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Abstract

Can valid and practical risk-prediction or casemix
adjustment models, including adjustment for comorbidity,
be generated from English hospital administrative data
(Hospital Episode Statistics)? A national observational study

Alex Bottle,1* Rene Gaudoin,1 Rosalind Goudie,1

Simon Jones2 and Paul Aylin1

1Dr Foster Unit at Imperial, Department of Primary Care and Public Health,
Imperial College London, London, UK

2Department of Health Care Management and Policy, University of Surrey, Surrey, UK

*Corresponding author robert.bottle@imperial.ac.uk

Background: NHS hospitals collect a wealth of administrative data covering accident and emergency
(A&E) department attendances, inpatient and day case activity, and outpatient appointments. Such data
are increasingly being used to compare units and services, but adjusting for risk is difficult.

Objectives: To derive robust risk-adjustment models for various patient groups, including those admitted
for heart failure (HF), acute myocardial infarction, colorectal and orthopaedic surgery, and outcomes adjusting
for available patient factors such as comorbidity, using England’s Hospital Episode Statistics (HES) data. To
assess if more sophisticated statistical methods based on machine learning such as artificial neural networks
(ANNs) outperform traditional logistic regression (LR) for risk prediction. To update and assess for the NHS the
Charlson index for comorbidity. To assess the usefulness of outpatient data for these models.

Main outcome measures: Mortality, readmission, return to theatre, outpatient non-attendance. For HF
patients we considered various readmission measures such as diagnosis-specific and total within a year.

Methods: We systematically reviewed studies comparing two or more comorbidity indices. Logistic
regression, ANNs, support vector machines and random forests were compared for mortality and
readmission. Models were assessed using discrimination and calibration statistics. Competing risks
proportional hazards regression and various count models were used for future admissions and bed-days.

Results: Our systematic review and empirical analysis suggested that for general purposes comorbidity is
currently best described by the set of 30 Elixhauser comorbidities plus dementia. Model discrimination
was often high for mortality and poor, or at best moderate, for other outcomes, for example c= 0.62 for
readmission and c= 0.73 for death following stroke. Calibration was often good for procedure groups but
poorer for diagnosis groups, with overprediction of low risk a common cause. The machine learning
methods we investigated offered little beyond LR for their greater complexity and implementation
difficulties. For HF, some patient-level predictors differed by primary diagnosis of readmission but not by
length of follow-up. Prior non-attendance at outpatient appointments was a useful, strong predictor of
readmission. Hospital-level readmission rates for HF did not correlate with readmission rates for non-HF;
hospital performance on national audit process measures largely correlated only with HF readmission rates.
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Conclusions: Many practical risk-prediction or casemix adjustment models can be generated from HES
data using LR, though an extra step is often required for accurate calibration. Including outpatient data in
readmission models is useful. The three machine learning methods we assessed added little with these
data. Readmission rates for HF patients should be divided by diagnosis on readmission when used for
quality improvement.

Future work: As HES data continue to develop and improve in scope and accuracy, they can be used
more, for instance A&E records. The return to theatre metric appears promising and could be extended to
other index procedures and specialties. While our data did not warrant the testing of a larger number of
machine learning methods, databases augmented with physiological and pathology information, for
example, might benefit from methods such as boosted trees. Finally, one could apply the HF readmissions
analysis to other chronic conditions.

Funding: The National Institute for Health Research Health Services and Delivery Research programme.
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Glossary

Artificial neural networks Well-established, flexible type of machine learning method.

c-statistic Also known as the area under the receiver operating characteristic curve, this measures the
discrimination of a model, i.e. the ability of the model to give a higher probability of the outcome (such as
death) occurring to people who in fact have the outcome (die) than those who do not (survive).

Calibration The ability of the model to give an accurate probability of the outcome. Typically assessed
using the Hosmer–Lemeshow statistic and/or plots.

Casemix Patient factors that are often associated with the outcome of interest, such as age and
comorbidity, and that therefore need to be accounted for when comparing performance by hospital.

Clinical Classification System Algorithm developed by the Agency for Healthcare Research and Quality
in the USA to group the thousands of International Classification of Diseases codes into 259 clinically
meaningful diagnosis groups for use in health services research.

Discrimination See c-statistic.

Hierarchical modelling Widely used approach for dealing with the problem of dependence between
observations. This occurred in this project, as patients admitted to the same hospital or treated by the
same surgeon are expected to have more similar outcomes than those admitted to different hospitals
(they are ‘clustered’ by hospital and/or by surgeon).

Hospital Episode Statistics Administrative database covering the main types of patient-level NHS
hospital activity.

Machine learning methods General term covering many different types of algorithm that learn their
way to modelling the data. We considered artificial neural networks, support vector machines and random
forests in this project.

Outcome, or outcome measure What happened to the patient during or after their admission,
for example death, readmission. These are commonly distinguished from process measures, which describe
the actions of health-care professionals, for example prescribing medication, following protocols.

Overfitting A common problem with machine learning methods in particular, when the algorithm learns
the (training) data set too well, so that its results generalise poorly to other data sets (e.g. the test set).

Random forests Type of machine learning method used in classification problems.

Relative risk In this project, this refers specifically to the ratio of observed (actual) to predicted
(model-based) outcomes at hospital level.

Return to theatre Some complications following an operation require another operation or procedure:
these are unplanned returns to theatre.

Secondary Uses Service A data warehouse designed to provide patient-based data for purposes other
than direct clinical care, such as health-care planning, commissioning and research.

Support vector machines Type of machine learning method used in classification problems.
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List of abbreviations

A&E accident and emergency

ACS acute coronary syndrome

ACSC ambulatory care-sensitive condition

AHRQ Agency for Healthcare Research
and Quality

AIC Akaike information criterion

AMI acute myocardial infarction

ANN artificial neural network

CABG coronary artery bypass graft

CCS Clinical Classification System

CMS Center for Medicare and Medicaid
Services

COPD chronic obstructive
pulmonary disease

HES Hospital Episode Statistics

HF heart failure

HIV human immunodeficiency virus

HL Hosmer–Lemeshow

HR hip replacement

ICC intraclass correlation coefficient

ICD-9 International Classification of
Diseases, Ninth Edition

ICD-10 International Classification of
Diseases, Tenth Edition

KR knee replacement

LOS length of stay

LR logistic regression

NBH negative binomial hurdle

OPD outpatients department

OR odds ratio

PAV pool adjacent violator

QMAE Accident and Emergency Quarterly
Monitoring Data Set

RR relative risk

RTT (unplanned) return to theatre

SMR standardised mortality ratio

SUS Secondary Uses Service

SVM support vector machine

ZINB zero-inflated negative binomial
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Plain English summary

England’s NHS collects a large number of useful data on patients attending or admitted to its hospitals.
With personal information such as names and addresses removed, these data are made available to

researchers who comply with strict security regulations. Using these records and different types of
statistical models, we set out to determine how best to compare hospitals in terms of the quality of
care that patients receive while at those hospitals. Different hospitals treat different types of patients with
different levels of health, and it would not be fair or useful to ignore this while comparing hospitals.
We therefore focused on two main challenges in this task: how best to define the measures of quality of
care and appropriately adjust the figures for patient differences.

Our measures included death and complications such as unplanned readmissions and unplanned
reoperations. We were also interested in predicting missed outpatient appointments. First we had to
define these measures using the coding systems in use in the database. Then we had to decide the best
way to take into account factors such as how old the patient is and whether or not they have illnesses
such as diabetes or heart disease. We built a large number of statistical models using old and new
methods and found that the old methods just needed a tweak. We make a number of recommendations
on how to build such models using NHS data in order to compare the quality of hospitals fairly.
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Scientific summary

Background

England’s NHS has a wealth of administrative hospital data covering inpatient and outpatient activity that
are increasingly being used to measure and monitor hospital performance and explore variations in
outcomes. These databases are complex and imperfect, but their low cost, national coverage and richness
make them appealing to researchers and regulators alike – if their utility and limitations can be assessed
and appreciated. Some of the value of Hospital Episode Statistics (HES) has been demonstrated in
two public inquiries, covering Bristol Royal Infirmary and Mid Staffordshire NHS Trust, by revealing those
hospitals’ high mortality, but a more thorough assessment of their usefulness in the area of risk adjustment
and risk prediction, including for outcomes other than mortality, is warranted.

Objectives

Our main objectives were:

1. to derive robust casemix adjustment models for these outcomes adjusting for available covariates
using HES

2. to update the weights and codes for the widely used Charlson index of comorbidity, recalibrate it for
the NHS and assess its use for mortality and also non-mortality outcomes

3. to assess if more sophisticated statistical methods based on machine learning such as artificial neural
networks (ANNs) outperform traditional logistic regression (LR) for risk prediction

4. to assess the usefulness of outpatient data for these models.

The first of these may be considered an overarching aim, with the other three as elements of that aim.

Methods

We assessed the quality of HES records first by considering published evidence from Audit Commission
coding inspection reports and a previously published systematic review. Secondly, we determined the
coverage by hospital for accident and emergency (A&E) records, comparing against the online Accident
and Emergency Quarterly Monitoring Data Set counts, and the completeness of key fields for all records.

We defined a number of outcome measures: in-hospital and total 30-day mortality, unplanned readmission
within 30 days of live discharge, unplanned return to theatre (RTT) within 90 days of the index operation,
outpatient department (OPD) non-attendance for first appointment and for first post-hospitalisation
appointment, and other unplanned readmission measures such as subsequent bed-days. For OPD
non-attendance, we used HES to track later hospital activity in our patient cohorts. RTT was defined by
taking the set of procedures dated between 1 and 29 (or 89) days of the index procedure and consulting
with senior clinicians and a coding expert to identify those procedures that were not considered a planned
second phase to the index procedure. We included a number of patient groups, including those admitted
for heart failure (HF), acute myocardial infarction (AMI), and colorectal or orthopaedic surgery.

To determine the best way to adjust for comorbidity, we undertook a systematic review of studies
comparing two or more comorbidity indices or approaches. Other variables we included depended on
the outcome and the purpose, but age, sex, method of admission, year of discharge and areal deprivation
quintile were always included.
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We built risk-adjustment models using LR for a range of procedure and diagnosis groups. For AMI and
colorectal surgery, we then compared several methods for deriving risk-adjustment models: LR (with
and without adjusting for the clustering of patients within hospital), ANNs, support vector machines and
random forests. Patient groups were split into training and testing portions, and standard measures
of discrimination and calibration were calculated for each method, patient group and data portion.
Hospital-level relative risks were derived for mortality and readmission by summing patient-specific
predicted probabilities and actual outcomes and calculating the ratio of the latter sum to the former sum.
The numbers of funnel plot outliers at 95% and 99.8% control limits were counted.

For a cohort of patients admitted for HF we undertook additional analyses. For unplanned
readmission within 30 days, we divided these by primary diagnosis (HF vs. non-HF) and correlated the
resulting hospital-level rates with published performance measures from the 2011 national HF audit.
We tried several ways of incorporating their previous hospital contacts (OPD and inpatient activity) and
considered several measures of future contacts beyond just the first unplanned readmission within 30 days.
We aimed to predict the number of bed-days and the number of unplanned readmissions within a year of
discharge, split by those for HF and those for any other primary diagnosis. We also allocated patients with
non-zero activity to one of five ‘buckets’ of equal total activity and aimed to predict membership of the
highest-activity bucket.

Results

Our assessment of HES data quality led us to include inpatient, day case and OPD, but not A&E records,
in the analysis. Most OPD records still lack diagnostic information.

Our systematic review of studies comparing comorbidity indices included 54 studies. The commonest
outcome was mortality, which we divided into short term (30 days or fewer) and long term (more than
30 days). This led us to choose a combination of the Elixhauser set and dementia from Charlson, with
weights to be determined using our own data rather than any published set. HES-based weights for
the Charlson index revealed that human immunodeficiency virus (HIV) status is no longer a significant
predictor but that dementia merits a much higher weight now than in Charlson’s original formulation.

Logistic regression models for mortality and readmission were often poorly calibrated, with overprediction
of low risk and underprediction of high risk commonly responsible, but discrimination for many of the
mortality models was high. Overfitting was common with random forests, and results from the machine
learning methods were little better than from LR. Discrimination (c-statistic) was often good for mortality
but moderate or modest for other outcomes and lowest for readmission.

The 90-day RTT rate was 2.1% for hip replacement and 1.8% for knee replacement. These are
comparable to 3-year revision rates but require only 90 days’ follow-up and offer a useful additional
measure. Patient factors explained little of the variation by surgeon or hospital for either index procedure.
Hierarchical modelling showed that the majority of a surgeon’s RTT rate is explained by factors other than
patient factors or the hospital at which they operate.

The literature review identified many reasons for patients missing their OPD appointment. While many of
the foregoing factors such as personal circumstances are not available in HES, several key ones are. We
found young and very old age, male gender, area-level deprivation and prior non-attendance to be key
predictors. The time interval between inpatient discharge and the first subsequent appointment showed a
weak relation for our set of acute diagnosis groups combined, with a small reduction in the non-attendance
rate for between 3 and 6 weeks compared with 12 or more weeks. This effect was not seen for most
of the individual diagnosis groups. Discrimination was moderate (c= 0.67), and there was significant
overprediction of low risk. Patients who did not attend their first post-discharge appointment had more
emergency admissions, total inpatient bed-days and further non-attendances in the subsequent year than
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those who did; however, they had fewer elective admissions and total OPD appointments. The rates were
different but the patterns the same following a first general medical or general surgical appointment after
GP referral. Given that patients who did not attend differed in various ways such as age and gender from
those who did, we ran LR with death in the year after the index appointment as the outcome, adjusting for
the factors in the tables plus the fact of non-attendance as an extra predictor. These models suggested that
non-attendance was associated with about a 50% higher odds of death, only slightly reduced from the
unadjusted figure.

Finally, we focused on readmissions to patients admitted for HF. Predictors were similar across
all follow-up periods for all-cause readmissions with the exception of same-day discharge, which was
important for 7-day readmission, but they sometimes differed by cause of readmission. Thirty-day rates
for HF ranged from 1.5% to 9.0% (median 5.4%), while 30-day rates for non-HF ranged from 7.6% to
17.6% (median 13.6%). Rates showed negative but modest correlations with publicly available quality of
care measures from the National HF Audit. It was notable that rates for HF did not appreciably correlate
with rates for non-HF and that the associations between readmission rates and process measure
performance existed only for readmissions for HF.

Of our various count models that we employed to predict inpatient activity in the year following index
discharge, the negative binomial hurdle and zero-inflated models performed best, though convergence
was sometimes hard to achieve. These models showed that a number of comorbidities were associated
with higher odds of readmission but were much less important in predicting future bed-days.

Conclusions

Robust casemix adjustment models for a range of outcomes adjusting for available covariates can
be derived using LR with HES data, though recalibration will often be necessary, for instance by using an
extra step in the regression. Mortality models had much higher discrimination than readmission-type
outcomes, with OPD non-attendance between the two. The OPD records add useful information when
predicting readmission-type outcomes.

The Charlson comorbidities needed new weights for use with HES, with HIV less important and dementia
more important than in the original study. For general-purpose comorbidity adjustment, we recommend
using the Elixhauser set plus dementia with extra International Classification of Diseases codes besides
those originally given.

The machine learning methods that we tried offered fairly little above LR with these outcomes and data,
and are much less straightforward to implement.

Recommendations for future research

The A&E portion of HES improved in coverage from its first two years to 2009/10 onwards, but gaps
and frequent lack of diagnostic information still limit its utility. Analyses that exclude hospitals with
poor data are suggested. The A&E records could be used both in risk-adjustment models and also for
outcome measures.

We have outlined the process for producing RTT metrics, which involves empirical analysis and expert
clinical and coding input, and this could be replicated for other index procedures. Elucidation of the
relations between RTT and outcomes such as mortality and quality of life would help determine its value
as an indicator of quality of care.

DOI: 10.3310/hsdr02400 HEALTH SERVICES AND DELIVERY RESEARCH 2014 VOL. 2 NO. 40

© Queen’s Printer and Controller of HMSO 2014. This work was produced by Bottle et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

xxi



For readmissions, we considered the first and also the total number, but more sophisticated approaches
such as multistate analysis or cluster analysis to look for patterns of activity could be usefully employed.
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Chapter 1 Background and research objectives

Measuring and comparing health-care performance are essential components of driving quality
improvement. When comparing patient outcomes such as mortality, it is usually necessary to

appropriately adjust for patient factors such as age and disease (collectively known as casemix) using
statistical models. The NHS collects a wealth of administrative data that are currently underutilised to
support improvements in health-care provision. The aim of this project was to use a core NHS data set,
Hospital Episode Statistics (HES), to develop risk-prediction and casemix adjustment models to predict and
compare outcomes between health-care units. The outcomes we have chosen are mortality, unplanned
readmission, unplanned returns to theatre for selected specialties and non-attendance in outpatients
departments (OPDs). As well as patient age and sex, a key casemix factor for risk-adjustment models
is comorbidity, which has been measured in various ways, such as the Charlson index,1 that warrant
comparison. Modelling for binary outcomes is typically done using logistic regression (LR), but there are a
number of machine learning approaches that have been tried and are worth investigating here. Finally,
just as statistical methodology has developed, HES itself is expanding and now covers OPD appointments
since the financial year 2003/4 and accident and emergency (A&E) attendances since 2007/8. Information
from these sources may provide useful information if the data quality is sufficiently high.

In view of all this, the project had these main objectives:

1. to derive robust casemix adjustment models for these outcomes adjusting for available covariates
using HES

2. to update the weights and codes for the widely used Charlson index of comorbidity, recalibrate it for
the NHS and assess its use for mortality and also non-mortality outcomes

3. to assess if more sophisticated statistical methods based on machine learning such as artificial neural
networks (ANNs) outperform traditional LR for risk prediction

4. to assess the usefulness of outpatient data for these models.

The first of these may be considered an overarching aim, with the other three as elements of that aim.

The structure of this report is as follows. Chapter 2, Methods, begins by describing the HES database as
held and processed by the Dr Foster Unit at Imperial. It briefly describes the assessment of data quality of
the two newer elements used in this project: OPD and A&E records (the Diagnostic Imaging Dataset was
released too late for us to obtain it). There are subsections on the outcome measures, particularly the
(unplanned) return to theatre (RTT) ones, a review of the literature on comorbidity measures, including
a summary of our published systematic review of studies comparing two or more such measures, and
the statistical methods for risk adjustment, together with their implementation issues, in particular
(re)calibration. That chapter ends by discussing count models as an alternative to considering binary
outcomes, particularly readmissions. Chapter 3, Results, begins by giving the results for the updating of
the Charlson index using HES data and illustrates the performance of Charlson compared with that
of the popular Elixhauser index. It illustrates different methods for incorporating information from prior
admissions for two conditions: heart failure (HF) and acute coronary syndrome (ACS). This is followed by a
section comparing risk-adjustment methods, which comprises a comparison between LR and machine
learning approaches for mortality and readmission. The results of the RTT analyses are then presented.
Following a literature review of factors relating to OPD non-attendance, we present the results of the
prediction models. Finally, we go beyond the common 28- or 30-day readmission indicator to cover other
time periods and future bed-days. We focus on HF patients; the basic results were similar for chronic
obstructive pulmonary disease (COPD). Chapter 4 gives the discussion and dissemination activity to date
and suggests further research, and Chapter 5 offers some conclusions.
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Chapter 2 Methods

Hospital Episode Statistics database

Our unit holds inpatient and day case HES and Secondary Uses Service (SUS) data from 1996/7 to the
present with monthly SUS feeds. We apply published HES cleaning rules to the SUS feed. Details of this
and our other processing, such as episode and spell linkage, can be found on documents on our website
(www1.imperial.ac.uk/publichealth/departments/pcph/research/drfosters/reports/ under ‘HSMR
methodology’). HES data cleaning rules may be found on the NHS Information Centre website under HES.
Throughout this report, we refer to all these records as ‘HES data’. Briefly, each record in the inpatient part
of the database is a finished consultant episode, representing the continuous period of time during which
the patient is under the care of a consultant or allied health professional. We link episodes into ‘spells’
(admissions to one provider) and link spells into ‘superspells’, the latter combining any interhospital
transfers. We will refer to superspells as ‘admissions’ and in general use them as the unit of
analysis throughout.

We hold outpatient HES and SUS data since they became part of HES in 2003/4 and hold A&E records
since they became part of HES in 2007/8. The most recent A&E records we had for the project were for
2011/12. The Information Centre’s contractors provide a file to enable us to attach the date and cause of
death to HES records, with the latest date of death being August 2011.

We derive a number of fields, in particular the main diagnosis group, the main procedure group and the
Carstairs deprivation quintile. We use the Agency for Healthcare Research and Quality (AHRQ) Clinical
Classification System (CCS) to turn the International Classification of Diseases, Tenth Edition (ICD-10) codes
of the primary diagnosis field into one of 259 diagnosis groups designed for health services research
(see www.ahrq.org for details). For procedures, no such system exists for the UK’s Office for Population,
Censuses and Surveys (OPCS) procedure codes. Over several years, in conjunction with clinicians, we have
created a number of procedure groups.2 The Carstairs quintile3 is assigned at the super output area
geographical level using information from the 2001 census; the necessary 2011 census information was
not available in time for this project. Although Carstairs is therefore based on older information than the
Index of Multiple Deprivation, its resolution is greater.

We now briefly consider the quality of HES data.

Assessment of inpatient and day case data quality
Submission of HES records is mandatory and coverage is very high, though the frequency and timeliness
of submission to SUS varies. Apart from ethnicity, which is fast improving, there are few clearly duplicate
records or missing or invalid values in HES for patient identifiers and demographics, dates of admission,
discharge or procedure, method of admission and other key fields:2,4 < 1% of records were dropped
because of missing values. Most debate around HES data quality concerns the primary and secondary
diagnostic and procedure fields. A sample of records is externally audited for its coding and the results
published online by trust by the Audit Commission.5 These reports show that the variation by trusts is
notable but narrowing each year. The estimates of coding accuracy in these reports are not sufficiently
robust or detailed to allow us to estimate the ‘correct’ level of comorbidity at a given hospital, however.
A recent systematic review on this subject by our group6 found coding accuracy to be high (97%),
particularly since the introduction of Payment by Results. The Health and Social Care Information
Centre have now written two reports on English hospital and social care data (see www.hscic.gov.uk/
catalogue/PUB08687 for the first one).
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Assessment of outpatient data quality
Unlike with A&E, there is no independent source with which to compare the number of records.
We assessed data quality in terms of the proportion of duplicates and the proportion of records with
missing values for the primary diagnosis, primary procedure, and date and outcome of attendance
(whether the patient attended or not). Most records lacked both a primary procedure (though we cannot
ascertain what proportion of OPD appointments actually involved a procedure) and a primary diagnosis
field. The use of codes for invalid or unknown was low for the other key fields. The proportion of
duplicate records was < 1%, but these should still be removed.

Assessment of accident and emergency data quality
We compared for each hospital the number of electronic records in our data set with counts from the
Accident and Emergency Quarterly Monitoring Data Set (QMAE). Overall in the first 2 years of A&E HES,
2007/8 and 2008/9, it was missing more than 6 million of the 19 million attendances reported by QMAE,
a shortfall of around a third. As many as 40% of hospitals with A&E departments failed to submit
any data. Then 2009/10 saw a jump of around 3 million electronic records to include 16 million out
of the 20 million QMAE total, a jump that was maintained but not improved upon in 2010/11. We felt
that the shortfall was still too large and therefore decided not to use A&E records in the project. Records
for 2011/12 arrived too late for inclusion but may be worth using in future analyses.

Definition of outcome measures and predictors

The two most commonly used mortality measures are in-hospital mortality (any time during the index stay)
and 30-day total mortality (in or out of hospital within 30 days of the index admission or procedure date).
For readmission, the most commonly used internationally is the 30-day all-cause version; in the UK,
28 days is typically used. Unless otherwise stated, ‘readmission’ as an outcome means within 28 days; for
the HF analyses we used 7-, 30-, 90-, 182- and 365-day follow-up periods rather than 28 days.

For HF, the number of admissions and inpatient bed-days during the 365 days following discharge were
also counted; these and also the first readmission were split by primary diagnosis into those for HF and
those for any other cause (non-HF). OPD non-attendance was simply defined using the ATENTYPE
(attendance type) field. The first appointment following inpatient discharge for selected acute conditions
was readily identified using dates; of particular interest here was whether or not non-attendance rate
varied by the time interval between discharge and the appointment, as if so this would represent an
opportunity for the hospitals to reduce missed appointments. The patient’s first new appointment for the
specialties of general medicine and general surgery were identified using the field FIRSTATT and also by
tracking back 3 years in the database to ensure that this was each patient’s first for that specialty
(or at least their first for 3 years).

The construction of the RTT measures followed the same outline for each specialty as for cystectomy in
urology.7 All procedure fields with dates between 1 and 29 days inclusive of the index procedure date,
even if performed after transfer or discharge from the index stay, were extracted from the database and
inspected by a senior surgeon and clinical coder to determine which were likely to be reinterventions.
These can potentially encompass surgical operations, both surgical and non-surgical procedures, including
radiological interventions. For orthopaedics, we defined RTT between 1 and 89 days after the index
procedure in order to capture infections, which may take a few weeks to develop. The index procedures
of hip and knee replacements were each divided into subgroups with advice from a senior surgeon.
Hip operations were divided into total with cement, total without cement, hybrid and hip resurfacing.
Knee operations were divided into total, unicondylar (or unicompartmental) and patellofemoral
replacement, taking into account the national changes in coding practice in 2009/10 regarding Z845
(tibiofemoral joint) and W581 (resurfacing). The small number of otherwise unclassified procedures were
excluded. Using laterality Z codes, we matched the RTT to the joint where possible – around 95% of joint
procedures had laterality codes.

METHODS
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Potential covariates for the risk-adjustment models were taken from our national monitoring system that
uses HES:2 age, sex, deprivation quintile, year, month of admission for respiratory conditions, admission
method (elective or emergency if the patient group included both), emergency admissions in the year
before the index stay, comorbidities and potentially an interaction between age and comorbidity. For the
HF readmission models, we also tried incorporating previous admissions using more sophisticated methods,
and we used the number of prior OPD appointments attended and the number missed. HF models also
included some procedures. Further details are given in the relevant later sections.

Table 1 summarises which outcomes will be presented for which patient groups.

TABLE 1 Patient groups and outcomes modelled in this project

Patient group Outcomes modelled

All emergency inpatients combined Mortality

Acute myocardial infarction Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

COPD Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

Stroke Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

HF Mortality (in-hospital and 30-day total); readmission
(7-, 28-, 30-, 90- and 365-day, both all-cause and
diagnosis-specific); number of emergency bed-days
and readmissions within a year of index discharge (also
converted into membership of high-resource ‘buckets’)

Pneumonia Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

Fracture of the neck of femur Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

Hip replacement (primary procedure) Mortality (in-hospital and 30-day total); readmission
(7- and 28-day); return to theatre within 90 days

Knee replacement (primary procedure) Mortality (in-hospital and 30-day total); readmission
(7- and 28-day); return to theatre within 90 days

First-time isolated coronary artery bypass graft
(primary procedure)

Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

Abdominal aortic aneurysm repair (primary procedure) Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

Colorectal excision (primary procedure) Mortality (in-hospital and 30-day total); readmission
(7- and 28-day)

Patients having their first general medical or general
surgical OPD appointment

Non-attendance

Patients admitted for any of acute myocardial infarction,
coronary heart disease, stroke, HF, acute bronchitis,
COPD and pneumonia

Non-attendance in first OPD appointment after discharge
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Review of comorbidity indices

The two most commonly used indices are the Charlson1 and Elixhauser,8 originally described using
International Classification of Diseases, Ninth Edition (ICD-9) with US data. In each index, points are given
for the presence of a set of codes representing diseases associated with higher or sometimes lower risk
than if the disease is not present. The points are then summed to give a score for the admission.9 The
Charlson index is now over 20 years old and both indices need calibrating on the data set of interest; to
our knowledge, very little has been published from the UK on this. The weights (or scores) for these two
indices may be inappropriate for the UK because of differing populations and/or coding practices. We have
to date been using an Australian version of Charlson10 in our risk-adjustment models (there are a variety of
others for ICD-9), but discussions with clinical coders raised questions over the suitability of some codes
when used in the UK. According to their advice, we modified the codes for acute myocardial infarction
(AMI) and dementia in particular.11

A decade or so later, Elixhauser et al.8 constructed a more extensive index covering 30 conditions. This
index was designed for administrative databases such as HES that lack present on admission information,
which means that they cannot distinguish between comorbidities and complications that arise during the
stay. This is why Elixhauser does not include AMI or stroke, which are both part of Charlson. Some
comorbidities were associated with lower risk of mortality and were given negative scores, confirmed in a
Canadian analysis.12 One reason for this was given by Elixhauser: low-risk patients may be given more
codes for less acute problems than acutely ill people, for whom coders will focus on problems relevant to
the acute situation. The presence of codes for non-life-threatening disease may therefore be a marker for
relatively healthy patients.

Including Charlson and Elixhauser, there have been different approaches of selecting sets of comorbidities.
The most common typically involved considering the prevalence of each condition and medical expert
opinion.13–17 Gagne et al.18 and Thombs et al.19 simply combined all the conditions listed in Elixhauser and
the Deyo adaptation of the Charlson index except those conditions thought to be related to the main
diagnosis. The simplest approach is to count the number of conditions, thereby giving them equal weight.

To find the best-performing one(s), we conducted a systematic review of multiple comparison studies on
comorbidity measures/indices in use with administrative data. The review used a new meta-analytical
approach, hypergeometric tests, to identify the best-performing indices. We now briefly outline the search
strategy, results and conclusions. Full details may be found elsewhere.20

The literature search was conducted first using three electronic databases, MEDLINE, EMBASE and
PubMed, up to 18 March 2011. Search terms included Charlson, Elixhauser, comorbidity, casemix,
case-mix, mortality and morbidity. In addition, the bibliography of the chosen articles and the relevant
reviews were searched.21–25 Two authors independently reviewed the titles and abstracts and the
methodology section of the articles and selected the relevant potential articles. All disagreements were
resolved by consensus.

Articles were included if administrative data were used and comparisons between predictive performances
of at least two indices (perhaps also including common covariates) were made. Articles were excluded if
clinical databases without ICD codes were used or if indices were used for the purpose of adjustment only,
without any comparison of indices.

The c-statistics and the confidence intervals, or Akaike information criterion (AIC) or other appropriate
statistics, were looked at if they were available, to compare the predictive performances of the
measures/indices. If c-statistics alone without confidence intervals (or p-values) were provided,
an arbitrary ≥ 0.02 cut-off point was chosen to define the difference between two measures/indices
as significant.

METHODS
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All mortality outcomes were divided into two major groups: (1) ‘short term’ – all inpatient mortality and
any mortality within 30 days of admission; and (2) ‘long term’ – outpatient mortality or that 30 or more
days from admission.

After removing duplicates from different databases, we retrieved 1312 studies to review, subsequently
reduced to 54 articles eligible for data abstraction. Of these, 90% were carried out in North America.

In summary, for short-term mortality (up to 30 days), the use of empirical weights (of whichever index) or
the small group of various other comorbidity measures performed best. For long-term mortality (30+ days),
these ‘other measures’, the Romano version of Charlson and the Elixhauser measure performed
significantly better. As others have suggested, there may be useful gains if the two indices are combined.
In practice, this would mean taking the Elixhauser set and adding dementia if we excluded AMI and stroke
(Charlson components), which could occur after admission as complications but whose timing cannot be
determined using HES. Following a review of the Sundararajan et al. comorbidity ICD definitions10 by
external clinical coders, we amended the Charlson algorithm so that it uses extra codes for AMI and
dementia in particular.

Statistical methods

Modelling framework
The terms risk prediction and risk adjustment are closely related despite their differing aims, but a model
for predicting mortality, for example, might not include the same set of variables as a risk-adjustment
model used to compare hospitals’ mortality rates. Risk prediction values parsimony and interpretability,
whereas risk adjustment can focus more on confounder control. Risk-prediction models could encompass
factors such as staffing and bed numbers or other factors that are (at least partly) under the hospital’s
control, whereas this would be wrong for risk-adjustment models for comparing providers. For the most
part we restrict ourselves to adjustment except for part of the HF analysis that covers the prediction of
future inpatient activity and for OPD non-attendance prediction.

Prediction of binary outcomes such as mortality or readmission is usually done using LR with records from
single institutions. It is therefore prone to problems such as poor reproducibility due to small sample sizes
and variations in patient characteristics between study centres.26 Combining a larger number of institutions
would increase the sample size, but the modeller then in principle needs to account for the ‘clustering’ of
patients within institutions. The common way of accounting for this is to use multilevel models, particularly
with random intercepts for surgeons and hospitals and fixed effects for covariates. For this, we used SAS’s
procedure for binary outcomes, PROC GLIMMIX, version 9.2 (SAS Institute Inc., Cary, NC, USA). From this
we derived relative risks (RRs) for each hospital using predicted probabilities from only the fixed effects part
of the model.27,28 We used the noblup ilink options within PROC GLIMMIX to achieve this. These RRs are
akin to standardised mortality ratios (SMRs), which represent the ratio of the hospital’s rate to the national
average rate. The Center for Medicare and Medicaid Services (CMS) in the USA uses empirical Bayes
‘shrunken’ estimates of the SMRs for its publicly reported outcome measures.29 Confidence intervals for
the CMS measures are constructed using a complicated bootstrap procedure. A discussion of the different
SMRs calculable from multilevel modelling is given by Mohammed et al.,30 though the article is
unnecessarily critical of mortality measures in general. Several studies have compared the results from
fixed and random effects models with regard to provider profiling, in which a key aim is the identification
of statistical outliers, especially units with higher than expected mortality. In general, these conclude
as Austin et al.31 did: ‘when the distribution of hospital-specific log-odds of death was normal,
random-effects models had greater specificity and positive predictive value than fixed-effects models.
However, fixed-effects models had greater sensitivity than random-effects models’ (p. 526).
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Bayesian methods in provider profiling are of growing interest, and four such approaches are reviewed by
Austin.32 He concluded that there was often little agreement in the hospital rankings between the
methods considered. We will not consider Bayesian methods further.

Multilevel models allow for the estimation of the amount of variation between units at each level, for
example between surgeons or hospitals. The residual intraclass correlation coefficient (ICC), a measure of
clustering used in hierarchical modelling, expresses the proportion of variability explained by the presence
of clusters as, for instance, a hospital level.33 It is computed as:

ICC = τH=(τH + π2=3) (1)

where τH is the hospital-level variance and π= 3.14159.

By building up the levels in a hierarchical model, one can assess, for example, how much of the variation
in outcomes at hospital level is due to the variation between surgeons or to differences in the distribution
of patient factors. In this project, this is particularly useful with surgical outcomes such as RTT, and we will
illustrate it for orthopaedics.

Model fitting
The modelling in this project served different purposes, and we therefore took different approaches
accordingly. For the comparison of LR and machine learning methods, we needed to mitigate overfitting;
in our experience before and during this project, this is not a problem with regression and HES data, and
therefore we did not routinely split the data subsets into a training and a testing set. For the comparison
of methods, however, we did. For this part of the analysis, we took 2 years of data, randomly split the
records into two portions and then recombined them to form a test data set and a training data set so
that each of the resulting sets contained a random mix of each year. This was to avoid any effect of the
data year itself, for instance on account of national outcome trends or coding changes. We included a
binary variable to indicate the year. As the aim was to see to what extent more complex methods can go
beyond standard regression, no interactions or non-linear terms were included.

For LR, all candidate covariates were retained: we did not use any stepwise methods given their
well-known drawbacks. For the most part we did not test for interactions.

The machine learning methods tend to be slower than LR and, given their complexities, often need an expert
as an operator and to choose which implementation to use. While many packages offer ‘out-of-the-box’
ways of running the code, doing so is usually suboptimal, and an expert is needed to make decisions on
implementation issues. The sections that follow are therefore the most technical in this report.

Machine learning methods
Logistic regression is familiar to many, easy to use, with easy-to-interpret output consistent across
platforms, be it SAS, R or any other. This is in stark contrast to machine learning methods, which may fall
into different broad categories. As an alternative to regression, researchers have applied various machine
learning methods, especially ANNs and support vector machines (SVMs), and the initial results have been
promising.34–37 There are also various tree-based methods that offer an appealing output that, unlike ANNs
and SVMs, shows the relations between predictors. Of these, we consider random forests, as we doubted
that our data would benefit from the extra complexity inherent in boosted trees. The essential question
here that we tackle is: do these sophisticated methods offer substantial benefits over the humble LR?

These methods have a number of implementation issues and decisions to be taken, as there is much less
consensus than for LR. For each method, we now describe these issues and how we addressed them. A short
subsection outlines how we assessed the performance of each model. Finally in this chapter, we consider the
problem of poor calibration and how, for this comparison of methods set of analyses, we tackled it.

METHODS
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Support vector machines
Support vector machines are designed to find a hypersurface (hyperplane in the linear case) that separates
positive outcomes from negative ones (e.g. death vs. survival). SVMs are therefore classifiers. The SVM
output is a number detailing how far on one side of the hypersurface or the other a test vector (set of
patient characteristics) lies. This number induces an ordering on the data; however, the ordering needs to
be recalibrated if one wants a probability estimate. If no hypersurface can be found that separates the data
according to outcome, there will be misclassification. The c-parameter controls the leniency of
such misclassifications.

For a given set of parameters a SVM is trained on a training set. The trained model is then applied to a test
set, and we calculate the c-statistic. A grid-based search is then performed to determine the optimal set of
parameters. The optimal parameters depend on the outcome and set of covariates.

A crucial ingredient for SVMs is the so-called kernel, the most prominent ones being linear and Gaussian.
We also studied a Mahalanobis distance-based kernel in more detail (see next paragraph), and there are
many others which we briefly looked at. There is no uniquely correct choice of kernel. The kernel will
contain parameters of its own in addition to C. As mentioned above, another problem is that SVMs
generally output not probability estimates but just a rank. This needs to be calibrated in an extra step,
which comes with its own issues. Furthermore, care needs to be taken with ‘unbalanced’ data sets.
An imbalance in outcome frequencies is common in medical data sets, that is there are usually many more
survivors than non-survivors. LR handles this well, but other methods such as SVMs have a tendency to
overemphasise the majority class (which is usually survival). This can be solved by either undersampling the
majority class (i.e. randomly dropping patients belong to the majority class until the class distribution is
balanced) or oversampling the minority class (i.e. counting patients in the minority class several times until
numbers are balanced). The SVM code we used implements a similar but somewhat more sophisticated
method. It allows the classes to be weighted differently. Since no data are dropped in this process,
this method is similar to oversampling but without adding any data, thus not needlessly increasing the
data sets. The last point is important, as SVMs are computationally intensive, and speed is a consideration.

Support vector machines work by measuring the similarity, or ‘distance’, of patient characteristics, which
are stored as vectors. The problem is: what is a meaningful ‘distance’ in an abstract space of such vectors?
How does one compare the presence of, say, diabetes, with the patient’s gender, or either with a 1-year
difference in age? There is therefore no natural distance measure. Standard linear or Gaussian kernels are
therefore not necessarily the best, and neither are many others, as all the elements of a vector are treated
on the same footing. A data-driven distance measure, the Mahalanobis distance,38 does exist, but to
implement it directly would be computationally impossible. However, transforming the data by a principal
components analysis results in the Euclidian distance measure in the Gaussian kernel becoming the
Mahalanobis distance. We also used the transformed data with the linear kernel.

We chose the free package svm-light39 to implement the SVMs. Its advantage is that it is written in C and
thus allows for easy implementation of alternative kernels. In general, for a given kernel, a numerical
grid search is employed varying the control parameter C and any other kernel parameters if present.
Particularly for more complex kernels and limited computer resources, this is prohibitively inefficient.
We therefore performed such a grid search for the popular linear kernels (parameter C only) and
the Gaussian kernel (parameter C and the width of the Gaussian). We implemented several other
kernels, such as Jaccard–Needham, Cosine, Maryland bridge, Correlation, Coulomb, Polynomial and
Rogers–Tanimoto. Full testing was not feasible, so we compared the different kernels using only a small
subset of the possible parameters (default and similar). We found no indication of any other kernel
outperforming the Gaussian kernel and decided not to pursue these other kernels in more detail.

Svm-light was run in ‘regression mode’. In standard mode, that is ‘classification mode’, SVMs yield an optimal
hypersurface separating the two classes, such as deaths and survivors. In regression mode the algorithm will
try to fit a function so that it comes as close as possible to the outcome values and therefore may contain
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information in addition to just being on one side or the other of a hypersurface. In practice we did not see
much of a difference in SVM performance between ‘regression mode’ and ‘classification mode’.

With the exception of age, all the covariates were binary, so the data are located on the corners of a
hypercube. Unsurprisingly, building the model was very slow. Given that one learning run needs to be
performed for each combination of SVM parameters, we had to limit each SVM learning run to 24 hours.
The resulting model then also contains a large fraction (> 90%) of all data vectors as support vectors – SVM
are meant to be able to find a model with few support vectors (support vectors are points that lie on the
margins of the separating hyperplanes).

Artificial neural networks
Artificial neural networks come in a multitude of different types. There are far too many adjustable aspects
of ANNs to systematically optimise all of them. Hertz et al. discuss important standard implementations of
ANNs such as feed-forward and recurrent ANNs, but also unsupervised ANNs such as Kohonen maps.40

After waning for a few years because of the popularity of SVMs, interest has revived recently under the
heading of Deep Learning.41 We concentrate on what is probably the standard: feed-forward ANNs,
which are conceptually quite similar to LR. Whereas in LR a weighted sum feeds into a logit function,
in feed-forward ANNs several such structures are fed into a further LR-like computational structure layer
by layer. Such ANNs are usually trained using the back-propagation algorithm. This is a local optimisation
algorithm. The exact computational methodology for solving the resulting optimisation problem is also not
as clear-cut as in LR. One may minimise several different measures such as the Brier score (mean square
error), a log-likelihood-based measure as in LR, or some combination of the two, but even then there
is no unique solution as is the case in LR. This means that different optimisation methods are used in
conjunction with several overall measures, generally resulting in different solutions (local minima) with no
unique and obvious choice of the optimal combination. However, the result will usually be a meaningful
estimate of a probability. The scoring function which was optimised could interpolate between the mean
square error and a LR-like log-likelihood-based measure. This affects the position of the optima and
the speed with which they are reached. We chose an equal mix of both. No systematic changes with
respect to the result were observed, but some speeding up was observed. For this reason we also added a
momentum term and damping into the stepwise updates of the optimisation.

We terminated this procedure at one so-called hidden layer, which is the standard choice. One must
decide how many nodes to use. When choosing the number of nodes in the hidden layer, we kept to a
common rule of thumb: the number of nodes should be of the order of the square root of the number
of variables in the model. Any number of hidden nodes beyond one will give results better than LR.
We found that, as long as the number of hidden nodes was greater than two, no systematic changes
regarding the c-statistic were observed, so we settled on five as per the rule of thumb. In ANNs as in LR,
there is no unique functional form of the non-linear transform, although logit is a common choice.

We added a LR-like direct link from the input layer to the output layer. While this did not improve overall
performance it has a few advantages. By setting the links to the hidden layer to zero we are left with a
LR-like architecture. The optimisation can then be initialised with a LR solution, which saves time.
In addition, back-propagation is then guaranteed to reach an optimum that is at least as good as LR.

Random forests
Random forests is a decision tree-based method.42 A decision tree is a set of if–then clauses (nodes)
with a tree-like structure, with each leaf being a decision on the expected outcome: ‘if (age> 65 years) then
if (no diabetes) equals survival’, etc. The trees in random forests use a randomly chosen subset of all
explanatory variables at each node. A random forest then consists of many such trees, each one grown on a
bootstrapped sample of the training data set (bootstrapping a data set means generating new data sets by
drawing from the original one with replacement). The outcome or outcome probability is then derived from
a committee decision made by all the trees in the forest. This method may also be combined with other
methods. Calibration issues may also be prominent, and there are potentially many parameters to tweak.

METHODS
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Individual trees are grown in the following manner:

1. Sample N cases at random with replacement to create a subset of the data.
2. At each tree node:

i. From the total number of explanatory variables, M, select at random a subset of m
explanatory variables.

ii. The explanatory variable that provides the best split, according to the classification and regression
trees methodology43 or some other objective function, is used to do a binary split on that node.

iii. At the next node, choose another m variable at random from all explanatory variables and do the same.

For each case, the numbers of trees that ‘vote’ for a particular class (e.g. death) are used as an estimate of
the probability of being in that class. In addition to the randomforest package version 4.6–7 (University
of California, Berkeley, CA, USA) default of 500 trees and m= sqrt(M), the advice given by Genuer et al.44

was followed on selecting the number of trees and m.

The random forests were implemented as described by Breiman45 using R version 3.0.2 (The R Foundation
for Statistical Computing, Vienna, Austria) and the randomforest package version 4.6–7.

Assessment of model performance
With any risk model comes the need to assess its performance. For binary outcomes, two standard
measures for LR are the area under the receiver operating characteristic (ROC) curve, or c-statistic, and the
Hosmer–Lemeshow (HL) test output. The former measures discrimination, the ability of the model to predict a
higher probability of death for those who died than for those who survived. It is generally considered
that values of c above 0.70 represent good discrimination and values above 0.80 represent excellent
discrimination. The maximum value obtainable is often quoted as 1 but in fact varies with the distribution of
risk in the population (see Cook46 for a full discussion on this statistic). The HL test describes the model’s
calibration and divides the data set into risk deciles. The observed and predicted number of events are
compared in each decile – which often shows poor calibration at the extremes – and summarised in a
chi-squared statistic. It has been criticised for having high type I and II error rates.47 While a simple plot of
observed versus predicted rates may be more useful, we will nonetheless report HL test results because of the
large number of models fitted and the need to be concise.

For the HL chi-squared values, we give right-sided p-values. We used 10 bins for the HL test, as is standard.
Any constraints of the fitting procedure (e.g. that the total sum of estimated probabilities equals total sum
observed events) which reduce the effective number of degrees of freedom apply to the HL test with respect
to the training data set. When running LR for a range of patient groups, we used eight degrees of freedom
as is standard and as used by SAS. However, in the comparison of methods section, as we present results
for the test set, no such constraints exist, and the HL test will be distributed according to the full 10 degrees
of freedom.

Recalibration
Being built around a sigmoid output node, ANNs produce output that can be interpreted as a probability
estimate, as does LR. The greater variational freedom inherent in the algorithm then means that the result
is potentially better calibrated. Therefore we did not recalibrate the ANN output.

Methods that are known to have calibration issues, such as random forests,48 or are not even designed
to produce meaningful probability estimates, such as SVMs, have to be recalibrated. We also found a
number of the LR models to show overprediction of low risk in particular. As LR may be viewed as an
ANN with no hidden nodes, back-propagation is applicable and can be adapted easily to optimise the
internal shape parameters of the output node. Adjusting the shape parameters changes the calibration.
Standard LR is based on optimising a log-likelihood-based measure and results in perfect overall calibration
(i.e. total observed counts equal total predicted counts). Optimising the mean square error does not result
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in perfect overall calibration. However, the difference in probability estimates using each optimisation
scheme encodes the deviance from an optimal model for which the difference would be zero. (This follows
from the fact that both measures are so-called ‘strictly proper scoring rules’.) We found that feeding the
probability estimates back into a further LR iteration in conjunction with the other covariates improved
both discrimination and calibration. This will be labelled ‘LR+’ in the results. Only feeding back in the
standard LR probability estimates also improved the final result but to a much lesser degree.

The standard method for recalibration is isotonic regression pool-adjacent-violator algorithm (IR-PAV),49

which we have used throughout. However, this results in a series of steps in the predicted probability
curve, which is biologically implausible. Later in the project, we developed a smoothing technique using
splines – full details are found elsewhere.50 To illustrate, the original LR probability estimates for 30-day
total mortality following AMI are mapped onto recalibrated estimates for the two methods, compared
in Figure 1. The blue ‘diagonal’ line represents no recalibration. The effect of the recalibration is to
lower very low probabilities and high probabilities and to push up those in the middle. In other words,
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FIGURE 1 Comparison of standard (PAV) and alternative (SEP) recalibration methods. Graph (a) shows probabilities
up to 0.5; and graph (b) shows the whole data set. SEPs, splined empirical probabilities.
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LR first over-, then under- and then overestimates probabilities as one moves from low to high values.
Depending on the exact use, correct calibration in addition to discrimination may be of importance. Note
that the bulk of the patients in this example are to be found between 0.05 and 0.4 so the large
discrepancy for very large values affects only few patients.

Methods for including information from previous admissions into the
prediction models
Many patients, particularly the elderly and those with chronic conditions, have a number of health service
contacts. As mentioned before, data quality considerations currently limit the use of A&E attendances
(we decided not to use these) and OPD appointments to counting OPD appointments attended and missed;
see the last section of Chapter 3. With previous admissions, one may use the procedure and diagnosis
information (the latter can be used to augment comorbidity codes as mentioned earlier) and also the timing
of them relative to the index contact. A simple but crude approach is to count the number of emergency
admissions for any reason within the previous year.2 To use the primary diagnosis of these previous admissions,
one needs to use some grouping algorithm such as the AHRQ’s CCS groups and then combine the infrequent
ones. The relative timing, which is recorded in number of days between admission dates, may also be
incorporated, as in principle may the duration of each stay.

Intuitively, one may think that a recent readmission better predicts the outcome of the index admission
than one that lies further back in time. If we ignore the durations and consider just the fact of admission,
then a 3-year lookback period generates roughly 1000 binary variables – one for each day. Determining
the effect of each of these variables cannot be done by simply adding them to a LR model. Some
aggregation is needed. This also smooths out small time differences (e.g. whether a previous admission is
673 days in the past or 674 is unlikely to be of major significance). We used a two-step process as follows.

First step:

l We generated the 60 lowest-order orthogonal polynomials of our 1000-dimensional vector space of
admission dates. The base polynomial (a horizontal line) then is equivalent to just summing the number
of admissions; the next polynomial (a diagonal) translates into a sum weighted by the time difference
to the present admission, etc.

l The value of the sums weighted by these polynomials results in 60 new variables. These were used in a
LR model.

l Using the LR coefficients yields a weighting of polynomials, which results in a single weighted sum that
in a LR model would give the same result.

l As expected, this weighted sum puts about five times greater emphasis on very recent previous
admissions than those further in the distant past. The decline in weights occurs over about the first
half-year or so.

Second step:

l The weighted sum above may be used to generate new weighted polynomials. These will give greater
prominence in magnitude and resolution to where the weighting is largest, that is to recent
admissions. The base polynomial stays the same.

l One or more such polynomials may now be used as weighted sums to generate variables that can be
added to a LR model.

l We also included a flag for no previous admission within the last 3 years.

To test this, we considered two years of index HF admissions as used in the readmission analyses.
Our outcome was unplanned readmission within 28 days. All of these models contained the set of
casemix variables used in the comparison of methods above plus the flag for no previous admission.
The orthogonal polynomials were generated in SAS using PROC IML, and the weighted sums were
implemented in SAS using PROC FCMP.
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The effect of the semi-competing risk of death on readmission-type measures
As death precludes subsequent readmission, using LR – which ignores any effect of death either during or
following the index discharge – may be potentially misleading. We therefore also applied cause-specific
proportional hazards modelling and subdistribution proportional hazards modelling. These two survival
analysis methods make different assumptions regarding post-discharge deaths;51,52 other methods exist,
but these are the two most widely used. The PSHREG macro in SAS was run for subdistribution hazards.53

If the odds ratios (ORs) and two sets of hazard ratios all agree, then we can be fairly confident that the
effect of post-discharge deaths is minor. For the proportional hazards models we inspected the standard
errors and deviance and Schoenfeld residuals; as our focus here was on the validity of using LR as the
standard method rather than on the precise specification of a survival analysis model, we did not perform
the usual formal tests of proportionality.

As is standard, our analyses of readmissions were restricted to patients discharged alive from their
index admission. We did not attempt to take account of deaths during the index admission, and we
acknowledge that this is a potential limitation.

Methods for predicting future bed-days in heart failure patients
As well as modelling the first unplanned readmission, as is common practice, we also wanted to consider
broader measures of future hospital use. Internationally, the literature on HF readmissions is dominated by
studies predicting a single readmission, usually 30-day readmissions,54,55 though some used longer
follow-up periods of 90 days56 and 12 months.57 Braunstein et al.58 modelled the number of all-cause and
HF ambulatory care-sensitive conditions (ACSCs) and all-cause ACSC hospitalisations during 12 months.
The ACSC literature tends to focus on trying to predict the high-risk patients.59,60 Few studies have
modelled the number of further admissions. Johnson et al.61 considered the number of HF-related
hospitalisations during 3 years of follow-up using a negative binomial model. Although Chun et al.62

modelled cardiac and non-cardiac hospitalisations from discharge until death, they took a survival analysis
approach that included repeated-events time-to-event analysis. We found no study that considered total
future bed-days in HF patients.

Resource-use measures are often characterised by distributions displaying overdispersion and an excess
number of zero counts, so a range of count data models including Poisson, negative binomial with
quadratic variance function (NB2), zero-inflated Poisson, zero-inflated negative binomial (ZINB), Poisson
hurdle and negative binomial hurdle (NBH) models were fitted. The NB2 model allows for overdispersion
by relaxing the Poisson model assumption of equal mean and variance. The zero-inflated and hurdle
models provide alternative ways of capturing the excess zero counts. The former treats zeroes as arising
from one of two sources – always zero and possibly zero – and the latter treats zeroes as arising from only
one source. For a review of such models, see Hu et al.63

Mortality rates in the year after discharge from the index HF admission are high. Accordingly, the number
of days the patient survived following discharge from their index HF admission, capped at 365 days, was
used as on offset term in the regression models to control for differing opportunity to accrue readmissions
and bed-days.61

‘Buckets’ approach
An alternative approach to modelling the number of bed-days directly is to categorise the count. We
assigned patients with a positive number of bed-days to one of five resource-use buckets. The thresholds
for each bucket were allocated such that the total resource use (number of patients × number of
bed-days) in each bucket was approximately equal. The factors influencing membership of the highest
(and two highest) resource-use buckets were examined using LR.

METHODS
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Other modelling details
The models described above assume that observations are independent, so the conditional ICC was
calculated to assess the need for models taking account of the clustering of patients in hospitals. We used
the same set of covariates as for the first readmission. This time, we also examined the additional value of
including specific ICD-10 Z-codes as proxies for care in the community, patient support networks and likely
adherence to post-discharge advice. One candidate was the code for living alone, whose recording in HES
has been mandatory since 2009.

Nested models were compared using likelihood ratio tests, log-likelihood, AIC and Bayesian information
criterion. For pairs of generalised linear models we additionally compared the deviance. Non-nested models
were compared using the tests of Vuong64 and Clarke.65

The mean predicted probability for each count value and observed probabilities were compared
graphically. Pearson’s chi-square test and the chi-square goodness of fit test proposed by Cameron and
Trivedi (p. 195)66 were not used, as they are not informative with large sample sizes such as ours.

The discrimination and calibration of the logistic models were assessed using the c-statistic and
HL statistics respectively.
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Chapter 3 Results

We now present results to illustrate the foregoing methods and questions rather than give a large
number of tables covering AMI, stroke, HF, COPD, ACS, coronary artery bypass graft (CABG), hip

and knee replacements, colorectal surgery and the other patient groups that we analysed. For instance,
RTT metrics were defined for colorectal and orthopaedic surgery, and to illustrate this we present results
for elective hip and knee replacements. When comparing machine learning and regression, we present
results for AMI and colorectal excision.

Adjusting for comorbidity: results from updating the
Charlson index

Amending the ICD codes following the expert clinical coder review and literature search led to increases in
prevalence for dementia and AMI in particular. Comparison with the original 1987 published weights
showed notable declines in relative importance for human immunodeficiency virus (HIV) and increases for
dementia, a condition that was not even included in the original 1998 formulation of the Elixhauser index.
For illustration, we present the weights derived from 2008/9 inpatients (Table 2).

As we found in our systematic review, Elixhauser generally outperformed Charlson for both mortality and
readmissions. To illustrate, Table 3 gives the c-statistic and adjusted R2 values for both indices for AMI and
COPD for mortality. More details are given elsewhere.67

TABLE 2 Prevalence and original and HES-derived weights for original and amended Charlson index 2008/9

Comorbidity variable
Original Charlson
weights

Original Charlson codes,
new HES-based weights,
all inpatients 2008/9

Amended Charlson codes,
new HES-based weights,
all inpatients 2008/9

Cancer 2 5 4

Connective tissue disorder 1 3 2

Cerebrovascular accident 1 7 5

Dementia 1 8 7

Diabetes with long-term
complications

2 0 –1

Diabetes without long-term
complications

1 2 1

Congestive HF 1 8 6

HIV 6 0 0

Mild or moderate liver disease 1 4 4

Pulmonary disease 1 3 2

Metastatic cancer 3 8 7

AMI 1 5 2

Paraplegia 2 1 1

Peptic ulcer 1 5 4

Peripheral vascular disease 1 4 3

Renal disease 2 7 5

Severe liver disease 3 11 9
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Incorporating information from prior admissions is often done using a 1-year lookback period but
sometimes using a longer one. Table 4 compares the ORs for a set of comorbidities relevant to ACSs when
using a 1- and a 5-year lookback and when using none, i.e. when using only the secondary diagnosis
codes from the index admission. Some effects were modified when using prior admissions. Overall, a
5-year period offered little benefit over a 1-year period, and a 1-year period offered little over no lookback.
Further details are found elsewhere.67

Such lookback approaches ignore the potential impact of the timing in relation to the index admission.
More sophisticated approaches using polynomials as described earlier were applied to our HF cohort, and
we now give the results.

TABLE 3 Model performance for adjustment for Charlson and Elixhauser indices for AMI and COPD mortality

Measure
Original Charlson
codes and weights

Original Charlson codes,
empirical weights

Amended Charlson codes,
empirical weights

Modified Elixhauser,
empirical weights

c-statistic

All
inpatients

0.719 0.726 0.757 0.799

AMI
admissions

0.624 0.641 0.654 0.668

COPD
admissions

0.577 0.601 0.611 0.646

Adjusted R2 statistic

All
inpatients

0.100 0.106 0.123 0.142

AMI
admissions

0.046 0.051 0.058 0.058

COPD
admissions

0.020 0.030 0.032 0.044

AMI (ICD-10 I21, I22); COPD (ICD-10 J40–J44).

TABLE 4 Odds ratios for comorbidities derived in two different ways

Factor

One-year lookback Five-year lookback

OR (95% CI) p-value OR (95% CI) p-value

Cancer 1.50 (1.40 to 1.59) < 0.001 1.25 (1.19 to 1.31) < 0.001

Atherosclerosis 0.96 (0.87 to 1.06) 0.420 0.93 (0.86 to 0.99) 0.034

Valvular disease 1.81 (1.49 to 2.19) < 0.001 1.76 (1.53 to 2.01) < 0.001

HF 1.40 (1.30 to 1.50) < 0.001 1.40 (1.32 to 1.47) < 0.001

Lower respiratory 1.34 (1.22 to 1.46) < 0.001 1.30 (1.22 to 1.39) < 0.001

Diabetes 1.84 (1.58 to 2.15) < 0.001 1.62 (1.47 to 1.78) < 0.001

Renal failure 1.74 (1.52 to 2.00) < 0.001 1.80 (1.63 to 1.99) < 0.001

Stroke 1.16 (1.04 to 1.29) 0.009 1.21 (1.13 to 1.29) < 0.001

Hypertension 1.33 (1.10 to 1.61) 0.003 1.18 (1.04 to 1.35) 0.014

Atrial fibrillation 0.97 (0.87 to 1.08) 0.554 0.90 (0.84 to 0.97) 0.005

Peripheral vascular disease 1.43 (1.22 to 1.69) < 0.001 1.42 (1.29 to 1.55) < 0.001

All other diagnoses 1.06 (1.03 to 1.09) < 0.001 0.99 (0.96 to 1.02) 0.369

CI, confidence interval.

RESULTS
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Including information regarding the timing of previous health service
contacts in the prediction models
Since using a straightforward sum for the previous admissions had no great effect in terms of the c-statistic
on casemix adjustment, it is unsurprising that the weighted sum we derived did not add much either. This,
however, does not mean that previous admissions or the non-constant weights used here are unimportant.
Here are the results for 30-day readmission following live discharge from an index HF admission:

l Without additional variables (i.e. just age, sex, comorbidities, etc.) the c-statistic was 0.579, and the HL
test gave a chi-squared of 17.2 (p= 0.025).

l With a constant sum only for the previous admissions the c-statistic rose to 0.586, and the HL test gave
a chi-squared of 17.1 (p= 0.030).

l With the time-weighted base polynomial for the previous admissions the c-statistic was 0.591, and the
HL test gave a slightly improved chi-squared of 11.5 (p= 0.177).

l The two lowest time-weighted polynomials for the previous admissions yielded a c-statistic of 0.592,
and the HL test gave a lower chi-squared of 7.4 (p= 0.499).

l The three lowest time-weighted polynomials for the previous admissions also yielded a c-statistic of
0.592, and the HL test gave a similar chi-squared of 5.8 (p= 0.675).

l The four lowest time-weighted polynomials for the previous admissions also yielded a c-statistic of
0.592, and the HL test gave a chi-squared of 5.8 (p= 0.668).

Adding one or two time-weighted polynomials improved the c-statistic by about as much again as did an
unweighted sum of previous admissions. This procedure also noticeably improved the calibration. Adding a
third polynomial improved the calibration even more, but beyond that we saw no further improvement.
We conclude that using these (two or three) time-weighted polynomials was appreciably better than the
simple count approach.

Mortality and readmission from logistic regression

Following on from the previous section, we used the Elixhauser set plus dementia to adjust for comorbidity
in this section. Model performance in terms of discrimination varied considerably by patient group and
outcome (Table 5), with readmissions of any follow-up length being harder to predict than death.
Discrimination was generally higher for 28- than for 7-day readmission but similar for the two death
outcomes. Because of the large sample sizes, the confidence intervals for the c-statistics were very narrow
and are not shown in this report.

Calibration was much better for the procedures than for the diagnosis groups. It is common to find that LR
models are not always well calibrated, with overprediction of low risk and underprediction of high risk
common problems. Where calibration was found to be unacceptable as judged by the HL p-value (though
see earlier commentary on this measure), we found overprediction of low risk to be a common explanation.
A typical example is given below for 30-day total mortality following AMI. Figure 2 plots the ratio of the
observed to predicted deaths.

Comparison of methods: logistic regression and
machine learning

For the LR models in this section of the analysis, we therefore took output from both the usual LR models
and those with the extra recalibration step as described in the earlier recalibration subsection. We
compared these with several machine learning approaches. Table 6 gives the resulting discrimination for
AMI and elective colorectal surgery for mortality and readmission (results were similar for pneumonia and
are not shown). In general, ANNs sometimes gave slightly better c-statistics, but LR performed
comparatively well. Overfitting was a problem for the random forests in particular: for example, for AMI
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mortality, the training set c-statistic reached 0.92, which fell to 0.74 for the test set. For SVMs, only the
best results are shown; performance varied by the SVMs’ parameters. In general, we found that overfitting
was severe on the raw data for any kernel. However, transforming the data to principal components
analysis space, as described earlier, massively reduced overfitting and also stabilised the algorithm. The
total predicted outcomes differed from the total observed outcomes because the results are for the test
set, whereas any calibration is learnt/trained on the training data set. Even the best method would suffer
from at least some such statistical fluctuations.

It is noteworthy that random forests suffered more from overfitting than the other methods. This also had
repercussions for recalibration: the raw probability estimates were generally too low. In particular we
observed that random forests picked up a sizeable number of positive outcomes and grouped them

TABLE 5 Model performance for various patient groups for readmission and mortality using LR

Patient group

7-day readmission 28-day readmission Death Total 30-day death

c HL (p-value) c HL (p-value) c HL (p-value) c HL (p-value)

AMI 0.623 21 (0.006) 0.644 72 0.775 376 0.770 361

Stroke 0.599 14 (0.071) 0.618 69 0.737 707 0.732 590

HF 0.600 11 (0.165) 0.618 11 (0.166) 0.684 80 0.680 78

Pneumonia 0.618 60 0.657 285 0.800 445 0.795 459

COPD 0.650 36 0.682 170 0.718 73 0.714 66

FNOF 0.617 38 0.624 106 0.773 209 0.773 183

THR 0.607 5.0 (0.756) 0.613 10 (0.278) 0.864 13 (0.123) 0.845 8.9 (0.348)

TKR 0.615 16 (0.039) 0.61 13 (0.111) 0.811 10 (0.273) 0.804 7.5 (0.481)

CABG 0.608 8.5 (0.382) 0.604 3.0 (0.933) 0.835 10 (0.237) 0.830 15 (0.061)

AAA repair 0.610 2.8 (0.945) 0.615 9.0 (0.339) 0.770 6.3 (0.611) 0.771 4.1 (0.851)

Colorectal excision 0.580 9.1 (0.333) 0.593 12 (0.142) 0.834 21 (0.006) 0.830 19 (0.016)

AAA, abdominal aortic aneurysm; c, area under the ROC curve for discrimination; FNOF, fracture of the neck of femur;
THR, total hip replacement; TKR, total knee replacement.
HL figures are rounded to the nearest integer unless under 10.
p-values for calibration < 0.001 unless otherwise stated.
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FIGURE 2 Ratio of observed to predicted deaths for each risk decile for 30-day mortality following AMI.
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together. Pool adjacent violators recalibration then maps these onto high-probability estimates.
Unfortunately, these high probabilities were accurate only on the training data set (overfitting),
and hence the corresponding HL test resulted in extremely large chi-squared values, which we have
not given in the table.

When these models are used in risk adjustment, the resulting RRs at unit level are also of interest. These
were derived by summing the observed and summing the predicted for each hospital and dividing the
former sum by the latter sum. Table 7 compares the RRs derived from LR (both standard and recalibrated)
with those derived from the other methods for AMI in terms of their funnel plot outlier status. Hospital
trusts with at least 50 AMIs in two years were included. The patterns for colorectal surgery were similar
and are not shown.

There were more low than high outliers. In general, there was a lot of similarity between the sets of SMRs
themselves and between the numbers of outliers across six of the seven methods. The exception was the
random forests, for which recalibration consistently gave the highest total expected count for the four sets
(AMI and colorectal, mortality and readmission) and resulted in by far the highest number of hospitals
flagged as significantly low on the funnel plots. This was due to overfitting and the assigning of a very
high predicted risk to too many patients.

TABLE 6 Model performance for mortality and readmission following AMI and elective colorectal surgery for LR,
ANNs, SVMs and random forests: test set discrimination

Outcome and method

AMI Colorectal excision

c HL statistic p-value c HL statistic p-value

Mortality

LR 0.773 124.5 < 0.001 0.823 26.4 0.003

LR+ 0.777 17.3 0.067 0.826 51.7 < 0.001

ANN 0.777 36.4 < 0.001 0.824 86.3 < 0.001

ANN-LR 0.777 36.5 < 0.001 0.826 31.9 < 0.001

SVM linear kernel 0.771 13.4 0.201 0.806 26.8 0.003

SVM Gaussian kernel 0.771 8.9 0.544 0.823 49.1 < 0.001

Random forest 0.743 See text < 0.001 0.768 See text < 0.001

Readmission

LR 0.640 33.0 < 0.001 0.576 8.6 0.567

LR+ 0.638 20.2 0.027 0.570 9.6 0.479

ANN 0.638 36.5 < 0.001 0.571 104.0 < 0.001

ANN-LR 0.638 42.7 < 0.001 0.570 31.9 < 0.001

SVM linear kernel 0.637 32.0 < 0.001 0.575 5.8 0.830

SVM Gaussian kernel 0.636 25.1 0.005 0.578 19.7 0.032

Random forest 0.550 See text < 0.001 0.532 See text < 0.001

Note: LR (as LR+), ANN-LR, SVMs and random forests were recalibrated on the training set.
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Return-to-theatre metrics for orthopaedics

Following on from our earlier work in urology for cystectomy,7 we give results for total or partial hip
replacement (HR) and knee replacement (KR); colorectal excision results may be found elsewhere.68

There were 260,206 index HR procedures and 286,590 index KR procedures during the 6 years 2007/8 to
2012/13 combined. Because of invalid or unknown consultant team codes, 2153 HRs and 2874 KRs were
excluded. A further 112 HRs and 29 KRs were removed at hospitals performing fewer than 30 procedures
over the 6 years. This left 260,370 HRs among 2029 surgeons and 315,454 KRs among 2061 surgeons for
analysis. Of these, there were 5353 RTTs within 90 days for a rate of 2.1% for HR and 5508 RTTs within
90 days for a rate of 1.8% for KR.

The most common reinterventions were closed reduction of dislocated total prosthetic replacement for HR
(34% of the total) and attention to total prosthetic replacement of knee joint not elsewhere classified for
KR (28% of the total), the latter mostly representing manipulations under anaesthesia for stiffness. Age,
sex and many comorbidities were significant predictors for both index procedures. Age had different
relations for hips (ages over 75 years had higher odds) from those for knees (ages under 60 years had
higher odds, particularly those under 45 years). Some comorbidities, such as arrhythmias, dementia,
obesity, fluid disorders and Parkinson’s disease, were associated with higher odds of RTT for both index
procedures, but others, such as liver disease, depression and alcohol abuse, raised the odds only for HR.
There was no relation with area deprivation. Hip resurfacing had around half the odds of other hip
subgroups; partial knee replacements had around half the odds of other knee subgroups.

Figure 3 shows the variation for RTT following HR by surgeon (the plot for KRs is very similar and is not
shown). Because of the known unreliability of consultant codes in HES for unplanned activity, we analysed
and give the figures for elective procedures only.

TABLE 7 Comparison of funnel plot outlier status for RRs derived from different types of model for mortality and
readmission following AMI

Outcome and method Low 95% outliers High 95% outliers Low 99.8% outliers High 99.8% outliers

Mortality

ANN 2 5 1 0

ANN-LR 9 3 1 0

LR 6 3 1 0

LR+ 10 3 1 0

SVM linear kernel 8 3 1 0

SVM Gaussian 7 3 1 0

Random forest 19 4 2 0

Readmission

ANN 2 0 1 0

ANN-LR 3 0 1 0

LR 4 1 1 0

LR+ 2 0 1 0

SVM linear kernel 3 1 1 0

SVM Gaussian 3 1 1 0

Random forest 7 2 1 0

RESULTS
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The discrimination of the two models was low (c= 0.61 for HR and 0.60 for KR) but the calibration was
acceptable using the HL test (chi-squared 9.2, p= 0.324 for HR, and chi-squared 13.3, p= 0.102 for KR).

Variation by surgeon for HR was similar to that for KR (standard deviation 0.22, Table 8). Patient factors
explained little of this for either procedure. Accounting for the hospital explained around a quarter of the
variation between surgeons for HR and nearly half (44%) for KR. This suggests that three-quarters of a
surgeon’s RTT rate for HR and half their rate for KR are explained by factors other than patient factors or
the hospital at which they operate.
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FIGURE 3 Funnel plot for RTT following HR by surgeon.

TABLE 8 Proportion of variation in RTT due to patient, surgeon and hospital

Index procedure and model AIC
Standard deviation
of surgeon effects

% change from
surgeon only

HR

Surgeon only 51,841 0.219 (0.021) 0

Surgeon+ patient factors 51,153 0.210 (0.020) –4.1

Surgeon+ hospital 51,806 0.162 (0.019) –26.0

Surgeon+ hospital+ patient factors 51,124 0.160 (0.019) –26.0

KR

Surgeon only 55,094 0.220 (0.019) 0

Surgeon+ patient factors 54,458 0.212 (0.019) –3.6

Surgeon+ hospital 55,000 0.123 (0.016) –44.1

Surgeon+ hospital+ patient factors 54,361 0.116 (0.016) –47.3

AIC (lower values mean better fit).
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Outpatients department non-attendance

Many reasons for patients missing their OPD appointment have been identified. We now give a brief
summary of the literature that is not meant to be exhaustive. Reasons for missing include simple forgetting
or confusion over the appointment’s time or location,69 illness severity (either mild, including recovery
from symptoms, or severe),70,71 administrative and/or communication errors,69,72–74 being busy or unable
to take time off work or arrange child care.75,76 Previous unsatisfactory experience of health care, such as
long waiting times and unhelpful staff with poor communication skills, also has an impact,77,78 as do not
being involved in the referral decision-making process69,71 and not understanding the reasons for the
appointment.79 Previous non-attendance is a strong predictor for future behaviour related to attendance,78

with the probability of missing a second appointment being much higher than the probability of not
turning up to the first.75 There is an association between the number of appointments and rates of
non-attendance, with high users of outpatient services being more likely to default on an appointment.78

These patients are likely to have long-term chronic diseases, which may have not changed since their
last appointment.73 Because of this factor, there is often a difference in attendance rates between those
attending their first appointment and those attending subsequent follow-up appointments. King et al.80

found that patients with diabetes and glaucoma felt that, as their condition was stable, missing an
appointment was unlikely to harm them.

Several studies have looked at the relation between non-attendance and factors such as demographic
information and personal circumstances, for example family size or socioeconomic deprivation. With age,
it is likely that non-attendance rates have a bimodal distribution, with young adults and teenagers as well
as the elderly being those most likely to miss their appointments.71 It has been reported that alcoholics,
intravenous drug users and those who are pregnant have higher non-attendance rates,75 as well as past
and current smokers.81,82 Patients who are single parents or have children living at home are more likely to
be non-attenders.81 Those with young, large families are also more likely to miss appointments,76,83 as well
as those with a poor family support system.69 Area-level deprivation scores are often strong predictors of
non-attendance.70,84 Gatrad85 found higher rates of non-attendance in Asian populations for both new and
follow-up appointments, though these attendance rates improved when culturally specific interventions
were introduced.

As well as analysing first-time appointments, we also considered patients recently discharged from
inpatient treatment. Just as the time interval between referral and appointment has been found to be a
strong predictor of non-attendance,86 so is the time interval between discharge from inpatient admission
and the first subsequent outpatient appointment.70 If there is a lengthy delay then patients are less likely to
attend the appointment for a number of reasons, including the appointment being unnecessary as their
condition has improved, or simply the patient forgetting the appointment.78 Two studies found that those
waiting more than 2 months from referral to appointment were least likely to attend.73,87 On the other
hand, too short an interval, such as less than 3 days or a week, between referral and appointment had a
higher rate of non-attendance, as this short notice does not give patients enough time to reschedule their
commitments.73,79 Hamilton et al.70 found that, for every 1-week increase in interval, patients were 5–9%
more likely to miss their appointment.

While many of the foregoing factors such as personal circumstances are not available in HES, several key
ones are, such as age, area-level deprivation, prior non-attendance and time interval between inpatient
discharge and the first subsequent appointment. We also used HES to track later hospital activity in our
patient cohorts.

Table 9 gives the results for the first appointment in general medical and general surgical OPD; Table 10
gives the same but for the first appointment following inpatient discharge. In both tables, to reduce size,
only a few age groups and none of the many diagnosis group and subgroup combinations have
been shown.

RESULTS
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TABLE 9 Odds ratios for predicting non-attendance in general medical and general surgical OPD first appointments

Patient factor
OR (95% CI) for general
medicine appointments p-value

OR (95% CI) for general
surgery appointments p-value

Age group (years): < 1
(compared with 65–69)

3.52 (2.67 to 4.63) < 0.0001 2.64 (2.26 to 3.09) < 0.0001

1–4 3.34 (2.73 to 4.09) < 0.0001 1.82 (1.62 to 2.03) < 0.0001

5–9 2.26 (1.76 to 2.92) < 0.0001 1.61 (1.42 to 1.83) < 0.0001

10–14 1.99 (1.60 to 2.48) < 0.0001 1.96 (1.74 to 2.20) < 0.0001

15–19 2.55 (2.36 to 2.77) < 0.0001 2.86 (2.68 to 3.06) < 0.0001

20–24 3.06 (2.85 to 3.28) < 0.0001 3.47 (3.29 to 3.66) < 0.0001

25–29 2.88 (2.69 to 3.08) < 0.0001 3.24 (3.08 to 3.41) < 0.0001

(rows omitted)

90+ 1.27 (1.14 to 1.42) < 0.0001 1.58 (1.42 to 1.77) < 0.0001

Male sex 1.21 (1.17 to 1.24) < 0.0001 1.29 (1.27 to 1.32) < 0.0001

Deprivation quintile 2
(compared with least deprived)

1.06 (1.01 to 1.11) 0.0238 1.07 (1.03 to 1.11) 0.0002

3 1.25 (1.20 to 1.31) < 0.0001 1.24 (1.19 to 1.28) < 0.0001

4 1.51 (1.45 to 1.58) < 0.0001 1.60 (1.55 to 1.65) < 0.0001

5 (most deprived) 1.94 (1.86 to 2.03) < 0.0001 2.06 (2.00 to 2.13) < 0.0001

Waiting (per week) 1.02 (1.02 to 1.02) < 0.0001 1.03 (1.02 to 1.03) < 0.0001

Earlier appointments 0.96 (0.96 to 0.96) < 0.0001 0.97 (0.96 to 0.97) < 0.0001

Earlier DNAs 1.32 (1.31 to 1.34) < 0.0001 1.34 (1.33 to 1.35) < 0.0001

Earlier elective admissions 0.99 (0.98 to 1.00) 0.0049 0.98 (0.97 to 0.99) < 0.0001

Earlier emergency admissions 1.10 (1.09 to 1.11) < 0.0001 1.14 (1.13 to 1.15) < 0.0001

Earlier total bed-days 1.01 (1.00 to 1.01) < 0.0001 1.01 (1.00 to 1.01) < 0.0001

CI, confidence interval; DNA, did not attend (outpatient appointment).
‘Earlier’ means in the 365 days before the index appointment.
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TABLE 10 Odds ratios for predicting non-attendance at the first appointment after discharge for all several
diagnosis groups combined

Patient factor Factor value OR (95% CI) p-value

Age (compared with ages 60–64 years) < 1 1.63 (1.41 to 1.89) < 0.0001

1–4 1.38 (1.19 to 1.59) < 0.0001

5–9 1.21 (1.02 to 1.45) < 0.0001

10–14 1.49 (1.22 to 1.83) 0.033

15–19 1.69 (1.44 to 1.97) 0.0001

(rows omitted)

85–89 1.26 (1.20 to 1.33) < 0.0001

90+ 1.44 (1.35 to 1.53) < 0.0001

Sex Male 0.99 (0.97 to 1.01) 0.375

Charlson comorbidity score 1.01 (1.01 to 1.02) < 0.0001

Number of previous OPD appointments attended 0.98 (0.98 to 0.98) < 0.0001

Number of previous OPD appointments missed 1.25 (1.24 to 1.26) < 0.0001

Number of previous elective admissions 0.99 (0.98 to 0.99) < 0.0001

Number of previous emergency admissions 1.03 (1.02 to 1.03) < 0.0001

LOS of index admission (per night) 1.01 (1.01 to 1.01) < 0.0001

Quintile (compared with least deprived) 2 1.04 (1.00 to 1.08) 0.073

3 1.21 (1.16 to 1.26) < 0.0001

4 1.48 (1.43 to 1.54) < 0.0001

5 (most deprived) 1.80 (1.74 to 1.87) < 0.0001

Completed weeks between discharge and
appointment (compared with 12+)

0 1.12 (1.04 to 1.20) 0.002

1 1.00 (0.93 to 1.08) 0.982

2 0.96 (0.89 to 1.03) 0.248

3 0.93 (0.86 to 1.00) 0.046

4 0.93 (0.86 to 1.00) 0.048

5 0.97 (0.90 to 1.05) 0.421

6 0.91 (0.84 to 0.98) 0.016

7 0.94 (0.87 to 1.02) 0.124

8 0.94 (0.86 to 1.02) 0.136

9 0.96 (0.88 to 1.05) 0.360

10 0.95 (0.87 to 1.04) 0.289

11 1.00 (0.91 to 1.01) 0.947

CI, confidence interval; LOS, length of stay.
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Odds ratios for each patient factor were very similar whether the index appointment was for general
medicine or general surgery. Non-attendance was most likely in the under-30s. Many of the factors found
to be important in Table 8 were also important here, with the exception of gender. In addition, index
length of stay (LOS), comorbidity (Charlson index) and time interval between discharge and subsequent
appointment were also included in the models and were all significant. Following discharge from an
inpatient admission, factors were similar whatever acute condition the patient had been admitted for, and
therefore all seven conditions have been combined in Table 10.

Key predictors were young and very old age, male gender, deprivation, previous non-attendance and
previous emergency admissions. The time interval between discharge and the first appointment thereafter
was also a predictor for three of the seven CCS groups: ischaemic heart disease, stroke and HF. Intervals of
less than a week had the highest odds of non-attendance. The ‘optimal’ interval for scheduling appointments
appeared to be 3–10 weeks for ischaemic heart disease, but no such window was apparent for the other
diagnoses considered separately. Combining all seven patient groups suggested that a 6-week interval was
optimal, with intervals of 3 and 4 weeks also having significantly lower odds of non-attendance than 12 or
more weeks.

The performance of these models was only moderate. Discrimination was 0.67, and there was significant
overprediction of low risk.

Patients who did not attend their first post-discharge appointment had more emergency admissions, total
inpatient bed-days and further non-attendances in the subsequent year than those who did; however, they
had fewer elective admissions and total OPD appointments (Table 11). The means in the two groups varied
by index diagnosis group, but the relative differences were consistent. We therefore show the combined
figures for all diagnosis groups considered. Although the mean contacts and death rates were lower
following a first general medical or general surgical appointment after GP referral, the patterns
were the same and are not shown.

Table 11 shows the crude differences between attenders and non-attenders, but the earlier tables showed
that the two groups differ in several characteristics that may at least partly confound such unadjusted
comparisons. As an example, we ran a LR with death in the year after the index appointment as the
outcome, adjusting for the factors in the tables plus the fact of non-attendance as an extra predictor.
These models suggested that non-attendance was associated with about a 50% higher odds of death,
only slightly reduced from the unadjusted figure.

TABLE 11 Admissions and OPD appointments within a year of the index post-discharge OPD appointment,
all index patients combined

Subsequent outcome Mean in attenders Mean in non-attenders Mean difference (95% CI) p-value

Emergency admissions 0.81 1.04 –0.24 (–0.26 to –0.22) < 0.001

Elective admissions 0.69 0.42 0.27 (0.25 to 0.29) < 0.001

Day cases 0.47 0.29 0.18 (0.17 to 0.20) < 0.001

Total inpatient bed-days 7.8 10.1 –2.31 (–2.54 to –2.07) < 0.001

Missed appointments 0.54 1.07 –0.53 (–0.54 to –0.51) < 0.001

Total appointments,
including missed

6.86 5.49 1.38 (1.30 to 1.45) < 0.001

Death rate 13.7% 22.4% –8.8% (–8.4% to –9.2%) < 0.001

CI, confidence interval.
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Other readmission measures and future bed-days: the example
of heart failure

During 2008/9 and 2009/10 there were 74,419 live discharges with their first admission with a primary
diagnosis of HF. Within 7 days of discharge, 4.7% had an emergency readmission; within a year, around
half had been readmitted. A third of these readmissions within 7 days were for HF, dropping to 21% for
those within a year. This was matched for patients with an index admission of COPD. Many of the findings
for COPD were similar to those for HF. We therefore focus on the HF cohort in this section.

Discrimination was low for all periods of follow-up between 7 and 365 days for either all causes combined
or cause-specific measures (c= 0.58 to 0.60). All models were well calibrated (p> 0.10 using HL).

Predictors were similar across all follow-up periods for all-cause readmissions (Table 12) but sometimes
differed by cause of readmission (Table 13). Hazard ratios from the two types of survival analysis
considered were generally very similar and were also similar to the ORs from hierarchical LR; we therefore
present only the latter. Results for 90 and 182 days matched those for 30 and 365 days and are
not shown.

Length of stay was seen to have a bigger association within 7 days than within 30 or more days and was
more important for HF. LOS was truncated at 3+ days for presentation, as analysis using a highest band of
14+ days did not alter the conclusions.

Readmission rates varied widely by hospital for each cause. For this analysis, we combined 4 years of
index HF admissions (2009/10 to 2012/13) and included only emergency admissions in order to be more
contemporaneous with the National HF Audit, which published figures by hospital for the first time for 2011.
Thirty-day rates for HF ranged from 1.5% to 9.0% (median 5.4%), while 30-day rates for non-HF ranged
from 7.6% to 17.6% (median 13.6%). Rates showed statistically significant but modest negative correlations
(rho from –0.18 to –0.24, p< 0.05) with all six publicly available quality of care measures from the National
HF Audit88 for readmissions for HF within 7 days but only three of them for readmissions for HF within
30 days; there were no significant correlations between these measures and non-HF readmission rates.

TABLE 12 Predictors of all-cause readmissions in HF patients by length of follow-up

Factor Value

OR (95% CI)

Within 7 days Within 30 days Within 365 days

Age group (years) 18–44 1.28 (0.97 to 1.69) 1.12 (0.93 to 1.34) 0.86 (0.74 to 0.99)

45–49 0.96 (0.68 to 1.35) 1.11 (0.91 to 1.35) 1.05 (0.90 to 1.22)

50–54 1.08 (0.83 to 1.40) 0.95 (0.80 to 1.11) 0.87 (0.77 to 0.99)

55–59 1.00 (0.80 to 1.24) 0.93 (0.81 to 1.06) 0.86 (0.77 to 0.95)

60–64 0.99 (0.82 to 1.19) 0.96 (0.86 to 1.07) 0.94 (0.86 to 1.02)

65–69 1 1 1

70–74 1.13 (0.97 to 1.31) 1.04 (0.95 to 1.14) 1.13 (1.05 to 1.21)

75–79 1.27 (1.11 to 1.46) 1.15 (1.06 to 1.25) 1.28 (1.20 to 1.37)

80–84 1.27 (1.11 to 1.45) 1.11 (1.02 to 1.21) 1.49 (1.40 to 1.59)

85–89 1.36 (1.18 to 1.56) 1.21 (1.11 to 1.31) 1.73 (1.62 to 1.84)

90+ 1.49 (1.28 to 1.73) 1.22 (1.12 to 1.34) 1.88 (1.75 to 2.03)

Sex Males 1.08 (1.02 to 1.15) 1.00 (0.96 to 1.04) 0.92 (0.89 to 0.95)

Emergency admission Yes 1.63 (1.35 to 1.97) 1.66 (1.48 to 1.87) 1.70 (1.56 to 1.84)
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TABLE 12 Predictors of all-cause readmissions in HF patients by length of follow-up (continued )

Factor Value

OR (95% CI)

Within 7 days Within 30 days Within 365 days

Deprivation quintile
(1 is least deprived)

1 1 1 1

2 1.02 (0.92 to 1.14) 1.02 (0.95 to 1.08) 1.03 (0.98 to 1.08)

3 1.06 (0.96 to 1.18) 1.05 (0.99 to 1.13) 1.13 (1.08 to 1.19)

4 1.07 (0.97 to 1.19) 1.06 (0.99 to 1.13) 1.17 (1.12 to 1.23)

5 1.10 (0.99 to 1.22) 1.12 (1.05 to 1.19) 1.27 (1.20 to 1.33)

CABG in year before or during index HF admission 0.79 (0.57 to 1.08) 0.76 (0.63 to 0.92) 0.70 (0.61 to 0.81)

PTCA in year before or during index HF admission 1.25 (1.02 to 1.52) 1.20 (1.06 to 1.36) 1.08 (0.97 to 1.21)

Pacemaker (not CRT) inserted in year before or during
index HF admission

0.92 (0.75 to 1.12) 0.99 (0.87 to 1.11) 1.03 (0.93 to 1.13)

CRT inserted in year before or during index
HF admission

0.89 (0.60 to 1.30) 0.70 (0.54 to 0.90) 0.84 (0.71 to 0.99)

OPD appointments missed in year
before index HF admission

Per appointment 1.06 (1.02 to 1.10) 1.09 (1.07 to 1.11) 1.12 (1.10 to 1.14)

OPD appointments attended in
year before index HF admission

Per appointment 1.01 (1.00 to 1.03) 1.02 (1.01 to 1.03) 1.04 (1.03 to 1.04)

LOS in nights of index HF
admission (nights)

0 1 1 1

1 0.83 (0.72 to 0.95) 0.96 (0.87 to 1.06) 0.98 (0.91 to 1.06)

2 0.70 (0.59 to 0.82) 0.87 (0.78 to 0.97) 0.94 (0.86 to 1.02)

3+ 0.66 (0.59 to 0.74) 0.91 (0.84 to 0.98) 0.97 (0.91 to 1.03)

Stroke 1.33 (1.08 to 1.64) 1.23 (1.07 to 1.41) 1.20 (1.06 to 1.35)

Pneumonia 1.17 (1.06 to 1.29) 1.19 (1.12 to 1.27) 1.18 (1.12 to 1.24)

Ischaemic heart disease 1.13 (1.06 to 1.20) 1.20 (1.15 to 1.24) 1.27 (1.23 to 1.31)

Dementia 1.29 (1.12 to 1.47) 1.19 (1.09 to 1.31) 1.11 (1.03 to 1.19)

Arrhythmias 0.97 (0.91 to 1.03) 1.04 (1.00 to 1.08) 1.05 (1.01 to 1.08)

Heart valve disorders 1.08 (1.00 to 1.16) 1.07 (1.02 to 1.12) 1.04 (1.00 to 1.08)

PVD 1.08 (0.97 to 1.20) 1.14 (1.07 to 1.22) 1.16 (1.09 to 1.22)

Hypertension 0.99 (0.93 to 1.06) 0.99 (0.95 to 1.03) 1.03 (1.00 to 1.06)

Chronic lung diseases 1.27 (1.19 to 1.36) 1.25 (1.20 to 1.31) 1.35 (1.30 to 1.40)

Diabetes 1.07 (1.00 to 1.14) 1.09 (1.04 to 1.14) 1.18 (1.14 to 1.22)

Renal disease 1.22 (1.13 to 1.31) 1.29 (1.23 to 1.35) 1.23 (1.19 to 1.28)

Obesity 0.88 (0.75 to 1.04) 0.88 (0.80 to 0.97) 0.98 (0.91 to 1.06)

Any mental health condition (except dementia) 1.31 (1.18 to 1.46) 1.23 (1.15 to 1.33) 1.28 (1.21 to 1.36)

CI, confidence interval; CRT, cardiac resynchronisation therapy; PTCA, percutaneous transluminal coronary angioplasty;
PVD, peripheral vascular disease.
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TABLE 13 Predictors of 30-day readmissions by cause of readmissions (HF vs. non-HF)

Factor Value

All patients, HF All patients, non-HF

OR (95% CI) p-value OR (95% CI) p-value

Age group (years) 18–44 1.10 (0.80 to 1.52) 0.546 1.11 (0.90 to 1.36) 0.340

45–49 0.97 (0.67 to 1.39) 0.856 1.15 (0.93 to 1.44) 0.203

50–54 0.92 (0.69 to 1.23) 0.566 0.97 (0.80 to 1.16) 0.718

55–59 1.05 (0.84 to 1.32) 0.646 0.88 (0.75 to 1.03) 0.101

60–64 1.03 (0.85 to 1.25) 0.753 0.94 (0.82 to 1.06) 0.303

65–69 1 1

70–74 1.12 (0.96 to 1.30) 0.147 1.00 (0.90 to 1.11) 0.967

75–79 1.13 (0.98 to 1.30) 0.101 1.14 (1.03 to 1.25) 0.008

80–84 1.05 (0.91 to 1.21) 0.497 1.12 (1.02 to 1.24) 0.015

85–89 1.17 (1.01 to 1.35) 0.038 1.20 (1.09 to 1.32) < 0.001

90+ 1.21 (1.03 to 1.42) 0.018 1.20 (1.08 to 1.33) 0.001

Sex Males 1.09 (1.02 to 1.16) 0.014 0.97 (0.92 to 1.01) 0.134

Emergency admission Yes 1.87 (1.52 to 2.31) < 0.001 1.52 (1.33 to 1.73) < 0.001

Deprivation quintile
(1 is least deprived)

1 1 1

2 1.06 (0.94 to 1.19) 0.345 1.00 (0.93 to 1.08) 0.987

3 1.12 (1.00 to 1.26) 0.045 1.03 (0.95 to 1.10) 0.513

4 1.13 (1.01 to 1.26) 0.036 1.03 (0.96 to 1.11) 0.445

5 1.17 (1.04 to 1.30) 0.008 1.09 (1.01 to 1.17) 0.024

CABG in year before or during index HF admission 0.79 (0.57 to 1.09) 0.151 0.77 (0.62 to 0.96) 0.023

PTCA in year before or during index HF admission 1.22 (0.99 to 1.50) 0.059 1.16 (1.00 to 1.34) 0.052

Pacemaker (not CRT) inserted in year before or during
index HF admission

1.09 (0.89 to 1.33) 0.406 0.94 (0.81 to 1.08) 0.381

CRT inserted in year before or during index
HF admission

0.54 (0.32 to 0.90) 0.019 0.78 (0.59 to 1.03) 0.085

OPD appointments missed in year
before index HF admission

Per appointment 1.04 (1.00 to 1.08) 0.057 1.10 (1.07 to 1.12) < 0.001

OPD appointments attended in
year before index HF admission

Per appointment 1.01 (0.99 to 1.03) 0.202 1.03 (1.01 to 1.04) < 0.001

LOS in nights of index HF
admission (nights)

0 1 1

1 0.85 (0.72 to 0.99) 0.042 1.03 (0.91 to 1.15) 0.655

2 0.70 (0.58 to 0.83) < 0.001 0.98 (0.86 to 1.11) 0.750

3+ 0.71 (0.62 to 0.81) < 0.001 1.03 (0.94 to 1.13) 0.522

Stroke 0.98 (0.76 to 1.27) 0.900 1.31 (1.12 to 1.52) 0.001

Pneumonia 1.07 (0.96 to 1.19) 0.236 1.21 (1.13 to 1.30) < 0.001

Ischaemic heart disease 1.23 (1.15 to 1.31) < 0.001 1.16 (1.10 to 1.21) < 0.001

Dementia 0.94 (0.79 to 1.11) 0.461 1.28 (1.16 to 1.42) < 0.001

Arrhythmias 1.15 (1.07 to 1.23) < 0.001 0.99 (0.95 to 1.04) 0.698

Heart valve disorders 1.13 (1.05 to 1.23) 0.002 1.03 (0.97 to 1.08) 0.334
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Finally, we applied a range of models to try to predict not just the next unplanned readmission but future
unplanned inpatient activity within the year after discharge: readmissions (all-cause and HF-specific) and
bed-days (all-cause and HF-specific). Activity was also divided into ‘buckets’ and models fitted to predict
which patient would go on to be in the highest resource-use categories. Around half the patients had no
further emergency admissions in the year after discharge; the Poisson model therefore fitted the data
poorly, particularly for bed-days. When they converged, all other model specifications performed well for
readmissions and bed-days. The NBH model performed best, though convergence was hard to achieve
for readmissions for HF only, so the ZINB was used for that outcome. The best-performing model for the
number of readmissions was a NBH model. Convergence problems prevented the ZINB model from
being fitted.

To simplify, we present the results for all-cause readmissions only. Figures 4 and 5 compare the actual with
the predicted number of bed-days and readmissions under various model assumptions.

Defining buckets using bed-days, the significant predictors for membership of the highest resource-use
bucket (fifth) were almost all the same for those for the two highest resource-use buckets. Predictors for
the highest resource use were similar to those for the first readmission within 30 days given above,
with the exceptions of gender (females had raised odds only for the bucket), very old age (raised odds only
for readmission), defibrillator implantation (raised odds only for readmission) and LOS (raised odds for any
stays of a week or more compared with 1–6 days for the bucket, whereas only stays of a month or more
had raised odds for readmission).

Comparing results for the count models is more complicated because the best-fitting models yielded a
separate set of coefficients for zero from that for non-zero bed-days or readmissions. Table 14 gives the
incident rate ratios from the hurdle models alongside the ORs from the 365-day readmission model, with
all-cause hospitalisations in each case. Many results were consistent. Deprivation, previous OPD
non-attendance and living alone were all associated with higher odds of one or more readmissions, a
greater number of readmissions and more bed-days; previous selection for CABG showed reduced risk of
all three. Older age was associated with higher odds of readmission and lower odds of no readmissions or
bed-days. In the hurdle models for patients with at least some future inpatient activity, however, older age
did not predict extra admissions but did predict more bed-days. This may be interpreted as older patients
having longer stays when they are admitted but not being admitted more often than those aged in
their 60s.

TABLE 13 Predictors of 30-day readmissions by cause of readmissions (HF vs. non-HF) (continued )

Factor Value

All patients, HF All patients, non-HF

OR (95% CI) p-value OR (95% CI) p-value

Peripheral vascular disease 1.09 (0.98 to 1.22) 0.123 1.14 (1.06 to 1.23) 0.001

Hypertension 0.96 (0.90 to 1.03) 0.299 1.00 (0.96 to 1.05) 0.982

Chronic lung diseases 1.13 (1.05 to 1.22) 0.001 1.27 (1.21 to 1.33) < 0.001

Diabetes 1.13 (1.05 to 1.21) 0.001 1.06 (1.01 to 1.11) 0.020

Renal disease 1.42 (1.32 to 1.53) < 0.001 1.18 (1.12 to 1.25) < 0.001

Obesity 0.83 (0.70 to 0.99) 0.040 0.91 (0.81 to 1.02) 0.110

Any mental health condition (except dementia) 1.10 (0.97 to 1.25) 0.124 1.25 (1.16 to 1.36) < 0.001

CI, confidence interval; CRT, cardiac resynchronisation therapy; PTCA, percutaneous transluminal coronary angioplasty.
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FIGURE 5 Actual versus predicted all-cause emergency bed-days (capped at 12 for presentation) within
a year of discharge using different models. NB, negative binomial; P, Poisson; PH, Poisson hurdle;
ZIP, zero-inflated Poisson.
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FIGURE 4 Actual versus predicted number of all-cause emergency readmissions within a year of discharge using
different models (ZINB did not converge). NB, negative binomial; P, Poisson; PH, Poisson hurdle;
ZIP, zero-inflated Poisson.
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Several factors showed a stronger association with the readmissions outcomes than with future bed-days.
These included previous defibrillator implantation, ischaemic heart disease, mental health conditions,
diabetes, peripheral vascular disease and chronic lung diseases. Long LOS was associated with more
bed-days but not readmission; indeed, a very long index LOS was associated with lower odds
of readmission.

RESULTS
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Chapter 4 Discussion of methods and findings

We set out to derive robust casemix adjustment models for a set of common outcomes for different
patient groups using the NHS’s national hospital administrative database, HES, adjusting for available

covariates such as comorbidity. For OPD non-attendance, we aimed to derive risk-prediction models and
assess the influence of the interval between hospital inpatient discharge and first follow-up appointment.
We had the following overarching questions in mind:

l How well do such models perform for various outcomes?
l How should one adjust for comorbidity?
l When predicting future inpatient activity, how much information is lost when using the standard

30-day all-cause readmission measure?
l Is the extra difficulty involved in implementing and understanding machine learning methods such as

ANNs worthwhile with these data?

We now discuss each of these in turn. We then note the main limitations to our analyses and suggest
further work.

How well do such models perform for various outcomes?

The best-performing models were for mortality for the procedure groups considered. In general, discrimination
(c-statistic) was high for mortality, low for first readmission and RTT and intermediate for other readmission
measures and missed OPD appointments. Poor discrimination can be caused by risk adjustment that lacks key
variables and by data noise, but it can also be due to variations in quality of care. Calibration was often a
problem, particularly for the diagnosis groups, mainly because of overprediction for low-risk patients.
Recalibration is advisable for a number of patient groups (see the section on machine learning methods in
Chapter 4). HES lacks some important physiological variables to give as accurate prediction for individual
patients as more detailed clinical databases, though previous work has found that augmentation with just a
few items, such as creatinine, can be sufficient.89 In risk-adjustment modelling for benchmarking units, the
impact of miscalibration on standardised mortality ratios is modest for a typical hospital, as we showed for
ACS admissions,67 though it will vary by hospital.

A key difference between risk prediction for an individual patient and risk adjustment for comparing units
is that much greater accuracy in the prediction is in general required for the former than for the latter.
Some of the differences in casemix can be expected to ‘average out’ when aggregating to unit level. Also,
if the casemix does not vary by unit, then risk adjustment will not be necessary. For prediction when used
for bedside clinical management, discrimination is generally more important than calibration, whereas the
reverse is true for risk adjustment. One reason for this is that a low c-statistic has three principal causes:
poor data quality, the lack of key patient factors in the database and variations in the quality and delivery
of care. Whereas data quality can be assessed, there is no easy way of distinguishing between the other
two. Readmission models, as we and many others have found, often have c-statistics in the region of
just 0.60, whereas for mortality they can exceed 0.8 or even 0.9. Patient factors that explain a fair
proportion of the variation in mortality can be less important or even insignificant in readmission models,
where factors such as health-seeking behaviour that are not captured routinely in databases contribute
more. We suspect that a fair amount of the unexplained variation for readmission is nonetheless due
to differences in the delivery of care both before and after discharge, but it is not possible to quantify
these using HES.
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How should one adjust for comorbidity?

Our systematic review revealed the importance of calibrating the comorbidity weights or scores to the
database used rather than relying on published weights from another country. Our analysis using HES
suggested that the Elixhauser set plus dementia with our amended codes performed best. Consideration
should be given to including interaction terms with age because this improves the fit. We also tried using
polynomials to incorporate the time between previous admissions and the index one for HF patients,
a group with high use of NHS services. This approach worked better than simply counting the number of
previous unplanned admissions, though the impact was far from spectacular.

When predicting future inpatient activity, is the 30-day
all-cause readmission measure sufficient?

As others have found, the predictive power of readmission models is generally low with administrative
data, within both 7 and 30 days of discharge. Our analysis of the HF cohort using follow-up periods
of between 7 and 365 days suggests that 30 days is as good a time point as any in terms of model
performance and which patient factors are important predictors of the outcome (with the exception of
index LOS). Hospital-level variation as estimated from the hierarchical models was also similar for 7, 30 and
365 days. Comorbidity is common in patients admitted for HF or COPD. This is reflected in the primary
diagnosis of their subsequent readmissions; for HF patients, for example, only a third of their readmissions
within a year of index discharge were for HF. We found that a number of factors predicted HF but non-HF
readmissions and vice versa. More importantly, hospital-level readmission rates for HF did not correlate
with rates for non-HF, and national audit process measures correlated with only the former. This suggests
that the use of all-cause readmissions is of limited use in quality improvement, though it remains the more
relevant measure for patients and for benchmarking.

Our count and bucket models of subsequent inpatient activity for the HF cohort were harder and took
longer to fit and, as many predictors were common across outcomes, only added some extra useful
information. For instance, it was notable that a number of the predictors of the fact of readmission,
including a number of comorbidities, showed weaker associations with the number of future bed-days.

What do machine learning methods offer in this context that
logistic regression does not?

The machine learning methods that we tried here are popular but did not offer noticeably better prediction
or adjustment with these data and outcomes than LR as measured by discrimination (c-statistics). They were
more difficult to implement and took longer to run, particularly the SVMs. The advantage of ANNs lay in
their superior calibration, with the standard logistic link function used in regression often found to be a fairly
poor fit. However, we also improved the calibration of LR using an extra step, which would be useful for risk
adjustment at the cost of interpretable ORs for each factor included in the model.

Study strengths and limitations

This project has benefited from the use of rich, national data by a team experienced in using them,
a selection of advanced statistical methods as well as the standard LR, and a variety of patient outcomes
including, but also going beyond the common ones of, death and readmission. We focused on common
patient groups and outcomes that are of interest to patients, the NHS and policy-makers.

DISCUSSION OF METHODS AND FINDINGS
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We considered a large number of patient groups as defined by their primary diagnosis or procedure,
but for reasons of brevity and interpretation we have limited the results in Chapter 3 to some illustrative
examples. Our analyses could be extended in various ways given in the next section, particularly by
repeating our HF and RTT analyses on other patient groups. RTT needs to be derived separately for each
index procedure, in consultation with surgical and coding experts following empirical analysis, and is
therefore quite a time-consuming process.

We considered only a few of the growing number of machine learning methods, restricting ourselves to
those that were likely to be the most appropriate for the administrative data set we were using. Methods
such as boosted trees may be worth trying on richer data. For comorbidity adjustment, we focused on the
two most widely used and validated indices, Charlson and Elixhauser. The newer but so far much less
adopted Holman index is promising, but we were unable to test it to the same degree as the two
better-established measures. This is still a developing field, and we have recently heard of a superior
German index that has not yet been published.

For prediction of future hospital use in HF patients, we considered a range of count models, but the list
was not exhaustive. We did not use the Healthcare Resource Group tariff information, which would give
an indication of the financial burden, though some imputation is needed for missing values. These tariffs
do not in any case represent actual costs.

With a large number of models to fit, we have focused on the c-statistic and HL test to describe the
model fit, together with calibration plots. We have generally split the data into a training and a testing set,
though our experience in this project and previous work has found this to be unnecessary with LR.90

However, we have not assessed such goodness of fit measures such as influential points and outliers.
In general, we did not test for or include covariate interactions except between age and comorbidity index
in some cases. Such interactions are unlikely to add anything of real value to the models but could be tried.

We have found that discrimination is higher if coding levels are higher,11 but for this project we used all
hospitals combined rather than split by coding levels. It would be worth repeating our modelling on US
data, for example, as their recording of secondary diagnoses is notably higher, and CMS data have present
on admission information in order to exclude complication codes. Likewise, it would be possible to include
those hospitals with high levels of coverage and completeness for their A&E records as we did in a
separate project for birth records,91 though the effect on the results in terms of reduced sample size and
potential bias would need to be assessed.

Finally, in this project we have focused on the quality of HES data, the performance of the risk models and
the definition of the outcome measures. There are several other criteria that characterise a good indicator
beyond model performance. These include high frequency; variation across providers; consistency over
time unless changes in apparent performance are due to changes in quality of care; correct attribution of
outcome to provider (a particular issue when patients are transferred between hospitals or, especially for
readmission, discharged to community services); and actionability. If the information on performance is not
presented in a way that users understand, for example, then the users are unlikely to pay much attention.

Recommendations for future research

There is growing interest in reinventions, and our approach to defining RTT could be applied to other
index procedures and specialties. Similarly, it would be interesting to know whether the count models are
as useful for other chronic conditions such as diabetes as we found them to be for HF. For readmissions,
we considered the first and also the total number, but more sophisticated approaches such as multistate
analysis or cluster analysis to look for patterns of activity could be usefully employed.
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We have used time-to-event methods only for modelling readmission and investigating patient-level
predictors. The methods could be also applied to determining to what extent variation in hospital-level
performance is explained by differences in the timing of outcomes. For example, when do the ‘excess’
deaths or readmissions occur at hospitals with high rates compared with those with low rates? Some
recent evidence for HF patients suggests that the timing of readmissions within the standard
30-day follow-up period does not vary in Medicare patients,92 but this is not well established with other
populations, patient groups or outcomes.

If the A&E records improve in quality, then they could potentially be used both in risk-adjustment models
and also for outcome measures. Post-discharge attendances not resulting in admission should be
considered alongside those that do. As well as inpatient activity, attendances (and OPD appointments)
could be used much more in economic modelling. Reattendance rates could be calculated and explored as
an indicator rather than relying on costly casenote reviews.

Dissemination activity

Up to September 2014, we have disseminated various findings from this project as:

1. Systematic review of studies comparing two or more comorbidity indices: paper published by
Medical Care in 2012.20

2. Provider profiling models for ACS mortality using administrative data: paper published by the
International Journal of Cardiology online first in 2012 and in print in 2013.67

3. Project overview and early results of the comparison of methods: invited oral presentation at the
International Society of Clinical Biostatistics conference in Bergen, August 2012.

4. Comparison of methods and calibration issues: two oral presentations at the IMA (The Institute of
Mathematics and its Applications) Modelling in Healthcare conference in London, March 2013.

5. Oral presentation of results of HF readmission modelling to the Institute of Electrical and Electronics
Engineers (IEEE) meeting in Philadelphia, September 2013, with publication in conference proceedings.

6. Poster and short oral presentation of HF readmissions modelling and hospital-level rates at the
International Society for Quality in Health Care (ISQua) conference in Edinburgh, October 2013.

7. Classifier calibration using splined empirical probabilities in clinical risk prediction: paper published
online first by Health Care Management Science in its special conference issue in February 2014.50

8. Poster on count models for HF accepted for the Cambridge biostatistics meeting, March 2014.
9. Effect of the readmission primary diagnosis and time interval in HF patients: analysis of English

administrative data: paper published by the European Journal of Heart Failure online in July 2014.93

10. Return to theatre for elective hip and knee replacements: what is the relative importance of patient
factors, surgeon and hospital? Paper in press at the Bone and Joint Journal.94

One more paper has been submitted to journals and is under review.

We are working with relevant charities to decide the best way to publicise our work relating to HF.

DISCUSSION OF METHODS AND FINDINGS
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Chapter 5 Conclusions

Robust risk-adjustment models can be derived from HES for mortality, though c-statistics are lower for
readmissions, RTT and OPD non-attendance than for mortality. Overprediction of low risk was a

common explanation for the often poor calibration, which was a bigger problem for diagnosis than for
procedure groups. The remaining variation in hospital-level outcomes will be due to data quality, care and
missing casemix information, but it is not possible to distinguish between them. MLM suggests there is
much variation at surgeon and hospital level for RTT but a lot less for other outcomes.

Hospital Episode Statistics OPD data add some useful information to the risk models for readmission and
future hospital activity, but they are currently limited to the fact and number of prior appointments
and non-attendances, as diagnostic information is still usually absent. A&E records are too patchy to be used
nationally, but analysis might be confined to those trusts with good data for the years 2009/10 onwards.

In terms of adjustment for comorbidity, our review and results suggest using a combination of the Elixhauser
set of comorbidities plus dementia with our extra codes. Using prior admissions to get extra comorbidity
information does not appear to be worthwhile in general, though for multimorbid groups such as patients
with HF a one-year lookback period gave a useful boost to the prevalence of some conditions. The timing
of these previous admissions, however, adds only a little to the prediction of readmission.

We considered a range of outcome measures. RTT is readily definable in HES, shows wide variation by
surgeon and hospital, but needs tailoring to the index procedure with specialist surgical and coding input.
Of the readmission measures, the standard 28- or 30-day window seems in general as good as any other
from 7 to 365 days in the HF group. Combining all causes, as is typically done, however, loses key
information. Cause-specific versions are likely to be more useful for HF and COPD patients in quality
improvement projects.

Prediction of OPD non-attendance is moderate rather than good or poor in HES. An interval of 3–6 weeks
between inpatient discharge and first follow-up appointment was associated with around 10% significantly
lower odds of non-attendance. Even after adjusting for available confounders, we find that non-attenders
go on to have more OPD and unplanned NHS contacts and higher death rates than attenders.

Finally, we conclude with some remarks about statistical methods. We believe that commonly used
machine learning methods are not worthwhile with administrative (or at least HES) data, though
calibration for LR could and perhaps should be improved, for instance using the extra step we suggested
for risk-adjustment models when simple coefficient interpretation is not important. For readmission-type
outcomes, we also applied a number of count models to the HF cohort and found the NBH or
zero-inflated models to perform best despite sometimes having difficulty converging. These models
yielded some – rather than a large amount of – useful extra information beyond that provided by the
simpler and quicker fact-of-readmission LR models.

Implications for practice and translation of findings

The use of risk prediction and risk stratification models is well established in medical decision-making.
Some risk scores are simple enough to be calculated by hand, whereas others need a calculator,
smartphone app or other electronic device. Risk-adjusted outcomes at the unit level can be displayed
graphically or in tabular form using similar technology, and there are a growing number of websites that
allow a prospective patient to choose a hospital this way. Many private companies offer interactive
information tools that allow drill-down and stratified analyses, for example to see if a hospital has a higher
mortality at the weekend than during the week or if the uptake of services by demographic subgroup
matches the demographic distribution of the surrounding population that it serves.
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As well as some methodological lessons regarding risk adjustment and prediction, this project has
produced some findings that relate to clinical practice. Our analyses of OPD non-attendance and
readmission showed clear variations by factors such as age, sex and deprivation that other researchers
had previously identified but also the strong association with the number of previously missed OPD
appointments for both outcomes. We found that patients who miss appointments go on to have poorer
outcomes a year later that are unlikely to be explained wholly by disease status or comorbidity. This
suggests that repeat non-attendance be considered a warning sign that closer monitoring is needed.

The second finding relating to non-attendance is that we found that the lowest non-attendance rate at the
first appointment following discharge from an emergency admission for one of several acute conditions
occurred 6 weeks after discharge. The highest rate occurred within a week or more than 12 weeks after.
While we were unable from the data to identify reliably whether or not this first post-discharge appointment
had been planned before the admission, the finding does suggest scheduling more follow-up slots for
around 6 weeks after discharge in order to reduce non-attendance.

Finally, the fact that we found no significant correlation between HF and non-HF readmission rates
and that performance on the national audit process measures correlated mostly with just the HF
readmission rates suggests that more focus should be put on these patients’ comorbidities. Good
performance and/or low rates of readmission for HF often did not translate into low rates of readmission
for other conditions. For quality improvement, we recommend splitting the readmission outcome and
monitoring its diagnosis-specific components.

CONCLUSIONS
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