HEALTH TECHNOLOGY ASSESSMENT

VOLUME 19 ISSUE 57 JULY 2015 ISSN 1366-5278

A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS)

Fay Crawford, Genevieve Cezard, Francesca M Chappell, Gordon D Murray, Jacqueline F Price, Aziz Sheikh, Colin R Simpson, Gerard P Stansby and Matthew J Young

A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS)

Fay Crawford,^{1*} Genevieve Cezard,² Francesca M Chappell,² Gordon D Murray,² Jacqueline F Price,² Aziz Sheikh,² Colin R Simpson,² Gerard P Stansby¹ and Matthew J Young³

¹Department of Vascular Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK ²Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK

³Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK

*Corresponding author

Declared competing interests of authors: none

Published July 2015 DOI: 10.3310/hta19570

This report should be referenced as follows:

Crawford F, Cezard G, Chappell FM, Murray GD, Price JF, Sheikh A, *et al.* A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS). *Health Technol Assess* 2015;**19**(57).

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/ Clinical Medicine.

Health Technology Assessment

ISSN 1366-5278 (Print)

ISSN 2046-4924 (Online)

Impact factor: 5.116

Health Technology Assessment is indexed in MEDLINE, CINAHL, EMBASE, The Cochrane Library and the ISI Science Citation Index.

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (www.publicationethics.org/).

Editorial contact: nihredit@southampton.ac.uk

The full HTA archive is freely available to view online at www.journalslibrary.nihr.ac.uk/hta. Print-on-demand copies can be purchased from the report pages of the NIHR Journals Library website: www.journalslibrary.nihr.ac.uk

Criteria for inclusion in the Health Technology Assessment journal

Reports are published in *Health Technology Assessment* (HTA) if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

The HTA programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The journal is indexed in NHS Evidence via its abstracts included in MEDLINE and its Technology Assessment Reports inform National Institute for Health and Care Excellence (NICE) guidance. HTA research is also an important source of evidence for National Screening Committee (NSC) policy decisions.

For more information about the HTA programme please visit the website: http://www.nets.nihr.ac.uk/programmes/hta

This report

The research reported in this issue of the journal was funded by the HTA programme as project number 10/57/08. The contractual start date was in February 2012. The draft report began editorial review in June 2014 and was accepted for publication in November 2014. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

This report presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health.

© Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Published by the NIHR Journals Library (www.journalslibrary.nihr.ac.uk), produced by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk).

Editor-in-Chief of *Health Technology Assessment* and NIHR Journals Library

Professor Tom Walley Director, NIHR Evaluation, Trials and Studies and Director of the HTA Programme, UK

NIHR Journals Library Editors

Professor Ken Stein Chair of HTA Editorial Board and Professor of Public Health, University of Exeter Medical School, UK

Professor Andree Le May Chair of NIHR Journals Library Editorial Group (EME, HS&DR, PGfAR, PHR journals)

Dr Martin Ashton-Key Consultant in Public Health Medicine/Consultant Advisor, NETSCC, UK

Professor Matthias Beck Chair in Public Sector Management and Subject Leader (Management Group), Queen's University Management School, Queen's University Belfast, UK

Professor Aileen Clarke Professor of Public Health and Health Services Research, Warwick Medical School, University of Warwick, UK

Dr Tessa Crilly Director, Crystal Blue Consulting Ltd, UK

Dr Peter Davidson Director of NETSCC, HTA, UK

Ms Tara Lamont Scientific Advisor, NETSCC, UK

Professor Elaine McColl Director, Newcastle Clinical Trials Unit, Institute of Health and Society, Newcastle University, UK

Professor William McGuire Professor of Child Health, Hull York Medical School, University of York, UK

Professor Geoffrey Meads Professor of Health Sciences Research, Faculty of Education, University of Winchester, UK

Professor John Norrie Health Services Research Unit, University of Aberdeen, UK

Professor John Powell Consultant Clinical Adviser, National Institute for Health and Care Excellence (NICE), UK

Professor James Raftery Professor of Health Technology Assessment, Wessex Institute, Faculty of Medicine, University of Southampton, UK

Dr Rob Riemsma Reviews Manager, Kleijnen Systematic Reviews Ltd, UK

Professor Helen Roberts Professor of Child Health Research, UCL Institute of Child Health, UK

Professor Helen Snooks Professor of Health Services Research, Institute of Life Science, College of Medicine, Swansea University, UK

Professor Jim Thornton Professor of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Nottingham, UK

Please visit the website for a list of members of the NIHR Journals Library Board: www.journalslibrary.nihr.ac.uk/about/editors

Editorial contact: nihredit@southampton.ac.uk

Abstract

A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS)

Fay Crawford,^{1*} Genevieve Cezard,² Francesca M Chappell,² Gordon D Murray,² Jacqueline F Price,² Aziz Sheikh,² Colin R Simpson,² Gerard P Stansby¹ and Matthew J Young³

¹Department of Vascular Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK ²Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK

³Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK

*Corresponding author fay.crawford@ed.ac.uk

Background: Annual foot risk assessment of people with diabetes is recommended in national and international clinical guidelines. At present, these are consensus based and use only a proportion of the available evidence.

Objectives: We undertook a systematic review of individual patient data (IPD) to identify the most highly prognostic factors for foot ulceration (i.e. symptoms, signs, diagnostic tests) in people with diabetes.

Data sources: Studies were identified from searches of MEDLINE and EMBASE.

Review methods: The electronic search strategies for MEDLINE and EMBASE databases created during an aggregate systematic review of predictive factors for foot ulceration in diabetes were updated and rerun to January 2013. One reviewer applied the IPD review eligibility criteria to the full-text articles of the studies identified in our literature search and also to all studies excluded from our aggregate systematic review to ensure that we did not miss eligible IPD. A second reviewer applied the eligibility criteria to a 10% random sample of the abstract search yield to check that no relevant material was missed. This review includes exposure variables (risk factors) only from individuals who were free of foot ulceration at the time of study entry and who had a diagnosis of diabetes mellitus (either type 1 or type 2). The outcome variable was incident ulceration.

Results: Our search identified 16 cohort studies and we obtained anonymised IPD for 10. These data were collected from more than 16,000 people with diabetes worldwide and reanalysed by us. One data set was kept for independent validation. The data sets contributing IPD covered a range of temporal, geographical and clinical settings. We therefore selected random-effects meta-analysis, which assumes not that all the estimates from each study are estimates of the same underlying true value, but rather that the estimates belong to the same distribution. We selected candidate variables for meta-analysis using specific criteria.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

After univariate meta-analyses, the most clinically important predictors were identified by an international steering committee for inclusion in the primary, multivariable meta-analysis. Age, sex, duration of diabetes, monofilaments and pulses were considered most prognostically important. Meta-analyses based on data from the entire IPD population found that an inability to feel a 10-g monofilament [odds ratio (OR) 3.184, 95% confidence interval (CI) 2.654 to 3.82], at least one absent pedal pulse (OR 1.968, 95% CI 1.624 to 2.386), a longer duration of a diagnosis of diabetes (OR 1.024, 95% CI 1.011 to 1.036) and a previous history of ulceration (OR 6.589, 95% CI 2.488 to 17.45) were all predictive of risk. Female sex was protective (OR 0.743, 95% CI 0.598 to 0.922).

Limitations: It was not possible to perform a meta-analysis using a one-step approach because we were unable to procure copies of one of the data sets and instead accessed data via Safe Haven.

Conclusions: The findings from this review identify risk assessment procedures that can reliably inform national and international diabetes clinical guideline foot risk assessment procedures. The evidence from a large sample of patients in worldwide settings show that the use of a 10-g monofilament or one absent pedal pulse will identify those at moderate or intermediate risk of foot ulceration, and a history of foot ulcers or lower-extremity amputation is sufficient to identify those at high risk. We propose the development of a clinical prediction rule (CPR) from our existing model using the following predictor variables: insensitivity to a 10-g monofilament, absent pedal pulses and a history of ulceration or lower-extremities amputations. This CPR could replace the many tests, signs and symptoms that patients currently have measured using equipment that is either costly or difficult to use.

Study registration: This study is registered as PROSPERO CRD42011001841.

Funding: The National Institute for Health Research Health Technology Assessment programme.

Contents

List of tables	xi
List of figures	xiii
List of abbreviations	xix
Plain English summary	ххі
Scientific summary	ххііі
Chapter 1 Background	1
Chapter 2 Hypotheses Review questions	3 3
Research objectives	3
Chapter 3 Methods Ethics and governance Obtaining data Review Committee structure Identifying studies <i>Electronic search strategy</i> Selection criteria <i>Eligibility criteria</i> <i>Risk of bias</i> Plan for analysis and handling missing data Method of meta-analysis: one-step versus two-step methods Method of meta-analysis: random versus fixed-effects meta-analysis Assessment and handling of heterogeneity Handling of ordinarily missing data Handling of systematically missing data Choice of predictors Choice of effect size	5 6 7 7 7 7 7 7 8 8 8 8 9 9 10 10 10 11
Chapter 4 Development of the model	13
Chapter 5 Validation of the model	17
Chapter 6 Results of the systematic review	19
Chapter 7 Characteristics of included studies Derivation cohort studies Validation cohort studies	21 21 25
Chapter 8 Risk of bias	27

Chapter 9 Data cleaning and pattern of missingness	29
Data preparation	29
Inclusion and exclusion criteria	29
Rules for data cleaning	29
Pattern of missingness	31
Chapter 10 Patients with diabetes: description	37
Demographics, anthropometrics and lifestyle	37
Diabetes and comorbidities	38
Foot measurements by study	39
Chapter 11 Common variables	41
Chapter 12 Univariate meta-analysis of the data sets: suitability of studies for meta-analysis	45
Chapter 13 Multivariable meta-analysis: the final model	47
The independent contribution of tests, symptoms and signs to the prediction of foot	47
ulceration risk assessment procedures in people with no history of ulceration or	40
The independent contribution of tests, symptoms and signs in the total individual nations	49
data population	54
Imputation analysis: final model	60
Validation of the primary meta-analysis	62
Chapter 14 Secondary analyses	65
What is the value of other commonly used tests not included in the models, particularly	
tests that permit patients to influence outcome?	65
Vibration perception threshold	65
Glycohaemoglobin or glycated haemoglobin	66
Monofilaments plus or minus absent pulses	68
Does the failure to feel a 10-g monofilament test plus absent pedal pulses identify	
those at risk of foot ulceration better than the monofilament test alone?	68
Predictiveness of UK national and International Working group on the Diabetic Foot	
guidelines for foot ulceration in diabetes	72
Meta-analyses of the prognostic utility of the SCI-Diabetes foot risk stratification tool	75
Scottish Intercollegiate Guideline Network 116: management of diabetic foot disease	
traffic light system	//
The National Institute for Health and Care Excellence CGTU guidelines and the Quality	70
Dishetic feet rick classification overall distribution in individual nations data dishetic feet	/0
	78
Foot ulcer and the diabetic foot risk stratification by study	79
Meta-analyses of the predictive value of the clinical guideline recommendations from	15
NICE CG10 and the Quality and Outcomes Framework	80
International Working Group on the Diabetic Foot: the international diabetes federation	83
The International Working Group on the Diabetic Foot guidelines	83
International Working Group on the Diabetic Foot diabetic foot risk categories overall	
distribution in individual patient data diabetic foot ulceration	84
Foot ulcer and diabetic foot risk categories by study	84
Meta-analyses of the predictive value of the clinical guideline recommendations from the	
International Working Group on the Diabetic Foot	88

Chapter 15 Discussion	91
Chapter 16 Conclusions Strengths and limitations of the results Generalisability of the findings Implications for clinical practice Implications for research	93 93 93 93 94
Acknowledgements	95
References	97
Appendix 1 Committee structure	103
Appendix 2 Data confidentiality agreement	105
Appendix 3 EMBASE and MEDLINE searches	107
Appendix 4 Data extraction and quality assessment checklist	109
Appendix 5 Risk of bias	111
Appendix 6 Demographic, anthropometric and lifestyle profile of the diabetic population by study	113
Appendix 7 Diabetes and comorbidities by study	115
Appendix 8 Foot measurements by study	117
Appendix 9 Full data variable dictionary	119
Appendix 10 Univariate forest plots	153
Appendix 11 Multivariable models	169
Appendix 12 Area under the curve and Brier scores	207
Appendix 13 Scottish Clinical Information: diabetes foot risk stratification and triage traffic light grading system	209

List of tables

TABLE 1 Characteristics of included studies	22
TABLE 2 Exclusion and number of patients for data analysis by study	30
TABLE 3 Numbers and percentages of missing data per variables and by study	32
TABLE 4 Common variables by study	42
TABLE 5 Results of the primary meta-analyses for patients without history ofulceration or amputation	47
TABLE 6 Results of the primary meta-analyses for all patients	47
TABLE 7 Monofilament results for all models	60
TABLE 8 Missing data patterns for final model variables by study	61
TABLE 9 Difference in estimates (ORs) between the final model with multipleimputation and the 'complete case' final model	62
TABLE 10 Comparison of results from the primary meta-analysis and validationdata set for patients with no history of ulceration or amputation	63
TABLE 11 Comparison of results from the primary meta-analysis and validationdata set for all patients regardless of history of ulceration or amputation	63
TABLE 12 Area under the ROC curve for models 2 and 4	72
TABLE 13 Diabetic foot risk categories by IPD-DFU studies	73
TABLE 14 Diabetic foot risk categories by IPD–DFU studies for those with noprevious ulcer or amputation	73
TABLE 15 Diabetic foot risk categories in the total population	74
TABLE 16 Diabetic foot risk categories for those with no previous ulceror amputation	74
TABLE 17 Diabetic foot risk categories and number of foot ulcers by study forthe whole population	74
TABLE 18 Diabetic foot risk categories and number of foot ulcers by study forthose with no history of ulcer or amputation	74
TABLE 19 Diabetic foot risk categories stated in the SIGN 116 traffic light systemfor patients in five studies	78
TABLE 20 Diabetic foot risk categories by IPD–DFU studies: total population	78

TABLE 21 Diabetic foot risk categories by IPD-DFU studies for those with nohistory of ulcer or amputation	79
TABLE 22 Diabetic foot risk categories for patients who developed a foot ulcer:total population	79
TABLE 23 Diabetic foot risk categories by whether a patient developed a footulcer for those with no history of ulcer or amputation	79
TABLE 24 Diabetic foot risk categories and number of foot ulcers by study	80
TABLE 25 Diabetic foot risk categories and number of foot ulcers by study for those with no history of ulcer or amputation	80
TABLE 26 Sensory loss	83
TABLE 27 History and examination	83
TABLE 28 Diabetic foot risk categories by IPD–DFU studies	85
TABLE 29 Diabetic foot risk categories by IPD–DFU studies for those with no previous ulcer or amputation	85
TABLE 30 Diabetic foot risk categories by whether or not a patient developed afoot ulcer (applied to seven IPD-DFU studies)	86
TABLE 31 Diabetic foot risk categories by whether or not a patient developed a foot ulcer for those with no previous ulcer or amputation (applied to seven IPD–DFU studies)	86
TABLE 32 Diabetic foot risk categories and number of foot ulcers by study	87
TABLE 33 Diabetic foot risk categories and number of foot ulcers by studyfor those with no previous ulcer or amputation	87
TABLE 34 Data extraction (study characteristics)	109
TABLE 35 Quality assessment (risk of bias)	110
TABLE 36 Risk of bias table	111
TABLE 37 Demographic, anthropometric and lifestyle profile of the diabetic population by study	114
TABLE 38 Diabetes and comorbidities by study	116
TABLE 39 Foot measurements by study	118
TABLE 40 Total population	207
TABLE 41 Population minus patients without a history of ulceration or LEAs	207

List of figures

FIGURE 1 Flow diagram: stages of an individual patient-based meta-analysis	5
FIGURE 2 Flow diagram of studies in the IPD systematic review, showing the studies included in the review and meta-analysis	19
FIGURE 3 Distribution of age per study	37
FIGURE 4 Distribution of BMI per study	38
FIGURE 5 Distribution of diabetes duration per study	39
FIGURE 6 Flow diagram of patients in the IPD meta-analysis	48
FIGURE 7 Pooled estimates for age in people with no history of ulceration or amputation (model adjusted for sex, duration of diabetes, inability to feel a 10-g monofilament and absent pedal pulses)	49
FIGURE 8 Pooled estimates for an increase of 1 year's duration of diabetes in people with no history of ulceration or amputation (model adjusted for age, sex, inability to feel a 10-g monofilament and absent pedal pulses)	50
FIGURE 9 Pooled estimates for the inability to feel a 10-g monofilament in people with no history of ulceration or amputation (model adjusted for age, sex, duration of diabetes and absent pedal pulse)	51
FIGURE 10 Pooled estimates of one absent pedal pulse in people with no history of ulceration or amputation (model adjusted for age, sex, duration of diabetes and inability to feel a 10-g monofilament)	52
FIGURE 11 Pooled estimates of sex in people with no history of ulceration or amputation (model adjusted for age, duration of diabetes, inability to feel a 10-g monofilament and absent pedal pulses)	53
FIGURE 12 Pooled estimates for age in the total IPD population (model adjusted for sex, duration of diabetes, inability to feel a 10-g monofilament, absent pedal pulses and previous history of foot ulceration or amputation)	54
FIGURE 13 Pooled estimates for an increase of 1 year's duration of diabetes in the total IPD population (model adjusted for age, sex, inability to feel a 10-g monofilament, absent pedal pulses and previous history of foot ulceration or amputation)	55
FIGURE 14 Pooled estimates for the inability to feel a 10-g monofilament in the total IPD population (model adjusted for age, sex, duration of diabetes, absent pedal pulses and previous history of foot ulceration or amputation)	56

FIGURE 15 Forest plot showing pooled estimates for one absent pedal pulses in the total IPD population (model adjusted for age, sex, duration of diabetes, inability to feel a 10-g monofilament and previous history of foot ulceration or amputation)	57
FIGURE 16 Pooled estimates for sex in the total IPD population (model adjusted for age, duration of diabetes, inability to feel a 10-g monofilament, absent pedal pulses and previous history of foot ulceration or amputation)	58
FIGURE 17 Pooled estimates for previous history of LEA in the total IPD population	59
FIGURE 18 Predictiveness of VPT in all patients	65
FIGURE 19 Predictiveness of VPT in 7370 people with no history of ulceration or amputation	66
FIGURE 20 Predictiveness of a 1% increase in HbA _{1c} in all patients	67
FIGURE 21 Predictiveness of a 1% increase in HbA_{1c} in 4595 people with no history of ulceration or amputation	67
FIGURE 22 Receiver operating characteristic curves for models 2 and 4 when applied to the Abbott <i>et al.</i> data set in patients without previous history of ulceration or amputation	69
FIGURE 23 Receiver operating characteristic curves for models 2 and 4 when applied to the Crawford <i>et al.</i> data set	70
FIGURE 24 Receiver operating characteristic curves for models 2 and 4 when applied to the Monteiro-Soares and Dinis-Ribeiro data set in patients without previous history of ulceration or amputation	70
FIGURE 25 Receiver operating characteristic curves for models 2 and 4 when applied to the Pham <i>et al.</i> data set in patients without previous history of ulceration or amputation	71
FIGURE 26 Receiver operating characteristic curves for models 2 and 4 when applied to the Leese <i>et al.</i> data set in patients without previous history of ulceration or amputation	71
FIGURE 27 Scottish Clinical Information – Diabetes foot risk algorithm	72
FIGURE 28 Forest plot with ORs of the new foot ulcer predicted by the SCI-Diabetes foot risk categories (high vs. moderate + low)	75
FIGURE 29 Forest plot with ORs of the new foot ulcer predicted by the diabetic foot risk categories (moderate vs. low)	76
FIGURE 30 Forest plot with ORs of the new foot ulcer (with no previous ulcer or amputation) predicted by the diabetic foot risk categories (high vs. moderate + low)	76
FIGURE 31 Forest plot with ORs of the new foot ulcer (with no previous ulcer or amputation) predicted by the diabetic foot risk categories (moderate vs. low)	77

FIGURE 32 Pooled estimate of new foot ulcer predicted by the NICE (QOF) diabetic foot risk categories (high vs. increased + low)	81
FIGURE 33 Pooled estimate of new foot ulcer predicted by the NICE (QOF) diabetic foot risk categories (increased vs. low)	81
FIGURE 34 Pooled estimate of new foot ulcer in people with no history of ulceration or amputation predicted by the NICE (QOF) diabetic foot risk categories (high vs. increased + low)	82
FIGURE 35 Pooled estimate of new foot ulcer in people with no history of ulceration or amputation predicted by the NICE (QOF) diabetic foot risk categories (increased vs. low)	82
FIGURE 36 Pooled estimate of new foot ulcer predicted by the IWGDF diabetic foot risk categories (high vs. medium + low)	88
FIGURE 37 Pooled estimates of new foot ulcer predicted by the IWGDF diabetic foot risk categories (medium vs. low)	89
FIGURE 38 Pooled estimates of new foot ulcer in people with no history of ulceration or amputation by the IWGDF diabetic foot risk categories (high vs. medium + low)	89
FIGURE 39 Pooled estimates of new foot ulcer in people with no history of ulceration or amputation predicted by the IWGDF diabetic foot risk categories (medium vs. low)	90
FIGURE 40 Model 1. New ulcer OR predicted by age	153
FIGURE 41 Model 2. New ulcer OR predicted by sex (women vs. men)	154
FIGURE 42 Model 3. New ulcer OR predicted by weight	154
FIGURE 43 Model 4. New ulcer OR predicted by height	155
FIGURE 44 Model 5. New ulcer OR predicted by BMI	155
FIGURE 45 Model 6. New ulcer OR predicted by living alone (yes/no)	156
FIGURE 46 Model 7. New ulcer OR predicted by smoking (yes/no)	156
FIGURE 47 Model 8. New ulcer OR predicted by number of cigarettes per day	157
FIGURE 48 Model 9. New ulcer OR predicted by alcohol (yes/no)	157
FIGURE 49 Model 10. New ulcer OR predicted by alcohol units per week	158
FIGURE 50 Model 11. New ulcer OR predicted by HbA _{1c}	158
FIGURE 51 Model 12. New ulcer OR predicted by insulin treatment (yes/no)	159
FIGURE 52 Model 13. New ulcer OR predicted by diabetes duration	159

FIGURE 53 Model 14. New ulcer OR predicted by eye problem (yes/no)	160
FIGURE 54 Model 15. New ulcer OR predicted by retinopathy (yes/no)	160
FIGURE 55 Model 16. New ulcer OR predicted by kidney problems (yes/no)	161
FIGURE 56 Model 17. New ulcer OR predicted by any abnormal monofilament	161
FIGURE 57 Model 18. New ulcer OR predicted by any abnormal pulses	162
FIGURE 58 Model 19. New ulcer OR predicted by any abnormal pinprick	162
FIGURE 59 Model 20. New ulcer OR predicted by any abnormal VPT	163
FIGURE 60 Model 21. New ulcer OR predicted by no ankle reflex	163
FIGURE 61 Model 22. New ulcer OR predicted by no temperature sensation	164
FIGURE 62 Model 23. New ulcer OR predicted by any abnormal ABI	164
FIGURE 63 Model 24. New ulcer OR predicted by any abnormal PPP	165
FIGURE 64 Model 25. New ulcer OR predicted by any foot deformity	165
FIGURE 65 Model 26. New ulcer OR predicted by prior ulcer	166
FIGURE 66 Model 27. New ulcer OR predicted by prior amputation	166
FIGURE 67 Model 28. New ulcer OR predicted by prior history of ulcer or amputation	167
FIGURE 68 Model 1. Age first ulcer	169
FIGURE 69 Model 1. Age new ulcer	170
FIGURE 70 Model 1. Duration first ulcer	171
FIGURE 71 Model 1. Duration new ulcer	172
FIGURE 72 Model 1. History of ulceration	173
FIGURE 73 Model 1. Sex first ulcer	174
FIGURE 74 Model 1. Sex new ulcer	175
FIGURE 75 Model 2. ABI first ulcer	176
FIGURE 76 Model 2. ABI new ulcer	177
FIGURE 77 Model 2. Duration first ulcer	178
FIGURE 78 Model 2. Duration new ulcer	179
FIGURE 79 Model 2. Monofilaments first ulcer	180

FIGURE 80 Model 2. Monofilaments new ulcer	181
FIGURE 81 Model 2. History of ulceration and LEA	182
FIGURE 82 Model 2. Sex first ulcer	183
FIGURE 83 Model 2. Sex new ulcer	184
FIGURE 84 Model 3. Age first ulcer	185
FIGURE 85 Model 3. Age new ulcer	186
FIGURE 86 Model 3. Duration first ulcer	187
FIGURE 87 Model 3. Duration new ulcer	188
FIGURE 88 Model 3. Insulin first ulcer	189
FIGURE 89 Model 3. Insulin new ulcer	190
FIGURE 90 Model 3. Monofilaments first ulcer	191
FIGURE 91 Model 3. Monofilaments new ulcer	192
FIGURE 92 Model 3. Previous history of ulceration and amputation	193
FIGURE 93 Model 3. Sex first ulcer	194
FIGURE 94 Model 3. Sex new ulcer	195
FIGURE 95 Model 5. Age first ulcer	196
FIGURE 96 Model 5. Age new ulcer	197
FIGURE 97 Model 5. Duration first ulcer	198
FIGURE 98 Model 5. Duration new ulcer	199
FIGURE 99 Model 5. Kidney function first ulcer	200
FIGURE 100 Model 5. Kidney function new ulcer	201
FIGURE 101 Model 5. Monofilament first ulcer	202
FIGURE 102 Model 5. Monofilament new ulcer	203
FIGURE 103 Model 5. Previous history	204
FIGURE 104 Model 5. Sex first ulcer	205
FIGURE 105 Model 5. Sex new ulcer	206

List of abbreviations

ABI	ankle–brachial index	MAR	missing at random
AUC	area under the curve	MICE	multiple imputation using chained
BMI	body mass index		equations
CI	confidence interval	NICE	National Institute for Health and Care Excellence
CKD	chronic kidney disease	OR	odds ratio
CPR	clinical prediction rule	РСТ	primary care trust
DFU	diabetic foot ulceration	PPP	peak plantar pressure
eGFR	estimated glomerular filtration rate	OOF	Ouality and Outcomes Framework
GFR	glomerular filtration rate	RCT	randomised controlled trial
GMC	General Medical Contract	ROC	receiver operating characteristic
GP	general practitioner	sas	Statistical Analysis System
HbA_{1c}	glycated haemoglobin	SCL Diabotos	Scottish Clinical Information
IPD	individual patient data	JCI-Diabetes	Diabetes foot risk stratification tool
IWGDF	International Working Group on the Diabetic Foot	SIGN	Scottish Intercollegiate Guidelines Network
LEA	lower-extremity amputation	VPT	vibration perception threshold

Plain English summary

A nnual foot risk assessment of people with diabetes is recommended in national and international Aclinical guidelines. At present, these assessments are based on opinion and agreements among health-care professionals and are not based on all available data. We sought to review all available data using individual patient data to find out which risk factors most reliably identified people with diabetes who are at risk of foot ulceration.

We searched electronic databases for published studies and sought depersonalised data from the researchers of previous studies, and obtained copies of data from individual patients. These data were collected from more than 16,000 people with diabetes worldwide and reanalysed by us.

The analyses show that a simple-to-use and cheap test, the 10-g monofilament test, most consistently identifies those people with diabetes who are at risk of foot ulceration, regardless of if they are at low, moderate or high risk of ulceration. Foot pulses are also cheap, easy to do and predictive, although less consistently so. Diabetes foot risk assessments are more likely to be completed in clinical practice if they are easy to do. These findings could inform UK and international guidelines to ensure that people with diabetes receive cost-effective foot health care as part of their annual health assessment.

Scientific summary

Background

Clinical and cost-effective health care requires the careful measurement of health outcomes, and the need for an evidence-based approach to foot care services for people with diabetes is well documented. The optimal clinical management of people with diabetes includes annual foot risk assessment. This is recommended in national and international clinical guidelines such as the Quality and Outcomes Framework (QOF) of the General Medical Contract in the UK. At present, the guidelines are mostly consensus based and use only a proportion of the available evidence.

The authors of two systematic reviews found marked variation in the incidence of foot ulcers across different study populations. Independent risk factors and prediction rules derived from high-risk populations might perform differently in the general diabetic (low-risk) population. Also of concern is the fact that the accuracy of some recommended risk factors has not been fully explored in different groups of people with diabetes, and there have been few attempts to validate the statistical models of risk factors from derivation cohort studies.

The purpose of this systematic review and meta-analysis of individual patient data (IPD) was to contribute to the evidence base for the risk assessment for foot ulcers in people with diabetes. It is based on data from more than 16,000 patients worldwide. Given the increased worldwide prevalence in diabetes, the identification of the most predictive risk factors could lead to reduced costs for health-care providers and patients.

Meta-analyses based on the literature estimates – aggregate data – do not permit adjustments for covariates to be performed. The only practicable way to analyse data from several cohort studies with the same adjustments is to use IPD.

Objectives

Our review focused on the following research questions:

- 1. What are the most highly prognostic factors for foot ulceration (i.e. symptoms, signs, diagnostic tests) in people with diabetes?
- 2. Can the data from each study be adjusted for the same covariates?
- 3. Does the model accuracy change when patient populations are stratified according to demographic and/or clinical characteristics?
- 4. How predictive are the risk assessment recommendations in UK national clinical guidelines?

Methods

We adhered to the highest methodological standards for systematic reviews and meta-analyses of IPD. This included the creation of a three-tier committee structure involving an international group of individuals.

We searched for relevant studies in EMBASE and MEDLINE databases. The electronic search strategies created during the aggregate systematic review of predictive factors for foot ulceration in diabetes were updated and rerun to January 2013.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

One reviewer applied the IPD review eligibility criteria to the full-text articles of the studies identified in our literature search and also to all studies excluded from our aggregate systematic review to ensure that we did not miss eligible IPD. A second reviewer applied the eligibility criteria to a 10% random sample of the abstract search yield to check that no relevant material was missed by having only one reviewer assess all the abstracts.

This review includes data only from individuals who were free of foot ulceration at the time of study entry and who had a diagnosis of diabetes mellitus (either type 1 or type 2). When we identified studies with some patients who had prevalent foot ulcers at the time of recruitment, we ascertained whether or not it would be possible to include only patients who were free of ulceration at the time of recruitment. The corresponding authors of all identified cohort studies were contacted and invited to share their data.

The assessment of methodological quality is an important component of an IPD systematic review, but there is complexity in assessing potential threats to the validity of primary studies for this research genre and no widely agreed criteria exist. We therefore compiled a list of items relevant to our IPD review question which we believed likely to distinguish between studies with data that are compromised by threats of validity.

Data extraction was undertaken by two reviewers working independently and disagreements were resolved by discussion. For quality assessment, a two-stage process was used. Our published protocol incorporated a data confidentiality agreement which made clear the need for the data provided to de-identify individual patients. It also includes an assurance that the original investigators are in possession of local ethical approval for their study.

All elements from the patient history, symptoms, signs and diagnostic test results were considered for inclusion in the prognostic model. These were collected variously as continuous, binary and multicategorical data. The outcome variable was incident foot ulceration (present/absent).

Data were stored in password-protected files on a secure University of Edinburgh computer (University of Edinburgh data protection registration number Z6426984) and were only accessible to members of the Data Management Committee.

The methodology of IPD meta-analyses of observational studies is relatively undeveloped compared with that for randomised controlled trials (RCTs). We recognised that reviewers undertaking IPD meta-analyses of observational studies need to proceed with caution, given that guidance is not always available and the methodology somewhat untested. There were, therefore, difficult methodological issues regarding the analysis for this project, some of which were particular to IPD meta-analysis methodology and some of which were more general. We also had a choice between two main methods of meta-analysis commonly known as one-step and two-step methods, respectively. Both these methods have pros and cons.

Practical constraints led us to select the two-step approach, which is also simpler and more transparent because it uses methods that have been much used and are well understood by the systematic review community. For the two-step method, each data set is analysed in turn by the meta-analysts, using ordinary methods of analysis such as logistic regression, and then the estimates from each analyses are combined using established meta-analysis methods. The advantage of the two-step method over a meta-analysis of published studies is that the meta-analysts have some flexibility in the estimates they can obtain from each study. If, for example, they require all estimates to be adjusted for age, and all the data sets have the patients' ages, it is simple to get age-adjusted estimates.

The data sets contributing IPD covered a range of temporal, geographical and clinical settings. It was, therefore, only reasonable to expect some degree of heterogeneity between the studies. We chose to use random-effects meta-analysis, which does not assume that all the estimates from each study are estimates of the same underlying true value, but rather that the estimates belong to the same distribution.

Before undertaking any meta-analysis, we assessed the extent of heterogeneity. We employed standard methods of assessing heterogeneity, by examining forest plots of estimates and calculating l^2 and τ -statistics, but also used the IPD to look at histograms and data summaries for each study.

The methodology of handling systematically missing data in IPD meta-analysis is still very much in development. We felt it would be useful, therefore, to present the results of a complete case, because complete case analyses are known not to be biased providing the missing data are missing at random (MAR), although we also used multiple imputation in a secondary analysis.

The studies contributing data to this IPD analysis collected data on hundreds of variables. It would not have been statistically rigorous or clinically relevant to perform meta-analyses for all these variables. We therefore needed a method to select candidate variables for meta-analysis. We used the following criteria:

- Variables had to have been collected in at least three studies, with < 60% missing.
- Variables needed to have been coded in such a way to allow standardisation across data sets. For example, we were unable to use eye data, as in some data sets this had been defined as retinopathy and in others as requiring glasses.
- The extent of heterogeneity did not preclude meta-analysis.

We did not choose variables for the multivariable model on the basis of univariate results, as we believe this to be a flawed method.

We also undertook secondary meta-analyses to compare the contribution of individual predictive factors with that of the risk categories contained in UK clinical guidelines.

Our search identified 16 cohort studies and we obtained IPD for 10. These data were collected from more than 16,000 people with diabetes worldwide and reanalysed by us. We were unable to obtain IPD from six of these because either we could not make contact with the authors or the authors were no longer in possession of the data.

One data set was not used in the primary meta-analyses and kept for independent validation. Anonymised data from each of the collaborators of the primary cohort studies were accepted in the way deemed most convenient to the original study investigators.

All data sets were prepared for meta-analysis the same way, following a list of rules, exclusion criteria and for a selected number of variables. A few data sets contained more patients than presented in the corresponding manuscript owing to multipurpose collection. We focused on the data collected to assess an ulcer or amputation outcomes in diabetic patients.

Each author provided information on the reason for the data being missing when available. This information was essential to confirm the patterns of missing data.

Univariate analyses of common variables are presented on forest plots to display the degree of heterogeneity between studies. All variables common to the original studies were identified and those that met the following criteria, collected in at least three data sets and having consistent definitions, were:

- age
- sex
- body mass index (BMI)
- smoking
- height
- weight
- alcohol

- glycated haemoglobin (HbA_{1c})
- insulin regime
- duration of diabetes
- eye problems
- kidney problems
- monofilament
- pulses
- tuning fork
- biothesiometer
- ankle reflexes
- ankle–brachial index (ABI)
- peak plantar pressure
- prior ulcer
- prior amputation
- foot deformity.

A univariate meta-analysis was performed for each of these variables and the results discussed by members of the review international steering committee. The most important clinical predictors identified by them for inclusion in the primary, multivariable meta-analysis were age, sex, duration of diabetes, monofilaments and pulses.

The analysis was repeated twice, once for patients with no previous history of amputation or ulceration and again for all patients regardless of previous history. In the second analysis, previous history was also used as a predictor.

Results

In general, the cohort studies included in the review were of a high methodological quality; of the four items used to assess the quality of the conduct of the studies, three indicated a low risk of bias. Patients were recruited consecutively in all but one study. Follow-ups were conducted at least 1 month after the data collection of risk factors, allowing enough time for an ulcer to develop, and all reports provided enough detail for the tests to be replicated.

Meta-analyses of estimates from multivariable logistic regression analyses based on data from the entire population found that a previous history of ulceration [odds ratio (OR) 6.589, 95% confidence interval (CI) 2.488 to 17.45], an inability to feel a 10-g monofilament test (OR 3.184, 95% CI 2.654 to 3.82), at least one absent pedal pulse (OR 1.968, 95% CI 1.624 to 2.386), a longer duration with a diagnosis of diabetes (OR 1.024, 95% CI 1.011 to 1.036), female sex was protective (OR 0.743, 95% CI 0.598 to 0.922) were all predictive of an increased risk of foot ulceration. The absence of heterogeneity in the pooled analyses for the 10-g monofilament test is remarkable.

In people with no previous history of ulceration or amputation, the predictive factors were inability to feel a 10-g monofilament test (OR 3.438, 95% CI 2.772 to 4.264); at least one absent pedal pulse (OR 2.605, 95% CI 1.808 to 3.754); and a longer duration with a diagnosis of diabetes (OR 1.029, 95% CI 1.017 to 1.04).

Receiver operating characteristic curve analyses of data from five individual studies were also performed to compare the prognostic utility of 10-g monofilament and absent pedal pulses. Data from the largest studies showed almost identical estimates of prognostic utility for these two tests, but the consistency of the results for the 10-g monofilament test does favour its use. The results of the meta-analyses for absent pedal pulses are also consistent in the two meta-analyses and show the absence of at least one pedal pulse to be independently predictive of risk. However, adding the palpation of pedal pulses to the risk assessment examination appears to confer no additional prognostic utility over and above the use of 10-g monofilaments alone.

Discussion

We found that the inability to feel a 10-g monofilament and the absence of at least one pedal pulse was at least as predictive as the classification systems for moderate (increased) risk of foot ulceration. Inability to feel a 10-g monofilament, an absent pedal pulse and a previous history of ulceration were at least as accurate as the classification system used to identify people at high risk of foot ulceration.

The most consistent results were from the 10-g monofilament test and clearly show this quick, simple and relatively cheap test to be predictive of foot ulceration for everyone with diabetes. The almost complete absence of heterogeneity in the primary meta-analyses is remarkable given that the pooled estimate is based on data from five different studies and 11,522 people from three different countries. It is important that the predictiveness of the test did not appear to be influenced by the fact that the monofilament was used on different sites of the foot in each of the cohorts.

The results of the meta-analyses for absent pedal pulses were also consistent in the two meta-analyses and show the absence of at least one pedal pulse to be independently predictive of risk. However, adding the palpation of pedal pulses to the risk assessment examination appears to confer no additional prognostic utility over and above the use of 10-g monofilaments alone. This observed effect may be attributable to the underlying pathophysiology of the majority of foot ulcers in these derivation cohorts being neurological rather than vascular in nature.

This review makes a unique and fundamental contribution to the global evidence base for the risk assessment for diabetes-related foot ulcers. We have justified the predictive factors included in the model and presented all univariate and multivariable analyses for inspection by readers who may wonder about the exclusion of particular tests.

We derived and independently validated a prognostic model for common symptoms, signs and diagnostic tests. The absence of data pertaining to elements of patients' general health prevented the identification of risk factors of a more systemic nature.

We suggest that these findings are carefully considered by diabetes clinical guideline developers. In the UK, the QOF should be refined to reflect the strong evidence from this research to support the use of a 10-g monofilament and one absent pulse to identify those at moderate or intermediate risk of foot ulceration and the addition of a history of foot ulcers or lower-extremity amputation to identify those at high risk.

The effectiveness and cost-effectiveness of the therapeutic impact of the proposed predictors should be evaluated in large well-designed RCTs across different health-care settings.

Future research using cohort designs investigating the prognostic factors for foot ulceration in diabetes should evaluate elements from the patients' systemic medical history such as cerebral, cardiovascular and renal events rather than signs, symptoms and tests used at the periphery.

Study registration

This study is registered as PROSPERO number CRD42011001841.

Funding

Funding for this study was provided by the Health Technology Assessment programme of the National Institute for Health Research.

Chapter 1 Background

The ageing population, widespread obesity and improved survival all mean that the prevalence of diabetes will more than double between 2000 and 2030.¹ Consequently, the serious complications of the disease are also anticipated to escalate and thus place an increasing demand on health-care resources. These complications are observed in the lower limb as peripheral vascular disease, foot ulceration, osteomyelitis (infection), gangrene and lower-extremity amputations (LEAs), and all are more likely to be experienced by those with diabetes than by the general population.²

Published studies have reported variation in the incidence of diabetes-related foot ulceration between < 2% in UK primary care and community settings and 18% in hospital-based populations globally.^{3–5} Routinely collected data from Scotland indicate that 13,789 (5.2%) people with type 1 or type 2 diabetes experienced a foot ulcer in 2013.⁶ These foot ulcers give rise to considerable morbidity and generate a high monetary cost for health- and social-care systems^{2,7} and, importantly, 80% of diabetes-related foot amputations are preceded by a foot ulcer.⁸ For those who experience diabetes-related amputations, the 5-year survival is poor, with mortality estimates of between 25% and 50% in 1985 in UK populations.^{9,10}

Changes in diabetes-related LEAs have been reported in parts of the UK. In common with some European countries and the USA, major LEA rates in Scotland have been reported to fall. A statistically significant reduction of 40% in LEA rates occurred between 2004 and 2008.¹¹ However, the 2013 Scottish Diabetes Survey shows that the absolute numbers and percentages of diabetes-related foot ulcerations and LEA have increased, although this is attributed to better recording procedures. In England, an analysis of national hospital activity data from 1996 to 2005 found that, although LEAs in people with type 1 diabetes fell, type 2 LEAs increased.¹² High levels of variation in diabetes-related LEAs are known to exist between primary care trusts (PCTs) across England, which may be explained by variation in the delivery of care.¹³

The optimal clinical management of people with diabetes includes annual foot risk assessment, as recommended in national and international clinical guidelines and the Quality and Outcomes Framework (QOF) of the General Medical Contract (GMC) in the UK.^{14–17} Risk classifications of three or four levels (low, moderate, high and active) are increasingly being recommended. At present, the evidence underpinning these classifications is not from randomised trials and does not include the totality of evidence (i.e. data from all cohort studies), and the effect of such surveillance and the use of interventions thought to prevent the development of a foot ulcer in the at-risk population lack clear evidence of clinical effectiveness or cost-effectiveness.¹⁸

Clinically effective and cost-effective health care requires the careful measurement of health outcomes, and the need for an evidence-based approach to foot care services in diabetes has been documented.^{19,20} Two systematic reviews highlight the gaps in the knowledge about the best way to identify those at risk.

The first systematic review evaluated the independent contribution of predictive factors for foot ulceration based on meta-analyses of aggregate data. It found that the duration of diabetes, glycated haemoglobin (HbA₁), peak plantar pressure (PPP) and vibration perception threshold (VPT) distinguish between those people who will develop a foot ulcer and those who will not. However, there was significant heterogeneity between studies, possibly owing to differences in lengths of follow-up, methods of ascertaining the presence of ulcers and the use of different cut-off points (thresholds) for some of the tests. Furthermore, some tests that are commonly believed to be predictive of risk, such as the absence of a pedal pulse, were not found to be so and data for other common tests such as monofilaments were not amenable to meta-analysis.

A second systematic review of clinical prediction rules (CPRs) used for risk assessment of developing diabetic foot ulceration (DFU) identified five different risk stratification tools derived from consensus among clinical experts, literature reviews and prospective studies using logistic regression methods.²¹ The predictive factors in these five CPRs were foot deformity; peripheral neuropathy; peripheral vascular disease [absent pulses and/or positive ankle–brachial index (ABI) test] and previous amputation; the presence of callus; HbA_{1c}; tinea pedis; and onychomychosis. The review authors concluded that it was unclear which CPR possessed the greatest accuracy in the assessment of risk.

These two systematic reviews found marked variation between the incidences of foot ulcers across different study populations. The predictive factors and CPRs derived from high-risk populations may not be of value in predicting risk in the general 'low-risk' diabetes population. It is a matter of some concern that the accuracy of recommended foot risk assessment procedures has not been fully explored in different groups of people with diabetes and that little validation of derivative cohort studies has taken place.^{22,23}

These two systematic reviews of aggregate data represent the best attempts to integrate evidence about the independent contribution of risk factors and CPRs in the assessment of the foot in diabetes to date. These findings are compromised, however, because the authors of primary included studies approached their analyses in different ways: some present adjusted estimates, whereas others are unadjusted, and it is sometimes unclear which confounders or effect modifiers were used. Conventional meta-analytic techniques use aggregate data that are averaged across all individuals in a study and these do not permit adjustments for confounding to be performed. The best way to reliably analyse data from several cohort studies using a standard approach is to use individual patient data (IPD).^{24,25}

The success of IPD systematic reviews depends on a high level of collaboration, trust and commitment between multidisciplinary researchers and the authors of the primary studies.²⁵ The ownership of data from primary studies by the pharmaceutical industry can represent an obstacle to IPD analysis being accomplished. However, our background work found that none of the cohort studies included in the systematic reviews had industry sponsorship. The authors who possess the data from the cohort studies identified in the published systematic reviews agreed to take part in an IPD systematic review and to contribute anonymised data from their primary studies for reanalysis.

The purpose of this systematic review and meta-analysis of IPD is to clarify the best risk assessment procedures for foot ulcers in people with diabetes. The international nature of these data, which are from more than 16,000 patients worldwide, should ensure a balanced interpretation. Given the increased worldwide prevalence in diabetes, the identification of the most predictive risk factors could lead to reduced costs for health-care providers.

Chapter 2 Hypotheses

O ur research focused on the questions outlined below.

Review questions

- 1. What are the most highly prognostic factors for foot ulceration (i.e. symptoms, signs, diagnostic tests) in people with diabetes?
- 2. Can the data from each study be adjusted for a consistent set of adjustment factors?
- Does the model accuracy change when patient populations are stratified according to demographic and/or clinical characteristics?
- 4. How predictive are the risk assessment recommendations in UK national clinical guidelines?

Research objectives

- To systematically review IPD from cohort studies in a meta-analysis to estimate the predictive value of clinical characteristics (signs and symptoms) and diagnostic tests for DFU.
- To develop a prognostic model of the risk factors for DFU based on data collected worldwide.
- To test the robustness of the model in different demographic profiles, for example, age, duration of diabetes, control of diabetes (insulin, diet or oral medication), type of diabetes (type 1, type 2).
- To create prognostic models of the risk factors for DFU contained in national and international clinical guidelines.

Chapter 3 Methods

S ystematic reviews and meta-analyses of IPD use 'raw' data obtained from the authors of individual studies instead of mean or aggregate data extracted from published reports. These complex reviews are more time-consuming and expensive than aggregate systematic reviews because obtaining study data and data dictionaries and undertaking data checking and cleaning takes more time than the extraction of data from a published report (*Figure 1*).²⁵

Make recommendations for research and clinical practice

FIGURE 1 Flow diagram: stages of an individual patient-based meta-analysis. Reproduced from the original²⁵ with kind permission from John Wiley & Sons.

Individual patient data systematic reviews are useful for both randomised controlled trial (RCT) and observational data and enhance the main purpose of meta-analysis – the augmentation of statistical power – by permitting the conduct of complex statistical techniques, including multivariable analyses in which interactions between interventions and patient-level characteristics can be explored.²⁶ In the case of observational study designs, IPD is the best way to pool observational study data to allow adjustments and a standard statistical approach to be conducted.

This review method also confers an advantage on the process of quality assessment because the necessary communication between the review team and those contributing the data means that potential biases arising from the conduct, rather than the report, of the study can be investigated. However, although the opportunity to discuss the manner in which the study was conducted with the author means the reviewer is not required to interpret possible biases, IPD reviews do not avoid flaws in the original studies arising from conduct or design.²⁷

Ethics and governance

The ethics of obtaining data collected from a number of sources that cross international boundaries and different legal systems was carefully considered and informed by ethics advice issued by the Medical Research Council (UK).²⁸ This study did not require separate ethics committee approval for the following reasons:

- Investigators of each of the original studies obtained local ethics committee approval and written, informed patient consent prior to each of the cohorts included in the review.
- The data from each of the studies were already in the public domain.
- The project uses anonymised data from individuals recruited to the original studies who cannot be identified.

Obtaining data

The aggregate systematic review of predictive factors for foot ulceration in diabetes led by the chief investigator (FC) identified 11 cohort studies that met the eligibility criteria.⁴ During the review process requests were made to the corresponding author of each primary study for points of clarity, as per conventional systematic review methods. All those contacted provided additional information about their study, and there was strong encouragement for the aggregate review and enthusiasm for an IPD review to create a statistical model exploring the independent contribution of predicative factors for use in foot risk assessment procedures. A key factor in deciding to undertake the IPD meta-analysis was the total absence of industry sponsorship and the ownership of original study data by the corresponding authors who were prepared to contribute them if funding from a suitable source could be found to support the research.

The value of the IPD analysis lies in the production of a global data set. Anonymised data from each of the collaborators of the primary cohort studies were accepted in the way deemed most convenient to original study investigators.

Data were stored in password-protected files on a secure University of Edinburgh computer (University of Edinburgh data protection registration number Z6426984) during the conduct of the review and were only accessible to members of the Data Management Committee, membership of which can be found in the appendices (see *Appendix 1*).

Our published protocol²⁹ incorporated a data confidentiality agreement making clear the need for the data provided to de-identify individual patients. It also included an assurance that the original investigators were in possession of local ethical approval for their study. A copy of this agreement can be found in the appendices (see *Appendix 2*).
Review Committee structure

A three-committee structure was created to manage the review:

- 1. The Data Management Committee developed the methods for the review and ensured the attainment of project milestones. They also took responsibility for reporting the progress to the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) programme within the standard reporting mechanisms required by the Clinical Evaluation and Trials Board. Only these individuals had access to the data from individual cohort studies.
- 2. The research committee included a group of epidemiologists, health services researchers, clinicians and statisticians who advised the Data Management Committee about methodological and clinically relevant aspects.
- 3. An international steering committee comprising all principal investigators/corresponding authors of the included studies was strengthened with methodological input from five additional members with expertise in diabetic medicine, foot care provision in primary and community settings, methodological expertise in CPRs and IPD meta-analysis.

A list of members of each of these committees can be found in Appendix 1.

Identifying studies

Electronic search strategy

We searched for relevant studies using the highest methodological standards.³⁰ The electronic search strategies created during the aggregate systematic review of predictive factors for foot ulceration in diabetes were updated and rerun to January 2013.⁴ Copies of the EMBASE and MEDLINE search strategies can be found in *Appendix 3*.

Selection criteria

One reviewer applied the IPD review eligibility criteria to the full-text articles of the studies identified in our literature search and also all studies excluded from our aggregate systematic review to ensure that we did not miss eligible IPD. A second reviewer applied the eligibility criteria to a 10% random sample of the search yield to ensure that no relevant material was missed.

Eligibility criteria

Types of participants

The review includes only data from individuals who were free of foot ulceration at the time of study entry and who had a diagnosis of diabetes mellitus (either type 1 or type 2). When we identified studies with patients who had prevalent foot ulcers at the time of recruitment, we ascertained whether or not IPD were available for patients who were free of ulcers at time of entry. The corresponding authors of all identified cohort studies were contacted and invited to share their data.

Types of exposure variables

All elements from the patient history, symptoms, signs and diagnostic test results were considered for inclusion in the prognostic model. These were collected variously as continuous, binary and multicategorical data.

Type of outcome variable

The outcome variables were incident foot ulceration (present/absent) and time to ulceration from initial diagnosis of diabetes as well as from the time of screening.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Types of studies

We included studies that used a cohort design and did not distinguish between those that planned the analysis before or after data collections. We excluded studies using all other study designs, including case–control designs. Our previous research indicated that data collected in older studies could be difficult to obtain and that some investigators were no longer in possession of their study data (David Armstrong, Southern Arizona Limb Salvage Alliance, University of Arizona, 2012, and Lawrence Lavery, UT Southwestern Medical Center, Texas, 2012, personal communication).

Risk of bias

The assessment of methodological quality is an important component of an IPD systematic review, but there is complexity in assessing potential threats to the validity of primary studies for this research genre. No widely agreed criteria exist for assessing the risk of bias in aggregate systematic reviews of prognostic studies,³¹ and, currently, there is a complete absence of established guidelines for prognostic IPD reviews (Douglas Altman, University of Oxford; Richard Riley, Research Institute of Primary Care and Health, Keele University, 2012, personal communication). Although flaws in the recruitment of patients or the manner of data collection can influence systematic review findings, some quality domains usually assessed by systematic reviewers of published reports are irrelevant in IPD reviews (e.g. those pertinent to the analysis performed by the primary authors). We compiled a list of items relevant to our IPD review question which were judged likely to identify studies with data compromised by threats of validity. This checklist of items can be found in *Appendix* 4;^{22,32-42} this has been refined during a pilot phase by two researchers working independently.

Data extraction was undertaken by two reviewers working independently, and disagreements were resolved by discussion. For quality assessment, a two-stage process was used; two reviewers worked independently using items available from the published report first of all, then supplementing this with additional details obtained from authors of the primary studies.

Plan for analysis and handling missing data

The methodology of IPD meta-analyses of observational studies is relatively undeveloped compared with that for RCTs and reviewers undertaking IPD meta-analyses of observational studies need to proceed with caution as guidance is not always available and the methodology is untested.⁴³

There were, therefore, difficult methodological issues regarding the analysis for this review, some of which were particular to IPD meta-analysis methodology, and others which were more general:

- method of meta-analysis (one step vs. two step)
- method of meta-analysis (random vs. fixed effects)
- assessment and handling of heterogeneity
- handling of missing data, where data are missing for some but not all patients in a given data set (ordinarily missing data)
- handling of missing data, where data are missing for a given variable for all patients in a given data set (systematically missing data)
- choice of predictors
- choice of effect size
- validating the model.

Method of meta-analysis: one-step versus two-step methods

The two main methods of meta-analysis are commonly known as one-step and two-step methods.⁴⁴ Both these methods have pros and cons.

The one-step method uses just one model fitted to all the studies, with a term to indicate which patient belongs to which study. The model can be sophisticated and used to explore common structures in the data sets that would otherwise be undetectable. For this reason, it is the preferred method of

meta-analysis for some statisticians.⁴³ However, it does require that all the data sets be available at the same time to the meta-analysts in order to fit one model to all the data sets. This was not the case for this project. It is also a relatively new development of meta-analysis methods; although IPD meta-analyses have been used for some time, they have most often been used for RCT data, where the recommendation is to use a two-step method to avoid comparison of patient groups that were not randomised together.⁴⁵

Two large data sets were contributed to this project but access to one was constrained,^{46,47} with around 3412 patients' data only available to the authors via a safe haven facility. The safe haven facility allowed the analyses of data to obtain an estimate of effect but not to remove or copy the data. Another data set^{48,49} with 1489 patients was not permitted to be shared by the US Institutional Review Board governing its use. However, specific analyses could be requested and estimates of effect obtained from the original study authors.

Use of the one-step method of meta-analysis would mean that neither of these large data sets could be used, although it is straightforward to include them in a two-step meta-analysis. The two-step method is also simpler and more transparent as it uses methods that have been much used and are well understood by systematic reviewers.

For the two-step method, each data set is analysed in turn by the meta-analysts, using ordinary methods of analysis such as logistic regression, and then the estimates from each analyses are combined using established meta-analysis methods. The advantage of the two-step method over a meta-analysis of published studies is that the statistician has some flexibility in the estimates they can obtain from each study. If, for example, they require all estimates to be adjusted for age, and all the data sets have the patients' ages, it is simple to get age-adjusted estimates.

We did consider a refinement to the one-step method that, in theory, would have enabled us to perform a one-step meta-analysis and incorporate the aggregate results from the two data sets not directly available to us.⁵⁰ However, like much of the methodology of IPD meta-analysis of observational studies, it is a new and therefore relatively untested development, and we did not consider it for this project.

Method of meta-analysis: random versus fixed-effects meta-analysis

The data sets contributing IPD covered a range of temporal, geographical and clinical settings. It is therefore reasonable to expect some degree of heterogeneity between the studies. The data sets also varied in size from a few hundred to a few thousand patients. There has been much discussion among experts in the field about standard meta-analytic methods for examining the difference between random- and fixed-effects meta-analyses.⁵¹ We have chosen to use random-effects meta-analysis, which does not assume that all the estimates from each study are estimates of the same underlying true value, but rather that the estimates belong to the same distribution. It has been argued that random-effects methods more appropriately weight the contribution of smaller versus larger studies.⁵² Moreover, as the estimates will be adjusted odds ratios (ORs) (note that the same is true for hazard ratios), the appropriate method of meta-analysis is the generic inverse method.⁵²

Assessment and handling of heterogeneity

Before undertaking any meta-analysis we assessed the extent of heterogeneity. We employed the standard methods of assessing heterogeneity, by examining forest plots of estimates and calculating P- and τ -statistics. However, we also conducted a thorough examination of heterogeneity, by visual comparison of histograms of continuous variables and bar charts of categorical variables. We also produced summary statistics for each continuous variable (mean, standard deviation, median, 25th and 75th percentile, minimum and maximum) and proportions with confidence intervals (CIs) for each categorical variable.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

The assessment of heterogeneity for any meta-analysis was a matter of judgement, covering both statistical and clinical aspects. Therefore, the decision on whether or not a particular variable and/or study should be included in the meta-analyses was made in discussion between methodological and clinical authors, with due consideration of any possible bias or loss of precision in the estimate as a result of inclusion or exclusion. Specifically, we did not define any particular *P* percentage as representing an acceptable level of heterogeneity.

Handling of ordinarily missing data

Ordinarily missing data in epidemiological cohort studies occur when a variable is not recorded, completed or collected for one patient. For example, one patient may not want to provide personal information or test results may not be performed, available or readable. Handling missing data by analysing complete cases leads only to loss of information (exclusion of a portion of the original data) and bias. Methods to address missing data assume specific patterns of missingness and allow patients with incomplete data to be included in the analysis.

Our method of handling missing data depends on the extent of the missingness and if the mechanism causing the missingness is known, specifically if they are missing at random (MAR) or missing not at random. Under the MAR assumption, we planned to use the multiple imputation using chained equations (MICE) developed in R [R 2.13.1, Murray Hill, NJ, USA; see (http://cran.r-project.org/)],^{53,54} which is a flexible and practical approach to handling missing data. To account for all patients' data available and to help predict missing data for the risk factors of interest, we applied multiple imputations on the set of variables selected in our final model of predictors where the percentage of missing value did not exceed 15% and included the outcome variable.⁵⁵ We created m = 20 imputed data sets, where missing values were replaced by imputed values using imputation techniques specific to each type of variable (logistic regression for binary variables and Bayesian linear regression for continuous variables). The final model estimators were calculated for each imputed data set and differed owing to the variation introduced by the imputed set of missing values. Estimators were averaged and standard errors calculated using Rubin's rules, which take into account the variability between imputed sets. To discuss the potential bias attributable to missing data, the results of the final model after imputation procedure were interpreted and compared with the complete case analysis.

Handling of systematically missing data

A systematically missing variable is a variable that has not been collected at all in a given data set. For example, not all the studies contributing IPD collected HbA_{1c}, as it has not always been part of routine care. Therefore, if we wanted to adjust ORs of ulceration in patients with and without positive monofilament tests for HbA_{1c}, then our analysis choices are:

- to use only ORs from studies that collected HbA_{1c} data, with resulting loss of data from not using all the studies (i.e. complete case analysis)
- to use all studies by treating all ORs as if they have been adjusted for HbA_{1c}, with resulting possible bias in the summary estimate
- to use multiple imputation for the systematically missing data.

Given that all of the studies have not collected at least one of the variables of interest, we had systematically missing data. The methodology of handling systematically missing data in IPD meta-analysis is still very much in development and key papers were published after the start of this project.⁵⁶ We therefore felt that it would be useful to present the results of a complete case, as complete case analyses are known not to be biased, providing the missing data are MAR.⁵⁷ However, the loss of power by not using all the data results in wide CIs and large *p*-values. To overcome the loss of power, we could have used either the second or third method listed above. However, the second method was not chosen because it produces possibly biased estimates. The third method was another relatively new and untested method, and statistical methodological contributions also fell outside the scope of this project.

Choice of predictors

The studies contributing data to this IPD analysis collected data on hundreds of variables. It would not have been statistically rigorous or clinically relevant to meta-analyse all these variables. We therefore needed a method to select candidate variables for meta-analysis. We used the following criteria:

- Variables had to have been collected in at least three studies, with < 60% missing.
- Variables needed to have been coded in such a way to allow standardisation across data sets.
 For example, we were unable to use eye data, because in some data sets this had been defined as retinopathy and in others as requiring glasses.

We did not use a common method of variable selection, namely choosing variables for a multivariable model on the basis of univariate results, as we believe this to be a flawed method.^{58,59}

We also had the aim of producing a model with easily collectable or readily available data, and therefore had a preference for such variables.

Choice of effect size

Initially, we had hoped to use time-to-ulceration data to perform survival analyses and so obtain hazard ratios for a meta-analysis. Unfortunately, not all the data sets had time-to-event data and we therefore decided to use a binary outcome (ulcer vs. no ulcer) and use logistic regression to obtain ORs. Neither of the two largest data sets, with a combined total of over 9000 patients, had time-to-event data. Logistic regression is considered a less statistically powerful method than survival analysis, but we thought the loss of more than half of the data that would occur with a survival analysis would not compensate for the method's increased power.

Chapter 4 Development of the model

he criteria for consideration for inclusion in the primary meta-analysis were:

- 1. variables had to have been collected in at least three data sets
- 2. variables had to have been consistently defined across data sets (or could be recoded so)
- 3. the extent of heterogeneity should not invalidate the results of meta-analysis.

The majority of the variables collected were not suitable for the primary meta-analysis, because often they had been collected in only one or two studies. Also, in some cases, there was some variation in the definition of the variable across all the data sets, and it was a matter of judgement to decide if the degree of inconsistency was acceptable or not. However, variables that met the first two criteria were used in univariate logistic regression to obtain ORs. The ORs were plotted in forest plots so that heterogeneity could be assessed.

As the assessment of heterogeneity includes both clinical and statistical aspects, it cannot be designed solely on methodological grounds. Therefore, to ensure that all important clinical considerations were fully addressed, all the variables considered to be potential candidates were presented to the clinical and methodological co-authors at our international meeting.

All authors of the original studies presented details of the study design and conduct, with particular emphasis on the characteristics of the patient cohort and the particular risk factors studied. Univariate analyses of common variables were presented on forest plots to display the degree of heterogeneity between studies. Because the co-authors were also involved in the original studies producing the data sets, there was ample opportunity to discuss reasons for heterogeneity, encompassing inconsistency in the definitions, and what variables were felt to be clinically important.

The variables that met the first two criteria (collected in at least three data sets and consistently defined) were:

- age
- sex
- body mass index (BMI)
- smoking
- height
- weight
- alcohol
- HbA_{1c}
- insulin regime
- duration of diabetes
- eye problems
- kidney problems
- monofilament
- pulses
- tuning fork
- biothesiometer
- ankle reflexes
- ABI
- PPP
- prior ulcer
- prior amputation
- foot deformity.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

We chose not to present height and weight. BMI, height and weight are all obviously highly correlated. Using variables that are highly correlated in a statistical model can lead to collinearity problems, which are unstable estimates, as well as incorrect CIs and *p*-values. To avoid using a model with high collinearity, we decided to use BMI rather than height or weight. BMI is very commonly used as a measure of body size, and there were six studies with BMI data but only four each for height and weight.

The following variables, which did not meet the criteria, were also presented to demonstrate explicitly why we were unable to include them in any meta-analyses, despite their potential as predictors of foot ulceration: ethnicity, living alone, pinprick test, temperature test (i.e. possibly important demographic and foot sensation variables).

After a discussion of each variable in turn, the members of the group were asked to select a few variables to be examined for inclusion in the primary analysis to ensure that the final model was simple and easy to implement in a clinical environment; widely used CPRs tend not to have many predictors. In addition, for a study to be included, it must have collected data on all the relevant variables, which means that there is an inevitable trade-off between the number of variables and the number of studies to be included. For example, a model with just age and sex could use data from all the studies, but a model with age, sex and ABI could include only four studies. Therefore, limiting the number of predictors also maximises the number of studies that can be included.

The variables chosen at the international meeting for possible inclusion in the primary analysis were age, sex, duration of diabetes, prior ulceration or amputation and monofilament results. In addition, insulin use and kidney problems were to be added to the primary model to assess their impact on prediction of ulcer. E-mail was used to continue the discussion of the predictors after the meeting, resulting in some significant changes.

Patients with a known history of ulcer or amputation are already known to be at high risk of a further ulcer or amputation. These patients therefore have a different risk profile from patients with no history of ulceration or amputation, who may generally be at low risk. From a clinical view, it was regarded as important to be able to identify those patients without history who are nonetheless at high risk of ulceration to allow targeted treatment. Therefore, it was decided on clinical grounds to construct two models, one for all patients and the other for those patients with no history of ulceration or amputation, and, consequently, to drop history as a predictor from the model for patients with no previous ulceration or amputation.

Another predictor dropped from the primary analysis was insulin use. Discussion at the international meeting covered the difficulties of interpreting the use of insulin as a predictor. A patient may simply be using insulin because he or she has type 1 diabetes. However, it is also possible that a patient is using insulin because he or she has poorly controlled type 2 diabetes. A further complication is that some patients with type 2 diabetes achieve good control with insulin. Moreover, the definition of insulin use varied from insulin use at any time prior to the study to current insulin use at the time of recruitment to the study. This was given as a possible explanation for inconsistency and a high degree of heterogeneity among the ORs for insulin use. It was therefore decided to drop insulin use from the primary analysis and retain it for secondary analyses only.

A similar line of reasoning was followed for the predictor kidney problems. These had been defined as outright nephropathy in some data sets and were derived from estimated glomerular filtration rate (eGFR) in others, which may or may not always be an adequate proxy.⁶⁰ In multivariate models, the effect of kidney problems was not consistent, being apparently protective against ulceration in some cases^{5,61} but predictive in others, for example.^{3,46,47,62} Again, it was decided to drop kidney problems from the primary model but retain it for secondary analyses.

Dropping three predictors from the primary model meant that other potential predictors could be considered. We added pulses to the primary model. The argument in favour of use of pulses is that it is a test of the vascular integrity of the foot. The model already included monofilaments, a neurological test. Therefore, by including both a vascular and a neurological test of the foot, the model would encompass the major mechanisms by which foot ulceration occurs in diabetes.

It was decided to include HbA_{1c} in a secondary analysis in order to include a predictor in the model that could be influenced by patients themselves. The only variables in the list of potential predictors that could be influenced by patients were BMI, smoking, alcohol and HbA_{1c}. However, discussion of BMI at the international meeting suggested that it would not be a good predictor, because a BMI in the low range could be indicative of two opposing states, either the patient does not gain weight through appropriate diet and exercise or the patient is unable to maintain weight owing to advanced diabetic illness. The univariate forest plot for BMI showed that a low BMI was protective of ulceration in some studies but predictive of ulceration in others. Furthermore, the data on the effect of smoking and alcohol were also not clear, with both smoking and drinking being protective against ulceration in some data sets and predictive of ulceration in others. These results were discussed, with some speculation on the vasodilation properties of nicotine and the possible benefits of moderate alcohol intake. Therefore, HbA_{1c} was chosen for use in a secondary analysis. It is also the only patient-modifiable predictor directly related to diabetes. Two further tests, namely VPT by either tuning fork or biothesiometer and the ABI, were also retained for secondary analyses, as these were of particular interest to the clinical co-authors.

In summary, the primary model has the following predictors: age, sex, duration of diabetes, monofilament and pulses. The secondary models are:

- age, sex and duration of diabetes
- age, sex, duration of diabetes and monofilament
- age, sex, duration of diabetes, monofilament and insulin
- age, sex, duration of diabetes, monofilament and kidney problems
- age, sex, duration of diabetes, monofilament, pulses and VPT
- age, sex, duration of diabetes, monofilament, pulses and HbA_{1c}
- age, sex, duration of diabetes, monofilament and ABI.

The primary model meets our aim of a parsimonious model of easily obtainable predictors. The purpose of the secondary models is to allow comparison with the primary model, for example to see what the value of HbA_{1c} is as a predictor in addition to the predictors of the primary model. Prediction models are often assessed in terms of their discrimination (how well they distinguish between groups of patients) and calibration (how well the model's estimated probability matches the actual probability of outcome for each patient).

Given two patients, one with an ulcer at follow-up and the other with no ulcer at follow-up, the area under the curve (AUC) is the probability that the model calculates a higher risk for the ulcer patient; thus, the AUC can be used to assess the discrimination of the model. The AUC takes a value between 0.5 (no discrimination) and 1 (perfect discrimination). Values between 0 and 0.5 are theoretically possible but would only occur if a model was worse than using a coin toss to predict outcome. The Brier score is an indication of how well the model is calibrated and takes a value between 0 and 1. A perfect model would have a Brier score of 0, and, as a rule of thumb, a prediction model should have a Brier score of 0.25 or under.⁶³

Chapter 5 Validation of the model

Validation is an essential part of assessing prediction models. For most studies that have access to only one data set, the emphasis is on internal validation. Internal validation is an assessment of model performance based on the data set used for development. Prediction models tend to perform best in the data set in which they were developed, and, therefore, one of the purposes of internal validation is to try and assess to what degree the estimates reflect true relationships between variables rather than the idiosyncrasies of the development data set. Teasing apart true and spurious relationships can be a problem when there are too many predictors and/or predictors are selected using a data-driven method such as stepwise regression.

The aim of our methodology was to avoid this problem by choosing a priori few predictors based on the criteria described above; see *Chapter 3*, *Choice of predictors*. These criteria do not use any information based on *p*-values or CIs and so avoid the problems of data-driven methods.

Internal validation methods generally consider the concepts of model discrimination and model calibration. In this context, discrimination is a reflection of how well the model differentiates between patients who do and do not ulcerate. Calibration is a reflection of how well the model assigns the relative proportions of risk categories; a poorly calibrated model would place many patients in the wrong risk category. A statistic that encompasses both these concepts is the two-component Brier score, which takes values between 0 and 1, with a perfectly calibrated model having a score of 0 and model with no calibration having a score of 1.

Given that we had several data sets, we also addressed external validation. External validation is the assessment of model performance in data sets other than the development data set and was arguably more important than internal validation because it related directly to the generalisability of our results. Performing external validation required two decisions to be made: how should it be done and which data should be used? There are six different methods of external validation for logistic regression models described by Steyerberg *et al.*⁶⁴ We chose one method for ease of implementation and interpretation, which was simply to re-estimate the ORs of our final model in a new data set not previously used in any analysis. We then compared the ORs from the meta-analyses with those from the validation data set. The validation data set had to fulfil one mandatory criterion, that is, it had to have all the variables used in the primary model, and more than one data set fulfilled this criterion. However, one data set in particular seemed to be the natural choice as the validation data set. The reasons for this were:

- The validation data set was only available for analysis at a late stage. By using this data set for validation rather than model development, work on the meta-analyses could proceed in a timely manner.
- The validation data set was not accessible to those performing the meta-analyses. Analyses could be
 requested and aggregate results supplied from the validation data set. This ensured that the persons
 conducting the meta-analyses were not influenced by any validation results, which were requested only
 after the meta-analyses had been completed.
- The persons conducting the validation analyses were not informed of the results of any meta-analyses until after the validation analyses had been completed and supplied. This ensured that they were not influenced by any meta-analysis results.

Therefore, our methods allowed the validation process to be independent of the model development process and vice versa. It is also worth noting that the use of this particular data set, which was analysed by statisticians not otherwise involved in the project, meant that the method of external validation had to be simple, as the time available to conduct the validation by these statisticians was necessarily limited. To ensure that the time required was minimal, Statistical Analysis System [(SAS); SAS Institute Inc., Cary, NC, USA; see www.sas.com] programs (version 9.3) were supplied to produce all the required analyses.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

Chapter 6 Results of the systematic review

he flow diagram below (Figure 2) depicts the flow of literature during the review process.

FIGURE 2 Flow diagram of studies in the IPD systematic review, showing the studies included in the review and meta-analysis.⁶⁵ DTA, diagnostic test accuracy.

Chapter 7 Characteristics of included studies

There were 16 eligible studies identified from our search activities. We were unable to obtain IPD from six of these because either we could not make contact with the authors^{66–68} or the authors were no longer in possession of the data^{69–71} (Aristidis Veves, Harvard Medical School; Lawrence Lavery, UT Southwestern Medical Center, Texas, David Armstrong, Southern Arizona Limb Salvage Alliance, University of Arizona, personal communication) (see *Figure 2*).

The corresponding authors of eight studies made raw data available to the Data Management Committee.^{3,5,61,62,72–75} Data from a ninth study^{46,47} were made available to the Data Management Committee via Safe Haven, a data-management system. Finally, a 10th corresponding author was not granted permission to share the data from a cohort study by the Institutional Review Board⁴⁸ but was able to contribute to the meta-analysis by subjecting the data to the same analytical procedures as all other studies to provide estimates of effect, which could be incorporated into the final (meta) analysis. Of these 10 studies, nine were derivation studies, and all are summarised in *Table 1*. Below, we briefly describe each.

Derivation cohort studies

A total of 6603 people diagnosed with type 1 or 2 diabetes mellitus were recruited in the north-west of England, from several different settings, including general medical practices, diabetes specialist centres, hospital out-patient departments and podiatry clinics. Podiatrists and research nurses performed examinations and collected data for each of the exposure variables between April 1994 and April 1996. Ascertainment of the outcome variable (ulcer present/ulcer absent) was collected using a patient self-report postal questionnaire after an average follow-up period of 2 years.⁷⁶

A total of 1489 people with diabetes mellitus were recruited from a general internal medical clinic of a Veterans Affairs Medical Center in the USA. Patients were excluded if they had current foot ulcers or bilateral foot amputations, used a wheelchair, were too sick from illness to participate, or had psychiatric illness that prevented informed consent. Patients were recruited between 1990 and 2012 by two nurse practitioners and two technicians who performed all examinations and data collection. Ascertainment of the outcome variable (ulcer present/ulcer absent) was established by examination, and the average follow-up period was almost 49 months (4 years).⁴⁹

A total of 1193 people with diabetes mellitus were recruited from community podiatry clinics in Tayside, UK. Participants were free of foot ulceration at the time of recruitment, more than 18 years of age, ambulant and able to give informed consent. Recruitment took place between March 2006 and June 2007, and examinations were performed by eight NHS community podiatrists. Ascertainment of the outcome variable (ulcer present/ulcer absent) was collected from patients' paper records by podiatrists who were unaware of the results of the patients' examinations. The follow-up period was, on average, 11.4 months.⁵

A total of 187 patients with diabetes mellitus were recruited from a hospital diabetes centre in Vienna, Austria. The study inclusion criteria were a diagnosis of type 2 diabetes in men and women aged < 75 years, a normal gait pattern and a reliable measurement of plantar pressure. The study exclusion criteria were past or current foot ulcers, LEAs, severe peripheral arterial disease, severe neurological deficits attributable to diseases other than diabetes and Charcot foot. Patients were recruited between 1994 and 1995, and examinations and follow-ups were performed by two biologists, who worked in the field of diabetes foot research, and a diabetologist, who was responsible for the diabetic foot clinic. Ascertainment of the outcome variable (ulcer present/ulcer absent) was collected by the same individuals. The period of follow-up was, on average, 3.6 years.⁶²

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

Author (date)	Inclusion/exclusion criteria	Derivation/validation study; recruitment dates; duration of follow-up	Setting	Origin of the data	Who took the measurements	Types and number of events
Abbott <i>et al.</i> ,	Type 1 or type 2 diabetes	Derivation study	GP practices	Consultation and	Podiatrists and	Patients = 6603
-2002		April 1994–6	Diabetes centres	examinations	research nurses	Ulcers = 291
		2 years	Hospital outpatients			Amputations = 27
			Podiatry clinics in north-west England, UK			Deaths = 0
Boyko et al.,	Inclusion: all general internal	Derivation study	The general internal	Consultations in specialised	Two nurse	Patients = 1489
0007	diabetes	Recruitment initiated in 1990 and continued	single Department of	sole purpose was the	two technicians who	Ulcers = 229
	Exclusion: current foot ulcer; bilateral foot amoutations:	until end of follow-up on 31 October 2012	veteraris Arrans Medical Center	cultercion of data for time research	worked fail-time for this research	Amputations = 50
	wheekchair use or inability to ambulate; illness too severe to participate; psychiatric illness preventing informed consent	Mean duration of follow-up: 48.7 months				Deaths = 121
Crawford	≥ 18 years of age; diagnosis	Derivation study	32 podiatry clinics in	Consultations and	Eight podiatrists	Patients = 1193
et al., 2011°	or diabetes mellitus; ambulant; free of foot ulceration; able	March 2006–June 2007	primary care settings in Tayside, UK	examinations		Ulcers = 23
	to give informed consent	11 4 months	-	Events ascertained from		
				patient paper records by		Amputations = 0
				results		Deaths = 59

Author (date)	Inclusion/exclusion criteria	Derivation/validation study: recruitment dates; duration of follow-Im	Setting	Orinin of the data	Who took the	Types and number of events
(anal			N			
Kästenbauer et <i>al.</i> , 2001 ⁶²	Inclusion: type 2 diabetes in men and women aged <75 years old; normal gait pattern; plantar pressure could be reliably measured	Derivation study January 1994–5 Mean: 3.6 years	Diabetes centre within a hospital in Vienna, Austria	Consultation and examinations	Two biologists working in the field of diabetes foot research, one diabetologist, who	Patients = 187 Ulcers = 18/10 patients Amputations = 3
	Exclusion: past or current foot ulcers; LEAs; severe peripheral arterial disease; severe neurological deficits attributable to diseases other than diabetes; Charcot foot				was responsible for the diabetic foot clinic	Deaths = 9
Leese <i>et al.</i> , 2011 ⁴⁷	Inclusion: all people with diabetes and on the diabetes register who had undercone foor risk assessment	Derivation study 2004–6	Community and hospital diabetes foot clinics in Tavside UK	Routinely collected clinical information (regional diabates electronic register)	Any GP, podiatrist nurse or specialist caring for diabetes	Patients = 3412 Ullcers = 322
	between 2004 and 2006	1.19 ± 0.91		Linked data	mellitus patients	Amputations = 55
				Same electronic records		Deaths = 575
				The local multidisciplinary foot clinic and community and hospital podiatry paper records (for ascertaining events)		
Monami <i>et al.</i> ,	Inclusion: type 2 diabetes	Derivation study	Diabetic clinic of the	Consultation	Diabetologists and	Patients = 1944
- 6007	outpatients referred the diapetes clinic of the geriatric unit	December 1995– December 2000	geriatric unit or a hospital, Florence, Italy	Ulcer ascertained by	research tellows	Ulcers = 91
		4.2 ± 2.2 years		louintely collected data		Amputations $= 0$
						Deaths = 321
						continued

pes and number events	tients = 360 ers = 94	iputations = 0	aths = 0	ients = 248	:ers = 73	nputations = 0	aths = 13	ients = 358	:ers = 41	nputations = 14	aths = 19	ients = 592	:ers = 47	nputations = 0	aths = 8
Who took the Ty measurements of	Two podiatrists with Pat 6 and 10 years' experience in the Ulc	management of the diabetic foot An	De	Podiatrists Pat	UIC	Aπ	De	Physical therapist Pat	ariu a priysiciari Ulc	Am	De	A physician Pat	Ulo	Am	ЪР
Origin of the data	Consultation (interview and foot examination)	Medical records for both predictive and outcome	valiables	Consultation interview and				Consultation				Consultation	Medical patient notes for		
Setting	A public tertiary hospital, Portugal			Three large diabetic	ומסו כפוונופא, סאק			Primary care setting	nauve American mulan reservation, USA			Foot clinic in diabetes	כבוונוב		
Derivation/validation study; recruitment dates; duration of follow-up	Validation study February 2002–October	2000 25 months (range 3–86)		Derivation study	January 1995–6	Followed up for 30 months (range 6–40)		Derivation study	July 1988–February 1991	32 months		Derivation study	April 1988–March 1989		
Inclusion/exclusion criteria	Diabetes mellitus Exclusion: unable to walk; data	incomplete; fewer than three podiatry appointments		Diabetes mellitus who attended one	or unree large alabeitc root cernies. Diabetes mellitus diagnosis	confirmed by primary care provider		On diabetes register and had an	aritiual 1001 examination			At least one pedal pulse, no history			
Author (date)	Monteiro- Soares and Dinis-Ribeiro,	2010°'		Pham <i>et al.</i> ,	70007			Rith-Najarian	el al., 1992			Young et al.,	- 204 -		

TABLE 1 Characteristics of included studies (continued)

Data from 3412 people with diabetes who had undergone a foot risk assessment between 2004 and 2006 were routinely collected from a regional diabetes electronic register. The data originated from patients being managed in community hospital diabetes foot clinics in Tayside, UK, and were entered into the electronic system by general practitioners (GPs), podiatrists and nurses providing patient care. Ascertainment of the outcome variable (ulcer present/ulcer absent) was performed using the same electronic register.^{46,47}

A total of 1944 patients with a diagnosis of type 1 or type 2 diabetes mellitus were recruited from a diabetes outpatient clinic in a geriatric unit of an Italian hospital. The data were collected by diabetologists and research fellows between 1995 and 2000. Follow-up occurred, on average, 4.2 ± 2.2 years, and ascertainment of the outcome variable was achieved by accessing routinely collected data.⁷²

Two hundred and forty-eight people with diabetes were recruited from one of three large diabetic foot centres in the USA between January 1995 and January 1996. The diagnosis of diabetes mellitus was confirmed by a primary care provider or from medical records. Podiatrists conducted data collection during interviews and examination consultations. Patients were followed up by the study podiatrists, who ascertained the presence or absence of a foot ulcer during a follow-up period, which was, on average, 30 months.⁷³

Three hundred and fifty-seven patients were recruited from a primary health-care facility on a native American reservation. All participants had diabetes mellitus, were on a diabetes register and had an annual foot examination by a physician or a physical therapist. The results were recorded on a paper form which was placed in the medical record. The date of the examination and risk category were logged into a clinic-based electronic diabetes registry of the community. At the conclusion of the study, the forms were abstracted from the form to the medical record and the data entered in to an Epi Info database (Centers for Disease Control and Prevention, Atlanta, GA, USA). The study was conducted between July 1988 and February 1991, and follow-up was performed at 32 months on average. The ascertainment of the outcome variable was obtained from an Epi Info database by the study physician or physical therapist.⁷⁴

Five hundred and ninety-two patients with diabetes mellitus were recruited by a physician working in a specialist diabetes foot clinic in the UK. Patients were invited to take part in the research if they had at least one pedal pulse and no history of ulceration. The study was conducted between April 1988 and March 1989, and exposure data were collected during a consultation. The ascertainment of the outcome ulcers was performed from medical notes.⁷⁵

Validation cohort studies

One study validated the risk factors previously identified in a derivation cohort study by Boyko *et al.*⁴⁹ Three hundred and sixty people with diabetes mellitus were recruited from a public tertiary hospital in Portugal between February 2002 and October 2008. Patients were excluded if they could not walk, if they had had fewer than three podiatry appointments or if their data were incomplete. Two podiatrists collected data in interview and examination consultations and obtained routinely collected data for the exposure variables. Patients were followed up at 25 months, on average, and ascertainment of the outcome variable was achieved using routinely collected data.⁶¹

Chapter 8 Risk of bias

The tabulated results of the quality assessment process can be found in *Appendix 5*. Of the four items used to assess the quality of the conduct of the studies, three indicated a low risk of bias. Patients were recruited consecutively in all but one study.⁷⁴ Follow-ups were conducted at least 1 month after the data collection of risk factors, allowing enough time for an ulcer to develop, and all reports provided enough detail for the tests to be replicated.

The collection of outcomes in a 'blind' manner to protect the data from investigator bias was a feature of only 50% of the studies included in our review.^{3,5,61,73,75}

All study reports provided sufficient details about the conduct of the tests to permit their replication.

Chapter 9 Data cleaning and pattern of missingness

Data preparation

All data sets were prepared the same way, following a list of rules, exclusion criteria and a selected number of variables. Few data sets contained more patients than presented in the corresponding manuscript owing to multipurpose collection. We focused on the data collected to assess an ulcer or amputation outcomes in diabetic patients.

Two sets of authors^{5,46,47} collected their data in the same geographical area; common patient encrypted identifiers were placed in a safe haven and merged with the data set of the Leese study in order to exclude duplicated patients.

The data preparation was performed using the SAS software in a uniform way across studies. The SAS code was structured in steps of data preparation for each study: importing the data set; including any additional relevant data; checking the data set content and each variable of interest for inconsistent values; cross-checking information; applying exclusion criteria; correcting errors and values by applying rules; formatting dates; and combining information in order to create all the variables for analysis in a consistent way across studies. A list of inconsistencies and queries were sent to each author when required to ensure that corrections were made appropriately. This allowed the validation of the data preparation. A harmonised data set was created for each study and subsequently merged with the other for validation of harmonisation.

Inclusion and exclusion criteria

Inclusion criteria were age > 18 years, a diagnosis of diabetes (type 1 or type 2), and having at least one foot. At the stage of data preparation, a total of 21 patients aged below 18 years, one patient with gestational diabetes and one bilateral amputee were excluded. The same inclusion criteria were used to exclude 47 patients in the Boyko *et al.*⁴⁹ data set (*Table 2*).

Rules for data cleaning

The rules were developed in order to include atypical but plausible values from an adult diabetic population. Extreme values were checked with authors for confirmation. Any irrelevant information was either corrected or removed prior to analysis.

- Age and duration of diabetes were recorded in years. They were calculated from relevant dates and rounded to the lowest integer value when necessary.
- Duration of follow-up was recorded in months. It was converted into months or calculated from relevant dates when available.
- For anthropometrics, the following ranges were considered as possible and reasonable to include: weight between 35 kg and 180 kg; height between 120 and 210 cm; and BMI between 16 kg/m² and 65 kg/m². The measurements of three patients were confirmed as real and accurate: a weight of 27.3 kg for a small person⁷⁵ (height 125 cm and BMI 17.5 kg/m²); a height of 211 cm for a tall person;⁷³ and a weight and BMI of 230 kg and 71 kg/m², respectively, for an extremely obese person.⁷³ Malignant obesity (BMI over 50 kg/m²) remains rare in the general population, but is considered possible in a person with diabetes.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

DATA CLEANING AND	PATTERN O	OF MISSINGNESS
-------------------	-----------	----------------

Study	Abbott et <i>al.</i> , 2002 ³	Leese et al., 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford <i>et al.</i> , 2011 ⁵	Young et al., 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian <i>et al.</i> , 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer <i>et al.</i> , 2001 ⁶²	Boyko et al., 2006 ⁴⁹
Data available										
Number of patients with outcome	6613	3712	1945	1196	598	360	358	248	187	1536
Number of patients excluded	10	Ū	-	0	9	0	1	0	0	47
Number of duplicate patients		295		m						
Total patients for analysis	6603	3412	1944	1193	592	360	357	248	187	1489

TABLE 2 Exclusion and number of patients for data analysis by study

- Smoking was recorded as smoking history (yes/no) and as smoking status (never smoker/ex-smoker/ current smoker). The possible number of cigarettes per day ranged between 1 and 60. A number of cigarettes per day higher than 60 was corrected by the maximum value of 60 and a value below 1 was considered as zero.
- Alcohol was classified as current alcohol consumption (yes/no), with a very occasional alcohol intake being grouped with no alcohol. The possible number of alcoholic units per week was ranged from 1 to 100. A number of alcohol units per week higher than 100 was corrected by the maximum value of 100 and a value below 1 was considered as null.
- HbA_{1c} between 3% and 21% was considered possible. When multiple measurements were taken, the measure at the initial visit or the first measure available was used.
- Kidney problems were identified as 'nephropathy' or 'chronic kidney disease (CKD) stages 3–4–5 [glomerular filtration rate (GFR) < 60 ml/minute/1.73 m²]'. In some cases, only a more advanced stage of the disease was available and was used, such as 'end-stage renal disease' or 'kidney failure' (CKD stage 5). CKD levels were calculated from GFR and creatinine levels.
 - The serum creatinine level (measured in µmol/l) was converted into eGFR using the Cockcroft–Gault formula:
 - $(140 age) \times weight (in kg) \times 1.04/creatinine, for women$
 - $(140 age) \times weight (in kg) \times 1.23$ /creatinine, for men.
 - A wide inclusive range of creatinine levels between 20 and 300 was considered acceptable.
 - CKD stages were derived from the eGFR level (ml/minute/1.73 m²):
 - stage 1 90
 - stage 2 60-89
 - stage 3 30–59
 - stage 4 15–29
 - stage 5 < 15.
 - eGFR can be recorded as 60+ ml/minute/1.73 m², which does not allow the distinction between stages 0, 1 and 2. The moderate and severe stages of renal disease (stages 3, 4 and 5), which correspond to an eGfR below 60 ml/minute/1.73 m², were considered to be a 'kidney problem' for the analysis.
- The foot test results were combined, when available, for both feet. The measure used was from the worst outcome for any foot (at least one foot) at the initial visit or baseline.
 - A VPT value over 25 V in any foot, as measured by a biothesiometer, was considered an abnormal VPT.
 - An ABI of < 0.9 or > 1.3 was considered an abnormal value.
 - A dichotomised foot pressure with an abnormal result (high foot pressure > 6 kg/cm) was available in one study. This was applied in other studies to harmonise the results.

Pattern of missingness

Table 3 presents the numbers and percentages of missing values for each selected variable by study. It also identifies studies in which a variable is systematically missing with a percentage of 100. More than 10% missing data in available variables were identified in specific studies for the following potential predictors: height, weight, BMI, HbA_{1C}, diabetes duration, kidney problems, VPT tuning fork, Achilles reflexes and ABI.

Each author provided information about the reasons for the data being missing where possible. This information was essential to confirm the patterns of missing data. In most studies, the data were missing because they were not collected or recorded by clinicians or there were administrative problems in some period of collection. Our exploration of missing data found the pattern of 'missingness' to be MAR.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

		Studies										
		Abbott <i>et al.</i> , 2002 ³	Leese <i>et al.</i> , 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford et al., 2011 ⁵	Young <i>et al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et al., 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko et al., 2006 ⁴⁹	Total
Number of patient	ts in data set	6603	3412	1944	1193	592	360	358	248	187	1489	16,385
Variables	Statistics											
Age	Number missing	31 8				-			-			33
	% missing	0.47				0.17			0.40			0.20
Sex	Number missing	-										.
	% missing	0.02										0.01
Weight	Number missing	6603	3412	1944	33	170	360	358	52		21	12,952
	% missing	100	100	100	2.76	28.72	100	100	20.97		1.41	79.05
Height	Number missing	6603	3412	1944	68	122	360	358			86	12,952
	% missing	100	100	100	5.69	20.61	100	100			5.78	79.05
BMI	Number missing	6603	217	293	113	239	360	358	52		89	8323
	% missing	100	6.36	15.07	9.47	40.37	100	100	20.97		5.98	50.80
Lives alone	Number missing	49	3412	1944		592	360	358	248	187	1498	8638
	% missing	0.74	100	100		100	100	100	100	100	100	52.72
Smoking	Number missing	14	59	1944				358				2374
	% missing	0.21	1.73	100				100				14.49

		Studies										
		Abbott <i>et al.</i> , 2002 ³	Leese <i>et al.</i> , 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford e <i>t al.</i> , 2011 ⁵	Young <i>et al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et al., 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko et al., 2006 ⁴⁹	Total
Alcohol	Number missing	8	3412	1944		592	360	358			50	6753
	% missing	0.58	100	100		100	100	100			3.36	41.21
HbA _{1c}	Number missing	6603	48	166	128	227		357	248		18	7795
	% missing	100	1.41	8.54	10.73	38.34		100	100		1.21	47.57
Insulin treatment	Number missing	10						357	248		–	616
	% missing	0.15						100	100		0.07	3.76
Diabetes type	Number missing	52	3412		1193	19						4676
	% missing	0.79	100		100	3.21						28.54
Diabetes duration	Number missing	с С	10	612	2	39			—		–	689
(tull years)	% missing	0.50	0.29	31.48	0.17	6.59			0.40		0.07	4.26
Eye problems	Number missing	57	3412	1944		592		357	248	187	20	6817
	% missing	0.86	100	100		100		100	100	100	1.34	41.61
Eye problems (retinopathy)	Number missing	6603	3412		1193	592		357		15	4	12,176
	% missing	100	100		100	100		100		8.02	0.27	74.31
Kidney problems	Number missing	109	1291		148	366		357		9	71	2348
	% missing	1.65	37.84		12.41	61.82		100		3.21	4.77	14.33
												continued

		Studies										
		Abbott e <i>t al.</i> , 2002³	Leese <i>et al.</i> , 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford et al., 2011 ⁵	Young <i>et al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et <i>al.</i> , 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko <i>et al.</i> , 2006 ⁴⁹	Total
Monofilament	Number missing	125	2	1944	13	592			m		48	2727
	% missing	1.89	0.06	100	1.09	100			1.21		3.22	16.64
Pulses	Number missing	m	76	1944				357	2	187	115	2684
	% missing	0.05	2.23	100				100	0.81	100	7.72	16.38
Pinprick	Number missing	11	3412	1944		592	360	357	248	187	1489	8600
	% missing	0.17	100	100		100	100	100	100	100	100	52.49
VPT: tuning fork	Number missing	œ	3412	1944		592	189	357	248	187	727	7664
	% missing	0.12	100	100		100	52.50	100	100	100	48.82	46.77
VPT: biothesiometer	Number missing	6603	3412		-		360	357	2		1055	11,790
	% missing	100	100		0.08		100	100	0.81		70.85	71.96
VPT: combined	Number missing	œ	3412	1944	-	0	189	357	2	187	293	4261
	% missing	0.12	100	100	0.08		52.50	100	0.81	100	19.68	26.01
Ankle reflexes (tendon	Number missing	87	3412	1944		592	190	357	248	187	24	7041
hammer)	% missing	1.32	100	100		100	52.78	100	100	100	1.61	42.97

TABLE 3 Numbers and percentages of missing data per variables and by study (continued)

DATA CLEANING AND PATTERN OF MISSINGNESS

		Studies										
		Abbott et al., 2002 ³	Leese <i>et al.</i> , 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford et <i>al.</i> , 2011 ⁵	Young et <i>al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et <i>al.</i> , 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko <i>et al.</i> , 2006 ⁴⁹	Total
Temperature sensation	Number missing	73	3412	1944		592	360	357	248	187	1489	8662
(hot, cold)	% missing	1.11	100	100		100	100	100	100	100	100	52.87
ABI	Number missing	6603	3412	1944	223	66	360	169	248	m		13,028
	% missing	100	100	100	18.69	11.15	100	47.34	100	1.60		79.51
ddd	Number missing	6603	3412	1944	109	592	360	357	6	2	1489	14,877
	% missing	100	100	100	9.14	100	100	100	3.63	1.07	100	90.80
Foot deformity	Number missing	19		1944		592			248		2	2805
	% missing	0.29		100		100			100		0.13	17.12

Chapter 10 Patients with diabetes: description

Demographics, anthropometrics and lifestyle

Appendix 6 shows the demographic, anthropometric and lifestyle profile of the diabetic population per study. The overall average age was 63 years, ranging from 54 and 55 years in the two earliest studies,^{74,75} to 71 years in the study by Crawford *et al.*⁵ *Figure 3* shows the similar distribution of age per study, with higher modes for the more recent studies by Monami⁷² and Crawford.⁵ The overall percentage of men was 58% and varied from 44% to 57% for most studies, but was 98% in the study by Boyko *et al.*⁴⁹

Average weight and height were recorded for only four studies, with BMI recorded more commonly. The overall mean weight and height were 89 kg and 171 cm, respectively. The distributions of weight and height were very similar across studies, although the patients in the study by Young *et al.*⁷⁵ were slightly lighter. Mean BMI ranged from 27 kg/m² to 31 kg/m², with an overall average of 30 kg/m² just at the threshold for obesity. *Figure 4* shows the similar distribution of BMI per study. Most patients had a BMI between 20 kg/m² and 40 kg/m², with few cases of extreme and malignant obesity.

The studies by Abbott *et al.*³ and Crawford *et al.*⁵ observed the proportion of diabetic patients living alone to be 22% and 29%, respectively. Smoking and alcohol consumption were heterogeneous across studies; 19–81% of patients had ever smoked and 17–55% were consuming alcohol. For most studies, around 50% or more of the patients had a history of smoking, and the trends were similar for alcohol consumption.

FIGURE 3 Distribution of age per study.

FIGURE 4 Distribution of BMI per study.

Diabetes and comorbidities

Appendix 7 shows the diabetic, eye and renal profile of the diabetic population per study. The majority of patients had type 2 diabetes. Three studies focused on patients with type 2 diabetes only; in the remaining studies the proportion of patients with type 2 diabetes was between 61% and 98%. Overall, type 1 diabetes accounted for about 9% of recorded types of diabetes. Insulin treatment accounted mostly for 20–40% of each diabetic population. Overall, the average diabetes duration was 9 years and was disparate across studies, average duration ranging from 7 to 16 years. *Figure 5* shows that the distribution of diabetes duration per study was similar overall. HbA_{1c} was, on average, 8% in each study apart from the studies by Young *et al.*⁷⁵ (11%), Kästenbauer *et al.*⁶² (10%) and Boyko *et al.*⁴⁹ (10%).

Four studies recorded visual impairment and/or blindness with heterogeneous results. Retinopathy was collected for four studies and recorded diagnoses ranged from 9% to 49% of the population. Renal problems were collected for most studies but in various ways. Nephropathy accounted for 2% and 17% of the population in two studies, stage 3–5 CKD accounted for 13–37% of the population in two studies, and end-stage renal failure for 2% and 4% of the population in another two studies.

FIGURE 5 Distribution of diabetes duration per study.

Foot measurements by study

Appendix 8 presents the descriptive statistics of 10 foot measures per study. Insensitivity to monofilament, pulses, VPT and any kind of foot deformity were the most frequently collected variables. The proportion of abnormal results varied across studies; the proportion of patients insensitive to monofilament in any foot ranged from 7% to 76%. The proportion of patients with no pulses in any foot ranged from 3% to 30%, and the proportion with abnormal VPT ranged from 25% to 95%. The proportion of patients with abnormal ABI ranged from 25% to 78%, and the proportion with any foot deformity ranged from 4% to 80%. Abnormal temperature sensation accounted for 21% and 33% of the diabetic population in the studies by Abbott *et al.*³ and Crawford *et al.*,⁵ respectively. The same studies had 33% and 50% of patients, respectively, with abnormal pinprick test. Abnormal ankle reflexes were recorded in 50% or more of patients for three studies, and PPP was recorded in about half of the patients in the same studies.

Chapter 11 Common variables

he data dictionary relating to these tables can be found in *Appendix* 9. The variables common to the included studies can be found in *Table 4*.

All data were analysed with SAS 9.3 (www.sas.com) and R.2.13.1 (cran.r-project.org/). Logistic regression analyses were carried out using SAS PROC LOGISTIC; meta-analyses were performed using an edited version of the metagen function in the R meta package; and multiple imputation was carried out with the R MICE package.

	Abbott <i>et al.</i> , 2002³	Leese <i>et al.</i> , 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford et <i>al.</i> , 2011 ⁵	Young <i>et al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et <i>al.</i> , 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko <i>et al.</i> , 2006 ⁴⁹	Total
Publication information											
Year of publication	2002	2011	2009	2011	1994	2010	1992	2000	2001	2006	
Level of analysis							Patient		Visit		
Number of patients	6613	3719	1945	1192	469	360	358	248	187	1536	16,627
Demographics, anthropometr	ics, lifestyle	0									
Age	>	>	`	`	>	`	`	>	`	>	10
Sex	>	>	`	`	>	`	`	>	`	>	10
Weight				>	>			\$	>	>	ъ
Height				>	>			\$	>	>	D
BMI		>	`	`	>			\$	`	>	7
Lives alone	>			`							2
Smoking	>	>		`	>	`		>	`	>	œ
Alcohol	\$			`	>			\$	`	>	9
Diabetes											
HbA _{1c}		>	`	`	>	`			`	>	7
Insulin treatment	>	>	`	>	>	`			`	>	Ø
Diabetes type	>		`		>	`	🗸 (type 2)	>	🗸 (type 2)	>	Ø
Diabetes duration	>	>	`	>	>	`	>	>	>	>	10
Eye problems	>	>	`	>		`		>	>	>	[∞]
Kidney problems	>	`	`	`	`	`		`	`	>	6

TABLE 4 Common variables by study
	Abbott e <i>t al.</i> , 2002 ³	Leese et al., 2011 ⁴⁷	Monami e <i>t al.</i> , 2009 ⁷²	Crawford et <i>al.</i> , 2011 ⁵	Young <i>et al.,</i> 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et al., 1992 ⁷⁴	Pham <i>et al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko et al., 2006 ⁴⁹	Total
Foot measurements											
Monofilament	`	>		>		`	>	>	`	>	œ
Pulses	>	>		>	>	`		>		>	7
Pinprick	`			>							2
VPT: tuning fork	`			>		`				>	4
VPT: biothesiometer			>	>	>			>	`	>	9
Ankle reflexes (tendon hammer)	>			`		`					m
Temperature sensation	`			>							2
ABI				>	>		>		>	>	ß
Ррр				>				>	`		m
Foot deformity	`	>		~		`	>		^	>	7
History and outcome											
Prior ulcer	`	>	>	>	>	`	>	>	0	>	10
Prior amputation	>	>		`		`	\$		0	>	7
Ulcer outcome	>	>	`	`	>	`	`	>	`	>	10
Amputation outcome	>	>					\$		`	>	Ъ
Death	\$	>	`	`	>		`	>	`	\$	6

Chapter 12 Univariate meta-analysis of the data sets: suitability of studies for meta-analysis

The purpose of the univariate meta-analyses was to explore potential differences between the data sets, assess heterogeneity and facilitate discussion at the international meeting of clinical and methodological co-authors. For each candidate predictor, a logistic regression analysis with ulceration as outcome was undertaken in each of the studies (see *Table 4*). The resulting ORs were then used in a generic inverse variance meta-analysis. ORs were displayed on forest plots and discussed at the meeting.

Forest plots with ORs for the following 24 variables were presented (see *Appendix 10*): age, sex, BMI, smoking, alcohol, HbA_{1c}, insulin regimen, duration of diabetes, eye problems, kidney problems, monofilament, pulses, tuning fork, biothesiometer, ankle reflexes, ABI, PPP, prior ulcer, prior amputation, foot deformity, ethnicity, living alone, pinprick test and temperature test.

The following variables were rejected for being included in fewer than three studies: ethnicity, living alone, pinprick test and temperature test. This left 20 candidate predictors. The following variables – eye problems, PPP and foot deformity – were rejected for being inconsistently defined across data sets, leaving 17 candidate predictors. Owing to high similarity the following variables were combined: tuning fork and biothesiometer, as both measure vibration perception; and prior ulcer and amputation, as both indicate a prior tendency to ulcerate. This left 15 candidate predictors.

We considered that the foot sensation tests would often be measuring the same underlying neurological impairment. From a statistical viewpoint, there are challenges to including highly correlated variables in one statistical model because it becomes difficult to assess the relationships between predictor variables and outcome. It was therefore deemed preferable to include fewer rather than more tests of foot sensation. It was also preferable to use tests that had been collected by more studies. Monofilaments, pulses and VPT (by either tuning fork or biothesiometer) had been collected in six studies, ABIs in four studies and ankle reflexes in three studies. Therefore, monofilaments, pulses and VPT were used in preference to the other tests, leaving 13 candidate predictors.

Some variables appeared to have complex relationships with ulceration outcome, namely BMI, smoking and alcohol. As discussed above (see *Chapter 3*, *Choice of predictors*), a high BMI is generally associated with worse health outcomes, but, for some diabetic patients, a low BMI can be an indication of weight loss as a result of a diabetes-related problem such as kidney disease. In addition, smoking and alcohol seemed to be protective against ulceration in some studies and predictive of ulceration in others. This may be another example of the so-called smoker's paradox.⁷⁷ At our international collaborators' meeting, there was some speculation about the biological effects of nicotine that could possibly help protect against diabetic foot disease, and it is also possible to speculate that both smoking and drinking alcohol could be associated with another variable that is genuinely protective against ulceration, for example younger age. However, given that the aim of these analyses is to produce a simple, parsimonious model that may be readily used in clinical contexts for screening, interaction terms that could be used to explore the relationships between BMI, smoking and drinking with ulceration were not utilised, although this could, of course, be an item for further research.

This left 10 variables: age, sex, duration of diabetes, monofilaments, pulses, insulin regime, kidney problems, VPT, HbA_{1c} and previous history of either amputation or ulceration. The univariate forest plots for these showed some degree of heterogeneity, as expected from clinical knowledge of the individual studies. Nonetheless, most of the forest plots have overlapping CIs for most of the studies, although there are some exceptions. We examined the forest plots together with the *I*²- and τ -statistics and concluded that the extent of heterogeneity, although present, did not preclude meta-analyses of multivariable estimates. We noted that further assessment of heterogeneity would be done for the multivariable meta-analyses, and where necessary, results would be interpreted cautiously.

Chapter 13 Multivariable meta-analysis: the final model

Primary meta-analysis

The primary meta-analysis included age, sex, duration of diabetes, monofilaments and pulses as predictors. The analysis was repeated twice, once for patients with no previous history of foot ulceration or LEA (*Table 5*) and again for all patients, including those with a previous history (*Table 6*).

In meta-analysis, it is desirable for valid estimates to exhibit low heterogeneity. For example, the OR for previous history in *Table 6* below may not be generalisable, as the high estimates of heterogeneity ($l^2 = 94.2\%$, $\tau = 1.134$) and the forest plots (see *Figure 17*) suggest that the OR varies from study to study to an extent that rules out a valid meta-analysis.

The flow diagram below (Figure 6) shows the number of patients involved throughout the review process.

Predictor	OR	95% CI		
Age	1.008	0.995 to 1.021	29.8%	0
Duration of diabetes	1.029	1.017 to 1.04	4.9%	0
Monofilament	3.438	2.772 to 4.264	0%	0
Pulses	2.605	1.808 to 3.754	42.7%	0.054
Sex (female)	0.841	0.682 to 1.037	0%	0

TABLE 5 Results of the primary meta-analyses for patients without history of ulceration or amputation

TABLE 6 Results of the primary meta-analyses for all patients

Predictor	OR	95% Cl	l ²	τ
Age	1.005	0.994 to 1.016	37.4%	0
Duration of diabetes	1.024	1.011 to 1.036	38.1%	0
Monofilament	3.184	2.654 to 3.82	0%	0
Pulses	1.968	1.624 to 2.386	1.6%	0.001
Sex (female)	0.743	0.598 to 0.922	20.7%	0.013
Previous history	6.589	2.488 to 17.45	94.2%	1.134

FIGURE 6 Flow diagram of patients in the IPD meta-analysis.

The independent contribution of tests, symptoms and signs to the prediction of foot ulceration risk assessment procedures in people with no history of ulceration or lower-extremity amputation

The following graphs show pooled estimates for the prognostic utility of age (*Figure 7*), an increase of 1 year's duration of diabetes (*Figure 8*), the inability to feel a 10-g monofilament (*Figure 9*), one absent pedal pulse (*Figure 10*) and sex (*Figure 11*).

FIGURE 7 Pooled estimates for age in people with no history of ulceration or amputation (model adjusted for sex, duration of diabetes, inability to feel a 10-g monofilament and absent pedal pulses). The OR of 1.008 (95% CI 0.995 to 1.021) indicates that age is not predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 29.8\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 0.984 (95% CI 0.965 to 1.003).

FIGURE 8 Pooled estimates for an increase of 1 year's duration of diabetes in people with no history of ulceration or amputation (model adjusted for age, sex, inability to feel a 10-g monofilament and absent pedal pulses). The OR of 1.029 (95% Cl 1.017 to 1.04) indicates an increase of 1 year's duration of diabetes is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 4.9\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 0.970 (95% Cl 0.954 to 0.987).

FIGURE 9 Pooled estimates for the inability to feel a 10-g monofilament in people with no history of ulceration or amputation (model adjusted for age, sex, duration of diabetes and absent pedal pulse). The OR of 3.438 (95% CI 2.772 to 4.264) indicates that the inability to feel a 10-g monofilament is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 0\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 3.913 (95% CI 2.581 to 5.933).

FIGURE 10 Pooled estimates of one absent pedal pulse in people with no history of ulceration or amputation (model adjusted for age, sex, duration of diabetes and inability to feel a 10-g monofilament). The OR of 2.605 (95% CI 1.808 to 3.754) indicates that the absence of at least one pedal pulse is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 42.7\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 1.416 (95% CI 0.466 to 4.301).

FIGURE 11 Pooled estimates of sex in people with no history of ulceration or amputation (model adjusted for age, duration of diabetes, inability to feel a 10-g monofilament and absent pedal pulses). The OR of 0.841 (95% CI 0.682 to 1.037) does not indicate that sex is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 0.\%$ External validation using Boyko *et al.* 2006⁴⁹ data: OR 1.303 (95% CI 0.282 to 6.022).

The independent contribution of tests, symptoms and signs in the total individual patient data population

The following graphs show pooled estimates for the prognostic utility of age (*Figure 12*), an increase of a 1 year duration of diabetes (*Figure 13*), the inability to feel a 10-g monofilament (*Figure 14*), one absent pedal pulse (*Figure 15*), sex (*Figure 16*) and previous history of foot ulceration or LEA (*Figure 17*).

FIGURE 12 Pooled estimates for age in the total IPD population (model adjusted for sex, duration of diabetes, inability to feel a 10-g monofilament, absent pedal pulses and previous history of foot ulceration or amputation). The OR of 1.005 (95% CI 0.994 to 1.016) indicates that age is not predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 37.4\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 0.993 (95% CI 0.977 to 1.009).

FIGURE 13 Pooled estimates for an increase of 1 year's duration of diabetes in the total IPD population (model adjusted for age, sex, inability to feel a 10-g monofilament, absent pedal pulses and previous history of foot ulceration or amputation). The OR of 1.024 (95% CI 1.011 to 1.036) indicates an increased duration of diabetes is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 38.1\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 0.981 (95% CI 0.968 to 0.994).

FIGURE 14 Pooled estimates for the inability to feel a 10-g monofilament in the total IPD population (model adjusted for age, sex, duration of diabetes, absent pedal pulses and previous history of foot ulceration or amputation). The OR of 3.184 (95% CI 2.654 to 3.82) indicates that an inability to feel a 10-g monofilament is predictive of diabetes-related foot ulceration. The observed heterogeneity was P = 0%. External validation using Boyko *et al.* 2006⁴⁹ data: OR 3.489 (95% CI 2.486 to 4.896).

FIGURE 15 Forest plot showing pooled estimates for one absent pedal pulses in the total IPD population (model adjusted for age, sex, duration of diabetes, inability to feel a 10-g monofilament and previous history of foot ulceration or amputation). The OR of 1.968 (95% CI 1.624 to 2.386) indicates that the absence of a pedal pulse is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 1.6\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 2.557 (95% CI 1.220 to 5.361).

FIGURE 16 Pooled estimates for sex in the total IPD population (model adjusted for age, duration of diabetes, inability to feel a 10-g monofilament, absent pedal pulses and previous history of foot ulceration or amputation). The OR of 0.743 (95% CI 0.598 to 0.922) indicates male sex to be predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 20.7\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 1.491 (95% CI 0.418 to 5.317).

FIGURE 17 Pooled estimates for previous history of LEA in the total IPD population. (Model adjusted for age, sex, duration of diabetes, inability to feel a 10-g monofilament and absent pedal pulses.) The OR of 6.589 (95% CI 2.488 to 17.454) indicates that a previous history of foot ulceration or LEA is predictive of diabetes-related foot ulceration. The observed heterogeneity was $l^2 = 94.2\%$. External validation using Boyko *et al.* 2006⁴⁹ data: OR 2.979 (95% CI 2.146 to 4.135).

The absence of heterogeneity and consistency of the estimates for the inability to feel a 10-g monofilament was noted across a number of models and between the two patient groups (see *Appendix 11*). Out of the 14 meta-analyses that included monofilament as a predictor, only two did not estimate the heterogeneity to be zero, and these two studies had low heterogeneity estimates (*Table 7*). Some of these ORs are based on more data than others – depending on the variables in the model and those available in the individual studies. The OR for insensitivity to a 10-g monofilament is around 3.5, despite the test being conducted in a number of different ways by the individual study investigators, different anatomical sites on the foot being used and the number of sites varying. We had also expected to observe heterogeneity owing to other methodological and patient cohort differences.

This consistency of results across individual studies and meta-analyses for the 10-g monofilament test is not observed for any other predictive variable, and this makes it harder to reach conclusions about their true value in risk assessment. All predictive factors were subject to some heterogeneity, which affects the generalisability of their estimates. All forest plots, with ORs for the individual studies and meta-analyses, together with l^2 and τ estimates of heterogeneity, can be found in *Appendix 11*.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Other model predictors	Patient group	OR	95% CI	P	τ
Age, duration, sex	No history	3.823	3.106 to 4.705	0%	0
Age, duration, sex, previous history	All	3.444	2.891 to 4.103	0%	0
Age, duration, pulses, sex	No history	3.438	2.772 to 4.264	0%	0
Age, duration, pulses, previous history	All	3.184	2.654 to 3.82	0%	0
Age, duration, insulin, sex	No history	3.763	2.837 to 4.991	0%	0
Age, duration, insulin, sex, previous history	All	3.189	2.524 to 4.028	0%	0
Age, duration, kidney problems, sex	No history	4.008	3.17 to 5.069	0%	0
Age, duration, kidney problems, sex, previous history	All	3.435	2.821 to 4.183	0%	0
Age, duration, pulses, sex, VPT	No history	2.501	1.844 to 3.393	0%	0
Age, duration, pulses, sex, VPT, previous history	All	2.003	1.333 to 3.011	27.9%	0.055
Age, duration, pulses, sex, HbA $_{1c}$	No history	3.350	2.488 to 4.512	0%	0
Age, duration, pulses, sex, HbA _{1c} , previous history	All	2.770	1.938 to 3.960	28.9%	0.033
Age, duration, pulses, sex, ABI	No history	2.635	0.824 to 8.426	0%	0
Age, duration, pulses, sex, ABI, previous history	All	2.657	1.127 to 6.261	0%	0

TABLE 7 Monofilament results for all models

We calculated an AUC and Brier score for the studies in model 4 for the total population and for patients with no previous history of foot ulceration or LEAs. The tables in *Appendix 12* show AUC values of between 0.71832 and 0.8654 for the total population, and between 0.70436 and 0.77636 in the total population minus those without a history of a foot ulcer or LEA, thus showing that the model possesses good discrimination.

The low Brier scores indicate that the model is also well calibrated (total population = 0.03704 to 0.18342; total population minus those without a history of a foot ulcer or LEA = 0.01214 to 0.14659).

Imputation analysis: final model

The missing data patterns of the common harmonised variables have been assessed to be MAR. We could therefore apply the MICE method. In this section, we focus on imputing the set of variables selected in the final model and these are: age, sex, duration of diabetes, monofilament, pulses and previous history of ulcer or amputation. The data set to be imputed also includes the following outcome: ulcer. The set of variables for the final model was collected in five studies.^{3,5,47,61,73}

An initial step prior to any imputation for each data set is to look at the missing data patterns of the specified set of variables. *Table 8* provides such patterns by study. Group 1 represents the 'complete case' where a patient has no missing data in any of the variables specified. Groups 2 to 9 represent patients with one or two missing variables. Apart from the study by Monteiro-Soares and Dinis-Ribeiro,⁶¹ which had no case of missing data for the specified set of variables, all studies had between 1% and 3% of overall missing data.

Because of the absence of missing data for the Monteiro-Soares and Dinis-Ribeiro⁶¹ study, there was no need for the use of multiple imputation. We applied MICE in the remaining four studies, where there were missing data, although the percentage of missing data was very low. We created 20 imputed data sets, recalculated the logistic regression estimates and pooled the estimates for each study. ORs and 95% CIs were calculated from the logistic regression estimates and standard errors and results were compared before and after imputation.

							Study									
							Abbott ∉ 2002³	et al.,	Crawfd et <i>al.</i> ,	ord 2011 ⁵	Monteiro-Soare and Dinis-Ribeir 2010 ⁶¹	ν ό	Pham <i>et i</i> 2000 ⁷³	al.,	Leese <i>et</i> 2011 ⁴⁷	al.,
Ger	Age	Sex	Diabetes duration	Monofilament	Pulses	Previous history						%		%		
	×	×	×	×	×	×	6415	97.15	1178	98.74	360 1	100	243 9	97.98	3326	97.48
	×	×	×		×	×	121	1.83	13	1.09			1	.4		
	×	×	×			×	m	0.05					2 0	.81	2	0.06
	×	×	×	×		×									74	2.17
	×	×		×	×	×	31	0.47	2	0.17			1	.4	10	0.29
	×	×			×	×	1	0.02								
	×		×	×	×	×	-	0.02								

TABLE 8 Missing data patterns for final model variables by study

© Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

52 2

86

2.01

ഹ

0

0

1.26

15

2.86

188

0.02

×

0.45

30 -

× ×

×

× ×

× ᆇ

 $^{\circ}$ σ Total 2–9

0.4

There was little difference in point estimates between the ORs of the 'complete case' final model and the ORs of the final model with imputation (ORs not shown but available on request). Most of the differences between ORs were quasi null, which can be explained by the low percentage of overall missing data in each study. The wider differences were seen in the Abbott *et al.*³ study for the previous ulcer or amputation estimates (OR = 8.21 before, OR = 8.37 after, difference –0.152) and in the Pham *et al.*⁷³ study for the monofilament estimates (OR = 3.15 before, OR = 3.06 after, difference 0.083). *Table 9* summarises and quantifies the differences between the ORs of the final model with multiple imputation and the ORs of the 'complete case' final model.

The small differences observed in ORs enabled us to conclude that there was little bias attributable to missing data in our model, which is very likely to be related to a very small proportion of missing data in the original data sets.

Validation of the primary meta-analysis

We compared the ORs estimated in the primary meta-analysis with those in an independent study.⁴⁹ The validation study was different in a key characteristic, which might explain some of the differences found below, namely the fact that the validation study's patient sample was 98.3% male.

However, the validation results for inability to feel a 10-g monofilament, absent pulses, and previous history of ulceration mostly converge, particularly those for the inability to feel a 10-g monofilament, where the meta-analysis and validation estimates are very close (*Tables 10* and *11*).

The results in the validation data set for duration of diabetes were unexpected, where a longer duration of diabetes was protective against ulceration. The results for sex were also different from the results for the studies in the meta-analysis, but, because there were very few women in the validation data set, these estimates are not as reliable as those in the meta-analysis.

Despite these differences between the validation data set and the meta-analysis, the results for the monofilament test are remarkably consistent and provide evidence that the OR for monofilaments is generalisable across a variety of clinical contexts.

	Study			
Predictors in final model	Abbott <i>et al.</i> , 2002 ³	Crawford <i>et al.</i> , 2011⁵	Pham <i>et al.,</i> 2000 ⁷³	Leese <i>et al.,</i> 2011 ⁴⁷
Age	0.000	0.000	0.000	0.000
Sex	0.009	-0.001	-0.005	0.001
Duration of diabetes	0.000	0.000	0.000	0.000
Previous ulcer or amputation	0.013	-0.012	0.083	-0.008
Monofilament	0.013	0.012	-0.019	-0.003
Pulses	-0.152	-0.011	-0.067	-0.054

TABLE 9	Difference ir	n estimates	(ORs) betwe	en the fin	al model	with multiple	imputation	and the	'complete case'
final mo	del								

Predictor	Source	OR	95% CI
Age	Meta-analysis	1.008	0.995 to 1.021
	Boyko <i>et al.</i> , 2006 ⁴⁹	0.984	0.965 to 1.003
Duration of diabetes	Meta-analysis	1.029	1.017 to 1.040
	Boyko <i>et al.</i> , 2006 ⁴⁹	0.970	0.954 to 0.987
Inability to feel a 10-g monofilament	Meta-analysis	3.438	2.772 to 4.264
	Boyko <i>et al.</i> , 2006 ⁴⁹	3.913	2.581 to 5.933
Absent pedal pulses	Meta-analysis	2.605	1.808 to 3.754
	Boyko <i>et al.</i> , 2006 ⁴⁹	1.416	0.466 to 4.301
Sex (female)	Meta-analysis	0.841	0.682 to 1.037
	Boyko <i>et al.</i> , 2006 ⁴⁹	1.303	0.282 to 6.022

TABLE 10 Comparison of results from the primary meta-analysis and validation data set for patients with no history of ulceration or amputation

TABLE 11 Comparison of results from the primary meta-analysis and validation data set for all patients regardless of history of ulceration or amputation

Predictor	Source	OR	95% CI
Age	Meta-analysis	1.005	0.994 to 1.016
	Boyko <i>et al.</i> , 2006 ⁴⁹	0.993	0.977 to 1.009
Duration of diabetes	Meta-analysis	1.024	1.011 to 1.036
	Boyko <i>et al.</i> , 2006 ⁴⁹	0.981	0.968 to 0.994
Inability to feel a 10-g monofilament	Meta-analysis	3.184	2.654 to 3.82
	Boyko <i>et al.</i> , 2006 ⁴⁹	3.489	2.486 to 4.896
Absent pedal pulses	Meta-analysis	1.968	1.624 to 2.386
	Boyko <i>et al.</i> , 2006 ⁴⁹	2.557	1.220 to 5.361
Sex (female)	Meta-analysis	0.743	0.598 to 0.922
	Boyko <i>et al.</i> , 2006 ⁴⁹	1.491	0.418 to 5.317
Previous history	Meta-analysis	6.589	2.488 to 17.45
	Boyko <i>et al.</i> , 2006 ⁴⁹	2.979	2.146 to 4.135

Chapter 14 Secondary analyses

A s part of the process of disseminating the findings of the systematic review and meta-analyses, we presented the preliminary analyses at two scientific seminars in the UK during 2014.^{78,79} In response to questions raised by seminar participants about the value of using less or more tests (or signs), two additional (secondary) analyses have been performed.

What is the value of other commonly used tests not included in the models, particularly tests that permit patients to influence outcome?

Vibration perception threshold

Vibration perception threshold is often used in foot risk assessments for people with diabetes. A range of equipment can be used, including biothesiometers, neurothesiometers and tuning forks. These give continuous data (biothesiometers, neurothesiometers and calibrated tuning forks) or binary data (standard tuning forks).

We used data from four studies^{3,5,61,73} to calculate the predictiveness of VPT measured with any one of these types of tests. In the model, VPT is adjusted for age, sex, duration of diabetes, monofilament and pulses from study-level multivariable logistic regressions. The predictiveness of VPT in all patients – including those with a history of ulceration or amputation (n = 8003) – is shown in *Figure 18* (OR 3.026, 95% CI 1.353 to 6.765). A high level of heterogeneity is observed with an l^2 of 73.3%.

The predictiveness of VPT in 7370 people with no history of ulceration or amputation is shown in *Figure 19* (OR 2.294, 95% CI 1.189 to 4.426). A low level of heterogeneity is observed in this smaller population ($l^2 = 24.9\%$).

FIGURE 18 Predictiveness of VPT in all patients.

FIGURE 19 Predictiveness of VPT in 7370 people with no history of ulceration or amputation.

Glycohaemoglobin or glycated haemoglobin

The glycated haemoglobin test

Glycated haemoglobin is the most common blood test used to assess the amount of glucose carried on the red blood cells and its control is thought to improve patient outcomes such as neuropathy and retinopathy. HbA_{1c} was traditionally expressed as a percentage but the unit has changed to mmol/mol in accordance with the International Federation of Clinical Chemistry reference measurement procedure. Because glucose attaches to the haemoglobin molecule in the red blood cell, which has a life cycle of 100–120 days, the plasma HbA_{1c} represents a record of the plasma glucose level for approximately the previous 3 months. Normal levels of HbA_{1c} are 6.5–7% or 48–53 mmol/mol. Conversion tools are available to convert percentages into mmol/mol.⁸⁰

We used data from three studies^{5,46,47,61} to calculate the predictiveness of an increase of 1% HbA_{1c}. HbA_{1c} is adjusted for age, sex, duration of diabetes, monofilament and pulses in the meta-analyses of estimates from study-level multivariable logistic regressions.

The predictiveness of a 1% increase in HbA_{1c} in all patients – including those with a history of ulceration or amputation (n = 4979) – is shown in *Figure 20* (OR 1.218, 95% CI 0.969 to 1.532). A high level of heterogeneity is observed ($l^2 = 79.8$).

The predictiveness of a 1% increase in HbA_{1c} in 4595 people with no history of ulceration or amputation is shown in *Figure 21* (OR 1.201, 95% CI 0.971 to 1.178). A high level of heterogeneity is observed ($l^2 = 79.8\%$).

FIGURE 20 Predictiveness of a 1% increase in HbA_{1c} in all patients.

FIGURE 21 Predictiveness of a 1% increase in HbA_{1c} in 4595 people with no history of ulceration or amputation.

Monofilaments plus or minus absent pulses

Does the failure to feel a 10-g monofilament test plus absent pedal pulses identify those at risk of foot ulceration better than the monofilament test alone?

A comparison of model 2 and model 4

Models 2 and 4 included the same predictors, namely age, sex, duration of diabetes and insensitivity to monofilaments, although model 4 also included presence/absence of pulses. Our comparison of these two models is restricted to their performance in patients without a history of previous ulceration or amputation.

Various statistics are available for the comparison of regression models to assess different aspects of model performance, such as discrimination or calibration. However, in this clinical context, it is important to consider the consequences to the patient of a wrong prediction. A patient wrongfully predicted to be ulcer free who goes on to ulcerate will bear a much greater cost, which may include pain, loss of mobility, infection and amputation, than a patient wrongfully predicted to ulcerate who does not, for whom the consequences would be higher levels of foot and general diabetes health care. A full cost-effectiveness analysis is beyond the scope of this project, but below we examine predictions of ulceration in patients who do and do not develop ulcers in two models. The natural statistical framework for such an exploration is sensitivity, specificity and receiver operating characteristic (ROC) curves.

Sensitivity is the proportion of times the model will correctly predict an ulcer outcome out of all patients who go on to develop an ulcer. Specificity is the proportion of times the model will correctly predict an ulcer-free outcome out of all patients who remain ulcer free. However, the logistic regression models used for the main analyses do not provide predictions of ulcer versus ulcer-free outcomes for the individual patients. Instead, they provide an individual probability of ulceration for each patient based on his or her age, sex, duration of diabetes, insensitivity to monofilaments, and, in the case of model 4, presence/ absence of pulses. These probabilities can then be used to make predictions about individual patients; predictions of ulceration could be applied to those with a small estimated probability of ulceration. This is a reasonable approach but requires a decision as to when the estimated probability, which may take any value between 0 and 1, becomes large enough that the prediction changes from ulcer free to ulceration. This point at which the prediction changes from one outcome to the other is known as the threshold. It is not possible to calculate a model's sensitivity or specificity unless a threshold is used.

Choosing the value of this threshold is not a trivial task. Sensitivity and specificity have an inverse relationship as the threshold varies, so choosing a threshold to raise sensitivity will lower specificity and vice versa. For the prediction of foot ulcers in this clinical context, it would be preferable to favour sensitivity over specificity, but the choice of threshold is still somewhat arbitrary, as it is hard to judge to what extent sensitivity should be favoured. Given that the choice of any particular estimated probability as the threshold is hard to justify, we decided to use ROC curves. ROC curves are a way of comparing the sensitivity and specificity of a model without having to choose a threshold. The choice of threshold is avoided by using all possible thresholds. Each possible threshold is used to calculate the corresponding sensitivity and specificity. These sensitivity-specificity pairs are then plotted on a square graph. Traditionally, 1 minus specificity is plotted on the horizontal (x-)axis and sensitivity is plotted on the vertical (γ -)axis, resulting in a characteristic curve known as a ROC curve. ROC curves go from the bottom left-hand corner to the top right-hand corner. The ROC curve for a perfect model would go vertically from the bottom left corner to the top left corner, and then horizontally to the top right corner. The ROC for a model with no predictive value would go straight from the bottom left to top left corner in a line at 45 degrees. Most ROC curves are somewhere in between, bending towards but not reaching the top left-hand corner. Because ROC curves use all possible thresholds, they allow comparison of models at all levels of predicted probability of ulceration.

We used empirical ROC curves, where each sensitivity–specificity pair plotted on the graph is calculated directly from the data, with straight lines connecting the pairs. In these particular ROC curves, the bottom left-hand area shows the performance of the models in higher-risk patients, while the top right area shows the performance for lower-risk patients (*Figures 22–26* and *Table 12*).

A model with perfect discrimination would have an AUC of 1; a model that discriminates no better than chance would have an AUC of 0.5. The AUC may be interpreted as the probability that a patient who goes on to ulcerate will have a higher predicted probability than a patient who does not.

The only data set with which model 4 convincingly outperforms model 2 judging from the ROC curve and the AUC is taken from the Crawford *et al.*⁵ study. However, in this data set, only 14 patients without a previous history of ulceration or amputation went on to develop an ulcer. This means that all the sensitivity estimates are based on only 14 patients and are not highly reliable estimates. The data in the study by Pham *et al.*⁷³ also come from only 14 patients with no history who developed ulcers. The three larger data sets, with more patients who developed ulcers, suggest that the differences between models 2 and 4 are minimal, with ROC curves that largely overlap and similar AUCs. The closeness of the ROC curves for models 2 and 4 for the Abbott *et al.*,³ Monteiro-Soares and Dinis-Ribeiro,⁶¹ and Leese *et al.*⁴⁷ data sets suggests that the discrimination of the two models differs very little at all levels of risk. Consequently, these data, based on a large sample of patients (n = 10,375) recruited to three studies,^{3,47,61} do not indicate an advantage in using both the monofilament test and the 'absence of pulses' sign in assessing patients' risk of developing a foot ulcer in diabetes.

FIGURE 22 Receiver operating characteristic curves for models 2 and 4 when applied to the Abbott *et al.*³ data set in patients without previous history of ulceration or amputation.

FIGURE 23 Receiver operating characteristic curves for models 2 and 4 when applied to the Crawford *et al.*⁵ data set.

FIGURE 24 Receiver operating characteristic curves for models 2 and 4 when applied to the Monteiro-Soares and Dinis-Ribeiro⁶¹ data set in patients without previous history of ulceration or amputation.

FIGURE 25 Receiver operating characteristic curves for models 2 and 4 when applied to the Pham *et al.*⁷³ data set in patients without previous history of ulceration or amputation.

FIGURE 26 Receiver operating characteristic curves for models 2 and 4 when applied to the Leese *et al.*⁴⁷ data set in patients without previous history of ulceration or amputation.

TABLE 12 Area under the ROC curve for models 2 and 4

Data set	Model 2	Model 4
Abbott <i>et al.</i> , 2002 ³	0.684	0.692
Crawford <i>et al.</i> , 2011 ⁵	0.681	0.767
Leese <i>et al.</i> , 2011 ⁴⁷	0.759	0.759
Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	0.760	0.772
Pham <i>et al.</i> , 2000 ⁷³	0.623	0.573

Predictiveness of UK national and International Working group on the Diabetic Foot guidelines for foot ulceration in diabetes

There are two national clinical guidelines in use in the UK and one other issued by the International Working Group on the Diabetic Foot (IWGDF).^{15,16,81} These all recommend the classification of people with diabetes into low, increased (or moderate) and high risk as part of annual foot risk assessments. The Scottish Intercollegiate Guidelines Network (SIGN) and IWGDF guidelines also differ from those of the National Institute for Health and Care Excellence (NICE) in respect of the number of risk factors. In addition, the Scottish Clinical Information – Diabetes (SCI-Diabetes) foot risk stratification tool, which underpins the SIGN guidelines, also contains a 'traffic light' grading system (see *Appendix 13*).

Scottish Clinical Information – Diabetes algorithm

The SCI-Diabetes electronic decision support tool algorithm (*Figure 27*) underpinning recommendations in the SIGN 116 guideline¹⁵ differs from that in the traffic light depiction of the diabetic foot risk stratification and triage system in SIGN 116, and the latter is not intended to determine patients' risk score per se (Professor Graham Leese, Ninewells Hospital and Medical School, 2014, personal communication).

FIGURE 27 Scottish Clinical Information – Diabetes foot risk algorithm.

Diabetic foot risk stratification overall distribution in the individual patient data diabetic foot ulceration data sets

Data for these combinations of variables were available for four studies.^{3,5,47,61} A total of 11,568 diabetic patients had the necessary variables available at baseline to allocate their risk categories. Five studies^{62,72-75} did not collect these variables. *Table 13* shows the number and percentage of patients allocated to each category per study.

Table 14 shows the number and percentage of patients with no previous ulcer or amputation allocated to each category per study. Because all patients with a history of ulcer or amputation are categorised in the high category, the number of patients is naturally reduced in this category when those patients are excluded.

Foot ulcer and the diabetic foot risk stratification by study

Table 15 shows the total number of foot ulcers (outcome) per foot risk category pooled from each of the four studies. Within the high-, moderate- and low-risk categories, 15.5%, 3.0% and 1.9%, respectively, of the total population developed a foot ulcer. Of those 730 patients who developed a foot ulcer, 71.4% were in the high-risk category, 19.3% were in the moderate-risk category and 9.3% were in the low-risk category.

Table 16 shows the categories for 402 patients with no history of foot ulcer or amputation who developed a foot ulcer during the study period. The risk categories distribution of those who developed a foot ulcer but had no previous history is as follows: 48.0%, 35.1% and 16.9% in the high-, moderate- and low-risk categories, respectively.

TABLE 13 Diabetic foot risk categories by IPD–DFU studie
--

		Study				
SIGN category	Statistics	Abbott <i>et al.</i> , 2002³	Crawford e <i>t al.,</i> 2011⁵	Leese <i>et al.,</i> 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	2348 (35.6)	344 (28.8)	464 (13.6)	205 (56.9)	3361 (29.1)
Moderate	n (%)	3081 (46.7)	643 (53.9)	806 (23.6)	121 (33.6)	4651 (40.2)
Low	n (%)	1174 (17.8)	206 (17.3)	2142 (62.8)	34 (9.4)	3556 (30.7)
Total	Ν	6603	1193	3412	360	11,568

TABLE 14 Diabetic foot risk categories by IPD–DFU studies for those with no previous ulcer or amputation

		Study				
SIGN category	Statistics	Abbott <i>et al.</i> , 2002 ³	Crawford <i>et al.</i> , 2011⁵	Leese <i>et al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	2036 (32.4)	258 (23.3)	268 (8.3)	68 (30.5)	2630 (24.3)
Moderate	n (%)	3081 (49.0)	643 (58.1)	806 (25.1)	121 (54.3)	4651 (42.9)
Low	n (%)	1174 (18.7)	206 (18.6)	2142 (66.6)	34 (15.3)	3556 (32.8)
Total	Ν	6291	1107	3216	223	10,837

TABLE 15 Diabetic foot risk categories in the total population

		Foot ulcer		
SIGN category	Statistics	No	Yes	Total
High	n (% row) (% column)	2840 (84.5) (26.2)	521 (15.5) (71.4)	3361 (29.1)
Moderate	n (% row) (% column)	4510 (97.0) (41.6)	141 (3.0) (19.3)	4651 (40.2)
Low	n (%row) (% column)	3488 (98.1) (32.2)	68 (1.9) (9.3)	3556 (30.7)
Total	N (%)	10,838 (93.7)	730 (6.3)	11,568 (100)

TABLE 16 Diabetic foot risk categories for those with no previous ulcer or amputation

SIGN		Foot ulcer			
category	Statistics	No	Yes	Total	
High	n (% row) (% column)	2437 (92.7) (23.4)	193 (7.3) (48.0)	2630 (24.3)	
Moderate	n (% row) (% column)	4510 (97.0) (43.2)	141 (3.0) (35.1)	4651 (42.9)	
Low	n (% row) (% column)	3488 (98.1) (33.4)	68 (1.9) (16.9)	3556 (32.8)	
Total	N (% row)	10,435 96.3	402 (3.7)	10,837 (100)	

TABLE 17 Diabetic foot risk categories and number of foot ulcers by study for the whole population

		Study	Study					
SIGN category	Statistics	Abbott <i>et al.</i> , 2002³	Crawford <i>et al.</i> , 2011⁵	Leese <i>et al.,</i> 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total		
High	n (%)	220 (75.6)	18 (78.3)	195 (60.6)	88 (93.6)	521 (71.4)		
Moderate	n (%)	59 (20.3)	5 (21.7)	71 (22.1)	6 (6.4)	141 (19.3)		
Low	n (%)	12 (4.1)	0 (0.0)	56 (17.4)	0 (0.0)	68 (9.3)		
Total	Ν	291	23	322	94	730		

TABLE 18 Diabetic foot risk categories and number of foot ulcers by study for those with no history of ulcer or amputation

		Study				
SIGN category	Statistics	Abbott <i>et al.,</i> 2002 ³	Crawford <i>et al.,</i> 2011⁵	Leese <i>et al.,</i> 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	119 (62.6)	10 (66.7)	45 (26.2)	19 (76.0)	193 (48.0)
Moderate	n (%)	59 (31.1)	5 (33.3)	71 (41.3)	6 (24.0)	141 (35.1)
Low	n (%)	12 (6.3)	0 (0.0)	56 (32.6)	0 (0.0)	68 (16.9)
Total	Ν	190	15	172	25	402

Tables 17 and *18* detail the risk categories of those who developed a foot ulcer for each study. In two studies (Crawford *et al.*⁵ and Monteiro-Soares and Dinis-Ribeiro⁶¹), there were no patients in the 'low'-risk category.

Meta-analyses of the prognostic utility of the SCI-Diabetes foot risk stratification tool

Below we present meta-analyses of the prognostic utility of the high and moderate SCI-Diabetes risk classification in two populations of patients. In the first we include all patients from each of the four studies with corresponding variables (n = 11,568) and in the second we include the data from only those patients without a history of foot ulceration or amputation (n = 10,837).

The calculated estimates of effect (ORs) show the SCI-Diabetes high-risk category to be predictive of a foot ulcer in the total population (OR 11.2, 95% CI 5.7 to 21.8). The level of heterogeneity is high ($l^2 = 89.2\%$) (*Figure 28*).

Being classified in the moderate rather than the low SCI-Diabetes category was predictive of the development of a foot ulcer (pooled OR 2.7, 95% CI 1.5 to 5.1). A high level of heterogeneity is observed ($l^2 = 67.4\%$) (*Figure 29*).

Figure 30 shows a meta-analysis of data from people with no previous ulcer or amputation predicted by the SCI-Diabetes foot risk categories high versus moderate plus low. The OR of 4.5 (95% CI 3.3 to 6.2) shows that the risk classification tool is predictive in this population too, but it is much lower than that obtained in the meta-analysis including patients with a history of ulceration or amputation (see *Figure 28*). The heterogeneity is also much lower. (P = 33.2%).

Figure 31 shows the meta-analysis of data from people with no previous ulcer or amputation predicted by the SCI-Diabetes foot risk categories; moderate versus low. The OR exactly matches that calculated in the

Study	Estimate	Ν	umber of patients	Weighting
Abbott 2002 ³	6.092 (95% CI 4.638 to 8.002) -		6603	30.2%
Crawford 2011 ⁵	9.321 (95% Cl 3.432 to 25.313) ——		— 1193	18.5%
Monteiro-Soares 2010 ⁶¹	18.677 (95% CI 7.89 to 44.209)	8	360	20.8%
Leese 2011 ⁴⁶	16.101 (95% Cl 12.462 to 20.803)		3412	30.3%
	Summary 11.185 (95% CI 5.732 to 21.825) Heterogeneity: <i>I</i> ² =89.2%, τ ² =0.366			

FIGURE 28 Forest plot with ORs of the new foot ulcer predicted by the SCI-Diabetes foot risk categories (high vs. moderate + low).

FIGURE 29 Forest plot with ORs of the new foot ulcer predicted by the diabetic foot risk categories (moderate vs. low).

Study	Estimate		Number of p	atients	Weighting
Abbott 2002 ³	3.658 (95% Cl 2.713 to 4.932)			6291	45.5%
Crawford 2011 ⁵	6.809 (95% Cl 2.306 to 20.101) —			1107	7.6%
Monteiro-Soares 2010 ⁶¹	9.63 (95% Cl 3.64 to 25.476)		-8	223	9.2%
Leese 2011 ⁴⁶	4.483 (95% Cl 3.108 to 6.465)			3216	37.8%
	Summary 4.526 (95% Cl 3.305 to 6.197)	\diamond			
	Heterogeneity: l^2 =33.2%, τ^2 =0.033				
		OI	3		

FIGURE 30 Forest plot with ORs of the new foot ulcer (with no previous ulcer or amputation) predicted by the diabetic foot risk categories (high vs. moderate + low).

FIGURE 31 Forest plot with ORs of the new foot ulcer (with no previous ulcer or amputation) predicted by the diabetic foot risk categories (moderate vs. low).

meta-analysis of moderate versus low using data collected from the whole IPD population (i.e. including those with a history of ulceration or amputation) (OR 2.74, 95% CI 1.47 to 5.12) (see *Figure 29*). The same high level of heterogeneity is also observed.

Scottish Intercollegiate Guidelines Network 116: management of diabetic foot disease traffic light system

Categories are defined as follows:

- High: previous ulceration or amputation or more than one risk factor present (e.g. loss of sensation or signs of peripheral vascular disease with callus or deformity).
- Moderate: one risk factor present (e.g. loss of sensation or signs of peripheral vascular disease without callus or deformity).
- Low: no risk factor present (e.g. no loss of sensation, no signs of peripheral vascular disease and no other risk factors).

For a total of 11,755 diabetic patients from five studies, the necessary data were available to allocate them to the defined risk categories.

Foot ulcer

Table 19 shows the total number of new foot ulcers per diabetic foot risk categories for five studies together. Within the high-, moderate- and low-risk categories, 13.6%, 5.6% and 2.0% of patients, respectively, developed a foot ulcer. The analysis shows that 3496 patients were not categorised into any of the active/high, moderate or low definitions of risk, and use of this classification would mean that 14% of foot ulcers would be missed.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

SIGN risk category	New ulcer, <i>n</i> (%)		
Frequency	No	Yes	Total
Not classified	3391 (30.79)	105 (14.19)	3496 (29.74)
High	3153 (28.62)	497 (67.16)	3650 (31.05)
Moderate	1217 (11.05)	72 (9.73)	1289 (10.97)
Low	3254 (29.54)	66 (8.92)	3320 (28.24)
Total	1101 (93.70)	740 (6.30)	11,755 (100.00)

TABLE 19 Diabetic foot risk categories stated in the SIGN 116¹⁵ traffic light system for patients in five studies

The National Institute for Health and Care Excellence CG10 guidelines and the Quality and Outcomes Framework of the General Medical Contract

The primary care QOF of the GMC and the NICE CG10 guidelines define diabetic foot risk classification as follows:⁸¹

- low risk: normal sensation, palpable pulses
- increased risk: neuropathy or absent pulses
- high risk: neuropathy or absent pulses plus deformity or skin changes or previous ulcer.

Normal sensation is assessed using both monofilament and VPT.

Diabetic foot risk classification overall distribution in individual patient data diabetic foot ulceration by study

Within the assembled IPD data set the above data were available for four studies.^{3,5,46,47,61}

A total of 11,568 diabetic patients from four studies had the specific variables at baseline to allocate their data into NICE/QOF risk categories. *Table 20* shows the number of patients allocated to each category.

We also analysed data from a subgroup of 10,837 patients with no history of ulcer or amputation. *Table 21* shows the number and percentage of this subgroup of patients allocated to each category per study.

		Study				
NICE CG10 category	Statistics	Abbott <i>et al.</i> , 2002 ³	Crawford <i>et al.,</i> 2011⁵	Leese <i>et al.,</i> 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	2942 (44.6)	453 (38.0)	208 (6.1)	205 (56.9)	3808 (32.9)
Increased	n (%)	635 (9.6)	272 (22.8)	800 (23.4)	32 (8.9)	1739 (15.0)
Low	n (%)	3026 (45.8)	468 (39.2)	2404 (70.5)	123 (34.2)	6021 (52.0)
Total	Ν	6603	1193	3412	360	11,568

TABLE 20 Diabetic foot risk categories by IPD-DFU studies: total population
		Study				
NICE CG10 category	Statistics	Abbott <i>et al.</i> , 2002³	Crawford <i>et al.,</i> 2011⁵	Leese <i>et al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	2634 (41.9)	368 (33.2)	35 (1.1)	68 (30.5)	3105 (32.9)
Increased	n (%)	632 (10.1)	271 (24.5)	793 (24.7)	32 (14.4)	1728 (15.0)
Low	n (%)	3025 (48.1)	468 (42.3)	2388 (74.3)	123 (55.2)	6004 (52.0)
Total	Ν	6291	1107	3216	223	10,837

TABLE 21 Diabetic foot risk categories by IPD–DFU studies for those with no history of ulcer or amputation

Foot ulcer and the diabetic foot risk stratification by study

Table 22 shows the total number of new foot ulcers per diabetic foot risk categories for the four studies together. Within the high-, increased- and low-risk categories, 12.9%, 7.1% and 1.9%, respectively, developed a foot ulcer.

Table 23 shows that 402 patients with no history of ulcer or amputation developed a foot ulcer during their study. The percentage of those who developed a foot ulcer is reduced by more than half within the high category (5.5%) and very slightly in the increased category (6.9%) and low category (1.9%).

Tables 24 and 25 show the risk categories of the patients who developed a foot ulcer in each individual study. In the Crawford *et al.* study,⁵ none of the patients who developed a foot ulcer was categorised as being at low risk according to the NICE/QOF classification system.

TABLE 22	Diabetic foot ris	k categories for	^r patients who	developed a	foot ulcer: total	population
----------	-------------------	------------------	---------------------------	-------------	-------------------	------------

	Foot ulcer		
Statistics	No	Yes	Total
n (% row) (% column)	3318 (87.1) (30.6)	490 (12.9) (67.1)	3808 (32.9)
n (% row) (% column)	1616 (92.9) (14.9)	123 (7.1) (16.8)	1739 (15.0)
n (% row) (% column)	5904 (98.1) (54.5)	117 (1.9) (16.0)	6021 (52.0)
N (% row)	10,838 (93.7)	730 (6.3)	11,568 (100)

TABLE 23 Diabetic foot risk categories by whether a patient developed a foot ulcer for those with no history of ulcer or amputation

		Foot ulcer			
NICE CG10 category	Statistics	No	Yes	Total	
High	n (% row) (% column)	2934 (94.5) (28.1)	171 (5.5) (42.5)	3105 (28.7)	
Increased	n (% row) (% column)	1608 (93.1) (15.4)	120 (6.9) (29.9)	1728 (16.0)	
Low	n (% row) (% column)	5893 (98.2) (56.5)	111 (1.9) (27.6)	6004 (55.4)	
Total	N (% row)	10,435 (96.3)	402 (3.7)	10,837 (100)	

		Study				
NICE CG10 category	Statistics	Abbott <i>et al.</i> , 2002³	Crawford <i>et al.</i> , 2011⁵	Leese <i>et al.,</i> 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	233 (80.1)	19 (82.6)	151 (46.9)	87 (92.6)	490 (67.1)
Increased	n (%)	16 (5.5)	4 (17.4)	99 (30.8)	4 (4.3)	123 (16.8)
Low	n (%)	42 (14.4)	0 (0.0)	72 (22.4)	3 (3.2)	117 (16.0)
Total	Ν	291	23	322	94	730

TABLE 24 Diabetic foot risk categories and number of foot ulcers by study

TABLE 25 Diabetic foot risk categories and number of foot ulcers by study for those with no history of ulcer or amputation

Study						
NICE CG10 category	Statistics	Abbott <i>et al.</i> , 2002³	Crawford <i>et al.</i> , 2011⁵	Leese <i>et al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Total
High	n (%)	132 (69.5)	11 (73.3)	10 (5.8)	18 (72.0)	171 (42.5)
Increased	n (%)	16 (8.4)	4 (26.7)	96 (55.8)	4 (16.0)	120 (29.9)
Low	n (%)	42 (22.1)	0 (0.0)	66 (38.4)	3 (12.0)	111 (27.6)
Total	Ν	190	15	172	25	402

Meta-analyses of the predictive value of the clinical guideline recommendations from NICE CG10 and the Quality and Outcomes Framework

Our meta-analyses found that the high- and increased-risk categories in the NICE guideline are predictive of foot ulceration.

Figure 32 shows the results of a meta-analysis comparing the predictiveness of categories (high vs. increased + low). The pooled estimates (OR 13.5, 95% CI 3.6 to 51.3) show the high-risk category to be predictive with a high level of heterogeneity (P = 96.7%).

Figure 33 shows a meta-analysis of increased- versus low-risk categories and the pooled meta-analysis estimates based on data from three studies.

Being in the increased-risk category, rather than the low-risk category, was predictive of the development of a foot ulcer (OR 3.3, 95% CI 1.6 to 7.0) with a high level of heterogeneity (P = 73.6).

Figure 34 shows the results of a meta-analysis populated with data from those patients with no history of ulcer or amputation from four studies. This meta-analysis compared high versus increased + low categories, and the pooled estimates (OR 5.1, 95% CI 3.0 to 8.6) are smaller than those in the total population but still show the high-risk category to be predictive with less heterogeneity ($l^2 = 53.2\%$).

Figure 35 shows the results of a meta-analysis based on data from those with no history of ulcer or amputation in three studies. The comparison is between the increased- and low-risk categories. The pooled estimate (OR 3.4, 95% CI 1.6 to 7.4) and levels of heterogeneity are similar to those in the meta-analysis of data from the total population and are highly predictive of foot ulceration (see *Figure 18*).

DOI: 10.3310/hta19570

Study	Estimate		Number of pa	atients	Weighting
Abbott 2002 ³	5.343 (95% Cl 3.991 to 7.154)			6603	26.5%
Crawford 2011 ⁵	8.055 (95% Cl 2.723 to 23.831) —			1193	22.8%
Monteiro-Soares 2010 ⁶¹	15.583 (95% Cl 6.954 to 34.923)	B		360	24.5%
Leese 2011 ⁴⁶	46.978 (95% CI 33.391 to 66.098)			3412	26.4%
	Summary 13.509 (95% CI 3.56 to 51267) Heterogeneity: <i>I</i> ² =96.7%, τ ² =1.727				

OR

FIGURE 32 Pooled estimate of new foot ulcer predicted by the NICE (QOF) diabetic foot risk categories (high vs. increased + low).

FIGURE 33 Pooled estimate of new foot ulcer predicted by the NICE (QOF) diabetic foot risk categories (increased vs. low).

Study Estimate Number of patients Weighting Abbott 2002³ 3.274 (95% CI 2.394 to 4.477) 6291 41.6% Crawford 2011⁵ 5.662 (95% CI 1.791 to 17.904) 1107 14.5% Monteiro-Soares 2010⁶¹ 7.612 (95% CI 3.004 to 19.293) 223 19.3% Leese 2011⁴⁶ 7.456 (95% CI 3.521 to 15.788) 3216 24.4% Summary 5.104 (95% CI 3.019 to 8.632) Heterogeneity: l^2 =53.2%, τ^2 =0.147

OR

FIGURE 34 Pooled estimate of new foot ulcer in people with no history of ulceration or amputation predicted by the NICE (QOF) diabetic foot risk categories (high vs. increased + low).

FIGURE 35 Pooled estimate of new foot ulcer in people with no history of ulceration or amputation predicted by the NICE (QOF) diabetic foot risk categories (increased vs. low).

SECONDARY ANALYSES

International Working Group on the Diabetic Foot: the international diabetes federation

The International Working Group on the Diabetic Foot guidelines

The practical guidelines of the International Consensus on Diabetic Foot 1999 published in Bakker *et al.*'s article, as well as in the 2011 interactive DVD version of the International Consensus on Diabetic Foot, and the Practical and Specific Guidelines on the Management and Prevention of the Diabetic Foot provided risk categories for the identification of the at-risk foot.^{16,82} Following examination of the foot, each patient can be assigned to a risk category, which should guide subsequent management.

Progression of risk categories

- Sensory neuropathy and/or foot deformities or bony prominences and/or signs of peripheral ischaemia and/or previous ulcer or amputation.
- Sensory neuropathy.
- Non-sensory neuropathy.

To assess sensory loss and detection of diabetic neuropathy, the guidelines recommended the use of the 10-g Semmes–Weinstein monofilament, 128-Hz tuning fork, pinprick (dorsum), cotton wisp (dorsum) or Achilles tendon reflexes as described in *Table 26*.

Other foot tests and history components are defined in Table 27.

TABLE 26 Sensory loss

Sensory loss owing to diab	etic polyneuropathy can be assessed using the following techniques
Pressure perception	Semmes–Weinstein monofilaments. The risk of future ulceration can be determined with a 10-g monofilament
Vibration perception	128-Hz tuning fork (hallux)
Discrimination	Pinprick (dorsum of foot, without penetrating the skin)
Tactile sensation	Cotton wool (dorsum of foot)
Reflexes	Achilles tendon reflexes

TABLE 27 History and examination

Other foot tests and history	/ components and their definitions		
History	Previous ulcer/amputation, previous foot education, social isolation, poor access to health care, barefoot walking		
Neuropathy	Symptoms such as tingling or pain in the lower limb, especially at night		
Vascular status	Claudication, rest pain, pedal pulses		
Skin	Colour, temperature, oedema		
Bone/joint	joint Deformities (e.g. claw toes, hammer toes) or bony prominences		
Footwear/socks	Assessment of both inside and outside		

International Working Group on the Diabetic Foot diabetic foot risk categories overall distribution in individual patient data diabetic foot ulceration

Within the IPD for DFU, the information on sensory loss was available on pressure perception, vibration perception, discrimination or reflexes, but no cotton wool data were available. Additional information on history (previous ulcer, previous amputation, living alone), vascular status (pulses) or skin (temperature) or bone/joint (deformities) was also available.

We applied the three IWGDF risk categories to data from seven IPD studies.^{3,5,47,61,62,73,74} For convenience of reporting, IWGDF risk categories were relabelled as low (non-sensory neuropathy), medium [sensory neuropathy (i.e. abnormal monofilament, tuning fork, pinprick or Achilles tendon reflexes)] and high (sensory neuropathy and either history of ulcer, history of amputation, living alone, no pulses, no temperature sensation or foot deformity).

For a total of 2536 patients from two studies,^{72,75} the variables required to assess sensory loss were not available. For a total of 12,360 diabetic patients from seven studies, the necessary variables were available at baseline to allocate their risk categories. *Table 28* shows the number and percentage of patients allocated to each category per study. We also analysed data from a subgroup of 11,406 patients with no history of ulcer or amputation. *Table 29* shows the number and percentage of this subgroup of patients allocated to each category per study. All patients with a history of ulcer/amputation and sensory neuropathy are categorised in the high-risk category, but those with a history of ulcer/amputation and non-sensory neuropathy are categorised in the low-risk category. Consequently, when excluding patients with a history of ulcer/amputation, the number of patients reduces in the high- and low-risk categories.

Foot ulcer and diabetic foot risk categories by study

Table 30 shows the total number of new foot ulcers per diabetic foot risk category for the seven studies together. Within the high-, medium- and low-risk categories, 9.9%, 6.7% and 3.9%, respectively, developed a foot ulcer. Looking at the risk categories assigned to the 854 patients who further developed a foot ulcer, 65.9% were in the high-risk category, 8.9% were in the medium-risk category and 25.2% were in the low-risk category. *Table 31* shows that 444 patients with no previous ulcer or amputation developed a foot ulcer. The percentage of those who developed a foot ulcer is reduced by more than half within the high category (4.3%) and reduced in the low category (2.5%). Henceforth, the risk categories distribution of those who developed a foot ulcer but had no previous history is as follows: 52.9%, 17.1% and 30.0% in the high-, medium- and low-risk categories, respectively.

Tables 32 and *33* show the risk categories of the patients who developed a foot ulcer in each study. In a few studies, the patients who developed a foot ulcer were categorised in only one category: the high category in the Crawford *et al.*⁵ study and the low category in the Kästenbauer *et al.*⁶² study. When patients with a history of ulcer/amputation were excluded, no patient who developed a foot ulcer was left in the high category in the Pham *et al.* study.⁷³

TABLE 28	Diabetic foc	ot risk categories	by IPD–DFU studies						
		Study							
IWGDF	Statistics	Abbott e <i>t al.</i> , 2002³	Crawford e <i>t al.</i> , 2011 ⁵	Kästenbauer <i>et al.</i> , 2001 ⁶²	Leese et <i>al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Pham <i>et al.</i> , 2000 ⁷³	Rith-Najarian <i>et al.</i> , 1992 ⁷⁴	Total
High	n (%)	4112 (62.3)	917 (76.9)	10 (5.4)	279 (8.18)	185 (51.4)	147 (59.3)	41 (11.5)	5691 (46.0)
Medium	n (%)	440 (6.7)	177 (14.8)	3 (1.6)	428 (12.5)	22 (6.1)	38 (15.3)	30 (8.4)	1138 (9.2)
Low	n (%)	2051 (31.1)	99 (8.3)	174 (93.1)	2705 (79.3)	153 (42.5)	63 (25.4)	286 (80.1)	5531 (44.8)
Total	N	6603	1193	187	3412	360	248	357	12,360
TABLE 29	Diabetic foo	ot risk categories	by IPD–DFU studies	for those with no prev	ious ulcer or ar	mputation			
		Study							
IWGDF	Statistics	Abbott e <i>t al.</i> , 2002³	Crawford e <i>t al.</i> , 2011 ⁵	Kästenbauer <i>et al.</i> , 2001 ⁶²	Leese et <i>al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Pham <i>et al.</i> , 2000 ⁷³	Rith-Najarian <i>et al.</i> , 1992 ⁷⁴	Total
High	n (%)	3822 (60.8)	834 (75.3)	10 (5.4)	165 (5.1)	80 (35.9)	4 (5.6)	16 (5.1)	4931 (43.2)
Medium	n (%)	440 (7.0)	177 (16.0)	3 (1.6)	428 (13.3)	22 (9.9)	38 (53.5)	30 (9.7)	1138 (10.0)
Low	n (%)	2029 (32.3)	96 (8.7)	174 (93.1)	2623 (81.6)	121 (54.3)	29 (40.9)	265 (85.2)	5337 (46.8)

DOI: 10.3310/hta19570

11,406

311

7

223

3216

187

1107

6291

 \geq

Total

TABLE 30 Diabetic foot risk categories by whether or not a patient developed a foot ulcer (applied to seven IPD–DFU studies)

		Foot ulcer		
IWGDF	Statistics	No	Yes	Total
High	n (% row) (% column)	5128 (90.1) (44.6)	563 (9.9) (65.9)	5691 (46.0)
Medium	n (% row) (% column)	1062 (93.3) (9.2)	76 (6.7) (8.9)	1138 (9.2)
Low	n (% row) (% column)	5316 (96.1) (46.2)	215 (3.9) (25.2)	5531 (44.8)
Total	N (% row)	11,506 (93.1)	854 (6.9)	12,360 (100)

TABLE 31 Diabetic foot risk categories by whether or not a patient developed a foot ulcer for those with no previous ulcer or amputation (applied to seven IPD–DFU studies)

		Foot ulcer			
IWGDF	Statistics	No	Yes	Total	
High	<i>n</i> (% row) (% column)	4696 (95.2) (42.8)	235 (4.8) (52.9)	4931 (43.2)	
Medium	<i>n</i> (% row) (% column)	1062 (93.3) (9.7)	76 (6.7) (17.1)	1138 (10.0)	
Low	<i>n</i> (% row) (% column)	5204 (97.5) (47.4)	133 (2.5) (30.0)	5337 (46.8)	
Total	N (% row)	10,962 (96.1)	444 (3.9)	11,406 (100)	

TABLE 32	Diabetic foo	ot risk categories ¿	and number of foot	ulcers by study					
		Study							
IWGDF	Statistics	Abbott <i>et al.</i> , 2002³	Crawford e <i>t al.</i> , 2011 ⁵	Kästenbauer <i>et al.</i> , 2001 ⁶²	Leese <i>et al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Pham <i>et al.</i> , 2000 ⁷³	Rith-Najarian e <i>t al.</i> , 1992 ⁷⁴	Total
High	n (%)	257 (88.3)	23 (100.0)	0 (0.0)	134 (41.6)	75 (79.8)	54 (74.0)	20 (48.8)	563 (65.9)
Medium	n (%)	8 (2.9)	0 (0.0)	0 (0.0)	49 (15.2)	2 (2.1)	11 (15.1)	6 (14.6)	76 (8.9)
Low	n (%)	26 (8.9)	0 (0.0)	10 (100.0)	139 (43.2)	17 (18.1)	8 (11.0)	15 (36.6)	215 (25.2)
Total	Z	291	23	10	322	94	73	41	854
		Study							
IWGDF	Statistics	Abbott <i>et al.</i> , 2002³	Crawford e <i>t al.</i> , 2011 ⁵	Kästenbauer <i>et al.</i> , 2001 ⁶²	Leese <i>et al.</i> , 2011 ⁴⁷	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Pham <i>et al.</i> , 2000 ⁷³	Rith-Najarian <i>et al.</i> , 1992 ⁷⁴	Total
High	n (%)	160 (84.2)	15 (100.0)	0 (0.0)	36 (20.9)	19 (76.0)	0 (0.0)	5 (29.4)	235 (52.9)
Medium	n (%)	8 (4.2)	0 (0.0)	0 (0.0)	49 (28.5)	2 (8.0)	11 (73.3)	6 (35.3)	76 (17.1)
Low	n (%)	22 (11.6)	0 (0.0)	10 (100.0)	87 (50.6)	4 (16.0)	4 (26.7)	6 (35.3)	133 (30.0)
Total	N	190	15	10	172	25	15	17	444

© Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

DOI: 10.3310/hta19570

Meta-analyses of the predictive value of the clinical guideline recommendations from the International Working Group on the Diabetic Foot

All the ORs calculated presented the diabetic foot risk category high as being predictive of the development of a new foot ulcer. The estimates of the Crawford *et al.*⁵ and Kästenbauer *et al.*⁶² studies had to be removed from the forest plots owing to a complete separation case. The Pham *et al.*⁷³ estimates were removed from the forest plot (see *Figure 38*) for the same reason.

Figure 36 shows the forest plot with ORs of the new foot ulcer predicted by the diabetic foot risk categories (high vs. medium + low) by study and the pooled meta-analysis estimates. The estimates across studies and the pooled estimates (OR 6.7, 95% CI 3.4 to 13.1) show the high-risk category to be predictive of the development of a new foot ulcer, although with a high heterogeneity ($l^2 = 90.6\%$).

Figure 37 shows the forest plot with ORs of the new foot ulcer predicted by the diabetic foot risk categories (medium vs. low) by study and the pooled meta-analysis estimates. The pooled estimates (OR 2.3, 95% CI 1.5 to 3.3) show the medium-risk category rather than the low-risk category to be predictive of the development of a new foot ulcer although estimates across studies are not consistently showing this association.

Figure 38 shows the forest plot with ORs of the new foot ulcer (with no previous ulcer or amputation) predicted by the diabetic foot risk categories (high vs. medium + low) by study and the pooled meta-analysis estimates. Apart from the estimates from the Monteiro-Soares and Dinis-Ribeiro study,⁶¹ the estimates across studies and the pooled estimates (OR 5.3, 95% CI 3.5 to 8.1) are lower than in *Figure 22* but still show the high-risk category to be predictive of the development of a new foot ulcer, with less heterogeneity (P = 47.2%).

Study	Estimate		Number of patients	Weighting
Abbott 2002 ³	4.818 (95% Cl 3.357 to 6.914)		6603	21.4%
Monteiro-Soares 2010 ⁶¹	5.597 (95% Cl 3.198 to 9.793)	e	360	19.7%
Pham 2000 ⁷³	2.507 (95% Cl 1.373 to 4.573)		248	19.3%
Rith-Najarian 1992 ⁷⁴	13.378 (95% Cl 6.284 to 28.48)		<u>∎</u> 357	17.7%
Leese 2011 ⁴⁶	14.477 (95% Cl 10.969 to 19.103)	-	_∎3412	22%
	Summary 6.673 (95% Cl 3.409 to 13.059)		-	
	Heterogeneity: l^2 =90.6%, τ^2 =0.515			
		OR		

FIGURE 36 Pooled estimate of new foot ulcer predicted by the IWGDF diabetic foot risk categories (high vs. medium + low).

Study	Estimate			Number of pa	tients	Weighting
Abbott 2002 ³	1.442 (95% CI 0.649 to 3.207)				2491	18%
Monteiro-Soares 2010 ⁶¹	0.8 (95% Cl 0.172 to 3.725)				175	5.6%
Pham 2000 ⁷³	2.8 (95% Cl 1.01 to 7.771)				101	11.9%
Rith-Najarian 1992 ⁷⁴	4.516 (95% Cl 1.605 to 12.711)				316	11.6%
Leese 2011 ⁴⁶	2.387 (95% Cl 1.695 to 3.363)				3133	52.7%
	Summary 2.25 (95% Cl 1.543 to 3.281)		\diamond			
	Heterogeneity: $l^2 = 19.1\%$, $\tau^2 = 0.04$					
		h	1			
		0.9	OR			

I

FIGURE 37 Pooled estimates of new foot ulcer predicted by the IWGDF diabetic foot risk categories (medium vs. low).

Study	Estimate	Number of patients	Weighting
Abbott 2011 ³	3.552 (95% Cl 2.397 to 5.264)	6291	38.3%
Crawford 2011 ⁵	7.112 (95% Cl 2.706 to 18.688)	— 223	14.3%
Rith-Najarian 1992 ⁷⁴	10.719 (95% Cl 3.213 to 35.755)	311	10.1%
Leese 2011 ⁴⁶	5.981 (95% Cl 3.979 to 8.99)	3216	37.4%
	Summary 5.328 (95% Cl 3.495 to 8.122)		
	Heterogeneity: l^2 =47.2%, τ^2 =0.081		
	OR		

FIGURE 38 Pooled estimates of new foot ulcer in people with no history of ulceration or amputation by the IWGDF diabetic foot risk categories (high vs. medium + low).

Figure 39 shows the forest plot with ORs of the new foot ulcer (with no previous ulcer or amputation) predicted by the diabetic foot risk categories (medium vs. low) by study and the pooled meta-analysis estimates. The estimates are higher than those of *Figure 22*, although significant for only two studies out of five. The pooled estimates (OR 3.4, 95% CI 2.0 to 5.8) show the medium-risk category rather than the low-risk category to be predictive of the development of a new foot ulcer with heterogeneity ($l^2 = 41.6\%$).

		1			
Study	Estimate		Number of pa	tients We	ighting
Abbott 2002 ³	1.689 (95% Cl 0.747 to 3.82)	— —		2469	23.4%
Monteiro-Soares 2010 ⁶¹	2.925 (95% Cl 0.502 to 17.042)			143	7.8%
Pham 2000 ⁷³	2.546 (95% Cl 0.717 to 9.04) —			67	3.2%
Rith-Najarian 1992 ⁷⁴	10.791 (95% Cl 3.229 to 36.059)		-8	295	14.2%
Leese 2011 ⁴⁶	3.768 (95% Cl 2.612 to 5.435)	-=		3051	41.2%
	Summary 3.377 (95% Cl 1.974 to 5.777)	\diamond			
	Heterogeneity: l^2 =41.6%, τ^2 =0.147				
	F	h			
	0.9	9			
		OR			

FIGURE 39 Pooled estimates of new foot ulcer in people with no history of ulceration or amputation predicted by the IWGDF diabetic foot risk categories (medium vs. low).

Chapter 15 Discussion

This systematic review and meta-analysis of IPD includes patients recruited to cohort studies conducted worldwide and is the first of its kind to evaluate the predictive factors of foot ulceration in diabetes. The resultant increased statistical power has permitted analyses that have previously not been possible in individual studies and has resulted in new insights into the independent contribution of symptoms signs and diagnostic tests used for foot risk assessment in different patient populations. The increased statistical power has also allowed us to compare fully the performance of individual tests against the risk categories contained in national and international diabetes guidelines.

In our meta-analyses, a previous ulceration or diabetes-related LEA produced large ORs and there is no doubt about the correctly categorised high-risk status of individuals with this history. It was not possible to explore the predictive value of LEA (either minor or major) as an independent explanatory variable because there were relatively few events of this nature in the data sets (n = 146). The requirement for patients to be ambulant to meet the inclusion criteria in some of the included studies may explain the small number of patients with LEA who were recruited.

However, it is important to distinguish between meta-analyses based on data collected from patients who have experienced a foot ulcer or LEA and meta-analyses based on data from those who have not, because it is preferable to identify those at risk of ulceration earlier in the disease pathway so that attempts can be made to alter the clinical course of the disease and beneficially influence patient outcomes. More clinically useful are the estimates observed in the never-ulcerated population, which show that being insensate to a 10-g monofilament, having one absent pedal pulse or having a longer duration of a diabetes diagnosis are independently predictive of risk in ulcer-naive patients.

The most consistent results were obtained from the 10-g monofilament test and clearly show this quick, simple and relatively cheap test to be predictive of foot ulceration for everyone with a diagnosis of diabetes. The almost complete absence of heterogeneity in the meta-analyses is remarkable given that the pooled estimates are based on data from five different studies and 11,522 people from three different countries. Additionally, the 10-g monofilament was applied to different sites on the feet in each of the five studies and this indicates that the number of sites and the anatomical position of the sites matters little. The estimates for absent pedal pulses are also consistent in the two meta-analyses and show that the absence of at least one pedal pulse is independently predictive of risk. However, adding the palpation of pedal pulses to the risk assessment examination appears to confer no additional predictive value than using a 10-g monofilament alone. This is clear from the ROC analyses of five individual studies – the data from the largest studies show almost identical estimates for these two tests, but the consistency of the results for the 10-g monofilament favour its use. This observed effect may be due to the underlying pathophysiology of the majority of foot ulcers in these cohorts being neurological rather than vascular.⁸³

Perhaps not surprisingly, the number of years that a person has had a diagnosis of diabetes was found to be a risk factor, although there is a high level of heterogeneity in both meta-analyses. Because the OR is close to 1, this aspect of patients' history is much less predictive than an inability to feel a 10-g monofilament, the absence of one pedal pulse or a history of ulceration and LEA.

When data from the never-ulcerated population are separated from the total population, male sex is no longer observed to be predictive of risk of ulceration. However, the ORs for the data in the largest studies are hardly altered in the never-ulcerated and total population group analyses, and most of the variation occurs in the smaller data sets where the difference in OR could be explained by the play of chance. Comparison of these independent predictive factors with the risk stratification categories in national and international diabetes guidelines does indicate that using the various groups of tests recommended therein does not produce additional predictive value. The meta-analyses of data from the SIGN, NICE and IWGDF guidelines allow a direct comparison of the effects from recommended risk categories. The ORs and CIs

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

are not statistically significantly different from those estimates obtained from a failure to feel a 10-g monofilament in populations at both high and moderate risk and history of ulceration and LEA in high-risk populations.

The large number of patients in the derivation data sets and the use of two different approaches to validate the model underpin its reliability and suggest that the guidance in clinical guidelines and the QOF should be simplified to include only the inability to feel a 10-g monofilament or an absent pedal pulse to identify those at moderate (or increased) risk of ulceration. Using patient history of ulceration and/or a previous LEA will accurately classify those at high risk. The implementation of this greatly simplified approach to annual diabetes foot checks would reduce the amount of clinical time spent testing, avoid the cost associated with acquiring more expensive tests and reduce the ambiguity currently surrounding some components of risk assessment procedures such as 'unable to see or reach foot' and avoid unclassified/ missed cases from the use of the traffic light system contained in the SIGN guideline.¹⁵ CPRs are usually defined as containing three or more variables²² and the fewer tests and elements from the patient history that health-care professionals are required to consider, the more likely it is that risk assessment procedures will be performed.

The accurate assessment of risk is, however, only the first step in an overall improvement in health outcomes, and there is little randomised evidence about the effect of annual foot screening in existence.⁸⁴ One RCT found that those screened demonstrated statistically significantly fewer amputations than a group of patients whose risk was not assessed, but a statistically significant reduction in incident foot ulcerations was not observed in the study population and the true value of specialist foot care services remains uncertain.^{18,85} There also remain gaps in the knowledge about any benefit of potentially preventative interventions, such as patient education, routine podiatry, foot orthoses and specialist foot wear.^{84,86–88} NICE recommends further research to identify the appropriate level and combination of risk factors used to categorise patients as being at high risk of ulceration and that these individuals should then be offered attendance on a protection programme. A UK-wide RCT to evaluate the clinical effectiveness and cost-effectiveness of such protection programmes is needed to evaluate the delivery of this type of health care.

The quality of the conduct of the 10 studies included in the systematic review was assessed as high. Only one item was found to risk the validity of the included studies: the blinding of the individuals who ascertained the outcome variable (ulceration) to the status of the exposure variables was not maintained in 50% of the included studies. This is widely believed to be an important quality factor in prognostic studies and CPRs.²³ However, the meta-analyses on which our conclusions are based included only one study in which the investigators knew the status of the index test results in some, but not all, cases^{46,47} and the estimates these data contribute statistically differ from pooled estimates for only one prognostic factor – previous history of ulceration or amputation. Data from the study by Leese *et al.*⁴⁷ were found to be statistically significantly more predictive than the pooled estimate. However, rather than this effect arising from an absence of blinding, it may result from the inherent difference in study design, this study being the only one to use routinely collected data.

Of the 10 studies included in this systematic review and meta-analysis, few contained data for variables associated with patients' systemic health such as history of stroke, myocardial infarctions or kidney failure.^{46,47} Consequently, we are unable to make suggestions about the independent contribution of elements from patients' general medical history.

Chapter 16 Conclusions

The consistent results for the inability to feel a 10-g monofilament test in all five different regression models, together with the total absence of heterogeneity, has produced robust evidence for the high predictive value of this cheap and simple-to-use diagnostic test. An inability to feel a 10-g monofilament appears to be at least as predictive as the groups of tests currently recommended in national and international clinical guidelines.

Strengths and limitations of the results

We have taken a thorough and systematic approach to individual predictive factors and the classification systems in clinical guidelines using all obtainable IPD collected in published cohort studies until January 2013. The review makes a unique contribution to the global evidence base for the risk assessment of diabetes-related foot ulcers. The separate analyses of data from people with and without a history of foot ulceration shows, for the first time, the risk factors pertinent to patients with a low/moderate risk in whom prevention – in the absence of randomised evidence – is at least theoretically possible. We have justified the predictive factors included in the model and presented all univariate and multivariable analyses for inspection by readers who may wonder about the exclusion of particular tests. Furthermore, we have validated the prognostic model using an independent data set.

The absence of data pertaining to elements of patients' general medical history prevented the identification of risk factors of a more systemic nature, and the review cannot support conclusions about predictive factors such as history of stroke or cardiovascular diseases.

Generalisability of the findings

Data from more than 16,000 patients worldwide were made available and data from up to 11,522 were included in meta-analyses. The international nature of the data included in the review and meta-analyses ensures the findings are widely generalisable.

Implications for clinical practice

The strong evidence from this research supports the use of a 10-g monofilament and the palpation of pedal pulses to identify those at moderate or intermediate risk of foot ulceration. A patient's history of foot ulcers or LEA is sufficient to identify those at high risk. Variations in international diabetes guideline recommendations are commonplace. That the 'globalisation of recommended management of diabetes is not a simple consequence of the globalisation of research evidence'⁸⁹ may prove to be true in this instance. But, because these meta-analyses include IPD from 11,755 patients worldwide, their international nature has allowed a balanced interpretation and efforts are now required to bridge the clear gap that currently exists between research evidence and clinical practice. Given the increased worldwide prevalence in diabetes, the adoption of these three independent risk factors into guideline recommendations and routine care could lead to reduced costs for health-care providers and improved outcomes for patients.

Implications for research

We propose the development of a CPR from our existing model using the following predictor variables: insensitivity to a 10-g monofilament; absent pedal pulses; and a history of ulceration or LEA. This CPR could replace the many tests, signs and symptoms that patients currently have measured using equipment that is either costly or difficult to use.

The clinical effectiveness and cost-effectiveness of the therapeutic impact of the CPR should be compared with standard care and evaluated in large, well-designed RCTs across different health-care settings. The paucity of randomised evidence for the clinical effectiveness and cost-effectiveness of interventions to prevent foot ulcers in those found to be at risk should not be overlooked; there is an urgent need for randomised evidence of interventions to prevent diabetes-related ulcerations in those found to be at increased risk. Because there is also uncertainty regarding the optimal frequency for foot screening, empirical research to identify the most cost-effective screening intervals, especially in low-/moderate-risk patients, would be helpful.

Finally, we suggest that future research into prognostic factors for foot ulceration in diabetes should focus on elements from the patients' systemic medical history, such as cerebral, cardiovascular and renal events rather than signs, symptoms and tests used at the periphery.

Acknowledgements

The idea for this research came from FC (Senior Health Services Researcher) and the mentors of her CSO/DH NHS Research and Development Postdoctoral fellowship (2004–7): Professors Tom Fahey (General Practice), Jos Kleijnen (Systematic Reviews) and Aziz Sheikh (General Practice R&D).

We thank Dr Chantelle Anandan (Research Fellow, Epidemiology) for her work on preliminary aspects of the review, Mr Martin Maxwell (Public Partner) for his enduring enthusiasm about our research and Mrs Elsbeth Hamilton (project secretary) for working in the most efficient way possible to help keep the project on-track. Ms Nikki Coates (Specialist Diabetes Podiatrist), Dr Nicola Leech (Consultant Diabetologist), Professor William Jeffcoate (Professor of Diabetic Medicine), Professor Tom Fahey, Dr Jayne Tierney (Senior Research Scientist) and Ms Marshall Dozier (Librarian and Information Specialist) all helped at important times during the process.

We are also grateful to Professors Martin Bland (Professor of Medical Statistics) and Benjamin Lipsky (Professor of Medicine) for their insightful questions about aspects of our analyses after seminar and conference presentations. These prompted additional analyses and we hope their questions are finally answered in the secondary analysis section.

The collegiate spirit of the authors of primary cohort studies who donated, or provided access to, anonymised IPD is commendable: Dr Caroline Abbott (Research Fellow), Professor Andrew Boulton (Professor of Medicine), Professor Edward Boyko (Professor General Internal Medicine and Epidemiology), Dr Thomas Kästenbauer (Biologist), Professor Graham Leese (Consultant and Honorary Professor in Diabetes/Endocrinology), Dr Matteo Monami (Director of the Diabetes Section), Dr Matilde Monteiro-Soares (Podiatrist and Research Fellow), Dr Stephen Rith-Najarian (Family Practice Physician), Dr Amber Seelig (Medical Statistician), Professor Aris Veves (Assistant Professor of Surgery) and Dr Matthew Young.

We are conscious that this research would not have been possible without the consent of 16,385 people with diabetes who allowed their data to be used for research purposes and we are all indebted to them.

Contributions of authors

All authors contributed to the writing of the report.

Fay Crawford (chief investigator) obtained the data and, with **Francesca M Chappell** and **Gordon D Murray** (Professor of Medical Statistics), designed the systematic review and statistical approach to the meta-analysis.

Genevieve Cezard (Research Fellow, Epidemiology) performed the data checking and cleaning process and contributed to the analysis.

The writing group comprised **Fay Crawford**, **Genevieve Cezard**, **Francesca M Chappell** and **Gordon D Murray**.

Jacqueline F Price (Professor of Molecular Epidemiology) and **Fay Crawford** carefully considered the most important items to detect study bias for the construction of a Quality Assessment tool.

Aziz Sheikh (Professor of General Practice R&D), Colin R Simpson (Reader in Informatics), Gerard P Stansby (Professor of Vascular Surgery) and Matthew J Young (Consultant Diabetologist) provided advice and content-specific expertise.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Publications

Crawford F, Anandan C, Chappell FM, Murray GD, Price JF, Sheikh A, *et al.* Protocol for a systematic review and individual patient data meta-analysis of prognostic factors of foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcers (PODUS). *BMC Med Res Methodol* 2013;**13**:22.

Data sharing statement

Requests for data sharing should be sent to the corresponding author.

References

- Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. *Diabetes Care* 2004;**27**:1047–53. http://dx.doi.org/10.2337/ diacare.27.5.1047
- Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. *Lancet* 2005;**366**:1719–24. http://dx.doi.org/10.1016/S0140-6736(05)67698-2
- Abbott CA, Carrington AL, Ashe H, Bath S, Every LC, Griffiths J, et al. The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a communitybased patient cohort. *Diabet Med* 2002;**19**:377–84. http://dx.doi.org/10.1046/j.1464-5491.2002. 00698.x
- Crawford F, Inkster M, Kleijnen J, Fahey T. Predicting foot ulcers in patients with diabetes: a systematic review and meta-analysis. *QJM* 2007;**100**:65–86. http://dx.doi.org/10.1093/ qjmed/hcl140
- Crawford F, McCowan C, Dimitrov BD, Woodburn J, Wylie GH, Booth E, *et al.* The risk of foot ulceration in people with diabetes screened in community settings: findings from a cohort study. *QJM* 2011;**104**:403–10. http://dx.doi.org/10.1093/qjmed/hcq227
- Scottish Diabetes Monitoring Group. Scottish Diabetes Survey 2013. URL: www.diabetesinscotland. org.uk/Publications/SDS2013.pdf (accessed 14 October 2014).
- Mason J, O'Keeffe C, McIntosh A, Hutchinson A, Booth A, Young RJ. A systematic review of foot ulcer in patients with Type 2 diabetes mellitus. I: prevention. *Diabet Med* 1999;**16**:801–12. http://dx.doi.org/10.1046/j.1464-5491.1999.00133.x
- Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care 1990;13:513–21. http://dx.doi.org/10.2337/diacare.13.5.513
- Spencer F, Sage R, Graner J. The incidence of foot pathology in a diabetic population. J Am Podiatr Med Assoc 1985;75:590–2. http://dx.doi.org/10.7547/87507315-75-11-590
- Young MJ, McCardle JE, Randall LE, Barclay JI. Improved survival of diabetic foot ulcer patients 1995–2008: possible impact of aggressive cardiovascular risk management. *Diabetes Care* 2008;**31**:2143–7. http://dx.doi.org/10.2337/dc08-1242
- Kennon B, Leese GP, Cochrane L, Colhoun H, Wild S, Stang D, et al. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care 2012;35:2588–90. http://dx.doi.org/10.2337/dc12-0511
- Vamos EP, Bottle A, Majeed A, Millett C. Trends in lower extremity amputations in people with and without diabetes in England, 1996–2005. *Diabetes Res Clin Pract* 2010;87:275–82. http://dx.doi.org/10.1016/j.diabres.2009.11.016
- 13. Holman N, Young RJ, Jeffcoate WJ. Variation in the recorded incidence of amputation of the lower limb in England. *Diabetologia* 2012;**55**:1919–25. http://dx.doi.org/10.1007/s00125-012-2468-6
- McIntosh A, Peters J, Young R, Hutchinson A, Chiverton R, Clarkson S, et al. Prevention and Management of Foot Problems in Type 2 diabetes: Clinical Guidelines and Evidence. NICE Guideline. Sheffield: University of Sheffield; 2003.
- Scottish Intercollegiate Guidelines Network. 116 Management of Diabetes: A National Clinical Guideline. Edinburgh: SIGN; 2010. URL: www.sign.ac.uk/pdf/sign116.pdf (accessed 29 May 2014).

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton S016 7NS, UK.

- 16. International Diabetes Foundation. *International Working Group on the Diabetic Foot*. Amsterdam: International Diabetes Federation; 2011. URL: http://iwgdf.org/ (accessed 28 September 2012).
- 17. British Medical Association. *General Medical Services Contract 2011*. URL: www.bma.org.uk/ employmentandcontracts/independent_contractors/quality_outcomes_framework/ qofguidance2011.jsp (accessed 24 April 2011).
- Crawford F. How can we best prevent new foot ulcers in people with diabetes? BMJ 2008;337:a1234. http://dx.doi.org/10.1136/bmj.a1234
- Macran S, Kind P, Collingwood J, Hull R, McDonald I, Parkinson L. Evaluating podiatry services: testing a treatment specific measure of health status. *Qual Life Res* 2003;**12**:177–88. http://dx.doi.org/10.1023/A:1022257005017
- Jeffcoate WJ. Stratification of foot risk predicts the incidence of new foot disease, but do we yet know that the adoption of routine screening reduces it? *Diabetologia* 2011;**54**:991–3. http://dx.doi.org/10.1007/s00125-011-2075-y
- Monteiro-Soares M, Boyko EJ, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Risk stratification systems for diabetic foot ulcers: a systematic review. *Diabetologia* 2011;54:1190–9. http://dx.doi.org/10.1007/ s00125-010-2030-3
- Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 1997;277:488–94. http://dx.doi.org/10.1001/ jama.1997.03540300056034
- McGinn TG, Guyatt GH, Wyer PC, Naylor CD, Stiell IG, Richardson WS. Users' guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-Based Medicine Working Group. JAMA 2000;284:79–84. http://dx.doi.org/10.1001/jama.284.1.79
- Clark MJ, Stewart LA. Obtaining Individual Patient Data from Randomised Controlled Trials. In Egger M, Davey Smith G, Altman DG, editors. *Systematic Reviews in Health Care: Meta-Analysis in Context*. 2nd edn. London: BMJ Books; 2001. pp. 109–21. http://dx.doi.org/10.1002/ 9780470693926.ch6
- Stewart LA, Clarke MJ. Practical methodology of meta-analyses (overviews) using updated individual patient data. Cochrane Working Group. *Stat Med* 1995;**14**:2057–79. http://dx.doi.org/ 10.1002/sim.4780141902
- Stewart LA, Tierney JF, Clark MJ. Reviews of Individual Patient Data. In Higgins JPT, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0* (updated March 2011). Cochrane; 2011. URL: http://handbook.cochrane.org/ (accessed 19 July 2015).
- Centre for Reviews and Dissemination. Systematic Reviews: CRD's Guidance on Undertaking Reviews in Health Care. York: Centre for Reviews and Dissemination, University of York; 2009. URL: www.york.ac.uk/crd/SysRev/!SSL!/WebHelp/SysRev3.htm (accessed 4 April 2015).
- Medical Research Council (MRC) Ethics Series. Personal Information in Medical Research 2000. URL: www.mrc.ac.uk/Utilities/Documentrecord/index.htm?d=MRC002452 (accessed 14 May 2012).
- Crawford F, Anandan C, Chappell FM, Murray GD, Price JF, Sheikh A, et al. Protocol for a systematic review and individual patient data meta-analysis of prognostic factors of foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS). BMC Med Res Methodol 2013;13:22. http://dx.doi.org/10.1186/1471-2288-13-22
- Lefebvre C, Manheimer E, Glanville J. Searching for Studies. In Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). Cochrane; 2011. URL: www.cochrane-handbook.org (accessed 19 July 2015).
- Hayden JA, Cote P, Bombardier C. Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med 2006;144:427–37. http://dx.doi.org/10.7326/0003-4819-144-6-200603210-00010

- 32. Crombie IK. The Pocket Guide to Critical Appraisal. London: BMJ Publishing Group; 1996.
- McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumour marker prognostic studies (REMARK). J Natl Canc Inst 2005;97:1180–4. http://dx.doi.org/ 10.1093/jnci/dji237
- 34. Altman DG, Lyman GH. Methodological challenges in the evaluation of prognostic factors in breast cancer. *Breast Cancer Res Treat* 1998;**52**:289–303. http://dx.doi.org/10.1023/A:1006193704132
- 35. Rector TS, Taylor BC, Wilt TJ. Systematic review of prognostic tests. J Gen Intern Med 2012;**27**(Suppl.1):S94–101. http://dx.doi.org/10.1007/s11606-011-1899-y
- 36. Altman DG. Systematic reviews of evaluations of prognostic variables. *BMJ* 2001;**323**:224–8. http://dx.doi.org/10.1136/bmj.323.7306.224
- Wasson JH, Sox HC, Neff RK, Goldman L. Clinical prediction rules. Applications and methodological standards. *New Engl J Med* 1985;**313**:793–9. http://dx.doi.org/10.1056/ NEJM198509263131306
- 38. Fowkes FG, Fulton PM. Critical appraisal of published research: introductory guidelines. *BMJ* 1991;**302**:1136–40. http://dx.doi.org/10.1136/bmj.302.6785.1136
- Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLOS Med 2007;4:e297. http://dx.doi.org/10.1371/journal.pmed.0040297
- 40. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *J Clin Epidemiol* 2008;**61**:344–9. http://dx.doi.org/10.1016/j.jclinepi.2007.11.008
- 41. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;**155**:529–36. http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, *et al.* Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA* 2000;**283**:2008–12. http://dx.doi.org/10.1001/ jama.283.15.2008
- 43. Debray TP, Moons KG, Abo-Zaid GM, Koffijberg H, Riley RD. Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? *PLOS ONE* 2013;**8**:e60650. http://dx.doi.org/10.1371/journal.pone.0060650
- 44. Stewart GB, Altman DG, Askie LM, Duley L, Simmonds MC, Stewart LC. Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. *Res Synth Methods* 2010;**1**:97–111. http://dx.doi.org/10.1371/journal.pone.0046042
- 45. Higgins JPT, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0* (updated March 2011). Cochrane; 2011. URL: www.cochrane-handbook.org (checked 28 April 2011; last accessed 22 January 2013).
- 46. Leese GP, Reid F, Green V, McAlpine R, Cunningham S, Emslie-Smith AM, et al. Stratification of foot ulcer risk in patients with diabetes: a population-based study. Int J Clin Pract 2006;60:541–5. http://dx.doi.org/10.1111/j.1368-5031.2006.00899.x
- 47. Leese GP, Cochrane L, Mackie AD, Stang D, Brown K, Green V. Measuring the accuracy of different ways to identify the 'at-risk' foot in routine clinical practice. *Diabet Med* 2011;**28**:747–54. http://dx.doi.org/10.1111/j.1464-5491.2011.03297.x

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

- Boyko EJ, Ahroni JH, Stensel V, Forsberg RC, Davignon DR, Smith DG. A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study. *Diabetes Care* 1999;22:1036–42. http://dx.doi.org/10.2337/diacare.22.7.1036
- Boyko EJ, Ahroni JH, Cohen V, Nelson KM, Heagerty PJ. Prediction of diabetic foot ulcer occurrence using commonly available clinical information: the Seattle Diabetic Foot Study. *Diabetes Care* 2006;**29**:1202–7. http://dx.doi.org/10.2337/dc05-2031
- 50. Riley RD, Steyerberg EW. Meta-analysis of a binary outcome using individual participant data and aggregate data. *Res Synth Methods* 2010;**1**:2–19. http://dx.doi.org/10.1002/jrsm.4
- 51. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010;**1**:97–111. http://dx.doi.org/ 10.1002/jrsm.12
- 52. Deeks JJ, Higgins JPT, Altman DG, editors. Analysing data and undertaking meta-analyses. In Higgins JPT, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0* (updated March 2011). The Cochrane Collaboration; 2011. URL: www.cochrane-handbook.org
- 53. van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate imputation by chained equations in R. *J Stat Software* 2011;**45**:1–67.
- 54. White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. *Stat Med* 2011;**30**:377–99. http://dx.doi.org/10.1002/sim.4067
- Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009;338:b2393. http://dx.doi.org/10.1136/bmj.b2393
- Resche-Rigon M, White IR, Bartlett JW, Peters SA, Thompson SG. PROG-IMT Study Group. Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. *Stat Med* 2013;**32**:4890–905. http://dx.doi.org/10.1002/sim.5894
- 57. Little RJA. Regression with missing X's: a review. J Am Stat Assoc 1992;87:1227–37. http://dx.doi.org/ 10.2307/2290664
- Steyerberg EW. Selection of Main Effects. In *Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating*. New York, NY: Springer; 2009. pp. 191–211. http://dx.doi.org/10.1007/978-0-387-77244-8_11
- Harrell FE. Regression Modelling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York, NY: Springer-Verlag; 2001. http://dx.doi.org/10.1007/978-1-4757-3462-1
- 60. O'Riordan P, Stevens PE, Lamb EJ. Estimated glomerular filtration rate. *BMJ* 2014;**348**:g264. http://dx.doi.org/10.1136/bmj.g264
- 61. Monteiro-Soares M, Dinis-Ribeiro M. External validation and optimisation of a model for predicting foot ulcers in patients with diabetes. *Diabetologia* 2010;**53**:1525–33. http://dx.doi.org/10.1007/s00125-010-1731-y
- Kästenbauer T, Sauseng S, Sokol G, Auinger M, Irsigler K. A prospective study of predictors for foot ulceration in type 2 diabetes. J Am Podiatr Med Assoc 2001;91:343–50. http://dx.doi.org/ 10.7547/87507315-91-7-343
- 63. Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. *Biometrical J* 2008;**50**:457–79. http://dx.doi.org/10.1002/bimj.200810443
- 64. Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JD. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. *Stat Med* 2004;**23**:2567–86. http://dx.doi.org/10.1002/sim.1844

- 65. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J Clin Epidemiol* 2009;**62**:1006–12. URL: http://prisma-statement.org/ (accessed 4 April 2015). http://dx.doi.org/10.1016/j.jclinepi.2009.06.005
- Litzelman DK, Marriott DJ, Vinicor F. Independent physiological predictors of foot lesions in patients with NIDDM. *Diabetes Care* 1997;20:1273–8. http://dx.doi.org/10.2337/diacare.20.8.1273
- Murray HJ, Young MJ, Hollis S, Boulton AJ. The association between callus formation, high pressures and neuropathy in diabetic foot ulceration. *Diabet Med* 1996;**13**:979–82. http://dx.doi.org/10.1002/ (SICI)1096-9136(199611)13:11<979::AID-DIA267>3.0.CO;2-A
- Peters EJ, Lavery LA. Effectiveness of the diabetic foot risk classification system of the International Working Group on the Diabetic Foot. *Diabetes Care* 2001;24:1442–7. http://dx.doi.org/10.2337/ diacare.24.8.1442
- 69. Veves A, Murray HJ, Young MJ, Boulton AJ. The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study. *Diabetologia* 1992;**35**:660–3. http://dx.doi.org/10.1007/ BF00400259
- Lavery LA, Armstrong DG, Wunderlich RP, Tredwell J, Boulton AJ. Predictive value of foot pressure assessment as part of a population-based diabetes disease management program. *Diabetes Care* 2003;26:1069–73. http://dx.doi.org/10.2337/diacare.26.4.1069
- Armstrong DG, Lavery LA, Holtz-Neiderer K, Mohler MJ, Wendel CS, Nixon BP, et al. Variability in activity may precede diabetic foot ulceration. *Diabetes Care* 2004;27:1980–4. http://dx.doi.org/ 10.2337/diacare.27.8.1980
- Monami M, Vivarelli M, Desideri CM, Colombi C, Marchionni N, Mannucci E. Pulse pressure and prediction of incident foot ulcers in type 2 diabetes. *Diabetes Care* 2009;**32**:897–9. http://dx.doi.org/ 10.2337/dc08-1679
- 73. Pham H, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A. Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. *Diabetes Care* 2000;**23**:606–11. http://dx.doi.org/10.2337/diacare.23.5.606
- 74. Rith-Najarian SJ, Stolusky T, Gohdes DM. Identifying diabetic patients at high risk for lower-extremity amputation in a primary health care setting. A prospective evaluation of simple screening criteria. *Diabetes Care* 1992;**15**:1386–9. http://dx.doi.org/10.2337/diacare.15.10.1386
- Young MJ, Breddy JL, Veves A, Boulton AJ. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study. *Diabetes Care* 1994;**17**:557–60. http://dx.doi.org/10.2337/diacare.17.6.557
- 76. Abbott CA, Garrow AP, Carrington AL, Morris J, Van Ross ER, Boulton AJ. Foot ulcer risk is lower in South-Asian and African-Caribbean compared with European diabetic patients in the U.K.: the North-West diabetes foot care study. *Diabetes Care* 2005;**28**:1869–75. http://dx.doi.org/10.2337/ diacare.28.8.1869
- Cohen DJ, Doucet M, Cutlip DE, Ho KK, Popma JJ, Kuntz RE. Impact of smoking on clinical and angiographic restenosis after percutaneous coronary intervention: another smoker's paradox? *Circulation* 2001;**104**:773–8. http://dx.doi.org/10.1161/hc3201.094225
- 78. Crawford F, Cezard G, Chappell FM, Murray GD, on behalf of the international PODUS group. *Predictive Factors for Foot Ulceration in Diabetes: An Individual Patient Data Systematic Review and Meta-Analysis.* Department of Health Sciences Seminar, University of York, York, March 2014.
- 79. PODUS group. *Predictive Factors for Diabetic Foot Ulcerations: An Individual Patient Data Systematic Review and Meta-Analysis*. 15th Malvern International Diabetic Foot Conference, Great Malvern, May 2014.

- 80. Diabetes UK. *Testing*. 2014. URL: www.diabetes.org.uk/Guide-to-diabetes/Monitoring/Testing/ #HbA1c (accessed 30 May 2014).
- National Institute for Health and Care Excellence. *Clinical Guidelines for Type 2 Diabetes.* Prevention and Management of Foot Problems. NICE guideline CG10. London: NICE; 2014. URL: http://publications.nice.org.uk/type-2-diabetes-foot-problems-cg10 (accessed 29 May 2014).
- Bakker K, Schaper NC, International Working Group on the Diabetic Foot Editorial Board. The development of global consensus guidelines on the management and prevention of the diabetic foot 2011. *Diabetes Metab Res Rev* 2012;**28**(Suppl. 1):116–18. http://dx.doi.org/10.1002/ dmrr.2254
- Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA 2005;293:217–28. http://dx.doi.org/10.1001/jama.293.2.217
- Dorresteijn JAN, Kriegsman DMW, Valk GD. Complex interventions for preventing diabetic foot ulceration. *Cochrane Database Syst Rev* 2010;**1**:CD007610. http://dx.doi.org/10.1002/14651858. CD007610.pub2
- McCabe CJ, Stevenson RC, Dolan AM. Evaluation of a diabetic foot screening and protection programme. *Diabet Med* 1998;**15**:80–4. http://dx.doi.org/10.1002/(SICI)1096-9136(199801) 15:1<80::AID-DIA517>3.0.CO;2-K
- Dorresteijn JAN, Kriegsman DMW, Assendelft WJJ, Valk GD. Patient education for preventing diabetic foot ulceration. *Cochrane Database Syst Rev* 2012;**10**:CD001488. http://dx.doi.org/ 10.1002/dmrr.2237
- Paton J, Bruce G, Jones R, Stenhouse E. Effectiveness of insoles used for the prevention of ulceration in the neuropathic diabetic foot: a systematic review. J Diabetes Complications 2011;25:52–62. http://dx.doi.org/10.1016/j.jdiacomp.2009.09.002
- Bus SA, Valk GD, van Deursen RW, Armstrong DG, Caravaggi C, Hlavacek P, et al. The effectiveness of footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in diabetes: a systematic review. *Diabetes Metab Res Rev* 2008;**24**(Suppl. 1):162–80. http://dx.doi.org/10.1002/dmrr.850
- 89. Burgers JS, Bailey JV, Klazinga NS, Van Der Bij AK, Grol R, Feder G. Inside guidelines: comparative analysis of recommendations and evidence in diabetes guidelines from 13 countries. *Diabetes Care* 2002;**25**:1933–9. http://dx.doi.org/10.2337/diacare.25.11.1933

Appendix 1 Committee structure

Data Management Committee

Ms Genevieve Cezard, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Dr Francesca Chappell, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Dr Fay Crawford, Department of Vascular Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Professor Gordon Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Research Management Committee

Dr Chantelle Anandan, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Ms Elsbeth Hamilton, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Mr Martin Maxwell, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Dr Jackie Price, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Professor Aziz Sheikh, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Dr Colin Simpson, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

Professor Gerard Stansby, Consultant Vascular Surgeon, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Dr Matthew Young, Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK.

International Steering Committee

Dr Caroline A Abbott, Centre for Endocrinology & Diabetes, University of Manchester, Manchester, UK.

Professor Andrew JM Boulton, Manchester Royal Infirmary, Division of Medicine, Manchester, UK.

Professor Edward J Boyko, Epidemiologic Research and Information Center, University of Washington, Seattle, WA, USA.

Ms Nicola Coates, Podiatry Department, Newcastle Hospitals Community Health, Newcastle upon Tyne, UK.

Professor Tom Fahey, Royal College of Surgeons in Ireland, Dublin, Ireland.

Dr William J Jeffcoate, Department of Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK.

[©] Queen's Printer and Controller of HMSO 2015. This work was produced by Crawford *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Dr Thomas Kästenbauer, Science Consulting & Clinical Monitoring SCCM, Vienna, Austria.

Dr Nicola Leech, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Professor Graham P Leese, Department of Diabetes and Endocrinology, Ninewells Hospital and Medical School, Dundee, UK.

Dr Matteo Monami, Dirigente medico I livello, Cardiologia Geriatrica – DAI Cuore e Vasi, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.

Ms Matilde Monteiro-Soares, Serviço de Endocrinologia–Pé Diabético, Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, Vila Nova de Gaia, Portugal.

Dr Stephen J Rith-Najarian, Department of Family Medicine, Sanford Bemidji Medical Center, Bemidji, MN, USA.

Ms Amber Seelig, Epidemiologic Research and Information Center, University of Washington, Seattle, WA, USA.

Dr Jayne Tierney, Medical Research Council Clinical Trials Unit, London, UK.

Professor Aristidis Veves, Harvard Medical School, Cambridge, MA, USA.

Appendix 2 Data confidentiality agreement

Individual patient data for cohort studies

Cohort study datasets (individual patient data) will be supplied by the collaborators directly to members of the Data Management Committee. All cohort data will be anonymised by the collaborators before it is dispatched.

Ethics and governance

This study does not require ethical committee approval for the following reasons:

- 1) Investigators of the original studies obtained local ethical committee approval and written, informed patient consent;
- 2) The data are already in the public domain
- 3) The project seeks anonymised data from which the individuals recruited to the original study cannot be identified

Confidentiality, data storage, access and archiving

Anonymised datasets from each of the collaborators of the primary cohort studies will be provided in a manner deemed most convenient to them (for example on encrypted USB sticks). Data will be stored in password protected files on a secure University of Edinburgh computer [University of Edinburgh Data protection registration number: Z6426984] and will only be accessible by members of the Data Management Committee. The anonymised datasets and final Individual Patient Dataset will be deposited in a data archive in accordance with NHS procedures for data archiving.

Use of the data

Data will be used only in the agreed manner detailed in this protocol. Any additional analyses will require the approval of the international collaborators.

Research Governance Framework

Any research connected with this project will be in accordance with the Department of Health Guidance "Research Governance Framework for Health and Social Care".

I agree to supply those data listed in Appendix 3 of this protocol that are in my possession in an anonymised format ensuring no patient identity is revealed and confirm that local ethics approval was obtained prior to patient recruitment of the original study:

Collaborator name

Date

I confirm that all data will be stored in secure password-protected files only accessible to members of the data management committee and these will ultimately be archived in accordance with the patient data archiving procedures required by the National Health Service (NHS). All data will be used for analysis according to the plan outlined in this protocol.

Professor Gordon Murray

Date 1st June 2012

Dr Fay Crawford

Date 1st June 2012

Appendix 3 EMBASE and MEDLINE searches

EMBASE

Date searched: inception to 31 January 2013.

Date of search: 31 January 2013.

- 1. diabet\$.ti,ab.
- 2. (foot or feet or toe\$).ti,ab.
- 3. Diabetes Mellitus, Experimental/
- 4. Diabetes Mellitus, Type I/
- 5. Diabetes Mellitus, Type II/
- 6. Diabetic Angiopathies/
- 7. Diabetic Foot/
- 8. Foot Ulcer/
- 9. Diabetic Neuropath\$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]
- 10. Vascular Diseases/
- 11. Peripheral Vascular Diseases/
- 12. ISCHAEMIA/
- 13. (foot ulcer\$or isch#em\$or vascular dis\$).ti,ab.
- 14. amput\$.ti,ab.
- 15. (vibration or touch or skin temperature\$or tuning fork\$).ti,ab.
- 16. (monofilament\$or biothesiometer\$or ankle brachial ind\$or ultraso\$).ti,ab.
- 17. Skin Temperature/
- 18. ULTRASONOGRAPHY/
- 19. Ultrasonography, Doppler/
- 20. or/10-14
- 21. or/15–19
- 22. 1 and 2
- 23. (or/3–6) or 9
- 24. 8 and (22 or 23)
- 25. 1 and 2 and 21
- 26. 7 and 21
- 27. 2 and 21 and 23
- 28. 21 and 24
- 29. or/25–28
- 30. (screen\$or predict\$or sensitiv\$or specific\$or risk factor\$or assess\$).ti,ab.
- 31. (or/15–19) or 30
- 32. 1 and 2 and 30
- 33. 7 and 31
- 34. 2 and 23 and 31
- 35. 24 and 31
- 36. or/32–35

MEDLINE

Date searched: inception to 31 January 2013.

Date of search: 31 January 2013.

1. diabet\$.ti,ab. 2. (foot or feet or toe\$).ti,ab. 3. Diabetes Mellitus, Experimental/4. Diabetes Mellitus, Type I/5. Diabetes Mellitus, Type II/6. Diabetic Angiopathies/

7. Diabetic Neuropathies

8. Diabetes Mellitus/9. Diabetic Foot/10. Foot Ulcer/11. Vascular Diseases/12. Peripheral Vascular Diseases/ 13. ISCHAEMIA/14. (foot ulcer or isch#em\$or vascular disease\$).ti,ab. 15. amput\$.mp. [mp = title, original title, abstract, name of substance, mesh subject heading] 16. or/10–15 17. (1 and 2) or 9

18. OR/3-8

19.17 and 18

20.17 OR 19

Limit to 2004 - current

Appendix 4 Data extraction and quality assessment checklist

TABLE 34 Data extraction (study characteristics)

Questions	Details
Was the purpose of the study to derive or validate a model of prognostic factors for foot ulceration?	Derive yes/no
	Validate yes/no
Methods Setting/context	
Describe the setting (primary care, hospital, GP practice)	
Who took the measurements? (podiatrist, GP, nurse, etc.)	
Geographical location	
Year study was carried out	
Document dates during which study was conducted for periods of:	
recruitment	
examination	
measurement	
follow-up	
Participants	
Describe the eligibility criteria	

TABLE 35 Quality assessment (risk of bias)

Selection of patients	Was the selection of patients conducted in such a way to avoid bias?	Yes: a consecutive or random sample of patients with diabetes was recruited
		No: a consecutive or random sample of patients with diabetes was not recruited
		Unclear: no information about the manner in which patients were recruited is given
Timing of follow-up	Was the timing of follow-up long enough for an ulcer to develop?	Yes: the follow-up was conducted at least 1 month after the baseline tests were completed
		No: the follow-up was conducted within 1 month after the baseline tests were completed
		Unclear: the timing of the follow-up is not known
Replicating the tests	Is there sufficient explanation of the conduct of the tests to permit their replication?	Yes: the conduct of each test can be replicated from the explanation
		No: it is not possible to replicate the conduct of each test from the explanation
		Unclear: no information about the test conduct exists
Blinding	Were the investigators who collected the follow-up data blind to the results of the index test?	Yes: the follow-up was conducted by investigators who were unaware of the results of the index test
		No: the follow-up was conducted by investigators who knew the results of the index test
		Unclear: no information about the follow-up exists
Study size	Has the study size been explained in detail?	Yes: a sample-size calculation to justify the study size is available
		No: a sample-size calculation to justify the study size is unavailable
		Unclear: no information about the study size exists
Results		
Participants	Is a flow diagram available showing the numbers of individuals at all stages of the study, the numbers of potentially eligible patients, the numbers examined for eligibility, numbers included in the study, and numbers of completed follow-ups and outcomes)?	Yes: a flow diagram showing the numbers of individuals at all stages of the study, the numbers potentially eligible, numbers examined for eligibility, numbers included in the study and numbers of completed follow-ups and outcomes exists
		No: a flow diagram showing the numbers of individuals at all stages of the study, the numbers potentially eligible, numbers examined for eligibility, numbers included in the study, and numbers of completed follow-ups and outcomes does not exist

Appendix 5 Risk of bias

TABLE 36 Risk of bias table

Study	Was a consecutive sample of patients recruited?	Was the timing of the follow-up long enough for an ulcer to develop?	Can the test be replicated from the description in the published report?	Were the investigators who collected the outcomes blind to the results of the index tests?	Has the study size been fully justified?
Abbott <i>et al.</i> , 2002 ³	Y	Y	Y	Y	Ν
Boyko <i>et al.</i> , 2006 ⁴⁹	Y	Y	Υ	Ν	Υ
Crawford <i>et al.</i> , 2011⁵	Y	Y	Υ	Y	Υ
Kästenbauer <i>et al.</i> , 2001 ⁶²	Y	Y	Υ	Ν	Ν
Leese <i>et al.</i> , 201147	Υ	Υ	Y	Ν	Ν
Monami <i>et al.</i> , 2009 ⁷²	Y	Y	Υ	Ν	Ν
Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Υ	Y	Y	Y	Ν
Pham <i>et al.</i> , 2000 ⁷³	Y	Y	Υ	Y	Ν
Rith-Najarian <i>et al.</i> , 1992 ⁷⁴	Ν	Y	Υ	Ν	Ν
Young <i>et al.</i> , 1994 ⁷⁵	Y	Y	Y	Y	Ν
N no: Y ves					

Appendix 6 Demographic, anthropometric and lifestyle profile of the diabetic population by study

>
pn
st
þ
Ľ
ţ
ula
d
ā
č
þ
diõ
e
÷
q
ile
fo
ā
<u>y</u> le
est
life
p
ar
÷
Jet
ло
ġ
hr
ant.
ij
de
٦ <u>و</u>
Ĕ
De
-
с Ш
BL
IA

Statistics	Abbott et <i>al.</i> , 2002 ³	Leese et <i>al.</i> , 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford et <i>al.</i> , 2011 ⁵	Young et <i>al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et <i>al.</i> , 1992 ⁷⁴	Pham et <i>al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko et al., 2006 ⁴⁹	Total
	6603	3412	1944	1193	592	360	357	248	187	1489	16,585
an (SD) 61 (13)	65 (13)	63 (13)	71 (10)	54 (14)	64 (10)	55 (13)	58 (12)	59 (8)	62 (11)	63
(%)	3515 (53)	1931 (57)	1101 (57)	611 (51)	308 (52)	164 (46)	156 (44)	124 (50)	102 (55)	1489 (98)	(58)
ean (SD	~			85 (19)	75 (15)			86 (22)	83 (13)	97 (21)	89
ean (SD	~			166 (9)	166 (10)			168 (12)	169 (10)	178 (8)	171
lean (SD	~	30 (6)	28 (5)	31 (6)	27 (5)			31 (7)	29 (4)	31 (6)	30
(%)	1436 (22)			347 (29)							(3)
(%)	3857 (59)	2165 (65)		779 (65)	250 (42)	70 (19)		115 (46)	108 (58)	1210 (81)	(61)
(%)	3092 (47)			602 (50)				43 (17)	103 (55)	422 (29)	(44)
leviation.											
Appendix 7 Diabetes and comorbidities by study

FABLE 38 D	abetes and	comorbiditie	s by study									
Study	Statistics	Abbott et <i>al.</i> , 2002 ³	Leese et al., 2011 ⁴⁷	Monami et <i>al.</i> , 2009 ⁷²	Crawford e <i>t al.</i> , 2011 ⁵	Young et al., 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et al., 1992 ⁷⁴	Pham e <i>t al.</i> , 2000 ⁷³	Kästenbauer et al., 2001 ⁶²	Boyko e <i>t al.</i> , 2006 ⁴ 9	Total
Total patients for analysis	z	6603	3412	1944	1193	592	360	357	248	187	1489	16,585
HbA_{1c}	Mean (SD)		8 (2)	8 (2)	8 (1)	11 (2)	8 (1)			10 (2)	10 (3)	80
Insulin treatment	n (%)	1471 (22)	125 (4)	627 (32)	276 (23)	246 42%	150 (42)			70 (37)	609 (41)	(23)
Diabetes type												
Type 1, <i>n</i> (%)	674 (10)					225 (39)	6 (2)		49 (20)		101 (7)	(6)
Type 2, <i>n</i> (%)	5877 (90)			1944 (100)		348 (61)	354 (98)	357 (100)	199 (80)	187 (100)	1388 (93)	(16)
Diabetes duration	Mean (SD)	8 (8)	7 (7)	10 (10)	9 (8)	12 (10)	16 (10)	8 (6)	14 (11)	11 (7)	15 (13)	6
Eye problems	u (%)	859 (13) blind			192 (16) visual impairment		155 (43) visual impairment/blind				267 (18)	
Retinopathy	u (%)			171 (9)			177 (49)		117 (47)	66 (38)	229 (15)	(18)
Kidney problems	(%) <i>u</i>	157 (2) nephropathy	334 (16) CKD 3–5	75 (4) renal failure	387 (37) CKD 3–5	34 (15) CKD 3–5	62 (17) nephropathy		5 2% end stage	24 (13) CKD 3–5	392 (28) CKD 3–5	
SD, standarc	deviation.											

Appendix 8 Foot measurements by study

TABLE 39 Foc	ot measure	ements by stu	dy									
Study	Statistics	Abbott e <i>t al.</i> , 2002 ³	Leese et <i>al.</i> , 2011 ⁴⁷	Monami et al., 2009 ⁷²	Crawford et <i>al.</i> , 2011 ⁵	Young et <i>al.</i> , 1994 ⁷⁵	Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	Rith-Najarian et <i>al.</i> , 1992 ⁷⁴	Pham et <i>al.</i> , 2000 ⁷³	Kästenbauer et <i>al.</i> , 2001 ⁶²	Boyko et al., 2006 ⁴⁹	Total
Total patients for analysis	z	6603	3412	1944	1193	592	360	357	248	187	1489	16,585
Monofilament	(%) <i>u</i>	1278 (20)	707 (21)		266 (23)		166 (46)	71 (20)	185 (76)	13 (7)	629 (44)	(24)
Pulses	(%) <i>u</i>	1957 (30)	478 (14)		224 (19)	103 (17)	73 (20)		36 (15)		46 (3)	(22)
Pinprick	(%) <i>u</i>	2023 (31)			586 (49)							(34)
VPT: tuning fork	n (%)	2254 (34)			427 (36)		49 (29)				725 (95)	(40)
VPT: biothesiometer	n (%)			488 (25)	459 (39)	274 (46)			137 (56)	52 (28)	40 (9)	(32)
Ankle reflexes (tendon hammer)	u (%)	3393 (52)			846 (71)		76 (45)				796 (54)	(55)
Temperature sensation	n (%)	1342 (21)			390 (33)							(22)
ABI	(%) <i>u</i>				759 (78)	187 (36)		47 (25)		70 (38)	653 (44)	(51)
РРР	(%) <i>u</i>				588 (54)				109 (46)	a		(53)
Foot deformity	n (%)	4825 (73)	149 (4)		700 (59)		265 74%	82 (23)		149 (80)	696 (47)	(51)
a Data not su	litable to b	be harmonised										

Appendix 9 Full data variable dictionary

The completed list of variables available in the data set has been produced automatically from each data set with SAS.

The list of variables for Boyko *et al.*⁴⁹ has been provided from the author in a different format because the data set is not available to use externally.

Crawford et al.⁵

Data set name	IPDDFU.CRAWFORD	Observations	1196
Member type	DATA	Variables	339
Engine	V9	Indexes	0

Varia	ables in creation o	order				
	Variable	Туре	Len	Format	Informat	Label
1	IDNo	Num	8	F8.		ID number
2	expr1000	Num	8	F11.		??
3	ulcerpod	Num	8	F11.		??
4	pod_id	Num	8	F11.		ID of podiatris
5	age	Num	8	F11.		Age
6	sex	Num	8	SEX.		sex
7	chino	Char	22	\$22.	\$22.	CHI Number
8	livingst	Num	8	LIVINGS.		Living status (alone)
9	postcode	Char	6	\$6.	\$6.	Postcode of patient
10	hba1c1st	Num	8	F11.		hba1c1 1st measurement
11	hba1c1_1	Num	8	F8.2		empty variable
12	hba1c2nd	Num	8	F11.		hba1c1 2nd measurement
13	hba1c2_1	Num	8	F8.2		empty variable
14	hba1c3rd	Num	8	F11.		hba1c1 3rd measurement
15	hba1c3_1	Num	8	F8.2		empty variable
16	smoking	Num	8	SMOKING.		Smoking history
17	noperday	Num	8	F11.		Number of cigarettes per day
18	alcohol	Num	8	ALCOHOL.		Alcohol use
19	unitsper	Num	8	F11.		Units per week
20	diabetes	Num	8	F11.		Duration of diabetes
21	insulind	Num	8	INSULIN.		Insulin dependent
22	oralhypo	Num	8	ORALHYP.		Oral hypoglycemic
23	dietalon	Num	8	DIETALO.		Diet alone yes/no
24	visualim	Num	8	VISUALI.		Visual impairment yes/no
25	physdisa	Num	8	PHYSDIS.		Physical disability yes/no

Variabl	es in creation order					
#	Variable	Туре	Len	Format	Informat	Label
26	routinep	Num	8	ROUTINE.		Routine podiatry treatment
27	noccramp	Num	8	NOCCRAM.		Nocturnal cramps in feet yes/no
28	hotcold	Num	8	HOTCOLD.		Abnormal hot cold sensations yes/no
29	tingling	Num	8	TINGLIN.		Tingling sensations yes/no
30	numbness	Num	8	NUMBNES.		Numbness yes/no
31	burning	Num	8	BURNING.		Burning pain yes/no
32	aching	Num	8	ACHING.		Aching pain yes/no
33	ulcerati	Num	8	ULCERAT.		Previous ulceration yes/no
34	amputati	Num	8	AMPUTAT.		Amputation yes/no
35	dorsal	Num	8	DORSAL.		Dorsal callus Right
36	plantar	Num	8	PLANTAR.		Plantar callus Right
37	apical	Num	8	APICAL.		Apical callus Right
38	leftdors	Num	8	LEFTDOR.		Callus on left foot, dorsal aspect yes/no
39	leftplan	Num	8	LEFTPLA.		Callus on left foot, plantar aspect yes/no
40	leftapic	Num	8	LEFTAPI.		Callus on left foot, apices of toes yes/no
41	rightdor	Num	8	RIGHTDO.		Callus on right foot, dorsal aspect yes/no
42	rightpla	Num	8	RIGHTPL.		Callus on right foot, plantar aspect yes/no
43	rightapi	Num	8	RIGHTAP.		Callus on right foot, apices of toes yes/no
44	halluxle	Num	8	HALLUXL.		hallux valgus (bunion) left foot yes/no
45	halluxri	Num	8	HALLUXR.		hallux valgus (bunion) right foot yes/no
46	taylorsl	Num	8	TAYLORS.		taylors bunion left yes/no
47	taylorsr	Num	8	TAYLOR1 A.		taylors bunion right yes/no
48	charcott	Num	8	CHARCOT.		charcott joint left yes/no
49	charco_1	Num	8	CHARCO		charcott joint right yes/no
50	footwear	Num	8	FOOTWEA.		footwear (shoes) yes/no
51	orthoses	Num	8	ORTHOSE.		Othoses (issued) yes/no
52	padinsol	Num	8	PADINSO.		Have you had a pad or an insole from the chemist yes/no
53	claudica	Num	8	CLAUDIC.		Intermittent claudication
54	prevvasc	Num	8	PREVVAS.		Previous vascular surgery (left side)
55	prevva_1	Num	8	PREVVA		Previous vascular surgery (right side)
56	shinyski	Num	8	SHINYSK.		Does the patient have Shiny skin
57	dryskin	Num	8	DRYSKIN.		Does the patient have dry skin
58	fungalin	Num	8	FUNGALI.		Does the patient have Fungal

Variat	oles in creation order					
#	Variable	Туре	Len	Format	Informat	Label
59	leghairl	Num	8	LEGHAIR.		Does the patient have Leg hairlessness
60	toehairl	Num	8	TOEHAIR.		Does the patient have Toe hairlessness
61	toenai_1	Num	8	TOENAI		Does the patient have Toe nail pathology (including fungal infection) on one or more toenail
62	poorcapi	Num	8	POORCAP.		Poor capillary filling time in toes (> 3 seconds)?
63	oedema	Num	8	OEDEMA.		Oedema present?
64	ltdjoi_1	Num	8	LTDJOI		Limited joint mobility big toe (left)
65	ltdjoi_2	Num	8	LTDJOI1 A.		Limited joint mobility big toe (right)
66	ltdjoi_3	Num	8	LTDJOI2 A.		Limited joint mobility ankle (left)
67	ltdjoi_4	Num	8	LTDJOI3 A.		Limited joint mobility ankle (right)
68	neurompj	Num	8	F11.		Neurothesiometer left 1st
69	neurom_1	Num	8	F11.		Neurothesiometer left 2nd
70	neurom_2	Num	8	F11.		Neurothesiometer left 3rd
71	neuorole	Num	8	NEUOROL.		????Not sure about patients responses (please tick)?
72	neurom_3	Num	8	F11.1		Neurothesiometer right 1st
73	neurom_4	Num	8	F11.		Neurothesiometer right 2nd
74	neurom_5	Num	8	F11.		Neurothesiometer right 3rd
75	neurorig	Num	8	NEURORI.		????Not sure about patients responses (please tick)?
76	mono1stl	Num	8	MONO1ST.		Monofilament left 1st
77	mono2ndl	Num	8	MONO2ND.		Monofilament left 2nd
78	mono3rdl	Num	8	MONO3RD.		Monofilament left 3rd
79	mono4thl	Num	8	MONO4TH.		Monofilament left 4th
80	mono5thl	Num	8	MONO5TH.		Monofilament left 5th
81	mono1str	Num	8	MONO1S1 A.		Monofilament right 1st
82	mono2ndr	Num	8	MONO2N1 A.		Monofilament right 2nd
83	mono3rdr	Num	8	MONO3R1 A.		Monofilament right 3rd
84	mono4thr	Num	8	MONO4T1 A.		Monofilament right 4th
85	mono5thr	Num	8	MONO5T1 A.		Monofilament right 5th
86	tuningfo	Num	8	TUNINGF.		Tuning fork (left MTPJ)
87	tuning_1	Num	8	TUNING		Tuning fork (right MTPJ)
88	neurolef	Num	8	NEUROLE.		Neuro tip (left hallux)
89	neuror_1	Num	8	NEUROR		Neuro tip (right hallux)
90	cottonwo	Num	8	COTTONW.		Cotton wool (dab, left dorsum)

Variab	les in creation order					
#	Variable	Туре	Len	Format	Informat	Label
91	cotton_1	Num	8	COTTON		Cotton wool (dab right dorsum)
92	thermall	Num	8	THERMAL.		Thermal sensitivity (left hallux) Correctly identified
93	thermalr	Num	8	THERMA1 A.		Thermal sensitivity (right hallux) Correctly identified
94	dorsalis	Num	8	DORSALI.		Left dorsalis pedis
95	posterio	Num	8	POSTERI.		Left posterior tibial
96	dorsal_1	Num	8	DORSAL		Right dorsalis pedis
97	poster_1	Num	8	POSTER		Right posterior tibial
98	abilefta	Num	8	F11.		Ankle brachial index left
99	abilef_1	Num	8	F11.		Arm brachial index left
100	abiright	Num	8	F11.		Ankle brachial index right
101	abirig_1	Num	8	F11.		Arm brachial index right
102	abinotdo	Num	8	ABINOTD.		ABI could not be done
103	taleft	Num	8	TALEFT.		Tendon hammer ankle reflexes (left TA)
104	taright	Num	8	TARIGHT.		Tendon hammer Ankle reflexes (right TA)
105	planusle	Num	8	PLANUSL.		Pes planus (left foot)
106	planusri	Num	8	PLANUSR.		Pes planus (right foot)
107	cavuslef	Num	8	CAVUSLE.		Pes cavus (left foot)
108	cavusrig	Num	8	CAVUSRI.		Pes cavus (right foot)
109	podotrac	Char	22	\$22.	\$22.	Podotrack (peak plantart pressure) left
110	podotr_1	Char	13	\$13.	\$13.	Podotrack (peak plantart pressure) right
111	heightcm	Num	8	F11.		Height in cm
112	heightft	Num	8	F11.		Height in ft
113	heightin	Num	8	F11.		Height in inches
114	weight	Num	8	F11.		weight (kg)
115	patulcer	Num	8	PATULCE.		How likely did the patient think that they would get an ulcer?
116	patrecov	Num	8	PATRECO.		How likely that they patient would think that it would heal up
117	pod_init	Num	8	F8.2		Podiatrist initials
118	pod_clin	Num	8	F11.		podiatry clinic
119	podulcer	Num	8	PODULCE.		***How likely did the podiatrist think that the patient would get an ulcer?
120	ulcerfay	Char	22	\$22.	\$22.	ulcers ascertained by Fay during telephone follow-up
121	ulcerdar	Num	8	ULCERDA.		ulcers ascertained by from patient records
122	ulcerp_1	Num	8	ULCERP		total ulcers?

Variab	les in creation order					
#	Variable	Туре	Len	Format	Informat	Label
123	podrecov	Num	8	F11.		***Likelihood the patient's ulcer would heal up?
124	hypo	Num	8	HYPO.		Hypoglycaemic drugs
125	antihyp	Num	8	ANTIHYP.		antihypertensives
126	insulin	Num	8	INSULI1 A.		Insulin dependent Yes/No
127	oral	Num	8	ORAL.		oral hypoglycemic drugs
128	ketos	Num	8	KETOS.		***ketos??
129	aspirin	Num	8	ASPIRIN.		asprin
130	statins	Num	8	STATINS.		statins
131	fungals	Num	8	FUNGALS.		antifungals
132	hypob4	Num	8	HYPOB4 A.		hypoglycaemic drugs 3 months before recruitment
133	insulinb	Num	8	INSULI2 A.		insulin drugs 3 months before recruitment
134	oralb4	Num	8	ORALB4 A.		oral hypoglycemic drugs 3 months before recruitment
135	ketosb4	Num	8	KETOSB4 A.		ketos drugs 3 months before recruitment
136	antihypb	Num	8	ANTIHY1 A.		antihypertensive drugs 3 months before recruitment
137	aspirinb	Num	8	ASPIRI1 A.		asprin 3 months before recruitment
138	statinsb	Num	8	STATIN1 A.		statins drugs 3 months before recruitment
139	fungalsb	Num	8	FUNGAL1 A.		fungals drugs 3 months before recruitment
140	hypoafte	Num	8	HYPOAFT.		hypoglycaemic drugs 3 months after recruitment
141	insulina	Num	8	INSULI3 A.		insulin drugs 3 months after recruitment
142	oralafte	Num	8	ORALAFT.		oral hypoglycemic drugs 3 months after recruitment
143	ketosaft	Num	8	KETOSAF.		ketos drugs 3 months after recruitment
144	antihypa	Num	8	ANTIHY2 A.		antihypertensive drugs 3 months after recruitment
145	aspirina	Num	8	ASPIRI2 A.		asprin 3 months after recruitment
146	statinsa	Num	8	STATIN2 A.		statins drugs 3 months after recruitment
147	fungalsa	Num	8	FUNGAL2 A.		fungals drugs 3 months after recruitment
148	hba1clas	Num	8	HBA1CLA.		***Hbaclas?
149	hba1cl_1	Num	8	F11.1		hba1cl_1st reading
150	hba1c2_2	Num	8	DATETIME23.2		hba1c2_2
151	hba1c2_3	Num	8	F11.1		hba1c2_3
152	hba1c3_2	Num	8	DATETIME23.2		hba1c3_2

Variab	les in creation order					
#	Variable	Туре	Len	Format	Informat	Label
153	hba1c3_3	Num	8	F11.1		hba1c3_3
154	choleste	Num	8	DATETIME23.2		***choleste
155	choles_1	Num	8	F11.1		choles_1st reading
156	choles_2	Num	8	DATETIME23.2		choles_2
157	choles_3	Num	8	F11.1		choles_3
158	choles_4	Num	8	DATETIME23.2		choles_4
159	choles_5	Num	8	F11.1		choles_5
160	creatini	Num	8	DATETIME23.2		***creatini
161	creati_1	Num	8	F11.		creati_1st reading
162	creati_2	Num	8	DATETIME23.2		creati_2
163	creati_3	Num	8	F11.		creati_3
164	creati_4	Num	8	DATETIME23.2		creati_4
165	creati_5	Num	8	F11.		creati_5
166	hdlcholl	Num	8	DATETIME23.2		Date – HDL cholesterol ratio
167	hdlcho_1	Num	8	F11.1		HDL cholesterol ratio 1st reading
168	hdlchol2	Num	8	DATETIME23.2		HDL cholesterol ratio 2
169	hdlcho_2	Num	8	F11.1		HDL cholesterol ratio 2b
170	hdlchol3	Num	8	DATETIME23.2		HDL cholesterol ratio 3
171	hdlcho_3	Num	8	F11.1		HDL cholesterol ratio 3b
172	malastda	Num	8	DATETIME23.2		Date – macroalbumin urea 1
173	malastre	Num	8	F11.		macroalbumin urea 2
174	ma2ndlas	Num	8	F8.2		macroalbumin urea 3
175	ma2ndl_1	Num	8	F8.2		macroalbumin urea 4
176	ma3rdlas	Num	8	F8.2		macroalbumin urea 5
177	ma3rdl_1	Num	8	F8.2		macroalbumin urea 6
178	microalb	Num	8	DATETIME23.2		Date – microalbumin urea
179	microa_1	Num	8	F11.		microalbumin urea 1
180	microa_2	Num	8	F8.2		microalbumin urea 2
181	microa_3	Num	8	F8.2		microalbumin urea 3
182	microa_4	Num	8	F8.2		microalbumin urea 4
183	microa_5	Num	8	F8.2		microalbumin urea 5
184	urinelas	Num	8	DATETIME23.2		Date – urine protein
185	urinel_1	Char	22	\$22.	\$22.	urine protein 1st reading
186	urine2nd	Num	8	DATETIME23.2		urine protein 2nd reading
187	urine2_1	Char	22	\$22.	\$22.	urine protein 2nd b
188	urine3rd	Num	8	DATETIME23.2		urine protein 3rd
189	urine3_1	Char	22	\$22.	\$22.	urine protein 3rd b
190	cholhdlr	Num	8	DATETIME23.2		Date – Cholesterol HDL
191	cholhd_1	Num	8	F11.1		Cholesterol HDL 1st reading

Variab	les in creation order					
#	Variable	Туре	Len	Format	Informat	Label
192	cholhd_2	Num	8	DATETIME23.2		Cholesterol HDL 2
193	cholhd_3	Num	8	F11.1		Cholesterol HDL 3
194	cholhd_4	Num	8	DATETIME23.2		Cholesterol HDL 4
195	cholhd_5	Num	8	F11.1		Cholesterol HDL 5
196	finaldat	Num	8	F11.		???
197	finald_1	Num	8	F11.		???
198	finald_2	Num	8	F11.		???
199	finald_3	Num	8	F11.		???
200	finald_4	Num	8	F11.		???
201	finald_5	Num	8	F11.		???
202	finald_6	Num	8	F11.		???
203	finald_7	Num	8	F11.		???
204	finald_8	Num	8	F11.		???
205	finald_9	Num	8	F11.		???
206	deceased	Num	8	F8.2		Deceased
207	depcat	Num	8	F11.		Deprivation score
208	dateofbi	Char	12	\$12.	\$12.	DOB
209	consulta	Char	10	\$10.	\$10.	Date of consultation
210	consul_1	Num	8	F11.1		Age at consultation
211	neurol_1	Num	8	F11.1		neurothesiometer left
212	neuror_2	Num	8	F11.1		neurothesiometer right
213	neurol_2	Num	8	F11.		neurothesiometer 2
214	neuror_3	Num	8	F11.		neurothesiometer 3
215	monole_1	Num	8	MONOLE		Monofilaments 1
216	monole_2	Num	8	MONOLE1 A.		Monofilaments 2
217	monoleft	Num	8	MONOLEF.		Monofilaments left $[0 = do not know; 1 = yes; 2 = no]$
218	monorigh	Num	8	MONORIG.		Monofilaments right [0,1,2,3,4,5?]
219	monori_1	Num	8	F11.		Monofilaments [0,1,2,3,4,5?]
220	monori_2	Num	8	F11.		Monofilaments 4 $[0 = do not know; 1 = yes; 2 = no]$
221	abileftr	Num	8	F11.1		ankle brakial index left 1
222	abirig_2	Num	8	F11.1		ankle brakial index right
223	abileftg	Num	8	ABILEFT.		ankle brakial index left 2
224	abirig_3	Num	8	ABIRIG		ankle brakial index right 2
225	ht_in_m	Num	8	F11.1		height in metres
226	bmi	Num	8	F11.1		BMI
227	bmicat	Num	8	BMICAT.		BMI categories
228	abspostr	Num	8	ABSPOST.		Absent posterior pulse right
229	abspostl	Num	8	ABSPOS1 A.		Absent posterior pulse left

Variab	les in creation order					
#	Variable	Туре	Len	Format	Informat	Label
230	absdorsr	Num	8	ABSDORS.		Absent dorsalis pedis pulse right
231	absdorsl	Num	8	ABSDOR1 A.		Absent dorsalis pedis pulse left
232	abspulse	Num	8	ABSPULS.		absent pulse 1
233	abspul_1	Num	8	ABSPUL		absent pulse 2
234	calluspr	Num	8	CALLUSP.		calluspr
235	noself	Num	8	NOSELF.		noself
236	signrisk	Num	8	SIGNRIS.		signrisk
237	dnsrpass	Num	8	F11.		dnsrpass [0,1,2,3,4,5]
238	dnsrfail	Num	8	F11.		dnsrfail [0,1,2,3,4,5]
239	dnsr	Num	8	DNSR.		dnsr
240	dnslpass	Num	8	F11.		dnslpass [0,1,2,3,4,5]
241	dnslfail	Num	8	F11.		dnslfail [0,1,2,3,4,5]
242	dnsl	Num	8	DNSL.		dnsl – left
243	dnssrpas	Num	8	F11.		dnssrpas [0,1,2,3,4,5,6]
244	dnssrfai	Num	8	F11.		dnssrfai [0,1,2,3,4,5,6]
245	dnssr	Num	8	F11.		dnssr – right
246	dnsslpas	Num	8	F11.		dnsslpa s [0,1,2,3,4,5,6]
247	dnsslfai	Num	8	F11.		dnsslfai [0,1,2,3,4,5,6]
248	dnssl	Num	8	DNSSL.		dnssl
249	callusab	Num	8	F11.		callusab
250	bnfcatb4	Num	8	F11.		bnfcatb4 0–9
251	polyphar	Num	8	POLYPHA.		polyphar
252	hba1cmea	Num	8	F11.1		hba1c mean
253	cholmean	Num	8	F11.1		cholesterol mean]
254	creatmea	Num	8	F11.1		creat mean
255	hdlchome	Num	8	F11.1		hdl chol mean
256	mamean	Num	8	F11.		ma?? mean
257	microa_6	Num	8	F11.		microa_6
258	cholhd_6	Num	8	F8.2		cholhd_6
259	leftptra	Num	8	F8.2		leftptra [1–5]
260	rightptr	Num	8	F8.2		rightptr [1–5]
261	leftptpa	Num	8	F8.2		leftptpa [0, system]
262	leftptfa	Num	8	F8.2		leftptfa [1, system]
263	rightptp	Num	8	F8.2		rightptp [0, system]
264	rightptf	Num	8	F8.2		rightptf [1, system]
265	ulcerp_n	Num	8	ULCERP1 A.		ulcerp_n
266	routin_1	Num	8	ROUTIN		routin_1
267	podotr_2	Num	8	PODOTR		podotr_2
268	dead	Num	8	F8.2		dead

Variabl	es in creation order					
#	Variable	Туре	Len	Format	Informat	Label
269	bloodglu	Num	8	F8.2		bloodglu [1,2]
270	dorsalca	Num	8	F8.2		dorsalca [0,3]
271	plantarc	Num	8	F8.2		plantarc [0,3]
272	apicalca	Num	8	F8.2		apicalca [0,3]
273	anycallu	Num	8	F8.2		anycallu [0,1]
274	dns	Num	8	F8.2		dns [0,1]
275	monofil	Num	8	F8.2		monofil [0,3]
276	hallux	Num	8	F8.2		hallux [0,3]
277	taylors	Num	8	F8.2		taylors [0,3]
278	charcot	Num	8	F8.2		charcot [0,3]
279	prevva_2	Num	8	F8.2		prevva_2 [1,2]
280	ltdjoint	Num	8	LTDJOIN.		ltdjoint [0,1,2]
281	ltd1stjo	Num	8	LTD1STJ.		ltd1stjo [0,1].
282	ltdankle	Num	8	LTDANKL.		ltdankle [0,1,2]
283	ltdank_1	Num	8	LTDANK		ltdank_1 [0,1]
284	neuro	Num	8	NEURO.		neuro [0,1,2]
285	neuropen	Num	8	NEUROPE.		neuropen [0,1]
286	cotton_2	Num	8	COTTON1 A.		cotton_2 [0,1,2]
287	cotton_3	Num	8	COTTON2 A.		cotton_3 [0,1]
288	thermal	Num	8	THERMA2 A.		thermal [0,1,2]
289	temperat	Num	8	TEMPERA.		temperat [0,1]
290	abi	Num	8	F8.2		abi [0–3]
291	abspost	Num	8	F8.2		abspost [0,3]
292	absdors	Num	8	F8.2		absdors [0,3]
293	tendonha	Num	8	TENDONH.		tendonha [0,1,2]
294	planus	Num	8	PLANUS.		planus [0,1]
295	cavus	Num	8	CAVUS.		cavus [0,1]
296	tuning_2	Num	8	TUNING1 A.		tuning_2 [0,1,2]
297	tf	Num	8	TF.		tf [0,1]
298	neuromea	Num	8	NEUROME.		neuromea [0,1,2]
299	routin_2	Num	8	ROUTIN1 A.		routin_2 [0,1]
300	oedemati	Num	8	OEDEMAT.		oedemati [0,1]
301	poorcap	Num	8	POORCA1 A.		poorcap [0,1]
302	toenail	Num	8	TOENAIL.		toenail [0,1]
303	toehair	Num	8	TOEHAI1 A.		toehair [0,1]
304	leghair	Num	8	LEGHAI1 A.		leghair [0,1]
305	fungal_1	Num	8	FUNGAL		fungal_1 [0,1]
306	drysk	Num	8	DRYSK.		drysk [0,1]
307	shine	Num	8	SHINE.		shine [0,1]

Variab	les in creation order					
#	Variable	Туре	Len	Format	Informat	Label
308	vascular	Num	8	VASCULA.		vascular [0,1]
309	toehairs	Num	8	TOEHAI2 A.		toehairs [0,1]
310	leghairs	Num	8	LEGHAI2 A.		leghairs [0,1]
311	toenailp	Num	8	TOENAI1 A.		toenailp [1,2]
312	tailors	Num	8	TAILORS.		tailors [1,2]
313	charcotj	Num	8	CHARCO1 A.		charcotj [1,2]
314	neurotip	Num	8	NEUROTI.		neurotip [1,2]
315	cwool	Num	8	CWOOL.		cwool [1,2]
316	temp	Num	8	TEMP.		temp [1,2]
317	posttib	Num	8	POSTTIB.		posttib [1,2]
318	dorspedi	Num	8	DORSPED.		dorspedi [1,2]
319	tunfork	Num	8	TUNFORK.		tunfork [1,2]
320	diabns	Num	8	DIABNS.		diabns [1,2]
321	tailors_	Num	8	TAILOR1 A.		tailors_ [1,2]
322	amputa_1	Num	8	AMPUTA		amputa_1 [1,2,3]
323	amputa_n	Num	8	AMPUTA1 A.		amputa_ <i>n</i> [0,1,2]
324	tailorsn	Num	8	TAILOR2 A.		tailorsn [1,2]
325	tunforkn	Num	8	TUNFOR1 A.		tunforkn [0,1]
326	signri_h	Num	8	SIGNRI		signri_h [1,2]
327	signr_n	Num	8	SIGNR_N.		signr_ <i>n</i> [1–3]
328	amputa_c	Num	8	AMPUTA2 A.		amputa_c [0,1]
329	NEUROP_R	Num	8	NEUROP		NEUROP_R [0,1]
330	ABI_C	Num	8	F8.2		ABI_C [0-3]
331	ABI_3C	Num	8	ABI_3C.		ABI_3C [0-2]
332	ABI_3N	Num	8	ABI_3 N.		ABI_3 N [0–2]
333	AMPUTA1	Num	8	AMPUTA3 A.		AMPUTA1 [1,2]
334	FINALD51	Num	8	FINALD5 A.		FINALD51 [1-3]
335	TEMP1	Num	8	TEMP1 A.		TEMP1 [1,2]
336	TUNFORK1	Num	8	TUNFOR2 A.		TUNFORK1 [1,2]
337	TAILORS1	Num	8	TAILOR3 A.		TAILORS1 [1,2]
338	FOLLOWUPDATE	Char	10	\$10.	\$10.	Follow up date
339	consulta2	Num	8	DDMMYY10.		Date of consultation

Kästenbauer et al.62

Data set name	IPDDFU.KASTENBAUER	Observations	671
Member type	DATA	Variables	235
Engine	V9	Indexes	0

Varia	Variables in creation order							
#	Variable	Туре	Len	Format	Informat	Label		
1	GRUPPE	Num	8	F11.		Group (for internal purposis – other analysis)		
2	NR	Num	8	F11.		Patient ID within groups		
3	VI	Num	8	F11.		Visit Number		
4	ID	Char	22	\$22.	\$22.	Patient ID, all groups together		
5	NP	Num	8	F11.		Neuropathy defined as VPT > = 25 volts at visit 1; = eVPT (Code 1) or nVPT (Code 0);MAIN CODING VARIABLE		
6	UDAT	Num	8	DDMMYY8.		Date of investigation		
7	UDAT_VI1	Num	8	DDMMYY8.		Date of visit 1		
8	STUD_E	Num	8	F11.		Date of end of trial (last visit or event date)		
9	UDAT_N	Num	8	DDMMYY8.		Date of last visit done		
10	STUDAU	Num	8	F11.		Study duration		
11	DM_NEU	Num	8	F11.		Newly diagnosed type 2 diabetes		
12	E_STAT	Char	8	\$8.	\$8.	Event censoring indicator		
13	ULK_STAT	Char	8	\$8.	\$8.	Ulcer censoring indicator		
14	E_1	Char	5	\$5.	\$5.	Event 1; Type of event: Ulk = Ulcer, Tod = death, Fiss = fissure, Blase = blister, Amp = amputation		
15	E_1_DAT	Num	8	DDMMYY8.		Date of event 1		
16	E_2	Char	3	\$3.	\$3.	Event 2		
17	E_2_DAT	Num	8	DDMMYY8.		Date of event 2		
18	E_3	Char	3	\$3.	\$3.	Event 3		
19	E_3_DAT	Num	8	DDMMYY8.		Date of event 3		
20	UDAT_MAX	Num	8	DDMMYY8.		Maximal visit date; used for calculations		
21	VPT25	Num	8	VPT25 A.		VPT > $= 25$ volts at single visit		
22	D_HIGH2	Num	8	F11.		Elevated plantar pressure at 2 or more sites (calculated out of mean values of left + right feet)		
23	D_HIGH1	Num	8	F11.		Elevated plantar pressure at 1 site		
24	DROPOUT	Num	8	F11.		Drop-out during the study		
25	TOD	Num	8	F11.		Death		
26	DO_TOD	Num	8	F11.		Drop-out + death (combines both into one variable)		
27	ALTER	Num	8	F11.		Age		
28	SEX	Char	1	\$1.	\$1.	Gender: $w =$ weiblich = femal, $m =$ male		
29	DIAB_DAU	Num	8	F11.		Diabetes duration, years		

Varia	Variables in creation order							
	Variable	Туре	Len	Format	Informat	Label		
30	GEWICHT	Num	8	F11.		Weight, kg		
31	GRE	Num	8	F11.		Height, cm		
32	BMI	Num	8	F13.		Body mass index, kg*m-2		
33	DI_T	Num	8	F11.		Diabetes treatment: diet only		
34	OAD	Num	8	F11.		Oral antidiabetics		
35	INS	Num	8	F11.		Insulin		
36	OAD_INS	Num	8	F11.		Oral antidiabetics + insulin		
37	ANG_PEC	Num	8	F11.		Angina pectoris		
38	MCI	Num	8	F11.		Myocardial infarction		
39	INSULT	Num	8	F11.		Insult		
40	ANGIO	Num	8	F11.		Angiography done		
41	PAVK	Num	8	F11.		Peripheral vascular disease (PVD)		
42	GEFOP	Num	8	F11.		Surgery for PVD		
43	NP_MED	Num	8	F11.		Concomitant medications: neuropathy		
44	FETTSOFF	Num	8	F11.		Concomitant medications: lipid lowering agents		
45	RR_MED	Num	8	F11.		Concomitant medications: antihypertensives		
46	NIK_NIE	Num	8	NIK_NIE.		Never smoked cigarettes		
47	NIK_DZT	Num	8	NIK_DZT.		Active cigarette smoking		
48	NIK_JA	Num	8	NIK_JA.		Ever smoked cigarettes (former a/o active smokers)		
49	NIK_JAHR	Num	8	F11.		Duration of smoking, years		
50	NIK_MENG	Num	8	F11.		Average packs of cigarettes smoked daily		
51	ALK_NEIN	Num	8	ALK_NEI.		Never drunk alcohol		
52	ALK_GELE	Num	8	ALK_GEL.		Alcohol drinking: seldom		
53	ALK_TGL	Num	8	ALK_TGL.		Daily alcohol intake		
54	ALK_JAHR	Num	8	F11.		Duration of alcohol intake, years		
55	ALK_MENG	Num	8	F11.		Daily amount of alcohol intake, grams		
56	BERUF	Num	8	F11.		Bodily activities due to profession, Code $1 =$ inactive (sitting) to $3 =$ heavy worker		
57	SPORT_4	Num	8	F11.		Bodily activities by sports; $0 = no$ sports, $4 = intensive$		
58	SPORT_2	Num	8	F11.		Bodily activities, binary coded		
59	HBA1C	Num	8	F12.11		HbA1c, %		
60	KREA	Num	8	F13.12		Creatinine, umol/l		
61	CHOL	Num	8	F11.		Cholesterol, mg/dl		
62	HDL	Num	8	F11.		HDL-Cholesterol, mg/dl		
63	TG	Num	8	F11.		Triglycerides, mg/dl		
64	EW	Num	8	F11.		Proteinuria		
65	HAZE_RE	Num	8	F11.		Hammer toe right		
66	HAZE_LI	Num	8	F11.		Hammer toe left		
67	HAZE	Num	8	F11.		Hammer toe right or left		

Varia	Variables in creation order							
#	Variable	Туре	Len	Format I	Informat	Label		
68	DEFORMIT	Num	8	F11.		Foot deformities, summary of hohlfuus, senkfuss, spreizfuss, hallux valgus		
69	HOHLFUSS	Num	8	F11.		Pes cavus		
70	SENKFUSS	Num	8	F11.		Flatfoot		
71	SPREIZFU	Num	8	F11.		splayfoot		
72	HAL_LEIC	Num	8	F11.		Hallux valgus deformity, mild		
73	HAL_SCHW	Num	8	F11.		Hallux valgus deformity, severe		
74	HALLUX	Num	8	F11.		Hallux valgus: combined (mild a/o severe)		
75	STRA_ENS	Num	8	F11.		Oxford type shoes		
76	SPORTSCH	Num	8	F11.		Gymnastic/sport shoes		
77	ORTHOP_S	Num	8	F11.		Orthopaedic/diabetic shoes		
78	EINL_STD	Num	8	F11.		Insoles, standard (hard cover, hard inlay)		
79	EINL_GEI	Num	8	F11.		Orthepedic/diabetes insoles		
80	EINL_SEI	Num	8	F11.1		Orthepedic/diabetes insoles		
81	_DE	Num	8	F11.		Edeme lower extremities, summary		
82	O_R_SCHW	Num	8	F11.		Oedema right foot, mild		
83	O_R_STAR	Num	8	F11.		Oedema right foot, severe		
84	O_L_SCHW	Num	8	F11.		Oedema left foot mild		
85	O_L_STAR	Num	8	F11.		Oedema left foot severe		
86	VAR	Num	8	F11.		Varicositas, summary		
87	VAR_RE	Num	8	F11.		Varicositas right		
88	VAR_LI	Num	8	F11.		Varicositas left		
89	VAR_OP	Num	8	F11.		Surgery for varicositas		
90	НҮР	Num	8	HYP.		Hyperkeratosis, summary		
91	HYP_VORF	Num	8	HYP_VOR.		Hyperkeratosis, forefoot, summary		
92	H_R_D1	Num	8	H_R_D1 A.		Hyperkeratosis, right, digit 1		
93	H_R_D25	Num	8	H_R_D25 A.		Hyperkeratosis right Digits 2–5		
94	H_R_M1	Num	8	H_R_M1 A.		Hyperkeratosis Right metatarsal head 1		
95	H_R_M25	Num	8	H_R_M25 A.		Hyperkeratosis right Metatarsal heads 2–5		
96	H_RE_FE	Num	8	H_RE_FE.		Hyperkeratosis Right heel (plantar)		
97	H_L_D1	Num	8	H_L_D1 A.		Hyperkeratosis, left, digit 1		
98	H_L_D25	Num	8	H_L_D25 A.		Hyperkeratosis left Digits 2–5		
99	H_L_M1	Num	8	H_L_M1 A.		Hyperkeratosis left metatarsal head 1		
100	H_L_M25	Num	8	H_L_M25 A.		Hyperkeratosis left Metatarsal heads 2–5		
101	H_L_FE	Num	8	H_L_FE.		Hyperkeratosis left heel (plantar)		
102	ULK	Num	8	F11.		Ulceration, summary		
103	U_R_D1	Num	8	F11.		Locations as described under hyperkeratosis		
104	U_R_D25	Num	8	F11.		Ulcer, right, digit 1		
105	U_R_M1	Num	8	F11.		Ulcer, right Digits 2–5		

Varia	Variables in creation order							
	Variable	Туре	Len	Format	Informat	Label		
106	U_R_M25	Num	8	F11.		Ulcer, right metatarsal head 1		
107	U_R_FE	Num	8	F11.		Ulcer, right Metatarsal heads 2–5		
108	U_L_D1	Num	8	F11.		Ulcer, right heel (plantar)		
109	U_L_D25	Num	8	F11.		Ulcer, left, digit 1		
110	U_L_M1	Num	8	F11.		Ulcer,left Digits 2–5		
111	U_L_M25	Num	8	F11.		Ulcer,left metatarsal head 1		
112	U_L_FE	Num	8	F11.		Ulcer,left Metatarsal heads 2–5		
113	AMP	Num	8	F11.		Amputation of lower extremities		
114	USG_R_FR	Num	8	USG_R_F.		Ankle mobility unrestricted, right		
115	USG_R_VE	Num	8	USG_R_V.		Reduced mobility		
116	USG_R_FI	Num	8	USG_R_1 A.		Joint fixation (no mobility)		
117	USG_L_FR	Num	8	USG_L_F.		For left ankle		
118	USG_L_VE	Num	8	USG_L_V.		Ankle mobility unrestricted, left		
119	USG_L_FI	Num	8	USG_L_1 A.		Reduced mobility, left		
120	LIM	Num	8	LJM.		Limited joint mobility, summary		
121	GEPFLEGT	Num	8	F11.		Good Foot care		
122	UNGEPFLE	Num	8	F11.		Bad foot care		
123	PATIENT	Num	8	F11.		Foot care done by patient		
124	FU_PFLEG	Num	8	F11.		Foot care done professionally		
125	NP_BESCH	Num	8	NP_BESC.		Symptoms of peripheral neuropathy, summary		
126	TAUB	Num	8	F11.		Numbness		
127	BURNING	Num	8	F11.		Burning		
128	SCHMERZE	Num	8	F11.		Pain		
129	BEI_RUHE	Num	8	F11.		Pain during resting		
130	HAUT_NOR	Num	8	F11.		Normal skin		
131	HAUT_TRO	Num	8	F11.		Dry skin		
132	HAUT_HAA	Num	8	F11.		Hairless skin		
133	ATROPHIE	Num	8	F11.		Atrophic skin		
134	MF_PATH	Num	8	MF_PATH.		Abnormal monofilament test		
135	D_R_D1	Num	8	F11.		Plantar pressure right digit 1, kPa		
136	D_R_D25	Num	8	F11.		Plantar pressure – right digits 2–5		
137	D_R_M1	Num	8	F11.		Plantar pressure, right metatarsal head 1		
138	D_R_M25	Num	8	F11.		Plantar pressure, right metatarsal heads 2–5		
139	D_R_MF	Num	8	F11.		Plantar pressure – MF???		
140	D_R_FE	Num	8	F11.		Plantar pressure, right heel (plantar)		
141	D_L_D1	Num	8	F11.		Plantar pressure left digit 1, kPa		
142	D_L_D25	Num	8	F11.		Plantar pressure – left digits 2–5		
143	D_L_M1	Num	8	F11.		Plantar pressure, left metatarsal head		

Varia	bles in creatio	n order				
#	Variable	Туре	Len	Format	Informat	Label
144	D_L_M25	Num	8	F11.		Plantar pressure, left metatarsal heads 2–5
145	D_L_MF	Num	8	F11.		Plantar pressure – MF???
146	D_L_FE	Num	8	F11.		Plantar pressure, left heel (plantar)
147	D_DIG1	Num	8	F11.		Plantar pressure, mean value left and right foot – digit 1, kPa
148	D_DIG25	Num	8	F11.1		Plantar pressure, mean value left and right foot – digits 2–5
149	D_MTK1	Num	8	F11.		Plantar pressure, mean value left and right foot – metatarsal heads 1
150	D_MTK25	Num	8	F11.1		Plantar pressure, mean value left and right foot – right metatarsal heads 2–5
151	D_MF	Num	8	F11.1		Plantar pressure, mean value left and right foot -
152	D_FE	Num	8	F11.		Plantar pressure, mean value left and right foot – heel (plantar)
153	D1_TRANS	Num	8	F13.12		Transformed values of plantar pressure for digits 1
154	D2_TRANS	Num	8	F13.12		Transformed values of plantar pressure for digits 2
155	M1_TRANS	Num	8	F13.12		For metatarsal heads 1
156	M2_TRANS	Num	8	F13.12		For metatarsal heads 2
157	MW_TRANS	Num	8	F13.12		For metatarsal heads 3
158	T_R_D1	Num	8	F11.		Time (gait speed), right digit 1, ms
159	T_R_D25	Num	8	F11.		Time (gait speed), right digit – Digits 2–5
160	T_R_M1	Num	8	F11.		Time (gait speed), right digit – metatarsal head 1
161	T_R_M25	Num	8	F11.		Time (gait speed), right digit – right metatarsal heads 2–5
162	T_R_MF	Num	8	F11.		Time (gait speed), right digit
163	T_R_FE	Num	8	F11.		Time (gait speed), right digi – right heel (plantar)
164	T_L_D1	Num	8	F11.		Time (gait speed), left digit 1, ms
165	T_L_D25	Num	8	F11.		Time (gait speed), left digit – digits 2–5
166	T_L_M1	Num	8	F11.		Time (gait speed), left digit – metatarsal heads 1
167	T_L_M25	Num	8	F11.		Time (gait speed), left digit – right metatarsal heads 2–5
168	T_L_MF	Num	8	F11.		Time (gait speed), left digit
169	T_L_FE	Num	8	F11.		Time (gait speed), left digit-right heel (plantar)
170	PT_R_D1	Num	8	F11.		Pressure-time integral, right foot, digit 1
171	PT_R_D25	Num	8	F11.		Pressure-time integral, digits 2-5
172	PT_R_M1	Num	8	F11.		Pressure-time integral, right metatarsal head 1
173	PT_R_M25	Num	8	F11.		Pressure-time integral, metatarsal heads 2-5
174	PT_R_MF	Num	8	F11.		Pressure-time integral
175	PT_R_FE	Num	8	F11.		Pressure-time integral, right heel (plantar)
176	PT_L_D1	Num	8	F11.		Pressure-time integral, left foot, digit 1
177	PT_L_D25	Num	8	F11.		Pressure-time integral left, digits 2-5
178	PT_L_M1	Num	8	F11.		Pressure-time integral left, metatarsal head 1

Varia	bles in creatio	n order	Variables in creation order							
#	Variable	Туре	Len	Format	Informat	Label				
179	PT_L_M25	Num	8	F11.		Pressure-time integral left, metatarsal heads 2-5				
180	PT_L_MF	Num	8	F11.		Pressure-time integral, left				
181	PT_L_FE	Num	8	F11.		Pressure-time integral, left heel (plantar)				
182	KNRE	Num	8	F11.		Blood pressure ankle, right				
183	ARM_RE	Num	8	F11.		Blood pressure arm right				
184	KAI_RE	Num	8	F11.		Ankle–arm index (AAI) right				
185	KN_LI	Num	8	F11.		Blood pressure ankle, left				
186	ARM_LI	Num	8	F11.		Blood pressure arm left				
187	KAI_LI	Num	8	F11.		AAI, left				
188	KAI	Num	8	F11.		Mean value of left + right AAI				
189	VIS_RE	Num	8	F13.12		Visus right eye				
190	VIS_RE_B	Num	8	F11.		VIS_RE_B				
191	VIS_LI	Num	8	F13.12		Visus left eye				
192	VIS_LI_B	Num	8	F11.		VIS_LI_B				
193	VIS_0_5	Num	8	F11.		VIS_0_5				
194	RETINO_R	Char	22	\$22.	\$22.	Diabetic retinopathy, right (Airlie house scale)				
195	RETINO_L	Char	22	\$22.	\$22.	Left				
196	DRP	Num	8	F11.		Diabetic retinopathy, summary as binary variable				
197	NLG	Num	8	F13.12		Peroneal nerve conduction velocity, ms ⁻¹				
198	STADIUM	Num	8	F11.		Staging of peron. NCV				
199	NLG_OB	Num	8	F11.		pNCV normal				
200	NLG_PATH	Num	8	F11.		pNCV abnormal				
201	NLG_NM	Num	8	F11.		pNCV not done				
202	VPT_RE	Num	8	F11.		Vibration perception threshold right, volts				
203	VPT_LI	Num	8	F11.		VPT left				
204	VPT_DIG1	Num	8	F11.		Mean value of VPT left + right				
205	VPT_OB	Num	8	VPT_OB.		VPT normal				
206	VPT_PAT	Num	8	VPT_PAT.		VPT abnormal (other criteria used than 25 volts)				
207	VK	Num	8	F13.12		VK, EI, MCR, VAL: measures of autonomic neuropathy; VK = variation coefficient during resting, %				
208	VK_GW	Num	8	F13.12		Limiting values of VK (healthy population)				
209	VK_A	Num	8	F11.		VK in per cent of healthy population				
210	EI	Num	8	F13.12		Expiration-inspiration ratio (during deep breathing)				
211	EI_GW	Num	8	F13.12		EI_GW				
212	EI_A	Num	8	F11.		EI_A				
213	MCR	Num	8	F13.12		Mean circular resultant (during deep breathing)				
214	MCR_GW	Num	8	F12.11		MCR_GW				
215	MCR_A	Num	8	F11.		MCR_A				
216	VAL	Num	8	F13.12		Valsalva test				

Varia						
	Variable	Туре	Len	Format	Informat	Label
217	VAL_GW	Num	8	F13.12		VAL_GW
218	VAL_A	Num	8	F11.		VAL_A
219	PSC_OB	Num	8	F11.		PSC = ProSciCard (Name of maschine); PSC ob = normal = no autonimoc neuropathy
220	PSC_BL	Num	8	F11.		Borderline ANP
221	PSC_PAT	Num	8	F11.		Abnormal ANP testing
222	PSC_NM	Num	8	F11.		ANP tests not done
223	RRSYS_LI	Num	8	F11.		BP systolic, lying, mmHg
224	RRDIA_LI	Num	8	F11.		BP diastolic, lying
225	RRSYS_ST	Num	8	F11.		Standing syst
226	RRDIA_ST	Num	8	F11.		Standing diast
227	DROPRRSY	Num	8	F11.		Drop of BP after standing-up, mmHg
228	DROP_20	Num	8	F11.		Drop of BP > 20 mmHg
229	ORTHO_OB	Num	8	F11.		Orthostatic hypertension test normal
230	ORTHO_BL	Num	8	F11.		Borderline
231	ORTHO_PA	Num	8	F11.		Abnormal orthostatic hypertension test
232	RPATH	Num	8	F11.		X-ray abnormal
233	MEDIASKL	Num	8	F11.		Mediasclerosis
234	SKELETTA	Num	8	F11.		Skeletal abnormalities (X-ray)
235	OSTEOLYS	Num	8	F11.		Signs of osteolysis

Pham et al.73

Data set name	IPDDFU.PHAM	Observations	496
Member type	DATA	Variables	45
Engine	V9	Indexes	0

Vari	/ariables in creation order							
	Variable	Туре	Len	Format	Informat	Label		
1	Study0	Char	5	\$5.	\$5.	Study number		
2	Centre_0	Num	8	F11.		Study group – 3 centres		
3	Age	Num	8	F11.		Age continuous variable		
4	Sex	Num	8	SEXA.		Sex		
5	National	Num	8	NATIONA.		Racial origin		
6	DM	Num	8	DM.		Diabetes type I/II		
7	Dur_DM	Num	8	F11.		Duration of diabetes (months)		
8	Weight	Num	8	F11.		Weight (kg)		
9	Height	Num	8	F11.1		Height (m)		
10	BMI	Num	8	F11.4		BMI		
11	F_Hx	Num	8	F_HX.		Previous foot problems		
12	Ulc_Hx	Num	8	ULC_HX.		Ulcer history		
13	Renal	Num	8	RENAL.		Nephropathy		
14	Retina	Num	8	RETINA.		Retinopathy		
15	PVD	Num	8	PVD.		Peripheral vascular disease		
16	Smoking	Num	8	F11.		Smoking (yes), number of pack-years		
17	Alcohol	Num	8	F11.		Alcohol (units per week)		
18	FCK	Num	8	F11.		Foot care knowledge (see paper and data dictionary for details)		
19	NSS	Num	8	F11.2		Neuropathy symptom score (modified). NSS > 3 considered abnormal		
20	NDS	Num	8	F11.		Neuropathy Disability Score. NDS > 5 existence of moderate or severe neuropathy		
21	VPT	Num	8	F11.		Vibration perception threshold (biothesiometer). Mean of 3 readings. > 25 V risk of foot ulceration		
22	SWF	Num	8	F11.		Semmes Weinstein monofilament. Inability to feel 5.07SWF indicative of high risk of foot ulceration		
23	Arteries	Num	8	ARTERIE.		Foot pulses		
24	_1_MTH_mo	Num	8	F11.		Joint mobility – 1st month		
25	Subtalar	Num	8	F11.		Joint mobility – subtalar		
26	Force	Num	8	F11.8		Force that the foot hits the ground when walk		
27	P_Rear	Num	8	F11.9		Pressure – foot rear		
28	P_Fore	Num	8	F11.9		Pressure – foot fore		

Vari	ables in creation	order				
#	Variable	Туре	Len	Format	Informat	Label
29	P_Max	Num	8	F11.9		F-Scan, max plantar foot pressure. Mean reading of three midgait footsteps. Foot pressure > 6 kg/cm high risk. continuous? 1.5 –3.67
30	Ulcer_0	Num	8	ULCER_0 A.		Develop ulcer during study (prospective)
31	Loc_0	Num	8	LOC_0 A.		Location of the ulcer
32	Month_0	Num	8	F11.		The month that they developed the ulcer
33	Live	Num	8	LIVE.		Alive or dead at the end of the study – refers to feet
34	Entry	Num	8	MMDDYY10.		Date of entry to study
35	Followup	Num	8	F11.		Follow-up (in months)
36	Persons_ulcers	Num	8	PERSONS.		Development of ulcer in the two feet (one person)
37	NDS_H	Num	8	NDS_H.		NDS high (> 5)
38	VPT_H	Num	8	VPT_H.		VPT high (> 25 V risk of foot ulceration)
39	SWF_H	Num	8	SWF_H.		SWF high (inability to feel 5.07swf)
40	Pres_H	Num	8	PRES_H.		Foot pressure high (> 6 kg/cm)
41	nd_vpt	Num	8	ND_VPT.		High NDS (> 5) and high VPT (> 25 V)
42	nd_sw	Num	8	ND_SW.		High NDS (> 5) and high SWF (5.07 swf)
43	vpt_sw	Num	8	VPT_SW.		VPT high (> 25 V) and high SWF (5.07 swf)
44	Smokoing	Num	8	SMOKOIN.		Smoking history
45	Live_persons	Num	8	LIVE_PE.		Alive or dead at the end of the study – refers to persons

Rith-Najarian et al.74

Data set name	IPDDFU.RITHNAJARIAN	Observations	358
Member type	DATA	Variables	43
Engine	V9	Indexes	0

Variables in creation order							
#	Variable	Туре	Len	Format	Informat	Label	
1	RECORD	Num	8	F11.		RECORD	
2	DOB	Char	10	\$10.	\$10.	DOB	
3	DODX	Char	10	\$10.	\$10.	DODX	
4	SEX	Num	8	F11.		SEX	
5	DINEX	Char	10	\$10.	\$10.	DINEX	
6	IEBBP	Num	8	F11.		IEBBP	
7	IERABP	Num	8	F11.		IERABP	
8	IELABP	Num	8	F11.		IELABP	
9	IERABI	Num	8	F11.2		IERABI	
10	IELABI	Num	8	F11.2		IELABI	
11	IERD	Num	8	F11.		IERD	
12	IELD	Num	8	F11.		IELD	
13	IERS	Num	8	F11.		IERS	
14	IELS	Num	8	F11.		IELS	
15	IGRADE	Num	8	F11.		IGRADE	
16	FEDATE	Char	10	\$10.	\$10.	FEDATE	
17	FEBBP	Num	8	F11.		FEBBP	
18	FERABP	Num	8	F11.		FERABP	
19	FELABP	Num	8	F11.		FELABP	
20	FERABI	Num	8	F11.2		FERABI	
21	FELABI	Num	8	F11.2		FELABI	
22	FERD	Num	8	F11.		FERD	
23	FELD	Num	8	F11.		FELD	
24	FERS	Num	8	F11.		FERS	
25	FELS	Num	8	F11.		FELS	
26	FGRADE	Num	8	F8.2		FGRADE	
27	AUHX	Num	8	F11.		AUHX	
28	AU1DATE	Char	10	\$10.	\$10.	AU1DATE	
29	AU1SIDE	Num	8	F11.		AU1SIDE	
30	AU1TYPE	Num	8	F11.		AU1TYPE	
31	AU2DATE	Char	10	\$10.	\$10.	AU2DATE	

Variables in creation order								
#	Variable	Туре	Len	Format	Informat	Label		
32	AU2SIDE	Num	8	F11.		AU2SIDE		
33	AU2TYPE	Num	8	F11.		AU2TYPE		
34	AU3DATE	Char	10	\$10.	\$10.	AU3DATE		
35	AU3SIDE	Num	8	F11.		AU3SIDE		
36	AU3TYPE	Num	8	F11.		AU3TYPE		
37	DEATH	Num	8	F11.		DEATH		
38	INACDATE	Num	8	F11.		INACDATE		
39	DURDM	Num	8	F11.2		DURDM		
40	STARTDATE	Char	10	\$10.	\$10.	STARTDATE		
41	ENDDATE	Char	10	\$10.	\$10.	ENDDATE		
42	PRSNYRS	Num	8	F11.2		PRSNYRS		
43	AGE	Num	8	F11.2		AGE		

Young et al.75

Data set name	IPDDFU.YOUNG	Observations	598
Member type	DATA	Variables	32
Engine	V9	Indexes	0

Varia	Variables in creation order								
	Variable	Туре	Len	Format	Informat	Label			
1	IDNo	Num	8	F8.		ID number			
2	VPT	Num	8	VPT.		VPT group (average of three readings)			
3	HospitalNo	Num	8	F8.		Hospital No [F003]			
4	Treatmentgroup	Char	12	\$12.	\$12.	Treatment group [F004] Diagnosis of diabetes			
5	Diagnosisgroupcode	Num	8	DIAGNOS.		Diagnosis group code [F005] Type I or II diabetes			
6	DOB	Char	10	\$10.	\$10.	Date of birth [F006]			
7	Sex	Char	1	\$1.	\$1.	Sex [F007]			
8	Dateof1stvisit	Num	8	DATE9.		Date of 1st visit [F009] – First visit to diabetes clinic			
9	Dateofdiagnosis	Num	8	DATE9.		Date of diagnosis [F010] – diagnosis of diabetes			
10	Height	Num	8	F8.2		Height (cm) [F010]			
11	Alcoholunitswk	Num	8	F8.2		Alcohol (units/wk) [F011]			
12	Agestartedsmoking	Num	8	F8.2		Age started smoking [F012]			
13	Agestoppedsmoking	Num	8	F8.2		Age stopped smoking [F013]			
14	Max_cigarettesperday	Num	8	F8.2		Max. cigarettes per day [F014]			
15	Footdate	Num	8	DATE9.		Date of foot screening [F015] MY cannot remember what this is			
16	Vib_perc_01	Num	8	F8.2		Vib.perc. [01] [F016] LEFT			
17	APIratio01	Num	8	F8.2		API ratio [01] [F017] LEFT			
18	FootpulsesL	Num	8	FOOTPUL.		Foot pulses L [F018] LEFT			
19	Vib_perc_02	Num	8	F8.2		Vib.perc. [02] [F019] RIGHT			
20	APIratio02	Num	8	F8.2		API ratio [02] [F020] RIGHT			
21	FootpulsesR	Num	8	FOOTPU1 A.		Foot pulses R [F021] RIGHT			
22	Previousfootulcer	Char	4	\$4.	\$4.	Previous foot ulcer [F022]			
23	Weight	Num	8	F8.2		Weight [F023]			
24	HbA1c_first	Num	8	F6.1		HbA1c first reading			
25	Creatinine_first	Num	8	F4.1		Creatinine first reading			
26	ulcer	Num	8	ULCER.		New ulcer			
27	Height2	Num	8	F8.2		Height (m)			
28	BMI	Num	8	F8.2		BMI			
29	Death	Num	8	DEATH.		Death			
30	Footulcerdate	Num	8	DATE9.		Date foot ulcer diagnosed			
31	VPT_Left	Num	8	VPT_LEF.		VPT left			
32	VPT_Right	Num	8	VPT_RIG.		VPT right			

Monami et al.72

Data set name	IPDDFU.MONAMI	Observations	1945
Member Type	DATA	Variables	59
Engine	V9	Indexes	0

Vari	Variables in creation order								
	Variable	Туре	Len	Format	Informat	Label			
1	n	Num	8	F11.		Patient ID number			
2	Dateofbirth	Num	8	DATE9.		Date of birth			
3	Gender	Char	6	\$6.	\$6.	Gender			
4	Diabetesonset	Num	8	DATE9.		Diabetes onset			
5	Durationofdiabetes	Num	8	F11.5		Duration of diabetes			
6	Typeofdiabetes	Char	1	\$1.	\$1.	Type of diabetes			
7	Firstvisit	Num	8	DATE9.		Date of first visit			
8	Age	Num	8	F13.12		Age			
9	Previousfootulcer	Num	8	PREVIOU.		Have they had a previous foot ulcer			
10	Nonmetastaticcancer	Num	8	NONMETA.		Have they had Nonmetastatic cancer			
11	Metatstaticcancer	Num	8	METATST.		Have they had Metatstatic cancer			
12	Neuropathy	Num	8	NEUROPA.		Do they have Neuropathy			
13	Retinopathy	Num	8	RETINOP.		Do they have Retinopathy			
14	Microalbuminuria_	Num	8	MICROAL.		Microalbuminuriaù -lf they have at least 2 values > 20 µg/min			
15	Ischemicheartdisease	Num	8	ISCHEMI.		Do they have Ischaemic heart disease			
16	StrokeTIA	Num	8	STROKET.		Have they had Stroke/Transient Ishemic Attack			
17	Renalfailure	Num	8	RENALFA.		Do they have Renal failure			
18	COPD	Num	8	COPD.		Do they have COPD			
19	NAFLD	Num	8	NAFLD.		Do they have Non-alcholic fatty liver disease			
20	Liverfailure	Num	8	LIVERFA.		Do they have Liver failure			
21	SystolicBP	Num	8	F11.		Systolic BP			
22	DiastolicBP	Num	8	F11.		Diastolic BP			
23	HbA1c	Num	8	F11.		HbA1c – one reading			
24	Uricacid	Num	8	F11.		Uric acid – blood sample. The amount of uric acid in a blood sample			
25	AST	Num	8	F11.		AST-Liver enzyme, blood sample			
26	ALT	Num	8	F11.		ALT-Liver enzyme, blood sample			
27	gammaGT	Num	8	F11.		gammaGT-Liver enzyme, blood sample			
28	HBV	Num	8	F11.		If they have Hepatitis B			
29	HCV	Num	8	F11.		If they have Hepatitis C			

Vari	ables in creation order					
#	Variable	Туре	Len	Format	Informat	Label
30	BMI	Num	8	F11.2		BMI
31	Waistcircumference	Num	8	F11.		Waist circumference
32	Totalcholesterol	Num	8	F11.		Total cholesterol
33	HDLCholesterol	Num	8	F11.		HDL Cholesterol
34	Trigliceryde	Num	8	F11.		Trigliceryde – One reading. Sample collected during the first visit
35	Glibenclamide	Num	8	F11.		Glibenclamide- A glucose-lowering agent (sulfonylurea)
36	Dose	Num	8	F11.		Dose mg*day
37	Gliclazide	Num	8	F11.		Gliclazide – a glucose-lowering agent (sulfonylurea)
38	Dose_A	Num	8	F11.		Dose mg*day
39	Metformin	Num	8	F11.		Metformin – a glucose-lowering agent (biguanide)
40	Dose_B	Num	8	F11.		Dose mg*day
41	Glimepiride	Num	8	F11.		Glimepiride – a glucose-lowering agent (sulfonylurea)
42	Dose_C	Num	8	F11.		Dose mg*day
43	Repaglinide	Num	8	F11.		Repaglinide a glucose-lowering agent (insulin secreatagogue)
44	Dose_D	Num	8	F11.		Dose mg*day
45	OtherSus	Num	8	F11.		Other Sus – Sus means sulfonylureas other than the others (glibenclamide, glimeppiride etc) mg*day
46	Phenformin	Num	8	F11.		Phenformin – a glucose-lowering agent (biguanide) mg*day
47	Thiazolidinediones	Num	8	F11.		Thiazolidinediones – a glucose- lowering agent (pioglitazone or rosiglitazone, we did not specify what molecule was prescribed to the patient)
48	Acarbose	Num	8	F11.		Acarbose – a glucose-lowering agent (alfa-glucosidase inhibitor)
49	Insulin	Num	8	INSULINA.		Insulin use
50	Statin	Num	8	STATIN.		Statin use
51	Antiaggregantsanticoagulants	Num	8	ANTIAGG.		Antiaggregants/anticoagulants use
52	Antihypertensives	Num	8	ANTIHYPA.		Antihypertensives use
53	Death	Num	8	DEATH.		Death (ICD codes)
54	Causeofdeath	Char	4	\$4.	\$4.	Cause of death
55	DateofdeathorendofFU31_12_2005	Num	8	DATE9.		Date of death or end of FU (31.12.2005)
56	Timetodeathdays	Num	8	F11.		Time to death (days)
57	Incidentulcer	Num	8	INCIDEN.		Incident ulcer
58	Dateofulceronset	Num	8	DATE9.		Date of ulcer onset
59	Timetoulcer	Num	8	F11.		Time to ulcer (days)

Monami (additional data set)

Data set name	WORK.MONAMI_MORE	Observations	1945
Member type	DATA	Variables	61
Engine	V9	Indexes	0

Varia	Variables in creation order							
	Variable	Туре	Len	Format	Informat	Label		
1	n	Num	8	BEST.		n		
2	Date_of_birth	Num	8	DATE9.		Date of birth		
3	Gender	Char	6	\$6.	\$6.	Gender		
4	Diabetes_onset	Num	8	DATE9.		Diabetes onset		
5	Duration_of_diabetes	Num	8	BEST.		Duration of diabetes		
6	Type_of_diabetes	Char	1	\$1.	\$1.	Type of diabetes		
7	First_visit	Num	8	DATE9.		First visit		
8	Age	Num	8	BEST.		Age		
9	Previous_foot_ulcer	Num	8	BEST.		Previous foot ulcer		
10	Nonmetastatic_cancer	Num	8	BEST.		Nonmetastatic cancer		
11	Metatstatic_cancer	Num	8	BEST.		Metatstatic cancer		
12	Neuropathy	Num	8	BEST.		Neuropathy		
13	Retinopathy	Num	8	BEST.		Retinopathy		
14	Microalbuminuria_	Num	8	BEST.		Microalbuminuriaù		
15	lschaemic_heart_disease	Num	8	BEST.		lschaemic heart disease		
16	Stroke_TIA	Num	8	BEST.		Stroke/TIA		
17	Renal_failure	Num	8	BEST.		Renal failure		
18	COPD	Num	8	BEST.		COPD		
19	NAFLD	Num	8	BEST.		NAFLD		
20	Liver_failure	Num	8	BEST.		Liver failure		
21	Systolic_BP	Num	8	BEST.		Systolic BP		
22	Diastolic_BP	Num	8	BEST.		Diastolic BP		
23	HbA1c	Num	8	BEST.		HbA1c		
24	Uric_acid	Num	8	BEST.		Uric acid		
25	AST	Num	8	BEST.		AST		
26	ALT	Num	8	BEST.		ALT		
27	gammaGT	Num	8	BEST.		gammaGT		
28	HBV_	Num	8	BEST.		HBV+		
29	HCV_	Num	8	BEST.		HCV+		
30	BMI	Num	8	BEST.		BMI		
31	Waist_circumference	Num	8	BEST.		Waist circumference		

APPENDIX 9

Vari	ables in creation order					
#	Variable	Туре	Len	Format	Informat	Label
32	Total_cholesterol	Num	8	BEST.		Total cholesterol
33	HDL_Cholesterol	Num	8	BEST.		HDL Cholesterol
34	Trigliceryde	Num	8	BEST.		Trigliceryde
35	VPT_sx	Num	8	BEST.		VPT sx
36	VPT_dx	Num	8	BEST.		VPT dx
37	Glibenclamide	Num	8	BEST.		Glibenclamide
38	Dose	Num	8	BEST.		Dose
39	Gliclazide	Num	8	BEST.		Gliclazide
40	Dose_1	Num	8	BEST.		Dose_1
41	Metformin	Num	8	BEST.		Metformin
42	Dose_2	Num	8	BEST.		Dose_2
43	Glimepiride	Num	8	BEST.		Glimepiride
44	Dose_3	Num	8	BEST.		Dose_3
45	Repaglinide	Num	8	BEST.		Repaglinide
46	Dose_4	Num	8	BEST.		Dose_4
47	Other_Sus	Num	8	BEST.		Other Sus
48	Phenformin	Num	8	BEST.		Phenformin
49	Thiazolidinediones	Num	8	BEST.		Thiazolidinediones
50	Acarbose	Num	8	BEST.		Acarbose
51	Insulin	Num	8	BEST.		Insulin
52	Statin	Num	8	BEST.		Statin
53	Antiaggregants_anticoagulants	Num	8	BEST.		Antiaggregants/anticoagulants
54	Antihypertensives	Num	8	BEST.		Antihypertensives
55	Death	Num	8	BEST.		Death
56	Cause_of_death	Char	4	\$4.	\$4.	Cause of death
57	Date_of_death_or_end_of_FU31_1	Num	8	DATE9.		Date of death or end of FU (31.12.2005)
58	Time_to_deathdays_	Num	8	BEST.		Time to death (days)
59	Incident_ulcer	Num	8	BEST.		Incident ulcer
60	Date_of_ulcer_onset	Num	8	DATE9.		Date of ulcer onset
61	Time_to_ulcer	Num	8	BEST.		Time to ulcer

Monteiro-Soares and Dinis-Ribeiro⁶¹

Data Set Name	IPDDFU.MONTEIRO	Observations	360
Member Type	DATA	Variables	45
Engine	V9	Indexes	0

Variables in Creation Order							
#	Variable	Туре	Len	Format	Label		
1	Number	Num	8	F8.	Patient ID		
2	EntryDate	Num	8	DDMMYY10.	Entry Date		
3	Gender	Num	8	GENDER.	Patient Gender		
4	AgeEntry	Num	8	F2.	Age at entry		
5	DiabType	Num	8	DIABTYP.	Diabetes Type		
6	DiabDur	Num	8	F2.	Diabetes Duration (years)		
7	DiabTreat	Num	8	DIABTRE.	Diabetes Treatment		
8	HbA1C	Num	8	F5.1	HbA1C		
9	HbA1Ccat	Num	8	HBA1CCA.	HbA1C categoric		
10	Retinopathy	Num	8	RETINOPA.	Diabetic Retinopathy		
11	Laser	Num	8	LASER.	Laser Photocoagulation		
12	MI	Num	8	MI.	History of Myocardial Infarction		
13	VCA	Num	8	VCA.	History of Vascular Cerebral Accident		
14	Smoking	Num	8	SMOKINGA.	Smoking History		
15	Vision	Num	8	VISION.	Visual Impairment		
16	Nephropathy	Num	8	NEPHROP.	Diabetic Nephropathy		
17	Education	Num	8	EDUCATI.	Scholar Degree		
18	Physical	Num	8	PHYSICA.	Physical Impairment		
19	PrevUlcer	Num	8	PREVULC.	Ulcer History		
20	PrevAmp	Num	8	PREVAMP.	Amputation History		
21	Callus	Num	8	CALLUS.	Callus		
22	Onychomycosis	Num	8	ONYCHOM.	Onychomycosis		
23	TineaPedis	Num	8	TINEAPE.	Tinea Pedis		
24	FootDef	Num	8	FOOTDEF.	Foot Deformity		
25	FootApMNSI	Num	8	FOOTAPM.	Foot Appearance Michigan neuropathy screening instrument (MSNI)		
26	HalluxLimitus	Num	8	HALLUXLA.	Hallux Limitus		
27	NailCare	Num	8	NAILCAR.	Nail Self Care		
28	Hidratation	Num	8	HIDRATA.	Foot Skin Hidratation		
29	Footwear	Num	8	FOOTWEAA.	Footwear		
30	PVD	Num	8	PVD.	Peripheral Vascular Disease		
31	PVDScore	Num	8	F2.	Peripheral Vascular Disease Score		

Variables in Creation Order							
	Variable	Туре	Len	Format	Label		
32	Claudication	Num	8	CLAUDICA.	Claudication		
33	Oedema	Num	8	OEDEMA.	Oedema		
34	TexasVQ	Num	8	TEXASVQ.	DPN University of Texas Verbal Questionnaire		
35	SWM	Num	8	SWM.	Semmes-Weinstein Monofilament		
36	TunFork	Num	8	TUNFORKA.	Non Graduated Tunning Fork		
37	AchilesRef	Num	8	ACHILES.	Achiles Reflex		
38	MNSIScore	Num	8	F3.1	MNSI Score		
39	OriginalModel	Num	8	F8.2	Original model		
40	Risk	Num	8	RISK.	Original model stratification		
41	Ulcer	Num	8	ULCER.	Ulcer Development		
42	UlcerCause	Num	8	ULCERCA.	Cause of Ulceration		
43	DateUlcer	Num	8	DDMMYY10.	Date Ulcer Development		
44	LastCons	Num	8	DDMMYY10.	Date Last Consult		
45	FollowUp	Num	8	F8.2	Follow-up		

Abbott et al.³

Data set name	IPDDFU.ABBOTT	Observations	15692
Member type	DATA	Variables	91
Engine	V9	Indexes	0

Varia	Variables in creation order						
	Variable	Туре	Len	Format	Label		
1	Number	Num	8	F8.	Order number		
2	random	Num	8	F8.2	random number		
3	uniqueno	Num	8	F8.2	uniqueno		
4	serialno	Num	8	F8.2	serialno		
5	basenum	Num	8	F8.2	basenum		
6	group	Num	8	GROUP.	Phase screened		
7	sex	Num	8	SEX.	gender		
8	age	Num	8	F8.2	age		
9	age2	Num	8	AGE2 A.	age categories		
10	typediab	Num	8	TYPEDIA.	diabetes type		
11	typediabRECODE	Num	8	TYPEDI1 A.	Recoded diabetes type		
12	areano1	Num	8	AREANO1 A.	district		
13	ethnic1	Num	8	ETHNIC1 A.	all ethnic groups		
14	ethgrps	Num	8	ETHGRPS.	main ethnic groups		
15	ethgrps2	Num	8	ETHGRP1 A.	all others v asians		
16	occup1	Num	8	OCCUP1 A.	occupation groups		
17	alone1a	Num	8	ALONE1 A.	live alone		
18	blind1	Num	8	BLIND1 A.	blind		
19	nephrp1a	Num	8	NEPHRP1 A.	nephropathy		
20	diabdur1	Num	8	F8.2	diabetes duration		
21	diabdr1a	Num	8	DIABDR1 A.	diabetes duration categories		
22	treat1	Num	8	TREAT1 A.	diabetes treatment		
23	treat2	Num	8	TREAT2 A.	diabetes treatment		
24	trtdur1	Num	8	F8.2	treatment duration		
25	smoke1	Num	8	SMOKE1 A.	smoking status		
26	smoke2	Num	8	SMOKE2 A.	smoking status		
27	smoke3	Num	8	SMOKE3 A.	current smokers		
28	smoknum1	Num	8	F8.2	Number cigarettes per day		
29	alcohol1	Num	8	ALCOHOL.	alcohol		
30	alctyp1	Num	8	ALCTYP1 A.	Alcohol type (for those who drink alcohol and go on to specify type)		
31	alcunit1	Num	8	F8.2	Units per week		

Vari	Variables in creation order						
#	Variable	Туре	Len	Format	Label		
32	amput1	Num	8	AMPUT1 A.	amputation		
33	ulcer1	Num	8	ULCER1 A.	foot ulcer history		
34	ulcer1a	Num	8	ULCER11 A.	foot ulcer history Y/N		
35	ulcpres	Num	8	F8.2	present ulcer		
36	ulcdur1	Num	8	F8.2	ulcdur1		
37	ulcgrad1	Num	8	ULCGRAD.	Wagner ulcer grades		
38	ulccaus1	Num	8	F8.2	ulccaus1		
39	ulcsize1	Num	8	F8.2	ulcsize1		
40	prevtt1	Num	8	PREVTT1 A.	Has the patient, with a foot ulcer present, received any previous treatment for their ulcer?		
41	shoesnew	Num	8	SHOESNE.	shoe categories		
42	shoes1	Num	8	SHOES1 A.	shoes – risk category		
43	nss1	Num	8	F8.2	neuropathy symptom score		
44	nss2	Num	8	NSS2 A.	nss categories		
45	nsscateg	Num	8	NSSCATE.	NSS categories – none, mild, mod, severe		
46	fds1	Num	8	F8.2	foot deformity score		
47	fds2	Num	8	FDS2 A.	fds categories		
48	fds3	Num	8	FDS3 A.	foot deformity score		
49	nds1	Num	8	F8.2	neuropathy disability score		
50	ndsgrps1	Num	8	NDSGRPS.	nds categories		
51	ndsgrps2	Num	8	NDSGRP1 A.	nds categories		
52	ndsgrps3	Num	8	NDSGRP2 A.	nds cut-offs (diff codes)		
53	ndsgrps4	Num	8	NDSGRP3 A.	nds severe category		
54	ndsgrps5	Num	8	NDSGRP4 A.	nds cut-offs 0–3, 4–10		
55	pain1	Num	8	PAIN1 A.	pin-prick		
56	pain2	Num	8	PAIN2 A.	pin-prick categories		
57	vibr1	Num	8	VIBR1 A.	tuning fork		
58	vibr2	Num	8	VIBR2 A.	tuning fork categories		
59	temp1	Num	8	TEMP1 A.	hot/cold rods		
60	temp2	Num	8	TEMP2 A.	hot/cold rods		
61	ankrflx1	Num	8	ANKRFLX.	ankle reflexes		
62	ankrflx2	Num	8	ANKRFL1 A.	ankle reflexes categories		
63	rdors1	Num	8	RDORS1 A.	On the dorsal surface of Right Foot:		
64	rdors2	Num	8	RDORS2 A.	the dorsal surface of Right Foot		
65	rplant1	Num	8	RPLANT1 A.	At any of 3 plantar surfaces tested on Right Foot (1st and 5th MTH, heel):		
66	rplant2	Num	8	RPLANT2 A.	On the plantar surface of Right Foot		
67	ldors1	Num	8	LDORS1 A.	On the dorsal surface of Left Foot:		
68	ldors2	Num	8	LDORS2 A.	On the dorsal surface of Left Foot:		

Vari	Variables in creation order						
#	Variable	Туре	Len	Format	Label		
69	lplant1	Num	8	LPLANT1 A.	At any of 3 plantar surfaces tested on Left Foot (1st and 5th MTH, heel):		
70	lplant2	Num	8	LPLANT2 A.	On the plantar surface of Left Foot:		
71	insens1	Num	8	INSENS1 A.	Insensitive to 10 g-Monofilament at any site on either foot (phase 1 patients only)		
72	rdororpl	Num	8	RDORORP.	Right foot insensitivity to 10 g-MF		
73	ldororpl	Num	8	LDORORP.	Left foot insensitivity to 10 g-MF		
74	dorslorr	Num	8	DORSLOR.	Dorsal insensitivity to 10 g-MF (R or L foot or both)		
75	pInllorr	Num	8	PLNLLOR.	Plantar insensitivity to 10 g-MF (R or L foot or both)		
76	edoropl	Num	8	EDOROPL.	Insensitive to 10 g-Monofilament at any site on either foot		
77	pulse1	Num	8	PULSE1 A.	Dorsalis pedis and posterior tibial pulses on both feet. Total number of pulses recorded		
78	pulse1a	Num	8	PULSE11 A.	Cut-off values for number of palpable foot pulses		
79	vaschis1	Num	8	VASCHIS.	peripheral vascular history		
80	risk1	Num	8	RISK1 A.	Risk of future foot problems		
81	chirop1	Num	8	CHIROP1 A.	regular chiropody or previous education		
82	ctretype	Num	8	CTRETYP.	centre type		
83	ankrflx3	Num	8	ANKRFL2 A.	ankle reflexes normal/abnormal		
84	occup2	Num	8	OCCUP2 A.	main socioeconomic categories		
85	mfinsens	Num	8	MFINSEN.	insensitivity to MF – all		
86	var00002	Num	8	F8.2	var00002		
87	fuqnaire	Num	8	FUQNAIR.	2 yr follow-up qnaire		
88	newamp	Num	8	NEWAMP.	Any new Lower Limb Amputation at 2 years follow-up (including patients with existing LLA at baseline). Identified from the Phase 1 patient cohort ($n = 9710$) who returned their follow-up postal questionnaires ($n = 6613$)		
89	newulc2y	Num	8	NEWULC2 A.	Any new foot ulcer at 2 years follow-up after baseline. Identified from the Phase 1 patient cohort ($n = 9710$) who returned their follow-up postal questionnaires ($n = 6613$)		
90	newamp2	Num	8	F8.2	Any new, first Lower Limb Amputation at 2 years follow-up (i.e. excluding patients with existing LLA at baseline). Identified from the Phase 1 patient cohort ($n = 9710$) who returned their follow-up postal questionnaires ($n = 6613$)		
91	datescr1	Num	8	DATE9.	Date screened		

Leese et al.46,47

Data set name	WORK.LEESE	Observations	3720
Member type	DATA	Variables	50
Engine	V9	Indexes	0

Alph	Alphabetic list of variables and attributes							
#	Variable	Туре	Len	Format	Informat	Label		
1	PROCHI	Char	36	\$36.	\$36.	CHI number		
2	DoBirth	Num	8	DATE9.		Date of birth		
3	DoDiagnosis	Num	8	DATE9.		Date of diagnosis $\hat{a} \varepsilon'$ of diabetes		
4	YearDiagnosis	Num	8	F8.		Year of diagnosis $\hat{a} \varepsilon'$ of diabetes		
5	YearDeath	Num	8	F8.		Year of death		
6	DoDeath	Num	8	DATE9.		Date of death		
7	Died	Num	8	DIED.		Died		
8	AmpType	Num	8	AMPTYPE.		Amputation type		
9	AmpRecord	Num	8	AMPRECO.		Record of an amputation		
10	UlcerRecord	Num	8	ULCERRE.		Record of an ulcer		
11	Insulin	Num	8	INSULIN.		Insulin dependent		
12	Pulses	Num	8	PULSES.		Pulses		
13	OldPulses	Num	8	OLDPULS.		Old pulses		
14	TimeDiabeticYrs	Num	8	F8.1		Length of time had diabetes		
15	AbleToSelfCare	Num	8	ABLETOS.		Able to self-care		
16	Callus	Num	8	CALLUS.		Callus present		
17	Monofilament	Num	8	MONOFIL.		Monofilament		
18	PriorUlcer	Num	8	PRIORUL.		Previous foot ulcer		
19	StructuralAbnormality	Num	8	STRUCTU.		Structural Abnormality		
20	FootRisk	Num	8	FOOTRIS.		At risk of foot ulceration		
21	Gender	Num	8	GENDER.		Gender		
22	First_BMI	Num	8	DATE9.		Date of First BMI reading		
23	BMI	Num	8	F5.2		BMI		
24	DoFirst_BP	Num	8	DATE9.		Date of First BP reading		
25	SBP	Num	8	F3.		Systolic BP		
26	DBP	Num	8	F3.		Diastolic BP		
27	DoFirst_Chol	Num	8	DATE9.		Date of first cholesterol test		
28	Cholesterol	Num	8	F4.2		cholesterol reading		
29	DoFirst_Creat	Num	8	DATE9.		Date of first creatinine test		
30	Creatinine	Num	8	F8.		creatinine test		
31	DoFirst_eGFR	Num	8	DATE9.		Date of first glomerular filtration rate		
32	eGFR	Num	8	F5.		glomerular filtration rate test		
Alph	Alphabetic list of variables and attributes							
------	---	------	-----	------------	----------	--	--	--
	Variable	Туре	Len	Format	Informat	Label		
33	DoFirst_HbA1c	Num	8	DATE9.		Date of first HbA1c		
34	HbA1c	Num	8	F5.2		HbA1c test		
35	DoFirst_MA	Num	8	DATE9.		Date of first microabumin test		
36	MA	Num	8	F6.		microabumin test		
37	DoFirst_PU	Num	8	DATE9.		DoFirst.PU		
38	PU	Num	8	PU.		PU		
39	DoFirstSmoker	Num	8	DATE9.		Date first smoked? Date first question about smoking habits		
40	Smoker	Num	8	SMOKER.		Smoker		
41	FollowUpYrs	Num	8	F8.1		Follow up years From first record in the database to data on which date were extracted		
42	DoFirstFootRisk	Num	8	DATE9.		Date of first foot risk		
43	First_Risk	Num	8	FIRST_R.		Foot risk of ulcer		
44	First_Pulses	Num	8	FIRST_P.		First Pulses		
45	First_MF	Num	8	FIRST_M.		First Monofilament		
46	First_PriorUlcer	Num	8	FIRST_1 A.		First prior ulcer		
47	First_Abnormality	Num	8	FIRST_A.		First abnormality		
48	First_SelfCare	Num	8	FIRST_S.		First.SelfCare		
49	First_Callus	Num	8	FIRST_C.		First.Callus		
50	First_Amp	Num	8	F8.		First.Amp		

Boyko et al.49

The Boyko et al. study data dictionary was not prepared by the investigators and was not available.

Appendix 10 Univariate forest plots

This appendix contains the results of the meta-analysis with forest plots of selected variables. Each model uses one selected predictor at a time and provides ORs for a new ulcer development.

Study	Estimate			Number of pa	tients W	/eighting
Abbott 2002 ³	1.013 (95% Cl 1.004 to 1.023)				6572	26.4%
Crawford 2011 ⁵	1.017 (95% Cl 0.974 to 1.064)			_	1193	2.7%
Kastenbauer 2001 ⁶²	1.011 (95% Cl 0.933 to 1.098)		e		187	0.9%
Monami 2009 ⁷²	1.042 (95% Cl 1.023 to 1.064)		-8		1944	11.1%
Monteiro-Soares 2010 ⁶¹	1.005 (95% Cl 0.984 to 1.029)		8		360	8.7%
Pham 2000 ⁷³	1.009 (95% Cl 0.987 to 1.033)		8		247	9%
Rith-Najarian 1992 ⁷⁴	1.026 (95% Cl 1 to 1.055)				357	6.7%
Young 1994 ⁷⁵	1.022 (95% Cl 1 to 1.046)				591	9%
Leese 2011 ⁴⁶	1.026 (95% Cl 1.017 to 1.037)				3412	25.9%
	Summary 1.021 (95% Cl 1.013 to 1.028)		\diamond			
	Heterogeneity: $l^2=26.7\%$, $\tau^2=0$					
		1	.0	1.1		
		C	OR			

FIGURE 40 Model 1. New ulcer OR predicted by age.

Study	Estimate		Number of patients	Weighting
Abbott 2002 ³	0.702 (95% Cl 0.551 to 0.893)		6602	21.1%
Crawford 2011 ⁵	0.286 (95% Cl 0.105 to 0.774)	8	1193	4.1%
Kastenbauer 2001 ⁶²	0.284 (95% CI 0.058 to 1.371)			1.8%
Monami 2009 ⁷²	0.849 (95% CI 0.551 to 1.304)			13.5%
Monteiro-Soares 2010 ⁶¹	0.523 (95% Cl 0.324 to 0.84)		360	12.1%
Pham 2000 ⁷³	0.368 (95% Cl 0.207 to 0.651)		248	9.6%
Rith-Najarian 1992 ⁷⁴	0.358 (95% CI 0.18 to 0.708)		357	7.5%
Young 1994 ⁷⁵	0.591 (95% CI 0.317 to 1.094)		- 592	8.7%
Leese 2011 ⁴⁶	0.766 (95% Cl 0.604 to 0.97)	-	3412	21.3%
	Summary 0.59 (95% Cl 0.474 to 0.735)	\diamond		
	Heterogeneity: l^2 =46.8%, τ^2 =0.044	۲ 0.9	- 	
		OR		

FIGURE 42 Model 3. New ulcer OR predicted by weight.

FIGURE 43 Model 4. New ulcer OR predicted by height.

FIGURE 44 Model 5. New ulcer OR predicted by BMI.

FIGURE 46 Model 7. New ulcer OR predicted by smoking (yes/no).

FIGURE 48 Model 9. New ulcer OR predicted by alcohol (yes/no).

FIGURE 49 Model 10. New ulcer OR predicted by alcohol units per week.

FIGURE 50 Model 11. New ulcer OR predicted by HbA_{1c}.

Study	Estimate			Number of pa	tients V	Veighting
Abbott 2002 ³	1.043 (95% Cl 1.031 to 1.054)		-		6570	15.1%
Crawford 2011 ⁵	1.035 (95% Cl 0.999 to 1.071)				1191	9.7%
Kastenbauer 2001 ⁶²	1.014 (95% Cl 0.931 to 1.102) —		-	_	187	3.3%
Monami 2009 ⁷²	1.04 (95% Cl 1.019 to 1.06)				1332	13.2%
Monteiro-Soares 2010 ⁶¹	1.007 (95% Cl 0.983 to 1.029)	_	━		360	12.6%
Pham 2000 ⁷³	1.03 (95% Cl 1.004 to 1.055)		—= —		247	12%
Rith-Najarian 1992 ⁷⁴	1.145 (95% Cl 1.086 to 1.204)		-		357	6.6%
Young 1994 ⁷⁵	1.062 (95% Cl 1.034 to 1.089)				553	11.9%
Leese 2011 ⁴⁶	1.073 (95% Cl 1.059 to 1.084)		-		3402	15%
	Summary 1.047 (95% Cl 1.029 to 1.066)		\diamond			
	Heterogeneity: $l^2 = 81.7\%$, $\tau^2 = 0$					
		1	.0 1	ר I.1		
			OR			

Study	Estimate		Number of patients	Weighting
Kastenbauer 2001 ⁶²	4.073 (95% Cl 0.015 to 16.35)		172	4.7%
Monami 2009 ⁷²	2.147 (95% Cl 1.206 to 3.825)		1944	27.1%
Monteiro-Soares 2010 ⁶¹	1.765 (95% Cl 1.096 to 2.846)		360	39.6%
Pham 2000 ⁷³	2.299 (95% Cl 1.314 to 4.023)		248	28.8%
	Summary 2.088 (95% Cl 1.547 to 2.82)	\diamond		
	Heterogeneity: $l^2=0\%$, $\tau^2=0$			
	-	L.		
	1	.0		
		OR		

FIGURE 54 Model 15. New ulcer OR predicted by retinopathy (yes/no).

FIGURE 55 Model 16. New ulcer OR predicted by kidney problems (yes/no).

OR

FIGURE 56 Model 17. New ulcer OR predicted by any abnormal monofilament.

FIGURE 57 Model 18. New ulcer OR predicted by any abnormal pulses.

Study	Estimate			Number of patients	Weighting
Abbott 2002 ³	4.172 (95% Cl 3.268 to 5.328)			- 6592	93.6%
Crawford 2011 ⁵	2.992 (95% Cl 1.172 to 7.643)			1193	6.3%
	Summary 4.085 (95% Cl 3.225 to 5.175) Heterogeneity: <i>l</i> ² =0%, τ ² =0		\diamond	>	
		1.1	OR		

FIGURE 58 Model 19. New ulcer OR predicted by any abnormal pinprick.

FIGURE 59 Model 20. New ulcer OR predicted by any abnormal VPT.

FIGURE 60 Model 21. New ulcer OR predicted by no ankle reflex.

FIGURE 61 Model 22. New ulcer OR predicted by no temperature sensation.

FIGURE 64 Model 25. New ulcer OR predicted by any foot deformity.

FIGURE 66 Model 27. New ulcer OR predicted by prior amputation.

FIGURE 67 Model 28. New ulcer OR predicted by prior history of ulcer or amputation.

Appendix 11 Multivariable models

Study	Estimate		N	lumber of pa	atients	Weighting
Abbott 2002 ³	1.019 (95% Cl 1.007 to 1.031)				6231	28.5%
Crawford 2011 ⁵	1.013 (95% Cl 0.96 to 1.07)				1105	4.7%
Kastenbauer 2001 ⁶²	1.019 (95% Cl 0.933 to 1.114) -				187	1.9%
Monami 2009 ⁷²	1.062 (95% Cl 1.025 to 1.1)				1286	9.8%
Monteiro-Soares 2010 ⁶¹	1.024 (95% Cl 0.979 to 1.071)				223	6.6%
Pham 2000 ⁷³	0.992 (95% Cl 0.95 to 1.036)				69	7.1%
Rith-Najarian 1992 ⁷⁴	0.991 (95% Cl 0.943 to 1.041)				311	5.6%
Young 1994 ⁷⁵	1.035 (95% Cl 0.998 to 1.075)	-			491	9%
Leese 2011 ⁴⁶	1.039 (95% Cl 1.025 to 1.053)				3206	26.3%
	Summary 1.026 (95% Cl 1.013 to 1.039)		\Leftrightarrow			
	Heterogeneity: l^2 =37.2%, τ^2 =0					
	—	1		1 1		
		I.	.u	1.1		
			Uπ			

FIGURE 68 Model 1. Age first ulcer. Age has been adjusted for sex and duration of diabetes. There is some, but not extensive, heterogeneity. There appears to be an overall significant OR for age, similar to those of the two largest studies, and a small amount of fluctuation around the line of no effect.

FIGURE 69 Model 1. Age new ulcer. Age has been adjusted for sex, duration of diabetes and previous ulceration or amputation. Overall, the result for all patients is similar to that for patients without history, and, again, the studies are broadly similar (heterogeneity is not high).

FIGURE 70 Model 1. Duration first ulcer. Duration of diabetes has been adjusted for age and sex. The studies are very similar except that the Rith-Najarian *et al.*⁷⁴ study used a cohort of Pima Indians.

FIGURE 71 Model 1. Duration new ulcer. Duration of diabetes has been adjusted for age, sex and previous ulceration or amputation. Again, the Rith-Najarian *et al.*⁷⁴ study has a higher OR than the other studies, and the results are similar to those for patients with no history.

FIGURE 72 Model 1. History of ulceration. History of ulceration or amputation has been adjusted for age, sex and duration of diabetes. There is a high level of heterogeneity visible in the forest plots and also shown by the l^2 and τ -statistics. Assessment of the individual studies indicated that the level of risk varied from study to study, and this forest plot is consistent with the hypothesis that the tendency to ulcerate, whether historical or not, varied in the individual studies.

FIGURE 73 Model 1. Sex first ulcer. Sex has been adjusted for age and duration of diabetes. The extent of heterogeneity is minimal and all studies consistently predict lower odds of ulceration for women than men.

I

Study	Estimate		Number of patients	Weighting
Abbott 2002 ³	0.759 (95% Cl 0.587 to 0.981)		6539	23.4%
Crawford 2011 ⁵	0.318 (95% Cl 0.115 to 0.874)		1191	4.6%
Kastenbauer 2001 ⁶²	0.269 (95% Cl 0.054 to 1.319)	e		2%
Monami 2009 ⁷²	0.617 (95% Cl 0.343 to 1.106)		- 1332	10.9%
Monteiro-Soares 2010 ⁶¹	0.626 (95% Cl 0.365 to 1.07)		- 360	12.1%
Pham 2000 ⁷³	0.391 (95% Cl 0.217 to 0.702)		246	10.8%
Rith-Najarian 1992 ⁷⁴	0.275 (95% Cl 0.117 to 0.644)		357	6.2%
Young 1994 ⁷⁵	0.574 (95% Cl 0.273 to 1.202)		— 553	7.8%
Leese 2011 ⁴⁶	0.8 (95% Cl 0.598 to 1.068)	-	- 3402	21.7%
	Summary 0.588 (95% Cl 0.464 to 0.746)	\diamond		
	Heterogeneity: l^2 =40.4%, τ^2 =0.045			
		اب 0.9	7	
		OR		

FIGURE 74 Model 1. Sex new ulcer. Sex has been adjusted for age, sex, duration of diabetes and previous history of ulceration or amputation. There is greater heterogeneity here than in the analyses restricted to patients without history, but again all studies estimated a lower odds of ulceration for women than men.

FIGURE 75 Model 2. ABI first ulcer. ABI has been adjusted for age, sex, duration of diabetes and monofilament. The statistical heterogeneity is lower than expected, given the number of ways an ABI test may be done. There is not strong evidence to support the use of ABI in comparison with some of the other tests, for example, monofilaments and pulses – only one study has a statistically significant result.

FIGURE 76 Model 2. ABI new ulcer. ABI has been adjusted for age, sex, duration of diabetes, previous history of ulceration or amputation and monofilament. The forest plot is consistent with the ABI forest plot for patients without previous history of ulceration or amputation. The results suggest that ABI is a less useful test than some of the others.

FIGURE 77 Model 2. Duration first ulcer. Duration of diabetes has been adjusted for age, sex, monofilament and ABI. As with Model 1, the Rith-Najarian study *et al.*⁷⁴ with a Pima Indian patient cohort appears to be an outlier. However, there is low heterogeneity, and duration of diabetes appears to predict ulceration.

FIGURE 78 Model 2. Duration new ulcer. Duration of diabetes has been adjusted for age, sex, previous history of ulceration or amputation, monofilament and ABI. This forest plot is consistent with the forest plot for patients with no history. Again the Rith-Najarian *et al.*⁷⁴ estimate is higher than those of the other studies, and there is evidence for duration of diabetes being a predictor of ulceration.

FIGURE 79 Model 2. Monofilaments first ulcer. Monofilament has been adjusted for age, sex, duration of diabetes and ABI. This forest plot is in agreement with the other forest plots for monofilament, with low heterogeneity and a summary OR near 3.5.

Study	Estimate	N	umber of patients	Weighting
Abbott 2002 ³	3.432 (95% Cl 2.627 to 4.483)		6415	42.9%
Crawford 2011 ⁵	3.203 (95% Cl 1.289 to 7.958)		1178	3.7%
Monteiro-Soares 2010 ⁶¹	2.463 (95% Cl 1.418 to 4.276)		360	10.1%
Pham 2000 ⁷³	3.339 (95% Cl 1.363 to 8.178)		243	3.9%
Rith-Najarian 1992 ⁷⁴	4.081 (95% Cl 1.779 to 9.362)		357	4.5%
Leese 2011 ⁴⁶	3.77 (95% Cl 2.806 to 5.065)		3400	35.2%
	Summary 3.444 (95% Cl 2.891 to 4.103)	\diamond		
	Heterogeneity: $l^2=0\%$, $\tau^2=0$			
		OR		

FIGURE 80 Model 2. Monofilaments new ulcer. Monofilament has been adjusted for age, sex, duration of diabetes, previous history of ulceration or amputation and ABI. This is a similar forest plot to the one for patients with no history and is consistent with the other monofilament forest plots.

FIGURE 81 Model 2. History of ulceration and LEA. Previous history of ulceration or amputation has been adjusted for age, sex, duration of diabetes, monofilament and ABI. There is a high level of heterogeneity in these estimates, reflecting the different clinical contexts of the individual studies, and the consequent different levels of risk for each patient cohort.

FIGURE 82 Model 2. Sex first ulcer. Sex has been adjusted for age, duration of diabetes, monofilaments and ABI. There is low heterogeneity and some weak evidence that female sex is protective against ulceration.

FIGURE 83 Model 2. Sex new ulcer. Sex has been adjusted for age, duration of diabetes, previous history of ulceration or amputation, monofilaments and ABI. There is notably greater heterogeneity in this forest plot than the corresponding one for patients with no history.

FIGURE 84 Model 3. Age first ulcer. Age has been adjusted for sex, duration of diabetes, insulin use and monofilaments. There is very little evidence of heterogeneity, less so than for some of the other models (e.g. model 1). However, the point estimates here are not very different from those for the same studies in model 1, suggesting that the lack of heterogeneity is partly explained by the restricted number of studies.

FIGURE 85 Model 3. Age new ulcer. Age has been adjusted for sex, duration of diabetes, previous history of ulceration or amputation, insulin use and monofilament. This is similar to the forest plot for patients with no history. Again, the number of studies prevents firm conclusions being made with respect to heterogeneity or the generalisability of the summary estimate.

FIGURE 86 Model 3. Duration first ulcer. Duration of diabetes has been adjusted for age, sex, insulin use and monofilaments. The point estimate for the Crawford *et al.*⁵ study is different from that in some of the other models. Here it suggests that longer duration of diabetes is protective against ulceration. This may be because of imprecision in the estimate (the true value for the Crawford study may be > 1, but 'wobble' in the data may have caused the point estimate to be < 1) or because of complexities in the variable relationships.

FIGURE 87 Model 3. Duration new ulcer. Duration of diabetes has been adjusted for age, sex, previous history of ulceration or amputation, insulin use and monofilaments. This is consistent with the corresponding forest plot for patients with no history. Again the point estimate for the Crawford *et al.*⁵ data set has an unexpected direction and this may be because of imprecision in the point estimate.

FIGURE 88 Model 3. Insulin first ulcer. Insulin use has been adjusted for age, sex, duration of diabetes and monofilament. This is a similar forest plot to that produced for the univariate analyses, where use of insulin can be both protective against and predictive of ulceration, probably reflecting the different pathways patients may take to be prescribed insulin.

FIGURE 89 Model 3. Insulin new ulcer. Insulin use has been adjusted for age, sex, duration of diabetes, previous history of ulceration or amputation and monofilament. This forest plot is consistent with the corresponding forest plot for patients with no history of ulceration or amputation and also that for the univariate analyses. The relationship between insulin use and ulceration deserves further investigation.

DOI: 10.3310/hta19570		HEALTH TECHNOLOGY	ASSESSMENT 2015 V	OL. 19 NO. 57
Study	Estimate		Number of patients	Weighting
Abbott 2002 ³	3.574 (95% Cl 2.63 to 4.856)		6115	84.9%
Crawford 2011 ⁵	3.932 (95% Cl 1.274 to 12.126)		1095	6.3%
Monteiro-Soares 2010 ⁶¹	5.989 (95% CI 2.313 to 15.504)	-	223	8.9%
	Summary 3.763 (95% CI 2.837 to 4.991) Heterogeneity: <i>l</i> ² =0%, τ ² =0	\diamond		
		1.0 OR		

FIGURE 90 Model 3. Monofilaments first ulcer. Monofilament has been adjusted for age, sex, duration of diabetes and insulin use. This forest plot is consistent with the other monofilament forest plots – low heterogeneity and a summary estimate near 3.5.

FIGURE 91 Model 3. Monofilaments new ulcer. Monofilament has been adjusted for age, sex, duration of diabetes, previous history of ulceration or amputation and insulin use. This forest plot is consistent with the corresponding forest plot for patients with no history, and also with the other models' forest plots for monofilament.

DOI: 10.3310/hta19570

FIGURE 92 Model 3. Previous history of ulceration and amputation. Previous history of ulceration and amputation has been adjusted for age, sex, duration of diabetes, insulin use and monofilament. There is very little heterogeneity in this forest plot, although this is probably attributable to the restricted number of studies, as there is significant heterogeneity for this predictor in some of the other forest plots with more studies. However, most estimates suggest that previous ulceration or amputation is a predictor of further ulceration, although to what extent varies from study to study.

FIGURE 93 Model 3. Sex first ulcer. Sex has been adjusted for age, duration of diabetes, insulin use and monofilament. This forest plot is consistent with the other forest plots for sex, where there is low heterogeneity and a summary estimate close to 1.

FIGURE 94 Model 3. Sex new ulcer. Sex has been adjusted for age, duration of diabetes, previous history of ulceration or amputation, insulin use and monofilament. Again, there is greater heterogeneity apparent in the forest plot for all patients compared with the forest plot for patients with no history.

FIGURE 95 Model 5. Age first ulcer. Age has been adjusted for sex, duration of diabetes, kidney function, and monofilament. There is low heterogeneity and as in the other models, and point estimates on either side of the line of no effect.

FIGURE 96 Model 5. Age new ulcer. Age has been adjusted for sex, duration of diabetes, previous history of ulceration or amputation, kidney function and monofilament. This forest plot is consistent with the corresponding forest plot for patients with no history of ulceration or amputation: low heterogeneity and point estimates on both sides of the line of no effect.

FIGURE 97 Model 5. Duration first ulcer. Duration of diabetes has been adjusted for age, sex, previous history of ulceration or amputation, kidney function and monofilament. There is some minimal heterogeneity and some consistency in the individual studies' estimates finding duration of diabetes to be predictive of ulceration. Although the point estimate for the Crawford study is below 1, nearly half its Cl includes values above 1.

FIGURE 98 Model 5. Duration new ulcer. Duration of diabetes has been adjusted for age, sex, previous history of ulceration or amputation, kidney function and monofilament. There is greater heterogeneity here than in the corresponding forest plot for patients with no history of ulceration or amputation. There may be greater differences from study to study for patients with history compared with patients with no history.

FIGURE 99 Model 5. Kidney function first ulcer. Kidney function has been adjusted for age, sex, duration of diabetes and monofilament. The relationship between kidney function and ulceration is not clear. It would seem plausible that poor kidney function indicates poor diabetic health and so a greater likelihood of ulceration. However, three of the four studies and the summary estimate do not corroborate this theory.

FIGURE 100 Model 5. Kidney function new ulcer. Kidney function has been adjusted for age, sex, duration of diabetes, previous history of ulceration or amputation and monofilament. This forest plot is consistent with the corresponding forest plot for patients with no history of ulceration or amputation, with most studies not providing evidence that poor kidney function is a predictor of ulceration.

FIGURE 101 Model 5. Monofilament first ulcer. Monofilament has been adjusted for age, sex, duration of diabetes and kidney function. As with the other forest plots for monofilaments in the other models, there is no evidence of heterogeneity. The summary estimate here is a little higher than the other models.

DOI: 10.3310/hta19570

Study	Estimate		Number of patients	Weighting
Abbott 2002 ³	3.345 (95% Cl 2.557 to 4.377)		6319	53.7%
Crawford 2011 ⁵	3.115 (95% Cl 1.176 to 8.253) –		1032	4%
Monteiro-Soares 2010 ⁶¹	2.462 (95% Cl 1.417 to 4.277)	— <u>—</u> —	360	12.7%
Pham 2000 ⁷³	3.398 (95% Cl 1.382 to 8.356)		243	4.7%
Leese 2011 ⁴⁶	4.401 (95% Cl 2.96 to 6.545)		2115	24.6%
	Summary 3.435 (95% Cl 2.821 to 4.183)	\diamond		
	Heterogeneity: $I^2=0\%$, $\tau^2=0$			
	1.1	OR		

FIGURE 102 Model 5. Monofilament new ulcer. Monofilament has been adjusted for age, sex, duration of diabetes, previous history of amputation or ulceration, and kidney function. This forest plot is very similar to the other forest plots for monofilament, with low heterogeneity and a point estimate near 3.5.

FIGURE 103 Model 5. Previous history. Previous history of ulceration or amputation has been adjusted for age, sex, duration of diabetes, kidney function and monofilament. There is significant heterogeneity here, reflecting the different risk profiles in the individual studies.

FIGURE 104 Model 5. Sex first ulcer. Sex has been adjusted for age, duration of diabetes, kidney function and monofilament. This forest plot is similar to the other models' forest plots for sex, with low heterogeneity and a point estimate near 1.

FIGURE 105 Model 5. Sex new ulcer. Sex has been adjusted for age, duration of diabetes, previous history of ulceration or amputation, kidney function and monofilament. Again, there is greater heterogeneity in this forest plot than the corresponding forest plots for patients with no history.

Appendix 12 Area under the curve and Brier scores

TABLE 40 Total population

Study		AUC	Brier score
Abbott <i>et al.</i> , 2002 ³	6415	0.78507	0.03704
Crawford <i>et al.</i> , 2011 ⁵	1178	0.8228	0.01701
Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	360	0.79823	0.15249
Pham <i>et al.</i> , 2000 ⁷³	243	0.71832	0.18342
Leese <i>et al.</i> , 2011 ⁴⁷	3326	0.8654	0.0534

TABLE 41 Population minus patients without a history of ulceration or LEAs

Study		AUC	Brier score
Abbott <i>et al.</i> , 2002 ³	6122	0.70436	0.02877
Crawford <i>et al.</i> , 2011⁵	1095	0.77636	0.01214
Monteiro-Soares and Dinis-Ribeiro, 2010 ⁶¹	223	0.77556	0.08546
Pham <i>et al.</i> , 2000 ⁷³	68	0.71693	0.14659
Leese <i>et al.</i> , 2011 ⁴⁷	3155	0.7710	0.0478

Appendix 13 Scottish Clinical Information: diabetes foot risk stratification and triage traffic light grading system

Reproduced from SIGN. URL: www.sign.ac.uk.

EME HS&DR HTA PGfAR PHR

Part of the NIHR Journals Library www.journalslibrary.nihr.ac.uk

This report presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health

Published by the NIHR Journals Library