.

Incidence of colorectal cancer

Three studies (11,062 participants in analysis) compared folic acid plus B vitamins (with or without antioxidants) versus placebo (± antioxidants; Figure 7a).105,106,109 A meta-analysis

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Folic acid: meta-analyses (general population or low-risk population). Incidence of colorectal cancer: (a) folic acid + vitamin B\textsubscript{12} ± vitamin B\textsubscript{6} ± antioxidants versus placebo ± antioxidants: low risk, (b) folic acid + vitamin B\textsubscript{12} + vitamin B\textsubscript{6} + antioxidants versus placebo + antioxidants: low risk.}
\end{figure}
TABLE 18 Folic acid: summary of results (general population or low-risk population)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of colorectal cancer</td>
<td></td>
</tr>
<tr>
<td>Lonn et al. 105,107,106,107</td>
<td>Any folic acid (2.5 mg/day to 20 mg/day) (+ B vitamins ± antioxidants)</td>
<td>No folic acid (± antioxidants)</td>
<td>CRC</td>
<td>3</td>
<td>5 + 6 + 7</td>
<td>68</td>
<td>5523</td>
<td>60</td>
<td>5539</td>
<td>1.13</td>
<td>0.77</td>
<td>1.64</td>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>36</td>
</tr>
<tr>
<td>Zhang et al. 105</td>
<td>Folic acid (2.5 mg/day) + vitamin B6 + vitamin B12 + antioxidants</td>
<td>Placebo + antioxidants</td>
<td>CRC</td>
<td>2</td>
<td>5 + 7</td>
<td>68</td>
<td>5479</td>
<td>59</td>
<td>5485</td>
<td>1.15</td>
<td>0.82</td>
<td>1.63</td>
<td>42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>63</td>
</tr>
<tr>
<td>Zhu et al. 109,110</td>
<td>Folic acid alone (20 mg/day for 1 year then 20 mg twice weekly for next year)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>44</td>
<td>1</td>
<td>54</td>
<td>0.41</td>
<td>0.02</td>
<td>9.76</td>
<td>N/C</td>
<td>-0.02</td>
<td>-0.07</td>
<td>0.03</td>
<td>N/C</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
demonstrated that the relative and absolute risk differences between groups for developing CRC were not statistically significant at the 5% level (RR 1.13, 95% CI 0.77 to 1.64, \(p = 0.54 \); RD 0.00, 95% CI 0.00 to 0.01, \(p = 0.76 \)). There were low (\(I^2 = 7\% \)) and moderate (\(I^2 = 36\% \)) levels of statistical heterogeneity, respectively.

Two studies (Zhang and Lonn; 10,964 participants in analysis) compared folic acid plus B vitamins plus antioxidants versus placebo (± antioxidants; Figure 7b).\(^{105,106}\) The relative and absolute risk differences between groups for developing CRC were not statistically significant at the 5% level, as demonstrated in a meta-analysis (RR 1.15, 95% CI 0.82 to 1.63, \(p = 0.42 \); RD 0.00, 95% CI 0.00 to 0.01, \(p = 0.42 \)). The analyses of relative and absolute risk suggested moderate (\(I^2 = 42\% \)) and high (\(I^2 = 63\% \)) levels of statistical heterogeneity, respectively.

One study (Zhu; 98 participants in analysis) compared folic acid plus B vitamins versus placebo alone.\(^{109}\) There was one case of CRC among 54 participants receiving placebo, and 0 cases among 44 participants receiving folic acid.

Compliance

Two studies (Lonn and Zhu) reported that at least 90% of pills were taken as required in the intervention groups over the treatment period.\(^{106,109}\) Compliance was measured by pill counting in two studies (Lonn and Zhu), by self-report in two studies (Lonn and Zhang) and serum concentration levels in one study (Zhu). In the Zhang study, compliance, defined as taking at least 66% of pills, was 83% over the study period by the intervention group.\(^{105}\)

Adverse effects

None of the studies reported any serious adverse events associated with the study treatments.

Ongoing studies

No ongoing studies of folic acid in the low-risk population were identified.

Excluded studies

No additional studies of folic acid in the low-risk population were excluded on final examination of the full text.

Summary of results for folic acid

Two studies of folic acid (0.5–1.0 mg/day) in individuals with a history of adenomas showed no statistically significant difference in the relative risk of adenoma recurrence or advanced adenoma incidence, with the event rates actually being slightly higher in the folic acid groups. Three studies of folic acid (2.5 mg/day in two studies and 20 mg/day in one study) in populations with no increased baseline risk of CRC demonstrated no statistically significant effect of folic acid on the relative risk of CRC, with the rates being slightly higher in individuals receiving folic acid. However, the duration of follow-up was 5–7 years, which may not be long enough to detect an effect on cancer incidence. No studies reported any difference in serious adverse event rates between the folic acid and placebo groups (except for one study reporting a higher incidence of cancers other than those of the colorectum in the folic acid group, which was thought to be the result of the higher baseline rate of prostate cancer in that group).

Results: calcium and/or vitamin D

Calcium and/or vitamin D: high-risk population (FAP or HNPCC)

Study and population characteristics

No previous systematic reviews of calcium or vitamin D in FAP or HNPCC patients were

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention</th>
<th>Control</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas 1993(^{95})</td>
<td>FAP patients with previous colectomy and adenomas</td>
<td>Calcium carbonate 1500 mg/day ((n = \text{unclear}))</td>
<td>Placebo ((n = \text{unclear}))</td>
<td>6 months</td>
<td>6 months</td>
</tr>
</tbody>
</table>
identified. The electronic searches identified one eligible controlled trial comparing calcium with placebo (Thomas et al.; Table 19).95 This single-centre study randomised 28 participants, recruiting people with FAP (median age 38 years; range 16 to 65) who had previously undergone total abdominal colectomy and ileorectal anastomosis who were under surveillance for rectal polyps. Subjects in the intervention arm were given calcium carbonate (1500 mg daily) for a 6-month period.

Quality assessment
The methods by which the allocation sequence was generated and concealed were unclear (see Appendix 2, Table 54). The trial was described as double blind. Three of the 28 randomised participants (11%) were excluded from the analysis of polyp counts for failing to take all of their tablets and it is unclear how many were randomised to or analysed from each arm.

Outcome data
Effectiveness
Any adenoma: number and size
The number of participants analysed in each arm was not reported in the study publication, hence it was not possible to calculate the difference between the mean change in the number of rectal polyps for participants receiving calcium and placebo. The authors reported that the effect on oral calcium on polyp number, progression and distribution was not statistically significant.

Advanced adenoma: number and size
The study reported by Thomas95 did not report the effect of calcium carbonate on the number of advanced adenomas.

Incidence of colorectal cancer
The study reported by Thomas95 did not report the effect of calcium carbonate on the number of CRCs.

Compliance
The authors did not define compliance. Three of 28 randomised participants were deemed to have been non-compliant.

Adverse effects
The authors stated that the tablets were well-tolerated in all subjects with no reported adverse side effects.

Ongoing studies
The study team are not aware of any ongoing studies of calcium in FAP or HNPCC patients.

Excluded studies
One study comparing the NSAID sulindac with calcium was excluded because the study was in the Chinese language and did not report any of our protocol-specified outcomes.150

Calcium and/or vitamin D: intermediate-risk population
(history of adenomas)
Study and population characteristics
Three studies compared calcium against a control group (Table 20). The study reported by Bonithon-Kopp et al. involved patients from 10 countries (nine in Europe, including the UK, plus Israel);96 the study reported by Baron et al.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonithon-Kopp 200096</td>
<td>History of adenomas</td>
<td>Calcium 2000 mg/day (n = 218)</td>
<td>Placebo (n = 221)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td>Baron 1999</td>
<td>History of adenomas</td>
<td>Calcium 1200 mg/day (n = 464)</td>
<td>Placebo (n = 466)</td>
<td>4 years</td>
<td>4 years (analysed from end Y1 to end Y4)</td>
</tr>
<tr>
<td>Hofstad 1998103,104</td>
<td>History of adenomas (polyps left in situ)</td>
<td>Calcium 1600 mg/day + beta-carotene 15 mg/day + vitamin C 150 mg/day + vitamin E 75 mg/day + selenium 101 µg/day (n = 51)</td>
<td>Placebo (n = 51)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
</tbody>
</table>

TABLE 20 Calcium: study characteristics (history of adenomas)
was USA-based, and the study reported by Hofstad et al., was based in Norway. All three were multicentre studies randomising between 116 participants (Hofstad) and 930 participants (Baron).

In all three trial populations, people with a history of adenomas were eligible. The mean age in two studies ranged from 59 to 61 years. In the Hofstad study, the age range was 50 to 76 years.

Two studies (Baron and Bonithon-Kopp) employed comparisons of calcium against placebo but the Hofstad study administered a mixed intervention consisting of calcium (1600 mg/day) combined with beta-carotene (15 mg/day), vitamin C (150 mg/day), vitamin E (75 mg/day) and selenium (101 µg/day), compared with placebo. The dose per day of calcium in all three studies ranged from 1200 mg (Baron) to 2000 mg (Bonithon-Kopp). The duration of treatment and the follow-up of participants ranged from 3 to 4 years.

In addition, the effect of calcium on adenomas and CRC in the intermediate-risk population was analysed within a Cochrane systematic review by Weingarten et al. and the effect on adenoma recurrence was meta-analysed by Shaukat et al.

Quality assessment
Allocation concealment was adequate in two studies (central allocation; Baron and Bonithon-Kopp) and unclear in the Hofstad study (see Appendix 2, Table 54). In terms of randomisation, two studies used a computer-generated randomisation sequence; the method used in the Hofstad study was unclear. Two studies reported blinding of patients and analysts, with Bonithon-Kopp also blinding the study carers. Blinding was unclear in the Hofstad study. The methods of blinding were adequate in the Bonithon-Kopp study, and unclear in the other two studies. All studies experienced attrition. In all three studies, between 10 and 20% of randomised participants were excluded. Intention-to-treat analyses were performed in all three studies. Power calculations were performed in all three studies and in each case the required sample size was achieved.

Outcome data
Effectiveness
Effectiveness results for calcium in the intermediate-risk population (history of adenomas) are shown in Figure 8 and Table 21.

Recurrence of any adenoma
Two studies (Baron and Bonithon-Kopp; 1186 analysed participants) compared calcium alone with placebo (Figure 8a). A meta-analysis demonstrated an 18% relative reduction in the risk of developing an adenoma of any type for those taking calcium, and this was statistically significant at the 5% level (RR 0.82, 95% CI 0.69 to 0.98, \(p = 0.03 \)). There was a 6% absolute reduction in the risk of developing an adenoma of any type (RD –0.06, 95% CI –0.11 to –0.01, \(p = 0.03 \)) for those taking calcium. There was no statistical heterogeneity in either analysis (\(I^2 = 0\% \)).

The third, smaller study (Hofstad; 93 participants in the analysis) reported that calcium plus antioxidants (vitamins C and E, beta-carotene and selenium) significantly reduced the risk of polyp recurrence compared with placebo. Event data were not reported but the odds ratio was reported as 0.31 (95% CI 0.11 to 0.84).

The study reported by Baron also presented follow-up data beyond the 4-year treatment period for participants with a subsequent colonoscopy, however, this was not controlled for post-trial calcium intake. In the interval 0–5 years after the end of the trial (i.e. years 5–9 after the trial started), 347 patients had a further colonoscopy (37% of the 930 originally randomised) and the relative risk of adenoma was 0.63 (95%CI 0.46 to 0.87, \(p = 0.005 \)). The calcium group therefore had a 37% relative reduction in the risk of an adenoma of any type, which was statistically significant at the 5% level. In the interval 6–10 years after the end of the trial (i.e. years 10–14 after the trial started), 424 patients had a further colonoscopy (46% of the 930 originally randomised) and the relative risk of adenoma was 1.09 (95% CI 0.85 to 1.39, \(p = 0.511 \)), i.e. the reduction in risk was not shown to continue to this time point.

Incidence of advanced adenoma
Two studies (Baron and Bonithon-Kopp; 1186 analysed participants) compared calcium alone with placebo (Figure 8b). The reductions in the relative and absolute risks of developing advanced adenoma were not statistically significant at the 5% level (meta-analysed RR 0.77, 95% CI 0.50 to 1.17, \(p = 0.21 \); RD –0.01, 95% CI –0.05 to 0.03, \(p = 0.61 \)). The statistical heterogeneity was 0% for the relative risk and high (57%) for the risk difference.

The study reported by Baron also presented follow-up data beyond the 4-year treatment period.
Table 1: Calcium Supplementation and Colorectal Adenoma Recurrence

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Calcium</th>
<th>Placebo</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
<th>Heterogeneity: τ² = 0.00; χ² = 0.64, df = 1 (p = 0.42); I² = 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baron 1999¹⁰⁰</td>
<td>30</td>
<td>409</td>
<td>94.3%</td>
<td>0.72 (0.46 to 1.13)</td>
<td>Test for overall effect: z = 1.24 (p = 0.21)</td>
</tr>
<tr>
<td>Bonithon-Kopp 2000 ⁹⁹</td>
<td>5</td>
<td>176</td>
<td>10.4%</td>
<td>1.26 (0.35 to 4.63)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>585</td>
<td>601</td>
<td>100.0%</td>
<td>0.77 (0.50 to 1.17)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8: Calcium Supplementation and Colorectal Cancer

Calcium: meta-analyses (history of adenomas). (a) Recurrence of any adenoma: calcium alone versus placebo alone; (b) Incidence of advanced adenoma: calcium alone versus placebo alone; (c) Incidence of colorectal cancer: calcium alone versus placebo alone.

for participants with a subsequent colonoscopy; however, this was not controlled for post-trial calcium intake.¹⁵² In the interval 0–5 years after the end of the trial (i.e. years 5–9 after the trial started), 347 patients had a further colonoscopy (37% of the 930 originally randomised) and the relative risk of advanced adenoma was 0.85 (95% CI 0.48 to 1.69, p = 0.65), which was not statistically significant at the 5% level. In the interval 6–10 years after the end of the trial (i.e. years 10–14 after the trial started), 424 patients had a further colonoscopy (46% of the 930 originally randomised) and the relative risk of advanced adenoma was 1.10 (95% CI 0.65 to 1.88, p = 0.717), which was not statistically significant at the 5% level.

Incidence of colorectal cancer

Two studies (Baron and Bonithon-Kopp; 1146 participants in analysis) compared calcium alone with placebo (Figure 8c).⁹⁶,⁹⁹,¹⁰⁰ The reductions in
TABLE 21 Calcium: summary of results (history of adenomas)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence of any adenoma</td>
<td>Calcium alone (1200–2000 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td>3</td>
<td>155</td>
<td>585</td>
<td>195</td>
<td>601</td>
<td>0.82</td>
<td>0.69</td>
<td>0.98</td>
<td>0</td>
<td>0.06</td>
<td>0.11</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Baron, Bonithon-Kopp,1002</td>
<td>Calcium alone (1200–2000 mg/day)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td>3</td>
<td>35</td>
<td>585</td>
<td>47</td>
<td>601</td>
<td>0.77</td>
<td>0.50</td>
<td>1.17</td>
<td>0</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>57</td>
</tr>
<tr>
<td>Incidence of advanced adenoma</td>
<td>Calcium alone (1200–2000 mg/day)</td>
<td>Placebo alone</td>
<td>Advanced adenoma</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>668</td>
<td>4</td>
<td>678</td>
<td>0.34</td>
<td>0.05</td>
<td>2.14</td>
<td>0</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Baron, Bonithon-Kopp,1002</td>
<td>Calcium alone (1200–2000 mg/day)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>668</td>
<td>4</td>
<td>678</td>
<td>0.34</td>
<td>0.05</td>
<td>2.14</td>
<td>0</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
the relative risk and absolute risk of developing CRC associated with calcium use were not statistically significant at the 5% level (meta-analysed RR 0.34, 95% CI 0.05 to 2.14, \(p = 0.25 \); RD 0.00, 95% CI –0.01 to 0.00, \(p = 0.22 \)). There was no statistical heterogeneity in either analysis (\(I^2 = 0\% \)). These results should be interpreted with caution because of the relatively short follow-up duration and the low event rate (one of 668 in the calcium arms and four of 678 in the placebo arms).

Compliance

Compliance was measured by periodic self-report in two studies\(^{96,99,100} \) and by pill counting or renewal in two studies.\(^{96,103} \) Two studies reported that between 69 and 76% in the intervention group took 80% or more of pills.\(^ {96,103} \) In the Bonithon-Kopp study, this was statistically significantly lower than the rate of compliance in the control group (\(p = 0.04 \)).\(^ {96} \) The Baron study reported that at least 90% of pills were taken by between 79 and 85% of participants.\(^ {99,100} \)

Adverse effects

The Bonithon-Kopp study reported a statistically significant difference between the calcium and placebo groups in terms of all side effects (26/176 vs 12/178, \(p = 0.043 \)), yet there was no statistically significant difference in terms of the ‘major side effects’ of severe diarrhoea or abdominal pain (six of 176 vs three of 178, \(p = 0.31 \); \(p\)-value generated by reviewers).\(^ {96} \) The Hofstad study also reported the number of cases of diarrhoea and abdominal pain, but found no significant differences between groups (five versus seven and four versus four for intervention and control groups respectively).\(^ {103} \)

The Baron study reported that ‘medical symptoms and complications were not associated with treatment assignment’.\(^ {99,100} \)

Ongoing studies

An ongoing multicentre study is assessing aspirin, calcium and/or vitamin D (as a combination treatment) versus placebo for prevention of adenomas in participants with a history of adenomas, and aims to enrol 1000 participants, with a treatment duration of 3 years and follow-up at 3 and 5 years (www.clinicaltrials.gov, NCT00486512).

Excluded studies

No additional studies of calcium and/or vitamin D in the intermediate-risk population were excluded on final examination of the full papers.

Calcium and/or vitamin D: low-risk population (general population or no increased risk of colorectal cancer)

Study and population characteristics

Two studies were identified (Lappe and Wactawski-Wende et al.) which compared calcium or calcium plus vitamin D against a control group (Table 22).\(^ {97,101} \) Both studies were USA-based. The number of centres involved was not reported, and the number of participants randomised was 1179 in the Lappe study\(^ {97} \) and 36,282 in the Wactawski-Wende study.\(^ {101} \)

The study population within both trials consisted of postmenopausal women. The mean age of women in the Wactawski-Wende study was 59 years,\(^ {101} \) whereas the study reported by Lappe did not

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention</th>
<th>Control</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-menopausal women</td>
<td>Age 55 years eligible</td>
<td>Calcium 1400–1500 mg/day ((n = 445)) or Calcium 1400–1500 mg/day + vitamin D 1000–1100 IU/day (paper reports two different doses of vitamin D in abstract and text) ((n = 446))</td>
<td>Placebo ((n = 288))</td>
<td>4 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Lappe 2007(^ {97})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wactawski-Wende 2006(^ {101}) (Women’s Health Initiative study)</td>
<td>Postmenopausal women Age 50–79 years eligible (mean 59 years)</td>
<td>Calcium 1000 mg/day + vitamin D 400 IU/day ((n = 18,176))</td>
<td>Placebo ((n = 18,106))</td>
<td>7 years</td>
<td>7 years</td>
</tr>
</tbody>
</table>

TABLE 22 Calcium and/or vitamin D: study characteristics (general population or low-risk population)
report a mean age but included women aged 55 years or over.97

The trial reported by Wactawski-Wende employed a comparison of calcium plus vitamin D versus placebo,101 while the Lappe trial compared three groups: calcium alone, calcium plus vitamin D and placebo.97 The dose per day of calcium ranged from 1000 mg101 to 1500 mg97 and from 400 IU to 1000 IU dose per day of vitamin D3. The control in each case was placebo. Both duration of treatment and follow-up of participants ranged from 4 to 7 years.

Quality assessment
Allocation concealment was adequate in the Wactawski-Wende study101 and unclear in the Lappe study97 (see Appendix 2, Table 54). Both studies used a computer-generated, permuted-block algorithm randomisation sequence. The Wactawski-Wende study reported adequate blinding of patients and carers,101 but the methods of blinding were unclear in the Lappe study.97 Both studies experienced attrition. In the Wactawski-Wende study, less than 5% of randomised participants were excluded,101 whereas in the Lappe study between 5 and 20% of randomised participants were excluded.97 Intention-to-treat analyses were performed within both studies. A power calculation was performed in the Wactawski-Wende study and the required sample size was achieved101 but the Lappe study did not report a power calculation.97

Outcome data
Effectiveness
Effectiveness results for calcium and/or vitamin D in the general population (or in populations with no increased risk for CRC) are shown in Figure 9 and Table 23.

Incidence of any adenoma
No studies of calcium in the general population assessed adenoma incidence.

Incidence of advanced adenoma
No studies of calcium in the general population assessed advanced adenoma incidence.

Incidence of colorectal cancer
Two studies (37,461 participants in analysis) compared calcium with or without vitamin D with placebo (Figure 9a).97,101 There was no statistically significant difference between groups in the relative risk of developing CRC (meta-analysed RR 0.62, 95% CI 0.11 to 3.40, p = 0.58); however, this analysis suggested a high level of statistical heterogeneity (I² = 58%). There was no statistically significant difference between groups in the absolute risk of developing CRC (RD 0.00, 95% CI –0.01 to 0.00, p = 0.80), but there was a moderate level of statistical heterogeneity (I² = 39%).

One study (Lappe; 733 participants in analysis) compared calcium alone with placebo (Figure 9b).97 The incidence of CRC was none of 445 in the calcium arm and two of 288 in the placebo arm.

Two studies (37,016 participants in analysis) compared calcium plus vitamin D with placebo (Figure 9c).97,101 The relative and absolute risk differences between groups for developing CRC were not statistically significant at the 5% level (meta-analysed RR 1.08, 95% CI 0.87 to 1.34, p = 0.51; RD 0.00, 95% CI 0.00 to 0.00, p = 0.56) and no statistical heterogeneity was evident (I² = 0%)

Data on CRC incidence in the studies of calcium should be interpreted with caution because of the relatively short follow-up durations in terms of detecting cancer outcomes (4 and 7 years in the two studies).

Compliance
The two studies reported a compliance rate (> 80% of pills taken) in the intervention groups of ≥60% (Wactawski-Wende)101 or 74–86% (Lappe).97 Compliance was measured by periodic weighing of pill bottles in both studies.

Adverse effects
Neither study reported any serious adverse events. There were no statistically significant differences between groups in terms of major symptoms or any major disease outcomes, including cardiovascular disease, any cancer or death.

Ongoing studies
No ongoing studies of calcium and/or vitamin D in the low-risk population were identified.

Excluded studies
No additional studies of calcium and/or vitamin D in the low-risk population were excluded on final examination of the full papers.

Summary of results for calcium and/or vitamin D
Two studies of calcium (1200–2000 mg/day) in individuals with a history of adenomas
(a)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Calcium ± vitamin D</th>
<th>Placebo</th>
<th>Weight</th>
<th>M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lappe 2007</td>
<td>1</td>
<td>891</td>
<td>2</td>
<td>288</td>
<td>0.16 (0.01 to 1.78)</td>
</tr>
<tr>
<td>Wactawski-Wende</td>
<td>168</td>
<td>1,176</td>
<td>154</td>
<td>1,106</td>
<td>1.09 (0.87 to 1.35)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>19,067</td>
<td>18,394</td>
<td>100.0%</td>
<td>0.62 (0.11 to 3.40)</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 169
Total events: 156
Heterogeneity: $\tau^2 = 1.06; \chi^2 = 2.41, df = 1$ ($p = 0.12$); $I^2 = 58$
Test for overall effect: $z = 0.55$ ($p = 0.58$)

(b)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Calcium</th>
<th>Placebo</th>
<th>Weight</th>
<th>M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lappe 2007</td>
<td>0</td>
<td>445</td>
<td>2</td>
<td>288</td>
<td>0.13 (0.01 to 2.69)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>445</td>
<td>2</td>
<td>100.0%</td>
<td>0.13 (0.01 to 2.69)</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 0
Total events: 2
Heterogeneity: not applicable
Test for overall effect: $z = 1.32$ ($p = 0.19$)

(c)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Calcium + vitamin D</th>
<th>Placebo</th>
<th>Weight</th>
<th>M-H, random, 95% CI</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lappe 2007</td>
<td>1</td>
<td>446</td>
<td>2</td>
<td>288</td>
<td>0.32 (0.03 to 3.54)</td>
</tr>
<tr>
<td>Wactawski-Wende</td>
<td>168</td>
<td>1,176</td>
<td>154</td>
<td>1,106</td>
<td>1.09 (0.87 to 1.35)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>18,622</td>
<td>18,394</td>
<td>100.0%</td>
<td>1.08 (0.87 to 1.34)</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 169
Total events: 156
Heterogeneity: $\tau^2 = 0.00; \chi^2 = 0.89, df = 1$ ($p = 0.32$); $I^2 = 0$
Test for overall effect: $z = 0.66$ ($p = 0.51$)

FIGURE 9 Calcium and/or vitamin D: meta-analyses (general population or low-risk group). Incidence of colorectal cancer: (a) calcium ± vitamin D versus placebo alone, (b) calcium alone versus placebo alone, (c) calcium + vitamin D versus placebo alone.
TABLE 23 Calcium: summary of results (general population or low-risk population)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lappe, Wactawski-Wende</td>
<td>Any calcium (1000–1500 mg/day) (± vitamin D 400–1100 IU/day)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>2</td>
<td>4+7</td>
<td>169</td>
<td>19,067</td>
<td>156</td>
<td>18,394</td>
<td>0.62</td>
<td>0.11</td>
<td>3.40</td>
<td>58</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.00</td>
<td>39</td>
</tr>
<tr>
<td>Lappe</td>
<td>Calcium alone (1400–1500 mg/day)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>445</td>
<td>2</td>
<td>288</td>
<td>0.13</td>
<td>0.01</td>
<td>2.69</td>
<td>N/C</td>
<td>-0.01</td>
<td>-0.02</td>
<td>0.00</td>
<td>N/C</td>
</tr>
<tr>
<td>Lappe, Wactawski-Wende</td>
<td>Calcium (1000–1500 mg/day) + vitamin D (400–1100 IU/day)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>2</td>
<td>4+7</td>
<td>169</td>
<td>18,622</td>
<td>156</td>
<td>18,394</td>
<td>1.08</td>
<td>0.87</td>
<td>1.34</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
demonstrated a statistically significant 18% reduction in the relative risk of adenoma recurrence. Two studies of calcium (1000–1500 mg/day) plus vitamin D (400–1100 IU/day) in populations with no increased baseline risk of CRC demonstrated no statistically significant effect on the relative risk of CRC. However, the duration of follow-up was 4 to 7 years, which may not be long enough to detect an effect on cancer incidence. One study assessed calcium in patients with adenomas due to FAP, and reported no significant reduction in polyp number or progression. No study reported any serious adverse events associated with calcium and/or vitamin D.

Results: antioxidants (includes selenium, beta-carotene and vitamins A, C and E)

Antioxidants: high-risk population (FAP or HNPCC)

No studies of antioxidant chemoprevention use within populations at high-risk for CRC (i.e. FAP and HNPCC) were identified.

Antioxidants: intermediate-risk population (history of adenomas or colorectal cancer)

Study and population characteristics

Seven studies were identified that compared antioxidants against a control group (Table 24). Three studies were based in Italy, one in Australia, one in the USA, one in Canada and one in Norway. All seven were multicentre studies randomising between 103 and 751 participants.

In all seven trials, subjects were eligible if they had a history of adenomas. The mean age in three studies ranged from 58 to 61 years. Three studies reported the age range of the population, 24–75 years (Bonelli et al.) and 50–76 years (Hofstad et al.). Ponz de Leon et al. did not report the age of participants.

Five of the seven studies employed comparisons of one or more antioxidants against placebo alone. This included the following antioxidant combinations: beta-carotene alone; beta-carotene plus vitamin C plus vitamin E; vitamin C plus vitamin E; vitamin A plus vitamin C plus vitamin E; selenium plus zinc plus vitamins A, C and E. MacLennan investigated the effects of beta-carotene in conjunction with a low fat and/or bran diet. The HoFstad study administered a mixed intervention consisting of calcium (1600 mg/day) combined with beta-carotene (15 mg/day), vitamin C (150 mg/day), vitamin E (75 mg/day) and selenium (101 µg/day) compared with placebo.

Six studies delivered daily doses of antioxidants. Ponz de Leon delivered doses of antioxidants every other day. The doses per day were as follows: beta-carotene ranged from 15 to 25 mg; vitamin C ranged from 150 to 1000 mg; vitamin E ranged from 30 to 400 mg; vitamin A was 30,000 IU in two studies and 2 mg in one study, and selenium ranged from 101 to 2000 µg. The control group within six studies was placebo. Some participants in the control group in the MacLennan study received a low fat and/or bran diet. The duration of treatment ranged from 3 to 4 years. The follow-up of participants ranged from 1.5 to 5 years.

In addition, the effect of antioxidants on adenoma incidence was analysed in a systematic review by Bjelakovic et al. (2006), and the effect of antioxidants on any gastrointestinal cancer (including CRC) was analysed in a Cochrane systematic review by Bjelakovic et al. (2008).

Quality assessment

Allocation concealment was adequate (central pharmacy) in two studies (MacLennan and McKeown-Eyssen) and unclear in five studies (see Appendix 2, Table 55). Randomisation was adequately described in three studies, whereas four reports stated that the studies were randomised but did not describe the method of randomisation. Three studies reported adequate blinding of patients, caregivers and analysts. Roncucci et al. reported adequate blinding of patient and caregiver. The methods of blinding were unclear in three studies (Ponz de Leon, Bonelli, Hofstad). Randomised patients who did not have a follow-up colonoscopy to assess adenoma recurrence were excluded from the main analysis in all studies. All studies experienced attrition. Between 10 and 26% of randomised participants were excluded from the analysis.

Outcome data

Effectiveness

Effectiveness results for antioxidants in the intermediate-risk population (history of adenomas) are presented in Figure 10 and Table 25.
TABLE 24 Antioxidants (vitamins A, C, E, selenium and beta-carotene): study characteristics (history of adenomas)

<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baron 2003/ Greenberg 1994 (Antioxidant Polyp Prevention Study)(^\text{11,12})</td>
<td>History of adenomas Age < 80 eligible (mean 61, range not reported)</td>
<td>Beta-carotene 25 mg/day and/or vitamin C 1000 mg/day and/or vitamin E 400 mg/day 2 × 2 design. Study groups: beta-carotene (n = 217) vitamin C + vitamin E (n = 225) beta-carotene + vitamin C + vitamin E (n = 208) placebo only (n = 214)</td>
<td>Placebo (n = 214) (see left for study groups)</td>
<td>4 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Bonelli 1998(^\text{15})</td>
<td>History of adenomas Age range 25–75 eligible (mean and range not reported)</td>
<td>Vitamin A 2 mg + vitamin C 180 mg + vitamin E 30 mg + selenium 200 µg + zinc 30 mg, all given daily (n = 147)</td>
<td>Placebo (n = 157)</td>
<td>5 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Hofstad 1998(^\text{10,13,14})</td>
<td>History of adenomas (polyps left in situ) Age 50–76 years eligible</td>
<td>Calcium 1600 mg/day + beta-carotene 15 mg/day + vitamin C 150 mg/day + vitamin E 75 mg/day + selenium 101 µg/day (n = 42)</td>
<td>Placebo (n = 51)</td>
<td>3 years</td>
<td>3 years</td>
</tr>
<tr>
<td>Ponz de Leon 1997b(^\text{21})</td>
<td>History of adenomas Age not reported</td>
<td>Vitamin A 30,000 IU + vitamin C 1 g + vitamin E 70 mg, all given every other day (n = 36) or N-Acetylcysteine 600 mg/day (n = 33)</td>
<td>Placebo (n = 34)</td>
<td>Not reported – less than 2 years</td>
<td>Not reported – less than 2 years</td>
</tr>
<tr>
<td>Roncucci 1993(^\text{21,124})</td>
<td>History of adenomas Eligible age not reported (mean age 59.2, range not reported)</td>
<td>Vitamin A 30,000 IU + vitamin C 1 g + vitamin E 70 mg, all given daily (n = 70) or Lactulose 20 g/day (n = 61)</td>
<td>Placebo (n = 78)</td>
<td>1.5 years (approx.)</td>
<td>1.5 years (approx.)</td>
</tr>
<tr>
<td>MacLennan 1995 (Australian Polyp Prevention Trial)(^\text{15})</td>
<td>History of adenomas Eligible age range 30–74 (mean age and range not reported)</td>
<td>Beta-carotene 20 mg/day and/or wheat bran 20 mg/day and/or low-fat diet (reducing dietary fat to 25% of total calories) 2 × 2 × 2 design. Study groups (n = 411 randomised, allocation reported for n = 395 as follows): normal eating + placebo (n = 48) low-fat diet + placebo (n = 48) bran + placebo (n = 50) beta-carotene (n = 53) beta-carotene + low-fat diet (n = 51) low-fat diet + bran (n = 48) beta-carotene + bran (n = 47) beta-carotene + low-fat diet (n = 50)</td>
<td>Placebo (see left for study groups)</td>
<td>Low-fat diet and bran: 4 years Beta-carotene: approx. 2 years</td>
<td></td>
</tr>
<tr>
<td>McKeown-Eyssen 1988(^\text{29})</td>
<td>History of adenomas Eligible age not reported (mean age 58, range not reported)</td>
<td>Vitamin C 400 mg/day + vitamin E 400 mg/day (n = 96)</td>
<td>Placebo (n = 89)</td>
<td>2 years</td>
<td>2 years</td>
</tr>
</tbody>
</table>
Assessment of clinical effectiveness

Study or subgroup

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Experimental</th>
<th>Control</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonelli 1998<sup>12</sup></td>
<td>20/117</td>
<td>31/116</td>
<td>22.1%</td>
<td>0.64 (0.39 to 1.05)</td>
</tr>
<tr>
<td>Greenberg 1994<sup>11</sup></td>
<td>211/564</td>
<td>68/187</td>
<td>27.9%</td>
<td>1.03 (0.83 to 1.28)</td>
</tr>
<tr>
<td>McKeown-Eyssen 1988<sup>19</sup></td>
<td>19/70</td>
<td>21/67</td>
<td>21.6%</td>
<td>0.87 (0.51 to 1.46)</td>
</tr>
<tr>
<td>Ponz De Leon 1997<sup>21</sup></td>
<td>8/36</td>
<td>10/34</td>
<td>15.8%</td>
<td>0.76 (0.34 to 1.69)</td>
</tr>
<tr>
<td>Roncucci 1993<sup>24</sup></td>
<td>4/70</td>
<td>28/78</td>
<td>12.6%</td>
<td>0.16 (0.06 to 0.43)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>857/482</td>
<td>100.0%</td>
<td>0.67 (0.42 to 1.07)</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity:

- $\tau^2 = 0.19; \chi^2 = 15.77, df = 4 (p = 0.003); I^2 = 75%$
- Test for overall effect: $z = 1.67 (p = 0.09)$

Recurrence of any adenoma: (a) any antioxidants versus placebo alone; (b) any antioxidants (± low-fat diet ± bran) versus no antioxidants; (c) vitamins A, C, E versus placebo alone; (d) vitamins C and E versus placebo alone.

Total events

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Experimental</th>
<th>Control</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonelli 1998<sup>12</sup></td>
<td>20/117</td>
<td>31/116</td>
<td>17.5%</td>
<td>0.64 (0.39 to 1.05)</td>
</tr>
<tr>
<td>Greenberg 1994<sup>11</sup></td>
<td>211/564</td>
<td>68/187</td>
<td>23.6%</td>
<td>1.03 (0.83 to 1.28)</td>
</tr>
<tr>
<td>MacLennan 1995<sup>16</sup></td>
<td>54/156</td>
<td>41/150</td>
<td>21.2%</td>
<td>1.27 (0.90 to 1.78)</td>
</tr>
<tr>
<td>McKeown-Eyssen 1988<sup>19</sup></td>
<td>19/70</td>
<td>21/67</td>
<td>17.0%</td>
<td>0.87 (0.51 to 1.46)</td>
</tr>
<tr>
<td>Ponz De Leon 1997<sup>21</sup></td>
<td>8/36</td>
<td>10/34</td>
<td>11.7%</td>
<td>0.76 (0.34 to 1.69)</td>
</tr>
<tr>
<td>Roncucci 1993<sup>24</sup></td>
<td>4/70</td>
<td>28/78</td>
<td>9.0%</td>
<td>0.16 (0.06 to 0.43)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1013/632</td>
<td>100.0%</td>
<td>0.78 (0.54 to 1.14)</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity:

- $\tau^2 = 0.14; \chi^2 = 19.09, df = 5 (p = 0.002); I^2 = 74%$
- Test for overall effect: $z = 1.29 (p = 0.20)$

Total events

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Experimental</th>
<th>Control</th>
<th>Weight</th>
<th>Risk ratio M-H, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonelli 1998<sup>12</sup></td>
<td>20/117</td>
<td>31/116</td>
<td>17.5%</td>
<td>0.64 (0.39 to 1.05)</td>
</tr>
<tr>
<td>Greenberg 1994<sup>11</sup></td>
<td>211/564</td>
<td>68/187</td>
<td>23.6%</td>
<td>1.03 (0.83 to 1.28)</td>
</tr>
<tr>
<td>McKeown-Eyssen 1988<sup>19</sup></td>
<td>19/70</td>
<td>21/67</td>
<td>17.0%</td>
<td>0.87 (0.51 to 1.46)</td>
</tr>
<tr>
<td>Ponz De Leon 1997<sup>21</sup></td>
<td>8/36</td>
<td>10/34</td>
<td>11.7%</td>
<td>0.76 (0.34 to 1.69)</td>
</tr>
<tr>
<td>Roncucci 1993<sup>24</sup></td>
<td>4/70</td>
<td>28/78</td>
<td>9.0%</td>
<td>0.16 (0.06 to 0.43)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>316/199</td>
<td>100.0%</td>
<td>0.35 (0.07 to 1.68)</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity:

- $\tau^2 = 1.06; \chi^2 = 5.99, df = 1 (p = 0.01); I^2 = 83%$
- Test for overall effect: $z = 1.31 (p = 0.19)$

FIGURE 10 Antioxidants: meta-analyses (history of adenomas). Recurrence of any adenoma: (a) any antioxidants versus placebo alone; (b) any antioxidants (± low-fat diet ± bran) versus no antioxidants; (c) vitamins A, C, E versus placebo alone; (d) vitamins C and E versus placebo alone.
Recurrence of any adenoma

Five studies (1339 participants in analysis) compared any antioxidant (alone or in any combination) with placebo (Figure 10a).112,115,121,124,129 A meta-analysis demonstrated that the differences in relative and absolute risks of developing at least one adenoma were not significant at the 5% level (RR 0.67, 95% CI 0.42 to 1.07, \(p = 0.09 \); RD –0.10, 95% CI –0.22 to 0.02, \(p = 0.10 \)). There was a high level of statistical heterogeneity observed in both estimates (\(I^2 = 75\% \) and \(I^2 = 79\% \), respectively).

Six studies (1706 participants in analysis) compared any antioxidant (alone or in any combination) against no antioxidant (Figure 10b). This analysis included participants from MacLennan who had received 25 g/day wheat bran and/or a low-fat diet, in addition to placebo.126 There was no statistically significant difference between groups in the relative risk of developing at least one adenoma (meta-analysed RR 0.78, 95% CI 0.54 to 1.14, \(p = 0.20 \)). This analysis suggested a high level of statistical heterogeneity (\(I^2 = 74\% \)).

A number of discrete analyses were undertaken for different combinations of antioxidants (see Table 25 and Figure 10c–d). No statistically significant results were found for any of the five analyses; the interventions were neither effective nor harmful.

A seventh study (Hofstad; 93 participants in the analysis) reported that calcium plus antioxidants (vitamins C and E, beta-carotene and selenium) significantly reduced the risk of adenoma recurrence compared with placebo. Event data were not reported but the odds ratio was reported as 0.31 (95% CI 0.11–0.84).105

Incidence of advanced adenoma

No studies of antioxidants in the intermediate-risk population reported incidence of advanced adenoma, as defined in studies of other interventions (i.e. adenoma \(\geq 1 \) cm in diameter, villous or tubulovillous adenoma, adenoma with severe dysplasia or CRC). Three studies reported separate data on large adenomas or adenomas with other abnormalities (Roncucci, MacLennan, McKeown-Eyssen);112,120,129 however, these data are not presented here because of the lack of consistency in definitions of advanced adenoma.

Incidence of colorectal cancer

No studies of antioxidants in the intermediate-risk population reported CRC incidence.

Compliance

Three studies reported a compliance rate in the intervention group. McKeown-Eyssen gave a compliance range over the study period which was 89–100%, measured by urine concentrations of vitamin C.129 Roncucci measured the compliance rate by periodic self-report as 85%.124 Bonelli did not indicate how compliance was measured, but reported the overall value to be 63.7%.115 However, the compliance from Bonelli varied greatly between the two study centres from 40.5% to 96.1%.115 Greenberg did not provide compliance rates but indicated that five participants had stopped taking tablets because of their presumed toxicity.112

Adverse effects

Two studies reported minor adverse events. Roncucci reported that 1.4% of participants in the antioxidants intervention group experienced pruritus with no skin alteration and withdrew from the trial.124 In the same trial, some participants were receiving lactulose and 4.9% had lactulose-
TABLE 25 Antioxidants: summary of results (history of adenomas)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C) Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence of any adenoma</td>
<td></td>
</tr>
<tr>
<td>Bonelli,115</td>
<td>Any antioxidant (± low-fat diet ± bran)</td>
<td>No antioxidant (± low-fat diet ± bran ± lactulose)</td>
<td>Adenoma</td>
<td>6</td>
<td>1.5, <2, 2, 4, 4, 5</td>
<td>316</td>
<td>1013</td>
<td>199</td>
<td>632</td>
<td>0.78</td>
<td>0.54</td>
<td>1.14</td>
<td>74</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Greenberg,111,112,126</td>
<td></td>
</tr>
<tr>
<td>MacLennan,129</td>
<td></td>
</tr>
<tr>
<td>McKeown-Eyssen,129</td>
<td></td>
</tr>
<tr>
<td>Ponz de Leon,121</td>
<td></td>
</tr>
<tr>
<td>Roncucci121,124</td>
<td></td>
</tr>
<tr>
<td>Bonelli,115</td>
<td>Any antioxidant</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>5</td>
<td>1.5, <2, 2, 4, 5</td>
<td>262</td>
<td>857</td>
<td>158</td>
<td>482</td>
<td>0.67</td>
<td>0.42</td>
<td>1.07</td>
<td>75</td>
<td>−0.10</td>
<td>−0.22</td>
<td>0.02</td>
</tr>
<tr>
<td>Greenberg,111,112,126</td>
<td></td>
</tr>
<tr>
<td>McKeown-Eyssen,129</td>
<td></td>
</tr>
<tr>
<td>Ponz de Leon,121</td>
<td></td>
</tr>
<tr>
<td>Roncucci121,124</td>
<td></td>
</tr>
<tr>
<td>Roncucci,121,124</td>
<td>Vitamins A,C,E</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td><2</td>
<td>12</td>
<td>106</td>
<td>38</td>
<td>111</td>
<td>0.35</td>
<td>0.07</td>
<td>1.68</td>
<td>83</td>
<td>−0.21</td>
<td>−0.42</td>
<td>0.01</td>
</tr>
<tr>
<td>Ponz de Leon,121</td>
<td></td>
</tr>
<tr>
<td>Greenberg,111,112,126</td>
<td>Vitamins C,E</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>2</td>
<td>2, 4</td>
<td>98</td>
<td>275</td>
<td>89</td>
<td>254</td>
<td>1.02</td>
<td>0.81</td>
<td>1.28</td>
<td>0</td>
<td>0.00</td>
<td>−0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>McKeown-Eyssen</td>
<td></td>
</tr>
<tr>
<td>Greenberg,111,112</td>
<td>Beta-carotene</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>4</td>
<td>66</td>
<td>184</td>
<td>68</td>
<td>187</td>
<td>0.99</td>
<td>0.75</td>
<td>1.29</td>
<td>N/C</td>
<td>0.00</td>
<td>−0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>Greenberg,111,112</td>
<td>Vitamins C,E + beta-carotene</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>4</td>
<td>66</td>
<td>175</td>
<td>68</td>
<td>187</td>
<td>1.04</td>
<td>0.79</td>
<td>1.36</td>
<td>N/C</td>
<td>0.01</td>
<td>−0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Bonelli115</td>
<td>Vitamins A,C,E + selenium + zinc</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>117</td>
<td>31</td>
<td>116</td>
<td>0.64</td>
<td>0.39</td>
<td>1.05</td>
<td>N/C</td>
<td>−0.10</td>
<td>−0.20</td>
<td>0.01</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
induced diarrhoea. Bonelli reported that 12.5% of participants in the intervention group and 2.9% of participants in the placebo group experienced minor adverse events but did not state what these were.115

Ongoing studies
An ongoing phase 3 RCT is assessing selenium versus placebo for prevention of adenoma recurrence in participants with a history of colorectal adenomatous polyps, and is aiming to enrol 2050 participants, with treatment and follow-up durations of 5 years, or up to 7.5 years in some participants (www.cancer.gov/clinicaltrials/UARIZ-00–0430–01).

Excluded studies
Hofstad103 did not report event data (only mean numbers of adenomas) and this study was therefore excluded from meta-analysis. No further studies of antioxidants in the intermediate-risk population were excluded on final examination of the full papers.

Antioxidants: low-risk population (general population or no increased risk of colorectal cancer)

Study and population characteristics
Twelve studies comparing antioxidants with a control group were identified (Table 26).109,113,114,116,118,122,125,127,130,133,134,137,140,142 Six studies were based in the USA113,118,122,127,157,142 and two were international studies.116,125 The remainder were based in the UK, France, Finland and China.109 All 12 trials were multicentre studies randomising between 216 and 39,876 participants.

Studies were undertaken in healthy populations [Physicians Health Study PHS II115, Selenium and Vitamin E Cancer Prevention Trial (SELECT),116 Women’s Health Study,122 Supplementation en Vitamines et Mineraux AntioXydants (SU. VI.MAX),130 PHS109] and populations with histories of cardiovascular disease [Women’s Antioxidant Cardiovascular Study (WACS),118 Heart Outcomes Prevention Evaluation – The Ongoing Outcomes (HOPE-TOO),125 Heart Protection Study (HPS)140], smoking or asbestos exposure [Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC study),133,134 The Beta-Carotene and Retinol Efficacy Trial (CARET)127], skin cancer [Nutritional Prevention of Cancer Trial (NPCST)157] and atrophic gastritis (Zhu et al.).109

The mean age of subjects in 10 studies ranged from 48.95 to 66 years. The HPS reported the age range of the population as 40–80 years.140 Lippman et al. reported the median age as 62–63 years in SELECT.116

Seven of the twelve studies employed comparisons of one or more antioxidants against placebo alone. This included the following antioxidant combinations: beta-carotene alone; vitamin E alone; selenium alone; beta-carotene plus vitamin C plus vitamin E; vitamin A plus beta-carotene; vitamin E plus beta-carotene; vitamin E plus selenium; and selenium, beta-carotene, vitamins C and E and zinc.130 Two studies compared antioxidants in combination with another agent against placebo. In the HOPE-TOO study, Lonn et al. included ramipril with placebo.125 Simvastatin was included with placebo in the HPS. Gaziano et al., Lin et al. and Lee et al. compared one or more antioxidant against placebo groups in which participants had received other antioxidants.113,118,122 In these cases, discrete event data were not available and analyses used relative risks that were adjusted to account for the effects of the antioxidant within the placebo group. These three studies were not included in the meta-analysis of any antioxidant versus placebo, but were included in the analyses of individual antioxidants.

Seven studies delivered daily doses of antioxidants.116,125,127,130,131,134,137,140 Gaziano and Lin delivered two antioxidants in combination, where one was delivered daily and the other on alternate days.131,134 Lee and Hennekens et al. delivered antioxidants every other day.122,142 Zhu delivered beta-carotene daily for 1 year and then twice a week for 1 year.109 The doses per day/alternate day were as follows: beta-carotene ranged from 20 to 96 mg; vitamin C ranged from 120 to 500 mg; the dose of vitamin E ranged from 400–600 IU in five studies113,116,118,122,123,125 to 30–600 mg in three studies; selenium ranged from 100 to 200µg. Goodman et al. delivered a vitamin A intervention and the dose per day was 25,000 IU.127

The duration of treatment ranged from 2 to 12 years (Gaziano did not report duration of treatment).113 The follow-up of participants ranged from 5 to 12 years.

In addition, the effect of antioxidants on adenoma incidence was analysed in a systematic review by Bjelakovic et al. (2006),51 and the effect of antioxidants on any gastrointestinal cancer
<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaziano 2009 (PHS II)</td>
<td>General population (male physicians)</td>
<td>Vitamin E 400 IU every other day, and/or vitamin C 500 mg/day</td>
<td>Placebo (no vitamin E or vitamin C) (n = 3653)</td>
<td>Not reported</td>
<td>8 years (approx.)</td>
</tr>
<tr>
<td></td>
<td>Age 50+ eligible (mean age 64, range not reported)</td>
<td>2 × 2 × 2 design. Study groups: vitamin E (n = 3659) vitamin C (n = 3673) vitamin E + vitamin C (n = 3656)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB: Patients were also randomised to beta-carotene, terminated early, no data reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lippman 2009 (SELECT)</td>
<td>General population (men only)</td>
<td>Selenium 200 µg/day and/or vitamin E 400 IU/day</td>
<td>Placebo (see left for study groups)</td>
<td>5.5 years (approx)</td>
<td>5.5 years (approx)</td>
</tr>
<tr>
<td></td>
<td>Age 50+ eligible (median 62–63 in all groups, range not reported)</td>
<td>2 × 2 design. Study groups: selenium (n = 8910) vitamin E (n = 8904) selenium + vitamin E (n = 8863) placebo (n = 8856)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lin 2009 (WACS)</td>
<td>General population (women only, at high risk of cardiovascular disease)</td>
<td>2 × 2 × 2 study design. Total n = 8171 participants, randomised to eight study groups with the following interventions alone or in combination: vitamin C (500 mg/day), vitamin E (600 IU every other day) beta-carotene (50 mg every other day) placebo</td>
<td>Placebo (see left for study groups)</td>
<td>9 years</td>
<td>9 years</td>
</tr>
<tr>
<td></td>
<td>Age 40+ eligible (mean 60, range not reported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee 2005, Lee 1999 (Women's Health Study)</td>
<td>General population (women only)</td>
<td>Vitamin E (600 IU every other day) and/or beta-carotene (50 mg every other day) and/or aspirin (100 mg every other day)</td>
<td>Placebo (see left for study groups)</td>
<td>10 years (aspirin and vitamin E)</td>
<td>10 years (aspirin and vitamin E)</td>
</tr>
<tr>
<td></td>
<td>Age 45+ eligible (mean 55, range not reported)</td>
<td>2 × 2 × 2 study design</td>
<td>2 years (beta-carotene)</td>
<td>4 years (beta-carotene)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Population and age</td>
<td>Intervention (n randomised)</td>
<td>Control (n randomised)</td>
<td>Treatment duration</td>
<td>Follow-up duration</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Lonn 2005 (HOPE-TOO Study)(^1)</td>
<td>General population (male or female, history of cardiovascular disease or diabetes with one cardiovascular risk factor) aged 55+ eligible (mean 66, range not reported)</td>
<td>Vitamin E 400 IU/day (n = 4761) Factorial trial; approximately 50% of participants in both vitamin E and placebo groups also received ramipril angiotensin-converting enzyme inhibitor, 10 mg/day</td>
<td>Placebo (n = 4780) (half received ramipril also)</td>
<td>6 years</td>
<td>7 years (approx.)</td>
</tr>
<tr>
<td>Goodman 2004 (CARET Study)(^1)</td>
<td>General population (smokers, former smokers and workers exposed to asbestos at high risk of developing lung cancer) age: mean 57 for asbestos cohort; mean 58 for smokers cohort</td>
<td>Vitamin A 25,000 IU and beta-carotene 30 mg/day (n = 9420)</td>
<td>Placebo (n = 8894)</td>
<td>7 years (approx.)</td>
<td>10 years (approx.)</td>
</tr>
<tr>
<td>Hercberg 2004 (SU.VI.MAX Study)(^1)</td>
<td>General population (men and women) age 35–60 years eligible (mean 48.95, range not reported)</td>
<td>Vitamin C 120 mg/day + vitamin E 30 mg/day + beta-carotene 96 mg/day + selenium 100 µg/day + zinc 20 mg/day (n = 6481)</td>
<td>Placebo (n = 6536)</td>
<td>7 years</td>
<td>7.5 years</td>
</tr>
<tr>
<td>Zhu 2003(^1)</td>
<td>Patients with atrophic gastritis age 28–77 years eligible (mean 55–57 years in all groups)</td>
<td>Folic acid 20 mg/day for 1 year then 20 mg twice weekly for 1 year; vitamin B(_12) 1 mg/month for 1 year then 1 mg every 3 months for 1 year (n = 44)</td>
<td>Placebo (n = 54)</td>
<td>2 years</td>
<td>6 years</td>
</tr>
</tbody>
</table>

\(^1\) Placebo and active treatment groups received a factorial design. Placebo group and active treatment groups received similar amounts of vitamin A, beta-carotene, vitamin E, and selenium.
<table>
<thead>
<tr>
<th>Study</th>
<th>Population and age</th>
<th>Intervention (n randomised)</th>
<th>Control (n randomised)</th>
<th>Treatment duration</th>
<th>Follow-up duration</th>
</tr>
</thead>
</table>
| **Virtamo 2003/ Malila 1999 (ATBC Study)**³³⁻³⁶ | General population (male, smokers)
Age range 50–69 (mean 57) | Vitamin E 50 mg/day and/or beta-carotene 20 mg/day
2 × 2 design: Study groups:
vitamin E (n=7286 for CRC analysis; n=3890 for adenoma analysis)
beta-carotene (n=7282 for CRC analysis; n=3883 for adenoma analysis)
vitamin E + beta-carotene (n=7278 for CRC analysis; n=3878 for adenoma analysis) | Placebo (n=7287 for CRC analysis; n=3887 for adenoma analysis) | 6 years (approx.) | 12 years |
| **Duffield-Lillico 2002 (NPCT)**³⁷⁻³⁹ | General population (history of skin cancer)
Age 18–80 eligible (mean 63, range not reported) | Selenium 200 µg/day (n=653) | Placebo (n=659) | 4 years (approx.) | 7–8 years |
| **HPS Group 2002 (HPS)**^{114,140,141} | General population (males and females, history of coronary disease, other occlusive arterial disease, diabetes and non-fasting blood total cholesterol concentrations of at least 3.5 mmol/l)
Age range 40–80 years (mean not reported) | Vitamin C 250 mg/day + vitamin E 600 mg/day + beta-carotene 20 mg/day (n=10,269)
Factorial trial; approximately 50% of participants in both intervention and placebo groups also received simvastatin, 40 mg/day | Placebo (n=10,267) (half received simvastatin also) | 5 years (approx.) | 5 years |
| **Hennekens 1996 (PHS)**⁴⁰ | General population (male physicians)
Age 40–84 (mean 53) | Beta-carotene: 50 mg on alternate days, (n=11,036)
(Aspirin 325 mg every other day. Aspirin component terminated early – after 5 years – and participants could then take open-label aspirin) | Placebo (no beta-carotene), n=11,035 (half received aspirin also) | 12 years for beta-carotene | 12 years |
FIGURE 11 Antioxidants: meta-analyses (general population or low-risk population). Incidence of colorectal cancer: (a) any antioxidants (± aspirin, simvastatin, ramipril) versus no antioxidants; (b) vitamin C versus no vitamin C (adjusted for other antioxidants); (c) vitamin E alone versus placebo alone; (d) vitamin E versus no vitamin E (adjusted for other antioxidants); (e) selenium alone versus placebo alone; (f) beta-carotene (± aspirin) versus no beta-carotene: studies with event data; (g) beta-carotene (± aspirin and adjusted for other antioxidants) versus no beta-carotene: studies with or without event data.
FIGURE 11 (continued) Antioxidants: meta-analyses (general population or low-risk population). Incidence of colorectal cancer:

(d) any antioxidants (± aspirin, simvastatin, ramipril) versus no antioxidants; (b) vitamin C versus no vitamin C (adjusted for other antioxidants); (c) vitamin E alone versus placebo alone; (d) vitamin E versus no vitamin E (adjusted for other antioxidants); (e) selenium alone versus placebo alone; (f) beta-carotene (± aspirin) versus no beta-carotene: studies with event data; (g) beta-carotene (± aspirin and adjusted for other antioxidants) versus no beta-carotene: studies with or without event data.
(including CRC) was analysed in a Cochrane systematic review by Bjelakovic et al. (2008).114,117

Quality assessment

Allocation concealment was unclear in two studies109,118 and adequate in the remaining ten studies (see Appendix 2, Table 55). All studies were randomised; however, the generation of the randomisation sequence was not described in the studies reported by Lin and Zhu.109,118 All studies reported adequate blinding in terms of patients and caregivers. Six trials stated that they were double-blind but did not state whether it was the caregiver or, outcome assessor or analyst who was blinded during the trial in addition to the patient (see Appendix 2, Table 55). Five studies included all patients that were randomised in the analyses (Lonn, Lee, Zhu, Virtamo, and Hennekens).109,122,125,133,142 The remaining seven studies excluded between 0.3% and 12% from their analyses.

Outcome data

Effectiveness

Effectiveness results for antioxidants in the general population (or populations with no increased risk for CRC) are shown in Figure 11 and Table 27.

Incidence of any adenoma

Malila et al. (15,538 participants in analysis) compared any antioxidant (alone or in any combination) with placebo.134 There was no significant difference between groups in the relative risk of developing at least one adenoma (RR 1.47, 95% CI 0.97 to 2.23, \(p = 0.07 \)). The absolute risk difference was 0.00 (95% CI: 0.00 to 0.01 \(p = 0.04 \)).

Incidence of advanced adenoma

No studies of antioxidants in the low-risk population reported incidence of advanced adenoma.

Incidence of colorectal cancer

Nine studies (148,922 participants in analysis) compared any antioxidant (alone or in any combination) against no antioxidant (Figure 11a).109,116,122,127,130,133,134,137,140 A meta-analysis demonstrated no significant difference between groups in the relative or absolute risk of developing CRC (RR 1.00, 95% CI 0.88 to 1.13, \(p = 0.94 \); RD 0.00, 95% CI 0.00 to 0.00, \(p = 0.94 \)). There was a low level of statistical heterogeneity (\(I^2 = 25\% \) and \(F = 24\% \), respectively).

A number of discrete analyses were undertaken for different combinations of antioxidants (see Table 27 and Figure 11b–g). Of the 14 analyses undertaken, only two provided statistically significant results. In the ATBC study, Malila found a 74% relative increase in the risk of developing at least one adenoma in participants receiving vitamin E compared with placebo alone (RR 1.74, 95% CI 1.09 to 2.79, \(p = 0.02 \)).134 Malila found that there was a 63% relative increase in the risk of developing at least one adenoma in participants receiving vitamin E and beta-carotene compared with placebo alone (RR 1.63, 95% CI 1.01 to 2.63, \(p = 0.04 \)).134 However, given the small numbers of both participants and events, as well as the large number of separate analyses (uncorrected for repeated significance testing), these results should be treated with caution. The remaining 12 analyses showed no statistically significant difference between the intervention and placebo groups; the intervention was neither effective nor harmful (Table 27).

Compliance

All 12 studies reported a compliance rate for the intervention group. Seven studies provided average compliance rates over the whole trial period that ranged between 73 and 95%.109,116,122,127,133,135,136 Lin, Lee and Duffield-Lillico determined compliance by patient self-report alone.118,122,137 Goodman determined compliance by pill counting for 85% of participants and self-report for 15% of participants.127 Zhu and Malila 1999/Virtamo 2003 used pill counting and random blood sampling109,135,134 whereas the HPS employed pill counting alone.140 Hercberg and Hennekens provided end of trial compliance rates that were 74% and 80% respectively.130,142 Five studies provided compliance rates at the start or during the trial and at the end of the trial.113,116,118,122,125 Initial compliance rates in these studies ranged between 76 and 94.2%. Final compliance rates ranged between 65 and 89.2%.

Adverse effects

Seven studies did not report adverse events. Gaziano reported a 74% increased risk in haemorrhagic strokes for the vitamin E intervention group when compared with the placebo group [hazard ratio (HR) 1.74, 95% CI 1.04 to 2.91].113 Lippmann reported a statistically significant increase in alopecia and grade 1–2 dermatitis in the selenium group.116 Lee reported a 6% increase in the risk of epistaxis in the vitamin E group compared with the placebo group (RR 1.06, 95% CI 1.01 to 1.11; \(p = 0.02 \)).122 Zhu reported two false jaundices in the beta-carotene group.
TABLE 27 Antioxidants: summary of results (general population or low-risk population)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention (I)</th>
<th>Control (C)</th>
<th>Outcome</th>
<th>No. of studies</th>
<th>Follow-up (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of any adenoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malila (Virtamo)</td>
<td>Any antioxidant (vitamin E and/or beta-carotene)</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Malila (Virtamo)</td>
<td>Vitamin E alone</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Malila (Virtamo)</td>
<td>Beta-carotene alone</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Malila (Virtamo)</td>
<td>Vitamin E + beta-carotene alone</td>
<td>Placebo alone</td>
<td>Adenoma</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Incidence of colorectal cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, Duffield-Lillico, HPS, Hennekens, SU.VI.MAX, Lippman, Virtamo, CARET, HOPE-TOO</td>
<td>Any antioxidant (± aspirin, simvastatin, ramipril)</td>
<td>No antioxidant (± aspirin, simvastatin, ramipril)</td>
<td>CRC</td>
<td>9</td>
<td>5, 5.5, 6, 7–8, 10, 12, 12</td>
</tr>
<tr>
<td>Virtamo, Lippman</td>
<td>Vitamin C (adjusted for other antioxidants; studies with no event data)</td>
<td>No vitamin C (adjusted for other antioxidants)</td>
<td>CRC</td>
<td>2</td>
<td>8, 9</td>
</tr>
<tr>
<td>Virtamo, Lippman</td>
<td>Vitamin E alone (studies with event data)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>2</td>
<td>5.5, 12</td>
</tr>
<tr>
<td>Gaziano, HPS, Virtamo, HOPE-TOO, Lee, Lin</td>
<td>Vitamin E (adjusted for other antioxidants; studies with or without event data)</td>
<td>No vitamin E (adjusted for other antioxidants)</td>
<td>CRC</td>
<td>6</td>
<td>5.5, 7, 8, 9, 10, 12</td>
</tr>
<tr>
<td>Gaziano, Lin</td>
<td>Selenium alone</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>2</td>
<td>5.5, 7–8</td>
</tr>
<tr>
<td>Hennekens, Virtamo, Zhu</td>
<td>Beta-carotene (± aspirin; studies with event data)</td>
<td>No beta-carotene (± aspirin)</td>
<td>CRC</td>
<td>3</td>
<td>6, 12, 12</td>
</tr>
<tr>
<td>Hennekens, Virtamo, Zhu, Lin</td>
<td>Beta-carotene (± aspirin, and adjusted for other antioxidants; studies with or without event data)</td>
<td>No beta-carotene (± aspirin, and adjusted for other antioxidants)</td>
<td>CRC</td>
<td>4</td>
<td>6, 9, 12, 12</td>
</tr>
<tr>
<td>Virtamo</td>
<td>Vitamin E + beta-carotene alone</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>CARET</td>
<td>Vitamin A + beta-carotene alone</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Lippman</td>
<td>Vitamin E + selenium alone</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>HPS</td>
<td>Vitamins C, E + beta-carotene (± simvastatin)</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>SU.VI.MAX</td>
<td>Vit CE + beta-carotene + selenium + zinc</td>
<td>Placebo alone</td>
<td>CRC</td>
<td>1</td>
<td>7.5</td>
</tr>
</tbody>
</table>
TABLE 27 Antioxidants: summary of results (general population or low-risk population) (continued)

<table>
<thead>
<tr>
<th>Studies</th>
<th>I: n</th>
<th>I: N</th>
<th>C: n</th>
<th>C: N</th>
<th>RR</th>
<th>LCI</th>
<th>UCI</th>
<th>I² (%)</th>
<th>RD</th>
<th>LCI</th>
<th>UCI</th>
<th>P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of any adenoma</td>
<td></td>
</tr>
<tr>
<td>Malila,133–136 (Virtamo)</td>
<td>119</td>
<td>11,651</td>
<td>27</td>
<td>3887</td>
<td>1.47</td>
<td>0.97</td>
<td>2.23</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>N/C</td>
</tr>
<tr>
<td>Malila,133–136 (Virtamo)</td>
<td>47</td>
<td>3890</td>
<td>27</td>
<td>3887</td>
<td>1.74</td>
<td>1.09</td>
<td>2.79</td>
<td>N/C</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>N/C</td>
</tr>
<tr>
<td>Malila,133–136 (Virtamo)</td>
<td>28</td>
<td>3883</td>
<td>27</td>
<td>3887</td>
<td>1.04</td>
<td>0.61</td>
<td>1.76</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>N/C</td>
</tr>
<tr>
<td>Malila,133–136 (Virtamo)</td>
<td>44</td>
<td>3878</td>
<td>27</td>
<td>3887</td>
<td>1.63</td>
<td>1.01</td>
<td>2.63</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>N/C</td>
</tr>
<tr>
<td>Incidence of colorectal cancer</td>
<td></td>
</tr>
<tr>
<td>Zhu,109,110 Duffield-Lillico,137–139 HPS,114,140,141 Hennekens,142 SU.VI.MAX,114,130–132 CARET,114,127,128 Virtamo,133–136</td>
<td>981</td>
<td>90,744</td>
<td>673</td>
<td>58,178</td>
<td>1.00</td>
<td>0.88</td>
<td>1.13</td>
<td>25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>24</td>
</tr>
<tr>
<td>Gaziano,113 Lin118–120</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>0.84</td>
<td>0.64</td>
<td>1.10</td>
<td>0</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Virtamo,133–136 Lippman116</td>
<td>142</td>
<td>16,023</td>
<td>135</td>
<td>15,983</td>
<td>1.05</td>
<td>0.83</td>
<td>1.33</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>N/C</td>
</tr>
<tr>
<td>Gaziano,113 HOPE-TOO,107,125 Lee,69,70,123,123 Virtamo,133–136</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>0.99</td>
<td>0.86</td>
<td>1.14</td>
<td>0</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Duffield-Lillico,137–139 Lippman116</td>
<td>72</td>
<td>9373</td>
<td>79</td>
<td>9325</td>
<td>0.77</td>
<td>0.37</td>
<td>1.62</td>
<td>68</td>
<td>−0.01</td>
<td>−0.02</td>
<td>0.01</td>
<td>75</td>
</tr>
<tr>
<td>Hennekens,142 Virtamo,133–136</td>
<td>266</td>
<td>18,436</td>
<td>250</td>
<td>18,376</td>
<td>1.09</td>
<td>0.78</td>
<td>1.51</td>
<td>54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>41</td>
</tr>
<tr>
<td>Hennekens,142 Virtamo,133–136</td>
<td>266</td>
<td>18,436</td>
<td>250</td>
<td>18,376</td>
<td>1.09</td>
<td>0.78</td>
<td>1.51</td>
<td>54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>41</td>
</tr>
<tr>
<td>Zhu,109,110</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>NR for some studies</td>
<td>1.11</td>
<td>0.84</td>
<td>1.47</td>
<td>26</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Virtamo,133–136</td>
<td>90</td>
<td>7278</td>
<td>75</td>
<td>7287</td>
<td>1.20</td>
<td>0.89</td>
<td>1.63</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>N/C</td>
</tr>
<tr>
<td>CARET,114,127,128</td>
<td>127</td>
<td>9420</td>
<td>123</td>
<td>8894</td>
<td>0.97</td>
<td>0.76</td>
<td>1.25</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>N/C</td>
</tr>
<tr>
<td>Lippman116</td>
<td>77</td>
<td>8703</td>
<td>60</td>
<td>8696</td>
<td>1.28</td>
<td>0.92</td>
<td>1.79</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>N/C</td>
</tr>
<tr>
<td>HPS,114,140,141</td>
<td>117</td>
<td>10,269</td>
<td>140</td>
<td>10,267</td>
<td>0.84</td>
<td>0.65</td>
<td>1.07</td>
<td>N/C</td>
<td>0.00</td>
<td>−0.01</td>
<td>0.00</td>
<td>N/C</td>
</tr>
<tr>
<td>SU.VI.MAX,114,130–132</td>
<td>21</td>
<td>6481</td>
<td>24</td>
<td>6536</td>
<td>0.88</td>
<td>0.49</td>
<td>1.58</td>
<td>N/C</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>N/C</td>
</tr>
</tbody>
</table>

C, control; I, intervention; I², measure of heterogeneity; LCI, lower 95% confidence limit; N/C, not calculable; RD, absolute risk difference; RR, relative risk; UCI, upper 95% confidence limit.
of one study as a result of hypercarotenemia. 109 Hennekens reported a statistically significant increase in the minor side effects of yellowing of the skin and minor gastrointestinal problems such as belching, in the beta-carotene group. 142

Ongoing studies

No ongoing studies evaluating the use of antioxidants as chemoprevention in the low-risk population were identified.

Excluded studies

Reid \textit{et al}.138 presented data on the number of participants developing at least one adenoma after receiving 200μg selenium or a placebo. This study was excluded because the participants were not certified as polyp-free at the beginning of the trial. The CRC incidence in the selenium and placebo groups in this study is included in our analyses using data from Duffield-Lillico.137

Summary of results for antioxidants

There were six studies of antioxidants (including vitamins A, C and E, beta-carotene or selenium) in individuals with a history of adenomas. Doses and combinations varied between studies. Statistically significant differences in relative risk of adenoma recurrence were not demonstrated, either when all antioxidants were analysed together or when the separate combinations were assessed separately. There were 12 studies of antioxidants in populations with no increased risk of CRC, with follow-up durations between 5 and 12 years. Across the nine studies comparing antioxidants to no antioxidants, there was no statistically significant effect on incidence of CRC. In addition, one study assessing the effect of antioxidants on adenoma incidence in the low-risk population did not demonstrate a statistically significant effect.

Of 14 discrete analyses for different combinations of antioxidants in the low-risk population, one study reported a statistically significant increase in relative risk of adenoma incidence in participants receiving vitamin E or vitamin E plus beta-carotene; however, this should be interpreted with caution because of the number of analyses undertaken. Reported side effects of antioxidants included pruritus (vitamins A, C, E), epistaxis (vitamin E), statistically significant increase in risk of haemorrhagic stroke (vitamin E), alopecia and dermatitis (selenium), yellowing of the skin and belching (beta-carotene). Other reviews have shown that antioxidants did not reduce gastrointestinal cancer incidence (beta-carotene and vitamin A possibly increasing the risk),114 and that vitamin A, vitamin E and beta-carotene may increase overall mortality.156

Discussion of clinical effectiveness evidence

Four studies of aspirin (81–325 mg/day) versus no aspirin in individuals with a history of adenomas (three studies) or history of CRC (one study) demonstrated a statistically significant 21% reduction in the relative risk of adenoma recurrence. There was also a significant 34% reduction in incidence of advanced adenomas when comparing aspirin with no aspirin (this was no longer significant when comparing aspirin alone vs placebo alone). Aspirin combined with folic acid produced a non-statistically-significant reduction in adenomas and advanced adenomas. Of the four studies of aspirin in the general population, two large studies giving a relatively low dose of aspirin (100–325 mg every other day) showed no effect on CRC over a follow-up period of 5–12 years. Two smaller studies giving a higher dose of aspirin (300–1500 mg/day) showed no effect on CRC over the first 10 years of follow-up, but demonstrated a significant 26% reduction in CRC incidence over the full 23-year follow-up period, and an even greater reduction when analysing years 10–19 only. Aspirin (600 mg/day) was assessed in a single study of HNPCC patients, which reported no statistically significant reduction in adenoma incidence or CRC incidence after 2.5 years of follow-up, but did report a significant reduction in time to first HNPCC cancer after 4 years of follow-up. Aspirin (600 mg/day) was also assessed in a single study of FAP patients; a preliminary report (so far under-recruited) showed no significant reduction in polyp number but a possible reduction in polyp size. Aspirin is associated with an increased risk of upper gastrointestinal toxicity including nausea and dyspepsia, peptic ulcers and gastrointestinal bleeding, as demonstrated in the larger studies included here and in a review which collated systematic reviews of adverse effects of aspirin,76 with higher aspirin doses being associated with greater risk of toxicity. Previous studies, particularly in individuals at higher risk of cardiovascular disease, have indicated that aspirin may reduce the risk of myocardial infarction and ischaemic stroke but increase the risk of haemorrhagic stroke.

In terms of non-aspirin NSAIDs, two studies of celecoxib (400 mg/day) in individuals with a history of adenomas demonstrated a statistically
significant 34% reduction in the relative risk of adenoma recurrence and a statistically significant 55% reduction in the relative risk of advanced adenoma incidence. There were no studies assessing the effect of NSAIDs on CRC incidence in the general population. A small study of patients with the FAP genotype taking sulindac showed a non-statistically-significant reduction in adenoma incidence, while five studies of NSAIDs (sulindac, celecoxib or tiracoxib) in FAP patients with existing adenomas demonstrated reductions in polyp number and size, some statistically significant. The two celecoxib trials in individuals with a history of adenomas were stopped early because of an increased risk of serious cardiovascular events, which was statistically significant in one of the studies. A review that collated systematic reviews of adverse effects also demonstrated increased risk of serious cardiovascular events, the risk being greatest in patients with pre-existing cardiovascular risk factors. Two COX-2 inhibitors, rofecoxib and valdecoxib, were recently withdrawn from use as the result of concerns about their cardiovascular toxicity; a study of rofecoxib was therefore excluded from this review. COX-2 inhibitors may also increase the risks of hypertension and renal toxicity. NSAIDs can also cause upper gastrointestinal toxicity, although the risk is lower for COX-2 inhibitors than for some other types of NSAIDs.

Two studies of folic acid (0.5–1.0 mg/day) in individuals with a history of adenomas showed no statistically significant effect on the relative risk of adenoma recurrence or advanced adenoma incidence. Three studies of folic acid (2.5 mg/day in two studies and 20 mg/day in one study) in populations with no increased baseline risk of CRC demonstrated no statistically significant effect of folic acid on the relative risk of CRC, with the rates being slightly higher in individuals receiving folic acid. However, the duration of follow-up was 5 to 7 years, which may not be long enough to detect an effect on cancer incidence. No studies reported any difference in serious adverse event rates between the folic acid and placebo groups (except for one study reporting a higher incidence of non-CRC in the folic acid group, which was thought to be the result of the higher baseline rate of prostate cancer in that group).

Two studies of calcium (1200–2000 mg/day) in individuals with a history of adenomas demonstrated a statistically significant 18% reduction in the relative risk of adenoma recurrence. Two studies of calcium (1000–1500 mg/day) plus vitamin D (400–1100 IU/day) in populations with no increased baseline risk of CRC demonstrated no statistically significant effect on the relative risk of CRC. However, the duration of follow-up was 4 to 7 years, which may not be long enough to detect an effect on cancer incidence. One study assessed calcium in patients with adenomas due to FAP, and reported no significant reduction in polyp number or progression. No study reported any serious adverse events associated with calcium and/or vitamin D.

There were six studies of antioxidants (including vitamins A, C and E, beta-carotene or selenium) in individuals with a history of adenomas. Doses and combinations varied between studies. No statistically significant differences in relative risk of adenoma recurrence were demonstrated either when all antioxidants were analysed together or when the separate combinations were assessed separately. There were 12 studies of antioxidants in populations with no increased risk of CRC, with follow-up durations between 5 and 12 years. Across the nine studies comparing antioxidants to no antioxidants, there was no statistically significant effect on incidence of CRC. In addition, one study assessing the effect of antioxidants on adenoma incidence in the low-risk population did not demonstrate a statistically significant effect. Of 14 discrete analyses for different combinations of antioxidants in the low-risk population, one study reported a statistically significant increase in relative risk of adenoma incidence in participants receiving vitamin E or vitamin E plus beta-carotene; however, this should be interpreted with caution because of the number of analyses undertaken. Reported side effects of antioxidants included pruritus (vitamins A, C, E), epistaxis (vitamin E), statistically significant increase in risk of haemorrhagic stroke (vitamin E), alopecia and dermatitis (selenium), yellowing of the skin and belching (beta-carotene). Other reviews have shown that antioxidants did not reduce gastrointestinal cancer incidence (beta-carotene and vitamin A possibly increasing the risk), and that vitamin A, vitamin E and beta-carotene may increase overall mortality. Observational studies have shown possible detrimental effects of antioxidant supplements on cardiovascular mortality, prostate cancer and lung cancer. As discussed by Bjelakovic et al., beta-carotene may act as a cocarcinogen, and vitamin A may have pro-oxidant abilities. The action of antioxidants in reducing free radicals has been widely discussed in terms of potential benefits, but may also have undesired effects, because free radicals are required...
in moderate concentrations for the removal of damaged cells from the body.114

In terms of study quality and internal validity, the main issue we identified for the studies in this review was the number of participants excluded from the main analyses. This was more of an issue for studies of adenoma recurrence because this outcome could only be assessed in participants who underwent a follow-up colonoscopy. Of the included studies assessing adenoma recurrence in people with a history of adenoma, two excluded less than 5% of randomised participants, 10 excluded between 5 and 20%, and four (all of which were studies of antioxidants) excluded more than 20%. In studies of CRC incidence in the low-risk population, the majority of studies analysed all (or nearly all) randomised participants, while five studies (mostly of antioxidants) excluded 5–20%. Of studies in people with FAP or HNPCC, three excluded less than 5% of randomised participants, three excluded 5–20%, four excluded more than 20%, and one was unclear. The majority of studies (though not all) described the generation of the randomisation sequence and method of allocation concealment. All studies were described as blinded except for one open-label study of aspirin, with most studies reporting details of blinding. Bjelakovic \textit{et al.} undertook two reviews of antioxidants, first of trials assessing adenoma incidence, and second of trials assessing gastrointestinal cancer incidence.51,114 Interestingly, both reviews showed that studies with a high risk of bias demonstrated a statistically significant benefit of antioxidants, while studies with a low risk of bias showed a non-statistically-significant benefit which actually favoured control. We have not undertaken separate analyses of antioxidants according to study quality because antioxidants were not shown overall to have a significant benefit. The majority of the other interventions included here were assessed in too few trials for separate analyses based on study quality to be feasible. However, we did undertake a sensitivity analysis for folic acid in people with a history of adenomas, omitting one trial of particularly low quality.

In terms of external validity (generalisability of trial populations to the wider population), the average age in all studies (other than those of FAP or HNPCC patients) was between 49 and 69 years. As screening has been introduced for individuals aged 60–69 years and is currently being extended to those aged up to 74, the age of included patients appears generalisable to people who may potentially use chemoprevention. Of the studies in populations at no increased risk for CRC, some were conducted in the general population, and others in specific risk groups for other conditions. Three studies of antioxidants and/or folic acid and one study of aspirin involved participants with cardiovascular risk factors, one study of antioxidants and folic acid involved participants with atrophic gastritis, two studies of antioxidants involved smokers or people with asbestos exposure, and one study of antioxidants involved people with a history of skin cancer.

Compliance is an important issue for any intervention which is preventive rather than curative and which may potentially be recommended for use over an extended period of time. Although measures of compliance differed between studies, approximately 60–100% of patients across the different studies were reported as taking the majority of study medications at the latest time point reported, both in the intermediate-risk and low-risk populations. Five of eight studies of aspirin, and both studies of non-aspirin NSAIDs, selected the most compliant participants during an active or placebo run-in phase before randomisation, which may have increased estimates of compliance relative to non-trial populations.

The majority of studies in people with a history of adenoma only evaluated surrogate outcomes (adenoma and advanced adenoma incidence). Robust data on CRC incidence could not be obtained from these studies because of the relatively small number of participants and relatively short follow-up duration. The definition of advanced adenoma varied slightly between studies; most used a definition that included adenomas with a diameter \geq 1 cm, villous or tubulovillous adenomas, and invasive cancer, whereas other studies reported separate data based on size or histological criteria. Although the existence of an adenoma–carcinoma sequence is widely described, the proportion of CRC that develop from pre-existing adenomas is not known, and a proportion of patients with colorectal adenomas will never develop invasive cancer.51,137

It has been reported that the development of an adenoma into CRC may have a natural history of 10–15 years.158 Therefore, it is unclear at present whether interventions given for a relatively short duration can interrupt this sequence, and also how long the follow-up duration needs to be to detect an effect on CRC incidence. For example, studies of aspirin showed no effect on CRC over
the first 10 years of follow-up but a significant effect over years 10–19 (although this analysis was partly confounded by differing doses and durations of treatment).21 Regarding the included trials of partly confounded by differing doses and durations of treatment.

There was some heterogeneity within our analyses, possibly as the result of differences in the duration of treatment and follow-up (particularly in the general population studies assessing CRC), sample sizes, doses and combinations of agents, and compliance rates. For example, there was relatively high heterogeneity between studies of antioxidants (which varied widely in terms of combinations and doses of agents); between general population studies of calcium (which varied in sample size, doses, duration of treatment and follow-up, and compliance rates); and between studies of folic acid (which varied in dose and sample size in the intermediate-risk population, and in age and gender of participants in the low-risk population). In terms of the studies assessing adenoma recurrence, there may also have been differences in colonoscopy methods and accuracy.

We chose to exclude observational data from this analysis because of the potential biases arising from lack of randomisation and blinding. Some of the interventions discussed in this assessment have shown effects in observational studies that have not been replicated in RCTs. Cohort studies indicated that regular use of aspirin is associated with a 22\% relative risk reduction for CRC (RR 0.78, 95\% CI 0.65 to 0.97); benefits were more evident when aspirin was used at higher doses and for periods longer than 10 years.76 Cohort studies of non-aspirin NSAIDs also showed a reduction in relative risk for CRC of 39\% (RR 0.61, 95\% CI 0.48 to 0.77).88 The Nurses’ Health Study found that folic acid in green vegetables was associated with a modest reduction in risk of colon cancer, while folic acid supplementation had an even greater effect which increased over time. After 15 years, the incidence of colon cancer in those who regularly took folic acid was less than one-quarter of the incidence among those who did not (15 vs 68 new cases per 10,000 women aged 55 to 69 years). Other studies have also shown inverse associations between folate intake and colon cancer.150 Low selenium intake (reflected in low serum selenium levels) has been shown to be associated with higher rates of colon cancer.160

Other agents such as curcumin45 and omega-3 fatty acids46,161 have also begun to be assessed for potential roles in chemoprevention, but were not included in this assessment because only preliminary data exist. Observational evidence has suggested that statins may reduce the risk of CRC,162,163 However, the randomised HPS study of simvastatin (with or without antioxidants) in adults with cardiovascular risk factors showed no effect on gastrointestinal cancer incidence (RR 1.02, 95\% CI 0.85 to 1.23),141 and in a randomised trial of pravastatin in elderly patients with cardiovascular risk factors, the hazard ratio for gastrointestinal cancer incidence was 1.46 (95\% CI 1.00 to 2.13, p = 0.053).164 Therefore, the effect of statins on CRC is currently uncertain.165

Some interventions (aspirin, NSAIDs and calcium) had a statistically significant effect in reducing adenoma recurrence in individuals with a history of adenoma. Further research would be useful to investigate the longer-term risk–benefit balance in this population; for example, whether there is a dose level that gives a significant benefit without unacceptable toxicity, what treatment durations are required, whether an effect on CRC can be demonstrated, and for how long the benefits are maintained after the intervention is stopped. In terms of the general population, it is important to consider the risk–benefit balance of chemopreventive strategies, and also to consider the relative benefit of chemoprevention when compared with, for example, action to increase compliance with screening programmes.48 There is also a need for studies that include combinations of chemopreventive agents.

Conclusions for clinical effectiveness

Aspirin and celecoxib may reduce recurrence of adenomas and incidence of advanced adenomas in individuals with an increased risk of CRC due to a history of adenomas, and COX-2 inhibitors may decrease polyp number in patients with FAP. There is some evidence for aspirin reducing the incidence of CRC in the general population, although this effect was only observed in studies involving at least 300 mg/day aspirin with a follow-up duration greater than 10 years.21 There is an absence of long-term follow-up data for lower doses of aspirin or for other NSAIDs. Both aspirin and NSAIDs are associated with adverse effects, and so the risk–benefit ratio would have to be carefully considered
for each population before these agents could be recommended for chemoprevention. Calcium may also reduce adenoma recurrence in individuals with a history of adenomas; although studies of calcium and/or vitamin D in the general population did not demonstrate a significant effect on CRC, their follow-up durations were relatively short. Folic acid and antioxidants (vitamins A, C, E, beta-carotene and selenium) were not shown to reduce adenoma or CRC incidence, with some studies indicating an increase in these outcomes.

There are a number of uncertainties relating to the evidence of effectiveness. It is unclear whether the treatment durations and follow-up durations of existing studies are sufficient to detect any effect on CRC incidence. Therefore, the data on CRC are less robust than the data on the incidence of adenomas. In addition, careful consideration must be given to the balance between benefits and risks when considering any of these interventions as chemopreventive agents.
Aims of review of qualitative data

The aim of the review of qualitative evidence was to explore adults’ views regarding the taking of agents or supplements that may be used in the chemoprevention of CRC. The interventions in question are anti-inflammatory agents (NSAIDs, aspirin), vitamins, minerals, folate, selenium, calcium and dietary supplements generally.

Methods

A systematic search was performed to identify relevant studies. The inclusion and exclusion criteria were as follows.

Inclusion and exclusion criteria

Population/setting:
- adults only
- UK only (first search and screen); non-UK (second search and screen).

Interventions:
- anti-inflammatory agents (NSAIDs, aspirin), micronutrients (vitamins, minerals, folate, selenium, calcium) and dietary supplements generally.

Outcomes:
- attitudes, perceptions and beliefs surrounding the taking of such agents and supplements.

Study designs:
- qualitative: interviews, focus groups, open-ended questionnaires
- quantitative (satisfaction surveys).

Other:
- English language only
- dates: 2003 onwards.

Exclusion criteria:
- studies excluded if they do not fulfil the above criteria.

Identification and screening of studies

Two searches were performed by an information specialist (D Papaioannou) after the development and piloting of an appropriate search strategy. The first strategy sought studies that corresponded to the target population for the quantitative review, i.e. attitudes towards the stated agents reported in UK studies from the last 5 years. Consequently, the search used terms describing the agents of interest: NSAIDs, aspirin, vitamins, minerals, folate, selenium, calcium and dietary supplements generally, combined with a published, validated filter for identifying qualitative studies, together with the Medical Subject Headings (MeSH) term ‘qualitative research’, and a pragmatically developed filter to identify UK studies (see Appendix 1 for the MEDLINE search strategy).

The following databases were searched for published and unpublished material: MEDLINE, PREMEDLINE, CINAHL, EMBASE, AMED, ASSIA, IBSS, PsycINFO, Science Citation Index, and Social Science Citation Index. Searches for recently completed and unpublished research or grey literature were conducted using the Health Management Information Consortium (HMIC) and the King’s Fund database. Searches were performed for citations from 2003 onwards, to increase relevance to current views and attitudes.

Three reviewers (C Carroll, A Booth, K Cooper) each screened a third of the citations for relevance.
Review of qualitative data

(based on the inclusion criteria) and any references identified for potential inclusion were discussed within the review team. Disagreements were either resolved by discussion or the full paper was retrieved to make a definitive judgment. Full papers of all relevant and potentially relevant citations were then screened using the same process.

This search (screen 1) produced only five papers that satisfied the initial UK-only inclusion criteria:167–171 four of the studies focused on aspirin/NSAIDs168–171 and one focused on folic acid;167 none considered other agents or supplements, and no population used the agents for chemoprevention.

Given the apparent limitations of the sample, a decision was made to broaden the search beyond the original proposed scope of the review, to identify non-UK papers exploring people’s views of taking any of these agents for the prevention or chemoprevention of CRC. This second search combined free text terms and related MeSH keywords for prevention and chemoprevention, with a filter for CRC, and the published, validated filter for identifying qualitative studies, with the addition of the MeSH term ‘qualitative research’, cited above (see Appendix 1 for an example search strategy). The following databases were searched for published and unpublished material from 2003 onwards: MEDLINE, PREMEDLINE, CINAHL, EMBASE, AMED, ASSIA, IBSS, PsycINFO, Science Citation Index, and Social Science Citation Index. Searches for recently completed and unpublished research or grey literature were conducted on HMIC and the King’s Fund database.

The same process of study screening described above was followed for the results of this second search except for removal of the limitation to studies performed in the UK (screen 2). No non-UK studies were found to meet the revised inclusion criteria. The team therefore decided to revisit the original set of references from the first search (screen 3), but this time removed the UK-only limitation that had formerly been employed in screen 1. This resulted in the identification of 10 new non-UK studies that did satisfy the revised criteria (screen 3). The reference lists of all included studies were checked for additional, relevant studies, and some supplementary, unstructured, non-systematic searching testing various, different combinations of terms was performed by two members of the project team (A Booth, K Cooper). These supplementary searches were not intended to be sensitive or comprehensive, but were undertaken as a means of identifying additional studies that may be relevant.

The overall aim of this iterative, pragmatic approach to searching was to identify a set of studies providing relevant information on views and attitudes towards the taking of chemopreventive agents.

Data extraction strategy

The resulting included studies were extracted using a form developed specifically for this review (see Appendix 3), and piloted on one included paper.

Critical appraisal strategy

The quality of included studies was assessed using a number of criteria derived from relevant critical appraisal checklists, principally for qualitative studies and surveys, the most dominant study designs.172–174 Using a small number of key quality assessment criteria, so-called prompts, that apply universally to qualitative studies, rather than appraising studies using large numbers of potentially irrelevant checklist questions, has been recommended as an approach for critical appraisal of qualitative studies.175 It may not always be appropriate to exclude qualitative research studies simply on the basis of quality assessment of the study design175,176 so the aim of this assessment was to comment generally on the relative quality of the included studies, based on the following criteria common to the cited checklists for both types of studies described above: the reporting of their sampling strategies, and the reporting and conduct of methods of data collection and analysis. Satisfactory, good or very good studies provided details on all or most of these criteria, and the least good studies might only report on perhaps as few as one. The aim of this assessment was to explore quality as an explanation for any differences in the results of otherwise similar studies, and to consider its impact on the internal validity of the review. This is an accepted approach for quality assessment in the systematic review of qualitative data.177

Evidence synthesis methods

Data for analysis consisted of either verbatim quotations from study participants or findings reported by authors that were clearly supported by study data. The latter included qualitative data from surveys, such as ‘75% of respondents said that
they were concerned about side effects of NSAIDs' or ‘27% of respondents reported that the views of family and friends affected their decision-making’.

Following discussions within the team regarding the competing merits of a grounded theory-type approach (starting with a completely blank sheet) and an augmentative approach (building on an existing model or framework) the decision was to go with the latter, a combination of framework analysis and framework synthesis. It was felt that a flexible framework-based approach does not mitigate against the identification or discovery of additional concepts. Indeed the existence of the best fit model could arguably be seen as privileging study-specific insights over the generic observations made within the pre-existing model. Nevertheless, the review team recognises that this approach represents a methodologically innovative middle ground on the continuum between grounded theory-type and framework-based syntheses and acknowledges the need for further evaluation.

Framework analysis involves the identification of a priori themes against which to map data from the studies identified for the review. However, in this case these predetermined themes were generated from a relevant pre-existing model in the literature, as is the case with framework synthesis. This model was identified in the following way. Key concepts (e.g. influence of family, health practitioners, media, considerations of cost etc.) were identified from the preliminary scoping literature searches and from an initial examination of articles for potential inclusion, before a definitive judgement. These concepts in combination were used to inform supplementary searches to try to identify existing models or frameworks within the general topic area of attitudes to vitamins and supplements. However, these supplementary searching processes failed to find a model or framework that was completely prespecified to the team’s satisfaction. Nevertheless they did identify a framework that represented a ‘best fit approach’ and included the majority of the key concepts. This ‘contingent’ framework formed the categories under which the data extracted from the qualitative studies were summarised. This model was a conceptual model (not evidence-based, i.e. based on the author’s views, not research) of young women’s views and attitudes to the taking of micronutrients (including vitamins, minerals). This model provided an initial framework and pre-existing themes against which to map and code the data from studies identified for this review. A list of themes was derived from the conceptual model and, if relevant, extracted data were coded against these pre-existing themes. New themes were created where data did not translate into any of the pre-existing themes. In this way, a relevant existing model acted as the basis for the synthesis and could be built-on, reduced or added to by these new data. Dixon-Woods et al. suggest that such methods are most appropriate where concepts are relatively ‘secure’ and ‘well specified’. Framework synthesis also usually excludes studies of lower quality, but this was not done in this case, and so differs from the published method.

This method of synthesis therefore used current methodological developments within qualitative data synthesis for systematic review and the production of accompanying conceptual models and frameworks. It offered a means not only to reinforce, critique and develop an existing published model, conceived for a specific population, but also, by starting from the principle of a priori determined themes rather than the generation of theory grounded in data, produced a process of synthesis that was relatively rapid when compared with certain other more interpretative forms of synthesis (e.g. thematic analysis).

Two reviewers (C Carroll, K Cooper) each extracted data from half of the included studies using a form developed for this review. The reviewers assigned data to preset themes and, where relevant, created new themes that better captured or described the data. Each reviewer then checked and examined critically the extraction and assignment of data to themes performed by the other. A third reviewer (A Booth) independently examined the extracted data and, using a framework analysis approach, generated a new list of themes, independent from the published conceptual model. The team of reviewers then discussed the data and resulting list of themes, including themes recognised from the pre-existing model and any new themes generated by the study data. A consensus was reached on which preset themes were supported by the data; whether any of the new themes identified by all three reviewers mapped into any of the preset themes or into one another; and on the finalised list of new themes. These themes or concepts were then used to develop a new, revised conceptual model, drawing on the earlier model, to describe and explain people’s views around the taking of aspirin, NSAIDs and micronutrients, such as vitamins, minerals, folate acid and other dietary supplements.
The first search of electronic databases identified 1805 citations after the removal of duplicates. From the initial screen (screen 1), five studies were found from the UK that satisfied the inclusion criteria.167–171 The second search for relevant non-UK studies identified 982 citations after the removal of duplicates. The screening of this database identified no relevant non-UK studies (screen 2). The third screen (screen 3) revisited the results of the first search, but using the revised inclusion criteria, i.e. the inclusion of non-UK studies, and identified 10 new papers, as noted above.185–194 Five further studies were identified by unstructured searching.195–199 In total, 20 studies were included. For details of the search and selection process, see the flow diagram of studies (Figure 12). No additional studies were found by reference tracking.

The characteristics of the included studies are described in Table 28. Nine studies were conducted in the USA,185,186,189,192,194–197,199 one of these was colocated in Puerto Rico,185 five were conducted in the UK,167–171,190,191,198 two in Canada187,188 and one in Germany.191 Thirteen studies evaluated adults’ views concerning the taking of vitamins and minerals,169,185,187,189–193,195–199 five studies considered aspirin or NSAIDs,168–171,194 two folic acid167,185 and two dietary supplements generally.168,188 Only four studies explored the views of participants who had either a cancer diagnosis,166,179,199 or a family history of cancer,198 but 10 of the other included studies did focus specifically on either prevention alone167 or the long-term management of chronic conditions, which included elements of prevention, including arthritis,170,194 heart disease,192,193 renal problems,188 type 2 diabetes,186 or a range of conditions.168,187,191 Most studies used interviews and/or focus groups to elicit people’s opinions and views on the taking of the relevant agents,167,168,170,185–187,189,190,195–196 eight studies used structured surveys or questionnaires.160,171,188,191,192,197–199 Nineteen of the 20 studies were of satisfactory or good reported quality, providing clarity and detail on the sampling of participants, and the collection and analysis of data. No studies failed to provide a clear description on one of more of these points. Some studies could have applied a more appropriate method than the one used (e.g. purposive rather than convenience sampling, interviews rather than surveys),169,171,186,192,194,195,197–199 although the study design was still transparent and otherwise robust in each case. Study quality cannot therefore be said to have been a moderator of the findings.

Synthesis

The following list of themes was derived from the conceptual model of factors determining use of micronutrients among women of reproductive age,182 and constituted the a priori themes against which data were extracted from included studies (Box 1).

The synthesis generated the accompanying model presented in Figure 13. This model describes the processes involved in an individual’s decision about whether or not to take NSAIDs, aspirin, folic acid, vitamins, minerals, calcium or other dietary supplements. External factors, such as the influence of health professionals and family members, and internal factors, such as a person’s own experience or health, all have an impact on an individual’s perceived need for an agent or supplement, and their subsequent decision about whether or not to take it. These processes, described in the model Figure 13, correlate with versions of the Perceived need and Decision elements of the Huffman model of micronutrient use among women, and the Contemplation and Determination elements of Prochaska and Velicer’s 1997 Stages of Change model regarding the development of health behaviours.202

A third, vital element in the decision-making process is the influence of the perceived risks or benefits associated with an agent or supplement, which appear as Benefits and Negative factors affecting use in the Huffman model.182 However, the model resulting from findings of this review highlights the even more complex nature of the influence of risk and benefit on decision-making and use. The perceived risks or benefits of an agent or supplement can either directly influence an individual’s decision to use it, or may inform a
Citations retrieved by first search of electronic databases

\((n = 1805) \)

Citations excluded after screening of title, abstracts or full papers

\((n = 1800) \)

Citations retrieved by second search of electronic databases

\((n = 982) \)

Full papers from first search satisfying inclusion criteria

\((n = 5) \)

Full papers from second search satisfying new inclusion criteria

\((n = 0) \)

Full papers from first search satisfying inclusion criteria

\((n = 5) \)

Full papers from search satisfying new inclusion criteria (i.e. not restricted to UK) after second screening of excluded papers from first search

\((n = 15) \)

Papers included from references of included studies \((n = 0) \)

and unstructured searching

\((n = 5) \)

Papers included in the review of qualitative studies

\((n = 20) \)

FIGURE 12 Flow diagram of study inclusion and exclusion.

personal assessment of the trade-off between these two elements, which in turn may also affect the decision-making process.

This process then results in the use or non-use of the agents in question, the so-called Action Stage of the Prochaska and Velicer’s 1997 model. All of the factors and processes described in this evidence-based model, determining the decision to take, and to continue to take, NSAIDs, aspirin, folic acid, vitamins, minerals, calcium or other dietary supplements, have emerged from qualitative literature published in the previous 5 or 6 years. The decision process runs from the first stages of perceived need, on the left, through decision-making itself, to final non-use or use, and maintenance of use on the right. The arrows representing Prochaska and Velicer’s 1997 Stages of Change model, below our model, flow in the same direction, capturing the similar stages and processes of contemplation, determination and action. The details of this evidence are provided as follows.
<table>
<thead>
<tr>
<th>Study details</th>
<th>Research question or objective</th>
<th>Population (and their relevance to issue of chemoprevention)</th>
<th>Agent of interest</th>
<th>Recruitment/ sampling</th>
<th>Data collection and analysis</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnes 2008<sup>10</sup> UK</td>
<td>To explore the rationale behind patients' decisions to choose topical or oral pain-relief medication</td>
<td>Older adults with knee pain (n = 30) Age 50–70+ years 18 men; 12 women Management and prevention of long-term chronic conditions</td>
<td>NSAIDs</td>
<td>Purposive samples from an RCT and related preference study on choice of topical or oral NSAIDs, to gain insight from a mixed sample in terms of choice of treatment, age, sex and GP</td>
<td>15 telephone interviews about medication preferences; 15 face-to-face interviews about adverse effects; using topic guide based on literature, brainstorming and exploratory, pilot interviews</td>
<td>Interviews are an appropriate method for eliciting people's views; topic guide for interviews was based on literature and piloting; purposive sampling was appropriate; triangulation of analysis</td>
</tr>
<tr>
<td>French 2008<sup>11</sup> UK</td>
<td>To explore beliefs about risks and necessity in taking mild analgesics</td>
<td>University students (n = 291) Age NR 104 men; 187 women Specific sample from the general population using relevant agents for short-term pain management</td>
<td>NSAIDs, aspirin</td>
<td>Convenience sample: response rate 87%</td>
<td>Validated survey: beliefs about medicines questionnaire (BMQ) Descriptive statistics and between groups tests</td>
<td>A survey (though validated) is not the most appropriate method for eliciting people's views; purposive sampling would have been more appropriate than convenience sampling; descriptive and group-based comparison statistics only, which are of limited value for 'views' as they lack depth</td>
</tr>
<tr>
<td>Tedstone 2008<sup>12</sup> UK</td>
<td>To explore consumers’ knowledge in relation to folic acid and neural tube defects, and their views on various methods to increase folic acid intake</td>
<td>Young people, especially young mothers (n = NR) Age NR Gender NR Prevention</td>
<td>Folic acid</td>
<td>Quota sampling, especially from deprived communities to ensure sociodemographic and economic balance within and between groups</td>
<td>Five focus groups (12 people in each group) using a ‘reconvened group approach’ to facilitate reflection on issues; 24 face-to-face interviews; seven friendship groups (three to six people); interviews recorded and transcribed</td>
<td>A satisfactory survey study</td>
</tr>
<tr>
<td>Wazaify 2005<sup>13</sup> UK</td>
<td>To ascertain the general public's opinion and perceptions of over-the-counter medicines</td>
<td>People aged 16 or over (n = 1000) Age 16 years or over 417 men; 583 women General population using agents/supplements</td>
<td>Aspirin, NSAIDs, vitamins, minerals</td>
<td>Members of the public who appeared to be over 16 years of age were randomly approached and asked to participate</td>
<td>Semi-structured, pretested questionnaire with 34 questions (a mix of preformulated and free-text responses) – tool was administered using a structured interview technique Descriptive statistics and between groups tests</td>
<td>Questionnaires are not the best method for eliciting people's views; interviews would have been better; questionnaire was piloted; 'random' sampling; largely descriptive statistics only; good sample size</td>
</tr>
<tr>
<td>Study details</td>
<td>Research question or objective</td>
<td>Population (and their relevance to the issue of chemoprevention)</td>
<td>Agent of interest</td>
<td>Recruitment/sampling</td>
<td>Data collection and analysis</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Townsend 2003[108] UK | To gauge participants’ feelings about long-term use of drugs (including aspirin and NSAIDs) to manage chronic multiple morbidity | Adults with multiple chronic conditions (n=23)
Age 50 years (mean)
10 men; 13 women
Management and prevention of long-term chronic conditions | NSAIDs | Purposive sampling of men and women resident in a large, socially varied (but mainly urban) area, who report high morbidity (four or more chronic conditions)
23 of 41 responded | Semi-structured interviews (no topic guide); interviews recorded and transcribed | Interviews are an appropriate method for eliciting people’s views, but no details were reported of topic guide for interviews; purposive sampling was appropriate; details of coding and analysis given |
| Huber 2004[1] Germany | To evaluate use of and attitude towards complementary and alternative medicine (CAM) and conventional medicine | Various chronic conditions (n=350)
Mean age 55 years
65% men; 35% women
Management and prevention of long-term condition | Vitamins, minerals, any CAM therapy | Purposive sampling of inpatients at a German university hospital (in cardiology, gastroenterology, oncology and psychosomatics departments); 80% response rate | Questionnaire survey based on literature and an existing questionnaire. Descriptive statistics reported only. Questions on attitudes were answered on a 5-point scale and a rating of 4 or 5 was classified as agreement for the purpose of analysis | Questionnaires are not the best method for eliciting people’s views; interviews would have been better; descriptive statistics only; good sample size |
| Porter 2008[17] USA | To explore reasons for maintenance or discontinuation of CAM therapies | Men treated for prostate cancer 2 years earlier (n = 177)
Mean age 66 years
177 men; 0 women
Management and prevention of long-term condition | Vitamins, minerals, any CAM therapy or dietary supplement | Purposive sampling from participants in another study, from cancer centre and affiliated hospitals. Response rate 79% | Questionnaire survey based on literature and prior studies. Descriptive statistics only | Questionnaires are not the best method for eliciting people’s views; interviews would have been better; descriptive statistics only |
| Lindsey 2007[16] USA, Puerto Rico | To explore beliefs and behaviours relating to vitamin use | General population from USA (n = 184) and Puerto Rico (n = 49)
Age 18–34 years (USA); 15–50 years (Puerto Rico)
0 men; 233 women | Vitamins, minerals, folic acid, dietary supplements generally | US study: sampling via telephone, range of ages and postal codes
Puerto Rico study: convenience sampling at supermarkets | US study: 24 focus groups of up to nine people in each. Puerto Rico study: five focus groups of 10–12 people each. Transcripts coded by one of the focus group moderators and one other researcher, using themes derived from the research questions and topic guide and emerging from the data. Transcripts content-analysed using NVivo and ATLAS. Each transcript coded by each coder independently, and inter-rater reliability was 0.91 | Interviews are an appropriate method for eliciting people’s views; sampling was appropriate; coding of interviews was performed by two analysts |

continued
TABLE 28 Characteristics and quality of studies reporting people’s views and attitudes towards NSAIDs and supplements (continued)

<table>
<thead>
<tr>
<th>Study details</th>
<th>Research question or objective</th>
<th>Population (and their relevance to the issue of chemoprevention)</th>
<th>Agent of interest</th>
<th>Recruitment/sampling</th>
<th>Data collection and analysis</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthews 2007<sup>19</sup> USA</td>
<td>To assess CAM use and association between medical factors (cancer and other) or psychosocial factors and CAM use</td>
<td>Breast cancer survivors, mean of 5 years beyond active medical treatment (n = 115; 69% reported current use of CAM) Age 30–78 years (mean 56) 0 men; 115 women Management and prevention of health condition</td>
<td>Vitamins, minerals, any CAM therapy or dietary supplement</td>
<td>Purposive sampling during routine clinic visits</td>
<td>Questionnaire survey via structured telephone interview, partly based on validated measures and partly on a literature review and panel of experts Descriptive statistics only</td>
<td>Questionnaires are not the best method for eliciting people’s views; interviews would have been better; descriptive statistics only. Questionnaire was partially validated A satisfactory survey study</td>
</tr>
<tr>
<td>Arcury 2005<sup>18</sup> USA</td>
<td>To explore health beliefs and behaviours surrounding CAM therapies</td>
<td>Community-dwelling older adults (n = 145) Age 70 years or over 57 men; 88 women 54 White, 48 African American; 43 Native American General population: not specifically prevention, management or long term</td>
<td>Vitamins, minerals</td>
<td>Purposive (approaching potential participants) and convenience (volunteer) sampling; and to achieve equal ethnic distribution</td>
<td>In-depth semi-structured interviews (between two and four per person, over 1 year); interviews recorded and transcribed Systematic text analysis: one author codes, one reviews and makes modifications; coded text then analysed by text analysis software; new codes</td>
<td>Interviews are an appropriate method for eliciting people’s views, but no details were given on the topic guide for interviews or its piloting; combination of purposive and convenience sampling – the latter is less appropriate for this type of study; coding of interviews was only performed by one analyst – double-coding or validation would have been better A satisfactory qualitative study</td>
</tr>
<tr>
<td>Chagan 2005<sup>19</sup> USA</td>
<td>To assess attitudes and beliefs regarding the safety and effectiveness of vitamin, mineral and herbal supplements in patients with cardiovascular diseases</td>
<td>Adult inpatients with cardiovascular diseases (n = 198; 94 supplement users and 104 non-users) Age 19–102 years (mean 60 years) 118 men; 80 women Management and prevention of long-term condition</td>
<td>Vitamins, minerals, dietary supplements generally</td>
<td>Purposive sampling via hospital physicians</td>
<td>Questionnaire survey administered via interview. Survey tool adapted from a previously published survey Descriptive statistics reported only. Attitudes and beliefs regarding the safety and effectiveness of supplements were compared between supplement users and non-users via a chi-squared test for categorical data and Student’s t-test for Likert-type scale questions</td>
<td>Questionnaires are not the best method for eliciting people’s views; interviews would have been better; descriptive statistics only; good sample size A satisfactory survey study</td>
</tr>
<tr>
<td>Study details</td>
<td>Research question or objective</td>
<td>Population (and their relevance to the issue of chemoprevention)</td>
<td>Agent of interest</td>
<td>Recruitment/sampling</td>
<td>Data collection and analysis</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Reedy 2005<sup>184</sup> USA</td>
<td>To explore reasons for taking supplements; beliefs behind taking supplements</td>
<td>Older adults with (n = 10) and without (n = 12) a history of CRC; Age 52–82 years (mean 65 years); 12 men; 10 women; 15 White; 7 Black</td>
<td>Dietary supplements generally</td>
<td>Purposive sampling from a case-control health promotion study; Response rate: 85%; 10 with a history of CRC; 12 controls</td>
<td>In-depth, semi-structured, open-ended telephone interview; interviews recorded and transcribed</td>
<td>Coding by one reviewer to identify themes and compare groups</td>
</tr>
<tr>
<td>Fraenkel 2004<sup>184</sup> USA</td>
<td>To examine the influence of medication characteristics (e.g. risks, benefits, costs, route of administration) on patients’ treatment preferences for knee osteoarthritis</td>
<td>100 older patients with symptomatic knee osteoarthritis (n = 100); Mean age 70 years; 21 men; 79 women</td>
<td>Aspirin, NSAIDs (and other treatments for osteoarthritis)</td>
<td>Purposive sampling: consecutive patients with knee osteoarthritis attending rheumatology practices</td>
<td>Interactive computer questionnaire administered during interviews. Descriptions of medication characteristics adapted from patient information sheets, and face and content validity assessed by experts and laypersons</td>
<td>Conjoint analysis to derive patients’ preferences for various medication characteristics (e.g. administration, risks, benefits, costs). The relative importance of different characteristics was expressed as a percentage of total importance</td>
</tr>
<tr>
<td>Oldham 2004<sup>184</sup> USA</td>
<td>To explore attitudes towards taking dietary supplements</td>
<td>Older women with type 2 diabetes diagnosed for at least 1 year (n = 9); Age 65 years or over 0 men; 9 women</td>
<td>Vitamins, calcium, dietary supplements generally</td>
<td>Purposive: nurse educators nominated participants who they knew met the selection criteria</td>
<td>Semi-structured interviews with open-ended questions led by an interview guide consisting of 10 pretested questions; interviews recorded and transcribed; respondent validation</td>
<td>Data analysis guided by Moustakas’s (1994)<sup>271</sup> method of analysing phenomenological data</td>
</tr>
</tbody>
</table>

Interviews are an appropriate method for eliciting people’s views, but no details were given on the topic guide for interviews or its piloting; purposive sampling was appropriate; coding of interviews was only performed by one analyst – double-coding or validation would have been better. A good-quality qualitative study.

This study mainly aimed to assess the influence of different medication characteristics on treatment preferences, rather than a more general assessment about attitudes to medications. Therefore, this study used an interactive computer questionnaire rather than, for example, interviews. Purposive sampling appropriate. A satisfactory survey study.

Interviews are an appropriate method for eliciting people’s views; interview guide had been piloted; very selective sampling, not appropriate; a limited form of respondent validation of interview text; no details on how many analysts performed coding. A satisfactory qualitative study.

continued
<table>
<thead>
<tr>
<th>Study details</th>
<th>Research question or objective</th>
<th>Population (and their relevance to the issue of chemoprevention)</th>
<th>Agent of interest</th>
<th>Recruitment/sampling</th>
<th>Data collection and analysis</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller 2003<sup>195</sup> USA</td>
<td>To explore the decision-making criteria that women use in selecting dietary supplements</td>
<td>Women who consumed a dietary supplement at least four times per week (n = 51)</td>
<td>Vitamins, calcium, dietary supplements generally</td>
<td>Convenience (volunteer) sampling; response rate 84% (nine did not fit criteria; one did not complete the interview)</td>
<td>In-store shopping interview based on a pretested verbal protocol; interviews recorded and transcribed</td>
<td>Interviews are an appropriate method for eliciting people’s views, but no details were given on the topic guide for interviews or its piloting; combination of purposive and convenience sampling – the latter is less appropriate for this type of study; coding of interviews was only performed by one analyst – double-coding or validation would have been better</td>
</tr>
<tr>
<td>Legare 2007<sup>187</sup> Canada</td>
<td>To explore women’s decision-making around the use of natural health products at menopause and to develop a decision aid</td>
<td>Menopausal or postmenopausal women (n = 40)</td>
<td>Vitamins, minerals</td>
<td>For menopausal women: purposive sampling via bulletin boards, newspapers, etc. For key informants: purposive sampling within organisations</td>
<td>Six focus groups with menopausal or postmenopausal women, plus interviews with 15 key informants. Semi-structured topic guides based on standardised questions for conducting decision-making needs assessments. Recorded and transcribed</td>
<td>Interviews are an appropriate method for eliciting people’s views; topic guide focused specifically on decision-making needs assessment; purposive sampling was appropriate; respondents validated the findings;</td>
</tr>
<tr>
<td>Spanner 2005<sup>188</sup> Canada</td>
<td>Attitudes and beliefs about, and use of, dietary supplements</td>
<td>Adults with chronic renal insufficiency (n = 100; 45 dietary supplement users, 55 non-users)</td>
<td>Dietary supplements generally</td>
<td>Purposive sampling at outpatient nephrology clinic</td>
<td>Questionnaire survey administered via interview Descriptive statistics reported only</td>
<td>Questionnaires are not the best method for eliciting people’s views; interviews would have been better; descriptive statistics only; good sample size</td>
</tr>
</tbody>
</table>
Study details

<table>
<thead>
<tr>
<th>Study details</th>
<th>Research question or objective</th>
<th>Population (and their relevance to the issue of chemoprevention)</th>
<th>Agent of interest</th>
<th>Recruitment/sampling</th>
<th>Data collection and analysis</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowan 2008<sup>19</sup> Australia</td>
<td>To assess beliefs, and reported and intended health behaviours, of unaffected men in response to information about their family history of prostate cancer</td>
<td>Men with a family history of prostate cancer (<i>n</i> = 280) Age 44% < 55 years, 32% 55–65 years, 24% 65+ years 280 men; 0 women Prevention of health condition</td>
<td>Vitamins, minerals, dietary supplements generally</td>
<td>Purposive/convenience sampling via advertisements for men with self-reported family history of prostate cancer, and from an existing study in which men were identified via relatives</td>
<td>Questionnaire survey including previously validated and new items, piloted Descriptive statistics only</td>
<td>Questionnaires are not the best method for eliciting people's views; interviews would have been better; descriptive statistics only. Questionnaire was piloted and partially validated A satisfactory survey study</td>
</tr>
<tr>
<td>Connor 2004<sup>17</sup> Australia</td>
<td>To explore attitudes to and reasons for use of alternative therapies (as part of a more general ethnographic study of health and illness)</td>
<td>General population (<i>n</i> = 111 for interviews, <i>n</i> not reported for focus groups) Age NR Gender NR General population: not specifically prevention or management</td>
<td>Vitamins, minerals, any CAM therapy</td>
<td>Convenience sampling via local sporting, church, school and social organisations and posters in post offices and shops</td>
<td>Semi-structured interviews (<i>n</i> = 111) and focus groups (<i>n</i> not reported); transcribed Data analysed by text analysis software; themes of interest further investigated by scrutinising transcripts and notes</td>
<td>Interviews are an appropriate method for eliciting people's views, but few details on the topic guide; convenience sampling less appropriate for this type of study A satisfactory qualitative study</td>
</tr>
<tr>
<td>George 2004<sup>13</sup> Australia</td>
<td>To investigate use of and beliefs about CAM</td>
<td>Patients with moderate-to-severe chronic obstructive pulmonary disease Survey: <i>n</i> = 173 (41% using CAM) Interviews: <i>n</i> = 28 (43% using CAM) Mean age 70 years 62% men; 38% women Management and prevention of long-term condition</td>
<td>Vitamins, minerals, any CAM therapy or dietary supplement</td>
<td>For survey of CAM use: data from patients in RCT For interviews: purposive sampling from an RCT and databases of respiratory patients</td>
<td>(1) Questionnaire survey to investigate frequency of use of medicines and CAM (2) In-depth interviews on beliefs about CAM. No information on development of interview topic guide. Interviews recorded and transcribed One researcher analysed transcripts for relevant content and themes using XT ANALYSIS software. Themes were verified by a second researcher and discussed among the research team</td>
<td>Interviews are an appropriate method for eliciting people's views, but few details on the topic guide; purposive sampling was appropriate; small sample size A satisfactory qualitative study</td>
</tr>
</tbody>
</table>

CAM, complementary and alternative medicine.
BOX 1 A priori themes for data extraction

| Perceived need | 1. Family factors affecting perceived need
| 2. Personal factors affecting perceived need
| 3. Media representations of perceived need |
| Decision-making | 4. Spending capacity
| 5. Media input into decision-making
| 6. Physicians input into decision-making
| 7. Family members input into decision-making
| 8. Community input into decision-making
| 9. Pharmacy input into decision-making |
| Access | 10. Access: obtaining micronutrients |
| Use | 11. Perceived benefits
| 12. Perceived risks (negative factors)
| 13. Habitual use
| 14. Intermittent use |

FIGURE 13 Conceptual model to describe views and experiences of adults concerning the taking of micronutrient supplements, aspirins and NSAIDs. Adapted from Huffman 2002 and Prochaska and Velicer 1997.
External factors affecting decision-making

Doctors and health professionals

Ten of the included studies reported people’s views of, and attitudes towards, input by health professionals into the decision-making process when deciding whether or not to take NSAIDs, vitamins and minerals or dietary supplements generally. The extent to which these professional groups influenced people’s decision-making appears to be determined by the type of agents or supplements involved. In three studies of NSAID use, people treated their doctors as the principal source of information on the taking of these agents, or the most trustworthy source, or the source of advice on dosage. In contrast, only two of seven studies exploring people’s views relating to the taking of vitamins, minerals, folic acid or complementary therapies, reported a similar perception of the authoritative nature of this professional group. The other five studies reported that people did not really want to talk to their doctors about supplement use, or that they wanted to but found them to have closed minds to alternative therapies or to be too busy to provide adequate or sufficiently long consultations on the use of these agents. Health professionals were also either seen as less trustworthy than other sources with reference to vitamins and minerals and other supplements or their advice was perceived to be less clear than required.

Family and friends

Eleven studies reported people’s views on whether or not, and how, family members and friends influenced their decision to take NSAIDs, vitamins and minerals or dietary supplements. Family and friends played two principal roles, determined in large part by whether the agents concerned were antioxidants, such as vitamins, minerals and other supplements, or if they were drugs such as NSAIDs. On the one hand, family acted as a source of information and advice about agents. This was principally the case when the agents concerned were vitamins, minerals and other supplements. Different family members and friends were often reported to be the source of conflicting information, complicating the decision-making process. However, when the agents were folic acid for pregnant women or NSAIDs, family members could also actively recommend the taking of them on the basis of their own personal experience, going beyond simply acting as a source of information or advice. The influence of family members on the decision-making process could also be implicit: people reported taking NSAIDs because these drugs enabled them to live a normal life, socially and domestically, with their family (however, it should be noted that these studies related to NSAID use as treatment for an existing condition rather than as a preventive agent). In this sense, family members also influenced people’s perceived need regarding the taking of agents, especially NSAIDs and folic acid: family members would recommend the taking of folic acid as something necessary and beneficial, and some people felt that they needed to take NSAIDs to function normally as part of their family.

Alternative therapists

Participants in four studies reported how alternative therapists influenced their decision to take vitamins, minerals and other complementary and alternative (CAM) therapies, providing information and advice. Unlike doctors and health professionals, alternative therapists were believed to be willing to spend more time with people to discuss and offer advice on supplements.

Media

The influence of media on people’s decisions whether or not to use a supplement or agent was reported in six studies, five of which concerned dietary supplements or alternative therapies, and only one of which considered NSAIDs. Several different types of media were reported to be responsible for influencing people’s decisions. The print media, including adverts, was mentioned by participants in three studies, while the internet, television and radio were each mentioned by participants in a study, all in relation to decisions to use supplements or CAM therapies. Articles and promotional literature were identified as a credible source of information by older people who used NSAIDs for symptom management.

Cost

Five studies reported that the cost of the agents or supplements could affect people’s decisions about whether or not to take them, and this applied regardless of whether the agent in question was an aspirin or NSAID, folic acid or vitamin and minerals. “Three of the five studies focused on access to these agents by general populations, rather than groups with chronic conditions or cancer: cost may be a lesser factor for those with a greater motivation to take such agents or supplements.”
Pharmacy

Two issues emerged from four studies concerning input from pharmacists. First, participants in two studies reported that recommendations and advice from pharmacists affected their use of over-the-counter medicines such as aspirin, and of vitamins and minerals. Second, participants in two studies reported wanting information on optimal dose from pharmacists; this was felt to be particularly unclear for vitamins and minerals, but also applied to NSAIDs.

Summary

The impact on supplement use of the external factors described above was not straightforward, but rather could be moderated by the credibility and clarity of the information given and its source. The need for trustworthy sources of information, regardless of agent or supplement, was raised by participants in four studies. Doctors were perceived as either very credible sources of information, or as unhelpful, depending on whether the agent in question was an NSAID or folic acid, or a dietary supplement, such as vitamins or minerals. Participants reported wanting clarity in the advice that they were given, from whatever source, but also reported that such clarity was rarely forthcoming, whether from doctors, family or the labels on supplements.

Internal factors affecting decision-making

Observation/experience

Previous positive experiences of taking either NSAIDs or vitamins and minerals have been found to be a factor affecting individuals’ decisions about whether or not to take them. However, negative experiences of both types of agent were also found to adversely affect decisions concerning use, e.g. if a supplement was perceived to have ‘not worked’ previously, or if an individual’s experience was that there was a perceived stigma to the taking of strong painkillers such as NSAIDs. Participants in three studies also reported that they decided to initiate the taking of dietary supplements as a result of a cancer diagnosis, increased risk of cancer, or the presence of other major conditions, such as heart disease. The presence of pre-existing conditions, which could be aggravated by an agent, were also found to affect decisions not to take an agent. Health status was a personal factor that was also found to influence perceived need: in a study of vitamin use, young women reported that they did not think they needed such supplements when young, but anticipated that they would need them when older. In a study of aspirin and NSAID users, those with chronic conditions were found to have stronger perceived need for the agent than those with only a temporary condition. It may be relevant that both studies reporting low perceived need involved young people who did not currently have any particular health problems or risks.

Sociodemographic factors

Four studies reported on the impact of factors such as age and gender on the decision to take NSAIDs or dietary supplements. Two studies found that young people, especially young women, were not particularly interested in taking dietary supplements, or in seeking information about them. However, a third study of young women with breast cancer found that this group were more likely to use dietary supplements and other CAM therapies than other groups. These differences may be explained by the lack of such perceived need in the studies of younger people in the general population, or young women of reproductive age, compared with the strength of perceived need among young women with breast cancer. A study of NSAID users with a mean age of 70 years reported that attitudes did not differ between people based on gender or ethnicity.

Self-efficacy

A person’s sense of control over their own health also influenced their decisions to take NSAIDs or other supplements. Older people around 50 years of age, or more, reported deciding to take NSAIDs because this enabled them to manage their pain, while participants in another study reported that the capacity to use ‘natural therapies’, such as vitamins or minerals, at their own discretion, also enabled the development of a sense of personal control. In three studies, self-efficacy also extended to perceptions that supplements were not needed: good diet was perceived to
preclude the need for supplements.185,186,196 One such study also reported that participants felt that certain ailments, such as cancer, were beyond a person’s control.186 people felt that they were taking supplements with perceived benefits, but they still became ill, and therefore control had been lost.

The balance between benefit and risk in decision-making

Perceived risks of taking agents or supplements

Nine studies reported the views of participants on their perceptions of the risks surrounding the taking of either aspirin/NSAIDs169–171,194 or vitamins, minerals, folate or other dietary supplements.167,169,185,189–191 The perception of risk was determined in large part by the agent or supplement concerned: NSAIDs prompted more frequent expressions of anxiety about likely side effects169–171,194 than vitamins, minerals185 or folate.190 There was a perception that ‘natural’ supplements had fewer side effects than medicines or other pharmaceutical agents, such as aspirin or NSAIDs.190,191 More explicit concerns about the perceived risks of taking NSAIDs included addiction, toxicity, the perception that such oral agents might affect the whole body rather than treating the required site alone, and the lack of clarity surrounding the terminology and instructions on dosage accompanying NSAIDs.170 Participants in the included studies therefore perceived greater risks from taking NSAIDs than from taking vitamins, minerals or other dietary supplements. However, a UK study also found that, despite different perceptions about the risks associated with short-term or long-term use, the decision to use NSAIDs remained largely unaffected.171 However, it should be borne in mind that the studies of NSAIDs included here related mainly to their use as treatment rather than prevention.

Perceived benefits of taking agents or supplements

Nine studies also reported the views of participants on the perceived benefits of taking either aspirin/NSAIDs168,170 or vitamins, minerals or other dietary supplements.185,186,188,190,192,195,196 Once again, the perception of benefit was determined for the most part by the agent or supplement concerned: the benefits of NSAIDs were viewed as limited: they were perceived to be beneficial for symptom control but were not seen to be a cure.168,170 By contrast, dietary supplements were perceived to have a number of benefits, such as the prevention or treatment of various conditions,185,190,192,195 including cancer186 and arthritis196 as a counter to the side effects of pharmaceutical agents;195 the improvement of health generally;188 and as an effective supplement to normal diet.185,195 Participants in the included studies therefore perceived greater benefits from taking vitamins, minerals or other dietary supplements than from taking NSAIDs.

The trade-off between benefits and risks

Participants in six studies commented on how their decision to use an agent or supplement was informed by an assessment of the perceived balance between the benefits and risks of taking the agent.167,168,170,191–193 In the case of three UK studies of NSAIDs168,170 and folic acid,167 participants reported that, despite a reluctance to take the agents, the perceived risks were acceptable or tolerable when balanced against the benefits. By contrast, participants in three studies from the USA, Germany and Australia reported their belief that ‘natural’ supplements offered benefits and had fewer side effects than conventional medicines.191–193 In one study, a participant reported that they perceived natural supplements to be as effective as conventional medicine, while having fewer adverse effects.193 The trade-off was therefore perceived to be more difficult to achieve for NSAIDs: these agents were seen as effective, but caused unpleasant side effects. By comparison, the trade-off was simpler for dietary supplements: people felt that they could experience perceived benefits while being exposed to very little risk. All studies that reported participants’ views on this risk–benefit balance focused on populations with, or at risk of, health problems, rather than general populations: this group arguably had more experience of relevant agents and their risks or side effects, and also greater motivation to use them, than the population generally.

Use and the maintenance of use

Experience of risks (side effects), benefits and the trade-off between the two

Participants in one comparatively good-quality study from the UK reported that their decision either to end their use of NSAIDs or to use them only intermittently was determined by side effects they had experienced, such as heartburn or stomach problems.170 Participants in both
this study and another study also reported that they used aspirin or NSAIDs because their experience was that these agents worked, i.e. they were effective.168,170 The experiences of those who took vitamins or other dietary supplements were less clear-cut: they either continued taking a supplement because they felt it was working in some way, as they felt better,166,168 or they discontinued use because of medical advice,197 unpleasant side effects,165,197 or because the supplement was apparently having no effect.185,197 This therefore resulted in an unfavourable risk–benefit balance.

By contrast, in one study of NSAID use, participants reported continued use because, despite experiencing side effects, they only felt able to function successfully when taking the agent:168 the balance was in favour of the benefits. However, other participants, both in this study and in a second study of NSAID users,194 reported modifying levels of use to control side effects, either by taking the agent only when required,168 or by accepting a reduced treatment effect, rather than experiencing unacceptable side effects.194 The balance was in favour of reducing the risk of adverse effects associated with the agent. Maintenance was therefore achieved, despite intermittent use, by accepting limited benefits in return for experiencing fewer side effects.

Physical properties of supplements

The physical properties of the interventions were not reported as an issue in any of the studies of NSAIDs or aspirin. However, two studies of dietary supplements identified concerns surrounding the size, smell and taste of the supplements, which acted as a barrier to their use.185,193 Similar issues were also raised concerning the concept of folate fortification of foodstuffs.167

Sociodemographic factors

Few studies reported any effect of age, gender, ethnicity or income level on the maintenance of use of dietary supplements or NSAIDs. A UK study of over-the-counter medicines (including aspirin, NSAIDs, vitamins and minerals), found that men tended to increase the dose if they perceived that an intervention was not working, whereas women were more likely to discontinue use.169 The same study found that older people and women were the groups most likely to use such medicines; a finding partly supported by a study of younger women, which found that this group led more ‘chaotic’ lives, preventing routine, habitual use of any agent or supplement.185 By contrast, a Canadian study of vitamin and mineral use found no differences between users and non-users in terms of age, gender or income.188

Discussion

The internal validity of the review is determined in part by the quality of the included studies and the reliability of their findings. There is much debate around the validity and reliability of quality appraisals of qualitative studies and no consensus has been reached concerning whether such appraisals are possible or even meaningful.175,176 The brief appraisals performed for this review served to focus on how studies reported their sampling strategies and the methods they used for data collection and analysis; these were the most frequently reported and easily apprehended elements of study design to influence the results, and a reasonable route for the identification of the potential risk of bias in each study. No study was excluded from this review on the basis of the comprehensiveness or soundness of the reported processes, but the relative quality of studies could be discerned through such mechanisms. Nineteen of the 20 included studies were of similar, generally satisfactory or good quality, so, from this perspective, the review may be considered to be sound, and study quality is not an apparent explanation for any differences in the findings. Themes identified for this review emerged from studies employing different data collection methods, including the more obviously qualitative study designs of interviews and focus groups, and a smaller number of studies using quantitative methods to generate qualitative data, such as surveys. Triangulation of the findings across studies of different types and of differing quality demonstrated consistency in terms of the issues identified, which offers further validation of the findings.

The internal validity of a review may be compromised by poor execution of the methods employed, or the use of inappropriate methods. In this review, although two reviewers independently extracted half of the studies, the extracted data were always checked by a second reviewer, and although one reviewer performed the primary analysis, this was checked and critically examined by two other reviewers. The aim was to ensure the validity and reliability of the findings.
The external validity of the review is determined by the relevance of the findings to the intended population; in this case, UK adults at risk of CRC as a result of a family or personal history of the condition. Only one of the included studies considered this particular population, but in this particular case the intervention was dietary supplements generally rather than any of the agents or supplements explicitly considered by this report. Three other studies did focus on participants with a family or personal history of prostate cancer or breast cancer. Eleven further studies elicited the views of adults with a mean age of 50 years or more. The Reedy study also found that the views or attitudes to dietary supplements of people with cancer did not differ substantially from those who experienced other ‘life events’ or health problems, suggesting that non-cancer populations could provide relevant data. It is therefore relevant that nine studies explored the views of people without cancer but with chronic conditions requiring the taking of relevant agents over a long period.

The authors believe that this provides a potentially valid insight into taking relevant chemopreventive agents long term. The majority of studies (15) were conducted outside the UK (only five UK studies were identified), raising issues surrounding the external validity of their findings to a UK population because of the potential cultural differences. However, as all studies were published within the last 5 years, they have a corresponding strength with regard to their applicability to contemporary populations. The findings of this review therefore possess some validity in terms of their applicability to the population of interest, but also have some distinct limitations.

There was very little potentially relevant research available, hence the initial revision of the searches and scope. The resulting synthesis and thematic framework is therefore the result of the limited amount of relevant, available research in this area. The model generated by the synthesis describes the processes involved in an individual’s decision about whether or not to take NSAIDs, folic acid, vitamins, minerals, calcium or other dietary supplements. Input from external factors, such as health professionals and family members, and internal factors, such as a person’s own experience or health status, both have an impact on an individual’s perceived need for an agent or supplement, and their subsequent decision about whether or not to take it. A further vital element in this decision-making process is the influence of the perceived risks and benefits associated with an agent or supplement. These perceived risks and benefits can either directly influence an individual’s decision to take something, or may inform a personal assessment of the trade-off between risk and benefit, which in turn may also affect the decision-making process. It has been reported elsewhere that decision-making regarding agents for chemoprevention or symptom management may be affected both by health status, for example, a cancer diagnosis, and by people’s perceived need for an agent and the perceived risks that are associated with it. The model generated by this review, however, highlights the complexity of the influences at work in this decision-making process. Maintenance or continuity of use appears to be affected by three elements: the risks (side effects) and/or benefits experienced by taking the agents or supplements; the physical properties of the agents, which may facilitate or act as a barrier to continued use; and an individual’s age or gender, which may predict the likelihood of their maintenance of a course of therapy.

The review findings were not sensitive to differences in either study quality or design, but differences were apparent between studies according to whether the agent concerned was an NSAID or a dietary supplement (such as vitamins, minerals or dietary supplements generally). As far as NSAIDs were concerned, study participants reported having greater perceived need, principally because of symptom management; were more likely to seek and act on advice from health professionals; and were more likely to perceive risks associated with the agent, and to make an assessment of the balance between risk and benefit in both their decision to use the agent, and how they used it. They were also more likely to report modified use as a result of their experience of using the agent. The benefits and risks were usually quite specific, e.g. control of particular symptoms, or certain, explicit adverse events. NSAIDs were also deemed to offer symptom management, rather than preventive effects or a cure. Much of the data, therefore, revolve around the pharmaceutical nature of NSAIDs and their risks. The differences between NSAIDs and supplements may be explained in part by the presence of known side effects associated with NSAIDs, and the comparative absence of such adverse effects associated with more ‘natural’ agents, such as antioxidants and vitamins or minerals. Previous research has also found that health professionals...
are perceived to be an authoritative source of information on medicines, including NSAIDs, especially among older people.

By contrast, users of vitamins, minerals, and other supplements reported that family and friends, rather than health professionals, were the single most influential source of information and advice, despite a willingness to discuss supplements with doctors; that the risks associated with these supplements were perceived to be comparatively limited, in return for some perceived benefit; and that the perceived effect of supplements could be both therapeutic and prophylactic. The risks and benefits associated with these supplements, in contrast to NSAIDs, were less exact, however: participants had a sense of ‘feeling better’, rather than reporting specific, symptom-based or condition-based outcomes. The perception that vitamins and minerals, along with CAM therapies, offer preventive benefits to individuals, and give them a sense of control over existing conditions, has been noted before both by people with cancer and by supplement users generally. The influence of family and friends on supplement use, despite seeking health professionals’ opinions, has also been reported by another review. As a consequence of people’s unwillingness to approach health professionals about supplements, it has been reported that many doctors do not know about the increased levels of vitamin and mineral intake by their patients with cancer.

The type of intervention was not the only variable to produce differences in the model. Some additional differences were also apparent between the reported findings of studies with general or young populations compared with those with older populations with chronic health conditions or cancer. Participants from the general population appeared to have more concerns about limited access to agents or supplements on the grounds of cost, a concern that was absent from the studies of potentially more motivated participants who had chronic or serious conditions, or were known to be at risk of them. This difference also appeared in relation to health status and sociodemographic factors that affected both the perceived need for, and use of, agents or supplements: young people without an existing condition perceived their need for such supplements to be limited, while older people who already were experiencing, or were at risk of, health problems had greater perceived need and use. Populations with such health perceived need and use. Populations with such health concerns were also far more likely to comment on the trade-off between risk and benefit than general populations with a more limited motivation and relatively less experience of agents that might carry a risk or side effects, such as NSAIDs.

Finally, the model can be viewed in terms of service delivery or intervention. Internal or personal factors that affect decision-making cannot be readily influenced by interventions seeking to improve the uptake or compliance with the agents of interest. This is also the case for some of the external factors, such as the influence of family and friends. However, the cost of agents, and input from health professionals and the media, all affect people’s choices regarding the taking of these agents and can be influenced or shaped by policy or intervention decisions. The nature of this input may be determined by people’s concerns around perceptions of risk and benefit, which act as a moderating variable in progressing from decision-making to use: emphasis on perceived benefits, credible and clear information about risks, and the achievement of an optimal balance between benefit and risks, can affect decision-making and, consequently, the levels of use of an agent.

Conclusions

Both personal and external factors affect people’s decisions to use NSAIDs or supplements such as antioxidants, vitamins or minerals. People are more likely to use NSAIDs if there is a strong perceived need, principally determined by health status and age, and are most likely to be influenced by both health professionals and their family. Perceptions of risk and benefit also influence the process of decision-making and use: there are greater perceived risks or side effects associated with NSAIDs than dietary supplements, and individuals who are required to take NSAIDs tend to weigh up the balance of benefits against risks, and to modify their use of the agent accordingly. People have fewer concerns about using antioxidants or other supplements, but their perception of the benefits of these agents is less well defined. They would like more information and advice from health professionals, but their use of these supplements tends to be governed more by input from family, friends, alternative therapists and the media.
Health Technology Assessment 2010; Vol. 14: No. 32

Chapter 5
Assessment of cost-effectiveness

Systematic review of existing cost-effectiveness evidence

Methods

A systematic review of economic evaluations of chemoprevention for CRC was carried out as part of a separate project, which aimed to identify all economic evaluations of health-care interventions within the CRC health-care service. The inclusion criterion for the economic evaluations of chemoprevention for CRC was broadly defined as economic evaluations describing any population given any form of chemoprevention. The search criteria are presented in Appendix 1. This review presents the current evidence base around economic evaluations of chemopreventive agents for CRC. The results of the review determine whether it is necessary to develop a health economic model for this evaluation.

Results

The electronic literature searches identified 4311 potentially relevant citations to economic analyses of bowel cancer technologies. Of these, only 11 citations appeared to relate to economic evaluation of agents used in the chemoprevention of CRC. A total of eight full papers were obtained for detailed inspection, of which six studies met the inclusion criteria.

Justification of excluded studies

Emmons et al. was excluded from the review following full paper screening because the intervention considered within the evaluation was not specifically chemoprevention. This paper assessed the CRC risk reduction factor of interventions such as red meat consumption, fruit and vegetable intake, multivitamin intake, alcohol, smoking and physical inactivity; the majority of which did not meet our definition of chemoprevention. Ladabaum was excluded because this was a secondary reporting of the work described by Ladabaum in two of the included studies. Figure 14 shows the summary of the study selection and exclusion.

Included economic evaluations

The key characteristics of the studies identified for inclusion within the review are shown in Table 29. All of the economic evaluations included within the review were state transition models carried out in the USA and were restricted to the health economic evaluation of either aspirin or COX-2 inhibitors; other chemopreventive agents such as antioxidants were not included in any of the identified studies. Five of the six included economic evaluations compared chemoprevention with screening as well as with no prevention (see Table 29). These five studies used a health economic model with annual cycles and reported outcomes in terms of the incremental or marginal cost per life-year (LY) saved from a third-party payer (Medicare®) perspective. None of these five studies assessed the impact of treatment or the disease on HRQoL. The remaining evaluation included within the review, Hur et al., assessed the costs, quality-adjusted life-years (QALYs), complication rates and mortality associated with aspirin chemoprevention and celecoxib chemoprevention from a societal perspective. This paper did not provide comparative results and considers competing chemoprevention options without reference to a ‘no prevention’ group. The population considered within all of the models was the US general population over the age of 50 years. None of the studies justified this choice of starting age. One of the included economic evaluations also considered people with first-degree relatives with a history of CRC within the model. The time horizon, that is, the period over which costs and health outcomes differ between decision options, was inconsistent between the studies, ranging from 10 years to individuals’ remaining lifetimes. Two of the economic evaluation studies did not incorporate a disease natural history component; where a natural history component was included, the definition of disease states and transitions between them were inconsistent.

The results of the studies which compared chemoprevention versus no prevention are extremely variable; at one end of the spectrum, chemoprevention was reported to dominate no prevention whereas at the other,
chemoprevention was reported to have an estimated incremental cost per life-year gained (LYG) in excess of $100,000 when compared with no prevention.217 When chemoprevention is used alongside population screening, the cost per life-year gained was estimated to be at least $100,000 within all economic evaluations. A major limitation in the interpretation of the available evidence relating to the cost-effectiveness of chemoprevention concerns their US setting. Inherent differences between health-care systems and general population lifestyles in the US and the UK leads to problems of external validity and methodological problems in translating economic findings. In addition, the Medicare perspective is not representative of the standard NHS and Personal and Social Services perspective adopted in the UK.

Ladabaum et al.: Aspirin as an adjunct to screening for prevention of sporadic colorectal cancer

Ladabaum et al.216 present the methods and results of a cost-effectiveness analysis of aspirin chemoprevention (325 mg/day) versus CRC screening and versus no prevention within the general US population. The analysis also compares a combination of screening and aspirin chemoprevention against screening alone and against no prevention. Screening using both colonoscopy every 10 years and flexible sigmoidoscopy every 5 years alongside annual FOBT is considered within the model. A state transition model was used to simulate a cohort of people aged 50 to 80 years using annual cycles. The choice of age group for the model population was not justified by the study authors. The analysis was undertaken from the perspective of a third-party payer (Medicare) and the outcome of the model is the cost per life-year saved (LYS). Health-related quality of life was not considered within the model.

The health states used within the model include normal (no polyps or cancer), polyp, cancer (localised, regional, distant) and death. Age-specific polyp incidence rates were taken from autopsy studies. CRC incidence was derived to match age-specific Surveillance, Epidemiology and End Results (SEER) data,222 assuming that 90% of CRCs arise from pre-existing polyps (hence 10% of cancers are assumed to arise \textit{de novo}) and that cancer progresses from localised to regional (2 years in each state) to disseminated cancer.
TABLE 29 Characteristics of studies included in the cost-effectiveness review

<table>
<thead>
<tr>
<th>Author</th>
<th>Ladabaum216</th>
<th>Arguedas218</th>
<th>Suleiman219</th>
<th>Ladabaum217</th>
<th>Hur221</th>
<th>Dupont220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country and year of publication</td>
<td>USA, 2001</td>
<td>USA, 2001</td>
<td>USA, 2002</td>
<td>USA, 2003</td>
<td>USA, 2004</td>
<td>USA, 2007</td>
</tr>
<tr>
<td>Type of economic analysis</td>
<td>CEA</td>
<td>CEA</td>
<td>CEA</td>
<td>CEA</td>
<td>Costs and outcomes</td>
<td>CEA</td>
</tr>
<tr>
<td>Health economic perspective</td>
<td>Third-party payer (Medicare)</td>
<td>Third-party payer (Medicare)</td>
<td>Third-party payer (Medicare)</td>
<td>Third-party payer (Medicare)</td>
<td>Societal</td>
<td>Third-party payer (Medicare)</td>
</tr>
<tr>
<td>Health economic comparisons (listed interventions compared against chemoprevention)</td>
<td>No prevention</td>
<td>No prevention</td>
<td>Colonoscopy surveillance</td>
<td>Combination of colonoscopy and chemoprevention</td>
<td>No prevention</td>
<td>Combination of colonoscopy and chemoprevention</td>
</tr>
<tr>
<td>Type of chemoprevention</td>
<td>Aspirin (325 mg)</td>
<td>Celecoxib (200 mg twice daily)</td>
<td>Aspirin (325 mg)</td>
<td>COX-2 (400 mg twice daily)</td>
<td>Aspirin (325 mg)</td>
<td>Aspirin (325 mg)</td>
</tr>
<tr>
<td>Population characteristics</td>
<td>General US population (> 50)</td>
<td>General US population who have had previous adenoma resection (> 50)</td>
<td>General US population (> 50)</td>
</tr>
<tr>
<td>Time horizon</td>
<td>30 years</td>
<td>10 years</td>
<td>Lifetime</td>
<td>30 years</td>
<td>10 years</td>
<td>Lifetime</td>
</tr>
<tr>
<td>Health economic outcomes</td>
<td>Cost per LY saved</td>
<td>Cost per LY saved</td>
<td>Cost per LY saved</td>
<td>Cost per LY saved</td>
<td>Costs</td>
<td>Cost per LY saved</td>
</tr>
<tr>
<td>Modelling approach</td>
<td>State transition model, annual cycles</td>
</tr>
<tr>
<td>Effectiveness assumptions</td>
<td>Aspirin is estimated to reduce CRC by 30% (range 5–55%) (equal reductions in adenoma incidence and progression to cancer) based on 12 studies of aspirin use</td>
<td>COX-2 inhibitors are assumed to reduce incidence of adenomas by 50% (range 0–100%), based on assumption only</td>
<td>Relative risk of CRC is assumed to be 50% (range 25–75%) based on three studies</td>
<td>Reduction in CRC is estimated to be 30% (range 0–100%) based on two studies</td>
<td>Relative risk of polyp incidence is assumed to be 0.85 based on three studies</td>
<td></td>
</tr>
</tbody>
</table>

CEA, cost-effectiveness analysis.
Persons within the model may experience screening or aspirin-related complications, both of which are associated with a probability of death. During any model cycle, the authors report that individuals may die from CRC and CRC treatment or other causes. It is, however, unclear what is meant by CRC treatment in this context. The risk of death due to CRC was derived from the SEER Cancer Statistics Review while other-cause mortality rates were derived from US life tables. The model incorporates the sensitivity and specificity of FOBT, flexible sigmoidoscopy and colonoscopy. Screening is assumed to be associated with a participation rate of 25%, whereas aspirin is assumed to be associated with perfect compliance. The reduction of CRC due to aspirin was assumed to be 30% (range 5–55%) through equal reductions in adenoma incidence and cancer progression rates, based on an analysis of 12 studies which assessed the impact of aspirin use on CRC incidence. It is unclear how the authors have used these 12 studies to derive the risk reduction parameter; the use of a meta-analysis is not mentioned within the paper.

Cost components include CRC care by stage (localised, regional, distant), aspirin and surveillance and treatment of complications. All costs are presented in 1998 US dollars. Both costs and life-years were discounted at a rate of 3%. One-way sensitivity analyses and a partial probabilistic sensitivity analyses (PSA) were undertaken. The authors did not consider uncertainty within all of the disease natural history parameters; however, the incidence of adenomas and the probability of CRC following adenoma development were varied within the PSA.

The results of the model suggest that aspirin chemoprevention dominates no aspirin or screening in 38% of the PSA iterations; however, if colonoscopy screening was available, the addition of chemoprevention would result in a cost per LYS of around $150,000 in 1998 US dollars (approximately £120,000 in 2008 UK pounds). The model predicts that if flexible sigmoidoscopy and FOBT were used in practice, the addition of aspirin chemoprevention would be dominated. Conversely, if screening using flexible sigmoidoscopy/FOBT or colonoscopy was adopted in addition to chemoprevention, the cost per LYS was estimated to be $26,000 or $31,000, respectively in 1998 prices (approximately £21,000 and £25,000 in 2008 UK pounds). Similar results were presented for both the deterministic outcomes and the probabilistic outcomes; however, all of the probabilistic results were not presented within the paper. The one-way sensitivity analysis suggested that the cost-effectiveness results are highly dependent on the effectiveness of aspirin, the rate of screening participation and the rate of aspirin-related complications. Results were improved if it was assumed that aspirin decreases cardiovascular death as well as CRC incidence.

The model presented by Ladabaum et al. has several limitations:

- Uniform distributions were used to describe the uncertainty in all model parameters. Ranges used to characterise uncertainty surrounding model parameters do not appear to be evidence-based.
- The model uses constant transition probabilities for simulating the disease natural history component rather than adjusting for age. With increasing age, polyp incidence will increase and more aspirin-related complications are likely to occur.
- Compliance associated with aspirin chemoprevention is assumed to be 100%, which is highly unlikely in practice.
- The analysis is presented from a Medicaid perspective; however, it is unlikely that Medicaid would fund chemoprevention within the general population.
- The characterisation of uncertainty surrounding the disease natural history model component is limited.
- No model validation was reported.

Arguedas et al.: Surveillance colonoscopy or chemoprevention with COX-2 inhibitors in average-risk postpolypectomy patients: a decision analysis

Arguedas et al. present a cost-effectiveness analysis of celecoxib (200mg twice daily) against no prevention, surveillance colonoscopy every 3 years and surveillance colonoscopy every 5 years in ‘average’-risk patients who have undergone prior adenoma resection (complete colonoscopy and polypectomy). The authors adopted a Markov framework, with the model following a cohort of people aged 50 for 10 years from the point of resection using an annual cycle length. No justification is provided concerning the choice of population age or the time horizon used within the analysis. The authors report the cost per LYS and a cost per ‘high-grade’ adenoma prevented from the perspective of a third-party payer (Medicare).
The health states included within the model were normal (no polyps or cancer), low-grade adenoma, high-grade adenoma, CRC and death. Constant probabilities rather than age-related probabilities were used to represent the development of polyps and CRC. The adenoma formation rate (incidence) and the incidence of CRC were estimated from the National Polyp Study (NPS).\(^{226}\) The model assumes that the incidence of polyps after the first colonoscopy is half the incidence after the index colonoscopy, as experts suggest that approximately 50% of the polyps found in the NPS represented polyps missed during the index colonoscopy.\(^{158}\) The rates of progression from low-grade to high-grade polyps and CRC were estimated from Stryker \textit{et al.}\(^{20}\) The model optimistically assumes 100% compliance with both colonoscopy and celecoxib and that the sensitivity of colonoscopy is 100%; more conservative assumptions were tested within the sensitivity analysis. The authors assumed that celecoxib would reduce the incidence of adenomas by 50%. This value was varied from 0 to 100% within one-way and two-way sensitivity analyses. The annual incidence of ulcers due to aspirin was based on the CLASS study (Celecoxib Long-term Arthritis Safety Study)\(^{227}\) and the model assumes that there would be a discontinuation rate from aspirin of 1% following 6 months of chemoprevention. Health-related quality of life outcomes were not incorporated within the model and no information is reported in the paper around mortality rates due to any cause.

Endoscopy costs within the model were based on Medicare reimbursement rates and the cost of celecoxib was based on the Drug Topics Red Book.\(^{228}\) The overall cost of treating CRC was taken from a study by Brown \textit{et al.}\(^{229}\) which used SEER data to calculate average costs of treating CRC. All costs were valued at 1999 prices. All costs and health outcomes were discounted at a rate of 3%. Health-related quality of life outcomes were not incorporated within the model and no information is presented within the paper.

The incremental cost-effectiveness ratio (ICER) for surveillance versus no prevention was estimated to be $27,970 per LYS in 1999 US dollars (approximately £22,000 in 2008 UK pounds). The ICER for celecoxib chemoprevention versus surveillance was estimated to be $1,715,199 per LYS (approximately £1,319,000 in 2008 UK pounds). The cost per LYS remains greater than £1 million in 2008 UK pounds within the one-way sensitivity analysis around the effectiveness of celecoxib. The two-way sensitivity analysis suggests that if the annual drug cost was below $150 (£115 in 2008 UK pounds) and with a risk reduction in the incidence of adenomas of greater than 50%, chemoprevention may become a reasonable option in comparison with colonoscopy surveillance.

The model presented by Arguedas \textit{et al.} is subject to several limitations:

- The effectiveness of celecoxib is based on an assumption by the authors rather than clinical trial evidence (50% assumed risk reduction in adenoma incidence).
- The probability of adenoma formation (incidence) and CRC incidence is assumed to be constant and unrelated to age.
- The model assumes 100% compliance with both colonoscopy and celecoxib and that the sensitivity of colonoscopy is 100%.
- There is a limited analysis of uncertainty.
- There is no consideration of chemoprevention alongside endoscopic surveillance.
- HRQoL is not considered within the model.
- No model validation was presented.

\textbf{Suleiman \textit{et al.}: Chemoprevention of colorectal cancer by aspirin: a cost-effectiveness analysis}

Suleiman \textit{et al.}\(^{219}\) assess the cost-effectiveness of aspirin chemoprevention (325 mg daily) and colonoscopy surveillance (once every 10 years; every 3 years in patients with polyps) versus no prevention, both individually and in combination. This model is based upon a previous model of CRC screening developed by Sonnenberg \textit{et al.}\(^{230}\) A Markov process model was used to simulate the experience of a cohort of 100,000 people aged 50 years over a lifetime horizon using an annual cycle length. No justification is provided concerning this starting age. The model assesses the cost per LYS as a result of prevention within the general US population from a third-party payer perspective (Medicare). The states within the model are:

1. a state after a negative colonoscopy without polyps/disease-free on aspirin prophylaxis
2. a state after colonoscopy plus polypectomy
3. a state after developing CRC
4. death.
The natural history of CRC is not explicitly modelled.

The model used a 1% annual polyp incidence rate to calculate the number of polypectomies and repeat colonoscopies after polypectomy. This rate was not related to age or whether the person had had polyps in the past. The annual age-specific incidence of CRC was estimated using SEER data.\(^{222}\) Death from other causes was also included within the model based on standard US life tables. Colonoscopy and aspirin chemoprevention were assumed to reduce the incidence of CRC but have no effect on reducing the incidence of polyps. This is contrary to the clinical evidence identified within the systematic review described within Chapter 3 (see Results: aspirin), which suggests that aspirin does have an impact upon polyp incidence. Importantly, the model does not include a disease natural history component. No relationship between adenomas and cancer is specified, for example, it is unclear which cancer incidence rates are applied to persons with a negative screen result, a group that includes both true-negative and false-negative test results. Overall, the methodology adopted within this model which ‘tried to reduce the complex natural history of CRC to few essential states and avoid transition assumptions for which little or no published data existed’,\(^{230}\) resulted in a model that appears to fail to capture the events relevant to an assessment of either CRC screening or chemoprevention. The relative risk of CRC incidence was assumed to be 75% using colonoscopy surveillance and 50% using aspirin chemoprevention. These estimates were based on a range of sources including the NPS\(^{226}\) and the assumed values were tested within a one-way sensitivity analysis. The source of the estimate of the effectiveness of the combination of aspirin and colonoscopy in reducing CRC incidence is unclear; this was assumed to be 87.5%, a much higher relative effectiveness than either method of prevention alone. The model includes a probability of perforation and bleeding due to colonoscopy and polypectomy; however, there the model does not include the possibility of death due to prevention.

The costs of aspirin, colonoscopy, polypectomy and associated adverse events were taken from Medicare Payments in 2000.\(^{230}\) The total cost of CRC was based on the uplifted costs from a study by Lee et al.\(^{231}\) All costs were valued in 2000 US dollars. All costs and life-years were discounted at a rate of 3%. One-way sensitivity analyses were undertaken to explore the impact of the cost of chemoprevention and the preventive effectiveness of both colonoscopy and daily aspirin on resulting cost-effectiveness estimates. No further analysis of uncertainty was undertaken.

The results of the model suggest that the cost per LYS associated with chemoprevention versus no prevention is $47,249 in 2000 US dollars (approximately £35,000 in 2008 UK pounds). The use of aspirin chemoprevention and colonoscopy surveillance compared with colonoscopy surveillance alone results in a much higher estimated cost per LYS of $227,607 (approximately £167,000 in 2008 UK pounds). The authors suggest that based upon the one-way sensitivity analysis the costs of chemoprevention would need to fall below $70 per person per year (£51 in 2008 UK pounds) to become more cost-effective than colonoscopy.

The model presented by Suleiman et al. has several limitations:

- The disease natural history is not modelled.
- The model does not appear to account for costs and outcomes associated with cancer treatment if the cancer is curable.
- The model does not seem to account for mortality due to perforation.
- The model uses constant transition probabilities. With increasing age, polyp incidence will increase and more aspirin-related complications are likely to occur (although there is also some evidence to suggest that the effectiveness of aspirin may increase over time).
- It is not clear how compliance is dealt with in the model.
- No HRQoL has been accounted for within the model.
- The analysis is presented from a Medicaid perspective; however, it is unlikely that Medicaid would fund chemoprevention within the general population.
- There is a limited analysis of uncertainty.
- No model validation has been carried out.

Ladabaum et al.: Potential effect of cyclo-oxygenase-2-specific inhibitors on the prevention of colorectal cancer: a cost-effectiveness analysis\(^{217}\)

Ladabaum et al.\(^{217}\) assess the potential cost-effectiveness of COX-2 inhibitors (400mg twice daily) versus no prevention. This is assessed with...
and without screening surveillance consisting of either colonoscopy or flexible sigmoidoscopy alongside FOBT. The same model previously developed by Ladabaum and described previously was used for this analysis. The population considered within this analysis is people who:

- are at average risk of CRC
- have one first-degree relative who have previously been diagnosed with CRC
- have two first-degree relatives with/who have previously been diagnosed with CRC.

This model includes the effectiveness, costs and complications associated with COX-2 inhibitors rather than aspirin; however, all other model parameters and assumptions are as described within the 2001 paper. The reduction in incidence of CRC as a result of COX-2 inhibitors is estimated to be 30% (range 0–100%) based on two studies assessing the use of COX-2 inhibitors on the reduction of CRC; one of which was in the FAP population.

The results of the model suggest that for a person at average risk of CRC, the cost per LYS will be $233,300 in 1998 US dollars (approximately £187,000 in 2008 UK pounds). For people with one and two first-degree relatives with CRC the cost per LYS decreases to $80,300 (£64,000 in 2008 UK pounds) and $56,700 (£45,000 in 2008 UK pounds), respectively. If CRC screening is current standard practice the cost per LYS of chemoprevention in addition to CRC screening is estimated to be greater than $195,000 (£156,000 in 2008 UK pounds); one of which was in the FAP population.

Limitations of the model are as described in the 2001 paper described above.

Hur et al.: The cost-effectiveness of aspirin versus cyclo-oxygenase-2-selective inhibitors for colorectal carcinoma chemoprevention in healthy individuals

Hur et al. estimate the costs and QALYs associated with celecoxib (400mg twice daily) versus enteric-coated aspirin (325mg/day) in healthy men aged 50 years. Aspirin or COX-2 inhibitors are not compared against ‘no prevention’ within the analysis. The analysis was undertaken from a US societal perspective over a 10-year time horizon. The authors also report other outcomes in terms of mortality and complication rates. The differences in costs and QALYs are not combined to produce a cost-effectiveness ratio.

A Markov model of the complications associated with aspirin and celecoxib was produced alongside the cardioprotective benefit of aspirin using a monthly cycle length. The natural history of CRC was not incorporated into the model; instead the authors assumed that the potential cancer benefits would be equally effective for either therapy. There is, however, no evidence to suggest that this is the case. Health-related quality of life utility values were taken from a study by Fryback et al. Utility estimates were adjusted by age and gender using the ‘Beaver Dam Health Outcomes Study’ and adjusted to reflect recuperation from complications. The probability that an individual will experience complications (including ulcer, ulcer perforation, bleed, myocardial ischaemia) was taken from several literature sources including Sanmuganathan et al., the PHS and Spiegel et al. The model also includes a probability of death due to these complications. Importantly, death due to other causes was not included within the model.

The costs of aspirin and celecoxib were based on the Drug Topics Red Book and the costs of treating most of the complications associated with aspirin or celecoxib were based on a study by Spiegel et al. Costs were valued in 2000 US dollars. All costs and outcomes were discounted at a rate of 3%. One-way sensitivity analyses were undertaken to examine the impact of starting age, length of follow-up, the cost of the drug and the discount rate on cost-effectiveness outcomes. Threshold analyses were also reported around several additional parameters including the relative excess myocardial infarction rate for aspirin compared with COX-2 inhibitors, the relative ulcer rate for aspirin compared with COX-2 inhibitors, the cost of celecoxib and the relative bleeding rate of aspirin compared with COX-2 inhibitors.

The results of the model suggest that aspirin is associated with an increase in QALYs (7.60 vs 7.57) and lower costs ($181 vs $23,403) than celecoxib, i.e. aspirin dominates celecoxib. The results were not sensitive to the start age, the length of follow-up or the discount rate. The cost of celecoxib
affected the model results substantially; however, this is unlikely to alter the conclusions.

The model reported by Hur et al. is subject to several limitations:

- The report presents a cost-effectiveness analysis comparing aspirin and celecoxib; however, it is not known whether either chemopreventive agent would be cost-effective compared with a 'do nothing' alternative.
- The model assumes that the efficacies of aspirin and celecoxib are equivalent (no prevention of cancer is incorporated).
- The analysis is presented from a Medicaid perspective; however, it is unlikely that Medicaid would fund chemoprevention within the general population.
- There is a limited analysis of uncertainty.

Dupont et al.: Aspirin chemoprevention in patients with increased risk for colorectal cancer: a cost-effectiveness analysis

Dupont et al. present a cost-effectiveness analysis of aspirin chemoprevention (325 mg daily) and colonoscopy surveillance (every 3 or 5 years depending on polyp risk) versus no prevention, individually and in combination. A cohort of individuals with prior adenoma resection (complete colonoscopy and polypectomy) without FAP or HNPCC are simulated from age 50 over a lifetime within a Markov model using annual cycles. No justification was provided within the paper concerning the starting age of the model cohort. Outcomes are presented in terms of the cost per LYS and the cost per case of CRC prevented. The analysis was carried out from the perspective of a third-party payer (Medicare).

The natural history of the disease was modelled using the health states normal (no polyps or cancer), low-grade adenoma, high-grade adenoma, carcinoma in situ, advanced CRC and death. The annual probability of developing polyps was obtained from the placebo group in the study by Baron et al. and was not age-related. The relative risk of polyp incidence was assumed to be 0.85 based on three studies of aspirin use within this population. The initial colonoscopy was assumed to be 100% successful in removing all polyps, but a miss rate of 8% for subsequent colonoscopies was assumed. All colonoscopies were assumed to be complete and compliance with aspirin and colonoscopy was assumed to be 100%; these assumptions are both highly optimistic. The probabilities of developing complications associated with aspirin or colonoscopy were drawn from a number of journal sources including the paper by Ladabaum et al. reviewed here. The model assumes that death may occur as the result of a colectomy, aspirin or colonoscopy complication, CRC or other causes.

The cost of aspirin was based on the costs used in Suleiman et al. and Ladabaum et al. both described above. The cost of colonoscopy and polypectomy, complications of colonoscopy and aspirin, initial side effects of aspirin and CRC resection were based on Medicare reimbursement rates. The cost of treating incurable CRC was based upon several sources including Arguedas et al. and Ladabaum et al. described above. A formal price year for model results was not reported; for the purposes of uplifting the costs, the authors assume that it is 2006 given that it was published in 2007. Costs and life-years were discounted at a rate of 3%.

Probabilistic sensitivity analysis and a one-way sensitivity analysis were undertaken. A scenario analysis where the length of time between colonoscopy surveillance was increased was also reported. No uncertainty was considered around the reduction in polyp incidence associated with aspirin. Results were presented incrementally. Aspirin is predicted to cost $87,609 per LYS compared with no prevention (approximately £50,000 in 2008 UK pounds). The use of aspirin chemoprevention in addition to colonoscopy compared with colonoscopy alone is estimated to cost $60,942 per LYS (approximately £35,000 in 2008 UK pounds). These results presented by Dupont et al., are less favourable than other studies in terms of the use of aspirin as a chemopreventive agent compared with no prevention strategy; however, they are more favourable than those from other studies when considering the use of aspirin in addition to colonoscopy surveillance.

The model presented by Dupont et al. is subject to several limitations:

- The model assumes that the initial colonoscopy is 100% successful in removing all polyps within the base case.
- The model assumes that the compliance rate is 100% for both surveillance and aspirin use.
- The model uses constant transition probabilities. With increasing age, polyp
incidence will increase and more aspirin-related complications are likely to occur (although there is also some evidence to suggest that the effectiveness of aspirin may increase over time).

- HRQoL is not considered within the model.
- The analysis is presented from a Medicaid perspective; however, it is unlikely that Medicaid would fund chemoprevention within the general population.
- The model does not consider any uncertainty around the reduction in polyp incidence as a result of aspirin use.
- No model validation has been carried out.

Current chemoprevention model limitations

This review identifies a number of key limitations employed within existing economic evaluations of CRC chemoprevention, outlined in *Box 2* below.

This review highlights the limited number of economic assessments that have been undertaken around chemopreventive agents. The only chemopreventive agents that have been modelled are aspirin and COX-2 inhibitors, and there are numerous limitations associated with these economic evaluations as described above. None of the economic evaluations undertaken to date are appropriate for use within this analysis; hence a novel health economic model has been developed.

Independent economic assessment

Methods

Modelling scope and methodology

Population

A health economic model was developed to assess the cost-effectiveness of chemoprevention for two populations with different levels of risk of developing CRC:

- the general population, referred to as low-risk population in previous sections
- men and women at an intermediate-risk of CRC due to previous polyps.

The use of chemoprevention for individuals at high-risk of CRC due to FAP or HNPCC was excluded from the economic analysis presented here. This exclusion is justified as (1) little is known about the underlying disease natural history for these patients and (2) there is limited evidence concerning the impact of reducing polyp incidence upon subsequent cancer incidence (see Chapter 1). Where studies are available, the impact of chemoprevention upon polyp incidence is poor; of the limited number of available studies, these are subject to sample sizes below 50 patients. From a clinical point of view, it is unlikely that a small reduction in the incidence of polyps will impact upon the incidence of CRC. As such, chemoprevention is unlikely to be effective at

BOX 2 Key limitations of existing health economic evaluations of chemoprevention

- Inadequate time horizons to capture all impacts on costs and outcomes
- Missing comparators
- Inconsistency in handling screening
- External validity of US models
- Adherence assumptions are generally not evidence-based
- Omission of mortality outcomes
- Failure to model disease natural history/inconsistent modelling of disease natural history/constant age-independent transition probabilities
- Limited/inadequate characterisation of uncertainty
- Exclusion of HRQoL impacts
- Inappropriate perspective of analysis
preventing CRC within this population, and hence treatment decisions would not change. On this premise, the impact of chemoprevention upon health outcomes is expected to be neutral while the impact upon costs is expected to be positive. Chemoprevention would therefore not be a cost-effective intervention for these patients.

Comparator and interventions assessed within the model
The model analysis includes costs and outcomes associated with FOBT screening for individuals aged 60–74 years as part of the underlying context of the disease service under evaluation. This programme has been rolled out across England and Wales for individuals aged 60–69 years and is currently being extended to those aged up to 74 years. The costs and health outcomes associated with each chemoprevention option in both the intermediate-risk and general populations are estimated in comparison to no chemoprevention (alongside screening). In this sense, chemoprevention is evaluated as an adjunct to the existing CRC screening programme. Decisions concerning the specific chemopreventive agents assessed within the model were based upon the systematic review and meta-analyses presented in Chapter 3. For the general population, only aspirin and no chemoprevention are considered within the economic analysis. For the intermediate-risk population, the economic analysis includes aspirin, celecoxib and calcium versus no chemoprevention.

Other potential chemopreventive agents including antioxidants, folic acid and other NSAIDs were excluded from the economic analysis either because of the presence of evidence which suggests that they are ineffective or because of insufficient evidence to describe effectiveness. In particular, evidence surrounding the use of antioxidants for chemoprevention provided mixed conclusions around their effectiveness. The results of some of these trials are contradictory and the effectiveness of both individual antioxidants and combinations of antioxidants is unclear (see Chapter 3; Results: antioxidants). It was thought that assessing the cost-effectiveness of antioxidants as a group rather than individually would be unhelpful because they are each associated with different costs, effects and adverse events. Therefore, antioxidants were not included within the health economic analysis. Table 30 shows which interventions were included within the health economic model and the reasons for exclusion.

Outcomes evaluated within the health economic analysis
The economic analysis includes the following outcomes:
- incremental cost per LYG
- incremental cost per QALY gained.

Health economic perspective
The model includes costs and outcomes from the perspective of the NHS and Personal and Social Services.

Time preference and discounting
In line with current recommendations from NICE, all costs and utilities were discounted at a rate of

<table>
<thead>
<tr>
<th>TABLE 30</th>
<th>Interventions assessed within the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>General population</td>
</tr>
<tr>
<td></td>
<td>In model?</td>
</tr>
<tr>
<td>Aspirin</td>
<td>Yes</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>No</td>
</tr>
<tr>
<td>Calcium</td>
<td>No</td>
</tr>
<tr>
<td>Folic acid</td>
<td>No</td>
</tr>
<tr>
<td>Antioxidants</td>
<td>No</td>
</tr>
</tbody>
</table>
3.5% from the point at which the patients begin receiving chemoprevention.

Time horizon
The model evaluates the costs and outcomes associated with chemoprevention over a lifetime horizon.

Model structure
In 2003, Tappenden et al. developed a state transition model to assess the cost-effectiveness of alternative options for CRC screening. This model has been further developed to incorporate the expected costs and outcomes associated with chemoprevention. This model is comprised of three inter-related model components: a model of the natural history of CRC, a model of screening and surveillance interventions, and a mortality model.

Natural history submodel
The natural history of CRC was modelled as a series of transitions between the following mutually exclusive health states: normal epithelium, low-risk adenomas, high-risk adenomas, Dukes' A, Dukes' B, Dukes' C and Dukes' D as shown in Figure 15. The model uses age-dependent transition matrices to estimate the number of individuals in each health state for each model cycle through a process of iterative matrix multiplication. Transitions between model health states are calculated on a cohort-level basis using an annual cycle length and a lifetime horizon. Health states were defined according to the true underlying histological state of the individual. Health states describing the presence of neoplasia (adenomas and/or cancer) were defined in terms of the ‘index’ lesion; that is the adenoma with the greatest malignant potential or the most advanced tumour. Individuals with adenomas were defined as ‘low-risk’ or ‘high-risk’ to reflect current guidelines for endoscopic surveillance following adenoma removal. Cancer stage was modelled according to the Turnbull modification of the Dukes’ staging system.

Screening submodel structure
The potential impact of earlier detection and removal of screen-detected adenomatous polyps, the detection and treatment of CRC, and the ongoing surveillance of high-risk individuals in whom adenomas are detected are simulated processes within the model. Test characteristics associated with screening and colonoscopy are defined in terms of the probability of achieving a positive or negative test result given an individual’s true underlying histological state (i.e. sensitivity and specificity). The impact of the screening test, follow-up colonoscopy and treatment of detected polyps and cancers is modelled by redistributing the incidence of cases in the model.
the model cohort across the health states at the point of screening and surveillance. Individuals in whom adenomas are found are assumed to undergo polypectomy via snare diathermy and are subsequently assigned a higher risk of adenoma recurrence. Individuals identified as having high-risk polyps are divided into two groups; higher-risk and intermediate-risk. This terminology is unrelated to the use of the terms high-risk (i.e. FAP/HNPCC) and intermediate-risk (i.e. history of adenomas) within the clinical review. Individuals identified as having low-risk polyps continue to be classified as low-risk within the model. Individuals who are identified as being at an intermediate risk of developing CRC following screening are assumed to be invited to attend a 3-yearly colonoscopic surveillance programme, whereas those at higher risk are assumed to enter into an annual colonoscopic surveillance programme. It is assumed that individuals with preclinical detectable CRC may present symptomatically during any model cycle; the probability of clinical presentation was estimated through model calibration; this probability is assumed to increase according to cancer stage. These parameters are shown in Table 31. Individuals in whom previously undetected CRC is identified are assumed to enter into a clinical management state. Individuals in whom neither adenomas nor cancer are detected are assumed to be reinvited to attend CRC screening during the next round in 2 years. Clinical management states are modelled according to Dukes’ stage as prognosis, treatment options, HRQoL impacts and costs differ considerably between stages.

Although based on the same conceptualisation of the underlying disease process and clinical pathways, the decision node differs for the analysis of chemoprevention within the general population and the intermediate-risk groups. For the economic analysis of chemoprevention within the general population, the simulation begins with a cohort aged 30, at which point the prevalence of polyps and CRC is assumed to be zero. The model uses age-dependent transition matrices as described above to calculate the number of individuals in each health state for each annual cycle over a lifetime horizon. For the intermediate-risk population, the analysis begins immediately after the point of postpolypectomy.

Mortality submodel

The model includes three types of mortality: other-cause mortality, CRC-specific mortality and death following endoscopic perforation. The probability of dying from other causes is modelled as an age-dependent probability, which is dependent on the age of the cohort during each model cycle, based on UK life tables. Dukes’ stage-specific mortality rates are represented using a mixed model, which divides the population into terminal and non-terminal cancer patients. This analysis is based upon 1-, 3- and 5-year survival data produced by the Northern and Yorkshire Cancer Registry and Information Service (see Figure 16). The probability of death due to endoscopic perforation was modelled according to the experience of existing screening studies.

Model parameters

The following sections outline the methods used to derive specific types of parameter values within the model.

Methods for calibrating the natural history model

Importantly, model parameters such as transition probabilities for preclinical disease and the probabilities of symptomatic presentation are largely unobservable through empirical study. These unknown parameters were estimated through a process of model calibration. This involved fitting intermediate model outputs to available data on CRC incidence and mortality, cancer and polyp detection rates at screening (NHS Cancer Screening Programme, personal communication) and colorectal autopsy evidence using a Metropolis-Hastings algorithm (an analytic Markov Chain Monte Carlo sampling approach). This algorithm allows the calculation of a set of possible permutations of transition probabilities used to represent the disease natural history. Rather than assuming that one particular combination of transition probabilities is ‘correct’ within a base case, the base model is probabilistic and includes several sets of possible permutations of natural history transition probabilities. In describing the disease natural history, there is structural uncertainty around whether there are a proportion of cancers which arise de novo (i.e. there may be some cancers that do not arise following polyp incidence). The calibration process allows a small proportion of cancers to arise de novo. As this proportion is unknown, a prior distribution was used assuming that a mean of 5% of cancers arise de novo (95% CI 1% to 13%) within the model calibration process. This resulted in an average of around 1–2% of cancers arising de novo within the model. The ranges around the parameters used to
simulate the disease natural history are shown in Table 31.

Methods for modelling the effectiveness of chemoprevention

The systematic review presented in Chapter 3 highlighted considerable evidence concerning the effectiveness of chemoprevention in the general population and intermediate-risk groups. However, the evidence base leaves a number of relevant questions unanswered. In particular, key uncertainties concern the length of time required for chemoprevention to start to become effective in reducing adenomas, whether the effectiveness is constant over time or gradual, and the length of time over which chemoprevention is likely to

![FIGURE 16 Survival estimates for CRC patients.](image)

TABLE 31 Disease natural history parameters

<table>
<thead>
<tr>
<th>Natural history model transition probability</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal epithelium to low-risk polyp – age 30</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 40</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 50</td>
<td>0.004</td>
<td>0.006</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 60</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 70</td>
<td>0.008</td>
<td>0.014</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 80</td>
<td>0.000</td>
<td>0.009</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 90</td>
<td>0.000</td>
<td>0.024</td>
</tr>
<tr>
<td>Normal epithelium to low-risk polyp – age 100</td>
<td>0.000</td>
<td>0.026</td>
</tr>
<tr>
<td>Low-risk polyp to high-risk polyp</td>
<td>0.048</td>
<td>0.109</td>
</tr>
<tr>
<td>High-risk polyp to Dukes' A</td>
<td>0.037</td>
<td>0.086</td>
</tr>
<tr>
<td>Normal epithelium to Dukes' A</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Dukes' A to Dukes' B</td>
<td>0.574</td>
<td>1.000</td>
</tr>
<tr>
<td>Dukes' B to Dukes' C</td>
<td>0.507</td>
<td>1.000</td>
</tr>
<tr>
<td>Dukes' C to Dukes' D</td>
<td>0.577</td>
<td>0.998</td>
</tr>
<tr>
<td>Dukes' A to Dukes' A clinical</td>
<td>0.058</td>
<td>0.102</td>
</tr>
<tr>
<td>Dukes' B to Dukes' B clinical</td>
<td>0.162</td>
<td>0.285</td>
</tr>
<tr>
<td>Dukes' C to Dukes' C clinical</td>
<td>0.404</td>
<td>0.550</td>
</tr>
<tr>
<td>Dukes' D to Dukes' D clinical</td>
<td>0.534</td>
<td>0.999</td>
</tr>
</tbody>
</table>
continue to be effective, the relationship between compliance and effectiveness, and whether additional benefits accrue when an individual has stopped taking the chemopreventive agent. Furthermore, none of the studies identified within the review attempted to establish an optimal treatment duration, and limited data are available surrounding optimal dosing regimens. Owing to these uncertainties, it is unclear how chemoprevention would be adopted in practice within England and Wales. Based on published literature and expert opinion, the model assumes the following within the base-case analysis.

- **The general population will begin chemoprevention at age 40 or 50 (both ages tested within analyses)** Polyp prevalence estimates suggest that polyps generally begin to appear when people are aged over 40 years.245

- **The intermediate-risk population will be offered chemoprevention following a polypectomy** Within the model several ages are tested; the polypectomy is assumed to be undertaken at ages 60, 64 or 70 and chemoprevention is assumed to begin a year later at ages 61, 65 or 71.

- **Chemoprevention will not be taken beyond age 80 years in either the intermediate-risk population or the general population** This is based on the assumption that chemoprevention will have an effect on reducing CRC up to 15 years post-treatment because of the time lag between adenoma incidence and CRC development. Hence chemoprevention is unlikely to be beneficial beyond age 80 years. This is varied from age 50 to age 80 within the analyses.

Assumptions around treatment dosing are based upon the included studies describing the effectiveness of chemoprevention. The following dosing was assumed within the model:

- aspirin: 300 mg/day
- celecoxib: 400 mg/day
- calcium: 1200 mg/day.

The following additional effectiveness assumptions have been made within the base-case model:

- **The effects of chemoprevention manifest at the point at which the individual begins taking the agent** A study by Baron et al. reported a positive effect of rofecoxib after 1 year of treatment.153 Given the absence of evidence to the contrary, it is assumed that all chemopreventive agents begin to take effect within the first year of treatment. It should be noted that the initial impacts of chemoprevention would be upon adenoma incidence rather than CRC incidence.

- **The relative risk of developing low-risk adenomas will be constant over the period during which the individual is taking chemoprevention** Only two studies identified within the review report results at more than one follow-up time (Arber and Bertagnolli)63,64. These studies suggest that the relative risk of developing adenomas when given celecoxib is likely to be similar at 1 year and at 3 years. Therefore, the model assumes that this assumption can be applied to other chemopreventive agents and over longer periods of time such that the relative impact of chemoprevention upon the number of cancers is constant while chemoprevention is being taken.

- **The preventive effects for adenomas of all chemoprevention agents drop off at the point at which the patient stops taking the agent** Flossmann and Rothwell21 suggest that the impact of chemoprevention upon CRC incidence decreases around 15 years after treatment with chemoprevention has stopped; this is approximately consistent with the reported average time taken to progress from a polyp to CRC suggesting that the main impact of chemoprevention is likely to be on polyp incidence.

The impact of the above assumptions is tested within the model analysis to examine potentially optimal indications for chemoprevention (see Results). It should be noted that within the model it is assumed that chemoprevention will continue to be taken for 10 or 20 years; however, no trials have assessed treatment duration greater than 5 years; hence the effectiveness of taking chemoprevention over this longer time frame is not known.

Preventive effectiveness estimates were based only upon studies that compare chemoprevention with placebo; studies in which patients received other chemoprevention agents in both arms have not been included. It should be noted that there are heterogeneities between the studies used to estimate effectiveness of the chemopreventive agents such as age and treatment time. These are discussed in more detail in Chapter 3.

The clinical trials identified within the systematic review provide evidence for a wide range of chemopreventive agents. Outcomes reported within the clinical trials varied according to the population receiving chemoprevention. Within
the general population trials, the number of people developing CRC was reported but the number of people developing polyps was not, which is likely to be because of ethical concerns around undertaking colonoscopies on healthy individuals within the general population. Within the intermediate-risk population, the number of people with advanced adenomas and the number of people with any adenomas were commonly reported; however, the follow up and sample sizes were insufficient for CRC incidence to be reported. In the instances where CRC incidence was reported in the intermediate-risk group, too few events had occurred to suggest an effect. Many of the chemopreventive agents shown to be ineffective in preventing adenomas within intermediate-risk populations, or in preventing CRC in the general population. Those chemopreventive agents that were reported to be ineffective were not included in the economic analysis because they are expected to be dominated. For the purposes of the model analysis, the chemopreventive agents were considered to be ineffective if they had a pooled relative risk of developing polyps/CRC of 1.0 or greater. In instances whereby the meta-analysis of available trial data resulted in a mean relative risk that was below 1.0, the chemopreventive agent has been included in the analysis.

The systematic review of clinical effectiveness suggests that aspirin chemoprevention is likely to be effective within the general population. Other NSAIDs have not been tested within the general population, and calcium and antioxidants currently have limited trial follow-up which may not be sufficient to demonstrate any effects of chemoprevention upon cancer incidence. The only chemopreventive agent assessed within the model for the general population is therefore aspirin. The chemopreventive agents assessed within the modelling framework for the intermediate-risk group are aspirin, celecoxib and calcium. The evidence around the use of antioxidants for chemoprevention provided variable results. The results of some of these trials are contradictory and the effectiveness of both individual antioxidants and combinations of antioxidants is unclear. Antioxidants were therefore not included within the main analysis.

Methods for modelling the effectiveness of chemoprevention
The current evidence suggests that chemoprevention, if effective, will have an effect upon the incidence of low-risk adenomas. Studies also suggest that there may be some impact upon the incidence of high-risk adenomas, but there is currently no evidence to suggest whether this is as a result of the reduction in low-risk adenomas or if there is an additional direct impact upon high-risk adenomas. There is also currently limited evidence to suggest whether there would be a direct impact upon CRC. The model assumes that chemoprevention has a direct impact upon polyp incidence and hence an indirect impact upon the incidence of CRC. The model assumes that there would be no direct impact upon CRC incidence. The model also assumes that people would discontinue receiving chemoprevention if they were diagnosed with CRC.

General population
The relative risk for CRC incidence for patients receiving aspirin within the general population was based upon a meta-analysis of two studies for which the long-term CRC incidence data have been reported in Flossmann and Rothwell. The results of this meta-analysis are shown in Table 32.

As described previously, there is a probability of progressing through each stage of the disease based upon calibrated disease natural history parameters. Within the model, a relative risk can be applied to these transition probabilities based upon the estimated effect of chemoprevention upon each transition. Assuming that chemoprevention has an equivalent impact upon the incidence of low-risk polyps and the incidence of high-risk polyps, the calibrated disease natural history model was used to estimate these relative risks based on fitting the number of cancers within the model to match the number of cancers reported within the trials for both the control group and the aspirin chemoprevention group. Flossmann and Rothwell suggest that the chemopreventive effect upon CRC incidence is minimal for the first 10 years; however, from 10 to 19 years the relative risk for CRC incidence is estimated to be 0.61. This is consistent with the current model of disease natural history, which suggests that on average it takes more than 10 years to progress from normal epithelium to adenoma incidence to cancer incidence. The model therefore uses the relative risk from years 10–19 from Flossmann and Rothwell and matches the number of cancers for both the control group and the aspirin chemoprevention group at this time point. This means that the relative risk of CRC incidence will gradually decrease from 1 at initiation of chemoprevention (when there will be an effect upon adenoma incidence only) to 0.61 at 10–19 years. This process was undertaken...
TABLE 32 Relative risk of incidence of CRC in general population

<table>
<thead>
<tr>
<th>Chemopreventive agent</th>
<th>RR for incidence of CRC at 10–19 years</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>0.61 (95% CI 0.43 to 0.88)</td>
<td>Two trials: Farrell,77 Peto80 Long-term follow-up data presented in: Flossmann21</td>
</tr>
</tbody>
</table>

These figures were derived within a framework that does not include screening so it is not possible to calculate the relative risks of the transitions from postpolypectomy to low-risk or high-risk polyps. Within the intermediate-risk population model, the relative risk associated with the transition from postpolypectomy to low-risk polyps is assumed to be the same as the relative risk associated with the transition from low-risk polyps to high-risk polyps, whereas the relative risk associated with the transition from post-polypectomy to high-risk polyps is allowed to be different (see Intermediate-risk population). Therefore, within the general population model, it is assumed that the relative risk associated with the transition from postpolypectomy to low-risk polyps is equivalent to that derived for the relative risks associated with the transitions from normal epithelium to low-risk polyps and from low-risk polyps to high-risk polyps. Using this method, because the relative risk of the incidence of CRC was so low (0.61), the relative risk associated with these transitions was low (0.0419). Within the intermediate-risk model, the relative risk associated with the transition from postpolypectomy to high-risk polyps was consistently lower than the relative risk associated with the transition from postpolypectomy to low-risk polyps. Within the general population model, the relative risk associated with the transition from postpolypectomy to high-risk polyps was therefore assumed to be zero. As such a small proportion of patients follow this pathway within the general population model, this assumption would not have a large impact upon the model results. These assumptions are shown in Figure 17.

For the probabilistic sensitivity analysis, a distribution was fitted to the relative risk shown in Table 32 and a value was sampled from this distribution. This sampled value was then used within solver to estimate the relative risks for the transition probabilities outlined in Figure 17. This process was repeated 1000 times to generate a distribution for these relative risks.

Intermediate-risk population

Within the clinical trials, the number of people with low-risk adenomas was not provided; however, the number of people with any adenoma and the number of people with high-risk adenomas was provided within the intermediate-risk group. The number of people with low-risk adenomas was therefore estimated as the difference between these two values. The following calculation was undertaken to calculate event rates of low-risk adenomas in each arm of the study:

\[
\text{No. of low-risk adenomas} = (\text{Cumulative rate of all adenomas} - \text{Cumulative rate of high-risk adenomas}) / 100 \times \text{Total number of patients in study arm}
\]
The result of this calculation was then used within the meta-analysis (see Table 33).

The relative risk of developing low-risk and high-risk adenomas for patients receiving aspirin was based upon a meta-analysis of three studies.60–62 Within both celecoxib studies identified by the review,63,64 the event numbers at the 3-year follow-up were biased by the intervention following the 1-year follow-up. The cumulative proportion of events therefore provided a more reasonable approximation for calculating the relative risks. Two calcium studies were identified within the review for the intermediate-risk population.96,99 Within Bonithon-Kopp,96 high-risk adenomas were described as either > 1 cm or villous; the former of which was used to calculate incidence of low-risk adenomas. Within Baron,99 the relative risk of developing high-risk adenomas was not reported; however, the authors were contacted and were able to provide these data for use within the analysis. Both of these calcium studies also provided CRC incidence; however, event numbers were close to zero because of the short follow-up of the trials. Therefore these studies could not be used for the purposes of validation. The relative risks of the incidence of low-risk and high-risk polyps in the intermediate-risk population are shown in Table 33.

For the intermediate-risk population, it was assumed that an equivalent relative risk can be applied to the transition probability from the postpolypectomy state to low-risk polyps and from low-risk polyps to high-risk polyps. A second relative risk was assumed to apply to the probability of transiting from normal epithelium following a polypectomy to high-risk epithelium (Figure 17). The calibrated disease natural history model was used to estimate these relative risks based on fitting the number of low-risk polyps and high-risk polyps within the model to match the number of low-risk polyps and high-risk polyps reported within the trials for both the control group and the chemoprevention group. This process was undertaken using the SOLVER add-on in EXCEL as in the general population model. The samples for the PSA values were generated in the same way as those for the general population model.

Chemoprevention compliance

It is likely that compliance estimates observed within the clinical trials represent overestimates of the expected compliance rates for chemoprevention in practice (see Chapter 4). In particular, some of the studies selected patients based on prior analysis that had suggested that they were likely to be compliant. However, as the effectiveness estimates and compliance estimates within the clinical trials cannot be separated, compliance within the model is based upon the compliance within the trials. This is assumed to capture discontinuation as the result of harms associated with the chemopreventive agents. Costs of chemoprevention were adjusted within the model according to compliance reported within the trials. If compliance in practice was reduced compared with the compliance experienced within the trials, the implications for the cost-effectiveness of the chemopreventive agents is likely to be minimal because both costs and effects have been

Table 33: Relative risk of incidence of low-risk and high-risk polyps in the intermediate-risk population

<table>
<thead>
<tr>
<th>Chemopreventive agent</th>
<th>RR for incidence of low risk polyps (95% CI)</th>
<th>RR for incidence of high risk polyps (95% CI)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>0.93 (0.76 to 1.14)</td>
<td>0.75 (0.52 to 1.07)</td>
<td>Logan,60 Cole,61 Benamouzig62</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>0.77 (0.69 to 0.86)</td>
<td>0.45 (0.35 to 0.58)</td>
<td>Arber,63 Bertagnolli64</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.84 (0.68 to 1.03)</td>
<td>0.77 (0.50 to 1.17)</td>
<td>Bonithon-Kopp,96 Baron99</td>
</tr>
</tbody>
</table>

95% CI in parentheses.

Table 34: Compliance estimates

<table>
<thead>
<tr>
<th>Population</th>
<th>Chemoprevention</th>
<th>Compliance</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population</td>
<td>Aspirin</td>
<td>72.5%</td>
<td>Farrell,77 Peto80</td>
</tr>
<tr>
<td>Intermediate-risk population</td>
<td>Aspirin</td>
<td>90%</td>
<td>Logan,60 Cole,61 Benamouzig62</td>
</tr>
<tr>
<td></td>
<td>Celecoxib</td>
<td>75%</td>
<td>Arber,63 Bertagnolli64</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>80%</td>
<td>Bonithon-Kopp,96 Baron99</td>
</tr>
</tbody>
</table>
modelled under the same compliance assumptions. Compliance estimates based upon the trials for each of the chemopreventive agents are shown in Table 34.

Adverse events/positive or negative impacts associated with chemoprevention upon other diseases

Each of the chemopreventive agents assessed within the model are associated with harms to the individual and/or reductions in the incidence of other diseases. It is important to weigh these harms and benefits against the chemopreventive benefits. There is generally poor longitudinal evidence around the extent of the harms associated with aspirin, celecoxib and calcium chemoprevention; hence numerous simplifying assumptions have been made within this analysis.

The trials identified within the effectiveness review provide limited evidence around harms and other benefits associated with the chemopreventive agents because of the low prevalence of the harms/benefits within the population and hence the large number of patients required to demonstrate an effect. Therefore, reviews of aspirin, celecoxib and calcium harms were identified. The studies used to model harms within the model were a meta-review of 12 systematic reviews of the use of aspirin (Dube)\(^76\), a review of eight systematic reviews of the use of COX-2 inhibitors (Rostom)\(^88\) and a RCT of the impact of calcium upon vascular events in healthy older women (Bolland).\(^246\) The last of these may introduce some bias because the review focuses on women; however, this was the most appropriate evidence identified to represent harms associated with calcium. Relative risks for celecoxib are based upon a mixture of NSAIDs and doses and hence may be slightly overestimated.\(^88\) A sensitivity analysis was undertaken to assess the impact of no harms associated with 400 mg celecoxib to assess whether this would have a substantial impact upon the model results.

Based on these three studies, key harms and benefits of chemoprevention included within the modelling were dyspepsia, serious gastrointestinal bleed/ulcer, stroke and myocardial infarction. The relative risk of experiencing each of these events for each chemoprevention agent is shown in Table 35. These relative risks are assumed to be constant over time while the person is taking the intervention. It is possible that the incidence of some such events may decrease over time, whereas the incidence of others may increase; however, there is very limited evidence to support these assertions.

There is limited evidence surrounding the duration and level of severity of harms associated with chemopreventive agents. There is also no evidence of the harms around the daily consumption of aspirin, celecoxib or calcium beyond 10 years. Evidence suggests that harms occurring as a result of chemoprevention are likely to be short-term and mild.\(^247\) For example, strokes occurring as a result of chemoprevention are likely to be mild and hence more likely to have only short-term impacts upon quality of life. The three studies used to model the harms and benefits for each chemopreventive agent suggest that there is no evidence of an impact upon other-cause mortality.\(^76,88,246\) Hence the model assumes that there will be no increase in deaths as a result of the use of chemoprevention. Each of the harms is assumed to occur for less than a year.

Only excess harms to those normally experienced within the population are included within the health economic model. The relative risk of experiencing each harm is applied to the baseline incidence within the general population to calculate the additional probability of experiencing each harm or benefit as a result of the chemopreventive agent. Incidence of each of the harms and benefits within the general population

<table>
<thead>
<tr>
<th>Chemopreventive agent</th>
<th>Mean relative risk of experiencing harms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dyspepsia</td>
</tr>
<tr>
<td>Aspirin</td>
<td>1.7</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>1.7</td>
</tr>
<tr>
<td>Calcium</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Haemorrhagic only.
was based upon the analysis undertaken for the NICE osteoarthritis guidelines. Incidence of myocardial infarction within this analysis appeared low compared with other sources of evidence, which suggested that the incidence is likely to be around 1%246,248 hence this was used for myocardial infarction. The assumed incidence of harms within the general population is shown in Table 36 and the resultant probabilities of excess harms as a result of chemoprevention are shown in Table 37. This analysis makes the simplifying assumptions that the excess harms are constant over time and are not age-dependent because of the very limited evidence of such impacts.

There is some evidence that chemoprevention impacts upon the incidence of other cancers (in particular oesophageal and gastric cancer), in addition to CRC. However, given the inconsistencies within this evidence in general, these effects are excluded from the economic analysis.

Health-related quality of life

A systematic review was undertaken to identify relevant HRQoL evidence. A search was undertaken for HRQoL associated with CRC by the School of Health and Related Research in 2005 for a HTA systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic CRC.249 This search was updated using the same search strategy from 2005 onwards. This search strategy is shown in Appendix 1. The original search identified a total of six studies that attempted to estimate utility scores for patients with CRC. The current search identified no new evidence. Details of the methods used within these studies are reported in Table 38.

These studies do not demonstrate a clear relationship between HRQoL and stage of cancer, treatment, phase of disease, or time since diagnosis. Only two studies have attempted to estimate health utility scores for patients according to stage of cancer (Ness and Ramsey).251,252 The study by Ness,251 undertaken using hypothetical health status scenarios, suggests a substantial difference between early-stage and late-stage cancers (Stage I utility: 0.74; Stage IV utility: 0.24). The study by Ramsey,252 which was undertaken using long-term survivors of bowel cancer, does not demonstrate this relationship between cancer stage and declining HRQoL (Stage I utility: 0.84; Stage IV utility: 0.84). The results of the MABEL study (Corrie255) lend further weight to this suggestion, as the sample of patients included in this study had metastatic bowel cancer and had failed on at least one prior line of chemotherapy and had a health utility of 0.73. However, the study by Ness et al. involved eliciting preferences for hypothetical health states from individuals who had previously undergone polypectomy, while the other studies involved eliciting preferences from patients currently experiencing the health state. As NICE recommend that utilities should be based upon public preferences,256 the study by Ness was used to estimate utilities associated with CRC.251

Simplistic assumptions were made within the model because of the limited evidence concerning the relationship between utility, stage of cancer and time since diagnosis. Age-specific utility scores were assigned to patients without bowel cancer based upon the 1996 General Health Survey for England.257 The paper by Ness provided mean utilities for each Dukes stage and also a mean utility associated with non-CRC states. A relative

TABLE 36 Incidence of harms in general population

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>26.85%</th>
<th>0.24%</th>
<th>0.06%</th>
<th>0.3%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspepsia</td>
<td>0.24%</td>
<td>0.06%</td>
<td>0.3%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Serious gastrointestinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bleed/ulcer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 37 Resultant additional probability of experiencing specific harms

<table>
<thead>
<tr>
<th>Chemopreventive agent</th>
<th>Dyspepsia</th>
<th>Serious gastrointestinal bleed/ulcer</th>
<th>Stroke</th>
<th>Myocardial infarction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>0.312%</td>
<td>0.024% (haemorrhagic)</td>
<td>0.260%</td>
<td></td>
</tr>
<tr>
<td>Celecoxb</td>
<td>0.127%</td>
<td>0%</td>
<td>0.860%</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>0%</td>
<td>0.126% (all)</td>
<td>1.120%</td>
<td></td>
</tr>
</tbody>
</table>
utility of patients with CRC versus the general population could therefore be derived from Ness according to Dukes stage. These relative risks were then multiplied by the age-specific utility scores for people without cancer to provide an age-specific utility score for people with each Dukes stage. Within the probabilistic sensitivity analysis, the relative risks were varied using the confidence intervals around the mean utility estimates from Ness.²⁵¹

The utility parameters used to model people with or without CRC within the model are shown in Table 39.

These utilities are adjusted for harms associated with chemoprevention including dyspepsia, serious gastrointestinal bleed/ulcer, stroke and myocardial infarction. The quality of life impacts of dyspepsia and serious gastrointestinal bleeds/ulcers are assumed to be incurred for 1 month within the model, whereas stroke and myocardial infarction are assumed to last for 3 months (given that evidence suggests that these events are likely to be mild as a result of chemoprevention²⁴⁷). Relative utilities associated with each of the harms have been taken from the NICE osteoarthritis guidelines²⁴⁷ and are shown in Table 40. These relative utilities are multiplied by the age-related utilities to provide utility scores adjusted for these harms.

With the exception of those patients who experience harms due to chemoprevention, the model assumes that there are no substantial HRQoL implications associated with receiving daily chemoprevention.

Costs included in the economic analysis
The analysis was undertaken from a NHS perspective assuming that the NHS pays for chemoprevention. In practice, this would only be viable if the NHS were to provide chemoprevention.

TABLE 38 Summary of characteristics of utility studies for bowel cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>Study population</th>
<th>Method of preference elicitation and details of scenarios used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko²⁵⁰</td>
<td>Colon cancer subgroup included 169 patients</td>
<td>The Health and Activities Limitation Index was mapped onto a utility scale. This does not appear to be preference-based but is a conversion of a numerical Likert rating scale</td>
</tr>
<tr>
<td>Ness²⁵¹</td>
<td>90 individuals who had previously undergone removal of colorectal adenoma; 81 of these patients were included in the study</td>
<td>Seven health states describing various states of severity of colon and rectal cancer. Preferences elicited using standard gamble</td>
</tr>
<tr>
<td>Ramsey²⁵²</td>
<td>173 subjects with CRC (various stages) sampled from US SEER database completed the survey</td>
<td>Preferences elicited using the Health Utilities Index Mark 3 (HUI3)</td>
</tr>
<tr>
<td>Petrou and Campbell²⁵³</td>
<td>30 nurses experienced in oncology care</td>
<td>Utility scores for six chemotherapy-specific scenarios elicited using the standard gamble technique</td>
</tr>
<tr>
<td>MRC FOCUS trial²⁵⁴</td>
<td>Subset of clinical trial population with metastatic bowel cancer</td>
<td>EQ-5D questionnaire</td>
</tr>
<tr>
<td>Merck MABEL trial²⁵⁵</td>
<td>Clinical trial population with metastatic bowel cancer</td>
<td>EQ-5D questionnaire</td>
</tr>
</tbody>
</table>

EQ-5D, EuroQoL 5-dimension measure of health-related quality of life.

TABLE 39 Utilities within the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-CRC utility</td>
<td>Age-dependent</td>
<td>Health Survey for England 1996²³⁷</td>
</tr>
<tr>
<td>Dukes’ A utility relative risk</td>
<td>0.88</td>
<td>Ness²⁵⁸</td>
</tr>
<tr>
<td>Dukes’ B utility relative risk</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Dukes’ C utility relative risk</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Dukes’ D utility relative risk</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 40 Utilities associated with chemopreventive harms

<table>
<thead>
<tr>
<th></th>
<th>Dyspepsia</th>
<th>Serious gastrointestinal bleed/ulcer</th>
<th>Stroke</th>
<th>Myocardial infarction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>0.73</td>
<td>0.46</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>Duration</td>
<td>1 month</td>
<td>1 month</td>
<td>3 months</td>
<td>3 months</td>
</tr>
</tbody>
</table>

without prescription charges. Cost components within the model include:

- the cost of the chemoprevention agent
- costs associated with doctor’s appointments to obtain chemoprevention (it is assumed that one doctor’s appointment would be required per year for a prescription)
- the cost of CRC diagnosis (this includes the cost of flexible sigmoidoscopy, colonoscopy and barium enema and other diagnostic/staging modalities; it also includes the cost of perforation as a result of diagnostic tests)
- the cost of treating CRC (this is calculated according to Dukes’ stage within an existing model developed by the authors\(^{259}\))
- costs associated with treating adverse events/harms (dyspepsia, serious gastrointestinal bleed/ulcer, stroke, myocardial infarction) associated with regular aspirin, celecoxib or calcium use.

The costs included within the model are presented in Table 41. All costs have been uplifted to 2007–8 prices where appropriate.

TABLE 41 Cost parameters included in the economic model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual cost of aspirin (300 mg/day)</td>
<td>£17.19</td>
<td>BNF 57, 2008(^{146})</td>
</tr>
<tr>
<td>Annual cost of celecoxib (400 mg/day)</td>
<td>£524.38</td>
<td>BNF 57, 2008(^{146})</td>
</tr>
<tr>
<td>Annual cost of calcium (3 tablets per day)</td>
<td>£34.53</td>
<td>BNF 57, 2008(^{146})</td>
</tr>
<tr>
<td>Cost of doctor’s appointment</td>
<td>£36</td>
<td>PSSRU, 2008(^{260})</td>
</tr>
<tr>
<td>Colonoscopy (with polypectomy)</td>
<td>£389</td>
<td>NHS reference costs 2005 (colonoscopy)(^{261})</td>
</tr>
<tr>
<td>Colonoscopy (without polypectomy)</td>
<td>£389</td>
<td>NHS reference costs 2005 (colonoscopy)(^{261})</td>
</tr>
<tr>
<td>FOBT (two tests)</td>
<td>£13</td>
<td>Tappenden(^{238})</td>
</tr>
<tr>
<td>Treating bowel perforation</td>
<td>£2164</td>
<td>NHS reference costs 2006–7 (Major therapeutic open or endoscopic procedures 19 years and over with major colon cancer)(^{262})</td>
</tr>
<tr>
<td>Cost of admittance for bleeding</td>
<td>£278</td>
<td>NHS reference costs 2006–7 (Very major procedure for gastrointestinal bleed)(^{262})</td>
</tr>
<tr>
<td>Pathology cost for adenoma</td>
<td>£27</td>
<td>NHS reference costs 2006–7 (histopathology)(^{262})</td>
</tr>
<tr>
<td>Pathology cost for CRC</td>
<td>£27</td>
<td>NHS reference costs 2006–7 (histopathology)(^{262})</td>
</tr>
<tr>
<td>Treatment of Dukes’ A (lifetime)</td>
<td>£11,917</td>
<td>Pilgrim(^{219})</td>
</tr>
<tr>
<td>Treatment of Dukes’ B (lifetime)</td>
<td>£16,397</td>
<td>Pilgrim(^{319})</td>
</tr>
<tr>
<td>Treatment of Dukes’ C (lifetime)</td>
<td>£22,487</td>
<td>Pilgrim(^{319})</td>
</tr>
<tr>
<td>Treatment of Dukes’ D (lifetime)</td>
<td>£24,593</td>
<td>Pilgrim(^{319})</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>£40</td>
<td>Appendix 4 of NICE osteoarthritis guidelines (2008)(^{247})</td>
</tr>
<tr>
<td>Serious gastrointestinal bleed/ulcer</td>
<td>£3052</td>
<td>Appendix 4 of NICE osteoarthritis guidelines (2008)(^{247})</td>
</tr>
<tr>
<td>Stroke</td>
<td>£2419</td>
<td>Appendix 4 of NICE osteoarthritis guidelines (2008)(^{247})</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>£1532</td>
<td>Appendix 4 of NICE osteoarthritis guidelines (2008)(^{247})</td>
</tr>
</tbody>
</table>

PSSRU, Personal Social Services Research Unit.
Probabilistic sensitivity analysis

Probabilistic sensitivity analysis was undertaken whereby all model parameters were varied simultaneously within plausible ranges to produce distributions of expected costs and outcomes. Costs were represented using gamma distributions because these parameters may be skewed. Beta distributions were used to represent utilities and percentages. In a small number of cases, it was not possible to fit a beta distribution because the mean percentage was very close to one or zero; a uniform distribution was used to represent these parameters. Relative risks of experiencing harms associated with chemoprevention were represented using a normal or log normal distribution depending upon the confidence intervals presented within the systematic reviews. All parameter values are shown in Table 42 with the distribution used to represent uncertainty. Disease natural history parameters are excluded from this table because the way in which they are calibrated means that they cannot be represented by mean values. Ranges around the disease natural history parameters are shown in Table 31.

Model results and sensitivity analyses

Costs and outcomes associated with chemoprevention were compared incrementally against each other and against no chemoprevention; it should be noted that the baseline option includes screening and so is not strictly a ‘do nothing’ comparator. Each chemopreventive agent was compared against the next most effective option. Strongly dominated and extendedly dominated options were excluded from the incremental cost-effectiveness estimates. Discounted and undiscounted cost-effectiveness results are presented for each scenario.

As noted earlier (see Model parameters), a key uncertainty surrounding the potential use of chemoprevention concerns the nature of the chemoprevention policy that would be adopted in practice. Cost-effectiveness is assessed within a range of age subgroups in terms of when people are assumed to begin and discontinue use of chemoprevention. Evidence suggests that, excluding people with a hereditary disease associated with CRC, polyps generally begin developing from age 40 onwards. It has therefore been suggested that giving people chemoprevention when they are in their fourth and fifth decades of life is likely to be the optimum treatment approach.267 Within the general population, the age ranges assessed are:

- begin chemoprevention at age 40 years, discontinue at age 50 years
- begin chemoprevention at age 40 years, discontinue at age 60 years
- begin chemoprevention at age 50 years, discontinue at age 60 years
- begin chemoprevention at age 50 years, discontinue at age 70 years.

For the intermediate-risk population, the age at which a person begins receiving chemoprevention would probably be dependent on the point at which they undergo polypectomy within the CRC screening programme. Many individuals will undergo polypectomy at age 60 following the first screening round. Within the model it is assumed that these individuals will begin chemoprevention within a year following polypectomy. However, some individuals may develop polyps during screening intervals or may not attend until later in the screening programme. Furthermore, some individuals may receive a polypectomy outside of the screening programme. Analyses were also undertaken whereby (1) individuals with adenomas undergo polypectomy at age 64 and begin chemoprevention at age 65 and (2) individuals with adenomas undergo polypectomy at age 70 and begin chemoprevention at age 71, to assess the impact of different chemoprevention starting ages on incremental cost-effectiveness. For the intermediate-risk population the age ranges assessed for receiving chemoprevention within the model are:

- begin chemoprevention at age 61 years, discontinue at age 70 years
- begin chemoprevention at age 61 years, discontinue at age 80 years
- begin chemoprevention at age 65 years, discontinue at age 80 years
- begin chemoprevention at age 71 years, discontinue at age 80 years.

The policy for each population that provided the most economically attractive option is presented as the base-case analysis and the remaining policies are presented as secondary scenarios.

The most substantial uncertainty surrounding the decision problem concerns the ratio of benefits to harms associated with specific chemopreventive agents. This was therefore assessed within a two-way sensitivity analysis using the most cost-effective policy above. The net benefit of each chemopreventive agent was compared against a
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>SE (unless otherwise stated)</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening and diagnostic test parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gFOBT – Sensitivity for polyps</td>
<td>11%</td>
<td>3.5%</td>
<td>Beta</td>
<td>Burch²⁶³</td>
</tr>
<tr>
<td>gFOBT – Sensitivity for CRC</td>
<td>58%</td>
<td>8%</td>
<td>Beta</td>
<td>Weller²⁶⁴</td>
</tr>
<tr>
<td>gFOBT – Specificity</td>
<td>97%</td>
<td>0.5%</td>
<td>Beta</td>
<td>Assumption</td>
</tr>
<tr>
<td>COL – Sensitivity for low-risk polyps</td>
<td>77%</td>
<td>2%</td>
<td>Beta</td>
<td>Calculated from Van Rijn²⁶⁵</td>
</tr>
<tr>
<td>COL – Sensitivity for high-risk polyps</td>
<td>98%</td>
<td>Range 93–99%</td>
<td>Uniform</td>
<td>Calculated from Van Rijn²⁶⁵</td>
</tr>
<tr>
<td>COL – Sensitivity for CRC</td>
<td>98%</td>
<td>Range 95–99%</td>
<td>Uniform</td>
<td>Bressler²⁶⁶</td>
</tr>
<tr>
<td>COL – Specificity</td>
<td>97%</td>
<td>0.5%</td>
<td>Beta</td>
<td>Assumption</td>
</tr>
<tr>
<td>COL – Probability of perforation (without polypectomy)</td>
<td>0.08%</td>
<td>Range 0.17–0.30%</td>
<td>Uniform</td>
<td>Atkin²⁶⁹</td>
</tr>
<tr>
<td>COL – Probability of perforation (with polypectomy)</td>
<td>0.17%</td>
<td>Range 0.01–0.25%</td>
<td>Uniform</td>
<td>Atkin²⁶⁹</td>
</tr>
<tr>
<td>COL – Probability of death following perforation</td>
<td>5.82%</td>
<td>1%</td>
<td>Beta</td>
<td>Gatto²⁶⁹</td>
</tr>
<tr>
<td>Probability of bleeding following COL</td>
<td>0.439%</td>
<td>Range 0.07–0.45%</td>
<td>Uniform</td>
<td>Atkin²⁶⁹</td>
</tr>
<tr>
<td>Probability of inadequate bowel preparation (COL)</td>
<td>10%</td>
<td>2%</td>
<td>Beta</td>
<td>Assumption</td>
</tr>
<tr>
<td>Surveillance transition probabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of HR polypectomy requiring annual surveillance</td>
<td>29%</td>
<td>NA</td>
<td>NA</td>
<td>Based on model calibration</td>
</tr>
<tr>
<td>LR polypectomy, transition probability to LR polyp</td>
<td>11%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>LR polypectomy, transition probability to IR polyp</td>
<td>2%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>LR polypectomy, transition probability to HR polyp</td>
<td>2%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>IR polypectomy, transition probability to LR polyp</td>
<td>15%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>IR polypectomy, transition probability to IR polyp</td>
<td>4%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>IR polypectomy, transition probability to HR polyp</td>
<td>4%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>HR polypectomy, transition probability to LR polyp</td>
<td>18%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>HR polypectomy, transition probability to IR polyp</td>
<td>6%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>HR polypectomy, transition probability to HR polyp</td>
<td>6%</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Effectiveness parameters (general population)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative risk applied to transitions to polyp incidence – aspirin</td>
<td>0.0401</td>
<td>Range 0–0.7165</td>
<td>See Model parameters</td>
<td>Farrell,²⁷ Peto,²⁸ Flossmann²¹</td>
</tr>
</tbody>
</table>

continued
TABLE 42 Model parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>SE (unless otherwise stated)</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness parameters (intermediate-risk population)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative risk applied to transitions to LR/HR polyps from polypectomy – aspirin</td>
<td>0.83/0.54</td>
<td>Range 0.49/0.2 to 1.33/1.03</td>
<td>See Model parameters</td>
<td>Logan,60 Cole,61 Benamouzig62</td>
</tr>
<tr>
<td>Relative risk applied to transitions to LR/HR polyps from polypectomy – celecoxib</td>
<td>0.51/0.07</td>
<td>Range 0.36/0 to 0.68/0.26</td>
<td>See Model parameters</td>
<td>Arber,63 Bertagnolli64</td>
</tr>
<tr>
<td>Relative risk applied to transitions to LR/HR polyps from polypectomy – calcium</td>
<td>0.66/0.64</td>
<td>Range 0.35/0.2 to 1.09/1.34</td>
<td>See Model parameters</td>
<td>Bonithon-Kopp,66 Baron99</td>
</tr>
<tr>
<td>Compliance parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability that a person ever complies with a screening programme</td>
<td>75%</td>
<td>5%</td>
<td>Beta</td>
<td>Derived from Weller264</td>
</tr>
<tr>
<td>Compliance with gFOBT</td>
<td>52%</td>
<td>3.5%</td>
<td>Beta</td>
<td>Weller264</td>
</tr>
<tr>
<td>COL follow-up compliance</td>
<td>82.5%</td>
<td>NA</td>
<td>NA</td>
<td>Weller264</td>
</tr>
<tr>
<td>Surveillance colonoscopy compliance</td>
<td>82.5%</td>
<td>NA</td>
<td>NA</td>
<td>Assumed to be same as above</td>
</tr>
<tr>
<td>Aspirin (general population)</td>
<td>72.5%</td>
<td>NA</td>
<td>NA</td>
<td>Farrell,77 Peto80</td>
</tr>
<tr>
<td>Aspirin (intermediate-risk population)</td>
<td>90%</td>
<td>NA</td>
<td>NA</td>
<td>Logan,60 Cole,61 Benamouzig62</td>
</tr>
<tr>
<td>Celecoxib (intermediate-risk population)</td>
<td>75%</td>
<td>NA</td>
<td>NA</td>
<td>Arber,63 Bertagnolli64</td>
</tr>
<tr>
<td>Calcium (intermediate-risk population)</td>
<td>80%</td>
<td>NA</td>
<td>NA</td>
<td>Bonithon-Kopp,66 Baron99</td>
</tr>
<tr>
<td>Cost parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual cost of aspirin (300 mg/day)</td>
<td>£17.19</td>
<td>NA</td>
<td>NA</td>
<td>BNF 57, 200856</td>
</tr>
<tr>
<td>Annual cost of celecoxib (400 mg/day)</td>
<td>£524.38</td>
<td>NA</td>
<td>NA</td>
<td>BNF 57, 200856</td>
</tr>
<tr>
<td>Annual cost of calcium (3 tablets per day)</td>
<td>£34.53</td>
<td>£3</td>
<td>Normal</td>
<td>BNF 57, 200856</td>
</tr>
<tr>
<td>Cost of doctor’s appointment</td>
<td>£36</td>
<td>£4</td>
<td>Normal</td>
<td>PSSRU, 2008260</td>
</tr>
<tr>
<td>Colonoscopy (with polypectomy)</td>
<td>£389</td>
<td>£20</td>
<td>Gamma</td>
<td>NHS reference costs 2005 (colonoscopy)261</td>
</tr>
<tr>
<td>Colonoscopy (without polypectomy)</td>
<td>£389</td>
<td>£20</td>
<td>Gamma</td>
<td>NHS reference costs 2005 (colonoscopy)261</td>
</tr>
<tr>
<td>FOBT (two tests)</td>
<td>£13</td>
<td>NA</td>
<td>NA</td>
<td>Tappenden238</td>
</tr>
<tr>
<td>Treating bowel perforation</td>
<td>£2164</td>
<td>£200</td>
<td>Gamma</td>
<td>NHS reference costs 2006–7 (Major therapeutic open or endoscopic procedures 19 years and over with major colon cancer)262</td>
</tr>
<tr>
<td>Cost of admittance for bleeding</td>
<td>£278</td>
<td>£20</td>
<td>Gamma</td>
<td>NHS reference costs 2006–7 (Very major procedure for gastrointestinal bleed)262</td>
</tr>
<tr>
<td>Pathology cost for adenoma</td>
<td>£27</td>
<td>£3</td>
<td>Gamma</td>
<td>NHS reference costs 2006–7 (Histopathology)262</td>
</tr>
<tr>
<td>Pathology cost for CRC</td>
<td>£27</td>
<td>£3</td>
<td>Gamma</td>
<td>NHS reference costs 2006–7 (Histopathology)262</td>
</tr>
<tr>
<td>Treatment of Dukes’ A (lifetime)</td>
<td>£11,917</td>
<td>£1000</td>
<td>Gamma</td>
<td>Pilgrim219</td>
</tr>
<tr>
<td>Treatment of Dukes’ B (lifetime)</td>
<td>£16,397</td>
<td>£1000</td>
<td>Gamma</td>
<td></td>
</tr>
<tr>
<td>Treatment of Dukes’ C (lifetime)</td>
<td>£22,487</td>
<td>£1000</td>
<td>Gamma</td>
<td></td>
</tr>
<tr>
<td>Treatment of Dukes’ D (lifetime)</td>
<td>£24,593</td>
<td>£1000</td>
<td>Gamma</td>
<td></td>
</tr>
</tbody>
</table>

Assessment of cost-effectiveness
TABLE 42 Model parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>SE (unless otherwise stated)</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment for dyspepsia</td>
<td>£40</td>
<td>£5</td>
<td>Gamma</td>
<td>Appendix 4 of NICE osteoarthritis guidelines (2008)</td>
</tr>
<tr>
<td>Treatment for serious gastrointestinal bleed/ulcer</td>
<td>£3052</td>
<td>£305</td>
<td>Gamma</td>
<td></td>
</tr>
<tr>
<td>Treatment for stroke</td>
<td>£2419</td>
<td>£242</td>
<td>Gamma</td>
<td></td>
</tr>
<tr>
<td>Treatment for myocardial infarction</td>
<td>£1532</td>
<td>£153</td>
<td>Gamma</td>
<td></td>
</tr>
</tbody>
</table>

Utility estimates

<table>
<thead>
<tr>
<th>Non-CRC utility</th>
<th>Age-dependent</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dukes’ A utility relative risk</td>
<td>0.88</td>
<td>0.05</td>
</tr>
<tr>
<td>Dukes’ B utility relative risk</td>
<td>0.70</td>
<td>0.05</td>
</tr>
<tr>
<td>Dukes’ C utility relative risk</td>
<td>0.70</td>
<td>0.05</td>
</tr>
<tr>
<td>Dukes’ D utility relative risk</td>
<td>0.30</td>
<td>0.04</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>0.73</td>
<td>NA</td>
</tr>
<tr>
<td>Serious gastrointestinal bleed/ulcer</td>
<td>0.46</td>
<td>NA</td>
</tr>
<tr>
<td>Stroke</td>
<td>0.35</td>
<td>NA</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.37</td>
<td>NA</td>
</tr>
</tbody>
</table>

Relative risk of harms associated with aspirin

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative Risk</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspepsia</td>
<td>1.70</td>
<td>0.1</td>
</tr>
<tr>
<td>Serious gastrointestinal bleed/ulcer</td>
<td>2.30</td>
<td>0.4</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>1.40</td>
<td>0.3</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.74</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Relative risk of harms associated with celecoxib

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative Risk</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspepsia</td>
<td>1.70</td>
<td>0.5</td>
</tr>
<tr>
<td>Serious gastrointestinal bleed/ulcer</td>
<td>1.53</td>
<td>(0.47, 0.4, 0.89)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>1.86</td>
<td>(0.63, 0.19, 0.97)</td>
</tr>
</tbody>
</table>

Relative risk of harms associated with calcium

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative Risk</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>1.42</td>
<td>(0.37, 0.3, 0.94)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2.12</td>
<td>(0.79, 0.4, 0.89)</td>
</tr>
</tbody>
</table>

COL, colonoscopy; gFOBT, guaiac faecal occult blood test; HR, high-risk; IR, intermediate-risk; LR, low-risk; NA, not available; PSSRU, Personal Social Services Research Unit.

a Log normal parameters are logged mean, logged standard error, multiplier.

The screening-only option and the impact upon the model results of increasing harms while decreasing effectiveness was estimated over a range of values. For the model of the general population, within this analysis the impact of different assumptions around effectiveness is assessed by varying the relative risk of the incidence of CRC associated with aspirin from 0.6 to 0.95. The impact of different assumptions around harms are assessed by multiplying the excess probability of each harm by some number, x, which would lead to aspirin having an incremental cost per QALY gained of around £20,000 for each effectiveness assumption. For example, currently the excess probabilities of dyspepsia, serious gastrointestinal bleed/ulcer and haemorrhagic stroke are 18.795%, 0.312% and 0.024%, respectively. If x were equal to 2, this would mean that these probabilities would become 37.59%, 0.624% and 0.048%, respectively. The impact of a range of values of x was therefore
assessed. The limitation of this approach is that it does not allow for the excess probability of one form of harm to increase more than the excess probability of another form; however, doing this would lead to an unmanageable set of possible permutations to assess. The excess probability of myocardial infarction was not varied within this analysis because aspirin decreases rather than increases the probability of a myocardial infarction.

For the model of the intermediate-risk population, a similar method was employed within the two-way sensitivity analysis. The impact of different assumptions concerning effectiveness was assessed by varying the relative risk of the incidence of low-risk polyps associated with each chemopreventive agent from 0.7 to 0.95. The relative risk of the incidence of high-risk polyps was then adjusted according to the relationship between the relative risk of the incidence of low-risk and high-risk polyps for the mean values. For example, the mean relative risk of the incidence of low-risk polyps was estimated to be 0.93 from the clinical trials of aspirin and the mean relative risk of the incidence of high-risk polyps was estimated to be 0.75. If the relative risk of the incidence of low-risk polyps was then varied such that it becomes 0.8, the relative risk of the incidence of high-risk polyps becomes $(0.75/0.93) \times 0.8 = 0.65$. Harms are then varied in the same way as in the general population model two-way sensitivity analysis. Results of the sensitivity analysis are presented in terms of the incremental cost per QALY gained.

This two-way sensitivity analysis was undertaken only for aspirin and calcium because celecoxib has such a high cost-effectiveness ratio within the base case. A one-way sensitivity analysis assuming that celecoxib is associated with no harms was tested as an extreme assumption to assess the impact of these harms upon the model results.

Results

This section presents the results of the economic analysis of chemoprevention. Unless otherwise stated, all model results are expected cost-effectiveness estimates derived from probabilistic sensitivity analyses.

General population model analysis

Base-case option
The model analysis suggests that the most cost-effective age-range policy would be to provide chemoprevention to all individuals within the general population from age 50 to 60 years. This result is highly dependent upon the assumptions surrounding the natural history of the disease, particularly with regard to adenoma incidence by age. The results of this policy are shown in Table 43.

This analysis suggests that the use of aspirin chemoprevention in addition to screening within the general population is likely to result in a discounted cost per LYG of around £10,000 and a discounted cost per QALY gained of around £23,000 compared with screening alone. It should be noted that the cost per LYG estimate does not incorporate the negative health effects associated with harms due to chemoprevention. When costs and health outcomes are not discounted, aspirin chemoprevention is expected to cost around £5000 per QALY gained when compared with screening alone. This is because the costs of daily aspirin are incurred from age 50, but the benefits of chemoprevention do not manifest until a number of years into the future. Discounting therefore has a substantial impact upon the model results. Figure 18 presents cost-effectiveness acceptability curves (CEACs) associated with this policy.

Assuming a willingness-to-pay threshold of £30,000 per QALY gained, the probability that screening plus aspirin chemoprevention results in more net benefit than screening alone is expected to be around 0.80. Figure 18 suggests that if society is willing to pay up to £30,000 per QALY gained, there remains a 20% probability that screening alone results in a larger net benefit than screening plus aspirin chemoprevention. Even if society was willing to pay £100,000 per QALY gained, there remains a small probability (< 5%) that screening alone would be more economically attractive. This highlights the substantial uncertainties within the model.

Other age-related policies within the general population
As described previously, a range of other age-related policies for receiving chemoprevention were assessed within the health economic model. Cost-effectiveness estimates for the use of chemoprevention between 50 and 70 years are shown in Table 44.

Extending the upper age for chemoprevention from 60 to 70 years reduces the cost-effectiveness of aspirin chemoprevention plus screening to an estimated £35,000 per QALY gained compared with screening alone. It is possible that harms associated with aspirin may increase beyond age...
TABLE 43 Results of chemoprevention given to general population age 50–60 years

<table>
<thead>
<tr>
<th></th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental cost-effectiveness estimates (discounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£997</td>
<td>16.87</td>
<td>13.74</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£1367</td>
<td>16.91</td>
<td>13.76</td>
<td>£10,169</td>
<td>£22,800</td>
</tr>
<tr>
<td>Incremental cost-effectiveness estimates (undiscounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£1807</td>
<td>26.36</td>
<td>21.08</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£2134</td>
<td>26.45</td>
<td>21.14</td>
<td>£3799</td>
<td>£5164</td>
</tr>
</tbody>
</table>

FIGURE 18 CEAC for chemoprevention given to general population age 50–60 years (discounted QALYs).

TABLE 44 Results of chemoprevention given to general population age 50–70 years

<table>
<thead>
<tr>
<th></th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental cost-effectiveness estimates (discounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£997</td>
<td>16.87</td>
<td>13.74</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£1524</td>
<td>16.92</td>
<td>13.76</td>
<td>£10,654</td>
<td>£34,888</td>
</tr>
<tr>
<td>Incremental cost-effectiveness estimates (undiscounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£1807</td>
<td>26.36</td>
<td>21.08</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£2319</td>
<td>26.49</td>
<td>21.16</td>
<td>£4137</td>
<td>£6452</td>
</tr>
</tbody>
</table>

60. This impact is not captured within the model because of the limited evidence base; however, its inclusion would further increase the ICER for this age range. Figure 19 presents the CEAC for this policy.

Figure 19 again highlights the extent of the uncertainties within the model. If society is willing to pay £100,000 per QALY gained there remains an 8% probability that screening alone would remain the more economically attractive option.
Table 45 shows the impact of reducing the age of providing chemoprevention to people within the general population aged 40–50 years.

The incremental cost per QALY gained associated with offering chemoprevention to the general population from age 40 to age 50 in addition to screening is estimated to be around £124,000 compared with screening alone. This ICER is particularly high because of the small expected gains in effectiveness. Again, the cost per LYG appears favourable in comparison to the incremental cost per QALY gained by the exclusion of negative health effects due to harms associated with chemoprevention. It should be noted that both health benefits and costs are small so very small differences in effectiveness have a substantial impact upon the ICER. Within this analysis, discounting has an even greater impact upon the model results because of the cohort being younger when they begin chemoprevention. Figure 20 shows the CEAC for this policy.

Figure 20 suggests that for willingness-to-pay thresholds below £100,000 per QALY gained, screening alone is expected to produce the greatest level of net benefit.

Table 46 presents the results of an analysis assessing the cost-effectiveness of providing aspirin chemoprevention to the general population from age 40 to 60.

The use of aspirin chemoprevention in addition to screening for individuals aged 40–60 is expected to result in an incremental cost per QALY gained of around £95,000. Figure 21 presents the CEAC for this policy and indicates that for willingness-to-pay thresholds below around £90,000 per QALY gained, screening alone is expected to produce the greatest level of net benefit.
FIGURE 20 CEAC for chemoprevention given to general population age 40–50 years (discounted QALYs).

TABLE 46 Results of chemoprevention given to general population age 40–60 years

<table>
<thead>
<tr>
<th></th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental cost-effectiveness estimates (discounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£715</td>
<td>20.07</td>
<td>16.94</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£1441</td>
<td>20.12</td>
<td>16.95</td>
<td>£15,423</td>
<td>£95,397</td>
</tr>
<tr>
<td>Incremental cost-effectiveness estimates (undiscounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£1786</td>
<td>35.37</td>
<td>29.10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£2590</td>
<td>35.51</td>
<td>29.20</td>
<td>£5552</td>
<td>£8683</td>
</tr>
</tbody>
</table>

FIGURE 21 CEAC for chemoprevention given to general population age 40–60 years (discounted QALYs).
Assessment of cost-effectiveness

If willing to pay £20,000 for a QALY gain, aspirin chemoprevention would not be considered to be cost-effective

If willing to pay £20,000 for a QALY gain, aspirin chemoprevention would be considered to be cost-effective

Multiplier for probability of harms
Where 1 denotes the following probabilities of experiencing harms associated with aspirin:
Serious GI bleed/ulcer = 0.312%
Haemorrhagic stroke = 0.024%
Dyspepsia = 18.795%

FIGURE 22 Two-way sensitivity analysis of the relative risk of CRC incidence and the probability of harms associated with aspirin chemoprevention compared with screening only.

Two-way sensitivity analysis of benefits to harms
As a result of the uncertainties associated with both benefits and harms of aspirin chemoprevention, two-way sensitivity analysis was undertaken to assess the impact of these model inputs upon cost-effectiveness outcomes within the model for people aged 50–60. These results are presented in Figure 22.

Figure 22 indicates that if the relative risk of CRC incidence is greater than 0.6, then aspirin would need to cause fewer harms than currently assumed within the model for aspirin chemoprevention to be considered to be cost-effective at a willingness-to-pay threshold of £20,000 per QALY gained. For example, if the relative risk of cancer incidence is estimated to be 0.85, then the harms associated with aspirin shown at the base of Figure 22 would need to be approximately one-third of those assumed within the model for aspirin chemoprevention to be considered to be economically attractive at a willingness-to-pay threshold of £20,000 per QALY gained (i.e. excess harms as a result of aspirin would need to be less than 0.104% for serious gastrointestinal bleed/ulcer, 0.008% for haemorrhagic stroke and 6.265% for dyspepsia).

Intermediate-risk model analysis
Base-case option
The model analysis suggests that the most economically viable age-range policy would be to provide chemoprevention to individuals following polypectomy aged 61–70 years. Clearly, this finding is dependent upon the age at which a polypectomy is undertaken. Therefore three different starting ages for chemoprevention are assessed. As with the general population analysis, these results are highly dependent upon the assumptions around the disease natural history, particularly with regard to polyp incidence following polypectomy. The results of this policy are shown in Table 47.

This model analysis suggests that calcium chemoprevention is expected to have a discounted cost per QALY gained of around £8000 compared with screening only. Although aspirin chemoprevention in addition to screening is expected to be associated with an ICER of £21,185 compared with screening alone (not reported within Table 47), under the current assumptions of benefits to harms of aspirin and calcium, aspirin is expected to be extensively dominated by calcium. In other words, calcium is expected to be more effective and to have a lower ICER than aspirin.
TABLE 47 Results of chemoprevention given to intermediate-risk population age 61–70 years

<table>
<thead>
<tr>
<th>Incremental cost-effectiveness estimates (discounted)</th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening only</td>
<td>£2865</td>
<td>12.55</td>
<td>9.72</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£3121</td>
<td>12.57</td>
<td>9.73</td>
<td>–</td>
<td>Extendedly dominated (by calcium)</td>
</tr>
<tr>
<td>Screening plus calcium</td>
<td>£3159</td>
<td>12.58</td>
<td>9.75</td>
<td>£8046</td>
<td>£8383</td>
</tr>
<tr>
<td>Screening plus celecoxib</td>
<td>£5604</td>
<td>12.61</td>
<td>9.77</td>
<td>£60,805</td>
<td>£55,696</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incremental cost-effectiveness estimates (undiscounted)</th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening only</td>
<td>£4146</td>
<td>17.16</td>
<td>13.10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£4387</td>
<td>17.20</td>
<td>13.14</td>
<td>–</td>
<td>Extendedly dominated (by calcium)</td>
</tr>
<tr>
<td>Screening plus calcium</td>
<td>£4418</td>
<td>17.22</td>
<td>13.17</td>
<td>£4121</td>
<td>£4117</td>
</tr>
<tr>
<td>Screening plus celecoxib</td>
<td>£7137</td>
<td>17.28</td>
<td>13.22</td>
<td>£37,106</td>
<td>£34,300</td>
</tr>
</tbody>
</table>

FIGURE 23 CEAC for chemoprevention given age 61–70 years (discounted QALYs).

However, this comparison is subject to considerable uncertainty because of the paucity of evidence around the long-term effectiveness and harms of both aspirin and calcium. This uncertainty is highlighted within the CEAC for this policy (see Figure 23). The probabilistic analysis suggests that society would need to be willing to pay around £56,000 per QALY gained for celecoxib chemoprevention to be considered to be cost-effective compared with calcium. Figure 23 shows the CEAC for this policy.

Figure 23 suggests that for thresholds between £10,000 and £100,000 per QALY gained, the probability that calcium chemoprevention produces the greatest level of net benefit is between 50% and 60%. Similarly, there is an estimated 20–30% probability that aspirin chemoprevention would be the most economically attractive option over these willingness-to-pay thresholds. The majority of this uncertainty concerns the balance of benefits and harms associated with each of the chemopreventive agents. For thresholds greater than £30,000 per QALY gained, there is an increasing probability that celecoxib chemoprevention produces the greatest amount of net benefit. However, as celecoxib chemoprevention is substantially more expensive than aspirin and calcium chemoprevention, the probability that it would be considered to be the most cost-effective option at a willingness-to-pay threshold below £30,000 is zero.
TABLE 48 Results of chemoprevention given to intermediate-risk population age 61–80 years

<table>
<thead>
<tr>
<th></th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental cost-effectiveness estimates (discounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£2865</td>
<td>12.55</td>
<td>9.72</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£3251</td>
<td>12.58</td>
<td>9.73</td>
<td>Extendedly dominated (by calcium)</td>
<td></td>
</tr>
<tr>
<td>Screening plus calcium</td>
<td>£3332</td>
<td>12.59</td>
<td>9.76</td>
<td>£9845</td>
<td>£10,870</td>
</tr>
<tr>
<td>Screening plus celecoxib</td>
<td>£7087</td>
<td>12.64</td>
<td>9.79</td>
<td>£69,002</td>
<td>£64,456</td>
</tr>
<tr>
<td>Incremental cost-effectiveness estimates (undiscounted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening only</td>
<td>£4146</td>
<td>17.16</td>
<td>13.10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£4547</td>
<td>17.23</td>
<td>13.14</td>
<td>Extendedly dominated (by calcium)</td>
<td></td>
</tr>
<tr>
<td>Screening plus calcium</td>
<td>£4638</td>
<td>17.25</td>
<td>13.19</td>
<td>£5397</td>
<td>£5636</td>
</tr>
<tr>
<td>Screening plus celecoxib</td>
<td>£9333</td>
<td>17.33</td>
<td>13.26</td>
<td>£44,124</td>
<td>£41,416</td>
</tr>
</tbody>
</table>

Other age-related policies

Results are presented for a policy of giving chemoprevention from age 61 to 80 years in Table 48.

Table 48 suggests that extending the use of chemoprevention to age 80 leads to similar results to those of the base-case policy, but with slightly higher expected ICERs. Again, aspirin chemoprevention is expected to be extendedly dominated by calcium chemoprevention under the current assumptions of the ratio of benefits to harms; however, it should be noted that because of the uncertainties around both long-term effectiveness and long-term harms associated with both aspirin and calcium chemoprevention, the results of this comparison should be treated with caution. As shown by the CEAC in Figure 24 it is possible that aspirin would result in the highest net benefit rather than calcium at willingness-to-pay thresholds above around £10,000. The incremental cost per QALY gained associated with calcium chemoprevention compared with screening alone is estimated to be around £11,000, whereas the estimated incremental cost per QALY gained associated with celecoxib chemoprevention versus calcium is around £64,000. Figure 24 shows the CEAC associated with this policy.

Figure 24 provides similar estimates of uncertainty around each of the chemopreventive agents as for the previous analysis. Again, there is an estimated 50–60% probability that above a willingness-to-pay threshold of around £10,000, calcium chemoprevention is expected to produce the greatest level of net benefit. However, there is
TABLE 49 Results of chemoprevention given to intermediate risk population age 65–80 years

<table>
<thead>
<tr>
<th>Incremental cost-effectiveness estimates (discounted)</th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening only</td>
<td>£2340</td>
<td>10.98</td>
<td>8.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£2689</td>
<td>11.01</td>
<td>8.37</td>
<td>Extendedly dominated (by calcium)</td>
<td></td>
</tr>
<tr>
<td>Screening plus calcium</td>
<td>£2750</td>
<td>11.02</td>
<td>8.39</td>
<td>£13,262</td>
<td>£15,657</td>
</tr>
<tr>
<td>Screening plus celecoxib</td>
<td>£5938</td>
<td>11.04</td>
<td>8.41</td>
<td>£92,103</td>
<td>£87,298</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incremental cost-effectiveness estimates (undiscounted)</th>
<th>Total costs</th>
<th>Total LYGs</th>
<th>Total QALYs</th>
<th>Cost per LYG</th>
<th>Cost per QALY gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening only</td>
<td>£3226</td>
<td>14.38</td>
<td>10.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening plus aspirin</td>
<td>£3582</td>
<td>14.43</td>
<td>10.85</td>
<td>Extendedly dominated (by calcium)</td>
<td></td>
</tr>
<tr>
<td>Screening plus calcium</td>
<td>£3641</td>
<td>14.44</td>
<td>10.89</td>
<td>£7414</td>
<td>£8042</td>
</tr>
<tr>
<td>Screening plus celecoxib</td>
<td>£7444</td>
<td>14.49</td>
<td>10.92</td>
<td>£59,826</td>
<td>£56,456</td>
</tr>
</tbody>
</table>

also an estimated 20–30% probability that aspirin chemoprevention would have the highest net benefit.

Results are presented for a policy of giving chemoprevention from age 65 to 80 in Table 49 because people may undergo polypectomy at a later age.

Providing chemoprevention to individuals following polypectomy from age 65 to age 80 leads to similar results as the previous analyses, again with slightly higher ICERs. The incremental cost per QALY gained associated with calcium chemoprevention in addition to screening compared with screening only is estimated to be around £8000, whereas the incremental cost per QALY gained associated with celecoxib chemoprevention compared with calcium chemoprevention is estimated to be around £56,000. Aspirin is again extendedly dominated by calcium, although again this result should be treated with caution because of the uncertainties around the long-term effectiveness and harms associated with aspirin and calcium. These results suggest that the cost-effectiveness of chemoprevention is driven by the age at which chemoprevention begins. Therefore, the age at which polypectomy is undertaken affects the cost-effectiveness of subsequent chemoprevention. Figure 25 shows the CEAC for this policy.

Figure 25 suggests that as the starting age for chemoprevention increases following a polypectomy, the probability that calcium chemoprevention results in a higher net benefit also an estimated 20–30% probability that aspirin chemoprevention would have the highest net benefit.
The cost-effectiveness results for intermediate-risk individuals who begin taking chemoprevention from age 71 to age 80 are presented within Table 50.

The results presented in Table 50 suggest that increasing the starting age for chemoprevention to 71 increases the ICERs further compared with a starting age of 65. For this age group, aspirin chemoprevention in addition to screening is estimated to result in lower QALYs and greater costs than screening alone. This is because the estimated harms outweigh the estimated reduction in CRC incidence. The incremental cost per QALY gained associated with calcium chemoprevention in addition to screening is estimated to be around £30,000 compared with screening only, whereas the incremental cost per QALY gained associated with celecoxib chemoprevention is estimated to increase to around £145,000 compared with calcium chemoprevention. Figure 26 shows the CEAC associated with this policy.

Figure 26 suggests that increasing the starting age for chemoprevention to 71 years results in a lower probability that either aspirin or celecoxib will have a higher net benefit than calcium chemoprevention or screening only. The model suggests that for people receiving chemoprevention over the age of 70, the option to provide no chemoprevention is more likely to be considered to be economically attractive compared with aspirin chemoprevention or celecoxib chemoprevention at willingness-to-
pay thresholds below £100,000 per QALY gained. For a threshold of £30,000 per QALY gained, the model suggests that the probability that calcium chemoprevention produces the greatest level of net benefit is around 60%.

Two-way sensitivity analysis of benefits to harms

Owing to the uncertainties associated with both benefits and harms of the chemopreventive agents, two-way sensitivity analyses were undertaken to assess the impact of these model inputs upon cost-effectiveness. This analysis provides only an indication as to the potential impact of increases or decreases in harms or benefits because a number of simplifying assumptions have been required; (1) that the ratio between the relative risk of high-risk polyps and low-risk polyps remains the same as in the base-case analysis; (2) that all probabilities of experiencing harms are increased or decreased by the same proportion; (3) that the harms continue to remain constant over time; and (4) that there are no other harms or benefits associated with the chemopreventive agents. Celecoxib chemoprevention is not included within this analysis because of the high cost-effectiveness ratio associated with the chemopreventive agent. Calcium and aspirin chemoprevention in addition to screening are both assessed compared with screening only. Although aspirin was extendedly dominated by calcium chemoprevention within the base-case analysis, it is important to assess aspirin within this two-way sensitivity analysis because of the uncertainties associated with both the long-term benefits and harms of aspirin and calcium, as shown by the CEACs within the above analyses. Results for the two-way sensitivity analysis of aspirin are presented in Figure 27.

This analysis suggests that compared with screening alone (not considering calcium chemoprevention), aspirin would be considered to be cost-effective at a willingness-to-pay threshold of £20,000 if it is associated with a relative risk of low-risk polyp incidence of 0.9 and a relative risk of high-risk polyp incidence of 0.73 with the current model estimates of harms. If the effectiveness of aspirin improves compared with those estimated within the trials such that it is associated with a relative risk of low-risk polyp incidence of 0.7 and a relative risk of high-risk polyp incidence of 0.56, then aspirin chemoprevention is predicted to remain cost-effective compared with screening only using a willingness-to-pay threshold of £20,000 per QALY gained if the probability of excess harms associated with aspirin more than trebles.

The results of the two-way sensitivity analysis for calcium chemoprevention compared with screening only are presented in Figure 28.

![Figure 27](image-url) **FIGURE 27** Two-way sensitivity analysis of the relative risk of polyp incidence and the probability of harms associated with aspirin chemoprevention compared with screening only within the intermediate-risk population.
Assessment of cost-effectiveness

If willing to pay £20,000 for a QALY gain, calcium chemoprevention would not be considered to be cost-effective.

If willing to pay £20,000 for a QALY gain, calcium chemoprevention would be considered to be cost-effective.

Multiplier for probability of harms

Where 1 denotes the following probabilities of experiencing harms associated with calcium:
- Myocardial infarction = 1.12%
- Stroke = 0.126%

FIGURE 28 Two-way sensitivity analysis of the relative risk of polyp incidence and the probability of harms associated with calcium chemoprevention compared with screening only within the intermediate-risk population.

Figure 28 suggests that if the relative risk of polyp incidence is as predicted by the clinical trials, calcium chemoprevention is likely to be considered to be cost-effective at a willingness-to-pay threshold of £20,000 per QALY gained if the harms were up to around 2.5 times those estimated within the base-case analysis. If calcium chemoprevention were less effective than predicted by the trials, with a relative risk of 0.92 or greater, then the harms would need to be less than or equal to those assumed within the model for calcium chemoprevention to produce an incremental cost per QALY gained below £20,000.

The one-way sensitivity analysis assessing the impact of assuming that celecoxib is associated with no harms suggests that the discounted cost per QALY gained associated with celecoxib chemoprevention compared with calcium chemoprevention decreases from £55,696 in the base case to £51,586 based upon this assumption. This indicates that the cost-effectiveness of celecoxib is driven by its comparatively high acquisition cost rather than its associated harms.

Value-of-information analysis

A global value-of-information analysis was undertaken to assess the value of eliminating current uncertainties through the collection of further information. This represents a maximum ceiling on future investment in research. The results of this analysis suggest that, for the general population model, the per-patient expected value of perfect information (EVPI) is around £293. Assuming a population of 688,000 patients aged 50 years and a decision lifetime of 10 years, the global population-level EVPI is estimated to be in excess of £2 billion. This finding is perhaps unsurprising given the potential size of the beneficiary population. For the intermediate-risk groups, the patient-level EVPI is estimated to be £37. Assuming a constant population of 5582 patients a year (based on intermediate model outputs), and a decision lifetime of 10 years, the global population-level EVPI is estimated to be around £206,500.

Ideally, one would examine the contribution of uncertainty in individual or groups of model parameters towards the overall EVPI using partial EVPI analysis. However, in this instance partial value-of-information analysis has not been undertaken. This is justified on two grounds. First, the comparison of the mean ICER with the intersection of the CEACs (the median ICER) suggests some degree of non-linearity which indicates that the simpler one-level EVPI algorithm is inappropriate. However, the model itself is computationally expensive such that the use of the correct two-level EVPI algorithm would be prohibitive. Second, and perhaps more importantly, value-of-information analysis is a
means of examining the importance of current uncertainties in model parameters; it cannot deal with issues surrounding structural uncertainties that cannot be easily (or usefully) parameterised within the model. In particular, the true value of further information should encapsulate all feasible policy options concerning when chemoprevention should begin and end, structural assumptions surrounding the disease natural history, the interpretation of the effectiveness evidence (i.e. the mechanism of action), the external validity of the clinical evidence base, and the potential impacts of wider chemoprevention harms and benefits across other disease areas that are not captured within the model because of limitations in the evidence. Consequently, without the prior resolution of some of these issues, it is unlikely that a comprehensive value-of-information analysis would produce meaningful results.

Discussion
Summary of key results
The use of aspirin chemoprevention plus screening within the general population aged 50–60 years is expected to result in an incremental cost per QALY gained of around £23,000 compared with screening alone. All other age policies assessed for the general population resulted in an ICER that was greater than £30,000 per QALY gained. Currently, the relative risk associated with CRC incidence estimated by the clinical trials appears to be high in comparison to the estimated impact of aspirin within the intermediate-risk population. If the relative risk of CRC incidence decreased, the harms associated with aspirin chemoprevention would also need to be lower than those estimated within the model for aspirin chemoprevention to be considered to be economically attractive within the general population.

Within the intermediate-risk population, the use of chemoprevention is more likely to have a cost-effectiveness profile that is acceptable to NHS policy-makers. Based upon current evidence, calcium chemoprevention within this population is expected to have an incremental cost per QALY gained of between £8000 and £30,000 depending upon the starting and stopping age of chemopreventive use identified within the qualitative review within the health economic model, and no data were identified that allowed a quantification of the relationship between compliance and outcome. It may be that within the general population people would self-select so that those who are likely to benefit more from chemoprevention are more likely to take chemoprevention. If this were the case, chemoprevention may be more effective than predicted within the studies.

Under current assumptions around the benefits and harms of aspirin and calcium, aspirin chemoprevention is extendedly dominated. However, this analysis is highly uncertain. The model predicts that there is a 20–30% probability that aspirin (rather than calcium) will result in the highest net benefit. Therefore, if the benefits of aspirin are expected to be greater than those estimated within the trials (or if the benefits of calcium are expected to be lower than those estimated within the trials), or if the harms associated with aspirin are overestimated within the model (or the harms associated with calcium are underestimated), then aspirin chemoprevention may be more cost-effective than calcium chemoprevention. Celecoxib chemoprevention within the intermediate-risk population is unlikely to be considered to be economically attractive.

Generalisability of results
The effectiveness evidence used to inform model parameters has been drawn from studies undertaken in different countries; only two of which are UK-based. There may be some dietary differences between countries that would influence disease incidence. Chemoprevention compliance may also vary between countries, and between trial and non-trial populations. It was not possible to capture the behavioural aspects of chemopreventive use identified within the qualitative review within the health economic model, and no data were identified that allowed a quantification of the relationship between compliance and outcome. It may be that within the general population people would self-select so that those who are likely to benefit more from chemoprevention are more likely to take chemoprevention. If this were the case, chemoprevention may be more effective than predicted within the studies.

Strengths and limitations of analysis
The clinical trials identified by the effectiveness review are heterogeneous, particularly in terms of dosage, treatment duration, follow-up duration, baseline characteristics of individuals and geographical location. These differences undoubtedly increase the uncertainty in the model results.

There is a marked disparity between the available evidence from clinical trials and the data requirements for the health economic model. Clinical trials provide either the relative risk of the incidence of adenomas (within the intermediate-risk population) or the relative
Assessment of cost-effectiveness

risk of the incidence of CRC (within the general population). However, the clinical trials do not provide evidence concerning the point at which chemoprevention begins to take effect relative to the start of treatment, the nature of this effect (whether this is gradual or constant), or if and when chemoprevention will stop being effective. Instead, the available trial evidence data provide only a single observation that, to assess the implications of chemoprevention over time, requires considerable extrapolation assumptions. Considering the effectiveness of chemoprevention as a mathematical function, there is very limited evidence to suggest where the line starts, where it stops or the shape it should take. The paper by Flossmann and Rothwell\(^2\) implicitly suggests that chemoprevention is effective for the duration that it is being taken; hence this has been assumed within the health economic model. The relative risk associated with the incidence of polyps/cancers predicted by the clinical trials is assumed to be constant because of the lack of data to the contrary. This implies that chemoprevention offers no cumulative protection. These assumptions are likely to have an important impact upon the cost-effectiveness results, particularly around the age at which to start and stop taking chemoprevention. Future clinical trials should focus on addressing questions concerning the optimal treatment duration, frequency, start age, end age and dose of chemoprevention.

Of further note is the limited evidence concerning whether chemoprevention has a direct impact upon CRC. The model assumes that if individuals develop CRC, they will discontinue chemoprevention, because the results would be biased if no impact upon CRC was assumed but costs continued to be incurred. Therefore, if chemoprevention also had a direct impact upon CRC, estimates of both effectiveness and costs would increase, meaning that this assumption is unlikely to have a substantial impact upon the model results.

The analysis of the harms associated with chemoprevention is limited. The model assumes that the excess harms associated with chemoprevention would be constant over time and by age. There is evidence to suggest that harms associated with chemoprevention may increase with age; however, this effect was not incorporated into the model because of data limitations. Second, minor adverse events such as diarrhoea were not included in the analysis because they were assumed to have a minimal impact on both costs and health outcomes. Third, the analysis assesses the impact of chemoprevention upon CRC only; however, chemoprevention may also impact on the incidence of other cancers such as prostate or stomach cancers. Some studies suggest a positive impact of chemoprevention on other cancers whereas others suggest a negative impact. The impact of chemoprevention on the incidence of other cancers was outside the specified model boundary; the implicit assumption is that chemoprevention has no effect on other cancers.

The analysis of benefits to harms provides a comparison of aspirin and calcium against no chemoprevention, allowing for the fact that the base-case estimates of benefits and harms within the model are highly uncertain. As this is a threshold analysis, whereby one of the parameters assessed relates to a set of parameters around harms, the relationship between the harms has to remain constant (i.e. it is not feasible to make different assumptions around the relationship between those harms). Therefore this sensitivity analysis provides an indication of the relationship between benefits and harms, but it is unable to provide the results of all possible permutations of harms and benefits associated with the chemopreventive agents.

The evidence around the effectiveness of antioxidants is limited, for this reason we envisaged undertaking a threshold analysis to assess the necessary effectiveness of antioxidants to be considered cost-effective over various particular willingness-to-pay thresholds. However, as the long-term harms associated with antioxidants are also unclear, this did not prove feasible. The two-way analysis of calcium and aspirin may be used as an indicator of cost-effectiveness, although clearly the cost of antioxidants will vary alongside the harms associated with each of the agents. Further research is therefore indicated to assess both the long-term benefits and harms of antioxidants for chemoprevention.

Within England and Wales, NICE recommends that aspirin is taken for the prevention of occlusive vascular events in people who have had an ischaemic stroke or a transient ischaemic attack, for the prevention of cerebral embolic stroke, for people with unstable angina or who have had a mild heart attack and for people with non-ST-segment-elevation acute coronary syndrome who have a moderate-to-high risk of a major heart
attack or death. In people with type 2 diabetes, aspirin is recommended for people who have obvious signs of or a history of cardiovascular disease and for people with a more than 15% risk of heart problems in the next 10 years. There is a small probability of people experiencing heart attacks and strokes before age 30; hence they are likely to already receive aspirin. There are also people within the general population who regularly take calcium tablets for other conditions. This analysis excludes those people already taking chemopreventive agents.

Finally, an analysis considering the results of the model if the individual pays for chemoprevention was considered. However, the model analysis suggests that the cost savings associated with cancers avoided were always greater than the costs associated with treating harms. Therefore, from an NHS perspective where the individual pays, if chemoprevention is effective at preventing the incidence of polyps, then it will result in net cost savings. Hence, if the individual were to pay for chemoprevention, the question would no longer be whether it is cost-effective, but whether the benefits of chemoprevention outweigh the harms.
Chapter 6
Assessment of factors relevant to the NHS and other parties

Balance of benefits and harms for chemoprevention

It is important to consider the balance between benefits and harms of the various interventions in the different population subgroups. This balance may also differ according to the individual because of factors such as age and other comorbidities. Information on potential harms associated with aspirin, NSAIDs and other agents has been incorporated into the review and economic model as far as possible, but this information is limited and is subject to ongoing research. Changes in the estimates of effectiveness and harms for an intervention may substantially affect estimates of its cost-effectiveness.

In addition to potential harms, chemoprevention may also have positive effects on other conditions, including other cancers and cardiovascular disease. The effects of chemoprevention are not limited to a single condition so it may be relevant to consider current recommendations regarding chemoprevention for other conditions in addition to CRC. It may also be relevant to consider the balance between recommendations for specific supplements and more general healthy-eating campaigns. It is also important to consider the potential effect of the different chemopreventive agents when administered in combination. Ongoing studies are assessing combinations of interventions.

Compliance

Compliance is an important consideration when considering interventions used in a preventive setting. Approximately 60–100% of patients were compliant with the majority of medications in the studies included in this review, although some studies selected the most compliant participants during a run-in phase that may have increased estimates of compliance relative to the general population. Analysis of qualitative data suggests that compliance may be improved if health professionals explain fully and clearly to patients the risks and benefits associated with the relevant agent.

Implementation of chemoprevention policy

When interpreting the cost-effectiveness results, it is important to take into account the way in which chemoprevention may be implemented in the UK. The economic assessment necessarily makes a range of assumptions about how chemoprevention might be used within the NHS, relating to which individuals are likely to take a chemopreventive agent, when they might be recommended to start and stop taking the agent, and how it will be paid for (which is a consideration because aspirin and many vitamin and mineral supplements can be purchased over the counter). These assumptions may have a substantial resource impact for any interventions recommended for use at a general population level.

If chemoprevention was recommended within the NHS and the NHS paid for the agents, because of their low costs, they would have to be provided in the same way as contraceptives are currently provided within the UK, where no prescription cost is required. The exception to this may be celecoxib. Although the cost of chemoprevention per person is low, if it was provided by the NHS, the budget impact to the NHS would be substantial because of the number of people requiring chemoprevention (particularly in the general population, but also in the intermediate-risk population) and because of the number of years over which it is required. Moreover, the cost savings associated with CRC treatment would not be observed for a number of years (which is expected to be greater than 10 years) after the substantial costs associated with the provision of chemoprevention had been incurred.
Chapter 7

Discussion

Statement of principal findings

Assessment of clinical effectiveness

Aspirin (81–325 mg/day) and celecoxib (400 mg/day) have been shown to reduce the recurrence of adenomas and incidence of advanced adenomas in individuals with an increased risk of CRC because of a history of adenomas. COX-2 inhibitors may decrease polyp number in patients with FAP. Preliminary results of a single study of aspirin in FAP patients did not demonstrate a significant benefit but preliminary results of a study of aspirin in HNPCC patients suggested a possible effect. There is some evidence for aspirin reducing the incidence of CRC in the general population, although this effect was only observed in studies of at least 300 mg/day aspirin with a follow-up duration greater than 10 years. There is an absence of long-term follow-up data for lower doses of aspirin or for other NSAIDs. Aspirin is associated with adverse effects including nausea and dyspepsia, peptic ulcers, gastrointestinal bleeding, and a possible increased risk of haemorrhagic stroke, but may reduce the risk of myocardial infarction and ischaemic stroke. COX-2 inhibitors are associated with increased risk of serious cardiovascular events as well as hypertension and renal toxicity. Two studies of calcium (1200–2000 mg/day) demonstrated reduction in risk of adenoma recurrence in individuals with a history of adenomas, while studies of calcium and vitamin D in the general population did not demonstrate a significant effect on CRC, although follow-up durations were relatively short (4–7 years). Folic acid was not shown to reduce adenoma recurrence in individuals with a history of adenomas; nor was it shown to reduce CRC in the general population, although the duration of follow-up was 5–7 years only. Antioxidants (vitamins A, C, E, beta-carotene and selenium) were not shown to reduce adenoma recurrence in individuals with a history of adenomas. In the general population, antioxidants were not shown to reduce the incidence of adenomas or CRC in studies with follow-up between 5 and 12 years. One study showed an increase in adenoma incidence with vitamin E or vitamin E plus beta-carotene; however, this finding should be interpreted with caution because of the number of analyses undertaken.

It has been reported that the development of an adenoma into CRC may have a natural history of 10–15 years. Therefore, it is unclear how long the treatment and follow-up durations must be to detect any effect on CRC incidence. For example, studies of aspirin only showed a significant effect on CRC after more than 10 years of follow-up (although this analysis was partly confounded by differing doses and durations of treatment).

Regarding the included trials of calcium, folic acid and arguably antioxidants, it was not clear whether the lack of reported effect on CRC incidence may be related to the lack of long-term follow-up. Therefore, effects on adenoma incidence were potentially more robust than effects on CRC incidence.

There are a number of ongoing studies addressing chemoprevention of CRC. An ongoing multicentre study is assessing aspirin, calcium and vitamin D (as a combination treatment) versus placebo for prevention of adenomas in participants with a history of adenomas, and aims to enrol 1000 participants, with a treatment duration of 3 years and follow-up at 3 and 5 years. The dose of aspirin is lower than that in many chemoprevention studies, at 75 mg/day (www.clinicaltrials.gov, NCT00486512). An ongoing phase 3 RCT is assessing celecoxib versus placebo for prevention of adenoma recurrence in participants with a history of resected stage 1 colon cancer, and aims to enrol 1200 participants, with a treatment duration of 3 years; follow-up duration not specified (NCT00087256). A further ongoing study aims to enrol 1000 participants with a history of adenomas and is assessing folic acid for prevention of adenomas, with a follow-up duration of 4 years (NCT00512850). Another small study (80 participants planned) aims to assess the effect of high-dose folic acid (dose not specified) for prevention of adenomas in participants with a history of adenomas, with treatment and follow-up durations of 1 year.
(NCT00002650). An ongoing phase 3 RCT is assessing selenium versus placebo for prevention of adenoma recurrence in participants with a history of colorectal adenomatous polyps, and is aiming to enrol 2050 participants, with treatment and follow-up durations of 5 years, or up to 7.5 years in some participants (www.cancer.gov/clinicaltrials/UARIZ-00–0430–01). These studies would add to the volume of data on individual agents, as well as assessing combination therapy in the study of aspirin, calcium and vitamin D. Study durations and sample sizes are likely to be sufficient to assess the short-term effects on adenoma recurrence, but not to assess effects on adenoma recurrence. All ongoing studies identified were in patients with a history of adenomas (or CRC), and none were in the general population.

Economic analysis

The economic analysis assessed the cost-effectiveness of chemoprevention for two populations with different levels of risk of developing CRC:

- the general population
- men and women at an intermediate risk of CRC due to previous polyps.

General population results

The model analysis suggests that the most cost-effective age-range policy would be to provide chemoprevention to all individuals within the general population from age 50 to age 60 years. This analysis suggests that the use of aspirin chemoprevention in addition to screening within the general population is likely to result in a discounted cost per LYG of around £10,000 and a discounted cost per QALY gained of around £23,000 compared with screening alone. Assuming a willingness-to-pay threshold of £30,000 per QALY gained, the probability that screening plus aspirin chemoprevention results in more net benefit than screening alone is expected to be around 0.8. All other age policies assessed for the general population resulted in an ICER that was greater than £30,000 per QALY gained. This analysis is, however, subject to considerable uncertainty because of the paucity of evidence, particularly around the long-term effectiveness and long-term adverse events associated with aspirin chemoprevention. Although there was no evidence of other chemopreventive agents being effective, and hence potentially cost-effective within the general population, this may be because of the relatively short-term follow-up of the trials.

Intermediate-risk group results

The model analysis suggests that the most economically viable age-range policy would be to provide chemoprevention to individuals following polypectomy aged 61–70 years. This model analysis suggests that calcium chemoprevention is expected to have a discounted cost per QALY gained of around £8000 compared with screening only. Although aspirin chemoprevention in addition to screening is expected to be more effective and less costly than screening alone, under the current assumptions of benefits to harms of aspirin and calcium, aspirin is expected to be extendedly dominated by calcium. Between thresholds of £10,000 and £100,000 per QALY gained, the probability that calcium chemoprevention produces the greatest level of net benefit is between 50 and 60%. Similarly, there is an estimated 20–30% probability that aspirin chemoprevention would be the most economically attractive option over these willingness-to-pay thresholds. There are no trials directly comparing aspirin and calcium, and because the quality of the trials of each agent are variable, the trial populations vary and the follow-up is relatively short, it is not possible to ascertain which of aspirin or calcium would be either more effective or cost-effective within this intermediate-risk population. The model also suggests that the incremental cost-effectiveness of chemoprevention following polypectomy increases (becomes less favourable) as the chemoprevention start age increases. The results should be interpreted with caution because of uncertainty in the parameters.

Attitudes to chemoprevention agents

Twenty studies were identified reporting on individuals’ views, attitudes and experiences relating to taking the various agents that may be used for chemoprevention. Both personal and external factors affect people’s decisions to use NSAIDs or supplements such as antioxidants, vitamins or minerals. People are more likely to use NSAIDs if there is a strong perceived need, principally determined by health status and age, and are most likely to be influenced by both health professionals and their family. Perceptions of risk and benefit also influence the process of decision-making and use: there are greater perceived risks or side effects associated with NSAIDs than dietary supplements, and individuals who are required to take NSAIDs tend to weigh up the balance of benefits against risks, and to modify their use of the agent accordingly. People have fewer concerns about using antioxidants or other supplements,
but their perception of the benefits of these agents is less well defined. They would like more information and advice from health professionals, but their use of these supplements tends to be governed more by input from family, friends, alternative therapists and the media.

Strengths and limitations of the assessment

Included trials were generally of reasonable quality. Some studies excluded a number of participants from the analysis; the number of excluded individuals was higher in studies of adenoma recurrence because this outcome could only be assessed in participants who underwent a follow-up colonoscopy. We did not undertake separate analyses according to study quality because of the wide scope of this review, and also because antioxidants were not shown overall to have a significant benefit, and the other interventions included here were assessed in too few trials for an analysis based on study quality to be feasible. However, Bjelakovic et al. undertook two reviews of antioxidants, first of trials assessing adenoma incidence and second of trials assessing gastrointestinal cancer incidence, and both reviews showed that studies with a high risk of bias demonstrated a statistically significant benefit of antioxidants, whereas studies with a low risk of bias showed a non-statistically significant effect which actually favoured control. The average age in all studies was between 49 and 69 years. Since screening for CRC has been introduced for individuals aged 60–69 years and is currently being extended to those aged up to 74 years, the age of included patients appears generalisable to people who may potentially use chemoprevention. Some studies in populations at no increased risk for CRC recruited participants from specific risk groups for other conditions. Compliance with study medications was reported as approximately 60–100% of patients across the different studies; however, some studies preselected for the most compliant and tolerant patients; therefore, compliance with these interventions may be lower in a real-world context. It was not possible to capture the behavioural aspects of chemopreventive use identified within the qualitative review within the health economic model, and no data were identified that allowed a quantification of the relationship between compliance and outcome. It may be that within the general population people would self-select so that those who are likely to benefit more from chemoprevention are more likely to take chemoprevention. For many of the included interventions, trials assessing CRC incidence had limited follow-up duration, which may not have allowed detection of an effect on cancer incidence because it has been estimated that the development of an adenoma into CRC may have a natural history of 10–15 years.

This review aimed to provide a consistent overview of the effects of different interventions on the prevention of adenomas and CRC. Results are presented separately for populations at low, intermediate or high risk of CRC, believing this to be most clinically meaningful. It also aimed to take into account factors such as duration of treatment and follow-up. The authors were also careful to disaggregate interventions and comparators as far as possible. The authors chose to exclude observational data from this analysis because of the potential biases arising from lack of randomisation and blinding. Relevant observational studies of aspirin and NSAIDs are summarised in other reviews.

There are two key limitations associated with the evidence base that impinge on the credibility of the model results. There is a marked disparity between the available evidence from clinical trials and the data requirements for the health economic model. Clinical trials provide either the relative risk of the incidence of adenomas (within the intermediate-risk population) or the relative risk of the incidence of CRC (within the general population). However, the clinical trials do not provide evidence concerning the point at which chemoprevention begins to take effect relative to the start of treatment, the nature of this effect (whether this is gradual or constant), or if and when chemoprevention will stop being effective. Instead, the available trial evidence data provide only a single observation that to assess the implications of chemoprevention over time requires considerable extrapolation assumptions. Considering the effectiveness of chemoprevention as a mathematical function, there is very limited evidence to suggest where the line starts, where it stops or the shape it should take. The relative risk associated with the incidence of polyps/cancers predicted by the clinical trials is assumed to be constant because of a lack of data to the contrary. This implies that chemoprevention offers no cumulative protection. These assumptions are likely to have an important impact upon the cost-effectiveness results, particularly around the age at which to start and stop taking chemoprevention. Future clinical trials should focus on addressing
Discussion

questions concerning the optimal treatment duration, frequency, start age, end age and dose of chemoprevention.

The analysis of harms resulting from the use of chemoprevention is limited. The economic analysis assumes that the excess harms associated with chemoprevention are constant over time and independent of age. The analysis assesses the impact of chemoprevention upon CRC only; however, chemoprevention may also impact on the incidence of other cancers such as prostate or stomach cancers. In this sense, there are questions concerning the boundary assumed around the model. This in turn points towards a methodological requirement for developing a methodological framework for modelling public-health interventions.

Uncertainties

Given the uncertainties in the evidence base (see Strengths and limitations of the assessment) and ambiguities concerning the potential implementation of potential chemoprevention policy, the results of the health economic analysis should be interpreted with caution. Future clinical trials should focus on addressing questions concerning the optimal treatment duration, frequency, start age, end age and dose of chemoprevention. Longer-term clinical evidence is required in terms of both benefits and harms associated with chemoprevention.

Other relevant factors

The model analysis suggests that the cost savings associated with cancers avoided were always greater than the costs associated with treating harms. Therefore, from an NHS perspective, if chemoprevention is effective at preventing the incidence of polyps, then it will result in net cost savings. Hence, if the individual were to pay for chemoprevention, the question would no longer be whether it is cost-effective, but whether the benefits outweigh the harms.
Implications for service provision

There are a number of uncertainties relating to the evidence of effectiveness. It is unclear whether the treatment durations and follow-up durations of existing studies are sufficient to detect any effect on CRC incidence. Therefore, the data on CRC are less robust than the data on incidence of adenomas. In addition, careful consideration must be given to the balance between benefits and risks when considering any of these interventions as chemopreventive agents. Given the uncertainties in the evidence base and ambiguities concerning the potential implementation of potential chemoprevention policy, the results of the health economic analysis should be interpreted with caution.

Aspirin and celecoxib may reduce the recurrence of adenomas and incidence of advanced adenomas in individuals with an increased risk of CRC due to a history of adenomas, and COX-2 inhibitors may decrease polyp number in patients with FAP. There is some evidence for aspirin reducing the incidence of CRC in the general population, although this effect was only observed in studies of at least 300 mg/day aspirin with a follow-up duration greater than 10 years. There is an absence of long-term follow-up data for lower doses of aspirin or for other NSAIDs. Both aspirin and NSAIDs are associated with adverse effects, and so the risk–benefit ratio would need to be carefully considered for each population before these agents could be recommended for chemoprevention. Calcium may also reduce adenoma recurrence in individuals with a history of adenomas: studies of calcium and vitamin D in the general population did not demonstrate a significant effect on CRC, although follow-up durations were relatively short. Folic acid and antioxidants (vitamins A, C, E, beta-carotene and selenium) were not shown to reduce adenoma or CRC incidence, with some studies indicating an increase in these outcomes.

The economic analysis presented here suggests that either calcium or aspirin chemoprevention may have the potential to represent a cost-effective intervention when targeted at the intermediate-risk populations following polypectomy, given levels of cost-effectiveness currently considered acceptable by NHS policy-makers. Within the general population, the most favourable cost-effectiveness ratio for aspirin chemoprevention is between £20,000 and £30,000 per QALY gained for individuals aged 50–60 years. These findings should be interpreted with due caution given the uncertainties in the current evidence base.

Suggested research priorities

Further research would be useful to investigate the longer-term risk–benefit balance for those potentially effective chemopreventive agents; for example, whether there is a dose level that gives a significant benefit without unacceptable toxicity, what treatment durations are required, whether an effect on CRC can be demonstrated, and for how long the benefits are maintained after the intervention is stopped. Larger studies that follow up participants over long time periods (e.g. 20 years) and assess CRC incidence as an outcome would be valuable. Also, studies in which participants take these interventions for longer durations (e.g. 10 years or more) would be valuable to assess the risk–benefit balance associated with long-term chemoprevention. Within the general population, even for studies with relatively short treatment duration, long-term follow-up is essential if the primary outcome is CRC incidence. Of the interventions targeting the general population assessed here, it is likely that only aspirin has so far been assessed in trials with a sufficient follow-up duration to assess the effect on CRC incidence.

It would be informative to test combinations of chemopreventive agents for which effectiveness has been demonstrated individually (for example, aspirin and calcium within the intermediate-risk population). It will also be important to test newer chemopreventive agents that have not yet been assessed in RCTs (for example, preliminary reports...
have suggested possible chemopreventive effects of curcumin and omega-3 fatty acids). It may also be clinically useful to undertake trials in higher-risk patients for whom endoscopic surveillance is not sufficiently effective; for example, patients with ulcerative colitis. Finally, it would be useful to consider the relative benefit of chemoprevention when compared with, for example, action to increase compliance with screening programmes. Very few of these suggested research priorities will be addressed by current ongoing trials.
Acknowledgements

Gill Rooney provided administrative support in preparing and formatting this report.

Contribution of authors

Paul Tappenden acted as principal investigator for this assessment. Andrew Booth, Christopher Carroll, Katy Cooper and Daniel Hind designed the review; Christopher Carroll, Katy Cooper and Daniel Hind coordinated the review; Andrew Booth, Christopher Carroll, Katy Cooper and Diana Papaioannou designed search strategies; Diana Papaioannou undertook searches; Christopher Carroll, Katy Cooper, Daniel Hind and Diana Papaioannou screened search results; Christopher Carroll, Katy Cooper, Daniel Hind, Chin Maguire and Diana Papaioannou extracted data from papers; Andrew Booth, Christopher Carroll, Katy Cooper, Daniel Hind and Diana Papaioannou assessed the quality of identified papers, undertook analysis of and interpreted the data; wrote the clinical review, and wrote the review; Richard Logan provided a clinical and policy perspective; Hazel Squires (née Pilgrim) and Paul Tappenden undertook the health economic review and modelling analysis; Andrew Booth, Richard Logan, Hazel Squires and Paul Tappenden provided general advice on the review; and Hazel Squires and Paul Tappenden undertook the economic analysis.
References

References

a controlled trial (Finland). *Cancer Causes Control* 2000;11:197–205.

181. Brunton G, Oliver S, Oliver K, Lorenc T. A synthesis of research addressing children's, young people's and parents' views of walking and cycling for transport. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London; 2006

References

Appendix I

Literature search strategies

Search strategy for RCTs (MEDLINE)
The following search strategy was used to identify RCTs of relevant interventions.

Terms for colorectal cancer or adenomas
1. exp Colorectal Neoplasms/
2. exp Rectal Neoplasms/
3. Colonic Polyps/
4. exp Intestinal Polyps/
5. exp Adenomatous Polyps/
6. or/1–5
7. exp Colon/
8. exp Rectum/
9. (colorect$or colon$or rectum$or rectal$or rectosigmoid$or adenomatous).tw.
10. 7 or 8 or 9
11. (neoplas$or cancer$or carcinoma$or adenocarcinoma$or malignan$or tumor$or tumour$or polyp$or adenoma$).tw.
12. exp Adenoma/
13. 11 or 12
14. 10 and 13
15. 6 or 14

Terms for antioxidants
16. exp Antioxidants/
17. anti-oxidant$.tw.
18. antioxidant$.tw.
19. selenium.tw.
20. Selenium/
21. exp Vitamin A/
22. retinol.tw. (8796)
23. exp Carotenoids/
24. carotene$.tw.
25. carotenoid$.tw.
26. beta-carotene.tw.
27. exp Ascorbic Acid/
28. vitamin c.tw.
29. ascorbic acid.tw.
30. exp Vitamin E/
31. exp Tocopherols/
32. Tocotrienols/
33. alpha-tocopherol$.tw.
34. tocopherol$.tw.
35. tocotrienol$.tw.

Terms for vitamin D
36. exp Cholecalciferol/
37. vitamin d.tw.
38. exp Ergocalciferols/
40. Ergocalciferol$.tw.

Terms for NSAIDs and aspirin
41. exp Anti-Inflammatory Agents, Non-Steroidal/
42. exp cyclooxygenase inhibitors/or exp cyclooxygenase 2 inhibitors/
44. Nonsteroidal anti-inflammatory$.tw.
45. Non-steroidal antiinflammatory$.tw.
46. Nonsteroidal antiinflammatory$.tw.
47. NSAIDS.tw.
48. Cyclo-oxygenase inhibitor$.tw.
49. Cyclooxygenase inhibitor$.tw.
50. Cyclooxygenase 1 inhibitor$.tw.
51. Cyclooxygenase 2 inhibitor$.tw.
52. COX-2 inhibitor$.tw.
53. Cox-2 selective inhibitor$.tw.
54. COX-1 inhibitor$.tw.
55. Coxib$.tw.
56. Aminopyrine.af.
57. Amodiaquine.af.
58. Ampyrene.af.
59. Antipyrine.af.
60. Apazone.af.
61. Aspirin.af.
62. Aspirin/
63. Acetylsalicylic acid.tw.
64. Bromelains.af.
65. BW-755C.af.
66. Celecoxib.af.
68. Clofazimine.af.
69. Clonixin.af.
70. Curcumin.af.
71. Dapsone.af.
72. Diclofenac.af.
73. Diflunisal.af.
74. Dipyrene.af.
75. Epirizole.af.
76. Etodolac.af.
77. Etoricoxib.af.
Appendix 1

78. Fenoprofen.af.
79. Flurbiprofen.af.
80. Glycyrrhizic Acid.af.
81. Ibuprofen.af.
82. Indomethacin.af.
83. Indoprofen.af.
84. Ketoprofen.af.
85. Ketorolac.af.
86. Lumiracoxib.af.
87. Meclofenamic Acid.af.
88. Mefenamic Acid.af.
89. Mesalamine.af.
90. Naproxen.af.
91. Niflumic Acid.af.
92. Nordihydroguaiaretic Acid.af.
93. Oxyphenbutazone.af.
94. Parecoxib.af.
95. Pentosan Sulfuric Polyester.af.
96. Phenylbutazone.af.
97. Piroxicam.af.
98. Prenazone.af.
100. Sulfasalazine.af.
101. Sulindac.af.
102. sulindac/
103. clinoril.af.
104. Suprofen.af.
105. Tolmetin.af.
106. Valdecoxib.af.
107. Meloxicam.af.
110. Rofecoxib.af.
111. Amoxiprin.af.
112. Benorylate.af.
113. Benorilate.af.
114. Choline magnesium salicylate.af.
115. Ethenzamide.af.
116. Failsalamine.af.
117. Methyl salicylate.af.
118. Magnesium salicylate.af.
119. Salicylamide.af.
120. Aceclofenac.af.
121. Acemetacin.af.
122. Alclofenac.af.
123. Bromfenac.af.
124. Oxametacin.af.
125. Proglumetacin.af.
126. Dexibuprofen.af.
127. Dexketoprofen.af.
128. Fenbufen.af.
129. Flunoxaprofen.af.
130. Ibuprooxam.af.
131. Loxoprofen.af.
132. Oxaprozin.af.
133. Pirprofen.af.
134. Tiaprofenic acid.af.
135. Flufenamic acid.af.
136. Tolfenamic acid.af.
137. Azapropazone.af.
139. Kebuzone.af.
140. Metamizole.af.
141. Mofebutazone.af.
142. Phenazone.af.
143. Sulfinpyrazone.af.
144. Dricam.af.
145. Lornoxicam.af.
146. Tenoxicam.af.
147. Licofelone.af.
148. or/16–147
149. 15 and 148

Terms for RCTs
150. randomized controlled trial.pt.
151. controlled clinical trial.pt.
152. randomized controlled trials/
153. random allocation/
154. double blind method/
155. single blind method/
156. clinical trial.pt.
157. exp Clinical Trial/
158. (clin$adj25 trial$).ti,ab.
159. ((singl$or doubl$or trebl$or tripl$) adj25
 (blind$or mask$)).ti,ab.
160. placebos/
161. placebos.ti,ab.
162. random$.tw.
163. research design/
164. or/150–163
165. 149 and 164

Date restriction
166. limit 165 to yr='2003 – 2008'

Search strategy for RCTs of
calcium (MEDLINE, no date
restriction)

Terms for colorectal cancer or adenomas
1. 1 exp Colorectal Neoplasms/
2. exp Rectal Neoplasms/
3. Colonic Polyps/
4. exp Intestinal Polyps/
5. exp Adenomatous Polyps/
6. or/1–5
7. exp Colon/
8. exp Rectum/
9. (colorect$or colon$or rectum$or rectal$or
 rectosigmoid$or adenomatous).tw.
10. 7 or 8 or 9
11. (neoplas$ or cancer$ or carcinoma$ or adenocarcinoma$ or malignan$ or tumor$ or tumour$ or polyp$ or adenoma$).tw.
12. exp Adenoma/
13. 11 or 12
14. 10 and 13
15. 6 or 14

Terms for calcium
16. Calcium/
17. calcium.tw.

Terms for RCTs
18. 16 or 17
19. 15 and 18
20. randomized controlled trial.pt.
21. controlled clinical trial.pt.
22. randomized controlled trials/
23. random allocation/
24. double blind method/
25. single blind method/
26. clinical trial.pt.
27. exp Clinical Trial/
29. ((singl$or double$or trebl$or tripl$) adj25 (blind$or mask$)).ti,ab.
30. placebos/
31. placebos.ti,ab.
32. random$.tw.
33. research design/
34. or/20–33
35. 19 and 34

Search strategy for cost-effectiveness studies
1. exp Colorectal Neoplasms/
2. neoplasms/
3. carcinoma/
4. adenocarcinoma/
5. or/2–4
6. colonic diseases/
7. rectal diseases/
8. exp Colon/
9. exp Rectum/
10. or/6–9
11. 5 and 10
12. (carcinoma adj3 (colorectal or colon$ or intestin$ or bowel)).tw.
13. (neoplasia adj3 (colorectal or colon$ or rect$ or intestin$ or bowel)).tw.
14. (neoplasm$ adj3 (colorectal or colon$ or rect$ or intestin$ or bowel)).tw.
15. (adenocarcinoma adj3 (colorectal or colon$ or intestin$ or bowel)).tw.
16. (cancer$ adj3 (colorectal or colon$ or intestin$ or bowel)).tw.
17. (tumor$ adj3 (colorectal or colon$ or rect$ or intestin$ or bowel)).tw.
18. (tumour$ adj3 (colorectal or colon$ or rect$ or intestin$ or bowel)).tw.
19. (malignan$ adj3 (colorectal or colon$ or rect$ or intestin$ or bowel)).tw.
20. or/12–19
21. 1 or 11 or 20
22. Economics/
23. 'costs and cost analysis'/
24. Cost allocation/
25. Cost-benefit analysis/
26. Cost control/
27. cost savings/
28. Cost of illness/
29. Cost sharing/
30. 'deductibles and coinsurance'/
31. Health care costs/
32. Direct service costs/
33. Drug costs/
34. Employer health costs/
35. Hospital costs/
36. Health expenditures/
37. Capital expenditures/
38. Value of life/
39. exp economics, hospital/
40. exp economics, medical/
41. economics, nursing/
42. economics, pharmaceutical/
43. exp 'fees and charges'/
44. exp budgets/
45. (low adj cost$).mp.
46. (high adj cost).mp.
47. (health?care adj cost$).mp.
48. (fiscal or funding or financial or finance).tw.
49. (cost adj estimate$).mp.
50. (cost adj variable).mp.
51. (unit adj cost$).mp.
52. (economic$ or pharmacoeconomic$ or price$ or pricing).tw.
53. or/22–52
54. 21 and 53

Search strategy for quality of life studies (MEDLINE)
1. health related quality of life.tw.
2. hrql.tw.
3. hrqol.tw.
4. hql.tw.
5. sf 36.tw.
6. sf thirtysix.tw.
7. sf thirty six.tw.
8. short form 36.tw.
Appendix 1

9. short form thirty six.tw.
10. short form thirtysix.tw.
12. shortform thirty six.tw.
13. sf36.tw.
14. medical outcomes survey.tw.
15. mos.tw.
16. euroqol.tw.
17. eq 5d.tw.
18. eq5d.tw.
19. sf36.tw.
20. medical outcomes survey.tw.
21. quality adjusted life years/
22. quality adjusted life year$.tw.
23. hye$.tw.
24. health$year$equivalent$.tw.
25. psychological general well being index.tw.
26. psychological general wellbeing index.tw.
27. pgwb$.tw.
28. health utilit$.tw.
29. hui.tw.
30. quality of well being$.tw.
31. quality of wellbeing.tw.
32. qwb.tw.
33. rosser.tw.
34. trade off$.tw.
35. standard gamble.tw.
36. tto.tw.
37. ‘Quality of Life’/
38. ‘Outcome Assessment (Health Care)’/
39. (preference$or utilit$).tw. and (58 or 59)
40. ((preference$or utilit$) and quality of life).tw.
41. (preference$adj2 (elicit$or patient$or population$or based or cost$)).tw.
42. (utilit$adj2 (elicit$or patient$or population$or measure$or based or cost$)).tw.
43. or/22–57,60–63

Search strategy for qualitative studies (MEDLINE)

Qualitative search 1
Two searches were undertaken relating to qualitative studies. Initially, the following search strategy was used to identify qualitative studies relating to the relevant interventions in a UK population.

Terms for interventions
1. vitamin$.tw.
2. mineral$.tw.
3. folate$.tw.
4. selenium.tw.
5. calcium.tw.
6. exp Dietary Supplements/
7. dietary supplement$.tw.
8. non-steroidal$.tw.
9. non steroid$.tw.
10. nonsteroidal$.tw.
11. NSAID$.tw.
12. antinflammator$.tw.
13. anti-inflammator$.tw.
14. anti inflammator$.tw.
15. aspirin$.tw.
16. or/1–15

Terms for qualitative studies
17. interview$.tw.
18. experience$.tw.
19. qualitative$.tw.
20. qualitative research/
21. or/17–20

Terms for UK population
22. exp Great Britain/
23. (England or Scotland or Wales or Ireland or UK or United Kingdom).in.
24. (England or Scotland).cp.
25. (Britain or England or Scotland or Wales or Ireland or United Kingdom).tw.
26. (London or Birmingham or Leeds or Glasgow or Sheffield or Bradford or Liverpool or Edinburg or Manchester or Bristol).in.
27. (Kirklees or Fife or Wirral or North Lanarkshire or Wakefield or Cardiff or Dudley or Wigan or East Riding or South Lanarkshire or Coventry or Belfast or Leicester or Sunderland or Sandwell or Doncaster or Stockport or Sefton or Nottingham or Newcastle upon Tyne or Kingston upon Hull or Bolon or Walsall or Plymouth or Rotherham or Stoke on Trent).in.
28. (London or Birmingham or Leeds or Glasgow or Sheffield or Bradford or Liverpool or Edinburg or Manchester or Bristol).tw.
29. (Kirklees or Fife or Wirral or North Lanarkshire or Wakefield or Cardiff or Dudley or Wigan or East Riding or South Lanarkshire or Coventry or Belfast or Leicester or Sunderland or Sandwell or Doncaster or Stockport or Sefton or Nottingham or Newcastle upon Tyne or Kingston upon Hull or Bolon or Walsall or Plymouth or Rotherham or Stoke on Trent).tw.
30. or/22–29
31. 16 and 21 and 30

Limit to year 2003 onwards
32. limit 31 to yr=’2003 – 2008’
33. (review or editorial or comment).pt.
34. 32 not 33
Qualitative search 2

Secondly, the following search was undertaken to identify qualitative studies relating to chemoprevention and colorectal cancer.

Terms for colorectal cancer
1. exp Colorectal Neoplasms/
2. exp Rectal Neoplasms/
3. Colonic Polyps/
4. exp Intestinal Polyps/
5. exp Adenomatous Polyps/
6. or/1–5
7. exp Colon/
8. exp Rectum/
9. (colorect$or colon$or rectum$or rectal$or rectosigmoid$or adenomatous).tw.
10. 7 or 8 or 9
11. (neoplas$or cancer$or carcinoma$or adenocarcinoma$or malignan$or tumor$or tumour$or polyp$or adenoma$).tw.
12. exp Adenoma/
13. 11 or 12
14. 10 and 13
15. 6 or 14

Terms for chemoprevention
16. Chemoprevention/
17. chemoprevent$.tw.
18. prevent$.tw.
19. exp Anticarcinogenic Agents/
20. or/16–19

Terms for qualitative studies
21. interview$.tw.
22. experience$.tw.
23. qualitative$.tw.
24. qualitative research/
25. or/21–24
26. 25 and 20 and 15

Limit to year 2003 onwards
27. limit 26 to yr='2003 – 2009'
Appendix 2

Study quality for effectiveness studies
<table>
<thead>
<tr>
<th>Study</th>
<th>Number (%) of randomised participants excluded from main analyses</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding (participants; caregivers; analyst)</th>
<th>Baseline comparability between groups</th>
<th>Cointerventions/other factors that may influence outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk population (FAP/HNPCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn 2008 (CAPP2 Study)¹⁷</td>
<td>191 of 937 (20%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst not stated</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Secondary prevention (assessing reduction in adenoma burden)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn 2003 (CAPP1 Study)¹³, ¹²</td>
<td>73 of 206 (35%) excluded from analysis as not followed up for 1 year</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Participants Y; caregivers not stated; analyst not stated</td>
<td>Unclear</td>
<td>50% participants (in both groups) also received resistant starch (30 mg/day)</td>
</tr>
<tr>
<td>Intermediate-risk population (history of adenomas or colorectal cancer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logan 2008 (ukCAP trial: United Kingdom Colorectal Adenoma Prevention)¹⁰</td>
<td>92 of 945 (10%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>50% patients (in both groups) also received folic acid 0.5 mg/day, but no evidence of interaction</td>
</tr>
<tr>
<td>Cole 2007/Baron 2003 (Aspirin/Folate Polyp Prevention Study)¹³, ¹⁴</td>
<td>37 of 1121 (3%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y (except slightly fewer patients in 81 mg/day aspirin group had adenoma ≥ 1 cm at baseline: 81 mg/day group 29%, 325 mg/day group 34%, placebo group 33%)</td>
<td>50% patients (in both groups) also received folic acid 1 mg/day</td>
</tr>
<tr>
<td>Benamouzig 2003 (APACC Study)¹²</td>
<td>34 of 272 (13%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (method not stated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Sandler 2003⁷⁹</td>
<td>118 of 635 (19%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (method not stated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Study</td>
<td>Number (%) of randomised participants excluded from main analyses</td>
<td>Randomisation</td>
<td>Allocation concealment</td>
<td>Blinding (participants; caregivers; analyst)</td>
<td>Baseline comparability between groups</td>
<td>Cointerventions/other factors that may influence outcome</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Low-risk population (general population or no increased risk of colorectal cancer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook 2005 (Women’s Health Study)⁶⁸-⁷⁰</td>
<td>0 of 39,876 (0%) excluded from analysis (colonoscopy not required for follow-up)</td>
<td>Y (method not stated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst not stated</td>
<td>Y</td>
<td>50% patients (in both groups) received vitamin E for 10 years and 50% received beta-carotene for 2 years. No significant difference in aspirin effect in participants who were or were not receiving vitamin E or beta-carotene</td>
</tr>
<tr>
<td>Gann 1993 (Physicians’ Health Study, PHS)⁷⁵</td>
<td>0 of 22,071 (0%) excluded from analysis (colonoscopy not required for follow-up)</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>Half of patients (in both groups) received beta-carotene. No results presented for effect of aspirin according to whether receiving beta-carotene</td>
</tr>
<tr>
<td>Farrell 1991 (UK-TIA Aspirin Trial)⁷¹-⁷⁷</td>
<td>0 of 2435 (0%) excluded from analysis (colonoscopy not required for follow-up)</td>
<td>Y (method not stated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Petro 1988 (British Doctors Aspirin Trial)⁷¹,⁸⁰</td>
<td>0 of 5139 (0%) excluded from analysis (colonoscopy not required for follow-up)</td>
<td>Y (method not stated)</td>
<td>Unclear (method not stated)</td>
<td>Participants No (open-label); caregivers No; analyst Y for long-term follow-up</td>
<td>Y</td>
<td>None reported</td>
</tr>
</tbody>
</table>

Y, yes.
<table>
<thead>
<tr>
<th>Study</th>
<th>Number (%) of randomised participants excluded from main analyses</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding (participants; caregivers; analyst)</th>
<th>Baseline comparability between groups</th>
<th>Cointerventions/other factors that may influence outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardiello 2002[^1]</td>
<td>None</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Described as double</td>
<td>Unclear (no statistical tests; mean age of placebo arm 26 years vs 21 years in treatment arm)</td>
<td>None</td>
</tr>
<tr>
<td>Giardiello 1993[^1]</td>
<td>None</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Described as double</td>
<td>Y</td>
<td>None</td>
</tr>
<tr>
<td>Labayle 1991[^4]</td>
<td>None</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Described as double</td>
<td>Y</td>
<td>None</td>
</tr>
<tr>
<td>Iwama 2006[^6]</td>
<td>1 of 61 (2%)</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Described as double</td>
<td>Y</td>
<td>None</td>
</tr>
<tr>
<td>Nugent 1993[^3]</td>
<td>Unclear</td>
<td>Y (method not stated)</td>
<td>Adequate (sealed cards)</td>
<td>Patients blind, unclear for others</td>
<td>Y</td>
<td>None</td>
</tr>
<tr>
<td>Steinbach 2000[^9]</td>
<td>None</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Described as double</td>
<td>Statistically significant difference in the age profile (p = 0.04). Mean (Standard Deviation) ages: Placebo 39.9 (± 11.3); 100 mg celecoxib 38.6 (± 10.0); 400 mg celecoxib 33.1 (± 10.0)</td>
<td>None</td>
</tr>
<tr>
<td>Study</td>
<td>Number (%) of randomised participants excluded from main analyses</td>
<td>Randomisation</td>
<td>Allocation concealment</td>
<td>Blinding (participants; caregivers; analyst)</td>
<td>Baseline comparability between groups</td>
<td>Cointerventions/other factors that may influence outcome</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Intermediate-risk population (history of adenomas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arber 2006 (PreSAP Study)(^{1,94})</td>
<td>164 of 1561 (11%) excluded from analysis as no follow-up colonoscopy at year 1 or year 3</td>
<td>Y (method not stated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers unclear; analyst Y</td>
<td>Y (slightly more subjects with history of cardiovascular events in celecoxib group: 13.7% vs 11.1%)</td>
<td>Patients instructed to abstain from long-term NSAID use (> 21 days per year) but permitted to take cardioprotective doses of aspirin (≤ 162.5 mg/day or ≤ 325mg every other day). Adenoma recurrence in patients taking or not taking aspirin similar to that in all patients</td>
</tr>
<tr>
<td>Bertagnolli 2006 (APC trial)(^{6,46,87})</td>
<td>213 of 2035 (10%) excluded from analysis as no follow-up colonoscopy at year 1 or year 3</td>
<td>Y (method not stated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers unclear; analyst Y</td>
<td>Y</td>
<td>Patients instructed to abstain from long-term NSAID use (> 21 days per year) but permitted to take cardioprotective doses of aspirin (≤ 162.5 mg/day or ≤ 325mg every other day). Adenoma recurrence in patients taking or not taking aspirin similar to that in all patients</td>
</tr>
<tr>
<td>Ladenheim 1995(^{30})</td>
<td>0 of 44 (0%) excluded from analysis</td>
<td>Y (method not stated)</td>
<td>Y (investigators blinded)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y except sulindac group slightly older (66.5 years vs 62.2 years, (p = 0.06)) and mean number of polyps at baseline slightly but significantly higher in sulindac group [sulindac 2.0 (± 1.5), placebo 1.3 (± 0.9), (p < 0.005)]</td>
<td>36% in sulindac group and 18% in placebo group were taking 80 mg or 325 mg aspirin tablets routinely for cardiac reasons at baseline; this aspirin was discontinued for duration of study</td>
</tr>
</tbody>
</table>

Low-risk population (general population or no increased risk of colorectal cancer)

No relevant studies

Y, yes.
TABLE 53 Folic acid: study quality

<table>
<thead>
<tr>
<th>Study</th>
<th>Number (%) of randomised participants excluded from main analyses</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding (participants; caregivers; analyst)</th>
<th>Baseline comparability between groups</th>
<th>Cointerventions/other factors that may influence outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk population (FAP/HNPCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No relevant studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate-risk population (history of adenomas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaszewski 2008[108]</td>
<td>43 of 137 (31%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (block stratification)</td>
<td>Y (sealed envelopes)</td>
<td>Participants Y; caregivers Y; analyst unclear</td>
<td>Y</td>
<td>Patients instructed to abstain from long-term NSAID use (> 21 days per year) but could take cardioprotective doses of aspirin (≤ 162.5 mg/day or ≤ 325 mg every other day). Adenoma recurrence in patients taking or not taking aspirin similar to all patients</td>
</tr>
<tr>
<td>Logan 2008 (ukCAP trial: United Kingdom Colorectal Adenoma Prevention)[97]</td>
<td>92 of 945 (10%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (random-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>50% of patients (in both arms) received aspirin 300 mg/day – no significant effect on adenoma recurrence or evidence of interaction</td>
</tr>
<tr>
<td>Cole 2007/Baron 2003 (Aspirin/Folate Polyp Prevention Study)[109,110]</td>
<td>34 of 1021 (3%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst unclear</td>
<td>Y</td>
<td>Some patients (in both arms) also received aspirin</td>
</tr>
<tr>
<td>Low-risk population (general population or no increased risk of colorectal cancer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang 2008 (Women’s Antioxidant and Folic Acid Cardiovascular Study: WAFACS)[105]</td>
<td>0 of 5442 (0%) excluded from analysis</td>
<td>Y (method unclear)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>Some patients also receiving vitamin C, vitamin E and/or beta-carotene</td>
</tr>
<tr>
<td>Lonn 2006 (HOPE-TOO study)[96,107]</td>
<td>0 of 5522 (0%) excluded from analysis</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>Not reported</td>
</tr>
<tr>
<td>Zhu 2003[109,110]</td>
<td>0 of 216 (0%) excluded from analysis</td>
<td>Y (method not stated)</td>
<td>Unclear (method not stated)</td>
<td>Participants unclear; analysts unclear</td>
<td>Y</td>
<td>None reported</td>
</tr>
</tbody>
</table>

N/A, not available; Y, yes.
<table>
<thead>
<tr>
<th>Study</th>
<th>Number (%) of randomised participants excluded from main analyses</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding (participants; caregivers; analyst)</th>
<th>Baseline comparability between groups</th>
<th>Cointerventions/other factors that may influence outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk population (FAP/HNPCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas 1993</td>
<td>3 of 28 (10.7%) were excluded from the analysis because of non-compliance</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Stated to be double blind. Assumed to be: Participants: Y; caregivers: Y; analyst: Y</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>Intermediate-risk population (history of adenomas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonithon-Kopp 2000</td>
<td>62 of 416 (15%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants: Y; caregivers: Y; analyst: Y</td>
<td></td>
<td>None reported</td>
</tr>
<tr>
<td>Baron 1999 (Calcium Polyp Prevention Study)</td>
<td>98 of 930 (11%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants: Y; caregivers: unclear; analyst: Y</td>
<td></td>
<td>None reported</td>
</tr>
<tr>
<td>Hofstad 1998</td>
<td>23 of 116 (20%) excluded from analysis</td>
<td>Y (method not stated)</td>
<td>Unclear</td>
<td>Participants: unclear; caregivers: unclear; analyst: unclear</td>
<td></td>
<td>Calcium and various antioxidants given to all patients in one study arm</td>
</tr>
<tr>
<td>Low-risk population (general population or no increased risk of colorectal cancer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lappe 2007</td>
<td>92 of 1179 (8%) excluded from analysis (colonoscopy not required for follow-up)</td>
<td>Y (computer-generated)</td>
<td>Unclear</td>
<td>Participants: Y; caregivers: unclear; analyst: unclear</td>
<td>Not reported</td>
<td>None reported</td>
</tr>
<tr>
<td>Wactawski-Wende 2006</td>
<td>0 of 36,282 (0%) excluded from analysis (colonoscopy not required for follow-up)</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants: Y; caregivers: Y; analyst: unclear</td>
<td></td>
<td>None reported</td>
</tr>
</tbody>
</table>

Y, yes.
<table>
<thead>
<tr>
<th>Study</th>
<th>Number (%) of randomised participants excluded from main analyses</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding (participants; caregivers; analyst)</th>
<th>Baseline comparability between groups</th>
<th>Cointerventions/other factors that may influence outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk population (FAP/HNPCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No relevant studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate-risk population (history of adenomas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baron 2003/Greenberg 1994 (Antioxidant Polyp Prevention Study)[11,12]</td>
<td>113 of 864 (13%) excluded from 4-year analysis as no follow-up colonoscopy at 4 years</td>
<td>Y (patients assigned to groups with blocking according to study centre only)</td>
<td>Unclear (method not stated)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Bonelli 1998[15]</td>
<td>71 of 304 (23%) excluded from analysis as no follow-up colonoscopy</td>
<td>Y (method not stated)</td>
<td>Unclear (method not stated)</td>
<td>Participants not stated; caregivers not stated; analyst not stated</td>
<td>Unclear as participants’ characteristics not reported</td>
<td>None reported</td>
</tr>
<tr>
<td>Hofstad 1998[103,104]</td>
<td>23 of 116 (20%) excluded from analysis</td>
<td>Y (method not stated)</td>
<td>Unclear (method not stated)</td>
<td>Participants not stated; caregivers not stated; analyst not stated</td>
<td>Y</td>
<td>Calcium</td>
</tr>
<tr>
<td>Ponz de Leon 1997[21]</td>
<td>37 of 140 (26%) not evaluated yet but only preliminary analysis reported</td>
<td>Y (method not stated)</td>
<td>Unclear (method not stated)</td>
<td>Participants not stated; caregivers not stated; analyst not stated</td>
<td>Unclear as participants’ characteristics not reported.</td>
<td>None reported</td>
</tr>
<tr>
<td>Roncucci 1993[23,124]</td>
<td>21 of 209 (10%) had no follow-up colonoscopy and 59 of 209 (28%) (including the 21 above) had no follow-up beyond 1 year, but these patients WERE included in the analysis; presumably assumed no polyps for these patients</td>
<td>Y (patients recruited and randomised by balanced blocks)</td>
<td>Unclear (method not stated)</td>
<td>Participants Y; caregivers Y; analyst not stated</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Study</td>
<td>Number (%) of randomised participants excluded from main analyses</td>
<td>Randomisation</td>
<td>Allocation concealment</td>
<td>Blinding (participants; caregivers; analyst)</td>
<td>Baseline comparability between groups</td>
<td>Cointerventions/ other factors that may influence outcome</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| MacLennan 1995 (Australian Polyp Prevention Trial)
MacLennan 1995 (Australian Polyp Prevention Trial) | 105 of 411 (26%) excluded from 4-year analysis as no follow-up colonoscopy at 4 years | Y (balanced block randomisation) | Y (central pharmacy) | Participants Y (to beta-carotene, N to low fat or bran); caregivers Y; analyst Y | Y | Some patients also received low-fat diet and/or bran supplement |
| McKeown-Eyssen 1988 | 48 of 185 (26%) excluded from analysis as no follow-up colonoscopy | Y (method not stated) | Y (central pharmacy) | Participants Y; caregivers Y; analyst Y | Y | None reported |
| **Low-risk population (general population or no increased risk of colorectal cancer)** | | | | | | |
| Gazzano 2009 (Physicians Health Study II: PHS II) | 121 of 14,641 (1%) not analysed for colorectal cancer as had this cancer at baseline | Y (computer-generated) | Y (central pharmacy) | Participants Y; caregivers not stated; analyst not stated | Y | Hazard ratios were adjusted for other interventions (vitamin C, vitamin E and beta-carotene) |
| Lippman 2009 (SELECT: Selenium and vitamin E cancer prevention trial) | 645 of 35,533 (2%) excluded from primary analysis as ineligible, insufficient data or lost to follow-up | Y (block scheme) | Y (central pharmacy) | Participants Y; caregivers not stated; analyst not stated | Y | None reported |
| Lin 2009 (Women's Antioxidant Cardiovascular Study: WACS) | 544 of 8171 (7%) excluded from analysis due to history of cancer before enrolment | Y (method not stated) | Y (central pharmacy) | Participants Y; caregivers not stated; analyst not stated | Y | None reported |
| Lee 2005, Lee 1999 (Women's Health Study) | 0 of 39,876 (0%) excluded from analysis | Y (randomised in blocks of 16 within 5-year age strata to the two groups) | Y (central pharmacy) | Participants Y; caregivers not stated; analyst not stated | Y | None reported |
| Lonn 2005 (HOPE-TOO Study) | 0 of 9541 (0%) excluded from analysis | Y (computer-generated, fixed block size stratified by centre) | Y (central telephone randomisation) | Participants Y; caregivers Y; analyst Y | Y | Approximately 50% participants in both vitamin E and placebo groups also received ramipril angiotensin-converting enzyme inhibitor, 10 mg/day |

continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Number (%) of randomised participants excluded from main analyses</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding (participants; caregivers; analyst)</th>
<th>Baseline comparability between groups</th>
<th>Cointerventions/other factors that may influence outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodman 2004 (CARET Study)</td>
<td>1174 of 18,314 (6.4%) excluded from analysis as 1092 had died and 82 were lost to follow-up</td>
<td>Y (permuted block design with random block size chosen uniformly among 8, 10, 12, 14 and 16)</td>
<td>Y (according to Cochrane review)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Hercberg 2004 (SU.VI.MAX Study)</td>
<td>1567 of 13,017 lost to follow-up (12%)</td>
<td>Y (computer generated, block sequence generation stratified by sex and age group)</td>
<td>Y (capsule boxes were labelled with patient’s number)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Zhu 2003</td>
<td>0 of 216 (0%) excluded from analysis</td>
<td>Y (method not stated)</td>
<td>Unclear (method not stated)</td>
<td>Participants not stated; caregivers not stated; analyst not stated</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Virtamo 2003/Malila 1999 (ATBC Study: Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study)</td>
<td>0 of 15,538 (0%) excluded from adenoma analysis; 0 of 29,133 (0%) excluded from CRC analysis</td>
<td>Y (block randomisation, blocks of eight within each study area)</td>
<td>Unclear (method not stated)</td>
<td>Participants Y; caregivers not stated; analyst not stated</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>Duffield-Lillico 2002 (NPCT: Nutritional Prevention of Cancer Trial)</td>
<td>62 of 1312 (5%) excluded from analyses as no valid baseline selenium values</td>
<td>Y (blocked on time and stratified by clinic)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers Y; analyst not stated</td>
<td>Y</td>
<td>None reported</td>
</tr>
<tr>
<td>HPS Group 2002 (Heart Protection Study: HPS)</td>
<td>67 of 20,536 (0.3%) excluded from analysis. Participants without information to end of the scheduled treatment period for mortality and morbidity were excluded from analysis</td>
<td>Y (computer-generated)</td>
<td>Y (central telephone randomisation system)</td>
<td>Participants Y; caregivers Y; analyst Y</td>
<td>Y</td>
<td>Approximately 50% participants in both intervention and placebo groups also received simvastatin, 40 mg/day</td>
</tr>
<tr>
<td>Hennekens 1996 (Physicians Health Study: PHS)</td>
<td>0 of 22,071 (0%) excluded from analysis</td>
<td>Y (computer-generated)</td>
<td>Y (central pharmacy)</td>
<td>Participants Y; caregivers not stated; analyst Y</td>
<td>Baseline characteristics are not reported in sufficient detail</td>
<td>None reported</td>
</tr>
</tbody>
</table>

Y, yes.
Appendix 3

Data extraction form for qualitative studies

<table>
<thead>
<tr>
<th>Question</th>
<th>If Yes</th>
<th>If No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Is the study 2003 onwards</td>
<td>Continue</td>
<td>Exclude</td>
</tr>
<tr>
<td>2 Does the intervention being evaluated include one or more of the following: aspirin, NSAIDs, vitamins, minerals, calcium, folic acid, dietary supplements generally</td>
<td>Continue</td>
<td>Exclude</td>
</tr>
<tr>
<td>3 Does the study report, as an outcome, people’s attitudes, perceptions or beliefs concerning the taking of one of more of the agents listed above</td>
<td>Continue</td>
<td>Exclude</td>
</tr>
</tbody>
</table>

Include

Note: any population group may be included.

Data extraction

<table>
<thead>
<tr>
<th>Study details</th>
<th>Location/country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Research question/objectives</td>
</tr>
<tr>
<td></td>
<td>Population</td>
</tr>
<tr>
<td></td>
<td>Age (mean/range) Mean Range</td>
</tr>
<tr>
<td></td>
<td>Gender Male (n) Female (n) Not specified (n)</td>
</tr>
<tr>
<td></td>
<td>Ethnicity</td>
</tr>
<tr>
<td></td>
<td>Recruitment/sampling (e.g. inclusion criteria, response rate, test of any differences between those who participated and those who did not)</td>
</tr>
<tr>
<td>Intervention</td>
<td>Agents/nutrients</td>
</tr>
<tr>
<td>Outcomes</td>
<td>What is being evaluated?</td>
</tr>
<tr>
<td>Data collection</td>
<td>Method (e.g. survey, focus group, interviews) Validation and recording (e.g. is survey tool validated; are interviews transcribed and is respondent validation used?)</td>
</tr>
<tr>
<td>Analysis</td>
<td>Method [e.g. descriptive statistics (%) reported only; analysis of transcripts employing a stated method]</td>
</tr>
<tr>
<td>Results</td>
<td>Themes from conceptual framework Data (must be verbatim quotes or authors’ statements clearly based on data)</td>
</tr>
<tr>
<td></td>
<td>1. Family factors affecting perceived need</td>
</tr>
<tr>
<td></td>
<td>2. Personal factors affecting perceived need</td>
</tr>
<tr>
<td></td>
<td>3. Media representations of perceived need</td>
</tr>
<tr>
<td></td>
<td>4. Spending capacity</td>
</tr>
<tr>
<td></td>
<td>5. Media input into decision-making</td>
</tr>
</tbody>
</table>

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
<table>
<thead>
<tr>
<th></th>
<th>Appendix 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Physicians’ input into decision-making</td>
</tr>
<tr>
<td>7.</td>
<td>Family members’ input into decision-making</td>
</tr>
<tr>
<td>8.</td>
<td>Community input into decision-making</td>
</tr>
<tr>
<td>9.</td>
<td>Pharmacy input into decision-making</td>
</tr>
<tr>
<td>10.</td>
<td>Access: obtaining micronutrients</td>
</tr>
<tr>
<td>11.</td>
<td>Perceived benefits</td>
</tr>
<tr>
<td>12.</td>
<td>Perceived risks (negative factors)</td>
</tr>
<tr>
<td>13.</td>
<td>Habitual use</td>
</tr>
<tr>
<td>14.</td>
<td>Intermittent use</td>
</tr>
<tr>
<td>New themes (i.e. data from studies that are not relevant to any of the preset themes)</td>
<td>Data</td>
</tr>
<tr>
<td>1.</td>
<td>New theme</td>
</tr>
<tr>
<td>2.</td>
<td>New theme</td>
</tr>
<tr>
<td>3.</td>
<td>New theme</td>
</tr>
<tr>
<td>4.</td>
<td>New theme</td>
</tr>
</tbody>
</table>

Comments
Limitations, reviewer comments etc.

References
Possible new includes
Background papers
Appendix 4

Model

Family factors
- Social–economic level
- Number of people that work
- Mother’s sickness
- Preventative activities
- Structure of the home
- Maternal culture

Physicians
- National programme
- PROSALUD/private clinics
- Prenatal care

Perceived benefits
- Beauty
- Vitality/energy
- Activity
- Desire to take care of oneself

Family members

Perceived needs

Decide

Obtain

Use

Habitual use

Intermittent use

Woman factors
- Age
- Educational level
- Civil status
- Number of children
- Pregnant
- Breastfeeding
- Self-esteem
- Depression
- Health status
- Preventative activities
- Healthcare

Woman’s spending capacity
- Revenues
- Dependence
- Consumption of other products
- Validation of health activity

Access
- Geographic
- Prescription
- Price
- Supplies
- Form of purchase

Negative factors
- Undesirable effects
- Forget
- Resistance to take daily
- Disenchantment of initial hope
- Weight gain

FIGURE 29 Conceptual model by Huffman, reproduced with permission from S Huffman.
No. 1 Home parenteral nutrition: a systematic review.
 By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2 Diagnosis, management and screening of early localised prostate cancer.
 A review by Selley S, Donovan J, Faulknor A, Coast J, Gillatt D.

No. 3 The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
 A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4 Screening for fragile X syndrome.
 A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5 A review of near patient testing in primary care.

No. 6 Systematic review of outpatient services for chronic pain control.
 By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7 Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8 Preschool vision screening.
 A review by Snowdon SK, Stewart-Brown SL.

No. 9 Implications of socio-cultural contexts for the ethics of clinical trials.
 A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10 A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
 By Davis A, Bamford J, Wilson I, Ramkalawan T, Forsaw M, Wright S.

No. 11 Newborn screening for inborn errors of metabolism: a systematic review.

No. 12 Routine preoperative testing: a systematic review of the evidence.
 By Munro J, Booth A, Nicholl J.

No. 13 Systematic review of the effectiveness of laxatives in the elderly.
 By Petticrew M, Watt I, Sheldon T.

No. 14 When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
 A review by Mowatt G, Bower DJ, Brebner JA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998

No. 1 Antenatal screening for Down’s syndrome.
 A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2 Screening for ovarian cancer: a systematic review.
 By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3 Consensus development methods, and their use in clinical guideline development.

No. 4 A cost–utility analysis of interferon beta for multiple sclerosis.

No. 5 Effectiveness and efficacy of methods of dialysis therapy for end-stage renal disease: systematic reviews.
 By MacLeoid A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6 Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7 Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
 By Song F, Glenny AM.

No. 8 Bone marrow and peripheral blood stem cell transplantation for malignancy.
 A review by Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9 Screening for speech and language delay: a systematic review of the literature.
 By Law J, Boyle J, Harris F, Harkness A, Nye C.

 By Sculpher MJ, Petticrew M, Kelland JL, Elliott RA, Holdright DR, Buxton MJ.

No. 11 Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
 By Ebrahim S.

No. 12 Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
 By McQuay HJ, Moore RA.

No. 13 Choosing between randomised and nonrandomised studies: a systematic review.
 By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14 Evaluating patient-based outcome measures for use in clinical trials.
 A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
No. 15
Ethical issues in the design and conduct of randomised controlled trials.
A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JG, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.
By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.
By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.
By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.
A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
By Ukoumunne OC, Galliford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6
Assessing the costs of healthcare technologies in clinical trials.
A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.
By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.
A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.
By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10
A review by Billingham LJ, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.
By Zeuner D, Ades AE, Karzon J, Brown J, Dezateux C, Anionwu EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
‘Early warning systems’ for identifying new healthcare technologies.
By Robert G, Stevens A, Gabbay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.
By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.
A review by Robert G, Milne R.

No. 17 (Pt 1)
The debridement of chronic wounds: a systematic review.
By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.
A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kiatika S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.
By Glenny AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.
By Lister-Sharp D, Chapman S, Stewart-Brown S, Sovden A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.
No. 31
A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
By Turner J, Nicholl J, Webber L, Cox H, Dixon S, Yates D.

No. 32
Intrathecal pumps for giving opioids in chronic pain: a systematic review.
By Williams JE, Lou G, Towerton G.

No. 33
Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
By Shepherd J, Waugh N, Hewitson P.

No. 34
A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
By Williams HC, Chalmers RJG, Li Wan Po A, Storey L, Gage H, Foxcroft D, et al.

No. 35
Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
By Hoare C, Kelly S, Hutton J, Lindsay HSJ, Blaxill JM, Evans JA, et al.

No. 36
A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37
Systematic review of treatments for atopic eczema.
By Hoare C, Li Wan Po A, Williams H.

No. 38
Bayesian methods in health technology assessment: a review.
By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 39
The management of dyspepsia: a systematic review.

No. 40
A systematic review of treatments for severe psoriasis.
By Griffiths CEM, Clark CM, Chalmers RJG, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 1
Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review.

No. 2
The clinical effectiveness and cost-effectiveness of rifazul for motor neuron disease: a rapid and systematic review.

No. 3
Equity and the economic evaluation of healthcare.
By Sassi F, Archard L, Le Grand J.

No. 4
Quality-of-life measures in chronic diseases of childhood.
By Eiser C, Morse R.

No. 5
Eliciting public preferences for healthcare: a systematic review of techniques.

No. 6
General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
By Riemsma RP, Forbes CA, Glanville JM, Eastwood AJ, Kleijnen J.

No. 7
An assessment of screening strategies for fragile X syndrome in the UK.
By Pembrey ME, Barnicoto AJ, Carmichael B, Bobrow M, Turner G.

No. 8
Issues in methodological research: perspectives from researchers and commissioners.

No. 9
Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
By Cullum N, Nelson EA, Flenning K, Sheldon T.

No. 10
Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.

No. 11
Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
By Jobanputra P, Parry D, Fry-Smith A, Burks A.

No. 12
Statistical assessment of the learning curves of health technologies.
By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13
The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
By Dinnes J, Cave C, Huang S, Major K, Milne R.

No. 14
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debridng agents in treating surgical wounds healing by secondary intention.
By Lewis R, Whiting P, ter Riet G, O’Meara S, Glanville J.

No. 15
Home treatment for mental health problems: a systematic review.
By Eccles M, Mason J.

No. 16
The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
By De Broe S, Christopher F, Waugh N.

No. 17
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
By O’Meara S, Riemsma R, Shirran L, Mather L, ter Riet G.

No. 18
The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 19
Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.
No. 21 Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) Acute day hospital versus admission; (2) Vocational rehabilitation; (3) Day hospital versus outpatient care.

No. 22 The measurement and monitoring of surgical adverse events.
By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23 Action research: a systematic review and guidance for assessment.
By Waterman H, Tillen D, Dickson R, de Koning K.

No. 24 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer.

No. 25 A rapid and systematic review of the evidence for the clinical effectiveness and cost-effectiveness of irinotecan, oxaliplatin and irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer.
By Lloyd Jones M, Hummel S, Bansback N, Orr B, Seymour M.

No. 26 Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature.

No. 27 The cost-effectiveness of magnetic resonance imaging for investigation of the knee joint.

No. 28 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.
By Forbes C, Shirran L, Bagnall A-M, Duffy S, ter Riet G.

No. 29 Superseded by a report published in a later volume.

No. 30 The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial.
By Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M.

No. 31 Design and use of questionnaires: a review of best practice applicable to surveys of health service staff and patients.

No. 32 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.
By Clegg A, Scott DA, Sidhu M, Hewitson P, Waugh N.

No. 33 Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
By Brooks ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G.

No. 34 Depot antipsychotic medication in the treatment of patients with schizoaffective: (1) Meta-review; (2) Patient and nurse attitudes.
By David AS, Adams C.

No. 35 A systematic review of controlled trials of the effectiveness and cost-effectiveness of brief psychological treatments for depression.

No. 36 Cost analysis of child health surveillance.
By Sanderson D, Wright D, Acton C, Duree D.

Volume 6, 2002

No. 1 A study of the methods used to select review criteria for clinical audit.
By Hearnsaw H, Harker R, Cheater F, Baker R, Grimshaw G.

No. 2 Fludarabine as second-line therapy for B cell chronic lymphocytic leukaemia: a technology assessment.

No. 3 Rituximab as third-line treatment for refractory or recurrent Stage III or IV follicular non-Hodgkin’s lymphoma: a systematic review and economic evaluation.

No. 4 A systematic review of discharge arrangements for older people.

No. 5 The clinical effectiveness and cost-effectiveness of inhaler devices used in the routine management of chronic asthma in older children: a systematic review and economic evaluation.
By Peters J, Stevenson M, Beverley C, Lim J, Smith S.

No. 6 The clinical effectiveness and cost-effectiveness of sibutramine in the management of obesity: a technology assessment.
By O’Meara S, Riemsmma R, Shirran L, Mather L, ter Riet G.

No. 7 The cost-effectiveness of magnetic resonance angiography for carotid artery stenosis and peripheral vascular disease: a systematic review.

No. 8 Promoting physical activity in South Asian Muslim women through ‘exercise on prescription’.
By Carroll B, Ali N, Azam N.

No. 9 Zanamivir for the treatment of influenza in adults: a systematic review and economic evaluation.

No. 10 A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models.
By Richards RG, Sampson FC, Beard SM, Tappenden P.

No. 11 Screening for gestational diabetes: a systematic review and economic evaluation.
By Scott DA, Loveman E, McIntyre L, Waugh N.

No. 12 The clinical effectiveness and cost-effectiveness of surgery for people with morbid obesity: a systematic review and economic evaluation.

No. 13 The clinical effectiveness of trastuzumab for breast cancer: a systematic review.
No. 14
The clinical effectiveness and cost-effectiveness of vinorelbine for breast cancer: a systematic review and economic evaluation.

No. 15
A systematic review of the effectiveness and cost-effectiveness of metal-on-metal hip resurfacing arthroplasty for treatment of hip disease.
By Vyle L, Wyness L, McCormack K, McKenzie L, Brazzelli M, Stearns SC.

No. 16
The clinical effectiveness and cost-effectiveness of bupropion and nicotine replacement therapy for smoking cessation: a systematic review and economic evaluation.
By Woolacott NF, Jones L, Forbes CA, Mather LC, Sowden AJ, Song FJ, et al.

No. 17
A systematic review of effectiveness and economic evaluation of new drug treatments for juvenile idiopathic arthritis: etanercept.
By Cummins C, Connock M, Fry-Smith A, Burls A.

No. 18

No. 19
By Bryant J, Loveman E, Chase D, Mihaylova B, Cave C, Gerard K, et al.

No. 20
Clinical medication review by a pharmacist of patients on repeat prescriptions in general practice: a randomised controlled trial.
By Zermansky AG, Petty DR, Raynor DK, Lowe CJ, Freemenl N, Vail A.

No. 21
The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation.
By Jobanputra P, Barton P, Bryan S, Burls A.

No. 22
A systematic review and economic evaluation of computerised cognitive behaviour therapy for depression and anxiety.
By Kaltenhauser E, Shackley P, Stevens K, Beverley C, Parry G, Chilcott J.

No. 23
A systematic review and economic evaluation of pegylated liposomal doxorubicin hydrochloride for ovarian cancer.
By Forbes C, Wilby J, Richardson G, Sculpher M, Mather L, Riemsma R.

No. 24
A systematic review of the effectiveness of interventions based on a stages-of-change approach to promote individual behaviour change.

No. 25
A systematic review update of the clinical effectiveness and cost-effectiveness of glycoprotein Iib/IIIa antagonists.

No. 26
A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapies for acute ischaemic stroke in the NHS.

No. 27
A randomised controlled crossover trial of nurse practitioner versus doctor-led outpatient care in a bronchiectasis clinic.

No. 28
Clinical effectiveness and cost—consequences of selective serotonin reuptake inhibitors in the treatment of sex offenders.
By Adi Y, Ashcroft D, Browne K, Beech A, Fry-Smith A, Hyde C.

No. 29
Treatment of established osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

No. 30
Which anaesthetic agents are cost-effective in day surgery? Literature review, national survey of practice and randomised controlled trial.

No. 31
Screening for hepatitis C among injecting drug users and in genitourinary medicine clinics: systematic reviews of effectiveness, modelling study and national survey of current practice.

No. 32
The measurement of satisfaction with healthcare: implications for practice from a systematic review of the literature.

No. 33
The effectiveness and cost-effectiveness of imatinib in chronic myeloid leukaemia: a systematic review.
By Garside R, Round A, Dalziel K, Stein K, Royle R.

No. 34
A comparative study of hypertonic saline, daily and alternate-day rhDNase in children with cystic fibrosis.

No. 35
A systematic review of the costs and effectiveness of different models of paediatric home care.

Volume 7, 2003
No. 6 The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.

No. 7 The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8 A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9 Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10 Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.

No. 11 First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
By Wald NJ, Rodeck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12 The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13 A systematic review of atypical antipsychotics in schizophrenia.

No. 14 Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15 Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16 Screening for fragile X syndrome: a literature review and modelling.
By Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A.

No. 17 Systematic review of endoscopic sinus surgery for nasal polyps.
By Dalziel R, Stein K, Round A, Garside R, Royle P.

No. 18 Towards efficient guidelines: how to monitor guideline use in primary care.
By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19 Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
By Bagnall A-M, Jones L, Richardson G, Duffy S, Riemsma R.

No. 20 Prioritisation of health technology assessment. The PATHS model: methods and case studies.
By Townsend J, Buxton M, Harper G.

No. 22 The clinical and cost-effectiveness of patient education models for diabetes: a systematic review and economic evaluation.
By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23 The role of modelling in prioritising and planning clinical trials.
By Chilcott J, Brennan A, Booth A, Karnon J, Tappenden P.

No. 24 Cost–benefit evaluation of routine influenza immunisation in people 65–74 years of age.
By Albisp S, Gosney M, Haycox A, Regan M.

No. 25 The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
By Wight J, Chilcott J, Holmes M, Brewer N.

No. 26 Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27 Evaluating non-randomised intervention studies.

No. 28 A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29 The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30 The value of digital imaging in diabetic retinopathy.

No. 31 Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
By Law M, Wald N, Morris J.

No. 32 Clinical and cost-effectiveness of capcitabine and tegafur with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
By Ward S, Kaltenthaler E, Cowan J, Brewer N.

By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
No. 34
Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
By Royle P, Waugh N.

No. 35
Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36
A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37
Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women’s physical and psychological health needs.

No. 38
Estimating implied rates of discount in healthcare decision-making.
By West RR, McNabb R, Thompson AGH, Sheldon TA, Grimley Evans J.

No. 39
Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling.
By Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40
Treatments for spasticity and pain in multiple sclerosis: a systematic review.
By Beard S, Humm A, Wight J.

No. 41
The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42
The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

No. 1
What is the best imaging strategy for acute stroke?
By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sanderson PAG, Dennis MS, et al.

No. 2
Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.

No. 3
The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4
A systematic review of the role of bisphosphonates in metastatic disease.

No. 5
Systematic review of the clinical effectiveness and cost-effectiveness of capicetabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6
Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7
Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
By Bryant J, Clegg AJ, Sidhu MK, Brodin H, Royle P, Davidson P.

No. 8
Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
By Morgan K, Dixon S, Mathers N, Thompson J, Tumeyn M.

No. 9
Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
By Hohart JC, Razi A, Lamping DL, Fitzpatrick R, Thompson AJ.
No. 18
The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
By Clark W, Jobanputra P, Barton P, Burls A.

No. 19
A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20
Liquid-based cytology in cervical screening: an updated rapid and systematic review and economic analysis.

No. 21
Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22
Autoantibody testing in children with newly diagnosed type 1 diabetes mellitus.
By Dretzke J, Cummins C, Sandercock J, Fry-Smith A, Barrett T, Burls A.

No. 23
Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercock J, Bayliss S, Burls A.

No. 24
Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25
Development and validation of methods for assessing the quality of diagnostic accuracy studies.

No. 26
EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27
By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

No. 28
By Dalziel R, Round A, Stein K, Garside R, Price A.

No. 29
VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.
By Iglesias C, Nelson EA, Cullum NA, Torgerson DJ, on behalf of the VenUS Team.

No. 30
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31
A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.
By Claxton K, Ginnelly L, Sculpher M, Philips Z, Palmer S.

No. 32
The Social Support and Family Health Study: a randomised controlled trial of alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33
Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.
By Green JM, Hewison J, Bekker HL, Bryant, Cuckle HS.

No. 34
Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35
Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36
Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37
Rituximab (MabThera) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38
Clinical effectiveness and cost-effectiveness of clodiragel and modified-release dipyriramole in the secondary prevention of oesophageal vascular events: a systematic review and economic evaluation.
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpher M, et al.

No. 39
Regulated interferon α-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbay J.

No. 40
Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpher M, et al.

No. 41
Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Griebisch I, Taylor FC, Burke M, West RR, et al.

No. 42
Involving South Asian patients in clinical trials.
By Hussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43
Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Colquitt JL, Green C, Sidhu MK, Hartwell D, Waugh N.

No. 44
Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45
Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.
No. 46
Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation studies in healthcare: a review and case studies.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

Volume 9, 2005

No. 1
Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative electrosurgical modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenefine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.
By Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens PJ, Darbyshire JH, et al.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.
By Green C, Dinnes J, Takeda A, lofepramine.

No. 12
Clinical effectiveness and cost-effectiveness of newer immunosuppressive regimens in renal transplantation: a systematic review and modelling study.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BH, Barton P, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and lofepramine.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kalra L, Evans A, Perez I, Knapp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Wlososhynowycz M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Rafferty J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.
No. 23
A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma.

No. 24
An evaluation of the costs, effectiveness and quality of renal replacement therapy provision in renal satellite units in England and Wales.

No. 25
Imatinib for the treatment of patients with unsectetable and/or metastatic gastrointestinal stromal tumours: systematic review and economic evaluation.

No. 26
Indirect comparisons of competing interventions.

No. 27
Cost-effectiveness of alternative strategies for the initial medical management of non-ST elevation acute coronary syndrome: systematic review and decision-analytical modelling.

No. 28
Outcomes of electrically stimulated gracilis neosphincter surgery.
By Tillin T, Chambers M, Feldman R.

No. 29
The effectiveness and cost-effectiveness of pimecrolimus and tacrolimus for atopic eczema: a systematic review and economic evaluation.
By Epps H, Ginnelly L, Utley M, By Ebrahim S, et al.

No. 30
Systematic review on urine albumin testing for early detection of diabetic complications.

No. 31
Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis.
By Cochrane T, Davey RC, Mattthes Edwards SM.

No. 32
Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain.

No. 33
Cost-effectiveness and safety of epidural steroids in the management of sciatica.
By Price C, Arden N, Coglan L, Rogers P.

No. 34
The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis.
By Symmonds D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 35
Conceptual framework and systematic review of the effects of patients’ and professionals’ preferences in randomised controlled trials.

No. 36
The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review.
By Bryant A, Brodin H, Loveman E, Payne E, Clegg A.

No. 37
A trial of problem-solving by community mental health nurses for anxiety, depression and life difficulties among general practice patients. The CPN-GF study.

No. 38
The causes and effects of socio-demographic exclusions from clinical trials.

No. 39
Is hydrotherapy cost-effective? A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis?

No. 40
A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study.

No. 41
Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty and total hip arthroplasty.
By Keating JF, Grant A, Masson M, Scott NW, Forbes JF.

No. 42
Long-term outcome of cognitive behaviour therapy clinical trials in central Scotland.

No. 43
The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation.
By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 44
Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis.

No. 45
The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.

No. 46
The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma.
By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

No. 47
Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.
No. 48
Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49
Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thromboprophylaxis.

No. 50
The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006

No. 1
The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.

No. 2
FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranwick G, Forbes J.

No. 3
The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.

No. 4
A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5
Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.
By Dundar Y, Dodd S, Dickson R, Walley T, Haycox A, Williamson PR.

No. 6
Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7

No. 8
Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.
By Garside R, Pitt M, Somerville M, Stein K, Price A, Gilbert N.

No. 9
Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10
Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.
By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11

No. 12
A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13
Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14
The cost-effectiveness of screening for oral cancer in primary care.
By Speight PM, Palmer S, Mole DR, Downer MC, Smith DH, Henriksson M, et al.

No. 15

No. 16

No. 17
Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.
By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 18
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19
Cognitive behavioural therapy in addition to antispasmodic medication for irritable bowel syndrome in primary care: randomised controlled trial.

No. 20
A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type I.

No. 21
Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.
By Wright M, Grieve R, Roberts J, Main J, Thomas HC, on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 22
Pressure relieving support surfaces: a randomised evaluation.
No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamfetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29
By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30
Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31
Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32
The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33
Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35
Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36
Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37
Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
By O’Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 38

No. 39
The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.
By Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hills G.

No. 40
What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MINuET).

No. 41
The clinical and cost-effectiveness of oxaliplatin and capcitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
By Pandor A, Eggington S, Paisley S, Tappenden P, Sutcliffe P.

No. 42
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43
Telemedicine in dermatology: a randomised controlled trial.
By Bowns IR, Collins K, Walters SJ, McDonagh AJG.

No. 44

No. 45
Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46
Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47
Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48
Evaluation of the ventricular assist device programme in the UK.
No. 49

No. 50
Amniocentesis results: investigation of anxiety. The ARIA trial.

Volume 11, 2007

No. 1
Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3
A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4
The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.

No. 5
A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6
Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7
Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8
Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9
Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10
Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11
Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12
Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13
A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14
A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15
A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16
Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17
Screening for type 2 diabetes: literature review and economic modelling.

No. 18
The clinical effectiveness and cost-effectiveness of cetuximab for metastatic breast cancer: a systematic review and economic evaluation.
By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 19
A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic lower limb peripheral arterial disease.

No. 20
The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 21
A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 22
Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.
No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.
By Boyle J, McCarron E, Forbes J, O’Hare A.

No. 26
Hormonal therapies for early breast cancer: systematic review and economic evaluation.
By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.

No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population: The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.
By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

No. 35
The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Home-based compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.

No. 36
A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

No. 37
A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

No. 38
Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anti-coagulation therapy: a systematic review and economic modelling.

No. 39
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder.

No. 40
Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.
By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

No. 41
The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

No. 42
Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.
By Davis A, Smith P, Ferguson M, Stephens D, Gianopoulous I.

No. 43
Contamination in trials of educational interventions.

No. 44
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.
By Facey K, Bradbury I, Laking G, Payne E.

No. 45
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

No. 46
Drug-eluting stents: a systematic review and economic evaluation.

No. 47
The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

No. 48
Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study.
By Campbell MK, Snowdon C, Francis D, Elbourne D, McDonald AM, Knight R, et al.

No. 49
Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CeCaT trial.
No. 50
Evaluation of diagnostic tests when there is no gold standard: A review of methods.
By Rutjes AWS, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PMM.

No. 51
Systematic reviews of the clinical effectiveness and cost-effectiveness of proton pump inhibitors in acute upper gastrointestinal bleeding.
By Leonitiadis GI, Sreedharan A, Dorward S, Barton P, Delaney B, Howden CW, et al.

No. 52
A review and critique of modelling in prioritising and designing screening programmes.

No. 53
An assessment of the impact of the NHS Health Technology Assessment Programme.
By Hanney S, Buxton M, Green C, Coulson D, Raftery J.

Volume 12, 2008

No. 1
A systematic review and economic model of switching from nonglycopeptide to glycopeptide antibiotic prophylaxis for surgery.

No. 2
‘Cut down to quit’ with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis.
By Wang D, Connock M, Barton P, Fry-Smith A, Aveyard P, Moore D.

No. 3
A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management.

No. 4
By Charlesworth G, Shepstone L, Wilson E, Thalamaney M, Mugford M, Poland F.

No. 5
A multi-centre retrospective cohort study comparing the efficacy, safety and cost-effectiveness of hysterectomy and uterine artery embolisation for the treatment of symptomatic uterine fibroids. The HOPEFUL study.

No. 6
Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 7
The use of economic evaluations in NHS decision-making: a review and empirical investigation.
By Williams I, McIver S, Moore D, Bryan S.

No. 8
Stapled haemorrhoidectomy (haemorrhoidopexy) for the treatment of haemorrhoids: a systematic review and economic evaluation.

No. 9
The clinical effectiveness of diabetes education models for Type 2 diabetes: a systematic review.
By Lovean E, Frampton GK, Clegg AJ.

No. 10
Payment to healthcare professionals for patient recruitment to trials: systematic review and qualitative study.
By Raftery J, Bryant J, Powell J, Kerr C, Hawker S.

No. 11
Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation.

No. 12
The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation.

No. 13
Stepped treatment of older adults on laxatives. The STOOL trial.

No. 14
A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial.

No. 15
The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation.
By Hind D, Tappenden P, Tumur I, Eggington E, Sutcliffe P, Ryan A.

No. 16
Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation.

No. 17
Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease.

No. 18
Structural neuroimaging in psychosis: a systematic review and economic evaluation.

No. 19
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta agonists for the treatment of chronic asthma in adults and children aged 12 years and over.

No. 20
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21
Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.
No. 22 Topical or oral ibuprofen for chronic knee pain in older people. The TOIB study.

No. 23 A prospective randomised comparison of minor surgery in primary and secondary care. The MISTIC trial.

No. 24 A review and critical appraisal of measures of therapist–patient interactions in mental health settings.

No. 25 The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.
By Carlson J, Karnon J, Czoski-Murray C, Smith KJ, Marr J.

No. 26 A systematic review of the clinical effectiveness and cost-effectiveness and economic modelling of minimal incision total hip replacement approaches in the management of arthritic disease of the hip.

No. 27 A preliminary model-based assessment of the cost-utility of a screening programme for early age-related macular degeneration.

No. 28 Intravenous magnesium sulphate and sodalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.
By Shepherd J, Jones J, Frampton GK, Tanajewski L, Turner D, Price A.

No. 29 Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product categories.

No. 30 A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

No. 31 The effectiveness and cost-effectiveness of minimal access surgery amongst people with gastro-oesophageal reflux disease – a UK collaborative study. The reflux trial.

No. 32 Time to full publication of studies of anti-cancer medicines for breast cancer and the potential for publication bias: a short systematic review.
By Takeda A, Loverman E, Harris P, Hartwell D, Welch K.

No. 33 Performance of screening tests for child physical abuse in accident and emergency departments.
By Woodman J, Pitt M, Wentz R, Taylor B, Hodes D, Gilbert RE.

No. 34 Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation.

No. 35 Systematic review and economic modelling of effectiveness and cost utility of surgical treatments for men with benign prostatic enlargement.

No. 36 Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: a systematic review and economic evaluation.
By Wang D, Cummins C, Bayliss S, Sandercock J, Burris A.

Volume 13, 2009

No. 1 Deferasirox for the treatment of iron overload associated with regular blood transfusions (transfusional haemosiderosis) in patients suffering with chronic anaemia: a systematic review and economic evaluation.

No. 2 Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis.
By Simpson EL, Stevenson MD, Rawlin A, Papaisonnou D.

No. 3 Surgical procedures and non-surgical devices for the management of non-apnoeic snoring: a systematic review of clinical effects and associated treatment costs.
By Main C, Liu Z, Welch K, Weiner G, Quentin Jones S, Stein K.

No. 4 Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea–hypopnoea syndrome: a systematic review and economic analysis.

No. 5 Use of classical and novel biomarkers as prognostic risk factors for localised prostate cancer: a systematic review.

No. 6 The harmful health effects of recreational ecstasy: a systematic review of observational evidence.

No. 7 Systematic review of the clinical effectiveness and cost-effectiveness of oesophageal Doppler monitoring in critically ill and high-risk surgical patients.

No. 8 The use of surrogate outcomes in model-based cost-effectiveness analyses: a survey of UK Health Technology Assessment reports.
By Taylor RS, Elston J.

No. 9 Controlling Hypertension and Hypotension Immediately Post Stroke (CHHIPS) – a randomised controlled trial.

No. 10 Routine antenatal anti-D prophylaxis for RhD-negative women: a systematic review and economic evaluation.
By Pilgrim H, Lloyd-Jones M, Rees A.

No. 11 Amantadine, oseltamivir and zanamivir for the prophylaxis of influenza (including a review of existing guidance no. 67): a systematic review and economic evaluation.
No. 12 Improvement of the evaluation of therapeutic interventions in multiple sclerosis: the role of new psychometric methods.
By Hobart J, Cano S.

No. 13 Treatment of severe ankle sprain: a pragmatic randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of three types of mechanical ankle support with tubular bandage. The CAST trial.
By Cooke MW, Marsh JL, Clark M, Nakash R, Jarvis RM, Hutton JL, et al., on behalf of the CAST trial group.

No. 14 Non-occupational postexposure prophylaxis for HIV: a systematic review.
By Bryant J, Baxter L, Hird S.

No. 15 Blood glucose self-monitoring in type 2 diabetes: a randomised controlled trial.

No. 16 How far does screening women for domestic (partner) violence in different health-care settings meet criteria for a screening programme? Systematic reviews of nine UK National Screening Committee criteria.

No. 17 Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation.
By Simpson EL, Duenas A, Holmes MW, Papaisannou D, Chilcott J.

No. 18 The role of magnetic resonance imaging in the identification of suspected acoustic neuroma: a systematic review of clinical and cost-effectiveness and natural history.

No. 19 Dipsticks and diagnostic algorithms in urinary tract infection: development and validation, randomised trial, economic analysis, observational cohort and qualitative study.

No. 20 Systematic review of respite care in the frail elderly.

No. 21 Neuroleptics in the treatment of aggressive challenging behaviour for people with intellectual disabilities: a randomised controlled trial (NACHBID).

No. 22 Randomised controlled trial to determine the clinical effectiveness and cost-effectiveness of selective serotonin reuptake inhibitors plus supportive care, versus supportive care alone, for mild to moderate depression with somatic symptoms in primary care: the THREAD (THreshold for AntiDepressant response) study.

No. 23 Diagnostic strategies using DNA testing for hereditary haemochromatosis in at-risk populations: a systematic review and economic evaluation.

No. 24 Enhanced external counterpulsation for the treatment of stable angina and heart failure: a systematic review and economic analysis.

No. 25 Development of a decision support tool for primary care management of patients with abnormal liver function tests without clinically apparent liver disease: a record-linkage population cohort study and decision analysis (ALFIE).

No. 26 A systematic review of presumed consent systems for deceased organ donation.
By Rithalia A, McDaid C, Suekarran S, Norman G, Myers L, Sovden A.

No. 27 Paracetamol and ibuprofen for the treatment of fever in children: the PITCH randomised controlled trial.

No. 28 A randomised controlled trial to compare minimally invasive glucose monitoring devices with conventional monitoring in the management of insulin-treated diabetes mellitus (MITRE).

No. 29 Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making.
By Andronis L, Barton P, Bryan S.

Suppl. 1 Trastuzumab for the treatment of primary breast cancer in HER2-positive women: a single technology appraisal.
By Ward S, Pilgrim H, Hind D.

Docetaxel for the adjuvant treatment of early node-positive breast cancer: a single technology appraisal.
By Chilcott J, Lloyd Jones M, Wilkinson A.

The use of paclitaxel in the management of early stage breast cancer.

Rituximab for the first-line treatment of stage III/IV follicular non-Hodgkin’s lymphoma.

Bortezomib for the treatment of multiple myeloma patients.

Fludarabine phosphate for the first-line treatment of chronic lymphocytic leukaemia.

Erlotinib for the treatment of relapsed non-small cell lung cancer.

Cetuximab plus radiotherapy for the treatment of locally advanced squamous cell carcinoma of the head and neck.

Infliximab for the treatment of adults with psoriasis.
By Loveman E, Turner D, Hartwell D, Cooper K, Clegg A.

No. 30 Psychological interventions for postnatal depression: cluster randomised trial and economic evaluation. The PoNDER trial.

No. 31 The effect of different treatment elevations of clopidogrel in patients with non-ST-segment elevation acute coronary syndromes: a systematic review and value of information analysis.
No. 32
Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care.

No. 33
A multicentre randomised controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the 3CPO trial.
By Gray AJ, Goodacre S, Newby DE, Masson MA, Sampson F, Dixon S, et al., on behalf of the 3CPO study investigators.

No. 34
Early high-dose lipid-lowering therapy to avoid cardiac events: a systematic review and economic evaluation.
By Ara R, Pandor A, Stevens J, Rees A, Rafia R.

No. 35
Adefovir dipivoxil and pegylated interferon alpha for the treatment of chronic hepatitis B: an updated systematic review and economic evaluation.

No. 36
Methods to identify postnatal depression in primary care: an integrated evidence synthesis and value of information analysis.

No. 37
A double-blind randomised placebo-controlled trial of topical intranasal corticosteroids in 4- to 11-year-old children with persistent bilateral otitis media with effusion in primary care.

No. 38
The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic analysis.
By Bond M, Pitt M, Akoh J, Moxham T, Hoyle M, Anderson R.

No. 39
Rehabilitation of older patients: day hospital compared with rehabilitation at home. A randomised controlled trial.
By Parker SG, Oliver P, Pennington M, Bond J, Jagger C, Enderby PM, et al.

No. 40
Breastfeeding promotion for infants in neonatal units: a systematic review and economic analysis.

No. 41
The clinical effectiveness and cost-effectiveness of bariatric surgery for obesity: a systematic review and economic evaluation.

No. 42
Rapid testing for group B streptococcus during labour: a test accuracy study with evaluation of acceptability and cost-effectiveness.

No. 43
Screening to prevent spontaneous preterm birth: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 44
The effectiveness and cost-effectiveness of cochlear implants for severe to profound deafness in children and adults: a systematic review and economic model.

Suppl. 2
Gemcitabine for the treatment of metastatic breast cancer.
By Jones J, Takeda A, Tan SC, Cooper K, Loveman E, Clegg A.

Varenicline in the management of smoking cessation: a single technology appraisal.
By Hind D, Tappenden P, Peters J, Kenjegalieva K.

Alteplase for the treatment of acute ischaemic stroke: a single technology appraisal.
By Lloyd Jones M, Holmes M.

Rituximab for the treatment of rheumatoid arthritis.

Omalizumab for the treatment of severe persistent allergic asthma.

Rituximab for the treatment of relapsed refractory stage III or IV follicular non-Hodgkin’s lymphoma.
By Boland A, Bagust A, Hockenhull J, Davis H, Chui P, Dickson R.

Adalimumab for the treatment of psoriasis.
By Turner D, Picot J, Cooper K, Loveman E.

Dabigatran etexilate for the prevention of venous thromboembolism in patients undergoing elective hip and knee surgery: a single technology appraisal.
By Holmes M, C Carroll C, Papaioannou D.

Romiplostim for the treatment of chronic immune or idiopathic thrombocytopenic purpura: a single technology appraisal.

Sumitibin for the treatment of gastrointestinal stromal tumours: a critique of the submission from Pfizer.
By Bond M, Hoyle M, Moxham T, Napier M, Anderson R.

No. 45
Vitamin K to prevent fractures in older women: systematic review and economic evaluation.
By Stevenson M, Lloyd-Jones M, Papaioannou D.

No. 46
The effects of biofeedback for the treatment of essential hypertension: a systematic review.
By Greenhalgh J, Dickson R, Dunlar Y.

No. 47
A randomised controlled trial of the use of aciclovir and/or prednisolone for the early treatment of Bell’s palsy: the BELLS study.

Suppl. 3
Lapatinib for the treatment of HER2-overexpressing breast cancer.
By Jones J, Takeda A, Picot J, von Keyserlingk C, Clegg A.

Infliximab for the treatment of ulcerative colitis.
By Hyde C, Bryan S, Juarez-Garcia A, Andronis L, Fry-Smith A.

Rimobabant for the treatment of overweight and obese people.

Telbivudine for the treatment of chronic hepatitis B infection.
By Hartwell D, Jones J, Harris P, Cooper K.

Entecavir for the treatment of chronic hepatitis B infection.
By Shepherd J, Gospodarevska E, Freampton G, Cooper, K.

Febuxostat for the treatment of hyperuricaemia in people with gout: a single technology appraisal.
By Stevenson M, Pandor A.

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.

Ustekinumab for the treatment of moderate to severe psoriasis. By Gospodarevskaya E, Picot J, Cooper K, Loveeman E, Takeda A.

Development of a toolkit and glossary to aid in the adaptation of health technology assessment (HTA) reports to different contexts. By Chambers D, Epstein D, Walker S, et al.

A randomised 2 × 2 trial of community versus hospital pulmonary rehabilitation for chronic obstructive pulmonary disease followed by telephone or conventional follow-up. By Waterhouse JC, Walters SJ, Oluhoyede Y, Lawson RA.

No. 8
Dissemination and publication of research findings: an updated review of related biases.

No. 9
The effectiveness and cost-effectiveness of biomarkers for the prioritisation of patients awaiting coronary revascularisation: a systematic review and decision model.

No. 10
Comparison of case note review methods for evaluating quality and safety in health care.
By Hutchinson A, Coster JE, Cooper KL, McIntosh A, Walters SJ, Bath PA, et al.

No. 11
Clinical effectiveness and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes: systematic review and economic evaluation.

No. 12
Self-monitoring of blood glucose in type 2 diabetes: systematic review.
By Clar C, Barnard K, Cummins E, Royle P, Waugh N.

No. 13

No. 14
Multicentre randomised controlled trial of the clinical and cost-effectiveness of a bypass-surgery-first versus a balloon-angioplasty-first revascularisation strategy for severe limb ischaemia due to infrarenal disease. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial.

No. 15
A randomised controlled multicentre trial of treatments for adolescent anorexia nervosa including assessment of cost-effectiveness and patient acceptability – the TOuCAN trial.

No. 16
Randomised controlled trials for policy interventions: a review of reviews and meta-regression.

No. 17
Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review.
By McDaid C, Maund E, Rice S, Wright K, Jenkins B, Woolacott N.

No. 18
A systematic review of outcome measures used in forensic mental health research with consensus panel opinion.

No. 19
The clinical effectiveness and cost-effectiveness of topotecan for small cell lung cancer: a systematic review and economic evaluation.

No. 20
Antenatal screening for haemoglobinopathies in primary care: a cohort study and cluster randomised trial to inform a simulation model. The Screening for Haemoglobinopathies in First Trimester (SHIFT) trial.

No. 21

No. 22
A randomised controlled trial of cognitive behaviour therapy and motivational interviewing for people with Type 1 diabetes mellitus with persistent sub-optimal glycaemic control: A Diabetes and Psychological Therapies (ADaPT) study.
By Ismail K, Maissi E, Thomas S, Chalder T, Schmidt U, Bartlett J, et al.

No. 23
A randomised controlled equivalence trial to determine the effectiveness and cost-utility of manual chest physiotherapy techniques in the management of exacerbations of chronic obstructive pulmonary disease (MATREX).

No. 24
A systematic review and economic evaluation of the clinical effectiveness and cost-effectiveness of aldosterone antagonists for postmyocardial infarction heart failure.

No. 25
Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.

No. 26
BoTULS: a multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A.

No. 27
Weighting and valuing quality-adjusted life-years using stated preference methods: preliminary results from the Social Value of a QALY Project.

Suppl. 1
Cetuximab for the first-line treatment of metastatic colorectal cancer.
By Meads C, Round J, Tubeuf S, Moore D, Pennant M and Baylis S.

Infliximab for the treatment of acute exacerbations of ulcerative colitis.
By Bryan S, Andrionis L, Hyde C, Connock M, Fry-Smith A and Wang D.

Sorafenib for the treatment of advanced hepatocellular carcinoma.
By Connock M, Round J, Baylis S, Tubeuf S, Greenheld W and Moore D.

Tenofivir disoproxil fumarate for the treatment of chronic hepatitis B infection.
By Jones J, Colquitt J, Shepherd J, Harris P and Cooper K.

Prasugrel for the treatment of acute coronary artery syndromes with percutaneous coronary intervention.

Alitretinoin for the treatment of severe chronic hand eczema.

Pemetrexed for the first-line treatment of locally advanced or metastatic non-small cell lung cancer.
Topotecan for the treatment of recurrent and stage IVB carcinoma of the cervix.
Trabectedin for the treatment of advanced metastatic soft tissue sarcoma.
 By Simpson EL, Rafia R, Stevenson MD and Papaioannou D.
Azacitidine for the treatment of myelodysplastic syndrome, chronic myelomonocytic leukaemia and acute myeloid leukaemia.

No. 28 The safety and effectiveness of different methods of earwax removal: a systematic review and economic evaluation.

No. 29 Systematic review of the clinical effectiveness and cost-effectiveness of rapid point-of-care tests for the detection of genital chlamydia infection in women and men.
 By Hislop J, Quayyum Z, Flett G, Boachie C, Fraser C, Mowatt G.

No. 30 School-linked sexual health services for young people (SSHYP): a survey and systematic review concerning current models, effectiveness, cost-effectiveness and research opportunities

No. 31 Systematic review and cost-effectiveness evaluation of ‘pill-in-the-pocket’ strategy for paroxysmal atrial fibrillation compared to episodic in-hospital treatment or continuous antiarrhythmic drug therapy.
 By Martin Saborido C, Hockenhull J, Bagust A, Boland A, Dickson R, Todd D.
Prioritisation Strategy Group

Members

Chair,
Professor Tom Walley,
Consultant Advisor, NETSCC, HTA
Dr Andrew Cook,
Consultant Advisor, NETSCC, HTA
Dr Bob Coates,
Consultant Advisor, NETSCC, HTA
Dr Andrew Cook,
Consultant Advisor, NETSCC, HTA
Dr Bob Coates,
Consultant Advisor, NETSCC, HTA

Deputy Chair,
Professor Jon Nicholl,
Director, Medical Care Research Unit, University of Sheffield

Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford
Dr Nick Hicks,
Consultant Adviser, NETSCC, HTA
Dr Edmund Jessop,
Medical Adviser, National Specialist, National Commissioning Group (NCG), Department of Health, London
Ms Lynn Kerridge,
Chief Executive Officer, NETSCC and NETSCC, HTA
Dr Ruairidh Milne,
Director of NETSCC External Relations
Ms Kay Pattison,
Senior NIHR Programme Manager, Department of Health
Ms Pamela Young,
Specialist Programme Manager, NETSCC, HTA

HTA Commissioning Board

Members

Programme Director,
Professor Tom Walley,
Director, NIHR HTA programme, Professor of Clinical Pharmacology, University of Liverpool
Professor Deborah Ashby,
Professor of Medical Statistics, Queen Mary, University of London
Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine
Professor Peter Cooft,
Director of Primary Care Sciences Research Centre, Keele University
Professor Nicky Cullum,
Director of Centre for Evidence-Based Nursing, University of York
Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol
Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London
Professor Freddie Hamdy,
Professor of Urology, University of Sheffield
Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds
Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford
Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth
Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford
Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher,
Professor of Health Economics, University of York
Professor Helen Smith,
Professor of Primary Care, University of Brighton
Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds
Professor David John Torrison,
Director of York Trials Unit, University of York

Chairs,
Professor Sallie Lamb,
Director, Warwick Clinical Trials Unit

Professor Hywel Williams,
Director, Nottingham Clinical Trials Unit

Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine
Professor Peter Cooft,
Director of Primary Care Sciences Research Centre, Keele University
Professor Nicky Cullum,
Director of Centre for Evidence-Based Nursing, University of York
Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol
Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London
Professor Freddie Hamdy,
Professor of Urology, University of Sheffield
Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds
Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford
Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth
Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford
Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher,
Professor of Health Economics, University of York
Professor Helen Smith,
Professor of Primary Care, University of Brighton
Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds
Professor David John Torrison,
Director of York Trials Unit, University of York

Deputy Chair,
Dr Andrew Farmer,
Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford
Professor Ann Ashburn,
Professor of Rehabilitation and Head of Research, Southampton General Hospital

Professor John Cairns,
Professor of Health Economics, London School of Hygiene and Tropical Medicine
Professor Peter Cooft,
Director of Primary Care Sciences Research Centre, Keele University
Professor Nicky Cullum,
Director of Centre for Evidence-Based Nursing, University of York
Professor Jenny Donovan,
Professor of Social Medicine, University of Bristol
Professor Steve Halligan,
Professor of Gastrointestinal Radiology, University College Hospital, London
Professor Freddie Hamdy,
Professor of Urology, University of Sheffield
Professor Allan House,
Professor of Liaison Psychiatry, University of Leeds
Dr Martin J Landray,
Reader in Epidemiology, Honorary Consultant Physician, Clinical Trial Service Unit, University of Oxford
Professor Stuart Logan,
Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter and Plymouth
Dr Rafael Perera,
Lecturer in Medical Statistics, Department of Primary Health Care, University of Oxford
Professor Ian Roberts,
Professor of Epidemiology & Public Health, London School of Hygiene and Tropical Medicine
Professor Mark Sculpher,
Professor of Health Economics, University of York
Professor Helen Smith,
Professor of Primary Care, University of Brighton
Professor Kate Thomas,
Professor of Complementary & Alternative Medicine Research, University of Leeds
Professor David John Torrison,
Director of York Trials Unit, University of York

Observers

Ms Kay Pattison,
Section Head, NHS R&D Programme, Department of Health
Dr Morven Roberts,
Clinical Trials Manager, Medical Research Council
Diagnostic Technologies and Screening Panel

Members

Chair,
Professor Paul Glasziou,
Professor of Evidence-Based Medicine, University of Oxford

Deputy Chair,
Dr David Elliman,
Consultant Paediatrician and Honorary Senior Lecturer, Great Ormond Street Hospital, London

- Professor Judith E Adams,
 Consultant Radiologist, Manchester Royal Infirmary, Central Manchester & Manchester Children’s University Hospitals NHS Trust, and Professor of Diagnostic Radiology, Imaging Science and Biomedical Engineering, Cancer & Imaging Sciences, University of Manchester
- Mr A S Arunkalaivanan,
 Honorary Senior Lecturer, University of Birmingham and Consultant Urogynaecologist and Obstetrician, City Hospital
- Dr Dianne Baralle,
 Consultant & Senior Lecturer in Clinical Genetics, Human Genetics Division & Wessex Clinical Genetics Service, Southampton, University of Southampton
- Dr Stephanie Dancer,
 Consultant Microbiologist, Hairmyres Hospital, East Kilbride
- Dr Ron Gray,
 Consultant, National Perinatal Epidemiology Unit, Institute of Health Sciences, University of Oxford
- Professor Paul D Griffiths,
 Professor of Radiology, Academic Unit of Radiology, University of Sheffield
- Mr Martin Hooper,
 Service User Representative
- Professor Anthony Robert Kendrick,
 Professor of Primary Medical Care, University of Southampton
- Dr Susanne M Ludgate,
 Director, Medical Devices Agency, London
- Dr Anne Mackie,
 Director of Programmes, UK National Screening Committee
- Dr Michael Millar,
 Lead Consultant in Microbiology, Department of Pathology & Microbiology, Barts and The London NHS Trust, Royal London Hospital
- Mr Stephen Pilling,
 Director, Centre for Outcomes, Research & Effectiveness, University College London
- Ms Jane Smith,
 Consultant Ultrasound Practitioner, Ultrasound Department, Leeds Teaching Hospital NHS Trust, Leeds
- Dr W Stuart A Smellie,
 Consultant, Bishop Auckland General Hospital
- Professor Ian Roberts,
 Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine
- Professor Carol Tannahill,
 Glasgow Centre for Population Health
- Mrs Jean Thurston,
 Service User Representative
- Professor David Weller,
 Head, School of Clinical Science and Community Health, University of Edinburgh
- Mrs Una Rennard,
 Service User Representative

Observers

- Dr Tim Elliott,
 Team Leader, Cancer Screening, Department of Health
- Dr Catherine Moody,
 Programme Manager, Neuroscience and Mental Health Board
- Dr Ursula Wells,
 Principal Research Officer, Department of Health

Disease Prevention Panel

Chair,
Dr Edmund Jessop,
Medical Adviser, National Specialist Commissioning Advisory Group (NSCAG), Department of Health

Deputy Chair,
Professor Margaret Thorogood,
Professor of Epidemiology, University of Warwick Medical School, Coventry

- Dr Colin Greaves,
 Senior Research Fellow, Peninsular Medical School (Primary Care)
- Dr John Jackson,
 General Practitioner, Parkway Medical Centre, Newcastle upon Tyne
- Dr Russell Jago,
 Senior Lecturer in Exercise, Nutrition and Health, Centre for Sport, Exercise and Health, University of Bristol
- Dr Elizabeth Fellow-Smith,
 Medical Director, West London Mental Health Trust, Middlesex
- Dr Colin Greaves,
 Senior Research Fellow, Peninsular Medical School (Primary Care)
- Dr John Jackson,
 General Practitioner, Parkway Medical Centre, Newcastle upon Tyne
- Dr Russell Jago,
 Senior Lecturer in Exercise, Nutrition and Health, Centre for Sport, Exercise and Health, University of Bristol
- Dr Chris McCall,
 General Practitioner, The Hadleigh Practice, Corfe Mullen, Dorset
- Miss Nicky Mullany,
 Service User Representative
- Dr Julie Myttton,
 Locum Consultant in Public Health Medicine, Bristol Primary Care Trust
- Professor Irwin Nazareth,
 Professor of Primary Care and Director, Department of Primary Care and Population Sciences, University College London
- Professor Ian Roberts,
 Professor of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine
- Professor Carol Tannahill,
 Glasgow Centre for Population Health
- Mrs Jean Thurston,
 Service User Representative
- Professor David Weller,
 Head, School of Clinical Science and Community Health, University of Edinburgh

Observers

- Ms Christine McGuire,
 Research & Development, Department of Health
- Ms Kay Pattison,
 Senior NIHR Programme Manager, Department of Health
- Dr Caroline Stone,
 Programme Manager, Medical Research Council

Current and past membership details of all HTA programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
External Devices and Physical Therapies Panel

Members

Chair, Dr John Pounsford, Consultant Physician North Bristol NHS Trust, Bristol
Deputy Chair, Professor E Andrea Nelson, Reader in Wound Healing and Director of Research, University of Leeds, Leeds
Professor Bipin Bhakta, Charterhouse Professor in Rehabilitation Medicine, University of Leeds, Leeds
Mrs Penny Calder, Service User Representative
Professor Paul Carding, Professor of Voice Pathology, Newcastle Hospital NHS Trust, Newcastle
Dr Dawn Carnes, Senior Research Fellow, Barts and the London School of Medicine and Dentistry, London
Dr Emma Clark, Clinician Scientist Fellow & Cons. Rheumatologist, University of Bristol, Bristol
Mrs Anthea De Barton-Watson, Service User Representative
Professor Christopher Griffths, Professor of Primary Care, Barts and the London School of Medicine and Dentistry, London
Dr Shaheen Hamdy, Clinical Senior Lecturer and Consultant Physician, University of Manchester, Manchester

Observers

Dr Phillip Leech, Principal Medical Officer for Primary Care, Department of Health, London
Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health
Dr Morven Roberts, Clinical Trials Manager, MRC, London
Dr Ursula Wells, PRP, DH, London

Interventional Procedures Panel

Chair, Professor Jonathan Michaels, Consultant Surgeon & Honorary Clinical Lecturer, University of Sheffield
Mr David P Britt, Service User Representative, Cheshire
Mr Sankaran Chandra Sekharan, Consultant Surgeon, Colchester Hospital University NHS Foundation Trust
Professor Nicholas Clarke, Consultant Orthopaedic Surgeon, Southampton University Hospitals NHS Trust
Mr Seamus Eckford, Consultant in Obstetrics & Gynaecology, North Devon District Hospital
Professor David Taggart, Consultant Cardiothoracic Surgeon, John Radcliffe Hospital
Dr Matthew Hatton, Consultant in Clinical Oncology, Sheffield Teaching Hospital Foundation Trust
Dr John Holden, General Practitioner, Garswood Surgery, Wigan
Dr Peter Martin, Consultant Neurologist, Addenbrooke's Hospital, Cambridge
Dr Lorraine Pinnigton, Associate Professor in Rehabilitation, University of Nottingham, Nottingham
Dr Kate Radford, Division of Rehabilitation and Ageing, School of Community Health Sciences, University of Nottingham, Nottingham
Mr Jim Reece, Service User Representative
Professor Maria Stokes, Professor of Neuromusculoskeletal Rehabilitation, University of Southampton, Southampton

Members

Dr Nadim Malik, Consultant Cardiologist/ Honorary Lecturer, University of Manchester
Mr Hisham Mehanna, Consultant & Honorary Associate Professor, University Hospitals Coventry & Warwickshire NHS Trust
Dr Jane Montgomery, Consultant in Anaesthetics and Critical Care, South Devon Healthcare NHS Foundation Trust
Dr Simon Padley, Consultant Radiologist, Chelsea & Westminster Hospital
Dr Ashish Paul, Medical Director, Bedfordshire PCT
Dr Sarah Purnell, Consultant Senior Lecturer, University of Bristol
Mr Michael Thomas, Consultant Colorectal Surgeon, Bristol Royal Infirmary
Professor Yit Chiuin Yang, Consultant Ophthalmologist, Royal Wolverhampton Hospitals NHS Trust
Mrs Isabel Boyer, Service User Representative, London

© 2010 Queen’s Printer and Controller of HMSO. All rights reserved.
Psychological and Community Therapies Panel

Members

Chair, Professor Scott Weich, Professor in Child Health, University of Warwick	Dr Steve Cunningham, Director of Public Health, Bury Primary Care Trust	Ms Mary Nettle, Mental Health User Consultant, Gloucestershire
Professor Jane Barlow, Professor of Public Health in the Early Years, Health Sciences Research Institute, Warwick Medical School	Dr Anne Hesketh, Senior Clinical Lecturer in Speech and Language Therapy, University of Manchester	Professor John Potter, Professor of Ageing and Stroke Medicine, University of East Anglia
Dr Sabyasachi Bhakthim, Consultant Psychiatrist, Leicestershire Partnership NHS Trust	Dr Yann Lefeuvre, GP Partner, Burrag Road Surgery, London	Dr Greta Rait, Senior Clinical Lecturer and General Practitioner, University College London
Mrs Val Carfill, Service User Representative, Gloucestershire	Dr Jeremy J Murphy, Consultant Physician & Cardiologist, County Durham & Darlington Foundation Trust	Dr Paul Ramchandani, Senior Research Fellow/Cons. Child Psychiatrist, University of Oxford
	Mr John Needham, Service User, Buckinghamshire	

Observers

Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health	Dr Morven Roberts, Clinical Trials Manager, MRC, London	Professor Tom Walley, HTA Programme Director, Liverpool
		Dr Howard Ring, General Practitioner, Leeds, and Associate Director, NHS Clinical Governance Support Team, Leicester
		Dr Gillian Shepherd, Director, Health and Clinical Excellence, Merck Serono Ltd
		Mrs Katrina Simister, Assistant Director New Medicines, National Prescribing Centre, Liverpool
		Mr David Symes, Service User Representative

Pharmaceuticals Panel

Members

Chair, Professor Imti Choonara, Professor in Child Health, University of Nottingham	Dr Peter Elton, Director of Public Health, Bury Primary Care Trust	Dr Dyfrig Hughes, Reader in Pharmacoeconomics and Deputy Director, Centre for Economics and Policy in Health, IMSCaR, Bangor University
Professor Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham	Dr Ben Goldacre, Research Fellow, Division of Psychological Medicine and Psychiatry, King’s College London	Dr Yoon K Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia
Mrs Nicola Carey, Senior Research Fellow, School of Health and Social Care, The University of Reading	Dr Bill Gutteridge, Medical Adviser, London Strategic Health Authority	Professor Femi Oyebode, Consultant Psychiatrist and Head of Department, University of Birmingham
Mr John Chapman, Service User Representative		Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician and Gynaecologist, The Rosie Hospital, University of Cambridge

Observers

| Ms Kay Pattison, Senior NIHR Programme Manager, Department of Health | Dr Heike Weber, Programme Manager, Medical Research Council | Dr Ursula Wells, Principal Research Officer, Department of Health |
| | | Mr Simon Reeve, Head of Clinical and Cost-Efficiency, Medicines, Pharmacy and Industry Group, Department of Health |

Current and past membership details of all HTA programme ‘committees’ are available from the HTA website (www.hta.ac.uk)
Expert Advisory Network

Members

Professor Douglas Altman, Professor of Statistics in Medicine, Centre for Statistics in Medicine, University of Oxford

Professor John Bond, Professor of Social Gerontology & Health Services Research, University of Newcastle upon Tyne

Professor Andrew Bradbury, Professor of Vascular Surgery, Solihull Hospital, Birmingham

Mr Shaun Brogan, Chief Executive, Ridgeway Primary Care Group, Aylesbury

Mrs Stella Burnside OBE, Chief Executive, Regulation & Improvement Authority, Belfast

Ms Tracy Bury, Project Manager, World Infection, Public Health Authority, York

Professor Iain T Cameron, Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton

Dr Christine Clark, Medical Writer and Consultant Pharmacist, Rossendale

Professor Collette Clifford, Professor of Nursing and Head of Research, The Medical School, University of Birmingham

Professor Barry Cookson, Director, Laboratory of Hospital Infection, Public Health Laboratory Service, London

Dr Carl Counsell, Clinical Senior Lecturer in Neurology, University of Aberdeen

Professor Howard Cuckle, Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds

Dr Katherine Darton, Information Unit, MIND – The Mental Health Charity, London

Professor Carol Deazante, Professor of Paediatric Epidemiology, Institute of Child Health, London

Mr John Dunning, Consultant Cardiothoracic Surgeon, Papworth Hospital NHS Trust, Cambridge

Mr Jonathan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester

Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne

Professor Pam Endersby, Dean of Faculty of Medicine, Institute of General Practice and Primary Care, University of Sheffield

Professor Gene Federation, Professor of Primary Care Research & Development, Centre for Health Sciences, Barts and The London School of Medicine and Dentistry

Mr Leonard R Fenwick, Chief Executive, Freeman Hospital, Newcastle upon Tyne

Mrs Gillian Fletcher, Antenatal Teacher and Tutor and President, National Childbirth Trust, Henfield

Professor Jayne Franklyn, Professor of Medicine, University of Birmingham

Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London

Professor Fiona Gilbert, Consultant Radiologist and NCRN Member, University of Aberdeen

Professor Paul Gregg, Professor of Orthopaedic Surgical Science, South Tees Hospital NHS Trust

Bee Hanley, Co-director, TwoCan Associates, West Sussex

Dr Maryann L Hardy, Senior Lecturer, University of Bradford

Mrs Sharon Hart, Healthcare Management Consultant, Reading

Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester

Professor Richard Hobbs, Head of Department of Primary Care & General Practice, University of Birmingham

Professor Alan Horwich, Dean and Section Chairman, The Institute of Cancer Research, London

Professor Allen Hutchinson, Director of Public Health and Deputy Dean of StHARR, University of Sheffield

Professor Peter Jones, Professor of Psychiatry, University of Cambridge, Cambridge

Professor Stan Kave, Cancer Research UK Professor of Medical Oncology, Royal Marsden Hospital and Institute of Cancer Research, Surrey

Dr Duncan Keeley, General Practitioner (Dr Burch & Pimms), The Health Centre, Thame

Dr Donna Lamping, Research Degree Programme Director and Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London

Mr George Levy, Chief Executive, Motor Neurone Disease Association, Northampton

Professor James Lindsey, Professor of Psychiatry for the Elderly, University of Leicester

Professor Julian Little, Professor of Human Genome Epidemiology, University of Ottawa

Professor Alistair McGuire, Professor of Health Economics, London School of Economics

Professor Rajan Madhok, Medical Director and Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York

Professor Alexander Markham, Director, Molecular Medicine Unit, St James’s University Hospital, Leeds

Dr Peter Moore, Freelance Science Writer, Ashstead

Dr Andrew Mortimore, Public Health Director, Southampton City Primary Care Trust

Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton

Professor Miranda Mugford, Professor of Health Economics and Group Co-ordinator, University of East Anglia

Professor Jim Neilson, Head of School of Reproductive & Developmental Medicine and Professor of Obstetrics and Gynaecology, University of Liverpool

Mrs Julietta Patnick, National Co-ordinator, NHS Cancer Screening Programmes, Sheffield

Professor Robert Peveler, Professor of Liaison Psychiatry, Royal South Hants Hospital, Southampton

Professor Chris Price, Director of Clinical Research, Bayer Diagnostics Europe, Stoke Poges

Professor Willem Rosenberg, Professor of Hepatology and Consultant Physician, University of Southampton

Professor Peter Sandrock, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh

Dr Susan Schonfeld, Consultant in Public Health, Hillingdon Primary Care Trust, Middlesex

Dr Eamonn Sheridan, Consultant in Clinical Genetics, St James’s University Hospital, Leeds

Dr Margaret Somerville, Director of Public Health Learning, Peninsula Medical School, University of Plymouth

Professor Sarah Stewart-Brown, Professor of Public Health, Division of Health in the Community, University of Warwick, Coventry

Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick, Coventry

Mrs Joan Webster, Consumer Member, Southern Derbyshire Community Health Council

Professor Martin Whittle, Clinical Co-director, National Co-ordinating Centre for Women’s and Children’s Health, Lymington
Feedback

The HTA programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.