The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients

I Roberts,1* H Shakur,1 T Coats,2 B Hunt,3 E Balogun,1 L Barnetson,1 L Cook,1 T Kawahara,1 P Perel,1 D Prieto-Merino,1 M Ramos,1 J Cairns4 and C Guerriero4

1Clinical Trials Unit, London School of Hygiene and Tropical Medicine, London, UK
2Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
3Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London, UK
4Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK

*Corresponding author

Executive summary

A RCT and economic evaluation of the effects of tranexamic acid on death

Health Technology Assessment 2013; Vol. 17: No. 10
DOI: 10.3310/hta17100
NIHR Journals Library
Executive summary

Background

Each year, worldwide, about 3 million people die as a result of trauma, many after reaching hospital. Among trauma patients who do survive to reach hospital, bleeding is a common cause of death, accounting for about one-third of in-hospital deaths. The antifibrinolytic tranexamic acid (TXA) has been shown to reduce blood loss in surgical patients without apparently increasing the risk of postoperative complications. Surgery and trauma trigger similar haemostatic responses. If TXA reduces deaths due to bleeding in trauma patients, this would be an important discovery.

Objective

We sought to quantify the effects of early administration of TXA on death, vascular occlusive events and the receipt of blood transfusion in trauma patients.

Methods

The Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage-2 (CRASH-2) trial was a randomised controlled trial carried out in 274 hospitals in 40 countries. A total of 20,211 adult trauma patients with, or at risk of, significant bleeding were randomly assigned within 8 hours of injury to either TXA (loading dose 1 g over 10 minutes then infusion of 1 g over 8 hours) or matching placebo. Randomisation was balanced by centre, with an allocation sequence based on a block size of eight, generated with a computer random number generator. Both participants and study staff (site investigators and trial co-ordinating centre staff) were masked to treatment allocation. The primary outcome was death in hospital within 4 weeks of injury, and was described with the following categories: bleeding, vascular occlusion (myocardial infarction, stroke and pulmonary embolism), multiorgan failure, head injury and other. All analyses were by intention to treat.

Results

A total of 10,096 patients were allocated to TXA and 10,115 to placebo, of whom 10,060 and 10,067 patients, respectively, were analysed. All-cause mortality was significantly reduced with TXA [1463 patients (14.5%) in the TXA group vs 1613 patients (16.0%) in the placebo group; relative risk (RR) 0.91; 95% confidence interval (CI) 0.85 to 0.97; p = 0.0035]. The risk of death due to bleeding was significantly reduced [489 patients (4.9%) died in the TXA group vs 574 patients (5.7%) in the placebo group; RR 0.85; 95% CI 0.76 to 0.96; p = 0.0077]. We recorded strong evidence that the effect of TXA on death due to bleeding varied according to the time from injury to treatment (test for interaction p < 0.0001). Early treatment (≤1 hour from injury) significantly reduced the risk of death due to bleeding [198 out of 3747 (5.3%) patients died in the TXA group vs 286 out of 3704 patients (7.7%) in the placebo group; RR 0.68; 95% CI 0.57 to 0.82; p < 0.0001]. Treatment given between 1 and 3 hours also reduced the risk of death due to bleeding [147 out of 3037 patients (4.8%) died in the TXA group vs 184 out of 2996 patients (6.1%) in the placebo group; RR 0.79; 95% CI 0.64 to 0.97; p = 0.03]. Treatment given after 3 hours seemed to increase the risk of death due to bleeding [144 out of 3272 patients (4.4%) died in the TXA group vs 103 out of 3362 patients (3.1%) in the placebo group; RR 1.44; 95% CI 1.12 to 1.84; p = 0.004]. We recorded no evidence that the effect of TXA on death due to bleeding varied by systolic blood pressure, Glasgow Coma Scale score or type of injury.
The cost-effectiveness of the early administration of TXA was evaluated in high-, middle- and low-income settings. Administering TXA to bleeding trauma patients within 3 hours of injury saved an estimated 372, 315 and 755 life-years (LYs) per 1000 trauma patients in Tanzania, India and the UK, respectively. The cost of giving TXA to 1000 patients was (in international dollars) $17,483 in Tanzania, $19,550 in India and $30,830 in the UK. The incremental cost of giving TXA compared with not giving TXA was $18,025 in Tanzania, $20,670 in India and $48,002 in the UK. The estimated incremental cost per LY gained of administering TXA is $48, $66 and $64 in Tanzania, India and the UK, respectively.

Conclusions

Tranexamic acid safely reduced the risk of death in bleeding trauma patients in this study. TXA appears most effective when given early after the trauma and should be given only within approximately 3 hours. Treatment beyond 3 hours of injury is unlikely to be effective. TXA administration is highly cost-effective in high-, middle- and low-income countries. Future work [the Clinical Randomisation of an Antifibrinolytic in Significant Head injury-3 (CRASH-3) trial] will evaluate the effectiveness and safety of TXA in the treatments of isolated traumatic brain injury (http://crash3.lshtm.ac.uk/).

Trial registration

This trial is registered as ISRCTN86750102, ClinicalTrials.gov NCT00375258 and South African Clinical Trial Register DOH-27–0607–1919.

Funding

Funding for this study was provided by the Bupa Foundation, the J P Moulton Charitable Foundation and the Health Technology Assessment programme of the National Institute for Health Research.

Publication

Health Technology Assessment

ISSN 1366-5278 (Print)
ISSN 2046-4924 (Online)

Five-year impact factor: 5.596

Health Technology Assessment is indexed in MEDLINE, CINAHL, EMBASE, The Cochrane Library and the ISI Science Citation Index and is assessed for inclusion in the Database of Abstracts of Reviews of Effects.

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (http://www.publicationethics.org/).

Editorial contact: nihredit@southampton.ac.uk

The full HTA archive is freely available to view online at http://www.hta.ac.uk/project/htapubs.asp. Print copies can be purchased from the individual report pages.

Criteria for inclusion in the Health Technology Assessment journal

Reports are published in Health Technology Assessment (HTA) if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

The HTA programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA programme findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

For more information about the HTA programme please visit the website: http://www.hta.ac.uk/

This report

The research reported in this issue of the journal was funded by the HTA programme as project number 06/303/20. The contractual start date was in April 2007. The draft report began editorial review in January 2012 and was accepted for publication in August 2012. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

This report presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health.

© Queen’s Printer and Controller of HMSO 2013. This work was produced by Roberts et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Published by the NIHR Journals Library, produced by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk).
Editor-in-Chief of *Health Technology Assessment and NIHR Journals Library*

Professor Tom Walley Director, NIHR Evaluation, Trials and Studies and Director of the HTA Programme, UK

NIHR Journals Library Editors

Dr Andree Le May Chair of NIHR Journals Library Editorial Group

Professor Ken Stein Chair of HTA Editorial Board and Professor of Public Health, University of Exeter Medical School, UK

Dr Martin Ashton-Key Consultant in Public Health Medicine/Consultant Advisor, NETSCC, UK

Professor Matthias Beck Chair in Public Sector Management and Subject Leader (Management Group), Queen’s University Management School, Queen’s University Belfast, UK

Professor Aileen Clarke Professor of Health Sciences, Warwick Medical School, University of Warwick, UK

Dr Tessa Crilly Director, Crystal Blue Consulting Ltd, UK

Dr Peter Davidson Director of NETSCC, HTA, UK

Ms Tara Lamont Scientific Advisor, NETSCC, UK

Dr Tom Marshall Reader in Primary Care, School of Health and Population Sciences, University of Birmingham, UK

Professor William McGuire Professor of Child Health, Hull York Medical School, University of York, UK

Professor Geoffrey Meads Honorary Professor, Business School, Winchester University and Medical School, University of Warwick, UK

Professor Jane Norman Professor of Maternal and Fetal Health, University of Edinburgh, UK

Professor John Powell Senior Clinical Researcher, Department of Primary Care, University of Oxford, UK

Professor James Raftery Professor of Health Technology Assessment, Wessex Institute, Faculty of Medicine, University of Southampton, UK

Dr Rob Riemsma Reviews Manager, Kleijnen Systematic Reviews Ltd, UK

Professor Helen Roberts Professorial Research Associate, University College London, UK

Professor Helen Snooks Professor of Health Services Research, Institute of Life Science, College of Medicine, Swansea University, UK

Editorial contact: nihredit@southampton.ac.uk