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Objectives
Systematic review and meta-analytical methods 
are already common approaches to the assessment
of health technology and related areas, and
increasing adoption of such approaches may be
foreseen, in part in response to increasingly wide
emphasis on evidence-based approaches to
medicine and health care. This report is intended:

• to identify applications of systematic review 
and meta-analytical methods in Health
Technology Assessment (HTA)

• to promote further, appropriate use of such
approaches in these areas of application

• to begin to identify priorities for further
methodological developments in this field.

How the review was conducted

Systematic literature searches using MEDLINE,
EMBASE, and Institute of Scientific Information
(ISI) Science/Social Science electronic databases
and the Cochrane methods database were carried
out to find relevant articles. Relevant reference
collections of the study team were pooled. Grey
literature and unpublished articles were obtained
by writing to prominent researchers, and through
the Internet; further papers were identified by
inspecting the reference lists of all previously
obtained articles.

Review findings

A large number of papers concerning methodology
relevant to different aspects of systematic reviews
were identified. While the ordering of the report
follows the stages involved in carrying out a
systematic review, it is highly structured in a way
which enables readers with specific interests to
locate particularly relevant sections easily. The
main features of the report are now summarised
briefly in turn.

A brief overview of the important issues to be
considered prior to the appraisal and synthesis 
of studies, including a critical appraisal of search
methods, is presented.

Methodology for critical appraisal of the research
evidence, including ways of assessing the quality 
of the primary studies, and its incorporation into 
a review, is explored. No consensus has been
developed as to which method is most 
appropriate for doing this.

An important consideration is the possibility of
heterogeneity between study outcome estimates.
Many assessments and formal tests for detecting
heterogeneity are described. Methods for
accounting/adjusting for heterogeneity are
identified and assessed. No consensus has been
reached concerning the best strategy for dealing
with heterogeneity; currently a large degree of
subjectivity is required on the part of the reviewer.

Both classical and Bayesian statistical approaches
have been developed to combine study estimates.
These encompass the relatively simple fixed effect
approaches, through random effects models, to
more sophisticated hierarchical modelling. The
more complex methods were largely devised to deal
with heterogeneous outcomes, systematic variation
between studies, and the need to incorporate a
fuller set of components of variability into the
model. Several of these methods have come under
criticism; it is concluded that neither fixed nor
random effect analyses can be considered ideal.

In addition to these general methods, approaches
specific to particular outcome scales/measures, and
data types are identified. These include methods
for combining ordinal, binary, and continuous
outcomes; survival data; diagnostic test data;
correlated outcomes; individual patient data; single
arm studies; crossover trials; and finally, studies of
differing designs. While some of these methods
have become standard, others are less commonly
used and so are at early stages of development.

Problems encountered by meta-analysts were
identified. Two potentially serious ones are
publication bias and missing data. Methods for
detecting/adjusting for publication bias exist, and
others are currently being developed. The validity
of most is largely undetermined. Additionally, long-
term policy measures such as registries for all trials
have been suggested. Dealing with missing data
within a meta-analysis has not been considered to

Executive summary
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the same extent. General methods do exist (in
other literatures), but many of them are untested
in a meta-analytical setting.

Further issues identified include methods used 
to report the results of systematic reviews; use of
sensitivity analyses; prospective meta-analysis; and
alternatives to traditional meta-analysis.

Several of the key methods are illustrated using a
dataset comprising cholesterol lowering studies.

Recommendations

Recommendations for good practice for the most
part follow standard and widely agreed approaches.
Greater latitude in the nature of studies potentially
eligible for review, including non-randomised
studies and the results of audit exercises, for
example, may, however, be appropriate. The key
stages are (with extensions and/or less widely
agreed aspects in parentheses):

1. Specification in a protocol of the objectives,
hypotheses (in both biological and health care
terms), scope, and methods of the systematic
review, before the study is undertaken.

2. Compilation of as comprehensive a set of
reports as possible of relevant primary studies,
having searched for all potentially relevant
data, clearly documenting all search methods
and sources.

3. Assessment of the methodological quality of the
set of studies (the method being based on the
extent to which susceptibility to bias is mini-
mised, and the specific system used reported).
Any selection of studies on quality or other
criteria should be based on clearly stated a
priori specifications. The reproducibility 
of the procedures in 2 and 3 should also 
be assessed.

4. Identification of a common set of definitions of
outcome, explanatory and confounding vari-
ables, which are, as far as possible, compatible
with those in each of the primary studies.

5. Extraction of estimates of outcome measures
and of study and subject characteristics in a
standardised way from primary study
documentation, with due checks on extractor
bias. Procedures should be explicit, unbiased
and reproducible.

6. Perform, where warranted by the scope 
and characteristics of the data compiled,
quantitative synthesis of primary study results
(meta-analysis) using appropriate methods 
and models (clearly stated), in order to 

explore and allow for all important sources 
of variation (e.g. differences in study quality,
participants, in the dose, duration, or nature 
of the intervention, or in the definitions and
measurement of outcomes). This will often
involve the use of mixed/hierarchical models,
including fixed covariates to explain some
elements of between-study variation, in
combination with random effects terms.

7. Performance of a narrative or qualitative
summary, where data are too sparse, or of too
low quality, or too heterogeneous to proceed
with a statistical aggregation (meta-analysis). 
In such cases the process of conduct and
reporting should still be rigorous and explicit.

8. Exploration of the robustness of the results 
of the systematic review to the choices and
assumptions made in all of the above stages. 
In particular, the following should be 
explained or explored:
a) the impact of study quality/inclusion criteria
b) the likelihood and possible impact of

publication bias
c) the implications of the effect of different

model selection strategies, and exploration
of a reasonable range of values for missing
data from studies with uncertain results.

9. Clear presentation of key aspects of all of the
above stages in the study report, in order to
enable critical appraisal and replication of the
systematic review. These should include a table
of key elements of each primary study.
Graphical displays can also assist interpretation,
and should be included where appropriate.
Confidence intervals around pooled point
estimates should be reported.

10. Appraisal of methodological limitations of both
the primary studies and the systematic review.
Any clinical or policy recommendations should
be practical and explicit, and make clear the
research evidence on which they are based.
Proposal of a future research agenda should
include clinical and methodological
requirements as appropriate.

Further areas of research 
related to the methods used 
for systematic reviews
Two priority areas are indicated below. Addition-
ally, other areas needing further research are
highlighted.

Priority topics
• Sensitivity analysis of the impact of many aspects

of the design and analysis of the systematic

Executive summary
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review, and in particular of the meta-analysis, has
been advocated. The result is a complex set of
inter-related sensitivity analyses. Research into
optimum, or at least efficient, strategies of multi-
dimensional sensitivity analysis in these contexts
would thus be useful.

• Evaluation of the role in HTA of meta-analysis of
observational studies, and cross-design synthesis
(which often features the inclusion of non-
randomised evidence), possibly through
systematic research and workshops of
researchers active in the field.

Other areas needing further research
Study quality
• Investigation into the relevant dimensions of

methodological quality and empirical research
which establishes the relative importance of
these dimensions in different contexts. This
should eventually lead to the development of
rigorous, validated, and parsimonious scales
which can be adapted to a wide range 
of studies.

• Exploration of study quality as an explanation of
heterogeneity.

• Empirical investigation into the basis for choice
of cut-off values for exclusion of studies on
grounds of quality.

• Systematic approaches to quality assessments of
non-randomised controlled trials.

Heterogeneity
• Further investigation of its relationship with

publication bias.
• Development of guidelines/recommendations

for identifying and exploring heterogeneity.
• Investigation of degree of heterogeneity (both

quantitative and qualitative) beyond which
combining of all the studies should not be
considered.

• Investigation into the effects of choice of
measurement scale from both: a) a statistical
perspective, and b) a clinical perspective.

Publication bias (HTA has commissioned a
separate review in this area)
• Assessing the impact of the pipeline problem.
• Empirical study of degree and mechanisms of

publication bias in meta-analysis of epidemi-
ological and other non-randomised studies.

• Investigation into the extent to which the use 
of a prospective register for trials minimises
publication bias.

• Further investigation into proposed statistical
methods, including their power to detect
publication bias, and their sensitivity towards 
its detection.

Approaches to modelling and analysis
• Investigation of the relative merits of the

different approaches to combining studies in
which some arms report no events (zeros in 
2 × 2 tables)

• Comparison of new methods for random effects
modelling which fully incorporate parameter
uncertainty.

• Investigation of robustness of random effects
models to departures from normality.

• Empirical investigation of model attributable
weights with particular reference to over-
weighting of large samples, in some models.

• Investigation of the impact of missing data at
both the study level and patient level.

• Development of experience with practical
applications of mixed models.

• Development of methodology for combining
individual patient data with study level data.

• Investigation of the role of
cumulative/sequential application of meta-
analysis as a research methodology.

• Further development of methods for integration
of qualitative assessments of studies with
quantitative estimates of the results.

• Development of random/mixed effects models
for meta-analysis of survival data.

• Use and implications of exact statistical methods
for combining small studies.

• More extensive but critical use of Bayesian
methods, including:
a) encouragement of expository papers in the

applied literature on the application of
Bayesian methods

b) more research on obtaining and using elicited
prior beliefs.

• More research into the use of meta-analytic
techniques in conjunction with decision analysis
methods.

• General investigation of the impact of missing
values, and extension of currently available
methods to a wider range of circumstances with
missing data, including the use of Bayesian
methods.

• Development of the use of simulation of results
of new studies before they are published or of
hypothetical studies to allow their impact on
meta-analysis to be assessed.

Miscellaneous
• More research into extrapolating the results 

of a meta-analysis to clinical practice.
• Further development of detailed publication

guidelines to encourage uniform reporting of
the results of studies, particularly of types other
than randomised clinical trials.
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Use of systematic review and meta-analytical
methods in HTA and related areas is now

common. This report is intended to promote
appropriate application of such methods, and 
to begin to identify further appropriate
methodological developments. 

It is not intended as a text book of these methods 
but as a structured survey of practice and problems
in the area. We hope that readers will be rapidly
able to find and understand a review of the use 
of these methods in contexts relevant to their
particular interests. The strongly subdivided but
cross-referenced text, selected worked examples 
of key methods, and relatively heavy use of
quotation from original sources are all intended 
to aid the reader in so doing. Similarly, the 
explicit documentation of the search strategy 
used should allow readers to update the review in
areas of particular interest to them. The selection
of the quotes included in the report was somewhat
arbitrary. They were largely included where
particular issues were expressed eloquently and
precisely in papers, and it was felt that rewording
might detract from the view expressed, or to 

reflect the range of opinions expressed by experts
in the field.
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assistance we have received from several people and
groups in the course of compiling this review. In
particular we wish to thank: Dr Martin Hellmich, a
Visiting Fellow in the Department of Epidemiology
and Public Health at Leicester, for contributing the
chapter on meta-analysis of diagnostic test accuracy;
Sage publications for supplying several books
without charge; Julie Glanville and Janette Boynton
at the Centre for Reviews and Dissemination, York,
for their advice on searching for the literature; 
the Cochrane Collaboration for supplying their
database of literature, and dealing with several
queries; Teresa Smith from the Biostatistics
Department at Cambridge for her code to plot
some of the meta-analyses diagrams found in this
report; the authors who supplied copies of their
work prior to its submission/publication in journal
format for inclusion in this review; Cindy Billing-
ham, also doing a NHS HTA review (93/50/04
Quality of life assessment and survival data), for 
her advice throughout the project.
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Systematic review and meta-analytical methods
are already common approaches to the

assessment of health technology and related areas,
and increasing adoption of such approaches may
be foreseen, in part in response to increasingly
wide emphasis on evidence-based approaches to
medicine and health care. The potentially relevant
methodological literature is already substantial.
This review, for example, draws on a database of
about 1000 potentially relevant references, and
cites about 600 of them. This report is the outcome
of the NHS Research and Development Health
Technology Assessment Programme methodology
project number 93/52/03. It is intended:

• to identify applications of systematic review 
and meta-analytical methods in Health
Technology Assessment (HTA)

• to promote further, appropriate use of such
approaches in these areas of application

• to begin to identify priorities for further
methodological developments in this field.

The review and this report focus primarily on the
use of quantitative methods to obtain overall
estimates of effectiveness of interventions by means
of the statistical pooling of the results of studies or
methods of exploring variations in their results. In
many health technologies; however, the evaluations
are too dissimilar, or the outcomes too varied to
permit the use of statistical analysis of the studies 
as a single set. In these situations researchers will
not be able to use formal statistical techniques to
derive estimates of the effectiveness of interven-
tions. When this is the case, it is important that the
systematic review still adopts the comprehensive,
rigorous and explicit approach used when more
quantitative methods can be applied.

Qualitative approaches to study synthesis will still
need to appraise studies critically to assess their
validity. However, this will not be applicable in a
quantitative manner to obtain overall estimates.
Qualitative analysis should examine variation in
outcomes and attempt to explore this in terms of
study design characteristics, the participants and

nature of the interventions/exposures. The result
of a qualitative analysis is likely to be a range of
plausible effect sizes and a judgement of the
direction of likely benefit. These, however, should
be justified explicitly on the basis of the study
results, and any implicit weightings made clear.

In many ways, the quantitative analyses considered
in this report represent special cases of the quali-
tative analysis. Although the emphasis in this 
report is on the more technical aspects of analysis,
quantitative studies should of course not neglect
the simpler aspects of analysis and presentation
which they share with all qualitative studies,
including adequate description of the primary
studies on which they are based. The conduct of a
quantitative analysis, however, should not be used
as an excuse for inadequate description of the
studies included.

This report is divided into eight parts. Part A
describes the methods adopted for the project. 
Part B outlines the methods for the pre-synthesis
stage of a review. Part C discusses methods for the
critical appraisal of the research evidence. Part D
describes the statistical methods used to combine
study results. Part E discusses other issues which 
are important when synthesising evidence. Part F
describes further methods specific to certain
contexts. Part G presents extensions to the meta-
analytic methods described in previous sections.
Part H summarises the recommendations and
topics needing further research.

Appendix 1 summarises the literature search
strategies used in compiling the database of
literature on which the report is based, to help
identify the coverage explicitly, and to facilitate
updating of the database, and hence the review, in
future. Appendix 2 lists papers identified shortly
before the completion of this report, which could
not be included in the main text because of time
constraints. The report concludes with a Biblio-
graphy of all relevant papers identified for this
review (whether they were actually cited in the 
text or not).

Chapter 1

Introduction
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The literature search
Objectives
The primary objective of the literature search was
to locate all (or as much as feasibly possible) of the
literature concerned with the methodology used 
in the systematic review of evidence. This meant,
although our interest was methods for evidence
based care, a search for synthesis methodology 
was done irrespective of discipline.

The search strategy
Several approaches were taken to search for the
relevant literature, with the intention of achieving
the highest retrieval rate possible:

Electronic databases: The databases Institute of Sci-
entific Information (ISI) Science, ISI Social Science,
and EMBASE were all searched via the Bath Inform-
ation and Data Services (BIDS) computer service. 
In addition, MEDLINE was searched on CD-ROM
using the OVID search engine. All these databases
were searched from the beginning of 1991, through
August 1996, with the exception of MEDLINE which
was searched from the beginning of 1992.1 Simplified
updates of these searches were carried out into the
first quarter of 1997. Appendix 1 gives a detailed
description of the search strategies used.
Cochrane Database: Papers concerned with
methodology used for meta-analysis had previously
been compiled by Oxman. This list (which has
since been updated) was available electronically via
the Cochrane library (1).2 The vast majority of the
references were directly relevant to this project.
Private collections: Two of the members of the study
team (DRJ, KA) had worked in the area of methodol-
ogy for systematic reviews prior to this project, and
hence had private literature databases to draw on.
Other methods: The reference lists of each relevant
paper obtained were examined to identify papers
not found previously by the above methods. Known
researchers in the field were contacted for work
completed, but as yet unpublished. Unpublished
papers and technical reports were retrieved from
researchers home pages via the Internet.

Searching methods/results
The electronic database searches were carried out
first. The results of these searches were compared
with the Cochrane database and the private
collections, to assess how successful they were, by
calculating the proportion of the known articles the
search strategies retrieved. Because the different
sources used varying time windows (the Cochrane
database had no articles post-1994 and the
electronic database searches covered 1991–1996),
an exact evaluation was not made; however, it was
clear that utilising all three sources was beneficial,
as each highlighted substantial numbers of
references the other two methods had not found.
Searching the reference lists of the papers found 
by these methods again brought to light a
substantial number of new references.

A database of these was created using the
Reference Manager (version 7) (2) software
package. Each reference was keyworded by one of
the researchers (AS) using a unique and personal
keyword system to help order and categorise the
large body of literature.

Using this system, it was difficult to ascertain all the
original sources of the references when looking
retrospectively, since if more than one source had
retrieved a reference, then the duplicates would
not be included in the database. This means that
an assessment of the performance of each database
was not possible.

The search and retrieval of literature continued
throughout the duration of the project, this included
obtaining literature published after the initial
searches. By the completion of the project, 1005
potentially relevant methodology references had
been identified. Thirty-four of these were identified
too late to include in the review (see appendix 2 for
a listing). Of the remaining 971 references, 781 were
obtained and inspected/read. The remaining 190
were not obtained, in the vast majority of instances
due to one of the following reasons:

Chapter 2

Methods adopted for this project

1 This was due to the available CD-ROM version only covering 1992 onwards.
2 The pre-update list, which is the one that was available when this search was carried out, is also available in 
printed form (3).
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• Although the paper was in some way related 
to carrying out research synthesis, a consensus
decision, after reading abstracts or other
information, deemed the paper to contain no
new developments in methodology. In such
instances the article was often an introductory 
or tutorial paper. Additionally, a considerable
number of papers appear to discuss/review the
issues involved in a meta-analysis but do not
contribute to new methodology (the majority 
of the papers not obtained were due to 
these reasons).

• The literature could not be obtained. It may
have been badly referenced, or extremely
diverse, and the National Library could not 
trace it/obtain it. Alternatively, it could have
been referenced as an unpublished work with
little or no indication how to obtain it.

• It may have been an ‘old’ reference (pre-1970),
the relevant contents of which had been
summarised in easier to obtain formats.

It is important to note that just because a 
paper was obtained and read did not mean it 
was automatically included in this report. A
considerable number of papers read did not
present new methodology, or any methodology
content had been described and written about
from other sources.

To make it absolutely clear what sources were
considered in the various sections of the report,
several reference lists have been compiled. There is
a reference list at the end of every chapter which
includes all references cited therein. Not all these
references may be directly relevant to meta-analysis;
for instance they may have been included to pro-
vide background reading on a particular topic. 
The main bibliography at the end of the report
provides a list of all the references concerning
meta-methodology (in some way), found during
the project, whether they were actually cited in the
main text or not. This list excludes the non-meta-
analysis citations found in the text. Additionally,
appendix 2 includes the 34 references known, or
suspected of having new methodology in, that came
to our attention too late to include in the review.

Discussion
Searching databases for the methodology
references on a particular subject is notoriously

difficult.3 Their seems to be no simple strategy 
for effectively retrieving the relevant information;
moreover, the suggestion given to us4 that there 
is no substitute for time invested in simply scanning
through the huge numbers generated by the 
first level search. The fact that approximately
300–400 new references were identified by
scanning lists of references already retrieved
(missed by the database searches) would indicate
that the electronic database search strategies 
were not sufficient in themselves. Indeed, it would
appear that scanning reference lists is a very time
effective way of locating the literature. It is also
interesting to note that relevant papers were 
picked up by doing this that would never have 
been picked up via a database search. An example
of this is the paper below:

Emerson JD. Combining estimates of the odds
ratio: the state of the art. Stat Methods Med Res
1994;3:157–78.

This paper has much valuable advice on combining
odds ratios without ever explicitly mentioning
meta-analysis, synthesis or combining studies, and
hence was not retrieved in the first stage search
(see appendix 1). This raises interesting questions
for people carrying out methodological reviews,
and highlights the benefit of using supplementary
searching methods such as scanning reference lists
and handsearching core relevant journals.

For completeness, below is set out what we believed
would be the ‘ideal’ search strategy, devised several
months into the searching. As one can see several
of the points were not carried out. This was simply
due to time constraints.

Overall search strategy
• Identify key existing collections.
• Search BIDS EMBASE 1991–1996, using

standard search.
• Search ISI Science 1991–1996, using standard

search.
• Search OVID MEDLINE 1992–1996, using

adapted standard search and selected parts on
CRD search.

• Search PsycLIT (Psychology database).
• Search Education database (ERIC–ERIC

international or ISI Soc Science).
• Search samples of large sets not already

imported from above databases – if many 
are found, continue.

3 Personal communication with Julie Glanville (Information officer at the University of York).
4 Personal communication with Julie Glanville (Information officer at the University of York).
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• Select approximately 1% of non-intersect papers
from the meta-analysis pools (year by year) to see
what is missing.

• Search back to 1980 in at least EMBASE, ISI
Science and MEDLINE.

• As a check, check through last 5 years (or
perhaps from 1980) of statistics journals.

• As a check, download citation searches on 
(six) key papers.

For the researcher wishing to keep this review up to
date, the authors offer the following advice on the
searching methods. To carry out an updated search
using all the databases and strategies of appendix 1
would be a time-consuming procedure, not least
due to its relatively low hit rate. Without further
investigation, it would be difficult to suggest which
parts were least effective/only duplicated other
parts of the search however. It would appear that
different strategies could be most effective for
different topic areas. For instance, if one is only
looking for papers presenting statistical methods, 
a different approach should be taken from finding
literature on say searching methods. However,
whatever database searching strategy is used
primarily, our advice would be always to inspect 
the reference lists of all relevant papers obtained.

Implications for updating 
the review
It is difficult to ascertain how fast the field is
currently moving, or how fast it will move in the
future. The number of papers published each 
year (on meta-analysis/systematic review methods)
gives some indication that this is very much a
growth area and one that has grown at an acceler-
ating rate over the past 10 years. Indeed, it has
been reported that the number of papers which

report applications of meta-analysis is increasing
exponentially. It would seem realistic to expect that
the methodological developments will increase as
the application of methods increases, and as the
areas of application broaden, new methods will 
be required.

Standard methods (i.e. fixed, random, and 
mixed modelling) seem pretty much in place 
now but experience of using and choosing between
models needs to be developed. The Bayesian
alternative is now a real alternative due to increased
computational power; recently extensions from 
a Bayesian perspective have appeared, and we
suspect they will continue to do so. Due to this,
there may will be a shift to using more sophisticated
and realistically complex modelling techniques.

Developments for specific situations continue to be
presented, including methods to deal with missing
data, and combining information from disparate
sources. The area of fastest growth, however, is
methods to assess and adjust analyses for publica-
tion bias. More research is likely to be produced 
on this topic in the near future.

A list of potentially important papers published too
late for inclusion in this review is included in
appendix 2.
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Introduction
It is the aim of this section to outline the rigorous
procedural methodology that has been advocated
when conducting any meta-analysis. At least two sets
of guidelines have been published laying out the
procedural path to be followed when conducting a
systematic review (1) (referred to as the Cochrane
Handbook in the text), and (2) (referred to as
CRD4). The Cochrane Collaboration began its
work in 1992, with the aim to prepare, maintain
and disseminate systematic, up-to-date reviews of
randomised clinical trials (RCTs) of health care,
and, when RCTs are not available, review the most
reliable evidence from other sources. In 1997 the
second edition of their handbook was produced,
which lays out the procedural methodology to 
be followed when conducting a review within 
the collaboration (1). Similarly, the NHS Centre 
for Reviews and Dissemination (CRD) at York have
produced a similar document outlining guidelines
for those carrying out or commissioning reviews for
themselves or other research bodies (2). These two
sets of guidelines are similar in both structure and
content. The sections below outline the stages
involved in carrying out a systematic review, as
identified in these documents, and aim to give the
reader an idea of the suggested procedures to
follow when carrying out a systematic review. If the
reader is carrying out a review for a specific body
(such as the Cochrane Collaboration), then clearly
it is necessary to follow their guidelines strictly. If
one is carrying out a systematic review independ-
ently, then the rigorous methods put forward by
these two organisations will stand the researcher in
good stead for carrying out a worthy review of their
own. Both sets of guidelines will give more detailed
accounts of the procedures outlined here and are
recommended reading. Both guidelines also
discuss the logistics of doing a review – a subject
not covered in this report.

Identification of the need for 
the review1

Even before a review is undertaken it is important
to establish the need for such a review, as CRD4
states (2):

‘It is important to be clear about the aim and
requirements of each systematic review before it is
started, and to be aware of other reviews in the field 
of interest that have previously been published or 
are currently in progress.’

One should check for other reviews (published 
or in preparation) using the Cochrane Database 
of Systematic Reviews (3–5), the CRD Database 
of Reviews of Effectiveness (DARE) (6) and the
NHS National Research Register (NRR) (7). Also,
the more common electronic databases (such as
MEDLINE, EMBASE)2 should also be searched. 
Key research groups within the field could also 
be contacted.3 A further issue that needs
consideration is:

‘Background information describing the
epidemiology of the health care problem and the
patterns of use of a health technology and its
alternatives should be briefly reviewed. An outline
should also be given of the present options and
arrangements for health care provision in the 
review area, together with routine statistical data
describing their use. It may be of value to include
information on the historical, social, economic 
and biological perspectives to the review 
problem.’ (2)

In addition (1), presented below are general 
points regarding issues that need taking into
account when considering and undertaking 
a systematic review:

• Questions should address the choices (practical
options) people face when deciding about
health care.

Chapter 3

Procedural methodology (for meta-analysis)

1 These guidelines mainly assume that one is assessing the effectiveness of a treatment. However, if the review is about
some other topic such as a diagnostic test (see chapter 21) or a risk factor then these guidelines may need modifying.
2 A discussion of these electronic databases is given in chapter 4. Also CRD4 gives search strategies for locating review
articles in MEDLINE (2).
3 Not all review articles are systematic; thus they need to be critically appraised, this can be done via checklists given in
(1).
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• Reviews should address outcomes that are
meaningful to people making decisions about
health care.

• The methods used in a review should be selected
to optimise the likelihood that the results will
provide the best current evidence upon which 
to base decisions.

• It is important to let people know when there 
is no reliable evidence, or no evidence about
particular outcomes that are likely to be
important to decision makers.

• It is not helpful to include in a review evidence
where the risk of bias is high, even if there is no
better evidence.

• Similarly, it is not helpful to focus on trivial
outcomes simply because those are what
researchers have chosen to measure.

• So far as is possible, it is important to take an
international perspective. The evidence
collected should not be restricted by nationality
or language without good reason.

• Results should be presented in such a way that
their applicability in different contexts can be
assessed by decision makers.

• Reviewers should bear in mind that different
people might make different decisions based 
on the same evidence (for good reasons). The
primary aim of a (Cochrane) review should be 
to summarise and help people to understand 
the evidence. Reviewers must be careful not 
to impose their own values and preferences 
on others when answering the questions 
they pose.

In addition to the above, it is also important to
establish that the results of any proposed review 
are not invalidated by the publication of a current
RCT/study. This could for example be avoided by
checking trial registers and contacting experts in
the area. In this way, pipeline bias could be avoided
(see chapter 16).

CRD4 also makes the suggestion that the target
audience for the review (i.e. people who will use
the results) should be identified early on.

Background research

Having decided on the appropriateness of a review,
the next stage is to explore the existing information
on the topic further. It is necessary to determine
the scope of the review and the specific questions
that the review will address (8–10).

A preliminary assessment of the primary research
that is available should be made, it should be done
considering the following points (1):

• Assessing the volume of literature in 
the field – can be done using electronic
databases.

• Assessing study designs used in the primary
research – decisions have to be made on 
which designs are to be included in 
the review.4

• Assessing effectiveness using causal pathways –
the effectiveness of a treatment policy may
involve a sequence of interventions that cannot
be evaluated in a single study. ‘If the literature
search reveals that there are no complete evalu-
ations of the effectiveness of the intervention
policy than an analysis of the components of the
components of the policy should be considered.
Where possible these should be mapped out by 
a causal pathway (11–13)’.

• Identification of questions to be addressed in 
the review – the most important decision (1).

• Identification of outcomes.
• Identification of effect modifiers: ‘There may 

be factors, such as the characteristics of the
patients and settings, choice and measurement
of outcomes, or differences in the nature or
delivery of interventions, which influence the
estimates of effectiveness of the intervention
under investigation. It is important that these
‘effect modifiers’ are identified as they may
explain apparent differences in the findings 
of the primary studies.’ (1)

• Identification of particular issues related to
validity – checking the primary studies are
methodologically sound; issues include
randomisation, unsuitable comparison groups, 
a lack of blind outcome assessments, inadequate
follow-up times, a lack of suitable gold standard
diagnostic tests, inability to define and assess
relevant outcomes, unreliable measurement
techniques, or inappropriate statistical analysis.

• Identification of issues related to generalisability
– it should be noted whether the design, setting
and participants of the primary studies will
reduce the generalisability of the review’s
findings.

Whether the existing literature helps to focus a
review or whether ignoring given background
information yields an impossible review is a fine
balance, that is very dependent upon the topic 
area to be reviewed. Ultimately, the benchmark 

4 (2) Gives a search strategy for identifying RCTs using MEDLINE. 
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by which to judge a review is whether it will help to
inform healthcare/policy decisions.

When carrying out a review, one also needs to
balance scientific validity and work load, it should
be kept in mind that: ‘There is little value in 
doing a review which will produce an unreliable
answer.’ (2)

The review protocol

(2) The protocol specifies the pre-determined 
plan (14, 15) which the research exercise will
follow. It is very important to establish methods
before the review is started, to avoid biases. The
Cochrane Handbook warns that (1):

‘Post hoc decisions (such as excluding selected studies)
that are made when the impact of the results of the
review is known are highly susceptible to bias and
should be avoided. As a rule, changes in the protocol
should be documented and reported, and “sensitivity
analyses” (see chapter 27) of the impact of such
decisions on the results of the review should be 
made when possible.’

The methods described should be rigorous and
clearly defined, and should have repeatability; that
is, someone else should be able to replicate the
methods/results.

The following sections outlined below should all be
detailed in the protocol. Most of these subjects are
dealt with in detail later in this report: links are
given where appropriate.

Problem specification
The protocol should state in detail the main
questions or hypotheses which will be investigated
in the review.

The Cochrane Handbook states:

‘There are several key components to a well-
formulated question. A clearly defined question
should specify the types of people (participants), 
types of interventions or exposures, and the types 
of outcomes that are of interest. In addition, the 
types of studies5 that are relevant to answering the
question should be specified. In general the more
precise one is defining components, the more 
focused the review.’ (1)

When doing this, it is worth keeping in mind the
below comment from CRD4:

‘While questions should be posed before initiating 
the actual review, it is important that these questions
do not become a straight-jacket which prevents
exploration of unexpected issues’ (2) If changes 
are made at a later date, then these amendments
should be stated in the protocol (14).

Searching for studies
The proposed search strategy should be described
naming databases and other sources of inform-
ation. Any restrictions, such as limiting the
language of reports, should also be stated (2). 
The methods used for carrying out this stage of a
research synthesis are documented in chapter 4.

Deciding on study inclusion criteria
The health intervention/technology of interest, the
setting and relevant patients or client groups, and
the outcome measures used to assess effectiveness
should all be clearly defined (2).

The types of study design to be included should
also be specified: ‘Note that even though RCTs may
be the preferred design there are several areas of
health care which have not been evaluated using
RCTs.’ (2) (see chapter 6).

On deciding how broad or narrow to make the
inclusion criteria, there is a trade off between
reducing generalisability of the results and
obtaining information which is hard to compare
and synthesise (16,17). If inclusion criteria are
quite liberal, it may be possible to investigate
theories concerning the effects of differences 
in the study characteristics and other effect-
modifiers using ‘meta-regression’ or other 
statistical methods (see chapter 11).

Study validity
The basic checklists which will be used to assess the
validity of the primary studies should be included
in the protocol (2). Scales and checklists and their
use are covered in chapter 6.

Data extraction
A data-extraction sheet could be included to assist
the evidence extracting process (2). This topic is
covered on page 17.

Study synthesis
Although it may not be possible to state explicitly
which statistical, or other methods, will be used
until after the studies have been assessed, the
general modelling approaches that are likely 

5 This is discussed on pages 16–17 and 23–4.
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to be used should be specified (2). Also, any
hypothesis-testing and subgroup analyses (see 
page 209) should be specified here a priori (14).
This is done to prevent many analyses being 
carried out post hoc, which potentially may lead to
spurious associations being found. For the same
reason, it may be important to have a limit on the
number of such hypotheses in the protocol. The
statistical methodology used to combine results
from different studies forms a large proportion 
of this report. Sections D, E, F, and G discuss the
statistical methods that have been used for 
research synthesis.

Summary

This section is not intended to be anything more
than a brief overview of the issues that are import-
ant when one is considering carrying out research
synthesis. It may help the researcher who is new to
the subject to get a feel for the discipline, and serve
as a springboard into later sections of this report, as
many of the issues touched on here are expanded
in later sections.
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The importance of the 
literature search
As has been identified in CRD4:

‘The aim of the search is to provide as comprehensive
a list as possible of primary studies, both published
and unpublished, which may fit the inclusion criteria
and hence be suitable for inclusion in the review.’ (1)

It is worth remembering that, the ‘precision of the
estimate of effectiveness depends on the volume of
information obtained.’ (1) Also, it is ‘important to
ensure that the process of identifying studies is not
biased, minimising the possibility of the review’s
conclusions being weakened through publication
bias’ (1) (see chapter 16). Unfortunately, this is
only possible if a prospective comprehensive
research register is maintained for the topic, as only
then is the ability to identify a study not influenced
by its findings (2,3) (see pages 132–3). Indeed a
comprehensive, unbiased search is one of the key
differences between a systematic review and a
traditional review (4).

The methodology of searching and collecting
studies for a meta-analysis has been somewhat
overshadowed by the research related to statistical
methods to combine studies (5). It is clear,
however, that the validity of the results of statis-
tical analyses depends on the validity of the
underlying data (6), and every effort should 
be made to locate the primary studies.

In many topic areas the potentially useful 
literature may be very large. This has led some
meta-analysts to doubt whether comprehensive
searches are worth the effort (7). But as White
observes (8), even they seem to have more 
rigorous standards for uncovering studies than
librarians and information specialists typically
encounter.

The guidelines of the CRD and the Cochrane
Collaboration (1,4) seem to imply that the 
search should be exhaustive, that is to say, trying 
to find every study on a given topic, however some
consider this is unrealistic and White has made 
the comment (8):

‘The point is not to track down every paper that is 
somehow related to the topic. Research synthesists
who reject this idea are quite sensible. The point is to
avoid missing a useful paper that lies outside one’s
regular purview, thereby ensuring that one’s habitual
channels of communication will not bias the results of
studies obtained by the search.’

It should be noted that little evidence is available
which compares the results obtained using
exhaustive and non-exhaustive approaches.

However, given the increasing availability of topic
specific and general databases of known published
studies and study registers, the amount of effort
required in conducting an exhaustive search is
usually not prohibitive.

Methods available for searching

Cook et al. (9) present a list of possible sources of
literature that could be included in a systematic
review (Box 1).

The most commonly used of these will be
considered below, discussing their relative merits.

Chapter 4

Searching the literature and identifying 
primary studies

BOX 1 Possible sources of primary studies for
inclusion in a systematic review

• Trial (research) registries

• Computerised bibliographic databases of published 
and unpublished research

• Review articles

• Published and unpublished research

• Abstracts

• Conference/symposia proceedings

• Dissertations

• Books

• Expert informants

• Granting agencies

• Industry

• Journal handsearching
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Research registers
These can be defined as a ‘database of research
studies, either planned, active, or completed (or
any combination of these), usually oriented around
a common feature of the studies such as subject
matter, funding source, or design.’ (10)

In a Cochrane Review, the primary source of
studies is a review group’s trials register. Where they
exist, these are the most valuable source of studies.
If all trials, ever carried out, had registered, at
onset, then there would be little or no need for
other forms of searching. However although
registers are on the increase, certainly not all, 
and especially many older trials, will be found 
in these.

It is worth noting that the journal Controlled Clinical
Trials instituted a column that focuses on registers
and maintains a ‘register of registers’ (11). Dicker-
sin (10) also presents a list of research registers.

For an example of the use of research registers, 
the Oxford Database of Perinatal Trials clearly
demonstrates their benefits. This was one of the
earliest registers to be set up, and up to 1993,
Dickersin (10) reports that over 400 meta-analyses
have come out of it alone.

For a further discussion of research registers see
pages 132–4, which are dedicated to the subject.

Electronic databases
Another powerful tool for identifying primary
studies are electronic databases. They are now
available in several formats, including on-line
access (via the Internet) and CD-ROM. Although
these databases allow access to hundreds of
thousands of references, they do have several
potential drawbacks. These are discussed below.

Firstly, one should be aware that not all studies are
included in even the best databases. For instance,
using MEDLINE,1 only 30–80% of all known
published randomised controlled trials are identi-
fiable, depending on the area or specific question
(6). Non-English-language references are under-
represented in MEDLINE and only published
articles are included (4), so there is the potential
for publication bias (see chapter 16) (6,12,13) 
and language bias (4). Depending on the 
country of origin, there is also potential for
geographical biases (1).

Another problem with databases is that even though
many of the studies may be in a database such as
MEDLINE, it may not be easy to identify all those
which are relevant (10). A study investigating this
problem (14) reported MEDLINE failed to find 44%
of known trials of intraventricular haemorrhage, and
71% of known trials of neonatal hyperbilirubin-
aemia using ‘sensible’ search strategies (where the
vast majority of RCTs were known to be included in
MEDLINE). Possible reasons for poor retrieval are:
1) the search used was too narrow; 2) the indexing
of studies in MEDLINE is inadequate [‘the precision
with which subject terms are applied to references
should be viewed with healthy scepticism’ (4)]; 3)
the original reports may have been too vague,
hampering indexing. Clearly only the first point 
can be easily rectified – a discussion on searching
strategies is given below. The possible existence of
points two and three highlights the need to use
multiple sources to identify studies (4).

A further problem has been reported concerning
the search-engine front end of databases. In 1992
Adams et al. (15) used SilverPlatter MEDLINE to
identify RCTs on a particular topic. They found
random deterioration in its ability to cope with an
extended, but logical search sequence. The same
thing happened with updated software (Silver
Platter version 3.1) The authors warn to re-do
searches to test their consistency.2

In addition to this, other electronic resources and
special collections are becoming available on the
Internet which may assist in the identification of
primary studies. With the number of sources of
information increasing it may be worth seeking a
librarian’s advice on which databases to use (16).

Locating databases to search

For systematic reviews of most (if not all) 
clinical topics the initial databases to search will 
be MEDLINE and EMBASE and SCISEARCH. 
The paragraph below describes the relationship
between these databases (1):

‘Medline provides wide coverage of many English
language journals, EMBASE can be used to increase
coverage of articles in the European languages.
SCISEARCH (the Science Citation Index) can also be
used to trace citations of important papers through
time, which may yield further useful references.’

1 One of the largest and most popular medical electronic databases (electronic version of Index Medicus).
2 It is unknown to the authors whether this fault has been rectified.
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The overlap between MEDLINE and EMBASE 
is approximately 34% (17), although it can vary
between 10 and 75% for specific topics (4). It is 
for this reason that one cannot rely on searching 
a single database.

Many specialist databases also exist. A directory 
of computer databases (includes over 6000) exists: 
A Directory and Data Sourcebook (Detroit: Gale
Research, 1991), as well as two other guides; Online
Medical Databases3 and Online Databases in the
Medical and Life Sciences4 which may be useful to
check all relevant databases have been identified
(1). In addition, many resources and special
collections are now being made available via 
the Internet.

Designing electronic 
search strategies
It is critical to plan and execute a logical search
strategy. Failure to do this may result in wasted
time, excessive costs, and irrelevant or missed
citations (16).

Indeed this point is made in CRD4:

‘A balance must be struck between high recall 
rates and high precision to ensure that whilst a 
search is relatively comprehensive it does not result 
in an unmanageable volume of inappropriate
references.’ (1)

Strategies for retrieving studies
The first step is to identify critical terms, descriptive
of the topic under investigation (16). This can be
achieved by consulting index manuals, or by
identifying appropriate articles and noting the
manner in which they have been indexed (1).

The Cochrane Handbook comments: ‘Developing
a search strategy is an iterative process in which the
terms that are used are modified based on what has
already been retrieved.’ (4)

Many databases use special indexing terms; in
MEDLINE they are called medical subject headings
(MeSH). The reference lists of these headings
should be searched for the ones relevant to the

topic of interest. Additional keyword and free-text
words (words appearing anywhere in the database
entry) will usually be required to supplement 
index terms.

Most databases structure searches by combining
search terms using Boolean relationships (AND,
OR and NOT). A broader search can be made
using the OR command, and similarly narrower
using the AND operator.

It is worth noting that different databases use
different indexing and search engines. Therefore,
it is necessary to be aware that search strategies
developed may need modifying to use on 
other databases.

Appendix 5c of the Cochrane Handbook (4) 
gives a search strategy for locating RCTs. In
addition, appendix 1 of CRD4 (1) gives examples
of search strategies for using MEDLINE to 
retrieve review articles [one of the most convenient
sources of trial references (4)]. Another way of
facilitating the searching process is to seek the
advice of, or work with, specialist librarians (4).
Indeed, the NHS CRD advise that a librarian,
preferably with some experience in carrying 
out systematic reviews, is part of the study team.
Once a strategy has been devised, it can be tested
by seeing if it picks up key references already
known (16).

The indexing used in electronic databases
Dickersin et al. (6) comment that the National
Library of Medicine introduced the publication
type5 RANDOMIZED CONTROLLED TRIAL
(indexed in MEDLINE) in 1991, and from January
1995 introduced CONTROLLED CLINICAL
TRIAL (CCT) (defined by Cochrane Collabor-
ation’s criteria, and was used to index trials not
contained in RANDOMIZED CONTROLLED
TRIAL). As handsearching is done these terms 
will be applied retrospectively to previously
unindexed trials.

Counsell and Fraser (18) along with Dickersin 
et al. (6) call for better, more consistent and 
more specific indexing of papers (trials) 
in MEDLINE.

3 Lyon E (1991) Online medical databases. London: Aslib.
4 Online Database in the Medical and Life Sciences (1987) New York: Cuadra/Elsevier.
5 This is another field used to index in MEDLINE. One can restrict the search to certain types of articles using the
publication type field. However, since RCT was only introduced in the 1990s, at present it is necessary to use the
previously mentioned strategies to identify RCTs reported earlier than this and in other databases. However, with
retrospective indexing this feature should greatly aid the retrieval of RCTs and CCTs in the future.
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The above points in the main relate to RCTs,
similar issues are also important when searching 
for observational studies.

The book chapter by Reed and Baxter (16) is
dedicated to electronic database searching. This
includes a section explaining many different data-
bases, and provides a list of the most common ones.
It is recommended reading for a more detailed
description of the contents of this section.

Citation searches
In carrying out a citation search, the searcher
begins by identifying several important references
on the topic of interest. A citation index will
identify, for a specified time period, all articles,
reports, or other materials in the body of literature
it covers that have cited the important references
identified (16).

The advantages of this method are that it: ‘... allows
the researcher to avoid reliance on the subjectivity
of the indexers. It also avoids the inherent currency
lag and biases of controlled vocabularies.’, and
allows cross discipline referencing (16).

The ISI databases as well as SCIEARCH allow
citation searching; however, the ISI databases are
restricted to journal articles.

Citation searches are not frequently carried out.
Cooper (19) reported in his survey that only 14 and
9% of reviews do citation searchers (manually and
computerised, respectively) and he considers this
to be ‘disturbingly low’. However, although citation
searching tends to produce different ‘hits’ from
searches using natural language and controlled
vocabulary, the Cochrane Handbook (4) states 
that ‘insufficient evidence is currently available 
to suggest that routine use of citation searches 
is warranted, given the costs involved.’

Extensions to citation searching
Reed and Baxter (16) suggest an extension to 
the searching process. This is to find papers 
which cite two specified papers. A CD-ROM ISI
innovation makes it possible to retrieve articles 
that are ‘bibliographically coupled’, i.e. cite
identical references. ISI also makes ‘research
fronts’ retrievable on-line by entering a number
code. These research fronts identify ‘clusters’ of
papers which have cited similar references. For
example, a research front for the subjects ‘meta-

analysis of clinical trials; test validation; validity
generalization’ exists and all papers in this set 
can be retrieved simply using code RF number
9324_94 (ISI – through BIDS).

Other search strategies
Scanning reference lists (footnote chasing)
Scanning the reference lists of articles found
through database searches may identify further
studies for consideration (1). The Cochrane
Handbook advises:

‘Reviewers should check the reference of all relevant
articles that are obtained. Additional, potentially
relevant, articles that are identified should be
retrieved and assessed for possible inclusion in the
review. The potential for reference bias (a tendency 
to preferentially cite studies supporting one’s own
views) when doing this should be kept in mind.’ (4)
This should be guarded against by using (several)
other strategies.

The idea of reference bias was originally suggested
by Sackett (20). His study (20) found evidence of
reference bias and also commented on many
multiple publications of (the same) trials, another
potential source of bias to be aware of when
carrying out a review (see chapter 16).

Handsearching 
Key journals can be handsearched to check if the
searcher has missed anything using the alternative
methods, e.g. due to problems such as things badly
indexed in electronic databases. By handsearching
carefully selected journals, a small amount of work
can reveal a high percentage of relevant studies.

It is worth noting that currently, the Cochrane
Collaboration is organising handsearches of entire
series of journals with all studies found being
indexed. This is being coordinated to avoid
duplication of work with the intention of
developing an International Register of Clinical
Trials and hence eliminating the need for
individual research groups to carry out
retrospective handsearching.6

Identifying grey material
Results may have been published in reports,
booklets, conference proceedings, technical
reports, discussion papers or other formats which
are not indexed on the main databases (21,22). 
All these sources can be called ‘grey literature’.
Identifying such literature is not easy, however,

6 Note: It is a good idea to inform the Cochrane Centre of any unusual/poorly indexed trials you locate for inclusion
on their register.
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databases do exist, such as SIGLE (System for
Information on Grey Literature), NTIS (National
Technical Information Service), DHSS-Data, and
the British Reports, Translations and Theses, 
which is received by the BLDSC (British Library
Document Supply Centre). One should be 
aware that even if you identify material such 
as conference reports, obtaining them may 
be a problem (16).

In addition, results may exist in interim reports,
unsubmitted papers and manuscripts, presented
papers (not published), rejected papers, and 
partly completed reports (23), most of which will
not be included in the above databases. Clearly
identifying and getting hold of this information 
can be extremely difficult. Possibly the best chance
one has is through personal communication with
the relevant researchers, either formally or inform-
ally depending on appropriateness (4). Other
approaches are to use electronic networks/lists,
contact with public policy organisations and
advertising (23). It is important to point out that
the inclusion on grey literature, such as unpublish-
ed studies is somewhat controversial. It has been
argued that since it has not been peer reviewed, it
may be of dubious quality (see chapter 6 for more
on this topic).

The book chapter (23) deals exclusively with 
this subject and is recommended reading for
researchers wanting more detailed information 
on the methods available.

A few comments specific to different forms of 
grey literature are given below.

Conference proceedings. These are a good source
for information on research in progress as well 
as completed work. A note of caution is that data
from the abstracts of conference proceedings is
notoriously unreliable. For this reason, an attempt
to make contact with the authors and obtain any
other relevant information/reports should be
made (1). Conference proceedings are recorded 
in several databases in including the Index of
Scientific and Technical Proceedings (available 
via the BIDS), the Conference Papers Index
(available via Dialog) and in printed forms 
such as the Index of Conference Proceedings
received by the BLDSC.

Consultation (with leading researchers and
practitioners). The Cochrane Handbook states:

‘Experts in the topic of the research synthesis can
be an important source of information on recent
trials that have not yet been published, or on older
trials which were never published.’ (4) It also
suggests making a list of relevant articles and
sending it with a letter asking whether they 
know of any other relevant trials (published 
or not) in the field.

White (8) strongly encourages this method 
saying can be very fruitful: ‘The only danger lies 
in reliance on a personal network to the exclusion
of alternate sources.’ Its strength is at finding
unpublished studies. One has to be aware of
selection bias when doing this.

Consultation with the pharmaceutical industry. 
A similar approach to above can be taken to
contacting pharmaceutical companies. They 
may be willing to release results that have not
already been published (1).

Problems and issues 
with searching
As hinted above one needs to be aware that
searching more than one database is necessary, 
due to differential coverage (16). In addition most
publications pre-mid-1960s are not in electronic
form. In addition, mainstream sources such as book
chapters are usually not referenced in databases,
which is a problem.7

Reporting searching

The reporting of the search strategy (even if it has
been carried out well) is also often neglected.

The failure of almost all integrative review articles
to give information indicating the thoroughness of
the search for appropriate primary sources does
suggest that neither the reviewers nor their editors
attach a great deal of importance to such
thoroughness (8).

However, the Cochrane Handbook states that: ‘The
search strategy should be described in sufficient
detail that the process could be replicated.’ (4)

Indeed, a format for the necessary details of the
search process that should be included in the final
report, has been advocated (8).

7 PsycLIT did include book chapters but only for the years 1987–1990.
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Selecting studies
Judging study relevance
The list generated by the search strategy should
firstly be inspected. ‘If, given the information
available, it can be determined that an article
definitely does not meet inclusion criteria, it can 
be excluded. If the title or abstract leave room for
doubt in the reviewer’s mind that the article cannot
be definitely be excluded, the full text of the article
should be retrieved (4).’ In deciding which articles
to include the researcher should initially err on 
the side of caution.

As White points out (8), this should not be too
difficult as one should have knowledgeable and
motivated people reading the articles.

The selection process
The articles selected through the search process
must be assessed to see whether the inclusion
criteria for the review have been met.

The Cochrane Handbook (4) lists the following
issues that must be decided upon:

• whether more than one reviewer will assess the
relevance of each article

• whether the decisions concerning relevance will
be made by content area experts, non-experts, 
or both

• whether the people assessing the relevance of
studies will know the names of the authors,
institutions, journal of publication and results
when they apply the inclusion criteria

• how disagreements will be handled if more than
one reviewer applies the criteria to each article.

A suggestion made (4) is to have two reviewers, 
one an expert in the field and one who is not to
safeguard against pre-formed opinions. However,
we note that much of this will depend on the time
available and how difficult (subjective) are the
opinions needed.

It has been suggested that reviewers should be
blinded from information such as source, authors,
institution and magnitude and direction of the
results by editing articles, with the intention of
removing reviewer prejudices. This, however, takes
much time and there is no empirical evidence
suggesting benefits from doing so (4).

Any disputes about inclusion/exclusion can usually
be cleared up by discussion between reviewers. If
this is not the case additional information should
be sought (4). Deeks et al. (1) also comment that

any disagreement on inclusion can be explored
using a sensitivity analysis (see pages 209–10).

Note that it is recommend to pilot test the inclu-
sion criteria so it can be refined and clarified (4).

A final word of warning is to be aware of the
potential of language bias (24); this occurs when
inclusion criteria are limited by the language of the
study report and there is an association between
effect size and language of publication. For
example, one could argue that highly significant
studies would be published in high profile English
language journals, while researchers in non-English
speaking countries may be more likely to publish
non-significant results in native journals. In this
case, only considering English language journals
would produce a biased set of trials. A related issue
is multiple publication bias. One should be aware
that the same trials results can be published in
more than one place, it is necessary to check
whether each study found reports data which is
exclusive from the other studies, otherwise results
may be included twice into a meta-analysis (see
chapter 16 for more information).

Documenting the selection process
This selection process should be documented; a
Cohen’s Kappa (a measure of chance corrected
agreement) statistic can be used to describe the
reproducibility of the decisions of the assessors (1).

The final report should contain tables detailing
studies included and excluded from the synthesis,
with reasons given for each exclusion (1).

Assessing study validity
Deeks et al. comment: ‘The assessment of validity
aims to grade studies according to the reliability of
their results, so that they can be given appropriate
weight in the synthesis, and when drawing conclu-
sions’. (1) The aim of this is to reduce bias, with
high quality studies likely to be least biased. Primary
studies can be graded into a hierarchy according to
their design. Ideally, a review will concentrate on
studies which provide the strongest evidence, but
where only a few good studies are available weaker
designs may have to be considered (1).

Table 1 is reproduced from (1), giving a suggested
hierarchy to the various study designs commonly
used.

Table 1 should be used with caution, however, since
the study validity not only depends on the type of
study but how well it was designed, carried out and
analysed. ‘A poor RCT may be less reliable than a
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well conducted observational study.’ (1) Chapter 6
outlines the various methods of assessing the
quality of primary research, that can be used for
meta-analysis.

Fleiss and Gross have made a comment on
including studies of mixed validity (25): 

‘There is considerable doubt about the validity of
statistically combining the results of studies with differ-
ent designs or synthesising results of observational or
uncontrolled studies, on the grounds that this might
pool biases.’

Recently, however, attempts to do just that have
been made. Chapter 26 outlines methods for the
generalised synthesis of evidence, proposed for 
this purpose.

Methods of data extraction

The protocol should contain an example of a data
extraction form which lists the data items to be ex-
tracted from each of the primary studies (26). Data
extraction is best done using special forms, examples
are given in appendix 3 of (1), although these may
have to be modified for a particular meta-analysis.

Deeks et al. (1) recommend, due to the risk of
errors, data extraction should be done indepen-
dently by at least two people and the level of
agreement ascertained. However, time and research
constraints make this difficult. Any disagreements
that cannot be resolved should be investigated in 
a sensitivity analysis (see pages 209–10).

Missing data may be a problem, if this is the 
case the authors of the original studies should be
contacted – if this proves unfruitful, then statistical

methods do exist for dealing with missing data 
(see chapter 17).

There is always the possibility of contacting the
original researchers for every study located and
requesting individual patient data (IPD). If all the
data is received then the analysis can be based at
the patient level (as opposed to the study level)
(see chapter 24 which describes the relevant
methods). Even if the intention is not to carry 
out an analysis at the individual patient level, 
Cook et al. (9) recommend obtaining individual
patient level data when the published data do 
not answer questions about: intention to treat
analyses, time-to-event analyses, subgroups, 
dose–response relationships.

If the primary reports do not present data in 
the way desired for synthesis, then it may be
possible to transform or estimate the desired
values. Techniques specific to epidemiological
studies have been developed (27) and are out-
lined on pages 148–52. Also, it may be possible to
contact the original authors for missing data/or
new analyses.

Comparative investigations 
of searching
The following have studied the effects of different
search methods on research synthesis.

Dickersin et al. (6) compared state of the art 
(hand and MEDLINE) with only MEDLINE
searches of different types. They concluded that
using MEDLINE only omitted half of the relevant
studies. Additionally, Clarke (28) gives an example
of searching, performed for a meta-analysis, and

TABLE 1 [adapted from (1)]. An example of a hierarchy of evidence

I Well-designed randomised controlled trials

Other types of trial:

II–1a Well-designed controlled trial with pseudo-randomisation

II–1b Well-designed controlled trials with no randomisation

Cohort studies:

II–2a Well-designed cohort (prospective study) with concurrent controls

II–2b Well-designed cohort (prospective study) with historical controls

II–2c Well-designed cohort (retrospective study) with concurrent controls

II–3 Well-designed case–control (retrospective) study

III Large differences from comparisons between times and/or places with and without intervention (in some 
circumstances these may be equivalent to level II or I)

IV Opinions of respected authorities based on clinical experience; descriptive studies and reports of expert committees
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highlights how MEDLINE alone was not sufficient.
Also, Adams et al. (29) summarise further investi-
gations into searching using MEDLINE, and con-
clude that between 20 and 60% of RCTs are missed
by skilled MEDLINE searches when compared to
handsearching or using trial registers. Spoor et al.
(30) used capture–recapture techniques to
compare searching an electronic database with
handsearching. They found that MEDLINE missed
35 relevant articles, handsearching (human error)
missed eight, with an estimated two articles [95%
confidence interval (CI) 0–6] were missed by 
both techniques. Dickersin et al. (14) compared
MEDLINE with a Perinatal Trials Database. Two
MEDLINE searches were carried out; one by an
expert, and the second a ‘quick and dirty’ one 
(the original paper gives both search strategies).
The authors note that no abstracts are held in
MEDLINE pre-1975, so text searching is less
effective before this date. They concluded that
most of the trials are in MEDLINE, but a search 
has to be very broad to retrieve them all.

Jadad and McQuay (31) investigated; 1) the time
involved in identifying pain research reports
published in specialist journals in 1970, 1980, and
1990 using a refined search strategy for MEDLINE
and hand searching; 2) the levels of precision and
sensitivity of the MEDLINE search strategy over a
20-year period and to determine the causes of
failed identification; 3) methods to determine
efficient combinations of MEDLINE and selective
hand search to achieve high sensitivity and minimal
cost. Among their finding was the result that
MEDLINE was most time efficient; it identified
87% of known trials with 52% precision, and the
search took one-tenth of the time of that of hand
searching. The same authors (Jadad and McQuay)
come to the defence of MEDLINE (32)
commenting that when used correctly:

‘(A) restricted “pilot” hand search to refine the
strategy, followed by a high yield Medline search 
and hand search of non-indexed journals, may be 
a cost effective way of meeting the fundamental
challenge.’ (32)

Kleinjen and Knipschild (33) investigated to see 
if computer database searches alone were sufficient
for locating studies. They used MEDLINE and
EMBASE and explored three subject areas. They
concluded that number of articles found with
computer searches depends very much on the
subject at hand, and that the better methodo-
logical studies were found (on the whole) in the
electronic databases. Gotzsche and Lange (34)
compare different search strategies for recalling
double-blind trials from MEDLINE. They conclude

that using ‘comparative study’ as a MeSH term is
better than using, ‘double-blind method’ (even
when it is used as a text word also), However, the
success of both terms was > 90%, which they
comment was surprisingly high, much higher 
than previous studies.

Further research

There is a lack of helpful research which allows
both the quality of research and also design to be
put on one validity scale.

Summary

This section has concentrated on searching the
literature and identifying primary studies that
might potentially be included in a systematic review
or meta-analysis. The main point identified is that
there is no one single search strategy that would
provide adequate results, and that in performing
reviews researchers should maintain a healthy
degree of scepticism about any or all their searches.
However, a second key point is that all searches/
methods that are used should be sufficiently well
documented so that they may be replicated by
other researchers. This latter point is equally
important as regards study inclusion/exclusion.

Finally, changes are happening rapidly in terms of
electronic publishing and databases. Such changes
will undoubtedly have profound implications for
conducting systematic reviews in the future.
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Introduction
To clarify some of the methods discussed in 
the remainder of this report, a practical example
has been included. A dataset consisting of trials
investigating the effect of lowering serum
cholesterol levels is used to illustrate methods 
for binary outcomes; this is described below.
Additionally a further example (the effect of
mental health treatment on medical utilisation) 
is described, and used, in chapter 9, to illustrate 
the analysis of continuous outcomes.

Effect on mortality of lowering
serum cholesterol levels
Since 1962 several studies have investigated the
effect of lowering cholesterol levels on the risk of
death, primarily from coronary heart disease but
also from all other sources. This dataset consists of
35 RCTs, originally compiled by Smith, Song and
Sheldon for a meta-analysis (1) (see this paper for a
listing of references to these trials). Only a subset of
these 35 RCTs will be used, primarily to reduce the

amount of computation required for the purposes
of illustration. The subset of trials chosen com-
prises of those trials in which patients were largely
without pre-existing cardiovascular disease. In the
original report the trials were numbered 1–35. The
subset of trials considered here (initially in chapter
9), in order to be consistent with this numbering,
are labelled 16, 20, 24, 28, 29, 30, 31. This will
enable the interested reader to cross refer back 
to (1). The subset consists of the trials that used
cholesterol lowering as a primary intervention.

It should be noted that since this list was compiled,
further studies have been carried out. It therefore
should be stressed that the analyses presented are
to illustrate the various methods discussed in the
report, and are in no way meant to indicate a
definitive analysis.

Reference
1. Smith GD, Song F, Sheldon TA, Song FJ.

Cholesterol lowering and mortality: the 
importance of considering initial level of 
risk. BMJ 1993;306:1367–73.
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Introduction
It has been noted (1) that the subject of judging
research quality in synthesis dates back to Glass in
1976 (2). The primary concern is that combining
study results of poor quality may lead to biased, 
and therefore misleading, pooled estimates being
produced. Detsky et al. put this more precisely in
statistical terms:

‘The effects of quality on the study’s estimate of
effectiveness can be expected to have two
components, bias effects and precision (added
variability) effects. ..... Meta-analyses that combine
studies of varying quality could suffer from bias
resulting in a Type 1 error or a Type 2 error. Meta-
analyses that combine studies of varying quality 
could also suffer from a lack of precision resulting 
in a Type 2 error.’ (3)

Thus, there is a real danger of producing
misleading results if the quality of the primary
studies is dubious. This has led to a warning from
Thacker to those who do not consider the quality
of their data ‘....sophisticated statistics will not
improve poor data, but could lead to an
unwarranted comfort with one’s conclusions’. (4)

The importance of considering the quality of the
primary studies was again highlighted by Naylor:

‘... in some respects, the quantitative methods used to
pool the results from several studies in a meta-analysis
are arguably of less importance than the qualitative
methods used to determine which studies should be
aggregated.’ (5)

However, assessment of quality is not without its
controversies. Greenland (6) has indicated that
quality assessment is the most insidious form of 
bias in the conduct of meta-analysis.

Detsky et al. (3) identify three basic issues that need
addressing when considering study quality in
research synthesis:

• How much does quality matter?
• How best can we measure quality? 

• Incorporating measure of quality in 
a meta-analysis.

They state the answer to the first question is
unknown and that there is no ‘gold standard’
method for part two either, adding that different
methods seem to produce reasonably congruent
results. Again there is no one ‘right’ approach to
point three.

In addition, it has been pointed out that one of 
the roles of meta-analysis should be to clarify, or
even quantify, weaknesses in the existing data on 
a scientific question and to encourage better
quality in future studies (7).

The section below outlines ways in which the
quality of studies may vary. This is then followed
with a description of the various approaches to
assessing and dealing with study quality that meta-
analysists have taken. As another review group (8)
is covering this topic, its treatment here is quite
brief. In addition, for an excellent review of scoring
systems see Moher (9).

Methodological factors that may
affect the quality of studies
Table 1 suggests a possible hierarchy to the sources
of best evidence. The reasoning behind this was
that different study designs are susceptible to biases
in varying degrees, and thus vary in the reliability of
the results. It has become accepted that RCTs are
the ‘gold standard’ source of evidence, giving
unbiased estimates of intervention effects. How-
ever, no empirical measure of the amount of bias,
on average, that other study designs are susceptible
to is available.1 Despite this, due to specific features
which are known to increase/reduce bias, such as
matching, collecting the data retrospectively, and
using a historical comparison group, an argument
can be made for the superiority of evidence from
one study design over another, although it is not
possible to quantify how much more superior it is.
As one can only determine the methodological

Chapter 6

Study quality

1 Although Macarthur et al. (46) note three broad categories of bias are generally recognised, namely, sample distortion
bias, information bias, and confounding bias.
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quality of a study to the extent that study design
and analytic methods are reported (10), we restrict
ourselves to such factors in the remainder of 
this chapter.

CRD4 (11) states that the first division that can be
made is between experimental and observational
studies. So we shall focus initially, on clinical trials.

Experimental studies
Moher et al. (9) suggest the design features of trials,
which effect the trials quality, and can be assessed,
can be split into four areas, namely assignment,
masking, patient follow-up, and statistical analysis.

Assignment
This could well be the single most important design
feature of a study. As randomised controlled trials
provide the most valid basis for the comparison 
of interventions in health care (12), it is clearly a
desirable feature and thus RCTs are considered 
the most reliable method on which to assess the
efficacy of treatments (13).

Despite this, the details of randomisation are not
often reported (12). Another disturbing problem
stemming from the ‘unnatural’ balance of numbers
in the arms of many trials, is that, there is evidence
that unadulterated randomisation has not gone on,
i.e. groups are ‘too equal’ (this is sometimes called
random manipulation) (12). The motivation for this
‘fudging’ is that researchers believe equal groups
increases the credibility of the results. This therefore
raises the question, even if a study is described as
randomised, can you believe it? This is also import-
ant if the outcome is affected by baseline value, e.g.
size of wound when the outcome is percentage of
wound healed or absolute reduction in size.

Masking/blinding
Blinding is generally desirable in trials to minimise
biases. Patients are said to be blinded if they do not
know which intervention arm of the study they are
in. Similarly the health professional administering
treatment is blinded if they do not know which
treatment the patient is getting. Finally, the person
assessing the effect of the intervention may also be
blind. This will be particularly important when the
outcome measurement of interest involves some
subjective/human judgement. Obviously, by the
nature of some interventions, blinding of one or
more of the above groups of people may not be
feasible. Allocarion concealment relates to patient
assignment in which the masking may not be kept
after patients are allocated. Bias has been detected
in trials not reporting adequate allocation conceal-
ment (14); however, this is thought not to be as

important as the generating of assignments per se
(12,15).

Patient follow-up
In trials, patients drop out for several reasons.
Patients may also switch to other arms, in instances
such as when the patient was allergic to the original
treatment. How these events are documented and
subsequently dealt with in the analysis can effect
the overall treatment estimate. This is also a huge
potential source of bias.

Statistical analysis
Obviously if an inappropriate statistical analysis 
was carried out, or a correct type of analysis, but
with mistakes was produced, this could lead to
misleading results.

Other
In addition, if crossover designs have been used, 
if they are used inappropriately (such as in fertility
treatment where they are quite often misused), 
this will produce strongly biased results (16).

Observational studies
Since treatment allocation is left to a haphazard
mixture in observational studies (11), this is one
reason why they have a greater susceptibility to 
bias than clinical trials. Similarly, ascertaining that
differences observed between groups of patients in
observational studies are the effect of the inter-
ventions is a far harder exercise than it is in experi-
mental studies (11). Cohort studies, in which
groups receiving the different interventions being
compared are evaluated concurrently, are regarded
as more valid than studies which make comparisons
with ‘historical’ controls (11). Similarly, studies
which are planned prospectively are also less likely
to be biased than studies which are undertaken
retrospectively (11). Case–control studies are prone
to many extra biases, and therefore fall below
cohort studies in the hierarchy (11). If they are
included in a meta-analysis it may be possible to
grade them according to the suitability of choice of
the control group. It is also worth being aware that
treatment effects could be underestimated due to
over-matching on factors which are related to
allocation of the intervention (11).

However, clearly the study design is not the only
factor which effects the quality of a study. How well
it was designed, carried out and analysed all contri-
bute to its quality. In this way a poor RCT may be
less reliable than a well conducted observational
study (11). Assessment of such factors can be made
more systematic with the use of checklists (11);
these are discussed on pages 25–6.
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Evidence of bias and study 
quality
Several studies have been carried out to investigate
the effect of study quality on the magnitude and
direction of the results (14, 17–21). The findings
from these studies are variable and not totally
consistent. Several of these, contrasting in their
findings, are outlined below.

Emerson et al. (17) investigate whether a
relationship exists between treatment difference
magnitude and a given quality score for a selected
groups of studies. They found no evidence for this
relationship. A possible explanation, put forward 
by the authors, for this, is that the studies assessed
came form previous meta-analyses and may have
been of greater than average quality. This led 
the authors to comment that the result leans to
recommending the inclusion of all RCTs in 
a meta-analysis and not adjusting weights for 
quality either.2

Colditz et al. (19) investigate the association of
study type with result and concludes: ‘We observed
that several features of study design influence 
the likelihood of a report that patients perform
better on the innovation than on standard therapy.
These features included randomisation, blinding,
the use of placebo and the inclusion of patients
refractory to standard therapies.’ The authors go
on to suggest that one may wish to adjust for the
average level of bias associated with a given 
design when pooling studies in a meta-analysis 
and suggest values for each design feature;
however, the authors of this report are not aware 
of any instances when they have been used.

Studies have been undertaken to investigate 
the difference randomisation makes in a study. 
As Wortman reports (1), designs that used non-
random allocation overestimated the effect by 
at least one-third. However he also notes that
systematic biases in quasi-experiments can also
underestimate effects. Also, Sowden et al. (22), 
in a review of observational studies, found that 
the effect size varied according to the quality 
of adjustment for case mix.

Schultz et al. (21) set up an investigation to
determine whether inadequate approaches to
randomised controlled trial design and execution
are associated with evidence of bias in estimating
treatment effects. They investigated the effect of
inadequate allocation concealment, exclusions
after randomisation, and lack of double-blinding.
They found that larger treatment effects were
reported when concealment was either inadequate
or unclear, trials that were not double-blinded
yielded larger estimates of effect size, and there 
was no association with effect size for trials which
excluded patients after randomisation.

Assessing the quality of studies

As Wortman states (1), the literature contains 
two approaches for coding research quality. The
first system (23) applies the validity framework
developed by Campbell et al. (24). This approach
provides a matrix of designs and their features or
‘threats to validity’. Its focus is on non-randomised
studies found in the social science literature. [For
this reason it will not be pursued further here, and
the interested reader is referred to the above cited
papers and (1).]

The second system was developed by Chalmers 
et al. in 1981 (25). This was later extended by 
them to a framework for the ‘quality assessment’ 
of meta-analyses (26). It concentrates on the
randomised control trial study design, and has 
the objective of providing an overall index 
of quality rather than the estimation 
of bias.3,4

Many different checklists and scales have 
appeared in the literature, initially for trials 
but now scales are available for assessing
observational studies also. Another project in 
this series has been commissioned to look at 
the quality of randomised controlled trials
exclusively (8).

For more information on assessing the quality 
of quasi- and uncontrolled experiments, see
Wortman (1).

2 These are two possible methods of incorporating study quality into the statistical analysis. These are discussed on
pages 26–9.
3 It could be argued that using individual markers could be considered as a third (27); however, they are not
considered further here.
4 (1) Includes a detailed comparison of the two methods. The largest differences are that Campbell’s encompasses a
larger variety of designs (randomised and non-randomised), while Chalmers’ is more in depth for just randomised
trials, and includes a scoring system.
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Checklists and scales for trials
The first checklist for trials was published in 1961
(9) and eight more had been published by 1993
(9).The first scale for assessing the quality of trials
was published in 1981 (25). By 1993, an additional
24 scales had been developed (9).The interested
reader is referred to these references through the
excellent review article (9) for more specific
detailed information.

Although many of these scales and checklists for
trials are similar (though many are designed only
for RCTs5), they emphasise different dimensions of
quality. Moher et al. (27) assessed the variability of
using different scales and found it was consider-
able. For this reason the content of the checklist
should be stated in the protocol (11).

These scales have their critics. Jadad et al. comment:
‘... there is a dearth of evidence to support the inclu-
sion or exclusion of items and to support the numer-
ical scores attached to each of those items.’ (28)

Another problem is the effect that the level of report-
ing has on the quality score. Jadad et al. comment:

‘Given space constraints in most journals, editorial
decisions may end up having a major effect on the
quality score achieved by a given study.’ (3)

They go on to state that, incomplete reporting may
be avoided in the long term if journals adopted
more uniform reporting standards for trials and
authors routinely made additional protocol details
available on request.

Schulz et al. (12) state, as a very minimum, reports
of RCTs should include: 1) the type of random-
isation, 2) the method of sequence generation, 
3) the method of allocation concealment, 4) the
persons generating and executing the scheme 
and 5) the comparative baseline characteristics.

With the arrival of the Consolidated Standards of
Reporting Trials (CONSORT) statement (29) (a list
of 21 items that should be included in a report as
well as a flow chart describing patient progress
through the trial), hopefully this issue should no
longer be a problem.

Moher et al. (9) concluded, from their investigation
of 25 scales, that all but one of them have major
weaknesses, not least that they have evolved with
little or no standard scale development techniques.

Other than the exceptional scale (28), they chose
items from ‘accepted criteria’ from standard clinical
trial textbooks. Moher et al. commented that:

‘Although these criteria may be useful, some of them
are based on conviction whereas others are based on
empirical evidence.’ (9)

The illustrative example of informed consent,
which is included in some checklists, is given, and
the authors question how this affects the quality of
the study.

Checklists for observational studies
Although much smaller in number, checklists 
do exist for epidemiological studies which assess
potential links between exposures to risk factors
and harm. CRD4 (11) reports of three for general
use (30–32). In addition, at least three others
(33–35) have been developed specifically for 
meta-analysis (36). Two studies (35,37) have
demonstrated associations between their relative
risks (RRs) and quality scores. The guidelines 
in CRD4 suggest the same checklists can often 
be used to assess the strength of evidence from
observational studies investigating treatments
which are of benefit (rather than risk factors) 
as the same issues are important (11).

Other checklists
Checklists are also available for studies which assess
the accuracy of a diagnostic test. A different check-
list is needed because these studies are affected 
by several different and more complicated issues. 
Also, separate checklists are available for reviews 
of economic evaluations. In instances when one is
considering non-comparative studies, such as case
series, checklists which assess articles on prognosis
can be used. Details of all these scales and
checklists can be found in CRD4 [(11), p. 31–7].

Incorporating study quality into 
a meta-analysis
Once a formal assessment of study quality has 
been made, the next question is: should the
measure of quality be incorporated into the
analysis, or just used as a threshold value for
including/excluding studies?

This is a problematic question which has 
produced differing opinions, some of which 
are highlighted below.

5 The checklists described by Spitzer et al. (34) and Cho and Bero (10) are noteworthy as they are applicable to both
experimental and observational studies.
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A trade-off between the precision and the accuracy
of the estimate of effect may exist if studies of vari-
able quality are to be combined. Whilst inclusion 
of more studies may allow a more precise estimate
(tighter CIs), if this is done by including studies of
dubious validity, then it may be at the expense 
of accuracy (3).

There has been doubt as to the interpretation of a
quality score. Detsky et al. ask:

‘Is the quality of a trial a continuous characteristic 
or is there a threshold effect of quality? .... It seems
highly unlikely that these scales would result in a
linear or monotonically increasing relationship 
to true quality.’ (3)

They conclude:

‘... the relationship between quality scoring 
systems and the degree to which the study results
approximate the truth should be viewed with 
some caution.’ (3)

Indeed, no general relationship has been found
that links quality score and magnitude of outcome
(17), although Colditz et al. consider the idea to 
be attractive (38).

Below are the outlines of methods proposed to
incorporate an assessment of study quality into 
a meta-analysis.

Graphical techniques
It has been suggested (3) that a plot of the 
point estimate and 95% CI for each studies
treatment effect against quality score (derived 
from a scoring system), can be investigated to 
see if there is any trend between the two 
variables.

An equivalent way of investigating, essentially 
the same thing, is to include a variable for study
quality in a logistic regression model (these are
covered in chapter 11 on meta-regression);
however, this formal test would often lack 
power due to too few studies in many meta-
analyses (3).

Weighting
Rather than weight by sample size (see chapter 9),
one could weight each of the individual estimates
by a variable which measures the perceived quality
of the study (3). For the log odds ratio scale, this
can either be done by hand, or any statistical
package capable of performing weighted logistic
regression.

In doing this one has to be aware that:

‘Although actual estimates, such as the pooled odds 
ratio, are affected only by the relative weights used,
the width of the confidence intervals is affected by the
weights used’ (3)

For example if a study is weighted by a quality 
score of 0.5, it is equivalent to an unweighted study
with half the sample size. Detsky et al. go on to
comment that:

‘Although a widening of the confidence intervals is
probably called for, the amount of the widening that
automatically results by weighting (in logistic regres-
sion) is completely without empirical support’ (3).

The amount of widening can be modified by
multiplying scores by a constant. Increasing all 
the scores could be justified by arguing that a score 
of 1 is almost impossible to achieve. An alternative
procedure would be to divide each trials score 
by the mean, by doing this CI widening does 
not result.

Detsky et al. still do not consider this form of
analysis as satisfactory as the below explanation 
will testify:

‘weighting by either the unadjusted or adjusted scores
to control the increase in the width of the confidence
intervals is difficult to defend, since there is no 
a priori reason why this process should alter Type 1 
and Type 2 error rates in such a way as to move the
aggregate effect size estimate “closer to the truth”.
This is because, while weighting study estimates 
by the precision has very desirable optimality 
properties, quality scores are not direct measures 
of precision.’ (3)

The authors go on to comment that, what is 
desired is a method of determining the relation-
ship between quality scores and precision (bias).
So, ideally weights would be determined by 
sample size, inherent binomial variation, quality
induced variation and quality induced bias 
(the last of these, however, would be difficult 
to ascertain).

Excluding studies
Another approach is to exclude the studies of
poor(est) quality altogether. This can be viewed as
an extreme form of weighting, giving the poorest
studies no weight at all. Light justified this
approach by arguing:

‘if it is clear that a certain study is fundamentally
flawed, say with obvious numerical errors, I find it
hard to argue for its inclusion. I do not believe 
that wrong information is better than no 
information’ (39)
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To determine what classifies as a poor quality study,
a threshold value needs to be produced. If a scor-
ing system such as those outlined in this chapter is
used, figures such as the mean, the mean plus one
standard deviation or the median can be used as
this threshold (3). Alternatively simpler criteria 
can be used, such as whether randomisation was
fairly performed, or whether there were blinded
outcome assessments (3). There does not appear 
to be a consensus as to the optimal rigour used in
deciding whether to reject studies. Some authors
recommend inclusion of all but the very worst of
studies (40) (a quality weighting scheme could still
be applied to remaining studies to be included),
while others advocate the exclusion of all but the
best studies. One of the supporters of the latter
approach is Slavin, who has promoted an approach
to pooling called best evidence synthesis (41),
where all but the methodologically most adequate
studies are excluded. An outline of this approach 
is given on page 216.

Sequential methods
Detsky et al. (3) suggest this method. It can be
viewed as a form of sensitivity analysis (see chapter
27). A cumulative meta-analysis based on a quality
score is conducted, i.e. trials are combined sequen-
tially from the highest to lowest quality and a pool-
ed estimate is calculated for each new addition and
plotted. The authors state: ‘An investigation of this
graph will then provide an opportunity to discern
the effect of quality on estimated effect size’. The
authors go on to comment that this method as
several advantages: i) it uses quality scores simply 
to rank order trials for the exploration of quality
effects, and as such is free of further assumptions
about the relationship between scores and ‘true’
rigour, ii) the method basically draws on standard
techniques of regression ‘diagnostics’ and iii) the
method is conservative, in that controlling for
extra-binomial variation means that the CIs will
tend to be wider than is the case with conventional
methods of aggregating individual effect size
estimates. Cumulative meta-analyses are the 
subject of chapter 25, where this methodology 
is discussed further.

Sensitivity analysis
Incorporating study quality via weighting in the
main analysis has come under criticism. Shadish
and Haddock make the case for leaving the incor-
poration of study quality for a sensitivity analysis:

‘... weighting schemes that are applied at the earlier
points seem to be based on three assumptions: (a)
Theory or evidence suggests that studies with some
characteristics are more accurate or less biased with
respect to the desired inference than studies with 

other characteristics, (b) the nature and direction of 
that bias can be estimated prior to combining, and (c)
appropriate weights to compensate for the bias can be
constructed and justified.’ (42)

They conclude by stating that a quality weighting
scheme does not meet the above conditions so it
should be applied with caution. They go on to
suggest investigating quality weighting schemes
after combining results without such weighting, 
as a form of sensitivity analysis. The results with,
and without this weighting can be compared. To
further support this method they comment:

‘In fact, such explorations are one of the few ways to
generate badly needed information about the nature
and direction of biases introduced by the many ways
in which studies differ from each other.’ (42)

Wortman (1) suggests another, more specific, 
form of sensitivity analysis. He proposes a method
to estimate the amount of bias from patients in a
randomised trial switching treatment groups. 
This method makes a simplification and assumes
that the sickest patients cross over to the other 
arm of the trial. By making this assumption an
estimate of the amount of bias in an effect size
introduced, by a given rate of attrition, is 
possible (43).

Multivariate analysis
By using the quality score as a covariate in
regression models (see chapter 11) to explain
heterogeneity (see chapter 8) of study effects, one
can take study quality into account. Fredenreich
(44) comments this is preferable to weighting
studies by their quality because it minimises the
influence of quality scoring bias. For an example 
of the use of this method, see (22).

Bayesian approach
The Bayesian statistical framework to meta-analysis
(which is explained in chapter 13) can also incor-
porate study quality into the analysis. This is done
by including prior opinions, relating quality and
study bias, provided by one or several ‘experts’, 
in the model. Analyses can be performed for 
each set of ratings to study the dependence of
conclusions on individual opinion (to the quality 
of the studies). If the conclusions are stable over
this ‘community of opinion’, then, the meta-
analysis is likely to have substantial impact. If
conclusions are sensitive to the range of opinions,
then no consensus has been reached (45). Quan-
tifying the degree of sensitivity is itself important. 
It is important that the assessors should not know
study results. However, it is hard to draw the line
between ‘inputs’ and ‘results’; for example, study
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attributes and baseline data are proposed to be
available to the assessors. However, follow-up rates
are a more difficult issue, as they can indicate a 
well designed and conducted study, but they may
also may indicate an effective treatment (45). In 
a similar manner there may be a priori beliefs
regarding the eligibility of evidence from studies
within different designs, e.g. randomised and 
non-randomised. This particular situation is dealt
with in chapter 26.

Practical implementation

There are several practical issues to consider when
assessing the quality of studies. The first issue is
whether to blind the assessors to aspects of the
studies. The problems of masking the results and
conclusions, necessary for a Bayesian analysis, have
already been discussed on pages 28–9. There has
been suggestions (e.g. from TC Chalmers) that for
assessing the quality of a trial that only the methods
and results sections should be presented, with the
authors and setting masked, and even the names 
of the treatment groups deleted to reduce assessor
bias (3). Jadad (28) has recently investigated the
effects of blinding, and found evidence to suggest
that blinded assessment produced significantly
lower and more consistent scores than open
assessment. This is the first piece of evidence to
support what was previously seen as a purely
speculative and elaborate precaution (3).

Another problem is that some large and complex
trials report the details of study methodology in
separate earlier publications. Detsky et al. (3) 
argue that looking at this material would probably
increase quality score of the trial above the score it
would achieve when considering it in isolation.

As for the way the actual assessing is carried out,
the procedure described by Detsky et al. seems
sensible:

‘In the past, we have followed a specific protocol,
beginning with a training session for quality assessors
to review the items in the scale and practice with a
sample of studies of variable quality. We have also
insisted that the quality assessment be done by a pair
of reviewers who then check their results against each
other and discuss any discrepancies.’ (3)

The researcher should be aware that when a 
quality evaluation is done, there may be too few
studies deemed of good enough quality to pool.
This is an acceptable conclusion, indeed, it has
already been stated that no information is better
than misleading information.

Another point to note is that when the synthesis is
being reported, a list of trials analysed and a log of
rejected trials should be given (26).

Finally, a few comments on when quality scoring is
important (3):

• If all trials are of uniformly high quality
considerations will be relatively unimportant.

• In RCTs with hard outcome measures and simple
interventions, study quality will have less of an
impact on estimated effect sizes.

• ‘Assuming “quality counts”, it stands to reason
that the issue must be formally recognized in
meta-analytic techniques whenever there is
evidence of variation in the quality of the design
and conduct of individual trials.’ (26)

Further research

• Evidence of how methodology effects biases.
• If studies are to be excluded guidelines for

deciding which ones to exclude are needed.
• Currently one can only weight by quality if the

same checklist was used for each study, i.e. one
could not do so if different study types are 
being combined.

• Investigate any relationships between
components of quality score and an average
amount of bias in study result (or at least 
its direction).

• The use of the Internet to provide further 
study details not included in journal 
reports etc.

• As well as the use of scales and methodology 
for incorporating the results into a meta-analysis,
the issue of whether to include unpublished/
non-peer reviewed data and how this should 
be assessed needs addressing.

• Guidelines for how to proceed when information
about studies necessary for scoring is not
included in reports.

Moher et al. report:

‘Even if the scales available vary in their size,
complexity, and level of development, it would be
useful to ascertain whether different scales, when
applied to the same trial, provide similar results. This
information could guide quality assessors in their
choice of scale. There would be little advantage in
using a 20-item scale to assess trial quality if similar
results could be obtained by using a 6-item scale.’ 

‘Future efforts in assessing quality may be best spent 
in developing scales with appropriate rigor.’ ‘We also
need to address whether, as part of a meta-analysis,
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efficacy and safety analyses should be conducted 
with and without quality scores.’ Moher et al. also
provide a table entitled ‘Specific issues to address 
in the development of a scale to assess trial 
quality.’ (9)

If significant heterogeneity is present (see chapter
8) then quality should be one of the possible
factors examined to see whether it explains it.
Through further research, a fuller understanding
of this relationship may be obtained.

There is little discussion in the literature concern-
ing whether random or fixed effects should be 
used in conjunction with quality scores (if used to
weight), if other heterogeneity is present. Detsky 
et al. (3) mention using a generalised linear model
approach which is similar to the random effects
model (see chapter 10) that takes extra variation
into account.

When excluding studies, Detsky (3) gives several
suggestions on how to calculate a cut off value.
Little empirical evidence is given to justify this, thus
an investigation into the robustness of this value
would be desirable.

Summary

This chapter has considered both the assessment
and use of quality scores in meta-analysis. Whilst 
a number of methods have been proposed for
assessing study quality (of primary studies) in 
a meta-analysis, no consensus appears to have
developed as to which method is most appropriate,
or indeed whether such an exercise is appropriate
at all. As far as the use to which such quality scores
can be put, a number of possibilities exist, but in
specific situations the meta-analysist should not be
totally reliant on any one method, in addition that
is to an unadjusted analysis.
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This chapter deals with two methods of
combining studies, namely vote-counting

methods and combining p-values. Both of these
methods are very simple; neither of them combines
treatment effects size estimates, nor produces a
pooled estimate. For more complex methods for
data synthesis, see chapter 10 onwards.

Vote-counting methods

Introduction
Vote-counting procedures are one of the simplest
forms of pooling study results. Essentially, only 
the direction of the result from each study is
considered, whether that be an elevated risk or 
a negative correlation. This method ignores the
magnitude of effect and, for the majority of the
methods, also the significance of the result. For
these reasons, vote-counting procedures are only
recommended as a last resort, when effect magni-
tudes and significance levels are not available, 
or, as a compliment to one of the other methods
described later in this part of the report. An
instance where this would be sensible is where
treatment estimates/significance levels are only
available on a proportion of the studies; here, effect
sizes could be combined on the possible subset of
studies but a vote-counting procedure could be
carried out on all studies (1).

The conventional vote-counting
procedure
Light and Smith (2) in 1971 were among the first
to describe formally, the ‘taking a vote’ procedure.
Put simply, each study is tallied to one of three
categories, namely showing a positive relationship,
negative relationship or no specific relationship in
either direction, depending upon the effect size.
The category with the highest count is assumed 
to give the best estimate of the direction of the 
true relationship.

Clearly, this method could not be simpler,
unfortunately it has been criticised for the
following reasons:

• The sample size, and therefore the precision of
each estimate from the primary studies is not
incorporated into the vote (2).

• It does not provide an effect size estimate (3).
• It has very low power for the range of sample

sizes and effect sizes most common in the social
sciences. When the effect sizes are medium to
small, the procedure frequently fails to detect 
an effect (4).

• The power of this test decreases as the number
of studies increases (4).

In conclusion, this method cannot be recom-
mended; it has been described as naive, with no
statistical rationale and can lead to erroneous
conclusions (4,5). For a thorough explanation 
of the limitations, see page 48 of (6).

The sign test
Again, this is a simple procedure involving a non-
parametric statistical test. The rationale behind the
test is that if there is no treatment effect then the
chance of a study showing a positive effect is 0.5.

Hence the null hypothesis is:

H 0: probability of a positive result on average
in the population (p) = 0.5,

and the alternative,

HA: p > 0.5.

Let U = the number of positive results in k
independent studies being considered. Then 
an estimator of p is ^p = U/k.

Tables for the binomial distribution are then
consulted to calculate how extreme ^p is, and
whether to reject the null hypothesis.

Again, this test also has its disadvantages: it does
not incorporate sample size into the vote, and it
does not produce an effect estimate.

CIs based on equal sample sizes
Unlike the previous two methods, this method 
gives an estimate of the treatment effect. However,
this vote-counting method is only possible if one
assumes that all studies to be combined have the
same sample sizes and the numbers in both arms 
of each study are also the same. Clearly this is very
restrictive and unlikely to be the case in most

Chapter 7

Simple methods for combining studies
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instances. Hedges and Olkin (4) recommend
treating studies as if they have the same sample 
size, if in reality they are not very different. 
Hedges and Olkin (6) give details on what to 
set as this fixed sample size, when in reality 
they differ.

This method produces a CI for the treatment effect
of interest. From this, inferences can be made
about the effectiveness of the intervention.

This method is quite involved, and thus is not
described in this report. A clear account with
several examples, using different scales is given
elsewhere (7).

Because unequal sample sizes are the rule in
research synthesis rather than the exception, 
the counting estimators are likely to be most 
useful for providing quick approximate estimates
rather than as the analytic tool for the final 
analysis (6).

CIs based on unequal sample sizes
This method extends the methodology to handle
unequal sample sizes for the primary studies. This
method was first described by Hedges and Olkin
(6). Another description of the method is given 
by Bushman (1). The method involves maximum
likelihood (ML) calculation, and is considerably
more complex than that for equal sample sizes.
The interested reader is referred to either of 
these texts for more detail.

It should also be noted that both the above
methods rely on a reasonably large sample of
studies to obtain accurate estimates (6).

Results all in same direction
If all the results are in the same direction, the
method of ML (see above) cannot be used to
obtain an estimate of p. Instead, if all the results 
are in the same direction, we can obtain a Bayes
estimate (see chapter 13): see Hedges and Olkin
[(6), p. 300], or [(1), p. 211] for details.

Conclusion
As mentioned previously, these methods should
only be used for the main analysis as a last resort,
when treatment effects are not available for at 
least a proportion of the studies. However, it is
difficult to know how to define a positive result, 
e.g. it could be one that is significant (p = 0.05) 
or one where it is just positive (p > 0.5). Light and
Smith (2) discuss an alternative approach based 
on rejecting inferior studies and state that if this
method is taken to the extreme, only one study 

will be left to vote, i.e. the study deemed to be 
best will give the final result. Hedges and Olkin (6)
state that 0.05 is a good practical choice, as a paper
may state that result reached statistical significance
even if it does not give any other details. On the
other hand, taking a positive result to be p > 0.5
allows synthesis in situations where the data are 
so sparse that only the direction of the result 
needs to be known.

With increased awareness of their importance,
treatment estimates from studies should be
obtainable from reports. Even if they are not, 
ways often exist for obtaining them, for example
deriving them from other results in reports (e.g.
see pages 148–52 and several of the methods of
chapter 20), or by contact with the authors (see
pages 14–15). Ideally, therefore, this method
should not be used unless absolutely necessary.

Combining p-values/
significance levels
Introduction
Methods of combining probability (p-)values from
independent significance tests have a long history
(8). Several of these methods are closely related to
the vote-counting techniques (9) outlined at the
beginning of this chapter.

p-Value definition
A definition of a p-value can be given as follows:

‘The probability of finding a test statistic (i.e. a 
set of sample data) as unusual or extreme as that
calculated given that the null hypothesis is true.’

‘Observed p-values derived from continuous test
statistics have a uniform distribution under the 
null hypothesis regardless of the test statistics or
distribution from which they arise.’ (6)

These facts underlie all the tests in the 
following sections.

When to use this method
Like vote-counting procedures, these methods 
do not produce an effect size estimate. Because of
this, analyses based on effect magnitude measures
are usually preferable (9). Hasselblad (10) suggests
two situations when combining p-values might be
appropriate: 1) when some studies do not report
any effect measures but do report p-values; 2) when
the study designs or treatment levels may be so
different that combining effect measures would 
be inappropriate. However, Hasselblad goes on to
comment that, like vote-counting techniques: ‘...
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methods of combining p-values are seldom used 
as meta-analytic tools’ (10). They could be used 
as a supplement to combining treatment effects
(see part D) when not all treatment effects 
are available.

Stating the null and alternative hypotheses for
combined significance tests
This section presents the formal hypotheses that
are being tested when using the methods presented
in this section. This section can be skipped without
loss of continuity.

Let Ti represent the effect of interest in the i th
study. Then:

H 0: Ti = 0, for i = 1,…k.

So, for the joint null hypothesis to be true, all the
individual null hypotheses must be true.

In words, this means that the treatment effects in
all the primary studies have to be zero.

A possible alternative hypothesis is:

H A: Ti ≠ 0

Under this alternative, the population parameters
are not required to have the same sign. This is very
general, and does not inform about the specific
structure of variability (9). Alternatively

HA: Ti ≥ 0, for i = 1,…k, with
Tj > 0, for at least one j

This is used if one knows the effect cannot be nega-
tive, such as a correlation, or if one is not interested
in negative values such as a variance test where
negative values are evidence of zero variance.

Methods for combining p-values and
significance levels
All the methods described below can be described
as non-parametric, as they do not rely on any para-
metric form of the underlying data only on the 
p-values (6). This section is essentially a summary 
of the review of Becker (9), which should be
consulted if more details are required.

Minimum p method
This method was proposed by Tippett in 1931 (11).
One rejects the null hypothesis if any of the p-values
(from the k studies) are less than α. Where α is
computed as

1 – (1 – α*)1/k

and α* is the present significance level for the
combined significance test (e.g. traditionally 
set α* to 0.05 = 5%). Put formally, one rejects 
H 0 if:

Min(p1,…,pk) = p [1] < α = 1 – (1 – α*)1/k (7.1)

It can be noted that this method is a special case 
of Wilkinson’s method described in 1951 (12), for 
r = 1 and

α = 1 – (1 – α*)1/k

Also, the Beta distribution with 1 and k degrees of
freedom can be used to obtain a level α* test based
on the minimum p (p[1]).

A generalisation suggested by Wilkinson (12) is to
use the r th smallest p-value (13):

H 0 is rejected if:

P[r] < C α ,k,r

where Cα,k,r is a constant that can be obtained from
the Beta distribution [these are tabulated in (6), 
p. 37].

The advantage of this method is that it does not
rely on the most extreme result, and therefore is
more resistant to outliers in the data than Tippett’s
original method.

Sum of z’s method
This method was first described by Stouffer et al. 
in 1949 (14). The combined significance test is
based on the sum of z(p i) values (sometimes 
known as z-scores).

The test statistic is:

k

∑z(pi)/√k (7.2)
i =1

This is compared with critical values of a standard
Normal distribution (9).

Sum of logs method
This method was first described by Fisher in 1932
(8).The test statistic is expressed:

k

–2∑ log(p i) (7.3)
i =1

This is compared with the 100(1 – α*)% critical
value of the χ2 distribution with 2k degrees of
freedom (df).
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Fisher’s method can be shown to be derived from 
a proposed method of ranking vector observations
(15), and in particular the choice of p = 0.37 is 
a critical one; p-values below this value suggest 
the null hypothesis is more likely to be false and 
p-values above 0.37 suggest it is more likely to 
be true.

Logit method
This method was proposed by George in 1977 (16),
and uses a test statistic defined by:

k

– ∑ log(pi /1 – pi)[k π2(5k + 2)/3(5k + 4)]
–1/2

(7.4)
i = 1

This test statistic is approximately distributed 
t with 5k + 4 df.1 Thus it is compared to the 
100(1 – α*)% critical value of the t distribution
with 5k + 4 df.

Other methods of combining significance levels
Hedges and Olkin (6) briefly discuss several other
methods and modifications for combining p-values
and significance levels.

Pearson suggested combining p-values via the
product: (1 – p 1)…(1 – p k). David in 1934
considered combining P1*,…,Pk* where 
p i* = min[Pi,1 – Pi] [described in (13)].

Edgington proposed combining the sum of p-
values: S = p 1+…+pk. However, this test has very low
statistical power (13). This is because a single large
p-value may overwhelm many small p-values. This
procedure is believed to be poorer than Fisher’s
method, but very few numerical investigations 
have been carried out.

Other methods have been proposed by Lipták, who
presented a general form of which both Fisher’s and
normal procedures are both examples. Lancaster
presented another statistic based on the sum of the
inverse of χ2 cumulative distribution functions.

In addition, Draper et al. (13) reported that 
Good (1955) and Mosteller and Bush (1954)
proposed weighted versions of the inverse χ2

procedure and inverse normal procedure,
respectively. Lancaster (1961) also suggested 
an alternative weighting procedure for a
generalised inverse χ2 method.

As the reader can gather, there are many different
test statistics available for combining p-values and
significance levels. The interested reader should
note that Becker [(9) p. 222–23] gives a classified
table of 16 test statistics that can be used for this
purpose. For more information for the methods
not referenced in this section, see (6) and (9).

Combining discrete p-values
All the above methods have assumed that the
statistical tests to be combined have a continuous
test statistic, which in turn leads to a p-value that 
is uniformly distributed under the null hypothesis.
If test statistics with discrete distributions (e.g. 
test statistics based on discrete data) are used, 
the combination procedures described in this
chapter will have to be modified by incorporating
‘corrections for continuity’ (6). An alternative
approach is making p-values into continuous
random variables by adding to them an appropriate
uniform random variable (6). However, Draper 
et al. (13) observe that this method is very rarely
used in practice. This problem is not discussed
further here; see (6) for more details.

Combining lower bounds on Bayes factors as an
alternative to p-values
Chapter 13 of this report discusses Bayesian
methods for research synthesis. It should be noted
that the whole concept of p-values is at odds with
the Bayesian philosophy.2 Because of the recog-
nised conflict between Classical and Bayesian
perspective, Berger and Mortera (17) investigate
the interpretation of a p-value, from a Bayesian
perspective. This is done by treating the p-value 
as the data, and computing corresponding
posterior probabilities or Bayes factors (BFs). 
They go on to compare the use of p-values
(combined using z-scores) to BFs and posterior
probabilities. They conclude:

‘The lower bounds on Bayes factors are not meant 
to be a substitute for actual subjective Bayes factors
which can be substantially larger. However, if it is not
possible to compute actual subjective Bayes factors,
the use of lower bounds is arguably superior to the 
use of p-values.’(17)

Combining significance levels and p-values when
only the level of significance is known
In some instances, authors may not give the exact 
p-value, but report the level of significance (e.g. 
‘p < 0.05’, or the treatment difference was significant

1 Could also be thought of as distributed normally with zero mean and variance kπ2/3.
2 Despite this, Goutis et al. (22) look at the different methods for combining p-values and look to place them in a
Bayesian context; however, this has been unsuccessful.
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at the 5% level). This is indeed a problem. In this
situation, it is impossible to construct a test at a partic-
ular level; however, if one substituted p = 0.05 (or any
other known level of significance) for the offending
study, a conservative test can be performed (10).

Miscellaneous methods
Becker (9) comments on the possibility of weight-
ing p-values. Two different situations are outlined:
1) to account for prior information about the sizes
of effects and 2) to allow for subjective differences
(e.g. quality), differences in sample size or degrees
of freedom).

Other methods for combining p-values have 
been proposed, several of which are reviewed 
by Mosteller and Bush (18).

Rosenthal’s ‘file-drawer’ test for publication bias,
which is covered on pages 126–32, is based on
combining p-values. Tests for contrasts using p-values
have also been put forward by Rosenthal (19,20), as
a way to identify where variations between studies
lie. This involves using the z(p) as an effect measure
in its own right. However, Becker (9) gives evidence
suggesting that procedures such as this based on the
standard normal approximation may tend to over-
look real differences in effects when the null hypo-
thesis is false. An extension to this method is given
by Strube (21) to combine significance levels of non-
independent studies; this is discussed in chapter 27.

Appraisal of the methods
With so many alternative test statistics available, it
would be desirable to consider the power of each,
to find if any are generally superior in that respect.3

Unfortunately, no one test is the most powerful in
all situations. However, as Elston observes (15),
Littel and Folks paper showed Fisher’s method to
be asymptotically optimal among essentially all
methods of combining independent tests. Hence,
perhaps the best advice available is given by 
Hedges and Olkin (6) who state:

‘It seems that Fisher’s test is perhaps the best one to
use if there is no indication of particular alternatives.’

It should not be forgotten that all methods of
combining p-values have disadvantages (as well as
advantages) these are summarised in Box 2.

There is confusion in the literature as to whether
by combining studies via p-values weights the
studies according to their power to detect a

treatment effect. Although p-values do contain
information relating to sample size and variability,
the extent to which this is true in any specific
situation will depend on a number of factors,
including the type of test used.

Summary

This chapter has considered principally two basic
methods for synthesising evidence; vote counting
and the combination of p-values. Whilst vote
counting is one of the simplest methods available, 
it should only be used if absolutely necessary. By
contrast, although the combination of p-values 
does convey some aspect of effect size, there are 
a number of disadvantages to the use of such a
method. As a result, it should only be used with
caution, since it may mask some fundamental
differences in the studies.
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Introduction (defining 
heterogeneity and homogeneity
with respect to meta-analysis)

It is almost guaranteed, when carrying out any 
meta-analysis, that the point estimates of the effect
size from the different studies being considered 
will differ, to some degree. This is to be expected,
and is at least partly due to sampling error which is
present in every estimate being combined. That 
is to say, if several samples are taken from a popu-
lation, with the same underlying true effect size, 
the sample estimates will inevitably vary from one
another. When effect sizes differ, but only due to
sampling error, it is customary to consider the effect
estimates as homogeneous. This source of variation
can be accommodated in meta-analysis by using a
fixed effects model which is discussed in chapter 9.

It is often the case that the variability in effect 
size estimates exceeds that expected from 
sampling error alone. If a formal synthesis is to be
undertaken this extra variability requires further
consideration. When it is present the effect size
estimates are considered heterogeneous. Possible
reasons for this heterogeneity are discussed later 
on pages 41–3.

The subject of the heterogeneity of study results 
is fundamental in meta-analysis and is the source 
of much debate in the field of systematic reviews.
Colditz, in his review of heterogeneity in the meta-
analysis of epidemiological studies states:

‘...heterogeneity and approaches to dealing with it
take many forms, and such diversity may leave the
reader uncertain about the interpretation of the
combined results.’ (1)

One should be aware that heterogeneity may 
exist when all or most studies indicate the same
direction of treatment effect (i.e. either harmful 
or beneficial), but the size of this effect differs, 
as well as when the trials contradict each other
about whether there is any treatment benefit.

The most common test for heterogeneity is
outlined, followed by an example of its imple-
mentation. This is followed by a discussion of its
shortcomings. Then a discussion of the various

approaches that, in the past, have been taken to
deal with any heterogeneity are given. This is
followed with a section discussing how hetero-
geneity affects the results and interpretation of a
meta-analysis. The chapter concludes with a section
outlining other, lesser used, tests that can be used
to check for heterogeneity.

Test for presence of heterogeneity

As Thompson points out, (2) this test, to check the
data are homogeneous, is perversely, usually termed
a test of heterogeneity. Although several authors
have put forward slightly differing formulas for the
test they are, mostly, essentially equivalent, being
based on χ2 or F statistics (3). The one devised by
Cochran (4), which is widely used, is given below.

General formal test
The formula given below (8.1) can be applied 
to all types of treatment effect data commonly
combined (for details of the different types
normally encountered in medical research see
chapters 9 and 14). It tests the hypothesis

H0: θ1 = θ2 = … = θk

where the θis are the underlying true treatment
effect of the corresponding i th studies; versus the
alternative that at least one of the effect sizes θ I

differs from the remainder. Essentially, this is
testing whether it is reasonable to assume that all
the studies to be combined are estimating a single
underlying population parameter (this is one of 
the assumptions underlying the fixed effect model
– see chapter 9).

k

Q = ∑wi(Ti – 
_
T.)2, (8.1)

i = 1

where k is the number of studies being combined,
Ti is the treatment effect estimate in the i th study,
and 

∑wiTi_
T. =

i ,
∑ wi
i

is the weighted estimator of treatment effect. wi, is
the weight of that study (usually the inverse of the

Chapter 8

Heterogeneity
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ith sampling variance, but not necessarily) in the
meta-analysis (chapter 9 covers the calculation 
of

_
T. and needs to be referred to before calculation

of Q is attempted).

A computationally convenient form of the above
formula is:

k

k ( ∑w iTi)2

Q = ∑w iTi
2 –

i = 1
(8.2)

i = 1 k

∑w
i

i = 1

Q is approximately distributed by a χ2 distribution
on k – 1 degrees of freedom. Hence if the value 
for Q exceeds the upper-tail critical value of χ2

distribution with k – 1 degrees of freedom, the
observed variance in study effect sizes is signifi-
cantly greater than what we would expect by chance
if all studies estimated a common population effect
size. Thus, one would reject H 0 in favour of HA

and conclude heterogeneity is present (5).

For practical examples using this test see 
pages 56–66.

Choosing an appropriate critical value for this test
is made difficult due to its low statistical power (6),
and is discussed at length in the next section.

Additional technical notes
The weights in Q may vary according to the
assumptions made about the sampling variances.
For instance, when the sampling variances can be
assumed to be equal, then wi, i =1,…,k, is the
inverse of a common sampling variance s 2 (7).

Laird and Mosteller [(8), p. 15] comment that 
an alternative approach to estimating between
study variation is available using one-way analysis 
of variance (ANOVA). ANOVA type procedures 
are also used by Hedges and Olkin to investigate
variability in a number of situations (9); some 
of these are discussed on pages 50–2.

Problems with detecting heterogeneity
– limitations of the Q statistic
Unfortunately, interpreting this test for
heterogeneity is often difficult and not as clear 
cut as it may first appear. Below is a summary of 
the problems researchers face using this test.

1. The statistical power (i.e. if there are true
differences between studies, how likely are
these differences to be detected?) of statistical
tests for heterogeneity are, in most cases, is 
very low due to the small number of combined

trials (10). This means heterogeneity may
indeed be present even if the Q statistic is not
statistically significant. Due to this, for the
detection of a treatment-by-clinic interaction 
in a multiclinic trial (i.e. investigating if the
underlying treatment effects for each clinic
were heterogeneous), Fleiss (11) recom-
mended using a cut-off significance level of
0.10, rather than the usual 0.05. This has
become a customary practice in meta-analysis.

2. Shadish and Haddock state: ‘When within-
study sample sizes in each study are very large,
however, Q may be rejected even when the
individual effect size estimates do not really
differ much; in such cases, it may be reasonable
to pool effect size estimates anyway.’ (5)

3. Matt and Cook state: ‘The likelihood of design
flaws in primary studies and of publication
biases and the like makes the interpretation 
of homogeneity tests more complex. If all the
studies being meta-analysed share the same
flaw, or if the studies with zero and negative
effects are less likely to be published, then a
consistent bias results across studies can make
the effect sizes appear more consistent than
they really are.....Conversely, if all the studies
have different design flaws, effect sizes could 
be heterogeneous even though they actually
share the same population effect. Obviously,
the causes of heterogeneity that are of greatest
interest are of a substantiative rather than
methodological nature.’ The authors conclude
‘Consequently, it is useful to differentiate
between homogeneity tests conducted before
and after the assumption has been defended
that all study-level differences in methodo-
logical irrelevancies have been accounted 
for.’ (12)

Clearly, due to all the above reasons, one has to 
be cautious when interpreting the Q statistic, some
have gone as far as to suggest it should not be used
as a test at all. Shadish and Haddock to consider
that it should be used as a diagnostic tool to help
researchers know whether they have ‘accounted 
for all the variance’ (5). This has led to the below
suggestion by Colditz et al.:

‘Because we cannot believe that the among-study
variance can ever be zero and because the tests for
homogeneity are weak, we should not uncritically
accept homogeneity. Perhaps we should not test for
homogeneity, but rather quantify estimates for the
between study variance as recommended by the
National Research Council.’ (1)

However, the researcher perceives the role of the Q
statistic, the main point to bear in mind is that, just
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because the hypothesis that all the studies are
estimating the same true underlying effect is 
not rejected at the 5%, or even the 10% level, 
does not mean there is not some degree of
heterogeneity present.

If there is any doubt, it would seem sensible to 
err on the side of caution and treat the data as
heterogeneous because carrying out an analysis
assuming homogeneity on heterogeneous data 
will produce an estimate with a CI which is too
narrow (i.e. too confident a result). If one is able 
to determine the factors that cause the hetero-
geneity in the data, it may be possible to adjust 
the estimates accordingly thus removing the
excessive variation making a homogeneous (fixed
effects) analysis possible. Some informal tests for
heterogeneity are given below that can be used
instead or in conjunction with the formal one 
of pages 39–40.

Graphical informal tests/explorations 
of heterogeneity
Since the formal Q statistic has low power, one of
the following exploratory methods should be con-
sidered even when this statistic is non-significant to
aid decisions on how to proceed with the synthesis
(13). They should be used as exploratory tech-
niques and give an indication between which
studies heterogeneity is greatest and indicate
possible outliers. It should be noted that Greenland
(14) is critical of the subjectivity in interpreting
graphical plots (‘one can pull trends out of any-
thing if you look at it long enough’), though he
encourages their use up to a point.

Plot of normalised (z) scores
If the z-scores

(Ti – 
_
T.)/SE(Ti)

are placed in a histogram; under the hypothesis of
only random differences among the studies, this
histogram should have an approximately normal
distribution. Large absolute z-scores can signal
important departures of individual studies from 
the average result (13).

Radial plots (Galbraith diagrams)
These are also known as Galbraith diagrams 
(15). Here, the z-statistics are plotted against 
the reciprocal of the standard errors (SEs). 
Galbraith reports:

‘If this sort of plot is done then points from a homo-
geneous set of trials will scatter homoscedastically,
with unit standard deviation, about a line through 
the origin.’ (15)

Additionally, one can look at the resulting plot 
of points for certain characteristics by plotting
levels in different colours. Hence, this plot enables
studies whose results depart greatly from the line
can be observed as possible outliers.

Forrest plot
These plots are commonly used as a way of
presenting the results of a meta-analysis (see
chapter 22). The estimates of treatment effects,
along with their SEs from each study are plotted 
on the same axis. From this plot an idea of the
distribution of the estimates can be gained.

L’Abbé plot
This plot is described by L’Abbe et al. (16). The
event rates of the treatment groups are plotted
against the event rates for the controls for each
trial. If the trials are fairly homogeneous the points
would lie around a line corresponding to the
pooled treatment effect parallel to the line of
identity; large deviations would indicate possible
heterogeneity (17).

All these graphical methods can aid the 
researcher in detecting heterogeneity. It is
recommended that some kind of investigative 
plot should be constructed when carrying out 
a meta-analysis.

Causes of heterogeneity

As well as investigating for the presence of
heterogeneity it is also necessary to consider its
underlying cause. It may then be possible to adjust
the analysis accordingly (see pages 43–50). Bailey 
in his paper on how study differences affect the
interpretation and analysis of the results (18)
presented a table showing causes of heterogeneity.
The essence of this is reproduced below (Table 2).
The lower down the table you go, the less desirable
the source (the source may influence the analysis
and the interpretation of the results). The various
approaches for accommodating heterogeneity are
outlined on pages 43–8 and the interpretation 
and validity of the results when heterogeneity 
is present is discussed on pages 48–50.

So in summary, heterogeneity may be due to
chance, or spurious due to the scale used to
measure the treatment effect. It may be due to
treatment characteristics which can be investigated
and/or patient-level covariates which can only 
be investigated it the researcher has got IPD; 
or if none of the above account for it,
unexplainable.
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Specific factors that may cause
heterogeneity
Bailey made the comment:

‘Clearly. the interpretation of heterogeneity of
outcome depends heavily on how similar the trials
were in terms of treatment, patient population, 
length of follow-up, outcome measurement used, 
etc. The more similar the trials seem in other respects,
the more disturbing any heterogeneity of outcome
becomes, and, therefore, the more prominent a 
role heterogeneity would play in the basic statistical
analysis. Conversely, if differences in study design are
large, then heterogeneity of outcome is less surprising.
The role of heterogeneity becomes one of trying to
sort out or understand differences in outcome based
on other differences.’ (18)

So, simply by considering how the design and
conduct of the studies differ, may lead to an
explanation of existing heterogeneity. Box 3,
modified from Naylor (20), states possible ways 
in which trials in a meta-analysis may differ.

All these can be considered when carrying out a
meta-analysis. It should be stressed that if one is
considering studies with different designs then
because they are subject to different biases, then
this may create heterogeneity.

In the section below, we discuss how certain factors
from the above list may affect heterogeneity. These
are some of the most common, and in some cases
specific methodology exists for dealing with them.

TABLE 2 Levels of explanation of heterogeneity [reproduced in modified form from (18)]

0. Chance

It could be that, in fact, the studies are homogeneous but the Q-statistic at whatever level of significance it was tested
wrongly rejected the null hypothesis (i.e. a type one error for the Q-statistic)

1. Homogeneity achieved by different definition of treatment effect (e.g. absolute difference)

Non-intuitive as it may seem, it is possible to remove heterogeneity by transforming the data to a different scale:‘if by going
to a different definition of a treatment effect, one can eliminate the heterogeneity, then one not go any further (in trying to
adjust for it)’ (N.B. this definition should be reasonably simple and not contrived.)

2. Heterogeneity accounted for by design factor(s)

(a) Data-derived explanation.
(b) Explanation not ‘influenced’ by data.

It may be that the studies differed in their design and conduct (implementation): randomisation, blinding, stopping rules,
different eligibility criteria, different definitions of disease, variations in treatment (see pages 42–3). It could also be explained
by patient level covariates (these are only available if one is doing an IPD meta-analysis, see chapter 24). If this is the case,
these covariates are not nuisance factors, such as study design etc., but they may describe subgroups of patients for whom
the treatment is more/less effective (see pages 209–10). It is important to differentiate between data-derived explanations
and explanations derived independently of the data.This is because the first of these may have been found through ‘fishing
expeditions’, i.e. different covariates were investigated till one gave statistical significance.This method is plagued with the
problems of multiple testing and type one errors.

3. Unexplainable (and real)

Bailey (19) considers this to be the situation in which he is least comfortable about drawing conclusions. It could be that
many different factors each contribute a small amount towards the heterogeneity of the results.The combined effect of
such factors may be substantial, but due to lack of data or sample size these factors go undetected.This led Boissel to state
(10): ‘It is because several sources of heterogeneity exist that low p-values from heterogeneity tests make interpretation of
meta-analysis results difficult.’ Another explanation is that the factors which caused the variation may not have been
measured or recorded for the studies being combined.

BOX 3 Ways in which apparently similar trials may
differ [modified from (20)]

1. Differences in inclusion and exclusion criteria.

2. Other pertinent differences in baseline states 
of available patients despite identical selection 
criteria.

3. Variability in control or treatment interventions 
(e.g. doses, timing, and brand).

4. Broader variability in management (e.g. 
pharmacological co-interventions, responses to 
intermediate outcomes including crossovers, 
different settings for patient care).

5. Differences in outcome measures, such as follow-
up times, use of cause-specific mortality, etc.

6. Variation in analysis, especially in handling 
withdrawals, drop-outs, and crossovers.

7. Variation in quality of design and execution, with 
bias of imprecision in individual estimates of 
treatment effect.
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Impact of early stopping rules on heterogeneity
For ethical reasons, RCTs are sometimes stopped
early if it is clear from interim analyses that one 
of the treatment arms is clearly superior to the
other(s). Hughes et al. investigated the effect of
stopping a trial early would have on heterogeneity
in an overview (21), and concluded that:

‘If the true treatment effect being studied is small, 
as is often the case, then artificial heterogeneity is
introduced, thus increasing the Type I error rate in
the test of homogeneity. This could lead to erroneous
use of a random effects model, producing exagger-
ated estimates and confidence intervals. However, if
the true mean effect is large, then between-trial
heterogeneity may be underestimated.’ (21)

They go on to comment:

‘When undertaking or interpreting overview, one
should ascertain whether stopping rules have been
used (either formally or informally) and should
consider whether their use might account for any
heterogeneity found.’ The paper advises repeating
heterogeneity assessments excluding trials with early
stopping rules. ‘Then if no evidence is found, then to
attribute the heterogeneity to the use of stopping
rules may be reasonable though the reduction in
power to detect any real variability between trials
needs also to be appreciated’. (21)

Impact of underlying risk on heterogeneity
Thompson et al. (22), Brand (23), and Davey Smith
and Egger (24) have all pointed out that an import-
ant issue is to ascertain whether the treatment
benefit varies according to the underlying risk of
the patients in different RCTs. Several methods
have been proposed to investigate this, these are
described on pages 46–8.

Impact of size of dose on heterogeneity
It may be the case, that the studies may have used
different dose levels of the intervention under
investigation. If this is the case, then common sense
dictates that treatment effects may vary due to this.
Ways of carrying out a dose–response meta-analysis
exist so the dose size is taken into account. These
are covered on pages 157–61.

Impact of publication bias on heterogeneity
Publication bias is the subject of chapter 16. The 
Q statistic test for heterogeneity is affected by
publication bias. This is explained by Spector 
and Thompson (25):

‘The between study variance, estimated from the Chi-
Squared statistic for heterogeneity, is itself imprecise
and, being strongly dependent on the inclusion or
exclusion of small studies, is susceptible to the effects
of publication bias.’

Compliance rate
Gelber and Goldhirsch (26) highlight the problem
of compliance in the primary studies. They give
mathematical justification of how reduced com-
pliance could change the effect estimate and 
hence increase heterogeneity.

Length of follow-up
Gelber and Goldhirsch point out that the length 
of follow-up of a trial may have an influence on the
treatment effect (26). They highlight the following
issues that need consideration when investigating
this factor:

• Treatment effects might be present either early,
late or consistently through time.

• Trials with the longest follow-up are selective
because they were (possibly) designed and
conducted earlier.

• A summary measurement based on an overall
risk reduction that assumes constant annual risk
ratios might differ from actuarial estimates based
on yearly assessment.

Thompson also makes the following observation 
on modelling duration of the trial: ‘A longer trial
would include information on events both soon
after and a long time after randomization, so any
true effect of duration would be diluted in such 
an analysis.’ (2)

For example, in wound care, most ulcers heal
eventually but the rate varies by treatment. So, 
too long a follow-up and use of outcome measure
such as percentage of wound healed will dilute 
the treatment effect. To get round this problem
one could use a survival type analysis (see 
chapter 20).

Investigating sources of
heterogeneity – introduction
It cannot be stressed how important investigating
possible sources of heterogeneity is. Identifying
sources of variation can lead to important insights
about healthcare effects.

‘In a meta-analysis, documenting heterogeneity of
effect (by identifying sources of variability in results
across studies) can be as important as reporting
averages. Heterogeneity may point to situations in
which an intervention works and those in which it
does not. Finding systematic variation in results and
identifying factors that may account for such 
variation, in this way, aids in the interpretation of
existing data and the planning and execution of
future studies.’ (1)
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Considering this potential for meta-analysis to
explore heterogeneous results led Anello and 
Fleiss (27) to define two sorts of meta-analysis. 
They consider when there is little or no hetero-
geneity, and the aim of the analysis it to improve an
estimate of effect or test a hypothesis. This sort of
analysis could be described as an ‘analytic’ meta-
analysis. When the goal is to resolve controversy, or
pose and answer new questions, the main concern
of the meta-analysis is to explain the variation in
the effect sizes. The authors call this an ‘explor-
atory’ meta-analysis, where the characteristics of the
different studies become the focus of the analysis.
They further suggest this leads to the idea that
protocols for a meta-analysis should reflect its 
goals and how the results are to be used.

It is the aim of this chapter to outline methods 
to do this. It may not always be easy (or possible),
not least due to lack of data; indeed Thompson 
et al. state:

‘Although many authors have stressed the clinical and
scientific importance of investigating potential sources
of heterogeneity when conducting a meta-analysis,
such investigation can be unrewarding unless the
number of trials is large or individual patient data 
are available.’ (22)

In a similar vein, Dickersin has commented:

‘it is in situations where one or a few studies seem
divergent that the meta-analyst faces his or her most
serious and interesting challenges.’ (3)

It is worth noting that analysis can still proceed
when heterogeneity has not been explained, but
efforts should be made first to do so. However, it
should also be stressed that the conclusion that the
results of the studies are too heterogeneous to
combine and interpret meaningfully is a very valid
one, and one should not combine for the sake of it
(this is discussed further on pages 48–50).

Change scale of outcome variable
It may be sufficient simply to change the scale 
the study outcomes are measured on, to remove
heterogeneity (28). Chapters 9 and 14 introduce
the most common scales used, and chapter 15
discusses the relative merits of each. As well as
changing the type of scale used, a transformation
such as taking logarithms is common practice,
though there is sometimes a trade-off between
statistical homogeneity and clinical interpretability.

Include covariates in regression model
A regression analysis can be performed to examine
whether the heterogeneity between studies can be
explained consistently by one or several factors

across all studies. Several different factors have
been investigated in the past; some of these were
discussed on pages 42–3. It may be that some of 
the studies had, on average, older patients and 
thus the treatment response differed systematically
because of this. Another variable often considered
is whether the patients in the trials were of com-
parable health at the start of the trials, i.e. differ-
ences in treatment effect may be due to differences
in initial baseline risk. Other examples include
differences in length of treatment and differences
in treatment application. More controversially,
systematic differences may be due to the quality of
the trials (this is dealt with in detail in chapter 6).
Other factors may be identified that are unique to
the topic under investigation.

Full details of how to investigate factors such as
these via a meta-regression model are given in
chapter 11. For the moment, it is enough to
consider which variables are appropriate to include
for modelling. Indicator variables for any study
characteristic can be constructed, and in addition,
scales to calculate overall study quality have been
devised (see chapter 6). However, no relationship
between study quality and treatment effect have
been observed thus far (29). Special techniques 
are available for investigating dose–response 
(see pages 157–61) and baseline risk (see pages
46–8) to take into account the continuous nature
of these factors. Heterogeneity due to different
study types can be investigated via meta-regression
as well as newer techniques such as cross-design
synthesis (see chapter 26).

If the covariate is a well established correlate,
introducing it as routine is justified. If on the 
other hand it is a non-standard variable we have 
no more than exploratory data analysis, unless the
association is very strong (1). Colditz states:

‘In addition, when we have few studies, introducing
several covariates may use up most of the degrees of
freedom. Of course, when several covariates are under
consideration, many possible sets of them may have
been considered, so problems of being unable to
make an honest estimate of residual uncertainty.’ (1)

It is worth noting that epidemiological studies vary
in their design and conduct, generally more than
RCTs, for this reason the scope of the methods is
greatest for epidemiological studies (3).

When this type of analysis identifies variables that
explain the variation between studies, and one is
confident that an ‘acceptable’ level heterogeneity
(above that expected purely by random error) is
explained, then one can report the results obtained
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from the meta-regression. If this is not the case, see
page 46 for an alternative model.

Exclude studies
One can test the influence of each study on the
heterogeneity results by comparing its contribution
to the Q statistic to the χ2 distribution on 1 df 
(this is an approximate test) (9). One could 
exclude study/ies that contribute most variation.
This procedure can be justified by reasoning that
the first stages of summarising results of any data
analysis can involve removing outliers or extreme
results. However, one has to be aware that this could
introduce bias into the estimates. Colditz et al. (1)
ran a simulation experiment investigating the effect
of removing extreme studies and concluded: ‘... if
the observations had been drawn from standard
normal distributions, then removing an extreme
quarter of them in samples of the size being used 
in these studies (derived from a survey of meta-
analyses in epidemiology that had removed outliers)
or larger would create a bias of about 0.4 of a stand-
ard deviation (units of study standard deviation, 
not the smaller mean)’ (1). The authors also noted
that by removing largest (or smallest) 25% of data
reduced the variance by more than 40%. Colditz 
et al. went on to comment:

‘It is our impression that scientists generally frown 
on deleting observations unless there is an assignable
cause that has been systematically and fairly appraised
for every study, not just the outliers. Thus, we think
setting aside studies without cause is generally danger-
ous for inference and should be discouraged. It can
easily lead to overassurance about the precision of the
results and suppression of among study variation.’ (1)

However, in the case where the data are suspected
to be contaminated with errors, Colditz et al. (1)
conclude it is acceptable to trim data to get a value
with substantial meaning.

If one considers removing studies is justified, and
by doing so heterogeneity is removed then one can
proceed, if desired, with a fixed effect analysis (see
chapter 9). The effect of doing so can always be
explored in a sensitivity analysis (see pages 209–10).

Analyse groups of studies separately
One may conclude that the studies are too
heterogeneous to sensibly combine. When this
happens there may be one or several groups of
studies that seem similar and thus a decision to
combine just these can be made. This could be
looked at as a more general case (see above), 
where all but the most extreme study/ies were
combined. This type of analysis is sometimes 
called subgroup analysis.

Yusuf et al. (29) categorise subgroups according 
to whether they are defined by characteristics
measured before randomisation of by those
measured after randomisation. Emphasis is placed
on the need for subgroup analysis to be defined 
a priori. ‘When a subgroup is defined post hoc, we
have no more than exploratory data analysis and 
so we recommend that the results be described
without testing for statistical significance and that
investigators look to other data sets to replicate 
the finding, since spurious results are less likely 
to be replicated.’ (30)

Gelber and Goldhirsch (26) also discuss subset
analyses in meta-analysis and make a distinction
between two situations that occur, namely:

1. Analysing all the data and including covariates
with the aim of detecting therapeutic effects
within subsets of patients (or include study
characteristic covariate to investigate how this
affects outcome, i.e. explain heterogeneity).
(This is really equivalent to the meta-regression
methodology discussed on pages 44–5).

2. Separate analyses of subsets of studies. ‘Studies
being pooled generally differ with respect to
treatments applied, control groups, patient
eligibility, quality control, study conduct and
follow up maturity. Separate comparisons
within subsets defined by these features will 
be misinterpreted unless confounding factors
are recognized.’

It should be noted that subgroup analyses are
usually secondary analyses (and could be part 
of a sensitivity analysis – see pages 209–10), that 
is carried out in addition to the analysis of all 
the studies. There is a problem of potential over-
interpretation of subgroup analyses in medical
statistics generally, and thus caution should be
applied when interpreting such analyses. Page 209
deals with subgroup analyses in more depth.

Use random effects model
Rather than explain or explicitly adjust for
variation between studies, one can pool studies
using a random effects model which allows for
variation in the underlying effect size between
studies to be taken into account. This is often used
when the source of variation cannot be identified.
Chapter 10 is devoted to this type of meta-analysis
model. Colditz et al. discuss the use of this model
[DerSimonian and Laird popularised its use (7),
hence the name] at length (1):

‘The DerSimonian and Laird statistic for estimating
effects has an attractive aspect in its handling of 
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homogeneity and heterogeneity that differs 
substantially from the usual method of testing
hypotheses. The usual test asks whether the observed
heterogeneity is more extreme than can be accounted
for by random fluctuations when allowing some small
level of significance, such as 5 percent. If a more
extreme result is observed, the investigator declares
the set of studies to be heterogeneous. If the observed
heterogeneity does not exceed the chosen significance
level, the investigator ordinarily decides to act as if the
homogeneous case holds even if there is considerable
evidence against it. Therefore, the effects are
estimated as if all studies had the same mean value,
thus leading to the fixed effects model with weights
inversely proportional to the variances within the
separate studies.

The DerSimonian and Laird statistic instead balances
its decision around the average value of the observed
heterogeneity that would occur when all studies had
the same mean (the homogeneous case). If the
observed heterogeneity is less than average for the
ideal situation with no true heterogeneity, the investi-
gator uses the same formula that the hypothesis tester
would use when the test does not reject homogeneity.
On the other hand, if the observed heterogeneity
exceeds the average associated with no heterogeneity,
then the investigator uses a different formula for
estimating effects that has weights more appropriate
to a situation with heterogeneity between the studies,
as described below.

The DerSimonian and Laird test that decides which
formula to use has roughly a 50 percent significance
level, not a 5 percent level. Statistics that change their
formulas like this in response to the data are some-
times called adaptive. The DerSimonian and Laird
formulae respond more smoothly to the actual
situation than the testing hypothesis approach. 
The changed weights themselves are also responsive 
to the degree of heterogeneity observed, with more
heterogeneity leading to more nearly equal weights
assigned to the studies. Thus, the procedure adapts
continuously as the observed heterogeneity increases.’

It should be stressed, however, that by using a
random effects model, no investigation of the
causes of heterogeneity is made, so the researcher
is none the wiser as to why the study results 
vary. This conflicts with the view of Greenland 
(14) that:

‘I maintain that the primary value of meta-analysis is
in the search for predictors of between-study hetero-
geneity. If use of random effects models makes a
difference, the analysis is incomplete. The analyst
should carefully search for the source of the discrep-
ancy between the fixed and the random effects
interval estimates. The random-effects summary is
merely a last resort, to be used only if on cannot
identify the predictors or causes of the between-
study heterogeneity.’

The whole idea of random effects has 
been controversial in meta-analysis; see 
pages 76–8 for a synopsis of various arguments 
put forward advocating and criticising 
its use.

Mixed-effect models
If an investigation into the sources of hetero-
geneity has been carried out and one or more
variables appear to account for a proportion 
of the variation, but evidence that some level 
of heterogeneity (above the level of random
variation) remains, then a random effects term 
can be included in the model to account for 
this ‘residual’ heterogeneity. This model is 
called a mixed-effect model as it can be viewed 
as a combination of a meta-regression and a
random effects model. This model is the subject 
of chapter 12. This model seems a sensible
compromise and has led to the suggestion 
that in reality, there will always be unexplained
heterogeneity. Thus a random effects term 
should always be included to account 
for this.

Use of new models
Other, newer, methods of combining data do 
exist. Two of these are Bayesian meta-analysis 
and cross-design synthesis. Each of these has 
its own way of dealing with heterogeneity. 
These are discussed in chapters 13 and 26,
respectively.

Methods for assessing heterogeneity 
of underlying risk
The issue that studies may appear heterogeneous
because of differences in the baseline risk of 
the patients was introduced on page 43. If such 
a relationship exists, its nature could crucially 
affect decisions about which patients should be
treated (22). Such a relationship may even
delineate which patients may not benefit from
medical interventions, in that the treatment 
effect may be in the opposite direction for 
patients at low and high risk (a qualitative
interaction) (22).

The usual way of investigating baseline risk is 
to consider the observed risk of events in the
control group (or sometimes the average risk 
in the control and treatment groups) (23). 
This variable can be used to adjust the pooled
estimate via a regression model (see pages 44–5
and chapter 11). It is necessary to adjust for
potential overdispersion in such models, that is
residual heterogeneity in the treatment effect not 
explained by the covariate (baseline risk),
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otherwise the SE of the estimated slope will be 
too small.1

However, Senn (31) showed that this type of
analysis is flawed. The drawback of the regression
method is the structural dependence involved
(regressing the treatment difference on either 
the risk in the treatment or control groups or 
a combination of the two). The origin of the
phenomenon lies in the fact that the baseline 
forms part of the definition of the difference. 
This can lead to a spurious correlation between
extent of treatment effect and the level of 
response in a placebo group.2

Sharp et al. (17) discuss this problem of 
regression to the mean further. They review 
three conventional approaches relating treatment
effect to the proportion of events in the control
group, and suggest alternative analyses to 
get round this problem. These are 
summarised below.

1. Graph of treatment effect against proportion
of events in control group
Note that the problem is not solved by this 
method. One can plot a graph of the odds ratio 
of an event (log scale) against proportion of 
events in the control group (log odds scale) for
each trial. Each study can be marked with a circle;
the size of the circle relating to the size of that
particular study. However, if one calculates a
weighted regression line for this plot – one 
has the problem of regression towards 
the mean.

Use of this technique:
• is not an appropriate method, and will always 

be biased
• will be less misleading, that is, less biased, if the

trials are mostly large, or the variation in true
underlying risks is large.

2. Graph of treatment effect against average
proportion of events in the control and 
treated groups
One can plot the odds ratio of an event (log scale)
against the average proportion of events in the
control and treated groups (log odds scale). In the
example presented in Sharp et al. (17) this gave a
different conclusion from method 1. However, the
authors explain that this approach relies on the
assumption that the true treatment effect does 

not vary between trials; departures from this
assumption will lead to bias in the size and
direction of any observed association. Again, 
this method does not solve the problem of
regression to the mean.

Use of this technique:
• is appropriate only if the true treatment effect 

is constant across trials
• will be less misleading if the variation in true

underlying risks is large.

3. L’Abbé plot: proportion of events in the
treated group against proportion of events in
the control group
This plot was proposed as a graphical means 
of exploring possible heterogeneity (16) (see 
page 41). If a weighted regression line is fitted 
to the plot then again due to regression towards 
the mean this can be misleading.

Use of this technique:
• is a useful exploratory graphical method 

as an adjunct to a standard meta-analysis 
plot

• is not appropriate for defining groups in 
which treatment is or is not effective.

Sharp et al. go on to discuss a clinically more 
useful alternative:

‘Given that a patient’s “underlying risk” is known only
to the clinician through certain measured character-
istics, a clinically more useful alternative to the
problematic analyses we have described is to relate
treatment benefit to measurable baseline character-
istics. These characteristics, or some combination 
of them, would act as a surrogate measure of the
patient’s risk.........An extension of this idea would 
be to combine several prognostic variables into a 
risk score........Such a combination would avoid the
problem of post hoc data dredging which arises when
many variables are considered separately and would
best be based on data from sources other than the
trials which form the meta-analysis for treatment
effects, such as prospective studies.’ (17)

Other work has been carried out on this subject;
McIntosh (32) presented a method to examine
population risk as a source of heterogeneity by
representing clinical trials in a bivariate two-level
hierarchical model, and estimate model 
parameters by both ML and Bayes procedures
(chapter 13).

1 A method for doing this in the statistical package GLIM is given by Thompson et al. (22).
2 Thompson et al. (22) give the mathematical justification for this.
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More recently Thompson et al. (22) present a
solution to the problem using Bayesian methods.
This method uses a Bayesian approach imple-
mented using Gibbs sampling (see chapter 13 
for further details). This analysis can be extended
to include other trial level covariates and patient
level ones, when IPD are available. Their method
uses the log odds ratio scale (see pages 56–63), 
and they state that using other scales is possible 
in principle but currently difficult in practice.

The method of McIntosh (31) assumes bivariate
normality of true treatment effects and control
group risks across trials, and using a normal
approximation for binary outcome data.
Thompson et al. (22) find these assumptions
questionable, especially that the true control
groups risks will be normally distributed across
trials in a meta-analysis. They state that the robust-
ness of the results to apparently strong assumptions
needs investigating. Cook and Walter (33) have
presented another method which does not 
depend on bivariate normality assumptions, and
used an unconditional ML approach. Thompson 
et al. (22) compare their Bayesian approach 
to this and find the results do differ. Further
research is needed to ascertain which is the 
best method.

It should be noted that if individual patient data
are available (see chapter 24), it is possible to relate
treatment effects to individual patient covariates 
in an attempt to investigate heterogeneity. As
Thompson et al. state:

‘This analysis would not suffer the problems discussed
for ‘underlying risk’, and would moreover be directly
useful to the clinician considering treatment for an
individual patient.’ (22)

This is because underlying risk itself is not a
measurable quantity, a clinician only knows about
underlying risk through the patient’s measurable
characteristics.

Thompson et al. (22) go on to suggest the
development of a prognostic score based on 
patient covariates and relate treatment effects 
to this score for individual patients. Such an
analysis would remove the need for considering
‘underlying risk’ directly. They suggest the
prognostic score would best be based on data 
other than that from the trials which form the
meta-analysis for treatment effects. Note that the
score of risk used should where possible be one
which clinicians can use so as to determine which
of their patients are likely to benefit sufficiently
from an intervention.

The validity of pooling studies
with heterogeneous treatment
effects
So far, this chapter has outlined ways to detect, 
and up to a point, deal with heterogeneity in study
estimates. It would be wrong, however, to give the
impression that heterogeneity between studies 
can always be dealt with satisfactorily and without
controversy. Indeed it is one area in which opposes
to meta-analysis lay much criticism. It is very alluring
that meta-analysis gives an answer no matter what
data are being combined. This issue of whether the
results of separate trials are homogeneous enough
to be meaningfully combined [termed combinability
by Sacks (34)] is real and problematic. It has been
argued that producing an overall combined estimate
for heterogeneous studies is wrong and leads to a
result which is misleading, and impossible to inter-
pret, a much used quote is that it is equivalent to:
‘combining apples and oranges and the occasional
lemon’ (35). However, there are certainly no clear
guidelines outlining how variable study results have
to be before it is deemed invalid to combine them.
Blair et al. state:

‘The decision as to whether estimated differences are
large enough to preclude combination or averaging
across studies should depend on the scientific context,
not just statistical significance. For example, a 25%
difference among relative risks may be considered
unimportant in a study into a very rare cancer, but
important in a study of a more prevalent disease.’ (36)

Berlin (37) discusses a meta-analysis with excessive
heterogeneity, and concludes that despite no
conclusion being able to be drawn from the studies
one could provide clinical insight and generate
hypotheses. He states:

‘the decision about whether to calculate a quantitative
summary of the data is not always straightforward, and
different investigators could legitimately arrive at
different decisions.’ (37)

Below are personal viewpoints and advice
concerning the validity of combining
heterogeneous study results.

Fleiss observes:

‘Some statistical reviewers at the US Food and Drug
Administration have strongly criticised the pooling 
of results from controlled clinical trials in which 
there is heterogeneity of treatment effect, i.e. sizeable
differences exist between studies in their estimates 
of the effect of treatment, and have suggested that 
it is valid to combine results only from studies in
which the estimates are sufficiently close one to
another [sic]’. (38)
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However:

‘...not all FDA reviewers are in agreement as to how
strict the statistical criteria should be for deciding that
different studies are combinable (39).’ (37)

This leads Fleiss to question whether the FDA
‘reviewers would accept as evidence for efficacy 
the finding of a statistically significant pooled effect
even if the meta-analysis was restricted to studies
that were combinable.’ (38)

Pater (re-iterating Bob Wittes) takes the 
following view:

‘...the degree of heterogeneity you are willing to
tolerate depends upon the question you’re trying to
answer. If the question you’re trying to answer is the
very pragmatic one of how to treat patients, then the
degree of heterogeneity you might be willing to
tolerate may not be as great as if you are trying to
answer some general question about the biologic
effect of treatment because we can’t give patients
‘chemotherapy’, we can’t give patients ‘CMF’. We 
have to give patients a treatment regimen.’ (40)

DeMets (41) questions the meaning attached 
to the overall results of a meta-analysis when 
there is heterogeneity across studies. Simon
comments:

‘When the studies differ substantially, one must
recognise that the average results may not be
representative of the components making up the
average.’ (42)

Greenland goes one stage further, suggesting:

‘when there is substantial unexplained variance 
after covariates have been taken into account, there
should be no attempt to pool results and summarise
them.’ (14)

These comments may give the reader the impres-
sion that the existence of heterogeneity is a real
drawback for the meta-analysist. However, it has
been argued that the fact that meta-analysis can be
used to confront heterogeneity and is one of its
strengths. Naylor (43) reasons that the generalis-
ability of several small trials, with diverse study
populations, may be greater than that of a single
trial, especially when the large trial may have
involved a carefully selected subset of patients.

Peto comments:

‘it is precisely when studies differ with respect to the
magnitude and perhaps even the direction of the
treatment effect that the formal methods of meta-
analysis are needed to summarize in an unbiased
manner all of the information available to 
date.’ (44)

In a similar fashion, Hedges states when studies
conflict, the meta-analysis simply has more to
explain (8). Olkin reasons:

‘If studies that go into a meta-analysis are clones of
one another, then we would be able to make
statements with a high certainty about a small segment
of the population. By the same token, if there is too
much diversity, then our degree of certainty is
considerably lower, but our conclusions refer to a
larger segment of the population.’ (45)

Rubin (45) takes a different outlook again on 
meta-analysis and heterogeneity of study results. He
states he is ‘concerned not with the summary, but
with the forecast one might make for the outcome
of a study that may differ from all the studies in
hand. Essentially, he would hope to estimate a
response surface that gave different results for
differently constructed studies, so as, for example,
to maximize output for a program.’ (46) (see 
pages 214–15 for more details on this approach).

So, depending on ones aim, it seems that
heterogeneity is both the meta-analysts friend and
enemy! The thoughts of Bailey may offer some
practical help (18) on how to proceed, when the
studies are heterogeneous:

In determining the role of inter-study variation it is
important to consider three factors:

1. Which question one is trying to answer.
2. The degree of similarity or dissimilarity of

design.
3. The degree to which heterogeneity of

outcomes can be explained.

Three questions one may be interested in are:

1. Whether the treatment can be effective in 
some circumstances.

2. Whether treatment is effective on average.
3. Whether treatment was effective on average 

in trials in hand.

Bailey concluded that under the assumption 
of no qualitative interaction, the answers to 
these question coincide. A qualitative interaction
between outcome and study can be defined as 
one where the sign of the outcome changes, i.e. 
an intervention appears harmful and beneficial 
in different trials. This is in contrast with a quanti-
tative interaction, where it is only the magnitude
(and not the sign) of the effect which changes.
Peto considers qualitative interactions ‘unusual but
not impossible’ (13). Fleiss et al. (37) believe may
be more common than is currently appreciated.
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Pocock and Hughes, address the issue of whether
fixed or random effects should be used:

‘A sensible overall conclusion is that neither the fixed
effect nor the random effects model can be trusted to
give a wholly informative summary of the data when
heterogeneity is present. Perhaps the presentation of
both approaches reveals the inevitable uncertainty
inherent in an overview with heterogeneity.’ (47)

Dickersin and Berlin (3) add that if a random and
fixed effects analysis come to different conclusions
then one can conclude heterogeneity is a problem.

Finally, Boissel et al. (10) state three basic causes of
a low p-value for the heterogeneity test and offer
practical advice on how to deal with them:

• random variation (chance)
• inadequacy of the treatment effect model
• interaction between treatment and trials.

In such a situation, it is advisable first to proceed
with the association test and the estimate of
treatment effect; and second, to consider
performing a further analysis.

There are three possibilities: 1) to exclude those
trials for which possible sources of inconsistency
have been identified on the basis of either medical
or methodological grounds (a special case should
be made for heterogeneity coming from sets of
trials with qualitative interaction); 2) to use a
different model of treatment effect; 3) to include
the cause of heterogeneity as a covariable in the
analysis either at the trial level or at the patient
level provided that individual records are available.
(In practice, the degree of emphasis accorded to
the question of heterogeneity will depend on the
objective of the meta-analysis. If the purpose is
merely to detect that the treatment has some
significant effect, one need not worry unduly 
about heterogeneity, however low the p-value.)

Other tests/investigations 
of heterogeneity
(This section can be skipped if desired without 
loss of continuity.)

The below are an outline of other tests/tools that
can be used in the investigation of heterogeneity.
They are not used as frequently as the methods
outlined on pages 39–41 and have been put here

for reference purposes. Many other tests exist; Paul
and Donner (48) compare nine of these using the
odds ratio scale, in a simulation study.

Likelihood ratio test
This method is described by Hedges and Olkin 
in their book (9). It can be used as an alternative 
to the Q statistic (page 40), but is computationally
much more difficult to calculate for no gains, so
the authors do not recommend its use, though
recently Biggerstaff and Tweedie (49) derived 
a likelihood ratio test (LRT) for the general
comparison of meta-analytic models. Hardy and
Thompson (50) show how the maximum likelihood
estimates (MLEs) required for such a test can be
calculated, either via a relatively straightforward
iterative procedure or by direct maximisation of the
likelihood in packages such as S-plus (51) and as
shown by Senn (52) in Mathcad3 (see chapter 10).

Odd man out method
The odd man out method (53) is really a
completely different approach to meta-analysis 
that has not been widely adopted. Dickersin and
Berlin give a concise explanation:

‘The areas of overlap of confidence intervals from
individual studies are used to construct summary
‘confidence regions.’ These regions are within the
graphic display and include information about both
the influence of individual studies and the overall
results.’ (3)

This method has been used in some meta-analyses
to reduce heterogeneity. There are questions 
to its validity, however, because it excluded trials
according to their results, not their design. In such
circumstances it may be more helpful to investigate
why the results are different, rather than simply
exclude studies.

Exact test
Zelen (54) devised an exact test for heterogeneity.
The StatXact software of Metha, Patel, and Grey
provides an implementation so it is easy to use 
(55). This is a relatively new development. Emerson
(55) recommends its use generally, and it can be
particularly useful when studies are small or events
are rare. Klein et al. (56) have used this test for 
a meta-analysis.

Tests for heterogeneity when the data 
is sparse
Tests for heterogeneity have been described that
have been modified for sparse data (11,57). The

3 Produced by Mathsoft.
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authors are not aware of their use in meta-analysis
other than being noted by Huque and Dubey (58).

Extensions of the Q statistic
Formalising the Q statistic
Hedges and Olkin [(9), p. 153] take a very formal
approach to testing. They conclude to likening
exploring heterogeneity with the analysis of
variance. So

Q T = Q B + Q W

where Q T is the total heterogeneity, Q B the
between-classes, and Q W the within-classes hetero-
geneity. Splitting the heterogeneity up in this way,
testing homogeneity across classes and within
classes is possible. Most of the examples given (9)
are in education; however, Hedges (59) derives
fixed effects estimates from an ANOVA model 
and similarly give homogeneity tests based on the
model. This method breaks heterogeneity down
into between and within groups, where the groups
are defined by study characteristics.

Using the Q statistic to find outliers
If the contribution each trial makes to the overall 
Q test statistic is investigated then it may be possible
to identify outliers. A formal, but approximate
comparison of each q i

2 to a χ2 (1 df) distribution
can be made, provided the number of trials, k, is
not too small [(9), p. 256].

Q for vector of correlated estimates
Hedges and Olkin [(9), p. 210] present a method
of testing the heterogeneity of a vector of corre-
lated estimates. One may have these when combin-
ing multiple outcomes from the primary studies
(see chapter 23). See original reference for details.

Test for qualitative interaction
Peto (44) argues quantitative study by treatment
interactions (where the treatment effect varies in
magnitude across studies, but not in direction) are
inevitable, and that it is only important to test for
qualitative interaction, where the treatment effect
varies in direction across studies. Gail and Simon
propose a test (60) for qualitative interaction based
on a likelihood ratio statistic (LRS) [outlined by
Schmid et al. (61), p. 109]. The implications of a
qualitative interaction are that it suggests a
treatment is beneficial on certain subsets of
patients an not others.

Estimating the degree of 
heterogeneity between event 
rates using likelihood
Recently Matuzzi and Hills (62) presented a 
simple way of testing for the presence of hetero-
geneity and estimating its extent using likelihood.
The authors state that this is more powerful than
the conventional χ2 statistic on N – 1 degrees of
freedom. This test, to our knowledge has not 
been applied to meta-analysis; however, it seems 
as though this would be possible, clearly more
investigation is needed.

Goodness of fit of linear models
If linear or logistic regression models are used, 
lack of homogeneity of treatment effect can be
tested by computing tests of goodness of fit of 
the model with only main effects for study and
treatment, or by testing the interaction of study 
and treatment (63).

Test for homogeneity of disattenuated
effect sizes
Hedges and Olkin report:

‘If the reliabilities ρ(Ti,Yi’) of the measures used 
in a series of studies differ, then this differential
reliability will attenuate effect sizes to a different
degree in each study. Thus even if the disattenuated
effect sizes are perfectly homogeneous, the 
attenuated effect sizes will be heterogeneous.’ 
[(9), p. 136]

A formula is presented to test for heterogeneity,
corrected for reliability.

Tests of homogeneity for correlation
coefficients
Hedges and Olkin [(9), p. 235] give a test for the
homogeneity of z-transformed correlations:4

k

Q = ∑(ni – 3)(z i – z+)2 (8.3)
i = 1

where z + is the weighted average correlation 
[see (9) for details].

An LRS for correlations is also presented [(9), 
p. 236]

k 1 – r i
2 (8.4)

LRS = –2( ∑ ni log + N log(1 – ^ρ2))i = 1 (1 – ri
^ρ2)

4 Spector and Levine (65) conducted an investigation to determine the Types I and II error rates of the U (equivalent to
equation 8.3) statistic test for heterogeneity using the combined estimate for correlation coefficients of Schmidt and
Hunter (66) [see (67) also for a similar investigation].
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Heterogeneity tests previously used 
for case–control studies but could be
applied in a meta-analysis
Klein et al. (57) compare seven tests of homo-
geneity of the odds ration under various sample
size configurations using Monte Carlo methods.
The paper assumes the data comes from a single
stratified case–control study, however these
methods could be applied to meta-analysis by
considering study as the stratifying variable.

Heterogeneity within studies
This chapter has considered heterogeneity
exclusively at the study level; this is appropriate if
one is only concerned with pooling only summary
results from each trial. If however, IPD are available
for the studies being combined, one is able to also
investigate within study variation (as well as
between study variation).

Interesting application

Pladevall-Vila et al. (64) conducted a meta-analysis
investigating the effect of oral contraceptives on
rheumatoid arthritis. The Q statistic was highly
significant and it was clear that heterogeneity was
present. To investigate this, the study used many 
of the techniques described in this (and in other)
chapters to assess this heterogeneity. Techniques
used include: funnel plot for publication bias, 
odd man out method, random and fixed effects,
subgroup analysis, sensitivity analysis, quality scores,
and meta-regression. This paper provides a good
illustration of these methods.

Further research

Generally no guidelines on which method/s are
superior, and which methods should be used in
practice exist. Investigations into the exact and
likelihood based tests for heterogeneity should 
be undertaken, to determine if benefit over 
more standard methods exists, and if so under 
what conditions.

• Investigation of the importance of a) the
number of studies and b) the size of the
individual studies, on the power of the test 
for heterogeneity.

• Investigating baseline risk, which method(s)
is/are superior and should be recommended.

• Investigation into a critical value beyond which
one should not consider combining studies.

• Investigation of the relationship between
publication bias and heterogeneity.

Summary
In conclusion, we are some way off agreeing 
upon the best strategy for dealing with hetero-
geneity. It seems essential to look for it and test 
for it and sensible to explore possible reasons 
for its presence. When a sizeable amount of
unexplained heterogeneity is still present after 
this, a judgement has to be made on whether it is
appropriate to combine the results; if so with what
model; and what conclusions can be drawn from it.
Presently these decisions require a large degree of
subjectivity on the part of the reviewer. Whatever
approach is used, ‘it is invalid to delete from the set
of studies to be meta-analysed those whose results
are in the ‘wrong direction’ for the opportunity 
for bias in identifying the ‘deviant’ studies is too
great.’ [Fleiss (38)]
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Introduction
Using a fixed effect model to combine treatment
estimates assumes no heterogeneity between the
study results to be combined; that is to say the
studies are all estimating one single true value
underlying all the study results. Hence, all observed
variation in the treatment effects between the
studies is considered due to sampling error alone.
Clearly, in many instances this may not seem
realistic; by simply eyeballing the data differences
observed may appear larger than those expected
solely by sampling error. However, the decision will
not always be so clear cut, and for this reason the
formal test of heterogeneity given on pages 39–41
(or any of its equivalents) can (and should) be used
as a guide to when the use of a fixed effect model is
appropriate. So, the methods presented in this
chapter could be considered for use in a special
case, i.e. when no heterogeneity is present.

The general approach, which can be adapted 
to most data types, is presented, followed by
illustrative examples using two common scales 
of measurement used in evidence based medicine,
namely, odds ratios (ORs) and standardised effect
sizes (continuous outcomes). Methods specific 
to ORs have also been developed, namely, the
Mantel–Haenszel, Peto and ML methods, these 
are also covered. Again, examples are given for
each method. Chapter 14 deals with the other
dichotomous (binary) and continuous scales of
measurement used in medical research, together
with a section on ordinal data. Chapter 15 discusses
issues concerning these different scales.

All the methods presented in this chapter, with the
exception of the MLE method, are conceptually
simple, and can be calculated without the use of
computer software. That is not to say that analysis
cannot be facilitated by the use of a computer. MLE
methods, however, require computer intensive
methods for their implementation.

General fixed effect model – the
inverse variance-weighted method
Fixed effect estimates can generally be calculated 
for all data types using the same general formula pre-

sented here. The inverse variance-weighted method
was first described by Birge (1) and Cochran (2) 
in the 1930s and is conceptually simple. Each study
estimate is given a weight directly proportional to its
precision (i.e. inversely proportional to its variance).

For i = 1,…, k independent studies to be combined,
let Ti be the observed effect size, θ i the population
effect size with variance v i , for the i th study. We
assume all population effect sizes are equal i.e. θ 1

=…= θ k = θ for a fixed effect model; that is to say,
the studies are all estimating one single true value
underlying all the study results. A general formula
for the weighted average effect size for these 
studies is thus:

k

∑wiTi_
T. =

i = 1 (9.1)
k

∑wi
i = 1

The weights that minimise the variance of
_
T. are

inversely proportional to the conditional variance
in each study (3), i.e.

1
wi = __

vi

(9.2)

The explicit variance formulae depend on the
effect measure being combined. The sections 
on the OR (pages 56–63), continuous outcome 
(pages 63–6), and combining other effect sizes
(chapter 14) give the necessary formula for v i . 
For an exhaustive list of these see (4,5).

An approximate [exact if the effect size is normally
distributed (6)] 100(1 – α)% CI for the population
effect size is given by:

k k_
T. – z α/2√(1/∑wi) ≤ θ ≤

_
T. + z α/2√(1/∑wi) (9.3)

i =1 i =1

where z α/2 is the appropriate critical value of the
normal distribution. This is essentially all that is
required to synthesise study treatment effects at the
most basic level. For a more thorough coverage of
the inverse variance-weighted method see (3).

Technical note
Li et al. (7) show that the variance estimation
formula for the standard inverse variance-weighted

Chapter 9

Fixed effects methods for combining data
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method can sometimes be biased and too sensitive
to the minimum of the estimates of the variances 
in the K studies. If the minimum happens to be
wrongly reported to have a very small value, its
influence would be great, leading to a badly
underestimated value of the true pooled variance.
This paper gives mathematical justification for 
this and goes on to suggest an adjusted 
variance formula.

Combining binary outcomes from
studies using the OR
If the outcome from a study, such as an RCT, is
binary (e.g. failure/success or death/survival etc.)
the results can be presented in the form of Table 3
below. The OR can then be calculated by 
the formula

a /(a + c)
(9.4)

b /(b + d)

but the slightly simpler approximation

ad
(9.5)

bc

is often used (and will be through the course 
of this report).

This measure gives a relative measure of risk in 
the form of the ratio of two odds (8). An OR of 
< 1 when comparing a new treatment to the 
control would indicate an improvement on the 
new treatment; while a ratio greater than one
would imply the new treatment was less effective
than the control.

For the purposes of combining results, it is
common, and recommended, to first transform 
the data and work with log ORs instead. The main
reason for this being, only the finite interval from 
0 to 1 is available for indexing a lower risk in the

treatment population, but an infinite interval 
from 1 up is, theoretically, available for indexing 
a higher risk in the treatment population.
Transforming the scale in this way removes this
constraint. A further advantage (but of lesser
importance) of doing this is that the log(OR) 
takes on the value zero when no relationship 
exists, rather than one, which is intuitively more
appealing (5). The estimate and corresponding 
CI obtained can then be converted back onto 
an OR scale by taking anti-logarithms. The 
large sample variance of the natural log of 
the OR is:

1 1 1 1
(9.6)vLn(OR) = __

a +
__
b +

__
c +

__
d

Thus formula (9.6) can be used to calculate 
weights for the inverse variance-weighted method.
An important problem that needs addressing is 
that (9.6) is undefined if there are no events in
either of the treatment arms (i.e. one or more of 
a, b, c, d = 0). When this occurs the inverse variance-
weighted method cannot be used. One way to get
round this is to take the advice of Gart and Zweifel
(9), who suggest it good practice to add 0.5 to each
cell frequency before proceeding with the analysis.
They suggest, this reduces bias caused by one or
more small cells; it can be seen as a continuity
correction factor for converting discrete data 
to a continuous scale.1

Example 1: combining ORs
Effect on mortality of lowering ones’ serum
cholesterol level
This dataset was introduced in chapter 5. Of 
the 34 RCTs described (10), only the seven 
using patients largely without pre-existing
cardiovascular disease, i.e. intervention used as
primary prevention, will be considered. This is
primarily to reduce the amount of computation
required for the purposes of illustration. For 
clarity data from these seven trials are reproduced
in Table 4.

The point estimate of the OR(OR) for each study
can be calculated as before (e.g. study identifica-
tion (ID) 16: OR = (174 × 244)/(250 × 178) =
0.954). The 95% CIs for these estimates are
calculated on a log scale using the formula:

ln(
___
OR) = –1.96(SE(ln(

___
OR))) ≤ ln(OR) (9.7)

≤ ln(
___
OR) + 1.96(SE(ln(

___
OR)))

TABLE 3 

Failure Success

New treatment a b

Control c d

1 There is some discussion in the literature as to the exact nature that a continuity correction should take. This aspect
has been considered specifically in (25).
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where SE(ln(
___
OR))is calculated by taking the 

square-root of (9.6).

(e.g. study ID 16: = vLn(OR) = 1/250 + 1/174 + 1/244
+ 1/178 = 0.0195. ln(

___
OR) = ln(0.95) 

= –0.051 giving a 95% CI of –0.051 ± 1.96 √0.0195 
= [–0.31,0.22]

95% CI for (
___
OR) = [e(–0.31), e(0.22)] = [0.73,1.25])

Table 5 displays the point estimates along with their
95% CI for the other studies.

It can be seen from Table 5 that three of the point
estimates are < 1, indicating a reduced risk for
people on the treatment (cholesterol reducing)
and four are > 1 indicating an increased risk for 
the treatment. However, with the exception of 
study 31, every CI includes one. From this, one
would conclude no significant treatment effect was
detected (when considering each study separately).
Study 31’s 95% CI spans 1.07–1.59, indicating

evidence of an statistically significant increased 
risk for the patients in the treatment arm. By com-
bining these studies it is hoped an estimate, which
is more generalisable than any of the individual
study results (because studies using different
populations are being combined) and more precise
(due to increased numbers) can be produced.

As noted previously, when combining ORs, it is
desirable to work on the log odds scale. The weight-
ing of each study (w) in the combined estimate
needs calculating. Using the inverse variance-
weighted method, this is simply equal to 1/vLn(OR)

(e.g. for study 1, W = 1/0.0195 = 5.13). Table 6
shows the values for the rest of the studies.

Before combining the results of studies (using the
inverse variance-weighted method), it is necessary
to check that the results are in fact homogeneous.

Using the test for heterogeneity given on
pages 39–41:

TABLE 4 Results of the seven primary studies investigating the effect cholesterol lowering on mortality to be combined

Study Number of Number of Number of deaths Number of deaths Number still alive Number still alive 
ID subjects in the subjects in the in treatment in the control in treatment arm in the control 

treatment arm (nt) control arm (nc) arm (dt) = a arm (dc) = c (nt–dt) = b arm (nc–dc) = d

16 424 422 174 178 250 244

20 1149 1129 37 48 1112 1081

24 4541 4516 269 248 4272 4268

28 1906 1900 68 71 1838 1829

29 2051 2030 44 43 2007 1987

30 6582 1663 33 3 6549 1660

31 5331 5296 236 181 5095 5115

TABLE 5 Point estimate and approximate 95% CI from the seven
primary studies 

Study ID number Estimate of OR 
(a x d)/(b x c) = 

___
OR [95% CI]

16 0.95 [0.73,1.25]

20 0.75 [0.48,1.16]

24 1.08 [0.91,1.29]

28 0.95 [0.68,1.34]

29 1.01 [0.66,1.55]

30 2.79 [0.85,9.10]

31 1.31 [1.07,1.59]

TABLE 6 Relative weightings of the seven studies to 
be combined

Study ID var(ln(OR)) SE(ln(OR)) w =1/SE2

16 0.0195 0.1400 51.38

20 0.0497 0.2229 20.13

24 0.0082 0.0907 121.68

28 0.0300 0.1729 33.47

29 0.0465 0.2156 21.28

30 0.3644 0.6037 2.74

31 0.0102 0.1010 98.48
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k

k ( ∑ ln(—–
OR)i)2

Q = ∑ w i ln(—–
OR)i

2
–

i = 1

i = 1 k

∑w
i

i = 1

= [(51.38 × (–0.05
2
))+…+(98.48 × 0.27

2
)]

– [(51.38 × (–0.05))+…+(98.48 × 0.27)]2

(51.38+…+98.48)

= 10.1854

This is compared to a χ2 statistic on six (n – 1
studies) degrees of freedom. This value gives a
corresponding p-value of 0.117. As stated on pages
39–41, this test has low power and thus a signifi-
cance level of p < 0.1, is usually taken as a critical
value. In this case p > 0.1, and is therefore non-
significant, though only marginally so. It is clearly
possible that study results may vary by a greater
amount than chance alone would permit. In
chapter 10, this same analysis is repeated using
methods which take the between study variation
into account. This section also discusses under what
conditions each type of analysis is appropriate. For
now, it is sufficient to consider no heterogeneity
being present and proceed with a fixed effects
analysis (for illustrative purposes.)

Combining the results using formula (9.1), gives a
point estimate of the log(OR)

Ln(
_
TOR) = [(51.38 × (–0.05))+…+(98.489 × 0.27)]

(51.38+…+98.48)
= 0.085

with an estimated SE (9.2)

SE(ln(
_
TOR)) = √1/(51.38+…+98.48) 

= 0.054

Converting back to an OR scale
_
TOR = exp(0.088) 

= 1.09

Calculating the 95% CI for this combined estimate,
using formula (9.7)

lower limit = exp(0.088 – (1.96 × 0.054)) 

= 0.98

upper limit = exp(0.088 + (1.96 × 0.054)) 

= 1.21

The results of this analysis are displayed graphically
in Figure 1. This is a very common way of displaying
the results of a meta-analysis. Each studies point
estimate together with its 95% CI is displayed. 
The size of the box representing each point
estimate is proportional to the size and hence 
the weight of that study in the analysis. The
estimate at the bottom of the diagram is centred 
on the combined point estimate together with 
the lower and upper bounds of its 95% CI.

The combined OR is slightly greater than 1,
however, because its corresponding CI includes 1, 
a conclusion that no evidence of a treatment effect
exists is drawn from the combined results of the
seven studies. Although the point estimate is small,
its CI is tight, due to large numbers and only just
crosses unity. The possibility that cholesterol lower-
ing treatment may actually be harmful as a primary
intervention cannot be completely ruled out.

Other methods for combining ORs
Other methods, specific to combing ORs, are
available. Under most conditions the estimates
obtained from each method should be very similar
to one another. However, when the data is sparse,
results may differ and some traditional methods
may break down altogether. For this reason, new
computer intensive methods have been developed
to be used in situations where the traditional
methods have questionable validity (11). Both the
standard methods and the newer ones are outlined.
For a more extensive coverage see (11).

Study

16

20

24

28

29

30

31

Pooled

–1.5 –0.2 1.2 2.5

In(OR)

FIGURE 1 Plot of seven cholesterol trials together with pooled
result using a fixed effects model
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Mantel–Haenszel method for 
combining ORs
This method was first described by Mantel 
and Haenszel (12) for the use in combining 
ORs for stratified case–control studies. Later 
Mantel (13) reported that the method could be
used for a wider class of problems, including
prospective studies (6). For use in meta-
analysis, the study number functions as the
stratification variable (14). The formula is 
given below:

k

∑a id i/n i_
TMH(OR) =

i = 1
(9.8)k

∑ bic i/n i
i = 1

where a i, b i , c i and d i are the four cells of the 
2 × 2 table for the i th study as given on pages 
56–63 and n i is the total number of people in 
the i th trial.

A variance estimate for the estimated summary 
OR, 

_
TMH(OR), is required in order to calculate a 

CI around this point estimate. The formula
commonly used2,3 was derived by Robins, 
Breslow and Greenland (15) and Robins,
Greenland and Breslow (16). This formula
computes a variance estimate for the log 
of

_
TMH(OR), and is notated:

k k k

∑ PiR i ∑(PiS i + Q iR i) ∑Q iS i

vMH(ln(OR)) =
i = 1

+
i = 1

+
i = 1

(9.9)
k k k k 2

2( ∑R i)2

2( ∑R i)(∑S i) 2( ∑S i)i = 1 i = 1 i = 1 i = 1

where Pi = (a i + d i)/n i, Q i = (b i + c i)/n i, 
R i = a id i /n i, and S i = b ic i/n i.

A 100(1 – α)% CI is thus given by:

exp[ln(
_
TMH(OR)) – z α/2(vMH(OR))1/2] ≤ θ (9.10)

≤ exp[ln(
_
TMH(OR)) + z α/2(vMH(OR))1/2]

Applying the Mantel–Haenszel method to the
cholesterol lowering data (Figure 2)
Taking the seven primary studies used above 
and combining them using the Mantel–Haenszel
estimate (9.8) and calculating a 95% CI using the
Robins, Breslow and Greenland formula, (9.9),
presented above:

7 [(174 × 244) (236 × 5115)]∑ a id i /n i
–––––-–––– +…+ ––––––––––-

_
TMH(OR) =

i = 1
=

846 10,627
7 [(250 × 178) (5095 × 181)]∑ bic i /n i ––––––-––– +…+ ––––––––––-

i = 1
846 10,627

= 1.09

2 Several others have been put forward, these are further explored in (15,16,35). Emerson (11) also discusses the
variance estimator at length. Sato (36) developed a method that works directly on the odds ration scale (opposed 
to ln(OR)). Simulations have shown that this works as well as the method of Robins given above and may have slight
advantage for matched pair data arising in epidemiology studies. Pigeot (37) has developed another approach using
the jack-knife.
3 Fleiss (23) comments that above variance estimator ‘is remarkable in that it is valid both when the study’s design calls
for matching and when it calls for stratification’.

FIGURE 2 Graphical plot of the combined studies using the Mantel–Haenszel estimate (obtained using Meta View, part of the Cochrane
systematic review software package)

Study Expt Control OR Weight OR
n/N n/N (95% CI fixed) (%) (95% CI fixed)

Comparison: cholesterol lowering versus control

16 174/424 178/422 15.6 0.95 [0.73,1.25]
20 37/1149 48/1129 6.9 0.75 [0.48,1.16]
24 269/4541 248/4516 34.6 1.08 [0.91,1.29]
26 68/1906 71/1900 10.2 0.95 [0.68,1.34]
29 44/2051 43/2030 6.3 1.01 [0.65,1.55]
30 33/6582 3/1663 0.7 2.79 [0.85,9.10]
31 236/5331 181/5296 25.7 1.31 [1.07,1.59]

Total (95% CI) 861/21,964 772/16,956 100.0 1.09 [0.98,1.21]
χ2 10.19 (df = 6) Z = 1.66
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Calculating the variance of the natural log of the
above estimate from formula (9.9)

7 7 7

∑ PiR i ∑(PiS i + Q iR i) ∑Q iS i

v MH(ln(OR)) =
i = 1

+
i = 1

+
i = 1

7 7 7 7 2

2( ∑R i)2

2( ∑R i)(∑S i) 2( ∑S i)i = 1 i = 1 i = 1 i = 1

[(0.51 × 52.60)+…+(0.50 × 86.78)]
=

2(52.60+…+86.78)2

[(0.51 × 50.18 + 0.49 × 52.60)+…+(0.50 × 113.59 + 0.50 × 86.78)]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

2(52.60+…+86.78)(50.18+…+113.59)

[(0.49 × 50.18)+…+(0.50 × 113.59)]
+

2(50.18+…+113.59)2

169.72 354.30 182.42
= ––––––––– + ––––––––––––––– + –––––––––

2(337.60)2 2(337.60)(368.84) 2(368.84)2

= 0.0028

Using formula (9.10) a 95% CI for 
_
TMH(OR) is given by:

exp[0.088 – 1.96(0.0028)1/2] ≤ θ
≤ exp[0.088 – 1.96(0.0028)1/2

= [0.984,1.213]

If this estimate and CI is compared to that obtained
using the inverse variance-weighted method, it can
be seen that in this case both methods give nearly
identical answers and the conclusions drawn here
are the same as those on pages 56–8.

Peto method for combining ORs
This method was first described by Peto in 1977 (17)
and more thoroughly by Yusuf et al. (18). It can be
regarded as a modification of the Mantel–Haenszel
method presented above. An advantage it has over the
Mantel–Haenszel method that it can still be used when
some of the cells in the table are zero; and is easy to
calculate. Unfortunately, this method is capable of
producing serious under estimates (5), when the OR is
far from unity. This is most unlikely to be a problem in
clinical trials, but could be in the meta-analysis of
epidemiological studies (19) (see chapter 19).

Defining n i as the number of patients in the i th
trial and n ti as the number in the treatment group

of the i th trial. Let d i equal the total number of
events from both treatment and control groups, 
Oi the number of events in the treatment group, Ei

the ‘expected’ number of events in the treatment
group (in the i th trial), calculated: Ei = (n ti /ni)d i.
For each study two statistics are calculated: 1) 
O–E, the difference between the observed and 
the number expected to have done so under the
hypothesis that the treatment is no different 
from the control, E. 2) v, the variance of the
difference O–E.

For K studies the pooled estimate of the OR is given
by (20):

K K_
TPETO(OR) = exp[ ∑(Oi – E i)/∑ vi] (9.11)

i = 1 i = 1

where v i = Ei[(ni – nti)/ni][(ni – di)/(ni – 1)].

An estimate of the approximate variance of 
the natural log of the estimated pooled OR is
provided by:

K

var(ln
_
TPETO(OR)) = ( ∑vi) (9.12)

i = 1

A 100(1 – α)% CI is thus given by:4

k k

∑(Oi – E i) ± z α/2√∑vi

exp[i = 1 i = 1 ] (9.13)
k

∑vi
i = 1

Applying Peto’s method to the cholesterol
lowering data
For this method it is necessary to calculate 
the marginal values for each 2 × 2 table to be 
combined. Table 7 illustrates this for the first 
study (ID 16).

From Table 7, the values needed to calculate Peto’s
method can be calculated.

4 This is not symmetric (34).

TABLE 7 2 x 2 table including marginal values for study ID 16

Dead Alive Total

Lowering cholesterol treatment 174 250 424

Control 178 244 422

Total 352 494 846

+
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For study ID 16:

O i = 174

E i = (424)352 = 176.42
846

vi = 176.42[(846 – 424)][(846 – 352)] = 51.45
846 (846 – 1)

Table 8 presents these values for the other 
six studies.

Entering the values from Table 8 into equation
(9.11) gives the combined estimate

(174 – 176.42)+…+(236 – 209.19)_
TPETO(OR) = exp[ ] = 1.09

(51.45)+…+(100.17)

As equation (9.12) shows, the variance of this
estimate is given by the sum of the v is

var(ln
_
TPETO(OR)) = (51.45+…+100.17) = 354.52

Hence a 95% CI is given by (9.13)

31.24 ± 1.96√354.52)exp( 354.52

95% CI [0.98,1.21]

Figure 3 shows a plot of studies combined using the
Peto method.

This result is exactly equal to that given by 
the Mantel–Haenszel estimate in the previous
section. Hence, in this example, all three 
methods led to exactly the same conclusions. 
This is not always the case however; on pages 
62–3, instances are discussed when the results 
of these methods may differ and examines 
which methods are superior in those 
instances.

Combining ORs via ML techniques
ML techniques use iterative procedures and
therefore need a computer for their
implementation.

MLEs are difficult to compute exactly, but 
they are the most efficient for large sample 
sizes. Unfortunately, there is no way of knowing
how large the sample sizes must be for this 
property to hold (6). The MLE of θ is based 
on the likelihood of the k studies and can 
be denoted (6):

k

L ∝ θbi
ci(1 – θci)

di

θai
ti(1 – θti)

ci (9.14)
i = 1

TABLE 8 Intermediate values needed to calculate the Peto estimate

Study ID Oi Ei vi Oi – Ei

16 174 176.42 51.45 –2.42

20 37 42.87 20.46 –5.87

24 269 259.21 121.88 9.79

28 68 69.61 33.49 –1.61

29 44 43.72 21.29 0.28

30 33 28.74 5.77 4.26

31 236 209.19 100.17 26.81

Note: weighting equal to var(ln–TPETO(OR))

FIGURE 3 Plot of studies combined using the Peto method (obtained using Meta View)

Study Expt Control Peto OR Weight OR
n/N n/N (95% CI fixed) (%) (95% CI fixed)

Comparison: cholesterol lowering versus control

16 174/424 178/422 14.5 0.95 [0.73,1.25]
20 37/1149 48/1129 5.8 0.75 [0.49,1.16]
24 269/4541 248/4516 34.4 1.08 [0.91,1.29]
26 68/1906 71/1900 9.4 0.95 [0.68,1.34]
29 44/2051 43/2030 6.0 1.01 [0.66,1.55]
30 33/6582 3/1663 1.6 2.09 [0.93,4.73]
31 236/5331 181/5296 28.3 1.31 [1.07,1.59]

Total (95% CI) 861/21,964 772/16,956 100.0 1.09 [0.98,1.21]
χ2 10.24 (df = 6) Z = 1.66

∏
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subject to:

OR Umle = θti(1 – θci)/θci(1 – θti) (9.15)

This is an unconditional estimate. Emerson (11)
reports that Breslow found that unconditional
MLE, which had earlier been investigated by Gart,
is not consistent for estimating the OR when the
number of counts remained bounded.

Conditional MLEs also exist; they use uses the
conditional distribution of the data in each table,
given the fixed values for the total counts in the
margins. The conditioning leads to an estimator
that is consistent and asymptotically normal (11).
For formulae see (21). In a study investigating 
their relative merits, it was found superior to 
the unconditional MLE, and equal or superior 
to the Mantel–Haenszel estimator in both bias and
precision (21). However, both theory and simu-
lation suggest that (conditional) MLE does not
stand up as well as the Mantel–Haenszel estimator
under departures from the assumption of
independent trials (11).

Emerson reports (11) new non-iterative 
procedures (including jackknife) (that are
asymptotically optimal under the classical
assumptions of independence and homogeneity 
of ORs) have been developed. He comments:

‘Although these estimators seem to be competitive 
with the conditional maximum likelihood estimators
under the classical assumptions, further research is
needed to determine whether any of them exhibit the
robustness of the Mantel–Haenszel estimator.’ (11)

This is a very brief outline of these methods, a
recommended starting point for further investi-
gation is the excellent review by Emerson (11).

Exact methods of interval estimation
The above methods for interval estimation are all
asymptotic; their justification assumes either that the
counts are large or that the number of strata is large.
Exact methods do exist that are not restrained in
this way, and are based on exact distribution theory.
Although these methods have long been available in
principle, modern computer power (using network
algorithms) now makes them routinely available. A
detailed description of these methods are beyond
the scope of this report, the interested reader is
referred to (11) for a review of this topic.

More methods for combining ORs
It is pointed out that other methods do exist for
combining ORs, again Emerson (11) would be an
excellent starting point for further investigation.

Discussion of the relative merits of 
each method
Having a number of different approaches to
combine ORs at the researcher’s disposal, it 
would be desirable to have guidelines indicating
when a particular method is most appropriate, 
and when an alternative procedure would 
be preferred.

The Peto method has come under strong 
criticism. It has been demonstrated that this
method is capable of producing seriously biased
ORs and corresponding SEs when there is severe
imbalance in the numbers in the two groups 
being compared (22). Bias is also possible when 
the estimated OR is far from unity (23). Having
several alternative methods available, Fleiss went 
on to comment (23) that there is no compelling
reason for the Peto method to be employed. Fleiss
(24) also describes conditions under which the
inverse-weighted and the Mantel–Haenszel 
method are to be preferred: If the number of
studies to be combined is small, but the within-
study sample sizes per study are large, the inverse-
weighted method should be used. If one has many
studies to combine, but the within-study sample 
size in each study is small, the Mantel–Haenszel
method is preferred.

A comparison between the Mantel–Haenszel and
(conditional and unconditional) ML techniques
has been carried out. Generally, if the sample sizes
of the studies are large (all cells ≥ 5) the methods
will give almost identical results. If there are cells
with counts of < 5 then there will be differences
between the methods but these will be small. In
conclusion, as there seem to be no clear benefits 
to be reaped from the difficult computation of 
the ML method, using the inverse-weighted and
Mantel–Haenzel methods when indicated would
seem the best strategy in most cases. If, however,
samples sizes are small for individual studies exact
methods may be preferred (22).

Another factor that needs considering is whether
any of the cells have zero events. Recently Sankey 
et al. (25) carried out an assessment of the use of
the continuity correction (adding 0.5 to each cell)
for sparse data in meta-analysis, using the Mantel–
Haenszel estimate. They report:

‘A study with a 0 cell in the treatment group 
produces a point estimate of 0.0 for the OR and
contributes only to the denominator of the Mantel–
Haenszel summary measure. When zero events are
observed in the control group, the study odds ratio
estimate is undefined and it contributes only to the
numerator of the summary measure. Studies with 0
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total observed events contribute no information to the
Mantel–Haenszel odds ratio. These studies are also
not included in the Q-statistic to test for homogeneity,
and hence do not add a degree of freedom to the
associated chi-squared statistic.’ (25)

Thus a study with zero total events is completely
excluded from the analysis if no continuity
correction is used. It has been argued that dropping
them in this way is acceptable because they provide
no information on the magnitude of the treatment
effect (26). However, Sankey et al. consider this 
as unappealing as a trial with zero events from 
200 subjects would be equally non-informative as 
a trial with only 20 subjects, and hence conclude:

‘... a meta-analysis involving sparse data should usually
employ the continuity correction. The only observable
exception to this would be if one prefers to use the
fixed effect Mantel–Haenszel summary measure and
there is strong evidence suggesting that very little
heterogeneity exists among component studies. 
In this situation, the uncorrected method performs
very well and the only problem facing the investigator is
explaining why studies with zero total events have been
excluded from the analysis. In all other sparse data the
correction should be employed. The evidence shows
that it is at least as good as the uncorrected method,
and in some cases clearly superior.’ (25)

Recently, another factor has been identified that
may be important when carrying out a fixed effects
meta-analysis. Mengersen et al. (27) compared the
ways in which CIs for ORs were calculated for
individual studies. They compared the calculation
of the ORs in epidemiological studies investigating
the effect of exposure to environmental smoke on
lung cancer. An exact test (Fisher’s) was compared
to the Mantel–Haenszel method and the logit
variance approximation (used in this instance to
calculate OR from each individual stratified study
as opposed to across studies to combine estimates).
They concluded:

‘exact methods might increase estimated confidence
interval widths by 5–20% over standard approximate
(logit and Mantel–Haenszel) methods, and that 
these methods themselves differ by this order of
magnitude.’ (27)

Emerson, however, gives a slightly different
impression:

‘Simulations suggest that exact methods do not clearly
outperform those associated with Mantel–Haenszel,
except perhaps with highly unusual configurations 
of data’ (11)

This is a new concern in meta-analysis and one 
that may need addressing further due to these
conflicting reports.

Finally, Emerson (11) gives formal guidelines 
on the procedure that should be followed when
combining ORs. To the authors of this report’s
knowledge this has not yet been applied to meta-
analysis methodology; however, there seems little
reason why it should not. These guidelines are
reproduced in Box 4.

Combining treatment effect
estimates measured on a
continuous scale
There are many different continuous scales 
used to measure outcome in the medical literature
e.g. lung function, pulse rate, weight and blood
pressure. A property they all have in common is
that they are all measured on a positive scale. For
this reason, it is common practice to use a log-
arithmic transformation on the data and then 
use normal distribution theory (6). Usually the
parameter of interest is the difference in effect 
size between the treatment and control groups. 
If it can be assumed that all the studies estimate 
the same parameter and the estimates of
continuous-outcome measures are approximately
normal, then the inverse variance-weighted method
can be used directly, combining the data in their
original metric. If different studies measured their
outcomes on different scales then synthesis is still
possible, but the data first needs standardising.
However, it should be noted by doing this the
resulting estimate may be difficult to interpret
clinically. Both methods are described followed 
by an example.

Combining data in its original metric
If the data are approximately normal and the
outcomes of all the studies to be combined are
measured on the same scale, then this method is
appropriate. The measure of treatment effect is
given by:

Ti = µti – µci (9.16)

where µti and µci are the mean responses in 
the i th study for the treatment and control 
group, respectively.

The variance of this treatment difference is:

var(Ti) = σi
2(l/nt

i + 1/nc
i) (9.17)

where nt is the within-study sample size in the
treatment group, nc is the within-study sample size
for the control group, and σi

2 is the assumed
common variance.
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Synthesis can then proceed using the inverse
variance-weighted method described on pages 55–6.

Standardised mean differences
If the normal distribution assumption seems
reasonable, but the studies estimate different
parameters, the method of standardised mean
differences should be used instead. The effect 
size of an experiment, d, is defined as:

d = Ti(STD) = (µt
i – µc

i)/s i* (9.18)

where µt
i and µc

i are the sample means of the treated
and control arms, respectively, and s i* is the estim-
ate of the standard deviation of the i th study. s i*
can be defined in different ways, each of which 
will yield a different estimate. Common and
intuitive choices for s i* are s t

i*, and s c
i*, which 

are the standard deviations of the treatment and
control group, respectively. Alternatively, a pooled 
standard deviation combining both s t

i* and s c
i*

could be used.5

Hedges and Olkin [(28), p. 78] suggest using the
pooled estimate for the standard deviation, if it is
reasonable to assume equal population variances.
They go on to show that this estimate has both
smaller bias and variance than using, s c

i *, the control
standard deviation as suggested by Glass (29). [See
Hedges and Olkin (28) and Rosenthal (4) for a
thorough treatment of the alternative measures of
effect difference variance]. The formula for this
pooled sample standard deviation is:

(nt
i – 1)(s t

i)2 + (nc
i – 1)(s c

i)2 )s i = √ ( (9.19)
nt

i + nc
i – 2

where n t
i and n c

i are the treatment and control
group sample sizes, respectively.

The estimate, d, has small sample bias, and a
correction equation has been derived, for formulae
and a thorough account of this topic [see Hedges
and Olkin (28) p. 81].

The variance of this estimate of effect difference 
is difficult to compute exactly, however if the
underlying data can be assumed to be normal the
conditional variance of Ti (STD) can be estimated as:

BOX 4 Guidelines for combining ORs 
[reproduced from (11)]

1. Calculate the Mantel–Haenszel estimate of the
common OR, unless a combination of extreme 
values in all tables leads to degeneracy. This estimate
performs well in a wide variety of circumstances. It can
withstand departures from standard assumptions of
independent subject responses and homogeneity of
ORs across strata at least as well as other methods. It
performs well for many tables having small counts
unless the data give degeneracy.

2. Use the Robins et al. estimate of variance of the log-OR
to provide a confidence interval for the Mantel–
Haenszel estimate. This method of interval estimation
gives relatively short intervals with coverage close to the
nominal level (usually 95%) in a wide variety of
circumstances. The method works except in unusual
situations for which each table has an extreme
configuration of counts, and it can be carried 
out on a hand-held calculator.

3. Calculate the conditional ML estimate of the OR 
when the total count is under 1000, or when the tables
show severe imbalance in their marginal counts. For
example, when the total count is more than 1000 but
one of the four marginal totals is a single-digit number
in all tables, we would calculate the conditional ML
estimate as a check on the Mantel–Haenszel estimate.
If the sum over all tables of the counts in any single
position is 0, the estimate is left undefined.

4. Use exact methods to provide a confidence interval for
the conditional, ML estimate of a common OR. We
recommend using the mid-P adjustment when giving
an exact confidence interval, because it tends to give
shorter and thus more informative intervals while
retaining the desired level of coverage.

5. When the exact analyses give results that differ
substantially from those of the Mantel–Haenszel
methods, we recommend that both analyses be
reported. We also recommend including a brief
discussion of the potential reason for the discrepancy –
a collection of tables that is very close to giving
degeneracy of the estimates, substantial heterogeneity
of sample ORs across the tables, or strong imbalances
among the marginal totals of the 2 × 2 tables.

6. Recommendations (3) and (4) require the use of
special computer software; the needed software is
incorporated in several commercially available
statistical packages for microcomputers including
StatXact, Egret, Statcalc, and Systat.

7. We recommend against reporting other analyses: 
those associated with the Peto method, those using 
the empirical logit, and those based on unconditional
ML techniques.*

* However, Whitehead and Jones point out: ‘One potential
problem with the ML method (which is the same as for the
Mantel–Haenszel method in the binary case) is that it cannot be
calculated if one of the cells in the 2 × 2 table is zero. There is
only a problem with the Peto method if there are no successes in
total or no failures in total.’ (38). This implies there may be a use
for the Peto method in meta-analysis.

5 Another alternative, discussed by Rosenthal (4), 
used when the S s of the two groups differ greatly, is 
to transform the data to make the S s more similar. 
Such transformations require having access to the
original data.
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nT + nC d 2

v(d) = ______ + _________ (9.20)
nTnC 2(nT + nC)

where nT and nC are the numbers in the treatment
and control groups respectively, and d is the
observed standardised mean difference (note: 
the i s have been omitted).

More exact methods are possible using a computer
intensive method; for a discussion see (28).6

Fleiss (23) states that if the sample sizes in the two
treatment groups (nT and nC) are both large, and
the population variances are equal then the simpler
variance approximation

nT + nC

v(d) = (9.21)
nTnC

can be used. Whichever variance estimate is used
for the standardised mean difference from each
study, synthesis can proceed using the inverse
variance-weighted method.

If the data appear to be non-normal-skewed they
can often be transformed to achieve, at least, an
approximately normal distribution. If this is the
case one can proceed using the above methods 
on the transformed data.

One drawback to doing this is that different answers
will be obtained for the transformed data if the
normality assumption was not met. For this reason, a
non-parametric estimate was developed by Kraemer
and Andrews (30) and extended by Hedges and
Olkin (31), which is unaffected by monotonic
transformations of the observations. These methods
are presented in their entirety in (28), p. 92.

If the data are censored in any way, such as is 
often the case for survival data, special methods 
are needed. These are covered under chapter 20
on survival data.

However, Greenland refutes the use of standardised
effect measures stating:

‘By expressing effects in standard deviation units, 
one can make studies with identical results spuriously
appear to yield different results; one can even reverse
the order of strength of the results.’ (32)

Other measures of the difference between two
groups do exist, though are not used as commonly.
A large selection of these are discussed by Rosen-
thal (4). The other type of continuous outcome not
mentioned here is the correlation coefficient; this
is dealt with in chapter 14, covering other scales 
of measurement.

The effect of mental health treatment 
on medical utilisation – combining treatment
effect estimates measured on a continuous 
scale
Table 9 [modified from (23), Table 1 p. 125]
presents data from five comparative studies 
selected from more than 50 analysed by Mumford
et al. for the effect of psychotherapy on patients
hospitalised for medical reasons (33). The out-
come measure was, in some studies, the number 
of readmissions to hospital, and in other studies, 
the number of days in hospital. Clearly two
different scales are being used here, so it is
necessary to combine standardised treatment
estimates using the methods described in the
previous section.

Before carrying out a fixed effect analysis, it is wise
to test the homogeneity assumption. This is done
using the test outlined on pages 39–41.

Summary statistics derived from Table 9 are given in
Table 10.

For the five studies presented above:

Q = 11.109 – 20.1372/56.75 = 3.96

6 Hedges and Olkin [(28), p. 82] compare four different estimators of effect difference and conclude the only real
differences exist when there are less than 16 degrees of freedom, which is unrealistic in practical applications.

TABLE 9 Data for five studies of the effect of mental health
treatment on medical utilisation [adapted from (34)]

Psychotherapy Control

Study n1
–
X1 sd1 n2

–
X2 sd2 s*

1 13 5.0 4.7 13 6.5 3.8 4.27

2 30 4.90 1.71 50 6.10 2.3 2.10

3 35 22.5 3.44 25 24.9 10.65 7.91

4 20 12.5 1.47 20 12.3 1.66 1.57

5 8 6.50 0.76 8 7.38 1.41 1.13

* s is the square root of the weighted average of sd1
2 and sd2

2
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This is not statistically significant (compared 
to 10% critical value of the χ2 distribution with 
4 df), therefore one can proceed with the fixed
effects analysis.

Combining the weighted average of the five effect
sizes using standardised treatment effect gives:

20.137_
TSTD = = 0.355

56.75

with SE:

1
SE(

_
TSTD)= = 0.133

√56.75

Calculating a 95% CI for the common underlying
effect size

lower limit = 0.355 – 1.96 × 0.133 = 0.09

upper limit = 0.355 + 1.96 × 0.133 = 0.62

Because the CI excludes the value 0, one may reject
the hypothesis that θ = 0, suggesting a benefit from
the use of psychotherapy. Figure 4 summarises 
this analysis.

Further research

Guidelines for which method to use in given
situations when combining on the OR scale, i.e.
which methods are valid under which circum-
stances, is there a role for the Peto method?

Use and implications of the exact methods; should
they be used? If so, under what conditions?

Clear guidelines on how to proceed when zeros are
present in 2 × 2 tables to be combined; including
clear advice on the exact form of any continuity
correction factors that should be used.

Summary

This chapter has considered the so called fixed
effect approach to meta-analysis. This assumes 
that all the studies in a meta-analysis are estimating
the same underlying unknown true intervention
effect. A variety of estimation methods have been
proposed for such models, whilst in many situations
they give qualitatively similar results, in some
circumstances differences can be serious. In terms
of binary data, problems with a number of methods
occur if there are zero events in any treatment arms
in any study. In such circumstances there has been
some empirical work reported on the various
methods advocated for overcoming this problem.
Meta-analysts should report precisely what methods
have been used in such circumstances.
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Introduction
An assumption made when implementing a fixed
effect model is that all the studies are estimating
the same underlying effect size (i.e. H 0: θ1 = θ2

= … θk). Pages 39–41 reported the test for hetero-
geneity, which tests this hypothesis. When a low 
p-value is obtained from this test, the above assump-
tion is violated and doubts exit as to whether the
fixed effect model is wholly appropriate.
Thompson comments:

‘With a fixed effect method, the confidence interval
for the overall treatment effect reflects the random
variation within each trial but not potential hetero-
geneity between trials. In terms of extrapolation on
future patients, the confidence interval is therefore
artificially narrow’ (1).

Pages 43–8 suggested ways of dealing with hetero-
geneity, one of which was to use include the cause
of heterogeneity (such as age of population, dose
level of treatment etc.) as a covariate in the analysis.
Meta-regression techniques for doing this are given
in chapter 11. If no variables available appear to
explain, or only partly explain, the apparent
heterogeneity, a different model for the treatment
effect is required. The random effects model
described in this chapter presents a way of
modelling this extra variation, when no covariates
are included. This methodology is extended in
chapter 12 to cover the inclusion of variables, 
that partly explain the heterogeneity, within a
random effects framework, these are usually 
called mixed models.

It has been clearly established, that the test of
heterogeneity has low power (see pages 39–41);
thus, even when a result not significant at the 
5% level is returned, there is a good chance there
may still be a degree of underlying heterogeneity.
For this reason, in certain circumstances, by
considering other evidence, such as descriptions 
of study designs, study populations, dose levels, 
and graphical plots of effect size (see pages 39–48),
the assumption of one fixed effect size underlying
all the studies may still seem unrealistic. In this
situation, random effects models can be used. 
In fact, some people consider that by the very
nature of biomedical experiments, some degree 
of heterogeneity is always present, for this reason

random effects models should be used as a matter
of course.

Random effects models are not without their 
critics though, and their appropriateness has 
been a matter of considerable debate over the past
decade. A summary of some of these arguments,
both advocating and rejecting their use, is given 
at the end of the chapter.

Concept behind random 
effects models
A way is needed of taking into account the extra
variation incurred, when assuming the studies are
estimating different (underlying) effect sizes. These
underlying effects are assumed to vary at random
within the model presented. More specifically, to
make modelling possible, they are assumed to vary
according to a given distribution. In addition, the
variation caused by sampling error described in the
fixed effects model is still present. A random effects
model has to take into account both these forms of
uncertainty. (NB: It may not be truly random –
there may be a clear reason for the differences that
could be explained by a single covariate; however,
this may not have been available for certain studies,
so the relationship went undetected. Alternatively
the heterogeneity could have been the result of the
effect of many, even hundreds of factors, each of
which contributed only a small amount to the
variation, so detecting them was impossible.)

The, now standard, model that allowed for random
variation of the underlying effect size between
studies was described in 1986 by DerSimonian 
and Laird (2). Their model assumes that the 
study specific effect sizes come from a random
distribution of effect sizes with a fixed mean and
variance. This assumption has caused much
dispute; it suggests that each study comes from 
an infinite sample of similar studies, a concept
some people feel is unrealistic. It should be noted,
however, that random effects models have a long
history in other fields of application.

So, the total variation of the estimated effect 
size can be broken down into two exclusive
components:

Chapter 10

Random effects methods for combining data
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Variance of = random  + estimation
estimated effects variance
effects variance

If the random effects variance was zero, the above
model would reduce exactly to the fixed effects
model described in chapter 9.

Expressed algebraically, where Ti is an estimate of
effect size and θi is the true effect size:

Ti = θi + ei (10.1)

where e i is the error with which Ti estimates θi.

and

Var(Ti) = τ2
θ + v i (10.2)

where τ 2
θ is the random effects variance and v i is

the variance due to sampling error.

Algebraic derivation for random
effects models
Random effects models are more complex 
than those for fixed effects, and the formulae
presented are similarly more involved. Specialised
software will be required, in many instances, to
implement these.

Formulae can be derived using two different
approaches, both of which are outlined in (3) 
and are reproduced here.

Weighted method
Firstly starting with the general inverse weighted
variance model first presented on pages 55–6.

k

∑ w iTi_
T. =

i = 1 (9.1)
k

∑w i
i = 1

where 
1

w i = v i
(9.2)

Recalling the test for heterogeneity from pages
39–41, this can be seen as measuring study-to-study
variation in effect size.

k

Q = ∑wi(Ti – 
_
T )2 (8.1)

i = 1

Under the assumption that the studies are a random
sample from a larger population of studies, there 
is a mean population effect size, say 

_
ϕ, about which

the study-specific effect sizes vary (4). This is the
parameter we primarily wish to estimate.

Let denote, ^τ 2, the variance of the studies effect
sizes (an estimate for τ 2

θ), a quantity yet to be deter-
mined. Further define 

_
w and sw

2 to be the mean and
variance of the weights (w s):

k_
w = ∑ wi/k (10.3)

i = 1

and

1 k

s w
2 = ( ∑wi

2 – k
_
w 2) (10.4)

k – 1 i = 1

Further, define:

U = (k – 1)(_
w –

s w
2 ) (10.5)

k
_
w

The estimated component of variance due 
to interstudy variation in effect size, ^τ 2, is 
calculated as:1

^τ 2 = 0 if Q ≤ k – 1

and
^τ 2 = (Q – (k – 1))/U if Q > k – 1 (10.6)

Now, the adjusted weights for each of the studies
are calculated, define wi* as:

1
wi* = (10.7)

[(1/wi) + ^τ 2]

(i.e. The random effects study weighting is given 
by the reciprocal of the sum of the between and
within study variances.)

1 An alternative, equivalent expression for the estimate of τ 2
θ given in several textbooks and papers [e.g. (5,34)] is given

by:

k k k
^τ 2 = max[0,[Q – (m – 1)]/[ ∑wi – ∑ w i

2/ ∑wi]]i = 1 i = 1 i = 1

and is sometimes known as the weighted estimate (3).
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The treatment point estimate and α/2 CI for 
_
θ, the

mean treatment effect of all studies, can then be
computed by:

k k_
T.RND = ∑w i

*Ti/∑w i
* (10.8)

i = 1 i = 1

k

var(
_
T.RND) = ∑ 1/wi

* (10.9)
i = 1

k k_
T.RND – z α/2/√( ∑wi

*) ≤
_
θ ≤

_
T.RND + z α/2/√( ∑wi

*) (10.10)
i = 1 i = 1

Note: The CI given here assumes normality, unlike
the rest of the derivation.

It is worth noting that if the test for heterogeneity is
significant the random effects CI for the treatment
effect will always be larger than for a fixed effects
analysis, on the same data, due to the extra level of
variability being accounted for by including σθ

2 in
the formulae.

Alternative derivation – the 
unweighted method
Start with the ordinary (unweighted) sample
estimate of the variance of the effect sizes, T1, 
…, Tk, computed as:

k

s 2(T ) = ∑ [(Ti – 
_
T 2)/(k – 1)] (10.11)

i = 1

The expected value of s 2(T ) (i.e. the unconditional
variance we would expect to be associated with any
particular effect size) is:

k

E [s 2(T )] = σ 2
θ + (1/k)∑ σ 2(Ti \ θi) (10.12)

i = 1

To estimate σ (Ti \ θi), one needs to use vi, which
varies depending on which scale estimates are being
combined on. For ORs (using Mantel–Haenszel
method) equation (9.9) can be used, for standardised
effect sizes (9.20). For other scales see chapter 14.2

Using these estimates equation (10.12) can be
solved to obtain an estimate for the variance
component:

k
^σθ

2 = s 2(T ) – (1/k)∑v i (10.13)
i = 1

If this value is negative it is set at 0.

(I.e. this is competing with, ^τ 2 = ^σθ
2, where

k k k
^τ 2 = max[0,[Q – (m – 1)]/[ ∑ wi – ∑w i

2/∑ wi]])i = 1 i = 1 i = 1

The two methods outlined above are both 
non-iterative. Solutions are possible via ML and
restricted maximum likelihood (REML); these are
outlined below. Both use iterative algorithms and
hence are more computer intensive.

Solving the formula using the
normal–normal model (ML and 
REML estimate solutions)
If it is assumed that each of the underlying 
effect parameters, the θjs, come from a normal
distribution, with mean µ and variance τ 2, [and 
Ti is N(θi, s i

2) (2)] then the likelihood is
proportional to (5):3

k

L ∝ exp[– ∑ [(^
θ i – µ)2/(τ 2+ σ i

2)+ln(τ 2+ σ i
2)]/2] (10.14)

i = 1

Approximate solutions to this model have been
given by DerSimonian and Laird (2)4 and Hedges
(6). Also, it is possible to calculate MLEs directly, 
or Bayesian estimates can be calculated with the
specification of a prior (see chapter 13 on 
Bayesian methods).

Summary of methods
In summary, there are four different ways to 
carry out a random effects meta-analysis. Two 
of the methods are non-iterative, and have been
called the weighted and non-weighted approaches.
Two are iterative both of these require the extra
assumption that the underlying distribution of
study effect sizes are normally distributed (though
all four need this assumption to construct CIs).
These are referred to as the MLE and the REML
estimate. The likelihood to be maximised is slightly
modified using REML (from that of MLE), to

2 Hedges and Olkin (38) note that more exact estimates of conditional variability under the random effects model
exist, however their use makes little practical difference.
3 For an alternative derivation of a likelihood based random effects model see (35), p. 144.
4 DerSimonian and Laird used the EM algorithm (13) (which is an iterative procedure for computing MLEs
appropriate when the observations can be viewed as incomplete data) to calculate MLE [equations given by Rao et al.
(39)] and REML [equations reviewed by Harville (40)] solutions. In REML estimation, the likelihood to be maximised
is slightly modified to adjust for µ and τ 2 being estimated from the same data (2).
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adjust for the fact that the underlying mean and
variance are being estimated from the same data.
The REML are the iterative equivalent to the
weighted estimators (2). Obtaining solutions for
these latter two approaches is more difficult than
for the non-iterative ones.

Discussion of the merits of 
each method
With four different methods of estimation to
choose from it would be desirable to establish
guidelines on which method to use in a given
situation. The four methods were compared 
by DerSimonian and Laird (2) who re-analysed 
eight meta-analyses using all four methods. They
commented that ‘The weighted method and the
REML estimation procedures consistently yield
slightly higher values of ^τ 2 (the random effects
variance) than the ML procedure. This is because
both these procedures adjust for 

–
T.RND and ^τ 2 being

estimated from the same data where as the MLE
procedure does not.’ In addition, ‘Comparing the
unweighted method of moments with the other
three methods, we find that the estimates for ^τ 2

from this method differ, and sometimes differ
widely, from the estimates of the other three
methods but without any consistent pattern. The
estimates of 

–
T.RND and its SE from the unweighted

method also differ from the estimates of the other
three methods.’ (2)

So it seems that the unweighted differs
considerably from the other three. Shadish and
Haddock (3) comment that the relative merits of
each of the above methods have not been widely
stated, the main difference between them being
that the weighted method gives a non-zero estimate
of the variance component only if the homogeneity
statistic Q is larger than its expected value under
the null hypothesis. In conclusion, DerSimonian
and Laird suggested ‘that the weighted noniterative
method is an attractive procedure because of 
the comparability of its estimates with those 
of the ML methods and because of its relative
simplicity.’ (2)5

However, all these methods have one disadvantage
that is clearly explained by DerSimonian and Laird:

‘in all our work we assume that the sampling variances
are known, although in reality we estimate them from
the data. Further research needs to be done in this
area as there are alternative estimators that might be 

preferable to the ones we use. For instance, if the 
sample sizes in each study are small, then sampling
variances based on pooled estimates of the
proportions in the treatment and control groups
might be better than the ones based on estimates of
proportions from individual studies. Another
alternative is to shrink the individual proportions
towards a pooled estimate before calculating the
variances. Further investigation is needed before one
single method emerges as superior.’ (2)

Very recently, new estimates have been developed
which take this uncertainty into account. These 
are discussed on pages 73–6 (extensions to the 
basic model).

Finally, it should be noted that Sankey et al. (7)
recommend using the continuity correction (adding
a half to cells) for sparse when the OR scale is being
used to carry out a random effects analysis.

Examples of combining data using
a random effects analysis
Example: effect on mortality of lowering
serum cholesterol level
On pages 41–3, several fixed effect analyses were
carried out using only the seven primary studies 
in the dataset. The test for heterogeneity for these
studies led to a test statistic of Q = 10.19, which 
has a corresponding p-value of 0.117. This result,
although not formally significant, led to concern
that there may be a degree of heterogeneity
between the studies, especially when the low 
power of the test is considered.

The same studies are combined below, this time
using a random effects model. The weighted non-
iterative approach is used in this example.

The first step is to calculate the mean and variance
of the within-study weights. The weighted values
were worked out for the fixed effects analysis and
are displayed in Table 6. Using equation (10.1):

(51.38+…+98.48)_
w = = 49.88

7

and equation (10.12)

1
s w

2 = –––– (29130.91 – 7 × 49.882) = 1952.34
7 – 1

5 It would appear that the weighted non-iterative approach has become the most commonly used random effects model
in meta-analysis. In many papers this method may simply referred to as the DerSimonian and Laird model.
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Calculating U defined in equation (10.11):

1952.34
U = (7 – 1)(49.88 – ) = 265.73

7 × 49.88

Calculating the estimated component of variance
due to between-study variation in the values of the
ORs (^τ 2) from (10.12)

Q = 10.185 (calculated in chapter 9)

therefore, Q > 6 (k – 1), so

^τ 2 = (10.185 – (7 – 1))/265.73 = 0.016.

Now the weights w 1
*,…,w 7

* used in the random
effects model can be calculated using equation
(10.13).

So, for the first study

1
w1

* = = 28.20
[(1/51.37) + 0.016]

Table 11 displays these weights for the 
other studies.

It is instructive to examine how the relative
weighting has changed between the fixed and the
random effects models. It can be seen that using
the random effects model the larger studies have
been down weighted while the relative weighting 
of the smaller studies is increased. This trend
generally holds true for all meta-analysis.

The pooled point estimate of the OR together 
with its associated 95% CI can be calculated 

from equations (10.12) and (10.11), respectively
(remember, we are working on the natural 
log scale).

_
TRND(ln(OR)) = [(28.20 × (–0.051))+…+ = 0.06

(38.23 × 0.270)]/(28.20+…+38.23)

7

(SE(
_
TRND(ln(OR))) = 1/√( ∑wi

*) = 0.078)
i = 1

Calculating an approximate 95% CI for the
combined log OR:

0.06 – 1.96 × 0.078 ≤ ln(
_
θ) ≤ 0.06 + 1.96 × 0.078 

= [–0.09,0.21]

Converting back to OR scale gives:
_
TRND(OR) = 1.06 with approximate 95% CI [0.91,1.24]

A plot of these results is given in Figure 5.

This result can be compared with those obtained
from fitting a fixed effects model, say the Mantel–
Haenszel estimate obtained on pages 56–63. There 
the point estimate was 1.09, slightly higher than 
that of the random effects model above (1.06).
Comparing CIs, using the Mantel–Haenszel 
method gave 0.98–1.21, whilst using a random 
effect model gave 0.91–1.24. The random effects
derived interval is thus wider incorporating 
both higher and lower values than that of the
corresponding fixed effects one. This is a typical
result, as previously mentioned, the extra width 
is due to the between study variation being taken
into account in the random effects analysis. The
conclusion, is thus similar to that given earlier; the
treatment effect is non-significant, but the result 
is more conservative.

Extensions to the basic model

Accounting for extra uncertainty
Though the random effects model gives wider 
CIs than that of a corresponding fixed effect
analysis, concerns have been raised that it is still 
too narrow and hence insufficiently conservative.
Recent methodological advances have attempted 
to address this problem. It has been pointed out 
that the uncertainty due to ^τ 2 being estimated from
the data has not been taken into account when
estimating, T.RND, the overall treatment effect 
(8–10). Two approaches have been put forward 
to deal with this.

TABLE 11 Weighting of studies used in the weighted non-
iterative random effects model

Study ID Ti ln(Ti) wi wi
*

(% of total) (% of total)

16 0.95 –0.051 51.37 (14.7) 28.20 (17.3)

20 0.75 –0.288 20.13 (5.8) 15.23 (9.3)

24 1.08 0.077 121.68 (38.9) 41.29 (25.3)

28 0.95 –0.051 33.47 (9.6) 21.80 (13.4)

29 1.01 0.010 21.28 (6.1) 15.87 (9.7)

30 2.79 1.026 2.74 (0.8) 2.62 (1.6)

31 1.31 0.270 98.48 (28.2) 38.23 (23.4)
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Firstly, Hardy and Thompson (8) propose a
random effects model which gives a CI for the
parameter ^τ 2 (the random effects variance). It 
also gives a CI for T.RND which takes into account
the fact that ^τ 2 has to be estimated from the data. 
It uses a profile likelihood approach to calculate
confidence regions, which assumes normality of 
the data. The approach yields a wider CI than the
standard random effects approaches. The paper
concludes that the proposed method is preferred
when ^τ 2 has an important effect on the overall
estimated treatment effect. A sensitivity plot of ^τ 2

against T.RND is given to investigate the robustness 
of T.RND to changes in the value of ^̂τ 2; this can 
be used to provide insight into whether the
likelihood method is required or whether the
simpler standard random effects analysis using 
a moment estimator of the between-study variance
is adequate. This method can be applied to
continuous, ordinal and survival outcome 
measures as well as binary.6

In addition, Hardy and Thompson also comment
(8): ‘(This method) still assumes that the individual
study variances are known, when in practice 
they too must be estimated. The full likelihood, 
in the case of binomial data, includes the
conditional distribution of each 2 × 2 frequency
table given its margins’ (11). If a full likelihood

method were pursued, the CIs for the overall
treatment effect would be expected to be even
wider. Except when all the trials are small, some
have advocated that the additional uncertainty
would not be expected to have a great impact on
the results and so pursuing a full likelihood
approach is unnecessarily sophisticated for 
most practical purposes.7

Secondly, Biggerstaff and Tweedie (9) address 
the same problem by developing a variance
estimator for Q , that leads to an interval estimation
of τ 2, utilising an approximating distribution 
for Q. They also developed asymptotic likelihood
methods for the same estimate. This information is
then used to give a new method of calculating the
weight given to the individual studies which takes
into account variation in these point estimates of
τ 2. In the given examples, these new weights are
between the standard fixed and random effects 
in down-weighting the results of large studies and
up-weighting those of small. (A past concern has
been that when τ 2 is large the standard random
effects model gives too much weight to the
relatively small studies.)

These new weights will differ greatest from those 
of the standard random effects model, when the
number of studies to be combined is small. ‘If 20 

6 This method is implemented using S+ code. The paper also comments that for continuous scales, one could use a
linear mixed model vie the SAS procedure PROC MIXED, this could be used for IPD (see chapter 27), if common
variances are assumed. Senn has also shown how it can be implemented simply by the software package Mathcad (41)
(produced by Mathsoft).
7 The authors give an example in which the combined treatment effect CI goes from 0.37–0.95 in their approach to
0.37–0.97 in the full likelihood approach. See other developments below and (11) for details of the full likelihood
approach.

FIGURE 5 Plot of combined cholesterol trials using a random effects model (obtained using Meta-View software developed by the
Cochrane Collaboration)

Study Expt Control OR Weight OR
n/N n/N (95% CI fixed) (%) (95% CI random)

Comparison: cholesterol lowering versus control

16 174/424 178/422 17.3 0.95 [0.73,1.25]
20 37/1149 48/1129 9.3 0.75 [0.48,1.16]
24 269/4541 248/4516 25.4 1.08 [0.91,1.29]
26 68/1906 71/1900 13.3 0.95 [0.68,1.34]
29 44/2051 43/2030 9.7 1.01 [0.66,1.55]
30 33/6582 3/1663 1.6 2.79 [0.85,9.10]
31 236/5331 181/5296 23.5 1.31 [1.07,1.59]

Total (95% CI) 861/21,964 772/16,956 100.0 1.09 [0.91,1.24]
χ2 10.24 (df = 6) Z = 1.66
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or more studies are to be combined, then the
weights should be similar to those in the standard
random effects model.’ (9)8,9

Bigerstaff (10), builds on the work of (9) in investi-
gating interval estimates for τ 2. He compares,
through simulation studies, the methods given 
in (9) with several new ones.

It should be noted that Bayesian methods exist
which take into account this extra uncertainty (12)
(see chapter 13).

Complete likelihood approach
Van Houwelingen proposed two goals in his paper
(11), firstly to present a likelihood based approach
to random effects which avoids use of approximating
normal distribution and can be used when the
assumptions of normality are violated.10 Solutions
are obtained via the EM algorithm (13). Secondly,
he extends this method to a bivariate random effects
model, in which the effects in both groups are sup-
posed random. In this way, inference can be made
about the relationship between improvement and
baseline effect. This is a non-parametric procedure
that is recommended by Hardy and Thompson (8)
when the normality assumption is violated.

Using sample survey methods
Schmid et al. (14) mention a technique, based on
the use of survey sampling methods. This uses a
model assuming that a sample of observations has
been taken from within each of a sample of studies,
themselves chosen from a population of studies. The
approach differs from the random effects model by
not involving an explicit estimate of the subject or
study variance. Instead, a robust estimate of the
variance of the treatment effect is computed 
and is used to produce test statistics about 
those effects.

Methodology for non-independent
studies
Emerson et al. (15) state that the DerSimonian 
and Laird random effects method (weighted non-
iterative) inversely weights using the sum of the
between-study variance and the conditional within
study variance. They go on to reason:

‘Because these weights are not independent of the risk
differences, the procedure sometimes exhibits bias
and unnatural behaviour.’ (15)11

Their paper proposes a modified weighting 
scheme that uses unconditional within-study
variance to avoid this source of bias. ‘The 
modified procedure has variance closer to that
available from weighting by ideal weights when
such weights are known.’ They also state: ‘In
combining studies, this procedure represents a
compromise between an unweighted (equally
weighted) mean and an n-weighted (sample-size
weighted) mean; and it avoids the correlation
between the risk differences and their 
weights.’ (15)

Using trimmed means
Emerson et al. (16) present a trimmed versions 
of meta-analytic estimators for the risk difference.
They incorporate this into a random effects 
model, and by doing so state that the model 
can resist the impact of a few anomalous studies.
They compare four trimmed procedures [on
different models including the one given above
(15)] and found that a trimmed (20% most
extreme data removed) DerSimonian and 
Laird (weighted non-iterative) method offers 
best performance over a wide range of simulation
designs and sample. However, they conclude 
that none of the methods, whether trimmed or
untrimmed, is uniformly preferable. It should be
noted that this method ignores the information
which may be given by the outliers, and removes
any possibility of investigating why their results 
are so extreme.

Combining sibpair linkage studies
Li and Rao (17) published a paper which proposes
a random effects model for combining results 
from independent quantitative sibpair linkage
studies. This is an extension of the standard
random effects methodology presented in this
chapter. Weighted and empirical Bayes (EB) 
(see chapter 13) solutions are both presented. 
This is a first step into this area and the authors
comment that more work is needed and report
more research is being done on this topic.

8 Software for implementing this method is given in (9).
9 The authors comment that the approximating distribution for τ 2 has immediate application in EB methodology 
(see chapter 13).
10 It is interesting to note that the requirement of normality in random effects meta-analysis is often brushed over 
and not investigated.
11 The reader should be aware that the issue of lack of independence is only a problem in a very limited set of cases [see
(15) for more details and chapter 26 on multiple effect sizes].
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The normality assumption
Raudenbush and Bryk (18) describe techniques for
assessing normality when the number of studies is
reasonably large. It is difficult to assess whether the
normality assumption as been violated with a small
number of studies. Seltzer (19) developed robust
estimation procedure that allows the analyst to
assume that random effects are t rather than
normally distributed.

Other methods
Other extensions of the methodology presented 
in this chapter are given in other chapters of this
report, where they fit more naturally. For example,
Berlin et al. (20) discusses dose–response models 
for fixed and random effects; these are dealt with 
in chapter 19. It is worth pointing out that White-
head and Whitehead (21) presented a unified
methodology for meta-analysis (general parametric
approach), so the random and fixed effects models
of chapter 9 and this chapter could be incorporated
in one model. The interested reader is referred to
the original paper for more information (21).

Comparison with fixed effects

Empirical evidence
At certain points throughout this chapter, com-
parisons between the fixed and random effects
model have been made. Investigations into the
differences in results produced by the two 
methods have been carried out.

Berlin et al. (22) compared the results of 22 meta-
analyses by reanalysing them using both the Peto
fixed effect method (pages 60–1) and the random
effects model described of DerSimonian and Laird
(pages 70–2). Eight of the studies showed evidence
of heterogeneity, in three of these different con-
clusions would have been drawn about the treat-
ment effect for both methods (23). In each of these
three cases, the Peto method suggested a beneficial
treatment effect while the DerSimonian and Laird
method did not. In all the other studies, including
ones showing no evidence of heterogeneity, both
methods lead to the same conclusion.

Mengersen et al. (24) carried out a meta-analysis of
the effect of passive smoking on lung cancer, and
investigated how the results differed using different
methods. They state that different conclusions may
have been drawn if only fixed or random effect
methods had been used.

Raudenbush (25) highlights the below advantages
and disadvantages of random effects models.

Advantages of random effects:
1. Conceptualisation is consistent with standard

specific aims of generalisation.
2. Allows a parsimonious summary of 

results when the number of studies is 
not very large.

3. Can use random effects model with no
covariates as a baseline value for which the
goodness of fit of regression models can be
judged against. (i.e. can calibrate how much
variation certain covariates explain).

Disadvantages/drawbacks of random effects:
1. Need to estimate sigma from the data

(presuming one does not use the recently
proposed methods; see pages 73–5).

2. Need to make the normality assumption 
(again assuming new methods are not being
used; see page 75).

In addition, Greenland has pointed out (26) 
that random effects models are more sensitive to
publication bias. The reason for this is as follows. 
As previously reported, in a random effects analysis
large studies will be downweighted and small ones
given increased weight. So, any tendency not to
publish small statistically non-significant studies will
lead to a greater proportion of spuriously strong
associations among small published studies than
among large published studies. ‘Thus, by giving
more weight to small studies, the random effects
summary will give more weight to spuriously strong
associations and so produce a more biased summary
estimate if publication bias is present.’ (26)

To summarise, random effects will always give a CI
that is at least as large, and usually larger than a
fixed effects model because it allows for variation
between studies. The greater the degree of
heterogeneity the greater the difference in 
the CIs will be.

When should random effects models
(rather than fixed effect models) be
used? Researchers’ opinions
There seems no simple answer to this question.
Several authors suggest guidelines to the use of
fixed and random effect models, most of whom
also acknowledge widely differing points of view
exist between practitioners in the field. Shadish
and Haddock (3) consider the answer to be partly
statistical, partly conceptual and rarely indisput-
able. However, many believe that if there exists evi-
dence of heterogeneity, that cannot be explained
(using the techniques of chapter 8), this extra
variation needs to be accounted for when estim-
ating the pooled estimate and CI (2), and that 
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the fixed effect methods will give and over
confident result.

Also, it is recognised that the heterogeneity test
lacks power (chapter 8), so the chance of a type 
two statistical error is quite large, suggesting the
studies are homogeneous when in fact there is a
degree of heterogeneity. This implies that just
because the studies appear homogeneous a
random effects model may still be worth consider-
ing as it cannot be assumed that true homogeneity
exists (1). It is worth noting at this point that there
must become a time when the heterogeneity
between studies is so large that the random effects
model is not adequate, and the question of whether
the results should be combined at all has to be
addressed (for further discussion, see chapter 8).

Another corollary question needing to be
addressed is: should a decision be made a priori as
to which modelling strategy is to be adopted?

It should be noted that both the results of fixed
and random effects can be reported, this is justified
by viewing it as a form of sensitivity analysis. If the
two methods differ, one can conclude hetero-
geneity must be a problem and stress the random
effects estimate, or go on to investigate possible
causes of heterogeneity.

Hasselblad and McCroy (5) comment: ‘there 
are those who would argue that the unexplained
variation must be explained before any conclusions
can be drawn. Others argue that the only appro-
priate model is the hierarchical one because
Mother Nature is never consistent across studies.’

Raudenbush (25) suggests the choice may 
depend in part on the number of studies available.
He reasons that if only a few studies exist (for 
an extreme he says two), between study variation
will be very poorly estimated and thus fixed effects
will be the sensible choice. If more were available
(say several hundred), the fixed effects approach
would make little sense because the treatment 
by studies interaction test would have great 
power, virtually ensuring rejection of the 
null hypothesis (see original for a more 
thorough explanation).

Comments on random versus fixed effects
Below (in no particular order) are comments 
from leading researchers and practitioners of meta-
analysis on their beliefs about the applicability of
fixed and random effect models:

Thompson:

‘any set of studies is inevitably clinically heterogeneous
by virtue of differences in study design, patient
selection , or treatment policy.’ (1)

and (slightly edited):

‘However the random-effects method is no panacea
for heterogeneity. Formal interpretation relies on the
peculiar premise that the trials done are represent-
ative of some hypothetical population of trials, and 
on the unrealistic assumption that the heterogeneity
between studies can be represented by a single
variance, and that the between trial distribution is
normal. Moreover, for the interpretation of the overall
θ as applying to future trials or patients there is the
necessary but intangible assumption that the trials
included in the meta-analysis are “representative” of
the future The results are also often strongly
dependent on the inclusion or exclusion of small
trials, which may themselves reflect publication bias.
The random effects methods may therefore give
undue weight to small studies, emphasising poor
evidence at the expense of good. (An additional
technical consideration is that the estimate of σ 2,
being made usually from relatively few trials, is 
very imprecise. Given these problems, one can only
view the random effects analysis as replacing the
implausible assumption of the fixed effect analysis 
by untenable assumptions of its own.)’ (1)

Peto (of random effects):

‘I think that this is actually wholly wrong as an approach
to the overviews and trials. I think that it does answer a
question. But it’s a very abstruse and uninteresting
question. It’s trying to say “what would happen if we
chose another treatment at random from the universe
of treatments that we could choose another population
at random from the universe of populations”. I think
this is not an important question.’ (27)

Meier formally disagreed with Peto above at the
conference and put a case for random effects.
‘inter-study variation is a key feature of the data 
and should contribute to the analysis’ (28)

Thompson:

‘....... the assumption that the true treatment effects
are the same for all the trials, that is an assumption of
homogeneity. In any meta-analysis this is a simplistic
and implausible assumption.’ (29)

also: (talking of fixed effect analysis) ‘.. the derived
confidence interval for the overall odds ratio is too
narrow in terms of extrapolation to future trials or
future patients.’ (29)

also: ‘An intuitively appealing aspect of the random
effects analysis is that, by taking into account a
component of between-trial variability, it appro-
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priately introduces a degree of statistical caution that
is not present in the fixed effect analysis.’ (29)

and: ‘A more useful way to consider the random
effects method is as a type of sensitivity analysis, to
investigate how much the overall conclusions change
as the assumptions underlying the statistical method-
ology also change. (In fact the random effects analysis
can be viewed as simply changing the percentage of
weight allocated to each trial, as compared with the
fixed effect analysis.)’ [quoted from (30)].

Fleiss gives an example of the problem of
heterogeneity:

‘.. if in one meta-analysis there are two published
studies with ORs of and 6.0, if in another there are two
published studies with ORs of 2.0 and 3.0, and if all
four values of V (the variance of the logarithm of the
OR) are equal to 0.01, then in both studies the value
of the pooled OR will be 2.45 and in both studies the
approximate 95% confidence intervals extend from
2.13 to 2.81.’ (31)

Fleiss:

‘Bailey (32) suggests that, when the research question
concerns whether the treatment will have an effect, on
the average, or whether exposure to a hypothesized
risk factor will cause disease, on the average, then the
model of studies being random is the appropriate
one. When the question concerns whether treatment
has produced an effect, on the average, or whether
exposure has caused disease, on the average, in the
studies in hand, then the model of studies being fixed
is the appropriate one.’ (31)

And in summary (32): ‘The choice between these
fixed effect methods would rarely materially affect
the conclusions being drawn.’ (31)

Pladevall-Vila, in an investigation of conflicting
meta-analyses, investigating the relationship between
oral contraceptive use and rheumatoid arthritis,
conclude by saying:

‘Consensus is needed on how to conduct meta-
analyses of observational studies, the methods to be
used in the presence of heterogeneity, and when
conclusions should be considered reliable.’ (33)

Greenland:

‘In situations in which addition of a random effect to
the model yields materially important changes in
inferences, the degree of heterogeneity present will
often (if not usually) be so large as to nullify the value
of the summary estimates (with or without the random
effect). Such a situation is indicative of the need to
further explore sources of conflict among the study
results.’ (34)

Greenland:

‘I maintain that the primary value of a meta-analysis 
is in the search for predictors of between-study
heterogeneity. If use of random effects makes a
difference, the analysis is incomplete: the analyst
should carefully search for the source of the
discrepancy between the fixed- and random-effects
interval estimates. The random-effects summary is
merely a last resort, to be used only if one cannot
identify the predictors or causes of the between-
study heterogeneity.’ (26)

The 1992 National Research Council (35) report
on statistical issues in combining information
favours random effects models for meta-analysis.

Pocock:

‘A sensible overall conclusion is that neither the 
fixed effect nor the random effects model can be
trusted to give a wholly informative summary of 
the data when heterogeneity is present. Perhaps 
the presentation of both approaches reveals the
inevitable uncertainty inherent in an overview 
with heterogeneity. Indeed any strong claims by
proponents of one method over the other are 
liable to be counterproductive in that polarized
statistical disputes may discourage the medical
profession from accepting overviews’ (36)

also: ‘the difference between the two models is
sometimes over-emphasized.’ (36)

Further research

A study to compare the methods of Hardy and
Thompson (8), and Biggerstaff and Tweedie (9,10)
must be pertinent (the two new methods for
random effects incorporating more uncertainty).
This would continue the work of Smith et al. (37),
who compared the results obtained by many of the
previous meta-analytic models.

Investigation into how robust are random effects 
to departures in normality? Should likelihood
methods (11) be employed more often?

More work is required on combining sibpair
linkage studies.

Summary

At this present time, it would seem neither fixed
nor random effect models could be considered the
ideal analysis, beyond any dispute, for a given
situation. Indeed, it has been illustrated that both
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methods have their shortcomings. As the point
estimates of effect size given by both methods are
usually very similar, the only time the choice of
model will be critical is if its significance is marginal
using a fixed effect model. Here there is a chance
that the more conservative CI given by the random
effects approach would consider the effect to be
non significant. It is interesting to note that Peto,
one of the strongest opponents of random effects
models, takes 3 standard deviations rather than 2
(1% not 5%) as his critical value when considering
the significance of an (fixed) effect in an overview,
considering 2 standard deviations to be not strin-
gent enough for the magnitude of the implications
of an overview. [‘.........we are messing around if we
take two standard deviations, two-and-a-half stand-
ard deviations, as serious evidence. We get so much
nonsense mixed up in with the sense that it is just
irresponsible. I think we’ve got to get better
standards of evidence than we normally have, and
this means in the individual trials and in overviews.
I think you need to go to at least three standard
deviations.’ (27)]. The point in mentioning this is
that one of the world leaders in the field, although
conceptually at poles with the advocators for
random effects, through this more stringent cut
point is actually making an adjustment with prac-
tical implications very similar to those inherent by
the use of a random effects model. While it would
appear that the conceptual debate over the correct
model is some way off a conclusion, a practical 
line to take may be to say: use whichever strategy
(single analysis or several) you yourself feel is most
appropriate for the situation. However, if there is
evidence of heterogeneity (significant or not) and 
a fixed effect analysis is the sole analysis carried 
out and the result is only marginally significant 
(5% level), then extreme caution is needed when
reporting and interpreting the results. Another 
key point to consider here relates to the clinical
significance rather than the statistical significance
of the pooled estimate obtained. One should be
concerned about estimates and their SEs, rather
than p-values. It should be pointed out that other
models do exist for meta-analysis, chapter 12 
covers mixed models, and chapter 13 Bayesian
models. It is interesting that the National Research
Council (35) take the approach of calling random
(and fixed) effects models a special case within a
hierarchical model framework, of which other
models [such as mixed and cross-design synthesis
(chapter 26)] are simply extensions. Another point
worthy of note is when using a Bayesian approach,
one does not necessarily have to choose between
the two models (fixed and random), but rather 
we can average across models using BFs (see
chapter 13).
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Introduction
Occasionally, the studies whose effect estimates 
are to be combined may all be very similar. This
may be the case, for instance, if results are being
combined from multi-centre trials, all using the
same protocol. It is more common though, for
there to be substantial differences between the
studies. Examples of ways studies may differ
include; treatment dose magnitude; age of study
population; study conduct; and study maturity 
(1) (see pages 41–3 for a detailed account of how
studies may vary). These differences may contribute
to heterogeneity of the results between studies.
Chapter 8 addressed the issue of heterogeneity 
and explained how to investigate and deal with 
it if it is present. When heterogeneity is present it
does need investigating, but does not have to be
necessarily seen as a burden. Discovering why 
study results differ can be revealing.

It has also been pointed out that due to the large
numbers of patients often involved in a meta-
analysis, the difficulties of detecting therapeutic
effects within subsets of patients observed with
limited data from single studies may be overcome
(1). In doing this, treatments could be individual-
ised, so the treatment best for each patient 
could be identified (1). Thus exploratory analysis
investigating associations between study or patient
characteristics and the outcome measure
(particularly useful in observational studies – see
chapter 19), can be seen as one of the advantages
of performing a meta analysis (2). So, as well as
reducing the heterogeneity, this analysis may
produce findings of clinical importance.

It needs to be stressed that this is an exploratory
analysis and it is very possible for associations
between characteristics and the outcome to occur
purely by chance (this problem is not unique to
meta-analysis and occurs whenever associations
between variables are being investigated). Also,
spurious associations may appear due to confound-
ing factors this is explained fully on pages 149–52.

A statistical technique capable of carrying out the
sort of analysis described above is regression. Two
different underling models are presented for this
analysis. One is described in this section and is

based on combining studies using a fixed effect
model (chapter 9) and has come to be called 
meta-regression. The second model described in
the next chapter (chapter 12) uses the random
effects model of chapter 10 as its basis. To
distinguish this model from the first it is referred 
to as a mixed model due to it including random
and fixed effects (though it is still a regression 
type model).

The fixed-effect methods of this chapter include 
no random variation term and are thus appropriate
only when all variation between study outcomes 
can be considered fixed, predictable and account-
able. A mixed model is appropriate when the
predictive variables only explain part of the
variation/heterogeneity. The random term thus is
included to take account for this extra unexplained
variation. However, one will not know which model
is most appropriate until the amount of variation
explained by the predictor variables has been estab-
lished. For this reason, it is customary to start with a
meta-regression model with no random effect term,
and include one only if considered necessary, i.e.
after the best model is found substantial residual
variation remains [this could be tested formally
using the Q statistic (pages 39–41)].

Modelling using regression models is not a trivial
task. It is beyond the scope of this chapter to give 
a comprehensive beginners guide to regression
techniques. For the reader who wants to know
more about regression modelling many intro-
ductory statistical texts cover the basics, addition-
ally see (3) for further details on modelling 
binary outcomes.

Model notation

The following account is adapted from Hedges (4);
it is the most general meta-regression model, and
can include continuous and discrete predictor
variables. If only a limited number of categorical
predictor variables are being investigated, an
ANOVA approach can be taken. Hedges (4) clearly
describes this approach; however, it is omitted here
due to space limitations, and because it can be
regarded as a special case of the more general
model below.

Chapter 11

Meta-regression
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Suppose there are k independent effect size
estimates T1, …, Tk with estimated sampling
variances v1, …, vk [this is the same notation 
as used for fixed effect model (pages 55–6)].

The corresponding underlying effect size
parameters are θ1, …, θk , for each of the k studies.
Suppose also that there are p known predictor
variables X1, …, X p which are believed to be related
to the effects via a linear model of the form:

θi = β0 + β1xi1 + … + βpx ip (11.1)

where x i1, …, x ip are the values of the predictor
variables X1, …, X p for the i th study and β0, β1, …,
βp are the unknown regression coefficients, to be
estimated, indicating the relationship between its
associated predictor variable and the outcome.

Recall in the fixed effects model of chapter 9, θ1,
…, θk , were all set equal, say to θ. Here they are
allowed to vary (as in the random effects analysis:
chapter 10). However, unlike the random effects
model, here it is the covariate predictor variables
that are responsible for the variation not a 
random effect, hence the variation is 
predictable not random.1

An alternative to the above derivation, when one has
binary outcomes, is to use logistic regression. An
example of its use is given by Thompson (5), and is
very similar to the above model to implement. This
example is particularly noteworthy as it looks at
cholesterol trials (though a different set to those con-
sidered in this report) and the effect of covariates
such as the extent and duration of cholesterol
reduction (see also pages 44–8, 157–61).

The application of the above model
The coefficients in the above model are easily
calculated via weighted least squares algorithms.
(Unweighted regression cannot be used because
this would make the assumption that the variances
from each study could be considered equal.) Any
standard statistical package that performs weighted
(multiple) regression can be used.

As Hedges states (4), the regression should be run
with the effect estimates as the dependent variable
and the predictor variables as independent vari-
ables with weights defined by the reciprocal of the
sampling variances. That is, the weight for Ti is 

w i = 1/v i

The predictor variables are created/defined by the
researcher: these can take several forms, including
1) binary indicators, e.g. indicating whether the
study adjusted for smoking, study population was
European etc., 2) categorical, e.g. variable could
indicate the type of study design and 3) con-
tinuous, e.g. level of exposure (in epidemiological
studies) or mean age of the patients recruited.

It is important to note that the SEs of the 
estimates for the coefficients, produced by 
standard software packages are based on a slightly
different model than the above used for fixed 
effect meta-regression. This means that the weight-
ing is ignored in the calculation of the SE. Due 
to this an adjustment needs to be calculated 
by hand:

Sj = SEj/√MSERROR (11.2)

where Sj is the corrected SE, SE j is the SE of
coefficient b j (the obtained estimate for j) as given
by the computer programme and MSERROR is the
‘error’ or ‘residual’ mean square from the analysis
of variance for the regression as given by the
computer programme.

Each of the regression coefficient estimates (the
bj s) are normally distributed about their respective
parameter (βj) values with standard deviations
given be the SEs (the S j s). Hence a (100 – α)% CI
for each βj is calculated by:

bj – Z α/2(S j) ≤ bj ≤ bj + Z α/2(S j) (11.3)

where Z α/2 is the is the two-tailed critical value 
of the standard normal distribution. The corre-
sponding two-sided significance test is H 0: βj = 0,
and is rejected if the above CI contains one. If it is
retained, one concludes there is no, or insufficient
evidence of a relationship between the j th
predictor variable and outcome.

In this way, decisions can be made on which, if 
any of the predictor variables explain the variation
between studies and hence appear to be good
predictors. Selecting which of the different pre-
dictors are entered and removed from the model
and deciding on the ‘best’ model can be a long and
complex process, with much being published on

1 This model assumes approximate normality of the dependent (outcome) variable (7). In situations when the
outcomes are in the form of 2 × 2 tables, Greenland reports (7) that simulation studies indicate that such a criterion
will be adequately met if the expectations of the counts contributing to the rates or ratios is four or greater.
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the topic. Factors that contribute to this decision
are: 1) the amount of variation that is explained
and 2) the simplicity and ease of interpretation 
of the model.

As with all modelling exercises, testing of assump-
tions and considering the adequacy of model fit is
an important aspect of the analysis that should not
be overlooked.

Advanced model fitting issues

The sections below outline other issues that are
pertinent while carrying out a meta-regression.

Testing blocks of variables
simultaneously
Hedges (4) outlines a method for testing
hypotheses about groups or blocks of regression
coefficients (as opposed to individually). Hedges
suggests there are situations where it may be
desirable to enter a block of variables reflecting
methodological characteristics. Then entering
another block, say reflecting treatment character-
istics to see if the second block of variables
explained any of the variation in effect size not
accounted for by the first block of variables [see
(4), p. 296] for computational details).

Colinearity
This is a problem that can occur in any multiple
regression analysis, not just meta-analysis. It basic-
ally means that two or more predictor variables 
are explaining the same variation and are thus
correlated. Hedges warns: ‘Colinearity may degrade
the quality of estimates of regression coefficients,
wildly influencing their values and increasing their
standard errors.’ (4). The reader is again referred
to a standard regression textbook for procedures
used to safeguard against this.

The application of 
meta-regression
Situations where the use of 
meta-regression is applicable
Meta-regression can and has been used in a 
wide diversity of situations. It can be used both 
for the synthesis of RCTs and observational studies.
Several meta-regression techniques specific to
observational studies exist, such as dose–response
analysis, these are covered on pages 157–61. If IPD
are available, a more highly structured model may
be more appropriate (6); regression using patient
level (as opposed to study level) covariates is

possible, and this is covered in chapter 24. 
Meta-regression can be used to incorporate study
quality (e.g. via a quality score covariate). How
study quality is measured is a complex issue;
chapter 6 is dedicated to this issue. Meta-
regression can be employed as a sensitivity 
analysis; the sensitivity of inferences to variations 
in or violations of certain assumptions can be
investigated (7). Greenland illustrates this with 
the following example:

‘One may have externally controlled for cigarette
smoking in all studies that failed to control for
smoking by subtracting a bias correction from the
unadjusted coefficients in those studies. The sensitivity
of inferences to the assumptions about the bias
produced by failure to control for smoking can be
checked by repeating the meta-analysis using other
plausible values of the bias, or by varying the
correction across studies.’ (7)

Variables that can be included in 
a meta-regression
Chapter 8 highlighted many ways in which studies
can differ. All these factors (and any others the
researcher can identify) can be explored using
meta-regression. Dickersin and Berlin (2) in their
1992 review of meta-analysis included several
examples where meta-regression had been used to
explain heterogeneity and find treatments that
effected subsets of patients differently.

Problems with meta-regression

A couple of problems inherent when carrying out
meta-regression of epidemiological studies have
been pointed out by Greenland (7). The first of
these he calls aggregation bias or ecological bias.
This bias will exist if the relation between group
rates or means do not resemble the relation
between individual values of exposure outcome 
(7). Secondly, he notes that further bias can arise
from regressing adjusted study results on unadjust-
ed average values for covariates (7). He notes 
that such bias will, however, be small unless the
covariates under study are strongly associated 
with the adjustment factors.

Another potential problem is that some of 
the studies may not have the same covariate
information as the rest. If this is the case, possible
solutions are either to contact the original authors
of the reports to try and obtain the necessary
variables, or to carry out a subset analysis to see 
if the variable seems important in the studies that
do measure it. Problems also exist due to data
missing at the patient level, as this will affect
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aggregated study level variables; see chapter 17 for
further details on missing data.

New developments

Modelling duration of trial
In an investigation of the effect of a reduction 
in cholesterol levels on overall mortality, Thomp-
son (5) used a non-standard method to investigate
the effect of duration of the studies. Due to the
suspicion of a non linear relationship, i.e. longer
follow-up does not necessarily mean larger treat-
ment effect, a standard dose–response type model
(see pages 157–61) could not be used. Instead data
in the time intervals 0–2.0, 2.1–5.0, 5.1–8, 8.1–12.0
years was obtained from the original investigators
for most of the studies. This sort of data can be
viewed as between that of overall study estimate 
and individual patient level (see chapter 23) and
since IPD was unavailable, was the best that could
be obtained.

Further research

Whilst the use of meta-regression can be a powerful
tool to the meta-analyst and should be recom-
mended there are a number of issues that are
wanting of further work:

1. Checking of modelling assumptions, including
the use of residuals.

2. Dealing with (and accounting for) missing
data, both at the study level and patient-level.
Indeed, this is a recurring issue throughout 
this report.

3. Measurement error – this is particularly true
when considering study-level covariates. For
example, a common study level covariate is 
age, but unless there are details on, for
example, the number of patients within a trial
for whom age was not recorded, the use of
average age may lead to biased results.

4. The modelling of data when there are 
some studies with only summary statistics
available (i.e. study level covariates) and 
other studies for which patient level data 
is available.

5. Model comparison; as with other modelling
scenarios, a choice is often made between
competing models. How this choice is made

can sometimes have a profound effect on the
overall conclusions. The implications of the
effect of different model selection strategies 
is an important area which deserves 
more attention.

Summary

This chapter has extended the methods of chapter
9 (fixed effects) to take account of the fact that
there are often covariates at either the study level
or patient level available, and that these can be
important in helping to explain any heterogeneity
present. Such an analysis should be seen as a
fundamental component of any meta-analysis, but
as with any modelling exercise, due care and
attention should be paid to the verification of any
assumption the models make. One of the potential
advantages of this approach is that estimates of the
relative benefits of treatments for patients with
different combinations of covariates can be
derived, or more information on the relative effect
of different forms of delivering the intervention.
This is the sort of data that is very relevant to
clinical practice, where overall average effects may
be too general to be useful for particular situations.
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Introduction
Hedges in 1987 mentioned, at a conference on
meta-analysis, the possibility of mixed effect models
as a compromise between fixed and random effects
(1). He commented that they have been used with
success in the social sciences:

‘Mixed effect models are often very close to fixed
effect models in the sense that there is often only a
very small component of random variation between
studies, but it may be a persistent and very real source
of variation that must be modelled.’ (1)

Chapter 11 outlined fixed effect regression 
analysis where all heterogeneity between studies is
considered to be explained by covariates included
in the model. If the covariates do not explain all
the variation, to obtain a more realistic CI around
the point estimate, a random effect term needs
including to take into account the variation un-
accounted for. It is worth reiterating that, although
the aim of including covariates is to reduce vari-
ation between studies – the covariates themselves
should not be considered nuisance factors and
indeed may shed light on the generalisability of the
treatment under investigation and suggest possible
subsets of patients for whom the treatment is more
or less effective, in a way not possible in the analysis
of subsets of a single study. Indeed such an analysis
may also inform the direction of further research.

Having fitted a regression model, if the residual
heterogeneity is still significant, a random effects
term should clearly be added. If the residual
heterogeneity is not significant many researchers 
still consider it good practice to always include a
random term to account for any variation not
accounted for.

Rubin conceptually expanded the ideas of the types
of models covered in this chapter. His method for
extrapolating response surfaces (2) is covered on
pages 214–15.

Mixed effect model

Notation
The derivation below is taken (but modified) from
Raudenbush (3). Raudenbush also uses an ANOVA

model for mixed models; however, to use this 
one would need a balanced design, which would 
be very rare in health technology research and 
thus is omitted (3).

As a starting point, take the random effects model
outlined on pages 70–2, i.e.

Ti = θi + e i (12.1)

where Ti is the estimated effect size of the true
effect size θi for each of the k studies, i = 1, …, k; 
it is also assumed that the ei are statistically
independent, each with a mean of zero and 
estimation variance vi.

The variance for these estimates of treatment 
effect can be expressed as:

Var(Ti) = v i
* = σ

θ
2 + vi (12.2)

where σ
θ
2 is the between-study, or random effects

variance and vi is the within-study variance.

Now we extend this to formulate a prediction
model for the true effects as depending on a 
set of study characteristics plus error:

θi = β0 + β1X i1 + β2Xi 2 + … + βpX ip + ui (12.3)

where β0 is the model intercept; Xi1, …, Xip

are coded characteristics of studies hypothe-
sised to predict the study effect size; β1, …, βp

are regression coefficients capturing the associ-
ation between study characteristics and effect 
sizes; ui is the random effect of study i, that is, 
the deviation of study i ’s true effect size from 
the value predicted on the basis of the model. 
Each random effect, u i, is assumed independent,
with a mean of zero and variance σ2

θ.

Under the fixed effects specification, the study
characteristics Xi1, …, Xip are presumed to account
completely for variation in the true effect sizes. In
contrast, the random effects specification assumes
that part of the variability in these true effects is
unexplainable by the model.1

It is interesting to note that this model is a
consistent extension of the models presented in

Chapter 12

Mixed models (random effects regression)
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previous chapters. If the model has no predictors,
i.e. β1 = … = βp = 0, then it reduces to that of the
random effects of chapter 10. If the random effects
variance is null i.e. σ2

θ = 0, then the results will be
identical to that of the fixed effects meta-regression
model of chapter 11.

Estimating the parameters
Substituting (12.1) into (12.3) gives:

Ti = β0 + β1X i1 + β2X i 2 + … + βpX ip + u i + ei (12.4)

This equation has two components in its error 
term ui + e i, so the variance of Ti, controlling for 
the Xs, is

vi
* = Var(ui + e i) = σ2

θ + v i (12.5)

Ordinary least squares regression assumes that
every residual has the same variance (homo-
scedasticity). This assumption will be violated if the
vi

* vary across studies (which they undoubtedly
will). A weighted least squares approach is needed
instead (as was used in chapter 11), optimal 
weights are given by the inverse of each study’s
variance:

w i
* = 1/v i

* = 1/(σ2
θ + v i) (12.6)

We can estimate the vis from the data (see chapter
9). We also need an estimate of σ2

θ, which is
generally unknown and must be estimated from 
the data. In fact, an estimate of the regression
coefficients (the βs) is required in order to obtain
estimates of σ2

θ and hence wi
*. So unfortunately, a

dilemma exists: estimation of the βs is dependent
on knowing σ2

θ, and estimation of σ2
θ depends on

knowing the βs.

Solutions to the model
Two different approaches to the problem outlined
above have been put forward:

The method of moments
Raudenbush reports:

‘Using the method of moments, the researcher
computes provisional estimates of the β’s in equation
(12.4). Based on these estimates, an estimate σ2

θ can
be obtained and, therefore, the weights, wi

*. These 

weights are then employed in a weighted least squares
regression to obtain new and (final) estimates of the
β’s.’ (3)2

These provisional estimates can be got from
ordinary regression or weighted regression as in
chapter 11. For explicit details of this procedure
see (3), p. 310.

The method of ML
To implement this approach, a further assump-
tion that each Ti is normally distributed is 
required. Raudenbush (3) reports that MLEs 
have certain desirable properties: in large 
samples they are efficient and normally 
distributed with known SEs, facilitating 
statistical inference.3,4

Obtaining estimates
The authors of this report are not aware of any
investigations into the superiority of either method,
and hence cannot make recommendations about
which of the two methods to use.

Regardless of which method is used, however, the
techniques available for any regression analysis
such as: assessing fit, comparing models, adding/
removing terms can be applied. The reader is
referred to the previous chapter and to the
regression techniques literature for further 
details. It is also possible to test whether, σ 2

θ = 0, 
by fitting a model with and without the 
random variation term, details are given 
in (3), p. 315.

The majority of the time a normal assumption is
made for calculating CIs of the model parameters.
However, Larholt suggests the use of the t
distribution for small samples (4).

Extensions/alternatives to 
the model
On pages 85–6, a basic mixed effects model was
described. Several extensions/alternatives to this
model have been derived, and applied in meta-
analyses. This section presents a summary of these
models. In addition to those presented below,

1 Huque and Dubey (5) note that if the linear structure of this model is not acceptable, then an appropriate non-linear
structure may be considered.
2 Raudenbush (3) provides a computer program to implement this method.
3 Raudenbush (3) provides a computer program to implement this method.
4 For more details on ML based solutions, full details are given in (5).
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Huque and Dubey (5) provide a formulation 
and estimate parameters via the Fisher 
information matrix.

An alternative random-effects
regression model
Berkey et al. (6) derive an iterative random effects
regression model specifically for the synthesis 
of 2 × 2 tables. The solution to the model is based
on an iterative scheme which alternates between
estimating the regression coefficients via weighted
least squares, where the weights incorporate the
current estimate of the between study variance, 
and estimating the between-study variance. The
authors comment that this model is compatible
with that of DerSimonian and Laird (7) (chapter
10) model but as the DerSimonian and Laird
model becomes more difficult to evaluate, when
considering a continuous covariate or 2 or more
categorical covariates simultaneously then this
model is an ‘efficacious’ alternative. A Statistical
Analysis System (SAS) program for implementing
this procedure is given in the paper (6).

The authors went on to apply this model to
evaluate the efficacy of the BCG vaccine for
preventing tuberculosis. One of the variables that
reduced heterogeneity was the number of miles
from the equator the site of the study was. They
comment that small biases were present in the
estimates of the regression coefficients and the
between study variance, and that there is the
potential to eliminate these using an alternative
estimator for σ i

2.

An additional noteworthy point is that they use a
smoothed estimator of the within-study variances,
which produced less bias in the estimated regres-
sion coefficients. The authors comment that
Emmerson et al. (8) demonstrated that because
each study’s estimate of risk difference and the
corresponding estimated variance (s i

2) are not
independent the DerSimonian and Laird random
effects approach (see chapter 10) may produce a
biased estimate of overall treatment efficacy. 
(Note: this is nothing to do specifically with mixed
effect regression models; however, this model gets
round the problem.) Due to this, there exists a
correlation between loge(RR i) and vâr[loge(RR i)],
which leads to slight bias towards the null.
Therefore an alternative estimator of the variance
of loge(RR i) is given. This smoothed estimator
reduces the correlation:

k k

vâr[loge(RRi)] = [ ∑(bi/a i)]/kni++[ ∑(di/ci)]/kni– (12.7)
i = 1 i = 1

where a i, b i, c i and d i are the values in the cells of
the 2 × 2 table for the i th study, and n i+ = a i + b i

and n i– = c i + d i. In the same vein, an adjusted
variance for the loge(ORi) is also given:

(12.8)
k

vâr[loge(OR i)] = [(a i + c i)( ∑(a i/(a i + ci)))/k]–1

i = 1

k

+ [(a i + c i)(1 – ( ∑(a i/(a i + c i)))/k)]–1

i = 1

k

+ [(bi + d i)( ∑(bi/(bi + d i)))/k]–1

i = 1

k

+ [(bi + d i)(1 – ( ∑(bi/(bi + d i)))/k)]–1

i = 1

Model for adjusting bias when a
covariate is an aggregate measurement
of the treated population
McIntosh (9) discusses cases in which including 
the observed control group event rate appears to
reduce heterogeneity. The author warns in these
circumstances that the association, or some part 
of it, may simply arise as a consequence of measure-
ment error (sometimes known as regression to the
mean). A model is presented that corrects for the
correlated measurement error peculiar to this
application. The model is hierarchical in structure
and both Bayesian (see chapter 13) and ML solu-
tions are given. The author concludes that this
method is appropriate whenever a covariate of
interest is an aggregate measurement of the treated
population. See pages 46–8 for more details on 
this topic.

General model form
Recently, Stram (10) presented a very general
mixed-effects regression model framework. 
He developed a model from which most of the
previous models can be viewed as special cases. 
So, this model incorporates the random effects
model (11) (chapter 10), the mixed model (pages
85–6), the model of Begg and Polite (12) (see
pages 201–3) and the model of Tori et al. (see 
page 214) (13). After presenting the general form
of the model, the author goes on to describe its
relationship to these models.

Model form:

Yi = X iα + Ziβi + ζ i + e i (12.9)

where i = 1,2, …, K independent studies. Yi is an 
(ni × 1) vector of one or more related estimates of
treatments or treatment comparisons of interest; 
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Xi is an (ni × p) matrix of known covariates related
to the p vector of unknown fixed effect parameters,
α; and Zi is an (ni × q) vector of known covariates
related to a (q × 1) vector of unobserved random
effects, βi, for each study. The two remaining ni × 1
unobserved random vectors, ζ i and ei, specify two
types of error in Yi. The ζ i specify the sampling
errors in Yi and ei specifies other sources of error 
or heterogeneity between studies and between 
arms of the same study.

In this model, it is assumed that βi, ui and e i are
each independent multivariate normal random
vectors. On of the new extensions offered by 
this model is the possibility for random effect
covariates. It is worth noting that the procedures
for implementing the above model have recently
been incorporated into the MS DOS-based clinical
trials and epidemiology package, Epilog (14).

Using multi-level models for 
meta-analysis
Lambert and Abrams (15) present a method 
for carrying out a meta-analysis using multi-level
models. They illustrate their method using a
dataset of cholesterol lowering trials, very similar 
to the one used in chapters 8, 9 and 10. Using the
software package ML3 (16), they implement a
random effects model very similar to that of
DerSimonian and Laird (7) (chapter 10). This is
then extended into a mixed model to include a
study-level covariate for baseline risk. The authors
comment that it is in the mixed model scenario
where this method can be used to great advantage
because mixed models such as this, and more
complicated situations can be modelled with
relative ease. For a Bayesian formulation of 
multi-level models see chapter 13 and also 
page 200 on cross-design synthesis.

Problems/advantages 
with methods
Advantages
Generally, mixed models in general can be viewed
as the best of both worlds. One can explain as
much variation as reasonable and in the process
possibly, create clinically important hypotheses 
for further investigation. The random effects 
term then accounts for whatever residual 
variation remains.

Disadvantages
There are drawbacks to this method. Firstly the
limitations of a random effects analysis (chapter
10) exist in this method as well, notably: 1) the

uncertainty from estimating σ2
θ from the data is not

incorporated in the model, 2) the need to assume
that the random effects are normally distributed
with constant variance. This is difficult to assess
when the number of studies is small (though a 
t-distribution can be used if preferred). Compound-
ed on these are all the pitfalls of fitting meta-
regression models (discussed in chapter 11). Aside
from these technical drawbacks, there are some
practical ones: Raudenbush (3) notes that as with
meta-regression models, the mixed-effect method 
is most useful when the number of studies is large,
and indeed cannot sensibly be attempted when 
very small numbers of studies are being combined.
It is worth noting that the methods outlined here
cannot deal with dose–response regression analysis,
for these see pages 157–61.

Further research

Similar further work issues to those covered in
chapter 11 are relevant here, but there is an
additional complication when using a multi-level
approach as the general model (12.9). This is the
question of how to choose which covariates are
included with random coefficients and which are
not, i.e. how do you decide whether there is suffi-
cient heterogeneity between the studies identified 
by the levels of a factor to allow for a separate
variance term to be included into the model. Whilst
a comparison of deviances between the various
models can be performed, such a method might 
not necessarily be appropriate, and further work 
is needed in this neglected area of mixed-effect
modelling, certainly with respect to meta-analysis.

As with meta-regression, there is the issue of
distributional assumptions, not only of the data, 
i.e. Ti dist N[–, –], but also of the random effects.
Previous work has often made choices on the
grounds of computational convenience.

It should be noted that practical applications 
of these models seemed a bit thin in the meta-
analysis literature.

More specifically, in considering their model,
Huque and Dubey report:

‘More theoretical and computational work is 
needed to assure the robustness of the estimates
derived, or to derive other robust estimates and
examine distributional aspects of the parameter
estimates in the model.’ (5)

Similarly, Berkey et al. (6) make suggestions for
further work needed on their model: 1) the
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development of an alternative estimator of the σ i
2

(the within-trial variances) because the two estim-
ators they considered provide biases on the results
in opposite directions, for both the no-covariate
and single-covariate model; 2) because each new
situation needs a new simulation study to deter-
mine the number of degrees of freedom of the 
t-distribution are necessary to get nominal cover-
ages close to the 90% and 95% levels, further work
defining a general rule would be desirable.

Summary

This chapter has extended the methods of meta-
regression in chapter 11, to allow for the existence
of between study heterogeneity that cannot be
adequately modelled by fixed covariates in a 
meta-regression model. The simplest models simply
allow for a single random effect term, whilst more
complicated models can allow for different levels 
of between-study heterogeneity associated with
differing levels of a factor using a hierarchical
modelling framework.
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Introduction
This chapter reviews the use of Bayesian (both 
full and empirical) methods that have been used 
in the synthesis of studies (meta-analysis). Bayesian
methods have become more frequently used in a
number of areas of healthcare research, including
meta-analysis, over the last few years (1–3). Though
much of this increase in their use has been directly
as a result of advances in computational methods, 
it has also been partly due to their more appealing
nature, and also specifically the fact that they
overcome some of the difficulties encountered 
by other methods traditionally used.

Unlike other chapters in this report a section
providing background material is given. This
includes a brief overview of what Bayesian methods
are, and perhaps more importantly the underlying
principles utilised. Whilst one of the reasons for 
the lack of use of such methods has been, that 
they required an understanding of the underlying
principles, it is also due partly to the fact that until
recently, there was little or no software available.
Hence, non-statisticians found the use of such
methods daunting, The first section of this chapter
attempts to give a non-technical introduction 
to them.

General introduction to 
Bayesian methods
Non-technical introduction
Bayesian methods can be considered as an
alternative to the classical approach to statistical
analysis. The name, originates from the Reverend
Thomas Bayes (1702–1761), who in papers publish-
ed posthumously (4), outlined a different system
for making statements regarding probabilities 
and random phenomena. At the heart of this
alternative system was an equation which forms 
the basis of all modern Bayesian theory. This is 
now commonly referred to as Bayes’ theorem.

Though this chapter is primarily concerned with
meta-analysis, it is perhaps instructive to consider
how Bayes’ ideas relate to a single study before
generalising it to the case when we have a number
of studies. Consider again the motivating example

outlined in chapter 5 on the relationship between
cholesterol reduction and all-cause mortality. The
first study, using cholesterol reduction as a primary
intervention in that meta-analysis was carried out 
in 1969, now, in a classical statistical framework the
analysis of that randomised trial would make use 
of only the data contained in the trial, it would
certainly not take into account any laboratory,
animal or non-randomised evidence. A Bayesian
analysis would proceed, at least initially, by first
summarising what the evidence of a relationship
was prior to the RCT being conducted, this might
be in terms of the OR or some similar measure of
relative effect. Obviously, this in itself raises a
number of issues; for example when extrapolating
from animal studies to humans different people
will hold different beliefs about how animal 
results will carry over to humans. They might 
also hold differing beliefs about how reliable the
evidence was from say a number, of perhaps small,
observational studies. The key aspect here is that
different people will interpret the evidence prior 
to the RCT being conducted differently. This is 
a key element of the Bayesian approach, namely
that different individuals have their own view of 
the world, and this introduces the idea of subjective
probability (5). Traditionally, probabilities attached
to specific events, say that a dice rolled will land
with a six facing up, have been objective, and whilst
this seems sensible for events such getting a six
from a dice, when we consider human phenomena
such interpretations have less meaning. Returning
to the trial example, assuming that an individual
has been able to summarise quantitatively their
beliefs prior to the RCT being performed, then 
the key question which the Bayesian approach
addresses is how do these beliefs change in the
light of the evidence generated by the trial? The
answer to such a question is that the prior beliefs 
of the individual are combined with the evidence
generated by the trial using Bayes’ theorem. The
resulting beliefs a posteriori to the trial are then the
beliefs the individual would hold if they updated
their prior beliefs in the light of the trial evidence
in a rational and coherent manner. A number of
points should be noted. First, the posterior beliefs
obtained by the application of Bayes’ theorem may
not indeed be the posterior beliefs held by an
individual, since that individual may not be rational
and coherent in their probabilistic reasoning.

Chapter 13

Bayesian methods in meta-analysis
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Secondly, it has been the explicit beliefs of an
individual that had been used, it could well be that
a group of individuals have collectively expressed
their prior beliefs regarding the possible relation-
ship between cholesterol reduction and subsequent
mortality. The issue of whose prior beliefs to use is
an important one, and is an aspect of the Bayesian
approach that has led to considerable criticism; it 
is discussed briefly below. The actual numerical
application of the Bayesian approach to this issue
of the first RCT in the cholesterol meta-analysis is
considered again on pages 92–5.

Despite Bayes laying the foundations many years
ago, it is only very recently that this approach has
been adopted, not least due to the computational
difficulties this method often poses. However, with
the increase in computing power, which has facili-
tated specialist software to be written, a complete
Bayesian analysis is now possible in many different
research fields, including meta-analysis. Although
increasing in popularity, this approach still has
some way to go before it is accepted as common
place in the science (medical) literature. It is also
responsible for causing strong polar reactions
among statisticians, who are either strong
advocators or opponents of the general
fundamental approach.

An issue raised above, and one that deserves 
more discussion in this section is the use of specific
prior beliefs. Indeed, the specification of prior
beliefs quantitatively is a difficult area, and one 
that to date has been neglected in the statistical
literature, as the ability to consider realistically
complex problems has been hampered by
computational difficulties.

To add confusion, there is another group of
methods which are termed empirical Bayes
methods, and which are discussed from a technical
perspective on page 95. The use of term empirical
Bayes methods is unfortunate since some methods
classified as such are not Bayesian at all. Generally,
empirical Bayes methods proceed just as fully Bay-
esian methods, except that they do not incorporate
subjective beliefs into the analysis, but rather
estimate the prior from the data. Thus, they 
help to add structure to a problem, but remain
‘objective’ in terms of interpretation.

An important point to note is that the use of Bayes’
theorem, the basis of Bayesian methods, is also
used in a diagnostic setting where manipulation 
of conditional probabilities is required. This
application has aroused no controversy, and 
is not considered in this report.

General advantages/disadvantages of
Bayesian methods
Whilst there are specific advantages to adopting 
a Bayesian approach, there are also a number 
of disadvantages. Below is a brief, and certainly 
not an exhaustive, list of some of the main
advantages and disadvantages.

Advantages
• Allows probability statements to be made 

directly regarding quantities of interest, e.g. 
the probability that patients receiving drug A
have better survival than drug B.

• Enables all evidence regarding a specific
problem to be taken into account rather than
just the current study, and thus allows a summary
of the current state of knowledge.

• Enables predictive statements to be made easily,
conditional on the current state of knowledge.

• Elicitation of prior beliefs requires investigators
to think carefully as to what they really do
expect. Combined with the elicitation of
demands, i.e. the magnitude of difference that
would be considered clinically significant, this
allows for an investigation into the initiation,
monitoring and stopping of studies.

• Similar units of analysis, i.e. in meta-analysis
studies, to borrow strength from other studies 
in estimating say an individual study effect.

• Bayesian methods lead naturally into a decision
theoretic framework which can also take into
account utilities when making health care or
policy decisions.

Disadvantages
• The use of prior beliefs destroys any element 

of objectivity.
• Eliciting prior beliefs is a non-trivial exercise,

and at present there are few guidelines to help
the Bayesian analyst. Though when also adopting
a decision theoretic framework much work has
been done in the elicitation of utilities.

• There is no automatic measure of statistical
significance such as a p-value.

• They can be computationally complex 
to implement, and thus time consuming 
to perform.

• At present, there are software limitations, 
though this is changing rapidly.

Technical background
As described above, the Bayesian approach can be
summarised as follows: opinions are expressed in
probabilities, data are collected, and these data
change the prior probabilities, through the
operation of Bayes’ theorem, to yield posterior
probabilities (6). Opinions are expressed in
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probabilities which implies that the subjective
beliefs of the researchers (or possibly experts from
the field/panel consensus), prior to conducting 
the analysis, form the starting point for the analysis.
These prior beliefs are than combined with the
data, in the form of a likelihood function, to
produce a posterior distribution, which takes 
both subjective and objective evidence into account.
It is in the incorporation of subjective beliefs that
the Bayesian approach differs greatest from the
classical viewpoint, which only considers objective
evidence. However, another key difference between
the Bayesian and Classical approach is the role 
that the likelihood function plays. In the classical
approach, the likelihood function defines the
support for various values of the parameter of
interest, conditional upon the observed data. In the
Bayesian approach since both the data and model
parameters are considered random, the condition-
ing may be reversed, and thus the Bayesian con-
siders the likelihood function to measure the plausi-
bility of the observed data condition upon the
parameters of the model (7). Although as part of
the following, a brief example an illustration of the
Bayesian approach to healthcare research is out-
lined, the interested reader is referred to any of the
following for a more detailed account of the Bay-
esian approach generally (8–14). For details regard-
ing Bayesian methods in randomised controlled
trials, the following can be consulted (15–26).

The use of a Bayesian approach to inference in a
single RCT is first considered. Considering the
example of the first trial in the cholesterol example
(see chapter 5), reported in 1969, more technical
details of how the Bayesian approach proceeds in
practice is given below. As mentioned above, the
key component in a Bayesian analysis is the way in
which a priori beliefs are updated in the light of new
data via Bayes’ theorem to yield posterior beliefs
about relevant quantities of interest. Assuming 
that the quantity of interest is denoted by θ, the
posterior density for θ, P(θ|Data), is given by

P(θ|Data) ∝ P(θ) P(Data|θ). (13.1)

In order that P(θ|Data) is a proper density a
constant of proportionality, k, is required so that
P(θ|Data) integrates in the continuous case or 
sums in the discrete case to one. Thus

P(θ|Data) = k P(θ) P(Data|θ), (13.2)

where k = ∫ P(θ) P(θ|Data) ∂θ, and is the 
integrating constant. All inference regarding θ
then proceeds via the posterior density P(θ|Data).
Various summary measures of location such as 

the posterior mean, median and mode can be
calculated for P(θ|Data) together measures of
dispersion such as the variance. Analogous to the
calculation of CIs, credibility intervals may also be
calculated. Such intervals have a direct probability
interpretation, i.e. they are intervals in which θ lies
with a certain probability. An important extension
to the use of credibility intervals is the notion of
highest posterior density intervals, which again
have a direct probability interpretation, but are also
unique intervals such that any specific value of θ
outside the interval has lower point probability
than points within the interval. Other summary
measures such as the probability that θ is greater
than a certain value of that θ lies in a certain inter-
val may all be calculated directly from P(θ|Data).
Finally, one further aspect of a Bayesian analysis
which is often required is the ability to predict
future observations, conditional upon the data so
far and a priori beliefs. In order to make such
predictive statements the predictive density is
required, and is given by

P(x |Data) = ∫ P(x |θ) P(θ|Data) ∂θ (13.3)

where x is the future observation.

So far, the assumption that there is only parameter
of interest, θ, has been made, but often in many
healthcare research settings there are a number of
parameters which though not necessarily of direct
interest have to be considered in the analysis. For
example, in regression we may only be interested 
in the slope of the regression line but we also have
to estimate the intercept. Such parameters, which
are of secondary interest, are termed nuisance
parameters. The Bayesian methods outlined 
above follow when there is more than one
parameter, but extra complications arise. 
Thus, (13.2) becomes

P(θ|Data) = k P(θ) P(Data|θ), (13.4)

where θ is a vector of parameters and k = ∫θ P(θ)
P(Data|θ) ∂θ. Although in theory Bayes’ theorem
can still be used quite straightforwardly even in the
multi-parameter setting, it is often of interest to
obtain a summary of posterior beliefs regarding a
single parameter of interest or a function of the
parameters of interest. This can be achieved by
obtaining the marginal posterior density. Thus, if
the first element of θ, θ1, was of interest but the
other elements of θ were not, these being denoted
by θ–1, then the marginal posterior density for θ1,
P(θ1|Data), is obtained by integrating out the
nuisance parameters, θ–1, from the joint posterior
density, P(θ|Data). Thus



Bayesian methods in meta-analysis

94

P(θ1|Data) = ∫θ–1 P(θ|Data) ∂θ–1 (13.5)

The marginal posterior density for θ1 can now be
used in exactly the same way as the posterior
density in the single parameter case.

As can be seen by (13.2), (13.4) and (13.5), the
routine use of Bayesian methods requires a number
of possibility high dimensional integrals to be
evaluated. It is this that has hampered the practical
application of such methods for a considerable
period of time. Essentially, three possible methods
are available for their evaluation; asymptotic
approximation methods, quadrature (numerical
integration) methods and simulation (27). Though
all three methods have been used, in practice the
first two methods are only practicable when there
are a relatively small number of parameters
involved. Recently much work has been carried out
in developing simulation based methods, and in
particular on a group of methods broadly classified
as Markov Chain Monte Carlo (MCMC) methods
(28). Within this broad range of Monte Carlo
simulation methods, one method, Gibbs sampling,
has been increasingly used in applied Bayesian
analyses within a healthcare research setting
(2,28,29). The appeal of this method is that in
wanting to summarise a posterior density, and in
particular a marginal posterior density, simulating
from often a high dimensional joint posterior
density is often difficult, but the posterior con-
ditional distributions, i.e. P(θ1|θ–1,Data), are often
much easier to sample from. Gibbs sampling uses
this fact, together with ergodic theory which says
that if the conditional densities are sampled from
for a sufficiently long period of time, then the
realisations will approximate the marginal posterior
densities (28,30,31). Though one advantage of
Gibbs sampling is its simplicity, and it can be
performed in any programming environment, 
the development of a specific package, BUGS (32),
has greatly increased its appeal and use.

An alternative method for implementing 
Bayesian analyses in practice is to use a specific
prior distribution, which when combined with
certain likelihood functions yields a posterior
distribution from the same family as the prior
distribution. In addition, if the family of distri-
butions is relatively standard then this will enable
summary statements to be made more easily (33).
For example, if dealing with continuous data, and
an assumption of normality can be reasonably
made, and assuming that the mean is the para-
meter of interest, then by using a prior distribution
for the mean, which is also a Normal distribution,
the resulting posterior distribution is also a normal

distribution. Thus, in this one parameter case
making inferences about the posterior beliefs of
the mean only involves summarising a Normal
distribution. Such models are termed conjugate
models, and other examples include the beta-
binomial model, i.e. beta prior distribution,
binomial likelihood, beta posterior distribution,
and the gamma-Poisson model, i.e. gamma prior,
Poisson likelihood and gamma posterior. Though
all three models are single parameter models, they
have the advantage of being fully tractable and
often serve as an initial analysis.

As mentioned on pages 91–2, a key aspect of 
a Bayesian analysis is the role that the prior
distribution plays, and indeed one of the criticisms
of the Bayesian approach is its dependence on such
prior distributions. The specification/elicitation 
of prior beliefs, especially in a multi-parameter
setting, is also a non-trivial task. Therefore, a
number of approaches have been developed in
which vague prior distributions have been used, 
so that the data effectively dominate the prior
distribution. One possibility is for P(θ) or P(θ) to
be simply a constant, in which case the posterior
density is in fact the standardised likelihood.
Unfortunately, the use of vague prior distributions
such as this means that they are not always invariant
to transformations, and thus an alternative is the so
called Jeffreys’ prior (34). The key message is that
the use of prior distributions is an important area
and in any Bayesian analysis a sensitivity analysis in
which a variety of prior distributions are used is a
crucial aspect of any analysis.

Obviously, the details that have been discussed 
so far are somewhat abstract; on pages 95–100,
Bayesian methods are specifically applied to the
problem of meta-analysis. However, below, a
Bayesian analysis of the first trial of the cholesterol
meta-analysis is presented as a worked example
using a normal–normal conjugate model.

Example
As previously mentioned, one has to express their
prior beliefs in terms of a parametric distribution.
For the sake of simplicity say the data are viewed 
as a random sample of size n from a normal
distribution with unknown mean θ and known
standard deviation σ, and the goal is to assess 
one’s uncertainty about θ in light both of the 
data and of prior information.

Assuming that the summary statistic for the data,
x n, can be assumed to be normally distributed then

xn ~ N [θ,σ2/n].
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Assuming further that the a priori beliefs regarding
θ can be expressed as a normal distribution with
mean θ0 and variance σ 2/n 0,

θ ~ N[θ0,σ2/n 0]

and the resulting posterior distribution is given by

θ | x n ~ N[(n 0 θ0 + n x n)/(n + n 0), σ 2/(n + n 0)]

where xn is the log(OR) σ 2 = 4 (25).

In terms of the first primary study in the cholesterol
meta-analysis, the observed data were 174 deaths
out of 424 patients on the treatment arm, and 
178 deaths out of 422 patients on the control arm.
Thus, the log(OR) is –0.05, and n = 352. Assuming
that our a priori beliefs were consistent with a
log(OR) of zero, i.e. no effect, but assuming
uncertainty associated with this belief being
represented by a hypothetical trial in which 100
events were observed, then θ 0 = 0 and n 0 = 100.
Thus, the posterior distribution is

θ|xn ~ N[(100 0 + 352 –0.05)/(352 + 100),4/(352 + 100)]
~ N[–0.04,0.092]

Thus, we can see that the posterior mean for θ has
been shifted slightly towards zero as a result of the
prior beliefs, but that the amount by which is has
been modified is in proportion to the ratio of the 
a priori and observed variances. The other point 
to notice is that the posterior variance, 0.008, is
smaller than the observed variance, 0.01, reflecting
the fact that there has been an increase in the
amount of evidence on which the analysis has 
been based.

Empirical Bayes
A group of methods termed empirical Bayes 
have become increasingly used in healthcare
research, though there is also a considerable body
of literature on these methods generally (35–41).
Such methods have acquired the term empirical
Bayes because they make use of some of the
methods of the Bayesian approach, but the key
aspect of subjective probability and inclusion of
subjective beliefs do not carry over. Such methods
are termed Bayes because they use the idea of a
prior distribution to impose some sort of structure
on a problem, but they do not use subjective a
priori beliefs to derive/elicit actual numerical values
for the hyper-parameters of the prior distributions.
Instead they estimate the most plausible values of
the hyper-parameters from the data. The key issue
is that empirical Bayes methods only use the actual
observed data, though some element of subjective

judgement does have a role to play in the choice 
of the form of the prior distribution, as using
different prior distributions may change the 
results of an analysis by imposing different
structures on the problem.

For example, consider data x 1,…,x n assumed 
to be derived from a normal distribution with 
mean µ and variance σ2, and that σ2 is assumed
known but that µ is unknown. Suppose a prior
distribution is to be assumed for µ, such that this to
is a normal distribution with mean η and variance
τ. In a fully Bayesian analysis, the hyper-parameters
η and τ would be completely specified by an
individual, but in an EB analysis would estimate 
the most likely values of η and τ given x1,…,xn, 
the data. Thus

P(µ|x) = k P(µ|η,τ) P(x|µ) (13.6)

where η and τ are such that

m(xi) = ∫ P(xi|µ) P(µ|η,τ) ∂µ (13.7)

and where the marginal for x 1,…,x n, is given by
m(x) = ∏i = 1m(xi). η and τ are then chosen such that
m(x) is maximised. Obviously, evaluation of (13.7)
requires integration, though by making a number
of assumptions, such as normality, analytically
tractable solutions exists for a number of 
special cases.

Applications of Bayesian methods
in meta-analysis
Having established the idea behind a Bayesian
analysis in the previous section, here we explore
how it can be applied in the context of 
meta-analysis.

Bayesian meta-analysis of normally
distributed data
Many of the authors who have considered a
Bayesian approach to meta-analysis have indeed
extended the normal theory model outlined on
pages 4–5 to a hierarchical setting (42–48). In 
other areas of statistical science such Bayesian 
hierarchical models have been used for a
considerable time (49,50). Before considering
specific approaches taken, a basic hierarchical
model similar to the random effects model of
chapter 10 is outlined.

Assume that the i th study in a meta-analysis can 
be summarised by an outcome measure yi , for
example, a log(OR) or difference in means, and 
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that associated with the outcome measure is a
within-study variance σ2

i, and the size of the study
ni , then the first level of the model relates the
observed outcome measure yi to the underlying
effect in the i th study θi. At the second level of the
model the θi s are related to the overall effect in 
the assumed population from which all the studies
are assumed to have been sampled η, and τ 2 is the
between-study variance or the variance of the
effects in a population. So far the derivation of
such a model is exactly analogous to the random
effects model of chapter 10. However, from a
Bayesian perspective, a number of unknown
parameters exist which are to be estimated, σ2

i, 
µ and τ 2 and therefore require prior distributions
in a Bayesian setting. Thus, denoting an arbitrary
prior distribution by [-,-] the model has the
following form

y i ~ N[θi ,σ2
i/n i] σ 2

i ~ [-,-] i = 1,…,k
θ i ~ N[µ,τ 2] (13.8)
µ ~ [-,-] τ 2 ~ [-,-]

Having specified the three required prior
distributions in terms of the relevant hyper-
parameters, estimation can then proceed using 
a number of computational approaches as out-
lined on pages 4–5. However, the assumption of
normality that has been made here, combined with
the fact that there are often a reasonable number
of studies in any specific meta-analysis make such
models particularly suited to MCMC methods.

However, the specification of the prior distributions
is not a trivial task and the choice of which prior
distribution to choose has received considerable
attention recently. (51,52)

Inference regarding θi

Obviously sometimes interest focuses upon the
individual study effects, the θis, and conditionally
upon µ and τ 2 the θi s have analytically tractable
expressions for the mean and variance, 
which are

E[θi|y, µ, τ2] = B µ + (1 – B)yi

(13.9)
= µ + (1 – B)(yi – µ)

and the posterior variance is

σ i
2

V[θi |y,µ,τ2] = (1 – B) (13.10)
ni

where
σ i

2/ni

Bi = (13.11)
σ i

2/ni + τ2

These expression are analogous to those in 
chapter 10 for the classical random effects model,
but they are conditional upon both µ and τ 2 being
known. They show that the effect in the ith study 
is shrunk towards the overall population mean by 
a B, and thus from (13.11) it can be seen that for
studies which have a larger within-study variance
there will be more shrinkage than for less
heterogeneous studies.

Obviously, estimates for both µ and τ2 are required.
As the model stands, it can be thought of as an EB
approach, with µ and τ2 defining the prior distri-
bution, i.e. the second level of the model, for each
of the θi s. They could be estimated from the data
using either a method of moments or restricted
ML. However, expressions (13.9) and (13.10) for
the mean and variance of the θi s at present do not
account for the fact that they have been estimated.
Carlin (53) has shown that under an assumption of
non-informative locally uniform prior distributions
for both µ and τ 2 expressions (13.9) and (13.10)
may be re-written to take into account the fact 
that µ has been estimated, but are still conditional
upon τ 2. Thus

E[θi|y, τ 2] = µ + (1 – B)(yi – µ) (13.12)

V[θi|y, τ 2] = wi σ 2
i + (1 – wi)2 τ 2/∑i wi (13.13)

where wi = (1 + σ 2
i /τ 2)–1 and the second term in

(13.13) estimates the posterior covariance between
two study effects. In order to obtain estimates which
are totally unconditional numerical methods have
to be employed, since the joint posterior density 
for θi s and τ 2 has to be integrated with respect to 
τ 2. In essence, a fully Bayesian analysis is required
and unfortunately no analytically tractable
solutions exist.

Inference regarding µ
Often, the main focus of interest is µ, the 
overall population effect. As with inferences
regarding the θi s it is only possible to obtain 
simple expressions for the mean and variance 
of µ conditional upon τ 2 when vague non-
informative prior distributions are assumed 
for both. Thus

E[µ|y, τ 2] = ∑i w i y i /∑i w i (13.14)

V[µ|y, τ 2] = τ 2/∑i w i . (13.15)

As with inferences regarding the individual effects
above, in order to obtain posterior mean and
variance unconditional upon τ 2 numerical methods
have to be employed.
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Inference regarding τ 2

From a classical perspective, chapter 10
demonstrated how τ 2 can be estimated as effectively
negative, i.e. the within-study variability is greater
than the between-study variability. From a fully
Bayesian perspective, such a situation is not possible
under any plausible prior distribution (see below).

Choice of prior distributions for σ2
i,

µ and τ2

Before discussing particular technical details, the
issue of the choice of σ 2

i deserves mention. Some
authors have claimed that whether the σ 2

i s are
assumed known and replaced with the observed
within-study variances or whether they are assumed
random and therefore have a prior distribution
specified makes little practical difference a part
from when there are a number of small studies
(Carlin, 1992). If the σ 2

i s are considered random
and therefore a prior distribution required then a
number of possibilities exist. The most frequently
used prior distribution is P(σ 2

i) ∝ 1/σ 2
i which

corresponds to a Jeffreys’ prior. Although appeal-
ing for theoretical reasons, such a prior distribution
is not always feasible in practice, and a commonly
used alternative distributional-based prior is an
inverse gamma distribution. This distribution is
particularly flexible, and can accommodate a
number of possible scenarios, it also has the benefit
of only being defined on the positive real line.

In terms of a prior distribution for µ it is common
practice to either assume a particularly vague
proper prior distribution or to use a uniform
distribution over the whole real line, reflecting the
fact that we often wish to remain relatively objective
about inferences regarding the pooled overall
effect. Frequently, though a suitably vague normal
distribution is used as a prior distribution for µ
since this can aid estimation of the parameters.
Obviously the use of any prior distribution should
be subjected to a sensitivity analysis.

Bayesian meta-analysis of binary data
All the model derivation on pages 95–7 has assumed
that the outcome measure for each study can be
assumed to be normally distributed. Whilst making
such an assumption facilitates estimation, this might
not be tenable from a practical point of view.

Two possible model formulations exist, and have been
considered to date. Consonni and Veronese (54) con-
sider the modelling of binary outcome data in meta-
analyses directly in a hierarchical model, with the
observed responses in a single arm of the trial being
modelled using binomial distributions, with conjugate
Beta distributions at the further levels of the model.

Though such an approach is computationally
attractive, due to the conjugate nature of the model, it
is of limited value in comparative experiments.

An alternative model formulation, which has been
adopted by a number of authors (55–61), is briefly
described in a general form below. In this approach,
although the observed responses in each arm of a
trial are assumed to follow a binomial distribution, 
a suitable transformation is then applied, frequently
logit in nature, to the rates parameters. Following
such a transformation there model formulation pro-
ceeds as on pages 95–7, though parameter estim-
ation requires some form of numerical, simulation,
or approximation method, to be employed.

Consider a two-arm study in which r1 and r2 are the
observed number of responses out of n1 and n2,
respectively. Then the first level of the model is

r1 ~ Bin[π1,n 1] r 2 ~ Bin[π2,n 2] (13.16)

where π1 and π2 are the two unknown rate
parameters for the two arms of the study. Consider
now the logit transformation of each of the two 
rate parameters such that

log(π1/1 – π1) = µi – δi /2 (13.17)
log(π2/1 – π2) = µi + δi /2

δi is now the parameter of interest, being the
log(OR). This is often then assumed to be approxi-
mately Normally distributed and the second level 
of the model becomes

δi ~ N[φ,τ 2] (13.18)

where φ represents the overall pooled effect, on a
log(OR) scale, and τ 2 is a measure of the between
study heterogeneity. As on pages 95–7, a fully Baye-
sian analysis prior distributions have to be specified
for both φand τ 2. Thus, as before the final level of
the model is

φ~ [-,-] τ 2 ~ [-,-] (13.19)

The key difference between this model and (13.8)
is the assumption that at the lowest level of the
model the responses in each study are modelled
directly. In (13.8) calculation of the log(OR) when
there are zero or complete responses in any studies
requires various assumptions to be made, usually by
the addition of ‘small’ constants to the responses
frequencies. It is this assumption of normality of
the log(OR) or other transformed measures of
binary data in models such as (13.8) that is
frequently not validated.
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Empirical Bayes methods in 
meta-analysis
The use of EB approaches has received much
attention in the literature since until recently 
the use of a fully Bayes approach has been
hampered by computational difficulties
(36,37,59,62–66).

However, the EB methods that have been used 
have almost exclusively assumed that the ‘prior
distribution’ has been the second level of the
Bayesian hierarchical model (13.8), and that the
hyper-parameters, in this case µ and τ2, have then
been estimated from the data. Such an approach is
analogous to assuming instead a three-level model
as (13.8) and assuming uniform prior distributions
for both µ and τ 2 as used by Carlin (53), and
indeed the parameter estimates obtained using
such an approach are given by (13.12)–(13.15). 
In addition, Smith et al. (57) and Biggerstaff et al.
(67) explain that the random effects model of
DerSimonian and Laird (68) (see chapter 10)
could be viewed as an EB approach. The main
drawback with this, though, is that no allowance 
is made from the fact that τ 2 has been estimated
from the data, using either ML or moment
estimation methods. Indeed, Carlin (53) goes 
on to show that in order to take account of this,
some form of quadrature or simulation method 
is required.

In theory, distributions other than uniform
distributions could be assumed and the hyper-
parameters of these prior distributions could be
estimated from the data, utilising the general
concept of EB methodology outlined on page 95.
However, such an approach, though appealing in
that it retains the objectivity afforded by the
empirical approach and allows for the fact that
both µ and τ2 have been estimated from the data, is
as computationally complex as a full Bayesian
approach, and it is no doubt for this reason that
such a method has not been utilised in practice.

Advantages/disadvantages of Bayesian
methods in meta-analysis
Advantages
Unified modelling approach
By using a Bayesian modelling approach for
combining studies, the debate over the appro-
priateness of fixed and random effect models (see
pages 104–5) is overcome, whilst at the same time
including the possibility of regression models (57).

Borrowing strength
Borrowing strength can be seen as a by-product 
of a fully Bayesian meta-analysis model. When 

study estimates are combined, the model updates
estimates of the individual studies, taking into
consideration the results from all the other studies
in the analysis. Thus, narrower CIs will be obtained
for each individual study, by borrowing strength
from all other studies. As well as reducing the width
of the CI, the point estimates of the individual
studies will also be affected, moving them closer
together towards the overall pooled estimate. 
Gaver et al. (69) report that a variety of statistical
ideas and terms are used to describe this concept,
including shrinkage, empirical Bayes and
hierarchical Bayesian modelling.

These concepts are particularly useful if one is
interested, not in some overall, ‘average’, of the
study results, but instead about making inferences
about any particular treatment effect, then results
from the other studies can be used to, ‘improve’,
this estimate. This leads to better point estimates
and shorter interval estimates of any particular
effect. Gaver et al. (69) note that approaches to
borrowing strength, with applications to medicine
and health, are much rarer than the meta-analytic
approach that focuses on estimating population
parameters. However, he does point out that
DuMouchel and Harris (44) elaborate such a
method to improve estimation of cancer effects in
humans, by borrowing strength from experimental
data on laboratory animals in experiments using
the same carcinogens, and Raudenbush and Bryk
(63) propose estimation by EB and Stein-type
methods; though Morris (65) points out Stein’s
estimator, used in borrowing strength, can only be
used when the variances of the studies are the same
(i.e. almost never). In addition Laird and Louis
(70) and Carlin and Gelfand (1990) give para-
metric and bootstrap methods for constructing 
EB CIs which may be applied to obtain individual
study estimation. Indeed, recently interest in the
concept of borrowing strength has increased with
respect to institutional comparisons, see
Spiegelhalter and Goldstein (71).

Allowing for all parameter uncertainty
EM (simple models) and classical approaches do
not allow for the fact that both µ (mean), and τ 2

(the between study variance) have both been
estimated from the data.

Allowing for other sources of evidence
Often meta-analyses are conducted in substantive
areas in which evidence is available from sources
other than RCTs, the main source of evidence, i.e.
when the majority of evidence is from RCTs, but
other evidence exists in the form of observational
studies (see chapter 26 for more information).
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Ability to make direct probability statements
Tweedie et al. (72) can give a probability that the
effect is above (or below) one (i.e. direct answer 
to question of interest).

Prediction
Using a Bayesian analysis [specifically equation
(13.3)], it is possible to incorporate evidence from
previous trials into the design of a new one (73).
Using this approach, one can take the result of a
meta-analysis and calculate the probability that the
current/planned study (fixed sample size) will
produce conclusive results.

Disadvantages
Specification of prior distributions
When carrying out a Bayesian analysis, one needs
to specify distributions for the population effect
size (µ) and the between-studies standard deviation
(τ) in true, underlying effect sizes. Louis and
Zelterman report:

‘Generally, this elicitation is done by asking the
respondent for a ‘best guess’ for the mean or median.
Using this measure of centre to anchor the
distribution, the respondent is asked for additional
percentiles of the distribution. An individual who has
‘no idea’ of values for these parameters would specify
that A (the prior variance of µ) is extremely large and
that the distribution for τ also has a large variance.
Such priors are called ‘non-informative.’ Generally,
reasonable ranges can be specified for parameters,
even if one cannot produce much detail of relative
probabilities within the range.’ (74)

They go on to comment that:

‘Although we may ‘all think like Bayesians’, it can be
extremely difficult to evaluate and communicate prior
opinions, and considerable research continues on this
aspect of Bayesian analysis.’ (74)

Sensitivity to prior distributions
Importantly, a meta-analysis is not conducted to
inform a single individual, but to communicate the
current state of information to a broad community
of consumers. If the prior distributions differ
substantially for different consumers, then the
related Bayesian analyses can produce qualitatively
as well as quantitatively different results. Therefore,
it is important to perform a sensitivity analysis 
over the range of opinions. If conclusions are 
stable then we have ‘findings’. If they are not, 
the collection of Bayesian analyses underscores 
the finding that the data are not sufficiently

compelling to bring a group of relevant 
consumers to consensus. This situation should
motivate additional primary studies.

Calculation of posterior
Producing the posterior distribution and
computing it can be difficult. In the continuous
case, one needs to evaluate complicated integrals
that replace the summations in the preceding
formulae, and only the most basic models are
mathematically tractable. Until recently, more
complex but still quite basic models were handled
by approximating the posterior mean and variance.
However, recent advances in computational
approaches allow the analyst to produce full
posterior distributions for complicated models.

Comparison of classical and Bayesian approaches
A number of authors have explicitly compared
classical and Bayesian approaches to meta-analysis;
these are briefly reviewed below.

Carlin (53) compares Bayes and EB estimates. 
He observes the empirical ones are artificially
accurate, i.e. the variance of the pooled estimate 
is too small.

Smith et al. (57) compare many methods (and
software packages) for carrying out meta-analysis,
including fixed, random and full Bayesian models.

Su and Po (75) compare EB, fully Bayesian, and
classical fixed-effect methods. They use four data
sets including beta-blockers as treatment for
myocardial infarction, and case control studies
investigating the association between smoking 
and lung cancer. They concluded that Bayesian
methods were more conservative, with the fully
Bayesian model producing the widest CIs. They also
report that the use of any one method exclusively
would not have changed the conclusions, though
when the heterogeneity was artificially increased
Bayesian methods straddled unity while the other
methods did not. Differences did exist though in
the point estimates and CIs for specific studies
(particularly small ones). The authors report 
that the importance of these differences 
needs investigating.

Biggerstaff et al. (67) compare classical with
Bayesian techniques (includes random effects and
EB methods) for case–control studies of passive
smoking in the workplace.1

1 This study is also noteworthy in that it compares different methods for investigating individual study estimates also,
namely the use of Fisher’s exact, Mantel–Haenszel, and logit methods.
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Tweedie et al. (72) compare classical (random
effects) and Bayesian (exact) methods with similar
conclusions to those of Biggerstaff et al. (67).

Rogatko (56) compares random effects, asymptotic
Bayes and exact Bayes methods using the risk
difference scale on both simulated and real data.

Finally, Morris (65) compares fixed effects, random
effects, likelihood, adjusted likelihood, and Bayes
(Gibbs sampling) methods.

Extensions and specific areas 
of application
Incorporating study quality
The assessment of and inclusion of study quality
was considered in chapter 6. Clearly the quanti-
tative assessment of a measure of study quality may
be included in a Bayesian analysis in the same way
that it might be in a classical analysis, and exten-
sions of the Bayesian meta-analysis models con-
sidered earlier to incorporate covariate information
are presented on below. Alternatively, the assess-
ment of study quality by one or more experts or
expert meta-analysts may be considered either in
the form of elicited a priori beliefs regarding an
underlying quality process, i.e. treated as random/
latent variables in a meta-analysis or as, perhaps
after suitable transformation, a set of prior distri-
butions directly for one of the model parameters,
perhaps the individual study variances that are to
be used in some form of weighting of the studies.

These various scenarios raise a number of
questions, the key one of which is what is data 
and what are prior beliefs (74).Whilst all three
approaches are feasible in practice relatively little
work has been conducted in this field. Smith et al.
(76) considered the inclusion of quality in relation
to the probability of publication of studies, since
there is often assumed to be a relationship between
the two, whilst Smith et al. (51) considered the
inclusion of quality in relationship to the credibility
of different research designs in a generalised
synthesis of evidence approach, in which prior
distributions were assumed for the variance
parameters so as to reflect varying degrees 
of credibility.

Covariates
To date many of the applications of Bayesian
methods in meta-analysis have been to mirror the
random effects models of chapter 10. This has 
been partly due to the computational difficulties in
applying fully Bayesian models, and partly due to

the fact that the use of Bayesian methods in meta-
analysis has been at the beginning of a learning
curve. In theory extension of model (13.8) and
(13.18) poses no difficulties, with µ being replaced
by βTx i, where β is a vector of regression co-
efficients and x i is a vector of study-level covariates.
In a Bayesian setting just as a prior distribution was
required to be specified for µ, one also needs 
to be specified for β. In such settings it would
appear that the use of MCMC methods (see pages
92–5) is particularly appealing, since the inclusion
of extra parameters will almost certainly preclude
the use of other numerical methods. The inclusion
of covariates in a Bayesian meta-analysis has been
considered by Louis and Zetlerman (74).

The use of such covariates raises a number of
issues. First, is the problem of when there is 
data at both the study level and the patient level. 
In theory such a scenario could be accommodated
with a more complex hierarchical model (see page
102). Another issue is that study-level covariates,
especially when derived from published studies,
may be subject to various measurement errors.
Measurement error here is used in its broadest
sense. For example, assume that studies report 
the average age of patients included, and that it
appears that age is an important factor in explain-
ing between-study heterogeneity. If for some studies
age was only in fact obtained on a subset of the
total patients in a study, then potential biases 
could be introduced into any analysis.

Model selection
As with any modelling exercise, the eventual
selection of a ‘final model’ is a difficult task, 
and one which in the meta-analysis literature has
received little attention. This is partly as a result 
of the relative lack of use of regression models
generally, both Bayesian and classical. That having
been said, one aspect of model selection that has
received considerable attention and aroused
heated debate is the choice between fixed and
random effect models (see chapter 10). From a
Bayesian perspective, this is almost a non-sequitur,
since exploration of the marginal posterior
distribution for τ 2 will yield an assessment of any
between-study heterogeneity present. However,
Abrams and Sansó (77) have considered the 
choice between such models within a Bayesian
framework using BFs to discriminate between 
the two models. For an introduction to BFs 
see (78).

The key idea is that the posterior probabilities 
of the models are obtained using Bayes’ theorem.
Thus, consider two models M1 and M2, and the 
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a priori probabilities of the models being correct
P(M 1) and P(M 2), such that P(M1) + P(M 2) = 1,
then the ratio of the posterior probabilities is 
given by

P(M1|Data)/P(M2|Data) = (13.20)
P(Data|M 1)/P(Data|M 2) × P(M 1)/P(M 2)

where P(Data|M 1)/P(Data|M 2) is referred to as the
BF. Thus, the BF is similar to the likelihood ratio,
except P(Data|Mi) is given by

P(Data|Mi) = (13.21)
∫θi P(Data|Mi, θi) P(θi |Mi) ∂θi

where θi is the vector of parameters associated with
model Mi. Various scales have been advocated for
the assessment of BFs (78), but one advantage of
their use is the fact that if the actual posterior
probabilities for each model is calculated, then
these can be used to average across all models
considered. This has the attractive advantage of
avoiding the choice of any particular model, and
also taking into account the fact that there is not
only uncertainty associated with each of the
models, but also between the models. Such model
averaging cannot only be applied to the simple case
where only fixed and random effects models are
considered, but also when there are various models
defined by covariates (both fixed and random).
Abrams and Sansó (77) consider model averaging
with respect to the cholesterol meta-analysis
introduced in chapter 5, in which a comparison
and averaging was performed with respect to a
fixed, random, fixed regression and mixed 
effect model.

Missing data
As in any healthcare research setting, data are
frequently missing. In meta-analysis missing data
may either be at the study level or at the patient
level; when patient information is available, it may
also be that data is missing either in terms of
covariate information or in terms of outcome
measures. General issues concerning missing 
data are considered in chapter 17.

Whilst there has been considerable research into
missing data generally in healthcare settings from a
Bayesian perspective, this has been concentrated in
terms of data within individual RCTs, and in the
area of longitudinal data analysis (29,79) in essence
using data augmentation techniques (80), there
has been relatively little work in a meta-analysis
setting [however, see Lambert et al. (81)]. This
latter paper considered the case when mortality
data from five different centres investigating

neuroblastoma was pooled, and there was random
and systematic missing covariate tumour marker
data, and utilised the methods of Best et al. (29).

Publication bias
Recently, an area that has received attention from 
a Bayesian perspective is the issue surrounding
publication bias. Essentially, two approaches have
been taken. The first attempts to estimate the level
of publication bias present and to make allowance
for it in the subsequent analysis. The second,
though similar approach, attempts to estimate 
the number of unpublished studies in a particular
substantive field. Obviously both approaches have 
a common component, namely assuming that there
exist a number of unobserved studies (or latent
data), and that ideally inferences regarding the
efficacy or effectiveness of any technology utilises
both sources of evidence.

Givens et al. (82), Tweedie (83), and LaFleur (84)
all consider a data augmentation approach to
accommodate the latent data structure, with a
weight function expressing the probability that 
any particular study, observed or not, is published
which is dependent upon the study’s associated 
p-value. In a similar manner, Larose and Dey (85)
also adopt a data augmentation approach though
they explicitly adopt a distributional form for the
density of the unobserved studies, which is
dependent upon a vector of unknown parameters.
This formulation can accommodate the possibility
that the probability of studies being published 
may be dependent upon a number of covariates,
e.g. quality, size, statistical significance. Both
approaches use MCMC methods to estimate the
model parameters, and Larose and Dey (85) also
go on to consider the use of BFs as a means of
selecting between various competing models. In a
similar manner to both the previous approaches,
Paul (86,87) considers the use of a weight function
within a hierarchical selection model, but also
considers the situation when the weight function/
density is modelled non-parametrically, this
approach is not extended to the case when
covariates are included in the model.

Gleser and Olkin (88) and Eberly and Casella (89)
both consider the estimation of the number of
unseen/unpublished studies in a meta-analysis. 
As opposed to the previous approaches which all
had the main aim of estimating an overall effect
making allowance for publication bias, these two
approaches directly model the number of studies
that were not found in a literature search. Eberly
and Casella (89) assume that the total number of
studies can be modelled via a negative binomial
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distribution, which depends upon the probability
of publication. In turn, through specification 
of a beta prior distribution for the probability of
publication, this will depend upon the probability
of obtaining a statistically significant result. In
order to obtain the marginal distribution for the
total number of studies unconditionally upon the
probability of publication, MCMC methods are
required to perform the corresponding inte-
gration. Gleser and Olkin (88) also consider a
negative binomial model, but rather than using
MCMC methods to estimate the model parameters
use ML/EB methods. For more information on
publication bias see chapter 16.

Cumulative meta-analysis
Cumulative meta-analytic techniques introduced 
in chapter 25 are inherently Bayesian, since the
sequential updating of the current state of know-
ledge concerning a particular technology or
technologies mirrors that used in Bayes’ theorem.
However, to date little work has been done in the
application of Bayesian methods to the problem of
cumulative meta-analysis with the exception of Lau
et al. (90) and Schmid et al. (91). Indeed, both of
these papers, although explicitly acknowledging
the strong similarity between the two approaches,
do not formally adopt a Bayesian methodology. 
A further link is that with decision theory, that 
in using a cumulative or temporally sequential
approach, a decision is ultimately made, either
formally or informally, that there is sufficient
evidence to warrant the adopting of a particular
technology in routine healthcare practice. To 
date, however, there has been little or no work 
in this area (92).

Hierarchical models
The use of Bayesian methods that mirror the
random effects models considered in chapter 10
continue to make the assumption that all studies
can be considered on an equal footing, and that
any one study can be used to help inform infer-
ences made about any other study, i.e. the notion 
of exchangeability. This may not be a reasonable
assumption for a variety of reasons, and when it is
not, a hierarchical modelling framework allows
some relaxation of this assumption by grouping
studies that can be considered exchangeable. The
theory underlying the use of hierarchical models
has been studied within the mainstream Bayesian
literature by a number of authors (9,49,93), and
many of the more salient features of such models
have been identified.

For example, in the cholesterol example of 
chapter 5, it might be postulated that drug 

studies were in some way similar, and similarly 
that diet intervention studies were similar, but 
that any one drug study could not directly inform
the results of any one diet study. Thus, individual
studies would be nested within type of intervention.
Algebraically, such a model would be an extension
of (13.8) and could be formulated as

yij ~ N[θij ,σ2
ij/nij] σ2

ij ~ [-,-] i = 1,…,Ij j = 1,…,J
θij ~ N[νj ,ωj] ωj ~ [-,-] (13.22)
νj ~ N[µ,τ 2]
µ ~ [-,-] τ 2 ~ [-,-]

where subscript ij refers to the i th study in the j th
category, and thus ωj refers to the overall pooled
effect in the j th category, and ωj is a measure of the
between-study heterogeneity in the j th category,
whilst µ is the overall population effect and τ 2 is a
measure of the heterogeneity in this effect between
the J categories.

Use of such models has been relatively limited due
to computational complexities, though again as
with a number of areas the recent increase in the
use of MCMC methodology such methods are
becoming feasible in practice. Interestingly from a
Classical perspective such models often referred to
as multi-level models (94) or random component
models (95) have been increasingly used in a
variety of healthcare settings with the advent 
of relatively user-friendly software.

In adopting a hierarchical approach to meta-
analysis, there are strong similarities with other
areas of application in the healthcare settings. 
Two particularly relevant ones are in multicentre
clinical trials and repeated measures data. In the
former, centres take the role of studies, with
patients nested within both, and other levels of 
the hierarchy correspond to factors which define
groupings of centres/studies within which
centres/studies are exchangeable. In the situation
when IPD is used in a meta-analysis, a further 
level corresponds to patients nested within studies,
which are nested within other factors. Similarly, 
for repeated measures data measurements are
nested within patients, who may then be nested
within other factors. Bayesian approaches to 
both of these settings, i.e. multicentre trials and
repeated measures have recently been advocated.
Stangl (96) considered the use of Bayesian
methods in the analysis of a multicentre trial in
which the primary outcome was time to event 
data, with censoring. The analysis proceeds along
decision theoretic lines, with parameters estimated
using Gibbs sampling. Similarly, Gray (97) also
considered a hierarchical in a multicentre setting,
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again with a survival end-point, but was particularly
interest in modelling the heterogeneity, both
within and between centres, and also used Gibbs
sampling to estimate model parameters. Veronese
(98) considers the case when the assumption of
exchangeability might not be reasonable for all
studies in a meta-analysis, but that uncertainty
exists as to the optimum partition of the studies
within a hierarchical model. One possible solution
advocated uses a partially exchangeable prior
distribution at the second level in place the usual
exchangeable one. More recently, Larose and Dey
(99) also considered the situation in which groups
of studies within a meta-analysis cannot be con-
sidered exchangeable, and used what they termed 
a ‘grouped random effects model’. This model was
a standard hierarchical model, assuming binomial
sampling at level 1, and with level 2 defined by a
partition, in their case depending on whether the
study has closed or not. Estimation of the model
parameters was by means of MCMC methods.
Though they do not consider explicitly either the
issue of model selection within a Bayesian frame-
work nor the extension of the model to allow for
study level covariates, they note that the former
could be implemented within a Bayesian approach
by means of BFs (see page 100), whilst the latter is
addressed in a companion technical report (100).
Finally, Higgins and Whitehead (60) consider the
use of a Bayesian hierarchical approach to the
situation when there are both patient level and
study level covariates. As with many of the other
expositions the model parameters are estimated
using MCMC methods.

Generalised synthesis of evidence
Generalised synthesis of evidence refers to the case
when the evidence for the efficacy of effectiveness
of a particular technology is derived from a number
of sources, not necessarily sharing common biases
and designs. Approaches to this problem are
considered in detail in chapter 26. Here, three
Bayesian approaches are considered further.

One particular approach is to utilise a hierarchical
model structure as outlined above, and this has
been advocated by Abrams and Jones (101) and
considered in detail by Smith et al. (51). The
advantages of such an approach include the ability
to explicitly allow or the fact that evidence from
different sources may not be considered exchange-
able, and therefore source may be used to define a
level within the model. A further advantage is that
a priori beliefs regarding the credibility of the
different sources may be incorporated via the prior
distributions specified for the model parameters, 
in particular the variance parameters, which drive

the weighting ability of the model in the overall
synthesis. As with all the models considered in this
chapter, the role such subjective prior distributions
play needs to be carefully explored in a subsequent
sensitivity analysis (also see pages 203–5).

A second approach has been advocated by Hassel-
blad and McCrory (102), using the confidence
profile method. The confidence profile method 
is a very general method for combining virtually
any kind of evidence about various parameters, so
long as those parameters can be described in the
model, and was first described by Eddy (103). In
comparison the Bayesian hierarchical method
outlined above the confidence profile method
utilises specification regarding the weighting of
various sources by means of weight and bias
functions, relating to the model parameters. It is
this derivation in terms of essentially an overall
likelihood function that makes the confidence
profile method suitable to both ML and Bayesian
methods of parameter estimation (also see 
page 202).

Finally, Wolpert and Warren-Hicks (104) investigate
the response of fish in lakes to acid rain. The two
sources of evidence are derived from laboratory
experiments and field survey data and are
synthesised using a hierarchical Bayes model.

Combining diagnostic test results
Two aspects of combining evidence relating to
diagnostic testing have been considered. The first
uses receiver operating characteristic (ROC) curves
to summarise evidence in each study regarding a
test, whilst the second approach uses the Bayesian
posterior probability referred to on pages 92–5.

Zhou (64) considers an EB approach to the
combination of areas under ROC curves (plot 
of specificity versus sensitivity for all confidence
thresholds), used in calculating the performance 
of diagnostic tests. The model is a two-stage hier-
archical model, which also permits extension to
allow for study level covariates. Hellmich et al. (105)
extend the work of Zhou to a fully Bayesian hier-
archical model in a similar manner to (13.8). They
use Gibbs sampling to estimate the model para-
meters, and pay particular attention to the issues of
convergence and dependence upon assumptions
regarding the prior distributions used. The
hierarchical nature of this model also allows
relatively straight forward extension to the case
when there are covariates at the study level.

Velanovich (106) considered the case when several
Bayesian probabilities (from different studies) have
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been determined for a given diagnostic test. The
analyses use a fixed effects model to synthesise the
probabilities, and apart from the fact that the
probabilities have been derived using Bayes’
theorem, the approach is not Bayesian in nature.

For more information on meta-analysis of
diagnostic test accuracy data, see chapter 21.

Other developments
There have been a number of other developments
in the field of meta-analysis utilising Bayesian
methodology which do not fall into the above
categories. These are briefly outlined below.

Adjustment for baseline risk
McIntosh (107) and Thompson et al. (108) have
both considered the case when adjusting for the
baseline risk in a population may be necessary.
Both approaches make use of a hierarchical model
and use MCMC methods to obtain parameter
estimates. Whilst, Thompson et al. (108) consider
an extension of the binary hierarchical model
outlined on page 97, McIntosh (107) uses a 
bivariate approach to model the log odds 
separately in both the control and treatment
groups. Both approaches, which are applied to 
the same data set, produce comparable results 
and both contrast with the naive methods (see
pages 46–8) in which the relationship between
baseline risk and efficacy was over-estimated.

Time-series and cross-sectional data
Osiewalski and Steel (109) consider the synthesis 
of evidence in the from of time series and cross-
sectional data in a econometric setting.

Combination of p-values
Berger and Mortera (110) in a particularly
technical paper consider the problem of
combining studies in a meta-analysis when either
only an exact p-value is reported or when only 
the level of statistical significance, denoted by
‘stars’ is reported.

Further research

Many of the issues listed below as areas requiring
either greater dissemination or further research are
not just relevant to Bayesian approaches to meta-
analysis, but apply more generally to healthcare
research. Indeed some of the specific points raised
below will also arise out of a related NHS HTA
funded project on Bayesian methods in health
services research (93/50/05).

• More widespread critical use of 
Bayesian methods.

• Key need for dissemination regarding the critical
use of Bayesian methods with regards to the use
of MCMC, especially sensitivity analyses since
these methods should not be considered as a
‘black box’.

• Encouragement of expository papers in 
the applied literature on the application of
Bayesian methods.

• More research on the use of elicited prior
beliefs. This has wider implications than just 
the application of Bayesian methods in meta-
analysis. There may be significant benefit to 
be had from a review of the literature on this
subject, and in particular exploration of work
performed in the psychology sphere.

• More research into generalised synthesis of
evidence, especially in areas of application in
which is difficult to perform RCTs.

• More research into extrapolating the results 
of a meta-analysis to clinical practice, in the same
way that there should be from a single RCT.

• Missing data in meta-analyses has been an all 
too neglected area, both from a classical and
Bayesian perspective. This has been partly as a
result of regression models not having been
widely used (with respect to missing covariate
information), partly due to the fact that many
meta-analyses are conducted at the study level
and there missing individual patient-level data 
is over looked, and also partly due to the fact
that, to date, many meta-analyses have been
conducted in clinical areas in which clear
objective measures are widely adopted, e.g. all
cause–mortality. With the use of meta-analytic
techniques in areas such as nursing and other
professions allied to medicine, this latter point
will be increasingly important.

• More research into the use of meta-analytic
techniques in conjunction with decision analysis
methods, that take into account the uncertainty
associated with any meta-analysis findings.

Summary

This chapter has summarised the general use of
empirical and fully Bayesian methods with respect
to meta-analysis, and in particular a number of
specific areas in which there has been considerable
research over the last few years, and in which
Bayesian methods have a potential role to play.
Although currently much research is been put into
these methods, so far their use in practice is far
from routine. Distinct advantages of the Bayesian
approach include the ability to incorporate a priori
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information which would otherwise be excluded in
a classical analysis. However, when such a priori
evidence is based on subjective beliefs the issue of
whose prior beliefs to use is raised. Though many
of the computational difficulties that have plagued
the application of Bayesian methods in practice
have been partially solved by recent development 
in MCMC methods, these should not be seen as
‘black box’ methods, since they raise issues
concerning convergence.
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Introduction
In the previous five chapters (9 to 13), models 
of increasing complexity have been presented 
for analysing the results from different studies.
Chapter 9 discussed two common scales used 
to report outcomes, namely the OR and the
standardised mean difference, and showed how
these could be combined. Not all studies will report
either ORs, or a continuous outcome that can be
transformed into a standardised mean difference.
For this reason, it is necessary to consider several
other scales that outcomes can be measured (and
pooled) on. This section introduces, and defines,
several other scales and gives all the formulae
necessary to combine outcomes on these scales.
Binary, ordinal and continuous outcomes are
considered in turn. In many instances, once 
the SE of an estimate is known, the simple inverse
variance-weighted method can be used to combine
outcomes on the same scale.

Binary outcomes

On pages 56–63, details on ORs and how to
combine them were given. Several other binary
outcome measures are used (in varying degrees 
of popularity), definitions and details on how 
they are combined are given below.

The RR (or rate ratio)
Defining the RR
Consider the 2 × 2 table first presented in Table 3,
reproduced below. Remember this can be
constructed for studies comparing two groups
using a binary outcome measure.1

The RR of being on the new treatment, or being
exposed, as opposed to being on the placebo (or
old treatment), or unexposed is simply defined as
the probability of an event in the treatment group
(exposed group) divided by the probability of an

event in the control (unexposed group). This can
be calculated by:

RR = (a /a + b)/(c /c + d) (14.1)

This can be seen as a ratio of the risks in the two
groups being compared.2,3 In a clinical trial setting
an RR of < 1 would imply that the experimental
treatment would give benefit over the old treat-
ment or placebo, while an RR > 1 would suggest 
the new treatment was inferior. In observational
studies, an RR of >1 would imply the exposure
under investigation is harmful, while an RR of 
< 1 would imply a protective effect. So, for example,
if one was looking at the effect of a new drug
compared to a placebo for the treatment of say,
lung cancer. If an RR of 0.5 were found, this would
imply the probability of death on the treatment is
half that of being given placebo.

Greenland comments on combining RRs:

‘An advantage of this method is that RRs that have
been adjusted for confounding, including those
adjusted by multiple regression techniques, may be
combined across studies, provided that the variance 
of the adjusted parameter in each study is available 
or can be calculated’ (1).

RRs are often reported for epidemiological studies;
see chapter 19 for more details.

It should be noted that the Cochrane Handbook
(2) discusses the relative risk reduction (RRR) = 
(1 – RR) as another possible scale.

Chapter 14

Scales of measurement

1 Note: it cannot be constructed from case–control studies.
2 For rare diseases the RR can be approximated by the OR. This is because as b and d become large compared with 
a and c, a + b ≈ b, and c + d ≈ d, then the above formula (14.1) approximates to, (a/b)/(c/d), which is the formula for the
OR given on pages 56–63.
3 Note: this measure is sometimes called the relative rate.

TABLE 3 

Failure/ Success/
non-diseased diseased

Placebo/unexposed a b

New treatment/ c d
exposed
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Combining RRs [adapted from Fleiss (3)]
The inverse-weighted variance method (see pages
55–6) can be applied to RRs. Usually the data are
transformed and a combined estimate of the log RR
is calculated. This is done for reasons similar to
those for the OR, explained on pages 56–63. Again,
taking anti-logs of the log RR estimate and its respec-
tive CI transforms the estimate back to the RR scale.

The RR is used less frequently than the OR, and 
no methods specifically aimed at combining RRs
have been developed. Whether the above approach
is efficient and unbiased in all situations is, so 
far, unresearched.

When using the inverse-weighted variance method,
the estimate of the log of the SE for the RR is 
given by:

1 – p 1 1 – p 2)1/2

SE(L(rr)) = ( + (14.2)
n1p1 n 2p2

where p 1 and p 2 are the observed rates of
occurrence of the given event in the treatment and
control groups, respectively. So p 1 = a/a + b and p 2 =
c/c + d and the estimate of the RR = p 1/p 2. n1 = a + b
and n 2 = c + d.

To obtain a (1 – α)100% CI for the estimate of 
effect size, substitute the above SE formula into
equation (9.3).

Rate differences between proportions
Defining the rate difference between
proportions
Referring back to Table 3 (2 × 2 table), the risk
difference is defined by:4

Risk difference = (a/a + b) – (c/c + d) (14.3)

It can be thought of as (and is sometimes called)
the risk difference, as it is the difference between
the probabilities of an event in the two groups
(rather than the ratio used to calculate the RR.) 
In a clinical trial setting, a positive rate difference
implies a benefit of being on the treatment, while 
a negative value suggests the old treatment is
superior or even that the new treatment is harmful.
It is not used as often as the OR or RR.

Combining the rate difference between proportions
If the difference between two proportions is to be
combined, then the inverse-weighted variance

method can again be used. The rate difference 
of a study, i, has a variance:

p i1(1 – p i1) p i 2(1 – p i 2)
v i = + (14.4)

ni1 ni2

(For notation explanation see pages 109–10).

Using the formula above (14.3), a (1 – α)100% CI
for the estimate of effect size can be calculated 
with equation (9.3).

The number needed to treat
Defining the number needed to treat
The number needed to treat (NNT) is a measure
that is being used increasingly when reporting the
results of clinical trials. The motivation for its use is
that it is more useful than the OR and the RR for
clinical decision making (4). However, its role as a
measure of comparative treatment effects is limited
(5). The definition of the NNT is simply the
reciprocal of the absolute risk reduction, put
mathematically:

1 (14.5)
NNT = ______________

Rate difference

1
= ________________

(a /a + b) – (c /c + d)

Clearly, this can be easily calculated if one has 
the original 2 × 2 table giving a, b, c, d. In a clinical
trials setting (which is usually where it is used), its
size can be interpreted as the number of patients
that need to be treated by the experimental
treatment rather than the placebo/old treatment
in order to prevent one additional adverse event.
For example, in testing a new drug for lung 
cancer against the best old alternative, a NNT 
of 20 would mean, on average, that for every 
20 patients treated with the new treatment one 
less adverse event (pre-specified such as relapse 
of death) would be observed. A good example 
of the use of this scale in a systematic review is 
that by Tramer et al. (6).

Combining the NNT
Since the NNT is the reciprocal of the rate
difference. The meta-analysis could be carried 
out using rate differences as outlined above 
(pages 109–10) and the pooled estimate along with
its corresponding CI could be transformed to the
NNT scale by simply taking the reciprocal (4).

4 This measure is also sometimes called the absolute risk reduction.
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The Phi coefficient
Defining the Phi coefficient
Up until this point all the outcomes introduced
have been measures of a difference between two
groups. The only other ‘type’ of outcome used in
meta-analysis is a measure of correlation. The Phi
coefficient is a special case of Pearson’s product
moment correlation coefficient, which is described
under ‘Defining ordinal data’ (it may be useful to
read this section first). It is used to calculate the
correlation between two binary variables (X, Y)
(which is why it is included first here). It is used
most commonly in cross-sectional studies.

Consider Table 12 below.

The Phi coefficient estimate is calculated by:

(n11 × n22) – (n12 × n21)
^ϕ = (14.6)

√n1. × n2. × n.1 × n.2

Combining the Phi coefficient
Estimates from separate studies can be combined
using the inverse variance-weighted method, 
where the large sample SE of the estimate of
correlation is:5

(14.7)
1 ^ϕ2 (p1. – p 2.)(p.1 – p.2)

SE = —– (1 – ^ϕ 2 + ^ϕ (1 + — )√n.. 2 √p 1.p.1.p 2.p.2

3 (p1. – p 2.)2 (p.1 – p.2)2          1/2

– – ^ϕ2 [ + ])4 p1.p 2. p1.p 2.

where p1 is the observed rate of Y positives when 
X is positive etc.

An alternative to calculating this long formula 
is to use the jack-knife estimation technique. 
It is beyond the scope of this report to explain 

this method; however, details are given by 
Fleiss (7).

Ordinal outcomes

Defining ordinal data
If the outcome of interest is measured on a cate-
gorical scale and ordered in terms of desirability,
such that C 1 is worst category to be in and Cm is
best, then one can consider the data as ordinal (8).
For example, Whitehead and Jones (8) investigated
whether concurrent treatment with the synthetic
prostaglandin, misoprostol, would affect the degree
of gastrointestinal damage without reducing the
anti-inflammatory effect of the non-steroidal anti-
inflammatory drug. Some of the studies classified
the number of lesions on a 1–5 scale with 1 being
no visible lesions, 3 being 2–10 haemorrhages or
erosions and 5 being > 25 haemorrhages or
erosions or an invasive ulcer of any size.

Combining ordinal data
Two situations exist when combining ordinal 
data from different studies: 1) when the response
variable is the same in each study, and 2) when
different response variables are used in the studies.
A unified framework is presented below that can
incorporate both possibilities.

The approach put forward for combining ordinal
data, is to reduce the outcome to binary by com-
bining categories to produce two categories (9).
Log(OR)s can then be calculated for each study
and combined using methods previously described6

(see pages 56–63). Define the treatment effect for 
the i th study as:

Q jCi(1 – Q jTi)
θji = log { } (14.8)

Q jTi(1 – Q jCi)

where Q jTi = p lTi +...+ pjTi, Q jCi = p lCi +...+ p jCi, j = 1,
…, m – k (k < m), and p jTi and pjCi are the prob-
ability of a patient in the i th trial being in the j th
outcome category. So, the outcome is partitioned
with 1 to m – k outcomes in one group and the k 
to m outcomes in the other.

This is taken to be the proportional odds model; 
it assumes the value for θ j i would stay constant if 
the partitioning of outcomes had been at some
other value (e.g. m – 2, m – 5 etc.). Thus θji can be

TABLE 12 Observed frequencies in a study cross-classifying
subjects on two binary characteristics [adapted from Fleiss (7)]

Y

X Positive Negative Total

Positive n11 n12 n1

Negative n21 n22 n2

Total n1 n2 n

5 Fleiss states [(7), p. 249] Bishop, Fienberg, and Holland ascribe this formula to Yule.
6 For a comparison of how they perform see (8).
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considered as the log odds of success on the
experimental treatment relative to control for 
the ith study irrespective of how the ordered
categories might be divided into success or failure
(8). This analysis has the following advantages: 1)
definitions of each category in each study are not
crucial 2) no studies need to be omitted from the
meta-analysis because of differences in the scoring
system, and 3) the data can be used in their
original form.

For computational details, along with an example,
see (8).7

The proportional odds assumption within each
study may be investigated be calculating the
estimates of the log-odds-ratios, θji , from the 
various binary splits. These estimates should be
similar. It would appear that this method can only
be used for fixed effect estimates, more research is
required for a random effects method to combine
ordinal data.

Continuous data

Combining data in their original metric and
combining standardised effect sizes have both been
covered in the fixed effect chapter (pages 56–66).
An effect used less often is the correlation
coefficient, this is discussed below.

The product–moment correlation
coefficient
Defining the product–moment 
correlation coefficient
Correlation coefficients measure the association
between two variables. Pearson’s product–moment
correlation coefficient measures the linear relation-
ship between two metric variables.8 A correlation
coefficient is said to be positive if the value for the
one variable increases as the other increases, and is
said to be negative if the value for the one variable
increases as the other decreases (10). A correlation
is defined on the scale of –1 to 1. If the correlation
is 1 or –1 the two variables are said to have a perfect
relationship, and the value for one variable can 
be predicted without error from the other. A corre-
lation coefficient of 0 indicates no relationship

exists between variables. Correlation coefficients
are probably used more commonly as an outcome
in psychology and educational studies, but
examples do exist in the medical literature. 
For example, the study by Welten et al. (11)
investigated the association between calcium intake
and bone mass density in young and middle aged
males and females using correlation coefficients.
The formula for calculating Pearson’s product–
moment correlation coefficient (often notated 
as r) is given below:

n

∑(x i – 
_
x)(y i – 

_
y )

r =  

√(
i = 1

(14.9)
n n

∑(x i – 
_
x)2∑(y i – 

_
y )2)

i = 1 i = 1

where n pairs of observations, x and y, are 
observed; and 

_
x and 

_
y are the means values 

of the observations.

Combining product–moment correlation
coefficients [adapted from Fleiss (3)]
It has been recommended to first transform 
the estimates using Fisher’s variance stabilising z-
transform.9 Transforming the correlation estimates
from each of i studies to be combined is achieved
using the equation below:

1 1 + ri

Z i = — ln [ ] (14.10)
2 1 – ri

The corresponding underlying correlation
parameter for large samples is approximately
normal, with mean

1 1 + ρi

ζ i = — ln [ ] (14.11)
2 1 – ρi

The variance of Z i is given by

1
Var(Z i)= (14.12)

n i – 3

The weight associated with Z i is thus simply n i – 3.
Once estimates have been combined, the result 
and CI can be transformed back using

7 Whitehead and Jones (8) note, one can use PROC LOGISTIC in SAS for this analysis. Covariate adjustment for
prognostic factors pertaining to individual patients can be made within studies using this procedure. Also has a test
score for the proportional odds assumption.
8 Note: It has also been used as an index of effect magnitude (13).
9 This is due to the fact that as the population value of r gets further and further from zero, the distribution of the rs
sampled from that population becomes more and more skewed (16).
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e 2Z – 1
r = (14.13)

e 2Z + 1

Correlation coefficients can also be combined
directly. Hunter and Schmidt (12) state that the
average z-transform is positively biased; so they
prefer combining without transforming.10

Assuming the underling data are bivariate
normal,11 the variance of each ri is given by 
(14.14), and estimates are combined again 
using the inverse variance-weighted method
(chapter 9).

v i = (1 – r i
2)2/(n i – 1) (14.14)

A third approach has been proposed; this is 
to find a MLE for ρ, the underlying correlation
parameter for all studies being combined (i.e.
assuming a fixed effect). Two approximations to
the MLE are given in (13).

Analysis of specific data types

Below are two types of data for which standard
models are not appropriate.

Analysis of counts (rates) [adapted 
from Hassleblad (14)]
This section is concerned with methods used if 
the results to be combined are in the form of 
events per person-year, or some other measure of
time (see Table 13). Often the measure of interest is
the ratio of two of these rates, or some combined
measure of these ratios may be desired. Standard
methods for 2 × 2 tables are not appropriate for 
this particular outcome. If the assumption is made
that the counts (number of cases) follow a Poisson
distribution, an estimate of the log of the effect 
size is:

log(
_
T.) = log(A) + log(T ) – log(B) – log(S)

An approximate estimate of the variance is 
given by:

1 1
Var[log(

_
T.)] ≈ + (26.1)

A + 1/2 B + 1/2

The individual estimates can then be combined
using the inverse variance-weighting method 
(pages 55–6). If a more accurate variance 
estimate is required more advanced methods 
are given in (14).

Analysis of rare outcomes
If the outcome in either or both arms of a study 
is rare, so there are near or zero counts, standard
methods may be problematic. Combining ORs 
and RRs in these instances may lead to spurious
results. If the difference in rates is used as the
measure, these 0s are informative about the differ-
ence being small. Because the normal approxi-
mation to likelihood function will not work for very
small counts, it is necessary to compute the exact
likelihood function for the difference (14). The
likelihood function is given in Hasselblad (14) and
can be solved via the confidence profile (page 200)
or Bayesian approach (see chapter 13).

Further research

Investigation into when to use the different
measurement scales, and a study of instances 
when you get different answers using different
scales. (Recently, Deeks et al. (15) carried out an
investigation into differences observed when using
ORs or RRs to combine studies using over 2000
syntheses form the Cochrane Database of Syste-
matic Reviews. In some instances considerable
differences between the results of the two analyses
were observed.)

• Criteria for selecting between the different
scales: a) from a statistical perspective, and 
b) from a clinical perspective. The Cochrane
Handbook comments: ‘The choice of which
measure to use is not always straightforward, 
and the measure used in the analysis may 
not be the best measure for clinical decision-
making.’ (2)

• A random effects model for combining 
ordinal data.

10 However, Shadish and Haddock state:

‘Few statisticians would advocate the use of untransformed correlations unless sample sizes are very large because
standard errors, CIs, and homogeneity tests can be quite different.’ (17).

11 However, these methods should be robust (17).

TABLE 13

Treated Not treated

Number of cases A B

Period of time S T
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Summary

This chapter presents other scales commonly 
used when assessing outcomes in medical research.
One needs to be aware that scales other than ORs
and standardised mean differences exist and can 
be used to combine studies. Additionally, it is
important to note that since different studies may
report outcomes on different scales then it may 
be necessary to transform a proportion of them
before synthesis can proceed. Methods for doing
this are presented in the next chapter.
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Introduction
Chapters 9 and 14 outlined ways that categorical,
ordinal and continuous data could be combined.
Under each type of data several common measures
were highlighted and explained. For example,
under categorical data information on how to
combine ORs, RRs and risk differences (as well as
several other less common measures) was given. It
is often the case that primary studies will present
their results differently to one another, and differ-
ent effect measures may well be used. However,
presently meta-analysis methodology dictates that 
it is necessary to combine (binary) outcome data
on the same scale. Before these estimates can be
combined, it is necessary to transform at least some
of them to a common scale (if this is possible).
With limited data from only the published report,
this may be a non-trivial task. In extreme cases, it
may be necessary to change the type of data (e.g.
from continuous to categorical) for some of the
studies before data is combined. Other factors
needing to be taken into account before any
decision on which scale to transform the data 
to is taken, are: 1) will the choice of scale used
effect the final result? and 2) if a choice of scales 
is possible for the analysis which one is most
desirable. Intuitively, the answers to these questions
should be no, and it does not matter, respectively,
but under certain conditions this may not be 
the case. This chapter aims to cover these issues
starting with a critique of the various scales then
describing methods for transforming data.

Critique of the different scales

Binary outcomes
Below is a very brief summary of the relative 
merits and drawbacks of the binary outcome scales
commonly used. Two different and often opposing
considerations are: 1) whether it is statistically
convenient to work with, and 2) whether it conveys
the necessary clinically useful information (1). For
a lengthier and more detailed discussion see (1,2).

Risk difference – simplicity is perhaps its only
virtue. A technical difficulty is that its range of
variation is limited by the magnitudes of the
reported risks in groups one and two. The possible
values for the difference when the risks in groups
one and two are close to 0.5 are greater than when
the risks in both groups are close to 0 or 1. So
heterogeneity may appear solely due to these
mathematical constraints imposed [(2), p. 246].

Relative risk – this scale is popular; being used in
both randomised and observational studies. Its
biggest drawback is that only the finite interval
from 0 to 1 is available for indexing a lower risk in
population 1, but the interval from 1 to infinity, is
theoretically, available for indexing a higher risk in
population 1. A lesser problem is in interpretation;
it is non-intuitive that 1 not 0 is the value taken
when there is no difference between the groups.
For these reasons, inferences usually carried 
out on the logarithms of the RR. Also, the 
sampling distribution of the logarithm of RR 
is more nearly normal than the sampling
distribution of the RR.

Two other technical problems exist with the RR: 1)
if the chances are good in the two groups being
compared (experimental treatment versus control
or exposed versus not exposed), that a subject will
experience the outcome under study, many values
of the rate ratio are mathematically impossible. 
For example if the probability of an event in group
2 is 0.4, then only the values in the interval 0 ≤ RR
≤ 2.5 are possible for the RR. This means that
between-study heterogeneity will emerge in the
value of the RR only because the studies differ in
the probabilities of an event in group 21; 2) the 
RR is not estimable from data collected in
retrospective studies.

Number needed to treat – an advantage is that it is
useful in clinical decision making. A disadvantage is
that when reporting a NNT no cost information is
incorporated into the results, another factor that
may have large implications for clinical decision

Chapter 15

Issues concerning scales of measurement when
combining data

1 Note, this constraint does not occur when using the OR scale.
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making (although this is also the case for the 
other measures).

Odds ratio – has several advantages over 
other scales:
1. Can be estimated from all types of study design.
2. It is the key parameter in a linear logistic

regression model.
3. The OR estimated from a retrospective study

(rate ratios are not directly estimable) will, in
the case of relatively rare events and in the
absence of bias, provide an excellent
approximation to the rate ratio.2,3

Disadvantage: meaning of the OR is not intuitively
clear (2) or clinically meaningful (1).

Phi coefficient – several problems exist when using
the phi coefficient:
1. If the binary random variables X and Y result

from dichotomising one or both of a pair of
continuous random variables, the value of 
phi depends strongly on where the cut 
points are set.

2. If two studies with populations having different
marginal distributions but otherwise identical
conditional probability structures may have
strongly unequal phi coefficients. This may give
the appearance of between study heterogeneity.

3. Measure is invalid when sampling other than
cross-sectional is used (2).

Transforming scales, maintaining
the same data type
Different studies may have used different 
scales to present effect size estimates. This is a
problem that needs overcoming when pooling. 
Under ‘Binary outcome data’, methods for
transforming estimates from binary outcome data
are discussed. Chapter 14 discussed combining
ordinal data combined on different scales, within a
unified framework, so this issue has already been
dealt with for ordinal data. Similarly, it is common
practice to work with the standardised effect size
for continuous variables, when scales differ 
between studies (see chapter 9).

Binary outcome data
Because several different binary measures are
common within the medical literature, effect
estimates from the different primary studies 
(within the same meta-analysis) may have been
reported on different scales. Thus, the issue of
having to combine binary data reported on differ-
ent scales is often a problem. No meta-analysis
techniques are presently available to combine
different scales, so to proceed one needs to
transform all the estimates to a single scale. 
This introduces the issue of which scale should 
be used to combine, and hence which study
estimates are to be transformed.

If 2 × 2 tables are available for all trials to be
combined, then theoretically any of the measures
on pages 109–11 (plus ORs) can be calculated. The
choice of scale used to combine, in this instance,
should take into account the properties of each
scale discussed on pages 115–16; therefore, it would
often seem sensible to convert data to the (log) OR
scale, because of its statistical advantages. However,
contrary to this, Sinclair and Bracken state:

‘The perceived advantages of the odds ratio estimator
are largely statistical ones: its sampling distribution,
and its suitability in complex situations for modelling
using the logistic transformation. The reciprocal
relationship between the odds ratio for death and for
survival may be a mathematically attractive feature of
the odds ratio although we suspect it is a characteristic
rarely used in clinical situations.’ (1)

In addition, when considering which is superior,
the OR or the RR, they conclude:

‘It remains to be demonstrated empirically which
estimator of treatment effect generally yields the 
more stable value when the same treatment is tested 
in populations at different baseline risk.’ (1)

Another factor to consider, which was first
mentioned on page 44, is that different scales 
can give different values for the test for homo-
geneity [for an example of this, see (2), p. 258].
For this reason, an investigation of the results 
by combining on different scales may be 
instructive. In this spirit Huque and 
Dubey suggested:

2 Other theoretical advantages are given by Fleiss in (2).
3 Note: The OR serves as an approximation to the RR in case–control studies (see chapter 19). Due to this, confusion
arises and authors frequently mislabel and misinterpret ORs as RRs. The difference between the two measures will be
greatest when large treatment effects are shown in trials carried out in populations at high baseline risk. If in these
instances the OR is interpreted as a RR a physician would substantially overestimate the treatment effect. In addition
subgroups within a meta-analysis (see pages 209–10) that have different baseline risks could have different ORs while
the RR estimate stays constant [see (1), p. 887 for an example).
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‘The results by various measures for the same meta-
analysis data may serve to check the robustness of 
the results. That is, if all results by using different
treatment measures for the same data are similar 
then one would give more credence to the common
treatment effect across studies.’ (3)

If this information is not given for all trials, it may
be possible to reconstruct them from other data
sources within the paper (such as p-values), or
through making contact with the original investi-
gators. However, if this data cannot be obtained,
the transformations which are possible may be
restricted, and thus dictate to a greater or lesser
degree the scale the trials are combined on.

The permutations for ways in which combinations
of scales can be transformed is virtually endless. In
addition, with the amount of additional inform-
ation available varying greatly between reports it is
impossible to suggest a standard set of procedures
for how data should be transformed. However one
of the possible transformations are given below. In
addition, chapter 19 deals with observational
studies, and outlines ways in which binary outcome
estimates can be reconstructed/estimated from
other information.

Transforming ORs to RRs
When the raw 2 × 2 table is not known, if the
incidence of the event in the control group is
known an RR can be calculated from this
information, and the OR (1).4

OR
RR = (15.1)

1 + I c(OR – 1)

where I c = incidence of the event in the 
control group.

Transformations of data involving
a change of data type
In some situations, primary studies may not only
have used different scales, but they have used
different data types also. Firstly, a methodology for
combining continuous and binary outcomes is

presented. This is followed by a (non-parametric)
method that can be used to combine many
different outcome comparisons.

Combining summaries of binary
outcomes with those of continuous
outcomes
Whitehead et al. (4) present methodology 
for combining trials, some of which report
continuous outcome measures, and others 
binary outcomes created by a dichotomy of the
continuous measurement.

They illustrate their method with the original
motivating example, which is, combining results
from a series of perinatal trials investigating the
effect of prophylactic use of oxytocics on blood 
loss following childbirth. In some trials the number
of women in each treatment group who had a
postpartum haemorrhage was known, whereas in
other trials the blood loss was summarised as a
mean and standard deviation.

This method is based on the work of Suissa (5),
who presents a method of estimating the prob-
ability of an event when the outcome variable is
continuous. It is based on the assumption of the
normal distribution5 using ML theory (and is 
more efficient than the binary approach applied 
to dichotomised data).6

This paper makes the important comment that
when study results are measured on different 
scales, the ideal solution would be to obtain IPD
and dichotomise the continuous outcome at the
patient level (see chapter 24), and to investigate
through a sensitivity analysis whether the cut-point
makes a difference.

The Mann–Whitney statistic
This can be used to combine treatment effects
when different scales/measures are used for the
primary studies.

The following description is adapted from 
Colditz et al. (6).

For a RCT, the Mann–Whitney statistic can be used
to estimate the probability that a randomly selected

4 A nomogram for doing this conversion is included in (1).
5 The authors comment in certain circumstances may be worth considering the logistic distribution rather than normal:
‘Although the two distributions are similar, the logistic distribution has the proportional odds property, which means
that the log-odds-ratio would remain constant across all cut-off values.’ (4)
6 Estimates the ln(OR) for each study by the MLE, based on a logistic regression model, using PROC LOGISTIC in SAS.
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patient will perform better given the new
treatment, than a randomly selected patient 
given the standard treatment, this can be notated
P(I>S). To estimate P(I>S) directly from data for 
two groups, we count the proportion of all possible
comparisons between outcomes on the new treat-
ment and on the standard that favour the new
treatment. If M patients received the innovation
and N patients received the standard, there would
be M × N such comparisons. The same compu-
tation method can be used to compute P(I>S) 
from a survival graph.

The formula for estimating P(I>S) from the
proportions of treatment failures is: 

0.5 + 0.5(p S – p I), (15.2)

where pS and p I are proportions of treatment
failures on the standard and on the new 
treatment, respectively.

For continuous data, we calculate d, the difference
between a randomly selected patient’s score on the
innovation and a randomly selected patient’s score
on the standard, then P(I>S) is an estimate of the
probability that d is greater than zero. P(I>S), then,
is computed by using, as a normal deviate, the
standard score which is the difference in average
scores for the innovation and the standard divided
by the standard deviation of this difference.

The Mann–Whitney statistic can be calculated for
many different statistical measures, for example,
proportion surviving, mean change in blood
pressure, and frequency of side-effects.

Miscellaneous methods

Below are a few other issues regarding scales 
one may need to be aware of when conducting 
a meta-analysis.

Interpretation of correlation
coefficients
Rosenthal (7) warns of dismissing what may 
appear very small values for r and r 2. He relates 
a story of a randomised double blind experiment
on the effects of aspirin in reducing heart attacks
that was terminated early as it had become clear
that aspirin did, in fact, prevent heart attacks. 
The data from this study would have produced
values for r and r 2 of 0.034 and 0.0011, respec-
tively, both very low. He comments that in
biomedical research results such as these 
are not uncommon.

Calculating effect size estimates from 
p-values
In some (hopefully increasingly rare) instances 
an effect size may not be given in a published
report. If the author cannot be located to provide
an estimate, if a p-value (exact or level of signifi-
cance) was provided, it may be possible to calculate,
or at least provide bounds for a treatment effect
estimate. Pages 148–52 suggest possible ways for
doing this for binary outcomes; see also (7) for
methods for continuous outcomes.

Measurement errors
Measurement error of outcome variables is
inevitable. What effect does this have for meta-
analysis? Lund reports (8) that it can be shown 
that a group difference – adjusted or unadjusted –
expressed in the observed score metric will not be
systematically affected by such errors, whereas a
standard deviation of observed scores will increase
for increasing error variance. It follows that all 
the standardised indexes mentioned above will
decrease with decreasing reliability of the outcome
variable and thus lead to an underestimation of 
the treatment effect. Lund discusses the case in
which a covariate is used to investigate the differ-
ence between two treatments. If one treatment has
a larger measurement error, a relationship, purely
spurious, due to the problem outline above may be
found. Lund suggests making an adjustment for
this by multiplying the standard deviation of the
treatment estimates by the square root of the reli-
ability coefficient, and goes on to say the analysis
could be repeated for different metrics as a form 
of sensitivity analysis. Additionally, it should be
noted that measurement error affects all measured
variables in a model, not just the outcome. For
more information on measurement error in 
meta-analysis see (9), p. 131.

Further research

Undoubtedly, the issue of which common 
measurement scale to use when performing 
a meta-analysis is an important one, but also 
one which is often neglected in practice. Though
this deficiency could almost certainly be partly
addressed by greater dissemination regarding 
the need for sensitivity analyses, there also 
remains a lack of empirical evidence regarding 
the precise implication of which measurement 
scale to use in specific applications. Further
empirical research is required to reinforce the
importance of this issue, but also hopefully to 
make some general recommendations in 
specific situations.
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Different scales can give different values for 
the test for homogeneity. For this reason an
investigation of the results by combining on
different scales may be instructive.

It would also be useful to study the effect of using
different estimators (such as exact and approxi-
mate methods) to calculate treatment estimates
and their SEs, and the impact this has on 
meta-analysis.

Summary

This chapter has considered some of the issues 
that must be considered when deciding which
scales of measurement are to be used when
combining data. Though there are specific
statistical methods that can be employed when 
the studies in a meta-analysis use a variety of
measurement scales, so as to produce a single
unified scale of measurement, a number of issues
should be considered. Firstly, different scales 
may lead to different results, both quantitatively
and qualitatively. Secondly, the most convenient
common scale, statistically, may not be the most
appropriately clinically. Finally, where possible
sensitivity analyses should be performed to check
the inter-dependence between the quantitative
result obtained and the measurement 
scale used.
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Introduction
Chapter 4 discussed various strategies for searching
for the studies to include in a meta-analysis. It was
stressed that in order to avoid a biased result all,1 or
at the very least, the majority of the relevant studies
need to be identified. Unfortunately, even compre-
hensive searches of the literature (including grey
material) and the use of other less formal methods
such as personal communication may not reveal an
unbiased set of studies. It has long been accepted
that research with statistically significant results is
more likely to be submitted and published than
work with null or non-significant results (1), which
leads to a preponderance of false-positive results in
the literature (2). The implications of this for meta-
analysis are that, even if all published studies have
been identified, these may be only a subset of the
studies actually carried out. Since positive results
are more likely to be published than negative ones,
combining only the published studies2 uncritically
may lead to an over optimistic conclusion. This is
the problem known as publication bias.

Several other biases directly associated with the
reporting and publication of results have been
highlighted. Rosenthal [discussion of (3)] splits the
bias incurred when trying to obtain study results
into three distinct mechanisms: 1) publication bias
(explained above) 2) retrieval bias (bias left after
trying to obtain unpublished results) 3) pipeline
effects (effect of waiting (or not) for unpublished
studies to become published). Begg (4) and Begg
and Berlin (2) comment on the effect of subjective
reporting of results as a form of publication bias.
They suggest that exaggerated claims based on the
‘biased’ opinion of the investigator(s) may effect
what results are reported, and in extreme cases
only significant results are included in a report
while the non significant ones are omitted. This
phenomenon has been studied (5) and an associ-
ation demonstrated. Some additional reasons for
results not been published were given recently by

Givens et al. (6), who comment that students who
leave the academic arena may not publish their
PhD or MS dissertations; or studies are suppressed
by those who do not wish to have results appear
that are against their own vested interests, political
beliefs, or funding source’s interests.

Another source of possible bias is due to the
duplication of reporting (publishing) results. 
This may occur because authors want to increase
their authorship by essentially submitting the same
results to different journals, or because different
groups report multicentre trials based on at least
part of the same data.

An additional problem is that of a language bias. 
It is common to limit searching for research reports
only published in English. Grégoire et al. suggest
this may lead to a ‘Tower of Babel bias’, with the
following rationale:

‘Authors having completed a clinical trial yielding
negative results might be less confident about having
it published in a large diffusion international journal
written in English and would then submit it to a local
journal. If these investigators work in a non-English
speaking country the paper will be published in their
own language in a local journal. Positive results by
authors from non-English speaking countries are thus
more likely to be published in English, and negative
results in the investigators language.’ (7)

This issue has been investigated by Grégoire et al.
(7) and Moher et al. (8), who have found evidence
of its existence.

Although it is acknowledged that these latter biases
may be a real problem, and indeed do need careful
consideration, very little has been written on them
as separate issues. The rest of this chapter focuses
on the general problem of publication bias based
on the idea that non-significant results are less
likely to be published than positive ones. It is worth
being aware that the line between published and

Chapter 16

Publication bias

1 Or in exceptional cases when the number of trials is too large to be manageable, a representative sub-sample 
of studies.
2 Of course, unpublished studies may have been found in a initial search – and indeed searching for such studies is one
way of dealing with publication bias; however, these studies are much harder to locate (63) so the chance of not being
able to identify all of them is large.
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unpublished results can get blurred because 
often trial results presented at conferences are
never published (9).

One of the largest sources of information for this
chapter was Begg’s chapter in The Handbook of
Research Synthesis (4); this is recommended further
reading. In addition a report in this series has
recently been commissioned titled, ‘Publication
and other selection biases in systematic review’.

Evidence of publication bias

Many studies investigating the existence and
magnitude of publication have been carried out,
firstly in the social science, and later in the medical
literature, using various methodologies (4). A full
description of all these studies is beyond the scope
of this report; for a fuller review of many of them
see (2, 3). Also see (9) for a review of the problem
of the non-communication of trial results.

The study by Esterbrook et al. (1) is noteworthy.
They surveyed 487 research projects approved by
the Central Oxford Research Ethics Committee
between 1984 and 1987. By May 1990, 52% of these
had been published. It was concluded that studies
with statistically significant results were more likely
to be published than those finding no difference
between the study groups. They also concluded
that observational studies were found to be at
especially high risk of publication bias and also that
larger studies are more likely to be published.

The study of Dickersin et al. (10) also deserves a
mention. A total of 318 authors of published trials
were asked if they had participated in any unpub-
lished RCTs. Of these, 178 complete unpublished
RCTs were identified of these the results of 
only 14% preferred the new therapy compared 
with 55% for the published reports by the 
same investigators.

Simes (11) compared alkylating agent
monotherapy with combination chemotherapy in
advanced ovarian cancer. Meta-analysis of only the
published trials yielded a large and significant
survival advantage for combination chemotherapy.
This was not substantiated when all studies in the
International Cancer Research Databank, an
unbiased list of unpublished and published 
trials, were used.

The general message from these studies, and 
the many others like it, is that a considerable
proportion of studies remain unpublished and

those that are, are much more likely to have non
significant results.

Non-experimental evidence also exists, Melton (12)
states explicitly as editorial policy that the journal
gives preference to study reports demonstrating
statistical significance. However, contrary to
previous thought, there is evidence suggesting
author preferences are a more important cause of
publication bias than editorial preferences (13,14).
That is to say authors do not submit non-significant
studies to journals because they believe it to be a
waste of time as they will get rejected. A large
percentage of the non-significant studies that are
submitted do in fact get published, so, in fact, it is
the authors beliefs not journal policy that prevents
many from being published.

McPherson [discussion of (3)] also comments on
publication bias due to editorial policy in the case
of studies investigating the association between oral
contraception and breast cancer. She observes that
both the propensity to submit research and the
propensity to accept it have changed dramatically
over time. Even worse, these propensities show
systematic variation not only between countries but
between journals within countries. What editors
and researchers do seems to depend on what they
believe, and unhappily what they believe depends
somewhat on publication bias.

Empirical evidence of language bias
Grégoire et al. (7) investigated foreign language
bias in meta-analysis. The hypothesis under test was
that negative results are more likely to go in smaller
journals with low distribution.

They searched for and located meta-analysis with
linguistic constraints (36 in all). They then identi-
fied relevant foreign papers for these meta-analyses.
Of the 36 under consideration, new foreign langu-
age papers were found for four of them. When the
analyses were re-done, the results changed in one
of the four analyses (perversely the treatment
became significant, contradictory to the 
hypothesis under investigation!).

Very recently, Egger et al. (15) also investigated
language bias.

As an aside, Moher et al. (8) compared the
completeness of reporting, design characteristics
and analytical approaches of RCTs published in
English with those published in French, German,
Italian, and Spanish. No differences in reporting
quality between trials published in English and
trials published in other languages was found. 
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The authors suggest that this strengthens the
argument for inclusion of all trial reports,
irrespective of the language in which they 
are published, in systematic reviews.

Empirical evidence of factors associated
with publication bias
Dickersin and Min (16) investigated the association
between trial characteristics, findings and publi-
cation. The publication rate in trials investigated
was 93%. Trials with ‘significant’ results were 
more likely to be published. No other factor 
was positively associated with publication. The
authors conclude that even when the overall
publication rate is high, publication bias 
remains a problem.

Dickersin et al. (17) investigated factors associated
with the publication of research findings. They
found no association with sample size, presence 
of a comparison group, or type of study. External
funding and multiple data collection was found 
to be positively associated with publication. They
found association with significance of results. An
interesting side issue is that only six of 124 studies
found, but not published, had actually been
rejected for publication.

The seriousness and
consequences of publication 
bias for meta-analysis
As already hinted at in this chapter, 
Easterbrook states:

‘the most serious potential consequence of this
(publication) bias would be an overestimate of
treatment effects or risk-factor associations in
published work, leading to inappropriate decisions
about patient management or health policy.’ (1)

Thus, Dawid and Dickey comment:

‘Objective data reported in the literature cannot
necessarily be accepted at face value.’ (18)

When a meta-analysis has a large aggregated 
sample size, this problem is attenuated because 
the results may appear to be extremely precise 
and convincing, even though the observed
association is entirely due to bias (2).

However, in contrast to this, Freirnan et al. (19) and
Angell (20) consider the problem of publication
bias to be exaggerated, and studies with negative
results tend to be poorer in quality, weakened by
small sample size and type II error, or based on
tenuous hypothesis.

Simulation studies
Several simulation studies into the effect of
publication bias have been carried out, as an
attempt to understand better the implications.
These are summarised in (3,21). Two distinctive
models have been used for this purpose, namely
truncated and ranked sampling, both assume an
extreme form of sampling (3).

Truncated sampling applies specifically to 
studies in which the data were analysed by means 
of a significance test, such as comparative studies 
or studies in which some kind of association was
examined. It is assumed that all studies in which
the results are statistically significant are published,
while studies with non-significant results remain
unpublished. The bias in a single study can be
determined by comparing the expected results
conditional on a significant result, with the expect-
ed result in the absence of this condition. See
(22–25) for individual simulations and (26,27) 
for model extensions. These investigations
employed continuous outcomes with normally
distributed errors, so they are of limited use 
when considering binary outcomes often used 
in the clinical setting.

Ranked sampling can be applied to studies in
which descriptive statistics are emphasised. It is
assumed that a number of similar studies have been
conducted to estimate a measure of interest, and
that the published study is the one which exhibits
the largest estimate of the measure. The bias can 
be determined by examining the theoretical distri-
bution of rank order statistics. This has been used
as a framework for exploring the potential bias in
published uncontrolled clinical trials of new cancer
treatments, where it is known that many studies 
are conducted but remain unpublished (28). It is
possible to speculate on how many similar studies
might have been conducted, assuming that the
published estimate is the largest estimate, and one
can calculate the bias by making normal distri-
bution assumptions [see (28) for further details].
An example of its use is given by Begg et al. (29),
who compare bone marrow transplant with
chemotherapy as treatments for acute leukaemia.
Publication bias was demonstrated to be small for
the transplant series and relatively large for the
chemotherapy series, a feature that clarified the
likely superiority of transplantation.

A general conclusion drawn from these simulation
studies by Begg (4) is that the magnitude of bias is
inversely related to sample size and positively
associated with the number of concurrent studies.
This implies that one should be especially con-
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cerned about publication bias in settings in which
lots of small studies are being conducted.

Predictors of publication bias (i.e.
factors effecting the probability 
a study will get published)
Beyond the significance of the treatment effect,
and the size of the study, other potential factors
which may effect the chances of a study being
published have been put forward. Dickersin et al.
(10) found that studies which favour the new
therapy are more likely to be published. Clearly 
the quality of a study (see chapter 6) may effect its
chance of being published; however, in a particular
field, Smith (30) found the quality of unpublished
studies to be superior to those that were published.
Hemminki (31) showed that studies in which side
effects of the new drugs had been observed were
less likely than others to be published. McPherson
comments that the importance of the medical
question, the fashion and visibility of the treat-
ments under study, may all be influential of
chances of publication [discussion of Begg and
Berlin (3)]. In addition, Begg and Berlin (3)
highlight other potentially distinguishing features
as being the presence or absence of randomisation,
sample size, exploratory versus confirmatory
studies, protocol definition, the nature of the
journal, calendar time and source of funding.

Identifying publication bias

Begg reports:

‘When the component studies have been assembled
for the meta-analysis, a preliminary analysis should 
be undertaken to assess the chances that publication
bias could be playing a role in the selection of the
studies.’ (4)

Various methods to aid this investigation are 
given below.

Correlations with known risk factors 
for publication bias
One can correlate the observed effect sizes with
important design features of the studies that are
risk factors for publication bias (see above). If an
association is found, Begg (4) suggests abandoning
the meta-analysis as being unreliable or focus on 

a subset of the studies believed to be unbiased, 
or least biased.3,4 An example given (4) is when
randomised and non-randomised studies are being
combined, and randomisation status may appear 
to be associated with the effect sizes, one might
choose to eliminate all the non-randomised studies
from the analysis, on the grounds that they lead to
less reliable data (see chapter 6).

Graphical display – the funnel plot
[adapted from Begg (4)]
Sample size is the most important factor for
identifying publication bias because small studies
produce highly variable effect size estimates.
‘Therefore, the most aberrant values that occur 
by chance are much farther from the true mean
effect size than the aberrant values for large studies.
Therefore, if selective publication causes the more
extreme effect sizes to be selected for publication,
regardless of the sample size, then the effect sizes
from the small studies will be more extreme than
those from the larger studies, leading to as induced
association. It is also possible that small studies may
be less likely to be published because of perceived
unreliability, and so authors may feel that statistical
significance is necessary to justify publication to a
greater extent than for larger studies.’ (4)

A plot of sample size versus effect size can be
constructed. ‘If no bias is present, this plot should
be shaped like a funnel, with the spout pointing 
up – that is, with a broad spread of points for the
highly variable small studies at the bottom and
decreasing spread as the sample size increases.’ (4)
If negative studies are less likely to be published,
the graph will tend to be skewed, inducing a
negative correlation in the graph (32). This graph
is commonly referred to as a funnel plot (33).

Further discussion of the funnel plot
The funnel plot method makes the assumption that
the true effects in the various studies are unrelated
to sample size. Begg and Berlin (3) suggest that this
is reasonable under the fixed effect assumption,
and compelling under a random effects model.
They go on to comment that, although text book
theory suggests that the size of future trials will be
based on the expected treatment difference, and
thus could be influenced by previous ones, in
practice this may not usually be the case and
sample sizes are determined on more pragmatic
grounds. But ‘It is not unlikely that the large, well-

3 It should be noted that associations found may be purely spurious, or due to some factor other than publication bias.
4 Recently, methods have been proposed for adjusting the analysis for publication bias. Although they are at an experi-
mental stage, they have the potential of removing the need to exclude studies. See pages 126–32 for more details.
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planned studies will more often be undertaken
when there is such a positive likelihood of a treat-
ment difference. So this may lead to a small positive
association between the true effects and the sample
sizes.’ However, early stopping rules terminating
early trials with a large treatment effect may induce
a negative association. So the assumption of inde-
pendence is speculative. However, Begg and Berlin
believe the effects of the above will be weak, at least
in the context of cancer clinical trials their paper
used as an example.

Vote-counting procedures used 
to examine the extent of 
publication bias
Chapter 7 of this report discusses the use of 
vote-counting techniques in meta-analysis. For
completeness, a pointer to a method for assessing
publication bias using vote-counting methods is
given here. Hedges and Olkin (34) outline the
procedure for mean differences which is also 
given in (4), with an extension for correlation
coefficients. The rationale behind the procedure 
is thus:

‘When both positive and negative significant 
results are counted, it is possible to dispense 
with the requirement that the sample available is
representative of all studies conducted. Instead, 
the requirement is that the sample of positive and
negative significant results is representative of the
population of positive and negative significant results.
If only statistically significant findings tend to be
published, this requirement is probably more
realistic.’ (34)

See original sources (4,34) for more details.

Statistical tests
Begg (4) suggests that the best formal test for
publication bias is to use a rank correlation test
based on Kendall’s tau, after first standardising 
the effect sizes to stabilise the variances. This 
test is easy to calculate and is a direct statistical
analogue of the funnel plot presented above. 
It works by examining the correlation between
effect estimates and their variances, to exploit 
the fact that publication bias will tend to induce 
a correlation between the two factors and con-
structing the rank-ordered sample on the basis 
of one of them.

The formulae for the test is given below; for an
explanation of the rationale behind it, see (32).
Define the standardised effect sizes of the k studies
to be combined to be

T i
* = (Ti – 

–
T.)/(~νi

*)1/2 (16.1)

where
k k–

T. = ( ∑ νi
–1Tj)/ ∑ νi

–1 (16.2)
j = 1 j = 1

and Ti and νi are the estimated effect size and
sampling variance from the i th study

and also where
k

~ν i
* = νi – ( ∑ νj

–1)–1

, (16.3)
j = 1

is the variance of (Ti – 
–
T.).

It is then necessary to evaluate P, the number of all
possible pairings in which one factor is ranked in
the same order as the other, and Q, the number in
which the ordering is reversed. A normalised test
statistic is obtained by calculating

Z = (P – Q )/[k(k – 1)(2k + 5)/18]1/2 5,6,7 (16.4)

This statistic is compared to the standardised
normal distribution. Any effect size scale can 
be used as long as it is assumed distributed
asymptotic normal.

Practical considerations when using this test
Begg (4) suggests using a very liberal significance
level and notes that any evidence of publication
bias should make us cautious about proceeding
with the analysis. Begg also comments: ‘For a 
meta-analysis with relatively small numbers of
studies we should rely on an informal assessment 
of the funnel graph as an ‘eyeball’ test for bias.’,
indeed this test should always be considered as a
‘formal procedure to complement the funnel-
graph’ (32). Begg and Mazumdar (32) investi-
gated the power of the test and found it to be 
fairly powerful for meta-analyses with 75 com-
ponent studies but it only had moderate power 
for meta-analyses with 25 component studies. 
Begg also notes:

5 If there are tied observations, the denominator should be modified. However, the modifications are negligible unless
there are substantial groups of tied observations.
6 This test involves no modelling assumptions (but suffers from a lack of power.) An alternative test suggested (4) is
based on Spearmen’s ρ statistic.
7 Begg and Mazumdar (32) gives an extension to this test to calculate over stratified subgroups.
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‘The test based on premise that if publication bias is
present, it is induced by a mechanism in which studies
with large effect sizes are more likely to be published.
A graph of T i

* against νi
1/2 may be preferable to

funnel plot because one does not have to judge the
anticipated increase in spread at the base of the
graph.’ (4)

As has already been discussed, an alternative
premise is that the decision to publish is based
primarily on the p-value rather than the absolute
value of the effect size. If the p-value is the only
determinant of selective publication, then the test
should demonstrate no correlation between effect
size and sample size. In reality, the decision to
publish is probably due to both, however no
methodology available is sensitive to both influences.
It is worth noting that the methods on pages 126–32
(adjusting analysis for publication bias) characterise
publication bias as a function of the p-value.

Methods of estimating the
magnitude of publication bias
This section presents methods for estimating 
the magnitude of publication bias. As well as the
methods presented below, funnel graphs (pages
124–5) can also give some magnitude indication. 
In addition, Altman suggests calculating the 
pooled estimate after successive elimination 
of the smallest studies (see chapter 25):

‘A plot of the pooled estimate and point of truncation
may give a good idea of the relation between effect
size and sample size and may indicate where the 
true effect lies. Because large studies dominate the
calculations, the exclusion of the smaller studies may
not have a large effect on the pooled estimate.’
[discussion of (3)]

Assessing random effects within
different sample size groupings
Begg and Berlin state:

‘To estimate the magnitude of the bias, we can
perform an analysis which allows us to estimate 
the distribution of random effects within different
sample size groupings.’ (3)

Essentially, this is a formal assessment of 
funnel plot idea. Since the distribution should 
be unrelated to sample size, by our independence
premise, then any observed shifts in the distri-

bution are likely to be due to publication bias.
Two problems have been noted with this method:
1) the researcher may only have the p-value, but
this can usually can be converted to an effect
measure, and 2) the direction of a non-significant
effect may not be known. To get round this second
problem, one can assume the sign is unknown for
all published estimates; assuming normality, this
gives a ‘folded normal’ form (fold at 0).

Construct likelihood: data classified into J sample
size groupings with mj published estimates in group
j. These groups have mean effects µj (j =1,…,J ) and
assumed common variance σ 2. The data (y ij) and
(vij) comprise of the observed estimates and the
sampling variances (number of failures in survival-
type studies), respectively:

(16.5)
J mj 1 yij – µj –yij – µj

L ∝ ∏ ∏ ––––––– [φ(–––-–––––)+ φ(–––-–––––)]j = 1 i = 1 √(σ2 + νij) √(σ2 + νij) √(σ2 + νij)

MLEs can be obtained numerically. Alternatively,
the missing signs can be considered as ‘missing
data’ and MLE obtained using the EM algorithm
[details of this are given in (35)].8

An example which should make the above clearer
is given by Begg and Berlin [(3) p. 436].

Adjusting meta-analysis for
publication bias
The methods proposed for adjusting a meta-analysis
can be split into two broad categories, namely
analytic and sampling methods. Following an outline
of the methods, a discussion of their relative merits
follows. It should be pointed out that if one suspects
publication bias exists, through the detection
methods of pages 124–6, then efforts could be made
to try and find these studies, before, or instead of,
adjusting the analysis. One way of doing this would
be to write to interested investigators, although this
can be a painstaking process (36), or consulting
registry of trials (11). However, if one does include
data from unpublished studies, which have not
passed peer review, one is at risk of lowering the
quality and credibility of the data (3). Opinion
seems split among researchers, whether this is a
sensible thing to do (see pages 133–4).

8 Begg and Berlin (3) go on to comments that one can use some studies as bench-mark for reliability of others, and as
an approximate tool for calibrating the true strength of evidence from a particular study (using the above method), i.e.
the preceding study provides estimate of average bias as a function of sample size. One could adjust for other factors
such as presence or absence of randomisation etc., given sufficient data.
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Analytical methods
Source augmentation (the ‘file-drawer’ method)
In essence, this method considers the question:
‘how many new studies averaging a null result are
required to bring the overall treatment effect to
non-significance?’ (37). It was developed by Rosen-
thal (37,38) and has been referred to as the ‘file
drawer problem’, as it could be seen as estimating
the number of studies filed away in researchers files
without being published.

The method is based on combining the normal 
(z) scores corresponding to the p-values observed
for each study (this is covered in more detail in
chapter 7). The overall z-score can be calculated by:

k

Z = ∑ Z i/√k (16.6)
i = 1

where k is the number of studies in the meta-
analysis. This sum of z-scores is a z-score itself 
and is significant if Z > Z 1 – α/2. Now we determine
the number of unpublished studies with an average
observed effect of zero that there would need to 
be in order that the overall z-score is no longer
significant. Define k 0 to be the additional number
of studies required such that:

k

∑ Zi/√k + k 0 < Z 1–α/2 (16.7)
i = 1

rearranging the above gives:

k

k 0 > –k + ( ∑ Z i)2/(Z 1– α/2)2 (16.8)
i = 1

After k 0 is calculated, one can judge if it is realistic
to assume that this many studies exist unpublished
in the research domain under investigation.9 If the
answer is yes, then one must have doubts about the
validity of the meta-analysis.

This test is often used as a sensitivity test once a
meta-analysis has been found to give a significant
result to examine the robustness of the finding.

Practical considerations when carrying out 
source augmentation
Begg and Berlin state: ‘This method provides, 
at best, a very crude adjustment for publication
bias’ (3)

There are clearly shortcomings of the method:
firstly the combining of z-scores does not directly
account for the sample sizes of the studies.
Secondly, the choice of zero for the average 
effect of the unpublished studies is arbitrary 
and certainly biased (3). Also, it is guesswork
estimating the magnitude of unpublished studies 
in the area. Fourthly, the method does not adjust 
or deal with treatment effects. Fifthly, hetero-
geneities among the studies are ignored (27).10

Lastly, the method is not influenced by the shape 
of the funnel graph (4). In its favour, the value 
k 0 is easy to calculate and easily interpretable (4).
However, despite all the drawbacks this method 
has been used widely as a tool in meta-
analysis (39).

Extensions
Several extensions and variations of Rosenthal’s
‘file-drawer’ method described above have been
presented. These are briefly outlined below.

Orwin (39) proposed a statistic analogous to
Rosenthal’s ‘file-drawer’ applicable to standardised
differences between treatments (d) (i.e. continuous
effect sizes – see pages 64–6), with no obvious
choice of a critical value for d (unlike 0.05 used 
for p). Orwin comments:

‘a researcher may have reason to believe that the 
file drawer studies have a nonzero mean effect size, 
or he or she may wish to test a range of values 
around zero.’ (39)

Iyengar and Greenhouse (27) proposed a
modification to this using a truncated distribution
in the same way as for Rosenthal’s method (see
below). They make the observation that Orwin’s
scheme is more stable with respect to the choice 
of mean of the unreported studies than 
Rosenthal’s scheme.

Iyengar and Greenhouse offer a modification to
Rosenthal’s approach. They argue:

‘if there were publication bias in favour of studies 
with statistically significant findings, then the Z values
for the unpublished studies would not be a sample
from the standard normal distribution. Instead, they
would be selected from the part of the population of
studies whose significance levels exceed α, and hence,
whose Z values are less then zα.’ (27)

9 Rosenthal’s book (27) provides a rough guide to help decide what is an unlikely number of studies in the file draws,
but this guide does not seem to be used due to its ad hoc nature, more often ones self knowledge of the field is used
instead.

10 Although Rosenthal and Rubin state that simple heterogeneities can be addressed by stratifying studies and making
file drawer computations within strata.



Publication bias

128

They present a modified formula for k 0 using 
a truncated normal density (27) (see paper for
details), which always gives a smaller estimate 
for k 0.

However, Rosenthal and Rubin [comment 
on (27)] pointed that their modification is one-
tailed, which assumes only results significant in 
one direction are published, while Rosenthal’s 
test is two-tailed. They argue that one-tailed 
is less realistic because: a) early in the history 
of a research domain results in either direction 
are important news; b) later in the history of 
the domain, when the preponderance of the
evidence has supported one direction, 
significant reversals are often more important 
news than are further replications.

Iyengar and Greenhouse (27) also presented a
method for calculating k 0 using Fisher’s method 
of combining p-values (see chapter 7).

Klein et al. (43) produced a modification of 
the file drawer method so that the OR scale 
can be used (instead of the p-value). As before,
assume k published trials, and m unpublished 
trials, which on average show no treatment 
effect, i.e.

m

∑ ln(OR
^

j) = 0
j = 1

Suppose that the pooled analysis of the k published
studies gives a statistically significant result at the
5% level, where the weight for each study is given
by Wi = 1/Vi. Then, the number of unpublished
null trials (of similar weight to the published
studies) necessary to reverse this result and 
render the conclusion statistically insignificant 
at the 5% level is the smallest integer, m, 
greater than

(k ln(OR^ ))2

_
w – k

(16.9)

1.96

where 
_
w is the average weight of the k published

studies. Klein (40) notes similar results can be
obtained using other choices of weights (see 
pages 56–63).

Selection models using weighted 
distribution theory
The purpose of these methods is to model the
(publication) bias through the use of weighted
distributions. These methods are more complex
than the file drawer method given in the previous

sections. For a brief history of weighting functions
see (27); they were first introduced into meta-
analysis by Iyengar and Greenhouse (27). The
premise for weighted functions in meta-analysis is
that each study is included in the analysis with a
probability that is determined by the outcome 
(in all the below cases this is the observed p-
value, rather than the effect). These selection
probabilities are related to different possible
outcomes via a weight function (4). Thus an
adjusted effect size estimate, adjusted for the 
fact that the studies obtained were a bias sample,
can be calculated.

General formula for model incorporating the
weight function
Presented below is the general framework for the
model used (4):

f(T ;θ)w(t)
g(T ;θ)= (16.10)

A(θ)

where T is the observed effect size, θ is the true
mean effect size, f(T;θ) is the probability density
function of T irrespective of whether or not the
study was published, w(T ) is the weight function,
g(T;θ) is the probability density of T given that the
study is published, and where

A(θ) = ∫ ∞
–∞f(t :θ)w(t)dt (16.11)

Thus, we are interested in the true distribution 
of T; f(T;θ) and inferences can be made by con-
structing a likelihood function and solving it
numerically (specialist software is required).

Specifying weight functions
The simplest version was first presented by 
Hedges (26), following work by Lane and 
Dunlap (22); it deals with continuous standard-
ised effect sizes. The weight function is simply 
given the value one if the test is significant (at 
the 5% or any other specified level), and 0
otherwise. Put mathematically:

1 if Ti > Cα(v i)
wi(Ti) = { (16.12)

0 if Ti < Cα(v i)

where Cα(v i) is the critical value of the α-level 
test for the i th study and v i is the SE of the i th 
effect size. This model assumes all significant
studies are published and all non significant 
ones are not. Once a likelihood equation is 
formed using equation (16.10), it can be solved
using computational iteration (26).11,12 For a
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technical coverage publication selection models see
Hedges (41). Begg and Berlin comment:

(it is an) ‘appealing method for assessing the potential
magnitude of publication bias, especially when most
or all the published studies are significant, since in
this case there is not much wasted data, although
clearly if most of the studies were non-significant 
the method would be inappropriate.’ (3)

The method is strongly dependent on the nature 
of the distribution of the p-values in the range
0.00–0.05, and accuracy is open to question. As 
the assumption made is that all significant studies
are published; marginally significant ones may 
not be published so bias would be underestimated.
They suggest it would be interesting to investigate
study properties further, especially the impact 
of ignoring the available non-significant
publications.

Rosenthal comments [discussion of (27)] this
method assumes the non-published results mean
effect to be 0, which is probably too simple. 
There is evidence to suggest it pulls in the 
direction of the mean of the published studies; 
the MLE approach of Iyengar and Greenhouse
(27) addresses this observation by trying to 
estimate the mean effect size in the population 
(see next section).

Weight function of Iyengar and Greenhouse
Iyengar and Greenhouse (27) give two different
variations of weight function families. Both con-
sider all studies statistically significant at the 0.05
level will be published, and hence the weight
functions will take the value one over these values.
For non significant results one weight function
considers the reporting probability as constant, 
but not zero as for the Hedges model (see above).
The other suggests that the reporting probability
increases (exponentially) as the outcome
approaches statistical significance [see (27), 
p. 113 for details]. The likelihood created when
this weight function is combined using equation

(16.10) is solved using ML methods. The authors
comment that this method is flexible, and one can
apply sensitivity by varying the assumptions and
examining the log likelihood surface, which shows
how informative the data are about the parameters
in the model.

Laird et al. (27) commented that symmetry in 
these models, and uniform weight in the tails, 
may not be completely realistic, and illustrates
some results to substantiate their claims. Along 
a similar line, McPherson [discussion of (3)]
comments she would like to impose asymmetry 
on the publication criteria. Significant results in 
the expected direction will have a different impact
than significant results in the opposite direction
(i.e. beneficial effects of new therapies are more
likely to be published than ones with deleterious
effects). Laird et al. also present formula to 
estimate the number of unpublished studies 
[see (27), p. 128 for details]. Hedges commented
on above weight functions [discussion of (27)],
saying that the modelling of significant results 
with the probability of one is unrealistic. He 
argued that:

‘when p-values are either very small or very large, 
the decision whether to report or publish is based
primarily on other factors than the p-value. When 
the p-value is intermediate, the decision to publish
may be greatly influenced by the p-value.’ (27)

He went on to suggest an s-shaped curve may be
better [see (27), comment, p. 118 for formulae].

Hedges also went on to say that since both his
model and the more realistic ones of Iyengar and
Greenhouse assumed a fixed effect model:

‘It would be interesting and relatively straightforward
to study the effects of publication bias on estimates in
random effects models’ using models such as the two
presented above. He notes that ‘Further work to
elucidate the effects of selection on estimates of the
distribution of treatment effects would be an
important contribution.’ [comment (27)]

11 Hedges (26) also proposed simpler solutions in view of the ad hoc nature of the procedure by providing tables which
give solutions for individual components of equation (16.12). These can then be combined using a weighted average to
obtain a solution.
12 Alternatively, Hedges also presented a simpler procedure (26). It assumes all the studies have equal sample sizes and
use vote counting methodology (see pages 33–4). It treats positive and negative results as independent realisations of a
Bernoulli process and the adjusted treatment effect can be estimated using a modification of binomial theory [for
computational details see (64) or (26)]. This method is clearly very limited as it requires a fairly large number of
studies and equal sample size; because of this Hedges comments:

‘Because unequal sample sizes are the rule rather than the exception in research synthesis, counting estimators are
likely to be most useful for providing quick approximate estimates rather than serving as the analytic tool for final
analysis.’ (26)
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Weight function of Champney
Champney (24) did investigate estimation in 
a random effects analysis using a simple step 
weight function and assumed the random effects 
to be normally distributed. This work suggests 
that publication bias may have substantial effects 
on estimation of the between study variance even
when the estimate of the men is not strongly
affected [(27) Hedges comment, p. 119].

Hedges weight function
Hedges later went on to present a more generalised
form of the weight function (21). This model
allowed the weight function to take different 
values in different regions of the p-value scale, thus
turning it into a step function13 [details omitted;
see (21) for details]. This allows for reasoning
along the lines that: a study with a p-value of 0.01 
is more likely to be published than a study with 
a p-value of 0.05 which in turn is more likely to be
published than a study with a p-value of 0.10, etc.
The discontinuities were decided using information
from psychological studies; however, plotting the
observed distribution of p-values may provide
insight about the likely shape of the weight
function.14 The model also allows the inclusion 
of a random effects term. Also presented are tests
for publication bias by assessing if all the weights
are equal to one, one based on the χ2 statistic and
two based on likelihood ratio tests. The author
appears cautious about this method suggesting it
should be used to give a ‘broad indication of
whether selection is operating’. (21)

The weight functions of Dear and Begg
Dear and Begg (42) suggested that the problem
with the above weight functions is their monoto-
nicity; in addition to their lack of flexibility for
accommodating different shapes of selection
functions. They presented an approach which
allows the shape of the weight function to vary 
in as unconstrained a manner as possible, using 
a semi-parametric model. This model also has the
ability to incorporate random effects for treatment
effect. Thus, the main distinction between this
approach and that of Hedges outlined above 
is that Hedges chooses to pre-specify the regions of
the p-value scale within which the weight function,
and are assumed constant (0.05, 0.01, 0.001 etc.).
The authors comment, ‘In practice this will lead

typically to a weight function with fewer ‘steps’, and
as a result Hedges’ method is probably more robust
but less flexible than (this method). .....Research is
clearly needed in assessing and comparing the
operating characteristics of these two methods.
However our intuition suggests that the Hedges
model will be more suitable for meta-analyses with
substantial numbers of component studies, while
our method will be necessary for small meta-
analyses’. [See original paper (42) for formula 
of step function.] The method is complementary 
to the traditional funnel graph, but sensitive to
publication bias even when the study sample sizes
are similar (unlike the funnel plot). It can be
employed in the context of either one- or two-
sided tests (depending whether or not the weight
function can be assumed to be the same for
negative and positive effect sizes of similar
magnitude) (4). The authors stresses this model
should be used as an exploratory, informal tool and
suggest that it can be used to correct estimates for
bias, preferable would be to focus attention on the
causes of bias.

Recent developments in weight functions
Recently, new weight functions have been
proposed. Paul (43) has investigated a non-
parametric class of weight function within a
Bayesian analysis (chapter 13). Motivation for 
this work is to consider the robustness of results 
on the choice of weight function, which after 
all is specified by the user and unknown. This
approach involves specifying a weight function 
and a neighbourhood around it and looking at 
the range of results over the neighbourhood.

Larose and Dey (44) fit weight functions of 
Iyengar and Greenhouse (27) and Patil and Taillie
(45)15 from a Bayesian perspective (see chapter 
13) using non-informative priors. Several model
selection criteria are used in the spirit of explor-
atory data analysis for the appropriate choice of
weight function.

Final remarks on weight functions
Many different approaches to weight functions
have been outlined here. Unfortunately, there 
are no software packages that can do this sort of
analysis routinely yet (4). Another point worth
noting is that Laird et al. [(27), p. 126] have

13 The likelihood can be solved via the Newton–Raphson method or the EM algorithm.
14 Hedges suggests searching through registries to find unpublished studies and their corresponding p-values to get 
and idea of the distribution and apply it to the weight function (27).

15 Due to time limitations, these particular weight models are not discussed in this report, but the interested reader
should note their existence. The following references may also be of interest (53–56).
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commented on the similarity of these methods 
to survey sample theory for missing data: ‘Since 
the sample survey literature on handling non-
response is extensive; we feel that many of the
approaches developed for sample survey can be
used with advantage in the meta-analysis setting.
(see original paper for more details). This may 
be a methodology whose potential is not fully
realised yet.’

Miscellaneous methods
Estimating an unpublished study
Sugita et al. (46) claim to present a method of
estimating a pooled OR whilst eliminating publi-
cation bias. They make the assumptions that log ORs
from each study are distributed normally, and then
calculate an estimate and CI employing a moment
method for the unpublished studies. Then by
solving a set of simultaneous equations, which
contain the sample second, third, and fourth sample
moments they can estimate the summarised OR and
CI in all studies, including not only those published
but also those unpublished. This method assumes
homogeneity and thus a fixed effect analysis. A
further drawback not pointed out in the paper is
that they assume only one study is not published 
and it is an estimate of this which is calculated. The
authors comment this method can be used with the
hazard ratio. This model was later revised by Sugita
et al. (47) which allowed the probability density
function curve of all studies to be drawn.

Analysing the largest studies
Begg (3) gives some general advice. First, explore
the apparent association between the measure of
interest and sample size, to identify evidence of
publication bias. If a strong trend is present, large
studies should be less biased than the small ones so
it may be advisable to eliminate the small ones. This
would seem quite radical, but not without good
reasoning, perhaps further investigation is needed
here. This method would be useful as a form of
sensitivity analysis.

Other recent developments in adjusting the
analysis for publication bias
Clearly, this is a very active area of interest. At 
the time of writing this report, there were several
unpublished pieces of work on the subject. A brief
overview of these is given below.

Methodology that attempts to estimate the number
of missing studies has been developed (48,49),
though not formally published. Glesser and Olkin
(49) present two general methods. Each model
allows one to estimate the number, N, of unpublish-
ed studies using the p-values reported in the
published studies. N and its confidence bounds 
can then be evaluated for plausibility by the meta-
analyst. The authors comments that Begg and
Berlin (3) and Iyengar and Greenhouse (27) have
emphasised that Rosenthal’s fail-safe N approach
cannot be universally applied. ‘At least some
specification of the mechanism that consigns
studies to file drawers is necessary to justify the
method. (49)16

The first model considers the possibility that 
the p-values observed are the k smallest p-values
among the N + k reported and unreported
studies.17 ML and best unbiased point estimators 
of N are presented along with a lower 100(1 – α)%
confidence bound for N assuming the null hypo-
thesis is true. A more realistic modification is then
presented, in which the m smallest p-values plus a
random sample of k – m of the N + k – m remaining
p-values are observed.

The second type of model is a true selection model
in the form of (3) and (42) presented above.18

Here, if the function is totally unknown, it is shown
that N is not definable. If, however, an interval is
known for which studies will be reported a 
method for estimating N is presented. See 
(49) for more details.

Eberly and Casella (48) also present a model
estimating the total number of studies carried 
out, both published and unpublished, dependent
on the probability of publication. A selection model
is again used where all studies significant at level 
α are published, while non-significant studies are
published with probability p. Here Metropolis
simulation and Gibbs sampling techniques are 
used (50) to generate random samples from the
distribution of the total number of studies and
study how it changes as p varies.

Very recently, Givens et al. (6) proposed a method
to estimate and adjust for publication bias. In this
approach, the number of studies missing along with

16 The paper also comments that the ‘fail-safe N’ has no necessary relation to the actual number, N, or reported studies
estimated by this method.
17 Paper notes this is not a selection model, rather, it resembles observational models used in accelerated life-testing,
where sampling ceases once k lifetimes (which are necessarily the smallest lifetimes) are observed.
18 i.e. the probability that a study is reported is a function g(p), of the attained p-value.
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their results are estimated and imputed into the
dataset containing the published study results. 
A Bayesian approach is used (see chapter 13), 
and estimation is based on a data augmentation
principle within a hierarchical model. Any of the
publication selection mechanisms described 
above [such as those of Hedges (21) and Dear 
and Begg (42)] can be used within this methodol-
ogy. For an application of this method, see (51).19

The authors go on to comment that if one has
approximately 30 studies, ‘one might have some
confidence that the imputed studies give a credible
representation of the truth. What remains to be
developed is a method of handling small
collections.’ (6)

This methodology has been extended even 
further (52). If one believes that the quality 
of a study is a factor determining whether it is
published, as well as the significance of the 
results, then different selection mechanisms 
can be applied to the studies of differing quality.20

This is done by adding a hierarchical structure to
the model of Givens et al. (6). Smith et al. (52)
point out that this model, in principle, can be
extended to include any other covariates one
believes have an influence on the probability 
of publication. 

Other work in this area include that of Bayarri 
and DeGroot (53,54), who explore the behaviour
of published results using an indicator function 
of statistical significance to weight the model’s
likelihood, and show that significant overall 
results obtained from published data actually 
can be strongly supportive of the null 
hypothesis.

Also see (55), and Fongillo (56), who takes a
Bayesian approach and uses two-stage hierarchical
models to model variability both within and
between studies.

Clearly, this is an area which has seen fast
development over the last few years, and since
several groups are currently working on the
problem it is envisaged that new developments 
will continue to happen. It remains to be seen 
how useful and appropriate these methods are 
in practice, they should certainly be considered 
as experimental methodology.

Invariant sample frames
It is often desirable to include as much information
as possible when carrying out a meta-analysis, as we
have seen, including only studies found through
literature searches and other means may produce a
bias sample of the studies that were actually carried
out. Combining this biased sample can produce
misleading results. A method has been proposed by
Simes (11,57), which removes the possibility of
publication bias at the cost of potentially only
including a selected proportion of all studies carried
out. A brief description of the method is given below.

This method reported in (3) involves limiting 
the meta-analysis to a subset of studies which satisfy
the condition that they represent an exhaustive
collection from a sampling frame which is inde-
pendent of the publication process. Explicitly, the
idea proposed by Simes was to restrict attention to
studies that prospectively would all have been
registered at some international trials registry. The
meta-analysist would then following up all studies
registered, including (a cohort of) unpublished
studies which would have been identified by the
international register. It is important to note that
studies published, but not on the register, are
ignored and not included in the meta-analysis. 
This method would produce a list of trials which
would not be influenced by study results (57).

Simes (11,57) give examples of where the above
methodology is used in cancer RCTs. Sampling
frames such as the International Cancer Research
Bank using the database CLINPROT were used in
these instances. It is worth noting that the results
obtained by this method differed from those
obtained from the usual method of selecting trials
through literature searches etc.

A further advantage of this method suggested 
by Simes (11), is that trials not registered may
enhance bias, i.e. registration may eliminate the
more poorly designed and less well controlled
studies. However, unfortunately for most topics,
registers do not exist. In 1988, Begg and Berlin 
(3) considered their construction to be seen as a
policy goal. In 1991, Easterbrook did assemble a
compendium of existing registries (58), but the
methods are restricted to certain subjects. Begg 
and Berlin (3) highlighted the need for alternative

19 This method can be seen as a form of imputation of missing data (see chapter 17).
20 It is worth making explicitly clear that no adjustment to take into account study quality, such as weighting 
(see chapter 6), is carried out via this analysis. The variation in quality only effects the number and estimates 
of the studies imputed.
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sampling frames and suggested creating registries
from studies approved by hospital ethics commit-
tees as a possibility (though they may be hesitant to
give out information as it is often given them in
confidence). A further alternative is Government
lists, though these are confidential except in USA
and Spain (9). Another problem is that although
one knows of the unpublished studies of interest,
this does not mean their results are easily obtain-
able. The above discussion assumes all evidence 
to be combined is coming from RCTs, in practice
other evidence may also be included (see chapters
19 and 26), these sorts of data are susceptible (and
probably mores so than RCTs) to publication bias.
For example [(3), discussion], Day comments more
and more audit research is done that never goes
through registries or ethics committees.

Broader perspective solutions to
publication bias
The problem of publication bias is a fundamental
one: Weisberg comments:

‘the meta-analytic approach is severely limited 
by the conventional form in which research results 
are presently conveyed. Traditional methods for
summarizing data are not well suited to the needs 
of meta-analytic reviewers. The current paradigm
provides little opportunity or incentive to report
incomplete, ambiguous or negative findings that 
may be valuable as part of a larger pattern.’
[discussion, (3)]

Begg and Berlin observe that:

‘This phenomenon is encouraged in the competition
for academic promotion and lamented for its role 
in degrading the quality of published medical
research’ (2)

Begg and Berlin (3) call for a policy agenda 
that will lead to the improved quality of published
research data and so reduce the impact of bias 
for the future. Several long-term suggestions 
have been put forward, these have the potential 
for greater long-term impact than retrospective
efforts to correct the bias technically by 
statistical modelling (3).

Begg and Berlin (2) suggest blinding reviewers of
journals to the results, so a decision on publication
would be made solely on the methods, this would
encourage people to write reports with negative
results. Altman [discussion, (3)] believes the
concept of positive and negative studies should be
abandoned altogether. Another solution suggested
would be to give incentives to both authors and

editors to publish negative results (3). Chinn
[discussion, (3)] suggests creating a ‘Journal of
Unbiased Results’ by publishing the acceptance date
and expected date of publication of forthcoming
papers. If the paper failed to materialise, the reason
would be given as a deterrent for not publishing.
Alternatively, negative studies could be published 
in a reduced form and hence take up less space in
journals. Begg and Berlin suggest that at the very
least the title should be published, rather than not 
at all (3). A similar alternative is that unpublished
results could be given concisely in review articles
(59). An anonymous editorial in the Lancet observes
that in 1991 physicians in Spain and France were
already required to register all drug trials with their
respective ministries of health, and in Japan it is
mandatory to publish the results of every single trial,
perhaps this should be the case for every country?
Another possibility is using the potential of peer
reviewed on-line journals, with no space restrictions
this could alleviate publication bias (60).

However, registering and reporting all trials does
have potential problems. Blair [discussion, (3)]
argues that in general, positive results are more
important to readers than negative ones and that
publication bias only important to meta-analysis 
not science in general, and hence the publication
of all studies in full is not justified. As for research
registers, pharmaceutical companies may fear
competitors may get an unfair advantage 
knowing their latest trials (61).

Including unpublished information

Pages 14–15 discussed identifying grey material 
and thus outlined ways of identifying unpublished
studies. It may seem clear, that if one could identify
all the unpublished studies and retrieve the rele-
vant information, publication bias could be allevi-
ated. However, Cook et al. (62) report an incident
where data was requested from a manuscript (for
the purpose of a meta-analysis) sent to the New
England Journal of Medicine, where it had been
presented only in abstract form. This request was
forwarded to the editor who replied saying the
intention to include unpublished data, ‘both
surprising and disturbing’, and that if the data was
released he would not consider the manuscript,
commenting ‘I imagine that most other editors
would do the same’.

This led Cook et al. (62) to investigate attitudes
towards unpublished data in a meta-analysis. They
found that 46 of 150 meta-analyses examined used
unpublished results. 46.9% of editors asked felt
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unpublished data should probably or certainly 
be included, 30% of editors would not publish 
an overview that included unpublished data. Of
meta-analysts and methodologists, 34.3% would
definitely exclude material that had not been
published anywhere.

An investigation into whether the inclusion of
unpublished studies, which are possibly methodo-
logically weak compromise the validity of a meta-
analysis, would be useful.

For a discussion on how study quality affects the
results, and ways of incorporating study quality 
into a meta-analysis see chapter 6.

Further research

Delineate more clearly the important correlates of
publication bias, possibly using retrospective data,
utilising methods analogous to those used on pages
124–6. Additionally, to establish if correlates vary
depending on the subject matter (3).

Issues regarding the impact reporting multiple
endpoints has on publication bias, e.g. there may
be a strong incentive to publish a cancer trial if any
one of the end points shows a positive result,
however all four may be published in the same
paper. In this situation bias may be negatively
correlated between outcomes (3).

Estimating publication bias using the OR as the
outcome scale using a random effects model (i.e. 
in presence of heterogeneity) (46).

Assessing the impact of the pipeline
problem (see pages 121–2) (27)
Begg comments:

‘it seems plausible that in practice selective
publication will be influenced by both the magnitude
of the effect size and the p value, and it would be
desirable to develop a test that is sensitive to either of
these influences, but at present no such methodology
is available.’ (4)

Begg (4) compiled the list below of currently
unanswered questions regarding publication 
bias in meta-analysis:

1. What are the most sensitive approaches for
detecting bias?

2. What are the relative merits of methods based
on the funnel graph versus methods based on
weighted distribution theory (question could
now incorporate the newer methods also)?

3. What are the chances of failing to detect 
a bias that would have a profound effect on 
the meta-analysis?

4. How many component studies must there 
be before one has reasonable power to detect
bias? (The new method of study imputation (6)
claims to work when one has only got a small
number of studies to combine.)

Establishing whether the inclusion of unpublished
studies, which are possibly methodologically weak,
compromise the validity of a meta-analysis.

Much work has focused on publication bias for
RCTs. The problem is probably even greater for
observational studies. Perhaps further investigation
into this is required.

Rao (27) comments that the problem of hetero-
geneity cannot be empirically split from that of
publication bias. It would seem that a homogeneity
test, taking into account selection bias would 
be useful.

Methods for assessing and adjusting meta-analyses
for publication bias, when only small numbers of
studies are being combined.

Summary

In conducting a meta-analysis, researchers should
always be aware of the potential for publication
bias, and make efforts to assess to what extent
publication bias may affect their meta-analysis. In
terms of the inclusion of unpublished studies, a
sensitivity analysis should be performed to assess
the likely impact of including unpublished data.

The intention of above sections was to give the
reader a brief but relatively complete overview of
the methods proposed to deal with publication
bias. It has already been noted that many of the
methods are new and exploratory. In 1988, Begg
and Berlin in their thorough and excellent review
on the subject commented:

‘It is difficult to conceive of a correction methodology
which would be universally credible.’ (3)

Since then, these methods have grown more
sophisticated but the authors always stress the 
need to use them as a form of sensitivity analysis.
The file drawer method of Rosenthal, again is a
form of sensitivity analysis which being older has
gained a certain amount of acceptance. Time will
tell if these newer, correction methods supersede
this simple calculation.
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It has been demonstrated that publication bias 
can be elevated by using a sampling frame. Louis
commented of the correction methods:

‘All of these methods are based on fairly strong
assumptions, and the current consensus seems to be
that although these methods may be valuable tools,
long-term policy measures aimed at reducing
publication bias are required’ [(3), discussion]

This is echoed by Begg and Berlin:

‘The only method which is likely to gain widespread
acceptance is the use of an invariant sampling frame
(if available).’ (3)

Hedges states:

‘It is difficult to dispute that the ideal solution to the
problem of publication bias is the development of an
unbiased sampling frame via a registry or an ongoing
census of studies.’ [discussion (3)]

With advances in world-wide communications, via
the Internet etc., the feasibility of world-wide regis-
tries has increased. With the inception of groups
such as the Cochrane Collaboration, it would seem
that the first advances have been made.21
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Types of missing data
Data missing in meta-analysis can be split into three
broad categories, namely, data can be missing in
the below situations:

i) Whole studies – chapter 16 discusses
publication bias, a situation where not all 
the studies carried out in an area have been
reported. Ways of dealing with missing studies
are dealt with in the latter half of chapter 16
and will not be discussed further here.

ii) Study level – data can be missing at the study
level. It may be that a significance level or 
p-value, but no treatment effect size estimate 
is reported. Study level covariates may also 
be missing, either completely, or only partially
reported (e.g. due to missing data at the
patient level), the study may only report the
mean age of 80% of the people in a study. 
This type of missing data can be problematic,
and a problem unique to meta-analysis.

iii) The individual patient level – chapter 24
discusses meta-analysis of individual patient
data (MAP). Here the original data from the
primary studies is collected on all patients, this
is then merged into one large dataset. The
analyses possible are similar in nature to those
carried out in multicentre trials. When data are
missing at this level, standard techniques for
missing data used in trials and observational
studies can be employed in the meta-analysis.

This chapter will concentrate on situation ii),
where data are missing at the study level, however,
many of the techniques could be used in situation
iii), at the individual patient level also. For
additional information on estimating effect 
sizes from p-values, see pages 149–52.

Reasons why the data are missing

The below account is adapted from Piggott (1),
who highlights different situations when study 
level data is missing.

Influences of research reporting practices
The amount of information given in a study report
may be limited by the nature of the publication.

For instance, a dissertation may be considerably
longer than a paper and thus include more
information. In addition the researcher may be
influenced by customary reporting practices in the
research area, the background of the authors, and
also the subjective view of different authors as to
what they perceive is important and the emphasis
of the article.

Missing for reasons unrelated to 
the data
This type of data is considered missing at random.
The cases with complete information can be
treated as a random sample of the original set of
studies. Little and Rubin (2) use the term ‘missing
completely at random’ to make it distinct from the
situation given below.

Missing for reasons related to
completely observed variables
In this instance, missing values occur because of the
value of another completely observed variable, and
not because of the value of the missing variable
itself. Little and Rubin (2) use the term ‘missing 
at random’. Analysing only complete cases in this
situation may not provide generalisable results.
Methods described in (2,3) are appropriate here.

Missing for reasons related to the
missing values themselves
Observations can be missing because of the 
value of the variable itself or because of other
unobserved variables. This can be caused by
censoring mechanisms. An example of this
situation are missing effect sizes not reported
because they were not statistically significant. In 
this instance the data is missing non-randomly. 
This situation poses one of the most difficult
problems in dealing with missing data.

Missing data at the study level

Missing study level effect sizes
The effect size estimate may be completely missing
for particular studies. If a result is non-significant,
often the actual magnitude of the effect is not
given, this will have an effect on the meta-analysis
similar to publication bias (i.e. since treatment
estimates from significant studies are more likely to

Chapter 17
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be given, this will lead to a systematic bias
overestimating the pooled effect estimate).

When the direction, but not the magnitude, 
of the effect size estimate is known, vote counting
analysis can be carried out. Pigott (1) comments
some researchers fill in conservative estimates, 
such as zero, for missing effect sizes, and warns
that, this could lead to bias results which are
compounded when a variance of the effect size 
is calculated and weighted least squares is used.

Missing study level characteristics/
covariates
It should be noted that standard regression
programs drop cases missing any variable in the
model. Most quantitative research synthesis may
use only studies with complete information on 
both outcomes and predictors when building
models for effect size (1).

Simple analytic methods for
dealing with missing data
[adapted from (1)]
As Pigott states:

‘The adequacy of these methods depends on the
reasons data are missing’ (1)

Analysing only complete cases
Although this method is always possible, if there are
too many missing values, analysing only complete
cases reduces the data considerably. Also, one has
to assume that the remaining complete cases are
representative of the original sample of studies.

Single-value imputation
The idea of this method is that the missing values
are filled with a reasonable value (i.e. all the miss-
ing data get the same value). This method has the
advantage that all the cases with one or more
missing values are not lost. If one believes the
missing values have a small value, often the value
zero is imputed. Another alternative is to impute
the mean value for that variable. The method
makes the assumption that missing values are close
to the imputed values. Little and Rubin (2) give
exact formulae for the underestimation of the
sampling variance that results from imputing single
values for missing observations, because this
artificially deflates the variability of the variable.1

Regression imputation: Buck’s method
This method is suggested by Buck (4). It uses
regression techniques to estimate missing values,
replacing missing observations with the conditional
mean. For every pattern of missing data, complete
cases are used to calculate regression equations
predicting a value for each missing variable using
the set of completely observed variables. Little and
Rubin (2) again give an adjustment for the under-
estimation of the sampling variance. This method
assumes the missing variables are linearly related 
to other variables in the data.

Buck’s method underestimates the sampling
variance of Y2, (Y1 and Y2 are both variables) by

λ
σ

22.1
(n – 1)

where λ is the number of missing values of Y2, and
σ22.1 is the residual variance of the regression of Y2 on
Y 1

2. If the two variables are linearly related, inform-
ation about one variable can provide some inform-
ation on the missing values of the second variable.

Which method to use when?
Pigott (1) notes that these methods do not work
equally well in all situations. When observations are
missing at random the complete case, mean impu-
tation, and Buck’s method provide unbiased estim-
ates. However, mean imputation and filling in zero
underestimate the SE of the mean.

It should be noted that the adequacy of the methods
changes when missing data result from a censoring
mechanism rather than a random deletion. For
instance, these methods would fall down if all the
highest, or lowest values were missing. Grossly under
or over-estimates would be obtained.

Pigott (1) also comments there may be a danger 
in using the estimates of the SE of the mean, since
the imputed effect sizes are used twice: once for the
effect from an individual study and once for the
estimate of the variance of that individual effect
size. The inverse of the estimated variance is then
used to calculate the weighted effect size (so more
weight is given to studies with large sample sizes
even if those studies values were imputed.) The
weighted mean does not reflect the uncertainty 
due to missing observations and should be used
with caution.

1 Because imputing values deflates the variance, this has important implications for tests of homogeneity of effect sizes
and for estimation of categorical or linear models of effect size.
2 Little and Rubin (2) give the general form of underestimation for more than two variables.
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Advanced methods for dealing
with missing data
These methods can be used when missing
observations are related to completely observed
variables or to the values of the missing observ-
ations. For a Bayesian approach to this subject, 
see chapter 13.

ML models for missing data
This method uses all the data contained in the
original sample and does not require any adjust-
ments to the data (unlike the Buck method). 
Little and Rubin (2) state that the mechanism 
that leads to missing data can be ignored when 
it is either unrelated to information in the data 
or related to observed information. These ML
methods follow the usual steps for complete data
MLE, but also include a model for the reasons 
for the missing data in the likelihood of the data.
The part of the function that governs the missing
values is called the response mechanism. When
missing data are deemed able to be ignored, the
piece of the likelihood pertaining to the response
mechanism can be ignored. Little and Rubin (2)
present two models for ignorable data in 
research synthesis.

Mixed normal and non-normal data
Estimates means and cell frequencies when the
data contains both continuous and categorical
variables (i.e. categorical covariates) [see (2) for
more details].

ML methods for multivariate normal data
Methods for linear models with ignorable 
missing data.

This method assumes the data is from multivariate
normal distributions, though the procedure is
robust (1), i.e. assumes effect size and predictors of
effect size are jointly distributed as multivariate
normal. Since effect-size estimators are not distri-
buted identically, and since the variance of an estim-
ate of effect depends on the sample size employed in
the study, this method cannot be used directly [it
has been suggested that weighted least squares could
be used in this instance (5)]. Adjustments are need-
ed to allow weighted least squares to be used in the
estimation procedure [an algorithm is given in (6)].

The method does not estimate single missing
values; rather, it estimates the means and covari-
ance matrix by obtaining the expected values of the

sufficient statistics (in this case sums, and the sums
of the cross products, of the variables in the model)
of the likelihood. The likelihood is calculated using
the EM algorithm. It is necessary to calculate a
series of regressions for each pattern of missing
data. Missing data can occur on a number of
predictor variables resulting in a series of patterns
of missing data. SEs of the estimates can be calcu-
lated via the second derivative of the log likelihood
(2) (often this is not an easy task!). Meng and
Rubin (7) present a new algorithm less difficult to
compute than (2), easier still, but less accurate,
would be to use a jackknife procedure. The original
algorithm is available in the BMDPAM program
(but not using weighted models3).

If the data is non-ignorable, two methods to deal
with it are outlined in (2): 1) requires knowledge
about the reason for missing data (e.g. reviewer
knows the exact value of the effect size above which
no effect sizes are observed) and 2) is used most
frequently when only missing values in one variable
and the reason for being missing is unknown. Since
in meta-analysis one never has exact information,
nor are missing values often confined to one
variable, their use is limited.

Multiple imputation
This method was described originally by Rubin (3),
and in more detail in Little and Rubin (8). The
method imputes more than one value for each
missing observation and thus obtains a range of
possible values for each missing observation. In
doing so, it avoids the problem of having to assign
only one value to the data. Pigott (1) comments
that the theory was derived for large scale sample
surveys, so theory only precisely valid for a large
number of cases, although may be useful for small
data sets, more research required.

Repeated measurement (outcome)
missing data
Talwalker (9) deals with the problem of repeated
outcome missing data in a novel way. The data is
stratified according to the patterns of missing data.
Then each persons repeated measurements are
reduced to a summary measure. These summary
measures are then compared using a distribution
free test to investigate the treatment effect.
Random effects have been incorporated into this
analysis. The example given by Talwalker (9) to
illustrate this method does not synthesise different
studies, but strata from one study, however, the
applicability of the method for meta-analysis is

3 Theoretically, one could use SAS PROC IML also.
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discussed. It should be noted in the stratified
example the time periods for the repeated
measurements are the same for each person.

Further research

Generally more research is needed in this topic.
Specifically, methods presently available are only 
of use when missing values are confined to one
variable, hence methods for the multivariate
situation need. Also more research is required 
to ascertain whether multiple imputation can 
be used on small datasets.

Summary

Not a lot has been written on the problem of
missing data in meta-analysis. Most of the methods
discussed here have been adapted from other
situations. Many of the advanced methods have 
not been used extensively in a meta-analysis setting
(1). Pigott suggests that the current development
of computer programs that implement the proce-
dures described by Little and Rubin (2) should
advance the development of sensible methods for
handling missing data in research synthesis (1).

Cooper and Hedges state (10) that missing data are
‘perhaps the most pervasive practical problem in
research synthesis’. The also observe that ‘the pre-
valence of missing data on moderator and mediating
variables influences the degree to which the prob-
lems investigated by a synthesis can be formulated’,
and predict that new methods will evolve, and that:

‘Much of this work will likely be in the form of adapting
methods developed in other areas of statistics to the
special requirements of research synthesis. These
methods will produce more accurate analyses when
data are not missing completely at random but are well
enough related to observed study characteristics that
they can be predicted reasonably well with a model
based on data that are observed.’ (10)

When covariate information is missing this can be a
problem when analysing heterogeneity using meta-
regression (see chapter 11) as Pigott explains:

‘A synthesist may try several different analyses with the
data to determine if any of a study’s characteristics
relate to the effect magnitude of the study. In each of
these analyses, only studies with complete information
on relevant variables may be included. Each of these
analyses may utilise a different set of studies that may
not be representative of the sample originally chosen
for the synthesis and may not correspond with each
other. The results of each analysis may not generalise

to the population of studies on a topic nor to any of
the other samples of studies used in the analyses.’ (1)

It should be noted that the methods presented do
not help decide the reasons the data is missing in
the first place. Pigott suggests creating a missing
data index variable, taking the value one if a
variable is observed and 0 if it is missing:

‘This variable can be correlated with other completely
observed variables in the data or used as the outcome
variable in a logistic regression modelling response as
a function of several completely observed variables. If
one finds a correlation between a completely observed
variable and the missing data index or a plausible
model of the missing values, then some evidence 
exists that the reasons for missing observations
depend on completely observed variables.’ (1)

It should be stressed that whatever method is 
used to deal with missing data, a careful sensitivity
analysis of the modelling assumptions on the
conclusions should be performed as a final step.
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Introduction

This section discusses ways in which results of a
meta-analysis can be reported, interpreted, and
presented. In previous chapters of the report it has
been necessary to present results for the illustrative
examples, so the reader that has read through this
report sequentially will already be familiar with
several of the methods discussed here.

Overview and structure of a report

Deeks et al. (1) report the CRD guidelines for the
format their systematic review reports should take.
Although the format of a report for other sources
may vary, not least due to space constraints, it is a
very good starting reference. A shortened version 
is reproduced below. For further information,
Halvorsen (2) has written a chapter on this subject,
which follows a very similar structure and gives
many more details.

Abstract or executive summary
Background information

‘The need for the report should be justified by 
clearly describing the problem for which evidence 
of effectiveness is required, and describing the needs
of the health care professionals and consumers who
are to benefit from the report.’

Hypotheses tested in the review
Review methods

‘The methods used should be described in sections 
for search strategy, inclusion criteria, assessments 
of relevance and validity of primary studies, data
extraction, data synthesis, and investigations of
differences between studies.’

Details of studies included in the review
‘... details relating to the patient groups included,
mode of intervention and the outcomes assessed in
each study. Details of study results, study design and
other aspects of study quality and validity should also
be given. Sufficient information should be provided 
to allow replication of the analysis.’

Details of studies excluded from the review
Given reason for exclusion.

Results of the review
‘The estimates of efficacy from each of the studies
should be given, together with the pooled effect if this

has been calculated. All results should be expressed
together with CIs. The table or diagram should
indicate the relative weight that each study is given in
the analysis. The test for heterogeneity of study results
should be given if appropriate and all investigations of
the differences between the studies should be report-
ed in full. As well as reporting the results in relative
terms the impact of the results in absolute terms [such
as absolute risk reduction (ARR) and number needed
to treat (NNT) (see pages 109–10)] should be given.
This permits the clinical significance and possible
impact of the intervention to be assessed.’

Analysis of the robustness of the results
‘Sensitivity analyses should be performed and
documented to investigate the robustness of the
results where there is missing data, uncertainty about
study inclusion, or where there are large studies which
dominate the data synthesis.’ (see pages 209–10 for
more details on sensitivity analysis).

Discussion
‘A discussion of the strength of the causal evidence,
potential biases in both the primary studies and the
review, and the limitations they place on inferences,
should be given.’

Implications of the review
‘The practical implications of the results both for
health care and future research should be discussed.
This section should take account the needs of the
target audience.’

Reference lists
‘Three lists of studies should be given: the studies
included in the review, the studies excluded from the
review, and any other literature which is referred to in
the report.’

Dissemination and further research
‘Suggestions of the main messages for dissemination
and the important target audiences should be
discussed. Implications for further research should 
be outlined with a discussion of lessons of the review
for the research methods that may be useful.’

Graphical displays used for
reporting the findings of a 
meta-analysis
Under the results of the review part outlined above,
the results that need reporting for a meta-analysis
were given. Graphical displays can aid and enhance
these results. Several different graphical plots have

Chapter 18
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been used to display the findings of a meta-analysis.
These are discussed below.

Funnel plot
This plot was described on pages 124–5 for assessing
the presence of publication bias. The effect estimate
for each study is plotted against some measure of the
size of the study (usually the variance of the effect
estimate). Light et al. (3) report, this plot can be
used to check if the studies are ‘well behaved’ (i.e. 
if all studies are estimating a single underlying
population effect size parameter). If they are well
behaved then the plot should look roughly like
funnel because studies with smaller sample sizes 
will display more variability in effect size than the
investigations with larger sample sizes (3).

Forrest plot
This type of plot does not appear to have a
standard name, however it has been referred to 
as a Forrest plot (it is also known as a Cochrane
plot). This type of plot has been used in chapters 9
and 10 of this report to display the results of the
various analyses of the cholesterol lowering data.
Much information is succinctly conveyed in such 
a figure (3), with point estimates and 95% CIs for
each study, along with the final combined result
and CI all being displayed. In addition, the size 
of the study is represented by the size of the box
indicating the estimated treatment effect. This plot
has its drawbacks, however; it has been pointed out
that one’s eye is drawn often to the least significant
studies, because these have the widest CIs and are
graphically more imposing (4). Another problem 
is when very large trials have been carried out, 
the corresponding size of box is necessarily bigger
than the very tight CI around it (keeping the scale
reasonable for the other studies), making the level
of certainty difficult to ascertain. A point that needs
considering is which scale to use on the horizontal
axis. If the results of trials are presented in the
form of ORs, then a log scale may be more appro-
priate. If the linear OR scale is used then this may
distort ones interpretations. Galbraith (4) gives an
example where a trial with twice as many people in
it as another trial, has a CI of longer ‘visual’ length
(see paper for details). Galbraith (4) also com-
ments that when reporting the combined estimate
and CI on the graph next to the plot, the linear
scale should be used as this is more interpretable.

Radial plots
These were first described on page 41 as an
informal method to assess heterogeneity. As for 

the Forrest plot, information regarding the point
estimate and precision of each trial is displayed,
however an overall combined result is not given.
This plot can be useful in exploratory analysis.
Galbraith reports (5) that when many aspects 
need to be considered when comparing trials, 
these plots can provide a useful focus for
discussion, enabling differences between
subgroups1 and exceptions to be seen easily.

Methods specific to continuous 
effect measures
Light et al. (3) state that (when a continuous
outcome variable is being used) it is important to
display the distribution of the effect sizes obtained
in research synthesis. Commenting:

‘Then readers will be able to assess the shape of 
the distribution and draw their own conclusions 
about the overall size and variability of the effects
being integrated’. They present several methods to
‘enhance such displays in substantively interesting 
and methodologically meaningful ways.’ (3)

They take a list of the studies and corresponding
effect estimates and comment that the first aid to
interpretation is to order the studies by treatment
effect. From here, stem-and-leaf plots are created.
These are simple plots which are similar to histo-
grams, however the original data can be extracted
from the plot [see (6) for more details]. Back to
back stem-and-leaf plots can be produced to
compare studies split by a covariate (e.g. for
comparing studies using different treatment
regimes). Another type of plot suggested is the 
box and whisker plot. The end of each whisker
denotes the maximum and minimum effect sizes,
the two sides of the box, the upper and lower
quartiles, and the middle vertical line the median
effect size [see (6) for more details]. Several 
of these plots can be drawn alongside each 
other permitting subgroups of the studies 
to be compared.

Graphs investigating length 
of follow-up
Light et al. (7) present a display used when 
studies have different follow-up times. Here time 
is plotted on the horizontal axis and treatment
effect on the vertical. Each study estimate is plotted
along with vertical 95% CIs. A running mean line 
is plotted through these points in addition to a
horizontal median line. This graph could help
determine if follow-up time had an effect on 
the treatment estimate.

1 These can be plotted using different shaped points or different colours for each subgroup.
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Odd man out
This method was discussed on page 50. It is
included here to point out that it utilises a graphic
display different from the Forrest plot (page 144).

Obtaining a consensus for
reporting results – the 
example of environmental
epidemiological studies
Blair et al. (8) attempted to reach a consensus on
how results of meta-analyses in environmental
epidemiology should be reported. Their discussion
considers the presentation, interpretation, and
communication of results, a summary of which is
given below. To the authors of this report’s know-
ledge, this is the only documentation relating to
obtaining a standard reporting format. Since many
of the points could relate to meta-analyses of other
types of studies (including RCTs), the section is
included here, rather than chapter 19, which
includes methodology exclusively for
epidemiological studies.

Blair et al.:

‘The presentation of the meta-analysis should be
similar to the presentation of any of the individual
studies that make up the analysis in that there should
be a background section, description of methods,
results, discussion, and conclusion. The report should
reiterate the limitations of the studies that are
included in the meta-analysis and reasons for the
exclusion of studies. The discussion should clearly
identify key assumptions and their rationale, address
uncertainties, and offer reasonable alternative
assumptions and conclusions.’ (8)

Throughout this report a lot of emphasis has been
place on methods to calculate summary statistics,
(e.g. a combined OR and 95% CI). This is a very
common and intuitively appealing procedure.
However, Blair et al. (8) warns against this being 
the only result reported from a meta-analysis, by
commenting this gives no indication of the amount
of heterogeneity present. Greenland goes as far to
say, ‘a meta-analysis should be treated as a study of
studies, rather than as a means for combining study
results into a single effect estimate.’ (9)

Blair et al.:

‘Stratification: consensus was not reached on the
degree of stratification that should be conducted in 
a meta-analysis. Where stratification is conducted, an
important contribution in any meta-analysis is to array
results both in a table and in the text by exposure
metric, study design, and health outcome.’

This statement was expanded upon:

‘Some argued that a high degree of stratification
defeats a common purpose of a meta-analysis, 
which is to summarize or show a central tendency.
Nonetheless summarizing defeats another and
perhaps more important purpose of meta-analysis, 
the detection and explanation of differences among
study results.’ (8)

‘Sensitivity and influence analysis: the results of
sensitivity and influence analysis should be 
included in the results of a meta-analysis.’

The authors expand upon this by saying: ‘It has
been argued that sensitivity analysis should per-
meate all stages of a meta-analysis (10) including
study selection, quality scoring, and to determine
the effect of cofounders on outcomes
(epidemiological studies).’ (8)

‘Documentation: all procedures used in a meta-
analysis should be documented for the purpose 
of replicability. Documentation should be 
enhanced by including information on knowledge
gaps and research that should be conducted to 
fill the gaps.’ (8)

‘The meta-analysis table: summary tables of the 
studies that are included in the meta-analysis should
be presented and should include at least the following
information: the name of the study, the author(s), the
date conducted, the summary statistic (point estimate
and 95% CI), the exposure variable (measurement
metric, range, average exposure), and key covariates.
Graphic displays of the data can also be extremely
helpful. If space is not a problem, enough information
should be presented to allow the meta-analysis to 
be replicated.’ (8)

‘Graphics: portraying study results through 
graphics, which can greatly assist the interpretation 
of large, complex tables of numbers is not a substi-
tute for quantitative tables. If space permits only
graphical presentations, the underlying data 
should be made available, for example through
services such as the National Auxiliary Publishing
Service.’ (8)

Summary

This chapter has given a brief overview of 
methods used to report a systematic review. It is
recommended for researchers to include tables of
all studies considered in a review, so possible to see
which were excluded. The bottom line on report-
ing a review is that enough information should be
provided so people can replicate, or carry out
changes/updates to it.
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Introduction
Spitzer notes that:

‘The controversies surrounding meta-analysis 
of experimental trials are equally relevant to 
non-experimental studies which are usually
epidemiological. But there are additional 
unanswered questions.’ (1)

Several common study designs are used in
epidemiology, namely cohort, case–control and
cross-sectional surveys. It is often difficult to
confirm a relationship between exposure and
disease, because of small prevalence or incidences,
moderate effect sizes, and long latency periods in
epidemiological studies (2). It has been noted that
in such situations, meta-analysis could be a
powerful, and even an essential, tool for integrating
and combining the results of several studies to
reach an overall statement (3). Indeed, with
increased numbers in a pooled analysis, rare
exposures can be more easily studied (4). It is
important to note that meta-analysis cannot prove
causation or confounding; however it does help an
epidemiologist decide if a particular association
does or does not exist, and if so provides an
indication (but not necessarily a firm estimate) of
the quantitative relationship between them (3).

Although the techniques used for meta-analysis of
epidemiological studies are often similar to those
used for RCTs [guidelines for meta-analysis of
observational data should at the minimum follow
those for clinical trials (5)], their aims may be
different. Anello and Fleiss (6) go as far as making
the distinction between analytic and exploratory
meta-analysis, suggesting different protocols for
each (they believe by keeping these two types of
meta-analysis separate, it might help improve the
reproducibility of future meta-analysis). However,
whatever the aims of the meta-analysis are, the
procedures used are usually similar.

It is commonly accepted that observational studies
are prone to a greater degree of bias than RCTs,
since avoidance of several biases is the prime
objective of randomisation. For this reason, Spitzer
(1) questions whether meta-analytic techniques can
be applied to epidemiological studies, but
considers the answer to be a ‘guarded yes’.

Fleiss and Gross ask:

‘Has proper control or adjustment been made for 
the biases that frequently occur in epidemiological
studies, such as sociodemographic or clinical differ-
ences between study populations, misclassification of
subjects with regard to case–control status and to
levels of exposure, factors other than the level of
exposure that may affect whether a subject is a case 
or control (i.e. confounding variables), and the
publication bias/file drawer phenomenon wherein
studies that fail to show a positive association tend 
not to be published and are thus not candidates for
inclusion in the meta-analysis?’ (7)

In addition, Morris (8) makes the observation 
that publication bias has not been systematically
investigated for epidemiological studies. A 
further worry expressed is that if a study is
published, it may only remark on the significant
results and not mention non-significant 
ones tested.

For this reason, caution should be used when
combining and reporting a meta-analysis of
epidemiological studies. Sensitivity analysis can
help tackle these shortcomings (see pages 209–10),
and its importance cannot be overstated.

Many of the outcome scales used in epidemi-
ological studies are the same as those used for
RCTs, specifically the RR and the OR. For this
reason, many of the statistical methods presented
in this report can be used for combining
epidemiological studies.

Whether epidemiological and RCTs, both 
looking at the same outcome, can be combined
together is controversial. In the description of 
the cholesterol studies, used in the examples, 
it was noted that RCTs, cohort, case–control, 
and geographical studies have all been used in
investigating the effect of cholesterol level on
mortality. The methodology of combining 
studies of different designs is dealt with in 
chapter 26; thus the section below deals with
combining epidemiological studies exclusively.

A publication which may be of interest to those
reading this chapter is Blair (9), the background 
to which is described below:

Chapter 19

Meta-analysis of observational studies
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‘The ILSI Risk Science Institute convened an 
expert working group on meta-analysis during 1994 in
Washington, DC as part of its co-operative agreement
with the U.S. Environmental Protection Agency Office
of Health and Environmental Assessment. The effort
was designed to develop a consensus on: (1) the
appropriateness of the use of meta-analysis in
environmental health studies; (2) a set of guidelines
or desirable attributes of meta-analysis applied to
environmental health issues; and (3) when meta-
analysis should or should not be used.’ (9)

Many of the findings of this working group 
have been integrated into the present review, 
but obtaining it in its entirety is recommended.
Another key paper on this subject is by Greenland
(10), who lays out much of the methodology
presented here in detail.

This chapter is structured to take the reader
through each step of doing a meta-analysis of
epidemiological studies, noting the differences
from the standard methodology presented in the
rest of the report, and discussing methodology
exclusive to epidemiological studies.

Procedural methodology

Jones (11) broadly outlines key steps for a meta-
analysis of epidemiological studies:

i) Compilation of as complete a set as possible 
of reports of relevant epidemiological studies.

ii) Identification of a common set of definitions 
of outcome, explanatory and confounding
variables, which are, as far as possible,
compatible with those in each of the 
primary studies.

iii) Extraction of estimates of outcome measures
and of study and subject characteristics in a
standardised way, and with due checks on
extractor bias.

iv) Analysis of the summary data so extracted by
one of the methods considered above.

v) Exploration of the sensitivity of the results of
the meta-analysis in iv) to the choices and
assumptions made in i)–iv).

Using this as a framework, the proceeding sections
discuss the above stages in detail.

Compilation of reports

No publication addressing the methodology of
searching and retrieving observational studies
distinct from searching for other types of studies

has been identified. For details on searching and
identifying studies in general see chapter 4.

Specifying study variables

One needs to make a decision on the definitions 
of the variables used in the analysis. For instance, 
in the cholesterol example, we could use total
mortality, or death from CHD, or a CHD event
(fatal or not) as outcome variables. Similarly, the
precise definition of exposure needs to be specified
along with considerations of possible confounding
variables (as well as intermediates and effect
modifiers). This is influenced by the question 
one wants to answer and is also dictated by the 
data available.

Extraction of estimates

Introduction
Chêne and Thompson (12) deal with the problem
of (large) differences between the (style of) pre-
sentation of results of epidemiological studies.
Their illustrative example is a meta-analysis of nine
studies investigating the relation between serum
albumin and subsequent mortality. The paper
summarised the major differences in the reporting
of studies:

‘Some studies presented crude numbers of deaths,
mortality rates, or relative risks in groups defined
according to serum albumin concentration. Different
studies used between three and six groups, some using
equally sized groups and others not. These studies,
except two, also expressed the risk relation in another
way, either as a logistic regression coefficient (or
equivalently an odds ratio for a given increment in
serum albumin) or as the mean difference in serum
albumin concentrations between those subjects who
died and those who survived. The logistic regression
coefficients were in fact always adjusted for a number
of confounding factors, but inevitably different
confounding factors were used in different studies.
Furthermore, standard errors for either the logistic
regression coefficients or the mean differences were
not always available, although sometimes a statement
about the p value (e.g. nonsignificant or p<0.001) 
was given.’

For synthesis to proceed, it is necessary to express
the results in a consistent (comparable) manner.
The section below outlines many of the short-
comings of published reports, where the necessary
information (treatment/exposure effect estimate
and its variance) is either missing or disguised, 
and presents ways of deriving/estimating these
values on a RR scale (see pages 109–10 for a 
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definition of the RR), where possible. Unless
otherwise stated the source of this information 
is the seminal paper by Greenland (10). For 
a more general discussion of data extraction, 
see page 17.

A note on the scales of measurement
used to report and combine
observational studies
Chapter 14 introduced several binary outcome
measures. In considering these outcomes
Greenland makes the following comments:

‘If the outcome under study is rare in all populations
and subgroups under review, one can generally ignore
the distinctions among the various measures of
relative risk (e.g., odds ratios, rate ratios, and risk
ratios). The distinctions can, however, be important
when considering common outcomes, especially in
case–control design and analysis.’ (10)

The majority of the methods in this chapter deal
with estimates on the RR scale. See pages 116–17
for information on transforming binary outcome
measures to this scale where necessary.

In is important to realise that estimates may come
from coefficients of a logistic model as well as
simply from 2 × 2 tables previously presented.

A good example of how different kind of 
estimators need considering is given by Piegorsch
and Cox:

‘Twenty-six of the studies included case–control data,
and four were based on cohort study data. The case–
control studies estimated the relative risk via the odds
ratio, while the cohort studies used more complex 
risk ratio estimators. Thus the combined analysis
represents a mix of different types of estimators for
the RR endpoint.’ [(13), p. 311)]

Finally, a new effects estimate, the standardised
mortality ratio (SMR) may be used as an outcome
in some situations. This is not covered in the 
scales of measurement chapter; however, ln(SMR) 
is usually assumed to be modellable with Normal
least squares approaches.

Extracting when both the estimate 
of effect size as RR and its estimated 
SE are given in the report
If the scale used in the report is the same as the
one to be used for the meta-analysis and its SE is
given, then these can be directly copied and used
in the meta-analysis.

Calculating the SE of an effect estimate
as a RR from a CI
If a CI is given instead of a SE then, a simple
computation is required to calculate the SE. 
This is explained by Greenland:

‘For a relative risk estimate RR with a given 95 per
cent lower limit of RR and upper limit of

__
RR, log RR is

the desired log relative risk estimate. If the confidence
limits are proportionally symmetric about the ratio
(i.e. if RR/RR =

__
RR/RR), an estimate SE of the stand-

ard error is given by SE = (log
__

RR – logRR)/3.92’ (10)1

Calculating the SE of an effect estimate
from a p-value
Greenland describes how to estimate the SE when
only a p-value is given:

‘If the p value is given accurately enough (to at least
two significant digits if p is over 0.1 and one digit if p 
is under 0.1), one can compute a ‘test-based’ standard
error estimate from SE = (logRR)/Zp, where Zp is the
value of a unit-normal test statistic corresponding to
the p value (e.g. Zp = 1.96 if p = 0.05, two-tailed test).’

‘Unfortunately, because many reports use few
significant digits in presenting p values, this method
can be highly unstable for near null results, and 
it breaks down completely if log RR is zero. For
example, given RR = 1.1, p = 0.9 (two-sided), one 
can only infer that RR is between 1.05 and 1.15 and
that p is between 0.85 and 0.95, implying Zp between 
0.063 and 0.188; consequently, the original data 
could have yielded a standard error of anywhere from
(log 1.05)/0.188 = 0.256 to (log 1.15)/0.063 = 2.22,
compared to the test-based estimate of (log 1.1)/0.126
= 0.76. Another problem with this test-based method is
that it gives a biased standard error estimate when the
effect estimate is far from the null. For odds ratios 
and logistic coefficients, this bias will be small in most
applications; for other measures, however, such as
standardized mortality ratios, the bias can be sub-
stantial. In any case, the applicability of the test-based
method is limited by the fact that most reports do not
precisely specify p-values unless p is between 0.01 and
0.10, and often not even then.’ (10)

Specialist methods for transforming/
adjusting results from reports
When combining epidemiological studies one has
to be aware of the potential for many differences
between studies. The above sections dealt with ways
of extracting estimates from reports. Unfortunately,
different studies may have adjusted for different
confounding variables, had different patient
inclusion criteria, and so on. In addition to 
these problems, stratified results may have been
presented for different levels of exposure. Biases

1 If the limits are 90% confidence limits, the divisor in this formula should be 3.29 instead of 3.92.
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may be known to exist in some studies but it may 
be possible to adjust for these also. An outline
[derived from Greenland (10)] of how results 
can be adjusted for differences between the 
studies and for biases, and how to deal with
stratified exposure results is given in the 
sections below.

Qualitative/categorical exposure variables –
adjustments using external estimates 
of confounding
If a number of the studies selected to be 
combined had not adjusted for suspected
important cofounders (in the original analysis),
then it may be possible to estimate the degree of
confounding present using other studies of the
same outcome that provided data on the effects 
of the putative confounder. In this way the results
of the trials with suspected confounding can be
adjusted using external data (10). Details of how 
to do this are given below:

Factorisation of the relative risk: Step one: ‘write
the unadjusted (or partially adjusted) relative risk
RR u from the study under review (this procedure 
is carried out separately for each unadjusted study)
as a product of two terms: RR u = RR a (U), where 
RR a is what the relative risk would be after full
adjustment for the putative confounder or con-
founders, and U is the bias (in multiplicative terms)
produced by having failed to fully control for 
the factor. Given U, a fully adjusted estimate can 
be derived from the unadjusted estimate via 
the equation RR a = RR u/U.

The problem confronting the reviewer is how 
to get an acceptable estimate of U. Given estimates
of RR u and RR a from external data, one can
estimate U via the equation U = RR u/ RR a, but this
estimate will be accurate only to the extent that the
confounding effect (U) of the covariate in question
is similar in both external data and the study under
review. The value of U is particularly sensitive to the
association of the study factor and the confounder,
and to the association of the confounder with 
the outcome.’ (10)

It is now necessary to calculate a SE for this
externally adjusted RR estimate. Let VU be an
estimate of the variance of log (U ), and SE the
estimated SE for the unadjusted estimate (log RRu)
from the study under review. Then an estimate of
the SE of the externally adjusted estimate:

SE [log(RR u /U )] = √Vu + SE 2 (19.1)

One needs an estimate of Vu. If RR c is the crude 
OR or person-time rate ratio from external data,
RR a is a common odds or rate ratio estimate from
the same data (e.g. a Mantel–Haenszel OR), U =
RR c/ RR a , and Vc and Va are variance estimates for
log RR c and log RR a. Then, Vu may be computed 
as Va – Vc, provided this quantity is positive.

Because of the high correlation of RR c and RR a, 
VU will usually be small relative to Va, and so if 
SE2 ≥ Va, external adjustment will not greatly
increase the SE of the final estimate.2

Bounds for the magnitude of confounding
Bross (14) and Yanagawa (15) have derived bounds
for the magnitude of confounding in studies
involving dichotomous exposure and a
dichotomous confounder.

However, Greenland reports:

‘Unfortunately, the utility of such bounds is limited:
first, for small effects (RR < 2), even a small percent
distortion can be critical; second, in order to compute
the bounds, one must know the (conditional)
confounder-exposure and confounder-outcome
associations; third, the extent of confounding
produced by several variables or a single variable 
with more than two levels can greatly exceed the
bounds computed for a dichotomy.’ (10)

Adjusting an unadjusted RR: a method using
confounder-exposure information
If a cohort study gives only an unadjusted 
estimate (RR u), of exposure effect, but provides 
the joint distribution of exposure and the putative
confounder in the total cohort, then these data 
can be combined with an external estimate of 
the confounder’s effect on risk within levels of
exposure. In this way, one can obtain an externally
adjusted estimate of exposure effect that is
potentially more accurate than the type given 
above (10).

For computational details to do this see (10), p. 8;
extensions for use in case–control studies and
adjusting multiple confounders are also discussed.

Adjusting for selection bias
‘Occasionally, if the data are available, one may 
be able to reduce bias in a study by applying more
strict exclusion criteria to the subjects, and then

2 See paper for an example of how to use the above formula. Also see paper for a translation of formula for adjusting a
coefficient in a Cox or logistic regression coefficient.
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reanalyzing the study using only the subjects
meeting the new criteria ....... In most situations,
there will be sufficient information to reanalyze
only the crude data, but in such cases, one can
parallel external adjustment for confounding.’
(10)3 [see (10) for method, also see chapter 24 
and pages 156–64 for subsequently reported
methods for IPD.]

Greenland also notes that the selection bias
correction can be estimated from other studies,
‘but if the parameters determining bias vary across
studies, external correction could increase bias.’
(10). However, these estimates could be used as a
starting point for a sensitivity analysis.

Adjusting for misclassification
There are no simple methods to allow estimation 
of a correction factor for misclassification bias.
Corrections for misclassification should be based
on reconstruction of the correctly classified data
[described in (16–18)]. If this cannot be done,
informal sensitivity analysis can be carried out 
using speculated values of its magnitude.

Calculating exposure coefficients from 
stratified results
Ordered exposure variables often lead to present-
ations in terms of exposure-specific rates or ratios,
and these ratios are usually computed without
taking account of the ordering of exposure levels.
An estimate of an exposure coefficient from such
presentations can be achieved using a weighted
least squares regression model if the SEs or CIs 
for each stratum estimate are given [see (10), 
p. 10 for details]. If they are not, but the report
gives the size of the denominator for the rate 
in each exposure group, ad hoc approximate SEs
can be computed [again, see (10), p. 10 
for details].

SMRs derived using an external 
reference population
A related outcome is the SMR. This is often
constructed by computing the expected values
based on some external reference population.
When these external reference rates are assumed
known without error, an estimate of the exposure
coefficient in an exponential regression may be
obtained by a weighted linear regression of
log(SMR) on exposure. If the CIs, or SEs, are
reported for each SMR then a simple calculation
yields the SE for log(SMR) [see (10), p. 11 
for details].

Ratios derived using an internal reference group
Greenland:

‘When a report presents results in terms of relative
risk estimates that are computed by using a single
internal exposure group as referent, one can perform
a weighted linear regression of the log relative risk on
exposure. Since the log relative risk for the reference
level is necessarily zero (corresponding to a relative
risk of one), the computations employ only the
nonreference exposure groups, and the fitted line
must be forced to pass through zero when the
exposure is at the reference level. Because the
numbers in the reference group are subject to
statistical error and are employed in all the log 
relative risk estimates, the estimates will have 
nonzero covariances.’ (10)

Estimation from reports employing only broad
exposure categories
Greenland:

‘Many reports treat continuous exposures in a
categorical fashion, computing relative risks for 
broad categories of exposure....... In such cases it is
necessary to assign numeric values to the categories
before estimating coefficients. When the categories
are broad, results will be sensitive to the method 
of assignment.’

‘A common method is to assign category midpoints 
to categories. This has no general justification and
gives no answer for open ended categories (e.g. more
than 40 cigarettes a day). If, however, no frequency
distribution for exposure is available, it may be the
only choice, along with arbitrary assignments to 
open-ended categories.’ (10)

If one has the frequency distribution preferably
from the data in question, but if not, then from 
a study population with a similar exposure distri-
bution. One may then assign to each broad
category a numeric value corresponding to 
another measure of the centre of the category 
(e.g. the mean).

Estimation of coefficients from reports
presenting only means
‘Many reports in earlier (pre-1980) literature
present results for continuous exposures in terms
of mean exposure levels among cases and noncases,
rather than in terms of relative risk estimates 
(or functions). If such a report supplies a cross-
classification of the data by exposure levels and
outcome status, crude relative risk and coefficient
estimates can be computed from this cross-
classification. If no such cross-classification is
reported, but standard errors for the means are

3 This was written before the idea of collecting IPD was adopted.
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given, crude logistic coefficient estimates can be
constructed by the linear discriminant function
method’ [see (10), p. 14 for details].

Summarising the risk associations of quantitative
variables in epidemiological studies in a
consistent form
Chêne and Thompson (12) present an approach 
to re-expressing results in a uniform manner. 
They convert results given in quantile groups or as
logistic regression coefficients as a mean difference
between those subjects who died and those who
survived (along with the standard deviation). The
appropriateness of the methods used depends on
the approximate normality of the continuous
variable. A method for investigating normality is
given in the paper.

The outline of this method is given below (12):

Converting results given in quantile groups
Firstly, a method for calculating the mean 
exposure for each study is presented using
weighted regression. A method for estimating
mean exposure level for each group is given, 
even when open-ended groups are present. The
mean level of exposure for subjects who died and
subjects who survived, and hence the mean
difference between the two, is then calculated
separately for each study. This is an extension of
the weighted regression model used to calculate
the overall study value.4

Converting results given as a logistic 
regression coefficient
The mean difference of interest can be derived
algebraically from the logistic regression coefficient
(see paper). The paper suggests using a similar
approach to that of Greenland (10) (summarised
on page 151), if the logistic regression coefficient is
not published, for estimating it from risks in the
quantile groups. Here the quantile group means
are estimated instead of the midpoints used by
Greenland, with the belief that this approach 
is less arbitrary. This procedure can also be used 
if the regression coefficient is given but has been
adjusted by confounders that vary from study to
study. Once a coefficient is obtained the procedure
described in this section can be used.

At this point ‘a formal meta-analysis could in
principle be pursued by combining the mean
differences across studies, weighted inversely by

their variances, and reinterpreting the pooled
difference as a log odds ratio.’ The problem with
doing this is that usually different confounders are
adjusted in different studies and this has not been
accounted for.

The authors comment:

‘The comparison of unadjusted and adjusted
published (or estimated) results for particular studies
is useful in providing guidance on the potential
importance of confounding factors. In some cases,
confounding is thought to be of relatively little
consequence, and a formal meta-analysis can be
pursued.’ ‘In other situations progress cannot be
made without more detailed information from
individual studies.’ (12)

For example, they note a problem with 
matched studies, i.e. matching is broken to
calculate difference.

Analysis of summary data

Heterogeneity of epidemiological
studies
As for RCTs, heterogeneity can have advantages 
as well as disadvantages. Dickersin and Berlin
comment that one of the particular advantages of
meta-analysis of observational studies is that:

‘it may permit exploratory analyses regarding
associations between various study characteristics and
study outcome: that is meta-analysis allows us to ask
whether the associations between an exposure and a
disease (or health state) observed in a single study
may depend on the composition of the population
under study, the level of exposure in the study
population , the definition of disease employed 
in the study , or any of a number of measures of 
the methodological quality of the study.’ (19)

The homogeneity assumption is less likely to be
satisfied with epidemiological studies as it is with
RCTs due to the inherent variation between studies.
Greenland comments:

‘One should regard any homogeneity assumption 
as extremely unlikely to be satisfied, given the
differences in covariates, bias, and exposure variables
among studies. The question at issue in employing 
the assumption is whether the existing heterogeneity
is small enough relative to other sources of variation
to be reasonably ignored.’ (10)

4 A discussion is given on whether it is appropriate to consider the standard deviations for the two groups as being the
same. When it is an alternative method is presented using a pooled standard deviation.
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More specifically, Morris (8) discusses meta-analysis
in cancer epidemiology. He states at the time of
writing (1992) that only 32 meta-analyses have been
carried out on the topic. He goes on to suggest this
is due to problems researchers have encountered.
Epidemiological studies use a wide range of study
populations and methods with a variety of measures
of exposure and outcome (all which will increase
heterogeneity), making them more difficult to
combine than RCTs.

Tests for heterogeneity
Standard methods of chapter 8 can be used to
assess heterogeneity of epidemiological studies. 
In addition, Greenland (10) describes a further
procedure to assess the homogeneity assumption 
by partitioning the studies along characteristics
likely to be associated with heterogeneity. See (10)
for further details.

Sources of heterogeneity in epidemiological
studies
Many possible sources of heterogeneity in epidemi-
ological studies have been identified. A list of
factors to be considered is given below by Blair 
et al.:

Study design – ‘Although similar and dissimilar study
designs do not guarantee homogeneity and hetero-
geneity, respectively, differences in study designs can be
a source of heterogeneity and should be considered as
a possible explanation when study outcomes differ.’

Outcome definition – ‘If definitions of the outcome
differ across studies, then there should be an attempt
to obtain data from authors to achieve as much
comparability as possible.’

Population type – ‘Heterogeneity in effect estimates may
result from variation in types of populations included in
the studies. Populations with different distributions of
susceptible subgroups may experience different effects
with the same exposures. Where data are available,
demographic characteristics of study populations such 
as race, sex, and ethnicity should be obtained.’

Exposure level – ‘As part of a heterogeneity analysis, 
it is important to evaluate the variation of exposure
between and within studies. Studies with very different
exposure levels or definitions of exposure may be
inappropriate for combined analyses. In such cases
separate analyses may be appropriate.’

Surrogate exposures – (environmental exposure) 
‘In environmental epidemiology, exposure measures
often involve surrogates, while specific exposures are
not clearly identified. As in the case of health out-
comes discussed above, exposure should be specified
as narrowly as possible to translate positive findings
into effective risk reduction activities.’

Duration, intensity, frequency – ‘In conducting a
meta-analysis, consideration should be given to
whether combining studies that differ in duration,
intensity, frequency, or routes of exposure will create
heterogeneity. In such cases, conversion to a common
framework or creation of nominal gradients (e.g. low,
medium, high) may be feasible.’

Exposure metrics – ‘Differences in exposure metrics
(between studies or over time) can be an important
source of heterogeneity. Measures of exposure used in
studies composing a meta-analysis should be as similar
as possible or convertible to a common base and,
wherever possible, exposure metrics should be
quantitative.’ (9)

Dealing with heterogeneity when it is present
Blair et al. report the following advice, from the
expert working group for the application of meta-
analysis in environmental epidemiology, on dealing
with heterogeneity:

‘Heterogeneity should be controlled by stratification
or regression. Where unacceptable heterogeneity
exists, combining disparate studies is not recom-
mended; rather, the reasons for heterogeneity should
be explored and controlled if possible. Full assessment
of heterogeneity requires consideration of at least 
two dimensions of study estimates – the absolute
magnitude of the differences among the estimates 
and the statistical variability of the estimates.’ (9)

Blair et al. expand this by saying:

‘The decision as to whether estimated differences 
are large enough to preclude combination or
averaging across studies should depend on the
scientific context not just statistical significance. 
For example, a 25% difference among relative 
risks may be considered unimportant in a study 
of a very rare cancer, but important in a study of 
a more prevalent disease. If substantive important
heterogeneity is thought to be present, it should 
be addressed by a careful analysis of possible
explanatory characteristics (covariates), by stratifying
and by requesting data on the characteristics, if 
not available from the study reports. If the source(s)
of heterogeneity is related to validity problems
(confounding, bias) for one or more studies and
adjustment is not feasible, then such studies should
not be combined with the others.’ (9)

As a side note, Dickersin and Berlin suggest:

‘Occupational epidemiology studies, plagued by 
the lack of unexposed internal comparison groups,
may sometimes be grouped into broad categories of
exposure in order to examine the relation between
exposure level and relative risk.’ (19)

Statistical considerations: fixed or
random effects?
Jones comments:
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‘On the whole, epidemiological studies less frequently
follow standard designs than do clinical trials, and in
the former potential and actual sources of bias are
arguably more extensive than in the latter. Hence the
appropriateness of the ‘fixed effect’ assumption needs
to be carefully considered in the epidemiological
context.’ (11)

It should be remembered that:

‘While the random-effects model allows for between-
study variability, it will not correct for bias, and is less
desirable than controlling for the heterogeneity.’
[Blair et al. (9)]

Weighting of epidemiological studies
‘The inverse of the standard error need not be the
only component of the weight; e.g. discarded studies
are studies with zero weight. There can sometimes be
good reason for downweighting but not discarding a
study, as when the uncertainty of the result is not
entirely reflected by the computed standard error
estimate. For example, after external adjustment, 
one could legitimately argue that the weight of the
corrected coefficient should be less than that
computed from the standard error of the original
unadjusted estimate, since the original standard error
reflects neither the error in estimating the correction
term nor the bias from applying the correction to a
new noncomparable study setting.’ (10)

However, quantifying the extra uncertainty is
difficult. A sensitivity analysis can go some way to
alleviate this problem.

Colditz et al. comment on random effects
weighting, and how it probably puts too much
weight on large epidemiological studies (even
though it weights them less than the fixed 
effect method):

‘For epidemiology we need more empirical work 
on this point. However, theory does show us some
astonishing facts. Suppose we had a study with n =
10,000 observations and the correlations between
paired observations was ρ = 0.01, all with variance
σ2(1+(n–1)ρ/n, which on independent samples is 
n = n/(1+(n–1)ρ), which in our example is 99. Had
the original sample size been 100, the equivalent
independent sample size would have been reduced
only to 50, which is division by 2 instead of by 100.
Such considerations suggest that we may be weighting
large samples not only too heavily but much too
heavily. However, before launching on a new program
of estimation, we need more in the way of empirical
results.’ [(20), p. 376]

Methods for combining estimates of
epidemiological studies
The techniques for combining estimates discussed
in previous sections of this report can be used,
where appropriate, for epidemiological studies.

Problems may arise when small studies are
combined that do not approximate normality. 
The studies have to be very small and a large
proportion of the studies combined have to be
small before it becomes a problem. ‘In such cases,
one may turn to other variants of large sample
regression theory to derive heterogeneity and
regression statistics, or choose to simply focus 
the meta-analysis on tabulations and graphic 
plots.’ (10)

Dyer (21) proposed a Z score approach for meta-
analysis of a continuous exposure. This method 
can be suitable for testing for effects across 
small studies if some suitable normalizing
transformation of the exposure can be found 
may be useful in this instance. However, Green-
land (10) points out that it does not provide a
measure of exposure effect on risk, and so is
unsuitable for quantifying strength of
heterogeneity of effects.

Applying meta-regression to
epidemiological studies
As with RCTs, meta-regression techniques (see
chapter 11) can be applied to epidemiological 
data. Variables relating to study design can be
included (case–control, cohort and other design
aspects) to investigate whether different study
designs tend to systematically report outcomes 
of different magnitudes. When subsets of studies
are looked at in this manner, interpretation 
needs to be cautious, in view of the possibilities 
of inconsistent definitions, incomplete data 
and confounding, and over-interpretation 
of results.

Greenland (10) compares Cox regression with
logistic regression for use in meta-analysis and
discusses how to get estimates for one from the
other. ‘Ideally, the multiplicative–exponential
model should be evaluated against various
alternatives’ He also comments that if a model 
does not fit too well, one may be able to use 
the mid range of values as a reasonable
approximation.

Reporting the results of epidemiological
studies
Chapter 18 of this report deals with reporting
results of meta-analysis generally, this section deals
with a few extra issues that are relevant to
epidemiological studies only.

For a concise description of how to present 
results form epidemiological studies see Blair 
et al. (9).
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‘In addition to basic information about the studies
(such as the number of cases and noncases), a review
should present a table of the results of the study
reanalyses, showing at least the point estimate, net
correction, and standard error (or confidence
interval) from each study.’ (10)

‘When there are many studies, even clearer is a
weighted histogram of the study results’. Greenland
[(10), p. 15] discusses a weighted histogram for
displaying results (used also for subgroup analyses
plotting a separate histogram for each group):

‘The range of results is divided into intervals, and
each study result falling within an interval contributes
to that interval’s bar height an amount proportional
to the study’s weight. The width of the intervals should
not be too broad; at the very least, the range covered
by a bar should be well within the confidence interval
of any study contribution to that bar. For the identifi-
cation of studies contribution to a bar, the bars should
be divided along the vertical axis in proportion to the
relative contribution of each study; certain shading
schemes may also be helpful.’ (10)

Blair et al. note that on the stratification of studies:

‘Consensus was not reached on the degree of
stratification that should be conducted in a meta-
analysis. Where stratification is conducted, an
important contribution in any meta-analysis is to array
results both in a table and in the text by exposure
metric, study design, and health outcome.’ (9)

Exploration of sensitivity of 
the results
Blair et al. reported that:

‘Several meta-analyses conducted in environmental
epidemiology have directly incorporated sensitivity
analysis or influence analysis, and the use of these
techniques has been relatively instructive.’ (9)

These studies investigated the effects of, for
example, the influence of each study and length 
of follow up on the robustness of the results.

Greenland describes how a sensitivity analysis can
be implemented:

‘For example, one may have externally controlled for
cigarette smoking in all studies that failed to control
for smoking by subtracting a bias correction factor
from the unadjusted coefficients in those studies. 
The sensitivity of inferences to the assumptions about
the bias produced by failure to control for smoking
can be checked by repeating the meta-analysis using
other plausible values of the bias, or by varying the
correction across studies. If such reanalysis produces
little change in the inference, one can be more 

confident that the inferences appear deceptively
precise relative to the variation that can be produced
by varying assumptions, and thus choose to base the
meta-analysis only on those studies that present results
adjusted for smoking.’ [(10), p. 23]

He goes on to discuss the use of influence analysis:

‘In influence analysis, the extent to which inferences
depend on a particular study or group of studies is
examined; this can be accomplished by varying the
weight of that study or group. Thus, in looking at the
influence of a study, one could repeat the meta-
analysis without the study, or perhaps with half its
usual weight. In looking at the influence of a group 
of studies, say all case–control studies, one can again
repeat the meta-analysis without them, or give them 
a smaller weight. If change in weight of a study
produces little change in an inference, inclusion of
the study cannot produce a serious problem, even if
unquantified biases exist in the study. On the other
hand, if an inference hinges on a single study or
group of studies, one should refrain from making 
that inference.’ [(10), p. 23]

Sensitivity analysis is covered on pages 209–10; many
of the ideas there, including simulation studies, are
relevant when considering observational studies.

Study quality considerations for
epidemiological studies
Chapter 6 discussed the assessment of study quality
and how such information could be incorporated
into the analysis. This chapter also made clear that
the use of quality assessment was controversial with
disagreement between researchers on the appro-
priateness of the methods. The assessment of the
quality of epidemiological studies is even more
difficult than that of RCTs. No one list, similar 
to those used for RCTs, exists for the evaluation 
of the quality of epidemiological studies for meta-
analysis (4), i.e. no one list is capable of assessing
the different study designs. This would make
weighting the studies incorporating a quality 
score problematic.

The assessment of study quality of observational
studies is discussed on page 24 and on page 26 
some checklists available are referenced. In
addition, Friedenreich (4) gives references that
suggest criteria to be considered when evaluating
case–control studies have been published (22,23)
and similarly for cohort studies (24), though these
are somewhat older. Friedenreich (4) considers that
too few epidemiological studies have used quality
scores for a full assessment to be made on the
usefulness of these scores, and goes on to comment:

‘It has been argued that, because of the uncertainty in
dealing with the real impact of many quality attributes 
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on the accuracy and precision of the trial results, 
only major methodologic aspects of a study should be
included in a quality assessment (25). The challenge
for epidemiologic studies is to identify the parameters
that represent the quality of the study most
adequately, recognizing that these parameters may
differ across different exposure-disease relations.’ (4)

Her paper (4) includes table of characteristics
common to all epidemiological studies and those
for just case–control and cohort that could be
included in a quality assessment.

Friedenreich et al. (26) proceeded to investigate
the influence of methodologic factors in a meta-
analysis using IPD for 13 case–control studies of 
the association between colorectal cancer and
dietary fibre.

‘The analysis was undertaken to determine whether
the heterogeneity in risk estimates could be explained
by methodologic and quality differences between
studies.’ (4)

Each study was given a quality score using a
questionnaire (reproduced in the appendix 
of the paper). Also investigated were more specific
methods covariates; the summary of which is
reproduced here:

‘Two factors, whether the diet questionnaire had 
been validated before use in the case–control study and
whether qualitative data on dietary habits and cooking
methods had been incorporated into the nutrient
estimation, explained some of the heterogeneity found
between studies. Risk estimates for dietary fibre and
colorectal cancer were closer to the null for the studies
that had these two characteristics. Quality score did not
explain any between-study heterogeneity.’ (26)

Dickersin and Berlin review the evidence for the
effect of study quality on outcome. Their findings
suggest that quality is sometimes shown to have an
association with study outcome, but this is not
consistent. They conclude:

‘The intuition that poorer quality studies, or those
thought to be most susceptible to ‘bias’ (e.g. case–
control studies) tend to show larger effects than better
studies, is not always supported in the data.’ (19)

Fredenreich points out:

‘Ultimately, as more pooled analyses of epidemiologic
studies are performed, the influence of methodologic
factors on the findings obtained from pooled analyses
will be better understood.’ (4)

Blair et al. (9) report that the expert working group
supported by ILSI Risk Science Institute investi-
gating guidelines for application of meta-analysis 
in environmental epidemiology failed to reach a

consensus on the use of quality scores. They
commented that some group members rejected any
use of such scores in favour of quality-component
analysis, i.e. investigating study characteristics
believed to be associated with study quality
separately. They suggest:

‘Sensitivity analysis and influence analysis provide
alternatives to quality scoring. A sensitivity analysis
should always be conducted to determine which
attributes, including quality components, are
contributing to heterogeneity.’ (9)

Other issues concerning
epidemiological studies
Analysing IPD from epidemiological
studies
MAP is covered in chapter 23 of this report. The
below are a few additional notes on the literature
written exclusively for epidemiological studies.
Much of the methodology for carrying out an 
IPD meta-analysis of clinical trials can be directly
translated to the epidemiology setting and hence
many of the procedures described in chapter 23
can be used. See also pages 161–3 for methodology
to combine matched and unmatched IPD.

Friedenreich discusses methodology for pooling
epidemiological studies at the patient level. She
believes the following question is of central
importance, and not yet addressed:

‘In epidemiological studies do differences in the
populations and methods used in the original studies
influence the results obtained from the pooled
analysis?’ (4)

She comments on several drawbacks on 
current methodology, namely: 1) little or no
consideration has been given to examining 
how study sample, design and data collection
characteristics influence the results obtained; 
2) pooled analyses of epidemiological studies 
have not combined qualitative with quantitative
assessments; 3) no pooled epidemiological 
studies (at the individual patient level) have
included a sensitivity analysis.

The paper presents eight steps of procedures 
to follow and methodological issues to consider
when conducting such a pooled analysis, 
including methods for examining heterogeneity,
influence of study design and data allocation
methods on the pooled results, assessment of 
study quality and integration of qualitative
assessments in the analysis. These are 
summarised below.
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Study selection
Friedenreich observes:

‘For epidemiologic studies, (however) there is no
predominant single characteristic on which to base a
decision on whether to include or exclude a study
from a pooled analysis.’ (4)

For this reason, it is necessary to set specific
inclusion criteria for which studies to include.

Merging dataset
Fredenreich suggests (4) that variables describing
the study subjects, design and data collection
methods should also be included in the data 
set along with the exposure and outcome 
variables.

She also comments that all the same possibilities
for collaborative work with the original study
investigators exists here as for IPD analysis 
or RCTs:

‘A collaborative analysis permits the original
investigators to work together, discussing causal
mechanisms, generating new hypotheses, and
planning further co-ordinated investigations to 
study these hypotheses using common study 
designs and data collection methods.’ (4)

Analysis
Logistic regression can be used to estimate 
study-specific risk (in particular ORs and risk 
RR) estimates. Friedenreich (4) comments this
method is a fixed effect method suited to pooled
analyses of observational epidemiological studies.
She observes that to date (1993) analyses have 
used individually matched data from each centre 
or have stratified by or controlled for ‘study 
centre’ in the analysis.

Fredenreich (4) also advises using a random effects
model when heterogeneity exists. This can be
achieved by including a study indicator variable 
as a random covariate in the model.

It should also be pointed out that using multilevel
modelling techniques could be used to investigate
the impact of study characteristics on results. 
This is achieved by modelling the mean effect 
of particular characteristics at the second 
level.

Advantages of MAP of epidemiological 
studies
Friedenreich observes:

‘Confounding and interactions between established
and suspected risk factors can be more readily 

examined, permitting more valid and precise
conclusions regarding a particular exposure-disease
relation than are possible with a (standard) 
meta-analysis.’

Also:

‘Pooled analysis may reveal previously unrecog-
nized errors or inconsistencies in the data and
associations or dose-response effects that 
were either previously unknown or only 
suggested.’ (4)

Note that to do a MAP simply, all the studies 
being combined need to be of the same type. 
If both matched and unmatched case–control
studies are to be combined more consideration 
is needed. See Duffy et al. (27) (pages 161–3) 
on methods for combining matched and
unmatched binary data.

Combining dose–response data
As Tweedie and Mengersen state (28), there are
two reasons for assessing dose–response relation-
ships in epidemiology, namely: 1) establishing 
such a relationship is one of several standard
criteria for developing the case for the agent 
in question actually being harmful; if increased 
risk occurs with increased dose, it is a strong 
step in proving that a causal association exists, 
and 2) when an association has been established
between an agent and a disease, the dose–response
relationship is of crucial use in predicting the 
levels of risk established for individuals at 
different levels of exposure.

Dickersin and Berlin (19) observe that inform-
ation about multiple levels of exposure may be
available from within studies, as well as among
studies. This can be used in meta-analyses to 
great advantage, particularly if standard categories
have developed. For example in investigating the
effect of physical activity, it could be categorised
into sedentary, moderate and high activity.
Evidence of a broadly defined dose–response
pattern can be provided by a separate combi-
nation of RRs for high activity compared with
sedentary groups and high activity compared 
with moderated activity groups. This type of 
analysis has been done for example by Berlin 
and Colditz (29).

If it is possible to quantify exposure levels 
more precisely, then more sophisticated 
methods are available; for example this was 
possible when investigating the association 
between alcohol consumption and breast 
cancer (30). Methods available when effect
estimates for several precise exposure cate-
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gories are available from each study, are 
discussed below.5

Data reporting results of a dose–response
relationship usually appear in two forms. If the 
data has been modelled using a continuous variable
for exposure then a single regression coefficient
(along with its SE) will usually be available and 
can be combined using standard weighted
methods. If, on the other hand, a series of risk
estimates derived for corresponding exposure
levels have been presented (the more common
reporting procedure) (31) alternative methods 
are required. Methods for both these situations 
are discussed below. The methodology used 
when a combination of the above methods of 
reporting are used in a single meta-analysis 
is also discussed.

Situation A – single continuous exposure
parameter estimate
One coefficient in a regression model, say β, is
presented for each study that represents the change
in the natural logarithm of the RR (or OR etc.) 
per unit of exposure. Then, provided its variance or
SE is given the standard inverse variance-weighted
method (outlined on pages 55–6) can be used to
combine the estimates of this coefficient.6

Situation B – risk/odds estimate for several
exposure levels
This section deals with combining dose–response
data when the results are presented as in the 
table given below (Table 14) [reproduced 
from (31)].

It may be possible to obtain a regression slope 
from a report by pooling estimates for responses 
at different levels of exposure (or treatment) (32).
However standard methods for pooling estimates
assume independence of the estimates, an assump-
tion that is never true because the estimates for
separate exposure levels depend on the same
reference (unexposed) group (32).

Greenland presents two methods of pooling
responses at different levels that take account 
of the correlation between estimates. The first
approach is based on constructing an approximate

covariance estimate for the adjusted log ORs from a
fitted table that conforms to the adjusted log ORs.
A brief summary of this method is given below
[reproduced from (31)]:

1. Using the crude 2 × J table of margins 
(disease (present or absent) on one margin of
the table, and J levels of exposure on the other,
and that an unexposed or baseline category
serves as the common reference group for 
J – 1 dose-specific estimates of the relative 
risk of disease) and the adjusted relative risk
estimates, cell values are fitted to the body 
of the crude table.

2. The sum of the inverse fitted cell values in the
reference exposure category is used as a first
approximation to the covariance between all
pairs of ln relative risks.

3. The correlation between specific relative 
risks is calculated using the covariances 
and standard errors of the ln relative risks 
from the fitted table.

4. The asymptotic covariance of the adjusted 
ln relative risk estimates is estimated by multi-
plying the correlation obtained in step 3 by 
the estimated standard errors of the adjusted 
ln relative risk estimates. The inverse of the
resulting covariance matrix may then be 

5 N.B. Page 151 presented a method of obtaining an overall estimate of the RR from stratified results; here these
estimates are kept separate.
6 This as for any meta-analysis is the simplest model. If for reasons such as residual heterogeneity a different model,
such as that of random effects, is desired this could be used instead. Berlin et al. (31) give a random effects model for
dose–response coefficients that is directly analogous to the model of DerSimonian and Laird for difference between
effects (see chapter 10).

TABLE 14 ORs for breast cancer according to duration of oral
contraceptive use

Duration of Cases Controls OR 95% CI†

contraception 
use in years*

Never (0) 96 156 1.0

0–3 (1.5) 156 205 1.1 0.8–1.6

4–7 (5.5) 80 93 1.2 0.8–1.9

8–11 (9.5) 51 50 1.4 0.8–2.3

12 (14.4) 39 23 2.2 1.2–4.0

* Number of parenthesis is assigned in a dose–response
regression model to control for other covariates
† The SE required can be worked out from the CI (see 
page 149) so it does not matter which is reported.
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used in a meta-analysis to weight the results 
of each study.7

Greenland and Longnecker comment:

‘The objective of the above method is to approximate
the logistic coefficient that would have been obtained
had either more complete study data or the estimated
logistic coefficient been reported, and to provide a
less biased variance than was previously available.
.............The primary impact of our correction method
on such meta-analyses will be to alter relative weight-
ing of the study-specific coefficients and to produce a
more accurate variance estimate for the pooled
coefficient estimate.’ (32)

The derived estimates from this method can then
be combined using the inverse variance-weighted
method as described in situation A above.8,9,10

A second, more flexible, method is then discussed
which involves pooling of study data before trend
analysis. It is called the ‘pool-first’ method. ‘The
‘pool-first’ method is algebraically equivalent to 
the method of pooling the corrected coefficient
estimates from each study. The advantage of the
‘pool-first’ method is that it is easily extended to
fitting and testing non-linear logistic models [for
example, a model with a quadratic term see
example 3 of (31)] [see Greenland and
Longnecker (32) for details].

Greenland and Longnecker comment:

‘The chief limitation of this method is that it cannot
incorporate studies that report only a slope estimate: 
a study must report dose-specific odds ratios or rate
ratios to be included; fortunately, such reporting is
standard practice.’ (32)

New developments for dose–response 
meta-analysis
Tweedie and Mengersen (28) present a new
technique for dose–response meta-analysis. 
Their motivating example was a meta-analysis

involving 18 epidemiological studies investigating
the association between risk of lung cancer and
exposure to environmental tobacco smoke 
(passive smoking).

They discuss three approaches for calculating 
dose–response estimates for each individual study
(assuming results presented as in situation B):11

1. A non-parametric test for equality of response
across dose levels (sometimes called the
Armitage test for equality).

2. Imposition of an exponential model (that is, a
linear trend in the logarithms of the response)
and test of significance of the regression para-
meter. [Weighted regression model with zero
intercept; essentially the same as Longnecker
and Greenland (see pages 158–9).]

3. Imposition of a direct linear trend in rates of
occurrence and test of significance of the regres-
sion parameter. This can be used for studies
which provide numbers of cases and controls in
each exposure category, and thus the analysis of
actual rates of occurrence of cases is possible [in
this situation (1) and (2) are also possible].

The relative merits of these approaches are dis-
cussed by the authors. One important word of warn-
ing is that under the linear model, care is needed to
ensure that rates of the same magnitude are being
combined. In case–control studies, if the number of
controls for each case varies between studies, then
the slope will also vary. Also, the paper warns that, if
rate for case–control and cohort studies are being
compared then one would typically get totally differ-
ent orders of magnitude for the slope parameters.

Two additional issues related to dose–response 
data are discussed:

1. Inclusion of the unexposed group may have 
an important confounding effect: an observed
dose–response relationship may be in fact

7 It should be noted that, if reports included the covariance matrix estimates along with coefficients from models this
method would not be necessary. (31)
8 It is important to point out that using this method both studies presenting a single coefficient for the dose–response
relationship (situation A) and ones giving separate estimates for each exposure level can now be combined.
9 Heterogeneity tests should be carried out to assess the fit of the slope. Indeed, Greenland and Longnecker indicate
that using this correction for correlation may have a greater effect on the heterogeneity analysis than the overall point
estimate and SE [(31), p. 223] and present a test of subgroups of studies under the null hypothesis of no difference in
slope between subgroups A and B (or the corresponding CI). A more complex model using weighted least squares
regression, is given for assessing heterogeneity when a covariate describing a study characteristic is continuous or
ordinal, or when several covariates are to be considered simultaneously.
10 Note also that the exposure categories need not be the same in the different studies. (31)
11 For algebraic details and a discussion of the relative merits of these approaches see original paper.
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simply evidence of overall association but 
not of increasing (or decreasing) risk with
increasing dose. The paper shows an example
when calculating the slope including the
unexposed group gives an estimate of 
B = 0.037 (SE = 0.002) and when it is excluded
of B = 0 (SE = 0.003). Forcing the regression
line to go through the origin ignores the
structure of the data. In this situation, the
authors suggest examination of: a) explanation
of the behaviour (either biologically or through
study bias), b) an analysis of response at lower
dose levels, and c) identification of the
influence of the unexposed group on the
methodology in producing such a result.12

2. The inconsistency of dose measurement 
may influence not only within-study regres-
sions but also across-study equivalence of
regression parameters.

Smith et al. (33) discuss methodology for situation
A outlined on page 158, when each study gives a
single continuous exposure parameter estimate,
but without mention of previous work on this
subject. Two issues concerning dose–response
models are dealt with, namely: 1) a method of
weighting studies that gives greater influence to
dose–response slopes that conform to the linear
relation of the RR to duration (which can lead to
large differences in calculated weights as a function
of non-linearity); 2) the nature of the intercept of
the slope in the dose–response model for each
individual study. They highlight two alternatives; a
model with zero intercept, and one estimating the
intercept on the basis of the data (variable inter-
cept). Selecting a model with a variable intercept
implies that the risk between the two groups may
differ before initial dose (10), and a model with a
zero intercept implies that the risk among subjects
taking very low doses is the same as the risk among
untreated subjects. See original paper for formulae
and computational details.

Formulae are given for the different weighting
schemes used for both fixed and random effects
models. The weighting schemes are derived from
those used much earlier by Cochran (34) and
weights can be calculated from tables in that paper.13

Several alternative methods estimating the SEs for
mean slope estimates were investigated. These

included fixed and random effects approaches as
well as a components of variance model and a
bootstrapping method.14

The methods presented were illustrated with an
example of a meta-analysis of eight studies investi-
gating the effect of oestrogen replacement therapy
on the risk of breast cancer in women who experi-
enced natural menopause. When a zero intercept
fixed effects model was used, the two methods of
weighting (taking the linearity of the relationship
into account and not) did result in fairly large
differences between mean dose–response slopes
and homogeneity statistics.

The paper concluded that a random effects model
(or equivalent) should be used to take into account
heterogeneity (detected or not). The following
extract describes the authors feeling for zero and
variable slope models and their appropriate use:

‘Although a biological explanation would be the best
way to determine whether a variable intercept is the
appropriate dose–response model, uncertainty about
initial risk may dictate statistical testing. On the other
hand, statistical testing may not always be possible
because the number of data points per study may be
small. In addition, our data illustrate that with the
variable-intercept model, considerable intercept
heterogeneity among studies is possible and studies
may be excluded from a meta-analysis because they
lack enough degrees of freedom for weights to be
estimated. Thus, the variable-intercept model may be
more difficult to apply than the zero-intercept model.
Consequently, when possible, if there are differences
in risk between cases and controls at the onset of
exposure, both intercept models should be used.’ (33)

The paper also warns that heterogeneity 
could be associated with different dose ranges 
for studies:

‘Studies with larger dose intervals will receive
proportionally larger weights, given otherwise equal
slopes, precision, and linearity. Combining slope
values from studies with considerably different ranges
of duration should be discouraged.’ (33)

DuMouchel (35) presents a general discussion 
of whether to fit zero (fixed) or variable slope
models to meta-analysis dose–response data. He 
also goes on to give a brief Bayesian analysis of 
the data first presented by Smith et al. (33); 
he concludes:

12 Excluding the unexposed group relaxes the fixed intercept and allows it to vary. See the paper below for another
model that do not restrict the intercept.
13 The paper suggests Cochran’s weights are slightly larger than those of DerSimonian and Laird.
14 The paper calls for further investigation of bootstrap techniques for application in meta-analysis.
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‘Because so many sources of variation exist in the typical
set of dose–response studies, the random-effects models
for meta-analysis, which allow for unexplained variation
in effects among studies, are to be preferred.’ (35)

Applications of dose–response meta-
analysis models
Steinberg et al. (36) implement an advanced 
dose–response regression model using epidemi-
ological study designs. Their paper investigates the
risk of oestrogen use for breast cancer, using an
interesting regression model, which allows for
duration of use. The paper took the model of 
page 158 as its basis. Additionally, however, when the
original studies reported more than two durations of
oestrogen use, the dose–response slope with an
estimated intercept term was calculated. Fixed and
random effect models were fitted and a more
unusual bootstrap resampling method was also
implemented to calculate the mean dose–response
slopes and their errors. Interestingly the paper states
this last method does not make any assumptions
about the distribution of the study results.

Maclure (37) reports a meta-analysis investigating
the association between ethanol intake and the risk
of myocardial infarction. A very detailed account of
a complex meta-analysis, combining case–control
and cohort studies is given. The application uses
quadratic terms in the dose–response meta-regres-
sion model, then goes on to look at incremental
RRs and moving line regression (not new in them-
selves but the first time, the authors of this report
believe, that they have been applied to meta-
analysis). The paper also comments extensively 
on a deductive inference approach.

Gould et al. (38) investigated the relationship
between cholesterol lowering and CRD via meta-
analysis. They use a dose–response model with an
additional parameter for intervention type to allow
effects to vary over different interventions. Thomp-
son (39) models dose–response using (a subset) of
the cholesterol dataset presented in this report.

DuMouchel (35,40) carried out a meta-analysis 
of dose–response data of cancer studies in humans
and other animals using a Bayesian approach. 
This approach is discussed in chapter 13 on
Bayesian methods.

A final point to note when carrying out or assessing
dose–response meta-analyses is that in the past, an
ANOVA model for the ln RRs has been used, this

model however, gives incorrect results. See Berlin 
et al. [(31), p. 220] for more details.

A note on exposure categorisation used in 
dose–response meta-analyses
Berlin et al. comment:

‘Unfortunately, the slope estimated in the meta-
analysis may be especially sensitive to the method 
used to assign exposure values to open-ended
categories.’ (31)

Occasionally better estimates can be derived 
using results from similar populations where 
known (see page 151).

Berlin et al. (31) note that scales that cannot be
readily translated to a standard scale, such as those
for ordinal measures can be analysed using dose–
response methods, if the scales used are similar.
Note though that the parameters from the dose–
response model would not provide RRs per unit of
exposure. An example of this (already mentioned
on page 151) is the meta-analysis investigating the
effect of physical activity on the prevention of 
heart disease (29). Here, physical activity had 
been frequently classified into three broad
categories of activity: highly active, moderately
active, and sedentary.

Combining matched and 
unmatched data
Duffy et al. (27) present a method for combining
matched and unmatched data from RCTs, though
the same methodology is directly applicable to 
case–control studies, including the situation of
several controls per case. The motivating 
example for this methodology was to provide 
an estimate for the effect of photocoagulation 
on the rate of visual deterioration. Results from
RCTs presenting data in either matched or
unmatched form were combined.15 Table 15
illustrates the data structure and notation 
used in this methodology.

The methodology is an extension of the Mantel–
Haenszel procedure, which was initially used for
combining strata within a single unmatched study
before being applied to meta-analysis where each
strata represents a different study (see page 59). 
This method is used to combine the results from
the m unmatched studies. For clarity, the formula 
is repeated below using the notation from 
the table

15 A matched study in this situation is one where each patient has one of their eyes (selected at random) treated while
the other one remains untreated.
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m aidi
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To combine the results from the matched studies,
each matched pair within a study are treated as a
stratum. By doing this, stratification by study is
performed automatically. The formula for
combining the n matched studies is:16

n nk
ekjhkj

∑ ∑ ____

^ϕ2 =
k = 1 j = 1 2

n nk
fkjgkj

∑ ∑ ____
k = 1 j = 1 2

n
(19.3)

∑ yk
k = 1

=
n

∑ zk
k = 1

A pooled estimate of both the matched and the
unmatched studies can be obtained using the
below formula 

m a id i n

∑ ___ + 1/2 ∑ y k

^ϕ3 =
i = 1 Ni k = 1

(19.4)
m bici n

∑ ___ + 1/2 ∑ z k
k = 1 Ni k = 1

A test statistic (based on Mantel–Haenszel’s χ 2

squared statistic) is derived in the paper and CIs are
also calculated by means of the variance estimate
derived by Flanders [see (27) for details]. An
alternative method for this CI is also given which is
based on Miettinen’s test-based method [see (27) for
details]. An extension of the χ2 test of homogeneity
(see chapter 8) is also presented.

The paper discusses an alternative approach to
combining by using the average on the logarithmic
scale of RRs and hazard ratios, weighted by the
reciprocals of the variances. This method could
deal with differing follow-up times and could
provide a ‘more elegant estimation of hazard 
ratios and their variances.’ However, IPD is 
required for this. The paper highlights as 
further work the establishment of different
recommended variance estimates for use 
in different situations.

Moreno et al. (41) describe the use of (logistic)
regression methods for combining matched and
unmatched case–control studies, using IPD (see
pages 156–7 and chapter 24). The paper notes 
that the ‘same methodology can be applied to
compare relative risk estimators for the same risk
factors studies in different phases of a disease in an
attempt to explore factors that may be more
important in one phase than in another’. (41)

The logistic regression model proposed ‘combines
conditional logistic regression likelihood function

TABLE 15 Structure and notation for combining data from matched and unmatched studies

Event (deterioration) No event (no deterioration) Total

Unmatched studies: ith study of m studies
Treated ai bi ai + bi

Not treated ci di ci + di

ai + ci bi + di Ni

Matched studies: jth matched pair of such 
pairs in the kth of n studies
Treated ekj fkj 1
Not treated gkj hkj 1

ekj + gkj fkj + hkj 2

Matched studies: kth study of n studies* Not treated
Treated: event (deterioration) xk yk

Treated: no event (no deterioration) zk wk

* nk nk nk nk

xk = ∑ ekj gkj ; yk =∑ ekj hkj ; zk = ∑ fkj gkj ; wk = ∑ fkj hkj .
j = 1 j = 1 j = 1 j = 1

16 For matched pair data this formula is identical to the MLE.
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for the matched cases and controls and an
unconditional logistic regression likelihood
function for the unmatched study.’ The likelihood
expression that is derived17 can be implemented 
in specialist software; however if there is only one
case in each matched set (which is common) then
the model can be simplified, so that standard
logistic regression programmes can be used.18

The model can compare several risk factors
obtained in the matched and unmatched studies.
The model assures that each group of cases is
compared with its own control population. This
method also allows the estimation of the ratio of
ORs adjusted by potential confounding factors.
LRTs can be performed to assess association,
heterogeneity, or trend. The SEs of the co-
efficients allow the derivation of a Wald test 
and the calculation of CIs.19

Combining epidemiological 
time-series data
Katsouyanni et al. (42) present their intentions 
for a prospectively planned meta-analysis (see 
pages 213–14) combining epidemiological time 
series data (it is currently being carried out). 
The application for this is to provide quantitative
estimates of the short-term health effects of air
pollution, using a database from 10 different
European countries, which represented various
social, environmental and air pollution situations.
Each country will firstly analyse their own data,
using Poisson regression, allowing for auto-
correlation and overdispersion.20 This will allow
calculation of RRs. Hence these can be pooled
across sites using the standard meta-analysis
techniques outlined in this report.

Although longitudinal data (such as time series) 
is common in both RCTs and epidemiological
studies, there seem to be few examples of its
inclusion in meta-analyses. In this instance, 
the data is to be summarised before pooling, 
in parallel.

Meta-analysis of cohort studies – 
where IPD collected, but not merged
into one dataset
Dyer comments (21):

In the study of rare diseases one may need to follow 
a large cohort for many years to obtain an adequate
number of cases for meaningful analysis. An alternative
approach is to pool data from several cohort studies. 
A summary of a study (21) that combined several
cohort studies investigating the association between
cholesterol level and death from cancer follows, and
provides a framework for similar undertakings. This
study used unique methodology because they chose 
not to merge patients into one dataset.

This study did not use standard methods for
analysing IPD (described on pages 156–7) as it was
felt, for a number of reasons that combining the
raw data into a single file was not possible. Dyer
notes that it would still be possible to use regression
techniques on each study individually and then to
combine, using a weighted average, standardised 
or non-standardised coefficients for cholesterol
(i.e. by a similar method to that described above).
This in fact was not done because of the ‘desire to
evaluate the possibility that any observed inverse
association between cholesterol and cancer might
result from the effect of undetected disease on
cholesterol level, rather than from low cholesterol
as a risk factor for cancer. This method would not
have allowed for this possibility.’ (21)

The method derived had to permit examination 
of the consistency of the association within given
time periods, e.g. year-by-year. Also the study group
wished to look at the association of cholesterol with
risk of death at two site-specific cancers (lung and
colon).21,22 In addition the method of measuring
cholesterol level differed between studies and the
levels for studies varied considerably. Also, it was
felt necessary to control for age. For these reasons
actual cholesterol levels were replaced by age-
specific Z-scores (see paper for details).23 So the

17 Estimates are found by maximising this likelihood.
18 Very detailed practical details on implementing the relevant models are given in the paper together with some 
GLIM 4 macros for one case matched to a variable number of controls. For variable controls matched to variable cases
specialist programs would be needed.
19 Rich (44) discusses a regression method for meta-analysis for cohort and case–control studies combined using ML in
GLIM. This work could only be found in abstract form and hence few details were given.
20 A detailed description of which variables are to be modelled, and how (e.g. time lags, transformations etc.) is given in
the paper.
21 In some studies there were too few events to fit regression models when looking at these specific cancers.
22 Also, if the annual numbers of death had been larger, one could have performed a regression analysis within each
study year-by-year and then pooled coefficients across studies for each year of follow-up. This would have allowed an
evaluation of the consistency of the association over time.
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analysis consisted of comparing the mean Z-score
for all men who died of cancer in a given year of
follow-up with the mean Z-score for all others who
were alive at the beginning of the year and did not
die of cancer during that year.24

Discussion

When is meta-analysis of
epidemiological studies useful?
As stated in the introduction to this chapter, when
diseases are rare, have moderate effect sizes and
long latency periods meta-analysis can increase
numbers and hence the power to detect associ-
ations. Blair et al. (9) produced more explicit and
detailed lists of when a meta-analysis may or may
not be particularly useful:

A meta-analysis (of environmental epidemiological
studies) may be particularly useful when:
• sources of heterogeneity are to be 

examined formally
• the relationship between environmental

exposures and health effects is not clear
• when there are many studies but no consensus

on the exposure/disease relationship
• refinement of the estimate of an effect 

is important
• there are questions about the generalisability 

of the results
• it is clear that there is a hazard, but no indication

of its magnitude
• the finding from a single study is to be

confirmed or refuted
• there is a need to increase statistical power

beyond that if individual studies
• information beyond that provided by individual

studies or a narrative review is needed.

A meta-analysis may not be useful when:
• the relationship between exposure and disease is

obvious without a more formal analysis
• there is insufficient information from available

studies related to disease, risk estimate, or
exposure classification

• there are only a few studies of the key 
health outcomes

• there is substantial confounding or other 
biases which cannot be adjusted for in 
the analysis.

Problems in application of methods
Greenland (10) warns of the potential of
aggregation bias or ecological bias when carrying
out a meta-analysis of epidemiological studies. 
This bias can appear when one regresses study
results on study characteristics. This type of
regression can be thought of as an ecological
regression model. Greenland comments that ‘it 
is well known that ecological regression methods
can lead misleading results, in that the relation
between group rates or means may not resemble
the relation between individual values of exposure
and outcome.’ He warns that this possibility 
needs to be considered when interpreting 
meta-analytic results.

Greenland also comments on another potential
source of bias:

‘Further bias can arise from regressing adjusted study
results on unadjusted average values for covariates...
Such bias will, however, be small unless the covariates
under study are strongly associated with the
adjustment factors.’ (10)

Unanswered questions in meta-analysis
of epidemiological studies
Spitzer (1) has created a list of questions he
considers are in need of an answer. Many of the
questions posed cannot be answered by ‘yes/no’
type answers but should be explored using a
sensitivity analysis. These are reproduced 
(slightly abridged) below:

1. Operationally, what are the ‘stringent
conditions’ (Fleiss and Gross’ phrase) under
which both case–control studies and cohort
studies may be included in one single meta-
analysis? Should such analyses ever be done
without access to the raw data of the
component studies?

2. When is it permissible to combine different
types of cohort? For instance, for both exposed
cohorts and comparison cohorts should one
integrate data from a fixed cohort with an 
open one?

3. Is it permissible to integrate exposed patients
sampled from hospitals with those from
primary care settings?

4. For reference cohorts, not exposed to an
intervention or risk factor, other questions
arise. For example,

23 This adjusts for the association between age and cholesterol level and eliminates inter-population differences in the
mean levels of risk factors. In a similar manner it would be easy to extend this to include adjustment for other
confounders.
24 Studies of the association over several years could be studies by combining the differences for individual years.
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– Is a comparison cohort from Sweden
combinable with one from Italy 
or Japan?

– Are cohorts taken from occupational
sampling frames sufficiently similar to those
from the corresponding general population
(or another geographically-defined one) to
put them together?

– How separate in time must the accrual or
demarcation of unexposed cohorts become
to be ineligible for aggregation? (The
question is also pertinent for exposed
cohorts.)

For case–control studies:
5. Is it admissible to merge hospital-based 

with population-based case groups? Or in
Miettinen’s terms, can two or more case series
be combined if they are not representative 
of the same type of base experience?

6. Conceptually, and in execution, is a nested
case–control study similar enough to a con-
ventional case–control study for both to be
included in the same meta-analysis?

7. When there are two or more control groups 
in a case–control study does one merge all the
control groups? If not, what criteria must one
use to exclude any control group from the
meta-analysis. There is no parallel between
multiple arms defined by exposure in a
randomised controlled trial and multiple
reference samples demarcated by outcome 
in a case–control study.

8. Should control groups assembled by matching
be combined with independent samples of
referenced populations?

9. What constitutes ‘proper control or adjustment
for the biases that frequently occur in
epidemiological studies?’ [Spitzer makes
lengthy comment on this]

10. Are data provided by proxy informants similar
enough to data from respondents to be
considered equivalent?

11. Should one include case–control studies in
which data-gatherers were unblinded with
blinded studies in one meta-analysis? (Should
one do so in cohort research?)

12. How homogeneous must the outcome be? 
For instance, can one pool data from a study
that ascertained ‘all cancers of the lung’, with
one that did so only for ‘oat cell Ca’, or only
‘adenocarcinoma’?

13. How do we interpret values and confidence
intervals of single estimates derived with 
meta-analysis? (He goes on to pose the
question; if meta-analysis of five studies 
has the same result and confidence interval 

as a single cohort, is the interpretation
identical?)

Further research
The below is a list of suggestions for improving
meta-analysis of epidemiological studies in the
future and of research that is needed in the area.

Jones comments (11) that wider registration of
epidemiological studies at their inception would
greatly reduce the potential impact of publication
bias. In addition, Morris (8) comments publication
bias has not been systematically investigated 
for epidemiological studies. See chapter 16 
for a general discussion about publication 
bias in meta-analysis.

Jones (11) calls for agreement on more uniform
reporting of the results of epidemiological studies,
perhaps through development of more detailed
publication guidelines in this area.

Jones (11) suggests the use of sequential meta-
analysis; reference to use of simulation of results 
of new studies before they are published, to allow
meta-analysis to be updated.

Friedenreich comments:

‘Although concerns about pooling data from
unrandomised studies have been raised repeatedly,
pooled analyses of epidemiologic studies have not
addressed these methodologic issues, nor have they
included quality assessments, perhaps because a
systematic approach for these evaluations has 
not existed.’ (4)

Friedenreich also comments:

‘.. major concern for pooled analysis (ipd), as 
with meta-analysis , is how to integrate qualitative
assessments of the research studies with quantitative
estimates of the results. There is a lack of literature on
how to integrate qualitative and quantitative aspects of
observational analytic studies.’ (4) [Work has recently
begun on this issue (43)]

Duffy et al. (27) highlight as further work the
establishment of different recommended variance
estimates for use in different situations, when
combining matched and unmatched data.

Colditz et al. suggest that we may be weighting large
samples not only too heavily, but much too heavily.
‘However, before launching on a new program of
estimation, we need more in the way of empirical
results.’ (20)
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Summary
Most of the considerations for combining
observational studies are the same as those 
outlined in the rest of the report for RCTs. One
new question that needs addressing is ‘Has proper
control or adjustment been made for the biases
that frequently occur in epidemiological studies,
such as sociodemographic or clinical differences
between study populations, misclassification of
subjects with regard to case–control status and to
levels of exposure, factors other than the level of
exposure that may affect whether a subject is a case
or a control (i.e. confounding variables)’ (7). Key
references on this subject are the seminal paper by
Greenland (10) and the set of guidelines reported
by Blair et al. (9). The use of sensitivity analysis to
deal with the above problems is emphasised.
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Introduction
In many areas of healthcare research the main
outcome of interest is time to an event. For example,
in cancer the event of interest is often death, though
it could also be recurrence of disease. In a transplant
setting, the event could be failure of a graft or organ.
In nursing related studies the event is often discharge
from hospital. In all of these settings, although the
event of interest is the time from entry into a
study/treatment/admission to the event in question,
for some patients this event may not have been
observed at the time of analysis/data collection, it
only being known that it may/will occur later at some
time point beyond a certain point. Such patients are
termed censored. This censoring makes the analysis
of this type of data unique and often complex (1).
Indeed, if no censoring occurred pooling mortality
rates using standard methods (such as Peto’s method,
chapter 9) would be possible. For an example of
when censoring did occur, and the above method
incorrectly used see (2). Additionally, Abel and Edler
(3) warn of the danger in calculating RRs and
combining them if the follow-up duration of the
studies is different. They suggest working RRs out for
different times follow-up times, only using studies
whose follow-up extends beyond the time point being
examined. If the RRs within each study are not simi-
lar, pooling results in this way would give a bias result.

Regarding the application of statistical techniques
to survival studies in general, Peto et al. have
observed that, ‘if the course of the disease is very
rapid ....... and it is unimportant whether a dying
patient lives a few days longer or not, a count of the
numbers of deaths and survivors on each treatment
is all that is required. However, if an appreciable
proportion of the patients do eventually die of the
disease, but death may take some considerable
time, it is possible to achieve a more sensitive
assessment of the value of each treatment by
looking not only at how many patients died, but
also at how long after entry they died.’ (4)

It is beyond the scope of this chapter to describe
the methods of survival analysis for a single study.

See Collett, and Parmar and Machin (5,6) for very
readable texts on the subject.

Several different approaches to combining survival
data are reported in this chapter. Which of these
methods is most suited to a given situation is largely
dictated by the type of data that is available for each
of the studies to be combined. It should be noted
that obtaining accurate data is often a problem, it 
is sometimes necessary to extract information from
Kaplan–Mier curves presented in papers. These
may be inaccurate, difficult to read, or simply small,
all of which will reduce the accuracy of the data.

The techniques which are available for different
situations include weighting and combining
survival-rate differences at a fixed point(s) in time
(pages 169–72), calculating and combining a
summary parameter describing the survival curves
(pages 171–3), combining ‘log-rank’ ORs (pages
173–4), and combining data on individual patients
from different studies (page 174). It is considered
that the analysis of IPD the ideal (7). An approach
not covered here is a confidence profile survival
model described by Eddy (8); the general con-
fidence profile approach is, however, covered in
page 202. Additionally see pages 209–10 for details
for meta-analysis of surrogate measures of survival.

Inferring/estimating and
combining hazard ratios
The simplest way to carry out a meta-analysis 
of survival data would be to summarise each
contributing trial by a single number, along with its
SE, and use standard methods of meta-analysis to
combine them (9).Whitehead and Whitehead (10)
present a method for combining estimates of
hazard ratios of an assumed proportional hazards
model. Ideally, the hazard and survival functions
should be known, along with the number of 
events and times of those events for both groups 
of patients in each study to be combined.1

Unfortunately, published reports seldom report
sufficient detail for all these to be determined. 

Chapter 20

Meta-analysis of survival data

1 No details of this are given here, as the methodology is part of the general parametric approach presented in the
paper which follows a different notation from the notation of this report. See original for derivation.
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If the value of the χ2 statistic for the log-rank test 
is quoted along with the total number of events in
the study, then an approximation to the values
required for the synthesis can be derived. Altern-
atively, if Cox’s proportional hazards model has
been fitted, and the coefficient corresponding to
the treatment quoted, then again an approximate
value for the sufficient statistics required for the
synthesis can be obtained.2

Calculation of the ‘log-rank’ OR 
of meta-analysis
This method is reviewed by Messori and Rampazzo
(11), the techniques having previously been
discussed in part (12–14). The method combines
standard two-arm RCTs comparing two treatments,
A and B. As the authors report:

‘The meta-analysis has the purpose of combining 
the results of the trials to generate an overall index 
of relative effectiveness, expressed in terms of an 
OR’ (11)

The method is briefly described below:

Split time into j –1 consecutive time intervals, which
must be the same across the various clinical trials,
but whose duration need not be constant. Then
work out O–E (the observed deaths minus the
expected number of deaths) for both treatment
groups (using standard methods).

The values of O–E and its variance are summed
over all k studies separately for each time period.
These summed values divided by their standard
deviation (the square root of the summed variances
of O–E) provide a test statistic compared to the
normal distribution. Each test statistic compares
the survival of groups A and B for its respective
time interval.

As well as describing the above methodology,
Messori and Rampazzo (11) also presented a test 
to explore the heterogeneity between trials. In
addition, interaction and trend tests for indirect
comparisons of trial subgroups are given. In this
example the interaction between the timing of
radiotherapy and chemotherapy was examined,
and trend tests across age groups were carried out
(though the same tests could be used on any
subgroups.)

Comparison of efficiency of Mantel–
Haenszel with log-rank method
Buyse and Ryan (15) compare the asymptotic
relative efficiency (ARE) of the Mantel–Haenszel
test with respect to the stratified log-rank test, and
computes the ARE in situations which are likely to
be of practical interest. The motivation for doing
this is to compare the situation when one has IPD
with time till death, censoring time and a log-rank
test for survival curves can be performed, with that
when only summary data is available, and the
Mantel–Haenszel method of comparing has to be
used. They pose the question; how less efficient is
using the summary data only?

Buyse and Ryan report:

‘Because it assumes that the odds of dying on the 
two treatments are in a constant ratio across trials, 
the Mantel–Haenszel test may not be the theoretic-
ally optimal way of combining proportions of 
death.’ however ‘the Mantel–Haenszel test has high
efficiency relative to the stratified log-rank test if the
proportions test has high efficiency relative to the 
log-rank test for each individual trial. The results of
the efficiency calculations suggest that in many
realistic situations the loss of efficiency incurred by
using the proportions test instead of the log-rank test
is not excessively large and may be surprisingly small
in some cases.’

However, they suggest:

‘The analysis of several clinical trials should be based
on full survival data whenever possible. Not only is this
approach most powerful, it also provides insight into
the course of the disease and treatment effect over
time.’ (15)

They go on to say, if one has got individual 
patient data from some of the trials, the assump-
tion of proportional hazards can be assessed and
form results in this paper an assessment of the
potential gain in power can be ascertained if the
full survival information were obtained from 
all studies.

Calculation of pooled 
survival rates
This method, described by Coplen et al. (14),
simply pools the individual survival rates from the
different studies at specified values of time. The
equation required is:

2 Whitehead and Whitehead (10) caution that authors may not use the same terminology and so identification of the
appropriate statistics may be difficult. They also comment that further reliance is placed on the accuracy of their
calculations.
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k

∑ (StjWtj)

Pt =
j = 1

(20.1)
k

∑Wtj
j = 1

where Pt is the pooled survival rate at time t (i.e. the
proportion of patients surviving at time t estimated
by the meta-analysis), S tj is the survival rate at time 
t in the j th study (S tj can be either the Kaplan–
Meier estimate or an actuarial estimate,3 Wtj =
1/(variance of S t), and k = the number of trials
included in the meta-analysis. The variance of 
S t for each of the j trials can be calculated by
Greenwood’s formula:

h D t

Var(S t) = ∑ ––––––––– (20.2)
i = 1 N t(N t – D t)

where h is the number of time intervals into 
which the follow-up from time 0 to time t has been
divided in to survival analysis (e.g. intervals may be
one year each) D t = the number of deaths during
an individual time interval, and N t = the number 
of patients at risk during the same interval.

Iterative generalised least squares
for meta-analysis of survival data
at multiple times
Dear (9) reports, the motivation for the need for
this model over the method of combining hazard
ratios (pages 169–70) is two-fold: 1) the difficulty of
finding the necessary data of sufficient quality in
trial reports to combine hazard ratios and 2) the
combining hazard ratios approach cannot include
single-arm studies in the analysis. For these reasons
modelling the original survival data is preferred.

Dear presents an analysis of survival proportions
reported at multiple times (e.g. yearly intervals).
Generalised least squares (GLS) is used to fit a

linear model including between and within trial
covariates.4 This is an extension of the method-
ology of Raudenbush et al. (16) (see chapter 22);
here the multiple outcomes are viewed as the same
outcome reported repeatedly. It also incorporates
multi-arm studies and non-randomised historical
controls, and thus also combines the methodo-
logical advances of Begg and Polite (17) (see 
pages 201–2).

The model allows survival data reported at multiple
times during a trial to be analysed together. It uses
comparisons between the models to test hypotheses
about the effects of the treatments on the various
outcomes. An iterative procedure is used to derive
correlations between times within studies so unlike
the multiple outcomes analyses they do not need
estimating beforehand.5,6

One limitation of this approach is that it cannot
incorporate a random effects baseline term, unlike
the Begg and Pilote model (17). Dear comments
‘the attractiveness of a random-effects model
remains, ..., as a way of extracting information from
the overall level of single-treatment trials.’ (17)

Dear (9) also comments on the possibility of an
alternative formulation of this problem using a
logistic model through the use of generalised
estimating equations (GEE). It would not be neces-
sary to use moment estimators of the covariance,
since the variances are assumed known from the
reports contributing to the meta-analysis, and
approximate correlation estimates are available 
as functions of the fitted values.7

Application
Two examples are given in the paper by Dear (9).
One is a meta-analysis of 14 studies on patients 
with myelogenous leukaemia. Six of the studies
compared two treatments, allogeneic bone marrow
transplantation (BMT) and chemotherapy. Two
included only BMT, and the remaining six included
only chemotherapy. Table 16 gives the empirical

3 This can be estimated from Kaplan–Meier curves, if these have been included in the report, or if life tables have been
included, from these. If neither of these are available then it is not possible to use this method.
4 Multivariate normality is assumed for inferences.
5 Code written in SAS/IML matrix language to carry out this analysis is available from author.
6 See original paper for derivation and formulae.
7 The paper discusses the contribution of historical controls to this kind of analysis, when the overall level of their data is
not permitted to contribute directly to the estimation of the treatment difference. Here, historical controls contribute to
the shape of the survival curve, i.e. the changes in survival between successive years. Hence, this information affects the
estimated treatment difference and also the covariances. It is worth noting a difference between this model and the
calculation of log-rank OR of meta-analysis. Here, the multiple time points are incorporated into a single model. 
On page 170, a separate analysis was done at each desired time. This is highlighted in the example on pages 171–2.
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probabilities of disease-free survival at five 
1-year intervals after the start of the treatment 
(where available).

Each line shows results from one clinical trial on
patients with acute myelogenous leukaemia. The
first six trials compared BMT with chemotherapy;
the other eight trials tested only one of these
alternative therapies.

Previously, these data were analysed and results
were summarised for the first 4 years of follow up
separately. This analysis permits them to be jointly
analysed. Two advantages of this are that: a) it is
possible to test the hypothesis for an interaction

between treatments (incorporating all the studies);
and b) the treatment effect can be estimated with
greater precision by combining information
between years. Indeed in this example an additive
year effects were found to significantly improve 
the fit of the model.

The results obtained for this example are displayed
in Table 17.

Meta-analysis of failure time data

Hunink and Wong (7) present a method for
combining failure time data from various 

TABLE 16 Per cent disease-free survival (SE in parentheses) by year (1–5) [adapted from Dear (9)]

BMT Chemotherapy

Trial 1 2 3 4 5 1 2 3 4 5

1 49(12) 46(12) 42(12) 40(12) 40(12) 54(8) 25(8) 23(7) 23(7) 23(7)

2 55(10) 50(10) 36(9) 40(8) 23(7) 23(7) 23(7)

3 54(10) 47(13) 40(13) 40(13) 54(9) 42(8) 28(8) 28(8)

4 70(23) 70(23) 70(23) 70(23) 48(17) 48(17) 17(13)

5 54(4) 46(5) 42(6) 40(5) 21(4) 16(4) 16(4)

6 54(2) 43(3) 40(3) 39(3) 50(4) 32(4) 24(4) 18(4)

7 59(8) 49(9) 47(9) 47(9) 47(9)

8 61(8) 53(8) 53(8) 53(8) 53(8)

9 60(9) 48(9) 32(9) 32(9) 32(9)

10 44(5) 26(4) 17(5) 16(4)

11 50(3) 33(3) 26(3) 22(3) 19(3)

12 62(3) 38(3) 29(3) 24(3) 22(3)

13 50(10) 24(8) 16(7) 12(6)

14 76(7) 53(8) 53(8) 50(8) 50(8)

TABLE 17 Pooled results of chemotherapy versus BMT example – % disease-free survival (SE in parentheses) [adapted from Dear (9)]

Survival difference

Year BMT Chemotherapy Hazard ratio GLS model Begg et al.

1 59.0 (2.6) 53.2 (2.1) 1.1 5.7 (3.1) 2 (3)

2 49.6 (2.9) 33.6 (2.0) 2.3 16.0 (3.3) 13 (3)

3 45.9 (3.0) 26.1 (2.0) 3.0 19.8 (3.4) 16 (3)

4 45.1 (3.0) 22.8 (2.0) 7.3 22.3 (3.4) 21 (3)

5 45.1 (3.0) 20.8 (2.1) ∞ 24.3 (3.4) (not analysed)
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sources, adjusting for differences in case-mix
among studies by the use of covariates.8 The
approach uses a proportional-hazards model
(which is a key assumption9) and the actuarial life-
table approach,10 and is capable of combining
results from non-controlled cohort studies as well
as controlled studies. Note, that this is a fixed
effects procedure, and also to use the method
enough data must be available to construct life
tables – this may not always be possible from 
study reports.

A summary of the steps involved in applying the
technique is given in Box 5 below (see original
paper for further details and for an example 
of its application).

Once this is carried out, a sensitivity analysis 
is recommended using techniques such as: 1)
varying the censoring rates among studies and
subgroups, 2) determining the contribution of
each study using a jack-knife type of sensitivity
analysis, 3) stratifying the studies by level of 
detail presented, and including studies with
decreasing levels of detail at each step, 4) 
Monte Carlo analysis may be performed to 
derive empirical estimates of the SEs 
and CIs.

Identifying prognostic factors
using a log(relative risk) measure
Voest et al. report a study where the objective 
was to test a new parameter determined by 
overall survival: the log(relative risk) (LRR). 
‘This parameter makes it possible to reduce the
whole survival curve to one single figure (as the
method on pages 169–70 did). This appears more
accurate than the use of a 5-year survival rate 
which is only a single point in the entire survival
curve’ (18).

The LRR is based on the assumption of propor-
tional hazards (as used in Cox regression model).

Method
All [-log(survival)] curves of the treatment groups
were evaluated (59 in this instance) and plotted.
Using these curves an average curve is computed.
For each regimen the mean difference between its
curve and the mean curve is computed. This yields
the LRR index for the given regimen.

Note that the paper uses the method (and 
derived measure) to detect prognostic factors
rather than compare treatments, so the LRR 
can be viewed as a summary parameter 
describing the survival curves.

Pooling independent samples 
of survival data to form an
estimator of the common 
survival function
Srinivasan and Zhou (19) consider how to
efficiently combine from different samples 
(with censored end-points) to form an estimator 
of the common survival function. The authors
discuss two approaches in parametric settings: 1)
take an optimal weighted average (inversely
proportional to the dispersion matrices of the
individual estimators) of the two estimators from
the two independent studies, and 2) pool the 
data, form the joint likelihood function and find
the MLE of the data from the joint likelihood.
Additionally they report, for a non-parametric 
set-up one could do the same but the pooled

8 The authors assume any heterogeneity between studies is caused by case mix. Sensitivity analysis will show whether
additional unexplained variation exists.
9 If the proportion hazard assumption is doubted, a primary dataset could validate its use.
10 This assumes a constant hazard rate per time interval. The life table approach is taken because the alternative
Kaplan–Meier approach needs IPD. This model implies survival follows an exponential distribution within each
interval.

BOX 5 Summary of method of Hunink and 
Wong for failure time data

1. Summarise the available data in the form of life
tables (different table for each study).

2. Estimate the hazard-rate ratio for each covariate,
and calculate the hazard-rate ratio for each
stratum, defined by combinations of the covariates
compared with the reference stratum (calculated
across all studies).

3. Combine the data to estimate the hazard-rate of
the reference stratum for every interval.

4. Calculate the hazard-rate and survival curve for
every stratum.

Additional step: for studies that are not fully
stratified with respect to the covariates, the
effective sample size in each stratum in each
interval must be estimated. Adjusted formulae 
in step three are then used.
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estimator is strictly superior.11 This paper gives 
no example, it may be difficult to implement in
practice if the data required for the dispersion
matrices cannot be obtained or derived.

Combining quality-of-life-adjusted
survival data
Cole et al. (20) present a methodology for 
meta-analysis to compare treatments in terms 
of quality-of-life-adjusted survival that does not
require individual patient-level data. It allows one to
investigate the trade-off between treatment toxicity
and improved outcome. The motivating example for
this method was to determine whether the benefit of
adjuvant chemotherapy treatment outweighs its costs
in terms of toxic effects [see (21) for a full report 
of applying the methodology to that application]. A 
Q-TWiST (quality-adjusted time without symptoms
or toxicity) analysis was carried out on each trial.
This measure allows one to make treatment com-
parisons that incorporate differences in quality of
life associated with various health states.12

These outcomes were then combined using
regression models for recurrence-free survival and
overall survival (individually).The model presented
adjusts for the differing follow-up interval lengths,
while incorporating the estimated covariance of 
the restricted means for each trial. In addition, 
the assumed 6-month mean duration of toxicity
due to chemotherapy is recorded in the 
overview results.13

It should be noted that no specific value judge-
ments were put on the quality of life associated with
the time periods of toxicity due to chemotherapy
and time spent with disease recurrence.

‘Instead, we assigned arbitrary utility coefficients to
these periods and expressed the overall treatment
comparisons in a threshold utility plot according to all
possible values of the coefficients. One can use such
plots to assist patients and physicians in making
treatment decisions, providing that the clinical trials 

in the meta-analysis consider similar treatments in
similar patient populations.’ (20)

Meta-analysis of survival data
using IPD
For a general explanation of MAP see chapter 24.

The first example of a meta-analysis being
performed for survival outcomes on IPD was
probably that by the Early Breast Cancer Trialists’
Collaborative Group (13) to investigate the effects
of adjuvant tamoxifen, cytotoxic chemotherapy,
radiotherapy and ovarian ablation on survival 
after breast cancer.

All the methods presented in this chapter 
so far have been developed to combine data
aggregated to some level, whether that be a 
single parameter estimator for the study or 
periodic summaries, such as those obtained 
by life tables. However, as mentioned in the
introduction, the superior way to carry out 
a meta-analysis of survival data is to use IPD.
Indeed, some believe that this is the only reliable
way to carry out a meta-analysis of survival data
(22). No methodology (with the exception of 
a test for balanced follow-up14) on this subject, 
to the authors’ knowledge, has been published 
for survival data; however the methodology 
would not necessarily need to be very different
from survival analysis of a single study.

Further research

Hasselblad:

‘A meta-analytical technique that adjusts for covariates
and provides survival curve estimates for every stratum
defined by combinations of covariates would be
useful.’ (23)

A random/mixed effects model, which in 
principle would not be difficult for the methods 
of pages 169–70.

11 The authors then go on to discuss a simpler case where one has a common life distribution, but possibly different
random right censoring patterns. Again, they show that combining study estimates rather than data can cause a
substantial loss of information.
12 See (24) for a thorough account of analysing quality adjusted survival data.
13 See paper for details of the model.
14 For survival (or other time dependent outcomes) it is necessary to check follow up is up to date and balanced across
treatment arms. This balance in follow up can be checked by selecting all patients outcome-free and using the date of
censoring as the event to carry out a ‘reverse Kaplan–Meier’ analysis producing censoring curves which should be the
same for all arms of the trial (25).
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It would be desirable to tie all the above
methodology into a cohesive form.

Summary

Survival analysis data requires specialist meta-
analysis techniques (as well as specialist statistical
methods in general) because of data censoring. If
this censoring is ignored this may bias the overall
estimates. Other than this problem, the various
standard approaches for meta analysis are possible.
In such instances methods such as finding summary
measures for survival data (such as the hazard
ratio), and then combining those is possible.
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By Martin Hellmich1

Introduction

A ‘diagnostic test’ may most generally be defined as
‘any measurement aimed at identifying individuals
who could potentially benefit from intervention’
[Cochrane Methods Working Group (CMWG)
(1)]. Though randomised trials of screening may
be used to assess the effectiveness of a test regard-
ing patient outcome, the conduct of such trials is
infeasible for reassessment of every new test. Hence
the focus of investigation is on the test’s accuracy to
detect conditions for which randomised trials show
effective intervention [CMWG (1)]. Readers
unfamiliar with diagnostic test methodology may
find Swets and Pickett (2), Hanley (3), Begg (4),
Abel (5), Campbell (6) useful as general
introductory or reference texts.

Comprehensive review articles on meta-analysis of
diagnostic test accuracy were written by Irwig et al.
(7–9), Hasselblad and Hedges (10) and Shapiro
(11); Ohlsson (12) dealt with it in the general
systematic review context. Irwig et al. (4) is recom-
mended as a good introductory text on the subject.
The CMWG on Systematic Review of Screening 
and Diagnostic Tests is currently compiling recom-
mended methods and key references [CMWG (1)].
The group has summarised the objectives of
systematic reviews of diagnostic test accuracy 
for a specific condition as follows.

Objectives
• Identification of number, quality and scope of

primary studies.
• Overall summary of diagnostic accuracy.
• Comparison of different tests in terms of 

their accuracy.
• Determination whether (how) accuracy

estimates depend on study quality.
• Determination whether accuracy differs in

subgroups defined by patient and test
characteristics (applicability or generalisablity).

• Raising further research issues and 
highlighting deficits.

The group also gives practical guidelines (check-
lists) for literature retrieval, quality appraisal, data
presentation and analysis (the latter will be dealt
with below).

Systematic reviews of test accuracy or effectiveness
are included in the database of the NHS CRD,
University of York, York Y01 5DD, UK.

As in the clinical trial setting, meta-analysis of
diagnostic test accuracy involves three steps: find,
appraise, and combine all studies relevant for a
specific question. However, the various sources of
bias in the assessment of diagnostic tests necessitate
special efforts and methods to correct for them.
Specifically, valid meta-analyses of test accuracy 
with the rationale ‘to obtain valid summary
estimates and provide information on factors
affecting estimates to help readers decide how 
to generalise results to their settings’ [Irwig et al.
(9)] require:

1. No publication bias in the set of primary 
studies (see chapter 16).

2. No bias due to poor quality of the 
primary studies.
– A good (acceptable) reference (gold)

standard.
– Test(s) and reference standard are to be 

read blind of each other.
– Verification by reference standard for either

all patients who underwent the index test 
or a stratified random sample of them (with
adjustment for sampling fractions) (otherwise
verification bias would result).

– If two or more tests are compared they
should each be performed on all patients 
or patients should be randomly allocated 
to them.

– Assessment of the effect of reported design
flaws on estimates of diagnostic accuracy (e.g.
lack of blinding may cause overestimation of
accuracy while a certain type of verification
bias may render the contrary).

3. Variation in test threshold between the primary
studies (if present) is accounted for.

Chapter 21

Meta-analysis of diagnostic test accuracy

1 Visiting research fellow at the Department of Epidemiology and Public Health, University of Leicester, funded by the
German Academic Exchange Service (DAAD).
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4. The estimates from meta-analysis are
generalisable (applicable) to the clinical
problem at hand. This depends on:
– the details of the test applied;
– what other tests have been done before;
– the patient spectrum (spectrum of

abnormality and normality in the diseased
and non-diseased groups, respectively); and

– random effects models to account for
between-study variability.

5. No bias caused by referral of false positives
from primary to secondary or tertiary care
[Sackett (9); Discussion].

The specific statistical methodology appropriate 
for meta-analysis of test accuracy will be outlined 
in the next section. This will be followed 
by a brief discussion and pointers for 
further research.

Statistical methods

Diagnostic tests may be differentiated by the type 
of their outcomes – binary, ordered categorical, or
continuous (see chapter 14 for an explanation of
these data types). For each outcome type various
(specific) meta-analytic procedures have been
proposed. The exposition presented in Table 18
borrows from Irwig et al. (9).

Binary test results
Suppose, n = n1 + n2 subjects undergo both the
index and the reference test. The binary test results
may be condensed in a 2 × 2 table (see Table 18).
The table corresponds to a certain threshold 
(cut-off, positivity criterion) c such as

index test = { + : (latent) test variable ≥ c,
(21.1)

– : (latent) test variable < c,

where the ‘(latent) test variable’ is either
observable or non-observable.

Widely used indices of test accuracy are

TPR = a / n 1

FPR = b / n 2 (21.2)
FNR = c / n 1

TNR = d / n 2

which are monotone in c. The OR

TPR FPR
OR = (––––––––)/(––––––––) (21.3)

1 – TPR 1 – FPR

measures the discriminatory power of the index test
and may also vary with the chosen threshold c.

Suppose a collection of k different 2 × 2 tables
(studies) is to be summarised. Midgette et al. (13)
suggested weighted averages of TPR i and FPR i

(i = 1,2,…,k) provided these are not positively corre-
lated (Spearman test) but homogeneous (χ2 or
extended exact Fisher test – see chapter 8). Hetero-
geneous data should not be combined (except
maybe within subgroup analysis). If the TPR and
FPR values are positively correlated (rendered by
different thresholds) Midgette et al. (13) recom-
mend estimation of a summary receiver operating
characteristic (SROC) curve (see below).

The estimation of a SROC curve [various
approaches by Kardaun and Kardaun (14), Moses 
et al. (15), Littenberg and Moses (16), Shapiro
(11), Rutter and Gatsonis (17), Devries et al. 
(18)] using a linear model

D = α + βS (21.4)

where

D = logit(TPR) – logit(FPR)
= log(odds(TPR)/odds(FPR))
= log(OR), (21.5)

S = logit(TPR) + logit(FPR),
α : intercept,
β : regression coefficient of S.

allows the combination of TPRs, FPRs and ORs 
with varying corresponding thresholds. The model
(21.4) can be analysed in an unweighted, weighted
or robust way. If the regression coefficientis near
zero (β ≈ 0) the accuracy for each primary study
can be summarised by a common OR given by 
the intercept α. In this special case, other fixed 
or random effects approaches may be appropriate
as well [Hasselblad and Hedges (10), Klassen and
Rowe (19)]. Different diagnostic tests may be
compared by examination of regression residuals
(e.g. with a t-test) or introducing ‘type of test’ as
covariate in (21.4). Inclusion of appropriate
covariates in (21.4) also permits to determine

TABLE 18 2 x 2 table for a binary test

Reference test

+ –

+ a b

Index test – c d

n1 n2
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whether study quality or patient characteristics
affect test characteristics or to adjust for them as
confounders in a comparison between tests. If 
data about two or more thresholds are available the
use of GEE [Zeger and Liang (20)] may be useful
for estimation of the (unweighted) SROC [Irwig 
et al. (9)].

Ordered categorical test results
Suppose, the test result Y can fall into one 
of J categories (‘ratings’). Given k explanatory
variables x1,…,xk the probability of Y falling in a
given category j or below can be modelled as 
a non-linear function by means of the ordinal
regression equation

θj –(α1x1 +...+ αkxk)
g(Pr(Y ≤ j |x1,...,xk)) = ———————— (21.6)

exp(β1x1 +...+ βkxk)

with cut-off values θ1,...,θJ–1, location regression
parameters , scale regression parameters , and a
suitable link function g [Tosteson and Begg (21),
Tosteson et al. (22), Peng and Hall (23)]. The
(smooth) ROC curve of the test (using specific
patient covariates) is obtained by plotting sensitivity
versus 1–specificity for arbitrary cut-off values θ.
The area under the ROC curve may easily be inter-
preted as the probability of correctly ranking a
randomly chosen pair consisting of a diseased and
a non-diseased subject. It is the most important
summary index of the test’s performance [Bamber
(24), Hanley and McNeil (25)].

Meta-analysis can either make use of model (21.6)
directly to combine data from appropriate studies
[Mossman and Somoza (26), Tosteson and Begg
(21), Tosteson et al. (22), Peng and Hall (23)] or
pool the areas under the corresponding ROC
curves using fixed or random effects models
[McClish (27), Zhou(28)].

Dorfman et al. (29) approach the problem of
modelling random sampling of readers and
patients using the ‘jack-knife’ method.

Continuous test results
For continuously valued test outcomes – in
particular, if they are normally distributed with
equal variances – Hasselblad and Hedges (10)
advocate the use of the standardised difference 
of empirical means

M-D – MD

d = ————— (21.7)
spooled

where

M-D sample mean of non-diseased,
MD sample mean of diseased,
spooled pooled sample standard deviation

as a measure of discrimination or effectiveness.
Alternatively, the area under the ROC curve 
can be estimated either parametrically or non-
parametrically [Bamber (24), Hanley and 
McNeil (25)]. For either measure, fixed or 
random effects approaches can be used to 
combine information from a collection 
of studies.

Furthermore, the likelihood ratio, i.e. ‘the ratio 
of the probability that a given level of a test result
occurs in people with the disease to the probability
of that test result in people without the disease’
[Sackett et al. (30)] can be modelled by means 
of the linear model

N _
D

log(LR) = log (___) + α + βx (21.8)
ND

where

LR likelihood ratio,
log(N -D/ND) correction factor to convert log 

posterior odds to log(LR), i.e. 
(#non-diseased in sample/#diseased in sample), 
(where # represents the number 
of patients)

α intercept in logistic regression 
model with posterior odds of disease 
as dependent variable,

β regression coefficient for test 
measurement in logistic regression 
model with posterior odds of 
disease as dependent variable,

x test measurement

[see Albert (31), Irwig (32)]. Additional terms 
may be added to (21.8) in order to adjust for 
the effect of covariates. Equal calibration of 
the studies to be combined is an important 
assumption. If this is not met, the test data 
can be categorised and analysed using ordinal
regression methods.

In practice, methods for ordered categorical data
are often used for categorised continuous test
results because costs-benefit arguments rule out
collecting data for arbitrarily many threshold 
values (say more than 100).

Finally, three miscellaneous references regarding
meta-analysis of diagnostic test accuracy: Sackett
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[(9), Discussion] suggests the feedback of the
number of patients one needs to treat in order to
prevent one event (NNT) accompanied by
summary estimates of diagnostic test accuracy from
a high quality systematic review into the diagnostic
process. Velanovich (33)2 advocates the use of
meta-analysis for estimating the true Bayesian
posterior probability of a diagnostic test. Nieren-
berg and Feinstein (34) present results of a review
concerning the dexamethasone suppression test 
to establish a five phase evaluation process for
diagnostic tests.

Summary

The CMWG on Systematic Review of Screening and
Diagnostic Tests [CMWG(1)] remarks that pooling
of accuracy assessments within the Cochrane
Collaboration will probably use dichotomised
(binary) test data because, first, most primary
studies present the data in this format and, second,
further research on and developments of statistical
methods for ordered categorical and continuous
test outcomes is needed. Their method of choice 
is the analysis of the SROC curve in both the
unweighted and weighted manner.
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Combining a number of 
cross-over trials
Patient preference outcome
This is an outcome, special to crossover trials, and a
simple methodology has been developed so patient
preference outcomes can be combined across trials.
In a simple two-period crossover design patients
receive both treatments sequentially, and are 
asked which one they prefer.

PA and PB are calculated for each trial (the
proportions preferring treatments A and B
respectively – ignoring patients who did not express
a preference). The difference PA – PB is then calcu-
lated and is used as a (continuous) outcome
measure. The variance of this outcome can be
calculated using the below formula:

Var(PA – PB) = (PA + PB –[PA – PB]2)/n , (22.1)

where n = total number of patients in the study
analysis. These estimates can then be combined
using the standard inverse variance-weighted
method (see pages 55–6), or by using any other
weighting scheme in the usual manner (1).

Note: If a standard continuous outcome, rather
than that of patient preference is used than
standard methods for normal RCTs can be 
used to combine results.

Economic evaluation through
meta-analysis
Introduction
Economic evaluation through meta-analysis are
sometimes referred to as secondary economic
evaluations, evaluations which use available data
either alongside a review and meta-analysis of
clinical trials as a summary of self standing
evaluations (2).

Jefferson et al. (3) comment that despite the
number of studies available, the process of review-
ing and summing up economic evidence has been
little developed. They go on to observe that:

‘The distinction between primary and secondary 
research in economic evaluation is particularly difficult,
given the range of steps and diversity of sources of data
required for a typical economic evaluation.’ (3)

There are many fewer meta-analytic economic
evaluations than meta-analysis of RCTs. The latter
appear to have greater scientific acceptance; it 
has been suggested that this is because RCTs use
harder endpoints (3).

Jefferson et al. expand on the problems of carrying
out a secondary economic evaluation:

‘It is not clear whether ‘systematic reviews’ akin to
those performed on epidemiological literature can 
be applied to economic evaluations. First, substantial
methodological variations have been demonstrated
between economic evaluations that are superficially
comparable, raising questions about the reliability 
of cost-effectiveness ‘league tables’ and other com-
parative devices. Second, doubts have been expressed
about the theoretical basis for transferring results
from the setting in which an existing study was
performed into a decision-making process in another
setting. Third, it is not clear what technical options
exist for summarising and transferring results from a
number of economic evaluations.’ (3)

Investigation into feasibility
As one may suspect from the introduction, method-
ology in this area is at an early stage of development.

Jefferson et al. (3) present work whose purpose 
is to explore the possibility of developing a
methodology to sum up evidence about cost and
cost-effectiveness from pre-existing work. They
focus on two issues:

1. Whether, when comparing different studies
performed at different times and places, the
methods used for converting cost data into a
standard currency make much difference to 
the conclusions of the analysis, in the sense of
affecting the relative position of cost estimates
from the different studies.

2. Exploring whether studies give enough detail
about quantities of resource inputs associated
with an intervention to allow these to be

Chapter 22

Methods for combining other types of 
studies/data types
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compared directly, and the costs of care in
different settings to be calculated from the
resource data using a single set of unit prices.

They conclude there is scope for development:

‘Progress may require a more coherent theoretical
framework linked to cost and production function
theory ....... Inclusion criteria could be tied to
increasingly explicit reporting guidelines now 
being urged for economic studies.’ (3)

In addition, they comment:

‘Systematic review in economic evaluation has not
been widely used as a formal process, and it appears
that funding agencies such as the UK Medical
Research Council and NHS National Research and
Development Programme are placing increasing
emphasis on the prospective study design, in which
economic evaluations are performed alongside and 
as part of randomised controlled trials. This may
indeed be the best way forward .......

.......(But,) such prospective studies may be costly, 
or be insufficiently powered to show significant 
cost differences. Questions will continue to be 
asked concerning the transferability of their results 
to different geographical settings.’ (3)

Illustrative example of problems of
combining cost-effectiveness
information
Jefferson et al. (3) illustrate their work (summarised
above) with an economic evaluation of vaccination
against influenza A and B.

In 1990, the USA were considering an influenza
immunisation programme, but the only available
economic evaluation was done in Russia in 1980. 
A single vaccine cost 6 roubles in 1980 prices.
Then, immunising 10,000 people resulted in 
1500 fewer physician consultations at 20 roubles
per consultation. It was concluded that one cannot
directly translate this information, because items
(including the vaccine, physician consultation and
hospital admission) cost different amounts in the
USA in 1990, and hence the ratio of benefits to
costs would have altered in the translation.

Thus, two methods for standardising cost 
were compared:

1. Official exchange rates used to translate 
costs into US dollars, and the US Consumer
Price index was used to place these costs 
on a 1987 basis.

2. Health specific price indices for each country
of study were used to place costs on a 1987
basis, and health specific Purchasing Power
Parities were used to translate costs into 
US dollars.1

The study concluded:

‘All the economic evaluations found in the review
reported favourable baseline benefit-cost ratios for
vaccination against influenza, and hence at a first
broad level of pooling it can be stated that there is
general agreement in the available methodologically
reliable literature that prevention of influenza A and
B by vaccination is worthwhile, especially in high
incidence scenarios’ (3)

Importantly, however, Jefferson et al. went on to
comment:

‘Such a statement is however conditional on the level
of clinical effectiveness of the vaccine. Vaccine
effectiveness estimates used in the literature range
from 30% to 80%, and the cost estimates rest upon
these estimates. As no overview of effectiveness of
influenza vaccination has been carried out, it must be
concluded that the results of the economic literature,
regardless of their quality, are only valid at the levels of
clinical effectiveness assumed by the studies.’ (3)

Further research (in economic
evaluation through meta-analysis)
Leidl (4) considers the derivation of cost-
effectiveness of a medical intervention at the
population level rather than that reported at the
patient level. He concludes that eventually the total
health gains and the total budget impact expected
in the reference population could be reported for 
a well-defined period. Yet, building on the inform-
ation provided by single studies, meta-analyses 
and cross design synthesis can be used to achieve
population level results. He goes on to comment:

‘The methodological development of population based
modelling that integrates epidemiology and economics
is still in an early stage; a broader discussion of the
usefulness of these methods for priority setting among
medical interventions is still lacking.’ (4)
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Introduction
This section describes the methodology used to
combine results, when several outcomes have been
reported in each study. When this occurs, one can
simply conduct separate analyses for each outcome,
or discard all but one outcome (1), and combine
the results using standard methods.1 Raudenbush 
et al. explain why this latter approach may not 
be desirable:

‘Because a single treatment may have different effects
on different outcomes, it may be misleading to average
such effects for each study or simply to choose a single
outcome for analysis and ignore the others’ (2)

Also, questions such as ‘Does a treatment have
larger effects on some outcomes than on others?
Does the duration of treatment affect different
outcomes differently?’ are hard to answer (2) using
this method. Further, these approaches are not
optimally efficient as they do not use statistical
information about the errors of estimation
contained in the other estimated effect sizes (3).

An alternative approach would be to combine all
outcome measures within each study and then
combine these across studies. Raudenbush et al.
points out a problem in doing this:

‘Each study in a series of related studies typically uses
a different set of outcome variables. Thus, a standard
multivariate linear-model approach, requiring the
same set of outcomes for each unit, cannot be used
without either discarding data or imputing missing
values.’ (2) (Although pages 188–9 present a method
that can be used when the same subscales are used 
in every study.)

Another problem when combining multiple
outcomes is:

‘It cannot, however, be assumed a priori that the
relations between study features and effect sizes are 

the same for each outcome. Thus, a method of
analysis should allow different predictors (covariates)
of effect magnitude for different outcomes.’ (2)

None of the above methods is capable of 
doing this.

Different effect-size estimates calculated for any
one sample are typically correlated, so the statistical
methods presented thus far, that assume
independence between outcomes, may be
inappropriate (2).2

In this report, two broadly defined situations are
discussed where multiple outcomes may occur:

a) Where only two groups of subjects are being
compared, but outcomes are reported on
several variables.

b) Where several different treatments are being
compared to one control (4).

An example of situation a) would be when one 
had subscales of one outcome and one may want to
combine the variables into one outcome measure,
e.g. different aspects of psychological well-being (3).

This chapter discusses the various approaches 
put forward to combine studies with multiple
outcomes, retaining as much information as
possible. It should be pointed out that many of
these were developed by researchers in education,
but similar situations do arise in health technology
research, an example is given at the end of the
chapter, see page 190, and for these instances
recent modifications have been presented.

Methods for situation a) are covered on pages
188–91, and situation b) on page 191.

Gleser and Olkin (3) provide a discussion on when
one can ignore correlations among estimated effect

Chapter 23

Methods for correlated outcomes: combining
multiple effect measures

1 This approach is equivalent to standard multiple outcomes analyses applied to single studies.
2 A related approach that has been used it to extract multiple effect sizes from a given study and then weight each one
inversely proportional to the number of effects from that study. Although this allows for the differential effect of a
treatment on different outcomes, it does not take into account the interdependence among the effects (2).



Methods for correlated outcomes: combining multiple effect measures

188

sizes, at the cost of being conservative, and use
univariate approaches,3 and when such univariate
approaches are not advisable. They conclude that
univariate approaches can be used for certain
across-study inferences on individual effect sizes,
but that multivariate methods are needed for 
most within-study inferences on effect sizes.

Approaches for dealing with
multiple endpoint studies
Combining p-values
Strube (5) describes a method for combining
significance levels (p-values) when the outcomes are
non independent. An example from psychology is
given, where two trials are considered in which both
the patient and the therapist evaluated the treat-
ment. If the four results were combined in the
standard way (Stouffers’s formula; see chapter 7),
this would assume independence, which is clearly
disputable with pairs of results coming from the
same experiments and this will inflate the Type I
error rate. To avoid this, terms for the covariance of
the within study results are included in the denom-
inator of Stouffers’s formula [see (5) for details of 
a formula that generalises to k studies each with k
findings].4–6 From a practical point of view, the 
true correlation between the outcomes is unknown;
however, the correlation between the two dependent
variables provides an accurate and conservative
estimate. However, this would require the correlation
to be given in the report or the access to IPD. If

neither of these are available, then it may be possible
to estimate it from other results in the paper.7 If this
also is not possible, two other alternatives exist: 1)
estimate the correlation using other studies where
the value is known, or 2) carry out two analyses with
upper and lower bounds for the correlation used.8,9

Method for reducing multiple outcomes
to a single measure for each study
This method was developed for dealing with 
the situation where several subscales are to be
combined into a single study estimate. Rosenthal
and Rubin’s (6) aim is to: (a) derive a single
summary statistic incorporating the information
from all the effect measures of a single study.10

This statistic could then be combined with, and
compared to, the results from other studies using
standard meta-analytic procedures. In addition 
they wish (b), to test specific hypotheses about 
the relative magnitudes of effects on different
covariates, and estimate the magnitude of these
contrasts. This methodology is developed for
combining either significance levels or measures 
of effect magnitude.11 The method combines the 
df-1 contrasts from a single study and then uses 
this value in a standard meta-analysis. To use this
method, the correlations of the within study results
have to be known (or estimated) along with the
degrees of freedom for that study.12

This method is slightly more complex than 
that given previously; the underlying formula 
is given below:

3 Such procedures are described in the text.
4 An alternative procedure is also suggested – averaging the Z scores within studies before combining. This, however,
tends to produce a conservative solution compared to the above.
5 A modification to the contrasting significance methodology of Rosenthal and Rubin (11), to take into account the
correlations is also given (see chapter 7).
6 An adjustment to Rosenthal’s file drawer calculation for significance levels (see pages 127–32), due to correlated
outcomes is also given in (5). This calculation assumes similar number of outcomes per study in the unpublished
studies to those published.
7 Examples are given in Strube (5).
8 Methods for establishing these are discussed in the original paper.
9 Rosenthal and Rubin (6) comment on the above method. Using estimates for the correlations among the variables 
to estimate correlations among the Z values applies only in situations in which the degrees of freedom are large and 
the ts are fairly small [more details in (11)]. Below they present an alternative, more accurate, procedure (6) that 
can be used when these conditions are not met, however, this requires the additional knowledge of the degrees of
freedom used.
10 It should be stressed that this may not be an appropriate procedure in some instances. It makes most sense when
outcomes are parallel measures of a single construct (2)
11 Paper only describes methodology for continuous outcomes and p-values.
12 Hedges and Olkin [(1), p. 210] present an alternative rendering of the above. This includes homogeneity tests to
consider whether it is appropriate to combine estimates within a study, and combine estimates across studies taking the
correlation into account.
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Composite effect size ec ,

∑λiti /I
ec = ––––––––––––––––––––– , (23.1)

[ρ(∑λi)2 + (1 – ρ)∑λi
2]1/2  

where I is the index of the size of the study, ti the
test of significance of the effect of the independent
variable on the i th dependent variable, λi the
weight we wish to assign to the importance of the
ith dependent variable and ρ the typical inter-
correlation among the dependent variables.13

Many technical details on how to calculate this are
given in the original paper (6).

This method requires knowledge or guesses of 
the correlations between effect measures, and 
for those correlations to be ‘fairly’ homogeneous
(see page 188).

A more generalised form of the above is presented
by Gleser and Olkin (3), using a GLS regression
approach (see original for details). The sections
below present some more recent developments in
the subject of multiple outcome meta-analysis.

Combining vectors of effect 
size estimates
Hedges and Olkin (1) comment that the above
method (pages 188–9) may not be appropriate when
there is little reason to believe that the effect sizes 
on the different constructs are identical. In these
situations a method is presented to combine a vector
of effect sizes from each study. A limitation is that the
method assumes the same outcomes are measured
on all studies to be combined. A homogeneity test
for vectors of outcomes is also given. This method 
is not presented in full as it was superseded by the
model of Raudenbush et al. (2) (see below), who
acknowledge Hedges and Olkin’s work, and that of
Rosenthal and Rubin (6), as forming a foundation
for their more sophisticated analysis.

Development of a multivariate model
The model presented by Raudenbush et al. (2) 
is more general than either of the two methods
outlined above and it has formed the base on which
further work has developed (these extensions are

presented in the following sections). Their 
model uses a GLS regression approach which
allows different outcomes (and different numbers
of outcomes) to be measured across studies, and
also different covariates to be used in regression
models to explain the variation in effect sizes for
each outcome. Essentially, therefore, this reports 
an extension of the meta-regression methods 
of chapter 11.

The model is quite complicated, though a clear
and thorough explanation is given in (2), so due 
to space constraints is not reproduced here.

It should be noted, as was the case for the 
methods presented earlier, the correlations
between outcomes need estimating. Methods previ-
ously discussed for doing this apply to this model
also (see page 188).14 Several limitations were
noted in the original paper including the danger 
of model mis-specification, and that random 
effects and thus a mixed modelling approach (see
chapter 12) had not been developed for dealing
with multiple outcomes. Several hypotheses can be
tested using the model, broadly speaking tests of
the model fit, tests of significance of the entire set
of covariates, and tests about the individual effects
in the model can all be carried out.

An alternative formulation of essentially the same
type of GLS regression model is given by Gleser and
Olkin (3). In this presentation the authors point out
a mistake in the approach of Hedges and Olkin (1)
that is carried over into the generalised regression
model of Raudenbush et al. (2) presented above.
They say the large-sample correlation between two
estimated effect sizes in a given multiple-endpoint
study is equal to the observed correlation of the
outcomes. It is now known that this is not the case
and for this reason the latter formulation must be
recommended.

Extension of the GLS approach
Berkey et al. (7) consider multiple-outcome meta-
analysis in a clinical trials setting. In the method of
Raudenbush et al. (2) presented above the outcome
scale considered was the standardised treatment
difference between the two groups in the study.
This method handles data from studies that report

13 Hence, the test statistic, tc is given by:
∑λ iti

tc = ————————————————————

[ρ(∑λi)
2 + (1 – ρ)∑λi

2 + (1 – ρ2)∑λ i
2t i

2/2df]1/2

14 The paper calls for correlations to routinely be reported in research reports.
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different subsets of the outcomes. If a further
complication is added, namely that we wish ‘to
include more than two treatment types in a single
meta-analysis, and no single treatment or control
group appears in every study to serve as the
common group for the computation of effect 
sizes’ (7). In this situation a GLS analysis in terms
of effect sizes becomes substantially more
complicated. Essentially, the problem being
addressed is one where multiple outcomes and
multiple treatments are considered simultaneously
in a single meta-analysis. It is a model for this
problem that Berkey et al. consider. In their
presentation they acknowledged the model by Dear
(8) (see chapter 20) for meta-analysis of survival
data, in which the multiple outcomes are survival
proportions reported at multiple time points, and
use the model of Raudenbush et al. (2) as a 
starting point.

Using this methodology, the authors point 
out that the model can include more than two
treatment groups from multi-arm trials, and 
can also include a single arm from randomised
trials that include only one of the treatments. In
doing so, it allows the meta-analysis to use more 
of the available data. If a common placebo, or
before and after treatment data is available for 
all studies, then within trial comparisons can be
directly analysed [using the original units rather
than standardised effect size used by Raudenbush 
et al. (2)]. If this is not the case, an analysis can 
still proceed using simply the outcomes of each
arm. Adjustment by study level and treatment-
group level covariates when evaluating treatment
effectiveness are both possible.

As is the case for all the methods in this section, 
the correlation between outcomes is required. 
As previously discussed these can be gained from
trial reports, externals sources, IPD from some of
the trials in the meta-analysis. Also, assumed values
can be used and their impact assessed by a
sensitivity analysis.

For illustration purposes the authors present an
example from studies of rheumatoid arthritis,
where tender joint count, erythrocyte sediment-
ation rate and grip strength, all reflect important
aspects of the disease state. The model is applied 
to a dataset with a clear explanation of every 
stage of the analyses.15,16

It should be noted that this model would be
inappropriate for binary multiple outcomes (e.g. 
in this example carious versus sound surfaces). 
It would appear that no methodology has been
developed to incorporate binary variables in mul-
tiple outcomes meta-analysis. As with the Rauden-
bush et al. model (2), no random effects option 
is available. The following section describes a
situation where this model has been implemented.

Application of extension of 
GLS approach
Berkey et al. (9) apply the model of Berkey et al. (7)
discussed above to a relatively simple periodontal
dataset. Here surgical and non-surgical periodontal
treatments were compared, using outcomes of
probing depth and attachment level. The primary
goal is the estimation of treatment effectiveness 
for the two outcome measures. ‘Analysing both
outcome measures simultaneously will improve 
the accuracy and efficiency of each estimate, so 
that the standard error of each estimate will be
smaller than (or equal to) the standard error 
from the separate analyses approach.’ Since the
correlations between outcomes were not reported
in the papers, estimates were derived from the
individual patient data of one of the studies being
combined. All five studies used a split-mouth
design, and each quadrant of teeth was randomised
to a different treatment. Both outcomes were
measured on a continuous scale, and since all
studies used the same two outcomes there was no
need to standardise these so they were combined
on the original metric (see pages 63–4), simplifying
the interpretation of the results. A thorough
sensitivity analysis of the correlation values 
was also carried out.

This paper, which includes a clear and detailed
appendix for the technical aspects of the analysis,
gives a very good insight into the use of these 
kinds of models. The model fitted is relatively
simple, as all five studies measured the same 
two outcomes and no covariates are included 
in the model.

Methodology for multiple outcome
studies using correlation coefficients 
as outcome variables
Roth and Sackett (10) discuss the situation 
where study outcome measures are correlation
coefficients (see pages 112–13) and these are 

15 An appendix clearly explains how to set up data for the GLS regression model.
16 The GLS model of Berkey et al. (7) cannot be fit using a standard regression package. However, SAS/IML code is
available from the first author.



Health Technology Assessment 1998; Vol. 2: No. 19

191

correlated. This idea can get confusing! Put 
another way, the context considered is that of
studies reporting multiple outcomes, each of which
is a correlation coefficient (as opposed to some
other continuous measure of effect magnitude). A
fictitious example of where this situation may occur
is: five student doctors each take a reading on the
same group of patients (e.g. blood pressure) and
these are compared to a gold standard measure (say
the reading of an experienced doctor). Then, if this
study were replicated at different hospitals, and one
wanted to combine the agreement of each student
with the experienced doctor, the correlations
between students examining the same patients
would have to be accounted for. This paper develops
methodology for doing this, which decomposes 
the correlations to look at differences of a) students
within each hospital and b) differences between
hospitals (i.e. mean correlations). Extensions to 
this setting are also discussed (see original paper 
of mathematical derivation and formula). Monte
Carlo simulations were done to test the 
methods presented.17

Approaches for dealing with
multiple treatment studies
Gleser and Olkin (3) present a framework for
combining studies where patients are assigned to
more than two different treatments (situation b of
the introduction). The model given can deal with
varying numbers of treatments to be combined
from each of the studies. As with the approach of
Raudenbush et al. (2), a GLS model is used (see
page 189). A test of the goodness of fit of the
model is given which is equivalent to a test of
homogeneity (chapter 8).18 This methodology only
deals with outcomes measured on a continuous
scale. See original paper for computational details.

Further research

• The need for random effects and mixed
modelling approaches to meta-analysis of
multiple outcome studies.

• Methodology for the incorporation of binary
outcomes into multiple outcome meta-analysis.

Summary

In order to combine multiple effect measures, the
correlations/covariances between outcomes are
needed for most methods. If these are not available
then one must make a guess at them, and assess the
impact of their choice using a sensitivity analysis, or
alternatively estimate them from external sources,
or IPD from some of the trials.
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Introduction
With one or two notable exceptions, until 
recently, it was customary for all meta-analyses 
to be carried out using the aggregated summary
results of studies, these were obtained from journal
articles and where these were not sufficient, or the
study was not published, the necessary summary
data was requested directly from the research
group who originally carried out the work. With
continually improving technology and communi-
cation, formal registration of RCTs, and increasing
awareness of the benefits, it is becoming more
feasible to obtain the whole study datasets from 
the original researchers, making a synthesised
overview using information at the patient level
possible. This has become known in the literature
as MAP, although other terms such as ‘mega-
analysis’ (1) have also been used.

There are several motivating reasons for carrying
out an ambitious analysis of this type; these are
discussed below. Firstly, several comparative studies
have been carried out to compare the results of a
standard meta-analysis using aggregated data to
ones which uses IPD, several of these (2–4) have
found discrepant results between the methods.1

Stewart and Parmar (2) compared summary data
with IPD for cisplatin-based therapy for ovarian
cancer. The two methods did give different results;
however, different studies were used in the analysis
so the two analyses were not directly comparable.
Jeng et al. (3) compared literature (MAL) to IPD
(MAP) meta-analysis for paternal cell immunisation
for recurrent miscarriage, and found that meta-
analysis using literature based data over-estimated
the treatment effect. They conclude:

‘Results using the MAL approach can differ from
those using the MAP approach because of publication
bias, short follow-up, or lack of adjustment for
significant confounders’ (3)

Other benefits include (5):

1. The ability to carry out detailed data checking
and ensure the quality of randomisation 
and follow-up;

2. Ensure the appropriateness of the analyses;
3. Update follow-up information;
4. Undertake subgroup analyses for important

hypotheses about differences in effect. This is
possible with aggregate data, but is generally
easier with IPD;

5. Survival and other time-to-event analyses 
can be carried out in a more satisfactory
manner. Specific techniques used to analyse
data of this type are given in the survival
analysis chapter (chapter 20). It has been
suggested that IPD analysis is the only satis-
factory way to carry out meta-analysis with
survival endpoints. It is also worth noting that
longer follow-up times than those published 
in reports may be available if IPD is collected.
Stewart and Parmar observed (2) that pressure
to publish quickly often results in short follow-
up, so meta-analyses of published data tend 
to focus on early time-points, which may be
inappropriate in a chronic disease. For
example, in the treatment of breast cancer 
by chemotherapy, benefit was greatest 
5–10 years after treatment.

To obtain data at the patient level it will usually be
necessary to contact all groups of investigators who
carried out the original trials to be combined.
These necessary collaborations may have several
‘knock-on’ benefits (5):

1. More complete identification of relevant trials;
2. Better compliance with providing missing data;
3. More balanced interpretation of the results;
4. Wider endorsement and dissemination of 

the results;
5. Better clarification of further research;
6. Collaboration on further research.

The statistical methods for synthesis at the patient
level are similar to those used to analyse multi-
centre clinical trials. This literature is beyond the
scope of this report and the interested reader is
referred to Pocock (6). The main feature that
differentiates this kind of analysis from that of a
single trial is that a covariate can be included to
indicate which study a patient came from. This

Chapter 24

Meta-analysis of individual patient data

1 Little work has been done to explain why this happens or under which circumstances it is likely to occur (10).
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covariate could take the form of either a fixed or
random effect. The rest of this section outlines the
approaches used and discusses the benefits and
disadvantages of carrying out MAP.

Procedural methodology

The methods described in this section are a
summary of those derived by the Cochrane
Working Group (CWG) on meta-analysis using 
IPD. A fuller account can be found in (5).

Much of the new methodology can be viewed as
procedural, such as ways of nurturing collaboration
and collecting/checking the (usually large quanti-
ties) of data. Many of the procedural methods for
synthesis of aggregated data, outlined in chapter 3
are also relevant in this situation. Refer to (5) for
details of extra planning/organising that needs
doing when planning a synthesis on IPD and note
the increased time/costs implied here over use of
aggregated results are usually very substantial.

Data collection
The following list has been identified as the
minimum data that can be collected to carry out 
an IPD meta-analysis:

Patient identifier, treatment allocated and
outcome(s), together with the date of random-
isation and date of outcome if time to event is to be
calculated. Also, it is often important to collect
additional baseline variables, even when subgroup
analysis are not planned, because these data are
extremely useful in checking the integrity of the
randomisation process.

It is appreciated that collecting old datasets can be
a difficult and slow process. The working group
concluded:

‘When a large proportion of the total randomised
evidence (perhaps 90–95%) has been collected, the
missing data may be considered unlikely to alter
importantly the meta-analysis results.’ (5)

This can be checked by using a sensitivity analysis,
such as examining the effect of including extreme
results for the missing data.

Checking data
It is very important that the analysis should 
be based on the ‘intention-to-treat’ principle 

(as is the case for RCTs) and therefore that data
should be collected, and analysis based on all
randomised patients.2

The group suggest simple procedures for checking
correct randomisation and follow-up (see the
original paper for details).

Discussion of issues involved 
in carrying out a MAP
Pros
Many of the advantages of a MAP over one using
aggregated data were outlined in the introduction
to this section. Indeed, Chalmers et al. commented:

‘they are yardsticks against which the quality of other
systematic reviews of randomised controlled trials
should be measured.’ (7)

Some additional advantages have been noted by
Gueyffier et al. (8): 1) the ability to check whether
the treatment effect is constant over time, an
assumption which may not be true but which is
necessary to calculate an overall estimate when 
the treatment effect is reported at different time
points from one study to another; and 2) the 
ability to identify interactions between the
treatment effect and patient profiles. Three
methods for doing this are presented in the
appendix of the paper (8).

Cons
They are however, costly, and time consuming to
carry out; the CWG noted:

‘It is perhaps not generally appreciated just how much
time and effort is involved in performing an IPD meta-
analysis. It is not something to be undertaken lightly,
and since a variety of clinical, scientific, statistical,
computing and data management skills are required,
it is generally not something to be undertaken by an
individual.’ (5)

A MAP by Pignon et al. (9) took approximately 
3 years to complete and the CWG concluded that
any IPD meta-analysis is unlikely to reach its first
publication in much less time (5). As for costs, the
CWG suggested around £1000 per trial or £5–10 per
patient (in 1994), whichever was less. Although, it
has been argued that while the cost of reviews such
as these are substantial, they are small relative to 
the total amount invested in health care and are
clearly a smart investment (10).

2 Indeed, if the original study did not do this and excluded patients from the results, they can now be reintroduced into
the analysis (11).
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This method relies heavily on the international 
co-operation between the individuals and groups
who have conducted relevant trials (5). To run 
and report a trial takes much hard work and 
thus objections to data sharing from trialists 
are understandable. However, as Oxman et al. 
point out:

‘patients do not consent to participate in trials 
for the benefit of researchers or corporate profit. 
........ it is unethical for trialists, pharmaceutical 
companies, or others to withhold data for 
private interests.’ (10)

So on ethical grounds, researchers should supply
their data when requested for the purposes of a
well planned synthesis. Efforts should be taken to
make the collecting of data as easy as possible, by
measures such as assuring confidentiality, clearly
explaining aims of the meta-analysis, making the
report manuscript available to all contributors 
and being flexible to the format of the data
requested (11).

There is a problem of how to proceed if all
persuasion fails, or the data for the study is 
simply lost or destroyed. As mentioned in the
methodology section this may not be too serious 
if say 90–95% of the data has been obtained. 
If on the other hand more than this is missing,
aggregate data provided by trialists or data
extracted from publications could be used.
However, the CWG comment that it is not 
clear whether it is desirable to do so (5). A
suggestion is to investigate the effects of 
including the aggregated data in a sensitivity
analysis (5).3 See (12) for very recent advances 
on this subject.

To conclude, many potential advantages of making
the extra effort to obtain IPD have been discussed;
however, little is known about the actual magnitude
of gains that can be achieved.

For this reason, the CWG call for additional
empirical evidence of the relative values of the
different techniques involved in such reviews
should be sought and published (5). A list of
explicit suggestions is given below.

Further research on when the extra efforts of doing
a meta-analysis using IPD compared with aggregate
data are worthwhile.

The CWG comment:

‘Given that the central collection, checking and
analysis of individual patient data from all relevant
trials can require a considerable amount of time,
personnel and financial resources, further research 
is needed to determine when it is most appropriate to
adopt this approach and what the most appropriate
alternatives are if sufficient resources are not
available.’ (5)

CWG Research agenda (1994):

1. Comparison of individual patient data with
summary data supplied by trialists.

2. Comparison of individual patient data with
published data.

3. Comparison of individual patient data after
extensive data-checking with individual patient
data supplied initially.

4. Comparison of trial quality as assessed using the
individual patient data with quality as assessed
from the published report.

More details of these are given in appendix 6 
of (5).

Further research

As well as the issues raised by the CWG research
agenda above, the following are relevant:

Methodology to combine individual patient 
data with aggregate data (i.e. when a proportion 
of the IPD is unobtainable) is needed. This 
clearly could be possible using multi-level
modelling. See also Collette et al. (12) for 
recent methodology.

Very recently, Higgins and Whitehead (13)
proposed a method of including both patient 
level and study-level covariates in a MAP which uses
a Bayesian approach (see chapter 13).

This chapter has dealt with meta-analysis
methodology for epidemiological studies. 
Analysis of IPD may have rewards for observational
studies as well as RCTs. For instance, confounding
on a patient level could be adjusted for using 
IPD covariates. For example, consider two
observational studies, one which originally 
adjusted for subject age, and one that did not. 
If age is available in both studies, using IPD – 
a meta-analysis could be carried out either
adjusting (data from both studies) by age or
combining both studies unadjusted.

3 However no details in the paper were given on how to do this.
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Summary
There are several advantages of carrying out 
a MAP, over a standard meta-analysis using aggre-
gated data. These include the ability to: 1) carry 
out detailed data checking, 2) ensure the appro-
priateness of the analyses and 3) update follow-up
information. This has led to the comment that
MAP data are the yardsticks against which the
quality of other systematic reviews of RCTs 
should be measured (7).

These benefits do not come without a cost however,
as MAPs are very time consuming and costly.
Currently there is little empirical evidence
regarding the actual magnitude of the gains, and it
is yet to be established whether the extra effort is
worthwhile, in given situations.
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Introduction
Cumulative meta-analysis has been defined as the
process of performing a new meta-analysis every
time a new trial is published (1).

Lau et al. give a broader and more detailed
definition:

‘... performing a new meta-analysis every time a new
trial is added to a series of trials. The contribution of
individual studies to the cumulatively pooled results
can be determined. The accumulation may proceed
according to the year of completion or publication of
each study,1 the event rate in the control group, the size
of each study, the size of the difference between the
treatment and the control groups in each study, some
quality score that has been assigned to each study, or
other covariates such as drug dosage or time-to-
treatment. With each criterion, the studies may be
sequentially pooled in ascending or descending order.
When studies are accumulated by their publication
year, the earliest year at which the treatment effect
becomes statistically significant can be established.’ (2)

It worth noting the distinction between updating a
meta-analysis and cumulative meta-analysis: in the
latter the results are presented, as each study is
added, with the plot produced being an integral
part of the analysis, rather than simply re-analysing
an updated set of trials. Lau et al. comment:

‘The accumulating results are looked at as a whole for
the picture that the trends present and the impact of a
published or planned study on the overall result can
be assessed.’ (2)

However, it would appear that this distinction has
become somewhat blurred in the literature.

One of the clearest advantages of this method is
expressed by Antman et al.:

‘Cumulative meta-analysis offer the caregiver and the
health-care consumer with answers regarding the
effectiveness of a certain intervention at the earliest
possible date in time’ (3)

The updating nature of cumulative meta-analysis
makes it naturally Bayesian (2) (see page 198 and

chapter 13 for a description of Bayesian methods 
in meta-analysis).

The earliest example of such an analysis is by Baum
et al. (4) on use of antibiotic prophylaxis in colon
cancer surgery.

A related topic, prospectively planned cumulative
meta-analysis applied to a series of concurrent
clinical trials, is discussed on pages 213–14.

Methodology

Cumulative meta-analysis requires no new statistical
techniques to combine study estimates. The trials
are ordered by a given criteria (e.g. publication
date), then the studies are combined, starting 
with the first two, and systematically repeating the
analysis including the next study in sequence each
time, until all the studies available are combined. If
the sequential results of this procedure are plotted
on the same graph a plot such as (5), Figure 1, can
be obtained. Here RCTs investigating the effect of
intravenous streptokinase (IVSK) for acute myo-
cardial infarction (AMI) have been combined in
chronological order. On the left, a conventional
meta-analysis is plotted with the point estimate and
95% CI for each trial, and the combined estimate
and 95% CI for the combined effect given at the
bottom. On the right hand side is the corre-
sponding cumulative meta-analysis, showing the
combined result as each trial is included.2 Produc-
ing a diagram like this enables the researcher to
assess the impact of each new study on the pooled
estimate of the treatment effect. One can see the
general trend of a reduction in the width of the CI
as the number of studies increases, which is to be
expected. The cumulative plot shows that as early
as 1971, when only four trials had been completed,
the benefit of the treatment reached nominal
statistical significance. However, as the next three
trial results were included the treatment effect
became non-significant again before permanently
regaining its significance. As Lau et al. point out,
this plot is particularly valuable because:

Chapter 25

Cumulative meta-analysis

1 This is the most common usage, by far.
2 Note the different scales on the horizontal axes of the two plots.
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‘The cumulative method indicates that intravenous
streptokinase could have been shown to be lifesaving
almost 20 years ago (circa 1972) long before its
submission to and approval by the Food and Drug
Administration and its general adoption in 
practice.’ (5)

The Bayesian approach to cumulative
meta-analysis
The introduction mentioned that the idea of
cumulative meta-analysis was amenable to a
Bayesian approach. This idea is explored further
here. Bayesian analysis quantifies the use of the past
history in a prior distribution expressing our belief
in the value of the parameter being measured
before the information from the current data is
incorporated (2). So as each trial is added, the last
posterior distribution could become (or provide
the basis for) the next prior distribution. The
interpretation of results is also different from 
that in the frequentist approach, as explained 
by Lau et al.:

‘In the Bayesian paradigm (and therefore in
cumulative meta-analysis) the 95% confidence interval
describes an interval of highest posterior probability
in which we can be 95% certain that the true effect
lies. This is also the shortest such interval. This
definition contrasts with the common frequentist one
which states that in an infinite number of repeated
trials, 95% of the 95% confidence intervals will
include the true effect. Note that this frequentist
definition says nothing about the current confidence
interval we are concerned with, but rather makes a
general statement referring to intervals that could
have been, but where not, observed.’ (2)

However, despite this, Lau et al. (6) used standard
classical statistical methods to pool studies;
therefore, although the above philosophy is
correct, in practice, their claim that their CIs
(which should be credible intervals anyway) 
have a Bayesian interpretation is not correct.

Cumulative meta-analysis: ordering 
on variables other than trial 
publication date
Lau et al. (2) discuss the potential benefits of
carrying out a cumulative meta-analysis using
variables other than trial publication date to order
the trials. Each of these, as discussed by Lau et al.
(2) is discussed below.3

Ordering by control group event rate
It can be difficult to establish treatment efficacy in
studies or conditions with low control group event
rates. Under these conditions random variation are

likely to make the treatment worse on occasion.
Using the streptokinase studies discussed above,
Lau et al. (2) show that studies with high control
rates are more likely to demonstrate a higher
estimate of treatment efficiency (by combining 
the highest control rates first the treatment effect
systematically reduces as more trials are combined).
‘Provided that the randomisation process is
balanced, a cumulative meta-analysis ordered by
ascending or descending control rates provides
another approach for exploring the heterogeneity
among the studies. Study of control rates may also
provide insights into the severity of illness in the
study population as well as disease and treatment
trends over time.’ (2)

Ordering by study size
Smaller studies are generally subject to greater
variability, and withholding publication is also 
more likely to occur. In the streptokinase example,
cumulative meta-analysis by study size was com-
pared to analysis by study year. This showed that 
the result became statistically significant with 
fewer patients when ordered by study size
compared with publication year. This implies 
that the bigger the studies are, fewer patients 
need to be randomised.

Ordering by the size of the difference between
treatment and control
Lau et al.:

‘Cumulative meta-analysis based on the effect 
size can be used to highlight the heterogeneity of
treatment effect and help to identify studies that may
be very different either by protocol design or patient
characteristics. The impact of current or potential
negative or inconclusive studies on the overall pooled
result can be estimated.’ (2)

Ordering by the quality of the individual trial
Lau et al.:

‘The overall usefulness of the quantitative estimate 
of the quality of individual studies has yet to be deter-
mined. There have not been enough examples to
demonstrate a consistent correlation of quality scores
and estimates of treatment effects.’ (2)

However, this does not mean that a measure of
study quality cannot be used in a sensitivity analysis
(see pages 209–10).

Ordering by study covariates
Although subject to ecological fallacy in principle,
this may lead to useful clinical insights. Lau et al.

3 For example plots of these methods see paper [Lau et al. (2)].
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(2) discovered in trials of thrombolytic treatment a
cumulative meta-analysis clearly displays a trend
toward a reduced estimate of overall efficacy as
studies with longer mean time-to-treatment 
are added.

Discussion

Advantages of cumulative meta-analysis
Lau et al. boldly state, and back up by an 
example, that:

‘Cumulative meta-analysis can show under what
conditions a treatment has been proven effective,
ineffective or harmful.’, and vaguely postulate,
‘Obviously its ultimate usefulness will be the
application to interpretation of future randomised
control trials of the same or changing treatments.’ (2)

They conclude: ‘Performing a new meta-analysis
every time a new trial becomes available and
rearranging the order of the trials in various other
ways is in our opinion the best way to utilize the
information that can be obtained from clinical trials
to build evidence for exemplary medical care.’ (2)

Discussion of problems regarding
cumulative meta-analysis
Lau et al. comment (2) that it has been argued that
displaying ‘proof’, by cumulative meta-analysis, that
a treatment was effective before a number of large
or ‘mega’ trial were carried out is a classic example
of hindsight reasoning. Lau et al. defend this (2),
reporting that they alone have carried out over 100
cumulative meta-analyses and found that the large
studies mostly echoed the results of meta-analyses
of small studies. They add: 

‘We should begin to examine prospectively the role of
additional studies when other studies are available.’
(2) (see pages 209–10)

Another problem related to cumulative meta-
analysis which has been raised is whether a correc-
tion factor for multiple testing needs to be taken
into account as with stopping rules for clinical
trials. Lau et al. (2) state that one is required under
classical (frequentist) analyses, but argue it is
irrelevant under the Bayesian interpretation.

Another aspect of the multiplicity problem that 
has been highlighted is that, even if there is no
treatment difference, a cumulative meta-analysis
will eventually lead to statistical significance. Berkey
et al. (7) suggest the need of a stopping rule for

cumulative meta-analyses. At the moment alpha
(the probability of a Type I error) approaches 1 
(as opposed to 0.05 used in clinical trials). They
conclude that no good general method for doing
this is possible as each trial has its own unique
sample size.

Lau et al. discuss the influence of a cumulative
meta-analysis on future action:

‘When there is a clear-cut trend it makes no sense 
to act as if there was no prior information and to 
base the sizing of a study on the assumption that each
treatment is equally effective. Realistically, does an
investigator need as much data to be convinced when
previous studies have demonstrated (or indicated)
efficacy, as when no studies have been undertaken? 
The traditional approach taken in textbooks, may 
have resulted in thousands of patients being relegated
to ineffective treatments when far fewer randomised
patients would have confirmed that the conclusions to
be drawn from the past trials are probably correct.’ (2)

However, the authors feel that information from
past trials should not be considered when devising
stopping rules for current clinical trials because of
the danger of compounding of overestimation.
They are also cautious of the use of cumulative
meta-analysis for future trials sample size
calculation for a similar reason.

In a similar vein, Henderson et al. (8) discuss 
how 12 small trials came to completion during the
course of one long one. It considers if a cumulative
meta-analysis of the smaller ones had been carried
out, whether the conduct of the larger one 
could have been influenced for the better. 
They conclude:

‘Our thesis is that if related published trials are
available, a meta-analysis should be started in the
planning stages of a clinical trial, continued through
the ongoing conduct of the trial, and performed as
one analysis among many in the final analysis of the
trial.’ (8)

Finally, Borzak et al. (9), commenting on the 
results of the treatments for myocardial infarction,
cumulative meta-analyses (3), state that cumulative
meta-analysis is not the ‘be all and end all’ as it
does not assess the combinations of drugs4 that may
be used (implying that factorial trials are needed).
Antman et al. (10) in their reply acknowledge the
point put suggest that the use of a factorial design
would be unethical because one would have to have
placebo arm when drugs being investigated are
known to have a beneficial effect.

4 But in principle it could.
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Further research
Flather et al. (11) suggest the need to validate
cumulative application of meta-analysis as a
research methodology.

The stopping rule problem [despite Berkey et al.
(7) concluding that there is no good general
method for doing this, as each trial has its own
unique sample size; some group sequential
methods are robust to this].

Summary

Cumulative meta-analysis is valuable as an
exploratory/sensitivity analysis tool. There are
questionable gains if it is done in real time, and 
a correction for multiplicity is needed for the
frequentist approach.
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Introduction – combining 
different types of study design
So far in this report, the methodology has been
concerned with combining a single type of study.
Much of the emphasis has been on RCTs; however,
chapter 19 dealt with issues exclusive to observ-
ational studies. This chapter reviews methodology
for combining results from different types of study
designs. Methodology for combining matched and
unmatched data has already been covered in
chapter 19. The combination of cross-over clinical
trials (where patients receive more than one treat-
ment regimen) with (one-period) RCTs is discussed
first. Next, single arm studies, i.e. studies which use
historical controls are examined, and methodology
is presented for combining them into a meta-analysis
with other RCTs. This is followed by two general
methods of combining evidence from different
sources (or different groups of studies), namely the
confidence-profile method and cross-design
synthesis. Sources may include randomised trials,
observational studies, animal experiments or
database analyses. Hlatky (1) observes that using
databases to compare alternative treatments is
controversial; additionally, many biostatisticians
contend that observational studies are so inherently
biased that only data from randomised controlled
clinical trials can be used to compare therapies
(2–4). However, others have argued that while
randomised trials are clearly a superior methodol-
ogy, it is simply too difficult, costly and time consum-
ing to perform a randomised study to answer every
question of clinical interest (5–7). Further, discus-
sion of the pros and cons of combining evidence
from sources other than RCTs is provided on pages
203–5. A related topic to this chapter is methods for
combining information from disparate toxicological
studies; this is covered on page 220.

Combining cross-over trials with
other studies
No new methodology is needed to do this, provided
the cross-over trials and the other designs use the

same outcome measure. In fact, the results of the
trials can be combined ignoring the difference in
study design. If there is a treatment carry-over
effect, then the second period of treatment should
be excluded from the analysis. Fortin et al. provides
a good example of this, they combined 10 trials,
eight parallel and two cross-over, and report:

‘One of the cross-over trials was analyzed as a parallel
study, only including data from the first arm of the
trial when it was found that the carryover effect
exceeded the washout period.’ (8)1

Single-arm studies (model for
incorporating historical controls)
Begg and Pilote (9) present a model to estimate 
an overall treatment effect when some comparative
studies are to be combined with non-comparative,
historical control studies. The model differs from
the standard random effects model presented thus
far (chapter 10) for two reasons: 1) an estimate for
each treatment is found (rather than a difference
or a ratio); and 2) in this model the treatment
effects are fixed but a random effect baseline 
term is included. The implications of this are 
that uncontrolled (non-comparative) studies can
now be included in the analysis, thus creating the
potential to combine extra information over the
standard model. It is the authors intention that this
model should be used primarily when a dominant
proportion of information on a treatment exists
from the uncontrolled studies (which may be less
reliable than that of the controlled).

Two extensions to this model are proposed: 
firstly, a preliminary test for systematic bias is given;
and secondly, methodology is given to include 
a random effects term for the treatment effect as
well as the baseline effect. In the discussions, the
authors stress caution at the interpretation stage
when using this method.

Li and Begg extend this (10) by presenting 
a more general theory removing the need for
distributional assumptions and they use EB

Chapter 26

Generalised synthesis of evidence

1 Cross-over designs are notoriously designed inappropriately (30) and analysed wrongly. If a trial has been carried out
inappropriately then its results may be biased.
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estimators (see chapter 13) for the variance terms.
The authors state:

‘The relative contribution of the uncontrolled studies
is directly related to the degree of homogeneity in the
studies, as evidenced by the closeness of the estimated
baseline effects.’ (10)

For formulae and computational details see
original papers.

The confidence profile method
(see also page 103)
Introduction
The confidence profile method was first presented
by Eddy (11) in 1989. It has been put forward as a
Bayesian method for assessing health technologies
(11), and described as:

‘a set of quantitative techniques for interpreting 
and displaying the results of individual experiments;
exploring the effects of biases that affect the 
internal validity of experiments; adjusting experi-
ments for factors that affect their comparability 
or applicability to specific questions (external
validity); and combining evidence from multiple
sources’ (12)

An application of this model has been cited 
as one of the first examples of bringing together
evidence from randomised and non-randomised
studies. Eddy et al. (13) combined information
from RCTs, case–control studies, and simple
observational studies to assess the value of
mammography screening in women under 
the age of 50 years. The method was cited as
influencing the cross-design synthesis approach
(14) (see pages 203–5).

This method can accommodate all the 
problems, listed below, that may occur when 
trying to synthesise evidence: multiple pieces 
of evidence, different experimental designs,
different types of outcomes, different measures 
of effect, biases to internal validity, biases to
comparability and external validity, indirect
evidence, mixed comparisons, gaps in 
experimental evidence. (12)

Despite often being described as a Bayesian
method, it can be formulated under classical
conditions where MLEs and covariances 
for the parameters in a problem can be 
derived (12).

Methodology
A key feature of this method is that it models 
biases explicitly. Hence, the result of an analysis 
by this method, a posterior distribution for 
the parameter of interest,2 incorporates all 
the uncertainty the assessor chooses to describe
about any of the parameters used in the 
analysis.

Hasselblad notes:

‘Misclassification rates, measurement error
probabilities, and contamination rates are easily
included in the model. These biases may not be
known precisely, but some evidence usually exists,
either in the study itself or in studies of similar
populations or outcomes’ (15)

As with more standard Bayesian analyses (see
chapter 13), it is possible to incorporate subjective
judgements into the model in a structured way,
though this is not a requirement of the 
method (16).

There are four fundamental methodological 
steps for carrying out the confidence profile
method, namely:

• define problem precisely
• obtain all available evidence
• define the model parameters and their

relationships
• solve model (using one of a selection of 

given methods).

Later steps can give information requiring the
modification of earlier steps, so this process could
be considered as being iterative (15).

Hasselblad also claims that the method eliminates
the need for sensitivity analysis, saying:

‘Every parameter, if properly modelled, contains all
the information about biases and uncertainty. Thus
the final answer includes uncertainty about all of the
parameters in the model.’ (15)

A piece of software, which is available commercially,
called FAST*PRO (17) has been developed to carry
out the confidence profile analysis.

This is the briefest of overviews of this method,
which is complex. It is well documented, with a
whole book describing the methodology (12), 
and various papers describing its use also
(11,16,18).

2 For more information on posterior distributions see chapter 13.
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Cross-design synthesis 
(see also page 103)
Introduction
The initial work on cross-design synthesis was
carried out by the Program Evaluation and
Methodology Division of the US General Account-
ing Office (GAO) (19). Their idea was to create
methodology for a new form of meta-analysis that
aims at capturing the strengths of multiple-study
designs while minimising their weaknesses. Its
purpose is to provide better answers to difficult
research questions (20), and, ‘relates to improving
cost-effectiveness of health services, against a
backdrop of concern about perceived spiralling
health care expenditure.’ (21)

Technical issue arises from the difficulties of
applying results of RCTs to clinical practice, e.g.
patients seldom conform to the characteristics of
participants in RCTs. Meta-analysis can make it
harder to move from judging whether a treatment
is, in principle, efficacious, to deciding how to
manage a particular patient, and subgroup analyses
of (individual) RCTs lead to post-hoc verdicts of
questionable reliability (21). However, observ-
ational data cannot provide definite answers to
questions about therapeutic effectiveness (22).

Droitcour et al. (20) state that definitive answers
about the effects of various treatments in medical
practice can be provided only by a body of research
that meets two key criteria: (a) scientific rigor in
comparing treatment outcomes and (b) generalis-
ability to the conditions of medical practice.
Randomised controlled trials are designed to pro-
vide unbiased comparisons of outcomes following
treatment, but often fall short of meeting the
generalisability criterion. Conversely, statistical
analyses of databases are uniquely suited to cover-
ing outcomes across the full range of patients, but
they rarely provide convincing evidence of un-
biased comparison (20). Thus, most RCTs and most
database analyses probably fail to meet at least one
of the two criteria for providing valid answers to
questions about a treatment’s effect in medical
practice. However, if the strengths of complement-
ary study designs can be combined both criteria
can be met; this was the initial motivation for 
cross-design synthesis. It is interesting to note that
Droitcour et al. (19) comment that although their
work reviews methods for assessing, adjusting, and

combining study results, its greatest emphasis is
placed on methods for assessing study weaknesses.

Methodology3

Droitcour et al. (20) acknowledge the previous
work of Rubin (23) (see pages 214–15) and Eddy 
(11,12,16,18) (see page 202), who separately
explored ways of synthesising results from studies
with a diversity of designs. They say cross-design
synthesis builds on these directions but with two
key differences: 1) cross-design synthesis focuses on
combining results from studies with comple-
mentary designs; 2) cross-design synthesis uses a
two-pronged approach to study assessment. The
first prong consists of an overall quality assessment
of each study (see chapter 6). The second prong is 
a focused assessment of the potential biases that
derive from the primary weakness(es) inherent 
in a study’s design. This second prong is the 
heart of the strategy of cross-design synthesis; its
findings are used only to a) adjust the results of an
individual study, and b) identify each study’s most
appropriate contribution to a synthesis model.

As mentioned in the introduction, RCTs and
database analyses have complimentary strengths,
but one cannot assume that in combining their
study results, their strengths will be preserved while
their weaknesses counteract each other. For this
reason Droitcour et al. (20) devised the following
three stage strategy for minimising weaknesses of
study designs:

• Focused assessment of the study biases that may
derive from characteristic design weaknesses.

‘In-depth and relatively narrow assessments of key
biases are conducted in addition to general assess-
ments of quality that are more common in meta-
analysis ........ The purpose of focused assessments is
not to eliminate studies of overall low quality from the
synthesis (or otherwise to disregard their results) but
rather to provide the information needed to
compensate for specific weaknesses.’ (20)4

• Individual adjustment of each study’s results to
‘correct for’ identified biases

‘Cross-design synthesis advocates standardising each
RCT’s results to relevant patient population distri-
butions. For example, patient age-sex distributions
from a medical-practice database could be used to
correct RCT results for over- or underrepresentation
of certain age-sex groups. Similarly, our strategy calls 

3 The methodology for cross-design synthesis is presented here in a conceptual way. For explicit details the reader is
recommended the original report (19).
4 See (19) for explicit details of how to go about these assessments.
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for each treatment effect that is estimated by a
database analysis to be adjusted upward or 
downward, as appropriate’ (20)5

• Development of a synthesis framework and 
an appropriate model for combining results
(within and across designs) in light of all
assessment information

Droitcour et al. (20) comment that despite
secondary adjustments, there is a possibility that 
the weaknesses of each design may continue to 
bias study results. This may be because some
patient groups may have been totally excluded
from randomised studies, which is a problem 
that cannot be fixed by standardising individual 
studies’ results to correct for over- or under-
representation. Similarly, focused assessment 
of a database analysis may not detect every
imbalance in the comparison groups.

The solution put forward to this problem is to
devise a framework for organising, analysing, and
combining results from different categories of
study designs.6 This framework: a) stratifies the
observed effects of treatment on both study design
and population coverage, and b) fine-tunes the
population coverage strata (so that the results for
randomised studies and database analyses can be
compared for matched patient groups).7

Once this has been done, the investigator must
decide whether to: a) present results from each
stratum separately; b) present only estimates from
certain strata (e.g. strata that contain only those
studies deemed to be of high quality); or c)
combine estimates across strata using adaptations
of the various methods of meta-analysis.

Discussion
Droitcour et al. (20) point out three major
strengths of cross-design synthesis: 1) it can draw
upon different kinds of studies that, in combi-
nation, can tell more about how medical treat-
ments work than any single type of study can; 2) 
it can be applied to existing results in several areas
because diverse study designs are increasingly 

being used to evaluate treatment effectiveness; 
3) it has the ability to produce the generalisable
information needed to support credible medical
practice guidelines.

A limitation, the authors point out, is the necessity
of relying on investigator judgement for many
decisions. Until refinements of this strategy are
developed, GAO believes it is best applied by those
knowledgeable about both a specific medical
treatment and evaluation methods in general (24).

An anonymous editorial in the Lancet was cautious
about this new methodology, arguing:

‘The risk with cross design synthesis is that the more
expensive, time-consuming, and reliable component –
RCTs – will increasingly be replaced by database
analyses.’ (21) 

Chelimsky et al. (24) disagreed with this,
commenting that RCTs were a necessary 
part of cross-design synthesis.

Further developments in 
cross-design synthesis
The original methodology proposed for cross-
design synthesis, by Droitcour et al. (19,20) dealt
with combining RCTs and database analyses. The
spirit of this new methodology was not to limit the
inclusion to just these two specific types of study,
but to incorporate a broader range of designs.
Indeed, Droitcour et al. (20) conclude their 
paper by commenting that studies such as those
using a case–control design could provide 
relevant information.

Abrams and Jones (25) comment that although
RCTs may be the ‘gold standard’ against which 
the value of evidence from other types of study 
is judged, in some clinical areas, such as surgery
and reproductive medicine, it can be difficult to
perform RCTs, for ethical and other reasons. In
other areas, such as cancer, the participation rate 
of patients in RCTs is low and hence the generalis-
ability of the results obtained in them is somewhat
limited. Furthermore, changes of resourcing in 

5 This adjustment may be performed using either secondary analysis (and primary adjustment procedures) or the sort
of adjustment procedure described by Eddy and colleagues (12). This latter approach suggests that the investigator
specify ‘a ratio for the outcome parameter that applies to individuals in the treated group compared with individuals 
in the control group, in the absence of intervention’.
6 Although this general approach has its roots in meta-analysis, the framework derives directly from the work of 
Hlatky (1).
7 See GAO (19) for specific details of methodology, including ways of projecting results to patients not covered in 
RCTs. Projecting results to patients not covered by RCTs is consistent with the approach to meta-analysis advocated 
by Rubin (31) (see chapter 28).
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the NHS are being cited as making it increasingly
difficult to organise and perform RCTs. If the 
ideal RCT could be conducted, there would be no
need for subjective interpretations or for systemic
methods of supplementing RCT results (24);
however, in these, and other, situations evidence
from studies other than RCTs is valuable. The
factors motivated the methodology below.

Smith et al. (26) have developed a model to 
include studies with disparate designs into a single
synthesis. The authors point out that whilst it may
be appropriate to consider randomised studies
alone when assessing the efficacy of an inter-
vention, when considering the effectiveness of such
an intervention within a more general population
evidence from non-randomised studies should be
considered as well. They also point out that in
certain situations the randomised evidence may be
less than adequate due to economic, organisational
or ethical considerations. Although this work
follows in the spirit of Droitcour et al. (19), the
methodology used is somewhat different and more
specific/operational than that of Droitcour et al. 
A Bayesian hierarchical model approach is taken
(see chapter 13). The hierarchical nature of the
model specifically allows for the quantitative within
and between sources heterogeneity, whilst the
Bayesian approach can accommodate a priori
beliefs regarding qualitative differences between
the various sources of evidence.8 This model 
can be viewed as an extension of the standard
random effects model of chapter 10, but with an
extra level of variation to allow for variability in
effect sizes between different sources. The 
method is illustrated in the context of screening 
for breast cancer, where evidence is available 
from both RCTs and non-randomised studies.
Figure 6 [reproduced from (25)] outlines the 
three parameter levels: i) the overall population
effect of screening µ, ii) type-of-study parameters 
θi (i = 1, 2, 3, where i = 1 denotes the effect
associated with randomised studies, ... and 
so on), and iii) ϕji (i = 1, 2, 3, j = 1, ..., ni) 
study-specific parameters, there being 
n1 RCTs.9,10

The authors point out an issue that remains un-
resolved, namely whether evidence from randomised
and non-randomised studies is to be treated in an
equal manner; they conclude this will often depend
on the situation under consideration. However, using
the Bayesian approach, beliefs about the relative
merits of individual studies or types of study can be
incorporated in the model. For example, beliefs
about the relative value of RCTs, cohort-study and
case–control study results may be modelled explicitly
and the dependence of the conclusions of the review
on these beliefs investigated (25).

Glasziou and Irwig model
In a similar vein to this work, Glasziou and Irwig
(27) consider generalising randomised trial results
using additional trial information.

They consider the following equation:

Net benefit = (risk level × risk reduction) – harm

This model suggests potential benefit increases with
risk, but that harm will remain relatively fixed. Thus
at low levels of risk, the benefits will not outweigh
the harm and we should refrain from intervening,
but at higher levels the benefit will outweigh the
harm. Completing the above equation for popu-
lation subgroups generally requires several sources
of data. The authors suggest that the estimate of
RRR should come from (a meta-analysis of) random-
ised trials, the adverse event rates may come from
both randomised trials and other epidemiological
studies; risk level will usually come from multivariate
risk equations derived from large cohort studies.11

8 Prior distributions may represent subjective beliefs elicited from experts, or they might represent other data-based
evidence, which though pertinent to the issue in question is not of a form that can be directly incorporated, e.g. data
from animal experiments (32).
9 The paper gives code for the Bayesian analysis package BUGS (33) to carry out this type of analysis, extensions
including incorporating prior constraints, prior beliefs, and covariates is also included.
10 Abrams and Jones (34) point out that parameter estimate for a model of this type can be obtained from several other
methods including, GLS, Bayesian methods, classical multilevel models (35), or confidence profiling methods (12).
However, GLS and EB methods have been shown to fail to take into account fully all the uncertainty in the model (36,37).
11 This work, to the authors’ best knowledge is currently only available in abstract form, hence the short account.
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Application of generalised
synthesis of evidence
Tweedie and Mengersen (28) investigate the
relationship between lung cancer and passive
smoking. Previously, two approaches had been
taken for investigating this: 1) the biochemical
approach, using cotinine in the main as a marker;
and 2) the epidemiological approach. The paper
uses both sorts of studies in one meta-analysis. 
The authors comment on using the now-standard
‘Wald adjustment’ (29) for differential misclass-
ification; this estimates the effect of differential 
bias introduced by the misclassification of smokers
and non-smokers. The motivation for this is
adjustment is ‘because smokers tend to marry
smokers, if a study contains subjects who are
assessed as non-smokers when they are not, they 
are more likely to be assessed as exposed to ETS:
and thus the estimate of relative risk of exposure 
to ETS will be exaggerated, due to the association
of lung cancer with active smoking for this group 
of ‘deceivers’’ (28).

Further research

Many of the issues in the further work section 
of chapter 13 will be relevant here also. 
In addition:

• Guidelines on when it is appropriate to 
include studies with designs other than RCTs
into a meta-analysis.

• When using multi-level/hierarchical models,
establishing when variance estimates of
parameters (at the different levels) are
(reasonably) reliable. This is particularly 
relevant when there are a small number of
sources of evidence.

• As with Bayesian methods generally, the
inclusion of subjective beliefs regarding the
credibility of the different sources of evidence
require careful elicitation, and further work 
is required in this area.

• Development of systematic approaches 
to quality assessments of non-RCTs, and 
their use in meta-analysis and cross-design
synthesis.

• Further experience is required as regards 
the practical implementation and use of 
these methods. Sharing of experience in 
the use of cross-design synthesis approaches 
for the combination of data from studies 
with differing designs through a workshop 
of researchers active in the field, would 
be desirable.

Summary

Methodology is becoming available for combining
studies of different designs. Many of the tech-
niques utilise modern statistical models, including
Bayesian methods, and hence many of the methods
are extensions of those of chapter 13. Their imple-
mentation is, however, facilitated by recent
advances in computer software. When such 
analyses are appropriate, is still open to debate, 
as there is concern that including studies with
poorer designs will weaken the analysis, though this
issue is partially addressed by conducting sensitivity
analyses under various credibility assumptions.
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Subgroup analysis
Two different types of subgroup analysis are
possible in a meta-analysis. One can investigate
subsets of studies. Studies being pooled may differ
with respect to treatments applied, control groups,
patient eligibility, quality control, study conduct,
and follow-up maturity (1). See pages 45–60 for
further discussion of this procedure.

Alternatively, one can consider subsets of patients
within the studies being pooled. Put formally, this
type of subgroup analysis can be defined as ‘the
investigation of the influence of factors other than
treatment factors on the response variables or
treatment effects in clinical trials’ (2).

This procedure is commonly carried out on 
single RCTs, but is also sometimes possible in 
a meta-analysis.

Yusuf et al. comment:

‘When reasonably uniform data are pooled from 
many studies, the statistical power to detect a
subgroup effect may be high enough to establish 
the likely existence of differential subgroup effects
when the individual trials did not ....... Conversely, 
the pooled data from many trials may refute the 
claim of a subgroup effect from a single trial.’ (3)

When conducting subgroup analyses within a 
meta-analysis, Yusuf et al. (3) comment that clear
definitions of the subgroups are essential. For
example, subgroups defined by a specific ejection
fraction for all trials, say 35%, are preferable 
to vague categorisations of patients, say ‘high 
risk,’ the definition of which may vary greatly
between trials.

Gelber and Goldhirsch (1) discuss subset analysis
and observe that meta-analysis leads to larger
subsets than analysis of individual trials. They do
comment however that one does need to be wary 
of misclassification, dilution and bias.

Counsell et al. (4) carried out an experiment 
to determine whether inappropriate subgroup
analysis together with chance could change 
the conclusion of a systematic review of several
randomised trials of an ineffective treatment. 

Trials were simulated by throwing fair dice and
recording outcomes which were either death or
survival. Publication bias was also simulated. 
The results showed that analysis of subsets to 
be misleading, with chance influencing the
outcomes of clinical trials and systematic 
reviews of trials much more than many 
investigators realise.

Oxman et al. (5) state that the extent to which a
clinician should believe and act on the results of
subgroup analyses of data from randomised trials
or meta-analyses is controversial. Their paper
provides guidelines for making these decisions –
these are reproduced below:

• Is the magnitude of the difference clinically
important?

• Was the difference statistically significant?
• Did the hypothesis precede rather than follow

the analysis?
• Was the subgroup analysis one of a small number

of hypotheses tested?
• Was the difference suggested by comparisons

within rather than between studies?
• Was the difference consistent across studies?
• Is there indirect evidence that supports the

hypothesised difference?

Sensitivity analysis

As the Cochrane Handbook states, sensitivity
analysis:

‘provides reviewers with an approach to testing how
robust the results of the review are, relative to key
decisions and assumptions that were made in the
process of conducting a review. Each reviewer must
identify the key decisions and assumptions that are
open to question, and might conceivably have affected
the results, for a particular review.’ [(6), p. 83]

It has been argued that sensitivity analysis should 
in fact permeate all stages of a meta-analysis (7).
Indeed, many sections of this report have
commented on the use of methods as a form 
of sensitivity analysis.

The Handbook also provides a list of factors one
may want to investigate. These are:

Chapter 27

Special issues and problems in meta-analysis
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• changing the inclusion criteria (including the
types of participants, interventions and outcome
measures, and methodological cut-points)

• including or excluding studies where there is
some ambiguity as to whether they meet the
inclusion criteria

• excluding unpublished studies
• excluding studies of lower methodological

quality. Additionally, Blair et al. (7) suggest using
quality scores (see chapter 6) to determine the
effect of confounders on outcomes (in
epidemiological studies)

• reanalysing the data using a reasonable range
results (say the upper and lower limits) for
studies where there may be some uncertainty
about the results (e.g. because of inconsistencies
in how the results are reported that cannot be
resolved by contacting the investigators or
because of differences in how outcomes are
defined or measured)

• reanalysing the data imputing a reasonable
range of values for missing data

• reanalysing the data using different statistical
approaches (e.g. using both fixed and random
effects models).

Additionally, simulations of extra trials can be
carried out to assess the robustness of the results.
These may be particularly useful if one knows of
trials currently underway, and one could assess how
a range of likely outcomes of these trials would
effect the conclusions of a meta-analysis.

Graphical displays used in 
sensitivity analysis
Thompson (8) considers the impact of the choice
of statistical methods in more detail. He explains
that a random effects analysis can be viewed as
simply changing the percentage of weight allocated
to each trial, as compared to the fixed effect
analysis. He takes the sensitivity analysis further
than just doing fixed and random effects analyses
to determining the pooled OR as a function of the
between study variance. Hence, a value of zero for
the between study variance corresponds to a fixed
effects analysis; in a particular example 0.023 (see
original paper), a random effects analysis; and
infinity would give the studies equal weighting.
Thompson constructs a graph of the pooled OR
over this range of values for the between study
variance, to see how sensitive it is (see original
paper for graph).

The reliability of meta-analysis
Cappelleri et al. (9) compare the results of meta-
analyses of small trials with those of large trials.1

The motivation for doing this came after the
disagreement between existing trial results and 
the findings of a mega-trial for the treatment of
AMI with intravenous magnesium. The authors
pose the questions: How well do large and smaller
studies agree in their results? How frequent are 
the significant disagreements? Why do these
disagreements occur? Are the disagreements
clinically important?

Chalmers et al. (10) and Villar et al. (11) also
investigate how well the results of a meta-analysis of
smaller randomised trials predicted the results of a
large ‘gold standard’ trial. Villar et al. (11) looked
at 30 meta-analyses in perinatal medicine, covering
185 RCTs and compared the results of the meta-
analyses, with largest study removed, to the results
of the largest study alone. They found 24 correctly
predicted the direction of the treatment effect, but
only 18 of the 30 both showed an effect in the same
in direction of treatment effect as the largest trial
and were statistically significant.

Cappelleri et al. conclude that the results of meta-
analyses of smaller trials are usually compatible with
the results of larger trials:

‘clear-cut discrepancies do occur and their frequency
is more substantial when the results are analysed
without considering the variability of treatment effect
among different smaller trials (i.e. with a fixed effects
model2) ....... Potential explanations for most of the
genuine disagreements may be identified in control
rate differences, specific protocol or study differences,
and publication bias, as well as methodological factors
such as the quality of primary studies. Clinically
important disagreements without identifiable
explanations are uncommon.’ (9)

They do warn, however, that their investigation is
retrospective and not designed to decide whether 
a meta-analysis of smaller trials is sufficient or a
mega-trial is warranted in general.

Effect of early stopping rules in
clinical trials on meta-analysis
Hughes et al. (12) investigate the effect early
stopping rules for clinical trials have on the

1 A large trial was defined (and analysed) in two ways by its size and by its power.
2 When a random effects model was used the disagreement between large and smaller studies was halved (i.e. by taking
the heterogeneity into consideration).
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heterogeneity and estimation in a meta-analysis.
They conclude that for any overview of reasonable
size, the estimate of effect is approximately
unbiased. This is because it is the trials with
extreme results which stop early, and hence have
less precise estimates of effect. Therefore, they
carry much less weight in the analysis than those
with more representative results because these
continue longer and achieve greater precision.

They do, however, conclude:

‘When undertaking or interpreting overviews, one
should ascertain whether stopping rules have been
used (either formally or informally) and should
consider whether their use might account for any
heterogeneity found.’ (12)

Green et al. (13) also investigate the effect of 
early stopping rules on overviews of clinical trials.
As well as investing three different stopping rule
methods, they also considered the effect of the
inappropriate use of early stopping rules,
specifically when no significance level adjustments
have been made, to take into account multiple
testing. The authors report that the bias induced 
by this latter mechanism would inflate the effect 
of the new treatment in overview results, in a
similar way to that induced by publication bias 
(see chapter 16). They conclude that combining
results greatly diminishes the effect of inappro-
priate multiple testing on level; additional follow-
up dilutes this effect even more, so that this error
should be of limited concern.

It is interesting to note that in the discussion 
of this paper (13), Peto comments that when a
therapy is new and the early results of trials are
combined, the effect will be greater. He suggests
that perhaps, overviews very early on of enthusiastic
trials, are not appropriate.

Using multiple comparisons 
to detect non-exchangeability
across studies
The National Research Council report [(14), 
p. 149] discusses the use of multiple comparisons
in meta-analysis. The authors comment that the 
Q test (pages 39–40) is an omnibus test and hence
does not point out which studies/outcomes con-
tribute to the heterogeneity. Multiple comparisons
can be useful; explicitly they ‘can be exploited 
as a screening device to find studies that cluster
together, thereby helping the analyst to decide
which studies, if any, may profitably be pooled’.
(14)

The report outlines classical, empirical, and full
Bayes approaches to multiple comparisons. To the
authors’ knowledge, these procedures have never
been used in health services research.

Further research

The National Research Council report (14)
highlights several research opportunities on 
the topic of multiple comparisons. Concerning
Bayesian methods, they state further work on 
the elicitation of prior distributions in the 
context of multiple means is needed. (For further
information on prior elicitation see chapter 13.)
For the classical approach, three sets of research
opportunities have been identified: 1) graphical
representation of all-pairwise comparisons, 2)
multiple comparisons in the general linear 
model, 3) multiple comparisons when the 
variances are unequal. [Further details of 
all these are given in (14), p. 156.]

The reason one carries out a meta-analysis is to
inform current clinical practice. How to use the
results of a meta-analysis to treat individual patients
is an important topic (15). Increased dissemination
of how this is done through workshops and other
means would be beneficial.
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Prospective meta-analysis
Margitic et al. (1) discuss a new approach to meta-
analysis which they call prospective meta-analysis.
They comment on potential disadvantages with
standard (retrospective) meta-analysis, namely:
possibility of biases (selection, trial-related,
publication), trial heterogeneity (non-concurrent,
different protocols and data, varying outcomes, and
data quality), and incomplete access to the
databases of the individual trials comprising a
particular meta-analysis. Margitic et al. state:

‘By combining elements of a multicenter clinical trial
with specific features of a retrospective meta-analysis,
the prospective meta-analysis reduces a number of the
disadvantages inherent in a retrospective study. It is a
compilation of common data collected prospectively
from trials testing related interventions.’ (1)

Prospective meta-analysis gives the 
following benefits:

• Selection and publication biases are minimised.
• A complete, pooled database is obtained with

more consistent quality data across sites.
• Allows pre-trial statement of objectives, defi-

nition of the population of interest, and a priori
hypothesis testing.

The paper suggests procedural methodology that
may be useful when planning and conducting a
prospective meta-analysis. Some of the key points
were summarised by Probstfield and Applegate (2);
these are set out below. Much fuller details are
given in the original paper (1).

• Establish collaboration while the trials are 
being designed.

• Develop a detailed protocol and standardises
staff training.

• Standardise collection of some key common data.
• Establish external study oversight by an 

unbiased group.
• Establish clear publication procedures 

and priorities.

Friedenreich (3) discusses prospective meta-analysis
designs for epidemiological studies, and states that
by planning data pooling during the design phase,
combined analyses are easier to conduct, since the
studies being combined will have similar designs
and standardised methods. This approach has
already been used by the International Agency for
Research on Cancer for a number of cohort and
case–control studies.

A prospectively planned cumulative
meta-analysis applied to a series of
concurrent clinical trials
Whitehead (4) combines the methodology of
sequential designs (specifically the triangular test),
and that for combining studies. This methodology
was developed in the context of a series of studies,
following broadly similar protocols, each com-
paring the same form of new treatment with a
control treatment.

‘For example, in the evaluation of a drug for the
prevention of a serious side-effect resulting from
chemotherapy given to cancer patients, different
studies may deal with cancers at different sites.
However, the primary efficacy variable, which is the
occurrence or not of the specific side-effect, is the
same in all studies1 ....... In such cases, individual 
fixed sample size studies may be designed for the
primary efficacy variable, but the safety variable 
would be analysed according to a sequential design
with stopping boundaries. Significant evidence
demonstrating that the new treatment was 
harmful could then lead to the stopping of 
all the studies.’ (4)

The author goes on to comment that one may 
wish to treat the design as a multicentre trial, or
stratified study, rather than planning each trial 
with enough power to detect, say, side-effects indi-
vidually. One would want to know as quickly as
possible if there was a difference (i.e. there was a
side-effect), so a sequential design would be
suitable. If a fixed effects model is used in this
situation, no new methodology is necessary,
however, new methodology is needed if random
effects are included in the analysis.

Chapter 28

New developments and extensions 
in meta-analysis

1 Two other practical situations where this methodology could be used are given in the paper (4).
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The paper focuses on the sequential design 
and analysis used for the cumulative meta-
analysis. See original paper (4) for the
methodology details.

Meta-analysis using surrogate
markers
Very little literature exists on this. However, the
little that does exist contributes substantially to the
meta-analysis methodology applicable to HTA, and
thus is outlined here.

Definition of a surrogate endpoint
A surrogate marker can be used in the place of 
the real outcome, when this is difficult to measure
(5). An example would be use of CD4 count as a
marker for time until the onset of AIDS in a human
immunodeficiency virus (HIV) trial (6), allowing
the evaluation of an intervention to be done in a
much shorter space of time.

A’Hern et al. (7) investigated the relationship
between response rate and median survival in
advanced breast cancer. The authors used the
results of RCTs and investigated the association
between the OR that summarised the difference 
in response rates in pairs of arms within the 
same study and the corresponding ratio of 
median survivals.

Several limitations of the method they used for
doing this have been highlighted. Daniels and
Hughes (6) comment that although the precision
in estimating the treatment difference on the
clinical outcome is allowed for, the method did 
not take into account the level of precision in
estimating the treatment difference on the
response variable. Torri et al. (8) also made 
the same criticism of the method.

This problem is addressed independently in the
two approaches below, by Torri et al. (8) and
Daniels and Hughes (6).

Model of Torri et al.
Torri et al. (8) present a method to determine the
relationship of anti-tumour response and survival
in patients with advanced ovarian cancer treated
with chemotherapy. Firstly, a correlation coefficient
(Kendall’s tau) was calculated for this relationship
for each study using values for median response.
These were then combined using standard

methods (see pages 112–13 combining correlation
coefficients; this is not Person’s, however). A
secondary analysis was also performed to quantify
the relationship between the magnitude of a
treatment effect on median survival and its effect
on response rate. The model incorporates between
and within study sources of variability in the
estimates of response and survival. See paper 
for details of the new model used.

Evaluating potential surrogate markers
using meta-analysis
The aim of Daniels and Hughes work (6) is slightly
different. They present a method to model the
association between the treatment difference on a
potential surrogate marker and the treatment
difference on the clinical outcome of interest.
Then, this model is used to determine the surro-
gate’s reliability for predicting the treatment
difference on clinical outcome given an observed
difference on the surrogate marker. The approach
taken to modelling is a Bayesian one, and this
model is a development of that of DuMouchel 
(9), used for more traditional meta-analysis
applications (see chapter 13).2

This model is applied to the example given in the
definition section for HIV, using CD4 count as a
surrogate for the time to AIDS onset. It is very
interesting to note that the 15 trials included used
different interventions. This is permissible, since
treatment effect is not of interest here, it is the
relationship between CD4 and AIDS onset which is
under investigation. Several of the trials had three
and four arms which could all be incorporated in
the model.

Estimating and extrapolating 
a response surface – a new
approach to meta-analysis
In 1990 Rubin presented a new perspective for
meta-analysis that was deliberately provocative (10).
The crux of this method is that it aims to estimate
the effect of an ideal study, rather than to calculate
average effects over the studies being combined.
He questioned the aims of a meta-analysis, stating
there are two kinds: those for literature synthesis
and those for understanding the underlying
science. He believed that at the time the current
view was to carry out literature synthesis, with the
aim being of summarising all existing studies by
their average population effect.

2 For the mathematical description of the model see (6).
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Presented in the chapter is a contrasting view 
which is called ‘building and extrapolating a
response surface’. Details of the model are not
given, just a conceptual framework which is
summarised below:

Let Y denote the outcome variable(s). Let there be
two treatments: experimental (E) versus control
(C). The variable to be estimated is the effect of E
versus C on Y. Let (X, Z ) define factors describing
studies that might be used to estimate the effect 
of E versus C on Y.

Two different factors are defined: Xs consists of
scientific factors (e.g. the gender of subjects, the
age of subjects etc.); Z s are scientifically uninter-
esting design variables (e.g. the sample sizes of the
studies and the type of controls being used).3

Thus, the response surface of interest is the effect
of treatment E versus C on Y as a function of the
two kinds of factors, X and Z. This is a whole
surface that expresses the typical treatment effect
as a function of scientific factors and design factors
such as we conceptualise them. From this model,
the effect of E versus C on Y needs estimating when
Z is Z 0, where Z 0 indicates values of the design
variables for a perfect study. Hence, the ideal
answer is a whole function of the scientific factors,
with design factors fixed at perfect studies.

Rubin emphasises the distinction between this
approach and that is normally taken (10), namely
that in his new perspective answers are conditional
on those factors that describe the science, X, and
an ideal study Z = Z 0:

‘In contrast, the current view ....... pursues averages 
of this response surface, average answers over the
values of the scientific factors the designs that 
current investigators have, for some reason, chose 
to use.’ (10)4

Recently, Vanhonacker (11) presented an
implementation of Rubin’s conceptual idea and
derived a least squares approach to meta-analysis
response surface extrapolation. The paper, in fact,
has three goals: 1) to bring conceptual clarity to
what is being estimated in meta-analysis models; 2)
to refocus attention on what is of scientific interest
and how meta-analysis can help in our understand-
ing of a modelled phenomenon; 3) to provide an

unbiased response-surface-extrapolation estimator
of the effects of intrinsic scientific value.

The model derived (see paper for details) is
applied to an empirical illustration investigating
the question how advertising affects product sales
using 128 primary studies.

Combining meta-analysis and
decision analysis
The vast majority of the time a meta-analysis is
performed and the results reported. Others are left
to assess its implications for effecting changes in
medical practice. However, the study below
incorporates the treatment effect estimates,
provided by a meta-analysis, into a decision 
model assessing when the treatment should 
be used.

Midgette et al. (12) present a combined meta-
analysis and decision analysis of the effects of
infarct location, and of likelihood of infarction.
They assess the effectiveness of IVSK on short-
term survival after suspected AMI. Since the
diagnosis of AMI is sometimes uncertain, this 
needs taking into account in the model. Using 
a meta-analysis of the effects of IVSK on short-
term mortality in patients with different locations
of infarction a simple decision tree was developed
to compare IVSK with conservative treatment 
for AMI. Short-term mortality, costs, and 
marginal cost-effectiveness ratios as a ratio 
of additional dollars per additional live saved 
were all predicted.5

Meta-analysis of single 
case research
A substantial number of papers have been written
on the subject of meta-analysis of studies with single
case designs (13–18) (and this list, we suspect, is
not exhaustive). Single case designs are often used
in psychotherapy, but their use in assessing health
technologies is somewhat rarer. There is consider-
able debate in the literature over appropriate
measures of effect size. As well as effect differences,
percentage non-overlapping data and other more
complex measures have been used as outcome

3 Rubin notes that the dichotomy between X and Z is vague. There are certain factors that sometimes would be design
factors and other times would be more usefully thought of as factors of scientific interest.
4 The chapter gives detailed notes on the advantages of this method over the normal approach.
5 See paper for details of methodology, results and discussion.
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variables. For a good review and introduction 
to the area see Allison and Gorman (13).

Best evidence synthesis: an
alternative to meta-analysis
Slavin has proposed an alternative method to 
meta-analysis for synthesising results in a particular
field (19,20). He calls this method best evidence
synthesis, and claims it combines the strengths 
of meta-analytic and traditional reviews.

Put simply, this method does not combine all the
studies carried out, but considers only the best of
them and only combines those. Criteria for ‘best’
would be defined a priori. This is linked with a 
more formal discussion of the studies/results.
Slavin states:

‘In a meta-analysis, the presentation of the ‘results’ is
essentially the end point of the review. In a best-
evidence synthesis, the table of study characteristics
and effects sizes and the results of any pooling are
simply a point of departure for an intelligent, critical
examination of the literature.’

‘Best-evidence synthesis incorporates the
quantification and systematic literature search
methods of meta-analysis with the detailed analysis 
of critical issues and study characteristics of the 
best traditional reviews in an attempt to provide 
a thorough and unbiased means of synthesising
research and providing clear and useful 
conclusions.’ (20)

He criticises meta-analysis for the potential for
serious errors, and states that in a meta-analysis 
the reader has no way of forming his or her own
opinion as it is rare that they describe even one
study in any detail. He also comments that biases 
in the primary research are too often reflected in
the meta-analysis. In addition, Slavin states:

‘Meta-analysis was developed to replace the artistic
narrative review with a scientific and systematic
method. Yet in fear of allowing bias to creep in, 
meta-analysis is typically mechanistic, driven more 
by concerns about reliability and replicability than
about adding understanding of phenomena of
interest.’ (20)

As a result of these misgivings, he proposed 
‘best-evidence synthesis6’ as an alternative to 
meta-analysis (19), to incorporate many of the
important contributions of meta-analysis, but also

to retain many of the features of intelligent and
insightful narrative reviews.

Letzel (21) discusses in detail the uses and
differences between best-evidence synthesis and
meta-analysis.

Further research

Meinert (22) calls for the need for methodology 
to control the timing of when a meta-analysis, 
in a given field, is performed.
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Meta-analysis for estimation 
of admixture component in
genetic epidemiology

Li (1) presents a multiplicative1 random effects
model for meta-analysis. This is in contrast with the
additive models used in this report to combine treat-
ment differences (see chapter 10). A requirement
for a multiplicative model stems from estimation of
the admixture component in human genetics, used
in genetic epidemiology and DNA fingerprinting.
This is the motivating example for this model. A
random effects multiplicative model is proposed for
estimation of the admixture component by combin-
ing unique allele frequencies from several loci.

Paper (1) gives a description of the model which
uses the EM algorithm to find MLEs under an 
EB framework.

Meta-analysis of animal
experiments
Freedman (2) describes the meta-analysis of animal
experiments designed to investigate the effects of
dietary fat intake upon mammary tumour develop-
ment. Logistic regression models (fixed effect) are
used to relate the mammary tumour incidence in
different groups of rodents to their dietary intake.
An experiment ‘effect’ is included to ensure that
estimated nutrient effects are based only upon
within-experiment comparisons. Freedman notes
that the nutrient effects may not be estimable from
each individual experiment, but only from combi-
nations of experiments. (see also chapter 26 for a
model that incorporates single arm studies into 
a meta-analysis).

The author flags up that no ideal method for
testing for heterogeneity of effects is available for
this situation, and that if heterogeneity were found,
a random-effects version of their models would
need to be developed.

Meta-analysis in pharmacokinetics
Keller et al. (3) present a comparison of the
statistical methods for meta-analysis to standardise
the different results of studies in pharmacokinetics
using an example based on renal insufficiency data.
Four methods are compared:

• Method 1: A number of linear regression
equations are incorporated into a single
regression function by a Z-transformation 
[see also Hedges and Olkin (4) for details];

• Method 2: The standardised correlation
coefficient (R) from k different linear regression
equations and correlation coefficients (r) can be
calculated with an ML method [see also Hedges
and Olkin (4) for details];

• Method 3: The weighted arithmetic mean value
can be determined from the extreme values 
[see (3) for details];

• Method 4: Using a non-parametric method,
regression data can be assessed together with
published extreme values [see (3) for details].

In this particular example, method 4 was the most
reliable. The authors go on to state:

‘A new method is needed with which the
pharmacokinetic changes in renal insufficiency
reported in published studies can be submitted to
meta-analysis and subsequently summarised in a
standardised database.’ (3)

Environmental risk studies

In recent decades, there has been mounting
interest in the threat of human disease resulting
from the exposure to man-made environmental
agents, and also from diet and personal habits such
as cigarette smoking (5). Several environmental
risk models are available, usually to estimate a
definition of safe dose. These include: standard
survival models, biologically motivated stochastic
models, and the two-event clonal expansion model.

Chapter 29

Unusual/developing areas of application 
in meta-analysis

1 For more on multiplicative models see Hedges and Olkin [(4), p. 315].
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These are reviewed in (5). Below is a very brief
discussion of the methodology used to combine
such information, followed by an example.

Combining environmental information
Cox et al. (6)2 report from a workshop investigating
the following data problems:

1. Combining environmental data from multiple
and diverse sources: statistical reporting on
environmental conditions and trends in
aquatic, terrestrial, and atmospheric settings,
and combining design-based ecological data
and observed data for environmental
assessment purposes.

2. Combining environmental epidemiological
studies for hazard identification and risk
assessment. Problems such as assessing 
risk of exposures to nitrogen dioxide using
Bayesian methods to model uncertainty in
effect estimation.

3. Forming environmental indicators and indexes,
including issues of aggregation, combined
mapping procedures, and multiple data 
source conformance.

Methodology for combining probability based 
and non-probability based monitoring data is
presented. Also, issues in combining spatially
referenced monitoring and assessment data are
discussed, as well as developing and combining
ecological indicators and indexes.

More immediately relevant is a section on com-
bining information in environmental epidemiology.
A discussion of combining p-values is presented
(see chapter 7), a method for combining p-values
where the samples are of material having multiple
(and correlated) toxic features is discussed [see
Mathew et al. (7) also for more information].

An example investigating the effect of efforts 
to reduce childhood exposure to lead is discussed.
Data were available from three cities; the 
authors report:

‘To estimate changes in blood levels during the
abatement period, and to incorporate site differences
encountered as each city addressed and implemented
its abatement strategy, city-specific structural equations
were modelled to account for different lead pathways
into the bloodstream.’ (6)

There were many problems with this analysis:

‘the complexity of the different models overwhelmed
any gains in sensitivity that data combination was able
to provide.’ (6)

Application of dose–response in non-cancer 
toxicity is also discussed. This combined cross-
sectional epidemiological cohort study data with
sub-chronic laboratory rodent toxicity data, and 
was implemented using the confidence profile
method (see page 202).

Stratified ordinal regression: a tool for
combining information from disparate
toxicological studies
Cox and Piegorsch discuss the development of
methodology for combining studies on acute
inhalation assessment:

‘This project involves combination of data from
studies of inhalation damage from various airborne
toxins in order to estimate human health risk. The
studies vary greatly in their endpoints: short- and long-
term exposures in laboratory animals, acute exposures
to humans in chemical and/or community accidents,
chronic exposure studies in urban areas, etc. ....... The
research goal is to develop methodology for data
combination that incorporates the range of endpoint
severity, exposure concentrations, and exposure
durations. Particular emphasis is directed at acute
exposures, since these are thought to be more
common than chronic, long-term exposures in many
human situations. The paradigm is based on severity
modelling, wherein concentration, duration, and
response are integrated to determine potential risks 
to humans after acute inhalation exposure to some
environmental toxin. The method groups the
response data into ranked severity categories, and
assumes that duration and concentration are
independent explanatory variables for predicting
response. This is essentially an ordinal regression,
using a logistic or another discrete-data regression
model for the concentration–duration response. From
the regression, one wishes to estimate the level at
which an exposed subject will respond with a small
probability, say 10%. This is the 10% effective dose, or
ED10, for which a lower bound is calculated, at say,
95% confidence. For risk assessment this lower bound
is the divided by an arbitrary “safety factor”.’ (6)

Details are given in the report (8) of the stratified,
random effects, ordinal logistic regression model
proposed, along with an illustrative example.

Hierarchical model applications in
benchmark dose analysis
Piegorsch and Cox (9) discuss methods for
establishing a benchmark dose through combining

2 This work has now been written up as a paper by Cox and Piegorsch (12); however, the content in some sections 
is different.
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information from different studies. They suggest 
a Bayesian hierarchical modelling approach may 
be suitable in some situations; however, classical
hierarchical models could also be used. Several
different applications are discussed (see paper 
for further details).

Combining parametised models
using forecasting examples from
AIDS research
The National Research Council report on
combining information presents an example of
synthesising results in a forecasting setting [(5), 
p. 165]. Their example is the problem of forecast-
ing the future size of the AIDS epidemic in the
United States (or world-wide). One approach to 
the problem put forward by Taylor (10) involves
formulating stochastic models that include two
components: the growth of the HIV infection
epidemic over time, and the distribution of 
lag-time from HIV infection to AIDS. Taylor
identified 21 plausible lag-time distributions and
five possible parametric models for the growth of
the HIV epidemic. This gives rise to (21 × 5) = 105
different possible forecasts. The problem thus
posed is:

‘It is natural to suppose that one can do better in
prediction and uncertainty assessment by combining
the information in these forecasts in some way, but
how is this to be done sensibly?’ (5)

Three possible solutions are put forward: sensitivity
analysis, weighted average of individual forecasts
and model mixing. Each of these is discussed in 
the report (5).

More recently, in a similar vein, Cooley et al. (11)
conducted a meta-analysis of estimates of the AIDS
incubation distribution. Information was combined
from 12 studies to estimate the distribution with
greater precision than is possible from a single
study. The modelling approach to the incubation
distribution was through a hazard function of
which the form was unknown for times in 
the future.
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Recommendations for systematic 
review practice by health 
service researchers
For the most part, recommendations to health
services researchers or health technology assessors
undertaking systematic reviews and meta-analyses
follow standard and widely agreed approaches to
these methods in other contexts. Greater latitude
in the nature of studies potentially eligible for
review – including non-randomised studies and 
the results of audit exercises, for example – may,
however, be appropriate. The key stages are 
(with extensions and/or less widely agreed 
aspects in parentheses):

1. Specification in a protocol of the objectives,
hypotheses (in both biological and healthcare
terms), scope, and methods of the systematic
review, before the study is undertaken.

2. Compilation of as comprehensive a set of
reports as possible of relevant primary studies,
having searched for all potentially relevant
data, clearly documenting all search methods
and sources.

3. Assessment of the methodological quality of 
the set of studies (the method being based on
the extent to which susceptibility to bias is mini-
mised, and the specific system used reported).
Any selection of studies on quality or other
criteria should be based on clearly stated 
a priori specifications. The reproducibility 
of the procedures in 2) and 3) should also 
be assessed.

4. Identification of a common set of definitions 
of outcome, explanatory and confounding
variables, which are, as far as possible,
compatible with those in each of the 
primary studies.

5. Extraction of estimates of outcome measures
and of study and subject characteristics in a
standardised way from primary study
documentation, with due checks on extractor
bias. Procedures should be explicit, unbiased
and reproducible.

6. Perform, where warranted by the scope and
characteristics of the data compiled, quantita-
tive synthesis of primary study results (meta-

analysis) using appropriate methods and
models (clearly stated), in order to explore 
and allow for all important sources of variation
(e.g. differences in study quality, participants,
in the dose, duration, or nature of the inter-
vention, or in the definitions and measurement
of outcomes). This will often involve the use of
mixed/hierarchical models, including fixed
covariates to explain some elements of
between-study variation, in combination 
with random effects terms.

7. Performance of a narrative or qualitative
summary, where data are too sparse, or of too
low quality, or too heterogeneous to proceed
with a statistical aggregation (meta-analysis). 
In such cases, the process of conduct and
reporting should still be rigorous and 
explicit.

8. Exploration of the robustness of the results 
of the systematic review to the choices and
assumptions made in all of the above stages. 
In particular, the following should be 
explained or explored:
– the impact of study quality/inclusion 

criteria;
– the likelihood and possible impact of

publication bias;
– the implications of the effect of different

model selection strategies, and exploration 
of a reasonable range of values for missing
data from studies with uncertain results.

9. Clear presentation of key aspects of all of the
above stages in the study report, in order to
enable critical appraisal and replication of 
the systematic review. These should include 
a table of key elements of each primary study.
Graphical displays can also assist interpretation
and should be included where appropriate. 
CIs around pooled point estimates should 
be reported.

10. Appraisal of methodological limitations of 
both the primary studies and the systematic
review. Any clinical or policy recommendations
should be practical and explicit, and make
clear the research evidence on which they are
based. Proposal of a future research agenda
should include clinical and methodological
requirements as appropriate.

Chapter 30

Summary, recommendations, and 
further research
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Summary of review findings
At the end of many of the chapters in this report
the main findings are summarised. For
convenience, these are compiled below.

Chapter 3 Procedural methodology
This section is not intended to be anything more
than a brief overview of the issues that are import-
ant when one is considering carrying out research
synthesis. It may help the researcher who is new to
the subject to get a feel for the discipline, and serve
as a springboard into later sections of this report as
many of the issues touched on here are expanded
in later sections.

Chapter 4 Searching the literature and
identifying primary studies
This section has concentrated on searching the
literature and identifying primary studies that
might potentially be included in a systematic review
or meta-analysis. The main point identified is that
there is no one single search strategy that would
provide adequate results, and that in performing
reviews researchers should maintain a healthy
degree of scepticism about any or all their searches.
However, a second key point is that all searches/
methods that are used should be sufficiently well
documented so that they may be replicated by
other researchers. This latter point is equally
important as regards study inclusion/exclusion.

Finally, changes are happening rapidly in terms of
electronic publishing and databases. Such changes
will undoubtedly have profound implications for
conducting systematic reviews in the future.

Chapter 6 Study quality
This chapter has considered both the assessment
and use of quality of scores in meta-analysis. Whilst
a number of methods have been proposed for
assessing study quality (of primary studies) in a
meta-analysis, no consensus appears to have
developed as to which method is most appropriate,
or indeed whether such an exercise is appropriate
at all. As far as the use to which such quality scores
can be put, a number of possibilities exist, but in
specific situations the meta-analyst should not be
totally reliant on any one method, in addition that
is to an unadjusted analysis.

Chapter 7 Simple methods for
combining studies
This chapter has considered principally two basic
methods for synthesising evidence; vote counting
and the combination of p-values. Whilst vote
counting is one of the simplest methods available, it

should only be used if absolutely necessary. By
contrast, although the combination of p-values does
convey some aspect of effect size, there are a
number of disadvantages to the use of such a
method. As a result, it should only be used with
caution, since it may mask some fundamental
differences in the studies.

Chapter 8 Heterogeneity
In conclusion, we are some way off agreeing 
upon the best strategy for dealing with hetero-
geneity. It seems essential to look for it and test 
for it and sensible to explore possible reasons 
for its presence. When a sizeable amount of
unexplained heterogeneity is still present after 
this, a judgement has to be made on whether it 
is appropriate to combine the results; if so with
what model; and what conclusions can be drawn
from it. Presently, these decisions require a large
degree of subjectivity on the part of the reviewer.
Whatever approach is used, ‘it is invalid to delete
from the set of studies to be meta-analysed those
whose results are in the ‘wrong direction,’ for the
opportunity for bias in identifying the ‘deviant’
studies is too great’ Fleiss (1).

Chapter 9 Fixed effects
This chapter has considered the so-called fixed
effect approach to meta-analysis. This assumes 
that all the studies in a meta-analysis are estimating
the same underlying unknown true intervention
effect. A variety of estimation methods have been
proposed for such models, whilst in many situations
they give qualitatively similar results, in some
circumstances differences can be serious. In terms
of binary data, problems with a number of methods
occur if there are zero events in any treatment arms
in any study. In such circumstances there has been
some empirical work reported on the various
methods advocated for overcoming this problem.
Meta-analysts should report precisely what methods
have been used in such circumstances.

Chapter 10 Random effects
At this present time, it would seem neither fixed nor
random effect models could be considered the ideal
analysis, beyond any dispute, for a given situation.
Indeed, it has been illustrated that both methods
have their shortcomings. As the point estimates of
effect size given by both methods are usually very
similar, the only time the choice of model will be
critical is if its significance is marginal using a 
fixed effect model. Here there is a chance that the
more conservative CI given by the random effects
approach would consider the effect to be non-
significant. It is interesting to note that Peto, one of
the strongest opponents of random effects models
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takes 3 standard deviations rather than 2 (1% not
5%) as his critical value when considering the
significance of a (fixed) effect in an overview,
considering 2 standard deviations to be not stringent
enough for the magnitude of the implications of an
overview. (‘.........we are messing around if we take
two standard deviations, two-and-a-half standard
deviations, as serious evidence. We get so much
nonsense mixed up in with the sense that it is just
irresponsible. I think we’ve got to get better
standards of evidence than we normally have, and
this means in the individual trials and in overviews. 
I think you need to go to at least three standard
deviations.’ (2) The point in mentioning this is 
that one of the world leaders in the field, although
conceptually at poles with the advocators for
random effects, through this more stringent cut-off
point is actually making an adjustment with practical
implications very similar to those inherent by the use
of a random effects model. While it would appear
that the conceptual debate over the correct model 
is some way off a conclusion, a practical line to take
may be to say: use whichever strategy (single analysis
or several) you yourself feel is most appropriate 
for the situation, but if there is evidence of hetero-
geneity (significant or not) and a fixed effect
analysis is the sole analysis carried out and the 
result is only marginally significant (5% level) then
extreme caution is needed when reporting and
interpreting the results. Another key point to
consider here relates to the clinical significance
rather than the statistical significance of the pooled
estimate obtained. One should be concerned about
estimates and their SEs, rather than p-values. It
should be pointed out that other models do exist for
meta-analysis, chapter 12 covers mixed models, and
chapter 13 Bayesian models. It is interesting that the
National Research Council (3) take the approach of
calling random (and fixed) effects models a special
case within a hierarchical model framework, of
which other models (such as mixed, cross-design
synthesis (chapter 26) are simply extensions.
Another point worthy of note is that when using 
a Bayesian approach, one does not necessarily 
have to choose between the two models (fixed 
and random), but rather we can average across
models using BFs (see chapter 13).

Chapter 11 Meta-regression
This chapter has extended the methods of chapter
9 (fixed effects) to take account of the fact that
there are often covariates at either the study-level
or patient level available, and that these can be
important in helping to explain any heterogeneity
present. Such an analysis should be seen as a
fundamental component of any meta-analysis, 
but as with any modelling exercise due care and

attention should be paid to the verification of any
assumption the models make. One of the potential
advantages of this approach is that estimates of the
relative benefits of treatments for patients with
different combinations of covariates can be
derived, or more information on the relative effect
of different forms of delivering the intervention.
This is the sort of data that is very relevant to
clinical practice, where overall average effects may
be too general to be useful for particular situations.

Chapter 12 Mixed models
This chapter has extended the methods of meta-
regression in chapter 11, to allow for the existence
of between study heterogeneity that cannot be
adequately modelled by fixed covariates in a meta-
regression model. The simplest models simply 
allow for a single random effect term, whilst more
complicated models can allow for different levels 
of between-study heterogeneity associated with
differing levels of a factor using a hierarchical
modelling framework.

Chapter 13 Bayesian methods in 
meta-analysis
This chapter has summarised the general use of
empirical and fully Bayesian methods with respect
to meta-analysis, and in particular a number of
specific areas in which there has been considerable
research over the last few years, and in which
Bayesian methods have a potential role to play.
Although currently much research is been put into
these methods, so far their use in practice is far
from routine. Distinct advantages of the Bayesian
approach include the ability to incorporate a priori
information which would otherwise be excluded in
a classical analysis. However, when such a priori
evidence is based on subjective beliefs, the issue of
whose prior beliefs to use is raised. Though many
of the computational difficulties that have plagued
the application of Bayesian methods in practice
have been partially solved by recent development 
in MCMC methods, these should not be seen as
‘black box’ methods since they raise issues
concerning convergence.

Chapter 14 Combining other measures
This chapter presents other scales commonly 
used when assessing outcomes in medical research.
One needs to be aware that scales other than ORs
and standardised mean differences exist and can 
be used to combine studies. Additionally, it is
important to note that since different studies may
report outcomes on different scales then it may be
necessary to transform a proportion of them before
synthesis can proceed. Methods for doing this are
presented in the next chapter.
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Chapter 15 Issues concerning scales of
measurement when combining data
This chapter has considered some of the issues 
that must be considered when deciding which
scales of measurement are to be used when com-
bining data. Though there are specific statistical
methods that can be employed when the studies 
in a meta-analysis use a variety of measurement
scales, so as to produce a single unified scale of
measurement, a number of issues should be
considered. Firstly, that different scales may 
lead to different results, both quantitatively and
qualitatively. Secondly, the most convenient
common scale, statistically, may not be the most
appropriately clinically. Finally, where possible
sensitivity analyses should be performed to 
check the inter-dependence between the
quantitative result obtained and the 
measurement scale used.

Chapter 16 Publication bias
In conducting a meta-analysis, researchers should
always be aware of the potential for publication
bias, and make efforts to assess to what extent
publication bias may affect their meta-analysis. 
In terms of the inclusion of unpublished studies, 
a sensitivity analysis should be performed to 
assess the likely impact of including 
unpublished data.

The intention of above sections was to give the
reader a brief but relatively complete overview of
the methods proposed to deal with publication
bias. It has already been noted that many of the
methods are new and exploratory.

Chapter 17 Missing data
Not a lot has been written on the problem 
of missing data in meta-analysis. Most of the
methods discussed here have been adapted from
other situations. Many of the advanced methods
have not been used extensively in a meta-analysis
setting (4). Pigott suggests that the current
development of computer programs that
implement the procedures described by Little and
Rubin (5) should advance the development of
sensible methods for handling missing data in
research synthesis (4).

Cooper and Hedges state (6) that missing data is
‘perhaps the most pervasive practical problem in
research synthesis’. The also observe that ‘the
prevalence of missing data on moderator and
mediating variables influences the degree to which
the problems investigated by a synthesis can be
formulated’, and predict that new methods will
evolve, and that:

‘Much of this work will likely be in the form of
adapting methods developed in other areas of stati-
stics to the special requirements of research synthesis.
These methods will produce more accurate analyses
when data are not missing completely at random but
are well enough related to observed study character-
istics that they can be predicted reasonably well with 
a model based on data that are observed.’ (6)

When covariate information is missing this can be a
problem when analysing heterogeneity using meta-
regression (see chapter 11) as Pigott explains:

‘A synthesist may try several different analyses with the
data to determine if any of a study’s characteristics
relate to the effect magnitude of the study. In each of
these analyses, only studies with complete information
on relevant variables may be included. Each of these
analyses may utilize a different set of studies that may
not be representative of the sample originally chosen
for the synthesis and may not correspond with each
other. The results of each analysis may not generalise
to the population of studies on a topic nor to any of
the other samples of studies used in the analyses.’ (4)

It should be stressed that whatever method is 
used to deal with missing data, a careful sensitivity
analysis of the modelling assumptions on the
conclusions should be performed as a final step.

Chapter 18 Reporting the results 
of a meta-analysis
This chapter has given a brief overview of methods
used to report a systematic review. It is recom-
mended for researchers to include tables of all
studies considered in a review, so possible to see
which were excluded. The bottom line on
reporting a review is that enough information
should be provided so people can replicate, or
carry out changes/updates to it.

Chapter 19 Meta-analysis of
observational studies
Most of the considerations for combining
observational studies are the same as those 
outlined in the rest of the report for RCTs. One
new question that needs addressing is ‘Has proper
control or adjustment been made for the biases
that frequently occur in epidemiological studies,
such as sociodemographic or clinical differences
between study populations, misclassification of
subjects with regard to case–control status and to
levels of exposure, factors other than the level of
exposure that may affect whether a subject is a case
or a control (i.e. confounding variables).’ (1) Key
references on this subject are the seminal paper by
Greenland (7) and the set of guidelines reported
by Blair et al. (8). The use of sensitivity analysis to
deal with the above problems is emphasised.
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Chapter 20 Meta-analysis of 
survival data
Survival analysis data requires specialist meta-
analysis techniques (as well as specialist statistical
methods in general) because of data censoring. 
If this censoring is ignored, this may bias the 
overall estimates. Other than this problem, the
various standard approaches for meta analysis 
are possible. In such instances methods such as
finding summary measures for survival data 
(such as the hazard ratio), and then combining
those is possible.

Chapter 21 Meta-analysis of diagnostic
test data
The CMWG on Systematic Review of Screening 
and Diagnostic Tests (9) remarks that pooling 
of accuracy assessments within the Cochrane
Collaboration will probably use dichotomised
(binary) test data because, first, most primary
studies present the data in this format and, 
second, further research on and developments 
of statistical methods for ordered categorical 
and continuous test outcomes is needed. 
Their method of choice is the analysis of 
the SROC curve in both the unweighted 
and weighted manner.

Chapter 23 Methods for correlated
outcomes: combining multiple 
effect measures
In order to combine multiple effect measures the
correlations/covariances between outcomes are
needed for most methods. If these are not avail-
able, then one must make a guess at them, and
assess the impact of their choice using a sensitivity
analysis, or alternatively estimate them from
external sources, or IPD from some of 
the trials.

Chapter 24 Meta-analysis of individual
patient data
There are several advantages of carrying out a 
meta-analysis of IPD, over a standard meta-analysis
using aggregated data. These include the ability 
to: 1) carry out detailed data checking, 2) ensure
the appropriateness of the analyses, and 3) 
update follow-up information. This has led to 
the comment that MAP data are the yardsticks
against which the quality of other systematic 
reviews of randomised controlled trials should 
be measured (10).

These benefits do not come without a cost,
however, as IPD meta-analyses are very time
consuming and costly. Currently, there is little
empirical evidence regarding the actual 

magnitude of the gains, and it is yet to be
established whether the extra effort is 
worthwhile, in given situations.

Chapter 25 Cumulative meta-analysis
Cumulative meta-analysis is valuable as an
exploratory/sensitivity analysis tool. There are
questionable gains if it is done in real time, and a
correction for multiplicity is needed for the
frequentist approach.

Chapter 26 Generalised synthesis 
of evidence
Methodology is becoming available for combin-
ing studies of different designs. Many of the
techniques utilise modern statistical models,
including Bayesian methods, and hence many of
the methods are extensions of those of chapter 13.
Their implementation is however facilitated by
recent advances in computer software. When 
such analyses are appropriate, is still open to
debate, as there is concern that including studies
with poorer designs will weaken the analysis,
though this issue is partially addressed by
conducting sensitivity analyses under various
credibility assumptions.

Agenda for further research

This section summarises areas and issues requiring
further (methodological) research effort. One 
or two priority areas are explicitly indicated for
further HTA funding. The detailed background 
to specific recommendations in the list below 
can be found in the relevant chapters from 
which they are drawn. For convenience, the 
source chapter is included after each
recommendation.

Priority areas for further HTA 
funding
1. Sensitivity analysis of the impact of many

aspects of the design and analysis of the
systematic review, and in particular of the meta-
analysis, has been advocated. The result is a
complex set of inter-related sensitivity analyses.
Research into optimum, or at least efficient,
strategies of multi-dimensional sensitivity
analysis in these contexts would thus 
be useful.

2. Evaluation of the role in HTA of meta-analysis
of observational studies, and cross-design
synthesis (which often features the inclusion of
non randomised evidence), possibly through
systematic research and workshops of
researchers active in the field.
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Heterogeneity, publication1 and related
biases, study quality
1. Investigation into the relevant dimensions of

methodological quality and empirical research
which establishes the relative importance of
these dimensions in different contexts
(diseases, endpoints, study designs etc.). 
This should then lead validated instruments 
to assess these dimensions individually, which
should finally lead to the development of
rigorous, validated, and parsimonious scales 
for the (repeatable) assessment of study quality.

2. Exploration of the role of study quality as an
explanation of heterogeneity

3. Empirical investigation into the basis for choice
of cut-off values for exclusion of studies on
grounds of quality, and of robustness of 
this value.

4. Development of systematic approaches to
quality assessments of non-RCTs, and their use
in meta-analysis and cross-design synthesis.

5. Further investigation of the relationships
between heterogeneity and publication bias,
including the development of methods for
assessing heterogeneity taking into account
selection bias and vice-versa.

6. Development of guidelines/recommendations
for the identification and exploring
heterogeneity.

7. Investigation of degree of heterogeneity (both
quantitative and qualitative) beyond which
combining of all the studies should not be
considered.

8. Investigation into the effects of choice of
measurement scale (e.g. choice between OR
and RR measures, or use of a mixture of the
two), from both: a) a statistical perspective, 
and b) a clinical perspective.

9. Further investigation of aspects of publication
bias, including:
– the relative merits of methods based on the

funnel graph versus methods based on
weighted distribution theory;

– assessing the impact of the pipeline problem;
– development of a test that is sensitive to

either the magnitude of the estimate of effect
size in a primary study or the significance
level of the test for treatment or other effects
in primary studies, since either may influence
publication bias;

– development of methods for estimation of
chances of failing to detect a bias that would
have a profound effect on the results of a
meta-analysis;

– investigation of power to detect publication
bias, and in particular of the influence of the
number of primary studies;

– empirical study of degree and mechanisms 
of publication bias in meta-analysis 
of epidemiological and other non-
randomised studies;

– investigation into the extent the use of a
prospective register for trials minimises
publication bias;

10. In general, identification of the most 
sensitive approaches for detecting 
publication bias.

11. General investigation of the impact of missing
values, and extension of currently available
methods to a wider range of circumstances 
with missing data, including the use of 
Bayesian methods.

12. Development of the use of simulation of results
of new studies before they are published or of
hypothetical studies to allow their impact on
meta-analysis to be assessed.

13. Further development of detailed publication
guidelines to encourage uniform reporting 
of the results of studies, particularly of types
other than RCTs.

14. Investigation of which methods are superior 
for investigating the baseline risk of patients 
in studies.

Approaches to modelling 
and analysis
1. Investigation of the relative merits of the

different approaches to combining studies 
in which some arms report no events (zeros 
in 2 × 2 tables).

2. Comparison of new methods for random
effects modelling incorporating all modelling
parameter uncertainty.

3. Investigation of robustness of random effects
models to departures from normality, and
further consideration of use of likelihood
methods or of other distributional 
assumptions.

4. Empirical investigation of model attributable
weights with particular reference to over-
weighting of large samples, in some models.

5. Investigation of the impact of missing data at
both the study level and patient-level.

6. Development of experience with practical
applications of mixed models, including
criteria for the identification of covariates as
fixed or random, and specification of any
hierarchical structure.

1 Note: HTA programme has commissioned a separate review in this area.
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7. Development of methodology for combining
IPD with study level data.

8. Investigation of the role of
cumulative/sequential application of 
meta-analysis as a research methodology,
including:
– development of criteria for stopping rules 

for sequential meta-analysis, perhaps 
based on group sequential methods;

– formalisation of Bayesian approaches to
sequential/cumulative meta-analysis and
investigations of their properties.

9. Investigation of the incorporation of data 
of different types.

10. Further development of methods for
integration of qualitative assessments 
of studies with quantitative estimates of 
the results.

11. Development of random/mixed effects 
models for meta-analysis of survival data.

12. Use and implications of the exact methods
(fixed effects models); should they be used? 
If so, when?

13. More extensive but critical use of Bayesian
methods, including:
– encouragement of expository papers in the

applied literature on the application of
Bayesian methods;

– more research on the use of elicited 
prior beliefs.

14. More research into the use of meta-analytic
techniques in conjunction with decision
analysis methods, that take into account 
the uncertainty associated with any meta-
analysis findings.

15. More research into extrapolation and use 
of results of a meta-analysis to clinical practice
and healthcare policy making.
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General approach to searching 
electronic databases
It was perceived that there are three types of
publications relevant to the subject of review
synthesis, namely:

1. References concerned with the methodology 
of research synthesis/meta-analysis.

2. References reporting the results of a particular
synthesis of evidence/meta-analysis, these
contain no new methodology content.

3. References presenting the results of a
synthesis/meta-analysis but, in the process
developed new methodology which is
presented also.

A Venn diagram (Figure 7) illustrates this situation.

For the purposes of this review, publications of type
1 and 3 above are of interest, while those in group
2 are of much lesser importance, and are generally
ignorable, except in so far as they provide
illustrative examples.

A preconception that was confirmed during the
searching was that to obtain a large proportion of
1, 2 and 3 would not be too difficult. The difficult
task would be to separate group 2 from group 1.
Even more difficult would be identification and

separation of group 3 (as distinct from group 2),
even if an abstract was available.

Hence, the search strategy process was
conceptualised in two stages:
• Stage 1: a strategy to retrieve all papers

concerned with systematic reviews and/or 
meta-analysis, and then:

• Stage 2: a strategy to split the methodology
(groups 1 and 3) from the non-methodology
(group 2).

The following strategies were all implemented in
July/August 1996.

Stage 1: strategy

Two approaches were considered for stage 1. 
The first was based on a union of all the words 
we could think of to describe systematic reviews/
meta-analysis (our strategy). The second made 
use of the search strategies published by the 
CRD1 (1); two search strategies, broad (CRD
broad)) and less broad (CRD short), for identi-
fying systematic reviews in MEDLINE. These are
designed to ‘maximise the recall of potentially
systematic reviews and seek to minimise the recall
of reviews which appear to be non-systematic or
narrative’ (1). The three strategies for use with
MEDLINE are reproduced below.

CRD broad
This is the first of the CRD searches. Key points
from the CRD notes which accompany it are 
as follows:

‘employs a very broad search strategy for identifying
reviews in Medline. It is designed to maximise the
recall of potentially systematic reviews and seeks to
minimise the recall of reviews which appear to be non-
systematic or narrative....Systematic reviews are not
consistently indexed by Medline so the search strategy
includes textwords in addition to MeSH headings.’

Appendix 1

Strategies used to search the electronic databases
to identify relevant publications for this report

Methodology Meta-analysis
reviews

Meta-analysis review including new methodology

FIGURE 7 A Venn diagram

* The versions used were from the website: http://www.york.ac.uk/inst/crd/search.htm.

These are slightly different from the published versions.
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‘Case reports and historical reviews are explicitly
excluded. Further limits in Medline could be applied
to restrict searches depending on the specific search
requirements. The search strategy above will usually
return a large volume of references which will then
need to be sifted.’ (1)

Table 19 shows the system used.

Search locations: ti = words in title
sh = MeSH subject headings
tw = textwords
pt = publication type

Key: $ = the truncation symbol
adj4 = adjacent (within 
four words)
ab = words in abstract
exp = explode term 
(include all sub terms also)

Applied to: Database: MEDLINE (CD-ROM)
Dates: 1992–1996 August Disc

Comments
The term in bold is an alteration necessary 
to get it to run on the system we used (Ovid 
CD-ROM).

This search results in a massive final count of
142,711 references.

CRD short
This is the second of the CRD searches. Key points
of notes which accompany it are as follows:

‘A more precise version of CRD broad is shown below.
This excludes the majority of non-MESH search terms
and is more reliant on the consistency of MEDLINE
indexing.’ (1)

Table 20 shows the system used.

Search locations: ti = words in title
sh = MeSH subject headings
tw = textwords
pt = publication type

Applied to: Database: MEDLINE (CD-ROM)
Dates: 1992–1996 (August disc)

Key: $ = the truncation symbol
adj4 = adjacent 
(within four words)
ab = words in abstract

Comments
There are many fewer references, 23,538 (only 16%
of those found by CRD broad).

Our strategy
Where possible, MeSH terms as well as text 
words were included. The facility adj4 (within the

adjacent four words) is also taken advantage of
where possible. Table 21 shows the system used.

Search locations: ti = words in title
sh = MeSH subject headings
tw = textwords
pt = publication type

Key: $ = the truncation symbol
adj4 = adjacent 
(within four words) 
ab = words in abstract

TABLE 19 

Line Search term Number 
number found

1 meta-analysis.sh. 927

2 meta-analy$.tw. 1628

3 metaanaly$.tw. 78

4 (systematic$ adj4 
(review$ or overview$)).tw. 304

5 meta-analysis.pt.
meta analysis.pt. 1508

6 exp review literature.sh. 283

7 review.pt. 171,724

8 review.ti. 13,394

9 review literature.pt. 6943

10 (overview adj4 trial$).tw. 100

11 consensus development 
conference.pt. 944

12 case report.sh. 154,470

13 historical article.pt. 15,590

14 review of reported cases.pt. 12,834

15 review, multicase.pt. 2333

16 or/1-11 177,729

17 or/12-15 173,639

18 16 not 17 156,929

19 animal.sh. 456,180

20 human.sh. 1,066,147

21 19 not (19 and 20) 341,003

22 18 not 21 142,711

23 Your subject specific search terms *

24 22 and 23 **

Key: *Entering terms on a specific subject here and combining
in ** will find meta-analyses on the specific subject
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Applied to: Database: MEDLINE (CD-ROM)
Dates: 1992–1996 (August disc)

Comments
The terms used in this search strategy were derived
from consulting known key references in the field
to see which terms were used for keywording and
generally commonly used in the text.

Note the inclusion of meta-analysis as a publication
type. As this was only introduced in 1993, however,
it cannot be relied upon exclusively.

To illustrate the point that publication types and
subject headings are not enough to rely on; when
meta-analysis.sh. was combined (using Boolean
argument AND) with meta analysis.pt. only 

256 papers were indexed using both terms!

The proportions in each group are similar to those
for the BIDS search (see later in appendix 1) with
groups 2 and 3 providing relatively few references.

An investigation to see how many references these
three strategies had in common was carried out.

Comparing strategies
This tabulation was designed to determine how
many references each of the three searches had in
common (Table 22).

TABLE 20 System used for CRD sheet

Line Search term Number 
number found

1 (meta-analysis or review 
literature).sh. 1013

2 (meta-analy$ or (meta adj 
anal$)).tw. 1628

3 metaanal$.tw. 78

4 meta-analysis.pt. 1508

5 review, academic.pt. 17,402

6 review literature.pt. 6943

7 case report.sh. 154,470

8 letter.pt. 98,341

9 historical article.pt. 15,590

10 review of rep[orted cases.pt. 12,834

11 review, multicase.pt. 2333

12 or/1-6 26,952

13 or/7-11 251,858

14 12 not 13 25,956

15 animal.sh. 456180

16 human.sh. 1,066,147

17 15 not (15 and 16) 341,003

18 14 not 17 23,538

19 Your subject specific search terms *

20 18 and 19

Key: *Entering terms on a specific subject here and combining
in ** will find meta-analyses on the specific subject

TABLE 21 System used in this search strategy

Line Search term Number 
number found

1 meta-analysis.sh. 927

2 meta analysis.pt. 1508

3 meta-analy$.tw. 1628

4 met-analy$.tw. 6

5 metanaly$.tw. 10

6 metaanaly$.tw. 78

7 met analy$.tw. 6

8 meta analy$.tw. 1628

9 or/1–8 (group1) 2595

10 overview$.tw. 4809

11 (synthesis adj4 evidence).tw.) 389

12 quantitative review$.tw. 17

13 quantitative synthes$.tw. 7

14 review synthes$.tw. 27

15 quantitative overview$.tw. 11

16 (systematic$ adj4 (review$ or 
overview$)).tw. 304

17 research synthes*.tw. 14

18 quantitative pooling.tw. 1

19 (combin* adj4 estimates).tw. 9

20 (pool$ adj4 results$).tw. 526

21 (pool$ adj4 estimate).tw. 162

22 or/10–18 (group 2) 757

23 or/19–21 (group 3) 766

24 9 or 22 (groups 1, 2) 3248

25 9 or 22 or 23 (groups 1, 2, 3) 3914
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Comments
The CRD short search is a perfect subset of the
CRD long search.

Results
The three strategies, ‘CRD long’, ‘CRD short’, 
and, ‘Our strategy’, brought up 142,711, 23,583
and 3914 hits respectively varying by an order 
of magnitude.

Our strategy returns 1546 references that the CRD
short search does not find and 1052 that CRD broad
does not find either. It was quite alarming to find
that a search, with the same aim, which retrieves
142,711 references, but does not find 27% of the
references found in a much more specific search.

The safest way to proceed would be to use both the
CRD broad and the extra references found by ‘Our
strategy’. However, this returns a group of 143,763
references for the last 3.5 years alone. We believed
that earlier than 1991 the synthesis/meta-analysis
literature was much smaller. However, we believe
this would not mean the CRD broad returns would
be proportionately decreased as it clearly has a very
low specificity.

The next stage was to develop strategies to retrieve
the methodology papers from the results of this
first stage.

Stage 2: strategy

From considering the results of stage 1, it was clearly
necessary to reduce the number of papers to allow
manual scanning of their abstracts. The second stage
was to develop a strategy to retrieve the methodol-
ogy papers. Approximately 20 areas of research had

been highlighted in the grant application for the
project. These titles plus other associated terms were
used as the basis of this second stage. This had clear
limitations; firstly the strategies would need many
terms and be very long and complex. As a result,
many of the on-line engines had trouble coping with
them. Secondly, and more fundamentally, this
search is only for topics known to exist. This implies
areas or research unknown to us could be missed. A
pilot using a small proportion of these terms was
carried out to assess which stage 1 strategies would
be feasible. This is reported below.

Search: stage 2 – preliminary (Table 23)
Applied to: Database: MEDLINE (CD-ROM)

Dates: 1992–1996 (August disc)

Comments
It seems that the number of papers returned 
for some terms, namely predict$.tw. would be
impractical to search through for the CRD 
broad strategy. For many of the terms with fewer
references namely publication bias.sh., bayes$.tw. the
broad search did not bring up many more returns.

It would seem sensible to suggest making a list 
of terms to search on both CRD broad and Our
strategies and a list to search only on Our (and
possibly the CRD short) strategy/ies.

MEDLINE stage 2 strategy (Table 24)
This strategy uses all the subject specific terms
intersected with ‘Our strategy’.

Every term suspected of having a MeSH heading
was looked up in the index, and if a suitable one
was found, this was used as well as the text word.

Search locations: ti = words in title
sh = MeSH subject headings
tw = textwords
pt = publication type

TABLE 22 Comparing references retrieved from the various
strategies

Term Number of 
references returned

CRD broad 23,538

CRD short 142,711

Our strategy 3914

CRD broad AND CRD short 23,538

CRD broad AND Our strategy 2862

CRD broad OR Our strategy 143,763

CRD short AND Our strategy 2368

CRD short OR Our strategy 25,084

TABLE 23 Preliminary stage of search

Term Number ∩ ∩ ∩
of references Our CRD CRD
found overall strategy short broad

statistics.sh. 1936 34 37 149

publication bias.sh. 60 18 16 25

bayes$.tw. 554 21 27 65

sensitivity analysis.tw. 297 17 17 36

predict$.tw. 56,978 259 855 4382

homogen$.tw. 15,911 89 139 508
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TABLE 24 MEDLINE stage 2 strategy

Term Search term Total Total ∩
‘Our strategy’

Procedural methodology
∇ procedural methodology procedural methodology.tw. 2 0
procedure/s procedur$.tw. 62,836 202
guidelines guide$.tw. 17,642 120
guidance guideline.pt. 2640 17
framework/s guidelines.sh. 1478 11
data extraction health planning guidelines.sh 137 0
individual patient data '' 5250 21
study level data framework$.tw. 629 141
level of aggregate/ion data extraction.tw. 37 25

individual patient data.tw. 0 –
study level data.tw. 11 2
level of aggregat$.tw.

Publication bias
publication bias publication bias.tw. 67 35
literature bias publication bias.sh. 60 18
reporting bias literature bias.tw. 1 1

reporting bias.tw. 32 1

Statistical issues
∇ statistical issues statistical issues.tw. 41 2
∇ statistical methodology statistical methodology.tw. 0 –
statistics statistic$.tw. 41,876 502
calculation/s statistics.sh. 1936 34

exp statistics.sh. 132,649 1152
data interpretation, statistical.sh. 2839 87
calculation$.tw. 7107 51

Fixed effect(s) approaches
fixed effect/s fixed effect$.tw. 118 24
homogeneity homogen$.tw. 15,911 89
homogeneous '' 1072 2
∇ classical method (classical and (approach or method).tw. 8542 20
classical classical.tw.

Random effect(s) approaches
random effect/s random effect$.tw. 194 48
heterogeneity heterogene$.tw. 14,262 142
heterogeneous ''

Mixed effect approaches
mixed effects mixed effect$.tw. 111 7

mixed-effect$.tw. 111 7

Study quality
study quality study quality 143 28
quality of studies (quality of studies ∪ quality of study) 120 38

Influence of specific studies
influence of specific studies influence of specific studies.tw. 0 –
influence of a specific study influence of a specific study.tw. 0 –
study influence study influence.tw. 680 1
deletion method/s deletion method$.tw. 5 0
sensitivity analysis sensitivity analys$.tw. 418 26

‘sensitivity and specificity’.sh. 19,934 121

Key: ∇ term is a subset of another term and not necessary for the search but included for interest

continued
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TABLE 24 contd MEDLINE stage 2 strategy

Term Search term Total Total ∩
‘Our strategy’

Meta-regression
meta-regression meta-regression.tw. 5 5
meta-regression metaregression.tw. 4 4
∇ meta regression meta regression.tw. 5 5
regression regression.tw. 20,471 199
explaining variation regression analysis.sh. 12,250 107
covariates exp regression analysis.sh. 21,161 199

explaining variation.tw. 17 0
covariates.tw. 825 17

Cross design synthesis
∇ cross design synthesis cross design$ synthesis.tw. 3 2
cross design cross design$.tw. 404 4

Confidence profiling approach
confidence profiling confidence profil$.tw. 2 2
confidence profile ''

Missing data
missing data missing data.tw. 157 3
missing value/s missing value$.tw. 35 0
incomplete data incomplete data.tw. 84 2

Scales of measurement
scales of measurement scale$ of measurement$.tw. 68 0
measurement scale/s measurement scale$.tw. 106 0
effect/s measure/s effect measure$.tw. 384 6
survival data survival data.tw. 492 14
survival analysis survival analysis.tw. 798 10
survival measure/s survival analysis.sh. 7987 102
ordinal data survival measure$.tw. 109 2
ordinal outcome/s ordinal data.tw. 23 0
ordinal measure/s ordinal outcome$.tw. 2 0
continuous outcome ordinal measure$.tw. 4 0
number needed to treat continuous outcome.tw. 9 0
economic number needed to treat.tw. 14 4
∇ cost effectiveness economic.tw. 5413 43
cost cost effective$.tw. 4385 71

cost$.tw. 20,552 162

Reporting of the results
reporting of the result/s report$ of the result$.tw. 2666 40
report/ing the result/s report$ the result$.tw. 2666 40
result/s reporting result$ report$.tw. 1548 16

Prediction
predict/ion predict$.tw. 56,978 259
∇ effect predict/ion effect predict$.tw. 51 1

Cumulative meta-analysis
cumulative cumulative.tw. 3 0
sequential sequential.tw. 8373 24
chronological chronological.tw. 748 6

Multi-level modelling
multi-level model/s ‘multi-level’ model$.tw. 3 0
multi level model/s multi level model$.tw. 3 0
multilevel model/s multilevel model$.tw. 15 0
hierarchical model/s hierarchical model$.tw. 49 0

Key: ∇ term is a subset of another term and not necessary for the search but included for interest

continued



Health Technology Assessment 1998; Vol. 2: No. 19

237

Key: $ = the truncation symbol
adj4 = adjacent 
(within four words) 
ab = words in abstract
exp = explode MeSH term

Applied to: Database: MEDLINE (Ovid)
Dates: 1992–1996 (August disc)

It was decided to cross the more specific subject
terms with CRD broad in the hope of finding 
most papers missed by crossing with ‘Our strategy’
(Table 25).

Search locations: ti = words in title
sh = MeSH subject headings
tw = textwords
pt = publication type

Key: $ = the truncation symbol
Applied to: Database: MEDLINE (Ovid)

Dates: 1992–1996 (August disc)

This search strategy was employed for the last 
5 years. Each papers database entry retrieved 
by stage 1 and stage 2 was scanned manually to
decide its relevance and hence whether it should
be included. Where there was uncertainty to its
relevance the whole paper was obtained for
inspection before a decision was made.

Searches of other databases

In addition to MEDLINE, similar search strategies
were used for ISI Science and Social Science and
EMBASE accessed through the BIDS system. Due to
a less sophisticated search engine, the strategies are

TABLE 24 contd MEDLINE stage 2 strategy

Term Search term Total Total ∩
‘Our strategy’

Empirical Bayes
empirical bayes empirical bayes$.tw. 42 3

Full Bayes
bayes$ bayes theorem.sh. 536 16

(bayes$) NOT (empirical) .tw. 647 21

MCMC
markov chain markov chain.tw. 85 1
monte carlo monte carlo.tw. 949 3
monte-carlo ‘monte-carlo’.tw. 949 3

Gibbs sampling
gibbs sampling gibbs sampl$.tw. 34 0
bugs bugs.tw. 72 2
simulation methods simulation methods.tw. 32 0

Key: ∇ term is a subset of another term and not necessary for the search but included for interest

TABLE 25 

Search term Total Total ∩
CRD broad

publication bias.sh. 60 25

statistic$ method$.tw. 846 118

random effect$.tw. 194 50

mixed effect$.tw. 111 10

study quality.tw. 143 41

sensitivity analys$.tw. 418 52

meta-regression.tw. 5 5

metaregression.tw. 4 4

meta regression.tw. 5 5

cross-design synthesis.tw. 3 3

number needed to treat.tw. 14 4

multi-level model$.tw. 3 1

multi level model$.tw. 3 1

multilevel model$.tw. 15 4

empirical bayes$.tw. 42 6

baye$ NOT empirical.tw. (lost) 72

bayes theorem.sh. (inc above) 2

markov chain.tw. 85 32

monte carlo.tw. 949 2

monte-carlo.tw. (inc above) 5

gibbs sampl$.tw. 34

bugs.tw. 72
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simplified versions of those used for MEDLINE as
given above. These are reproduced below.

ISI/EMBASE Stage 1 search strategy
Due to lack of MeSH terms or publication type field
(or equivalents) direct adoption of the CRD
searches was not possible. A simplified version of
‘Our strategy’ was used exclusively in stage 1.
Searches were done for the previous 5 years,
1991–1996.

The list of terms below were used to search in the
title, keywords and abstracts of the databases, unless
otherwise specified. Each term was combined with
the OR command to retrieve all references at this
stage.

meta analy*
‘meta-analy*’ (quotes needed, otherwise ‘–’ 
acts as a Boolean NOT operand)
metaanaly*
quantitative review*
quantitative overview*

quantitative synthes*
review synthes*
research synthes*
systematic overview*
systematic review*
quantitative pooling

synthes* of evidence
evidence synthes*
combin* + estimate* (title only)
pooling (title only)
combin* estimate*
combin* of estimate*

ISI/EMBASE Stage 2 search strategy
(Table 26)
All searches were done on the title, keyword and
abstract fields unless otherwise indicated.

Other searches
At this point it was decided to stop database
searching. Clearly other databases, such as those for
specialist education and psychology literatures
could have been searched but it was felt diminish-
ing returns for the time and effort invested would
have been obtained.

A much simplified search of EMBASE and ISI
Science was done a number of times from winter
1996 through summer 1997 with the aim to retrieve
references recently published.

Results

It was very difficult to locate group 3 references
(applications with new methodology). Several of
these were found, mostly through exploding
reference lists and personal communication with
other researchers in the field. It would seem that
locating these through electronic databases alone
would be almost impossible.

Reference
1. Deeks J, Glanville J, Sheldon T. Undertaking

systematic reviews of research on effectiveness: CRD
guidelines for those carrying out or commissioning
reviews. Centre for Reviews and Dissemination,
York. York Publishing Services Ltd, Report #4, 1996.
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TABLE 26 ISI/EMBASE stage 2 search strategy

Term Search term Total ∩
Stage 1

Procedural methodology
∇ procedural 
methodology procedural methodology 0
procedure/s procedur* 500
guidelines guide* 188
guidance '' 24
framework/s framework* 141
data extraction data extraction 29
individual patient data individual patient data 0
study level data study level data 1
level of aggregate/ion level of aggregat*

Publication bias
publication bias publication bias 32
literature bias literature bias 0
reporting bias reporting bias 0

Statistical issues
∇ statistical issues statistical issues 2
∇ statistical methodology statistic* method* 44
statistics statistic* 813
calculation/s calculation* 82

Fixed effect(s) approaches
fixed effect/s fixed effect* 16
homogeneity homogen* 90
homogeneous '' 34
classical classical

Random effect(s) approaches
random effect/s random effect* 29
heterogeneity heterogene* 172
heterogeneous ''

Mixed effect approaches
mixed effects mixed effect* 2

‘mixed-effect*’ 2

Study quality
study quality study quality 28
quality of studies (quality of studies 

∪ quality of study) 10

Influence of specific studies
influence of specific influence of specific 
studies studies 0

influence of a influence of a 
specific study specific study 0

study influence study influence 0
deletion method/s deletion method* 0
sensitivity analysis sensitivity analys* 29

Meta-regression
meta-regression ‘meta-regression’ 5
metaregression metaregression 2
(meta regression meta regression 2
regression regression 234
explaining variation explaining variation 0
covariates covariates 16

Cross design synthesis
cross design cross design* 4

‘cross-design*’ 1

Key: ∇ term is a subset of another term and not necessary for the search but included for interest

Term Search term Total ∩
Stage 1

Confidence profiling approach
confidence profiling confidence profil* 2
confidence profile ''

Missing data
missing data missing data 5
missing value/s missing value* 0
incomplete data incomplete data 1

Scales of measurement
scales of measurement scale* of measurement* 0
measurement scale/s measurement scale* 2
effect/s measure/s effect measure* 8
survival data survival data 7
survival analysis survival analysis 14
survival measure/s survival measure* 1
ordinal data ordinal data 0
ordinal outcome/s ordinal outcome* 0
ordinal measure/s ordinal measure* 0
continuous outcome continuous outcome 0
number needed to treat number needed to treat 17
economic economic 69
∇ cost effectiveness cost effective* 145
cost cost* 398

Reporting of the results
reporting of the result/s report* of the result* 10
report/ing the result/s report* the result* 24
result/s reporting result* report* 9

Prediction
predict/ion predict* 288
∇ effect predict/ion effect predict* 0

Cumulative meta-analysis
cumulative cumulative 61
sequential sequential 23
chronological chronological 7

Multi-level modelling
multi-level model/s ‘multi-level’ model* 0
multi level model/s multi level model* 0
multilevel model/s multilevel model* 0
hierarchical model/s hierarchical model* 1

Empirical Bayes
empirical bayes empirical bayes* 5

Full Bayes
bayes* (bayes*) NOT (empirical) 23

MCMC
markov chain markov chain 4
monte carlo monte carlo 4
monte-carlo ‘monte-carlo’ 0

Gibbs sampling
gibbs sampling gibbs sampl* 0
bugs bugs 1
simulation methods simulation methods 0
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The following is a list of references that were
located too late in the project to review in 

the main text. They have been separated from the
main Bibliography to make it easier for the reader
to identify papers of further interest not covered 
by the report.

Anonymous. Meta-analysis of drug abuse prevention
programs. Proceedings of a meeting. July 26–27. NIDA
Res Monogr 1993;170:1–252.

Bailar JC, 3rd. The promise and problems of 
meta-analysis (editorial; comment). N Engl J Med
1997;337:559–61.

Bangert-Drowns RL. Some limiting factors in meta-
analysis. NIDA Res Monogr 1997;170:234–52.

Bayarri MJ, DeGroot M. A Bayesian view of weighted
distributions and selection models. Technical Report
#375; Department of Statistics, Carnagie Mellon
University, 1986.

Bayarri MJ, DeGroot M. The analysis of published
significant results. Technical Report #91-21; Department
of Statistics, Carnagie Mellon University, 1991.

Beck CT. Use of meta-analysis as a teaching strategy in
nursing research courses. J Nurs Educ 1997;36:87–90.

Berlin JA. Commentary: summary statistics of poor
quality studies must be treated cautiously (comment).
BMJ 1997;314:337.

Berlin JA, Antman EM. Advantages and limitations of
metaanalytic regressions of clinical trials data. Online J
Curr Clin Trials 1994; Doc No 13.

Chow SC, Liu J. Meta-analysis for bioequivalence review. 
J Biopharm Stat 1997;7:97–111.

Cleary RJ. An application of Gibbs sampling to
estimation in meta-analysis: accounting for publication
bias. Journal of Education and Behavioral Statistics
1997;22:141–54.

Conn HO. Interpretation of data from multiple trials: 
a critical review (review). J Int Med 1997;241:177–83.

Cook RJ, Walter SD. A logistic model for trend in 2 x 2 x
kappa tables with applications to meta-analyses. Biometrics
1997;53:352–7.

Coste J, Bouyer J, Job-Spira N. Meta-analysis – ‘does 
one bad apple spoil the barrel?’ (letter). Fertil Steril
1997;67:791–2.

Counsell C. Formulating the questions and locating the
studies for inclusion in systematic reviews. Ann Int Med
1996;127:380–7.

Devine EC. Issues and challenges in coding interventions
for meta-analysis of prevention research. NIDA Res
Monogr 1997;170:130–46.

Egger E, ZellwegerZahner T, Schneider M, Junker C,
Lengeler C. Language bias in randomised controlled
trials published in English and German. Lancet
1997;350:326–9.

Egger M, Smith GD, Schneider M, Minder C. Bias in
meta-analysis detected by a simple, graphical test. BMJ
1997;315:629–34.

Eysenck HJ. Meta-analysis of best-evidence synthesis?
(review). J Eval Clin Pract 1995;1:29–36.

Frongillo E. Combining information using hierarchical
models. PhD Dissertation. Biometrics Unit, Cornell
University, Ithaca, NY, 1995.

Goodman C. Step 1: Specify the assessment problem. 
In: Literature searching and evidence interpretation 
for assessing health care practices. Stockholm, SBU: 
The Swedish Council on Technology Assessment in
Health Care, 1993.

Hansen WB, Rose LA. Issues in classification in meta-
analysis in substance abuse prevention research. NIDA
Res Monogr 1997;170:183–201.

Heaney RP. Some questions about ‘Epidemiologic
association between dietary calcium intake and blood
pressure: a meta-analysis of published data’ (letter). 
Am J Epidemiol 1997;145:858–9.

Hedges LV. Improving meta-analysis for policy purposes.
NIDA Res Monogr 1997;170:202–15.

Jadad AR, Cook DJ, Browman GP. A guide to interpreting
discordant systematic reviews. Can Med Assoc J
1997;156:1411–16.

Johnson BT, Carey MP, Muellerleile PA. Large trials vs
meta-analysis of smaller trials (letter; comment). JAMA
1997;277:377–8.

Klebanoff MA, Levine RJ, Dersimonian R. Large trials vs
meta-analysis of smaller trials [letter; comment]. JAMA
1997;277:376–8.

Lancaster T. Systematic reviews (letter). Fam Pract
1997;14:90.

Appendix 2

Relevant material located too late to include 
in the review



Appendix 2

242

Law S. Diary of a novice Cochranite. Random thoughts
on the third annual Cochrane Collaboration Colloquium
(editorial). Can Fam Physician 1997;43:401–2, 410–12.

Lelorier J, Benhaddad A, Lapierre J, Derderian F.
Discrepancies between meta-analyses and subsequent
large randomized, controlled trials. N Engl J Med
1997;337:536–42.

Lewis G, Churchill R, Hotopp M. Systematic reviews and
meta-analysis (editorial). Psychol Med 1997;27:3–7.

Lipsey MW. Using linked meta-analysis to build policy
models. NIDA Res Monogr 1997;170:216–33.

Mathew T, Sinha BK, Zhou L. Some statistical procedures
for combining independent tests. J Am Statist Assoc
1993;88:912–19.

Matt GE. Drawing generalized causal inferences based on
meta-analysis. NIDA Res Monogr 1997;170:165–82.

Moher D. Assessing the quality of randomized controlled
trials: implications for the conduct of meta-analyses. NHS
HTA 93/52/04, 1997.

Perry PD. Realities of the effect size calculation process:
considerations for beginning meta-analysts. NIDA Res
Monogr 1997;170:120–9.

Pigott TD. The application of maximum likelihood
methods to missing data in meta-analysis. Dissertation,
University of Chicago, 1992.

Rice JP. The role of meta-analysis in linkage studies of
complex traits. Am J Med Genet 1997;74:112–14.

Silagy C. Systematic reviews (letter). Fam Pract
1997;14:90–1.

Smith BJ, Darzins PJ, Quinn M, Heller RF. Modern
methods of searching the medical literature. Med J Aust
1992;157:603–11.

Steinberg KK, Smith SJ, Stroup DF, et al. Comparison of
effect estimates from a meta-analysis of summary data
from published studies and from a meta-analysis using
individual patient data for ovarian cancer studies. Am J
Epidemiol 1997;145:917–25.

Stern JM, Simes RJ. Publication bias: evidence of delayed
publication in a cohort study of clinical research projects.
BMJ 1997;315:640–5.

Teagarden JR. Meta-analysis: whither narrative review?
Pharmacotherapy 1997;9:274–84.

Tramer MR, Reynolds DJM, Moore RA, McQuay HJ.
Impact of covert duplicate publication on meta-analysis: 
a case study. BMJ 1997;315:635–40.

Tweedie RL. Assessing sensitivity to data problems in
epidemiological meta-analyses. Technical Report.
Department of Statistics, Colorado State University, 
Fort Collins CO 80523, USA, 1997.
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Below is the report bibliography. This contains
all the 967 references, in some way, concerned

with meta-analysis/systematic review methodology
considered in the review. Additionally, see
appendix 2 for references found too late for
inclusion in the review.

Aalen, O. (1992) Modelling heterogeneity in survival
analysis by the compound Poisson distribution. The
Annals of Applied Probability;2:951–972.
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Abram, SE, Hopwood, M. (1996) Can metaanalysis
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