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Executive summary

Objectives

Systematic review and meta-analytical methods

are already common approaches to the assessment
of health technology and related areas, and
increasing adoption of such approaches may be
foreseen, in part in response to increasingly wide
emphasis on evidence-based approaches to
medicine and health care. This report is intended:

* to identify applications of systematic review
and meta-analytical methods in Health
Technology Assessment (HTA)

* to promote further, appropriate use of such
approaches in these areas of application

* to begin to identify priorities for further
methodological developments in this field.

How the review was conducted

Systematic literature searches using MEDLINE,
EMBASE, and Institute of Scientific Information
(ISI) Science/Social Science electronic databases
and the Cochrane methods database were carried
out to find relevant articles. Relevant reference
collections of the study team were pooled. Grey
literature and unpublished articles were obtained
by writing to prominent researchers, and through
the Internet; further papers were identified by
inspecting the reference lists of all previously
obtained articles.

Review findings

A large number of papers concerning methodology
relevant to different aspects of systematic reviews
were identified. While the ordering of the report
follows the stages involved in carrying out a
systematic review, it is highly structured in a way
which enables readers with specific interests to
locate particularly relevant sections easily. The
main features of the report are now summarised
briefly in turn.

A brief overview of the important issues to be
considered prior to the appraisal and synthesis
of studies, including a critical appraisal of search
methods, is presented.

Methodology for critical appraisal of the research
evidence, including ways of assessing the quality
of the primary studies, and its incorporation into
a review, is explored. No consensus has been
developed as to which method is most
appropriate for doing this.

An important consideration is the possibility of
heterogeneity between study outcome estimates.
Many assessments and formal tests for detecting
heterogeneity are described. Methods for
accounting/adjusting for heterogeneity are
identified and assessed. No consensus has been
reached concerning the best strategy for dealing
with heterogeneity; currently a large degree of
subjectivity is required on the part of the reviewer.

Both classical and Bayesian statistical approaches
have been developed to combine study estimates.
These encompass the relatively simple fixed effect
approaches, through random effects models, to
more sophisticated hierarchical modelling. The
more complex methods were largely devised to deal
with heterogeneous outcomes, systematic variation
between studies, and the need to incorporate a
fuller set of components of variability into the
model. Several of these methods have come under
criticism; it is concluded that neither fixed nor
random effect analyses can be considered ideal.

In addition to these general methods, approaches
specific to particular outcome scales/measures, and
data types are identified. These include methods
for combining ordinal, binary, and continuous
outcomes; survival data; diagnostic test data;
correlated outcomes; individual patient data; single
arm studies; crossover trials; and finally, studies of
differing designs. While some of these methods
have become standard, others are less commonly
used and so are at early stages of development.

Problems encountered by meta-analysts were
identified. Two potentially serious ones are
publication bias and missing data. Methods for
detecting/adjusting for publication bias exist, and
others are currently being developed. The validity
of most is largely undetermined. Additionally, long-
term policy measures such as registries for all trials
have been suggested. Dealing with missing data
within a meta-analysis has not been considered to
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the same extent. General methods do exist (in
other literatures), but many of them are untested
in a meta-analytical setting.

Further issues identified include methods used
to report the results of systematic reviews; use of
sensitivity analyses; prospective meta-analysis; and
alternatives to traditional meta-analysis.

Several of the key methods are illustrated using a
dataset comprising cholesterol lowering studies.

Recommendations

Recommendations for good practice for the most
part follow standard and widely agreed approaches.
Greater latitude in the nature of studies potentially
eligible for review, including non-randomised
studies and the results of audit exercises, for
example, may, however, be appropriate. The key
stages are (with extensions and/or less widely
agreed aspects in parentheses):

1. Specification in a protocol of the objectives,
hypotheses (in both biological and health care
terms), scope, and methods of the systematic
review, before the study is undertaken.

2. Compilation of as comprehensive a set of
reports as possible of relevant primary studies,
having searched for all potentially relevant
data, clearly documenting all search methods
and sources.

3. Assessment of the methodological quality of the
set of studies (the method being based on the
extent to which susceptibility to bias is mini-
mised, and the specific system used reported).
Any selection of studies on quality or other
criteria should be based on clearly stated a
priori specifications. The reproducibility
of the procedures in 2 and 3 should also
be assessed.

4. Identification of a common set of definitions of
outcome, explanatory and confounding vari-
ables, which are, as far as possible, compatible
with those in each of the primary studies.

5. Extraction of estimates of outcome measures
and of study and subject characteristics in a
standardised way from primary study
documentation, with due checks on extractor
bias. Procedures should be explicit, unbiased
and reproducible.

6. Perform, where warranted by the scope
and characteristics of the data compiled,
quantitative synthesis of primary study results
(meta-analysis) using appropriate methods
and models (clearly stated), in order to

explore and allow for all important sources
of variation (e.g. differences in study quality,
participants, in the dose, duration, or nature
of the intervention, or in the definitions and
measurement of outcomes). This will often
involve the use of mixed/hierarchical models,
including fixed covariates to explain some
elements of between-study variation, in
combination with random effects terms.

7. Performance of a narrative or qualitative
summary, where data are too sparse, or of too
low quality, or too heterogeneous to proceed
with a statistical aggregation (meta-analysis).
In such cases the process of conduct and
reporting should still be rigorous and explicit.

8. Exploration of the robustness of the results
of the systematic review to the choices and
assumptions made in all of the above stages.

In particular, the following should be

explained or explored:

a) the impact of study quality/inclusion criteria

b) the likelihood and possible impact of
publication bias

c) the implications of the effect of different
model selection strategies, and exploration
of a reasonable range of values for missing
data from studies with uncertain results.

9. Clear presentation of key aspects of all of the
above stages in the study report, in order to
enable critical appraisal and replication of the
systematic review. These should include a table
of key elements of each primary study.
Graphical displays can also assist interpretation,
and should be included where appropriate.
Confidence intervals around pooled point
estimates should be reported.

10. Appraisal of methodological limitations of both
the primary studies and the systematic review.
Any clinical or policy recommendations should
be practical and explicit, and make clear the
research evidence on which they are based.
Proposal of a future research agenda should
include clinical and methodological
requirements as appropriate.

Further areas of research
related to the methods used

for systematic reviews

Two priority areas are indicated below. Addition-

ally, other areas needing further research are
highlighted.

Priority topics
¢ Sensitivity analysis of the impact of many aspects
of the design and analysis of the systematic
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review, and in particular of the meta-analysis, has
been advocated. The result is a complex set of
inter-related sensitivity analyses. Research into
optimum, or at least efficient, strategies of multi-
dimensional sensitivity analysis in these contexts
would thus be useful.

Evaluation of the role in HTA of meta-analysis of
observational studies, and cross-design synthesis
(which often features the inclusion of non-
randomised evidence), possibly through
systematic research and workshops of
researchers active in the field.

Other areas needing further research

St
°

udy quality

Investigation into the relevant dimensions of
methodological quality and empirical research
which establishes the relative importance of
these dimensions in different contexts. This
should eventually lead to the development of
rigorous, validated, and parsimonious scales
which can be adapted to a wide range

of studies.

Exploration of study quality as an explanation of
heterogeneity.

Empirical investigation into the basis for choice
of cut-off values for exclusion of studies on
grounds of quality.

Systematic approaches to quality assessments of
non-randomised controlled trials.

Heterogeneity

Further investigation of its relationship with
publication bias.

Development of guidelines/recommendations
for identifying and exploring heterogeneity.
Investigation of degree of heterogeneity (both
quantitative and qualitative) beyond which
combining of all the studies should not be
considered.

Investigation into the effects of choice of
measurement scale from both: a) a statistical
perspective, and b) a clinical perspective.

Publication bias (HTA has commissioned a
separate review in this area)

Assessing the impact of the pipeline problem.
Empirical study of degree and mechanisms of
publication bias in meta-analysis of epidemi-
ological and other non-randomised studies.
Investigation into the extent to which the use
of a prospective register for trials minimises
publication bias.

Further investigation into proposed statistical
methods, including their power to detect
publication bias, and their sensitivity towards
its detection.

Approaches to modelling and analysis

¢ Investigation of the relative merits of the
different approaches to combining studies in
which some arms report no events (zeros in
2 x 2 tables)

¢ Comparison of new methods for random effects
modelling which fully incorporate parameter
uncertainty.

* Investigation of robustness of random effects
models to departures from normality.

¢ Empirical investigation of model attributable
weights with particular reference to over-
weighting of large samples, in some models.

¢ Investigation of the impact of missing data at
both the study level and patient level.

® Development of experience with practical
applications of mixed models.

¢ Development of methodology for combining
individual patient data with study level data.

® Investigation of the role of
cumulative /sequential application of meta-
analysis as a research methodology.

¢ Further development of methods for integration
of qualitative assessments of studies with
quantitative estimates of the results.

¢ Development of random/mixed effects models
for meta-analysis of survival data.

¢ Use and implications of exact statistical methods
for combining small studies.

® More extensive but critical use of Bayesian
methods, including:

a) encouragement of expository papers in the
applied literature on the application of
Bayesian methods

b) more research on obtaining and using elicited
prior beliefs.

® More research into the use of meta-analytic
techniques in conjunction with decision analysis
methods.

® General investigation of the impact of missing
values, and extension of currently available
methods to a wider range of circumstances with
missing data, including the use of Bayesian
methods.

* Development of the use of simulation of results
of new studies before they are published or of
hypothetical studies to allow their impact on
meta-analysis to be assessed.

Miscellaneous

® More research into extrapolating the results
of a meta-analysis to clinical practice.

¢ Further development of detailed publication
guidelines to encourage uniform reporting of
the results of studies, particularly of types other
than randomised clinical trials.






Health Technology Assessment 1998; Vol. 2: No. 19

Preface

se of systematic review and meta-analytical

methods in HTA and related areas is now
common. This report is intended to promote
appropriate application of such methods, and
to begin to identify further appropriate
methodological developments.

Itis not intended as a text book of these methods
but as a structured survey of practice and problems
in the area. We hope that readers will be rapidly
able to find and understand a review of the use

of these methods in contexts relevant to their
particular interests. The strongly subdivided but
cross-referenced text, selected worked examples
of key methods, and relatively heavy use of
quotation from original sources are all intended
to aid the reader in so doing. Similarly, the
explicit documentation of the search strategy

used should allow readers to update the review in
areas of particular interest to them. The selection
of the quotes included in the report was somewhat
arbitrary. They were largely included where
particular issues were expressed eloquently and
precisely in papers, and it was felt that rewording
might detract from the view expressed, or to

reflect the range of opinions expressed by experts
in the field.

We are pleased to be able to acknowledge the
assistance we have received from several people and
groups in the course of compiling this review. In
particular we wish to thank: Dr Martin Hellmich, a
Visiting Fellow in the Department of Epidemiology
and Public Health at Leicester, for contributing the
chapter on meta-analysis of diagnostic test accuracy;
Sage publications for supplying several books
without charge; Julie Glanville and Janette Boynton
at the Centre for Reviews and Dissemination, York,
for their advice on searching for the literature;

the Cochrane Collaboration for supplying their
database of literature, and dealing with several
queries; Teresa Smith from the Biostatistics
Department at Cambridge for her code to plot
some of the meta-analyses diagrams found in this
report; the authors who supplied copies of their
work prior to its submission/publication in journal
format for inclusion in this review; Cindy Billing-
ham, also doing a NHS HTA review (93/50/04
Quality of life assessment and survival data), for
her advice throughout the project.
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Chapter |

Introduction

Systematic review and meta-analytical methods
are already common approaches to the
assessment of health technology and related areas,
and increasing adoption of such approaches may
be foreseen, in part in response to increasingly
wide emphasis on evidence-based approaches to
medicine and health care. The potentially relevant
methodological literature is already substantial.
This review, for example, draws on a database of
about 1000 potentially relevant references, and
cites about 600 of them. This report is the outcome
of the NHS Research and Development Health
Technology Assessment Programme methodology
project number 93/52/03. It is intended:

* to identify applications of systematic review
and meta-analytical methods in Health
Technology Assessment (HTA)

* to promote further, appropriate use of such
approaches in these areas of application

* to begin to identify priorities for further
methodological developments in this field.

The review and this report focus primarily on the
use of quantitative methods to obtain overall
estimates of effectiveness of interventions by means
of the statistical pooling of the results of studies or
methods of exploring variations in their results. In
many health technologies; however, the evaluations
are too dissimilar, or the outcomes too varied to
permit the use of statistical analysis of the studies
as a single set. In these situations researchers will
not be able to use formal statistical techniques to
derive estimates of the effectiveness of interven-
tions. When this is the case, it is important that the
systematic review still adopts the comprehensive,
rigorous and explicit approach used when more
quantitative methods can be applied.

Qualitative approaches to study synthesis will still
need to appraise studies critically to assess their
validity. However, this will not be applicable in a
quantitative manner to obtain overall estimates.
Qualitative analysis should examine variation in
outcomes and attempt to explore this in terms of
study design characteristics, the participants and

nature of the interventions/exposures. The result
of a qualitative analysis is likely to be a range of
plausible effect sizes and a judgement of the
direction of likely benefit. These, however, should
be justified explicitly on the basis of the study
results, and any implicit weightings made clear.

In many ways, the quantitative analyses considered
in this report represent special cases of the quali-
tative analysis. Although the emphasis in this
report is on the more technical aspects of analysis,
quantitative studies should of course not neglect
the simpler aspects of analysis and presentation
which they share with all qualitative studies,
including adequate description of the primary
studies on which they are based. The conduct of a
quantitative analysis, however, should not be used
as an excuse for inadequate description of the
studies included.

This report is divided into eight parts. Part A
describes the methods adopted for the project.
Part B outlines the methods for the pre-synthesis
stage of a review. Part C discusses methods for the
critical appraisal of the research evidence. Part D
describes the statistical methods used to combine
study results. Part E discusses other issues which
are important when synthesising evidence. Part F
describes further methods specific to certain
contexts. Part G presents extensions to the meta-
analytic methods described in previous sections.
Part H summarises the recommendations and
topics needing further research.

Appendix 1 summarises the literature search
strategies used in compiling the database of
literature on which the report is based, to help
identify the coverage explicitly, and to facilitate
updating of the database, and hence the review, in
future. Appendix 2 lists papers identified shortly
before the completion of this report, which could
not be included in the main text because of time
constraints. The report concludes with a Biblio-
graphy of all relevant papers identified for this
review (whether they were actually cited in the
text or not).
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Chapter 2

Methods adopted for this project

The literature search

Objectives

The primary objective of the literature search was
to locate all (or as much as feasibly possible) of the
literature concerned with the methodology used
in the systematic review of evidence. This meant,
although our interest was methods for evidence
based care, a search for synthesis methodology
was done irrespective of discipline.

The search strategy

Several approaches were taken to search for the
relevant literature, with the intention of achieving
the highest retrieval rate possible:

Electronic databases: The databases Institute of Sci-
entific Information (ISI) Science, ISI Social Science,
and EMBASE were all searched via the Bath Inform-
ation and Data Services (BIDS) computer service.

In addition, MEDLINE was searched on CD-ROM
using the OVID search engine. All these databases
were searched from the beginning of 1991, through
August 1996, with the exception of MEDLINE which
was searched from the beginning of 1992." Simplified
updates of these searches were carried out into the
first quarter of 1997. Appendix 1 gives a detailed
description of the search strategies used.

Cochrane Database: Papers concerned with
methodology used for meta-analysis had previously
been compiled by Oxman. This list (which has
since been updated) was available electronically via
the Cochrane library (1).* The vast majority of the
references were directly relevant to this project.
Private collections: Two of the members of the study
team (DR]J, KA) had worked in the area of methodol-
ogy for systematic reviews prior to this project, and
hence had private literature databases to draw on.
Other methods: The reference lists of each relevant
paper obtained were examined to identify papers
not found previously by the above methods. Known
researchers in the field were contacted for work
completed, but as yet unpublished. Unpublished
papers and technical reports were retrieved from
researchers home pages via the Internet.

Searching methods/results

The electronic database searches were carried out
first. The results of these searches were compared
with the Cochrane database and the private
collections, to assess how successful they were, by
calculating the proportion of the known articles the
search strategies retrieved. Because the different
sources used varying time windows (the Cochrane
database had no articles post-1994 and the
electronic database searches covered 1991-1996),
an exact evaluation was not made; however, it was
clear that utilising all three sources was beneficial,
as each highlighted substantial numbers of
references the other two methods had not found.
Searching the reference lists of the papers found
by these methods again brought to light a
substantial number of new references.

A database of these was created using the
Reference Manager (version 7) (2) software
package. Each reference was keyworded by one of
the researchers (AS) using a unique and personal
keyword system to help order and categorise the
large body of literature.

Using this system, it was difficult to ascertain all the
original sources of the references when looking
retrospectively, since if more than one source had
retrieved a reference, then the duplicates would
not be included in the database. This means that
an assessment of the performance of each database
was not possible.

The search and retrieval of literature continued
throughout the duration of the project, this included
obtaining literature published after the initial
searches. By the completion of the project, 1005
potentially relevant methodology references had
been identified. Thirty-four of these were identified
too late to include in the review (see appendix 2 for
a listing). Of the remaining 971 references, 781 were
obtained and inspected/read. The remaining 190
were not obtained, in the vast majority of instances
due to one of the following reasons:

! This was due to the available CD-ROM version only covering 1992 onwards.

2 The pre-update list, which is the one that was available when this search was carried out, is also available in

printed form (3).
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¢ Although the paper was in some way related
to carrying out research synthesis, a consensus
decision, after reading abstracts or other
information, deemed the paper to contain no
new developments in methodology. In such
instances the article was often an introductory
or tutorial paper. Additionally, a considerable
number of papers appear to discuss/review the
issues involved in a meta-analysis but do not
contribute to new methodology (the majority
of the papers not obtained were due to
these reasons).

® The literature could not be obtained. It may
have been badly referenced, or extremely
diverse, and the National Library could not
trace it/obtain it. Alternatively, it could have
been referenced as an unpublished work with
little or no indication how to obtain it.

¢ It may have been an ‘old’ reference (pre-1970),
the relevant contents of which had been
summarised in easier to obtain formats.

Itis important to note that just because a
paper was obtained and read did not mean it
was automatically included in this report. A
considerable number of papers read did not
present new methodology, or any methodology
content had been described and written about
from other sources.

To make it absolutely clear what sources were
considered in the various sections of the report,
several reference lists have been compiled. There is
areference list at the end of every chapter which
includes all references cited therein. Not all these
references may be directly relevant to meta-analysis;
for instance they may have been included to pro-
vide background reading on a particular topic.

The main bibliography at the end of the report
provides a list of all the references concerning
meta-methodology (in some way), found during
the project, whether they were actually cited in the
main text or not. This list excludes the non-meta-
analysis citations found in the text. Additionally,
appendix 2 includes the 34 references known, or
suspected of having new methodology in, that came
to our attention too late to include in the review.

Discussion

Searching databases for the methodology
references on a particular subject is notoriously

difficult.” Their seems to be no simple strategy

for effectively retrieving the relevant information;
moreover, the suggestion given to us* that there

is no substitute for time invested in simply scanning
through the huge numbers generated by the

first level search. The fact that approximately
300-400 new references were identified by
scanning lists of references already retrieved
(missed by the database searches) would indicate
that the electronic database search strategies

were not sufficient in themselves. Indeed, it would
appear that scanning reference lists is a very time
effective way of locating the literature. It is also
interesting to note that relevant papers were
picked up by doing this that would never have
been picked up via a database search. An example
of this is the paper below:

Emerson JD. Combining estimates of the odds
ratio: the state of the art. Stat Methods Med Res
1994;3:157-78.

This paper has much valuable advice on combining
odds ratios without ever explicitly mentioning
meta-analysis, synthesis or combining studies, and
hence was not retrieved in the first stage search
(see appendix 1). This raises interesting questions
for people carrying out methodological reviews,
and highlights the benefit of using supplementary
searching methods such as scanning reference lists
and handsearching core relevant journals.

For completeness, below is set out what we believed
would be the ‘ideal’ search strategy, devised several
months into the searching. As one can see several
of the points were not carried out. This was simply
due to time constraints.

Overall search strategy

¢ Identify key existing collections.

¢ Search BIDS EMBASE 1991-1996, using
standard search.

e Search ISI Science 1991-1996, using standard
search.

¢ Search OVID MEDLINE 1992-1996, using
adapted standard search and selected parts on
CRD search.

¢ Search PsycLIT (Psychology database).

e Search Education database (ERIC-ERIC
international or ISI Soc Science).

¢ Search samples of large sets not already
imported from above databases — if many
are found, continue.

% Personal communication with Julie Glanville (Information officer at the University of York).

*Personal communication with Julie Glanville (Information officer at the University of York).
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¢ Select approximately 1% of non-intersect papers
from the meta-analysis pools (year by year) to see
what is missing.

e Search back to 1980 in at least EMBASE, ISI
Science and MEDLINE.

® As a check, check through last 5 years (or
perhaps from 1980) of statistics journals.

e As a check, download citation searches on
(six) key papers.

For the researcher wishing to keep this review up to
date, the authors offer the following advice on the
searching methods. To carry out an updated search
using all the databases and strategies of appendix 1
would be a time-consuming procedure, not least
due to its relatively low hit rate. Without further
investigation, it would be difficult to suggest which
parts were least effective/only duplicated other
parts of the search however. It would appear that
different strategies could be most effective for
different topic areas. For instance, if one is only
looking for papers presenting statistical methods,

a different approach should be taken from finding
literature on say searching methods. However,
whatever database searching strategy is used
primarily, our advice would be always to inspect

the reference lists of all relevant papers obtained.

Implications for updating
the review

It is difficult to ascertain how fast the field is
currently moving, or how fast it will move in the
future. The number of papers published each
year (on meta-analysis/systematic review methods)
gives some indication that this is very much a
growth area and one that has grown at an acceler-
ating rate over the past 10 years. Indeed, it has
been reported that the number of papers which

report applications of meta-analysis is increasing
exponentially. It would seem realistic to expect that
the methodological developments will increase as
the application of methods increases, and as the
areas of application broaden, new methods will

be required.

Standard methods (i.e. fixed, random, and

mixed modelling) seem pretty much in place

now but experience of using and choosing between
models needs to be developed. The Bayesian
alternative is now a real alternative due to increased
computational power; recently extensions from

a Bayesian perspective have appeared, and we
suspect they will continue to do so. Due to this,
there may will be a shift to using more sophisticated
and realistically complex modelling techniques.

Developments for specific situations continue to be
presented, including methods to deal with missing
data, and combining information from disparate
sources. The area of fastest growth, however, is
methods to assess and adjust analyses for publica-
tion bias. More research is likely to be produced
on this topic in the near future.

A list of potentially important papers published too
late for inclusion in this review is included in
appendix 2.
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Chapter 3

Procedural methodology (for meta-analysis)

Introduction

Itis the aim of this section to outline the rigorous
procedural methodology that has been advocated
when conducting any meta-analysis. At least two sets
of guidelines have been published laying out the
procedural path to be followed when conducting a
systematic review (1) (referred to as the Cochrane
Handbook in the text), and (2) (referred to as
CRD4). The Cochrane Collaboration began its
work in 1992, with the aim to prepare, maintain
and disseminate systematic, up-to-date reviews of
randomised clinical trials (RCTs) of health care,
and, when RCTs are not available, review the most
reliable evidence from other sources. In 1997 the
second edition of their handbook was produced,
which lays out the procedural methodology to

be followed when conducting a review within

the collaboration (1). Similarly, the NHS Centre
for Reviews and Dissemination (CRD) at York have
produced a similar document outlining guidelines
for those carrying out or commissioning reviews for
themselves or other research bodies (2). These two
sets of guidelines are similar in both structure and
content. The sections below outline the stages
involved in carrying out a systematic review, as
identified in these documents, and aim to give the
reader an idea of the suggested procedures to
follow when carrying out a systematic review. If the
reader is carrying out a review for a specific body
(such as the Cochrane Collaboration), then clearly
it is necessary to follow their guidelines strictly. If
one is carrying out a systematic review independ-
ently, then the rigorous methods put forward by
these two organisations will stand the researcher in
good stead for carrying out a worthy review of their
own. Both sets of guidelines will give more detailed
accounts of the procedures outlined here and are
recommended reading. Both guidelines also
discuss the logistics of doing a review — a subject
not covered in this report.

Identification of the need for
the review!'

Even before a review is undertaken it is important
to establish the need for such a review, as CRD4
states (2):

‘It is important to be clear about the aim and
requirements of each systematic review before it is
started, and to be aware of other reviews in the field
of interest that have previously been published or
are currently in progress.’

One should check for other reviews (published
or in preparation) using the Cochrane Database
of Systematic Reviews (3-5), the CRD Database
of Reviews of Effectiveness (DARE) (6) and the
NHS National Research Register (NRR) (7). Also,
the more common electronic databases (such as
MEDLINE, EMBASE)? should also be searched.
Key research groups within the field could also
be contacted.® A further issue that needs
consideration is:

‘Background information describing the
epidemiology of the health care problem and the
patterns of use of a health technology and its
alternatives should be briefly reviewed. An outline
should also be given of the present options and
arrangements for health care provision in the
review area, together with routine statistical data
describing their use. It may be of value to include
information on the historical, social, economic
and biological perspectives to the review
problem.” (2)

In addition (1), presented below are general
points regarding issues that need taking into
account when considering and undertaking

a systematic review:

* Questions should address the choices (practical
options) people face when deciding about
health care.

! These guidelines mainly assume that one is assessing the effectiveness of a treatment. However, if the review is about
some other topic such as a diagnostic test (see chapter 21) or a risk factor then these guidelines may need modifying.

* A discussion of these electronic databases is given in chapter 4. Also CRD4 gives search strategies for locating review

articles in MEDLINE (2).

®Not all review articles are systematic; thus they need to be critically appraised, this can be done via checklists given in

).
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¢ Reviews should address outcomes that are
meaningful to people making decisions about
health care.

¢ The methods used in a review should be selected
to optimise the likelihood that the results will
provide the best current evidence upon which
to base decisions.

¢ Itis important to let people know when there
is no reliable evidence, or no evidence about
particular outcomes that are likely to be
important to decision makers.

¢ Itis not helpful to include in a review evidence
where the risk of bias is high, even if there is no
better evidence.

¢ Similarly, it is not helpful to focus on trivial
outcomes simply because those are what
researchers have chosen to measure.

* So far as is possible, it is important to take an
international perspective. The evidence
collected should not be restricted by nationality
or language without good reason.

* Results should be presented in such a way that
their applicability in different contexts can be
assessed by decision makers.

® Reviewers should bear in mind that different
people might make different decisions based
on the same evidence (for good reasons). The
primary aim of a (Cochrane) review should be
to summarise and help people to understand
the evidence. Reviewers must be careful not
to impose their own values and preferences
on others when answering the questions
they pose.

In addition to the above, it is also important to
establish that the results of any proposed review
are not invalidated by the publication of a current
RCT/study. This could for example be avoided by
checking trial registers and contacting experts in
the area. In this way, pipeline bias could be avoided
(see chapter 16).

CRD4 also makes the suggestion that the target
audience for the review (i.e. people who will use
the results) should be identified early on.

Background research

Having decided on the appropriateness of a review,
the next stage is to explore the existing information
on the topic further. It is necessary to determine
the scope of the review and the specific questions
that the review will address (8-10).

A preliminary assessment of the primary research
that is available should be made, it should be done
considering the following points (1):

* Assessing the volume of literature in
the field — can be done using electronic
databases.

* Assessing study designs used in the primary
research — decisions have to be made on
which designs are to be included in
the review."

* Assessing effectiveness using causal pathways —
the effectiveness of a treatment policy may
involve a sequence of interventions that cannot
be evaluated in a single study. ‘If the literature
search reveals that there are no complete evalu-
ations of the effectiveness of the intervention
policy than an analysis of the components of the
components of the policy should be considered.
Where possible these should be mapped out by
a causal pathway (11-13)’.

¢ Identification of questions to be addressed in
the review — the most important decision (1).

¢ Identification of outcomes.

¢ Identification of effect modifiers: “There may
be factors, such as the characteristics of the
patients and settings, choice and measurement
of outcomes, or differences in the nature or
delivery of interventions, which influence the
estimates of effectiveness of the intervention
under investigation. It is important that these
‘effect modifiers’ are identified as they may
explain apparent differences in the findings
of the primary studies.” (1)

¢ Identification of particular issues related to

validity — checking the primary studies are

methodologically sound; issues include
randomisation, unsuitable comparison groups,

a lack of blind outcome assessments, inadequate

follow-up times, a lack of suitable gold standard

diagnostic tests, inability to define and assess
relevant outcomes, unreliable measurement
techniques, or inappropriate statistical analysis.

Identification of issues related to generalisability

— it should be noted whether the design, setting

and participants of the primary studies will

reduce the generalisability of the review’s
findings.

Whether the existing literature helps to focus a
review or whether ignoring given background
information yields an impossible review is a fine
balance, that is very dependent upon the topic
area to be reviewed. Ultimately, the benchmark

4 (2) Gives a search strategy for identifying RCTs using MEDLINE.
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by which to judge a review is whether it will help to
inform healthcare/policy decisions.

When carrying out a review, one also needs to
balance scientific validity and work load, it should
be kept in mind that: “There is little value in
doing a review which will produce an unreliable
answer.” (2)

The review protocol

(2) The protocol specifies the pre-determined
plan (14, 15) which the research exercise will
follow. It is very important to establish methods
before the review is started, to avoid biases. The
Cochrane Handbook warns that (1):

‘Post hoc decisions (such as excluding selected studies)
that are made when the impact of the results of the
review is known are highly susceptible to bias and
should be avoided. As a rule, changes in the protocol
should be documented and reported, and “sensitivity
analyses” (see chapter 27) of the impact of such
decisions on the results of the review should be

made when possible.’

The methods described should be rigorous and
clearly defined, and should have repeatability; that
is, someone else should be able to replicate the
methods/results.

The following sections outlined below should all be
detailed in the protocol. Most of these subjects are
dealt with in detail later in this report: links are
given where appropriate.

Problem specification

The protocol should state in detail the main
questions or hypotheses which will be investigated
in the review.

The Cochrane Handbook states:

‘There are several key components to a well-
formulated question. A clearly defined question
should specify the types of people (participants),
types of interventions or exposures, and the types
of outcomes that are of interest. In addition, the
types of studies® that are relevant to answering the
question should be specified. In general the more
precise one is defining components, the more
focused the review.” (1)

When doing this, it is worth keeping in mind the
below comment from CRD4:

‘While questions should be posed before initiating
the actual review, it is important that these questions
do not become a straightjacket which prevents
exploration of unexpected issues’ (2) If changes

are made at a later date, then these amendments
should be stated in the protocol (14).

Searching for studies

The proposed search strategy should be described
naming databases and other sources of inform-
ation. Any restrictions, such as limiting the
language of reports, should also be stated (2).
The methods used for carrying out this stage of a
research synthesis are documented in chapter 4.

Deciding on study inclusion criteria

The health intervention/technology of interest, the
setting and relevant patients or client groups, and
the outcome measures used to assess effectiveness

should all be clearly defined (2).

The types of study design to be included should
also be specified: ‘Note that even though RCTs may
be the preferred design there are several areas of
health care which have not been evaluated using
RCTs.” (2) (see chapter 6).

On deciding how broad or narrow to make the
inclusion criteria, there is a trade off between
reducing generalisability of the results and
obtaining information which is hard to compare
and synthesise (16,17). If inclusion criteria are
quite liberal, it may be possible to investigate
theories concerning the effects of differences

in the study characteristics and other effect-
modifiers using ‘meta-regression’ or other
statistical methods (see chapter 11).

Study validity

The basic checklists which will be used to assess the
validity of the primary studies should be included
in the protocol (2). Scales and checklists and their
use are covered in chapter 6.

Data extraction

A data-extraction sheet could be included to assist
the evidence extracting process (2). This topic is
covered on page 17.

Study synthesis

Although it may not be possible to state explicitly
which statistical, or other methods, will be used
until after the studies have been assessed, the
general modelling approaches that are likely

® This is discussed on pages 16-17 and 23-4.
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to be used should be specified (2). Also, any
hypothesis-testing and subgroup analyses (see
page 209) should be specified here a priori (14).
This is done to prevent many analyses being
carried out post hoc, which potentially may lead to
spurious associations being found. For the same
reason, it may be important to have a limit on the
number of such hypotheses in the protocol. The
statistical methodology used to combine results
from different studies forms a large proportion
of this report. Sections D, E, F, and G discuss the
statistical methods that have been used for
research synthesis.

Summary

This section is not intended to be anything more
than a brief overview of the issues that are import-
ant when one is considering carrying out research
synthesis. It may help the researcher who is new to
the subject to get a feel for the discipline, and serve
as a springboard into later sections of this report, as
many of the issues touched on here are expanded
in later sections.
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Chapter 4

Searching the literature and identifying
primary studies

The importance of the
literature search

As has been identified in CRD4:

‘The aim of the search is to provide as comprehensive
a list as possible of primary studies, both published

and unpublished, which may fit the inclusion criteria
and hence be suitable for inclusion in the review.” (1)

It is worth remembering that, the ‘precision of the
estimate of effectiveness depends on the volume of
information obtained.” (1) Also, itis ‘important to
ensure that the process of identifying studies is not
biased, minimising the possibility of the review’s
conclusions being weakened through publication
bias’ (1) (see chapter 16). Unfortunately, this is
only possible if a prospective comprehensive

research register is maintained for the topic, as only

then is the ability to identify a study not influenced
by its findings (2,3) (see pages 132-3). Indeed a
comprehensive, unbiased search is one of the key
differences between a systematic review and a
traditional review (4).

The methodology of searching and collecting
studies for a meta-analysis has been somewhat
overshadowed by the research related to statistical
methods to combine studies (5). It is clear,
however, that the validity of the results of statis-
tical analyses depends on the validity of the
underlying data (6), and every effort should

be made to locate the primary studies.

In many topic areas the potentially useful
literature may be very large. This has led some
meta-analysts to doubt whether comprehensive
searches are worth the effort (7). But as White
observes (8), even they seem to have more
rigorous standards for uncovering studies than
librarians and information specialists typically
encounter.

The guidelines of the CRD and the Cochrane
Collaboration (1,4) seem to imply that the

search should be exhaustive, that is to say, trying
to find every study on a given topic, however some
consider this is unrealistic and White has made
the comment (8):

“The point is not to track down every paper that is
somehow related to the topic. Research synthesists
who reject this idea are quite sensible. The point is to
avoid missing a useful paper that lies outside one’s
regular purview, thereby ensuring that one’s habitual
channels of communication will not bias the results of
studies obtained by the search.’

It should be noted that little evidence is available
which compares the results obtained using
exhaustive and non-exhaustive approaches.

However, given the increasing availability of topic
specific and general databases of known published
studies and study registers, the amount of effort
required in conducting an exhaustive search is
usually not prohibitive.

Methods available for searching

Cook et al. (9) present a list of possible sources of
literature that could be included in a systematic
review (Box 1).

The most commonly used of these will be
considered below, discussing their relative merits.

BOX 1 Possible sources of primary studies for
inclusion in a systematic review

¢ Trial (research) registries

¢ Computerised bibliographic databases of published
and unpublished research

* Review articles

¢ Published and unpublished research
e Abstracts

* Conference/symposia proceedings

* Dissertations

* Books

¢ Expert informants

¢ Granting agencies

¢ Industry

¢ Journal handsearching
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Research registers

These can be defined as a ‘database of research
studies, either planned, active, or completed (or
any combination of these), usually oriented around
a common feature of the studies such as subject
matter, funding source, or design.” (10)

In a Cochrane Review, the primary source of
studies is a review group’s trials register. Where they
exist, these are the most valuable source of studies.
If all trials, ever carried out, had registered, at
onset, then there would be little or no need for
other forms of searching. However although
registers are on the increase, certainly not all,

and especially many older trials, will be found

in these.

It is worth noting that the journal Controlled Clinical
Trials instituted a column that focuses on registers
and maintains a ‘register of registers’ (11). Dicker-
sin (10) also presents a list of research registers.

For an example of the use of research registers,
the Oxford Database of Perinatal Trials clearly
demonstrates their benefits. This was one of the
earliest registers to be set up, and up to 1993,
Dickersin (10) reports that over 400 meta-analyses
have come out of it alone.

For a further discussion of research registers see
pages 132—4, which are dedicated to the subject.

Electronic databases

Another powerful tool for identifying primary
studies are electronic databases. They are now
available in several formats, including on-line
access (via the Internet) and CD-ROM. Although
these databases allow access to hundreds of
thousands of references, they do have several
potential drawbacks. These are discussed below.

Firstly, one should be aware that not all studies are
included in even the best databases. For instance,
using MEDLINE,' only 30-80% of all known
published randomised controlled trials are identi-
fiable, depending on the area or specific question
(6). Non-English-language references are under-
represented in MEDLINE and only published
articles are included (4), so there is the potential
for publication bias (see chapter 16) (6,12,13)
and language bias (4). Depending on the

country of origin, there is also potential for
geographical biases (1).

Another problem with databases is that even though
many of the studies may be in a database such as
MEDLINE, it may not be easy to identify all those
which are relevant (10). A study investigating this
problem (14) reported MEDLINE failed to find 44%
of known trials of intraventricular haemorrhage, and
71% of known trials of neonatal hyperbilirubin-
aemia using ‘sensible’ search strategies (where the
vast majority of RCTs were known to be included in
MEDLINE). Possible reasons for poor retrieval are:
1) the search used was too narrow; 2) the indexing
of studies in MEDLINE is inadequate [ ‘the precision
with which subject terms are applied to references
should be viewed with healthy scepticism’ (4)]; 3)
the original reports may have been too vague,
hampering indexing. Clearly only the first point

can be easily rectified — a discussion on searching
strategies is given below. The possible existence of
points two and three highlights the need to use
multiple sources to identify studies (4).

A further problem has been reported concerning
the search-engine front end of databases. In 1992
Adams et al. (15) used SilverPlatter MEDLINE to
identify RCTs on a particular topic. They found
random deterioration in its ability to cope with an
extended, but logical search sequence. The same
thing happened with updated software (Silver
Platter version 3.1) The authors warn to re-do
searches to test their consistency.”

In addition to this, other electronic resources and
special collections are becoming available on the
Internet which may assist in the identification of
primary studies. With the number of sources of
information increasing it may be worth seeking a
librarian’s advice on which databases to use (16).

Locating databases to search

For systematic reviews of most (if not all)
clinical topics the initial databases to search will
be MEDLINE and EMBASE and SCISEARCH.
The paragraph below describes the relationship
between these databases (1):

‘Medline provides wide coverage of many English
language journals, EMBASE can be used to increase
coverage of articles in the European languages.
SCISEARCH (the Science Citation Index) can also be
used to trace citations of important papers through
time, which may yield further useful references.’

" One of the largest and most popular medical electronic databases (electronic version of Index Medicus).

It is unknown to the authors whether this fault has been rectified.
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The overlap between MEDLINE and EMBASE

is approximately 34% (17), although it can vary
between 10 and 75% for specific topics (4). Itis
for this reason that one cannot rely on searching
a single database.

Many specialist databases also exist. A directory

of computer databases (includes over 6000) exists:
A Directory and Data Sourcebook (Detroit: Gale
Research, 1991), as well as two other guides; Online
Medical Databases’ and Online Databases in the
Medical and Life Sciences® which may be useful to
check all relevant databases have been identified
(1). In addition, many resources and special
collections are now being made available via

the Internet.

Designing electronic
search strategies

Itis critical to plan and execute a logical search
strategy. Failure to do this may result in wasted
time, excessive costs, and irrelevant or missed
citations (16).

Indeed this point is made in CRD4:

‘A balance must be struck between high recall
rates and high precision to ensure that whilst a
search is relatively comprehensive it does not result
in an unmanageable volume of inappropriate
references.’ (1)

Strategies for retrieving studies

The first step is to identify critical terms, descriptive
of the topic under investigation (16). This can be
achieved by consulting index manuals, or by
identifying appropriate articles and noting the
manner in which they have been indexed (1).

The Cochrane Handbook comments: ‘Developing
a search strategy is an iterative process in which the
terms that are used are modified based on what has
already been retrieved.” (4)

Many databases use special indexing terms; in
MEDLINE they are called medical subject headings
(MeSH). The reference lists of these headings
should be searched for the ones relevant to the

topic of interest. Additional keyword and free-text
words (words appearing anywhere in the database
entry) will usually be required to supplement
index terms.

Most databases structure searches by combining
search terms using Boolean relationships (AND,
OR and NOT). A broader search can be made
using the OR command, and similarly narrower
using the AND operator.

It is worth noting that different databases use
different indexing and search engines. Therefore,
it is necessary to be aware that search strategies
developed may need modifying to use on

other databases.

Appendix 5c of the Cochrane Handbook (4)
gives a search strategy for locating RCTs. In
addition, appendix 1 of CRD4 (1) gives examples
of search strategies for using MEDLINE to
retrieve review articles [one of the most convenient
sources of trial references (4)]. Another way of
facilitating the searching process is to seek the
advice of, or work with, specialist librarians (4).
Indeed, the NHS CRD advise that a librarian,
preferably with some experience in carrying

out systematic reviews, is part of the study team.
Once a strategy has been devised, it can be tested
by seeing if it picks up key references already
known (16).

The indexing used in electronic databases
Dickersin et al. (6) comment that the National
Library of Medicine introduced the publication
type” RANDOMIZED CONTROLLED TRIAL
(indexed in MEDLINE) in 1991, and from January
1995 introduced CONTROLLED CLINICAL
TRIAL (CCT) (defined by Cochrane Collabor-
ation’s criteria, and was used to index trials not
contained in RANDOMIZED CONTROLLED
TRIAL). As handsearching is done these terms
will be applied retrospectively to previously
unindexed trials.

Counsell and Fraser (18) along with Dickersin
et al. (6) call for better, more consistent and
more specific indexing of papers (trials)

in MEDLINE.

8 Lyon E (1991) Online medical databases. London: Aslib.

1 Online Database in the Medical and Life Sciences (1987) New York: Cuadra/Elsevier.

®This is another field used to index in MEDLINE. One can restrict the search to certain types of articles using the
publication type field. However, since RCT was only introduced in the 1990s, at present it is necessary to use the
previously mentioned strategies to identify RCTs reported earlier than this and in other databases. However, with
retrospective indexing this feature should greatly aid the retrieval of RCTs and CCTs in the future.
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The above points in the main relate to RCTs,
similar issues are also important when searching
for observational studies.

The book chapter by Reed and Baxter (16) is
dedicated to electronic database searching. This
includes a section explaining many different data-
bases, and provides a list of the most common ones.
It is recommended reading for a more detailed
description of the contents of this section.

Citation searches

In carrying out a citation search, the searcher
begins by identifying several important references
on the topic of interest. A citation index will
identify, for a specified time period, all articles,
reports, or other materials in the body of literature
it covers that have cited the important references
identified (16).

The advantages of this method are thatit: ... allows
the researcher to avoid reliance on the subjectivity
of the indexers. It also avoids the inherent currency
lag and biases of controlled vocabularies.’, and
allows cross discipline referencing (16).

The ISI databases as well as SCIEARCH allow
citation searching; however, the ISI databases are
restricted to journal articles.

Citation searches are not frequently carried out.
Cooper (19) reported in his survey that only 14 and
9% of reviews do citation searchers (manually and
computerised, respectively) and he considers this
to be ‘disturbingly low’. However, although citation
searching tends to produce different ‘hits’ from
searches using natural language and controlled
vocabulary, the Cochrane Handbook (4) states
that ‘insufficient evidence is currently available

to suggest that routine use of citation searches

is warranted, given the costs involved.’

Extensions to citation searching

Reed and Baxter (16) suggest an extension to
the searching process. This is to find papers
which cite two specified papers. A CD-ROM ISI
innovation makes it possible to retrieve articles
that are ‘bibliographically coupled’, i.e. cite
identical references. ISI also makes ‘research
fronts’ retrievable on-line by entering a number
code. These research fronts identify ‘clusters’ of
papers which have cited similar references. For
example, a research front for the subjects ‘meta-

analysis of clinical trials; test validation; validity
generalization’ exists and all papers in this set
can be retrieved simply using code RF number
9324_94 (ISI - through BIDS).

Other search strategies

Scanning reference lists (footnote chasing)
Scanning the reference lists of articles found
through database searches may identify further
studies for consideration (1). The Cochrane
Handbook advises:

‘Reviewers should check the reference of all relevant
articles that are obtained. Additional, potentially
relevant, articles that are identified should be
retrieved and assessed for possible inclusion in the
review. The potential for reference bias (a tendency
to preferentially cite studies supporting one’s own
views) when doing this should be kept in mind.” (4)
This should be guarded against by using (several)
other strategies.

The idea of reference bias was originally suggested
by Sackett (20). His study (20) found evidence of
reference bias and also commented on many
multiple publications of (the same) trials, another
potential source of bias to be aware of when
carrying out a review (see chapter 16).

Handsearching

Key journals can be handsearched to check if the
searcher has missed anything using the alternative
methods, e.g. due to problems such as things badly
indexed in electronic databases. By handsearching
carefully selected journals, a small amount of work
can reveal a high percentage of relevant studies.

It is worth noting that currently, the Cochrane
Collaboration is organising handsearches of entire
series of journals with all studies found being
indexed. This is being coordinated to avoid
duplication of work with the intention of
developing an International Register of Clinical
Trials and hence eliminating the need for
individual research groups to carry out
retrospective handsearching.’

Identifying grey material

Results may have been published in reports,
booklets, conference proceedings, technical
reports, discussion papers or other formats which
are not indexed on the main databases (21,22).
All these sources can be called ‘grey literature’.
Identifying such literature is not easy, however,

®Note: It is a good idea to inform the Cochrane Centre of any unusual/poorly indexed trials you locate for inclusion

on their register.
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databases do exist, such as SIGLE (System for
Information on Grey Literature), NTIS (National
Technical Information Service), DHSS-Data, and
the British Reports, Translations and Theses,
which is received by the BLDSC (British Library
Document Supply Centre). One should be

aware that even if you identify material such

as conference reports, obtaining them may

be a problem (16).

In addition, results may exist in interim reports,
unsubmitted papers and manuscripts, presented
papers (not published), rejected papers, and
partly completed reports (23), most of which will
not be included in the above databases. Clearly
identifying and getting hold of this information
can be extremely difficult. Possibly the best chance
one has is through personal communication with
the relevant researchers, either formally or inform-
ally depending on appropriateness (4). Other
approaches are to use electronic networks/lists,
contact with public policy organisations and
advertising (23). It is important to point out that
the inclusion on grey literature, such as unpublish-
ed studies is somewhat controversial. It has been
argued that since it has not been peer reviewed, it
may be of dubious quality (see chapter 6 for more
on this topic).

The book chapter (23) deals exclusively with
this subject and is recommended reading for
researchers wanting more detailed information
on the methods available.

A few comments specific to different forms of
grey literature are given below.

Conference proceedings. These are a good source
for information on research in progress as well

as completed work. A note of caution is that data
from the abstracts of conference proceedings is
notoriously unreliable. For this reason, an attempt
to make contact with the authors and obtain any
other relevant information/reports should be
made (1). Conference proceedings are recorded
in several databases in including the Index of
Scientific and Technical Proceedings (available
via the BIDS), the Conference Papers Index
(available via Dialog) and in printed forms

such as the Index of Conference Proceedings
received by the BLDSC.

Consultation (with leading researchers and
practitioners). The Cochrane Handbook states:

‘Experts in the topic of the research synthesis can
be an important source of information on recent
trials that have not yet been published, or on older
trials which were never published.” (4) It also
suggests making a list of relevant articles and
sending it with a letter asking whether they

know of any other relevant trials (published

or not) in the field.

White (8) strongly encourages this method

saying can be very fruitful: ‘The only danger lies
in reliance on a personal network to the exclusion
of alternate sources.’ Its strength is at finding
unpublished studies. One has to be aware of
selection bias when doing this.

Consultation with the pharmaceutical industry.
A similar approach to above can be taken to
contacting pharmaceutical companies. They
may be willing to release results that have not
already been published (1).

Problems and issues
with searching

As hinted above one needs to be aware that
searching more than one database is necessary,

due to differential coverage (16). In addition most
publications pre-mid-1960s are not in electronic
form. In addition, mainstream sources such as book
chapters are usually not referenced in databases,
which is a problem.’

Reporting searching

The reporting of the search strategy (even if it has
been carried out well) is also often neglected.

The failure of almost all integrative review articles
to give information indicating the thoroughness of
the search for appropriate primary sources does
suggest that neither the reviewers nor their editors
attach a great deal of importance to such
thoroughness (8).

However, the Cochrane Handbook states that: ‘The
search strategy should be described in sufficient
detail that the process could be replicated.’ (4)

Indeed, a format for the necessary details of the
search process that should be included in the final
report, has been advocated (8).

"PsycLIT did include book chapters but only for the years 1987-1990.



Searching the literature and identifying primary studies

Selecting studies

Judging study relevance

The list generated by the search strategy should
firstly be inspected. ‘If, given the information
available, it can be determined that an article
definitely does not meet inclusion criteria, it can
be excluded. If the title or abstract leave room for
doubt in the reviewer’s mind that the article cannot
be definitely be excluded, the full text of the article
should be retrieved (4).” In deciding which articles
to include the researcher should initially err on

the side of caution.

As White points out (8), this should not be too
difficult as one should have knowledgeable and
motivated people reading the articles.

The selection process

The articles selected through the search process
must be assessed to see whether the inclusion
criteria for the review have been met.

The Cochrane Handbook (4) lists the following
issues that must be decided upon:

¢ whether more than one reviewer will assess the
relevance of each article

¢ whether the decisions concerning relevance will
be made by content area experts, non-experts,
or both

¢ whether the people assessing the relevance of
studies will know the names of the authors,
institutions, journal of publication and results
when they apply the inclusion criteria

* how disagreements will be handled if more than
one reviewer applies the criteria to each article.

A suggestion made (4) is to have two reviewers,
one an expert in the field and one who is not to
safeguard against pre-formed opinions. However,
we note that much of this will depend on the time
available and how difficult (subjective) are the
opinions needed.

It has been suggested that reviewers should be
blinded from information such as source, authors,
institution and magnitude and direction of the
results by editing articles, with the intention of
removing reviewer prejudices. This, however, takes
much time and there is no empirical evidence
suggesting benefits from doing so (4).

Any disputes about inclusion/exclusion can usually
be cleared up by discussion between reviewers. If
this is not the case additional information should
be sought (4). Deeks et al. (1) also comment that

any disagreement on inclusion can be explored
using a sensitivity analysis (see pages 209-10).

Note that it is recommend to pilot test the inclu-
sion criteria so it can be refined and clarified (4).

A final word of warning is to be aware of the
potential of language bias (24); this occurs when
inclusion criteria are limited by the language of the
study report and there is an association between
effect size and language of publication. For
example, one could argue that highly significant
studies would be published in high profile English
language journals, while researchers in non-English
speaking countries may be more likely to publish
non-significant results in native journals. In this
case, only considering English language journals
would produce a biased set of trials. A related issue
is multiple publication bias. One should be aware
that the same trials results can be published in
more than one place, it is necessary to check
whether each study found reports data which is
exclusive from the other studies, otherwise results
may be included twice into a meta-analysis (see
chapter 16 for more information).

Documenting the selection process

This selection process should be documented; a
Cohen’s Kappa (a measure of chance corrected
agreement) statistic can be used to describe the
reproducibility of the decisions of the assessors (1).

The final report should contain tables detailing
studies included and excluded from the synthesis,
with reasons given for each exclusion (1).

Assessing study validity

Deeks et al. comment: ‘The assessment of validity
aims to grade studies according to the reliability of
their results, so that they can be given appropriate
weight in the synthesis, and when drawing conclu-
sions’. (1) The aim of this is to reduce bias, with
high quality studies likely to be least biased. Primary
studies can be graded into a hierarchy according to
their design. Ideally, a review will concentrate on
studies which provide the strongest evidence, but
where only a few good studies are available weaker
designs may have to be considered (1).

Table 1is reproduced from (1), giving a suggested
hierarchy to the various study designs commonly
used.

Table 1 should be used with caution, however, since
the study validity not only depends on the type of
study but how well it was designed, carried out and
analysed. ‘A poor RCT may be less reliable than a
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TABLE | [adapted from (1)]. An example of a hierarchy of evidence

| Well-designed randomised controlled trials

Other types of trial:

ll-1a  WVell-designed controlled trial with pseudo-randomisation

Il-1b

Cohort studies:

Well-designed controlled trials with no randomisation

lI-2a  WVell-designed cohort (prospective study) with concurrent controls

II-2b

Well-designed cohort (prospective study) with historical controls

lI-2c  WVell-designed cohort (retrospective study) with concurrent controls

II-3  WVell-designed case—control (retrospective) study

I Large differences from comparisons between times and/or places with and without intervention (in some

circumstances these may be equivalent to level Il or I)

v Opinions of respected authorities based on clinical experience; descriptive studies and reports of expert committees

well conducted observational study.” (1) Chapter 6
outlines the various methods of assessing the
quality of primary research, that can be used for
meta-analysis.

Fleiss and Gross have made a comment on
including studies of mixed validity (25):

‘There is considerable doubt about the validity of
statistically combining the results of studies with differ-
ent designs or synthesising results of observational or
uncontrolled studies, on the grounds that this might
pool biases.’

Recently, however, attempts to do just that have
been made. Chapter 26 outlines methods for the
generalised synthesis of evidence, proposed for
this purpose.

Methods of data extraction

The protocol should contain an example of a data
extraction form which lists the data items to be ex-
tracted from each of the primary studies (26). Data
extraction is best done using special forms, examples
are given in appendix 3 of (1), although these may
have to be modified for a particular meta-analysis.

Deeks et al. (1) recommend, due to the risk of
errors, data extraction should be done indepen-
dently by at least two people and the level of
agreement ascertained. However, time and research
constraints make this difficult. Any disagreements
that cannot be resolved should be investigated in

a sensitivity analysis (see pages 209-10).

Missing data may be a problem, if this is the
case the authors of the original studies should be
contacted - if this proves unfruitful, then statistical

methods do exist for dealing with missing data
(see chapter 17).

There is always the possibility of contacting the
original researchers for every study located and
requesting individual patient data (IPD). If all the
data is received then the analysis can be based at
the patient level (as opposed to the study level)
(see chapter 24 which describes the relevant
methods). Even if the intention is not to carry
out an analysis at the individual patient level,
Cook et al. (9) recommend obtaining individual
patient level data when the published data do
not answer questions about: intention to treat
analyses, time-to-event analyses, subgroups,
dose-response relationships.

If the primary reports do not present data in

the way desired for synthesis, then it may be
possible to transform or estimate the desired
values. Techniques specific to epidemiological
studies have been developed (27) and are out-
lined on pages 148-52. Also, it may be possible to
contact the original authors for missing data/or
new analyses.

Comparative investigations
of searching

The following have studied the effects of different
search methods on research synthesis.

Dickersin et al. (6) compared state of the art
(hand and MEDLINE) with only MEDLINE
searches of different types. They concluded that
using MEDLINE only omitted half of the relevant
studies. Additionally, Clarke (28) gives an example
of searching, performed for a meta-analysis, and



Searching the literature and identifying primary studies

highlights how MEDLINE alone was not sufficient.
Also, Adams et al. (29) summarise further investi-
gations into searching using MEDLINE, and con-
clude that between 20 and 60% of RCTs are missed
by skilled MEDLINE searches when compared to
handsearching or using trial registers. Spoor et al.
(30) used capture-recapture techniques to
compare searching an electronic database with
handsearching. They found that MEDLINE missed
35 relevant articles, handsearching (human error)
missed eight, with an estimated two articles [95%
confidence interval (CI) 0-6] were missed by
both techniques. Dickersin et al. (14) compared
MEDLINE with a Perinatal Trials Database. Two
MEDLINE searches were carried out; one by an
expert, and the second a ‘quick and dirty’ one
(the original paper gives both search strategies).
The authors note that no abstracts are held in
MEDLINE pre-1975, so text searching is less
effective before this date. They concluded that
most of the trials are in MEDLINE, but a search
has to be very broad to retrieve them all.

Jadad and McQuay (31) investigated; 1) the time
involved in identifying pain research reports
published in specialist journals in 1970, 1980, and
1990 using a refined search strategy for MEDLINE
and hand searching; 2) the levels of precision and
sensitivity of the MEDLINE search strategy over a
20-year period and to determine the causes of
failed identification; 3) methods to determine
efficient combinations of MEDLINE and selective
hand search to achieve high sensitivity and minimal
cost. Among their finding was the result that
MEDLINE was most time efficient; it identified
87% of known trials with 52% precision, and the
search took one-tenth of the time of that of hand
searching. The same authors (Jadad and McQuay)
come to the defence of MEDLINE (32)
commenting that when used correctly:

‘(A) restricted “pilot” hand search to refine the
strategy, followed by a high yield Medline search
and hand search of non-indexed journals, may be
a cost effective way of meeting the fundamental
challenge.” (32)

Kleinjen and Knipschild (33) investigated to see

if computer database searches alone were sufficient
for locating studies. They used MEDLINE and
EMBASE and explored three subject areas. They
concluded that number of articles found with
computer searches depends very much on the
subject at hand, and that the better methodo-
logical studies were found (on the whole) in the
electronic databases. Gotzsche and Lange (34)
compare different search strategies for recalling
double-blind trials from MEDLINE. They conclude

that using ‘comparative study’ as a MeSH term is
better than using, ‘double-blind method’ (even
when it is used as a text word also), However, the
success of both terms was > 90%, which they
comment was surprisingly high, much higher
than previous studies.

Further research

There is a lack of helpful research which allows
both the quality of research and also design to be
put on one validity scale.

Summary

This section has concentrated on searching the
literature and identifying primary studies that
might potentially be included in a systematic review
or meta-analysis. The main point identified is that
there is no one single search strategy that would
provide adequate results, and that in performing
reviews researchers should maintain a healthy
degree of scepticism about any or all their searches.
However, a second key point is that all searches/
methods that are used should be sufficiently well
documented so that they may be replicated by
other researchers. This latter point is equally
important as regards study inclusion/exclusion.

Finally, changes are happening rapidly in terms of
electronic publishing and databases. Such changes
will undoubtedly have profound implications for
conducting systematic reviews in the future.
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Chapter 5

Example: the cholesterol lowering trials

Introduction

To clarify some of the methods discussed in

the remainder of this report, a practical example
has been included. A dataset consisting of trials
investigating the effect of lowering serum
cholesterol levels is used to illustrate methods
for binary outcomes; this is described below.
Additionally a further example (the effect of
mental health treatment on medical utilisation)
is described, and used, in chapter 9, to illustrate
the analysis of continuous outcomes.

Effect on mortality of lowering
serum cholesterol levels

Since 1962 several studies have investigated the
effect of lowering cholesterol levels on the risk of
death, primarily from coronary heart disease but
also from all other sources. This dataset consists of
35 RCTs, originally compiled by Smith, Song and
Sheldon for a meta-analysis (1) (see this paper for a
listing of references to these trials). Only a subset of
these 35 RCTs will be used, primarily to reduce the

amount of computation required for the purposes
of illustration. The subset of trials chosen com-
prises of those trials in which patients were largely
without pre-existing cardiovascular disease. In the
original report the trials were numbered 1-35. The
subset of trials considered here (initially in chapter
9), in order to be consistent with this numbering,
are labelled 16, 20, 24, 28, 29, 30, 31. This will
enable the interested reader to cross refer back

to (1). The subset consists of the trials that used
cholesterol lowering as a primary intervention.

It should be noted that since this list was compiled,
further studies have been carried out. It therefore
should be stressed that the analyses presented are
to illustrate the various methods discussed in the
report, and are in no way meant to indicate a
definitive analysis.
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Chapter 6

Study quality

Introduction

It has been noted (1) that the subject of judging
research quality in synthesis dates back to Glass in
1976 (2). The primary concern is that combining
study results of poor quality may lead to biased,
and therefore misleading, pooled estimates being
produced. Detsky et al. put this more precisely in
statistical terms:

‘The effects of quality on the study’s estimate of
effectiveness can be expected to have two
components, bias effects and precision (added
variability) effects. ..... Meta-analyses that combine
studies of varying quality could suffer from bias
resulting in a Type 1 error or a Type 2 error. Meta-
analyses that combine studies of varying quality
could also suffer from a lack of precision resulting
in a Type 2 error.” (3)

Thus, there is a real danger of producing
misleading results if the quality of the primary
studies is dubious. This has led to a warning from
Thacker to those who do not consider the quality
of their data ‘....sophisticated statistics will not
improve poor data, but could lead to an
unwarranted comfort with one’s conclusions’. (4)

The importance of considering the quality of the
primary studies was again highlighted by Naylor:

‘... in some respects, the quantitative methods used to
pool the results from several studies in a meta-analysis
are arguably of less importance than the qualitative
methods used to determine which studies should be
aggregated.’ (5)

However, assessment of quality is not without its
controversies. Greenland (6) has indicated that
quality assessment is the most insidious form of
bias in the conduct of meta-analysis.

Detsky et al. (3) identify three basic issues that need
addressing when considering study quality in
research synthesis:

¢ How much does quality matter?
* How best can we measure quality?

¢ Incorporating measure of quality in
a meta-analysis.

They state the answer to the first question is
unknown and that there is no ‘gold standard’
method for part two either, adding that different
methods seem to produce reasonably congruent
results. Again there is no one ‘right’ approach to
point three.

In addition, it has been pointed out that one of
the roles of meta-analysis should be to clarify, or
even quantify, weaknesses in the existing data on
a scientific question and to encourage better
quality in future studies (7).

The section below outlines ways in which the
quality of studies may vary. This is then followed
with a description of the various approaches to
assessing and dealing with study quality that meta-
analysists have taken. As another review group (8)
is covering this topic, its treatment here is quite
brief. In addition, for an excellent review of scoring
systems see Moher (9).

Methodological factors that may
affect the quality of studies

Table 1 suggests a possible hierarchy to the sources
of best evidence. The reasoning behind this was
that different study designs are susceptible to biases
in varying degrees, and thus vary in the reliability of
the results. It has become accepted that RCTs are
the ‘gold standard’ source of evidence, giving
unbiased estimates of intervention effects. How-
ever, no empirical measure of the amount of bias,
on average, that other study designs are susceptible
to is available.! Despite this, due to specific features
which are known to increase/reduce bias, such as
matching, collecting the data retrospectively, and
using a historical comparison group, an argument
can be made for the superiority of evidence from
one study design over another, although it is not
possible to quantify how much more superior it is.
As one can only determine the methodological

! Although Macarthur et al. (46) note three broad categories of bias are generally recognised, namely, sample distortion

bias, information bias, and confounding bias.
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quality of a study to the extent that study design
and analytic methods are reported (10), we restrict
ourselves to such factors in the remainder of

this chapter.

CRD4 (11) states that the first division that can be
made is between experimental and observational
studies. So we shall focus initially, on clinical trials.

Experimental studies

Moher et al. (9) suggest the design features of trials,
which effect the trials quality, and can be assessed,
can be split into four areas, namely assignment,
masking, patient follow-up, and statistical analysis.

Assignment

This could well be the single most important design
feature of a study. As randomised controlled trials
provide the most valid basis for the comparison

of interventions in health care (12), itis clearly a
desirable feature and thus RCTs are considered

the most reliable method on which to assess the
efficacy of treatments (13).

Despite this, the details of randomisation are not
often reported (12). Another disturbing problem
stemming from the ‘unnatural’ balance of numbers
in the arms of many trials, is that, there is evidence
that unadulterated randomisation has not gone on,
i.e. groups are ‘too equal’ (this is sometimes called
random manipulation) (12). The motivation for this
‘fudging’ is that researchers believe equal groups
increases the credibility of the results. This therefore
raises the question, even if a study is described as
randomised, can you believe it? This is also import-
ant if the outcome is affected by baseline value, e.g.
size of wound when the outcome is percentage of
wound healed or absolute reduction in size.

Masking/blinding

Blinding is generally desirable in trials to minimise
biases. Patients are said to be blinded if they do not
know which intervention arm of the study they are
in. Similarly the health professional administering
treatment is blinded if they do not know which
treatment the patient is getting. Finally, the person
assessing the effect of the intervention may also be
blind. This will be particularly important when the
outcome measurement of interest involves some
subjective/human judgement. Obviously, by the
nature of some interventions, blinding of one or
more of the above groups of people may not be
feasible. Allocarion concealment relates to patient
assignment in which the masking may not be kept
after patients are allocated. Bias has been detected
in trials not reporting adequate allocation conceal-
ment (14); however, this is thought not to be as

important as the generating of assignments per se
(12,15).

Patient follow-up

In trials, patients drop out for several reasons.
Patients may also switch to other arms, in instances
such as when the patient was allergic to the original
treatment. How these events are documented and
subsequently dealt with in the analysis can effect
the overall treatment estimate. This is also a huge
potential source of bias.

Statistical analysis

Obviously if an inappropriate statistical analysis
was carried out, or a correct type of analysis, but
with mistakes was produced, this could lead to
misleading results.

Other

In addition, if crossover designs have been used,
if they are used inappropriately (such as in fertility
treatment where they are quite often misused),
this will produce strongly biased results (16).

Observational studies

Since treatment allocation is left to a haphazard
mixture in observational studies (11), this is one
reason why they have a greater susceptibility to

bias than clinical trials. Similarly, ascertaining that
differences observed between groups of patients in
observational studies are the effect of the inter-
ventions is a far harder exercise than it is in experi-
mental studies (11). Cohort studies, in which
groups receiving the different interventions being
compared are evaluated concurrently, are regarded
as more valid than studies which make comparisons
with ‘historical’ controls (11). Similarly, studies
which are planned prospectively are also less likely
to be biased than studies which are undertaken
retrospectively (11). Case—control studies are prone
to many extra biases, and therefore fall below
cohort studies in the hierarchy (11). If they are
included in a meta-analysis it may be possible to
grade them according to the suitability of choice of
the control group. It is also worth being aware that
treatment effects could be underestimated due to
over-matching on factors which are related to
allocation of the intervention (11).

However, clearly the study design is not the only
factor which effects the quality of a study. How well
it was designed, carried out and analysed all contri-
bute to its quality. In this way a poor RCT may be
less reliable than a well conducted observational
study (11). Assessment of such factors can be made
more systematic with the use of checklists (11);
these are discussed on pages 25-6.
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Evidence of bias and study
quality

Several studies have been carried out to investigate
the effect of study quality on the magnitude and
direction of the results (14, 17-21). The findings
from these studies are variable and not totally
consistent. Several of these, contrasting in their
findings, are outlined below.

Emerson et al. (17) investigate whether a
relationship exists between treatment difference
magnitude and a given quality score for a selected
groups of studies. They found no evidence for this
relationship. A possible explanation, put forward
by the authors, for this, is that the studies assessed
came form previous meta-analyses and may have
been of greater than average quality. This led

the authors to comment that the result leans to
recommending the inclusion of all RCTs in

a meta-analysis and not adjusting weights for
quality either.”

Colditz et al. (19) investigate the association of
study type with result and concludes: “We observed
that several features of study design influence

the likelihood of a report that patients perform
better on the innovation than on standard therapy.
These features included randomisation, blinding,
the use of placebo and the inclusion of patients
refractory to standard therapies.” The authors go
on to suggest that one may wish to adjust for the
average level of bias associated with a given

design when pooling studies in a meta-analysis
and suggest values for each design feature;
however, the authors of this report are not aware
of any instances when they have been used.

Studies have been undertaken to investigate
the difference randomisation makes in a study.
As Wortman reports (1), designs that used non-
random allocation overestimated the effect by
at least one-third. However he also notes that
systematic biases in quasi-experiments can also
underestimate effects. Also, Sowden et al. (22),
in a review of observational studies, found that
the effect size varied according to the quality
of adjustment for case mix.

Schultz et al. (21) set up an investigation to
determine whether inadequate approaches to
randomised controlled trial design and execution
are associated with evidence of bias in estimating
treatment effects. They investigated the effect of
inadequate allocation concealment, exclusions
after randomisation, and lack of double-blinding.
They found that larger treatment effects were
reported when concealment was either inadequate
or unclear, trials that were not double-blinded
yielded larger estimates of effect size, and there
was no association with effect size for trials which
excluded patients after randomisation.

Assessing the quality of studies

As Wortman states (1), the literature contains

two approaches for coding research quality. The
first system (23) applies the validity framework
developed by Campbell et al. (24). This approach
provides a matrix of designs and their features or
‘threats to validity’. Its focus is on non-randomised
studies found in the social science literature. [For
this reason it will not be pursued further here, and
the interested reader is referred to the above cited
papers and (1).]

The second system was developed by Chalmers
et al. in 1981 (25). This was later extended by
them to a framework for the ‘quality assessment’
of meta-analyses (26). It concentrates on the
randomised control trial study design, and has
the objective of providing an overall index

of quality rather than the estimation

of bias.*

Many different checklists and scales have
appeared in the literature, initially for trials
but now scales are available for assessing
observational studies also. Another project in
this series has been commissioned to look at
the quality of randomised controlled trials
exclusively (8).

For more information on assessing the quality
of quasi- and uncontrolled experiments, see
Wortman (1).

2These are two possible methods of incorporating study quality into the statistical analysis. These are discussed on

pages 26-9.

*1t could be argued that using individual markers could be considered as a third (27); however, they are not

considered further here.

* (1) Includes a detailed comparison of the two methods. The largest differences are that Campbell’s encompasses a
larger variety of designs (randomised and non-randomised), while Chalmers’ is more in depth for just randomised

trials, and includes a scoring system.
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Checklists and scales for trials

The first checklist for trials was published in 1961
(9) and eight more had been published by 1993
(9).The first scale for assessing the quality of trials
was published in 1981 (25). By 1993, an additional
24 scales had been developed (9).The interested
reader is referred to these references through the
excellent review article (9) for more specific
detailed information.

Although many of these scales and checklists for
trials are similar (though many are designed only
for RCTy’), they emphasise different dimensions of
quality. Moher et al. (27) assessed the variability of
using different scales and found it was consider-
able. For this reason the content of the checklist
should be stated in the protocol (11).

These scales have their critics. Jadad et al. comment:
‘... there is a dearth of evidence to support the inclu-
sion or exclusion of items and to support the numer-
ical scores attached to each of those items.’ (28)

Another problem is the effect that the level of report-
ing has on the quality score. Jadad et al. comment:

‘Given space constraints in most journals, editorial
decisions may end up having a major effect on the
quality score achieved by a given study.” (3)

They go on to state that, incomplete reporting may
be avoided in the long term if journals adopted
more uniform reporting standards for trials and
authors routinely made additional protocol details
available on request.

Schulz et al. (12) state, as a very minimum, reports
of RCTs should include: 1) the type of random-
isation, 2) the method of sequence generation,

3) the method of allocation concealment, 4) the
persons generating and executing the scheme
and 5) the comparative baseline characteristics.

With the arrival of the Consolidated Standards of
Reporting Trials (CONSORT) statement (29) (a list
of 21 items that should be included in a report as
well as a flow chart describing patient progress
through the trial), hopefully this issue should no
longer be a problem.

Moher et al. (9) concluded, from their investigation
of 25 scales, that all but one of them have major
weaknesses, not least that they have evolved with
little or no standard scale development techniques.

Other than the exceptional scale (28), they chose
items from ‘accepted criteria’ from standard clinical
trial textbooks. Moher et al. commented that:

‘Although these criteria may be useful, some of them
are based on conviction whereas others are based on
empirical evidence.” (9)

The illustrative example of informed consent,
which is included in some checKklists, is given, and
the authors question how this affects the quality of
the study.

Checklists for observational studies

Although much smaller in number, checklists
do exist for epidemiological studies which assess
potential links between exposures to risk factors
and harm. CRD4 (11) reports of three for general
use (30-32). In addition, at least three others
(33-35) have been developed specifically for
meta-analysis (36). Two studies (35,37) have
demonstrated associations between their relative
risks (RRs) and quality scores. The guidelines

in CRD4 suggest the same checklists can often
be used to assess the strength of evidence from
observational studies investigating treatments
which are of benefit (rather than risk factors)

as the same issues are important (11).

Other checklists

Checklists are also available for studies which assess
the accuracy of a diagnostic test. A different check-
list is needed because these studies are affected

by several different and more complicated issues.
Also, separate checklists are available for reviews
of economic evaluations. In instances when one is
considering non-comparative studies, such as case
series, checklists which assess articles on prognosis
can be used. Details of all these scales and
checklists can be found in CRD4 [(11), p. 31-7].

Incorporating study quality into
a meta-analysis

Once a formal assessment of study quality has
been made, the next question is: should the
measure of quality be incorporated into the
analysis, or just used as a threshold value for
including/excluding studies?

This is a problematic question which has
produced differing opinions, some of which
are highlighted below.

®The checklists described by Spitzer et al. (34) and Cho and Bero (10) are noteworthy as they are applicable to both

experimental and observational studies.



Health Technology Assessment 1998; Vol. 2: No. 19

A trade-off between the precision and the accuracy
of the estimate of effect may exist if studies of vari-
able quality are to be combined. Whilst inclusion
of more studies may allow a more precise estimate
(tighter Cls), if this is done by including studies of
dubious validity, then it may be at the expense

of accuracy (3).

There has been doubt as to the interpretation of a
quality score. Detsky et al. ask:

‘Is the quality of a trial a continuous characteristic
or is there a threshold effect of quality? .... It seems
highly unlikely that these scales would result in a
linear or monotonically increasing relationship

to true quality.” (3)

They conclude:

‘... the relationship between quality scoring
systems and the degree to which the study results
approximate the truth should be viewed with
some caution.” (3)

Indeed, no general relationship has been found
that links quality score and magnitude of outcome
(17), although Colditz et al. consider the idea to
be attractive (38).

Below are the outlines of methods proposed to
incorporate an assessment of study quality into
a meta-analysis.

Graphical techniques

It has been suggested (3) that a plot of the
point estimate and 95% CI for each studies
treatment effect against quality score (derived
from a scoring system), can be investigated to
see if there is any trend between the two
variables.

An equivalent way of investigating, essentially
the same thing, is to include a variable for study
quality in a logistic regression model (these are
covered in chapter 11 on meta-regression);
however, this formal test would often lack
power due to too few studies in many meta-
analyses (3).

Weighting

Rather than weight by sample size (see chapter 9),
one could weight each of the individual estimates
by a variable which measures the perceived quality
of the study (3). For the log odds ratio scale, this
can either be done by hand, or any statistical
package capable of performing weighted logistic
regression.

In doing this one has to be aware that:

‘Although actual estimates, such as the pooled odds
ratio, are affected only by the relative weights used,
the width of the confidence intervals is affected by the
weights used’ (3)

For example if a study is weighted by a quality
score of 0.5, it is equivalent to an unweighted study
with half the sample size. Detsky et al. go on to
comment that:

‘Although a widening of the confidence intervals is
probably called for, the amount of the widening that
automatically results by weighting (in logistic regres-
sion) is completely without empirical support’ (3).

The amount of widening can be modified by
multiplying scores by a constant. Increasing all

the scores could be justified by arguing that a score
of 1 is almost impossible to achieve. An alternative
procedure would be to divide each trials score

by the mean, by doing this CI widening does

not result.

Detsky et al. still do not consider this form of
analysis as satisfactory as the below explanation
will testify:

‘weighting by either the unadjusted or adjusted scores
to control the increase in the width of the confidence
intervals is difficult to defend, since there is no

a priori reason why this process should alter Type 1
and Type 2 error rates in such a way as to move the
aggregate effect size estimate “closer to the truth”.
This is because, while weighting study estimates

by the precision has very desirable optimality
properties, quality scores are not direct measures

of precision.’ (3)

The authors go on to comment that, what is
desired is a method of determining the relation-
ship between quality scores and precision (bias).
So, ideally weights would be determined by
sample size, inherent binomial variation, quality
induced variation and quality induced bias

(the last of these, however, would be difficult

to ascertain).

Excluding studies

Another approach is to exclude the studies of
poor(est) quality altogether. This can be viewed as
an extreme form of weighting, giving the poorest
studies no weight at all. Light justified this
approach by arguing:

‘if it is clear that a certain study is fundamentally

flawed, say with obvious numerical errors, I find it

hard to argue for its inclusion. I do not believe

that wrong information is better than no

information’ (39) 27
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To determine what classifies as a poor quality study,
a threshold value needs to be produced. If a scor-
ing system such as those outlined in this chapter is
used, figures such as the mean, the mean plus one
standard deviation or the median can be used as
this threshold (3). Alternatively simpler criteria
can be used, such as whether randomisation was
fairly performed, or whether there were blinded
outcome assessments (3). There does not appear
to be a consensus as to the optimal rigour used in
deciding whether to reject studies. Some authors
recommend inclusion of all but the very worst of
studies (40) (a quality weighting scheme could still
be applied to remaining studies to be included),
while others advocate the exclusion of all but the
best studies. One of the supporters of the latter
approach is Slavin, who has promoted an approach
to pooling called best evidence synthesis (41),
where all but the methodologically most adequate
studies are excluded. An outline of this approach
is given on page 216.

Sequential methods

Detsky et al. (3) suggest this method. It can be
viewed as a form of sensitivity analysis (see chapter
27). A cumulative meta-analysis based on a quality
score is conducted, i.e. trials are combined sequen-
tially from the highest to lowest quality and a pool-
ed estimate is calculated for each new addition and
plotted. The authors state: ‘An investigation of this
graph will then provide an opportunity to discern
the effect of quality on estimated effect size’. The
authors go on to comment that this method as
several advantages: i) it uses quality scores simply
to rank order trials for the exploration of quality
effects, and as such is free of further assumptions
about the relationship between scores and ‘true’
rigour, ii) the method basically draws on standard
techniques of regression ‘diagnostics’ and iii) the
method is conservative, in that controlling for
extra-binomial variation means that the CIs will
tend to be wider than is the case with conventional
methods of aggregating individual effect size
estimates. Cumulative meta-analyses are the
subject of chapter 25, where this methodology

is discussed further.

Sensitivity analysis

Incorporating study quality via weighting in the
main analysis has come under criticism. Shadish
and Haddock make the case for leaving the incor-
poration of study quality for a sensitivity analysis:

‘... weighting schemes that are applied at the earlier
points seem to be based on three assumptions: (a)
Theory or evidence suggests that studies with some
characteristics are more accurate or less biased with
respect to the desired inference than studies with

other characteristics, (b) the nature and direction of
that bias can be estimated prior to combining, and (c)
appropriate weights to compensate for the bias can be
constructed and justified.” (42)

They conclude by stating that a quality weighting
scheme does not meet the above conditions so it
should be applied with caution. They go on to
suggest investigating quality weighting schemes
after combining results without such weighting,
as a form of sensitivity analysis. The results with,
and without this weighting can be compared. To
further support this method they comment:

‘In fact, such explorations are one of the few ways to
generate badly needed information about the nature
and direction of biases introduced by the many ways
in which studies differ from each other.” (42)

Wortman (1) suggests another, more specific,
form of sensitivity analysis. He proposes a method
to estimate the amount of bias from patients in a
randomised trial switching treatment groups.
This method makes a simplification and assumes
that the sickest patients cross over to the other
arm of the trial. By making this assumption an
estimate of the amount of bias in an effect size
introduced, by a given rate of attrition, is

possible (43).

Multivariate analysis

By using the quality score as a covariate in
regression models (see chapter 11) to explain
heterogeneity (see chapter 8) of study effects, one
can take study quality into account. Fredenreich
(44) comments this is preferable to weighting
studies by their quality because it minimises the
influence of quality scoring bias. For an example
of the use of this method, see (22).

Bayesian approach

The Bayesian statistical framework to meta-analysis
(which is explained in chapter 13) can also incor-
porate study quality into the analysis. This is done
by including prior opinions, relating quality and
study bias, provided by one or several ‘experts’,

in the model. Analyses can be performed for
each set of ratings to study the dependence of
conclusions on individual opinion (to the quality
of the studies). If the conclusions are stable over
this ‘community of opinion’, then, the meta-
analysis is likely to have substantial impact. If
conclusions are sensitive to the range of opinions,
then no consensus has been reached (45). Quan-
tifying the degree of sensitivity is itself important.
It is important that the assessors should not know
study results. However, it is hard to draw the line
between ‘inputs’ and ‘results’; for example, study
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attributes and baseline data are proposed to be
available to the assessors. However, follow-up rates
are a more difficult issue, as they can indicate a
well designed and conducted study, but they may
also may indicate an effective treatment (45). In

a similar manner there may be a priori beliefs
regarding the eligibility of evidence from studies
within different designs, e.g. randomised and
non-randomised. This particular situation is dealt
with in chapter 26.

Practical implementation

There are several practical issues to consider when
assessing the quality of studies. The first issue is
whether to blind the assessors to aspects of the
studies. The problems of masking the results and
conclusions, necessary for a Bayesian analysis, have
already been discussed on pages 28-9. There has
been suggestions (e.g. from TC Chalmers) that for
assessing the quality of a trial that only the methods
and results sections should be presented, with the
authors and setting masked, and even the names
of the treatment groups deleted to reduce assessor
bias (3). Jadad (28) has recently investigated the
effects of blinding, and found evidence to suggest
that blinded assessment produced significantly
lower and more consistent scores than open
assessment. This is the first piece of evidence to
support what was previously seen as a purely
speculative and elaborate precaution (3).

Another problem is that some large and complex
trials report the details of study methodology in
separate earlier publications. Detsky et al. (3)
argue that looking at this material would probably
increase quality score of the trial above the score it
would achieve when considering it in isolation.

As for the way the actual assessing is carried out,
the procedure described by Detsky et al. seems
sensible:

‘In the past, we have followed a specific protocol,
beginning with a training session for quality assessors
to review the items in the scale and practice with a
sample of studies of variable quality. We have also
insisted that the quality assessment be done by a pair
of reviewers who then check their results against each
other and discuss any discrepancies.’ (3)

The researcher should be aware that when a
quality evaluation is done, there may be too few
studies deemed of good enough quality to pool.
This is an acceptable conclusion, indeed, it has
already been stated that no information is better
than misleading information.

Another point to note is that when the synthesis is
being reported, a list of trials analysed and a log of
rejected trials should be given (26).

Finally, a few comments on when quality scoring is
important (3):

e If all trials are of uniformly high quality
considerations will be relatively unimportant.

¢ In RCTs with hard outcome measures and simple
interventions, study quality will have less of an
impact on estimated effect sizes.

* ‘Assuming “quality counts”, it stands to reason
that the issue must be formally recognized in
meta-analytic techniques whenever there is
evidence of variation in the quality of the design
and conduct of individual trials.” (26)

Further research

¢ Evidence of how methodology effects biases.

¢ If studies are to be excluded guidelines for
deciding which ones to exclude are needed.

¢ Currently one can only weight by quality if the
same checklist was used for each study, i.e. one
could not do so if different study types are
being combined.

¢ Investigate any relationships between
components of quality score and an average
amount of bias in study result (or at least
its direction).

* The use of the Internet to provide further
study details not included in journal
reports etc.

* Aswell as the use of scales and methodology
for incorporating the results into a meta-analysis,
the issue of whether to include unpublished/
non-peer reviewed data and how this should
be assessed needs addressing.

® Guidelines for how to proceed when information
about studies necessary for scoring is not
included in reports.

Moher et al. report:

‘Even if the scales available vary in their size,
complexity, and level of development, it would be
useful to ascertain whether different scales, when
applied to the same trial, provide similar results. This
information could guide quality assessors in their
choice of scale. There would be little advantage in
using a 20-item scale to assess trial quality if similar
results could be obtained by using a 6-item scale.’

‘Future efforts in assessing quality may be best spent
in developing scales with appropriate rigor.” ‘We also
need to address whether, as part of a meta-analysis,
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efficacy and safety analyses should be conducted
with and without quality scores.” Moher et al. also
provide a table entitled ‘Specific issues to address
in the development of a scale to assess trial
quality.” (9)

If significant heterogeneity is present (see chapter
8) then quality should be one of the possible
factors examined to see whether it explains it.
Through further research, a fuller understanding
of this relationship may be obtained.

There is little discussion in the literature concern-
ing whether random or fixed effects should be
used in conjunction with quality scores (if used to
weight), if other heterogeneity is present. Detsky
et al. (3) mention using a generalised linear model
approach which is similar to the random effects
model (see chapter 10) that takes extra variation
into account.

When excluding studies, Detsky (3) gives several
suggestions on how to calculate a cut off value.
Little empirical evidence is given to justify this, thus
an investigation into the robustness of this value
would be desirable.

Summary

This chapter has considered both the assessment
and use of quality scores in meta-analysis. Whilst

a number of methods have been proposed for
assessing study quality (of primary studies) in

a meta-analysis, no consensus appears to have
developed as to which method is most appropriate,
or indeed whether such an exercise is appropriate
at all. As far as the use to which such quality scores
can be put, a number of possibilities exist, but in
specific situations the meta-analysist should not be
totally reliant on any one method, in addition that
is to an unadjusted analysis.
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Chapter 7

Simple methods for combining studies

his chapter deals with two methods of

combining studies, namely vote-counting
methods and combining p-values. Both of these
methods are very simple; neither of them combines
treatment effects size estimates, nor produces a
pooled estimate. For more complex methods for
data synthesis, see chapter 10 onwards.

Vote-counting methods

Introduction

Vote-counting procedures are one of the simplest
forms of pooling study results. Essentially, only
the direction of the result from each study is
considered, whether that be an elevated risk or

a negative correlation. This method ignores the
magnitude of effect and, for the majority of the
methods, also the significance of the result. For
these reasons, vote-counting procedures are only
recommended as a last resort, when effect magni-
tudes and significance levels are not available,

or, as a compliment to one of the other methods
described later in this part of the report. An
instance where this would be sensible is where
treatment estimates/significance levels are only
available on a proportion of the studies; here, effect
sizes could be combined on the possible subset of
studies but a vote-counting procedure could be
carried out on all studies (1).

The conventional vote-counting
procedure

Light and Smith (2) in 1971 were among the first
to describe formally, the ‘taking a vote’ procedure.
Put simply, each study is tallied to one of three
categories, namely showing a positive relationship,
negative relationship or no specific relationship in
either direction, depending upon the effect size.
The category with the highest count is assumed

to give the best estimate of the direction of the
true relationship.

Clearly, this method could not be simpler,
unfortunately it has been criticised for the
following reasons:

* The sample size, and therefore the precision of
each estimate from the primary studies is not
incorporated into the vote (2).

It does not provide an effect size estimate (3).
It has very low power for the range of sample
sizes and effect sizes most common in the social
sciences. When the effect sizes are medium to
small, the procedure frequently fails to detect
an effect (4).

* The power of this test decreases as the number
of studies increases (4).

In conclusion, this method cannot be recom-
mended; it has been described as naive, with no
statistical rationale and can lead to erroneous
conclusions (4,5). For a thorough explanation
of the limitations, see page 48 of (6).

The sign test

Again, this is a simple procedure involving a non-
parametric statistical test. The rationale behind the
test is that if there is no treatment effect then the
chance of a study showing a positive effect is 0.5.

Hence the null hypothesis is:

H,: probability of a positive result on average
in the population (p) = 0.5,

and the alternative,
H,: p>0.5.

Let U= the number of positive results in £
independent studies being considered. Then
an estimator of pis p= U/k.

Tables for the binomial distribution are then
N

consulted to calculate how extreme p is, and

whether to reject the null hypothesis.

Again, this test also has its disadvantages: it does
not incorporate sample size into the vote, and it
does not produce an effect estimate.

Cls based on equal sample sizes

Unlike the previous two methods, this method
gives an estimate of the treatment effect. However,
this vote-counting method is only possible if one
assumes that all studies to be combined have the
same sample sizes and the numbers in both arms
of each study are also the same. Clearly this is very
restrictive and unlikely to be the case in most
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instances. Hedges and Olkin (4) recommend
treating studies as if they have the same sample
size, if in reality they are not very different.
Hedges and Olkin (6) give details on what to
set as this fixed sample size, when in reality
they differ.

This method produces a CI for the treatment effect
of interest. From this, inferences can be made
about the effectiveness of the intervention.

This method is quite involved, and thus is not
described in this report. A clear account with
several examples, using different scales is given
elsewhere (7).

Because unequal sample sizes are the rule in
research synthesis rather than the exception,

the counting estimators are likely to be most
useful for providing quick approximate estimates
rather than as the analytic tool for the final
analysis (6).

Cls based on unequal sample sizes

This method extends the methodology to handle
unequal sample sizes for the primary studies. This
method was first described by Hedges and Olkin
(6). Another description of the method is given
by Bushman (1). The method involves maximum
likelihood (ML) calculation, and is considerably
more complex than that for equal sample sizes.
The interested reader is referred to either of
these texts for more detail.

It should also be noted that both the above
methods rely on a reasonably large sample of
studies to obtain accurate estimates (6).

Results all in same direction

If all the results are in the same direction, the
method of ML (see above) cannot be used to
obtain an estimate of p. Instead, if all the results
are in the same direction, we can obtain a Bayes
estimate (see chapter 13): see Hedges and Olkin
[(6), p. 300], or [(1), p. 211] for details.

Conclusion

As mentioned previously, these methods should
only be used for the main analysis as a last resort,
when treatment effects are not available for at
least a proportion of the studies. However, it is
difficult to know how to define a positive result,
e.g. it could be one that is significant (p = 0.05)
or one where it is just positive (p > 0.5). Light and
Smith (2) discuss an alternative approach based
on rejecting inferior studies and state that if this
method is taken to the extreme, only one study

will be left to vote, i.e. the study deemed to be

best will give the final result. Hedges and Olkin (6)
state that 0.05 is a good practical choice, as a paper
may state that result reached statistical significance
even if it does not give any other details. On the
other hand, taking a positive result to be p> 0.5
allows synthesis in situations where the data are

so sparse that only the direction of the result
needs to be known.

With increased awareness of their importance,
treatment estimates from studies should be
obtainable from reports. Even if they are not,
ways often exist for obtaining them, for example
deriving them from other results in reports (e.g.
see pages 148-52 and several of the methods of
chapter 20), or by contact with the authors (see
pages 14-15). Ideally, therefore, this method
should not be used unless absolutely necessary.

Combining p-values/
significance levels

Introduction

Methods of combining probability (p-)values from
independent significance tests have a long history
(8). Several of these methods are closely related to
the vote-counting techniques (9) outlined at the
beginning of this chapter.

p-VYalue definition
A definition of a pvalue can be given as follows:

‘The probability of finding a test statistic (i.e. a
set of sample data) as unusual or extreme as that
calculated given that the null hypothesis is true.’

‘Observed p-values derived from continuous test
statistics have a uniform distribution under the
null hypothesis regardless of the test statistics or
distribution from which they arise.” (6)

These facts underlie all the tests in the
following sections.

When to use this method

Like vote-counting procedures, these methods

do not produce an effect size estimate. Because of
this, analyses based on effect magnitude measures
are usually preferable (9). Hasselblad (10) suggests
two situations when combining pvalues might be
appropriate: 1) when some studies do not report
any effect measures but do report pvalues; 2) when
the study designs or treatment levels may be so
different that combining effect measures would

be inappropriate. However, Hasselblad goes on to
comment that, like vote-counting techniques: ‘...
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methods of combining p-values are seldom used
as meta-analytic tools’ (10). They could be used
as a supplement to combining treatment effects
(see part D) when not all treatment effects

are available.

Stating the null and alternative hypotheses for
combined significance tests

This section presents the formal hypotheses that
are being tested when using the methods presented
in this section. This section can be skipped without
loss of continuity.

Let T, represent the effect of interest in the ith
study. Then:

Hy T,=0,fori=1,...k

So, for the joint null hypothesis to be true, all the
individual null hypotheses must be true.

In words, this means that the treatment effects in
all the primary studies have to be zero.

A possible alternative hypothesis is:
H,:T,#0

Under this alternative, the population parameters
are not required to have the same sign. This is very
general, and does not inform about the specific
structure of variability (9). Alternatively

H,:T;20,for i=1,...k, with
T;> 0, for at least one j

This is used if one knows the effect cannot be nega-
tive, such as a correlation, or if one is not interested
in negative values such as a variance test where
negative values are evidence of zero variance.

Methods for combining p-values and
significance levels

All the methods described below can be described
as non-parametric, as they do not rely on any para-
metric form of the underlying data only on the
pvalues (6). This section is essentially a summary
of the review of Becker (9), which should be
consulted if more details are required.

Minimum p method

This method was proposed by Tippett in 1931 (11).
One rejects the null hypothesis if any of the p-values
(from the k studies) are less than . Where O is
computed as

1- (1 o)

and 0* is the present significance level for the
combined significance test (e.g. traditionally
set a* to 0.05 = 5%). Put formally, one rejects
H, if:

Min (p,...py) = py <0 =1— (1—a®)/*  (7.1)

It can be noted that this method is a special case
of Wilkinson’s method described in 1951 (12), for
r=1and

a=1-(1-a*)Vk

Also, the Beta distribution with 1 and k degrees of
freedom can be used to obtain a level a* test based
on the minimum p (py,)).

A generalisation suggested by Wilkinson (12) is to
use the rth smallest pvalue (13):

H, is rejected if:
Py <Cq o,

where Co.kris a constant that can be obtained from
the Beta distribution [these are tabulated in (6),
p. 37].

The advantage of this method is that it does not
rely on the most extreme result, and therefore is
more resistant to outliers in the data than Tippett’s
original method.

Sum of z’s method

This method was first described by Stouffer et al.
in 1949 (14). The combined significance test is
based on the sum of z(p;) values (sometimes
known as zscores).

The test statistic is:
k
() [k (7.2)

This is compared with critical values of a standard
Normal distribution (9).

Sum of logs method
This method was first described by Fisher in 1932
(8).The test statistic is expressed:

~25 log () (7.3)

This is compared with the 100(1 — a*) % critical
value of the X* distribution with 2k degrees of
freedom (df).
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Fisher’s method can be shown to be derived from
a proposed method of ranking vector observations
(15), and in particular the choice of p=0.37 is

a critical one; pvalues below this value suggest

the null hypothesis is more likely to be false and
pvalues above 0.37 suggest it is more likely to

be true.

Logit method
This method was proposed by George in 1977 (16),
and uses a test statistic defined by:

- ﬁlog(pi/l — p) [RTC (R +2) /3(5k + »]" a4
i=1

This test statistic is approximately distributed
twith 5k + 4 df." Thus it is compared to the
100(1 — a*) % critical value of the ¢ distribution
with 5% + 4 df.

Other methods of combining significance levels

Hedges and Olkin (6) briefly discuss several other

methods and modifications for combining p-values
and significance levels.

Pearson suggested combining p-values via the

product: (1 —p,)...(1 - p;). David in 1934

considered combining P *,...,P,* where
F=min[P;,1 — P;] [described in (13)].

Edgington proposed combining the sum of p-
values: S= p +...+p,. However, this test has very low
statistical power (13). This is because a single large
pvalue may overwhelm many small pvalues. This
procedure is believed to be poorer than Fisher’s
method, but very few numerical investigations
have been carried out.

Other methods have been proposed by Liptak, who
presented a general form of which both Fisher’s and
normal procedures are both examples. Lancaster
presented another statistic based on the sum of the
inverse of X cumulative distribution functions.

In addition, Draper et al. (13) reported that
Good (1955) and Mosteller and Bush (1954)
proposed weighted versions of the inverse X*
procedure and inverse normal procedure,
respectively. Lancaster (1961) also suggested
an alternative weighting procedure for a
generalised inverse X* method.

As the reader can gather, there are many different
test statistics available for combining pvalues and
significance levels. The interested reader should
note that Becker [(9) p. 222-23] gives a classified
table of 16 test statistics that can be used for this
purpose. For more information for the methods
not referenced in this section, see (6) and (9).

Combining discrete p-values

All the above methods have assumed that the
statistical tests to be combined have a continuous
test statistic, which in turn leads to a p-value that

is uniformly distributed under the null hypothesis.
If test statistics with discrete distributions (e.g.

test statistics based on discrete data) are used,

the combination procedures described in this
chapter will have to be modified by incorporating
‘corrections for continuity’ (6). An alternative
approach is making p-values into continuous
random variables by adding to them an appropriate
uniform random variable (6). However, Draper

et al. (13) observe that this method is very rarely
used in practice. This problem is not discussed
further here; see (6) for more details.

Combining lower bounds on Bayes factors as an
alternative to p-values

Chapter 13 of this report discusses Bayesian
methods for research synthesis. It should be noted
that the whole concept of pvalues is at odds with
the Bayesian philosophy.” Because of the recog-
nised conflict between Classical and Bayesian
perspective, Berger and Mortera (17) investigate
the interpretation of a p-value, from a Bayesian
perspective. This is done by treating the pvalue

as the data, and computing corresponding
posterior probabilities or Bayes factors (BFs).
They go on to compare the use of p-values
(combined using zscores) to BFs and posterior
probabilities. They conclude:

‘The lower bounds on Bayes factors are not meant
to be a substitute for actual subjective Bayes factors
which can be substantially larger. However, if it is not
possible to compute actual subjective Bayes factors,
the use of lower bounds is arguably superior to the
use of pvalues.’(17)

Combining significance levels and p-values when
only the level of significance is known

In some instances, authors may not give the exact
pvalue, but report the level of significance (e.g.
‘p<0.05’, or the treatment difference was significant

! Could also be thought of as distributed normally with zero mean and variance kT%/3.

* Despite this, Goutis el al. (22) look at the different methods for combining f-values and look to place them in a

Bayesian context; however, this has been unsuccessful.
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at the 5% level). This is indeed a problem. In this

situation, it is impossible to construct a test at a partic-

ular level; however, if one substituted p = 0.05 (or any
other known level of significance) for the offending
study, a conservative test can be performed (10).

Miscellaneous methods

Becker (9) comments on the possibility of weight-

ing pvalues. Two different situations are outlined:

1) to account for prior information about the sizes
of effects and 2) to allow for subjective differences
(e.g. quality), differences in sample size or degrees
of freedom).

Other methods for combining pvalues have
been proposed, several of which are reviewed
by Mosteller and Bush (18).

Rosenthal’s ‘file-drawer’ test for publication bias,
which is covered on pages 126-32, is based on
combining p-values. Tests for contrasts using pvalues
have also been put forward by Rosenthal (19,20), as
a way to identify where variations between studies
lie. This involves using the z(p) as an effect measure
in its own right. However, Becker (9) gives evidence
suggesting that procedures such as this based on the
standard normal approximation may tend to over-
look real differences in effects when the null hypo-
thesis is false. An extension to this method is given
by Strube (21) to combine significance levels of non-
independent studies; this is discussed in chapter 27.

Appraisal of the methods

With so many alternative test statistics available, it
would be desirable to consider the power of each,
to find if any are generally superior in that respect.”
Unfortunately, no one test is the most powerful in
all situations. However, as Elston observes (15),
Littel and Folks paper showed Fisher’s method to
be asymptotically optimal among essentially all
methods of combining independent tests. Hence,
perhaps the best advice available is given by
Hedges and Olkin (6) who state:

‘It seems that Fisher’s test is perhaps the best one to
use if there is no indication of particular alternatives.’

It should not be forgotten that all methods of
combining p-values have disadvantages (as well as
advantages) these are summarised in Box 2.

There is confusion in the literature as to whether
by combining studies via p-values weights the
studies according to their power to detect a

BOX 2 Advantages and disadvantages of combining
p-values and significance levels

Advantage:

1 Broad applicability: can combine p-values even if
the studies are dissimilar, i.e. they do not have to
have the same design or health endpoint (10).

Disadvantages:
1) Does not provide very detailed information, i.e.
no average effect size estimate is produced (9).

2) Does not weight the studies according to the
uncertainty of the sample size (10).

3) Acceptance or rejection can depend more on the
choice of the statistic than on the data. (13).

4) The information in a highly informative
experiment can be masked, and thereby
largely disregarded (13).

(13) illustrates the limitations of these methods by
using studies investigating the effect of aspirin on
patients admitted to hospital having a myocardial
infarction. Tippett’s and Fisher’s methods give
the results of 0.157 and 0.0070, respectively,
which are clearly very different. Thus method
choice seems critical, in at least some instances;
however no real guidelines exist for which
method to choose.

treatment effect. Although p-values do contain
information relating to sample size and variability,
the extent to which this is true in any specific
situation will depend on a number of factors,
including the type of test used.

Summary

This chapter has considered principally two basic
methods for synthesising evidence; vote counting
and the combination of pvalues. Whilst vote
counting is one of the simplest methods available,
it should only be used if absolutely necessary. By
contrast, although the combination of p-values
does convey some aspect of effect size, there are
a number of disadvantages to the use of such a
method. As a result, it should only be used with
caution, since it may mask some fundamental
differences in the studies.
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Chapter 8

Heterogeneity

Introduction (defining
heterogeneity and homogeneity
with respect to meta-analysis)

It is almost guaranteed, when carrying out any
meta-analysis, that the point estimates of the effect
size from the different studies being considered
will differ, to some degree. This is to be expected,
and is at least partly due to sampling error which is
present in every estimate being combined. That

is to say, if several samples are taken from a popu-
lation, with the same underlying true effect size,
the sample estimates will inevitably vary from one
another. When effect sizes differ, but only due to
sampling error, it is customary to consider the effect
estimates as homogeneous. This source of variation
can be accommodated in meta-analysis by using a
fixed effects model which is discussed in chapter 9.

It is often the case that the variability in effect
size estimates exceeds that expected from
sampling error alone. If a formal synthesis is to be
undertaken this extra variability requires further
consideration. When it is present the effect size
estimates are considered heterogeneous. Possible
reasons for this heterogeneity are discussed later
on pages 41-3.

The subject of the heterogeneity of study results

is fundamental in meta-analysis and is the source
of much debate in the field of systematic reviews.
Colditz, in his review of heterogeneity in the meta-
analysis of epidemiological studies states:

‘...heterogeneity and approaches to dealing with it
take many forms, and such diversity may leave the
reader uncertain about the interpretation of the
combined results.” (1)

One should be aware that heterogeneity may
exist when all or most studies indicate the same
direction of treatment effect (i.e. either harmful
or beneficial), but the size of this effect differs,
as well as when the trials contradict each other
about whether there is any treatment benefit.

The most common test for heterogeneity is
outlined, followed by an example of its imple-
mentation. This is followed by a discussion of its
shortcomings. Then a discussion of the various

approaches that, in the past, have been taken to
deal with any heterogeneity are given. This is
followed with a section discussing how hetero-
geneity affects the results and interpretation of a
meta-analysis. The chapter concludes with a section
outlining other, lesser used, tests that can be used
to check for heterogeneity.

Test for presence of heterogeneity

As Thompson points out, (2) this test, to check the
data are homogeneous, is perversely, usually termed
a test of heterogeneity. Although several authors
have put forward slightly differing formulas for the
test they are, mostly, essentially equivalent, being
based on X* or Fstatistics (3). The one devised by
Cochran (4), which is widely used, is given below.

General formal test

The formula given below (8.1) can be applied
to all types of treatment effect data commonly
combined (for details of the different types
normally encountered in medical research see
chapters 9 and 14). It tests the hypothesis

Hy:0,=0,=..=8,

where the 6;s are the underlying true treatment
effect of the corresponding ¢th studies; versus the
alternative that at least one of the effect sizes 6,
differs from the remainder. Essentially, this is
testing whether it is reasonable to assume that all
the studies to be combined are estimating a single
underlying population parameter (this is one of
the assumptions underlying the fixed effect model
—see chapter 9).

Q=3u,(T,-T", (8.1)

where kis the number of studies being combined,
T;is the treatment effect estimate in the ith study,
and

i

T. =

i

2w,
€

is the weighted estimator of treatment effect. w,, is
the weight of that study (usually the inverse of the
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ith sampling variance, but not necessarily) in the
meta-analysis (chapter 9 covers the calculation

of T. and needs to be referred to before calculation
of Qis attempted).

A computationally convenient form of the above
formula is:

2w, T,
i=1

k
Q=3wT?-1 L
i=1

- (8.2)

Q is approximately distributed by a X* distribution
on k-1 degrees of freedom. Hence if the value

for Q exceeds the upper-tail critical value of X*
distribution with k-1 degrees of freedom, the
observed variance in study effect sizes is signifi-
cantly greater than what we would expect by chance
if all studies estimated a common population effect
size. Thus, one would reject H, in favour of H,

and conclude heterogeneity is present (5).

For practical examples using this test see
pages 56-66.

Choosing an appropriate critical value for this test
is made difficult due to its low statistical power (6),
and is discussed at length in the next section.

Additional technical notes

The weights in Q may vary according to the
assumptions made about the sampling variances.
For instance, when the sampling variances can be
assumed to be equal, then w, i=1,...,k, is the
inverse of a common sampling variance s* (7).

Laird and Mosteller [(8), p. 15] comment that
an alternative approach to estimating between
study variation is available using one-way analysis
of variance (ANOVA). ANOVA type procedures
are also used by Hedges and Olkin to investigate
variability in a number of situations (9); some
of these are discussed on pages 50-2.

Problems with detecting heterogeneity
- limitations of the Q statistic
Unfortunately, interpreting this test for
heterogeneity is often difficult and not as clear
cut as it may first appear. Below is a summary of
the problems researchers face using this test.

1. The statistical power (i.e. if there are true
differences between studies, how likely are
these differences to be detected?) of statistical
tests for heterogeneity are, in most cases, is
very low due to the small number of combined

trials (10). This means heterogeneity may
indeed be present even if the Q statistic is not
statistically significant. Due to this, for the
detection of a treatment-by-clinic interaction
in a multiclinic trial (i.e. investigating if the
underlying treatment effects for each clinic
were heterogeneous), Fleiss (11) recom-
mended using a cut-off significance level of
0.10, rather than the usual 0.05. This has
become a customary practice in meta-analysis.

2. Shadish and Haddock state: “‘When within-
study sample sizes in each study are very large,
however, Q may be rejected even when the
individual effect size estimates do not really
differ much; in such cases, it may be reasonable
to pool effect size estimates anyway.” (5)

3. Matt and Cook state: ‘The likelihood of design
flaws in primary studies and of publication
biases and the like makes the interpretation
of homogeneity tests more complex. If all the
studies being meta-analysed share the same
flaw, or if the studies with zero and negative
effects are less likely to be published, then a
consistent bias results across studies can make
the effect sizes appear more consistent than
they really are.....Conversely, if all the studies
have different design flaws, effect sizes could
be heterogeneous even though they actually
share the same population effect. Obviously,
the causes of heterogeneity that are of greatest
interest are of a substantiative rather than
methodological nature.” The authors conclude
‘Consequently, it is useful to differentiate
between homogeneity tests conducted before
and after the assumption has been defended
that all study-level differences in methodo-
logical irrelevancies have been accounted
for.” (12)

Clearly, due to all the above reasons, one has to

be cautious when interpreting the Q statistic, some
have gone as far as to suggest it should not be used
as a test at all. Shadish and Haddock to consider
that it should be used as a diagnostic tool to help
researchers know whether they have ‘accounted
for all the variance’ (5). This has led to the below
suggestion by Colditz et al.:

‘Because we cannot believe that the among-study
variance can ever be zero and because the tests for
homogeneity are weak, we should not uncritically
accept homogeneity. Perhaps we should not test for
homogeneity, but rather quantify estimates for the
between study variance as recommended by the
National Research Council.’ (1)

However, the researcher perceives the role of the Q
statistic, the main point to bear in mind is that, just
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because the hypothesis that all the studies are
estimating the same true underlying effect is
not rejected at the 5%, or even the 10% level,
does not mean there is not some degree of
heterogeneity present.

If there is any doubt, it would seem sensible to
err on the side of caution and treat the data as
heterogeneous because carrying out an analysis
assuming homogeneity on heterogeneous data
will produce an estimate with a CI which is too
narrow (i.e. too confident a result). If one is able
to determine the factors that cause the hetero-
geneity in the data, it may be possible to adjust
the estimates accordingly thus removing the
excessive variation making a homogeneous (fixed
effects) analysis possible. Some informal tests for
heterogeneity are given below that can be used
instead or in conjunction with the formal one

of pages 39-40.

Graphical informal tests/explorations
of heterogeneity

Since the formal Q statistic has low power, one of
the following exploratory methods should be con-
sidered even when this statistic is non-significant to
aid decisions on how to proceed with the synthesis
(13). They should be used as exploratory tech-
niques and give an indication between which
studies heterogeneity is greatest and indicate
possible outliers. It should be noted that Greenland
(14) is critical of the subjectivity in interpreting
graphical plots (‘one can pull trends out of any-
thing if you look at it long enough’), though he
encourages their use up to a point.

Plot of normalised (z) scores
If the zscores

(T,-T.) /SE(T)

are placed in a histogram; under the hypothesis of
only random differences among the studies, this
histogram should have an approximately normal
distribution. Large absolute zscores can signal
important departures of individual studies from
the average result (13).

Radial plots (Galbraith diagrams)

These are also known as Galbraith diagrams
(15). Here, the zstatistics are plotted against
the reciprocal of the standard errors (SEs).
Galbraith reports:

‘If this sort of plot is done then points from a homo-
geneous set of trials will scatter homoscedastically,
with unit standard deviation, about a line through
the origin.” (15)

Additionally, one can look at the resulting plot

of points for certain characteristics by plotting
levels in different colours. Hence, this plot enables
studies whose results depart greatly from the line
can be observed as possible outliers.

Forrest plot

These plots are commonly used as a way of
presenting the results of a meta-analysis (see
chapter 22). The estimates of treatment effects,
along with their SEs from each study are plotted
on the same axis. From this plot an idea of the
distribution of the estimates can be gained.

L’Abbé plot

This plot is described by L’Abbe et al. (16). The
event rates of the treatment groups are plotted
against the event rates for the controls for each
trial. If the trials are fairly homogeneous the points
would lie around a line corresponding to the
pooled treatment effect parallel to the line of
identity; large deviations would indicate possible
heterogeneity (17).

All these graphical methods can aid the
researcher in detecting heterogeneity. It is
recommended that some kind of investigative
plot should be constructed when carrying out
a meta-analysis.

Causes of heterogeneity

As well as investigating for the presence of
heterogeneity it is also necessary to consider its
underlying cause. It may then be possible to adjust
the analysis accordingly (see pages 43-50). Bailey
in his paper on how study differences affect the
interpretation and analysis of the results (18)
presented a table showing causes of heterogeneity.
The essence of this is reproduced below (7Zable 2).
The lower down the table you go, the less desirable
the source (the source may influence the analysis
and the interpretation of the results). The various
approaches for accommodating heterogeneity are
outlined on pages 43-8 and the interpretation
and validity of the results when heterogeneity

is present is discussed on pages 48-50.

So in summary, heterogeneity may be due to
chance, or spurious due to the scale used to
measure the treatment effect. It may be due to
treatment characteristics which can be investigated
and/or patient-level covariates which can only

be investigated it the researcher has got IPD;

or if none of the above account for it,
unexplainable.
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TABLE 2 Levels of explanation of heterogeneity [reproduced in modified form from (18)]

0. Chance

It could be that, in fact, the studies are homogeneous but the Q-statistic at whatever level of significance it was tested
wrongly rejected the null hypothesis (i.e.a type one error for the Q-statistic)

I. Homogeneity achieved by different definition of treatment effect (e.g. absolute difference)

Non-intuitive as it may seem, it is possible to remove heterogeneity by transforming the data to a different scale:‘if by going
to a different definition of a treatment effect, one can eliminate the heterogeneity, then one not go any further (in trying to
adjust for it)’ (N.B. this definition should be reasonably simple and not contrived.)

2. Heterogeneity accounted for by design factor(s)

(2) Data-derived explanation.
(b) Explanation not ‘influenced’ by data.

It may be that the studies differed in their design and conduct (implementation): randomisation, blinding, stopping rules,
different eligibility criteria, different definitions of disease, variations in treatment (see pages 42-3). It could also be explained
by patient level covariates (these are only available if one is doing an IPD meta-analysis, see chapter 24). If this is the case,
these covariates are not nuisance factors, such as study design etc., but they may describe subgroups of patients for whom
the treatment is more/less effective (see pages 209—10). It is important to differentiate between data-derived explanations
and explanations derived independently of the data.This is because the first of these may have been found through ‘fishing
expeditions’, i.e. different covariates were investigated till one gave statistical significance. This method is plagued with the
problems of multiple testing and type one errors.

3. Unexplainable (and real)

Bailey (19) considers this to be the situation in which he is least comfortable about drawing conclusions. It could be that
many different factors each contribute a small amount towards the heterogeneity of the results. The combined effect of
such factors may be substantial, but due to lack of data or sample size these factors go undetected.This led Boissel to state
(10):°It is because several sources of heterogeneity exist that low p-values from heterogeneity tests make interpretation of
meta-analysis results difficult’ Another explanation is that the factors which caused the variation may not have been
measured or recorded for the studies being combined.

Specific factors that may cause

. BOX 3 Ways in which apparently similar trials ma
heterogeneity Y pparently y

differ [modified from (20)]

Bailey made the comment:

. . . . 1. Differences in inclusion and exclusion criteria.
Clearly. the interpretation of heterogeneity of

outcome depends heavily on how similar the trials
were in terms of treatment, patient population,
length of follow-up, outcome measurement used,
etc. The more similar the trials seem in other respects, 3. Variability in control or treatment interventions
the more disturbing any heterogeneity of outcome (e.g. doses, timing, and brand).

becomes, and, therefore, the more prominent a

role heterogeneity would play in the basic statistical
analysis. Conversely, if differences in study design are
large, then heterogeneity of outcome is less surprising.
The role of heterogeneity becomes one of trying to

2. Other pertinent differences in baseline states
of available patients despite identical selection
criteria.

4. Broader variability in management (e.g.
pharmacological co-interventions, responses to
intermediate outcomes including crossovers,
different settings for patient care).
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sort out or understand differences in outcome based
on other differences.” (18)

So, simply by considering how the design and
conduct of the studies differ, may lead to an
explanation of existing heterogeneity. Box 3,
modified from Naylor (20), states possible ways
in which trials in a meta-analysis may differ.

All these can be considered when carrying out a
meta-analysis. It should be stressed that if one is
considering studies with different designs then
because they are subject to different biases, then
this may create heterogeneity.

5. Differences in outcome measures, such as follow-
up times, use of cause-specific mortality, etc.

6. Variation in analysis, especially in handling
withdrawals, drop-outs, and crossovers.

7. Variation in quality of design and execution, with
bias of imprecision in individual estimates of
treatment effect.

In the section below, we discuss how certain factors
from the above list may affect heterogeneity. These
are some of the most common, and in some cases
specific methodology exists for dealing with them.
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Impact of early stopping rules on heterogeneity
For ethical reasons, RCTs are sometimes stopped
early if it is clear from interim analyses that one

of the treatment arms is clearly superior to the
other(s). Hughes et al. investigated the effect of
stopping a trial early would have on heterogeneity
in an overview (21), and concluded that:

‘If the true treatment effect being studied is small,

as is often the case, then artificial heterogeneity is
introduced, thus increasing the Type I error rate in
the test of homogeneity. This could lead to erroneous
use of a random effects model, producing exagger-
ated estimates and confidence intervals. However, if
the true mean effect is large, then between-trial
heterogeneity may be underestimated.’ (21)

They go on to comment:

‘When undertaking or interpreting overview, one
should ascertain whether stopping rules have been
used (either formally or informally) and should
consider whether their use might account for any
heterogeneity found.” The paper advises repeating
heterogeneity assessments excluding trials with early
stopping rules. ‘Then if no evidence is found, then to
attribute the heterogeneity to the use of stopping
rules may be reasonable though the reduction in
power to detect any real variability between trials
needs also to be appreciated’. (21)

Impact of underlying risk on heterogeneity
Thompson et al. (22), Brand (23), and Davey Smith
and Egger (24) have all pointed out that an import-
ant issue is to ascertain whether the treatment
benefit varies according to the underlying risk of
the patients in different RCTs. Several methods
have been proposed to investigate this, these are
described on pages 46-8.

Impact of size of dose on heterogeneity

It may be the case, that the studies may have used
different dose levels of the intervention under
investigation. If this is the case, then common sense
dictates that treatment effects may vary due to this.
Ways of carrying out a dose-response meta-analysis
exist so the dose size is taken into account. These
are covered on pages 157-61.

Impact of publication bias on heterogeneity
Publication bias is the subject of chapter 16. The
Q statistic test for heterogeneity is affected by
publication bias. This is explained by Spector
and Thompson (25):

‘The between study variance, estimated from the Chi-
Squared statistic for heterogeneity, is itself imprecise
and, being strongly dependent on the inclusion or
exclusion of small studies, is susceptible to the effects
of publication bias.’

Compliance rate

Gelber and Goldhirsch (26) highlight the problem
of compliance in the primary studies. They give
mathematical justification of how reduced com-
pliance could change the effect estimate and
hence increase heterogeneity.

Length of follow-up

Gelber and Goldhirsch point out that the length
of follow-up of a trial may have an influence on the
treatment effect (26). They highlight the following
issues that need consideration when investigating
this factor:

¢ Treatment effects might be present either early,
late or consistently through time.

¢ Trials with the longest follow-up are selective
because they were (possibly) designed and
conducted earlier.

* A summary measurement based on an overall
risk reduction that assumes constant annual risk
ratios might differ from actuarial estimates based
on yearly assessment.

Thompson also makes the following observation
on modelling duration of the trial: ‘A longer trial
would include information on events both soon
after and a long time after randomization, so any
true effect of duration would be diluted in such
an analysis.” (2)

For example, in wound care, most ulcers heal
eventually but the rate varies by treatment. So,
too long a follow-up and use of outcome measure
such as percentage of wound healed will dilute
the treatment effect. To get round this problem
one could use a survival type analysis (see
chapter 20).

Investigating sources of
heterogeneity — introduction

It cannot be stressed how important investigating
possible sources of heterogeneity is. Identifying
sources of variation can lead to important insights
about healthcare effects.

‘In a meta-analysis, documenting heterogeneity of
effect (by identifying sources of variability in results
across studies) can be as important as reporting
averages. Heterogeneity may point to situations in
which an intervention works and those in which it
does not. Finding systematic variation in results and
identifying factors that may account for such
variation, in this way, aids in the interpretation of
existing data and the planning and execution of
future studies.’ (1)
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Considering this potential for meta-analysis to
explore heterogeneous results led Anello and
Fleiss (27) to define two sorts of meta-analysis.
They consider when there is little or no hetero-
geneity, and the aim of the analysis it to improve an
estimate of effect or test a hypothesis. This sort of
analysis could be described as an ‘analytic’ meta-
analysis. When the goal is to resolve controversy, or
pose and answer new questions, the main concern
of the meta-analysis is to explain the variation in
the effect sizes. The authors call this an ‘explor-
atory’ meta-analysis, where the characteristics of the
different studies become the focus of the analysis.
They further suggest this leads to the idea that
protocols for a meta-analysis should reflect its

goals and how the results are to be used.

Itis the aim of this chapter to outline methods
to do this. It may not always be easy (or possible),
not least due to lack of data; indeed Thompson
et al. state:

‘Although many authors have stressed the clinical and
scientific importance of investigating potential sources
of heterogeneity when conducting a meta-analysis,
such investigation can be unrewarding unless the
number of trials is large or individual patient data

are available.” (22)

In a similar vein, Dickersin has commented:

‘it is in situations where one or a few studies seem
divergent that the meta-analyst faces his or her most
serious and interesting challenges.” (3)

It is worth noting that analysis can still proceed
when heterogeneity has not been explained, but
efforts should be made first to do so. However, it
should also be stressed that the conclusion that the
results of the studies are too heterogeneous to
combine and interpret meaningfully is a very valid
one, and one should not combine for the sake of it
(this is discussed further on pages 48-50).

Change scale of outcome variable

It may be sufficient simply to change the scale

the study outcomes are measured on, to remove
heterogeneity (28). Chapters 9 and 14 introduce
the most common scales used, and chapter 15
discusses the relative merits of each. As well as
changing the type of scale used, a transformation
such as taking logarithms is common practice,
though there is sometimes a trade-off between
statistical homogeneity and clinical interpretability.

Include covariates in regression model
A regression analysis can be performed to examine
whether the heterogeneity between studies can be
explained consistently by one or several factors

across all studies. Several different factors have
been investigated in the past; some of these were
discussed on pages 42-3. It may be that some of
the studies had, on average, older patients and
thus the treatment response differed systematically
because of this. Another variable often considered
is whether the patients in the trials were of com-
parable health at the start of the trials, i.e. differ-
ences in treatment effect may be due to differences
in initial baseline risk. Other examples include
differences in length of treatment and differences
in treatment application. More controversially,
systematic differences may be due to the quality of
the trials (this is dealt with in detail in chapter 6).
Other factors may be identified that are unique to
the topic under investigation.

Full details of how to investigate factors such as
these via a meta-regression model are given in
chapter 11. For the moment, it is enough to
consider which variables are appropriate to include
for modelling. Indicator variables for any study
characteristic can be constructed, and in addition,
scales to calculate overall study quality have been
devised (see chapter 6). However, no relationship
between study quality and treatment effect have
been observed thus far (29). Special techniques
are available for investigating dose-response

(see pages 157-61) and baseline risk (see pages
46-8) to take into account the continuous nature
of these factors. Heterogeneity due to different
study types can be investigated via meta-regression
as well as newer techniques such as cross-design
synthesis (see chapter 26).

If the covariate is a well established correlate,
introducing it as routine is justified. If on the
other hand it is a non-standard variable we have
no more than exploratory data analysis, unless the
association is very strong (1). Colditz states:

‘In addition, when we have few studies, introducing
several covariates may use up most of the degrees of
freedom. Of course, when several covariates are under
consideration, many possible sets of them may have
been considered, so problems of being unable to
make an honest estimate of residual uncertainty.” (1)

It is worth noting that epidemiological studies vary
in their design and conduct, generally more than
RCTs, for this reason the scope of the methods is
greatest for epidemiological studies (3).

When this type of analysis identifies variables that
explain the variation between studies, and one is
confident that an ‘acceptable’ level heterogeneity
(above that expected purely by random error) is
explained, then one can report the results obtained
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from the meta-regression. If this is not the case, see
page 46 for an alternative model.

Exclude studies

One can test the influence of each study on the
heterogeneity results by comparing its contribution
to the Qstatistic to the X* distribution on 1 df

(this is an approximate test) (9). One could
exclude study/ies that contribute most variation.
This procedure can be justified by reasoning that
the first stages of summarising results of any data
analysis can involve removing outliers or extreme
results. However, one has to be aware that this could
introduce bias into the estimates. Colditz et al. (1)
ran a simulation experiment investigating the effect
of removing extreme studies and concluded: ‘... if
the observations had been drawn from standard
normal distributions, then removing an extreme
quarter of them in samples of the size being used

in these studies (derived from a survey of meta-
analyses in epidemiology that had removed outliers)
or larger would create a bias of about 0.4 of a stand-
ard deviation (units of study standard deviation,
not the smaller mean)’ (1). The authors also noted
that by removing largest (or smallest) 25% of data
reduced the variance by more than 40%. Colditz

et al. went on to comment:

‘It is our impression that scientists generally frown

on deleting observations unless there is an assignable
cause that has been systematically and fairly appraised
for every study, not just the outliers. Thus, we think
setting aside studies without cause is generally danger-
ous for inference and should be discouraged. It can
easily lead to overassurance about the precision of the
results and suppression of among study variation.” (1)

However, in the case where the data are suspected
to be contaminated with errors, Colditz et al. (1)
conclude it is acceptable to trim data to get a value
with substantial meaning.

If one considers removing studies is justified, and
by doing so heterogeneity is removed then one can
proceed, if desired, with a fixed effect analysis (see
chapter 9). The effect of doing so can always be

explored in a sensitivity analysis (see pages 209-10).

Analyse groups of studies separately
One may conclude that the studies are too
heterogeneous to sensibly combine. When this
happens there may be one or several groups of
studies that seem similar and thus a decision to
combine just these can be made. This could be
looked at as a more general case (see above),
where all but the most extreme study/ies were
combined. This type of analysis is sometimes
called subgroup analysis.

Yusuf et al. (29) categorise subgroups according
to whether they are defined by characteristics
measured before randomisation of by those
measured after randomisation. Emphasis is placed
on the need for subgroup analysis to be defined
a priori. ‘When a subgroup is defined post hoc, we
have no more than exploratory data analysis and
so we recommend that the results be described
without testing for statistical significance and that
investigators look to other data sets to replicate
the finding, since spurious results are less likely
to be replicated.” (30)

Gelber and Goldhirsch (26) also discuss subset
analyses in meta-analysis and make a distinction
between two situations that occur, namely:

1. Analysing all the data and including covariates
with the aim of detecting therapeutic effects
within subsets of patients (or include study
characteristic covariate to investigate how this
affects outcome, i.e. explain heterogeneity).
(This is really equivalent to the meta-regression
methodology discussed on pages 44-5).

2. Separate analyses of subsets of studies. ‘Studies
being pooled generally differ with respect to
treatments applied, control groups, patient
eligibility, quality control, study conduct and
follow up maturity. Separate comparisons
within subsets defined by these features will
be misinterpreted unless confounding factors
are recognized.’

It should be noted that subgroup analyses are
usually secondary analyses (and could be part

of a sensitivity analysis — see pages 209-10), that

is carried out in addition to the analysis of all

the studies. There is a problem of potential over-
interpretation of subgroup analyses in medical
statistics generally, and thus caution should be
applied when interpreting such analyses. Page 209
deals with subgroup analyses in more depth.

Use random effects model

Rather than explain or explicitly adjust for
variation between studies, one can pool studies
using a random effects model which allows for
variation in the underlying effect size between
studies to be taken into account. This is often used
when the source of variation cannot be identified.
Chapter 10 is devoted to this type of meta-analysis
model. Colditz et al. discuss the use of this model
[DerSimonian and Laird popularised its use (7),
hence the name] at length (1):

“The DerSimonian and Laird statistic for estimating
effects has an attractive aspect in its handling of
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homogeneity and heterogeneity that differs
substantially from the usual method of testing
hypotheses. The usual test asks whether the observed
heterogeneity is more extreme than can be accounted
for by random fluctuations when allowing some small
level of significance, such as 5 percent. If a more
extreme result is observed, the investigator declares
the set of studies to be heterogeneous. If the observed
heterogeneity does not exceed the chosen significance
level, the investigator ordinarily decides to act as if the
homogeneous case holds even if there is considerable
evidence against it. Therefore, the effects are
estimated as if all studies had the same mean value,
thus leading to the fixed effects model with weights
inversely proportional to the variances within the
separate studies.

The DerSimonian and Laird statistic instead balances
its decision around the average value of the observed
heterogeneity that would occur when all studies had
the same mean (the homogeneous case). If the
observed heterogeneity is less than average for the
ideal situation with no true heterogeneity, the investi-
gator uses the same formula that the hypothesis tester
would use when the test does not reject homogeneity.
On the other hand, if the observed heterogeneity
exceeds the average associated with no heterogeneity,
then the investigator uses a different formula for
estimating effects that has weights more appropriate
to a situation with heterogeneity between the studies,
as described below.

The DerSimonian and Laird test that decides which
formula to use has roughly a 50 percent significance
level, not a 5 percent level. Statistics that change their
formulas like this in response to the data are some-
times called adaptive. The DerSimonian and Laird
formulae respond more smoothly to the actual
situation than the testing hypothesis approach.

The changed weights themselves are also responsive
to the degree of heterogeneity observed, with more
heterogeneity leading to more nearly equal weights
assigned to the studies. Thus, the procedure adapts
continuously as the observed heterogeneity increases.’

It should be stressed, however, that by using a
random effects model, no investigation of the
causes of heterogeneity is made, so the researcher
is none the wiser as to why the study results

vary. This conflicts with the view of Greenland
(14) that:

‘I maintain that the primary value of meta-analysis is
in the search for predictors of between-study hetero-
geneity. If use of random effects models makes a
difference, the analysis is incomplete. The analyst
should carefully search for the source of the discrep-
ancy between the fixed and the random effects
interval estimates. The random-effects summary is
merely a last resort, to be used only if on cannot
identify the predictors or causes of the between-
study heterogeneity.’

The whole idea of random effects has

been controversial in meta-analysis; see

pages 76-8 for a synopsis of various arguments
put forward advocating and criticising

its use.

Mixed-effect models

If an investigation into the sources of hetero-
geneity has been carried out and one or more
variables appear to account for a proportion
of the variation, but evidence that some level
of heterogeneity (above the level of random
variation) remains, then a random effects term
can be included in the model to account for
this ‘residual’ heterogeneity. This model is
called a mixed-effect model as it can be viewed
as a combination of a meta-regression and a
random effects model. This model is the subject
of chapter 12. This model seems a sensible
compromise and has led to the suggestion

that in reality, there will always be unexplained
heterogeneity. Thus a random effects term
should always be included to account

for this.

Use of new models

Other, newer, methods of combining data do
exist. Two of these are Bayesian meta-analysis
and cross-design synthesis. Each of these has
its own way of dealing with heterogeneity.
These are discussed in chapters 13 and 26,
respectively.

Methods for assessing heterogeneity
of underlying risk

The issue that studies may appear heterogeneous
because of differences in the baseline risk of
the patients was introduced on page 43. If such
a relationship exists, its nature could crucially
affect decisions about which patients should be
treated (22). Such a relationship may even
delineate which patients may not benefit from
medical interventions, in that the treatment
effect may be in the opposite direction for
patients at low and high risk (a qualitative
interaction) (22).

The usual way of investigating baseline risk is

to consider the observed risk of events in the
control group (or sometimes the average risk

in the control and treatment groups) (23).

This variable can be used to adjust the pooled
estimate via a regression model (see pages 44-5
and chapter 11). It is necessary to adjust for
potential overdispersion in such models, that is
residual heterogeneity in the treatment effect not
explained by the covariate (baseline risk),
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otherwise the SE of the estimated slope will be
too small.!

However, Senn (31) showed that this type of
analysis is flawed. The drawback of the regression
method is the structural dependence involved
(regressing the treatment difference on either
the risk in the treatment or control groups or

a combination of the two). The origin of the
phenomenon lies in the fact that the baseline
forms part of the definition of the difference.
This can lead to a spurious correlation between
extent of treatment effect and the level of
response in a placebo group.”

Sharp et al. (17) discuss this problem of
regression to the mean further. They review

three conventional approaches relating treatment
effect to the proportion of events in the control
group, and suggest alternative analyses to

get round this problem. These are

summarised below.

I. Graph of treatment effect against proportion
of events in control group

Note that the problem is not solved by this
method. One can plot a graph of the odds ratio
of an event (log scale) against proportion of
events in the control group (log odds scale) for
each trial. Each study can be marked with a circle;
the size of the circle relating to the size of that
particular study. However, if one calculates a
weighted regression line for this plot — one

has the problem of regression towards

the mean.

Use of this technique:

® is not an appropriate method, and will always
be biased

¢ will be less misleading, that is, less biased, if the
trials are mostly large, or the variation in true
underlying risks is large.

2. Graph of treatment effect against average
proportion of events in the control and

treated groups

One can plot the odds ratio of an event (log scale)
against the average proportion of events in the
control and treated groups (log odds scale). In the
example presented in Sharp et al. (17) this gave a
different conclusion from method 1. However, the
authors explain that this approach relies on the
assumption that the true treatment effect does

not vary between trials; departures from this
assumption will lead to bias in the size and
direction of any observed association. Again,
this method does not solve the problem of
regression to the mean.

Use of this technique:

® is appropriate only if the true treatment effect
is constant across trials

¢ will be less misleading if the variation in true
underlying risks is large.

3. L’Abbé plot: proportion of events in the
treated group against proportion of events in
the control group

This plot was proposed as a graphical means

of exploring possible heterogeneity (16) (see
page 41). If a weighted regression line is fitted
to the plot then again due to regression towards
the mean this can be misleading.

Use of this technique:

® is a useful exploratory graphical method
as an adjunct to a standard meta-analysis
plot

* is not appropriate for defining groups in
which treatment is or is not effective.

Sharp et al. go on to discuss a clinically more
useful alternative:

‘Given that a patient’s “underlying risk” is known only
to the clinician through certain measured character-
istics, a clinically more useful alternative to the
problematic analyses we have described is to relate
treatment benefit to measurable baseline character-
istics. These characteristics, or some combination

of them, would act as a surrogate measure of the
patient’s risk......... An extension of this idea would
be to combine several prognostic variables into a
risk score........ Such a combination would avoid the
problem of post hoc data dredging which arises when
many variables are considered separately and would
best be based on data from sources other than the
trials which form the meta-analysis for treatment
effects, such as prospective studies.’ (17)

Other work has been carried out on this subject;
Mclntosh (32) presented a method to examine
population risk as a source of heterogeneity by
representing clinical trials in a bivariate two-level
hierarchical model, and estimate model
parameters by both ML and Bayes procedures
(chapter 13).

' A method for doing this in the statistical package GLIM is given by Thompson et al. (22).

2Thompson ef al. (22) give the mathematical justification for this.
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More recently Thompson et al. (22) present a
solution to the problem using Bayesian methods.
This method uses a Bayesian approach imple-
mented using Gibbs sampling (see chapter 13

for further details). This analysis can be extended
to include other trial level covariates and patient
level ones, when IPD are available. Their method
uses the log odds ratio scale (see pages 56-63),
and they state that using other scales is possible
in principle but currently difficult in practice.

The method of McIntosh (31) assumes bivariate
normality of true treatment effects and control
group risks across trials, and using a normal
approximation for binary outcome data.
Thompson et al. (22) find these assumptions
questionable, especially that the true control
groups risks will be normally distributed across
trials in a meta-analysis. They state that the robust-
ness of the results to apparently strong assumptions
needs investigating. Cook and Walter (33) have
presented another method which does not
depend on bivariate normality assumptions, and
used an unconditional ML approach. Thompson
et al. (22) compare their Bayesian approach

to this and find the results do differ. Further
research is needed to ascertain which is the

best method.

It should be noted that if individual patient data
are available (see chapter 24), it is possible to relate
treatment effects to individual patient covariates

in an attempt to investigate heterogeneity. As
Thompson et al. state:

‘This analysis would not suffer the problems discussed
for ‘underlying risk’, and would moreover be directly
useful to the clinician considering treatment for an
individual patient.” (22)

This is because underlying risk itself is not a
measurable quantity, a clinician only knows about
underlying risk through the patient’s measurable
characteristics.

Thompson et al. (22) go on to suggest the
development of a prognostic score based on
patient covariates and relate treatment effects

to this score for individual patients. Such an
analysis would remove the need for considering
‘underlying risk’ directly. They suggest the
prognostic score would best be based on data
other than that from the trials which form the
meta-analysis for treatment effects. Note that the
score of risk used should where possible be one
which clinicians can use so as to determine which
of their patients are likely to benefit sufficiently
from an intervention.

The validity of pooling studies
with heterogeneous treatment
effects

So far, this chapter has outlined ways to detect,

and up to a point, deal with heterogeneity in study
estimates. It would be wrong, however, to give the
impression that heterogeneity between studies

can always be dealt with satisfactorily and without
controversy. Indeed it is one area in which opposes
to meta-analysis lay much criticism. It is very alluring
that meta-analysis gives an answer no matter what
data are being combined. This issue of whether the
results of separate trials are homogeneous enough
to be meaningfully combined [termed combinability
by Sacks (34)] is real and problematic. It has been
argued that producing an overall combined estimate
for heterogeneous studies is wrong and leads to a
result which is misleading, and impossible to inter-
pret, a much used quote is that it is equivalent to:
‘combining apples and oranges and the occasional
lemon’ (35). However, there are certainly no clear
guidelines outlining how variable study results have
to be before it is deemed invalid to combine them.
Blair et al. state:

‘The decision as to whether estimated differences are
large enough to preclude combination or averaging
across studies should depend on the scientific context,
not just statistical significance. For example, a 25%
difference among relative risks may be considered
unimportant in a study into a very rare cancer, but
important in a study of a more prevalent disease.’ (36)

Berlin (37) discusses a meta-analysis with excessive
heterogeneity, and concludes that despite no
conclusion being able to be drawn from the studies
one could provide clinical insight and generate
hypotheses. He states:

‘the decision about whether to calculate a quantitative
summary of the data is not always straightforward, and
different investigators could legitimately arrive at
different decisions.” (37)

Below are personal viewpoints and advice
concerning the validity of combining
heterogeneous study results.

Fleiss observes:

‘Some statistical reviewers at the US Food and Drug
Administration have strongly criticised the pooling
of results from controlled clinical trials in which
there is heterogeneity of treatment effect, i.e. sizeable
differences exist between studies in their estimates

of the effect of treatment, and have suggested that

it is valid to combine results only from studies in
which the estimates are sufficiently close one to
another [sic]’. (38)
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However:

‘...not all FDA reviewers are in agreement as to how
strict the statistical criteria should be for deciding that
different studies are combinable (39).” (37)

This leads Fleiss to question whether the FDA
‘reviewers would accept as evidence for efficacy

the finding of a statistically significant pooled effect
even if the meta-analysis was restricted to studies
that were combinable.’ (38)

Pater (re-iterating Bob Wittes) takes the
following view:

‘...the degree of heterogeneity you are willing to
tolerate depends upon the question you’re trying to
answer. If the question you’re trying to answer is the
very pragmatic one of how to treat patients, then the
degree of heterogeneity you might be willing to
tolerate may not be as great as if you are trying to
answer some general question about the biologic
effect of treatment because we can’t give patients
‘chemotherapy’, we can’t give patients ‘CMF’. We
have to give patients a treatment regimen.’ (40)

DeMets (41) questions the meaning attached
to the overall results of a meta-analysis when
there is heterogeneity across studies. Simon
comments:

‘When the studies differ substantially, one must
recognise that the average results may not be
representative of the components making up the
average.” (42)

Greenland goes one stage further, suggesting:

‘when there is substantial unexplained variance
after covariates have been taken into account, there
should be no attempt to pool results and summarise
them.” (14)

These comments may give the reader the impres-
sion that the existence of heterogeneity is a real
drawback for the meta-analysist. However, it has
been argued that the fact that meta-analysis can be
used to confront heterogeneity and is one of its
strengths. Naylor (43) reasons that the generalis-
ability of several small trials, with diverse study
populations, may be greater than that of a single
trial, especially when the large trial may have
involved a carefully selected subset of patients.

Peto comments:

‘it is precisely when studies differ with respect to the
magnitude and perhaps even the direction of the
treatment effect that the formal methods of meta-
analysis are needed to summarize in an unbiased
manner all of the information available to

date.’ (44)

In a similar fashion, Hedges states when studies
conflict, the meta-analysis simply has more to
explain (8). Olkin reasons:

‘If studies that go into a meta-analysis are clones of
one another, then we would be able to make
statements with a high certainty about a small segment
of the population. By the same token, if there is too
much diversity, then our degree of certainty is
considerably lower, but our conclusions refer to a
larger segment of the population.’ (45)

Rubin (45) takes a different outlook again on
meta-analysis and heterogeneity of study results. He
states he is ‘concerned not with the summary, but
with the forecast one might make for the outcome
of a study that may differ from all the studies in
hand. Essentially, he would hope to estimate a
response surface that gave different results for
differently constructed studies, so as, for example,
to maximize output for a program.’ (46) (see
pages 214-15 for more details on this approach).

So, depending on ones aim, it seems that
heterogeneity is both the meta-analysts friend and
enemy! The thoughts of Bailey may offer some
practical help (18) on how to proceed, when the
studies are heterogeneous:

In determining the role of inter-study variation it is
important to consider three factors:

1. Which question one is trying to answer.

2. The degree of similarity or dissimilarity of
design.

3. The degree to which heterogeneity of
outcomes can be explained.

Three questions one may be interested in are:

1. Whether the treatment can be effective in
some circumstances.

2. Whether treatment is effective on average.

Whether treatment was effective on average

in trials in hand.

o

Bailey concluded that under the assumption

of no qualitative interaction, the answers to

these question coincide. A qualitative interaction
between outcome and study can be defined as
one where the sign of the outcome changes, i.e.
an intervention appears harmful and beneficial
in different trials. This is in contrast with a quanti-
tative interaction, where it is only the magnitude
(and not the sign) of the effect which changes.
Peto considers qualitative interactions ‘unusual but
not impossible’ (13). Fleiss et al. (37) believe may
be more common than is currently appreciated.

49



50

Heterogeneity

Pocock and Hughes, address the issue of whether
fixed or random effects should be used:

‘A sensible overall conclusion is that neither the fixed
effect nor the random effects model can be trusted to
give a wholly informative summary of the data when
heterogeneity is present. Perhaps the presentation of
both approaches reveals the inevitable uncertainty
inherent in an overview with heterogeneity.” (47)

Dickersin and Berlin (3) add that if a random and
fixed effects analysis come to different conclusions
then one can conclude heterogeneity is a problem.

Finally, Boissel et al. (10) state three basic causes of
a low p-value for the heterogeneity test and offer
practical advice on how to deal with them:

e random variation (chance)
* inadequacy of the treatment effect model
® interaction between treatment and trials.

In such a situation, it is advisable first to proceed
with the association test and the estimate of
treatment effect; and second, to consider
performing a further analysis.

There are three possibilities: 1) to exclude those
trials for which possible sources of inconsistency
have been identified on the basis of either medical
or methodological grounds (a special case should
be made for heterogeneity coming from sets of
trials with qualitative interaction); 2) to use a
different model of treatment effect; 3) to include
the cause of heterogeneity as a covariable in the
analysis either at the trial level or at the patient
level provided that individual records are available.
(In practice, the degree of emphasis accorded to
the question of heterogeneity will depend on the
objective of the meta-analysis. If the purpose is
merely to detect that the treatment has some
significant effect, one need not worry unduly
about heterogeneity, however low the pvalue.)

Other tests/investigations
of heterogeneity

(This section can be skipped if desired without
loss of continuity.)

The below are an outline of other tests/tools that
can be used in the investigation of heterogeneity.
They are not used as frequently as the methods

outlined on pages 39—41 and have been put here

for reference purposes. Many other tests exist; Paul
and Donner (48) compare nine of these using the
odds ratio scale, in a simulation study.

Likelihood ratio test

This method is described by Hedges and Olkin

in their book (9). It can be used as an alternative

to the Q statistic (page 40), but is computationally
much more difficult to calculate for no gains, so
the authors do not recommend its use, though
recently Biggerstaft and Tweedie (49) derived

a likelihood ratio test (LRT) for the general
comparison of meta-analytic models. Hardy and
Thompson (50) show how the maximum likelihood
estimates (MLEs) required for such a test can be
calculated, either via a relatively straightforward
iterative procedure or by direct maximisation of the
likelihood in packages such as S-plus (51) and as
shown by Senn (52) in Mathcad® (see chapter 10).

Odd man out method

The odd man out method (53) is really a
completely different approach to meta-analysis
that has not been widely adopted. Dickersin and
Berlin give a concise explanation:

‘The areas of overlap of confidence intervals from
individual studies are used to construct summary
‘confidence regions.” These regions are within the
graphic display and include information about both
the influence of individual studies and the overall
results.” (3)

This method has been used in some meta-analyses
to reduce heterogeneity. There are questions

to its validity, however, because it excluded trials
according to their results, not their design. In such
circumstances it may be more helpful to investigate
why the results are different, rather than simply
exclude studies.

Exact test

Zelen (54) devised an exact test for heterogeneity.
The StatXact software of Metha, Patel, and Grey
provides an implementation so it is easy to use

(55). This is a relatively new development. Emerson
(55) recommends its use generally, and it can be
particularly useful when studies are small or events
are rare. Klein ef al. (56) have used this test for

a meta-analysis.

Tests for heterogeneity when the data
is sparse

Tests for heterogeneity have been described that
have been modified for sparse data (11,57). The

®Produced by Mathsoft.
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authors are not aware of their use in meta-analysis
other than being noted by Huque and Dubey (58).

Extensions of the Q statistic

Formalising the Q statistic

Hedges and Olkin [(9), p. 153] take a very formal
approach to testing. They conclude to likening
exploring heterogeneity with the analysis of
variance. So

Qr=03+Qw

where Q;is the total heterogeneity, Q  the
between-classes, and Q ,, the within-classes hetero-
geneity. Splitting the heterogeneity up in this way,
testing homogeneity across classes and within
classes is possible. Most of the examples given (9)
are in education; however, Hedges (59) derives
fixed effects estimates from an ANOVA model
and similarly give homogeneity tests based on the
model. This method breaks heterogeneity down
into between and within groups, where the groups
are defined by study characteristics.

Using the Q statistic to find outliers

If the contribution each trial makes to the overall

Q test statistic is investigated then it may be possible
to identify outliers. A formal, but approximate
comparison of each ¢/ to a X* (1 df) distribution
can be made, provided the number of trials, &, is
not too small [(9), p. 256].

Q for vector of correlated estimates

Hedges and Olkin [(9), p. 210] present a method
of testing the heterogeneity of a vector of corre-
lated estimates. One may have these when combin-
ing multiple outcomes from the primary studies
(see chapter 23). See original reference for details.

Test for qualitative interaction

Peto (44) argues quantitative study by treatment
interactions (where the treatment effect varies in
magnitude across studies, but not in direction) are
inevitable, and that it is only important to test for
qualitative interaction, where the treatment effect
varies in direction across studies. Gail and Simon
propose a test (60) for qualitative interaction based
on a likelihood ratio statistic (LRS) [outlined by
Schmid et al. (61), p. 109]. The implications of a
qualitative interaction are that it suggests a
treatment is beneficial on certain subsets of
patients an not others.

Estimating the degree of
heterogeneity between event

rates using likelihood

Recently Matuzzi and Hills (62) presented a
simple way of testing for the presence of hetero-
geneity and estimating its extent using likelihood.
The authors state that this is more powerful than
the conventional X* statistic on N- 1 degrees of
freedom. This test, to our knowledge has not
been applied to meta-analysis; however, it seems
as though this would be possible, clearly more
investigation is needed.

Goodness of fit of linear models

If linear or logistic regression models are used,
lack of homogeneity of treatment effect can be
tested by computing tests of goodness of fit of
the model with only main effects for study and
treatment, or by testing the interaction of study
and treatment (63).

Test for homogeneity of disattenuated
effect sizes
Hedges and Olkin report:

‘If the reliabilities p(7},Y;) of the measures used

in a series of studies differ, then this differential
reliability will attenuate effect sizes to a different
degree in each study. Thus even if the disattenuated
effect sizes are perfectly homogeneous, the
attenuated effect sizes will be heterogeneous.’

[(9), p. 136]

A formula is presented to test for heterogeneity,
corrected for reliability.

Tests of homogeneity for correlation
coefficients

Hedges and Olkin [(9), p. 235] give a test for the
homogeneity of ztransformed correlations:*

Q=_:Z1(nl-— 3)(z;—2,)° (8.3)

where z, is the weighted average correlation
[see (9) for details].

An LRS for correlations is also presented [(9),
p. 236]

\ 1-72 (8.4)
LRS =—2( ¥ n;log —— + Nlog(1 —p?)
- (1-17,p%

*Spector and Levine (65) conducted an investigation to determine the Types I and II error rates of the U (equivalent to
equation 8.3) statistic test for heterogeneity using the combined estimate for correlation coefficients of Schmidt and

Hunter (66) [see (67) also for a similar investigation].
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Heterogeneity tests previously used
for case-control studies but could be
applied in a meta-analysis

Klein et al. (57) compare seven tests of homo-
geneity of the odds ration under various sample
size configurations using Monte Carlo methods.
The paper assumes the data comes from a single
stratified case—control study, however these
methods could be applied to meta-analysis by
considering study as the stratifying variable.

Heterogeneity within studies

This chapter has considered heterogeneity
exclusively at the study level; this is appropriate if
one is only concerned with pooling only summary
results from each trial. If however, IPD are available
for the studies being combined, one is able to also
investigate within study variation (as well as
between study variation).

Interesting application

Pladevall-Vila et al. (64) conducted a meta-analysis
investigating the effect of oral contraceptives on
rheumatoid arthritis. The Q statistic was highly
significant and it was clear that heterogeneity was
present. To investigate this, the study used many
of the techniques described in this (and in other)
chapters to assess this heterogeneity. Techniques
used include: funnel plot for publication bias,
odd man out method, random and fixed effects,
subgroup analysis, sensitivity analysis, quality scores,
and meta-regression. This paper provides a good
illustration of these methods.

Further research

Generally no guidelines on which method/s are
superior, and which methods should be used in
practice exist. Investigations into the exact and
likelihood based tests for heterogeneity should
be undertaken, to determine if benefit over
more standard methods exists, and if so under
what conditions.

¢ Investigation of the importance of a) the
number of studies and b) the size of the
individual studies, on the power of the test
for heterogeneity.

¢ Investigating baseline risk, which method(s)
is/are superior and should be recommended.

¢ Investigation into a critical value beyond which
one should not consider combining studies.

¢ Investigation of the relationship between
publication bias and heterogeneity.

Summary

In conclusion, we are some way off agreeing

upon the best strategy for dealing with hetero-
geneity. It seems essential to look for it and test

for it and sensible to explore possible reasons

for its presence. When a sizeable amount of
unexplained heterogeneity is still present after
this, a judgement has to be made on whether it is
appropriate to combine the results; if so with what
model; and what conclusions can be drawn from it.
Presently these decisions require a large degree of
subjectivity on the part of the reviewer. Whatever
approach is used, ‘it is invalid to delete from the set
of studies to be meta-analysed those whose results
are in the ‘wrong direction’ for the opportunity
for bias in identifying the ‘deviant’ studies is too
great.” [Fleiss (38)]
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Chapter 9

Fixed effects methods for combining data

Introduction

Using a fixed effect model to combine treatment
estimates assumes no heterogeneity between the
study results to be combined; that is to say the
studies are all estimating one single true value
underlying all the study results. Hence, all observed
variation in the treatment effects between the
studies is considered due to sampling error alone.
Clearly, in many instances this may not seem
realistic; by simply eyeballing the data differences
observed may appear larger than those expected
solely by sampling error. However, the decision will
not always be so clear cut, and for this reason the
formal test of heterogeneity given on pages 39-41
(or any of its equivalents) can (and should) be used
as a guide to when the use of a fixed effect model is
appropriate. So, the methods presented in this
chapter could be considered for use in a special
case, i.e. when no heterogeneity is present.

The general approach, which can be adapted

to most data types, is presented, followed by
illustrative examples using two common scales

of measurement used in evidence based medicine,
namely, odds ratios (ORs) and standardised effect
sizes (continuous outcomes). Methods specific

to ORs have also been developed, namely, the
Mantel-Haenszel, Peto and ML methods, these
are also covered. Again, examples are given for
each method. Chapter 14 deals with the other
dichotomous (binary) and continuous scales of
measurement used in medical research, together
with a section on ordinal data. Chapter 15 discusses
issues concerning these different scales.

All the methods presented in this chapter, with the
exception of the MLE method, are conceptually
simple, and can be calculated without the use of
computer software. That is not to say that analysis
cannot be facilitated by the use of a computer. MLE
methods, however, require computer intensive
methods for their implementation.

General fixed effect model - the
inverse variance-weighted method

Fixed effect estimates can generally be calculated
for all data types using the same general formula pre-

sented here. The inverse variance-weighted method
was first described by Birge (1) and Cochran (2)

in the 1930s and is conceptually simple. Each study
estimate is given a weight directly proportional to its
precision (i.e. inversely proportional to its variance).

For ¢=1,..., kindependent studies to be combined,
let T, be the observed effect size, 8, the population
effect size with variance v, for the ith study. We
assume all population effect sizes are equal i.e. 8
=...= 0,= 6 for a fixed effect model; that is to say,
the studies are all estimating one single true value
underlying all the study results. A general formula
for the weighted average effect size for these
studies is thus:

k
dw,T;
T = = (9.1)

k
Qw;
i=1

The weights that minimise the variance of T. are
inversely proportional to the conditional variance
in each study (3), i.e.

;= — (9.2)

The explicit variance formulae depend on the
effect measure being combined. The sections
on the OR (pages 56-63), continuous outcome
(pages 63-6), and combining other effect sizes
(chapter 14) give the necessary formula for v;.
For an exhaustive list of these see (4,5).

An approximate [exact if the effect size is normally
distributed (6)] 100(1 — a) % CI for the population
effect size is given by:

T - za/g\/(l/:zlwi) <O<T + ZG/Q\/(I/:Z]wi) (9.3)

where 24, is the appropriate critical value of the
normal distribution. This is essentially all that is
required to synthesise study treatment effects at the
most basic level. For a more thorough coverage of
the inverse variance-weighted method see (3).

Technical note
Li et al. (7) show that the variance estimation
formula for the standard inverse variance-weighted 55



56

Fixed effects methods for combining data

method can sometimes be biased and too sensitive
to the minimum of the estimates of the variances
in the Kstudies. If the minimum happens to be
wrongly reported to have a very small value, its
influence would be great, leading to a badly
underestimated value of the true pooled variance.
This paper gives mathematical justification for
this and goes on to suggest an adjusted

variance formula.

Combining binary outcomes from
studies using the OR

If the outcome from a study, such as an RCT, is
binary (e.g. failure/success or death/survival etc.)
the results can be presented in the form of Table 3
below. The OR can then be calculated by

the formula

a/(a+c)
_ (9.4)
b/(b+d)
but the slightly simpler approximation
ad
—_— (9.5)
be
is often used (and will be through the course
of this report).
TABLE 3
Failure Success
New treatment a b
Control 4 d

This measure gives a relative measure of risk in
the form of the ratio of two odds (8). An OR of
< 1 when comparing a new treatment to the
control would indicate an improvement on the
new treatment; while a ratio greater than one
would imply the new treatment was less effective
than the control.

For the purposes of combining results, it is
common, and recommended, to first transform
the data and work with log ORs instead. The main
reason for this being, only the finite interval from
0 to 1 is available for indexing a lower risk in the

treatment population, but an infinite interval
from 1 up is, theoretically, available for indexing
a higher risk in the treatment population.
Transforming the scale in this way removes this
constraint. A further advantage (but of lesser
importance) of doing this is that the log(OR)
takes on the value zero when no relationship
exists, rather than one, which is intuitively more
appealing (5). The estimate and corresponding
CI obtained can then be converted back onto
an OR scale by taking anti-logarithms. The
large sample variance of the natural log of

the OR is:

1 1 1 1

a+ b+ c+d

(9.6)

Urnor) =

Thus formula (9.6) can be used to calculate
weights for the inverse variance-weighted method.
An important problem that needs addressing is
that (9.6) is undefined if there are no events in
either of the treatment arms (i.e. one or more of
a, b, ¢, d=0). When this occurs the inverse variance-
weighted method cannot be used. One way to get
round this is to take the advice of Gart and Zweifel
(9), who suggest it good practice to add 0.5 to each
cell frequency before proceeding with the analysis.
They suggest, this reduces bias caused by one or
more small cells; it can be seen as a continuity
correction factor for converting discrete data

to a continuous scale.'

Example I: combining ORs

Effect on mortality of lowering ones’ serum
cholesterol level

This dataset was introduced in chapter 5. Of
the 34 RCTs described (10), only the seven
using patients largely without pre-existing
cardiovascular disease, i.e. intervention used as
primary prevention, will be considered. This is
primarily to reduce the amount of computation
required for the purposes of illustration. For
clarity data from these seven trials are reproduced
in Table 4.

The point estimate of the OR(OR) for each study
can be calculated as before (e.g. study identifica-
tion (ID) 16: OR = (174 x 244) /(250 x 178) =
0.954). The 95% ClIs for these estimates are
calculated on a log scale using the formula:

In(OR) = -1.96(SE(In(OR))) <In(OR)  (9.7)
<In(OR) + 1.96(SE (In(OR)))

!'There is some discussion in the literature as to the exact nature that a continuity correction should take. This aspect

has been considered specifically in (25).
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TABLE 4 Results of the seven primary studies investigating the effect cholesterol lowering on mortality to be combined

Study Number of

ID subjects in the subjects in the

treatment arm (nt) control arm (nc) arm (dt)=a
16 424 422 174
20 1149 1129 37
24 4541 4516 269
28 1906 1900 68
29 2051 2030 44
30 6582 1663 33
31 5331 5296 236

TABLE 5 Point estimate and approximate 95% Cl from the seven

primary studies

Estimateo_fOR
(axd)/(bxc)=OR[95% CI]

Study ID number

16 0.95 [0.73,1.25]
20 0.75 [0.48,1.16]
24 1.08 [0.91,1.29]
28 0.95 [0.68,1.34]
29 1.01 [0.66,1.55]
30 2.79 [0.85,9.10]
3 131 [1.07,1.59]

where SE(In(OR)) s calculated by taking the
square-root of (9.6).

(e.g. study ID 16: = vy, 05 = 1/250 + 1/174 + 1/244
+1/178 = 0.0195. In(OR) = In(0.95)

=-0.051 giving a 95% CI of —0.051 = 1.96 v0.0195
= [-0.81,0.22]

95% CI for (OR) = [e*?) 2] = [0.73,1.25])

Table 5 displays the point estimates along with their
95% CI for the other studies.

It can be seen from 7Table 5 that three of the point
estimates are < 1, indicating a reduced risk for
people on the treatment (cholesterol reducing)
and four are > 1 indicating an increased risk for
the treatment. However, with the exception of
study 31, every Cl includes one. From this, one
would conclude no significant treatment effect was

detected (when considering each study separately).

Study 31’s 95% CI spans 1.07-1.59, indicating

Number of Number of deaths Number of deaths Number still alive Number still alive
in treatment

in the control in treatment arm  in the control

arm (dc) =c¢ (nt=dt) =b arm (nc-dc) =d

178 250 244

48 112 1081

248 4272 4268

71 1838 1829

43 2007 1987

3 6549 1660

181 5095 5115

TABLE 6 Relative weightings of the seven studies to
be combined

Study ID var(In(OR)) SE(In(OR)) w =I/SE>
16 0.0195 0.1400 51.38
20 0.0497 02229 20.13
24 0.0082 0.0907 121.68
28 0.0300 0.1729 33.47
29 0.0465 02156 21.28
30 0.3644 0.6037 2.74
31 0.0102 0.1010 98.48

evidence of an statistically significant increased

risk for the patients in the treatment arm. By com-
bining these studies it is hoped an estimate, which
is more generalisable than any of the individual
study results (because studies using different
populations are being combined) and more precise
(due to increased numbers) can be produced.

As noted previously, when combining OREs, it is
desirable to work on the log odds scale. The weight-
ing of each study (w) in the combined estimate
needs calculating. Using the inverse variance-
weighted method, this is simply equal to 1/v,, g
(e.g. for study 1, W=1/0.0195 = 5.13). Table 6
shows the values for the rest of the studies.

Before combining the results of studies (using the
inverse variance-weighted method), it is necessary
to check that the results are in fact homogeneous.

Using the test for heterogeneity given on
pages 39—41:
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=[(51.88 x (=0.05%)) +...+(98.48 x 0.27")]

_[(51.88 x (<0.05))+...+(98.48 x 0.27) |*

(51.38+...+98.48)
=10.1854

This is compared to a X* statistic on six (n— 1
studies) degrees of freedom. This value gives a
corresponding pvalue of 0.117. As stated on pages
39—41, this test has low power and thus a signifi-
cance level of p < 0.1, is usually taken as a critical
value. In this case p> 0.1, and is therefore non-
significant, though only marginally so. It is clearly
possible that study results may vary by a greater
amount than chance alone would permit. In
chapter 10, this same analysis is repeated using
methods which take the between study variation
into account. This section also discusses under what
conditions each type of analysis is appropriate. For
now, it is sufficient to consider no heterogeneity
being present and proceed with a fixed effects
analysis (for illustrative purposes.)

Combining the results using formula (9.1), gives a
point estimate of the log(OR)

Ln(Typ) = [(51.38 X (=0.05))+...+(98.489 0.27)]

(51.38+...+98.48)
=0.085

with an estimated SE (9.2)

SE (In(Tor)) = V1/(51.38+...+98.48)
=0.054
Converting back to an OR scale
Tor = exp(0.088)
=1.09

Calculating the 95% CI for this combined estimate,
using formula (9.7)

lower limit = exp(0.088 — (1.96 x 0.054))
=0.98

upper limit = exp(0.088 + (1.96 x 0.054))
=1.21

Study

24 T
28 —

29 —_—

30

Pooled -

-15 -02 12 25
In(OR)

FIGURE 1 Plot of seven cholesterol trials together with pooled
result using a fixed effects model

The results of this analysis are displayed graphically
in Figure 1. This is a very common way of displaying
the results of a meta-analysis. Each studies point
estimate together with its 95% CI is displayed.

The size of the box representing each point
estimate is proportional to the size and hence

the weight of that study in the analysis. The
estimate at the bottom of the diagram is centred
on the combined point estimate together with

the lower and upper bounds of its 95% CI.

The combined OR is slightly greater than 1,
however, because its corresponding CI includes 1,
a conclusion that no evidence of a treatment effect
exists is drawn from the combined results of the
seven studies. Although the point estimate is small,
its Cl is tight, due to large numbers and only just
crosses unity. The possibility that cholesterol lower-
ing treatment may actually be harmful as a primary
intervention cannot be completely ruled out.

Other methods for combining ORs
Other methods, specific to combing ORs, are
available. Under most conditions the estimates
obtained from each method should be very similar
to one another. However, when the data is sparse,
results may differ and some traditional methods
may break down altogether. For this reason, new
computer intensive methods have been developed
to be used in situations where the traditional
methods have questionable validity (11). Both the
standard methods and the newer ones are outlined.
For a more extensive coverage see (11).
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Mantel-Haenszel method for
combining ORs

This method was first described by Mantel
and Haenszel (12) for the use in combining
ORs for stratified case—control studies. Later
Mantel (13) reported that the method could be
used for a wider class of problems, including
prospective studies (6). For use in meta-
analysis, the study number functions as the
stratification variable (14). The formula is
given below:

(9.8)

TMH(()R) =

where a,, b;, ¢;and d; are the four cells of the
2 x 2 table for the ith study as given on pages
56-63 and n;is the total number of people in
the ¢th trial.

A variance estimate for the estimated summary
OR, _MH(OR), is required in order to calculate a
CI around this point estimate. The formula
commonly used*” was derived by Robins,
Breslow and Greenland (15) and Robins,
Greenland and Breslow (16). This formula
computes a variance estimate for the log

of Tyory and is notated:

k k k
> PR, Y (PS+QR) Q.S
i=1 i=1 i=1

UMH(In(OR)) = + + (9.9)

k 2 k k k 2
ERECRE

where P,= (a;,+d;)/n;, Q,= (b;+c)/n,
R,=ad;,/n,and S;=b,c,/n,

A100(1 - a)% Cl is thus given by:
(9.10)

CXP[IH (TMH(ORL) — Za/2 (UMH(()R))VQ] s 19/2
< exp|In(Tygror) + Zas2 Unior) ]

Applying the Mantel-Haenszel method to the
cholesterol lowering data (Figure 2)

Taking the seven primary studies used above

and combining them using the Mantel-Haenszel
estimate (9.8) and calculating a 95% CI using the
Robins, Breslow and Greenland formula, (9.9),
presented above:

7 (174 x244) (236 x5115)
S a,d;|n, Foot
5 L 846 10,627
o (250 x178) (5095 x 181)
2 bic; tonnt
o 846 10,627
=1.09

FIGURE 2 Graphical plot of the combined studies using the Mantel-Haenszel estimate (obtained using Meta View, part of the Cochrane

systematic review software package)

Study Expt Control
n/N n/N

Comparison: cholesterol lowering versus control

16 174/424 178/422

20 37/1149 48/1129
24 269/4541 248/4516
26 68/1906 71/1900
29 44/2051 43/2030
30 33/6582 3/1663
31 236/5331 181/5296
Total (95% ClI) 861/21,964 772/16,956

x> 10.19 (df = 6) Z = 1.66

(95% Cl fixed) (%)

OR Weight OR
(95% Cl fixed)

15.6 0.95 [0.73,1.25]
6.9 0.75[0.48,1.16]

346  1.08[0.91,1.29]

— 102 0.951[0.68,1.34]
—— 6.3 1.01 [0.65,1.55]
= 0.7 2.79 [0.85,9.10]
- 257  1.31[1.07,1.59]

f* 1000 1.09[0.98,1.21]

2 Several others have been put forward, these are further explored in (15,16,35). Emerson (11) also discusses the
variance estimator at length. Sato (36) developed a method that works directly on the odds ration scale (opposed
to In(OR)). Simulations have shown that this works as well as the method of Robins given above and may have slight
advantage for matched pair data arising in epidemiology studies. Pigeot (37) has developed another approach using

the jack-knife.

?Fleiss (23) comments that above variance estimator ‘is remarkable in that it is valid both when the study’s design calls

for matching and when it calls for stratification’.
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Calculating the variance of the natural log of the
above estimate from formula (9.9)

7 7 7
> PR, Y(PS+Q:R) Q.S
i=1 i=1 i=1

U MH(In(OR)) = 2! i . * 7 \2
2( Rl-) 2(2&) 2&-) 2(257')
i=1 i=1 1 i=1

[(0.51 X 52.60)+...+(0.50 x 86.78)]

M~

2(52.60+...+86.78)*

[(0.51 X 50.18 + 0.49 X 52.60)+...+(0.50 X 113.59 + 0.50 x 86.78)]

2(52.60+...+86.78) (50.18+...+113.59)

[(0.49 X 50.18)+...+(0.50 x 113.59) ]
_I_

2(50.18+...+113.59)*

169.72 354.30
= + +
9(337.60)2 2(337.60) (368.84) 2(368.84)*

182.42

=0.0028
Using formula (9.10) a 95% CI for 7_“MH(0R) is given by:

exp[0.088 — 1.96(0.0028)"/%] < B
< exp[0.088 — 1.96(0.0028) /2

=1[0.984,1.213]

If this estimate and CI is compared to that obtained
using the inverse variance-weighted method, it can
be seen that in this case both methods give nearly
identical answers and the conclusions drawn here
are the same as those on pages 56-8.

Peto method for combining ORs

This method was first described by Peto in 1977 (17)
and more thoroughly by Yusuf et al. (18). It can be
regarded as a modification of the Mantel-Haenszel
method presented above. An advantage it has over the
Mantel-Haenszel method that it can still be used when
some of the cells in the table are zero; and is easy to
calculate. Unfortunately, this method is capable of
producing serious under estimates (5), when the OR is
far from unity. This is most unlikely to be a problem in
clinical trials, but could be in the meta-analysis of
epidemiological studies (19) (see chapter 19).

Defining n; as the number of patients in the ith
trial and n , as the number in the treatment group

of the ith trial. Let d, equal the total number of
events from both treatment and control groups,
O, the number of events in the treatment group, E,
the ‘expected’ number of events in the treatment
group (in the ith trial), calculated: E; = (n,/n,)d.
For each study two statistics are calculated: 1)
O-E, the difference between the observed and
the number expected to have done so under the
hypothesis that the treatment is no different
from the control, E. 2) v, the variance of the
difference O-E.

For K studies the pooled estimate of the OR is given
by (20):

K

_ K
TPETO(OR) = GXP{ (@ —Ei)/z 'Ui]

i=1 =1

(9.11)
where v; = E;[(n, — n,)/n][(n; — d;)/(n; — D]
An estimate of the approximate variance of

the natural log of the estimated pooled OR is
provided by:

_ K
var (InTpgroi0r) = ( Zvl-) (9.12)
i=1
A 100(1 - a)% Cl is thus given by:*
k k
_Z(Oi -E) + Za/Q\/zvi
exp | ! il (9.13)

Applying Peto’s method to the cholesterol
lowering data

For this method it is necessary to calculate
the marginal values for each 2 x 2 table to be
combined. Table 7illustrates this for the first
study (ID 16).

From Tuble 7, the values needed to calculate Peto’s
method can be calculated.

TABLE 7 2 x 2 table including marginal values for study ID 16

Dead Alive Total

Lowering cholesterol treatment 174 250 424
Control 178 244 422
Total 352 494 846

*This is not symmetric (34).



Health Technology Assessment 1998; Vol. 2: No. 19

For study ID 16:

0,= 174
424
E, = (— 352 = 176.42
846
(846 — 424)][(846 — 352)]
v, = 176.42 =51.45
846 (846 -1)

Table 8 presents these values for the other
six studies.

TABLE 8 Intermediate values needed to calculate the Peto estimate

Study ID o, E, v, O:-E
16 174 17642 5145 242
20 37 4287 2046 587
24 269 25921  121.88 9.79
28 68 69.61 3349 16l

29 44 4372 2129 0.28
30 33 28.74 577 426
30 236 209.19  100.17 268l

Note: weighting equal to var(InTperoor))

Entering the values from 7able § into equation
(9.11) gives the combined estimate

(174 - 176.42)+...+(236 — 209.19)

=1.09

TPETO(OR) = exp

(51.45)+...+(100.17)

As equation (9.12) shows, the variance of this
estimate is given by the sum of the v;s

var (InTppp0.0r) = (51.45+...+100.17) = 354.52

Hence a 95% CI is given by (9.13)

31.24 + 1.96V354.52

exp
354.52

95% CI [0.98,1.21]

Figure 3 shows a plot of studies combined using the
Peto method.

This result is exactly equal to that given by
the Mantel-Haenszel estimate in the previous
section. Hence, in this example, all three
methods led to exactly the same conclusions.
This is not always the case however; on pages
62-3, instances are discussed when the results
of these methods may differ and examines
which methods are superior in those
instances.

Combining ORs via ML techniques
ML techniques use iterative procedures and
therefore need a computer for their
implementation.

MLE:s are difficult to compute exactly, but
they are the most efficient for large sample
sizes. Unfortunately, there is no way of knowing
how large the sample sizes must be for this
property to hold (6). The MLE of 0 is based
on the likelihood of the £ studies and can
be denoted (6):
k d;
LOU 6i(1-8,) 6;(1-6,)" (9.14)
i=1

i

FIGURE 3 Plot of studies combined using the Peto method (obtained using Meta View)

Study Expt Control

n/IN n/IN

Comparison: cholesterol lowering versus control

16 174/424 178/422

20 37/1149 48/1129
24 269/4541 248/4516
26 68/1906 71/1900
29 44/2051 43/2030
30 33/6582 3/1663
31 236/5331 181/5296
Total (95% ClI) 861/21,964 772/16,956

x> 10.24 (df = 6) Z= 1.66

Peto OR
(95% CI fixed) (%)

Weight OR
(95% ClI fixed)

145  0.951[0.73,1.25]

5.8 0.75 [0.49,1.16]

344  1.08[0.91,1.29]

— 9.4 0.95 [0.68,1.34]
—— 6.0 1.01 [0.66,1.55]
1.6 2.09 [0.93,4.73]

- 283 1.31[1.07,1.59]

* 1000 1.09[0.98,1.21]
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subject to:

OR y = en(l - eci)/eci(l - en) (9.15)
This is an unconditional estimate. Emerson (11)
reports that Breslow found that unconditional
MLE, which had earlier been investigated by Gart,
is not consistent for estimating the OR when the
number of counts remained bounded.

Conditional MLEs also exist; they use uses the
conditional distribution of the data in each table,
given the fixed values for the total counts in the
margins. The conditioning leads to an estimator
that is consistent and asymptotically normal (11).
For formulae see (21). In a study investigating
their relative merits, it was found superior to

the unconditional MLE, and equal or superior

to the Mantel-Haenszel estimator in both bias and
precision (21). However, both theory and simu-
lation suggest that (conditional) MLE does not
stand up as well as the Mantel-Haenszel estimator
under departures from the assumption of
independent trials (11).

Emerson reports (11) new non-iterative
procedures (including jackknife) (that are
asymptotically optimal under the classical
assumptions of independence and homogeneity
of ORs) have been developed. He comments:

‘Although these estimators seem to be competitive
with the conditional maximum likelihood estimators
under the classical assumptions, further research is
needed to determine whether any of them exhibit the
robustness of the Mantel-Haenszel estimator.” (11)

This is a very brief outline of these methods, a
recommended starting point for further investi-
gation is the excellent review by Emerson (11).

Exact methods of interval estimation
The above methods for interval estimation are all
asymptotic; their justification assumes either that the

counts are large or that the number of strata is large.

Exact methods do exist that are not restrained in
this way, and are based on exact distribution theory.
Although these methods have long been available in
principle, modern computer power (using network
algorithms) now makes them routinely available. A
detailed description of these methods are beyond
the scope of this report, the interested reader is
referred to (11) for a review of this topic.

More methods for combining ORs

Itis pointed out that other methods do exist for
combining ORs, again Emerson (11) would be an
excellent starting point for further investigation.

Discussion of the relative merits of
each method

Having a number of different approaches to
combine ORs at the researcher’s disposal, it
would be desirable to have guidelines indicating
when a particular method is most appropriate,
and when an alternative procedure would

be preferred.

The Peto method has come under strong
criticism. It has been demonstrated that this
method is capable of producing seriously biased
ORs and corresponding SEs when there is severe
imbalance in the numbers in the two groups
being compared (22). Bias is also possible when
the estimated OR is far from unity (23). Having
several alternative methods available, Fleiss went
on to comment (23) that there is no compelling
reason for the Peto method to be employed. Fleiss
(24) also describes conditions under which the
inverse-weighted and the Mantel-Haenszel
method are to be preferred: If the number of
studies to be combined is small, but the within-
study sample sizes per study are large, the inverse-
weighted method should be used. If one has many
studies to combine, but the within-study sample
size in each study is small, the Mantel-Haenszel
method is preferred.

A comparison between the Mantel-Haenszel and
(conditional and unconditional) ML techniques
has been carried out. Generally, if the sample sizes
of the studies are large (all cells =2 5) the methods
will give almost identical results. If there are cells
with counts of < 5 then there will be differences
between the methods but these will be small. In
conclusion, as there seem to be no clear benefits
to be reaped from the difficult computation of
the ML method, using the inverse-weighted and
Mantel-Haenzel methods when indicated would
seem the best strategy in most cases. If, however,
samples sizes are small for individual studies exact
methods may be preferred (22).

Another factor that needs considering is whether
any of the cells have zero events. Recently Sankey
et al. (25) carried out an assessment of the use of
the continuity correction (adding 0.5 to each cell)
for sparse data in meta-analysis, using the Mantel-
Haenszel estimate. They report:

‘A study with a 0 cell in the treatment group
produces a point estimate of 0.0 for the OR and
contributes only to the denominator of the Mantel—
Haenszel summary measure. When zero events are
observed in the control group, the study odds ratio
estimate is undefined and it contributes only to the
numerator of the summary measure. Studies with 0
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total observed events contribute no information to the
Mantel-Haenszel odds ratio. These studies are also
not included in the @statistic to test for homogeneity,
and hence do not add a degree of freedom to the
associated chi-squared statistic.” (25)

Thus a study with zero total events is completely
excluded from the analysis if no continuity
correction is used. It has been argued that dropping
them in this way is acceptable because they provide
no information on the magnitude of the treatment
effect (26). However, Sankey et al. consider this

as unappealing as a trial with zero events from

200 subjects would be equally non-informative as

a trial with only 20 subjects, and hence conclude:

‘... a meta-analysis involving sparse data should usually
employ the continuity correction. The only observable
exception to this would be if one prefers to use the
fixed effect Mantel-Haenszel summary measure and
there is strong evidence suggesting that very little
heterogeneity exists among component studies.

In this situation, the uncorrected method performs
very well and the only problem facing the investigator is
explaining why studies with zero total events have been
excluded from the analysis. In all other sparse data the
correction should be employed. The evidence shows
that it is at least as good as the uncorrected method,
and in some cases clearly superior.” (25)

Recently, another factor has been identified that
may be important when carrying out a fixed effects
meta-analysis. Mengersen et al. (27) compared the
ways in which CIs for ORs were calculated for
individual studies. They compared the calculation
of the ORs in epidemiological studies investigating
the effect of exposure to environmental smoke on
lung cancer. An exact test (Fisher’s) was compared
to the Mantel-Haenszel method and the logit
variance approximation (used in this instance to
calculate OR from each individual stratified study
as opposed to across studies to combine estimates).
They concluded:

‘exact methods might increase estimated confidence
interval widths by 5-20% over standard approximate
(logit and Mantel-Haenszel) methods, and that
these methods themselves differ by this order of
magnitude.” (27)

Emerson, however, gives a slightly different
impression:

‘Simulations suggest that exact methods do not clearly
outperform those associated with Mantel-Haenszel,
except perhaps with highly unusual configurations

of data’ (11)

This is a new concern in meta-analysis and one
that may need addressing further due to these
conflicting reports.

Finally, Emerson (11) gives formal guidelines

on the procedure that should be followed when
combining ORs. To the authors of this report’s
knowledge this has not yet been applied to meta-
analysis methodology; however, there seems little
reason why it should not. These guidelines are
reproduced in Box 4.

Combining treatment effect
estimates measured on a
continuous scale

There are many different continuous scales

used to measure outcome in the medical literature
e.g. lung function, pulse rate, weight and blood
pressure. A property they all have in common is
that they are all measured on a positive scale. For
this reason, it is common practice to use a log-
arithmic transformation on the data and then

use normal distribution theory (6). Usually the
parameter of interest is the difference in effect
size between the treatment and control groups.

If it can be assumed that all the studies estimate
the same parameter and the estimates of
continuous-outcome measures are approximately
normal, then the inverse variance-weighted method
can be used directly, combining the data in their
original metric. If different studies measured their
outcomes on different scales then synthesis is still
possible, but the data first needs standardising.
However, it should be noted by doing this the
resulting estimate may be difficult to interpret
clinically. Both methods are described followed

by an example.

Combining data in its original metric
If the data are approximately normal and the
outcomes of all the studies to be combined are
measured on the same scale, then this method is
appropriate. The measure of treatment effect is
given by:

Ti=pu— (9.16)
where p,; and p,; are the mean responses in

the ¢th study for the treatment and control
group, respectively.

The variance of this treatment difference is:

var(T) = 62(1/n}+ 1/n)) (9.17)
where 7'is the within-study sample size in the
treatment group, 7' is the within-study sample size
for the control group, and 0;* is the assumed
common variance.
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BOX 4 Guidelines for combining ORs
[reproduced from (11)]

1. Calculate the Mantel-Haenszel estimate of the
common OR, unless a combination of extreme
values in all tables leads to degeneracy. This estimate
performs well in a wide variety of circumstances. It can
withstand departures from standard assumptions of
independent subject responses and homogeneity of
ORs across strata at least as well as other methods. It
performs well for many tables having small counts
unless the data give degeneracy.

2. Use the Robins et al. estimate of variance of the log-OR
to provide a confidence interval for the Mantel-
Haenszel estimate. This method of interval estimation
gives relatively short intervals with coverage close to the
nominal level (usually 95%) in a wide variety of
circumstances. The method works except in unusual
situations for which each table has an extreme
configuration of counts, and it can be carried
out on a hand-held calculator.

3. Calculate the conditional ML estimate of the OR
when the total count is under 1000, or when the tables
show severe imbalance in their marginal counts. For
example, when the total count is more than 1000 but
one of the four marginal totals is a single-digit number
in all tables, we would calculate the conditional ML
estimate as a check on the Mantel-Haenszel estimate.
If the sum over all tables of the counts in any single
position is 0, the estimate is left undefined.

4. Use exact methods to provide a confidence interval for
the conditional, ML estimate of a common OR. We
recommend using the mid-P adjustment when giving
an exact confidence interval, because it tends to give
shorter and thus more informative intervals while
retaining the desired level of coverage.

5. When the exact analyses give results that differ
substantially from those of the Mantel-Haenszel
methods, we recommend that both analyses be
reported. We also recommend including a brief
discussion of the potential reason for the discrepancy —
a collection of tables that is very close to giving
degeneracy of the estimates, substantial heterogeneity
of sample ORs across the tables, or strong imbalances
among the marginal totals of the 2 X 2 tables.

6. Recommendations (3) and (4) require the use of
special computer software; the needed software is
incorporated in several commercially available
statistical packages for microcomputers including
StatXact, Egret, Statcalc, and Systat.

7. We recommend against reporting other analyses:
those associated with the Peto method, those using
the empirical logit, and those based on unconditional
ML techniques.”

" However, Whitehead and Jones point out: ‘One potential
problem with the ML method (which is the same as for the
Mantel-Haenszel method in the binary case) is that it cannot be
calculated if one of the cells in the 2% 2 table is zero. There is
only a problem with the Peto method if there are no successes in
total or no failures in total.’ (38). This implies there may be a use

Jor the Peto method in meta-analysis.

Synthesis can then proceed using the inverse
variance-weighted method described on pages 55-6.

Standardised mean differences

If the normal distribution assumption seems
reasonable, but the studies estimate different
parameters, the method of standardised mean
differences should be used instead. The effect
size of an experiment, d, is defined as:

d = Tsm)= (p—p9/s* (9.18)

where p} and p§are the sample means of the treated
and control arms, respectively, and s;* is the estim-
ate of the standard deviation of the ith study. s*
can be defined in different ways, each of which

will yield a different estimate. Common and
intuitive choices for s* are s*, and s%, which

are the standard deviations of the treatment and
control group, respectively. Alternatively, a pooled
standard deviation combining both s and s{*
could be used.”

Hedges and Olkin [(28), p. 78] suggest using the
pooled estimate for the standard deviation, if it is
reasonable to assume equal population variances.
They go on to show that this estimate has both
smaller bias and variance than using, s{*, the control
standard deviation as suggested by Glass (29). [See
Hedges and Olkin (28) and Rosenthal (4) for a
thorough treatment of the alternative measures of
effect difference variance]. The formula for this
pooled sample standard deviation is:

$;=

(ni=1)(s)* + (nj—1)(s9)*
\/ (9.19)

ni+ni—2

where n!and n{are the treatment and control
group sample sizes, respectively.

The estimate, d, has small sample bias, and a
correction equation has been derived, for formulae
and a thorough account of this topic [see Hedges
and Olkin (28) p. 81].

The variance of this estimate of effect difference
is difficult to compute exactly, however if the
underlying data can be assumed to be normal the
conditional variance of 7}, can be estimated as:

% Another alternative, discussed by Rosenthal (4),
used when the Ss of the two groups differ greatly, is
to transform the data to make the Ss more similar.
Such transformations require having access to the
original data.
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n’ + nt d?
o(d) = 4

'I’LTTLC 2(”’ + n(?)

(9.20)

where n” and n¢are the numbers in the treatment
and control groups respectively, and dis the
observed standardised mean difference (note:

the is have been omitted).

More exact methods are possible using a computer
intensive method; for a discussion see (28).°

Fleiss (23) states that if the sample sizes in the two
treatment groups (n' and n°) are both large, and
the population variances are equal then the simpler
variance approximation

T

n’ + nt

o(d) =

(9.21)
n'l‘n(f

can be used. Whichever variance estimate is used

for the standardised mean difference from each

study, synthesis can proceed using the inverse

variance-weighted method.

If the data appear to be non-normal-skewed they
can often be transformed to achieve, at least, an
approximately normal distribution. If this is the
case one can proceed using the above methods
on the transformed data.

One drawback to doing this is that different answers
will be obtained for the transformed data if the
normality assumption was not met. For this reason, a
non-parametric estimate was developed by Kraemer
and Andrews (30) and extended by Hedges and
Olkin (31), which is unaffected by monotonic
transformations of the observations. These methods
are presented in their entirety in (28), p. 92.

If the data are censored in any way, such as is
often the case for survival data, special methods
are needed. These are covered under chapter 20
on survival data.

However, Greenland refutes the use of standardised
effect measures stating:

‘By expressing effects in standard deviation units,
one can make studies with identical results spuriously
appear to yield different results; one can even reverse
the order of strength of the results.” (32)

Other measures of the difference between two
groups do exist, though are not used as commonly.
A large selection of these are discussed by Rosen-
thal (4). The other type of continuous outcome not
mentioned here is the correlation coefficient; this
is dealt with in chapter 14, covering other scales

of measurement.

The effect of mental health treatment

on medical utilisation — combining treatment
effect estimates measured on a continuous
scale

Table 9 [modified from (23), Table 1 p. 125]
presents data from five comparative studies
selected from more than 50 analysed by Mumford
et al. for the effect of psychotherapy on patients
hospitalised for medical reasons (33). The out-
come measure was, in some studies, the number
of readmissions to hospital, and in other studies,
the number of days in hospital. Clearly two
different scales are being used here, so it is
necessary to combine standardised treatment
estimates using the methods described in the
previous section.

TABLE 9 Data for five studies of the effect of mental health
treatment on medical utilisation [adapted from (34)]

Psychotherapy Control
Study n, X | sd, n, )_(z sd, s
| 13 50 47 13 65 38 427
2 30 490 171 50 6.10 23 210
3 35 225 3.44 25 249 1065 79I
4 20 125 1.47 20 123 1.66 1.57
5 8 650 0.76 8 738 141 I.13

"sis the square root of the weighted average of sd ? and sd 2

Before carrying out a fixed effect analysis, it is wise
to test the homogeneity assumption. This is done
using the test outlined on pages 39-41.

Summary statistics derived from Table 9 are given in
Table 10.

For the five studies presented above:

Q=11.109 - 20.137°/56.75 = 3.96

®Hedges and Olkin [(28), p. 82] compare four different estimators of effect difference and conclude the only real
differences exist when there are less than 16 degrees of freedom, which is unrealistic in practical applications.
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TABLE 10 Summary statistics for meta-analysis derived from
Table 9 [adapted from (34), with corrections]

Study Y w" wy wy?

[ 0.351 6.50 2.282 0.801
2 0.571 18.75 10.706 6.113
3 0303  17.50 5.303 1.607
4 —0.127  10.00 -1.270 0.161
5 0.779 4.00 3116 2.427
Sum 56.75 20.137  11.109

“Y is the standardised difference between the two means in
Table 9;Y = (X, — X))/s

“W is the study-specific weighting factor, W = n|n,/(n, + n,)

This is not statistically significant (compared

to 10% critical value of the ¥? distribution with
4 df), therefore one can proceed with the fixed
effects analysis.

Combining the weighted average of the five effect
sizes using standardised treatment effect gives:

20.137
Tsrn ==
56.75
with SE:
SE(Typp) = =0.133
V56.75

Calculating a 95% CI for the common underlying
effect size

lower limit = 0.355 - 1.96 x 0.133 = 0.09
upper limit = 0.355 + 1.96 x 0.133 = 0.62

Because the CI excludes the value 0, one may reject
the hypothesis that 8 = 0, suggesting a benefit from
the use of psychotherapy. Figure 4 summarises

this analysis.

Further research

Guidelines for which method to use in given
situations when combining on the OR scale, i.e.
which methods are valid under which circum-
stances, is there a role for the Peto method?

Use and implications of the exact methods; should
they be used? If so, under what conditions?

Study

Pooled

-2.0 0.7 0.7 2.0

Standardised mean difference

FIGURE 4 Results of pooling five studies of the effect of mental
health treatment on medical utilisation

Clear guidelines on how to proceed when zeros are
present in 2 X 2 tables to be combined; including
clear advice on the exact form of any continuity
correction factors that should be used.

Summary

This chapter has considered the so called fixed
effect approach to meta-analysis. This assumes

that all the studies in a meta-analysis are estimating
the same underlying unknown true intervention
effect. A variety of estimation methods have been
proposed for such models, whilst in many situations
they give qualitatively similar results, in some
circumstances differences can be serious. In terms
of binary data, problems with a number of methods
occur if there are zero events in any treatment arms
in any study. In such circumstances there has been
some empirical work reported on the various
methods advocated for overcoming this problem.
Meta-analysts should report precisely what methods
have been used in such circumstances.
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Chapter 10

Random effects methods for combining data

Introduction

An assumption made when implementing a fixed
effect model is that all the studies are estimating
the same underlying effect size (i.e. H,: 8, =6,

= ... 8,). Pages 39-41 reported the test for hetero-
geneity, which tests this hypothesis. When a low
pvalue is obtained from this test, the above assump-
tion is violated and doubts exit as to whether the
fixed effect model is wholly appropriate.
Thompson comments:

‘With a fixed effect method, the confidence interval
for the overall treatment effect reflects the random

variation within each trial but not potential hetero-

geneity between trials. In terms of extrapolation on

future patients, the confidence interval is therefore

artificially narrow’ (1).

Pages 43-8 suggested ways of dealing with hetero-
geneity, one of which was to use include the cause
of heterogeneity (such as age of population, dose
level of treatment etc.) as a covariate in the analysis.
Meta-regression techniques for doing this are given
in chapter 11. If no variables available appear to
explain, or only partly explain, the apparent
heterogeneity, a different model for the treatment
effect is required. The random effects model
described in this chapter presents a way of
modelling this extra variation, when no covariates
are included. This methodology is extended in
chapter 12 to cover the inclusion of variables,

that partly explain the heterogeneity, within a
random effects framework, these are usually

called mixed models.

It has been clearly established, that the test of
heterogeneity has low power (see pages 39-41);
thus, even when a result not significant at the

5% level is returned, there is a good chance there
may still be a degree of underlying heterogeneity.
For this reason, in certain circumstances, by
considering other evidence, such as descriptions
of study designs, study populations, dose levels,
and graphical plots of effect size (see pages 39-48),
the assumption of one fixed effect size underlying
all the studies may still seem unrealistic. In this
situation, random effects models can be used.

In fact, some people consider that by the very
nature of biomedical experiments, some degree
of heterogeneity is always present, for this reason

random effects models should be used as a matter
of course.

Random effects models are not without their
critics though, and their appropriateness has

been a matter of considerable debate over the past
decade. A summary of some of these arguments,
both advocating and rejecting their use, is given

at the end of the chapter.

Concept behind random
effects models

A way is needed of taking into account the extra
variation incurred, when assuming the studies are
estimating different (underlying) effect sizes. These
underlying effects are assumed to vary at random
within the model presented. More specifically, to
make modelling possible, they are assumed to vary
according to a given distribution. In addition, the
variation caused by sampling error described in the
fixed effects model is still present. A random effects
model has to take into account both these forms of
uncertainty. (NB: It may not be truly random —
there may be a clear reason for the differences that
could be explained by a single covariate; however,
this may not have been available for certain studies,
so the relationship went undetected. Alternatively
the heterogeneity could have been the result of the
effect of many, even hundreds of factors, each of
which contributed only a small amount to the
variation, so detecting them was impossible.)

The, now standard, model that allowed for random
variation of the underlying effect size between
studies was described in 1986 by DerSimonian
and Laird (2). Their model assumes that the
study specific effect sizes come from a random
distribution of effect sizes with a fixed mean and
variance. This assumption has caused much
dispute; it suggests that each study comes from

an infinite sample of similar studies, a concept
some people feel is unrealistic. It should be noted,
however, that random effects models have a long
history in other fields of application.

So, the total variation of the estimated effect
size can be broken down into two exclusive
components:
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random + estimation
effects variance
variance

Variance of =
estimated
effects

If the random effects variance was zero, the above
model would reduce exactly to the fixed effects
model described in chapter 9.

Expressed algebraically, where 7;is an estimate of
effect size and 6; is the true effect size:

T.=6,+e (10.1)

where ¢, is the error with which 7; estimates ©,.
and

Var(T)) =%+ v, (10.2)
where 13 is the random effects variance and v, is
the variance due to sampling error.

Algebraic derivation for random
effects models

Random effects models are more complex

than those for fixed effects, and the formulae
presented are similarly more involved. Specialised
software will be required, in many instances, to
implement these.

Formulae can be derived using two different
approaches, both of which are outlined in (3)
and are reproduced here.

Weighted method
Firstly starting with the general inverse weighted
variance model first presented on pages 55-6.

k
w,T;
T - i=1 (9.1)
k
Qw;
i=1
where
— 1 9
w, =5 (9.2)

Recalling the test for heterogeneity from pages
39—41, this can be seen as measuring study-to-study
variation in effect size.

Q= Su (T, -T)* (8.1)

Under the assumption that the studies are a random
sample from a larger population of studies, there

is a mean population effect size, say §, about which
the study-specific effect sizes vary (4). This is the
parameter we primarily wish to estimate.

Let denote, %2, the variance of the studies effect
sizes (an estimate for T§), a quantity yet to be deter-
mined. Further define w and s? to be the mean and
variance of the weights (ws):

w=)y wi/k (10.3)
i=1
and
1 k
s2= ( Zw?—kﬂﬂ) (10.4)
k—1\i=1
Further, define:
2
U= (k-1)|w-=2 (10.5)
ki
The estimated component of variance due
to interstudy variation in effect size, %2, 1s
calculated as:!
12=0 ifQ<k-1
and
?=(Q-(k-1))/U ifQ>k-1 (10.6)

Now, the adjusted weights for each of the studies
are calculated, define w;* as:

1
(10.7)

wH = ——
[(1/w) +1?]

(i.e. The random effects study weighting is given
by the reciprocal of the sum of the between and
within study variances.)

! An alternative, equivalent expression for the estimate of T3 given in several textbooks and papers [e.g. (5,34)] is given

by:

A9
l'2 = max

and is sometimes known as the weighted estimate (3).

0,[Q (m- 1>]/

k k k
2
w;— ) wi| )w;
i=1 =1 i=1
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The treatment point estimate and o /2 CI for é, the
mean treatment effect of all studies, can then be
computed by:

_ k k
T pnp = Ewl'Tz/wa (10.8)
i=1 i=1

_ k
var(Tpyp) =3 1/ w;
i=1

k k
T-mw— Zu/Z/\/( EWZ) <9 STR]\Y) + Za/2/\/( wa) (10.10)
i=1 i=1

Note: The CI given here assumes normality, unlike
the rest of the derivation.

(10.9)

It is worth noting that if the test for heterogeneity is
significant the random effects CI for the treatment
effect will always be larger than for a fixed effects
analysis, on the same data, due to the extra level of
variability being accounted for by including 0§ in
the formulae.

Alternative derivation - the
unweighted method

Start with the ordinary (unweighted) sample
estimate of the variance of the effect sizes, 73,
..., T}, computed as:

(1) = 3 [(1-T% ] -]

i=1

(10.11)

The expected value of s*(T) (i.e. the unconditional
variance we would expect to be associated with any
particular effect size) is:

E[#] =03+ a/m30%TN8)  (10.12)

To estimate G (7)\6,), one needs to use v, which
varies depending on which scale estimates are being
combined on. For ORs (using Mantel-Haenszel
method) equation (9.9) can be used, for standardised
effect sizes (9.20). For other scales see chapter 14.7

Using these estimates equation (10.12) can be
solved to obtain an estimate for the variance
component:

02=s%T) - (l/k)_kai (10.13)

If this value is negative it is set at 0.

Le. this is competing with, T2 = 02, where
P g 8

_gwi_gwf/gwl.”

The two methods outlined above are both
non-iterative. Solutions are possible via ML and
restricted maximum likelihood (REML); these are
outlined below. Both use iterative algorithms and
hence are more computer intensive.

£2 = max|0,[Q- (m-l)]/

Solving the formula using the
normal-normal model (ML and
REML estimate solutions)

If it is assumed that each of the underlying
effect parameters, the st, come from a normal
distribution, with mean p and variance 12, [and
T, is N(8,5?) (2)] then the likelihood is
proportional to (5):*

LOexp —_% [(éi—p)Q/(T2+0‘§)+ln(T2+0?)]/2] (10.14)

=1

Approximate solutions to this model have been
given by DerSimonian and Laird (2)* and Hedges
(6). Also, it is possible to calculate MLEs directly,
or Bayesian estimates can be calculated with the
specification of a prior (see chapter 13 on
Bayesian methods).

Summary of methods

In summary, there are four different ways to

carry out a random effects meta-analysis. Two

of the methods are non-iterative, and have been
called the weighted and non-weighted approaches.
Two are iterative both of these require the extra
assumption that the underlying distribution of
study effect sizes are normally distributed (though
all four need this assumption to construct CIs).
These are referred to as the MLE and the REML
estimate. The likelihood to be maximised is slightly
modified using REML (from that of MLE), to

?Hedges and Olkin (38) note that more exact estimates of conditional variability under the random effects model

exist, however their use makes little practical difference.

3 For an alternative derivation of a likelihood based random effects model see (35), p.- 144.

*DerSimonian and Laird used the EM algorithm (13) (which is an iterative procedure for computing MLEs
appropriate when the observations can be viewed as incomplete data) to calculate MLE [equations given by Rao ez al.
(39)] and REML [equations reviewed by Harville (40)] solutions. In REML estimation, the likelihood to be maximised
is slightly modified to adjust for p and T° being estimated from the same data (2).
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adjust for the fact that the underlying mean and
variance are being estimated from the same data.
The REML are the iterative equivalent to the
weighted estimators (2). Obtaining solutions for
these latter two approaches is more difficult than
for the non-iterative ones.

Discussion of the merits of

each method

With four different methods of estimation to
choose from it would be desirable to establish
guidelines on which method to use in a given
situation. The four methods were compared

by DerSimonian and Laird (2) who re-analysed
eight meta-analyses using all four methods. They
commented that “The weighted method and the
REML estimation procedures consistently yield
slightly higher values of t* (the random effects
variance) than the ML procedure. This is because
both these procedures adjust for T, and t ? being
estimated from the same data where as the MLE
procedure does not.” In addition, ‘Comparing the
unweighted method of moments with the other
three methods, we find that the estimates for t?
from this method differ, and sometimes differ
widely, from the estimates of the other three
methods but without any consistent pattern. The
estimates of 7., and its SE from the unweighted
method also differ from the estimates of the other
three methods.” (2)

So it seems that the unweighted differs
considerably from the other three. Shadish and
Haddock (3) comment that the relative merits of
each of the above methods have not been widely
stated, the main difference between them being
that the weighted method gives a non-zero estimate
of the variance component only if the homogeneity
statistic Qis larger than its expected value under
the null hypothesis. In conclusion, DerSimonian
and Laird suggested ‘that the weighted noniterative
method is an attractive procedure because of

the comparability of its estimates with those

of the ML methods and because of its relative
simplicity.” (2)°

However, all these methods have one disadvantage
that is clearly explained by DerSimonian and Laird:

‘in all our work we assume that the sampling variances
are known, although in reality we estimate them from
the data. Further research needs to be done in this
area as there are alternative estimators that might be

preferable to the ones we use. For instance, if the
sample sizes in each study are small, then sampling
variances based on pooled estimates of the
proportions in the treatment and control groups
might be better than the ones based on estimates of
proportions from individual studies. Another
alternative is to shrink the individual proportions
towards a pooled estimate before calculating the
variances. Further investigation is needed before one
single method emerges as superior.” (2)

Very recently, new estimates have been developed
which take this uncertainty into account. These
are discussed on pages 73-6 (extensions to the
basic model).

Finally, it should be noted that Sankey et al. (7)
recommend using the continuity correction (adding
a half to cells) for sparse when the OR scale is being
used to carry out a random effects analysis.

Examples of combining data using
a random effects analysis

Example: effect on mortality of lowering
serum cholesterol level

On pages 41-3, several fixed effect analyses were
carried out using only the seven primary studies
in the dataset. The test for heterogeneity for these
studies led to a test statistic of Q = 10.19, which
has a corresponding pvalue of 0.117. This result,
although not formally significant, led to concern
that there may be a degree of heterogeneity
between the studies, especially when the low
power of the test is considered.

The same studies are combined below, this time
using a random effects model. The weighted non-
iterative approach is used in this example.

The first step is to calculate the mean and variance
of the within-study weights. The weighted values
were worked out for the fixed effects analysis and
are displayed in Table 6. Using equation (10.1):

(51.38+...498.48)
= =49.88
7

and equation (10.12)

1
s2=—(29130.91 — 7 x 49.88?) = 1952.34
7-1

> It would appear that the weighted non-iterative approach has become the most commonly used random effects model
in meta-analysis. In many papers this method may simply referred to as the DerSimonian and Laird model.
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Calculating U defined in equation (10.11):

1952.34
U= (7-1)[49.88 -
7 x 49.88

=265.73

Calculating the estimated component of variance
due to between-study variation in the values of the
ORs (1?) from (10.12)

0 =10.185 (calculated in chapter 9)
therefore, 0> 6 (k—1), so
2= (10.185 - (7-1))/265.73 = 0.016.

Now the weights w,",...,w; used in the random
effects model can be calculated using equation
(10.13).
So, for the first study

) 1

w, = =28.20
[(1/51.37) + 0.016]

Table 11 displays these weights for the
other studies.

It is instructive to examine how the relative
weighting has changed between the fixed and the
random effects models. It can be seen that using
the random effects model the larger studies have
been down weighted while the relative weighting
of the smaller studies is increased. This trend
generally holds true for all meta-analysis.

The pooled point estimate of the OR together
with its associated 95% CI can be calculated

TABLE 11 Weighting of studies used in the weighted non-
iterative random effects model

*

Study ID T, In(T) w; w;
(% of total) (% of total)

16 095 —0.051 5137 (147) 2820 (17.3)
20 0.75 -0.288 20.13(58) 1523 (9.3)
24 1.08 0077 121.68 (38.9) 41.29 (25.3)
28 095 -0.051 33.47(9.6) 21.80 (13.4)
29 101 0010 21.28(6.1) 1587 (9.7)
30 279 1026 274(08) 262 (1.6)
30 131 0270 98.48(282) 3823 (234)

from equations (10.12) and (10.11), respectively
(remember, we are working on the natural
log scale).

[(28.20 X (0.051)+..4  _ g6
(38.23 x 0.270)]/(28.20+...+38.23)

TRAY)(ln(OR))

_ 7 )
(SE(Trapancory) = 1/\/( ;w;) =0.078)

Calculating an approximate 95% CI for the
combined log OR:

0.06 —1.96 x 0.078 < In(B) < 0.06 + 1.96 x 0.078
= [-0.09,0.21]
Converting back to OR scale gives:
Typiory = 1.06 with approximate 95% CI [0.91,1.24]
A plot of these results is given in Figure 5.

This result can be compared with those obtained
from fitting a fixed effects model, say the Mantel-
Haenszel estimate obtained on pages 56-63. There
the point estimate was 1.09, slightly higher than
that of the random effects model above (1.06).
Comparing Cls, using the Mantel-Haenszel
method gave 0.98-1.21, whilst using a random
effect model gave 0.91-1.24. The random effects
derived interval is thus wider incorporating

both higher and lower values than that of the
corresponding fixed effects one. This is a typical
result, as previously mentioned, the extra width

is due to the between study variation being taken
into account in the random effects analysis. The
conclusion, is thus similar to that given earlier; the
treatment effect is non-significant, but the result
is more conservative.

Extensions to the basic model

Accounting for extra uncertainty
Though the random effects model gives wider
CIs than that of a corresponding fixed effect
analysis, concerns have been raised that it is still
too narrow and hence insufficiently conservative.
Recent methodological advances have attempted
to address this problem. It has been pointed out
that the uncertainty due to T2 being estimated from
the data has not been taken into account when
estimating, 7 yp, the overall treatment effect
(8-10). Two approaches have been put forward
to deal with this.
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FIGURE 5 Plot of combined cholesterol trials using a random effects model (obtained using Meta-View software developed by the

Cochrane Collaboration)

Study Expt Control
n/N n/N

Comparison: cholesterol lowering versus control

16 174/424 178/422

20 37/1149 48/1129
24 269/4541 248/4516
26 68/1906 71/1900
29 44/2051 43/2030
30 33/6582 3/1663
31 236/5331 181/5296
Total (95% CI) 861/21,964 772/16,956

x> 10.24 (df = 6) Z= 1.66

Firstly, Hardy and Thompson (8) propose a
random effects model which gives a CI for the
parameter 1?2 (the random effects variance). It
also gives a CI for T.zyp which takes into account
the fact that T2 has to be estimated from the data.
It uses a profile likelihood approach to calculate
confidence regions, which assumes normality of
the data. The approach yields a wider CI than the
standard random effects approaches. The paper
concludes that the proposed method is preferred
when 1% has an important effect on the overall
estimated treatment effect. A sensitivity plot of T2
against 7.y is given to investigate the robustness
of T pyp to changes in the value of %2; this can

be used to provide insight into whether the
likelihood method is required or whether the
simpler standard random effects analysis using

a moment estimator of the between-study variance
is adequate. This method can be applied to
continuous, ordinal and survival outcome
measures as well as binary.’

In addition, Hardy and Thompson also comment
(8): “(This method) still assumes that the individual
study variances are known, when in practice

they too must be estimated. The full likelihood,

in the case of binomial data, includes the
conditional distribution of each 2 x 2 frequency
table given its margins’ (11). If a full likelihood

(95% ClI fixed) (%)

OR Weight OR
(95% Cl random)

173 0.95[0.73,1.25]

9.3 0.75 [0.48,1.16]

254 1.08[0.91,1.29]

— 133 0.95[0.68,1.34]
—— 9.7 1.01 [0.66,1.55]
. 1.6 2.79 [0.85,9.10]
- 235 1.31[1.07,1.59]

»> 1000 1.09 [0.91,1.24]

method were pursued, the CIs for the overall
treatment effect would be expected to be even
wider. Except when all the trials are small, some
have advocated that the additional uncertainty
would not be expected to have a great impact on
the results and so pursuing a full likelihood
approach is unnecessarily sophisticated for

most practical purposes.”

Secondly, Biggerstaff and Tweedie (9) address

the same problem by developing a variance
estimator for Q, that leads to an interval estimation
of T%, utilising an approximating distribution

for Q. They also developed asymptotic likelihood
methods for the same estimate. This information is
then used to give a new method of calculating the
weight given to the individual studies which takes
into account variation in these point estimates of
1% In the given examples, these new weights are
between the standard fixed and random effects

in down-weighting the results of large studies and
up-weighting those of small. (A past concern has
been that when T° is large the standard random
effects model gives too much weight to the
relatively small studies.)

These new weights will differ greatest from those
of the standard random effects model, when the
number of studies to be combined is small. ‘If 20

® This method is implemented using S+ code. The paper also comments that for continuous scales, one could use a
linear mixed model vie the SAS procedure PROC MIXED, this could be used for IPD (see chapter 27), if common
variances are assumed. Senn has also shown how it can be implemented simply by the software package Mathcad (41)

(produced by Mathsoft).

" The authors give an example in which the combined treatment effect CI goes from 0.87-0.95 in their approach to
0.37-0.97 in the full likelihood approach. See other developments below and (11) for details of the full likelihood

approach.
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or more studies are to be combined, then the
weights should be similar to those in the standard
random effects model.” (9)%°

Bigerstaft (10), builds on the work of (9) in investi-
gating interval estimates for T°. He compares,
through simulation studies, the methods given

in (9) with several new ones.

It should be noted that Bayesian methods exist
which take into account this extra uncertainty (12)
(see chapter 13).

Complete likelihood approach

Van Houwelingen proposed two goals in his paper
(11), firstly to present a likelihood based approach
to random effects which avoids use of approximating
normal distribution and can be used when the
assumptions of normality are violated."” Solutions
are obtained via the EM algorithm (13). Secondly,
he extends this method to a bivariate random effects
model, in which the effects in both groups are sup-
posed random. In this way, inference can be made
about the relationship between improvement and
baseline effect. This is a non-parametric procedure
that is recommended by Hardy and Thompson (8)
when the normality assumption is violated.

Using sample survey methods

Schmid et al. (14) mention a technique, based on
the use of survey sampling methods. This uses a
model assuming that a sample of observations has
been taken from within each of a sample of studies,
themselves chosen from a population of studies. The
approach differs from the random effects model by
not involving an explicit estimate of the subject or
study variance. Instead, a robust estimate of the
variance of the treatment effect is computed

and is used to produce test statistics about

those effects.

Methodology for non-independent
studies

Emerson et al. (15) state that the DerSimonian
and Laird random effects method (weighted non-
iterative) inversely weights using the sum of the
between-study variance and the conditional within
study variance. They go on to reason:

‘Because these weights are not independent of the risk
differences, the procedure sometimes exhibits bias
and unnatural behaviour.” (15)"!

Their paper proposes a modified weighting
scheme that uses unconditional within-study
variance to avoid this source of bias. ‘The
modified procedure has variance closer to that
available from weighting by ideal weights when
such weights are known.” They also state: ‘In
combining studies, this procedure represents a
compromise between an unweighted (equally
weighted) mean and an n-weighted (sample-size
weighted) mean; and it avoids the correlation
between the risk differences and their
weights.” (15)

Using trimmed means

Emerson et al. (16) present a trimmed versions
of meta-analytic estimators for the risk difference.
They incorporate this into a random effects
model, and by doing so state that the model

can resist the impact of a few anomalous studies.
They compare four trimmed procedures [on
different models including the one given above
(15)] and found that a trimmed (20% most
extreme data removed) DerSimonian and

Laird (weighted non-iterative) method offers
best performance over a wide range of simulation
designs and sample. However, they conclude

that none of the methods, whether trimmed or
untrimmed, is uniformly preferable. It should be
noted that this method ignores the information
which may be given by the outliers, and removes
any possibility of investigating why their results
are so extreme.

Combining sibpair linkage studies

Li and Rao (17) published a paper which proposes
arandom effects model for combining results
from independent quantitative sibpair linkage
studies. This is an extension of the standard
random effects methodology presented in this
chapter. Weighted and empirical Bayes (EB)
(see chapter 13) solutions are both presented.
This is a first step into this area and the authors
comment that more work is needed and report
more research is being done on this topic.

¥ Software for implementing this method is given in (9).

? The authors comment that the approximating distribution for T has immediate application in EB methodology

(see chapter 13).

't is interesting to note that the requirement of normality in random effects meta-analysis is often brushed over

and not investigated.

""'"The reader should be aware that the issue of lack of independence is only a problem in a very limited set of cases [see

(15) for more details and chapter 26 on multiple effect sizes].
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The normality assumption

Raudenbush and Bryk (18) describe techniques for
assessing normality when the number of studies is
reasonably large. It is difficult to assess whether the
normality assumption as been violated with a small
number of studies. Seltzer (19) developed robust
estimation procedure that allows the analyst to
assume that random effects are t rather than
normally distributed.

Other methods

Other extensions of the methodology presented

in this chapter are given in other chapters of this
report, where they fit more naturally. For example,
Berlin et al. (20) discusses dose-response models
for fixed and random effects; these are dealt with
in chapter 19. It is worth pointing out that White-
head and Whitehead (21) presented a unified
methodology for meta-analysis (general parametric
approach), so the random and fixed effects models
of chapter 9 and this chapter could be incorporated
in one model. The interested reader is referred to
the original paper for more information (21).

Comparison with fixed effects

Empirical evidence

At certain points throughout this chapter, com-
parisons between the fixed and random effects
model have been made. Investigations into the
differences in results produced by the two
methods have been carried out.

Berlin et al. (22) compared the results of 22 meta-
analyses by reanalysing them using both the Peto
fixed effect method (pages 60-1) and the random
effects model described of DerSimonian and Laird
(pages 70-2). Eight of the studies showed evidence
of heterogeneity, in three of these different con-
clusions would have been drawn about the treat-
ment effect for both methods (23). In each of these
three cases, the Peto method suggested a beneficial
treatment effect while the DerSimonian and Laird
method did not. In all the other studies, including
ones showing no evidence of heterogeneity, both
methods lead to the same conclusion.

Mengersen et al. (24) carried out a meta-analysis of
the effect of passive smoking on lung cancer, and
investigated how the results differed using different
methods. They state that different conclusions may
have been drawn if only fixed or random effect
methods had been used.

Raudenbush (25) highlights the below advantages
and disadvantages of random effects models.

Advantages of random effects:

1. Conceptualisation is consistent with standard
specific aims of generalisation.

2. Allows a parsimonious summary of
results when the number of studies is
not very large.

3. Can use random effects model with no
covariates as a baseline value for which the
goodness of fit of regression models can be
judged against. (i.e. can calibrate how much
variation certain covariates explain).

Disadvantages/drawbacks of random effects:

1. Need to estimate sigma from the data
(presuming one does not use the recently
proposed methods; see pages 73-5).

2. Need to make the normality assumption
(again assuming new methods are not being
used; see page 75).

In addition, Greenland has pointed out (26)

that random effects models are more sensitive to
publication bias. The reason for this is as follows.
As previously reported, in a random effects analysis
large studies will be downweighted and small ones
given increased weight. So, any tendency not to
publish small statistically non-significant studies will
lead to a greater proportion of spuriously strong
associations among small published studies than
among large published studies. “Thus, by giving
more weight to small studies, the random effects
summary will give more weight to spuriously strong
associations and so produce a more biased summary
estimate if publication bias is present.” (26)

To summarise, random effects will always give a CI
that is at least as large, and usually larger than a
fixed effects model because it allows for variation
between studies. The greater the degree of
heterogeneity the greater the difference in

the Cls will be.

When should random effects models
(rather than fixed effect models) be
used? Researchers’ opinions

There seems no simple answer to this question.
Several authors suggest guidelines to the use of
fixed and random effect models, most of whom
also acknowledge widely differing points of view
exist between practitioners in the field. Shadish
and Haddock (3) consider the answer to be partly
statistical, partly conceptual and rarely indisput-
able. However, many believe that if there exists evi-
dence of heterogeneity, that cannot be explained
(using the techniques of chapter 8), this extra
variation needs to be accounted for when estim-
ating the pooled estimate and CI (2), and that
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the fixed effect methods will give and over
confident result.

Also, it is recognised that the heterogeneity test
lacks power (chapter 8), so the chance of a type
two statistical error is quite large, suggesting the
studies are homogeneous when in fact there is a
degree of heterogeneity. This implies that just
because the studies appear homogeneous a
random effects model may still be worth consider-
ing as it cannot be assumed that true homogeneity
exists (1). It is worth noting at this point that there
must become a time when the heterogeneity
between studies is so large that the random effects
model is not adequate, and the question of whether
the results should be combined at all has to be
addressed (for further discussion, see chapter 8).

Another corollary question needing to be
addressed is: should a decision be made a priori as
to which modelling strategy is to be adopted?

It should be noted that both the results of fixed
and random effects can be reported, this is justified
by viewing it as a form of sensitivity analysis. If the
two methods differ, one can conclude hetero-
geneity must be a problem and stress the random
effects estimate, or go on to investigate possible
causes of heterogeneity.

Hasselblad and McCroy (5) comment: ‘there

are those who would argue that the unexplained
variation must be explained before any conclusions
can be drawn. Others argue that the only appro-
priate model is the hierarchical one because
Mother Nature is never consistent across studies.’

Raudenbush (25) suggests the choice may
depend in part on the number of studies available.
He reasons that if only a few studies exist (for

an extreme he says two), between study variation
will be very poorly estimated and thus fixed effects
will be the sensible choice. If more were available
(say several hundred), the fixed effects approach
would make little sense because the treatment

by studies interaction test would have great

power, virtually ensuring rejection of the

null hypothesis (see original for a more

thorough explanation).

Comments on random versus fixed effects

Below (in no particular order) are comments

from leading researchers and practitioners of meta-
analysis on their beliefs about the applicability of
fixed and random effect models:

Thompson:

‘any set of studies is inevitably clinically heterogeneous
by virtue of differences in study design, patient
selection , or treatment policy.” (1)

and (slightly edited):

‘However the random-effects method is no panacea
for heterogeneity. Formal interpretation relies on the
peculiar premise that the trials done are represent-
ative of some hypothetical population of trials, and
on the unrealistic assumption that the heterogeneity
between studies can be represented by a single
variance, and that the between trial distribution is
normal. Moreover, for the interpretation of the overall
6 as applying to future trials or patients there is the
necessary but intangible assumption that the trials
included in the meta-analysis are “representative” of
the future The results are also often strongly
dependent on the inclusion or exclusion of small
trials, which may themselves reflect publication bias.
The random effects methods may therefore give
undue weight to small studies, emphasising poor
evidence at the expense of good. (An additional
technical consideration is that the estimate of G2,
being made usually from relatively few trials, is

very imprecise. Given these problems, one can only
view the random effects analysis as replacing the
implausible assumption of the fixed effect analysis
by untenable assumptions of its own.)’ (1)

Peto (of random effects):

‘I think that this is actually wholly wrong as an approach
to the overviews and trials. I think that it does answer a
question. But it’s a very abstruse and uninteresting
question. It’s trying to say “what would happen if we
chose another treatment at random from the universe
of treatments that we could choose another population
at random from the universe of populations”. I think
this is not an important question.” (27)

Meier formally disagreed with Peto above at the
conference and put a case for random effects.
‘inter-study variation is a key feature of the data
and should contribute to the analysis’ (28)

Thompson:

....... the assumption that the true treatment effects
are the same for all the trials, that is an assumption of
homogeneity. In any meta-analysis this is a simplistic
and implausible assumption.’ (29)

also: (talking of fixed effect analysis) ‘.. the derived
confidence interval for the overall odds ratio is too
narrow in terms of extrapolation to future trials or
future patients.” (29)

also: ‘An intuitively appealing aspect of the random
effects analysis is that, by taking into account a
component of between-trial variability, it appro-
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priately introduces a degree of statistical caution that
is not present in the fixed effect analysis.” (29)

and: ‘A more useful way to consider the random
effects method is as a type of sensitivity analysis, to
investigate how much the overall conclusions change
as the assumptions underlying the statistical method-
ology also change. (In fact the random effects analysis
can be viewed as simply changing the percentage of
weight allocated to each trial, as compared with the
fixed effect analysis.)’ [quoted from (30)].

Fleiss gives an example of the problem of
heterogeneity:

‘.. if in one meta-analysis there are two published
studies with ORs of and 6.0, if in another there are two
published studies with ORs of 2.0 and 3.0, and if all
four values of V (the variance of the logarithm of the
OR) are equal to 0.01, then in both studies the value
of the pooled OR will be 2.45 and in both studies the
approximate 95% confidence intervals extend from
2.13 t0 2.81. (31)

Fleiss:

‘Bailey (32) suggests that, when the research question
concerns whether the treatment will have an effect, on
the average, or whether exposure to a hypothesized
risk factor will cause disease, on the average, then the
model of studies being random is the appropriate
one. When the question concerns whether treatment
has produced an effect, on the average, or whether
exposure has caused disease, on the average, in the
studies in hand, then the model of studies being fixed
is the appropriate one.” (31)

And in summary (32): ‘The choice between these
fixed effect methods would rarely materially affect
the conclusions being drawn.” (31)

Pladevall-Vila, in an investigation of conflicting
meta-analyses, investigating the relationship between
oral contraceptive use and rheumatoid arthritis,
conclude by saying:

‘Consensus is needed on how to conduct meta-
analyses of observational studies, the methods to be
used in the presence of heterogeneity, and when
conclusions should be considered reliable.” (33)

Greenland:

‘In situations in which addition of a random effect to
the model yields materially important changes in
inferences, the degree of heterogeneity present will
often (if not usually) be so large as to nullify the value
of the summary estimates (with or without the random
effect). Such a situation is indicative of the need to
further explore sources of conflict among the study
results.” (34)

Greenland:

‘I maintain that the primary value of a meta-analysis
is in the search for predictors of between-study
heterogeneity. If use of random effects makes a
difference, the analysis is incomplete: the analyst
should carefully search for the source of the
discrepancy between the fixed- and random-effects
interval estimates. The random-effects summary is
merely a last resort, to be used only if one cannot
identify the predictors or causes of the between-
study heterogeneity.” (26)

The 1992 National Research Council (35) report
on statistical issues in combining information
favours random effects models for meta-analysis.

Pocock:

‘A sensible overall conclusion is that neither the
fixed effect nor the random effects model can be
trusted to give a wholly informative summary of
the data when heterogeneity is present. Perhaps
the presentation of both approaches reveals the
inevitable uncertainty inherent in an overview
with heterogeneity. Indeed any strong claims by
proponents of one method over the other are
liable to be counterproductive in that polarized
statistical disputes may discourage the medical
profession from accepting overviews’ (36)

also: ‘the difference between the two models is
sometimes over-emphasized.” (36)

Further research

A study to compare the methods of Hardy and
Thompson (8), and Biggerstaff and Tweedie (9,10)
must be pertinent (the two new methods for
random effects incorporating more uncertainty).
This would continue the work of Smith et al. (37),
who compared the results obtained by many of the
previous meta-analytic models.

Investigation into how robust are random effects
to departures in normality? Should likelihood
methods (11) be employed more often?

More work is required on combining sibpair
linkage studies.

Summary

At this present time, it would seem neither fixed
nor random effect models could be considered the
ideal analysis, beyond any dispute, for a given
situation. Indeed, it has been illustrated that both
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methods have their shortcomings. As the point
estimates of effect size given by both methods are
usually very similar, the only time the choice of
model will be critical is if its significance is marginal
using a fixed effect model. Here there is a chance
that the more conservative CI given by the random
effects approach would consider the effect to be
non significant. It is interesting to note that Peto,
one of the strongest opponents of random effects
models, takes 3 standard deviations rather than 2
(1% not 5%) as his critical value when considering
the significance of an (fixed) effect in an overview,
considering 2 standard deviations to be not strin-
gent enough for the magnitude of the implications
of an overview. [“......... we are messing around if we
take two standard deviations, two-and-a-half stand-
ard deviations, as serious evidence. We get so much
nonsense mixed up in with the sense that it is just
irresponsible. I think we’ve got to get better
standards of evidence than we normally have, and
this means in the individual trials and in overviews.
I think you need to go to at least three standard
deviations.’ (27)]. The point in mentioning this is
that one of the world leaders in the field, although
conceptually at poles with the advocators for
random effects, through this more stringent cut
point is actually making an adjustment with prac-
tical implications very similar to those inherent by
the use of a random effects model. While it would
appear that the conceptual debate over the correct
model is some way off a conclusion, a practical
line to take may be to say: use whichever strategy
(single analysis or several) you yourself feel is most
appropriate for the situation. However, if there is
evidence of heterogeneity (significant or not) and
a fixed effect analysis is the sole analysis carried
out and the result is only marginally significant
(5% level), then extreme caution is needed when
reporting and interpreting the results. Another
key point to consider here relates to the clinical
significance rather than the statistical significance
of the pooled estimate obtained. One should be
concerned about estimates and their SEs, rather
than pvalues. It should be pointed out that other
models do exist for meta-analysis, chapter 12
covers mixed models, and chapter 13 Bayesian
models. It is interesting that the National Research
Council (35) take the approach of calling random
(and fixed) effects models a special case within a
hierarchical model framework, of which other
models [such as mixed and cross-design synthesis
(chapter 26)] are simply extensions. Another point
worthy of note is when using a Bayesian approach,
one does not necessarily have to choose between
the two models (fixed and random), but rather

we can average across models using BFs (see
chapter 13).

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Thompson SG, Pocock §J. Can meta-analyses be
trusted? Lancet 1991;338:1127-30.

DerSimonian R, Laird N. Meta-analysis in clinical
trials. Controlled Clin Trials 1986;7:177-88.

Shadish WR, Haddock CK, Cooper H, Hedges LV,

editors. Combining estimates of effect size. In: The
handbook of research synthesis. New York: Russell

Sage Foundation, 1994, p. 261-84.

Fleiss JL. The statistical basis of meta-analysis
(review). Stat Methods Med Res 1993;2:121-45.

Hasselblad VIC, Mccrory DC. Meta-analytic tools
for medical decision making: a practical guide.
Med Decis Making 1995;15:81-96.

Hedges L. Distribution theory for Glass’s estimator
of effect size and related estimators. J Educ Stat
1981;6:107-28.

Sankey SS, Weissfeld LA, Fine M], Kapoor W. An
assessment of the use of the continuity correction
for sparse data in metaanalysis. Commun Statist
Simulation Computation 1996;25:1031-56.

Hardy R], Thompson SG. A likelihood approach to
meta-analysis with random effects. Stat Med
1996;15:619-29.

Biggerstaff BJ, Tweedie RL. Incorporating variability
in estimates of heterogeneity in the random effects
model in meta-analysis. Stat Med 1997;16:753-68.

Biggerstaff BJ. Confidence intervals in the
one-way random effects model for meta-analytic
applications. University of Colorado: Technical
Report, 1996.

Van Houwelingen HC, Zwinderman KH, Stijnen T.
A bivariate approach to meta-analysis. Stat Med
1993;12:2273-84.

Louis TA, Zelterman D, Cooper H, Hedges LV,
editors. Bayesian approaches to research synthesis.
In: The handbook of research synthesis. New York:
Russell Sage Foundation, 1994, p. 411-22.

Dempster AP, Laird NM, Rubin DB. Maximum
likelihood from incomplete data via the EM
algorithm. J R Stat Soc B1977;39:1-38.

Schmid JE, Koch GG, LaVange LM. An overview
of statistical issues and methods of meta-analysis.
J Biopharm Stat 1991;1:103-20.

Emerson JD, Hoaglin DC, Mosteller F. A modified
random-effect procedure for combining risk
difference in sets of 2x2 tables from clinical trials.
J Ital Statist Soc 1993;2:269-90.

Emerson JD, Hoaglin DC, Mosteller F. Simple
robust procedures for combining risk differences
in sets of 2x2 tables. Stat Med 1996;15:1465-88.

LI ZH, Rao DC. Random effects model for
metaanalysis of multiple quantitative sibpair linkage
studies. Genet Epidemiol 1996;13:377-83.

79



80

Random effects methods for combining data

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Raudenbush SW, Bryk AS. Examining correlates of
diversity. J Educ Statist 1987;12:241-69.

Seltzer M. The use of data augmentation in fitting
hierarchical models to education data. University of
Chicago: unpublished doctoral dissertation, 1999.

Berlin JA, Longnecker MP, Greenland S. Meta-
analysis of epidemiologic dose-response data.
Epidemiology 1993;4:218-28.

Whitehead A, Whitehead J. A general parametric
approach to the meta-analysis of randomised
clinical trials. Stat Med 1991;10:1665-77.

Berlin JA, Laird NM, Sacks HS, Chalmers TC. A com-
parison of statistical methods for combining event
rates from clinical trials. Stat Med 1989;8:141-51.

Dickersin K, Berlin JA. Meta-analysis: state-of-the-
science (review). Epidemiol Rev 1992;14:154-76.

Mengersen KL, Tweedie RL, Biggerstaff BJ. The
impact of method choice in meta-analysis. Aust ]
Stats 1995;37:19-44.

Raudenbush SW, Cooper H, Hedges LV, editors.
Random effects models. In: The handbook of
research synthesis. New York: Russell Sage
Foundation, 1994, p. 301-22.

Greenland S. Invited commentary: a critical look at
some popular meta-analytic methods. Am | Epidemiol
1994;140:290-6.

Peto R. Why do we need systematic overviews of
randomised trials? Stat Med 1987;6:233-40.

Meier P. Proceedings of methodologic issues in
overviews of randomized clinical-trials —
commentary. Stat Med 1987;6:329-31.

Thompson SG. Controversies in meta-analysis: the
case of the trials of serum cholesterol reduction
(review). Stat Methods Med Res 1993;2:173-92.

Spector TD, Thompson SG. Research methods in
epidemiology. 5. The potential and limitations of
meta-analysis. | Epidemiol Comm Health
1991;45:89-92.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4].

Fleiss JL, Gross AJ. Meta-analysis in epidemiology,
with special reference to studies of the association
between exposure to environmental tobacco smoke
and lung cancer: a critique. | Clin Epidemiol
1991;44:127-39.

Bailey KR. Interstudy differences — how should they
influence the interpretation and analysis of results.
Stat Med 1987;6:351-60.

PladevallVila M, Delclos GL, Varas C, Guyer H,
BruguesTarradellas J, AngladaArisa A. Controversy
of oral contraceptives and risk of rheumatoid
arthritis: meta-analysis of conflicting studies and
review of conflicting meta-analyses with special
emphasis on analysis of heterogeneity. Am |
Epidemiol 1996;144:1-14.

Greenland S. Quantitative methods in the review
of epidemiological literature. Epidemiol Rev
1987;9:1-30.

National Research Council. Combining
information: statistical issues and opportunities
for research. Washington DC: National Academy
Press, 1992.

Pocock §J], Hughes MD. Estimation issues in clinical
trials and overviews. Stat Med 1990;9:657-71.

Smith TC, Spiegelhalter DJ, Thomas A. Bayesian
approaches to random-effects meta-analysis: a
comparative study. Stat Med 1995;14:2685-99.

Hedges LV, Olkin I. Statistical methods for meta-
analysis. London: Academic Press, 1985.

Rao PS, Kaplan J, Cochran WG. Estimators for the
one-way random effects model with unequal
variances. | Am Stat Assoc 1981;76:89-97.

Harville DA. Maximum likelihood approaches to
variance component estimation and to related

problems. J Am Stat Assoc 1977;72:320-38.

Senn S. Meta-analysis with Mathcad. ISCB News
1996;20:4-5.



Health Technology Assessment 1998; Vol. 2: No. 19

Chapter | |

Meta-regression

Introduction

Occasionally, the studies whose effect estimates
are to be combined may all be very similar. This
may be the case, for instance, if results are being
combined from multi-centre trials, all using the
same protocol. It is more common though, for
there to be substantial differences between the
studies. Examples of ways studies may differ
include; treatment dose magnitude; age of study
population; study conduct; and study maturity

(1) (see pages 41-3 for a detailed account of how
studies may vary). These differences may contribute
to heterogeneity of the results between studies.
Chapter 8 addressed the issue of heterogeneity
and explained how to investigate and deal with
itif it is present. When heterogeneity is present it
does need investigating, but does not have to be
necessarily seen as a burden. Discovering why
study results differ can be revealing.

It has also been pointed out that due to the large
numbers of patients often involved in a meta-
analysis, the difficulties of detecting therapeutic
effects within subsets of patients observed with
limited data from single studies may be overcome
(1). In doing this, treatments could be individual-
ised, so the treatment best for each patient

could be identified (1). Thus exploratory analysis
investigating associations between study or patient
characteristics and the outcome measure
(particularly useful in observational studies — see
chapter 19), can be seen as one of the advantages
of performing a meta analysis (2). So, as well as
reducing the heterogeneity, this analysis may
produce findings of clinical importance.

It needs to be stressed that this is an exploratory
analysis and it is very possible for associations
between characteristics and the outcome to occur
purely by chance (this problem is not unique to
meta-analysis and occurs whenever associations
between variables are being investigated). Also,
spurious associations may appear due to confound-
ing factors this is explained fully on pages 149-52.

A statistical technique capable of carrying out the
sort of analysis described above is regression. Two
different underling models are presented for this
analysis. One is described in this section and is

based on combining studies using a fixed effect
model (chapter 9) and has come to be called
meta-regression. The second model described in
the next chapter (chapter 12) uses the random
effects model of chapter 10 as its basis. To
distinguish this model from the first it is referred
to as a mixed model due to it including random
and fixed effects (though it is still a regression
type model).

The fixed-effect methods of this chapter include

no random variation term and are thus appropriate
only when all variation between study outcomes

can be considered fixed, predictable and account-
able. A mixed model is appropriate when the
predictive variables only explain part of the
variation/heterogeneity. The random term thus is
included to take account for this extra unexplained
variation. However, one will not know which model
is most appropriate until the amount of variation
explained by the predictor variables has been estab-
lished. For this reason, it is customary to start with a
meta-regression model with no random effect term,
and include one only if considered necessary, i.e.
after the best model is found substantial residual
variation remains [this could be tested formally
using the QO statistic (pages 39—-41)].

Modelling using regression models is not a trivial
task. It is beyond the scope of this chapter to give
a comprehensive beginners guide to regression
techniques. For the reader who wants to know
more about regression modelling many intro-
ductory statistical texts cover the basics, addition-
ally see (3) for further details on modelling
binary outcomes.

Model notation

The following account is adapted from Hedges (4);
it is the most general meta-regression model, and
can include continuous and discrete predictor
variables. If only a limited number of categorical
predictor variables are being investigated, an
ANOVA approach can be taken. Hedges (4) clearly
describes this approach; however, it is omitted here
due to space limitations, and because it can be
regarded as a special case of the more general
model below.
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Suppose there are k independent effect size
estimates 713, ..., T}, with estimated sampling
variances vy, ..., v, [this is the same notation
as used for fixed effect model (pages 55-6)].

The corresponding underlying effect size
parameters are 8, ..., 8,, for each of the % studies.
Suppose also that there are p known predictor
variables X, ..., X » which are believed to be related
to the effects via a linear model of the form:

0= B+ Bixy + .o+ Byxyy (11.1)
where x4, ..., x;, are the values of the predictor
variables X, ..., X, for the ith study and B,, By, ...,
B, are the unknown regression coefficients, to be
estimated, indicating the relationship between its
associated predictor variable and the outcome.

Recall in the fixed effects model of chapter 9, 8,
..., 8,, were all set equal, say to 6. Here they are
allowed to vary (as in the random effects analysis:
chapter 10). However, unlike the random effects
model, here it is the covariate predictor variables
that are responsible for the variation not a
random effect, hence the variation is

predictable not random.'

An alternative to the above derivation, when one has
binary outcomes, is to use logistic regression. An
example of its use is given by Thompson (5), and is
very similar to the above model to implement. This
example is particularly noteworthy as it looks at
cholesterol trials (though a different set to those con-
sidered in this report) and the effect of covariates
such as the extent and duration of cholesterol
reduction (see also pages 44-8, 157-61).

The application of the above model

The coefficients in the above model are easily
calculated via weighted least squares algorithms.
(Unweighted regression cannot be used because
this would make the assumption that the variances
from each study could be considered equal.) Any
standard statistical package that performs weighted
(multiple) regression can be used.

As Hedges states (4), the regression should be run
with the effect estimates as the dependent variable
and the predictor variables as independent vari-
ables with weights defined by the reciprocal of the
sampling variances. That is, the weight for T;is

w;=1/v;

The predictor variables are created/defined by the
researcher: these can take several forms, including
1) binary indicators, e.g. indicating whether the
study adjusted for smoking, study population was
European etc., 2) categorical, e.g. variable could
indicate the type of study design and 3) con-
tinuous, e.g. level of exposure (in epidemiological
studies) or mean age of the patients recruited.

It is important to note that the SEs of the
estimates for the coefficients, produced by
standard software packages are based on a slightly
different model than the above used for fixed
effect meta-regression. This means that the weight-
ing is ignored in the calculation of the SE. Due

to this an adjustment needs to be calculated
by hand:

;= SE,/YMS sunon (11.2)
where S;is the corrected SE, SE, is the SE of
coefficient b; (the obtained estimate for ;) as given
by the computer programme and MSgzp is the
‘error’ or ‘residual’ mean square from the analysis
of variance for the regression as given by the
computer programme.

Each of the regression coefficient estimates (the
b;s) are normally distributed about their respective
parameter (Bj) values with standard deviations
given be the SEs (the §;s). Hence a (100 - a) % CI
for each B; is calculated by:

b= Z45(S) S b;< bj+ Zg)5(S)) (11.3)
where Z, , is the is the two-tailed critical value
of the standard normal distribution. The corre-
sponding two-sided significance test is H,: ;= 0,
and is rejected if the above CI contains one. If it is
retained, one concludes there is no, or insufficient
evidence of a relationship between the jth
predictor variable and outcome.

In this way, decisions can be made on which, if

any of the predictor variables explain the variation
between studies and hence appear to be good
predictors. Selecting which of the different pre-
dictors are entered and removed from the model
and deciding on the ‘best’ model can be a long and
complex process, with much being published on

! This model assumes approximate normality of the dependent (outcome) variable (7). In situations when the
outcomes are in the form of 2 x 2 tables, Greenland reports (7) that simulation studies indicate that such a criterion
will be adequately met if the expectations of the counts contributing to the rates or ratios is four or greater.
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the topic. Factors that contribute to this decision
are: 1) the amount of variation that is explained
and 2) the simplicity and ease of interpretation
of the model.

As with all modelling exercises, testing of assump-

tions and considering the adequacy of model fit is

an important aspect of the analysis that should not
be overlooked.

Advanced model fitting issues

The sections below outline other issues that are
pertinent while carrying out a meta-regression.

Testing blocks of variables
simultaneously

Hedges (4) outlines a method for testing
hypotheses about groups or blocks of regression
coefficients (as opposed to individually). Hedges
suggests there are situations where it may be
desirable to enter a block of variables reflecting
methodological characteristics. Then entering
another block, say reflecting treatment character-
istics to see if the second block of variables
explained any of the variation in effect size not
accounted for by the first block of variables [see
(4), p. 296] for computational details).

Colinearity

This is a problem that can occur in any multiple
regression analysis, not just meta-analysis. It basic-
ally means that two or more predictor variables
are explaining the same variation and are thus
correlated. Hedges warns: ‘Colinearity may degrade
the quality of estimates of regression coefficients,
wildly influencing their values and increasing their
standard errors.” (4). The reader is again referred
to a standard regression textbook for procedures
used to safeguard against this.

The application of
meta-regression

Situations where the use of
meta-regression is applicable
Meta-regression can and has been used in a

wide diversity of situations. It can be used both

for the synthesis of RCTs and observational studies.
Several meta-regression techniques specific to
observational studies exist, such as dose-response
analysis, these are covered on pages 157-61. If IPD
are available, a more highly structured model may
be more appropriate (6); regression using patient
level (as opposed to study level) covariates is

possible, and this is covered in chapter 24.
Meta-regression can be used to incorporate study
quality (e.g. via a quality score covariate). How
study quality is measured is a complex issue;
chapter 6 is dedicated to this issue. Meta-
regression can be employed as a sensitivity
analysis; the sensitivity of inferences to variations
in or violations of certain assumptions can be
investigated (7). Greenland illustrates this with
the following example:

‘One may have externally controlled for cigarette
smoking in all studies that failed to control for
smoking by subtracting a bias correction from the
unadjusted coefficients in those studies. The sensitivity
of inferences to the assumptions about the bias
produced by failure to control for smoking can be
checked by repeating the meta-analysis using other
plausible values of the bias, or by varying the
correction across studies.” (7)

Variables that can be included in

a meta-regression

Chapter 8 highlighted many ways in which studies
can differ. All these factors (and any others the
researcher can identify) can be explored using
meta-regression. Dickersin and Berlin (2) in their
1992 review of meta-analysis included several
examples where meta-regression had been used to
explain heterogeneity and find treatments that
effected subsets of patients differently.

Problems with meta-regression

A couple of problems inherent when carrying out
meta-regression of epidemiological studies have
been pointed out by Greenland (7). The first of
these he calls aggregation bias or ecological bias.
This bias will exist if the relation between group
rates or means do not resemble the relation
between individual values of exposure outcome
(7). Secondly, he notes that further bias can arise
from regressing adjusted study results on unadjust-
ed average values for covariates (7). He notes
that such bias will, however, be small unless the
covariates under study are strongly associated
with the adjustment factors.

Another potential problem is that some of

the studies may not have the same covariate
information as the rest. If this is the case, possible
solutions are either to contact the original authors
of the reports to try and obtain the necessary
variables, or to carry out a subset analysis to see

if the variable seems important in the studies that
do measure it. Problems also exist due to data
missing at the patient level, as this will affect
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aggregated study level variables; see chapter 17 for
further details on missing data.

New developments

Modelling duration of trial

In an investigation of the effect of a reduction

in cholesterol levels on overall mortality, Thomp-
son (5) used a non-standard method to investigate
the effect of duration of the studies. Due to the
suspicion of a non linear relationship, i.e. longer
follow-up does not necessarily mean larger treat-
ment effect, a standard dose-response type model
(see pages 157-61) could not be used. Instead data
in the time intervals 0-2.0, 2.1-5.0, 5.1-8, 8.1-12.0
years was obtained from the original investigators
for most of the studies. This sort of data can be
viewed as between that of overall study estimate
and individual patient level (see chapter 23) and
since IPD was unavailable, was the best that could
be obtained.

Further research

Whilst the use of meta-regression can be a powerful
tool to the meta-analyst and should be recom-
mended there are a number of issues that are
wanting of further work:

1. Checking of modelling assumptions, including
the use of residuals.

2. Dealing with (and accounting for) missing
data, both at the study level and patient-level.
Indeed, this is a recurring issue throughout
this report.

3. Measurement error — this is particularly true
when considering study-level covariates. For
example, a common study level covariate is
age, but unless there are details on, for
example, the number of patients within a trial
for whom age was not recorded, the use of
average age may lead to biased results.

4. The modelling of data when there are
some studies with only summary statistics
available (i.e. study level covariates) and
other studies for which patient level data
is available.

5. Model comparison; as with other modelling
scenarios, a choice is often made between
competing models. How this choice is made

can sometimes have a profound effect on the
overall conclusions. The implications of the
effect of different model selection strategies
is an important area which deserves

more attention.

Summary

This chapter has extended the methods of chapter
9 (fixed effects) to take account of the fact that
there are often covariates at either the study level
or patient level available, and that these can be
important in helping to explain any heterogeneity
present. Such an analysis should be seen as a
fundamental component of any meta-analysis, but
as with any modelling exercise, due care and
attention should be paid to the verification of any
assumption the models make. One of the potential
advantages of this approach is that estimates of the
relative benefits of treatments for patients with
different combinations of covariates can be
derived, or more information on the relative effect
of different forms of delivering the intervention.
This is the sort of data that is very relevant to
clinical practice, where overall average effects may
be too general to be useful for particular situations.
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Chapter 12

Mixed models (random effects regression)

Introduction

Hedges in 1987 mentioned, at a conference on
meta-analysis, the possibility of mixed effect models
as a compromise between fixed and random effects
(1). He commented that they have been used with
success in the social sciences:

‘Mixed effect models are often very close to fixed
effect models in the sense that there is often only a
very small component of random variation between
studies, but it may be a persistent and very real source
of variation that must be modelled.” (1)

Chapter 11 outlined fixed effect regression

analysis where all heterogeneity between studies is
considered to be explained by covariates included
in the model. If the covariates do not explain all
the variation, to obtain a more realistic CI around
the point estimate, a random effect term needs
including to take into account the variation un-
accounted for. It is worth reiterating that, although
the aim of including covariates is to reduce vari-
ation between studies — the covariates themselves
should not be considered nuisance factors and
indeed may shed light on the generalisability of the
treatment under investigation and suggest possible
subsets of patients for whom the treatment is more
or less effective, in a way not possible in the analysis
of subsets of a single study. Indeed such an analysis
may also inform the direction of further research.

Having fitted a regression model, if the residual
heterogeneity is still significant, a random effects
term should clearly be added. If the residual
heterogeneity is not significant many researchers
still consider it good practice to always include a
random term to account for any variation not
accounted for.

Rubin conceptually expanded the ideas of the types
of models covered in this chapter. His method for
extrapolating response surfaces (2) is covered on
pages 214-15.

Mixed effect model

Notation
The derivation below is taken (but modified) from
Raudenbush (3). Raudenbush also uses an ANOVA

model for mixed models; however, to use this
one would need a balanced design, which would
be very rare in health technology research and
thus is omitted (3).

As a starting point, take the random effects model

outlined on pages 70-2, i.e.
T,=0,+e¢; (12.1)

where T;is the estimated effect size of the true

effect size 0, for each of the kstudies, i=1, ..., k;

it is also assumed that the ¢, are statistically

independent, each with a mean of zero and
estimation variance v,

The variance for these estimates of treatment
effect can be expressed as:

Var(T) =v; =0} + v, (12.2)
where 0} is the between-study, or random effects
variance and v; is the within-study variance.

Now we extend this to formulate a prediction
model for the true effects as depending on a
set of study characteristics plus error:

0;=By+ B Xy +BoXio+ ... + B, X+ u;  (12.3)
where {3, is the model intercept; X, ..., X;,
are coded characteristics of studies hypothe-
sised to predict the study effect size; By, ..., B,
are regression coefficients capturing the associ-
ation between study characteristics and effect
sizes; u; is the random effect of study i, that is,
the deviation of study ¢’s true effect size from
the value predicted on the basis of the model.
Each random effect, u, is assumed independent,
with a mean of zero and variance 07},

Under the fixed effects specification, the study
characteristics Xj, ..., X;, are presumed to account
completely for variation in the true effect sizes. In
contrast, the random effects specification assumes
that part of the variability in these true effects is
unexplainable by the model.!

Itis interesting to note that this model is a
consistent extension of the models presented in
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previous chapters. If the model has no predictors,
i.e. B;=...=B,=0, then it reduces to that of the
random effects of chapter 10. If the random effects
variance is null i.e. 03 = 0, then the results will be
identical to that of the fixed effects meta-regression
model of chapter 11.

Estimating the parameters
Substituting (12.1) into (12.3) gives:

T:=Bo+B Xy +BoXpo+ .. +B,X;+u;+ e (12.4)

This equation has two components in its error
term u, + e;, so the variance of T}, controlling for
the Xs, is

v/ =Var(u, +e;) =05+ v; (12.5)
Ordinary least squares regression assumes that
every residual has the same variance (homo-
scedasticity). This assumption will be violated if the
v, vary across studies (which they undoubtedly
will). A weighted least squares approach is needed
instead (as was used in chapter 11), optimal
weights are given by the inverse of each study’s
variance:

w;=1/v"=1/(0%+v)) (12.6)
We can estimate the v;s from the data (see chapter
9). We also need an estimate of 63, which is
generally unknown and must be estimated from
the data. In fact, an estimate of the regression
coefficients (the Bs) is required in order to obtain
estimates of 05 and hence w,. So unfortunately, a
dilemma exists: estimation of the fs is dependent
on knowing 0§, and estimation of 0§ depends on
knowing the fs.

Solutions to the model
Two different approaches to the problem outlined
above have been put forward:

The method of moments
Raudenbush reports:

‘Using the method of moments, the researcher
computes provisional estimates of the f3’s in equation
(12.4). Based on these estimates, an estimate 0% can
be obtained and, therefore, the weights, wi*. These

weights are then employed in a weighted least squares
regression to obtain new and (final) estimates of the

B's.” (3)*

These provisional estimates can be got from
ordinary regression or weighted regression as in
chapter 11. For explicit details of this procedure
see (3), p. 310.

The method of ML

To implement this approach, a further assump-
tion that each 7;is normally distributed is
required. Raudenbush (3) reports that MLEs
have certain desirable properties: in large
samples they are efficient and normally
distributed with known SEs, facilitating
statistical inference.™

Obtaining estimates

The authors of this report are not aware of any
investigations into the superiority of either method,
and hence cannot make recommendations about
which of the two methods to use.

Regardless of which method is used, however, the
techniques available for any regression analysis
such as: assessing fit, comparing models, adding/
removing terms can be applied. The reader is
referred to the previous chapter and to the
regression techniques literature for further
details. It is also possible to test whether, g3=0,
by fitting a model with and without the

random variation term, details are given

in (3), p. 315.

The majority of the time a normal assumption is
made for calculating CIs of the model parameters.
However, Larholt suggests the use of the ¢
distribution for small samples (4).

Extensions/alternatives to
the model

On pages 85-6, a basic mixed effects model was
described. Several extensions/alternatives to this
model have been derived, and applied in meta-
analyses. This section presents a summary of these
models. In addition to those presented below,

' Huque and Dubey (5) note that if the linear structure of this model is not acceptable, then an appropriate non-linear

structure may be considered.

?Raudenbush (3) provides a computer program to implement this method.

?Raudenbush (3) provides a computer program to implement this method.

*For more details on ML based solutions, full details are given in (5).
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Huque and Dubey (5) provide a formulation
and estimate parameters via the Fisher
information matrix.

An alternative random-effects
regression model

Berkey et al. (6) derive an iterative random effects
regression model specifically for the synthesis

of 2 x 2 tables. The solution to the model is based
on an iterative scheme which alternates between
estimating the regression coefficients via weighted
least squares, where the weights incorporate the
current estimate of the between study variance,
and estimating the between-study variance. The
authors comment that this model is compatible
with that of DerSimonian and Laird (7) (chapter
10) model but as the DerSimonian and Laird
model becomes more difficult to evaluate, when
considering a continuous covariate or 2 or more
categorical covariates simultaneously then this
model is an ‘efficacious’ alternative. A Statistical
Analysis System (SAS) program for implementing
this procedure is given in the paper (6).

The authors went on to apply this model to
evaluate the efficacy of the BCG vaccine for
preventing tuberculosis. One of the variables that
reduced heterogeneity was the number of miles
from the equator the site of the study was. They
comment that small biases were present in the
estimates of the regression coefficients and the
between study variance, and that there is the
potential to eliminate these using an alternative
estimator for g2

An additional noteworthy point is that they use a
smoothed estimator of the within-study variances,
which produced less bias in the estimated regres-
sion coefficients. The authors comment that
Emmerson ¢t al. (8) demonstrated that because
each study’s estimate of risk difference and the
corresponding estimated variance (s3) are not
independent the DerSimonian and Laird random
effects approach (see chapter 10) may produce a
biased estimate of overall treatment efficacy.
(Note: this is nothing to do specifically with mixed
effect regression models; however, this model gets
round the problem.) Due to this, there exists a
correlation between log .(RR ;) and var[log.(RR )],
which leads to slight bias towards the null.
Therefore an alternative estimator of the variance
of log.(RR ) is given. This smoothed estimator
reduces the correlation:

var[log (RR)] = [_%(bi/ai)]/knﬂ-l' %(di/ci) /k"z’ (12.7)

where a,, b, ¢;and d; are the values in the cells of
the 2 x 2 table for the ith study, and n,;, = a, + b,
and n;_=¢; + d;. In the same vein, an adjusted
variance for the log .(OR)) is also given:

(12.8)

var[log.(OR )] =

(@, + Ci)(é(a[/(aﬁ ci)))/k}l

N =

i l(ai/(ai + Cz)))/k)]l

él(bi/(bi ; di))) / k]l

; -(ai + ci)(l - (

+[(b; +d))

+[(b; +d))

1- ( él(bi/(bi ; di))) / k)]‘

Model for adjusting bias when a
covariate is an aggregate measurement
of the treated population

Mclntosh (9) discusses cases in which including
the observed control group event rate appears to
reduce heterogeneity. The author warns in these
circumstances that the association, or some part

of it, may simply arise as a consequence of measure-
ment error (sometimes known as regression to the
mean). A model is presented that corrects for the
correlated measurement error peculiar to this
application. The model is hierarchical in structure
and both Bayesian (see chapter 13) and ML solu-
tions are given. The author concludes that this
method is appropriate whenever a covariate of
interest is an aggregate measurement of the treated
population. See pages 46-8 for more details on

this topic.

General model form

Recently, Stram (10) presented a very general
mixed-effects regression model framework.

He developed a model from which most of the
previous models can be viewed as special cases.
So, this model incorporates the random effects
model (11) (chapter 10), the mixed model (pages
85-6), the model of Begg and Polite (12) (see
pages 201-3) and the model of Tori et al. (see
page 214) (13). After presenting the general form
of the model, the author goes on to describe its
relationship to these models.

Model form:
Yi:Xz'a"'ZiBz"l'Zi"' €; (12.9)
where ¢= 1,2, ..., Kindependent studies. Y;is an

(n; % 1) vector of one or more related estimates of
treatments or treatment comparisons of interest;
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X;is an (n; X p) matrix of known covariates related
to the p vector of unknown fixed effect parameters,
a; and Z;is an (n; X ¢) vector of known covariates
related to a (¢ x 1) vector of unobserved random
effects, 3, for each study. The two remaining n, X 1
unobserved random vectors, {; and ¢, specify two
types of error in Y. The {; specify the sampling
errors in Y; and ¢, specifies other sources of error
or heterogeneity between studies and between
arms of the same study.

In this model, it is assumed that 3, u, and e, are
each independent multivariate normal random
vectors. On of the new extensions offered by

this model is the possibility for random effect
covariates. It is worth noting that the procedures
for implementing the above model have recently
been incorporated into the MS DOS-based clinical
trials and epidemiology package, Epilog (14).

Using multi-level models for
meta-analysis

Lambert and Abrams (15) present a method

for carrying out a meta-analysis using multi-level
models. They illustrate their method using a
dataset of cholesterol lowering trials, very similar
to the one used in chapters 8, 9 and 10. Using the
software package ML3 (16), they implement a
random effects model very similar to that of
DerSimonian and Laird (7) (chapter 10). This is
then extended into a mixed model to include a
study-level covariate for baseline risk. The authors
comment that it is in the mixed model scenario
where this method can be used to great advantage
because mixed models such as this, and more
complicated situations can be modelled with
relative ease. For a Bayesian formulation of
multi-level models see chapter 13 and also

page 200 on cross-design synthesis.

Problems/advantages
with methods

Advantages

Generally, mixed models in general can be viewed
as the best of both worlds. One can explain as
much variation as reasonable and in the process
possibly, create clinically important hypotheses
for further investigation. The random effects
term then accounts for whatever residual
variation remains.

Disadvantages

There are drawbacks to this method. Firstly the
limitations of a random effects analysis (chapter
10) exist in this method as well, notably: 1) the

uncertainty from estimating 0§ from the data is not
incorporated in the model, 2) the need to assume
that the random effects are normally distributed
with constant variance. This is difficult to assess
when the number of studies is small (though a
tdistribution can be used if preferred). Compound-
ed on these are all the pitfalls of fitting meta-
regression models (discussed in chapter 11). Aside
from these technical drawbacks, there are some
practical ones: Raudenbush (3) notes that as with
meta-regression models, the mixed-effect method
is most useful when the number of studies is large,
and indeed cannot sensibly be attempted when
very small numbers of studies are being combined.
It is worth noting that the methods outlined here
cannot deal with dose-response regression analysis,
for these see pages 157-61.

Further research

Similar further work issues to those covered in
chapter 11 are relevant here, but there is an
additional complication when using a multi-level
approach as the general model (12.9). This is the
question of how to choose which covariates are
included with random coefficients and which are
not, i.e. how do you decide whether there is suffi-
cient heterogeneity between the studies identified
by the levels of a factor to allow for a separate
variance term to be included into the model. Whilst
a comparison of deviances between the various
models can be performed, such a method might
not necessarily be appropriate, and further work
is needed in this neglected area of mixed-effect
modelling, certainly with respect to meta-analysis.

As with meta-regression, there is the issue of
distributional assumptions, not only of the data,
i.e. T; dist N[-, -], but also of the random effects.
Previous work has often made choices on the
grounds of computational convenience.

It should be noted that practical applications
of these models seemed a bit thin in the meta-
analysis literature.

More specifically, in considering their model,
Huque and Dubey report:

‘More theoretical and computational work is
needed to assure the robustness of the estimates
derived, or to derive other robust estimates and
examine distributional aspects of the parameter
estimates in the model.” (5)

Similarly, Berkey et al. (6) make suggestions for
further work needed on their model: 1) the
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development of an alternative estimator of the 6%
(the within-trial variances) because the two estim-
ators they considered provide biases on the results
in opposite directions, for both the no-covariate
and single-covariate model; 2) because each new
situation needs a new simulation study to deter-
mine the number of degrees of freedom of the
t-distribution are necessary to get nominal cover-
ages close to the 90% and 95% levels, further work
defining a general rule would be desirable.

Summary

This chapter has extended the methods of meta-
regression in chapter 11, to allow for the existence
of between study heterogeneity that cannot be
adequately modelled by fixed covariates in a
meta-regression model. The simplest models simply
allow for a single random effect term, whilst more
complicated models can allow for different levels
of between-study heterogeneity associated with
differing levels of a factor using a hierarchical
modelling framework.
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Chapter 13

Bayesian methods in meta-analysis

Introduction

This chapter reviews the use of Bayesian (both

full and empirical) methods that have been used
in the synthesis of studies (meta-analysis). Bayesian
methods have become more frequently used in a
number of areas of healthcare research, including
meta-analysis, over the last few years (1-3). Though
much of this increase in their use has been directly
as a result of advances in computational methods,
it has also been partly due to their more appealing
nature, and also specifically the fact that they
overcome some of the difficulties encountered

by other methods traditionally used.

Unlike other chapters in this report a section
providing background material is given. This
includes a brief overview of what Bayesian methods
are, and perhaps more importantly the underlying
principles utilised. Whilst one of the reasons for
the lack of use of such methods has been, that
they required an understanding of the underlying
principles, it is also due partly to the fact that until
recently, there was little or no software available.
Hence, non-statisticians found the use of such
methods daunting, The first section of this chapter
attempts to give a non-technical introduction

to them.

General introduction to
Bayesian methods

Non-technical introduction

Bayesian methods can be considered as an
alternative to the classical approach to statistical
analysis. The name, originates from the Reverend
Thomas Bayes (1702-1761), who in papers publish-
ed posthumously (4), outlined a different system
for making statements regarding probabilities
and random phenomena. At the heart of this
alternative system was an equation which forms
the basis of all modern Bayesian theory. This is
now commonly referred to as Bayes’ theorem.

Though this chapter is primarily concerned with
meta-analysis, it is perhaps instructive to consider
how Bayes’ ideas relate to a single study before
generalising it to the case when we have a number
of studies. Consider again the motivating example

outlined in chapter 5 on the relationship between
cholesterol reduction and all-cause mortality. The
first study, using cholesterol reduction as a primary
intervention in that meta-analysis was carried out
in 1969, now, in a classical statistical framework the
analysis of that randomised trial would make use
of only the data contained in the trial, it would
certainly not take into account any laboratory,
animal or non-randomised evidence. A Bayesian
analysis would proceed, at least initially, by first
summarising what the evidence of a relationship
was prior to the RCT being conducted, this might
be in terms of the OR or some similar measure of
relative effect. Obviously, this in itself raises a
number of issues; for example when extrapolating
from animal studies to humans different people
will hold different beliefs about how animal

results will carry over to humans. They might

also hold differing beliefs about how reliable the
evidence was from say a number, of perhaps small,
observational studies. The key aspect here is that
different people will interpret the evidence prior
to the RCT being conducted differently. This is

a key element of the Bayesian approach, namely
that different individuals have their own view of
the world, and this introduces the idea of subjective
probability (5). Traditionally, probabilities attached
to specific events, say that a dice rolled will land
with a six facing up, have been objective, and whilst
this seems sensible for events such getting a six
from a dice, when we consider human phenomena
such interpretations have less meaning. Returning
to the trial example, assuming that an individual
has been able to summarise quantitatively their
beliefs prior to the RCT being performed, then
the key question which the Bayesian approach
addresses is how do these beliefs change in the
light of the evidence generated by the trial? The
answer to such a question is that the prior beliefs
of the individual are combined with the evidence
generated by the trial using Bayes’ theorem. The
resulting beliefs a posteriori to the trial are then the
beliefs the individual would hold if they updated
their prior beliefs in the light of the trial evidence
in a rational and coherent manner. A number of
points should be noted. First, the posterior beliefs
obtained by the application of Bayes’ theorem may
not indeed be the posterior beliefs held by an
individual, since that individual may not be rational
and coherent in their probabilistic reasoning.
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Secondly, it has been the explicit beliefs of an
individual that had been used, it could well be that
a group of individuals have collectively expressed
their prior beliefs regarding the possible relation-
ship between cholesterol reduction and subsequent
mortality. The issue of whose prior beliefs to use is
an important one, and is an aspect of the Bayesian
approach that has led to considerable criticism; it
is discussed briefly below. The actual numerical
application of the Bayesian approach to this issue
of the first RCT in the cholesterol meta-analysis is
considered again on pages 92-5.

Despite Bayes laying the foundations many years
ago, it is only very recently that this approach has
been adopted, not least due to the computational
difficulties this method often poses. However, with
the increase in computing power, which has facili-
tated specialist software to be written, a complete
Bayesian analysis is now possible in many different
research fields, including meta-analysis. Although
increasing in popularity, this approach still has
some way to go before it is accepted as common
place in the science (medical) literature. It is also
responsible for causing strong polar reactions
among statisticians, who are either strong
advocators or opponents of the general
fundamental approach.

An issue raised above, and one that deserves

more discussion in this section is the use of specific
prior beliefs. Indeed, the specification of prior
beliefs quantitatively is a difficult area, and one
that to date has been neglected in the statistical
literature, as the ability to consider realistically
complex problems has been hampered by
computational difficulties.

To add confusion, there is another group of
methods which are termed empirical Bayes
methods, and which are discussed from a technical
perspective on page 95. The use of term empirical
Bayes methods is unfortunate since some methods
classified as such are not Bayesian at all. Generally,
empirical Bayes methods proceed just as fully Bay-
esian methods, except that they do not incorporate
subjective beliefs into the analysis, but rather
estimate the prior from the data. Thus, they

help to add structure to a problem, but remain
‘objective’ in terms of interpretation.

An important point to note is that the use of Bayes’
theorem, the basis of Bayesian methods, is also
used in a diagnostic setting where manipulation

of conditional probabilities is required. This
application has aroused no controversy, and

is not considered in this report.

General advantages/disadvantages of
Bayesian methods

Whilst there are specific advantages to adopting
a Bayesian approach, there are also a number
of disadvantages. Below is a brief, and certainly
not an exhaustive, list of some of the main
advantages and disadvantages.

Advantages

¢ Allows probability statements to be made
directly regarding quantities of interest, e.g.
the probability that patients receiving drug A
have better survival than drug B.

¢ Enables all evidence regarding a specific
problem to be taken into account rather than
just the current study, and thus allows a summary
of the current state of knowledge.

¢ Enables predictive statements to be made easily,
conditional on the current state of knowledge.

¢ Elicitation of prior beliefs requires investigators
to think carefully as to what they really do
expect. Combined with the elicitation of
demands, i.e. the magnitude of difference that
would be considered clinically significant, this
allows for an investigation into the initiation,
monitoring and stopping of studies.

¢ Similar units of analysis, i.e. in meta-analysis
studies, to borrow strength from other studies
in estimating say an individual study effect.

* Bayesian methods lead naturally into a decision
theoretic framework which can also take into
account utilities when making health care or
policy decisions.

Disadvantages

* The use of prior beliefs destroys any element
of objectivity.

¢ Eliciting prior beliefs is a non-trivial exercise,
and at present there are few guidelines to help
the Bayesian analyst. Though when also adopting
a decision theoretic framework much work has
been done in the elicitation of utilities.

¢ There is no automatic measure of statistical
significance such as a p-value.

® They can be computationally complex
to implement, and thus time consuming
to perform.

¢ At present, there are software limitations,
though this is changing rapidly.

Technical background

As described above, the Bayesian approach can be
summarised as follows: opinions are expressed in
probabilities, data are collected, and these data
change the prior probabilities, through the
operation of Bayes’ theorem, to yield posterior
probabilities (6). Opinions are expressed in
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probabilities which implies that the subjective
beliefs of the researchers (or possibly experts from
the field/panel consensus), prior to conducting
the analysis, form the starting point for the analysis.
These prior beliefs are than combined with the
data, in the form of a likelihood function, to
produce a posterior distribution, which takes

both subjective and objective evidence into account.
Itis in the incorporation of subjective beliefs that
the Bayesian approach differs greatest from the
classical viewpoint, which only considers objective
evidence. However, another key difference between
the Bayesian and Classical approach is the role

that the likelihood function plays. In the classical
approach, the likelihood function defines the
support for various values of the parameter of
interest, conditional upon the observed data. In the
Bayesian approach since both the data and model
parameters are considered random, the condition-
ing may be reversed, and thus the Bayesian con-
siders the likelihood function to measure the plausi-
bility of the observed data condition upon the
parameters of the model (7). Although as part of
the following, a brief example an illustration of the
Bayesian approach to healthcare research is out-
lined, the interested reader is referred to any of the
following for a more detailed account of the Bay-
esian approach generally (8-14). For details regard-
ing Bayesian methods in randomised controlled
trials, the following can be consulted (15-26).

The use of a Bayesian approach to inference in a
single RCT is first considered. Considering the
example of the first trial in the cholesterol example
(see chapter 5), reported in 1969, more technical
details of how the Bayesian approach proceeds in
practice is given below. As mentioned above, the
key component in a Bayesian analysis is the way in
which a priori beliefs are updated in the light of new
data via Bayes’ theorem to yield posterior beliefs
about relevant quantities of interest. Assuming
that the quantity of interest is denoted by 6, the
posterior density for 8, P(6|Data), is given by
P(BIData) 00 P(8) P(DatalB). (18.1)
In order that P(BIData) is a proper density a
constant of proportionality, &, is required so that
P(BIData) integrates in the continuous case or
sums in the discrete case to one. Thus
P(BIData) = k P(8) P(Datalf), (13.2)
where k= [ P(B) P(BIData) 06, and is the
integrating constant. All inference regarding 6
then proceeds via the posterior density P(6|Data).
Various summary measures of location such as

the posterior mean, median and mode can be
calculated for P(BIData) together measures of
dispersion such as the variance. Analogous to the
calculation of ClIs, credibility intervals may also be
calculated. Such intervals have a direct probability
interpretation, i.e. they are intervals in which 8 lies
with a certain probability. An important extension
to the use of credibility intervals is the notion of
highest posterior density intervals, which again
have a direct probability interpretation, but are also
unique intervals such that any specific value of 8
outside the interval has lower point probability
than points within the interval. Other summary
measures such as the probability that 0 is greater
than a certain value of that 8 lies in a certain inter-
val may all be calculated directly from P(6IData).
Finally, one further aspect of a Bayesian analysis
which is often required is the ability to predict
future observations, conditional upon the data so
far and a priori beliefs. In order to make such
predictive statements the predictive density is
required, and is given by

P(x|Data) =_[P(x|e) P(61Data) 00 (13.3)

where xis the future observation.

So far, the assumption that there is only parameter
of interest, 6, has been made, but often in many
healthcare research settings there are a number of
parameters which though not necessarily of direct
interest have to be considered in the analysis. For
example, in regression we may only be interested
in the slope of the regression line but we also have
to estimate the intercept. Such parameters, which
are of secondary interest, are termed nuisance
parameters. The Bayesian methods outlined
above follow when there is more than one
parameter, but extra complications arise.
Thus, (13.2) becomes

P(BIData) = k P(0) P(DatalB), (13.4)
where 0 is a vector of parameters and % = [y P(0)
P(DatalB) 00. Although in theory Bayes’ theorem
can still be used quite straightforwardly even in the
multi-parameter setting, it is often of interest to
obtain a summary of posterior beliefs regarding a
single parameter of interest or a function of the
parameters of interest. This can be achieved by
obtaining the marginal posterior density. Thus, if
the first element of 6, 8, was of interest but the
other elements of 8 were not, these being denoted
by 6_,, then the marginal posterior density for 6,,
P(6,|Data), is obtained by integrating out the
nuisance parameters, 8_;, from the joint posterior
density, P(BIData). Thus
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P(8,|Data) = Ie_l P(BIData) 06_, (13.5)

The marginal posterior density for 8, can now be
used in exactly the same way as the posterior
density in the single parameter case.

As can be seen by (13.2), (13.4) and (13.5), the
routine use of Bayesian methods requires a number
of possibility high dimensional integrals to be
evaluated. It is this that has hampered the practical
application of such methods for a considerable
period of time. Essentially, three possible methods
are available for their evaluation; asymptotic
approximation methods, quadrature (numerical
integration) methods and simulation (27). Though
all three methods have been used, in practice the
first two methods are only practicable when there
are a relatively small number of parameters
involved. Recently much work has been carried out
in developing simulation based methods, and in
particular on a group of methods broadly classified
as Markov Chain Monte Carlo (MCMC) methods
(28). Within this broad range of Monte Carlo
simulation methods, one method, Gibbs sampling,
has been increasingly used in applied Bayesian
analyses within a healthcare research setting
(2,28,29). The appeal of this method is that in
wanting to summarise a posterior density, and in
particular a marginal posterior density, simulating
from often a high dimensional joint posterior
density is often difficult, but the posterior con-
ditional distributions, i.e. P(6,18_;,Data), are often
much easier to sample from. Gibbs sampling uses
this fact, together with ergodic theory which says
that if the conditional densities are sampled from
for a sufficiently long period of time, then the
realisations will approximate the marginal posterior
densities (28,30,31). Though one advantage of
Gibbs sampling is its simplicity, and it can be
performed in any programming environment,

the development of a specific package, BUGS (32),
has greatly increased its appeal and use.

An alternative method for implementing

Bayesian analyses in practice is to use a specific
prior distribution, which when combined with
certain likelihood functions yields a posterior
distribution from the same family as the prior
distribution. In addition, if the family of distri-
butions is relatively standard then this will enable
summary statements to be made more easily (33).
For example, if dealing with continuous data, and
an assumption of normality can be reasonably
made, and assuming that the mean is the para-
meter of interest, then by using a prior distribution
for the mean, which is also a Normal distribution,
the resulting posterior distribution is also a normal

distribution. Thus, in this one parameter case
making inferences about the posterior beliefs of
the mean only involves summarising a Normal
distribution. Such models are termed conjugate
models, and other examples include the beta-
binomial model, i.e. beta prior distribution,
binomial likelihood, beta posterior distribution,
and the gamma-Poisson model, i.e. gamma prior,
Poisson likelihood and gamma posterior. Though
all three models are single parameter models, they
have the advantage of being fully tractable and
often serve as an initial analysis.

As mentioned on pages 91-2, a key aspect of

a Bayesian analysis is the role that the prior
distribution plays, and indeed one of the criticisms
of the Bayesian approach is its dependence on such
prior distributions. The specification/elicitation

of prior beliefs, especially in a multi-parameter
setting, is also a non-trivial task. Therefore, a
number of approaches have been developed in
which vague prior distributions have been used,

so that the data effectively dominate the prior
distribution. One possibility is for P(8) or P(8) to
be simply a constant, in which case the posterior
density is in fact the standardised likelihood.
Unfortunately, the use of vague prior distributions
such as this means that they are not always invariant
to transformations, and thus an alternative is the so
called Jeffreys’ prior (34). The key message is that
the use of prior distributions is an important area
and in any Bayesian analysis a sensitivity analysis in
which a variety of prior distributions are used is a
crucial aspect of any analysis.

Obviously, the details that have been discussed

so far are somewhat abstract; on pages 95-100,
Bayesian methods are specifically applied to the
problem of meta-analysis. However, below, a
Bayesian analysis of the first trial of the cholesterol
meta-analysis is presented as a worked example
using a normal-normal conjugate model.

Example

As previously mentioned, one has to express their
prior beliefs in terms of a parametric distribution.
For the sake of simplicity say the data are viewed
as a random sample of size n from a normal
distribution with unknown mean 6 and known
standard deviation 0, and the goal is to assess
one’s uncertainty about 6 in light both of the
data and of prior information.

Assuming that the summary statistic for the data,
x,, can be assumed to be normally distributed then

x, ~ N[0,6%/n].
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Assuming further that the a priori beliefs regarding
8 can be expressed as a normal distribution with
mean 0, and variance 62/ n,,

8~ N[8,,0°/n,]
and the resulting posterior distribution is given by
01x,~N[(ny0,+nx,)/(n+n,), 0%/ (n+n,)]
where x, is the log(OR) 0° =4 (25).

In terms of the first primary study in the cholesterol
meta-analysis, the observed data were 174 deaths
out of 424 patients on the treatment arm, and

178 deaths out of 422 patients on the control arm.
Thus, the log(OR) is —0.05, and n = 352. Assuming
that our a priori beliefs were consistent with a
log(OR) of zero, i.e. no effect, but assuming
uncertainty associated with this belief being
represented by a hypothetical trial in which 100
events were observed, then 8, =0 and n, = 100.
Thus, the posterior distribution is

B1x, ~ N[(1000+352 -0.05) /(352 +100),4/(352 + 100) ]
~ N[-0.04,0.092]

Thus, we can see that the posterior mean for 8 has
been shifted slightly towards zero as a result of the
prior beliefs, but that the amount by which is has
been modified is in proportion to the ratio of the
a priori and observed variances. The other point

to notice is that the posterior variance, 0.008, is
smaller than the observed variance, 0.01, reflecting
the fact that there has been an increase in the
amount of evidence on which the analysis has
been based.

Empirical Bayes

A group of methods termed empirical Bayes

have become increasingly used in healthcare
research, though there is also a considerable body
of literature on these methods generally (35-41).
Such methods have acquired the term empirical
Bayes because they make use of some of the
methods of the Bayesian approach, but the key
aspect of subjective probability and inclusion of
subjective beliefs do not carry over. Such methods
are termed Bayes because they use the idea of a
prior distribution to impose some sort of structure
on a problem, but they do not use subjective a
priori beliefs to derive/elicit actual numerical values
for the hyper-parameters of the prior distributions.
Instead they estimate the most plausible values of
the hyper-parameters from the data. The key issue
is that empirical Bayes methods only use the actual
observed data, though some element of subjective

judgement does have a role to play in the choice
of the form of the prior distribution, as using
different prior distributions may change the
results of an analysis by imposing different
structures on the problem.

For example, consider data x,...,x, assumed

to be derived from a normal distribution with
mean p and variance 0% and that 0° is assumed
known but that p is unknown. Suppose a prior
distribution is to be assumed for p, such that this to
is a normal distribution with mean | and variance
T. In a fully Bayesian analysis, the hyper-parameters
N and T would be completely specified by an
individual, but in an EB analysis would estimate
the most likely values of N and T given x,,...,x,,

the data. Thus

P(plx) = k P(pIn,T) P(xlp) (13.6)
where N and T are such that
m(x,) = [ P(xlp) P(pin,1) op (18.7)

and where the marginal for x,,...,x,, is given by
m(x) =[];,.ym(x;). N and T are then chosen such that
m(x) is maximised. Obviously, evaluation of (13.7)
requires integration, though by making a number
of assumptions, such as normality, analytically
tractable solutions exists for a number of

special cases.

Applications of Bayesian methods
in meta-analysis

Having established the idea behind a Bayesian
analysis in the previous section, here we explore
how it can be applied in the context of
meta-analysis.

Bayesian meta-analysis of normally
distributed data

Many of the authors who have considered a
Bayesian approach to meta-analysis have indeed
extended the normal theory model outlined on
pages 4-5 to a hierarchical setting (42-48). In
other areas of statistical science such Bayesian
hierarchical models have been used for a
considerable time (49,50). Before considering
specific approaches taken, a basic hierarchical
model similar to the random effects model of
chapter 10 is outlined.

Assume that the ith study in a meta-analysis can
be summarised by an outcome measure y;, for
example, a log(OR) or difference in means, and
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that associated with the outcome measure is a
within-study variance 0%, and the size of the study
n;, then the first level of the model relates the
observed outcome measure y, to the underlying
effect in the ith study 8,. At the second level of the
model the 0;s are related to the overall effect in
the assumed population from which all the studies
are assumed to have been sampled n, and T° is the
between-study variance or the variance of the
effects in a population. So far the derivation of
such a model is exactly analogous to the random
effects model of chapter 10. However, from a
Bayesian perspective, a number of unknown
parameters exist which are to be estimated, O 2
pand 17 and therefore require prior distributions
in a Bayesian setting. Thus, denoting an arbitrary
prior distribution by [-,-] the model has the
following form

¥~ NI6,0%/n] 03~ [-] i=1...k
8~ MP,TQ]
] T[]

Having specified the three required prior
distributions in terms of the relevant hyper-
parameters, estimation can then proceed using

a number of computational approaches as out-
lined on pages 4-5. However, the assumption of
normality that has been made here, combined with
the fact that there are often a reasonable number
of studies in any specific meta-analysis make such
models particularly suited to MCMC methods.

However, the specification of the prior distributions
is not a trivial task and the choice of which prior
distribution to choose has received considerable
attention recently. (51,52)

Inference regarding 6,

Obviously sometimes interest focuses upon the
individual study effects, the 6;s, and conditionally
upon p and T° the 6;s have analytically tractable
expressions for the mean and variance,

which are

E[8]y, p, "1 = Bp + (1 - B)y,

(13.9)
=p+ (1-B)(y-p)
and the posterior variance is
2
VI8,ly,u,12] = (1 - B) — (18.10)
n;
where
o?/n;
Bj= ——— (13.11)
0%/ n; + 1

These expression are analogous to those in
chapter 10 for the classical random effects model,
but they are conditional upon both p and T* being
known. They show that the effect in the ith study
is shrunk towards the overall population mean by
a B, and thus from (13.11) it can be seen that for
studies which have a larger within-study variance
there will be more shrinkage than for less
heterogeneous studies.

Obviously, estimates for both p and T° are required.
As the model stands, it can be thought of as an EB
approach, with p and t° defining the prior distri-
bution, i.e. the second level of the model, for each
of the 6;s. They could be estimated from the data
using either a method of moments or restricted
ML. However, expressions (13.9) and (13.10) for
the mean and variance of the 8;s at present do not
account for the fact that they have been estimated.
Carlin (53) has shown that under an assumption of
non-informative locally uniform prior distributions
for both p and 1° expressions (13.9) and (13.10)
may be re-written to take into account the fact

that p has been estimated, but are still conditional
upon 1% Thus

E[Bly, T’ 1=p+ (1-B)(y,—-p) (13.12)

VIBly, T°] = w, 07+ (1 —w)*1%/3,; w;, (13.13)

where w;= (1 + 62 /1%)7" and the second term in
(13.13) estimates the posterior covariance between
two study effects. In order to obtain estimates which
are totally unconditional numerical methods have
to be employed, since the joint posterior density
for 6;s and T* has to be integrated with respect to
1% In essence, a fully Bayesian analysis is required
and unfortunately no analytically tractable
solutions exist.

Inference regarding u

Often, the main focus of interest is 1, the
overall population effect. As with inferences
regarding the 6;s it is only possible to obtain
simple expressions for the mean and variance
of p conditional upon T* when vague non-
informative prior distributions are assumed
for both. Thus

Elply, U1 =Y, w;y; /Y w, (13.14)

Viply, 1?1 =1/ w,. (13.15)
As with inferences regarding the individual effects
above, in order to obtain posterior mean and
variance unconditional upon T* numerical methods
have to be employed.
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Inference regarding 1*

From a classical perspective, chapter 10
demonstrated how T° can be estimated as effectively
negative, i.e. the within-study variability is greater
than the between-study variability. From a fully
Bayesian perspective, such a situation is not possible
under any plausible prior distribution (see below).

Choice of prior distributions for 02

U and T2

Before discussing particular technical details, the
issue of the choice of 0% deserves mention. Some
authors have claimed that whether the 0%s are
assumed known and replaced with the observed
within-study variances or whether they are assumed
random and therefore have a prior distribution
specified makes little practical difference a part
from when there are a number of small studies
(Carlin, 1992). If the 03s are considered random
and therefore a prior distribution required then a
number of possibilities exist. The most frequently
used prior distribution is P(0%) 0 1/0% which
corresponds to a Jeffreys’ prior. Although appeal-
ing for theoretical reasons, such a prior distribution
is not always feasible in practice, and a commonly
used alternative distributional-based prior is an
inverse gamma distribution. This distribution is
particularly flexible, and can accommodate a
number of possible scenarios, it also has the benefit
of only being defined on the positive real line.

In terms of a prior distribution for p it is common
practice to either assume a particularly vague
proper prior distribution or to use a uniform
distribution over the whole real line, reflecting the
fact that we often wish to remain relatively objective
about inferences regarding the pooled overall
effect. Frequently, though a suitably vague normal
distribution is used as a prior distribution for p
since this can aid estimation of the parameters.
Obviously the use of any prior distribution should
be subjected to a sensitivity analysis.

Bayesian meta-analysis of binary data
All the model derivation on pages 95-7 has assumed
that the outcome measure for each study can be
assumed to be normally distributed. Whilst making
such an assumption facilitates estimation, this might
not be tenable from a practical point of view.

Two possible model formulations exist, and have been
considered to date. Consonni and Veronese (54) con-
sider the modelling of binary outcome data in meta-
analyses directly in a hierarchical model, with the
observed responses in a single arm of the trial being
modelled using binomial distributions, with conjugate
Beta distributions at the further levels of the model.

Though such an approach is computationally
attractive, due to the conjugate nature of the model, it
is of limited value in comparative experiments.

An alternative model formulation, which has been
adopted by a number of authors (55-61), is briefly
described in a general form below. In this approach,
although the observed responses in each arm of a
trial are assumed to follow a binomial distribution,
a suitable transformation is then applied, frequently
logit in nature, to the rates parameters. Following
such a transformation there model formulation pro-
ceeds as on pages 95-7, though parameter estim-
ation requires some form of numerical, simulation,
or approximation method, to be employed.

Consider a two-arm study in which 7, and #, are the
observed number of responses out of n; and n,
respectively. Then the first level of the model is

r, ~ Bin[T11,7n4] 1o ~ Bin [T, n,] (13.16)
where T, and T, are the two unknown rate
parameters for the two arms of the study. Consider
now the logit transformation of each of the two
rate parameters such that

log(T,/1-11) =p,—0,/2 (13.17)
log(Tt,/1 —T0,) =p;+ 9, /2

9, is now the parameter of interest, being the
log(OR). This is often then assumed to be approxi-
mately Normally distributed and the second level
of the model becomes
5, ~ Nl@1*] (13.18)
where @represents the overall pooled effect, on a
log(OR) scale, and T° is a measure of the between
study heterogeneity. As on pages 95-7, a fully Baye-
sian analysis prior distributions have to be specified

for both @and 12 Thus, as before the final level of
the model is

(13.19)

The key difference between this model and (13.8)
is the assumption that at the lowest level of the
model the responses in each study are modelled
directly. In (13.8) calculation of the log(OR) when
there are zero or complete responses in any studies
requires various assumptions to be made, usually by
the addition of ‘small’ constants to the responses
frequencies. It is this assumption of normality of
the log(OR) or other transformed measures of
binary data in models such as (13.8) that is
frequently not validated.
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Empirical Bayes methods in
meta-analysis

The use of EB approaches has received much
attention in the literature since until recently
the use of a fully Bayes approach has been
hampered by computational difficulties
(36,37,59,62-66).

However, the EB methods that have been used
have almost exclusively assumed that the ‘prior
distribution’ has been the second level of the
Bayesian hierarchical model (13.8), and that the
hyper-parameters, in this case p and 1%, have then
been estimated from the data. Such an approach is
analogous to assuming instead a three-level model
as (13.8) and assuming uniform prior distributions
for both p and T1* as used by Carlin (53), and
indeed the parameter estimates obtained using
such an approach are given by (13.12)—(13.15).
In addition, Smith et al. (57) and Biggerstaff et al.
(67) explain that the random effects model of
DerSimonian and Laird (68) (see chapter 10)
could be viewed as an EB approach. The main
drawback with this, though, is that no allowance

is made from the fact that T has been estimated
from the data, using either ML or moment
estimation methods. Indeed, Carlin (53) goes

on to show that in order to take account of this,
some form of quadrature or simulation method

is required.

In theory, distributions other than uniform
distributions could be assumed and the hyper-
parameters of these prior distributions could be
estimated from the data, utilising the general
concept of EB methodology outlined on page 95.
However, such an approach, though appealing in
that it retains the objectivity afforded by the
empirical approach and allows for the fact that
both p and T° have been estimated from the data, is
as computationally complex as a full Bayesian
approach, and it is no doubt for this reason that
such a method has not been utilised in practice.

Advantages/disadvantages of Bayesian
methods in meta-analysis

Advantages

Unified modelling approach

By using a Bayesian modelling approach for
combining studies, the debate over the appro-
priateness of fixed and random effect models (see
pages 104-5) is overcome, whilst at the same time
including the possibility of regression models (57).

Borrowing strength
Borrowing strength can be seen as a by-product
of a fully Bayesian meta-analysis model. When

study estimates are combined, the model updates
estimates of the individual studies, taking into
consideration the results from all the other studies
in the analysis. Thus, narrower CIs will be obtained
for each individual study, by borrowing strength
from all other studies. As well as reducing the width
of the CI, the point estimates of the individual
studies will also be affected, moving them closer
together towards the overall pooled estimate.
Gaver et al. (69) report that a variety of statistical
ideas and terms are used to describe this concept,
including shrinkage, empirical Bayes and
hierarchical Bayesian modelling.

These concepts are particularly useful if one is
interested, not in some overall, ‘average’, of the
study results, but instead about making inferences
about any particular treatment effect, then results
from the other studies can be used to, ‘improve’,
this estimate. This leads to better point estimates
and shorter interval estimates of any particular
effect. Gaver et al. (69) note that approaches to
borrowing strength, with applications to medicine
and health, are much rarer than the meta-analytic
approach that focuses on estimating population
parameters. However, he does point out that
DuMouchel and Harris (44) elaborate such a
method to improve estimation of cancer effects in
humans, by borrowing strength from experimental
data on laboratory animals in experiments using
the same carcinogens, and Raudenbush and Bryk
(63) propose estimation by EB and Stein-type
methods; though Morris (65) points out Stein’s
estimator, used in borrowing strength, can only be
used when the variances of the studies are the same
(i.e. almost never). In addition Laird and Louis
(70) and Carlin and Gelfand (1990) give para-
metric and bootstrap methods for constructing
EB CIs which may be applied to obtain individual
study estimation. Indeed, recently interest in the
concept of borrowing strength has increased with
respect to institutional comparisons, see
Spiegelhalter and Goldstein (71).

Allowing for all parameter uncertainty

EM (simple models) and classical approaches do
not allow for the fact that both p (mean), and 1°
(the between study variance) have both been
estimated from the data.

Allowing for other sources of evidence

Often meta-analyses are conducted in substantive
areas in which evidence is available from sources
other than RCTs, the main source of evidence, i.e.
when the majority of evidence is from RCTs, but
other evidence exists in the form of observational
studies (see chapter 26 for more information).
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Ability to make direct probability statements
Tweedie et al. (72) can give a probability that the
effect is above (or below) one (i.e. direct answer
to question of interest).

Prediction

Using a Bayesian analysis [specifically equation
(13.3)], it is possible to incorporate evidence from
previous trials into the design of a new one (73).
Using this approach, one can take the result of a
meta-analysis and calculate the probability that the
current/planned study (fixed sample size) will
produce conclusive results.

Disadvantages

Specification of prior distributions

When carrying out a Bayesian analysis, one needs
to specify distributions for the population effect
size (p) and the between-studies standard deviation
(T) in true, underlying effect sizes. Louis and
Zelterman report:

‘Generally, this elicitation is done by asking the
respondent for a ‘best guess’ for the mean or median.
Using this measure of centre to anchor the
distribution, the respondent is asked for additional
percentiles of the distribution. An individual who has
‘no idea’ of values for these parameters would specify
that A (the prior variance of p) is extremely large and
that the distribution for T also has a large variance.
Such priors are called ‘non-informative.” Generally,
reasonable ranges can be specified for parameters,
even if one cannot produce much detail of relative
probabilities within the range.” (74)

They go on to comment that:

‘Although we may ‘all think like Bayesians’, it can be
extremely difficult to evaluate and communicate prior
opinions, and considerable research continues on this
aspect of Bayesian analysis.” (74)

Sensitivity to prior distributions

Importantly, a meta-analysis is not conducted to
inform a single individual, but to communicate the
current state of information to a broad community
of consumers. If the prior distributions differ
substantially for different consumers, then the
related Bayesian analyses can produce qualitatively
as well as quantitatively different results. Therefore,
it is important to perform a sensitivity analysis

over the range of opinions. If conclusions are
stable then we have ‘findings’. If they are not,

the collection of Bayesian analyses underscores

the finding that the data are not sufficiently

compelling to bring a group of relevant
consumers to consensus. This situation should
motivate additional primary studies.

Calculation of posterior

Producing the posterior distribution and
computing it can be difficult. In the continuous
case, one needs to evaluate complicated integrals
that replace the summations in the preceding
formulae, and only the most basic models are
mathematically tractable. Until recently, more
complex but still quite basic models were handled
by approximating the posterior mean and variance.
However, recent advances in computational
approaches allow the analyst to produce full
posterior distributions for complicated models.

Comparison of classical and Bayesian approaches
A number of authors have explicitly compared
classical and Bayesian approaches to meta-analysis;
these are briefly reviewed below.

Carlin (53) compares Bayes and EB estimates.
He observes the empirical ones are artificially
accurate, i.e. the variance of the pooled estimate
is too small.

Smith et al. (57) compare many methods (and
software packages) for carrying out meta-analysis,
including fixed, random and full Bayesian models.

Su and Po (75) compare EB, fully Bayesian, and
classical fixed-effect methods. They use four data
sets including beta-blockers as treatment for
myocardial infarction, and case control studies
investigating the association between smoking
and lung cancer. They concluded that Bayesian
methods were more conservative, with the fully
Bayesian model producing the widest Cls. They also
report that the use of any one method exclusively
would not have changed the conclusions, though
when the heterogeneity was artificially increased
Bayesian methods straddled unity while the other
methods did not. Differences did exist though in
the point estimates and CIs for specific studies
(particularly small ones). The authors report
that the importance of these differences

needs investigating.

Biggerstaff ¢t al. (67) compare classical with
Bayesian techniques (includes random effects and
EB methods) for case—control studies of passive
smoking in the workplace.'

! This study is also noteworthy in that it compares different methods for investigating individual study estimates also,
namely the use of Fisher’s exact, Mantel-Haenszel, and logit methods.
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Tweedie et al. (72) compare classical (random
effects) and Bayesian (exact) methods with similar
conclusions to those of Biggerstaff et al. (67).

Rogatko (56) compares random effects, asymptotic
Bayes and exact Bayes methods using the risk
difference scale on both simulated and real data.

Finally, Morris (65) compares fixed effects, random
effects, likelihood, adjusted likelihood, and Bayes
(Gibbs sampling) methods.

Extensions and specific areas
of application

Incorporating study quality

The assessment of and inclusion of study quality
was considered in chapter 6. Clearly the quanti-
tative assessment of a measure of study quality may
be included in a Bayesian analysis in the same way
that it might be in a classical analysis, and exten-
sions of the Bayesian meta-analysis models con-
sidered earlier to incorporate covariate information
are presented on below. Alternatively, the assess-
ment of study quality by one or more experts or
expert meta-analysts may be considered either in
the form of elicited a priori beliefs regarding an
underlying quality process, i.e. treated as random/
latent variables in a meta-analysis or as, perhaps
after suitable transformation, a set of prior distri-
butions directly for one of the model parameters,
perhaps the individual study variances that are to
be used in some form of weighting of the studies.

These various scenarios raise a number of
questions, the key one of which is what is data

and what are prior beliefs (74).Whilst all three
approaches are feasible in practice relatively little
work has been conducted in this field. Smith et al.
(76) considered the inclusion of quality in relation
to the probability of publication of studies, since
there is often assumed to be a relationship between
the two, whilst Smith et al. (51) considered the
inclusion of quality in relationship to the credibility
of different research designs in a generalised
synthesis of evidence approach, in which prior
distributions were assumed for the variance
parameters so as to reflect varying degrees

of credibility.

Covariates

To date many of the applications of Bayesian
methods in meta-analysis have been to mirror the
random effects models of chapter 10. This has
been partly due to the computational difficulties in
applying fully Bayesian models, and partly due to

the fact that the use of Bayesian methods in meta-
analysis has been at the beginning of a learning
curve. In theory extension of model (13.8) and
(13.18) poses no difficulties, with p being replaced
by B’x,, where B is a vector of regression co-
efficients and x; is a vector of study-level covariates.
In a Bayesian setting just as a prior distribution was
required to be specified for [, one also needs

to be specified for B. In such settings it would
appear that the use of MCMC methods (see pages
92-5) is particularly appealing, since the inclusion
of extra parameters will almost certainly preclude
the use of other numerical methods. The inclusion
of covariates in a Bayesian meta-analysis has been
considered by Louis and Zetlerman (74).

The use of such covariates raises a number of
issues. First, is the problem of when there is

data at both the study level and the patient level.
In theory such a scenario could be accommodated
with a more complex hierarchical model (see page
102). Another issue is that study-level covariates,
especially when derived from published studies,
may be subject to various measurement errors.
Measurement error here is used in its broadest
sense. For example, assume that studies report

the average age of patients included, and that it
appears that age is an important factor in explain-
ing between-study heterogeneity. If for some studies
age was only in fact obtained on a subset of the
total patients in a study, then potential biases
could be introduced into any analysis.

Model selection

As with any modelling exercise, the eventual
selection of a ‘final model’ is a difficult task,

and one which in the meta-analysis literature has
received little attention. This is partly as a result
of the relative lack of use of regression models
generally, both Bayesian and classical. That having
been said, one aspect of model selection that has
received considerable attention and aroused
heated debate is the choice between fixed and
random effect models (see chapter 10). From a
Bayesian perspective, this is almost a non-sequitur,
since exploration of the marginal posterior
distribution for T* will yield an assessment of any
between-study heterogeneity present. However,
Abrams and Sansé (77) have considered the
choice between such models within a Bayesian
framework using BFs to discriminate between

the two models. For an introduction to BFs

see (78).

The key idea is that the posterior probabilities
of the models are obtained using Bayes’ theorem.
Thus, consider two models M, and M,, and the
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a priori probabilities of the models being correct
P(M,) and P(M,), such that P(M,) + P(M,) =1,
then the ratio of the post