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Abstract

Ensuring comparisons of health-care providers are fair:
development and validation of risk prediction models
for critically ill patients

David A Harrison,1* Paloma Ferrando-Vivas,1 Jason Shahin1,2

and Kathryn M Rowan1

1Clinical Trials Unit, Intensive Care National Audit & Research Centre (ICNARC), London, UK
2Department of Medicine, Respiratory Division and Department of Critical Care, McGill University,
Montreal, QC, Canada

*Corresponding author david.harrison@icnarc.org

Background: National clinical audit has a key role in ensuring quality in health care. When comparing
outcomes between providers, it is essential to take the differing case mix of patients into account to make
fair comparisons. Accurate risk prediction models are therefore required.

Objectives: To improve risk prediction models to underpin quality improvement programmes for the
critically ill (i.e. patients receiving general or specialist adult critical care or experiencing an in-hospital
cardiac arrest).

Design: Risk modelling study nested within prospective data collection.

Setting: Adult (general/specialist) critical care units and acute hospitals in the UK.

Participants: Patients admitted to an adult critical care unit and patients experiencing an in-hospital
cardiac arrest attended by the hospital-based resuscitation team.

Interventions: None.

Main outcome measures: Acute hospital mortality (adult critical care); return of spontaneous circulation
(ROSC) greater than 20 minutes and survival to hospital discharge (in-hospital cardiac arrest).

Data sources: The Case Mix Programme (adult critical care) and National Cardiac Arrest Audit (in-hospital
cardiac arrest).

Results: The current Intensive Care National Audit & Research Centre (ICNARC) model was externally
validated using data for 29,626 admissions to critical care units in Scotland (2007–9) and outperformed
the Acute Physiology And Chronic Health Evaluation (APACHE) II model in terms of discrimination (c-index
0.848 vs. 0.806) and accuracy (Brier score 0.140 vs. 0.157). A risk prediction model for cardiothoracic critical
care was developed using data from 17,002 admissions to five units (2010–12) and validated using data from
10,238 admissions to six units (2013–14). The model included prior location/urgency, blood lactate
concentration, Glasgow Coma Scale (GCS) score, age, pH, platelet count, dependency, mean arterial
pressure, white blood cell (WBC) count, creatinine level, admission following cardiac surgery and interaction
terms, and it had excellent discrimination (c-index 0.904) and accuracy (Brier score 0.055). A risk prediction
model for admissions to all (general/specialist) adult critical care units was developed using data from
155,239 admissions to 232 units (2012) and validated using data from 90,017 admissions to 216 units
(2013). The model included systolic blood pressure, temperature, heart rate, respiratory rate, partial pressure
of oxygen in arterial blood/fraction of inspired oxygen, pH, partial pressure of carbon dioxide in arterial blood,
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blood lactate concentration, urine output, creatinine level, urea level, sodium level, WBC count, platelet count,
GCS score, age, dependency, past medical history, cardiopulmonary resuscitation, prior location/urgency,
reason for admission and interaction terms, and it outperformed the current ICNARC model for
discrimination and accuracy overall (c-index 0.885 vs. 0.869; Brier score 0.108 vs. 0.115) and across unit
types. Risk prediction models for in-hospital cardiac arrest were developed using data from 14,688 arrests
in 122 hospitals (2011–12) and validated using data from 7791 arrests in 143 hospitals (2012–13). The
models included age, sex (for ROSC > 20 minutes), prior length of stay in hospital, reason for attendance,
location of arrest, presenting rhythm, and interactions between rhythm and location. Discrimination for
hospital survival exceeded that for ROSC > 20 minutes (c-index 0.811 vs. 0.720).

Limitations: The risk prediction models developed were limited by the data available within the current
national clinical audit data sets.

Conclusions: We have developed and validated risk prediction models for cardiothoracic and adult
(general and specialist) critical care units and for in-hospital cardiac arrest.

Future work: Future development should include linkage with other routinely collected data to enhance
available predictors and outcomes.

Funding details: The National Institute for Health Research Health Services and Delivery
Research programme.
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Glossary

Accuracy Closeness of computations or estimates to the exact or true values that the statistics were
intended to measure. An accurate risk prediction model would give predictions close to 1 for individuals
who experience the event (e.g. death) and predictions close to 0 for those who do not.

Bias A systematic difference between an estimated value and the true value that the statistic was
intended to measure. Bias occurs when a particular design or analysis is likely to favour a particular
outcome and would, therefore, make those results unreliable.

Brier score A measure of the accuracy of a risk prediction model defined as the mean-squared error
between the outcome and the prediction. If the predictions are perfect (i.e. all individuals who experience
the event have a predicted risk of 1 and all individuals who do not experience the event have a predicted
risk of 0), Brier score is 0; if all individuals have a constant predicted risk of 0.5, Brier score is 0.25.

c-index The concordance or agreement between an outcome and a prediction. If two individuals are
selected at random, the c-index is the probability that the individual with the higher value of the outcome will
also have the higher prediction. For an outcome with only two values (e.g. dead or alive), this is equivalent
to the area under the receiver operating characteristic curve. It is a measure of the discrimination of a risk
prediction model. If all individuals who experience the event (e.g. death) have higher predictions than all
those who do not, the c-index is 1; if predictions are no better than chance, the c-index is 0.5.

Calibration The ability of a risk prediction model to give an accurate prediction of the average outcome
either overall (calibration in the large) or across groups of individuals.

Calibration plot A plot of observed (actual) against expected (predicted) outcomes used to show the
calibration of a risk prediction model. Individuals are ordered according to predicted risk of the outcome
and split into a number of equal-sized groups (typically 5, 10 or 20). The proportion of individuals within
each group who experienced the event is then plotted against the overall predicted risk for the group (the
average of the predictions for each individual in the group). If the model is well calibrated, then the points
will lie along the diagonal line of observed= expected.

Case mix A combination of patient factors that may be associated with the outcome of interest, such as
age, comorbidity and severity of illness. These factors need to be accounted for when comparing the
outcomes achieved by different health-care providers; risk prediction models can therefore also be called
case mix adjustment models.

Complete case analysis An analysis that includes only individuals for whom information on all predictors
and the outcome is complete (i.e. there are no missing data).

Confidence interval An interval that has a specified chance (e.g. 95%) of containing the true value of
a parameter.

Confidentiality Advisory Group A group that provides independent expert advice to the Health
Research Authority (for research applications) and the Secretary of State for Health (for non-research
applications) on whether applications to access patient information without consent should or should not
be approved under Section 251 of the NHS Act (Great Britain. National Health Service Act 2006. London:
The Stationery Office; 2006).

DOI: 10.3310/hsdr03410 HEALTH SERVICES AND DELIVERY RESEARCH 2015 VOL. 3 NO. 41

© Queen’s Printer and Controller of HMSO 2015. This work was produced by Harrison et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

xix



Discrimination The ability of a risk prediction model to separate individuals who experience an event
from those who do not, for example to give a higher predicted risk of death to patients who die than to
those who survive.

External validation An assessment of the performance of a risk prediction model (typically its
discrimination, calibration and accuracy) in a different population of patients from those used to develop
the model. This assesses the validity of claims for ‘plausibly related’ populations (the ‘generalisability’ or
‘transportability’ of the model). It may use patients who were treated more recently (temporal validation),
from other locations (geographic validation), or in fully different settings (strong external validation).

Fractional polynomials Smooth curved functions consisting of a combination of polynomial
transformations, including regular polynomials (e.g. x, x2, x3), negative powers (e.g. x−2= 1/x2), fractional
powers (e.g. x0.5=√x), the natural logarithm [ln(x), denoted by power 0] and repeated powers [where the
repeated power is the original power multiplied by ln(x)]. A combination of up to two powers from the set
(−2, −1, −0.5, 0, 0.5, 1, 2, 3) is sufficient to model most non-linear shapes.

Funnel plot A plot of an unadjusted or adjusted outcome of interest (e.g. standardised mortality ratio)
against a measure of the precision of the estimate (typically the number of eligible individuals) across a
number of groups (e.g. health-care providers). As precision increases, the uncertainty of the estimates
reduces, resulting in a funnel shape of points around the overall value of the outcome. Funnel-shaped
control limits (at 2 and 3 standard deviations) indicate that, as sample size decreases, observations must be
further from average to be considered significantly different.

Glasgow Coma Scale A neurological scale that aims to give a reliable, objective way of recording the
consciousness state of a person for initial as well as subsequent assessment.

Goodness of fit A general term for how close the agreement is between an observed set of values
(e.g. the outcome) and a second set which are derived wholly or partly on a hypothetical basis, that is,
from the ‘fitting’ of a model to the data.

Hierarchical modelling A widely used statistical approach for dealing with data that have a natural
hierarchy or nesting of observations (e.g. patients within hospitals). This is necessary as patients admitted
to the same hospital are likely to have outcomes that are more similar than the outcomes of those
admitted to different hospitals (they are said to be ‘clustered’ by hospital). This results in observations that
are not independent.

Imputation A procedure for filling in a value for a specific data item when the value is missing
or unusable.

Insult The acute event that caused a patient to be critically ill. This may be an injury or trauma, acute
illness or major surgery.

Intensive Care National Audit & Research Centre coding method A way of recording the reason a
patient was admitted to the critical care unit through the use of a tiered numeric coding system. It avoids
the need for data collectors to enter the full name of the condition in free-text format or having to select
from a full list of all possible conditions.

Internal validation An assessment of the performance of a risk prediction model (typically its
discrimination, calibration and accuracy) in the same population of patients that was used to develop
the model. This assesses the validity of claims for the underlying population from which the data
originated (‘reproducibility’).
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Multiple imputation A process of repeatedly filling in missing values multiple times to produce complete
data sets that can be analysed and the results of these analyses combined to allow for the uncertainty in
the missing values.

Outcome (or outcome measure) A change in the health of an individual that may be attributable to the
care he or she received. For risk prediction models, this is usually in the form of an event that happened to
the patient during or after their admission (e.g. death or readmission). Outcome measures are commonly
distinguished from process measures, which describe the actions of health-care professionals (e.g. prescribing
medication, following protocols).

Overfitting A problem that occurs when a statistical model’s complexity is such that it describes the
relationships within the data set used to develop it too precisely and its results are poorly generalisable to
other data sets.

Parsimonious Reduced to the fewest components; a parsimonious model is the simplest one that serves
the required purpose.

Predictor A variable that can be used to predict the value of another variable.

Restricted cubic splines Smooth curved functions that take the form of cubic polynomials
(ax3+ bx2+ cx+ d) between pre-specified ‘knot’ positions with linear (straight line) tails below the lowest
knot and above the highest knot.

Risk prediction model A statistical model that uses data available at a given point in time to make a
prediction of the likelihood of a future outcome.

Routinely collected data Data collected as part of the day-to-day running of a health service.

Standardised mortality ratio The observed number of deaths in a population divided by the expected
(or predicted) number of deaths (calculated as the sum of the predicted risk for each patient from a risk
prediction model).

Stepwise selection A procedure to select which candidate predictors to include in a risk prediction model
by either adding predictors to the model one by one (forward stepwise selection) or removing predictors
one by one (backward stepwise selection).
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List of abbreviations

AIC Akaike information criterion

APACHE Acute Physiology And Chronic
Health Evaluation

AQR Annual Quality Report

BIC Bayesian information criterion

BMI body mass index

CASUS Cardiac Surgery Score

CI confidence interval

CMP Case Mix Programme

CPR cardiopulmonary resuscitation

CQC Care Quality Commission

DBP diastolic blood pressure

DNACPR Do Not Attempt Cardiopulmonary
Resuscitation

FCS fully conditional specification

FiO2 fraction of inspired oxygen

GCS Glasgow Coma Scale

GWTG-R Get With The
Guidelines®-Resuscitation

HES Hospital Episode Statistics

ICNARC Intensive Care National Audit &
Research Centre

JAV just another variable

MAR missing at random

MCAR missing completely at random

MPM Mortality Probability Model

NCAA National Cardiac Arrest Audit

NRI net reclassification improvement

PaCO2 arterial carbon dioxide pressure

PaO2 arterial oxygen pressure

POCAS Post Cardiac Surgery

QQR Quarterly Quality Report

ROSC return of spontaneous circulation

SAPS Simplified Acute Physiology Score

SBP systolic blood pressure

SICSAG Scottish Intensive Care Society
Audit Group

SMC-FCS substantive model compatible fully
conditional specification

SMR standardised mortality ratio

SOFA Sequential Organ Failure
Assessment

WBC white blood cell
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Plain English summary

What was the problem?

When a patient becomes very sick, it is usually an emergency. The patient will not be able to choose where
they are treated. We must therefore make sure that all hospitals provide good care. When comparing
hospitals, we need to take account of the different patients they treat; if one hospital has more very sick
patients, we expect the death rate to be higher. To do this, we use risk prediction models. These models take
information about the patient from early in their care and make a prediction of their probable outcome.

What did we do?

We used information about patients who were admitted to an intensive care unit or had a heart attack in
hospital, including how sick each patient was (e.g. blood pressure or heart rhythm). We used statistical
techniques to fill in missing information and to estimate curves to relate this information to the
patients’ outcomes.

What did we find?

We produced new risk prediction models to predict outcomes for patients who were admitted to an
intensive care unit or had a heart attack. We showed that the new models work well when they are used
to predict the outcomes of different patients.

What does this mean?

The new models can be used to compare outcomes for patients who were admitted to an intensive care
unit or who had a heart attack in different hospitals.
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Scientific summary

Background

The provision of high-quality care is a fundamental objective of the NHS. Assessing outcomes of
health-care providers requires comparison with other providers (comparative audit) using high-quality
clinical data to put the outcome of the particular provider in context and enable benchmarking. National
clinical audit has a key role to play in ensuring the provision of high-quality care, particularly in areas of
health care, such as emergency and critical care, where patient choice does not, and cannot, play a
significant part.

However, quality of care is only one of many factors that will contribute to a patient’s outcome and, if
crude outcomes were to be compared between health-care providers, any effect of quality would probably
be overwhelmed by variation in patient demographics, underlying health status, acute conditions and
severity of the acute illness (factors collectively termed ‘case mix’). When comparing outcomes between
health-care providers, it is therefore essential to take the differing case mix of the providers into account in
order to make fair comparisons. Sophisticated and accurate risk prediction models are therefore required
to adjust for patient case mix in national clinical audits.

The Intensive Care National Audit & Research Centre (ICNARC) is an independent charitable organisation
that co-ordinates two national clinical audits: the Case Mix Programme (CMP), which is the national clinical
audit for adult critical care; and the National Cardiac Arrest Audit (NCAA), which is the national clinical
audit for in-hospital cardiac arrest. Both national clinical audits are underpinned by the need and ability to
report accurate risk-adjusted results.

Risk prediction models for adult, general critical care are well established, but ongoing improvement work
is essential to further improve accuracy. In 2006, ICNARC published a validation of four existing models
and concluded that there was little difference in performance among the models, but that there was scope
for further improvement. While retaining the Acute Physiology And Chronic Health Evaluation (APACHE) II
model for international comparability, ICNARC developed and validated the ICNARC model, which
underpins the risk-adjusted outcomes reported for the CMP. However, we have identified a number of
areas where we have the potential to improve our modelling.

Prior to this project, there was no validated risk prediction model for predicting outcomes following
in-hospital cardiac arrest. Initial comparative reporting for the NCAA was based on stratifying patients
according to single risk factors.

Objectives

The aim of the current project was to improve risk prediction models to underpin quality improvement
programmes for the critically ill (patients receiving general or specialist adult critical care or experiencing an
in-hospital cardiac arrest).
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We set out to address this aim through the following objectives:

1. To improve current risk prediction models for critically ill patients, to include:

i. external validation of current models in critical care units in Scotland
ii. introduction of new important variables
iii. improved modelling of interactions between physiological parameters
iv. improved handling of missing data and
v. improved modelling of reasons for admission to/diagnosis on admission to critical care.

2. To develop and validate new risk prediction models for critically ill patients, to include:

i. models for cardiothoracic critical care
ii. models for patients experiencing an in-hospital cardiac arrest and
iii. models for critical care units admitting lower-risk patients (ultimately addressed within objective 1).

3. Immediate translation of improved risk prediction models into practice, through:

i. adoption into routine comparative outcome reporting for national clinical audits and
ii. communication of research output to providers, managers, commissioners, policy-makers and

academics in critical care.

Methods and results

External validation of the current Intensive Care National Audit & Research
Centre model in Scottish critical care units
Data were extracted from the Scottish Intensive Care Society Audit Group (SICSAG) database for the years
2007–9. Recoding and mapping of variables was performed, as required, to apply the ICNARC model
(2009 recalibration) to the SICSAG data. The performance of the ICNARC model was assessed for
discrimination, calibration and overall fit and compared with that of the APACHE II model.

There were 29,626 admissions to 24 adult, general critical care units in Scotland between 1 January 2007
and 31 December 2009. After exclusions, 23,269 admissions were included in the analysis. The ICNARC
model outperformed the APACHE II model on measures of discrimination (c-index 0.848 vs. 0.806),
calibration (Hosmer–Lemeshow chi-squared statistic 18.8 vs. 214) and overall fit (Brier score 0.140 vs.
0.157; Shapiro’s R 0.652 vs. 0.621). Model performance was consistent across the 3 years studied.

Development and validation of a risk prediction model for admissions to
cardiothoracic critical care units
Data were extracted from the CMP database for admissions to cardiothoracic critical care units for the
years 2010–12 (development) and for January 2013 to June 2014 (validation). Risk prediction models were
fitted using logistic regression to predict mortality before discharge from acute hospital. Missing data on
predictors were imputed using multiple imputation by fully conditional specification. Alternative functional
forms were considered for modelling continuous predictors in univariable analyses. A full multivariable
model was fitted, including all potential predictors, and simplified by removing non-significant terms and
the functional form re-examined. The model was then simplified further by removing predictors in a
stepwise approach to select a model balancing parsimony with performance. The final parsimonious model
was further improved by considering additional factors specific to patients admitted following
cardiac surgery.

SCIENTIFIC SUMMARY
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A total of 17,002 patients were admitted to five cardiothoracic critical care units between 1 January 2010 and
31 December 2012. Of these, 1881 (11.1%) died before discharge from acute hospital. The optimal approach
to modelling most predictors was with restricted cubic splines, except for blood lactate concentration, which
was found to have a linear relationship with outcome. The full multivariable model with 17 predictors had a
c-index of 0.914 and a Brier score of 0.064; all predictors were statistically significant. Following the stepwise
procedure, 10 predictors were retained (in order of importance): location prior to critical care unit admission/
surgical urgency; blood lactate concentration; Glasgow Coma Scale (GCS) score; age; arterial pH; platelet
count; prior dependency; mean arterial pressure; white blood cell (WBC) count; and creatinine level. The
resulting simplified model had a c-index of 0.895 and Brier score of 0.066. The model was improved by
introducing interactions between admission following cardiac surgery and physiological predictors (blood
lactate concentration, platelet count and creatinine levels). The resulting final model had a c-index of 0.904
and Brier score of 0.055 in external validation data.

Development and validation of the new Intensive Care National Audit &
Research Centre model for prediction of acute hospital mortality for
admissions to adult critical care units
Data were extracted from the CMP database for admissions to adult (general and specialist) critical care
units during January to December 2012 (development) and January to September 2013 (validation).
A set of 21 physiological and 15 non-physiological candidate predictors were selected a priori based on the
previous ICNARC model, published studies and expert knowledge. Alternative approaches were considered
for imputation of missing predictors and compared with using complete case data for model development
in terms of bias and loss of precision. The optimal functional form for continuous predictors was considered
in univariable analyses. A full physiology model was fitted using logistic regression including main terms
for all the physiological candidate predictors. Non-significant predictors were removed from the model,
and continuous predictors were tested for linearity. A simplified physiology model was developed by
backward elimination. Starting from this simplified physiology model, a full multivariable model was fitted
by adding non-physiological predictors. Reason for admission to the critical care unit was modelled based
primarily on the combination of body system and pathological/physiological process, making use of the
hierarchical approach to coding. The full model was again refined and simplified using a similar approach
to the physiology model. Potentially important interactions between the candidate predictors were
identified by an expert group of clinicians. These interactions were introduced one by one into the model
and significant interactions (p< 0.05) were retained. The full model including all such interactions was
then fitted and interaction terms were retained if they were significant at p< 0.001 to avoid overfitting.
Model performance was assessed in terms of discrimination, calibration and goodness of fit and compared
with that of the current ICNARC model using reclassification techniques. In addition, the performance of
the new model was compared with the current ICNARC model (and, where relevant, recent recalibrations
to specific unit types) for subgroups defined by patient characteristics and critical care unit types.

There were 155,239 admissions to 232 adult critical care units between 1 January 2013 and 31 December
2013. Use of complete case data was found to have minimal impact on the model selection process and
so the model was developed using data from 121,573 admissions with complete data for all candidate
predictors, with multiple imputation using fully conditional specification applied in parallel at important
steps in the process, including to estimate the final coefficients of the model. The optimal functional
form for continuous predictors was found to be best modelled with either restricted cubic splines or
right-restricted cubic splines. The simplified physiology model retained all 12 physiological predictors from
the current ICNARC model (systolic blood pressure, temperature, heart rate, respiratory rate, partial pressure
of oxygen in arterial blood/fraction of inspired oxygen, arterial pH, urine output, individual level of creatinine,
urea and sodium, WBC count and GCS score/sedation) and also partial pressure of carbon dioxide in arterial
blood, blood lactate concentration and platelet count. Non-physiological predictors included in the final
model were age, dependency prior to admission, severe conditions in the past medical history (severe liver
disease, metastatic disease, haematological malignancy), cardiopulmonary resuscitation within 24 hours
prior to admission, location prior to admission (in combination with surgical urgency and planned vs.
unplanned admission) and primary reason for admission (56 system/process combinations and 16 individual
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conditions). In addition, 19 reasons for admission–physiology interactions, one past medical
history–physiology interaction, six intervention–physiology interactions and three physiology–physiology
interactions were included. The final model had a c-index of 0.891 and Brier score of 0.103 in the
development data set. Performance of the new model was similar in the validation data set of 90,017
admissions to 216 critical care units between January and September 2013 (c-index 0.885, Brier score
0.108) and slightly better than the most recent recalibration of the current ICNARC model (c-index 0.869,
Brier score 0.115). Net reclassification improvement for the new model was 19.9. Performance of the new
model was similar or improved across all types of specialist critical care units when compared with
coefficients for the current ICNARC model specifically recalibrated to these unit types.

Development and validation of risk prediction models to predict outcomes
following in-hospital cardiac arrest
Data were extracted from the NCAA database for patients (aged 28 days or over) who received chest
compressions and/or defibrillation following an in-hospital cardiac arrest and were attended by the
hospital-based resuscitation team in response to an emergency (2222) call between April 2011 and March
2013. Risk prediction models were developed for two outcomes: return of spontaneous circulation (ROSC)
for > 20 minutes and survival to hospital discharge. For each outcome, a full model was fitted and then
simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions
between predictors were considered. Models were assessed for discrimination, calibration and accuracy in
data from the same hospitals over time and in new hospitals that had recently joined the NCAA.

A total of 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development,
7791 validation). The final risk prediction model for ROSC > 20 minutes included age (non-linear); sex;
prior length of stay in hospital; reason for attendance; location of arrest; presenting rhythm; and
interactions between presenting rhythm and location of arrest. The model for hospital survival included the
same predictors, excluding sex. Both models had acceptable performance across the range of measures,
although discrimination for hospital survival exceeded that for ROSC > 20 minutes (c-index 0.81 vs. 0.72
in the validation data set).

Conclusions

We have demonstrated that the current ICNARC model retains similar performance to that reported from
previous validation within the CMP when externally validated using independently collected data from
critical care units in Scotland. Nevertheless, we identified a number of areas where the current risk
prediction model could be improved. The first related to its performance in specialist critical care units. We
therefore developed a specific risk prediction model for admissions to cardiothoracic critical care units
which had excellent performance. As well as providing a specific model, tailored to the unique case mix of
these units, this model also served as a baseline to be able to assess the performance of the new ICNARC
model in cardiothoracic critical care units, serving as an assessment of the ability of a generic model to
work across different types of units.

In developing the new ICNARC model, we also addressed further areas for improvement, including
handling of missing data, continuous non-linear modelling of physiological predictors and making better
use of the available data within the hierarchical coding of reasons for admission to the critical care unit.
The resulting risk prediction model performed well not only in the full validation data set but also when
evaluated in specific patient subgroups and specific types of critical care unit.

Finally, using data from the NCAA we developed risk prediction models to predict two important
outcomes following in-hospital cardiac arrest: the immediate outcome of ROSC > 20 minutes and the
slightly longer-term outcome of hospital survival. Based on only a small number of predictors, the model
for hospital survival had good discrimination and validated well on subsequent data. The performance
of the model for ROSC > 20 minutes was less good, possibly reflecting interhospital variation in
resuscitation practice.

SCIENTIFIC SUMMARY
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Implications for health care
The newly developed risk prediction models have been, or are being, introduced into routine comparative
reporting for the CMP and NCAA. For the CMP, this will enable fairer comparison across critical care units
including, for the first time, across different types of critical care units, underpinning annual public reporting
of critical care unit outcomes. For the NCAA, the models permit genuine risk-adjusted comparisons across
hospitals for the first time and will enable the NCAA to also move towards public reporting of results.

Recommendations for research
Recommendation 1: further research should be conducted by linking with death registrations to evaluate
mortality at fixed time points and using time to event analyses.

Recommendation 2: further research in this field should make better use of data linkage across national
clinical audits.

Recommendation 3: further research in this field should make better use of other routinely collected
data sets.

Recommendation 4: future research should consider the necessity for specific data collection to support
national clinical audit compared with benchmarking providers using routinely collected data alone.

Funding

Funding for this study was provided by the Health Services and Delivery Research programme of the
National Institute for Health Research.
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Chapter 1 Introduction

The provision of high-quality care is a fundamental objective of the NHS.1 The most widely used
framework for assessing the quality of health care is that proposed by Donabedian.2 He describes three

distinct domains from which inferences about the quality of care can be made: structure, process and
outcome. Structure describes the attributes of the setting within which care occurs. Process denotes what
is actually done in giving and receiving care. Outcome is defined as the effects of care on the health status
of patients and populations.

The domains of structure and process can be assessed within an individual health-care provider. Indicators
of structure are assessed against professional standards, regulations and recommendations. They relate to
the provider rather than the patient and, therefore, require only periodic assessment. Indicators of process
are assessed against national or international clinical guidelines, based ideally on high-quality evidence. The
gold standard is 100% adherence to the guidelines and there is no need to compare performance with
other health-care providers.

Assessing outcomes for a single health-care provider requires comparison against other providers
(comparative audit) to put the outcome of the particular health-care provider in context and to enable
benchmarking. However, the quality of care is only one of many factors that will contribute to a patient’s
outcome and, if crude outcomes were to be compared between health-care providers, then any effect of
quality would probably be overwhelmed by variation in the patient demographics, underlying health
status, acute conditions and severity of the acute illness (factors collectively termed ‘case mix’). When
comparing outcomes between health-care providers, it is therefore essential to take the differing case mix
of patients treated by the providers into account in order to be able to make fair comparisons.

National clinical audit has a key role to play in ensuring high-quality care,3,4 particularly in areas of health
care, such as emergency and critical care, where patient choice does not, and cannot, play a significant
part. Sophisticated and accurate risk prediction models, developed using high-quality clinical data, are key
in underpinning fair comparisons among health-care providers.5 They can also enable risk-adjusted
observational research and risk stratification in randomised controlled trials.

The Intensive Care National Audit & Research Centre (ICNARC) is an independent charitable organisation
that runs national clinical audit programmes to monitor and improve care for the critically ill. ICNARC
co-ordinates two national clinical audits: the Case Mix Programme (CMP), a national clinical audit for adult
critical care; and the National Cardiac Arrest Audit (NCAA), a national clinical audit for in-hospital cardiac
arrest, co-ordinated jointly with the Resuscitation Council (UK). Both national clinical audits are listed for
inclusion in the Department of Health’s NHS Quality Accounts,6 and both are underpinned by the need
and ability to report accurate risk-adjusted outcomes.

The Case Mix Programme

The CMP is the national clinical audit for adult critical care, with a remit for England, Wales and Northern
Ireland. Participation of adult, general critical care units delivering level 3 or combined level 2/3 care (intensive
care units and combined high-dependency/intensive care units) is approaching 100%, but participation of
other critical care units, such as specialist units (e.g. neurocritical care units and cardiothoracic critical care
units) and stand-alone level 2 (high-dependency) units, is lower. For all participating units, data on consecutive
admissions are recorded prospectively and abstracted from the medical records by trained data collectors in
accordance with precise rules and definitions. The data collected include raw physiological and diagnostic
data from the first 24 hours following admission to the critical care unit, together with demographic, outcome
and activity data. The data undergo extensive validation, both locally and centrally, before being pooled into
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the central CMP database. Details of data collection and validation have been reported previously, and the
CMP database has been independently assessed to be of high quality.7

Risk prediction models for adult, general critical care are well established, but ongoing improvement work
is essential to further improve accuracy.8 In 2006, ICNARC published a validation of four existing models
[the Acute Physiology and Chronic Health Evaluation (APACHE) model versions II and III,9,10 the Simplified
Acute Physiology Score (SAPS) version II11 and the Mortality Probability Models (MPM) version II12] and
concluded that there was little difference in performance among the models, but that there was scope for
further improvement.13 While retaining the APACHE II model for the purpose of international comparisons,
ICNARC developed and validated the ICNARC model,14,15 which underpins the risk-adjusted outcomes
reported for the CMP. However, a number of areas were identified where we have the potential to
improve our modelling.

The National Cardiac Arrest Audit

The NCAA is the national clinical audit of patients, aged greater than 28 days, in acute hospitals in the UK
who receive cardiopulmonary resuscitation (CPR) and are attended by the hospital-based resuscitation
team (or equivalent) in response to a 2222 call (2222 is the emergency telephone number used to
summon a resuscitation team in UK hospitals). CPR is defined in the NCAA as chest compressions and/or
defibrillation. Standardised data are collected at the time of the cardiac arrest and from the medical
records in accordance with precise rules and definitions. Staff members at participating hospitals enter data
onto a dedicated secure online data entry system. Data are validated, both at the point of entry and
centrally, for completeness, illogicalities and inconsistencies. Details of data collection and validation have
been reported previously.16

Prior to this project, there was no validated risk prediction model for predicting outcomes following
in-hospital cardiac arrest. Initial comparative reporting for the NCAA was based on stratifying patients
according to single risk factors.

Governance

Both the CMP and NCAA have approval from the Confidentiality Advisory Group of the Health Research
Authority for the collection and use of patient-identifiable data without consent under Section 251 of the
NHS Act 200617 [approval numbers PIAG 2-10(f)/2005 and ECC 2-06(n)/2009].

The project was overseen by an Expert Advisory Group (see Acknowledgements), which included a
member who had previous experience as a patient in a critical care unit. The Expert Advisory Group met
five times during the project, reviewed its progress against each of the objectives and gave advice on the
future directions for the project. Individual members of the Expert Advisory Group were also contacted
between meetings and asked to provide input in their particular areas of expertise.

Aim and objectives

The aim of the current project was to improve risk prediction models to underpin quality improvement
programmes for the critically ill (patients receiving general or specialist adult critical care or experiencing an
in-hospital cardiac arrest).

INTRODUCTION
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We set out to address this aim through the following objectives:

1. To improve current risk prediction models for critically ill patients, to include:

i. external validation of current models in critical care units in Scotland
ii. introduction of new important variables
iii. improved modelling of interactions between physiological parameters
iv. improved handling of missing data and
v. improved modelling of reasons for admission to/diagnosis on admission to critical care.

2. To develop and validate new risk prediction models for critically ill patients, to include:

i. models for cardiothoracic critical care
ii. models for patients experiencing an in-hospital cardiac arrest and
iii. models for critical care units admitting lower-risk patients.

3. Immediate translation of improved risk prediction models into practice, through:

i. adoption into routine comparative outcome reporting for national clinical audits and
ii. communication of research output to providers, managers, commissioners, policy-makers and

academics in critical care.

Following early advice from the Expert Advisory Group, objective 2iii was incorporated into objective 1 by
aiming to improve risk prediction at the patient level to the extent that a separate model for critical care
units admitting lower-risk patients was no longer required.

Chapter 2 reports the external validation of the current ICNARC model in critical care units in Scotland
(objective 1i). Chapter 3 reports the development and validation of a preliminary risk prediction model for
admissions to specialist cardiothoracic critical care units (objective 2i). Chapter 4 reports the development
and validation of a new, improved risk prediction model for admissions to all adult (general and specialist)
critical care units (objectives 1ii–v). Chapter 5 reports the development and validation of risk prediction
models for outcomes following in-hospital cardiac arrest (objective 2ii). Chapter 6 reports the translation
and dissemination work conducted to date (objective 3). Chapter 7 draws conclusions from the project as
a whole, including implications for practice, and makes recommendations for further research in this field.
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Chapter 2 External validation of the current
Intensive Care National Audit & Research Centre
model in Scottish critical care units

Introduction

Risk prediction models require validation before they can be used with confidence.18 Ideally, external
validation should be conducted using independently collected data from a different source to that used to
develop the original model.19 The ICNARC model was developed and validated using data from the CMP
from adult, general critical care units in England, Wales and Northern Ireland.14 It has subsequently been
validated using further data from the CMP, including external validation among critical care units that
joined the programme after the development of the model,15 but it has never undergone validation using
independently collected data.

Scotland, as a devolved nation within the UK, has a very similar health-care system to the rest of the UK.
However, it has a separate, independent, national clinical audit for adult critical care, co-ordinated by the
Scottish Intensive Care Society Audit Group (SICSAG) through the Information Services Division of NHS
National Services Scotland. Consequently, this is the ideal setting in which to externally validate the
ICNARC model using independently collected data. This chapter reports the validation of the ICNARC risk
prediction model using data from adult, general critical care units in Scotland.

Methods

The current Intensive Care National Audit & Research Centre model
Risk predictions in the ICNARC model are calculated for each admission based on the following predictors:

l age in years at admission to the critical care unit
l location prior to admission to the critical care unit (emergency department, ward, theatre, other critical

care unit, other acute hospital or not in hospital) and, for admissions directly from theatre, urgency of
surgery (either elective/scheduled or emergency/urgent)

l CPR within the 24 hours prior to admission to the critical care unit
l the ICNARC Physiology Score – an integer score between 0 and 100 based on derangement in

12 physiological parameters during the first 24 hours following admission to the critical care unit
l primary reason for admission to the critical care unit
l some interactions between the ICNARC Physiology Score and primary reason for admission.

The ICNARC model is regularly recalibrated using CMP data to ensure ongoing fit.

The Scottish Intensive Care Society Audit Group database
The SICSAG has maintained a national database of patients admitted to adult critical care units in Scotland
since 1995. Initially, only adult, general intensive care and combined high-dependency/intensive care units
(critical care) units participated in the audit. More recently, specialist critical care units have joined the audit,
with the result that, as of 2014, all adult, general and specialist critical care units in Scotland participate
voluntarily in the audit. Data are collected prospectively using a dedicated software system. Annual data
extracts are pooled centrally onto servers at the Information Services Division and validation queries relating
to discharges, outcomes, ages and missing treatment information are then issued and fed back to individual
units for checking by local and regional audit coordinators.
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Use of the SICSAG database for this study was approved by the Privacy Advisory Committee, NHS National
Services Scotland (application number 53/10).

Inclusion and exclusion criteria
Data were extracted from the SICSAG database for all admissions to all 24 adult general critical care units
in Scotland between 1 January 2007 and 31 December 2009. During this study period, specialist
cardiothoracic critical care units were not participating in the national audit; admissions to one specialist
neurocritical care unit were not included in the data extract. The following admissions were excluded from
the analysis: admissions flagged in the database as ‘exclude from severity of illness scoring’; readmissions
of the same patient within the same acute hospital stay; admissions missing the outcome of status at
discharge from acute hospital; admissions missing age, location prior to admission or primary reason for
admission to the critical care unit; and admissions for whom the primary reason for admission was unable
to be mapped onto the ICNARC coding method (see Primary reason for admission).

Application of the Intensive Care National Audit & Research Centre model to
the Scottish Intensive Care Society Audit Group database
The most appropriate recalibration of the ICNARC model was selected based on the time period of the
data included in the analysis – this was a recalibration undertaken in 2009 using CMP data from
194,892 admissions to 187 critical care units between 1 January 2006 and 31 December 2008.

In order to apply the ICNARC model to data from the SICSAG database, certain assumptions and recoding
were required. These are detailed in the following subsections: Location prior to admission, Systolic blood
pressure, Arterial pH, Neurological status and Primary reason for admission. After applying this recoding,
the predicted risk of acute hospital mortality from the ICNARC model was calculated for each admission
using standard algorithms developed for the CMP.

Location prior to admission
In the ICNARC model, for admissions to the critical care unit from an imaging department and from the
recovery area (when used as a temporary critical care area rather than for postoperative purposes),
the previous location is used. For admissions collected to version 0 of the SICSAG data set (phased out
from June 2008 to May 2009), only a single location immediately prior to admission to the critical care unit
was recorded and, therefore, the weighting for location prior to admission for these admissions was
assigned based on the most common previous location in both the SICSAG version 203 data (introduced
from June 2008) and CMP data. Admissions from an imaging department were assumed to have
previously been in an emergency department and admissions from the recovery area were assumed to
have previously been on a general ward.

Systolic blood pressure
In the ICNARC Physiology Score, weighting of systolic blood pressure (SBP) is based on the lowest value
during the first 24 hours following admission to the critical care unit. For the SICSAG data (all versions), only
the highest SBP values with paired diastolic blood pressure (DBP) values and the lowest DBP values with
paired SBP values were recorded. The lowest SBP value was therefore imputed using a regression model
fitted to 574,864 admissions to 181 critical care units in the CMP between 1995 and 2008 with all these
parameters recorded. The resulting imputation equation was:

estimated lowest SBP= lowest DBP+ 0:862� (paired SBP� lowest DBP). (1)

Arterial pH
In the ICNARC Physiology Score, weighting of arterial pH is based on the lowest pH value during the first
24 hours following admission to the critical care unit. For the SICSAG data (all versions), only the pH from
the arterial blood gas with the lowest partial pressure of oxygen (PaO2) was recorded. The lowest pH
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was therefore imputed using a regression model fitted to 1,011,217 admissions to 224 critical care units in
the CMP between 1995 and 2013 with both pH measurements recorded. The resulting equation was:

estimated lowest pH= 0:991� pH associated with lowest PaO2. (2)

Neurological status
In the ICNARC Physiology Score, weighting of neurological status is based on either the lowest total
Glasgow Coma Scale (GCS) score during the first 24 hours following admission to the critical care unit
(for admissions not sedated during that period) or a separate weighting for patients who were sedated or
paralysed and sedated during the first 24 hours. For admissions collected to version 203 of the SICSAG
data set (introduced from June 2008), sedation was not recorded. Admissions were therefore assumed to
be sedated if they had no lowest total GCS score recorded during the first 24 hours following admission
to the critical care unit (this was true for 99% of such admissions in SICSAG version 0 data).

Primary reason for admission
In the ICNARC model, weighting of the primary reason for admission to the critical care unit is based on
weightings for conditions/body systems from the ICNARC coding method, developed for the CMP.20 The
ICNARC coding method is a five-tier, hierarchical system for coding reasons for admission to critical care.
It currently contains 795 individual conditions within a hierarchy of type (surgical or non-surgical), body
system, anatomical site, pathological or physiological process and individual condition. Coding to the
system tier is sufficient to be able to assign a weight for the ICNARC model, although all admissions in the
CMP are coded to at least the site tier. For all the SICSAG data, the primary reason for admission to the
critical care unit was collected using Scottish Intensive Care Society diagnostic coding. These diagnoses
were mapped to appropriate codes within the ICNARC coding method by a consultant intensivist with
extensive experience of coding data for the CMP. Of the 423 Scottish Intensive Care Society diagnoses in
use, 295 (70%) were mapped to a specific condition in the ICNARC coding method, 44 (10%) were
mapped to the process tier of the hierarchy, 37 (9%) to the site tier, 28 (7%) to the system tier and
19 (4%) could not be mapped (Box 1).

The Acute Physiology And Chronic Health Evaluation II model
The APACHE II model was selected as a comparator for this study, as it was the model in use in Scotland
at that time. The SICSAG database does not include all the requisite fields to enable a head-to-head
comparison against other, more recent, risk prediction models. The APACHE II model was originally
developed using data from 19 critical care units in 13 US hospitals,9 and has subsequently been validated
and recalibrated using UK data.13,21 Risk predictions are calculated for each admission based on the
following predictors:

l the APACHE II Score – an integer score between 0 and 71 comprising an Acute Physiology Score
(0–60 points) based on derangement in 12 physiological parameters during the first 24 hours following
admission to the critical care unit, age points (0–6) for age categories of ≤ 44, 45–54, 55–64, 65–74
or ≥ 75 years, and chronic health points (0–5) for very severe conditions in the patient’s medical history

l admission to the critical care unit following emergency surgery
l diagnostic categories based on the primary reason for admission to the critical care unit.

Values of predicted acute hospital mortality were supplied by the Information Services Division, calculated
from the original published coefficients9 using the standard algorithms applied for routine reporting of the
SICSAG audit results at that time.

Statistical methods
The ICNARC model was validated using measures of calibration, discrimination and overall fit, as described
below. The validation was conducted in the full 3-year SICSAG database extract and for each
year separately.
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Discrimination was assessed by the c-index,22 which is equivalent to the area under the receiver operating
characteristic curve.23 Calibration was assessed graphically and tested using the Hosmer–Lemeshow
test for perfect calibration in 10 equal-sized groups by predicted probability of survival.24 As the
Hosmer–Lemeshow test does not provide a measure of the magnitude of miscalibration and is very
sensitive to sample size,25,26 calibration was also assessed using Cox’s calibration regression, which assesses
the degree of linear miscalibration by fitting a logistic regression of observed survival on the predicted
log-odds of survival from the risk prediction model.27 Accuracy was assessed by the Brier score
(the mean-squared error between outcome and prediction)28 and Shapiro’s R (the geometric mean of the
probability assigned to the event that occurred),29 and the associated approximate R2 statistics (termed the
‘sum-of-squares’ R2 and the ‘entropy-based’ R2, respectively), which are obtained by scaling each measure
relative to the value achieved from a null model.30

The performance of the ICNARC model was compared with that of the APACHE II model. The difference
in c-index between the two models was assessed using the method of DeLong et al.31 Confidence intervals
(CIs) for observed acute hospital mortality were calculated using the method of Wilson.32

Statistical analyses were performed using Stata/SE, version 13.0 (StataCorp LP, College Station, TX, USA).

BOX 1 Scottish Intensive Care Society diagnoses that were unable to be mapped to the ICNARC coding method

Scottish Intensive Care Society diagnoses

Disseminated malignancy.

Endoscopy.

Interventional radiology.

Interventional radiology/cardiology.

MRSA.

Massive blood loss/transfusion without shock.

Massive blood transfusion.

Multiple surgical procedures.

Other anaesthetic complication.

Other chronic physical disorder.

Other drug-related problem.

Other infection.

Other surgery.

Other trauma.

Pre-operative assessment/monitoring/optimisation.

Self-inflicted injury.

Surgical complication.

Systemic embolism.

VRE.

MRSA, meticillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococcus.
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Results

Available data
Data were extracted from the SICSAG database for 29,626 admissions to 24 adult, general critical care units
between 1 January 2007 and 31 December 2009. The following admissions were excluded: 3599 admissions
(12.1%) flagged in the database as ‘exclude from severity of illness scoring’ (Table 1 contains the breakdown
of reasons for exclusion); 1324 (4.5%) readmissions of the same patient within the same acute hospital stay;
173 (0.6%) admissions missing the outcome of acute hospital mortality; 869 (2.9%) admissions missing
location prior to admission (n= 16) or primary reason for admission to the critical care unit (n= 864); and
392 (1.3%) admissions for whom the primary reason for admission was unable to be mapped. No admissions
were missing age. This resulted in a cohort of 23,269 (78.5%) admissions for analysis.

Of the admissions flagged as ‘exclude from severity of illness scoring’, acute hospital mortality was reported
for 3529 admissions (98.1%); 731 (20.7%) of these patients died before discharge from the acute hospital
(see Table 1 for breakdown). It was not possible to include these patients in the analysis, even using
statistical imputation methods to account for missing data, as insufficient predictor data were recorded.
Owing to the large number of admissions flagged as ‘exclude from severity of illness scoring’, a post hoc
analysis was undertaken to investigate the potential impact of such exclusions using CMP data (see
Simulation of exclusion criteria).

Table 2 summarises the case mix and outcomes for the included admissions, overall and for each year. The
mean age of admitted patients was 57 years, 56% were male, and two-thirds of patients were admitted
for non-surgical reasons. These characteristics were relatively stable over the 3-year period. The distribution
of predicted risk of acute hospital death from the ICNARC model (2009 recalibration) is shown in Figure 1.
The mean predicted risk of death (expected acute hospital mortality) was 30.1%, which was very close to

TABLE 1 Reasons for exclusion for patients flagged in the SICSAG database extract as ‘exclude from severity of
illness scoring’

Reason for exclusion Number (%) Acute hospital mortality, deaths/n (%)

Excluded from APACHE II model 445 (1.5) 290/407 (71.3)

Death within 4 hours 231 (0.8) 231/231 (100)

Missing core physiology data 103 (0.3) 33/101 (32.7)

Age less than 16 years 65 (0.2) 5/30 (16.7)

Admission for primary burn injury 46 (0.2) 21/45 (46.7)

Low-risk patients 2305 (7.8) 174/2291 (7.6)

High-dependency unit patient 1707 (5.8) 116/1694 (6.8)

Admission for postsurgical recovery 598 (2.0) 58/597 (9.7)

Responsibility of other team 88 (0.3) 35/88 (39.8)

Awaiting transfer 45 (0.2) 22/45 (48.9)

In critical care under another team 43 (0.1) 13/43 (30.2)

Unspecified 761 (2.6) 232/743 (31.2)

‘Unit decision not to score patient’ 369 (1.2) 118/360 (32.8)

Other (unspecified) 298 (1.0) 87/293 (29.7)

Reason missing or not documented 94 (0.3) 27/90 (30.0)

Total excluded 3599 (12.1) 731/3529 (20.7)
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TABLE 2 Characteristics of admissions included in the external validation of the ICNARC model in Scottish critical
care units, overall and for each year from 2007 to 2009, compared with the recalibration data set

Characteristic

SICSAG data
Recalibration
data setaOverall 2007 2008 2009

Number of admissions 23,269 7396 7994 7879 194,926

Age (years)

Mean (SD) 57.5 (18.0) 57.6 (18.1) 57.4 (18.2) 57.5 (17.8) 60.1 (18.8)

Median (IQR) 61 (45–72) 61 (45–72) 61 (45–72) 61 (45–71) 64 (48–75)

Sex, n (%)

Female 10,211 (43.9) 3218 (43.5) 3543 (44.3) 3450 (43.8) 85,619 (43.9)

Male 13,058 (56.1) 4178 (56.5) 4451 (55.7) 4429 (56.2) 109,307 (56.1)

Surgical status, n (%)

Elective/scheduled 2438 (10.5) 695 (9.4) 846 (10.6) 897 (11.4) 45,397 (23.3)

Emergency/urgent 5196 (22.4) 1580 (21.4) 1851 (23.2) 1765 (22.5) 36,731 (18.8)

Non-surgical 15,608 (67.2) 5121 (69.2) 5296 (66.3) 5191 (66.1) 112,794 (57.9)

ICNARC Physiology Score

Mean (SD) 19.6 (9.5) 20.0 (9.5) 19.4 (9.5) 19.2 (9.4) 18.0 (10.0)

Median (IQR) 18 (12–25) 18 (13–26) 18 (12–25) 18 (12–25) 16 (10–24)

ICNARC model (2009 recalibration) predicted risk of acute hospital mortality (%)

Mean (SD) 30.1 (26.3) 31.2 (26.6) 29.7 (26.3) 29.6 (26.0) 27.4 (26.7)

Median (IQR) 22.3 (7.3–47.9) 24.0 (7.8–49.6) 21.8 (7.1–47.0) 21.4 (7.2–47.3) 17.0 (5.1–44.3)

APACHE II Score

Mean (SD) 19.1 (8.1) 19.2 (8.0) 19.1 (8.2) 18.9 (8.2) 16.7 (7.4)

Median (IQR) 18 (13–24) 19 (13–24) 18 (13–24) 18 (13–24) 16 (11–21)

APACHE II model predicted risk of acute hospital mortality (%)

Mean (SD) 33.0 (25.3) 33.3 (25.0) 32.9 (25.3) 32.8 (25.5) 25.2 (21.7)

Median (IQR) 27.4 (11.3–49.7) 28.5 (12.0–49.7) 27.0 (11.3–49.7) 26.6 (10.9–50.1) 18.5 (8.5–36.4)

Acute hospital mortality

Deaths (%) 6907 (29.7) 2296 (31.0) 2342 (29.3) 2269 (28.8) 53,660 (27.5)

95% CI 29.1 to 30.3 30.0 to 32.1 28.3 to 30.3 27.8 to 29.8 27.3 to 27.7

IQR, interquartile range; SD, standard deviation.
a Admissions to 187 adult, general critical care units in the CMP between 1 January 2006 and 31 December 2008 used to

produce the 2009 recalibration of the ICNARC model.
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the overall observed acute hospital mortality of 29.7%. Compared with the CMP data set used to produce
the 2009 recalibration of the ICNARC model, patients admitted to Scottish critical care units were, on
average, slightly younger (median 61 vs. 64 years), less likely to be admitted following elective/scheduled
surgery (10.5% vs. 23.3%) and had higher acute severity of illness (mean ICNARC Physiology Score
19.6 vs. 18.0).

Model validation
The measures of model performance of the ICNARC model (2009 recalibration) compared to the APACHE II
model are shown in Table 3. The ICNARC model outperformed the APACHE II model on all measures of
model performance. The ICNARC model had substantially better discrimination (c-index 0.848 vs. 0.806;
p< 0.001; Figure 2) and was also much better calibrated (Figure 3). Cox calibration regression showed an
intercept and slope for the ICNARC model very close to the ideal values of 0 and 1, respectively. In contrast,
the APACHE II model underpredicted both risk (intercept < 0) and variability (slope < 1). Performance of the
ICNARC model remained consistent across the 3 years studied.

Simulation of exclusion criteria
In simulations using CMP data to reproduce the potential impact of the exclusion of patients flagged as
‘exclude from severity of illness scoring’, randomly excluding an equivalent proportion of the same types of
patients resulted in the following percentage changes in measures of model performance: c-index from
−0.3% to +0.02%; Brier score from −0.8% to +3.8%; and ratio of observed to expected deaths from
−1.1% to +0.6% (Table 4).
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FIGURE 1 Distribution of predicted risk from the ICNARC risk prediction model (2009 recalibration) for admissions
to Scottish critical care units, 2007 to 2009.
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TABLE 3 Measures of model performance for the ICNARC model (2009 recalibration) compared with the APACHE II
model for admissions to Scottish critical care units, overall and for each year from 2007 to 2009

Measures of model
performance Overall 2007 2008 2009

ICNARC model n = 23,269 n = 7396 n = 7994 n = 7879

c-index (95% CI) 0.848
(0.843 to 0.853)

0.846
(0.837 to 0.855)

0.852
(0.843 to 0.861)

0.845
(0.836 to 0.854)

Hosmer–Lemeshow test

Chi-squared (p-value) 18.8 (0.043) 3.5 (0.97) 12.7 (0.24) 10.8 (0.37)

Cox calibration regression

Intercept (95% CI) –0.02
(–0.06 to 0.02)

–0.02
(–0.07 to 0.06)

–0.01
(–0.08 to 0.06)

–0.05
(–0.12 to 0.02)

Slope (95% CI) 1.02
(0.99 to 1.05)

1.02
(0.96 to 1.07)

1.04
(0.98 to 1.09)

1.01
(0.96 to 1.06)

Chi-squared (p-value) 5.3 (0.070) 0.5 (0.78) 2.9 (0.24) 3.6 (0.17)

Brier score 0.140 0.143 0.137 0.139

Sum-of-squares R2 0.331 0.331 0.338 0.325

Shapiro’s R 0.652 0.646 0.656 0.653

Entropy-based R2 0.296 0.295 0.303 0.290

APACHE II n = 22,700 n = 7277 n = 7992 n = 7431

c-index (95% CI) 0.806
(0.800 to 0.812)

0.793
(0.782 to 0.804)

0.808
(0.798 to 0.818)

0.817
(0.807 to 0.827)

Hosmer–Lemeshow test

Chi-squared (p-value) 214 (< 0.001) 44.9 (< 0.001) 85.1 (< 0.001) 120 (< 0.001)

Cox calibration regression

Intercept (95% CI) –0.26
(–0.30 to –0.23)

–0.18
(–0.24 to –0.12)

–0.27
(–0.33 to –0.21)

–0.34
(–0.40 to –0.28)

Slope (95% CI) 0.91
(0.89 to 0.94)

0.88
(0.83 to 0.93)

0.92
(0.87 to 0.97)

0.95
(0.90 to 1.00)

Chi-squared (p-value) 208 (< 0.001) 39.2 (< 0.001) 77.1 (< 0.001) 117 (< 0.001)

Brier score 0.157 0.165 0.156 0.151

Sum-of-squares R2 0.244 0.234 0.246 0.250

Shapiro’s R 0.621 0.608 0.623 0.631

Entropy-based R2 0.214 0.200 0.217 0.224
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Discussion

The ICNARC model demonstrated excellent performance when validated in an external sample of data
collected from adult, general critical care units in Scotland. The model performance exceeded that of the
APACHE II model, being used for benchmarking outcomes in Scotland at the time of this study, on all
measures and was consistent over time.

The discrimination of the ICNARC model (c-index 0.848) was slightly lower than that reported previously
from the original development and validation samples (0.872 and 0.870, respectively)14 and previous
external validation using data from the same source but from different critical care units (0.868).15 The
finding that all measures of model performance were consistent over time was surprising, as previous
studies have suggested that, although discrimination of risk prediction models is maintained, calibration
deteriorates over time, necessitating regular recalibration of the models.13,33

The main strength of this study is the large, representative data set. As these data come from a very similar
health-care system to the rest of the UK, where the model was developed, but were collected, managed
and validated independently, they represent the ideal setting in which to validate the ICNARC model.
Independent, external validation of the ICNARC model within the rest of the UK is impossible as the CMP
has almost 100% coverage, meaning that there are not sufficient critical care units outside the CMP in
which this could be done.

The study does have some limitations; most notable is the number of admissions that it was necessary to
exclude. One-fifth of exclusions were of multiple admissions of the same patient, which are essential to
exclude as outcomes for these admissions are not independent, and follow-up was excellent, with only
0.6% of admissions excluded because of missing outcomes. However, the largest category of exclusions
consists of those flagged as ‘exclude from severity of illness scoring’ (12.1% of all admissions). The main
reason for these exclusions seems to have been to reduce the data collection burden for admissions that
would not have been included in benchmarking using the APACHE II model and for those patients
considered to have a very low risk of death. However, 761 admissions (2.6% of all admissions) were
excluded without any clear reason being specified. The excluded admissions did not have sufficient data
recorded to be able to reinstate them into the analysis; however, simulating similar exclusions in the CMP
data demonstrated that the impact of these exclusions was likely to be small.

TABLE 4 Simulation of the SICSAG exclusions using the Case Mix Programme data

Simulated exclusions
(% excluded at random in
50 repeated simulations)

Performance measure (% change)

c-index Brier score Observed/expected deaths

Age < 16 years (25) 0.8640 (–0.015) 0.1238 (+0.11) 0.9722 (–0.003)

Death within 4 hours (50) 0.8644 (+0.023) 0.1227 (–0.76) 0.9619 (–1.06)

Admission for burns (50) 0.8641 (–0.002) 0.1237 (+0.009) 0.9722 (–0.002)

Admission for level 2 care (25) 0.8613 (–0.33) 0.1283 (+3.75) 0.9777 (+0.57)

All of above 0.8614 (–0.32) 0.1275 (+3.09) 0.9673 (–0.51)

VALIDATION OF THE CURRENT ICNARC MODEL
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It was necessary to apply some assumptions and mapping of data in order to be able to apply the
ICNARC model to the SICSAG data set. The simplest approach to assigning weights for lowest SBP and
lowest arterial pH would have been to use the most similar available value of these parameters (the SBP
associated with the lowest DBP and the pH from the arterial blood gas with the lowest PaO2); however,
this would have resulted in measurements that were slightly less extreme than the true values and,
therefore, would have potentially underestimated risk of death. Consequently, we used data from the
CMP to develop appropriate regression imputation equations. Following a data set revision, explicit
recording of sedation during the first 24 hours following admission to the critical care unit was removed
from the SICSAG data set. It was therefore necessary to make the assumption that patients with no GCS
score recorded were sedated. Using the earlier portion of the data set, where explicit recording of
sedation was available, this assumption was demonstrated to be reasonable, with 99% of missing GCS
values being due to sedation. Any impact on risk predictions will therefore have been minimal.

It was also necessary to map reasons for admission to critical care, which had been recorded using a
different coding system. Although only 70% of the diagnostic categories could be mapped to a specific
condition in the ICNARC coding method, the hierarchical nature of the ICNARC coding method enabled
most of the remaining diagnostic categories to be mapped to a higher level in the hierarchy; only 4% of
diagnostic categories were unable to be mapped, resulting in the exclusion of 1.3% of admissions. It is
possible that the slightly less specific diagnostic coding, combined with the need to map these onto a
different coding system, may have contributed to the slightly lower discrimination of the ICNARC model
than reported from the CMP data.
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Chapter 3 Development and validation of a risk
prediction model for admissions to cardiothoracic
critical care units

Introduction

With the development of advanced circulatory support technologies and strategies, cardiothoracic critical
care has developed into its own distinct specialty. In the UK, cardiothoracic critical care units are the
principal areas where both complicated surgical and medical cardiac and thoracic admissions are managed.

The traditional risk prediction models used for adult general critical care may not be applicable to
cardiothoracic critical care units for the following reasons. First, the majority of admissions to cardiothoracic
critical care units are cardiac surgery cases, which were predominantly excluded from earlier versions of
commonly used risk prediction models.34 Although admissions following cardiac surgery were not excluded
from the development of the ICNARC model,14 the model was developed using data from adult, general
critical care units only and, therefore, any cardiac surgery cases included would probably be atypical.
Second, the pathophysiological mechanisms underlying organ failure in the cardiac surgery population are
inherently different from those seen in the adult, general critical care population, where admissions are
most commonly due to sepsis or respiratory failure.35 As such, the physiological variables that constitute
the risk scores may not be calibrated for a population consisting mainly of cardiac surgery patients.

The majority of critical care units participating in the CMP are adult general units; however, an increasing
number of cardiothoracic critical care units are now joining. Although we ultimately aim to produce a
single risk prediction model that performs well across all types of critical care units, we believe that a
model specifically focused on this unique group of patients would complement this output. This chapter
therefore reports on the development and validation of a risk prediction model to predict acute hospital
mortality for admissions to cardiothoracic critical care units.

Methods

Inclusion and exclusion criteria
For the development data set, data were extracted from the CMP database for all admissions to
cardiothoracic critical care units between 1 January 2010 and 31 December 2012. Patients aged less than
16 years and readmissions to the critical care unit within the same acute hospital stay were excluded.

The validation data set consisted of admissions to cardiothoracic critical care units between 1 January 2013
and 30 June 2014. The same exclusion criteria were applied.

Outcome and candidate predictors
The outcome for the risk prediction model was acute hospital mortality, defined as death before final
discharge from acute hospital and including deaths after direct transfer to another acute hospital from the
hospital housing the critical care unit.

Candidate predictors were chosen based on expert clinical opinion and availability in the CMP database.
The candidate predictors included were as follows: age; sex; severe conditions in the past medical history;
dependency prior to admission to acute hospital; CPR within 24 hours prior to admission to the critical
care unit; location prior to admission to the critical care unit; highest heart rate; mean arterial pressure
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(from the blood pressure measurement with the lowest SBP); highest temperature (central measurement
or, if none available, non-central+ 0.5 °C); ratio of PaO2 to fraction of inspired oxygen (FiO2) (from the
arterial blood gas with the lowest PaO2); lowest arterial pH; partial pressure of carbon dioxide in arterial
blood (PaCO2) (from the arterial blood gas with the lowest pH); highest blood lactate concentration;
highest urea value; highest creatinine value; lowest sodium value; highest potassium value; lowest
haemoglobin value; lowest white blood cell (WBC) count; lowest platelet count; lowest total GCS score;
and mechanical ventilation status.

Severe conditions in the past medical history were defined according to the APACHE II method9 and
categorised as liver disease, renal disease, cardiovascular disease, respiratory disease, metastatic disease,
haematological malignancy and immunocompromisation. Conditions must have been evident in the
6 months prior to admission to the critical care unit. Dependency prior to admission to acute hospital was
assessed according to the ability to complete activities of daily living, categorised as the ability to live
without assistance in daily activities, with some (minor or major) assistance with daily activities or with total
assistance with all daily activities. Location prior to admission was categorised as theatre, ward (including
intermediate care areas), other critical care unit or emergency department. Admissions from theatre were
further categorised as following elective/scheduled or emergency/urgent surgery. Where indicated among
candidate predictors as lowest or highest, physiological predictors were the lowest or highest value from
the first 24 hours following admission to the critical care unit.

Handling of missing data
Although moderate (from 0.1% to 3.2%), missing data were imputed to address potential bias and loss
of precision. Fully conditional specification (FCS)36 was used as the multiple imputation method. All the
candidate predictors (with or without missing values)37 and the outcome,38 as well as auxiliary variables
related to missingness,39 were entered into the imputation model. When required, simple or zero-skewness
log-transformation for non-normality was used. Unless the rate of missing information is unusually high,
there tends to be little or no practical benefit to using more than 10 imputations40 and so, in the following
analysis, 10 repeat imputations were performed. The examination of the imputed data showed the
distribution to be broadly similar to that of the observed data, indicating no obvious problems with the
imputation process.

Model development
The distributions of all candidate predictors were explored in patients with and without the
primary outcome.

For modelling continuous predictors, different approaches were considered, including fractional
polynomials, restricted cubic splines and generalised additive models. The best functional form for each
predictor was selected based on fit, plausibility, accuracy and clinical knowledge.

After appropriate functional forms were decided in the univariable setting, a full multivariable model,
with all continuous and non-continuous predictors, was fitted to determine the association between the
predictors and the outcome. This model was redefined by removing predictors with no significant global
effect. To test predictors’ global significance and individual linearity, Wald tests (based on Wald statistics
for pooled estimates) were applied. Predictors that were non-significant at a cut-off p-value of 0.1 were
discarded. The model was refitted and the remaining predictors were retested. The process continued
until all the predictors in the model were significant. Using the resultant model as a starting point, a
parsimonious model was developed using a backward elimination strategy. At each step one predictor was
dropped from the model while comparing the c-index22 and Brier score.28 The 10 performance estimates
(from the 10 multiply imputed data sets) were averaged and their variances pooled according to Rubin’s
rules.41 The least significant predictor was removed and the process continued until no predictors remained
in the model. The final model was chosen to balance parsimony and model performance.

DEVELOPMENT AND VALIDATION OF A RISK PREDICTION MODEL FOR ADMISSIONS
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As the majority of patients were admitted to the cardiothoracic critical care unit directly from theatre
following cardiac surgery, two expanded models with additional predictors and interactions were tested to
improve model performance. The first expanded model included an additional predictor for the pathological
or physiological process of the primary reason for admission to the critical care unit (e.g. congenital or
acquired deformity, degeneration, dissection or aneurysm, obstruction) from the hierarchical ICNARC coding
method among admissions following cardiac surgery.20 The second expanded model tested interactions
between the physiological predictors and cardiac surgery as the primary reason for admission. A nominal
p-value of 0.001 was used to retain interaction terms in the model. The enhanced models were tested for
improvements in discrimination and calibration.

In order to further evaluate the expanded models, net reclassification improvement (NRI) was determined.
Reclassification has been proposed as a measure of utility or improvement in a risk prediction model.42

The proportions of patients with and without the outcome reclassified into lower- or higher-risk categories
are compared. The NRI is defined as the proportion of non-survivors moving to a higher-risk category
minus the proportion moving to a lower-risk category plus the proportion of survivors moving to a
lower-risk category minus the proportion moving to a higher-risk category.

The final model coefficients were estimated using Rubin’s rules, to give a single estimate and standard error.

Model validation
The risk prediction model was then further validated in the temporally distinct validation data set. The
10 performance estimates of the final model were averaged and their variances pooled according to
Rubin’s rules. The predictive performance of the model was estimated by bootstrapping the c-index and
Brier score.43 Calibration was assessed by Cox calibration regression27 and graphically using calibration
plots, with 20 equal-sized risk groups. Using Rubin’s rules, 10 linear predictions were calculated and
averaged from the new model equation for each admission. The predicted probability of acute hospital
mortality was calculated from this pooled result.

Statistical analyses were performed using Stata/SE, version 13.0.

Results

Available data
Between 1 January 2010 and 31 December 2012 there were 17,002 eligible admissions to five cardiothoracic
critical care units participating in the CMP, which formed the development data set, and between 1 January 2013
and 30 June 2014 there were a further 10,238 eligible admissions to six cardiothoracic critical care units
(one additional unit having joined the CMP), which formed the validation data set (Table 5).

In the development data set, the majority of admitted patients were male (69%) with a median age of
66 years. Only 14.9% of admitted patients had any previous severe conditions in the past medical history,
with the majority of those present being due to severe cardiovascular disease (8.6% of admissions). Most
patients were fully functional prior to hospital admission (82.3%) and reported as needing no assistance
with their activities of daily living. Over three-quarters of all admissions were surgical, of which 97%
followed cardiothoracic surgery. Most surgery was elective or scheduled and most patients were ventilated
during the first 24 hours following admission to the unit. The median length of critical care unit stay was
1.2 days, while the median total length of stay in acute hospital was 11 days. Critical care unit mortality
was 7.4% and acute hospital mortality was 11.1%.

The validation data set had similar characteristics, although a lower proportion of admissions had one or
more severe conditions in the past medical history (9.9%), particularly severe cardiovascular disease
(4.8%), and a correspondingly higher proportion were fully functional prior to hospital admission (88.1%).
Mortality was also lower, both in the critical care unit (6.4%) and in acute hospital (9.7%).
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TABLE 5 Characteristics of admissions included in the development and validation data sets for the risk prediction
model for cardiothoracic critical care units

Characteristic Development data set (n= 17,002) Validation data set (n= 10,238)

Age (years)

Mean (SD) 65.1 (14.1) 65.8 (13.3)

Median (IQR) 68 (58–75) 68 (59–76)

Sex, n (%)

Female 5266 (31.0) 3120 (30.5)

Male 11,736 (69.0) 7118 (69.5)

Severe conditions in past medical history, n (%)

Any severe condition 2535 (14.9) 1015 (9.9)

Liver disease 44 (0.3) 20 (0.2)

Renal failure 175 (1.0) 89 (0.9)

Cardiovascular disease 1470 (8.6) 491 (4.8)

Respiratory disease 517 (3.0) 218 (2.1)

Metastatic disease 172 (1.0) 101 (1.0)

Haematological malignancy 95 (0.6) 58 (0.6)

Immunocompromise 394 (2.3) 174 (1.7)

Dependency, n (%)

No assistance with daily activities 13,986 (82.3) 9022 (88.1)

Some assistance with daily activities 2994 (17.6) 1198 (11.7)

Total assistance with daily activities 22 (0.1) 18 (0.2)

Location prior to admission, n (%)

Theatre – elective/scheduled 11,779 (69.4) 7138 (69.8)

Theatre – emergency/urgent 1186 (7.0) 1098 (10.7)

Ward or intermediate care area 2099 (12.4) 1025 (10.0)

High-dependency unit 1242 (7.3) 487 (4.8)

ED or not in hospital 677 (4.0) 481 (4.7)

Primary reason for admission, n (%)

Surgical 12,970 (76.3) 8237 (80.5)

Cardiac surgery 11,758 (69.2) 7651 (74.7)

Thoracic surgery 635 (3.7) 354 (3.5)

Transplant 178 (1.0) 108 (1.1)

Other 399 (2.3) 124 (1.2)

Non-surgical 4032 (23.7) 2001 (19.5)

Cardiovascular 1995 (11.7) 1116 (10.9)

Respiratory 1501 (8.8) 659 (6.4)

Other 536 (3.2) 226 (2.2)

Intervention, n (%)

Mechanically ventilated during first 24 hours 13,025 (77.0) 8513 (83.5)

CPR prior to admission, n (%) 701 (4.1) 499 (4.9)
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Model development
The best functional form for the relationship between each of the 15 continuous predictors and the
outcome of acute hospital mortality was explored (see Table 6). All 15 predictors showed significant
non-linearity (p< 0.001). Restricted cubic splines were chosen for the final modelling as they showed the
best combination of flexibility and precision. To avoid overfitting spurious dips and unrealistic features of
the curve, four knots were chosen to model the continuous predictors. When functional form was
reassessed in the full multivariable model, the evidence for non-linearity in the relationship for blood
lactate concentration was weak and so this predictor was finally analysed as linear. The final functional
form for each predictor, including the position of the knots for restricted cubic splines, is shown in Table 6.

TABLE 5 Characteristics of admissions included in the development and validation data sets for the risk prediction
model for cardiothoracic critical care units (continued )

Characteristic Development data set (n= 17,002) Validation data set (n= 10,238)

ICNARC Physiology Score

Mean (SD) 15.2 (7.7) 14.9 (7.4)

Median (IQR) 13 (10–18) 13 (10–18)

Length of stay (days), median (IQR)

Critical care unit stay 1.2 (0.9–3.4) 1.3 (0.9–3.7)

Acute hospital stay 11 (7–21) 11 (7– 20)

Mortality, deaths (%)

Critical care unit mortality 1251 (7.4) 653 (6.4)

Acute hospital mortality 1881 (11.1) 985 (9.7)

ED, emergency department; IQR, interquartile range; SD, standard deviation.

TABLE 6 Functional form of continuous predictors in the risk prediction model for cardiothoracic critical care units

Candidate predictor Functional form Position of knots

Age (years) RCS 37, 63, 74, 83

Heart rate (beats per minute) RCS 75, 90, 100, 132

Mean arterial pressure (mmHg) RCS 45, 59, 67, 82

Temperature (°C) RCS 36.0, 36.9, 37.5, 38.5

PaO2/FiO2 (mmHg) RCS 90, 189, 375, 411

Arterial pH RCS 7.16, 7.29, 7.33, 7.41

PaCO2 (mmHg) RCS 34, 43, 48, 63

Blood lactate concentration (mmol/l) Linear –

Urea level (mmol/l) RCS 3.6, 5.7, 7.8, 19.2

Creatinine level (µmol/l) RCS 51, 80, 106, 247

Sodium level (mmol/l) RCS 129, 136, 139, 144

Potassium level (mmol/l) RCS 4, 4.6, 4.9, 5.8

Haemoglobin level (g/dl) RCS 7.4, 8.9, 10.2, 12.8

WBC count (× 109/l) RCS 5.4, 9, 11.9, 19.5

Platelet count (× 109/l) RCS 73, 134, 183, 337

RCS, restricted cubic splines.
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The full multivariable model, including the 22 predictors, had a c-index and Brier score of 0.902 and
0.0635, respectively (Table 7). Of the initial 22 predictors, 18 were found to be associated with acute
hospital mortality on multivariable analysis (p< 0.1): age; one or more severe conditions in the past
medical history; dependency; CPR within 24 hours prior to admission; location prior to admission; heart
rate; mean arterial pressure; temperature; PaO2/FiO2; arterial pH; PaCO2; blood lactate concentration;
urea level; creatinine level; sodium level; WBC count; platelet count; and GCS score. Removal of the
non-significant predictors resulted in minimal change to c-index and Brier score (see Table 7).

The 18 significant predictors were entered into a stepwise model selection (see Table 7). The model which
best balanced parsimony with precision consisted of 10 predictors: age; dependency; location prior to
admission; mean arterial pressure; arterial pH; blood lactate concentration; creatinine level; WBC count;
platelet count; and GCS score. The c-index and Brier score were 0.895 and 0.0656 respectively.

TABLE 7 Model selection process for the risk prediction model for cardiothoracic critical care units

Model Number of predictors in the model c-indexa Brier scorea

Full model 22 0.9021 0.06354

Removing non-significant predictors 18 0.9018 0.06356

Predictors dropped

CPR 17 0.9014 0.06365

Sodium level 16 0.9010 0.06376

PaCO2 15 0.9009 0.06385

Temperature 14 0.8998 0.06460

Previous medical history 13 0.8998 0.06459

Heart rate 12 0.8994 0.06467

PaO2/FiO2 11 0.8983 0.06487

Urea level 10 0.8950 0.06561

Creatinine level 9 0.8896 0.06625

WBC count 8 0.8876 0.06671

Mean arterial pressure 7 0.8848 0.06759

Dependency 6 0.8807 0.06822

Platelet count 5 0.8771 0.06915

Arterial pH 4 0.8715 0.07083

Age 3 0.8575 0.07233

GCS score 2 0.8412 0.07512

Blood lactate concentration 1 0.7698 0.08485

Location 0 0.5000 0.09929

Expanded models

+ reason for admission 11 0.8986 0.06525

+ interaction terms 11 0.8991 0.06491

a Combined estimate from 10 imputed data sets.
Bold text indicates the predictors included in, and the performance of, the parsimonious model and the final model.
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The first expanded model, incorporating reason for admission, performed moderately better than the
baseline parsimonious model, with a c-index of 0.899 and Brier score of 0.0652 (see Table 7). The second
expanded model, incorporating interactions between admission following cardiac surgery and blood
lactate concentration, creatinine level and platelet count, demonstrated a c-index of 0.899 and Brier score
of 0.0649 (see Table 7).

After comparing the reclassification of the two expanded models using risk categories defined by
thresholds of 0%, 2%, 5%, 10%, 20% and 50% (Tables 8 and 9), the model with interaction terms was
superior (Table 10). With this model, a total of 3677 (23%) admissions were reclassified and 2382 of those
(65%) were placed in more appropriate categories. The total NRI for the expanded model with interaction
terms was 11.1% (standard error 1.1%; p< 0.0001) compared with 6.5% (1.0%; p< 0.0001) for the
expanded model with reasons for admission. The calibration regression for the expanded model with
interaction terms demonstrated a slope of 0.98 and an intercept of −0.07, indicating a well-calibrated
model. This was therefore taken as the final model. The coefficients for the final model are shown in
Table 11.

TABLE 8 Reclassification table for the expanded model with reasons for admission compared with the
parsimonious model for cardiothoracic critical care units

Risk category
(parsimonious model)

Risk category (expanded model incorporating reason for admission)

0–1.99% 2–4.99% 5–9.99% 10–19.99% 20–49.99% 50–100%

Survivors

0–1.99% 5416 500 18

2–4.99% 1055 2566 366 37

5–9.99% 469 1023 179 5

10–19.99% 178 896 96

20–49.99% 100 1006 27

50–100% 18 286

Non-survivors

0–1.99% 26 13 1

2–4.99% 14 70 33 6

5–9.99% 24 83 31 3

10–19.99% 22 185 30

20–49.99% 23 458 25

50–100% 19 611

Grey text indicates no reclassification; unshaded cells indicate improved classification; shaded cells indicate
worsened classification.
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TABLE 10 Net reclassification improvement for the expanded models for cardiothoracic critical care units

Change in classification

Expanded model incorporating
reason for admission

Expanded model incorporating
interaction terms

Survivors Non-survivors Survivors Non-survivors

Down 1820 (12.8%) 102 (6.1%) 2220 (15.6%) 98 (5.8%)

No change 11,193 (78.6%) 1433 (85.4%) 10,834 (76.1%) 1417 (84.5%)

Up 1228 (8.6%) 142 (8.5%) 1187 (8.3%) 162 (9.7%)

Net improvementa (SE) +4.2% (0.4%) +2.4% (0.9%) +7.3% (0.4%) +3.8% (1.0%)

SE, standard error.
a Net improvement defined as the proportion reclassified down minus the proportion reclassified up for survivors and the

proportion reclassified up minus the proportion reclassified down for non-survivors.

TABLE 9 Reclassification table for the expanded model with interaction terms compared with the parsimonious
model for cardiothoracic critical care units

Risk category
(parsimonious model)

Risk category (expanded model incorporating interaction terms)

0–1.99% 2–4.99% 5–9.99% 10–19.99% 20–49.99% 50–100%

Survivors

0–1.99% 5581 309 44

2–4.99% 1527 2096 348 53

5–9.99% 6 461 931 271 7

10–19.99% 7 122 901 140

20–49.99% 1 71 1046 15

50–100% 25 279

Non-survivors

0–1.99% 31 6 3

2–4.99% 23 59 34 7

5–9.99% 20 85 31 5

10–19.99% 15 173 49

20–49.99% 14 465 27

50–100% 26 604

Grey text indicates no reclassification; unshaded cells indicate improved classification; shaded cells indicate
worsened classification.
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TABLE 11 Final risk prediction model for acute hospital mortality among admissions to cardiothoracic critical
care units

Predictor Coefficient (SE) p-value

Age (years), spline variablesa < 0.0001

age1 0.0133 (0.00602)

age2 0.0180 (0.0114)

age3 –0.0294 (0.104)

Dependency (vs. none) < 0.0001

Some assistance 0.543 (0.070)

Total assistance 0.199 (0.598)

Location prior to admission (vs. ED or not in hospital) < 0.0001

Theatre – elective/scheduled surgery –0.867 (0.157)

Theatre – emergency/urgent surgery –0.438 (0.168)

Ward or intermediate care area 0.186 (0.119)

High-dependency unit 0.172 (0.128)

Admission following cardiac surgery –2.91 (0.880) 0.001

Mean arterial pressure (mmHg), spline variablesa < 0.0001

map1 –0.0406 (0.00760)

map2 0.0174 (0.0259)

map3 0.0292 (0.112)

Lowest arterial pH, spline variablesa < 0.0001

ph1 –4.34 (0.703)

ph2 0.856 (2.01)

ph3 23.0 (19.9)

Highest blood lactate concentration (mmol/l) 0.0808 (0.0138) < 0.0001

Interaction between cardiac surgery and blood lactate concentration 0.0641 (0.0193) 0.001

Highest creatinine level (µmol/l), spline variablesa < 0.0001

creat1 –0.0185 (0.00432)

creat2 0.253 (0.0475)

creat3 –0.574 (0.106)

Interaction between cardiac surgery and creatinine 0.0003

creat1 0.0147 (0.0112)

creat2 –0.0824 (0.111)

creat3 0.167 (0.245)

Lowest WBC count (× 109/l), spline variablesa < 0.0001

wbc1 –0.0861 (0.0282)

wbc2 0.550 (0.134)

wbc3 –1.43 (0.351)

continued
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Model validation
The performance in the validation data set of 10,238 admissions from January 2013 to June 2014 was
excellent: a c-index of 0.904 (95% CI 0.893 to 0.915) and Brier score of 0.055. The calibration of the
model was satisfactory (Figure 4), with a calibration slope of 0.961 and a calibration intercept of –0.183.

TABLE 11 Final risk prediction model for acute hospital mortality among admissions to cardiothoracic critical
care units (continued )

Predictor Coefficient (SE) p-value

Lowest platelet count (× 109/l), spline variablesa < 0.0001

plc1 –0.0130 (0.00217)

plc2 0.0612 (0.0125)

plc3 –0.147 (0.0322)

Interaction between cardiac surgery and platelet count 0.0003

plc1 0.00352 (0.00346)

plc2 –0.0488 (0.0218)

plc3 0.147 (0.0576)

GCS score (vs. 15) < 0.0001

9–14 0.433 (0.113)

3–8 1.83 (0.217)

Sedated 0.898 (0.0770)

ED, emergency department; SE, standard error.
a Restricted cubic spline base variables for continuous predictor x calculated as: x1= x;x2= [max((x – k1)3,0) – (k4 – k1) ×

max((x – k3)3,0)/(k4 – k3)+ (k3 – k1) ×max((x – k4)3,0)/(k4 – k3)]/(k4 – k1)2;x3= [max((x – k2)3,0) – (k4 – k2) ×max((x – k3)3,0)/(k4 – k3)+
(k3 – k2) ×max((x – k4)3,0)/(k4 – k3)]/(k4 – k1)2 where k1, k2, k3 and k4 are the positions of the four knots (see Table 6).
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FIGURE 4 Calibration in the validation data set of the final risk prediction model for admissions to cardiothoracic
critical care units.
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Discussion

The case mix of admissions to cardiothoracic critical care units is different from that of admissions to
adult general critical care units. Specific risk prediction models may aid benchmarking, performance
improvement and resource allocation. Using a combination of baseline clinical and physiological predictors,
collected in the first 24 hours following admission to a cardiothoracic critical care unit, a parsimonious
model with good discrimination was developed and validated. The best-performing model combined age,
dependency, prior location and seven physiological predictors, of which three had interactions with
cardiothoracic surgery as the primary reason for admission.

There are several strengths to this study. First, this study is one of the few to examine cardiothoracic critical
care units rather than isolated cohorts of cardiac or thoracic surgery admissions. Second, cardiothoracic
critical care admissions were from five distinct cardiothoracic critical care units and included a large sample
of admissions. To our knowledge, this is the largest study in terms of sample size from which a model
has been developed. Finally, the data on risk factors are of high fidelity and the CMP database from which
the data derive has been previously assessed to be of high quality.7 The main limitation of the study is the
available data. Specifically, risk factor analysis and model development were limited by the data that have
already been collected for the CMP.

Previous literature on risk prediction models in the cardiothoracic critical care unit setting is limited. There is
a substantial body of literature on risk prediction for patients undergoing cardiac surgery with emphasis on
preoperative risk prediction.44,45 By definition, preoperative risk prediction fails to account for intraoperative
events and will therefore not necessarily be adequate for critical care risk prediction. There are also several
studies examining postoperative risk factors in cardiac and thoracic surgery admissions, but these are
limited in that they are mostly single-centre studies, with risk prediction models that have not been
validated in a separate cohort.46,47 Badreldin et al. evaluated the Sequential Organ Failure Assessment
(SOFA) score and Cardiac Surgery Score (CASUS) in a single-centre study and found high c-indices
associated with both scores, but greater with CASUS.46 CASUS is promising in that it consistently
demonstrates a high c-index, but has yet to be validated in a large multicentre cohort. Tamayo et al.
developed the Post Cardiac Surgery (POCAS) score in a single-centre study which used four postoperative
risk factors (mean arterial pressure, bicarbonate level, blood lactate concentration and the international
normalised ratio) to model in hospital mortality and which demonstrated a c-index of 0.89.48 Again, the
main limitation of this study is the bias inherent in a single-centre study design.

Several multicentre studies have been conducted in an attempt to predict outcomes using postoperative
risk factors. Becker et al. evaluated the APACHE III model in admissions to a critical care unit after coronary
artery bypass surgery in a multicentre cohort study.49 Using a model that included the acute physiology
score of the APACHE III model and baseline clinical risk factors, a c-index of 0.85 was demonstrated for
acute hospital mortality. Similarly, Simchen et al.50 tested multiple models, which included pre-, intra- and
postoperative risk factors, to predict 30-day mortality in patients with coronary artery bypass surgery
admitted to 14 units. The best model that emerged was the one which included postoperative risk
factors with a c-index of 0.92. Gomes et al.51 developed a model in a multicentre cohort, which included
PaO2/FiO2, vasopressor and inotrope use, mechanical ventilation and pre- and intraoperative risk factors,
to predict acute hospital mortality in cardiac surgery admissions with a c-index of 0.84. Multiple other
studies have examined the association between mortality and postoperative risk factors in multicentre
cohort studies in both cardiac and thoracic surgery admissions. Significant postoperative risk factors
included creatinine level, serum glucose concentration, number of blood transfusions received, low cardiac
output, stroke, reoperation, intra-aortic balloon pump use, organ failure, mechanical ventilation time and
serum transaminase levels.52–58 All these studies examined postoperative risk factors in cardiac or thoracic
surgery admissions. To our knowledge, this is the first study to examine postoperative risk factors in a
cohort of cardiothoracic critical care admissions to multiple cardiothoracic critical care units.
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In addition to using postoperative physiological predictors in our model, we attempted to augment its
predictive ability by adding interaction terms to it that would account for the unique physiology of the post
cardiac surgery patient. The injury in cardiac surgery is usually a result of the cardiopulmonary bypass and,
in comparison with patients with sepsis, for example, it is transient and often reversible. To account for
these differences we interacted physiological predictors with cardiac surgery as the primary reason for
admission to the critical care unit. This expanded model was better able to predict and classify patient
outcomes in cardiothoracic critical care units.

Models specifically designed for cardiothoracic critical care units may be warranted given the differences
in case mix of cardiothoracic critical care units compared to that of adult, general critical care units.
A parsimonious model using a combination of clinical and physiological variables collected in the first
24 hours following admission was shown to have good discrimination and calibration, and will serve as a
benchmark for establishing whether or not use of a single risk prediction model across all types of adult
critical care units is appropriate in these highly specialised units.
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Chapter 4 Development and validation of the new
ICNARC model for prediction of acute hospital
mortality for admissions to adult critical care units

Introduction

Although the current ICNARC model has been shown to perform well in a head-to-head comparison with
other models,14 in more recent validation data from the CMP,15 and now in external validation data from
Scottish critical care units (see Chapter 2), there are still a number of areas that we have identified for
potential improvements in the model.

The first potential area for improvement is the setting for model development. The current ICNARC model
was developed and validated using data from adult, general critical care units. However, increasingly,
specialist critical care units and stand-alone high-dependency units are participating in the CMP. The original
objectives of this project included development of separate risk prediction models for cardiothoracic critical
care units (Chapter 3) and units admitting low-risk patients. However, on the advice of the Expert Advisory
Group, we decided to seek, instead, to develop a single risk prediction model that would work well across all
types of adult critical care units.

The second potential area for improvement is the introduction of new variables. Blood lactate concentration
was introduced into the CMP data set on the basis of emerging evidence that it is a strong predictor of
mortality,59,60 and pupil reactivity, a common predictor in risk prediction models for acute traumatic brain
injury,61 was introduced on the basis that it may provide an alternative, and more readily available, predictor
of neurological status than the GCS score. Additionally, in an attempt to better summarise a patient’s
underlying health status prior to the acute episode, a new variable of patient dependency, based on the
ability to carry out usual daily activities, was added to the data set. Other existing predictors were further
refined, for example by introducing the ability to distinguish in-hospital from community CPR, and collecting
additional data on whether the critical care unit admission was planned or unplanned.

The third potential area for improvement is the handling of missing data. In the application of previous risk
prediction models for adult critical care, the usual approach to missing physiological predictors has been to
assume that they are ‘normal’, falling in the category of the severity score with zero weight. This assumption
has been justified on the basis that physiological data are predominantly missing because a test was not
requested; it is assumed that the test was not requested because it was expected to be normal. It has also
been noted that this approach to handling missing data encourages complete recording, as any missing data
are assumed to be in the lowest risk category, which may tend to cause an underestimation of risk.62 This
approach is, however, reliant on the presence of a ‘normal’ category, and may not generalise well to a
continuous approach to handling physiological predictors (where one would instead be imputing a single
‘normal’ value). In addition, it is unclear to what extent applying such an approach during model development
may bias parameter estimates from the risk prediction model when compared with alternatives, such as
complete case analysis (i.e. using only patients with complete data for all predictors when developing the risk
prediction model), or more advanced statistical techniques, such as multiple imputation.
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The fourth potential area for improvement is the modelling of physiology. Following the original APACHE
model,63 most risk prediction models for critical care, including the current ICNARC model, have been based
around integer scores that capture physiological derangement through a number of categories for each
physiological predictor, with weights assigned to each category. Although this approach has generally worked
well, and has the added benefit of providing a measure of acute severity in the form of a severity score,
it does have drawbacks. In particular, it has the tendency to define quite wide ‘normal’ ranges for each
predictors, within which the risk is assumed not to change at all; once the predictor is sufficiently extreme to
be in the highest or lowest risk band, again the risk is assumed to remain constant. These assumptions do not
hold in practice. In general, dividing continuous predictors into categories has been shown not to be a good
approach to modelling. Straightforward approaches exist to fit flexible, continuous, non-linear models to each
predictor, which more closely follow the true underlying relationships between predictor and outcome, and
require considerably fewer model parameters than a set of up to eight categories. Furthermore, such models
can readily be extended to consider interactions both among physiological predictors and between
physiological and non-physiological predictors. The current ICNARC model introduced the concept of
interactions between the physiology score and reasons for admission to the critical care unit. In the new
model, we take this further by considering interactions at the level of individual physiological predictors,
taking into account the evidence that continues to emerge that physiological predictors do not have uniform
effects across all subgroups of critically ill patients.64

The final potential area for improvement is the modelling of the primary reason for admission to the
critical care unit. Reasons for admission are recorded in the CMP using the ICNARC coding method, a
five-tiered, hierarchical method specifically designed for this purpose.20 However, in the current ICNARC
model, only two of the tiers are used in assigning a weight to the reason for admission: either the specific
condition (e.g. bacterial pneumonia) or the body system (e.g. respiratory). We therefore sought to use
intermediate information from the hierarchy to enhance the modelling of reason for admission.

This chapter reports on the development and validation of the new ICNARC model for prediction of acute
hospital mortality among admissions to adult critical care units, addressing all of the above potential areas
for improvement.

Selection of data and candidate predictors

Owing to the high coverage of the CMP, high throughput of patients, high event rate, and previous work
demonstrating changing model fit over time,13 while taking account of any seasonal variation,65 model
development was based on a single year of data. Model development was done using all available,
validated data for patients admitted to an adult critical care unit participating in the CMP between
1 January 2012 and 31 December 2012. There were a total of 155,239 eligible admissions to 232 adult
critical care units included in the development data set, of which 121,573 (78.3%) had complete data for
all candidate predictors (see Handling of missing physiological data in model development and validation).
The characteristics of the participating critical care units are summarised in Table 12 and the included
patients are described in Table 13. The model was prospectively validated in 90,017 admissions to 216
critical care units from 1 January 2013 to 30 September 2013 of whom 72,447 (80.5%) had complete
data for all predictors.

The outcome, as for the previous ICNARC model, was acute hospital mortality, defined as death before
ultimate discharge from acute hospital: that is, patients transferred from the hospital housing the critical
care unit to another acute hospital were followed up until final discharge from acute hospital.

A set of 20 physiological and 18 non-physiological candidate predictors of acute hospital mortality was
specified a priori based on the previous ICNARC model, recent research evidence and clinical input from
clinicians on the Expert Advisory Group. A description of the candidate predictors is given in Table 14.
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TABLE 12 Characteristics of the participating critical care units included in the development and validation data
sets for the new ICNARC model

Characteristic Development data set Validation data set

Number of critical care units 232 216

Type of unit, n (%)

Adult, general critical care unit 195 (84.1) 183 (84.7)

Combined general and neurocritical care unit 15 (6.5) 13 (6.0)

Specialist neurocritical care unit 5 (2.2) 4 (1.8)

Specialist cardiothoracic critical care unit 6 (2.6) 6 (2.8)

Specialist liver critical care unit 1 (0.4) 1 (0.5)

Stand-alone high-dependency unit 10 (4.3) 9 (4.2)

Hospital teaching status, n (%)

University 71 (30.6) 65 (30.1)

University affiliated 39 (16.8) 37 (17.1)

Non-university 122 (52.6) 114 (52.8)

Number of beds in the unit

Mean (SD) 11.7 (6.0) 12.0 (6.7)

Median (IQR) 10 (8–15) 10 (8–15)

IQR, interquartile range; SD, standard deviation.

TABLE 13 Characteristics of patients included in the development and validation data sets for the new
ICNARC model

Characteristic
Development data set
(N= 155,239)

Validation data set
(N= 90,017)

Age (years)

Mean (SD) 61.2 (18.0) 61.6 (17.9)

Median (IQR) 65 (50–75) 65 (50–75)

Sex, n (%)

Female 68,131 (43.9) 39,366 (43.7)

Male 87,108 (56.1) 50,651 (56.3)

Ethnicity, n (%)

White 140,075 (90.2) 81,792 (90.9)

Mixed 828 (0.5) 464 (0.5)

Asian or Asian British 5268 (3.4) 2823 (3.1)

Black or black British 3537 (2.3) 1906 (2.1)

Other 2129 (1.4) 1302 (1.4)

Not stated 3402 (2.2) 1730 (1.9)

continued
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TABLE 13 Characteristics of patients included in the development and validation data sets for the new
ICNARC model (continued )

Characteristic
Development data set
(N= 155,239)

Validation data set
(N= 90,017)

BMI (kg/m2)

Mean (SD) 27.0 (7.2) 27.1 (7.5)

Median (IQR) 25.8 (22.9–29.7) 25.9 (22.9–29.9)

Quintile of deprivation, n (%)

1 (least deprived) 26,168 (17.1) 15,668 (17.2)

2 28,585 (18.7) 16,441 (18.5)

3 30,611 (20.0) 17,585 (19.8)

4 31,934 (20.9) 18,672 (21.1)

5 (most deprived) 35,385 (23.2) 20,711 (23.4)

Severe conditions in past medical history, n (%)

Liver disease 4156 (2.7) 2253 (2.5)

Renal failure 2787 (1.8) 1776 (2.0)

Cardiovascular disease 2643 (1.7) 1460 (1.6)

Respiratory disease 3760 (2.4) 2225 (2.5)

Metastatic disease 4950 (3.2) 2641 (2.9)

Haematological malignancy 2881 (1.9) 1642 (1.8)

Immunocompromise 10,805 (7.0) 6044 (6.7)

Dependency, n (%)

No assistance with daily activities 119,779 (77.2) 67,668 (75.2)

Minor assistance with some daily activities 27,228 (17.5) 17,211 (19.1)

Major assistance with majority of/all daily activities 6750 (4.3) 4279 (4.8)

Total assistance with all daily activities 1485 (1.0) 859 (1.0)

CPR within 24 hours prior to admission, n (%)

Community CPR 3714 (2.4) 2420 (2.7)

In-hospital CPR 4520 (2.9) 2839 (3.2)

No CPR 147,005 (94.7) 84,758 (94.2)

Location prior to admission, n (%)

Emergency department or not in hospital 34,549 (22.3) 21,101 (23.4)

Other hospital (not critical care) 2100 (1.4) 1327 (1.5)

Other critical care unit 8460 (5.4) 4867 (5.4)

Theatre – elective/scheduled surgery 42,346 (27.3) 22,951 (25.5)

Theatre – emergency/urgent surgery 25,880 (16.7) 15,398 (17.1)

Ward or intermediate care area 41,904 (27.0) 24,373 (27.1)
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TABLE 13 Characteristics of patients included in the development and validation data sets for the new
ICNARC model (continued )

Characteristic
Development data set
(N= 155,239)

Validation data set
(N= 90,017)

Surgical status, n (%)

Surgical 68,226 (43.9) 38,349 (42.6)

Non-surgical 87,013 (56.1) 51,668 (57.3)

Urgency of admission, n (%)

Planned 45,926 (29.6) 25,465 (28.3)

Unplanned 109,313 (70.4) 64,552 (71.7)

ICNARC Physiology Score

Mean (SD) 15.2 (8.7) 16.9 (9.3)

Median (IQR) 13 (9–20) 15 (10–22)

ICNARC model (2013 recalibration) predicted risk of acute hospital mortality (%)

Mean (SD) 18.5 (22.7) 21.3 (24.7)

Median (IQR) 8.1 (2.4–27.0) 10.0 (2.8–32.5)

APACHE II Score

Mean (SD) 15.4 (6.9) 15.7 (6.9)

Median (IQR) 15 (11–19) 15 (11–20)

APACHE II (2013 recalibration) predicted risk of acute hospital mortality (%)

Mean (SD) 19.8 (20.9) 20.7 (21.3)

Median (IQR) 11.7 (4.0–28.8) 12.6 (4.1–30.8)

Critical care unit mortality

Deaths (%) 21,254 (13.7) 12,942 (14.4)

95% CI 13.5 to 13.9 14.1 to 14.6

Acute hospital mortality

Deaths (%) 32,064 (20.7) 19,333 (21.5)

95% CI 20.5 to 20.9 21.2 to 21.7

BMI, body mass index; IQR, interquartile range; SD, standard deviation.

DOI: 10.3310/hsdr03410 HEALTH SERVICES AND DELIVERY RESEARCH 2015 VOL. 3 NO. 41

© Queen’s Printer and Controller of HMSO 2015. This work was produced by Harrison et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

33



TABLE 14 Candidate predictors for the new ICNARC model

Candidate predictor Definition Categories Rationale

Physiological

Highest heart rate Highest heart rate during the first
24 hours following admission to
the critical care unit

Continuous Included in the current
ICNARC model

Lowest SBP Lowest SBP during the first
24 hours following admission
to the critical care unit

Continuous Included in the current
ICNARC model

Highest temperature Highest central temperature
during the first 24 hours following
admission to the critical care unit.
(If no central temperatures are
recorded, the highest non-central
temperature+ 0.5 °C is
substituted)

Continuous Included in the current
ICNARC model

Lowest respiratory rate Lowest respiratory rate (either
ventilated or non-ventilated)
during the first 24 hours following
admission to the critical care unit

Continuous Included in the current
ICNARC model

PaO2/FiO2 Ratio of PaO2 to FiO2 from the
arterial blood gas with the lowest
PaO2 from blood sampled during
the first 24 hours following
admission to the critical care unit

Continuous Included in the current
ICNARC model

Lowest arterial pH Lowest arterial pH from blood
sampled during the first 24 hours
following admission to the critical
care unit

Continuous Included in the current
ICNARC model

PaCO2 PaCO2 from the arterial blood gas
with the lowest pH

Continuous Reconsidered because of
potential for interaction
with pH

Highest blood lactate
concentration

Highest blood lactate concentration
during the first 24 hours following
admission to the critical care unit

Continuous New – added to CMP data
set based on evidence as a
risk factor59,60

Urine output Total urine output during the first
24 hours following admission
to the critical care unit. (For
admissions with a critical care unit
length of stay less than 24 hours,
the total urine output over the
entire stay is recorded and scaled
to represent a 24-hour equivalent)

Continuous Included in the current
ICNARC model

Highest urea level Highest serum urea concentration
during the first 24 hours following
admission to the critical care unit

Continuous Included in the current
ICNARC model

Highest creatinine level Highest serum creatinine
concentration during the first
24 hours following admission
to the critical care unit

Continuous Included in the current
ICNARC model
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TABLE 14 Candidate predictors for the new ICNARC model (continued )

Candidate predictor Definition Categories Rationale

Highest sodium level Highest serum sodium
concentration during the first
24 hours following admission to
the critical care unit

Continuous Included in the current
ICNARC model

Highest potassium level Highest serum potassium
concentration during the first
24 hours following admission to
the critical care unit

Continuous Reconsidered because of
inclusion in other risk
prediction models

Lowest glucose level Lowest blood glucose
concentration during the first
24 hours following admission to
the critical care unit

Continuous Reconsidered because of
potential impact of
glycaemic control

Lowest haemoglobin
level

Lowest haemoglobin level during
the first 24 hours following
admission to the critical care unit

Continuous Reconsidered because of
inclusion in other risk
prediction models

Lowest WBC count Lowest WBC count during the
first 24 hours following admission
to the critical care unit

Continuous Included in the current
ICNARC model

Neutrophil count Neutrophil count associated with
the lowest WBC count during the
first 24 hours following admission
to the critical care unit

Continuous New – added to CMP data
set because of potential
impact of neutropenic
sepsis66

Lowest platelet count Lowest platelet count during the
first 24 hours following admission
to the critical care unit

Continuous Reconsidered because of
inclusion in other risk
prediction models

Sedated/paralysed/GCS
score

Lowest total GCS score during the
first 24 hours following admission
to the critical care unit. The GCS
must be assessed when the
patient is determined to be free of
the effects of sedation. (Separate
categories are included for
patients who are either sedated or
paralysed and sedated for the
entirety of the first 24 hours
following admission)

15; 14; 7–13; 6; 5; 4; 3;
sedated; paralysed and
sedated

Included in the current
ICNARC model

Pupil reactivity Recorded as the reactivity
(reactive/unreactive/unable to
assess) of each pupil and
categorised as both reactive,
one reactive or neither reactive.
(Admissions for whom only one
pupil could be assessed were
categorised as either ‘both
reactive’ or ‘neither reactive’
according to the reactivity of the
one pupil that could be assessed)

Both reactive; one reactive;
neither reactive

New – added to CMP data
set because of potential as
an alternative method to
assess neurological status,
which may be more valid
among admissions for whom
the GCS cannot be assessed
because of sedation

continued
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TABLE 14 Candidate predictors for the new ICNARC model (continued )

Candidate predictor Definition Categories Rationale

Non-physiological

Age The age of the patient in whole
years at admission to the critical
care unit

Continuous Included in the current
ICNARC model

Sex The genotypical sex of the patient Female; male Reconsidered because of
potential for interaction with
physiology, e.g. response to
infection67

Ethnicity Ethnic group, collected using NHS
ethnic codes and categorised as
white (white-British, white-Irish
or white-any other), mixed
(mixed-white and black Caribbean,
mixed-white and black
African, mixed-white and Asian
or mixed-any other), Asian or
Asian British (Asian or Asian
British-Indian, Asian or
Asian British-Pakistani, Asian
or Asian British-Bangladeshi or
Asian or Asian British-any other),
black or black British (black
or black British-Caribbean, black or
black British-African or black
or black British-any other), other
ethnic group (other ethnic
group-Chinese or any other
ethnic group) or not stated

White; mixed; Asian or Asian
British; black or black British;
other ethnic group; not stated

New – added to CMP data
set because of potential for
interaction with physiology,
e.g. renal function68

BMI Calculated from the weight
(either measured or estimated)
and height (either measured or
estimated) of the patient as
weight in kilograms divided by
height in metres squared

Continuous New – added to CMP data
set because of research
evidence suggesting
relationship with mortality69

Residence prior to
admission

The patient’s permanent or
semi-permanent place of
residence prior to admission to
acute hospital

Home; nursing home; health-
related institution; non-health-
related institution; residential
place of work or education;
hospice or equivalent; no fixed
abode or temporary abode

New – added to CMP data
set as a potential alternative
indicator of dependency
prior to the acute episode

Deprivation Quintiles of deprivation, assigned
from the patient’s usual residential
postcode according to the Index of
Multiple Deprivation 2010 for
England, Welsh Index of Multiple
Deprivation 2008 or Northern
Ireland Multiple Deprivation
Measure 2010

Quintile 1 (least deprived);
2; 3; 4; 5 (most deprived)

New – previous research
from the CMP indicates
association with mortality70
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TABLE 14 Candidate predictors for the new ICNARC model (continued )

Candidate predictor Definition Categories Rationale

Severe conditions in the
past medical history

Defined according to the APACHE II
method.9 Must have been
evident in the 6 months prior to
admission to the critical care unit
and documented prior to or on
admission to the unit

Seven binary variables
(see below)

Reconsidered as rejection
may have been owing in
part to poor data quality and
because of potential for
interactions with physiology

Liver disease Biopsy-proven cirrhosis, portal
hypertension or hepatic
encephalopathy

Yes; no

Respiratory disease Permanent shortness of breath
with light activity because of
pulmonary disease or a
requirement for home ventilation

Yes; no

Renal disease Current requirement for chronic
renal replacement therapy for
irreversible renal disease

Yes; no

Cardiovascular
disease

Fatigue, claudication, dyspnoea or
angina at rest (New York Heart
Association Functional Class IV)

Yes; no

Metastatic disease Distant metastases documented
by surgery, imaging or biopsy

Yes; no

Haematological
malignancy

Acute or chronic myelogenous
leukaemia, acute or chronic
lymphocytic leukaemia, multiple
myeloma or lymphoma

Yes; no

Immunocompromise AIDS (HIV positive and AIDS-
defining illness), congenital
immunohumoral or cellular immune
deficiency state, chemotherapy,
radiotherapy or daily high-dose
steroid treatment (≥0.3mg/kg
prednisolone or equivalent)

Yes; no

Dependency prior to
admission

Dependency prior to admission
to acute hospital, assessed as
the best description for the
dependency of the patient in the
2 weeks prior to admission to
acute hospital and prior to the
onset of the acute illness based
on the level of assistance required
with daily activities. (Daily activities
include bathing, dressing, going
to the toilet, moving in/out of
bed/chair, continence and eating)

Able to live without assistance
in daily activities; minor
assistance with some daily
activities; major assistance
with majority of/all daily
activities; total assistance with
all daily activities

New – added to CMP data
set as a potential alternative
indicator of dependency
prior to the acute episode

CPR prior to admission CPR (internal or external cardiac
massage) received within 24 hours
prior to admission to the critical
care unit, categorised as either
in-hospital CPR (administered by
an in-hospital resuscitation team
or equivalent) or community
CPR (not administered by an
in-hospital resuscitation team or
equivalent). Where a patient
received CPR both in the
community and in-hospital, this is
recorded as community CPR

In-hospital CPR; community
CPR; no CPR

Included in the current
ICNARC model – expanded to
consider potential different
effect for in-hospital and
community CPR
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Handling of missing physiological data in model development
and validation

The percentage of physiological predictors with missing values in the development data set ranged from
0.6% for highest heart rate to 16.2% for pupil reactivity (Table 15). Because of the high level of missing
data for the new field of pupil reactivity, it was decided not to further consider imputation for this
predictor. The potential impact of pupil reactivity, therefore, was subsequently assessed in separate models
within the subset of patients for which it was recorded. Overall, complete data for all physiological
predictors, excluding pupil reactivity, were available for 77.9% (121,603) of admissions (Table 16). In the
case of laboratory measurements, an available option was to record the last measured value up to
4 hours prior to admission to the critical care unit if no values were available from the first 24 hours
following admission. After reviewing the available data in the pre-admission fields, it was decided that it
was not appropriate to use these as a direct substitute for first-24-hour values as their use made minimal
impact on the number of missing values and different relationships were found between physiology and
outcome for the pre-admission and first-24-hour values. Although the proportion of admissions with
missing data was moderate (< 25%), we explored whether it was better to impute or to use only the
observed values in the development of the new ICNARC model. The multiple imputation method was
chosen to address the potential bias and loss of precision of a complete case analysis.

TABLE 14 Candidate predictors for the new ICNARC model (continued )

Candidate predictor Definition Categories Rationale

Source of admission/
urgency of surgery/
planned admission

The location of the patient
immediately prior to admission to
the critical care unit, combined
with the urgency of surgery
(for patients admitted direct from
theatre) assigned according to
the definitions of the National
Confidential Enquiry into Patient
Outcome and Death, and whether
admission to the critical care unit
was planned or unplanned.
[For patients whose location
immediately prior to admission
was a transient location of clinic,
imaging department, recovery
(used as a temporary critical care
area) or specialist treatment area,
their last non-transient location is
used]

ED or not in hospital
(unplanned admission); ED
or not in hospital (planned
admission); other acute
hospital (not critical care);
other critical care unit
(repatriation); other critical
care unit (planned or
unplanned transfer); theatre
(planned admission following
elective or scheduled surgery);
theatre (unplanned admission
following elective or
scheduled surgery); theatre
(admission following
emergency or urgent surgery);
ward or intermediate care
area

Included in the current
ICNARC model – expanded
to incorporate additional
information on planned vs.
unplanned admission

Primary reason for
admission

The primary reason for admission
to the critical care unit, coded
using the ICNARC coding
method20

Five-tiered, hierarchical code Included in the current
ICNARC model

Mechanical ventilation Mechanical ventilation at any time
during the first 24 hours following
admission to the critical care unit,
identified by recording of a
ventilated respiratory rate

Yes; no Included in the current
ICNARC model (interaction
with PaO2/FiO2)

AIDS, acquired immunodeficiency syndrome; BMI, body mass index; ED, emergency department; HIV, human
immunodeficiency virus.
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TABLE 15 Missing values for physiological predictors in the development data set for the new ICNARC model

Predictora Number of missing values Percentage missing

Highest heart rate 993 0.6

Lowest SBP 1019 0.7

Highest temperature 1388 0.9

Lowest respiratory rate 1111 0.7

Mechanical ventilationa 1106 0.7

PaO2/FiO2
b 21,662 13.9

Lowest pHb 21,662 13.9

PaCO2
b 21,665 13.9

Highest blood lactate concentrationb 21,727 13.9

Urine output 4786 3.1

Highest urea level 8397 5.4

Highest creatinine level 7768 5.0

Highest sodium level 6311 4.0

Highest potassium level 6546 4.2

Lowest glucose level 16,526 10.6

Lowest haemoglobin level 6736 4.3

Lowest WBC count 7722 4.9

Neutrophil count 8966 5.7

Lowest platelet count 7738 5.0

Sedated/paralysed/GCS score 5515 3.5

Pupil reactivity 25,287 16.2

a Included with physiological predictors because of established interaction with PaO2/FiO2.
b Measurements derived from arterial blood gas.
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Missing data mechanism
Before missing values were imputed, we studied the missing data mechanism40 by creating indicator
variables for missing values for each predictor and fitting logistic regression models with the indicator
variable as the outcome and the other predictors as covariates.

Findings suggested that it was not plausible to assume that data were missing completely at random
(MCAR) so it was assumed that data were missing at random (MAR), conditional on observed data; the
plausibility of the MAR assumption holding was improved by conditioning on auxiliary variables that
were found to be predictive of missingness in the imputation model. Furthermore, some methodologists
have argued that routine departures from MAR may not be large enough to cause serious bias in the
resulting estimates.71

Imputation of missing data
We imputed missing data using FCS.36 This method provides a practical and flexible approach to
generating imputations based on a set of imputation models, one for each variable with missing values,
allowing one to specify the regression equation for the imputation; this is usually linear regression for
continuous variables and logistic regression (binary, ordinal, or unordered multinomial) for categorical
variables. In addition, under logistic imputation, imputed values for categorical variables will also be
categorical, so rounding to plausible values is not necessary. In large data sets (such as the CMP database),
it is common for missing values to occur in several variables, both continuous and categorical, so this
approach was chosen because of its ability to impute both continuous and categorical variables
appropriately, permitting a great deal of flexibility.

The imputation model and analysis model should be compatible; that is, any relationship in the analysis
model should also be part of the imputation model. All the potential predictors that will be considered in
the analysis, with or without missing values, should therefore be included in the imputation model.37 The
response variable38 and auxiliary variables related to missingness39 were entered into the imputation model
as well.

TABLE 16 Principal missing data patterns for physiological predictors in the development data set for the new
ICNARC model

Missing predictors Number with pattern Percentage with patterna

All physiology 606 0.39

ABG+ blood lactate concentration+ laboratoryb+ urine output 786 0.50

ABG+ blood lactate concentration+ laboratoryb 2550 1.63

ABG+ blood lactate concentration+ urine output 693 0.44

ABG+ blood lactate concentration 11,579 7.41

ABG 3154 2.02

Blood lactate concentration only 2975 1.90

Laboratoryb+ urine output 789 0.51

Laboratoryb 775 0.50

Urine output only 1376 0.88

Sedated/paralysed/GCS score only 3772 2.42

None 121,603 77.86

ABG, arterial blood gas (PaO2/FiO2, pH and PaCO2).
a Patterns presented account for 96.5% of all patients; remaining, less common patterns not shown.
b Urea level, creatinine level, sodium level, potassium level, glucose level, haemoglobin level, WBC count, neutrophil count

and platelet count.
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When required, transforming for non-normality gave better imputed values,72 so logarithmic transformation
was used. Urine output had a particularly unusual distribution, with a proportion of values equal to zero
and a continuous, but heavily skewed, distribution among the remaining values. A semi-continuous approach
to imputation is recommended for this situation.73 This involves separately imputing a binary variable that
indicates whether a value is zero or positive, and then a continuous variable for the value if positive.
However, this approach did not work well in the case of urine output, as it overestimated the proportion of
zero values; finally, the shifted log-transformation f(z)= ln(± z− a) was chosen for this predictor. Different
approaches were considered for imputing sedated/paralysed/GCS score (ordinal, multinomial or predictive
mean matching). All produced similar results, so finally the ordinal approach based on logistic regression
was used.

As well as including all variables planned to be included in the analysis model, the imputation model must
also include them in an appropriate way, that is, in the correct functional form and with any interactions
that are required. However, when imputing data, one does not necessarily know what terms will be
required in a sequence of analyses, and allowing for all possible terms might make the imputation model
impractically large. On the other hand, the simplest approach of passive imputation (i.e. using simple linear
and logistic regression models and ignoring interactions and non-linearity that are in the analysis model)
could result in biased terms in the analysis model.74 To assess the impact of omitting interactions,
we produced a provisional and relatively simple imputation model, including non-linear terms and any
interactions of key scientific/clinical interest. The imputed data were then used to build and check an
analysis model, investigating the need for non-linear terms in the imputation model as well as the best way
to impute them. The following approaches for imputing non-linear terms were explored: the traditional,
passive (‘impute then transform’) method;75 ‘just another variable’ (JAV; also termed ‘transform then
impute’);75,76 and substantive model compatible FCS (SMC-FCS).77 SMC-FCS is a modification of the FCS
approach to multiple imputation which ensures that each of the imputation models is compatible with the
assumed substantive model.77

In our imputation process, most of the relationships of the physiology variables followed the same pattern,
so a more general model was specified for the candidate predictors with missing data.

Simulation studies have shown that the required number of repeated imputations (m) can be as low as 3
for data with 20% of entries missing.41 We used a more conservative choice of m= 5.

Validation of imputed data
Graphical assessment and differences in means and proportions were used to compare the distributions of
the imputed and observed data. Examination of the imputed data showed that the distribution was
broadly similar to that for the observed data, indicating no obvious problems with the imputation process.
A few imputed values were placed outside of the distribution of observed data; however, these were too
few to be considered important, and some differences are to be expected if the data are not MCAR.

Simulation study
Imputing missing data, especially multiple imputation, is becoming standard in risk prediction modelling.78

However, it is often implemented without adequate consideration of whether or not it offers any
advantage over complete case analysis for the research question of interest. Multiple imputation is not
always better than complete case analysis for missing covariate problems.79 Recovering information in
estimating the coefficient could be a potential gain, but previous studies have demonstrated that, although
it may be important to use multiple imputation to recover information when there are missing data in
covariates required for adjustment, multiple imputation has substantially less value when there are missing
data (even when MAR) in the exposure of interest.80

DOI: 10.3310/hsdr03410 HEALTH SERVICES AND DELIVERY RESEARCH 2015 VOL. 3 NO. 41

© Queen’s Printer and Controller of HMSO 2015. This work was produced by Harrison et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

41



We explored the impact of missing data in the planned analysis using a simulation study under
two different scenarios by creating data sets with MCAR and MAR missing values from 300,000 complete
data values (a random sample drawn from the original complete case data: see Appendix 1). To test the
consistency of the finding in these scenarios, logistic regression models were estimated on the original data
set with no missing values (used as a reference) and the complete case data set after creation of missing
values, as well as on multiply imputed data sets using FCS. Results were compared in terms of coefficients,
standard errors and p-values.

If we impute from a model that does not allow for a potential non-linear association with outcome, we
would expect to obtain inconsistent parameter estimates;74 therefore, in a secondary analysis we also
investigated, under our these two scenarios of MCAR and MAR, the non-linearity effect on the risk
prediction model estimation and the reliability of the prediction using the different approaches as
mentioned above.

Results and conclusions
It was expected that multiple imputation would raise the risk estimates in comparison with the complete
case analysis, but only slight differences in estimates were found, even among non-response mechanisms
(Table 17). The increase in precision of risk estimates under MAR is therefore minimal at best, and the risk
estimates hardly change.

Under our scenarios of missing data that with either MCAR or MAR, both complete case analysis and
multiple imputation had negligible bias compared to the reference results based on the data set prior to
the creation of missing values. The results indicated that a multiple imputation-based method (FCS)
produced similar estimates to the complete case analysis; therefore, little information was gained regarding
the coefficients for the predictors with missing values when we imputed those missing values, regardless of
the number of missing data (at the levels observed within our data sets). Similar findings of inconsistent
benefits of multiple imputation were observed in the coefficients for the predictors with no missing values.
No differences in the inference were found. The different approaches to imputation of non-linear terms
gave similar results (Table 18), including the passive (‘impute then transform’) approach, JAV (‘transform
then impute’) and SMC-FCS, although SMC-FCS gave slightly smaller standard errors. These findings could
indicate that, in our scenarios, including non-linear terms into the imputation model is not necessary.

In conclusion, coefficient estimates appear to be insensitive to the missing data and the various models
used to deal with them. The benefits of using multiple imputation in developing our risk prediction model
are likely to be minimal.

However, there are some factors contributing to the apparent stability of the estimates, such as the
moderate number of missing data, the large sample size and the fact that the differences in mortality
between complete and incomplete are too small to exert a serious impact on the estimates. Another factor
might be that imputations do not contain important information or that the covariates are missing not at
random; in this circumstance multiple imputation may be biased while complete case analysis may not be.

Finally, we decided that the model building and analysis process would be done with non-imputed
(complete case) data and that a parallel analysis would be done at the same time on the multiply imputed
data set in order to test the consistency of the results.
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TABLE 17 Simulation 1: synthesis of missing data mechanisms for the development and validation of the new
ICNARC model

Predictor
Reference
(n= 300,000)

MCAR MAR

Complete case
(n= 235,572) MI (n= 300,000)

Complete case
(n= 238,013) MI (n= 300,000)

Coefficients

Highest heart rate 0.01084 0.01073 0.01082 0.01032 0.01084

Lowest SBP –0.01220 –0.01213 –0.01224 –0.009965 –0.01089

Highest temperature –0.2191 –0.2193 –0.2193 –0.2112 –0.2222

Lowest respiratory
ratea

0.06052 0.06110 0.06079 0.05239 0.06022

PaO2/FiO2
a

–0.003147 –0.003212 –0.003144 –0.002728 –0.003153

Lowest pH –1.703 –1.749 –1.739 –1.585 –1.678

Highest ureaa 0.04444 0.04410 0.04434 0.04078 0.04560

Highest creatininea
–0.0009818 –0.0009792 –0.0009940 –0.001091 –0.001128

Highest sodium –0.006443 –0.007170 –0.006432 –0.004121 –0.004722

Lowest WBC counta 0.01094 0.01086 0.01080 0.009977 0.009837

Urine outputa –0.0001942 –0.0001846 –0.0001960 –0.0002042 –0.0002270

S/P/GCS –0.08710 –0.08689 –0.08676 –0.08389 –0.08718

Constant 21.01 21.44 21.28 19.48 20.64

Standard errors

Highest heart rate 0.0002193 0.0002478 0.0002220 0.0002320 0.0002190

Lowest SBP 0.0002826 0.0003195 0.0002880 0.0003035 0.0002840

Highest temperature 0.004766 0.005391 0.004820 0.004982 0.004825

Lowest resp ratea 0.001186 0.001340 0.001217 0.001301 0.001257

PaO2/FiO2
a 0.0000477 0.0000540 0.0000500 0.0000518 0.0000510

Lowest pH 0.04610 0.05206 0.04775 0.04808 0.04633

Highest ureaa 0.0006850 0.0007729 0.0006880 0.0007339 0.0007220

Highest creatininea 0.0000451 0.0000508 0.0000460 0.0000481 0.0000470

Highest sodium 0.0008847 0.0009989 0.0008930 0.0009210 0.0008890

Lowest WBC counta 0.0005765 0.0006512 0.0005780 0.0005965 0.0005720

Urine outputa 0.0000042 0.0000048 0.0000043 0.0000046 0.0000049

S/P/GCS 0.0008381 0.0009471 0.0008610 0.0008665 0.0008390

Constant 0.3829 0.4325 0.3951 0.3982 0.3861

MI, multiple imputation; S/P/GCS, sedated/paralysed/GCS.
a Predictors transformed before imputation.
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TABLE 18 Simulation 2: different approaches for dealing with missing data with non-linear terms for development
and validation of the new ICNARC model

Predictor Reference Complete case

Multiple imputation

Passive JAV SMC-FCS

Coefficients

Highest heart rate 2.060 2.102 2.101 2.183 2.119

Highest heart rate squared –5.671 –5.832 –5.830 –6.002 –5.929

Lowest Hb –0.3377 –0.3075 –0.3077 –0.3086 –0.3119

Lowest Hb squared 0.000834 0.000755 0.000756 0.000752 0.000735

Urine output –0.7693 –0.8142 –0.8149 –0.8291 –0.8059

Neutrophil count 0.09299 0.08998 0.09015 0.09298 0.09944

PaO2/FiO2 –0.00380 –0.00398 –0.00398 –0.00395 –0.00395

Lowest SBP –0.00698 –0.00694 –0.00696 –0.00708 –0.00745

Highest blood lactate 0.1343 0.1391 0.1391 0.1446 0.1355

Age 0.03203 0.03283 0.03284 0.03251 0.03411

CPR 1.065 1.139 1.139 1.160 1.158

Constant 4.179 4.061 4.063 4.208 4.077

Standard errors

Highest heart rate 0.089819 0.1082 0.1082 0.1023 0.1011

Highest heart rate squared 0.1917 0.2313 0.2313 0.2196 0.2171

Lowest Hb 0.01274 0.01570 0.01570 0.01523 0.01504

Lowest Hb squared 0.000036 0.000044 0.000045 0.000044 0.000042

Urine output 0.01496 0.01828 0.01828 0.01762 0.01750

Neutrophil count 0.004160 0.005063 0.005061 0.004973 0.004876

PaO2/FiO2 0.000064 0.000079 0.000079 0.000077 0.000078

Lowest SBP 0.000381 0.000468 0.000468 0.000451 0.000447

Highest blood lactate 0.002541 0.003066 0.003066 0.002973 0.003072

Age 0.000452 0.000560 0.000560 0.000537 0.000532

CPR 0.02510 0.03025 0.03025 0.02968 0.02988

Constant 0.1379 0.1693 0.1693 0.1625 0.1612

DEVELOPMENT AND VALIDATION OF THE NEW ICNARC MODEL

NIHR Journals Library www.journalslibrary.nihr.ac.uk

44



Development of the new Intensive Care National Audit &
Research Centre model

Functional form
Linearity of the association between continuous predictors and the outcome should not automatically be
assumed because this could lead to incorrect interpretation of the effect and inaccurate predictions when
the model is applied to new individuals.81 In addition, the use of the appropriate functional form for a
continuous variable is crucial for valid predictions because the expected value of the outcome can be
different for the same value of a continuous variable with different functional form. As many of the
physiological predictors are known to have non-linear (often U-shaped) relationships with outcome, they
have typically previously been modelled using categorical approaches and combined into a severity
score.9–11,14,82 One aim of the current project was to model the physiological predictors separately as
continuous variables, so how to deal with non-linearity was carefully considered.

The predictor–outcome relationship was explored by expanding the variable into multiple terms and testing
pooled and individual non-linearity. The shape of the relationship of continuous predictors with the
outcome was also studied, by plotting with a smoothed curve (running line smoother) as a reference.
The traditional use of a categorical approach failed to detect the continued increase or decrease in risk for
subjects at higher/lower levels of risk, making the implausible assumption that the risk does not vary at the
extremes. Moreover, ignoring intracategory variation means throwing away information, tends to reduce a
study’s power to detect an association and may lead to inaccurate estimates.83,84 After the hypothesis of
linearity was rejected, two different approaches for modelling continuous predictors were considered:
non-linear functions such as second-order fractional polynomials85 and restricted cubic splines.84

Spline fits could be sensitive to the number of knots so, to avoid overfitting, spurious dips and inflection
points, as well as unrealistic features of the curve, three, four or five knots were considered. With large
numbers of observations, three or four knots may work better, and more than five knots are usually not
necessary unless the response to the predictor is extremely complicated. Knot positions were selected
according to the recommendations of Harrell.84 Right-restricted cubic splines (i.e. with the linearity restriction
applied only at the right-hand end of the curve) were used when appropriate to allow more flexibility.

For optimal power fractional polynomials, we selected the family of second order because this offers
considerable flexibility and a very rich set of possible functions, including U- and J-shaped relationships
(an order higher than 2 is rarely required in practice86).

In order to judge the plausibility and accuracy of the fitted curves, we plotted observed log-odds against the
alternative modelling approaches and used a running line smoother as a reference. The Akaike information
criterion (AIC) and Bayesian information criterion (BIC) were calculated to compare the fit of the strategies for
modelling continuous variables, taking three-knot-restricted cubic splines as a reference point, to assess whether
or not the increased complexity of the model that resulted from including more knots was worthwhile.

The best functional form for each predictor was selected based on fitting, plausibility, accuracy and prior
knowledge about the predictor.

Finally, we explored collapsing extreme points to determine whether or not the shape of the curves could
be affected by outlying values. Additional analysis using imputed data was done in parallel to provide
reassurance about the results.

Modelling of interactions
Improved modelling of interactions between physiological predictors was one of the main project objectives.
The assumption that all predictors act independently on outcome is physiologically untrue and, although
most of the significant past medical history–physiology, intervention–physiology and physiology–physiology
interactions were not expected to make an important contribution to the model, these interactions could
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reflect important dependencies as well as intrinsic prognostic features of the data. Clinical members of the
Expert Advisory Group, together with additional clinicians with relevant experience of risk prediction models
in clinical epidemiology, identified and prioritised key, potential interactions between predictors. These
pre-defined past medical history–physiology, intervention–physiology and physiology–physiology interactions
were tested and checked graphically for any spurious interactions as a result of mis-modelling the main terms
in the model. We tested each interaction’s importance in predicting the outcome using the BIC in order to
reduce the chance of overfitting. Only significant interactions were considered in the model-building process.

In addition, the relationship between physiology and outcome may depend on primary reason for
admission to the critical care unit, and a model incorporating interactions could take into account these
differences. In the current ICNARC model, patients have a different coefficient for their ICNARC Physiology
Score depending on primary reason for admission but, in the new model, these interactions were
addressed for each individual physiological predictor.

Reason for admission
Reasons for admission to critical care are recorded in the CMP using the ICNARC coding method:
a five-tiered (type – surgical or non-surgical/body system/anatomical site/physiological or pathological
process/condition) coding system specifically developed for this purpose.20 Currently, coefficients for the
ICNARC model are applied at only two levels of the hierarchical code (either at tier 5, the individual
condition, or at tier 2, the body system), but we aimed to improve the overall performance by
incorporating intermediate levels of information and, in that way, to allow for variation in the effect on
mortality between different physiological or pathological processes (e.g. infection or trauma).

The following steps were taken in modelling primary reason for admission:

1. If a process did not have the required sample size (number of events < 20):

i. it was added to a related process or
ii. it was combined with other similar processes to create a new group.

2. Indicators were created for each combination of process and system.
3. If a process/system combination did not have the required sample size (number of events < 20):

i. it was added to a related process/system combination or
ii. it was combined with other similar process/system combinations to create a new group or
iii. it was combined with the same process across all systems as a single process category.

4. When a process/system combination either was non-significant after adjusting for process or did not
make an important contribution to the model:

i. it was added to the process category.

5. The resulting set of categories was redefined to make a grouping with clinical sense.
6. Finally, the set of categories was refined by adding specific conditions:

i. Process/system categories were split into individual conditions which had sufficient sample size
(number of events ≥ 20).

ii. Each individual condition was retained as a new category if it was significant after adjusting for
process/system and made an important contribution to the model.

iii. Individual conditions were combined with other individual conditions within each process/system
category if the difference in risk was not significant.
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Model building process
The model building process consisted of a number of stages (Figure 5).

Development of a parsimonious physiology model
After appropriate functional forms were selected in the univariable setting, a multivariable full physiology
model was fitted. Wald tests were applied to test the global significance of the predictors and their
linearity. The linearity Wald test is of special interest here because it tests whether or not the restricted
cubic spline model can be reduced to a model in which the predicted log-odds are linear in the predictor.
A low p-value means we should reject the hypothesis of linearity. The full physiology model was refined by
removing any predictors with a non-significant global effect and the expanded (cubic spline) terms for any
predictors with a non-significant linearity test. The model was refitted and the functional form was tested.
The process continued until all the factors in the model were significant.

One caveat in model building is that new candidate predictors selected solely on consideration of small
p-values can be misleading.78,84 An often disappointing result of multivariable risk prediction models
combining new physiological predictors with established ones is that the proposed new predictors may
seem statistically significant (i.e. have small p-values) in the adjusted model, but then may not increase the
prognostic ability of the model overall.78,87–89 Following the previous physiology model, a parsimonious
model was developed using a backward elimination strategy that considered the influence of the individual
predictors and their contribution to the model performance. At each step, one predictor was dropped and
the c-index and Brier score of the model without that predictor were compared. The least significant

Fit the final model
All retained factors tested for significance and contribution to final model

Select final interactions
All significant interactions added simultaneously and a deleting, refitting and verifying process performed

Introduce past medical history–physiology, intervention–physiology and physiology–physiology interactions
Interactions introduced one by one and retained if signficant

Select important interactions with reason for admission
All significant interactions added simultaneously and a deleting, refitting and verifying process performed

Introduce interactions with reason for admission
Interactions introduced one by one and retained if significant

Select a parsimonious main-terms model
Retain the factors which make an important contribution

Fit a preliminary main-terms model
Introduce non-physiological predictors, redefine the functional form and drop non-significant predictors

Select a parsimonious physiology model
Selection of physiological predictors by backward elimination based on their contribution to the model

Fit a preliminary full physiology model
Drop non-significant terms and redefine the functional form 

FIGURE 5 Stages in the model building process for the risk prediction model for adult critical care units.
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predictor was removed and the process continued until no predictors remained in the model. To correct for
potential overfitting, a bootstrap analysis was performed.43,81,84 At each step, the estimates of c-index and
Brier score were adjusted for overfitting based on 500 bootstrap samples.

Development of a parsimonious main-terms model
Starting from this simplified physiology model, a full multivariable model adding the rest of the current
predictors, as well as all potential new predictors, was fitted. From this preliminary main-terms model,
the variable selection was done in a two-step process:

Step 1. Deleting, refitting and verifying process. To test the global significance of the predictors and linearity
of continuous predictors, Wald and likelihood ratio tests were applied to each predictor in the model.
The model was redefined by dropping predictors with non-significant global effects and/or data reduction
(e.g. dropping non-linear terms, combining categories) where appropriate. After refitting, the remaining
predictors were tested. The process continued until all the predictors in the model were significant.

Step 2. Model simplification. When a large sample size is used in model building, significance tests are
usually less relevant than summary measures of predictive power because p-values go quickly to zero,
so small effects can become strongly statistically significant but with a weak contribution to model fit.90

Therefore, to get a more parsimonious model, only the predictors that made an important contribution
were retained in the model, using BIC and coefficients close to one on the odds ratio scale as criteria.
This process was repeated until all predictors included in the model were making an important contribution.

Selection of interactions
The selection of interaction terms was carried out in a three-step process:

Step 1. Interaction terms between primary reason for admission and physiological predictors were added
one at a time into the model containing all the main effects and significance was assessed using the
likelihood ratio test. A p-value of < 0.05 was used as the selection criterion.

Step 2. All the interaction terms found to be significant in step 1 were added, simultaneously, to the main
effects model and evaluated, adjusting for the other interaction terms. An interaction was retained if it had
a nominal p-value of < 0.001. This lower level was used to control for overfitting, complexity and
incremental predictive accuracy.

Step 3. Pre-defined interactions between past medical history and physiology, between interventions and
physiology and between physiological predictors were added one by one to the previous model and
retained if they had a nominal p-value of < 0.001.

A final process of deleting, refitting and verifying was performed to ensure that all included predictors
were significant and were making an important contribution to the model.

Results
The predicted risk from continuous approaches to modelling physiology was a much better approximation
of the true risk function than the previous categorical approach (Figure 6), especially if the factor
distribution was skewed and, in particular, for relationships with a single turning point, such as for SBP,
heart rate, arterial pH, WBC count, potassium level and haemoglobin level.

In general, both methods for continuous modelling (fractional polynomial models and restricted cubic
splines) agreed closely, but variation between the two approaches occurred in the regions with sparsest
data. Although the data contain little information on mortality, the fractional polynomial fit was poorer at
extreme predictor values where a strong non-monotonic relationship was suggested (e.g. arterial pH and
creatinine level), whereas restricted cubic splines accommodated a more realistic final trend at the ends of
the curve. In addition, the SBP, heart rate and neutrophil fitted curves were more sensitive to extreme
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FIGURE 6 Alternative approaches to modelling continuous physiological predictors. FP, fractional polynomial;
RCS, restricted cubic spline; RRCS, right-restricted cubic spline. (continued )
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FIGURE 6 Alternative approaches to modelling continuous physiological predictors. FP, fractional polynomial;
RCS, restricted cubic spline; RRCS, right-restricted cubic spline. (continued )
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FIGURE 6 Alternative approaches to modelling continuous physiological predictors. FP, fractional polynomial;
RCS, restricted cubic spline; RRCS, right-restricted cubic spline. (continued )
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FIGURE 6 Alternative approaches to modelling continuous physiological predictors. FP, fractional polynomial;
RCS, restricted cubic spline; RRCS, right-restricted cubic spline. (continued )
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values using fractional polynomials, while the ensured linearity in the tails by restricted cubic splines
avoided this unrealistic end effect and seemed not to be affected by the collapsed values. We decided to
use restricted cubic splines because they showed the flexibility of fractional polynomials, but with better
behaviour in the tails, they captured the most prominent features of the relationship between predictors
and outcomes and because the fit was more plausible than that of the previous categorical approach.

The optimal functional form selected to model the continuous physiological predictors (Table 19) was
four knots for heart rate, SBP, temperature, PaO2/FiO2, arterial pH, blood lactate concentration, urine
output, urea level, potassium level, glucose level, haemoglobin level, WBC count, neutrophil count
and platelet count because this accommodated the trend of decreasing/increasing mortality in a
non-monotonic way, as well as capturing the behaviour at extremes. For PaCO2 and sodium level, a
simplification using three knots was enough to accommodate the non-linear behaviour and had better AIC
and BIC than four knots. Respiratory rate and creatinine level were modelled using right-restricted cubic
splines. This was necessary to capture the initial decrease in mortality and ‘spoon’ behaviour (Figure 6).
This approach had better fit than five knots and was more plausible than four. Finally, the stability of the
fitted curves and the knots was assessed in each of the 10 imputed data sets, showing similar results.

Consistency with both optimal functional form and global significance of the predictors was found after
fitting a model adjusted for all physiological predictors from the current ICNARC model.

A more parsimonious physiology model was then developed using a backward process in order to balance
parsimony and model performance (Table 20). All candidate physiological predictors, including those not
incorporated in the current ICNARC model, were entered into a full model, which was then simplified.
Three new candidate physiological predictors (PaCO2, blood lactate concentration and platelet count) were
retained, as well as all physiological predictors from the current ICNARC model.
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FIGURE 6 Alternative approaches to modelling continuous physiological predictors. FP, fractional polynomial;
RCS, restricted cubic spline; RRCS, right-restricted cubic spline.
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TABLE 19 Approach to modelling physiological and non-physiological candidate predictors

Candidate predictor Approach to modelling

Physiological

Highest (beats per minute) RCS (71, 93, 110, 146)

Lowest SBP (mmHg) RCS (66, 89, 102, 130)

Highest temperature (°C) RCS (36.0, 37.2, 38.0, 39.2)

Lowest respiratory rate (breaths per minute) RRCS (8, 12, 13, 15)

PaO2/FiO2 (kPa) RCS (9.7, 26.0, 39.7, 61.4)

Lowest arterial pH RCS (7.08, 7.30, 7.36, 7.44)

PaCO2 (kPa) RCS (3.9, 5.2, 7.0)

Highest blood lactate (mmol/l) RCS (0.7, 1.5, 2.5, 8.2)

Urine output (ml) RCS (164, 1215, 2020, 4255)

Highest urea level (mmol/l) RCS (2.8, 5.6, 9.3, 28.1)

Highest creatinine level (µmol/l) RRCS (53, 80, 106, 168)

Highest sodium level (mmol/l) RCS (133, 139, 145)

Highest potassium level (mmol/l) RCS (3.6, 4.3, 4.7, 6.0)

Lowest glucose level (mmol/l) RCS (3.5,5.4,6.6,9.5)

Lowest haemoglobin level (g/dl) RCS (0.7,1.5,2.5, 8.2)

Lowest WBC count (× 109/l) RCS (3.7, 8.7, 12.3, 22.5)

Neutrophil count (× 109/l) RCS (2.6, 6.9, 10.3, 19.6)

Lowest platelet count (× 109/l) RCS (60, 162, 232, 422)

Sedated/paralysed/GCS score Categorical (nine levels)

Pupil reactivity Categorical (three levels)

Non-physiological

Age Linear

Sex Categorical (two levels)

Ethnicity Categorical (six levels)

BMI RCS (20.6, 25.8, 34.9)

Residence prior to admission Categorical (seven levels)

Deprivation Categorical (two levels – quintiles 1, 2 and 3 combined;
4 and 5 combined)

Severe conditions in the past medical history Seven binary indicators

Dependency prior to admission Categorical (three levels)

CPR prior to admission Categorical (three levels)

Source of admission/urgency of surgery Categorical (nine levels)

Primary reason for admission Categorical (combinations of process/system or process or
individual conditions)

BMI, body mass index; RCS, restricted cubic splines (knot positions in parentheses); RRCS, right-restricted cubic splines
(knot positions in parentheses).
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Changes were made to a number of the current non-physiological predictors, in particular CPR within
24 hours prior to admission, which was expanded to three categories (in-hospital CPR, community CPR
and no CPR), and source of admission, which was expanded into nine categories combining information
from admission type. After exploring the relationship with outcome, deprivation was collapsed into two
categories (quintiles 1–3 and quintiles 4 and 5) and dependency prior to hospital admission was collapsed
into three categories [no dependency, partial dependency (combining either minor or major assistance with
activities of daily living) or total dependency]. After adjusting for current and new potential predictors,
deprivation and body mass index (BMI) were not retained in the main-terms model because of their lower
contribution to the model fit. The new predictor of dependency prior to hospital admission was retained.
Severe conditions in the past medical history were added into the model, but the only conditions ultimately
retained were severe liver disease, owing to its interaction with physiology, and metastatic disease and
haematological malignancy, because of their significant effect. Ventilation was also retained because it is
the main term in several interactions. This main-terms model had a c-index of 0.8779 and a Brier score of
0.1098 (Table 21).

A total of 56 process/system combinations and 16 individual conditions from the ICNARC coding method
form the new reason for admission categories (Table 22). These were selected after the modelling process
described above and accounted for 93.6% and 6.4% of admissions respectively.

TABLE 20 Selection of main physiology effects: backward process

Model c-index BS bias-corrected 95% CI Brier score BS bias-corrected 95% CI

Full model 0.8539 0.8511 to 0.8559 0.1166 0.1155 to 0.1176

Predictors dropped

Neutrophil count 0.8541 0.8508 to 0.8560 0.1167 0.1154 to 0.1179

Highest potassium 0.8539 0.8506 to 0.8561 0.1168 0.1158 to 0.1177

Lowest glucose 0.8538 0.8507 to 0.8559 0.1170 0.1160 to 0.1180

Lowest haemoglobin 0.8533 0.8513 to 0.8561 0.1171 0.1160 to 0.1182

Lowest WBC count 0.8529 0.8500 to 0.8557 0.1173 0.1160 to 0.1185

Lowest pH 0.8522 0.8493 to 0.8540 0.1176 0.1164 to 0.1188

Lowest SBP 0.8511 0.8481 to 0.8532 0.1183 0.1171 to 0.1194

Highest heart rate 0.8494 0.8467 to 0.8515 0.1188 0.1176 to 0.1200

Lowest platelet count 0.8478 0.8453 to 0.8505 0.1192 0.1180 to 0.1203

Highest temperature 0.8458 0.8431 to 0.8485 0.1203 0.1190 to 0.1216

PaCO2 0.8434 0.8408 to 0.8454 0.1209 0.1198 to 0.1219

Highest urea 0.8322 0.8288 to 0.8344 0.1237 0.1225 to 0.1248

Highest sodium 0.8278 0.8252 to 0.8311 0.1248 0.1237 to 0.1259

Highest creatinine 0.8231 0.8207 to 0.8252 0.1259 0.1247 to 0.1270

Highest blood lactate 0.8154 0.8119 to 0.8175 0.1299 0.1287 to 0.1309

Lowest respiratory rate 0.8055 0.8030 to 0.8083 0.1315 0.1304 to 0.1325

PaO2/FiO2 0.7709 0.7691 to 0.7745 0.1322 0.1308 to 0.1334

Urine output 0.7038 0.7000 to 0.7064 0.1439 0.1427 to 0.1451

Sedated/paralysed/GCS 0.5000 0.1699

BS, bootstrapped.
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TABLE 21 Performance of the different models in the building process

Model c-index (95% CI) Brier score

Main-terms model 0.8779 (0.8756 to 0.8800) 0.1098

Main-terms model with reason for admission 0.8881 (0.8859 to 0.8901) 0.1041

Main-terms model with reason for admission plus interactions with physiology 0.8898 (0.8877 to 0.8919) 0.1033

Final model 0.8906 (0.8885 to 0.8926) 0.1028

TABLE 22 Final categories of reason for admission included in the model

Reason for admission new categorical variable Frequency Percentage

Combinations of process and system

Accidental intoxication or poisoning (endocrinea) 531 0.34

Acidaemia (endocrine) 519 0.33

Burns or hyperthermia (dermatological) 167 0.11

Collapse (respiratory) 862 0.55

Coma or encephalopathy (neurological) 727 0.47

Congenital or acquired deformity or abnormality (cardiovascular) 773 0.50

Congenital or acquired deformity or abnormality (musculoskeletal) 3012 1.93

Congenital or acquired deformity or abnormality (neurological) 1176 0.75

Congenital or acquired deformity or abnormality (respiratory) 859 0.55

Congenital or acquired deformity or abnormality (endocrine;
gastrointestinal; genitourinary; haematological/immunological)

2184 1.40

Degeneration (cardiovascular) 1903 1.22

Degeneration (neurological) 89 0.06

Diabetes mellitus (endocrine) 1844 1.18

Dissection or aneurysm (cardiovascular) 4456 2.85

Failure (cardiovascular) 1546 0.99

Failure (genitourinary) 5861 3.75

Haemorrhage (cardiovascular) 197 0.13

Haemorrhage (gastrointestinal) 3776 2.42

Haemorrhage (genitourinary) 1066 0.68

Haemorrhage (neurological) 2229 1.43

Haemorrhage (respiratory) 322 0.21

Hyperkalaemia (endocrine) 388 0.25

Hypertension (cardiovascular) or over- or under-activity
(cardiovascular; genitourinary)

3514 2.25

Hypokalaemia (endocrine) 184 0.12

Hyponatraemia (endocrine) 262 0.17

Hypoplasia or dysplasia (haematological/immunological) 101 0.06

Hypothermia (endocrine) 146 0.09

Infection (cardiovascular) 610 0.39
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TABLE 22 Final categories of reason for admission included in the model (continued )

Reason for admission new categorical variable Frequency Percentage

Infection (genitourinary) 1935 1.24

Infection (respiratory) 16,413 10.51

Infection (dermatological; gastrointestinal; haematological/immunological;
musculoskeletal; neurological)

7306 4.68

Inflammation (gastrointestinal) 4148 2.66

Inflammation (neurological) 350 0.22

Inflammation (respiratory) 3393 2.17

Inflammation (cardiovascular; dermatological; genitourinary;
musculoskeletal)

501 0.32

Obstruction (cardiovascular) 7604 4.87

Obstruction (gastrointestinal) 5938 3.80

Obstruction (genitourinary) 712 0.46

Obstruction (respiratory) 4405 2.82

Other endocrine processesb (endocrine) 693 0.44

Seizures (neurological) 3558 2.28

Self intoxication or self poisoning (endocrine) 4412 2.83

Shock and hypotension (cardiovascular) 4401 2.82

Transplant or related (gastrointestinal) 626 0.40

Transplant or related (cardiovascular; endocrine; genitourinary;
haematological/immunological; respiratory)

282 0.18

Trauma, perforation or rupture (cardiovascular) 389 0.25

Trauma, perforation or rupture (gastrointestinal) 6490 4.16

Trauma, perforation or rupture (neurological) 3070 1.97

Trauma, perforation or rupture (dermatological; genitourinary;
musculoskeletal; respiratory)

4736 3.03

Tumour or malignancy (genitourinary) 4510 2.89

Tumour or malignancy (haematological/immunological) 377 0.24

Tumour or malignancy (neurological) 3067 1.96

Tumour or malignancy (cardiovascular; dermatological; endocrine;
gastrointestinal; musculoskeletal; respiratory)

14,263 9.14

Vascular (cardiovascular) 766 0.49

Vascular (gastrointestinal) 1379 0.88

Vascular (neurological) 1040 0.67
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The incorporation of primary reason for admission categories, plus interactions with physiology (n= 19), in the
risk prediction model produced better fit (see Table 21) and, therefore, could reduce bias when applied
across different settings with differing case mix.15 One of the pre-defined past medical history–physiology
interactions, six of the pre-defined intervention–physiology interactions and three of the pre-defined
physiology–physiology interactions were retained after adjusting for the main term model plus significant
primary reason for admission–physiology interactions. Apart from ventilation with arterial blood gas results, most
of the significant interactions added did not make an important contribution to the model (Table 23); however,
these interactions could reflect important dependencies as well as intrinsic prognostic features of the data.

The addition of non-physiological predictors and interactions did not affect the functional form of the
physiological predictors.

The estimates for the model parameters obtained using data from the multiply imputed data set were
similar to values estimated from the development data set and, therefore, the bias that could arise from
using only the available information was considered to be very small.

Following the development process described above, the significance and importance of the predictors in
the final model are shown in Table 23. Full coefficients for the final model [i.e. the new ICNARC model for
acute hospital mortality (ICNARCH-2014)] are presented in Appendix 2. The distribution of predicted acute
hospital mortality from the new model is shown in Figure 7.

TABLE 22 Final categories of reason for admission included in the model (continued )

Reason for admission new categorical variable Frequency Percentage

Specific conditions

Acute alcoholic hepatitis/alcoholic cirrhosis 529 0.34

Anaphylaxis 484 0.31

Anoxic or ischaemic coma or encephalopathy 983 0.63

Asthma attack in new or known asthmatic 1600 1.02

Enteroenteric or enterocutaneous fistula 132 0.08

Fractured ribs 252 0.16

Fungal or yeast pneumonia 210 0.13

Haemolysis or thrombocytopenia 166 0.11

Hanging or strangulation 192 0.12

Intracerebral haemorrhage 1524 0.98

Leaking large bowel anastomosis/perforated biliary tree or gall bladder 884 0.57

Lower limb artery stenosis or occlusion 1239 0.79

Pulmonary fibrosis or fibrosing alveoli 200 0.13

Secondary hydrocephalus 235 0.15

Thrombo-occlusive disease of brain 864 0.55

Toxic or drug-induced coma or encephalopathy 549 0.35

a Endocrine, metabolic, thermoregulation and poisoning are denoted as ‘endocrine’ throughout.
b Alcohol-related disorders, alkalaemia, chromosomal deletion syndromes, contiguous gene syndromes, envenomation,

fluid overload, haemorrhage, hypercalcaemia, hyperglycaemia, hypernatraemia, hyperthermia, hypocalcaemia,
hypoglycaemia, inborn errors of metabolism, obesity, over-activity, sex chromosome disorders, starvation, trisomy,
under-activity.

Among the subset of patients with pupil reactivity recorded (n= 104,063), a model using pupil reactivity in
place of the sedated/paralysed/GCS score predictor had very similar discrimination (c-index 0.8883 vs. 0.8887).
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TABLE 23 Final ICNARC model: significance and importance of included predictors

Predictor
p-value for
non-linearity

p-value for
global effect

Difference
in BICa c-indexa Brier scorea

Physiological

Highest heart rate < 0.0001 < 0.0001 260.286 0.8896 0.1031

Lowest SBP 0.0004 < 0.0001 –12.862 0.8906 0.1028

Highest temperature 0.0008 < 0.0001 –11.374 0.8906 0.1028

Lowest respiratory rate < 0.0001 < 0.0001 222.766 0.8898 0.1032

PaO2/FiO2 < 0.0001 < 0.0001 300.785 0.8896 0.1033

Lowest arterial pH 0.0001 < 0.0001 1.898 0.8905 0.1028

PaCO2 0.0003 < 0.0001 15.800 0.8905 0.1028

Highest blood lactate concentration 0.0010 0.0022 –20.535 0.8906 0.1028

Urine output < 0.0001 < 0.0001 345.397 0.8895 0.1033

Highest urea level < 0.0001 < 0.0001 76.738 0.8903 0.1030

Highest creatinine level < 0.0001 < 0.0001 338.498 0.8895 0.1034

Highest sodium level < 0.0001 < 0.0001 223.715 0.8899 0.1031

Lowest WBC count < 0.0001 < 0.0001 36.504 0.8904 0.1029

Lowest platelet count < 0.0001 < 0.0001 234.304 0.8897 0.1032

Sedated/paralysed/GCS score – < 0.0001 3478.910 0.8875 0.1042

Non-physiological

Age – < 0.0001 2806.928 0.8813 0.1065

Severe liver disease in past medical
history

– 0.0847 –8.555 0.8906 0.1028

Metastatic disease – < 0.0001 122.263 0.8902 0.1030

Haematological malignancy – < 0.0001 119.012 0.8902 0.1030

Dependency prior to admission – < 0.0001 573.037 0.8886 0.1035

CPR prior to admission – 0.0078 –13.554 0.8906 0.1028

Source of admission/urgency of
surgery

– < 0.0001 889.910 0.8875 0.1040

Primary reason for admission – < 0.0001 374.353 0.8865 0.1043

Ventilation – 0.1102 –9.148 0.8906 0.1028

Interactions

Arterial pH × PaCO2 – < 0.0001 12.177 0.8905 0.1028

Arterial pH × blood lactate
concentration

– < 0.0001 –24.330 0.8905 0.1028

Urine output × urea level – < 0.0001 –20.355 0.8905 0.1028

Liver disease × temperature – < 0.0001 –11.362 0.8906 0.1028

CPR × temperature – < 0.0001 –41.720 0.8906 0.1028

CPR × SBP – < 0.0001 –44.717 0.8906 0.1028

Collapse (respiratory) × platelet count – < 0.0001 –16.203 0.8906 0.1028
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TABLE 23 Final ICNARC model: significance and importance of included predictors (continued )

Predictor
p-value for
non-linearity

p-value for
global effect

Difference
in BICa c-indexa Brier scorea

Congenital (neurological) × urine
output

– < 0.0001 –19.459 0.8906 0.1028

Diabetes mellitus (endocrine) × heart
rate

– < 0.0001 –17.168 0.8906 0.1028

Haemorrhage (gastrological) × sodium
level

– < 0.0001 –4.124 0.8906 0.1028

Haemorrhage (neurological) × urine
output

– < 0.0001 2.495 0.8906 0.1028

Haemorrhage (neurological) × blood
lactate concentration

< 0.0001 14.506 0.8905 0.1029

Infection (respiratory) × heart rate – < 0.0001 –19.264 0.8906 0.1028

Infection (respiratory) × PaO2/FiO2 – < 0.0001 1.315 0.8905 0.1028

Self-poisoning (endocrine) × creatinine
level

– < 0.0001 –30.209 0.8905 0.1028

Self-poisoning (endocrine) × blood
lactate concentration

– < 0.0001 –7.324 0.8905 0.1028

Trauma (neurological) × sodium level – < 0.0001 –4.254 0.8906 0.1028

Trauma (neurological) ×WBC count – < 0.0001 2.779 0.8905 0.1028

Trauma (neurological) × urine output – < 0.0001 11.672 0.8905 0.1028

Trauma (neurological) × platelet count – < 0.0001 –6.734 0.8905 0.1028

Tumour (haematological/
immunological) ×WBC count

– < 0.0001 –19.998 0.8906 0.1028

Tumour (neurological) × urine output – < 0.0001 –18.574 0.8906 0.1028

Tumour (other) × sodium level – < 0.0001 –4.767 0.8906 0.1028

Alcoholic hepatitis/cirrhosis × urea
level

– 0.001 –19.033 0.8906 0.1028

Anoxic/ischaemic coma× SBP – < 0.0001 4.567 0.8905 0.1028

Intracerebral
haemorrhage × temperature

– < 0.0001 –16.786 0.8906 0.1028

Intracerebral haemorrhage × urine
output

– < 0.0001 17.770 0.8905 0.1029

Secondary hydrocephalus × creatinine
level

– 0.001 9.691 0.8906 0.1028

Ventilation × heart rate – < 0.0001 –5.314 0.8905 0.1028

Ventilation × respiratory rate – < 0.0001 –27.440 0.8905 0.1028

Ventilation × PaO2/FiO2 – < 0.0001 17.936 0.8905 0.1029

Ventilation × PaCO2 – < 0.0001 31.996 0.8904 0.1029

a If predictor removed.
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Validation of the new Intensive Care National Audit & Research
Centre model

Assessing the predictive performance
Discrimination, calibration and accuracy are key aspects of the predictive performance of prediction
models. Discrimination is the ability of a model to distinguish individuals who experienced the outcome
from those who remained event free, and calibration is the agreement between the probability of
developing the outcome of interest as estimated by the model and the observed outcome frequencies.
Accuracy refers to the difference between predictions and observed outcomes at the level of individuals.

The discrimination of the model was estimated by the c-index22 (equivalent to the area under the receiver
operating characteristic curve23) and accuracy was assessed by the Brier score (mean-square error between
outcome and prediction).28 We assessed calibration graphically with predicted probability on the x-axis
and the observed outcomes on the y-axis in 10 equal-sized risk groups (calibration plot) and by Cox’s
calibration regression (linear recalibration of the predicted log-odds).27

The use of calibration plots and parameters from Cox calibration regression (intercept and calibration
slope) to assess the calibration of the model, and not the Hosmer–Lemeshow c-statistic,24 is because the
last statistic reflects the statistical significance of miscalibration and not its magnitude and hence,
in general, models validated in a large sample and/or with the ability to provide very low mortality risk
predictions will tend to have a worse Hosmer–Lemeshow c-statistic than models validated in a small
sample size and/or providing a smaller range of mortality risks.25,26

Some researchers have proposed reclassification level as a measure of added utility or improvement. Cook
recommends producing a ‘reclassification table’ to show how many subjects are reclassified by adding a
marker to a model.91 Pencina et al. extended the reclassification idea by conditioning on the outcome;
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FIGURE 7 Distribution of predicted acute hospital mortality from the new ICNARC model in the development
data set.
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therefore, reclassification of subjects with and without the outcome should be considered separately.42 Any
‘upwards’ movement in categories for subjects with the outcome implies improved classification, and any
‘downwards’ movement indicates worse classification. The interpretation is opposite for subjects without
the outcome. The improvement in classification was quantified as the sum of differences in proportions of
individuals moving up minus the proportion moving down for those with the outcome, and the proportion
of individuals moving down minus the proportion moving up for those without the outcome (NRI).

Internal validation
Validation of predictive models, either internally to adjust for optimism and overfitting or externally to assess
generalisability, is essential in terms of understanding the reliability of both the choice of variables and the
values of coefficients for each variable. The performance of a predictive model could be overestimated
when simply determined on the sample of subjects that was used to construct the model; several internal
validation methods are available that aim to provide a more accurate estimate of model performance in new
subjects and to estimate the potential for optimism and overfitting in model performance. Bootstrapping
is now widely regarded as a better approach to validation than data splitting18,43,88 and the c-index is often
used to indicate optimism if the value decreases substantially in an independent data set. Harrell et al.88

presented an algorithm for estimating the optimism or overfitting in predictive models. Their method
is based on using bootstrapping to derive the expected bias-corrected c-index, which is referred to as the
optimism-corrected c-index.

When a predictive model is based on a very large sample size, as in this project, and relevant variables are
included in the final model, reasonable estimates of the coefficient values for each variable are likely.92

Optimism is small and so the apparent estimates of model performance (c-index and Brier score in the
development data set) are attractive because of their stability.43 However, to assess optimistic performance,
the percentage of overfitting was estimated by the optimism-corrected c-index.

External validation
External validation is an important issue because the performance of most developed and internally
validated prediction models, when applied to new individuals, is poorer than the performance seen in
the sample from which it was developed. Internal validation does not make use of data other than the
development data and, therefore, will not provide the degree of heterogeneity that will be encountered in
real-life application of the model.

External validation of any type consists of taking the original model, with its predictors and assigned
weights estimated from the development data set, and applying it to a different data set, obtaining the
measured predictor and outcome values in the new individuals and quantifying the model’s predictive
performance. In this project, external validation was done for a different period of time and in different
specialist units. We used the validation data set (January to September 2013) to compare the predictive
accuracy of the new model with that of the current ICNARC model, both overall as well as across different
types of admissions (surgical vs. non-surgical and planned vs. unplanned). An objective of this project was
to develop a single, general risk prediction model that could be applied across all adult critical care units,
including specialist cardiothoracic and neurocritical care units and stand-alone high-dependency units.
However, it is possible that a single, general model may under- or overestimate mortality in selected
admission subpopulations or different unit types and so could show worse performance than specifically
designed or calibrated models. Therefore, in addition, we used the validation data set to evaluate the use
of a general model in specialist units by comparing it to versions of the current ICNARC model specifically
recalibrated to each unit type.
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Results
The final model showed good performance (c-index 0.8909 and Brier score 0.1027) and internal
calibration of the model was satisfactory (see Table 21 and Figure 8). Overfitting was of limited relevance
because of the very large data set and, as expected, model optimism was negligible (0.16%
estimated overfitting).

The performance in the validation data set (January to September 2013) is presented in Table 24 and
Figure 9. Compared with the current ICNARC model, the new model demonstrated small improvements
in discrimination and accuracy (c-index 0.8853 vs. 0.8693, Brier score 0.1076 vs. 0.1146). The current
ICNARC model tended to slightly overestimate overall mortality; observed and mean predicted mortality
were 22.6% and 23.2%, respectively, for a standardised mortality ratio (SMR, defined as observed divided
by predicted mortality) of 0.97 (95% CI 0.96 to 0.99). A total of 30,739 (42.8%) of the admissions were
reclassified by the new model (31.4% of survivors and 17.2% of non-survivors; Tables 25 and 26) and
20,252 of those (65.8%) were placed into more appropriate categories. The total NRI for the new model
was 19.9 (p< 0.0001) and the new model showed a better risk classification, allocating more admissions
in the extremes (Table 27).
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FIGURE 8 Calibration of the new ICNARC model in the development data set.

TABLE 24 External validation: overall predictive performance of the new ICNARC model compared with the current
ICNARC model (2013 recalibration)

Model c-index (95% CI) Brier score
Predicted
mortality (%)

Observed
mortality (%) SMR (95% CI)

Currenta 0.8693 (0.8663 to 0.8722) 0.1146 23.23 22.62 0.97 (0.96 to 0.99)

Newb 0.8853 (0.8825 to 0.8880) 0.1076 22.94 0.99 (0.97 to 1.00)

a 2013 recalibration.
b Developed in this project.
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FIGURE 9 Calibration of the new ICNARC model compared with the current ICNARC model (2013 recalibration) in
the external validation data set. a, 2013 recalibration; and b, developed in this project.

TABLE 25 Reclassification table for the new ICNARC model compared with the current ICNARC model
(2013 recalibration)

Risk category (currenta)

Risk category (newb)

0–1.99% 2–4.99% 5–9.99% 10–19.99% 20–49.99% 50–100%

Survivors

0–1.99% 9530 1370 199 37 10 1

2–4.99% 4518 5356 1553 358 65 4

5–9.99% 552 3289 3096 1398 356 24

10–19.99% 105 836 2815 3398 1625 109

20–49.99% 23 113 679 3108 6193 1120

50–100% 1 3 7 59 1327 2281

Non-survivors

0–1.99% 40 21 5 1 1

2–4.99% 43 133 93 45 17 1

5–9.99% 11 124 239 230 111 12

10–19.99% 4 42 254 574 597 95

20–49.99% 2 9 87 621 3077 1575

50–100% 10 8 26 1032 7098

a 2013 recalibration.
b Developed in this project.
Grey text indicates no reclassification; unshaded cells indicate improved classification; and shaded cells indicate
worsened classification.

DEVELOPMENT AND VALIDATION OF THE NEW ICNARC MODEL

NIHR Journals Library www.journalslibrary.nihr.ac.uk

64



TABLE 26 Reclassification improvement for the new ICNARC model compared with the current ICNARC model
(2013 recalibration)

Change Survivors Non-survivors

Down, n (%) 17,435 (31.4) 2272 (14.0)

No change, n (%) 29,854 (53.8) 11,161 (68.7)

Up, n (%) 8229 (14.8) 2805 (17.3)

Net improvementa (SE) 16.6% (0.3%) 3.3% (0.4%)

SE, standard error.
a Net improvement defined as the proportion reclassified down minus the proportion reclassified up for survivors and the

proportion reclassified up minus the proportion reclassified down for non-survivors. Overall NRI= 19.9 (SE 0.5;
p< 0.0001).

TABLE 27 Risk stratification for the new ICNARC model compared with the current model (2013 recalibration)

Risk category Number of admissions Predicted mortality (%) Observed mortality (%)

Current ICNARC model (2013 recalibration)

0–1.99% 11,215 1.1 0.6

2–4.99% 12,186 3.3 2.7

5–9.99% 9442 7.2 7.7

10–19.99% 10,454 14.6 15.0

20–49.99% 16,608 33.2 32.3

50–100% 11,851 71.1 69.0

New ICNARC model (developed in this project)

0–1.99% 14,879 1.0 0.7

2–4.99% 11,358 3.3 2.9

5–9.99% 9126 7.2 7.6

10–19.99% 9979 14.5 15.2

20–49.99% 14,654 32.9 33.6

50–100% 12,451 73.9 71.2
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When compared across different types of admissions (surgical vs. non-surgical and planned vs. unplanned),
the new model improved discrimination (Table 28) and calibration (Figure 10) compared with the current
ICNARC model. For surgical admissions, the new model showed excellent discrimination and calibration
(c-index 0.8905, SMR 1.00) and for all other subgroups, good discrimination and SMRs close to 1, which
indicated good calibration among these subgroups.

To evaluate the performance of the new ICNARC model in specialist units, it was tested in each type of
unit using the January–September 2013 validation data set and was compared with specific, recalibrated
versions of the current ICNARC model for these units and, for cardiothoracic critical care units only, the
new specific model developed in Chapter 3 of this report (Table 29). The new model showed, in general,
a better performance than the specific, recalibrated models. Overall performance improved: the Brier score
decreased and discriminative ability showed an increase compared with the specific risk prediction models,
except for in the case of cardiothoracic units, where discrimination was similar but calibration was very
good (Figure 11). The observed mortality was uniformly lower than the predicted mortality (SMR < 1) in
both new and specific recalibrated risk prediction models, except for the new risk model for cardiothoracic
critical care units, which gave slightly lower predicted mortality (SMR 1.04), and the new ICNARC model
when applied to neurocritical care units, which showed excellent calibration (SMR 1.00). Across all types of
unit, the group of admissions with the highest observed mortality had higher predicted risk according to
the new model than according to the specific recalibrated models, corresponding to more extreme
predictions and a greater spread of predicted risk (Figure 11).

TABLE 28 Performance of the new ICNARC model compared with the current ICNARC model (2013 recalibration)
on patient subgroups

Model c-index (95% CI) Brier score
Predicted
mortality (%)

Observed
mortality (%) SMR (95% CI)

Surgical (n = 30,282)

Currenta 0.8716 (0.8651 to 0.8781) 0.0663 10.07 10.30 1.02 (0.99 to 1.06)

Newb 0.8905 (0.8845 to 0.8963) 0.0624 10.33 1.00 (0.96 to 1.03)

Non-surgical (n = 41,474)

Currenta 0.8330 (0.8290 to 0.8370) 0.1499 32.84 31.63 0.96 (0.95 to 0.98)

Newb 0.8538 (0.8500 to 0.8575) 0.1407 32.14 0.98 (0.97 to 1.00)

Planned (n = 19,237)

Currenta 0.8747 (0.8651 to 0.8844) 0.0520 8.37 7.62 0.92 (0.88 to 0.97)

Newb 0.8900 (0.8811 to 0.8989) 0.0499 7.92 0.96 (0.91 to 1.01)

Unplanned (n = 52,519)

Currenta 0.8444 (0.8409 to 0.8479) 0.1376 28.71 28.12 0.98 (0.97 to 0.99)

Newb 0.8646 (0.8612 to 0.8678) 0.1288 28.28 0.99 (0.98 to 1.00)

a 2013 recalibration.
b Developed in this project.
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FIGURE 10 Calibration of the new ICNARC model compared with the current ICNARC model (2013 recalibration) on
patient subgroups. (a) Surgical; (b) non-surgical; (c) planned; and (d) unplanned. a, 2013 recalibration; b, developed
in this project.

TABLE 29 Performance of the new ICNARC model compared with the current ICNARC model (specific 2013
recalibrations) across different types of critical care units

Model c-index (95% CI) Brier score
Predicted
mortality (%)

Observed
mortality (%) SMR (95% CI)

Cardiothoracic critical care units (n = 3200)

Currenta 0.8895 (0.8701 to 0.9088) 0.0620 10.16 9.87 0.97 (0.87 to 1.07)

Specificb 0.8898 (0.8718 to 0.9079) 0.0637 9.45 1.04 (0.94 to 1.15)

Newc 0.8899 (0.8709 to 0.9088) 0.0614 10.69 0.92 (0.83 to 1.02)

Neurocritical care units (n = 9439)

Currenta 0.8453 (0.8363 to 0.8543) 0.1223 24.53 22.44 0.92 (0.88 to 0.95)

Newc 0.8644 (0.8559 to 0.8728) 0.1147 22.36 1.00 (0.97 to 1.04)

Stand-alone high-dependency units (n = 2350)

Currenta 0.8749 (0.8576 to 0.8920) 0.0957 17.84 16.59 0.93 (0.85 to 1.01)

Newc 0.8986 (0.8830 to 0.9140) 0.0860 17.65 0.96 (0.87 to 1.05)

a 2013 recalibration (specific to unit type).
b Developed in this project (specific model for cardiothoracic critical care units, see Chapter 3).
c Developed in this project (single model for all unit types).

DOI: 10.3310/hsdr03410 HEALTH SERVICES AND DELIVERY RESEARCH 2015 VOL. 3 NO. 41

© Queen’s Printer and Controller of HMSO 2015. This work was produced by Harrison et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

67



Conclusions
The new ICNARC model showed good discrimination and calibration and had good performance when
externally validated using data from a different time period. In addition, it improved the discrimination and
reclassification compared with the current model. When validated on specialist units, both discrimination
and calibration were close to that of specific recalibrated versions of the current ICNARC model; therefore,
use of this single model, which works across general and specialist units, is recommended.

Missing data: risk prediction model application in
routine practice

As shown in Table 15, data for all predictors in the model may not be measured and so it is necessary for
missing predictor values to be dealt with in order to apply the model to new admissions. Missing values for
physiological variables in the current ICNARC model are assumed to be normal on the assumption that,
most likely, the test was not required, as the treating clinician expected that the result would be normal.
Although this approach is easily applicable in routine practice, it is likely to be biased and only works for
categories. In addition, in the CMP there are not standard patterns of missing data (see Table 16) and it is
likely that neither are there standard mechanisms for the missingness, so no simple recipe for handling
missingness could fit because the appropriate approach may depend on the proportion of missing values,
the number of missing predictors and whether or not the predictor with missing values is a strong predictor.
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FIGURE 11 Calibration of the new ICNARC model compared with recalibrations of the current ICNARC model
in different types of critical care unit. (a) Cardiothoracic critical care units; (b) neurocritical care units; and
(c) high-dependency units. a, 2013 recalibration (specific to unit type); b, developed in this project (single model
for all unit types).
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In this section, we compare different approaches for handling missing data across the main missing data
patterns in order to evaluate which method of imputation of missing values leads to the most accurate
model predictions in the CMP when a risk prediction model is applied to individual patients. As the SMR is
used to evaluate the performance of a critical care unit we also explore the impact of handling missing
physiological predictors on the SMR and the impact of the location of critical care units on the funnel plot.

Methods

Influence of imputation on model performance
We compared five different, alternative approaches that could be used to deal with missing values in
future application of the new ICNARC risk prediction model:

l multiple imputation by FCS
l single imputation
l regression imputation
l normal/mean imputation
l submodels for specific patterns.

For the multiple imputation approach, we imputed five values of the missing predictors for each admission.
We then calculated five linear predictions from the new ICNARC model for each admission and averaged
them using Rubin’s rules. We obtained the predicted probability of acute hospital mortality from this
pooled result. This procedure is better than transforming each linear prediction to probability and
averaging these five probabilities because the risk is not normally distributed.

Single imputation applied the same technique as the multiple imputation but with only one repetition
instead of the five used for multiple imputation and, this time, without the outcome in the
imputation model.

For regression imputation, a regression model was built to predict the missing values based on admissions
with complete data. The predictor with missing values was considered to be the outcome variable, with all
other available data for an admission used as the predictor variables. One of the pitfalls of this approach is
the low correlation between predictors, as well as the fact that that predictors were missing simultaneously
in related physiological predictors, such as arterial blood gas, blood lactate concentration and laboratory
measurements, therefore we needed to use additional variables correlated with the missing physiology in
the regression imputation. To avoid the increase of uncertainty, this approach was only considered
in the case of isolated missing predictor patterns (blood lactate concentration, urine output and
sedated/paralysed/GCS score).

For normal/mean imputation, the missing predictor value was imputed with the mean value of the predictor,
estimated from the development data set or the established ‘normal’ value (e.g. score of 15 for GCS).

Unlike the previous four strategies, which impute the missing values in such a way that the original
prediction model can be applied, the last strategy (submodels for specific patterns) does not fill in missing
values but uses a modified prediction model; that is, a submodel without the unobserved predictors,
derived from the development data set. In these submodels, the intercept and regression coefficients
of the remaining (observed) predictors are adjusted for the exclusion of the unobserved predictors.
This approach was applied to patterns of missingness (all physiology missing, arterial blood gas and
laboratory missing, and arterial blood gas missing).
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The application data set consisted of the 71,756 admissions in the validation data set with all information
available. This data set did not contain any missing predictor values and served as the reference. We then
identified the most prevalent missing data patterns in the development data set and used the application
data set to create randomly generated missing data using their relative prevalence and the probabilities
of having each pattern to mimic the missingness scenarios observed in the development data set.

We estimated the accuracy of the five approaches to handling missing data by quantifying the
discrimination and calibration, as well as the overall predicted probability, and both overall and individual
units’ SMRs in the admissions with imputed values. For each scenario of missing patterns, we compared
the different approaches with the reference situation (as the observed values are known).

Influence of imputation on benchmarking
The predicted risk of mortality for each patient was determined from the new ICNARC model equation.
The impact of addressing the missing data on the SMR of the included critical care units (benchmarking)
was assessed by calculating the SMRs for each unit and visualising the differences in their locations in a
funnel plot of SMR against number of admissions93 according to control limits. Differences were evaluated
in terms of the percentage change relative to the reference SMR, as well as differences in the proportion
of negative and positive alerts/alarms (i.e. the proportions of critical care units outside the control limits).
Imputation strategies of multiple imputation, single imputation and normal/mean imputation were
compared with complete case data.

Results

Influence of imputation on model performance
The results of the approaches considered over the different situations are summarised in Tables 30 and 31.

To evaluate a global scenario (admissions that had missing values in any physiology), we compared the
three approaches that simultaneously address different patterns of missing data: multiple imputation,
single imputation and normal/mean imputation. All approaches were similarly accurate methods for
imputation. The c-index for each method was close to the reference, as were the calibration slope and
intercept. Correlation between probabilities with imputed and observed data was high (0.96 for multiple
imputation, 0.94 for single imputation and 0.94 for normal/mean imputation) and the difference in the
means of the predicted probabilities to the reference was minimal and did not affect the overall SMRs.
Only normal/mean imputation increased the overall SMR (Table 31).

The strategies were then evaluated across our different missing data scenarios. The proportion of
admissions with all physiology missing was small (0.39%) and only two main frequent patterns of missing
data were observed: arterial blood gas (PaO2/FiO2, pH, PaCO2), blood lactate concentration and laboratory
measurements (urea level, creatinine level, sodium level, WBC count, platelet count) missing with or
without urine output (2.13%); and arterial blood gas missing with or without blood lactate concentration
(9.43%). Isolated predictors with a relatively high proportion of missing values were blood lactate
concentration (1.90%), urine output (0.88%) and sedated/paralysed/GCS score (2.42%).
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TABLE 30 Discrimination and calibration of different approaches to handling missing data in the simulation study
for application of the new ICNARC model

Approach to missing data c-index (95% CI) Brier score

Cox calibration regression

β α

All admissions (n = 71,756)

Referencea 0.885 (0.882 to 0.888) 0.1076 0.9499 –0.0685

Single imputation 0.884 (0.881 to 0.886) 0.1082 0.9459 –0.0737

Multiple imputation 0.885 (0.883 to 0.888) 0.1075 0.9647 –0.0531

Normal/mean imputation 0.884 (0.881 to 0.886) 0.1081 0.9526 –0.0486

Any physiology missing (n = 15,039)

Referencea 0.886 (0.880 to 0.892) 0.1069 0.9614 –0.0701

Single imputation 0.880 (0.874 to 0.886) 0.1092 0.9474 –0.1135

Multiple imputation 0.888 (0.882 to 0.894) 0.1062 1.0384 –0.0204

Normal/mean imputation 0.881 (0.874 to 0.887) 0.1091 0.9751 –0.0012

All physiology missing (n = 287)

Referencea 0.903 (0.865 to 0.940) 0.0980 0.8839 –0.3122

Submodel 0.829 (0.777 to 0.880) 0.1261 0.9615 –0.1334

Single imputation 0.888 (0.835 to 0.924) 0.1048 1.0459 –0.4227

Multiple imputation 0.908 (0.873 to 0.943) 0.0988 1.3720 –0.0378

Normal/mean imputation 0.873 (0.829 to 0.916) 0.1099 1.1193 0.2511

Arterial blood gas, blood lactate concentration and laboratory values missing with or without urine output
(n = 1584)

Referencea 0.886 (0.867 to 0.903) 0.1091 0.9618 –0.0492

Submodel 0.854 (0.833 to 0.874) 0.1215 0.9468 –0.0642

Single imputation 0.861 (0.840 to 0.882) 0.1171 0.8799 –0.2043

Multiple imputation 0.885 (0.867 to 0.903) 0.1074 1.0871 0.0313

Normal/mean imputation 0.868 (0.847 to 0.889) 0.1134 0.9478 –0.1240

Arterial blood gas values missing with or without blood lactate concentration (n = 7577)

Referencea 0.883 (0.874 to 0.891) 0.1070 0.9512 –0.0912

Submodel 0.866 (0.856 to 0.874) 0.1160 0.9481 –0.0927

Single imputation 0.880 (0.871 to 0.889) 0.1087 0.9607 –0.0774

Multiple imputation 0.886 (0.877 to 0.894) 0.1060 1.0061 –0.0308

Normal/mean imputation 0.881 (0.872 to 0.889) 0.1083 0.9658 –0.0689

Isolated missing values: blood lactate concentration (n = 742)

Referencea 0.899 (0.868 to 0.910) 0.1021 1.0182 –0.0984

Regression imputation 0.894 (0.868 to 0.920) 0.1031 1.0092 –0.1194

Single imputation 0.900 (0.868 to 0.910) 0.1045 1.0396 –0.0375

Multiple imputation 0.900 (0.870 to 0.911) 0.1011 1.0443 –0.0450

Normal/mean imputation 0.900 (0.868 to 0.910) 0.1013 1.0395 –0.0375

continued
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TABLE 30 Discrimination and calibration of different approaches to handling missing data in the simulation study
for application of the new ICNARC model (continued )

Approach to missing data c-index (95% CI) Brier score

Cox calibration regression

β α

Isolated missing values: urine output (n = 435)

Referencea 0.917 (0.885 to 0.931) 0.0999 1.0919 0.1773

Regression imputation 0.915 (0.885 to 0.943) 0.1046 1.1337 0.4590

Single imputation 0.902 (0.863 to 0.915) 0.1090 0.9105 –0.1039

Multiple imputation 0.926 (0.891 to 0.937) 0.0939 1.2090 0.1818

Normal/mean imputation 0.926 (0.888 to 0.934) 0.0948 1.1848 0.1571

Isolated missing values: sedated/paralysed/GCS (n = 1131)

Referencea 0.870 (0.859 to 0.894) 0.1236 0.8961 0.0340

Regression imputation 0.864 (0.841 to 0.886) 0.1265 0.8792 –0.0755

Single imputation 0.870 (0.855 to 0.893) 0.1218 0.8876 –0.0584

Multiple imputation 0.870 (0.860 to 0.894) 0.1248 1.0148 0.0379

Normal/mean imputation 0.859 (0.849 to 0.885) 0.1325 0.9158 0.3912

a Before creation of missing values.

TABLE 31 Predicted and observed acute hospital mortality and standardised mortality ratio for different
approaches to handling missing data in the simulation study for application of the new ICNARC model

Approach to missing data Predicted mortality (%) Observed mortality (%) SMR (95% CI)

Any physiology missing (n = 15,039)

Referencea 23.01 22.58 0.98 (0.95 to 1.01)

Single imputation 23.62 0.98 (0.95 to 1.01)

Multiple imputation 23.12 0.98 (0.95 to 1.01)

Normal/mean imputation 22.37 1.01 (0.98 to 1.04)

All physiology missing (n = 287)

Referencea 21.87 19.86 0.91 (0.70 to 1.12)

Submodel 21.07 0.94 (0.72 to 1.16)

Single imputation 23.44 0.85 (0.65 to 1.05)

Multiple imputation 23.17 0.86 (0.66 to 1.06)

Normal/mean imputation 18.50 1.07 (0.82 to 1.32)

Arterial blood gas, blood lactate concentration and laboratory values missing with or without urine output
(n = 1584)

Referencea 22.94 22.73 0.99 (0.90 to 1.08)

Submodel 22.98 0.99 (0.90 to 1.08)

Single imputation 24.04 0.95 (0.86 to 1.03)

Multiple imputation 23.13 0.98 (0.89 to 1.07)

Normal/mean imputation 23.68 0.96 (0.87 to 1.05)
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All physiology missing
A submodel in which no physiological predictors were considered was compared with imputation methods
of multiple imputation, single imputation and normal/mean imputation.

All the approaches produced values of the c-index close to the reference value except the submodel
without physiology, which gave a lower c-index of 0.82. Only this method had a calibration slope < 1,
indicating too optimistic predictions. However, none of the methods resulted in a calibration slope similar
to the reference. Except for multiple imputation (calibration intercept 0.03), all the approaches showed
insufficient calibration in the large.

The correlation between the predicted probability from the imputed data and from the observed data was
lower for single imputation (0.70) and normal/mean imputation (0.67) than for multiple imputation. The
means of the predicted probabilities were higher than the reference value for both multiple imputation
and single imputation, and therefore the overall SMRs were lower. The opposite was true for normal/mean
imputation, which underestimated the risks and therefore increased the SMR.

TABLE 31 Predicted and observed acute hospital mortality and standardised mortality ratio for different
approaches to handling missing data in the simulation study for application of the new ICNARC model (continued )

Approach to missing data Predicted mortality (%) Observed mortality (%) SMR (95% CI)

Arterial blood gas values missing with or without blood lactate concentration (n = 7577)

Referencea 22.61 22.05 0.98 (0.93 to 1.02)

Submodel 22.65 0.97 (0.93 to 1.01)

Single imputation 22.55 0.98 (0.94 to 1.02)

Multiple imputation 22.44 0.98 (0.94 to 1.02)

Normal/mean imputation 22.50 0.98 (0.94 to 1.02)

Isolated missing values: blood lactate concentration (n = 742)

Referencea 23.79 22.64 0.95 (0.82 to 1.08)

Regression imputation 23.95 0.95 (0.82 to 1.07)

Single imputation 23.34 0.97 (0.87 to 1.07)

Multiple imputation 23.45 0.97 (0.84 to 1.09)

Normal/mean imputation 23.34 0.97 (0.84 to 1.10)

Isolated missing values: urine output (n = 435)

Referencea 24.65 25.75 1.04 (0.88 to 1.21)

Regression imputation 22.31 1.15 (1.01 to 1.30)

Single imputation 26.22 0.98 (0.82 to 1.14)

Multiple imputation 25.34 1.02 (0.85 to 1.18)

Normal/mean imputation 25.42 1.01 (0.85 to 1.18)

Isolated missing values: sedated/paralysed/GCS score (n = 1131)

Referencea 24.22 25.55 1.06 (0.95 to 1.16)

Regression imputation 25.44 1.00 (0.90 to 1.10)

Single imputation 23.42 1.08 (0.97 to 1.19)

Multiple imputation 20.02 1.01 (0.91 to 1.11)

Normal/mean imputation 19.86 1.28 (1.15 to 1.40)

a Before creation of missing values.
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Arterial blood gas, blood lactate concentration and laboratory values missing
with or without urine output
A submodel without arterial blood gas measurements, blood lactate concentration, laboratory
measurements and urine output was compared to imputation methods of multiple imputation, single
imputation and normal/mean imputation.

The results showed that all methods led to lower c-indices than the reference, but least so with multiple
imputation (0.88). Although the submodel had a lower c-index (0.85), it had good calibration in the large
(calibration intercept −0.06). Single imputation gave too optimistic predictions (calibration slope 0.88) and
was the least well correlated, with predicted probability from the reference values (0.87). Both single
imputation and normal/mean imputation overestimated the risk, with a calibration intercept of −0.20 and
−0.12 respectively. In addition, both gave mean predicted probabilities higher than the reference and,
therefore, lower overall SMRs.

Arterial blood gas missing with or without blood lactate concentration
A submodel without arterial blood gas measurements and blood lactate concentration was compared with
imputation methods of multiple imputation, single imputation and normal/mean imputation.

The c-index was close to the reference value in all strategies, but least so for the submodel. The calibration
slopes and intercepts were similar, but the best calibrated was multiple imputation. All approaches had a
strong correlation with the predicted probability from the reference data, but single imputation had the
lowest correlation (0.88) and multiple imputation the highest (0.93). All methods gave a mean predicted
probability and overall SMRs close to the reference.

Isolated predictors missing
To deal with isolated missing physiological predictors, we considered using a regression imputation for the
three parameters that presented a high proportion of missing values.

1. Blood lactate concentration.
The prediction model applied to blood lactate values imputed from a regression was compared with
multiple imputation, single imputation and normal/mean imputation.
The differences in c-index relative to the reference were minimal. All methods led to a good calibration,
but the regression approach, on average, overestimated the risk (calibration intercept −0.12), although
there was no impact on overall SMR. The overall SMR increased in the rest of the approaches, but
the change was negligible. All approaches resulted in an excellent correlation with the reference
predicted probabilities.

2. Urine output.
The prediction model applied to urine output values imputed from a regression model was compared
with multiple imputation, single imputation and normal/mean imputation.
The four methods showed good discrimination, with a c-index close to the reference, but the regression
imputation, on average, underestimated the risk (calibration intercept 0.46) and so increased the overall
SMR. Apart from single imputation, the approaches were too optimistic, but the impact on overall SMR
was minimal, whereas single imputation decreased the SMR to 0.98.

3. Sedated/paralysed/GCS score.
The prediction model applied to the values of the neurological predictor (indicating whether the patient
was sedated or paralysed and sedated for the entirety of the first 24 hours in the critical care unit or, if
not, their lowest total GCS score) imputed from a regression model was compared with multiple
imputation, single imputation and normal/mean imputation.
While multiple imputation and single imputation led to values of the c-index close to the reference
value, regression imputation and mean/normal imputation decreased the c-index to 0.864 and 0.859
respectively. All methods showed good calibration except normal/mean imputation, which
underestimated the overall risk (calibration intercept 0.39) and increased the overall SMR to 1.28.
Regression imputation and multiple imputation decreased the SMR.
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Influence of imputation on benchmarking
When different approaches (single imputation, multiple imputation and normal/mean imputation) were
compared, there was no significant difference in overall SMR between the approaches (0.99, 95% CI 0.97
to 1.00; 0.99, 95% CI 0.98 to 1.00; and 0.99, 95% CI 0.98 to 1.00 respectively) or with complete case
analysis (0.99, 95% CI 0.97 to 1.00) compared with the reference value (0.99, 95% CI 0.97 to 1.00).

Table 32 and Figure 12 present the critical care unit performance according to original, complete case and
imputation approaches. The proportion of critical care units performing above and below expectation,
according to 95% control limits, is higher after the imputation approaches but close to the reference,
varying from 13 (6.0%), with single and multiple imputation, to 14 (6.5%) with normal/mean imputation.
Distribution of the SMRs under each performance category was similar to the reference for all imputation
approaches with a high agreement (kappa 0.927, 0.963 and 0.927 for single imputation, multiple
imputation and normal imputation respectively). On the other hand, complete case analysis led to a
substantially higher number of critical care units performing ‘in control’ [193 (90%) vs. 186 (86.5%) for
the reference]. Most of these critical care units shifted from in control (based on complete case) to positive
alert after imputation, although complete case still showed a good agreement with the reference (kappa
0.724). No positive alarms were found in the data.

Evaluation with real missing values
Table 33 shows the results when the different approaches (multiple imputation, single imputation,
normal/mean imputation and complete case) were applied to the full data set, including missing values.
Using the normal/mean imputation strategy, the model showed a c-index of 0.892 (95% CI 0.890 to
0.895) and a calibration slope of 0.980 with a calibration intercept of –0.021. For the single and multiple
imputation strategies, the c-index was slightly higher (0.894, 95% CI 0.892 to 0.896, and 0.895, 95% CI
0.892 to 0.898 respectively) with a similar calibration slope (0.979 and 0.988 respectively) and small
difference in calibration intercept (−0.061 and −0.051 respectively). Under our ‘real’ scenario, the
imputation of missing predictors prevented a drop of 0.01 in the c-index compared to a complete case
approach (0.885, 95% CI 0.882 to 0.888). This 0.01 drop in the c-index may be considered to be a
relevant decrease in the accuracy of predicted risks of individual patients because the c-index is
relatively insensitive.

Observed acute hospital mortality was 22.6% for the complete case admissions, in contrast to the
predicted mortality of 22.9%, giving an SMR of 0.99 (95% CI 0.97 to 1.00). With the imputation
approaches (single, multiple and normal/mean imputation), observed mortality was 21.48%, with
predicted mortality 21.92%, 21.89% and 21.52%, respectively, for SMRs of 0.98 (95% CI 0.97 to 0.99),
0.98 (95% CI 0.97 to 0.99) and 1.00 (95% CI 0.99 to 1.01 respectively).

TABLE 32 Critical care unit performance status for different approaches to handling missing data in the simulation
study for application of the new ICNARC model

Approach to missing data

Location of critical care units relative to funnel plot lines, n (%)

Negative alarm Negative alert In control Positive alert Positive alarm

Reference 5 (2.4) 12 (5.6) 186 (86.5) 12 (5.6) 0 (0)

Complete case 7 (3.0) 8 (3.7) 193 (90.0) 7 (3.0) 0 (0)

Single imputation 6 (2.8) 13 (6.0) 183 (85.6) 13 (6.0) 0 (0)

Multiple imputation 5 (2.4) 13 (6.0) 184 (85.6) 13 (6.0) 0 (0)

Normal/mean imputation 4 (2.0) 14 (6.5) 183 (85.0) 14 (6.5) 0 (0)
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FIGURE 12 Funnel plots for alternative approaches to handling missing data in the simulation study for application
of the new ICNARC model. (a) Complete case; (b) multiple imputation; (c) single imputation; and (d) normal/
mean imputation.

TABLE 33 Discrimination and calibration of different approaches to handling real missing data in the application
of the new ICNARC model

Approach to
missing data

c-index
(95% CI)

Brier
score

Cox calibration
regression Predicted

mortality
(%)

Observed
mortality
(%) SMR (95% CI)β α

Complete case
(n= 71,756)

0.885
(0.882 to 0.887)

0.107 0.949 –0.068 22.94 22.63 0.99 (0.97 to 1.00)

Single imputation
(n= 90,107)

0.894
(0.891 to 0.896)

0.100 0.979 –0.061 21.92 21.48 0.98 (0.97 to 0.99)

Multiple
imputation
(n= 90,107)

0.895
(0.892 to 0.897)

0.100 0.988 –0.051 21.89 0.98 (0.97 to 0.99)

Normal/mean
imputation
(n= 90,107)

0.893
(0.890 to 0.895)

0.101 0.980 –0.021 21.52 1.00 (0.99 to 1.01)
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Table 34 and Figure 13 show the critical care unit performance relative to control limits for the complete
case and imputation approaches in order to evaluate their impact on benchmarking when applied to the
‘real’ scenario. The proportions of critical care units with SMRs below 1 according to 95% and 99.8%
control limits were similar for all approaches, including complete case. In contrast to what the simulation
results showed, the proportion of critical care units with positive alert was higher based on complete case
and normal/mean imputation and lower after single and multiple imputation approaches. Most of the
shifts were from positive alert (based on complete case) to in control after imputation, although three
critical care units remained as positive alert after normal/mean imputation. No positive alarms were found
in the data.

TABLE 34 Critical care unit performance status for different approaches to handling real missing data in the
application of the new ICNARC model

Approach to missing data

Location of critical care units relative to funnel plot lines, n (%)

Negative
alarm

Negative
alert In control

Positive
alert

Positive
alarm

Complete case (n= 71,756) 5 (2.3) 12 (5.6) 186 (86.5) 12 (5.6) 0 (0)

Single imputation (n= 90,107) 6 (2.8) 11 (5.1) 193 (90) 6 (2.8) 0 (0)

Multiple imputation (n= 90,107) 5 (2.3) 12 (5.6) 192 (89.3) 6 (2.8) 0 (0)

Normal/mean imputation (n= 90,107) 5 (2.3) 11 (5.1) 189 (87.9) 10 (4.7) 0 (0)
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FIGURE 13 Funnel plots for alternative approaches to handling real missing data in the application of the new
ICNARC model. (a) Complete case; (b) multiple imputation; (c) single imputation; and (d) normal/mean imputation.
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Conclusions
The similarity of multiple imputation, single imputation and normal/mean imputation on the global results
suggests a low impact of missing data on the overall outcomes. The differences in the means of the
predicted probabilities to the reference were also minimal so will not affect the overall SMR in a large data
set. The difference in performance between multiple imputation and single imputation suggests that
repetition is an important component if the approach is to use imputed values; we therefore reject any
further consideration of single imputation.

The multiple imputation approach was usually the most accurate method of imputation. However,
imputation of normal/mean values demonstrated comparable accuracy in addressing isolated missing
physiological predictors, except when imputing sedated/paralysed/GCS score, for which multiple
imputation was the best approach. Regression methods for imputing isolated missing values were not the
best approach and actually normal/mean imputation performed better in that situation.

When the number of missing predictors was high, the quality of the imputed values was not as good and
the imputed values required careful evaluation. If the missing values were in strong predictors, multiple
imputation resulted in a c-index that was close to the reference value, whereas all other methods,
including a specific submodel, led to an underestimated c-index. In theory, using submodels derived from
the development data set that contain only the available predictors could give better discrimination than
imputing missing values; however, this is less likely if a strong predictors is missing, because any submodel
without the predictor loses discriminative ability. In addition, if those risk-increasing predictors are ignored,
then all the predicted risks are lower.

Differences between imputation methods depend not only on the number of missing values but also on
the number of predictors missing and their importance in the model. Apparently the discriminative ability
of the model was based on one particularly strong predictor (sedated/paralysed/GCS score) and the
physiology and that is why when we have fewer missing values in these factors we recover information
and improve the accuracy.

The lack of consistency of the approaches under different situations is an important finding, suggesting
that there is no standard missing-value mechanism and thus no simple method for handing missing values
when a model is applied.

For missing data at the point of model application, we could conclude that multiple imputation is the best
approach for addressing patterns of missing predictors (i.e. when missing values occur simultaneously
in multiple predictors) and normal/mean imputation for isolated missing predictors. Regression-based
approaches showed the worst results and submodels lost discriminative ability and accuracy because of the
importance of the missing factors in the risk prediction model. In order to be able to apply the model to a
new single admission (or small number of admissions) with missing data, in which case multiple imputation
is not feasible, normal/mean imputation is likely to be the best approach.

In a simulation study, we found that complete case analysis led to a substantially lower number of
providers performing statistically above or below the national average. This may indicate that complete
case analysis fails to detect statistically significant outliers (negative and positive alerts), increasing the
proportion identified as ‘in control’.

Missing physiological values may lead to underestimation of predicted mortality; therefore, the number
and type of missing variables should be taken into consideration when assessing the performance of a
critical care unit. However, when represented using funnel plots, the impact of missing data was no longer
evident. In a large data set, the impact of missing data could be minimal and not affect the SMR.
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Discussion

We have developed a new ICNARC model that outperforms the most recent recalibration of the current
ICNARC model on measures of discrimination, calibration and overall fit. Furthermore, the new ICNARC
model works well across all different types of critical care units participating in the CMP, performing as
well as, or better than, specific versions of the current ICNARC model recalibrated according to type
of unit.

We have demonstrated that in this setting, development of the risk prediction model using complete case
data produces equivalent estimates of model coefficients to those from multiply imputed data. For
application of the model to future data, we recommend that multiple imputation provides the most
reliable estimates of critical care unit performance. However, under most circumstances single imputation
of mean/normal values produced similar results and is likely to be the most appropriate method to allow
the model to be applied to smaller cohorts of patients where multiple imputation is not feasible.

For modelling continuous physiological predictors, we found that the best approach was restricted cubic
splines. For most predictors, four knots were sufficient to adequately model the predictor–outcome
relationship; this is equivalent to a model with only four categories in terms of model parameters, but
offers a much more flexible approach and better fit to the data. The improved discrimination of the
new model compared with the previous ICNARC model may be due, in part, to the use of continuous
non-linear modelling of the physiological predictors. This observation further highlights the importance of
appropriate functional forms for continuous variables when developing risk prediction models. Harrell84

and Steyerberg et al.43 describe approaches for selecting the optimal functional form; we, however,
propose a more flexible approach by using a smoothed curve (running line smoother) to establish the
reference curve, comparing restricted cubic spline, fractional polynomial and simple parametric forms to
approximate the reference curve and using the model fit information (AIC, BIC) to select the best
functional form, continuing to recheck and, if necessary, to refine the functional form at each step of the
multivariable regression modelling process. The reason for these extensions is that non-linear approaches
may not represent the underlying shape of the relationship between a continuous predictor and the
outcome in certain situations, and so we should avoid blindly using them without checking the appropriate
reference curves.

Another key finding from the present work is that the incorporation of new variables contributed to the
model performance. No previous model has included lactate level among the assessed predictors, despite
published information about its independent prognostic impact.59,60 Dependency prior to admission was
found to be an important predictor, and we continue to adjust for the prognostic impact of the patient’s
location prior to admission to the critical care unit while now additionally combining information on
admission type (to distinguish, for example, planned from unplanned admissions following elective
surgery). This significant combination of information suggests that source and type of admission have
a simultaneous effect on mortality. It is interesting to note that we did not observe improved model
performance when including deprivation, despite a previously reported association with mortality for
admissions to UK critical care units.70 Similarly, although BMI has been shown to be related to outcome
in critically ill patients,69 we found that, while statistically significant, it did not contribute substantively to
the model’s predictive performance.

Although pupil reactivity was found to be a potentially important predictor, it had considerably more
missing values than the predictor currently used to assess neurological status (16.2% and 3.5%,
respectively), so we decided not to incorporate it into the model. However, we recommend a focus on
improving the availability and recording of this predictor in order to reassess its inclusion in future.

The reason for admission to the critical care unit is an important variable in predicting mortality, even
when previous health status and the degree of acute physiological dysfunction are similar.94 By utilising the
hierarchical nature of the diagnostic coding within the data set, we have developed a categorisation of

DOI: 10.3310/hsdr03410 HEALTH SERVICES AND DELIVERY RESEARCH 2015 VOL. 3 NO. 41

© Queen’s Printer and Controller of HMSO 2015. This work was produced by Harrison et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

79



reasons for admission based on the body system and pathological/physiological process that provides
similar prognostic information with fewer model coefficients than in the previous ICNARC model, reducing
the risk of overfitting. As with any risk prediction model designed to work across the heterogeneous
case mix of patients admitted to critical care, there will inevitably be individual conditions where this
categorisation does not work well. Where sufficient data on an individual condition were available to
demonstrate significantly different outcomes than for the system/process category, a separate coefficient
was assigned. However, other conditions that clinical experience dictates are associated with higher or
lower mortality will remain within the broader categories. With regard to these, it should be emphasised
that the goal of the modelling was to develop a model that works well across cohorts of critically ill
patients and not for individual prognostication.

We found that the relationship between physiology and mortality is different in some chronic conditions
than others, suggesting that the untoward effects of physiological derangement are greater in certain
underlying medical conditions. In addition, the finding that the physiology–mortality relationship varied
with reason for admission indicates that the same is true of acute conditions.

A key advantage of the new modelling approach is that it considered the physiological predictors separately
from a combined risk score. This feature allowed us to analyse not only individual physiology–mortality
relationships, but also the interactions between these and other covariates. In the previous ICNARC model,
the use of interactions between the physiology score and diagnostic category produced better fit within
individual diagnostic groups and answered the question of whether physiological conditions contribute
equally to mortality in all critically ill patients or whether specific individuals or groups are disproportionately
affected.14 In the present work, however, the question regarded whether these physiological abnormalities
just reflect the severity of the illness or contribute independently to mortality. The ability to analyse this
relationship independently of a common score allowed us to identify which physiological predictors are the
most relevant for outcome for different underlying conditions or reasons for admission.

We also investigated the potential for interactions between age and physiological predictors, but these
were not found to improve the model’s performance compared with simpler model formulations. In other
words, the increased risk of death associated with older age is more strongly associated with age itself
than with age-related factors specific to individual physiological abnormalities. Nevertheless, a potential
factor that may be taken into account for improvements in model performance is the presence of
comorbid conditions that are more likely to be observed in older than younger patients.

There is a consensus that all of the many suggested model-building strategies have weaknesses,95 but
opinions on the relative advantages and disadvantages of particular strategies differ considerably. We
consider one of the strengths of the presented model to be the rigor of variable selection and the
statistical methods applied to avoid overfitting the models to the study population. In this study, different
statistical approaches were explored and compared in order to derive the best prediction model. Instead
of basing the variable selection on univariable analyses or automated model-selection procedures, we
employed a method combining clinical experience and judgement with computer-based statistics. We
designed an approach to select the set of well-established predictors that were making an important
contribution to the model with subsequent addition of interaction terms with physiological variables, while
controlling for overfitting, complexity and incremental predictive accuracy. Because the physiological and
non-physiological predictors, underlying conditions and the potential interactions play different roles in
both model structure and contribution to the model, we propose a multistage process with particular
decisions and evaluations instead of selection based on a single standard criterion. There are many
theoretical reasons why an automatic process may perform poorly in selecting predictors.96 In this case
some subjective influence over which variables are selected may be preferred. Because of multiplicity, many
spurious interactions may be identified by any modelling approach; therefore, selecting from pre-specified
interactions is recommended. Interactions should also be checked for consistency with subject matter
knowledge, where available. Relevance of a specific factor must, however, be evaluated with regards to its
relationship to the goal of developing an accurate risk prediction model; this requires the selection of a
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relevant subset of predictors while ignoring those predictors that do not improve model performance.
Although predictive models may be used to provide insight into causality of pathophysiology of the
outcome, causality is neither a primary aim nor a requirement for variable inclusion. Our purpose was to
derive the best risk model for prediction using the available information rather than to identify individual
predictors with clinical relevance to the outcome, and so internal and external model validation rather than
inspection of features for clinical plausibility was the appropriate approach for evaluating our results.

One limitation of our approach is that the use of continuous non-linear modelling of physiology and
interaction terms no longer has the user-friendly by-product of a simple severity of illness score. Because
our goal was to develop an improved and updated risk model to predict acute hospital mortality, we
favoured superior discrimination and calibration over simplicity of calculation. As a consequence, the model
is relatively complex to calculate, and we would certainly not recommend calculation by hand; however,
the calculations can be easily implemented in software and only 28 raw data fields are required for the
new ICNARC model. With developments in computing technology, risk predictions are more likely to be
calculated automatically by clinical information systems or using stand-alone applications on mobile
technology, and methods should no longer be constrained by a need for calculation to be possible using
pencil and paper. Existing scores, such as the ICNARC Physiology Score14 or APACHE III Acute Physiology
Score,10 continue to be useful summary measures of severity of illness and a further such measure is
not required.

True external validation of the model using independently collected data is extremely difficult within the UK
because of the extremely high coverage of the CMP. Our primary purpose has always been to underpin the
risk-adjusted outcomes reported for the CMP. If the model is to be used in other settings, we recommend
first validating the model and then recalibrating it if necessary before more widespread adoption. It is also
worth noting that, while the new model outperformed the previous ICNARC model when temporally
validated, it has not been directly compared against the latest versions of other risk prediction models such
as the APACHE IV,97 SAPS 382 and MPM0-III models.98
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Chapter 5 Development and validation of risk
prediction models to predict outcomes following
in-hospital cardiac arrest

Introduction

The NCAA was established in 2009 as the national clinical audit for in-hospital cardiac arrest, a joint
initiative between the Resuscitation Council (UK) and ICNARC. The aims of the audit are to improve
patient outcomes, decrease the incidence of avoidable cardiac arrests, decrease the incidence of
inappropriate resuscitation and promote adoption and compliance with evidence-based practice. The key
patient outcomes monitored by the audit are return of spontaneous circulation (ROSC) sustained for more
than 20 minutes and survival to hospital discharge (hospital survival). However, prior to this project, no
validated risk prediction models existed for predicting these outcomes following in-hospital cardiac arrest.

This chapter reports the development and validation of risk prediction models to predict these outcomes
following in-hospital cardiac arrests attended by a hospital-based resuscitation team in NHS hospitals.
These risk prediction models will underpin comparative reporting for the NCAA, to promote consistent
delivery of high-quality resuscitation and best outcomes for patients following cardiac arrest in NHS
hospitals across the UK.

Methods

Inclusion and exclusion criteria
For the NCAA, data are collected for all individuals (excluding neonates) receiving chest compressions
and/or defibrillation and attended by a hospital-based resuscitation team (or equivalent) in response to a
2222 call (2222 is the telephone number used to summon a resuscitation team in UK NHS hospitals).16

For development of the risk prediction models, data were extracted for all individuals meeting the scope of
the NCAA with a date of 2222 call between 1 April 2011 and 30 September 2012. Data for individual
hospitals were included if the hospital had commenced participation in the NCAA prior to April 2012 and
had validated data for at least 6 months. Individual team visit records meeting any of the following criteria
were considered ineligible for inclusion in the risk prediction models: the arrest occurred before the
patient’s arrival at hospital (even if the patient was subsequently attended by a hospital-based resuscitation
team, usually in the emergency department, and, therefore, met the scope of the NCAA); second and
subsequent visits to the same patient during the same hospital stay; a ‘do not attempt cardiopulmonary
resuscitation’ (DNACPR) was already documented in the patient’s notes. The following exclusion criteria
were applied to individual team visit records: the patient’s last known status was still in hospital; either
of the outcomes of ROSC > 20 minutes or hospital survival was missing; and data for the candidate
predictors were missing.

For validation of the risk prediction models, data were extracted for all individuals in hospitals that
contributed data to the development data set with a date of 2222 call between 1 October 2012 and
31 March 2013, and for all individuals in hospitals that commenced participation in the NCAA between
April and September 2012 (and therefore did not contribute data to the development data set), with a
date of 2222 call between 1 April 2012 and 31 March 2013. The same eligibility and exclusion criteria
were applied at the individual team visit level as for the development data set.
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Outcomes and candidate predictors
Risk prediction models were developed for two outcomes: ROSC > 20 minutes and hospital survival.
Patients were followed up to discharge from the original acute hospital and any patients transferred to
another acute hospital were reported as hospital survivors.

A list of candidate predictors was established from the data set developed and collected for the NCAA.
A valid predictor was considered to be any variable collected either prior to or at the time of the arrival
of the hospital-based resuscitation team and not related to the quality of care (e.g. whether or not the
appropriate resuscitation was delivered). If factors related to the quality of care were included within the
risk prediction model, then the expected number of events would be adjusted to account for these factors.
Consequently, a poorly performing provider would not be identified as an outlier and these discrepancies
in the quality of care would not be recognised.

The full list of candidate predictors is presented in Table 35. Location of arrest was not considered to be a
predictor for patients with a reason for admission to/attendance at/visit to hospital of ‘staff’ or ‘visitor’.
Prior to any modelling, candidate predictors were examined for data completeness and distribution. Where
categories with very few patients were identified, combining with other categories eliminated these.
Multicollinearity between candidate predictors was assessed using variance inflation factors.

Age was modelled as a continuous, non-linear relationship using restricted cubic splines with five knots. All
other candidate predictors were modelled as categorical variables. After examining plots of the distribution
and the association with the outcomes, the continuous predictor length of stay in hospital prior to 2222
call was categorised as 0 days (i.e. cardiac arrest on the same calendar day as admission to/attendance
at/visit to hospital), 1 day, 2–7 days, 8–30 days and > 30 days.

TABLE 35 Candidate predictors for the risk prediction models for in-hospital cardiac arrest

Candidate predictor Approach to modelling

Age Restricted cubic splines with five knots

Sex Categorical (male; female)

Length of stay in hospital prior to
2222 call

Categorical (0 days; 1 day; 2–7 days; 8–30 days; > 30 days)

Reason for admission to/attendance
at/visit to hospital

Categorical (patient – medical; patient – trauma; patient – elective surgery;
patient – emergency surgery; patient – obstetric; outpatient; staff; visitor)

Location of arrest Categorical (ED; EAU; ward; obstetric area; intermediate care area; CCU; HDU;
ICU or ICU/HDU; PHDU; PICU; specialist treatment area; imaging department;
cardiac catheter laboratory; theatre and recovery; other inpatient location; clinic;
non-clinical area)

Patient deteriorating (not yet
arrested) at team arrival

Binary (yes; no)

Presenting/first documented rhythm Categorical (VF; VT; shockable – unknown rhythm; asystole; PEA; bradycardia;
non-shockable – unknown rhythm; unknown)

EAU, emergency admissions unit; ED, emergency department; CCU, coronary care unit; HDU, high-dependency unit;
ICU, intensive care unit; PEA, pulseless electrical activity; PHDU, paediatric high-dependency unit; PICU, paediatric intensive
care unit; VF, ventricular fibrillation; VT, ventricular tachycardia.
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Model development
An initial, full model for each outcome was fitted, including all candidate predictors, using multilevel
logistic regression with random effects of hospital. The basis for using multilevel models is that, as with the
majority of health outcomes, there is ‘clustering’ at the level of health-care providers; that is, outcomes for
patients within the same hospital will be, on average, more similar than outcomes for patients in different
hospitals. If clustering is ignored, then the resulting model estimates will have standard errors that are too
small, contributing to the potential for misleading conclusions.

These models were then simplified in three stages: first, by testing for non-linearity in the relationship for
age; second, by testing for differences between pre-specified combinations of categories of predictors
to reduce the numbers of categories; and, third, by stepwise reduction of the models to reduce the
number of predictors. Combining categories of predictors was conducted in such a way as to ensure the
same categories were used in the models for both outcomes. This was achieved by combining categories
if the difference in outcome between the categories (adjusted for all other predictors) was non-significant
(p> 0.1) for both outcomes. The combinations considered were:

1. Prior length of stay: adjacent categories.
2. Location of arrest:

i. adjacent categories from: emergency department; emergency admissions unit; ward, obstetric area
or other inpatient location; intermediate care area; coronary care unit; high-dependency unit or
paediatric high-dependency unit; intensive care unit, combined high-dependency/intensive care unit
or paediatric intensive care unit

ii. any combination of categories from: specialist treatment area; imaging department; cardiac catheter
laboratory; and, if no difference was found between any of the three previous categories, theatre
and recovery

iii. categories for clinic and non-clinical area.

Stepwise reduction was conducted separately for the two outcomes, allowing the models for ROSC
> 20 minutes and hospital survival to include different combinations of predictors. At each step, the least
significant predictor was removed and the reduced model assessed for discrimination (c-index22), calibration
(Hosmer–Lemeshow test24), accuracy (Brier score28 and Shapiro’s R29) and model fit (AIC99). Stepwise
reduction was continued until all predictors had been removed and a model was selected to balance
simplicity against model performance.

Finally, the models were further enhanced by the consideration of interactions between predictors. The
interactions considered were pre-specified following presentation of an initial model with no interaction
terms and a request for input from the NCAA Steering Group, representatives from hospitals participating
in the NCAA, and the Expert Advisory Group. The interactions considered were:

l age with sex
l age with reason for attendance
l age with presenting rhythm (non-shockable rhythms compared with shockable or unknown)
l location of arrest with presenting rhythm.

Interaction terms were added to the full model and retained if significant at p< 0.01. For the interaction of
location of arrest with presenting rhythm, in order to reduce the potentially large number of interaction
terms, combining interaction terms for similar groups of categories of both presenting rhythm (e.g. all
shockable arrests, all non-shockable arrests) and location of arrest (e.g. emergency department and
emergency admissions unit, emergency admissions unit and ward, coronary care unit and cardiac catheter
laboratory) was considered.

Comparisons of models (for testing linearity, combining categories, stepwise reduction and adding
interactions) were performed with likelihood ratio tests.
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Model validation
The resulting models were validated for discrimination, calibration and accuracy in (1) the development
data set; (2) the full validation data set; and (3) the validation data from hospitals that commenced
participation in the NCAA from April 2012 onwards not included in the development data set (providing
true external validation in a smaller sample of hospitals). To reduce overfitting, model estimates were
shrunk using the uniform (heuristic) shrinkage method of Van Houwelingen and Le Cessie.100

Discrimination was assessed by the c-index.22 Calibration was assessed graphically and tested using the
Hosmer–Lemeshow test for perfect calibration in 10 equal-sized groups by predicted probability of
survival.24 As the Hosmer–Lemeshow test does not provide a measure of the degree of miscalibration and
is very sensitive to sample size,25,26 calibration was also assessed using Cox’s calibration regression.27

Accuracy was assessed by the Brier score28 and Shapiro’s R,29 and the associated approximate R2 statistics.30

Measures of model performance were calculated using the marginal predicted probabilities from the risk
prediction model (i.e. without taking into account hospital-level effects) to represent the predicted
probability of survival for a patient with the given characteristics in an ‘average’ hospital.

The final risk prediction models were refitted to all data (development and validation data sets combined)
to maximise precision and generalisability, with shrinkage applied to reported coefficients.

Statistical analyses were performed using Stata/SE, version 10.1 (StataCorp LP, College Station, TX, USA).

Results

Available data
Between 1 April 2011 and 31 March 2013, 148 hospitals participated in the NCAA. During this time there
were a total of 28,987 resuscitation team visits following 2222 calls for cardiac arrest reported to the
NCAA. After excluding data that were still undergoing central validation (at the level of calendar months
within hospitals) and hospitals with less than 6 months’ data, 27,998 team visits in 143 hospitals were
included (Figure 14). After removing records that were ineligible for risk predictions (pre-hospital arrests,
second and subsequent visits to the same patient and patients with a documented DNACPR decision) and
those excluded for missing data, a total of 22,479 team visits in 143 hospitals were included: 14,688
(65.3%) in the development data set and 7791 (34.7%) in the validation data set. Rates of missing data
were very low, with only 0.1% of patients excluded from the development data set (0.1% from the
validation data set) because of missing predictor variables and 0.1% (0.8% from the validation data set)
because of missing outcomes, and it was therefore not necessary to consider more complex statistical
methods for handling missing data. The breakdown of exclusions in the development data set, the
validation data set and the external validation data set (the subset of the validation data set from hospitals
not included in the development data set) are shown in Table 36, and characteristics and outcomes are
summarised in Table 37.
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TABLE 36 Application of inclusion and exclusion criteria to the NCAA database

Characteristic Development Validation
External
validation

Number of hospitals 122 143 21

Total number of resuscitation team visits following
2222 calls for cardiac arrest

18,304 9694 1819

Excluded (ineligible), n (% of table) 3580 (19.6%) 1840 (19.0%) 124 (6.8%)

Pre-hospital arrests 2666 (14.6%) 1283 (13.2%) 33 (1.8%)

Second and subsequent visits to the same patient 533 (2.9%) 315 (3.2%) 58 (3.2%)

Documented DNACPR decision 381 (2.1%) 242 (2.5%) 33 (1.8%)

Eligible patients 14,724 7854 1695

Excluded (missing data), n (% of eligible) 36 (0.2%) 63 (0.8%) 38 (2.2%)

Last known status still in hospital 7 (< 0.1%) 1 (< 0.1%) 0 (0%)

Missing ROSC > 20 minutes 5 (< 0.1%) 58 (0.7%) 37 (2.2%)

Missing hospital outcome 2 (< 0.1%) 0 (0%) 0 (0%)

Missing predictorsa 22 (0.1%) 4 (0.1%) 1 (0.1%)

Included, n (% of eligible) 14,688 (99.8%) 7791 (99.2%) 1657 (97.8%)

a Eleven missing age; five missing sex; 16 missing prior length of stay; 12 missing reason for admission to/attendance at/
visit to hospital; two missing location of arrest; and three missing status at team arrival.
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TABLE 37 Characteristics and outcomes of in-hospital cardiac arrest patients in the development and validation
data sets

Characteristic
Development
(N= 14,688)

Validation
(N= 7791)

External validation
(N= 1657)

Age, mean (SD) 72.6 (16.4) 72.9 (16.3) 72.8 (16.3)

Sex male, n (%) 8422 (57.3) 4467 (57.3) 970 (58.5)

Length of stay in hospital prior to 2222 call, median (IQR) 2 (0–7) 2 (0–7) 3 (1–8)

Reason for admission to/attendance at/visit to hospital, n (%)

Patient – medical 11,837 (80.6) 6307 (81.0) 1277 (77.1)

Patient – trauma 604 (4.1) 250 (3.2) 56 (3.4)

Patient – elective surgery 981 (6.7) 480 (6.2) 102 (6.2)

Patient – emergency surgery 1043 (7.1) 663 (8.5) 198 (11.9)

Patient – obstetric 40 (0.3) 7 (0.1) 2 (0.1)

Outpatient 149 (1.0) 69 (0.9) 18 (1.1)

Staff 10 (0.1) 1 (< 0.1) 1 (0.1)

Visitor 24 (0.2) 14 (0.2) 3 (0.2)

Location of arrest, n (%)

Emergency department 1655 (11.3) 702 (9.0) 41 (2.5)

Emergency admissions unit 1211 (8.2) 719 (9.2) 190 (11.5)

Ward 8242 (56.1) 4582 (58.8) 1052 (63.5)

Obstetric area 29 (0.2) 6 (0.1) 2 (0.1)

Intermediate care area 46 (0.3) 9 (0.1) 0 (0)

Coronary care unit 1390 (9.5) 668 (8.6) 140 (8.4)

HDU 259 (1.8) 128 (1.6) 19 (1.1)

ICU or ICU/HDU 680 (4.6) 348 (4.5) 61 (3.7)

Paediatric HDU 15 (0.1) 11 (0.1) 1 (0.1)

Paediatric ICU 19 (0.1) 20 (0.3) 6 (0.4)

Specialist treatment area 182 (1.2) 89 (1.1) 20 (1.2)

Imaging department 205 (1.4) 89 (1.1) 20 (1.2)

Cardiac catheter laboratory 431 (2.9) 263 (3.4) 71 (4.3)

Theatre and recovery 189 (1.3) 87 (1.1) 15 (0.9)

Other inpatient location 4 (< 0.1) 5 (0.1) 2 (0.1)

Clinic 46 (0.3) 32 (0.4) 10 (0.6)

Non-clinical area 85 (0.6) 33 (0.4) 7 (0.4)

Patient deteriorating (not yet arrested) at team arrival, n (%) 728 (5.0) 365 (4.7) 39 (2.4)

Presenting/first documented rhythm, n (%)

Ventricular fibrillation 1695 (11.5) 817 (10.5) 194 (11.7)

Ventricular tachycardia 707 (4.8) 370 (4.7) 73 (4.4)

Shockable – unknown rhythm 94 (0.6) 39 (0.5) 7 (0.4)

Asystole 3572 (24.3) 1882 (24.2) 391 (23.6)

Pulseless electrical activity 7176 (48.9) 3900 (50.1) 797 (48.1)

Bradycardia 102 (0.7) 54 (0.7) 9 (0.5)

Non-shockable – unknown rhythm 314 (2.1) 178 (2.3) 45 (2.7)

Unknown 1028 (7.0) 551 (7.1) 141 (8.5)

ROSC > 20 minutes, n (%) 6605 (45.0) 3509 (45.0) 767 (46.3)

Hospital survival, n (%) 2926 (19.9) 1437 (18.4) 316 (19.1)

HDU, high-dependency unit; ICU, intensive care unit; IQR, interquartile range; SD, standard deviation.
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Model development
Prior to modelling, the following categories of predictors were combined to remove small categories. For reason
for admission to/attendance at/visit to hospital, the categories of staff and visitor were combined. For location of
arrest, the following categories were combined: ward, obstetric area and other inpatient location (noting that
obstetric patients are distinguished by the separate reason for attendance field); high-dependency unit and
paediatric high-dependency unit; and intensive care unit or combined high-dependency/intensive care unit and
paediatric intensive care unit (noting that paediatric patients are distinguished by age).

The initial, full model, including the main effects of all candidate predictors (see Table 35), had a c-index of
0.727 for a ROSC > 20 minutes and 0.804 for hospital survival (Table 38). There was no evidence of
multicollinearity (all variance inflation factors less than 2). Age was significantly non-linear in both models
(p< 0.001 for a ROSC > 20 minutes and p= 0.007 for hospital survival).

TABLE 38 Simplification of risk prediction models for a ROSC > 20 minutes and hospital survival following
in-hospital cardiac arrest

Risk prediction model df LL AIC c-index HLa Brier score R

ROSC > 20 minutes

Full model 37 –8830 17,733 0.727 64.7 0.208 0.547

After combining categories 32 –8832 17,727 0.727 70.7 0.209 0.547

Variables removed (p-value)

Deteriorating (0.33) 31 –8832 17,726 0.727 72.3 0.209 0.547

Sex (0.001) 30 –8837 17,735 0.726 63.9 0.209 0.546

Prior LOS (< 0.001) 27 –8849 17,753 0.725 57.0 0.209 0.546

Reason (< 0.001) 21 –8886 17,813 0.722 47.7 0.210 0.544

Age (< 0.001) 17 –8951 17,935 0.711 – 0.212 0.542

Location (< 0.001) 9 –9142 18,302 0.678 – 0.219 0.533

Rhythm (< 0.001) 2 –9985 19,975 0.500 – 0.248 0.503

After adding interactionsb 46 –8741 17,574 0.733 24.6 0.206 0.550

Hospital survival

Full model 37 –5768 11,610 0.804 23.1 0.123 0.674

After combining categories 32 –5770 11,603 0.804 21.3 0.123 0.674

Variables removed (p-value)

Deteriorating (0.76) 31 –5770 11,601 0.804 23.0 0.123 0.674

Sex (0.47) 30 –5770 11,600 0.804 18.8 0.123 0.674

Prior LOS (< 0.001) 27 –5797 11,649 0.802 14.9 0.124 0.672

Reason (< 0.001) 21 –5878 11,799 0.794 25.0 0.126 0.668

Age (< 0.001) 17 –6040 12,114 0.776 – 0.130 0.660

Location (< 0.001) 9 –6308 12,634 0.721 – 0.137 0.647

Rhythm (< 0.001) 2 –7188 14,379 0.500 – 0.160 0.607

After adding interactionsb 45 –5677 11,444 0.811 10.6 0.121 0.678

df, degrees of freedom; HL, Hosmer–Lemeshow; LL, log-likelihood; LOS, length of stay; R, Shapiro’s R.
a Chi-squared statistic from Hosmer–Lemeshow test based on 10 equal-sized groups (df 8); 10 equal-sized groups could

not be defined for the models with two predictors or fewer.
b Interactions added to model from stepwise reduction with lowest AIC (indicated in bold text).
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After following the pre-specified process for combining categories of predictors, the following categories
were combined:

1. Prior length of stay: 8–30 days with > 30 days (p= 0.21 for a ROSC > 20 minutes and p= 0.73 for
hospital survival).

2. Location of arrest:

i. ward, obstetric area or other inpatient location with intermediate care area (p= 0.56,
p= 0.47 respectively)

ii. high-dependency unit or paediatric high-dependency unit with intensive care unit, combined
high-dependency/intensive care unit or paediatric high-dependency unit (p= 0.16,
p= 0.40 respectively)

iii. specialist treatment area with imaging department (p= 0.82, p= 0.34 respectively)
iv. clinic with non-clinical area (p= 0.69, p= 0.39 respectively).

Combining categories had a minimal effect on the measures of model performance and resulted in an
improvement (decrease) in the AIC (see Table 38).

The stepwise reduction of the models is shown in Table 38. The predictor ‘patient deteriorating (not yet
arrested) at team arrival’ was removed from both models and sex was removed from the model for
hospital survival. All other predictors were highly statistically significant.

After testing the pre-specified interactions, a significant interaction (p< 0.001) was found between
location of arrest and presenting rhythm in both models; therefore, alternative categorisations for
interactions between location of arrest and presenting rhythm were considered. All other interaction terms
were non-significant.

The non-linear relationships between age and outcome are illustrated in Figure 15. For ROSC > 20
minutes, the relationship with age was flat up to around age 60 years, with a rapid decrease in the odds
of ROSC > 20 minutes at older ages. Hospital survival decreased across the full age range, although this
relationship was steeper at older ages.

Model validation
The results of the model validation, based on models fitted in the development data set, are shown in
Table 39. Discrimination and accuracy were better for hospital survival (c-index ≈ 0.81, R2= 0.21–0.24)
than for ROSC > 20 minutes (c-index ≈ 0.73, R2= 0.11–0.17). Calibration was generally good, supported
visually by calibration plots (Figure 16), although there was some evidence of worse calibration for ROSC
> 20 minutes in the validation data set. Model performance was generally well preserved in the validation
data sets compared with the development data set, particularly for hospital survival. Model accuracy was
also compared across age groups (Figure 17). Although there was some variation in outcomes (consistent
with chance) in the age groups with smaller sample sizes, overall the model fit was good across all age
groups. Interactions between age and other predictors were considered but were found to be unnecessary.

The final models for ROSC > 20 minutes and hospital survival, refitted to the full data set, are shown in
Tables 40 and 41 respectively. The shrinkage factors were 0.964 and 0.970, respectively, indicating very
little overfitting.
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FIGURE 15 Relationship between age and ROSC > 20 minutes (a) and hospital survival following in-hospital cardiac
arrest; and (b) odds ratios presented relative to age 70 years.
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TABLE 39 Validation of risk prediction models for ROSC > 20 minutes and hospital survival following in-hospital
cardiac arrest

Measures of model
performancea

Development
(n= 14,688) Validation (n= 7791)

External validation
(n= 1657)

ROSC > 20 minutes

c-index (95% CI) 0.733 (0.725 to 0.741) 0.720 (0.709 to 0.732) 0.725 (0.701 to 0.750)

Hosmer–Lemeshow test

Chi-squared (p-value) 24.6 (0.002) 15.0 (0.13) 10.4 (0.41)

Cox calibration regression

Intercept (95% CI) 0.021 (–0.016 to 0.058) 0.015 (–0.034 to 0.066) 0.038 (–0.070 to 0.146)

Slope (95% CI) 1.000 (0.957 to 1.043) 0.989 (0.928 to 1.051) 1.003 (0.870 to 1.136)

Chi-squared (p-value) 1.3 (0.52) 0.6 (0.73) 0.5 (0.78)

Brier score 0.206 0.211 0.210

Sum-of-squares R2 0.168 0.150 0.156

Shapiro’s R 0.550 0.544 0.545

Entropy-based R2 0.131 0.115 0.120

Hospital survival

c-index (95% CI) 0.811 (0.802 to 0.820) 0.811 (0.799 to 0.824) 0.804 (0.776 to 0.832)

Hosmer–Lemeshow test

Chi-squared (p-value) 10.6 (0.23) 23.2 (0.010) 6.9 (0.73)

Cox calibration regression

Intercept (95% CI) 0.036 (–0.029 to 0.101) –0.043 (–0.134 to 0.048) –0.091 (–0.280 to 0.098)

Slope (95% CI) 1.001 (0.961 to 1.041) 1.047 (0.989 to 1.106) 1.014 (0.891 to 1.137)

Chi-squared (p-value) 2.1 (0.34) 10.8 (0.004) 2.3 (0.32)

Brier score 0.121 0.115 0.119

Sum-of-squares R2 0.240 0.234 0.232

Shapiro’s R 0.678 0.688 0.681

Entropy-based R2 0.221 0.219 0.211

a Measures of model performance are for models using coefficients fitted in the development data set.
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FIGURE 16 Calibration plots for ROSC > 20 minutes (a–c) and hospital survival (d–f) following in-hospital cardiac
arrest. Observed outcome (with 95% CI) plotted against predicted outcome in 10 equal-sized groups, based on
models using coefficients fitted in the development data set.
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(a) Development data set; and (b) validation data set.
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TABLE 40 Final risk prediction model for ROSC > 20 minutes following in-hospital cardiac arrest

Predictor
Patients, n
(N= 22,479)

ROSC > 20
minutes, n (%)
(N= 10,114) Coefficient (95% CI)

Age (spline base variablesa)

age1 – – –0.0019 (–0.0066 to 0.0027)

age2 – – –0.0118 (–0.0259 to 0.0024)

age3 – – 0.0315 (–0.1772 to 0.2403)

age4 – – –0.1120 (–0.7397 to 0.5157)

Sex

Female 9590 4289 (44.7) 0

Male 12,889 5825 (45.2) –0.1167 (–0.1762 to –0.0573)

Prior length of stay

0 days 6276 3334 (53.1) 0

1 day 3804 1758 (46.2) –0.1060 (–0.2075 to –0.0045)

2–7 days 7136 2859 (40.1) –0.2350 (–0.3313 to –0.1388)

8 or more days 5263 2163 (41.1) –0.1753 (–0.2785 to –0.0722)

Reason for attendance

Patient – medical 18,144 7923 (43.7) 0

Patient – trauma 854 319 (37.4) 0.0173 (–0.1383 to 0.1729)

Patient – elective surgery 1461 872 (59.7) 0.4920 (0.3671 to 0.6170)

Patient – emergency surgery 1706 770 (45.1) –0.0529 (–0.1666 to 0.0609)

Patient – obstetric 47 38 (80.9) 1.4674 (0.7045 to 2.2303)

Outpatient 218 158 (72.5) 0.4281 (0.0365 to 0.8197)

Staff or visitor 49 34 (69.4) 0.2874 (–0.3605 to 0.9353)

Location of arrest

Emergency department 2357 1039 (44.1) –0.1061 (–0.3518 to 0.1396)

Emergency admissions unit 1929 846 (43.9) 0.1853 (0.0708 to 0.2998)

Ward, obstetric area, intermediate care area
or other inpatient location

12,912 4822 (37.3) 0

Coronary care unit 2057 1263 (61.4) 0.9226 (0.7112 to 1.1340)

Critical care unit 1480 952 (64.3) 0.1712 (–0.1322 to 0.4746)

Imaging department or specialist treatment area 565 347 (61.4) 0.6062 (0.0574 to 1.1549)

Cardiac catheter laboratory 694 507 (73.1) 1.0379 (0.7755 to 1.3003)

Theatre and recovery 276 193 (69.9) 0.3557 (–0.4972 to 1.2085)

Clinic or non-clinical area 160 111 (69.4) 0.4783 (0.0423 to 0.9143)
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TABLE 40 Final risk prediction model for ROSC > 20 minutes following in-hospital cardiac arrest (continued )

Predictor
Patients, n
(N= 22,479)

ROSC > 20
minutes, n (%)
(N= 10,114) Coefficient (95% CI)

Presenting/first documented rhythm

Ventricular fibrillation 2512 1821 (72.5) 0

Ventricular tachycardia 1077 857 (79.6) 0.2960 (0.1158 to 0.4763)

Shockable – unknown rhythm 133 75 (56.4) –0.4064 (–0.7771 to –0.0357)

Asystole 5454 1431 (26.2) –2.0035 (–2.1427 to –1.8644)

Pulseless electrical activity 11,076 4534 (40.9) –1.0853 (–1.2085 to –0.9621)

Bradycardia 156 110 (70.5) –0.0973 (–0.4974 to 0.3029)

Non-shockable – unknown rhythm 492 247 (50.2) –0.6084 (–0.8318 to –0.3850)

Unknown 1579 1039 (65.8) –0.0137 (–0.1767 to –0.1493)

Interaction between asystole and location of arrest

Emergency department – – 0.4118 (0.0851 to 0.7385)

EAU, ward, obstetric area, intermediate care area
or other inpatient location

– – 0

CCU or cardiac catheter lab – – 0.7700 (0.4761 to 1.0639)

Critical care unit – – 1.4013 (1.0245 to 1.7781)

Imaging department or specialist treatment area – – 0.1224 (–0.5778 to 0.8225)

Theatre and recovery – – 1.4432 (0.3919 to 2.4946)

Interaction between PEA and location of arrest

Emergency department – – 0.0079 (–0.2537 to 0.2695)

EAU, ward, obstetric area, intermediate care area
or other inpatient location

– – 0

CCU or cardiac catheter lab – – –0.8256 (–1.0672 to –0.5840)

Critical care unit – – 0.4604 (0.1205 to 0.8004)

Imaging department or specialist treatment area – – –0.0692 (–0.6623 to 0.5239)

Theatre and recovery – – 0.4798 (–0.4350 to 1.3945)

Interaction between other non-shockable/unknown rhythms and location of arrest

Emergency department – – –0.0748 (–0.4751 to 0.3255)

EAU, ward, obstetric area, intermediate care area
or other inpatient location

– – 0

CCU or cardiac catheter lab – – –0.2823 (–0.7227 to 0.1581)

Critical care unit – – 0.3021 (–0.2682 to 0.8724)

Imaging department or specialist treatment area – – 0.2937 (–0.5486 to 1.1360)

Theatre and recovery – – 0.6059 (–0.7864 to 1.9982)

Constant – – 1.1309 (0.8574 to 1.4043)

SD of random effect – – 0.3016 (0.2501 to 0.3636)

ICC – – 0.0269 (0.0187 to 0.0386)

CCU, coronary care unit; EAU, emergency admissions unit; ICC, intraclass correlation coefficient; PEA, pulseless electrical
activity; SD, standard deviation.
a Spline base variables: age1= age; age2= [max((age – 42)3,0) – 49×max((age – 83)3,0)/8+ 41×max((age – 91)3,0)/8]/492;

age3= [max((age – 67)3,0) – 24 ×max((age – 83)3,0)/8+ 16×max((age – 91)3,0)/8]/492; age4= [max((age – 76)3,0) – 15×max
((age – 83)3,0)/8+ 7 ×max((age – 91)3,0)/8]/492.
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TABLE 41 Final risk prediction model for hospital survival following in-hospital cardiac arrest

Predictor
Patients, n
(N= 22,479)

Hospital
survival, n (%)
(N= 4363) Coefficient (95% CI)

Age (spline base variablesa)

age1 – – –0.0153 (–0.0203 to –0.0102)

age2 – – –0.0125 (–0.0295 to 0.0044)

age3 – – –0.0133 (–0.2848 to 0.2582)

age4 – – 0.2135 (–0.6492 to 1.0762)

Prior length of stay

0 days 6276 1809 (28.8) 0

1 day 3804 741 (19.5) –0.2339 (–0.3598 to –0.1080)

2–7 days 7136 1061 (14.9) –0.4342 (–0.5535 to –0.3149)

8 or more days 5263 752 (14.3) –0.4593 (–0.5897 to –0.3289)

Reason for attendance

Patient – medical 18,144 3276 (18.1) 0

Patient – trauma 854 84 (9.8) –0.2790 (–0.5307 to –0.0274)

Patient – elective surgery 1461 491 (33.6) 0.8545 (0.7136 to 0.9955)

Patient – emergency surgery 1706 325 (19.1) –0.0916 (–0.2437 to 0.0604)

Patient – obstetric 47 35 (74.5) 2.2917 (1.5873 to 2.9961)

Outpatient 218 124 (56.9) 0.8693 (0.4831 to 1.2555)

Staff or visitor 49 28 (57.1) 0.8531 (0.2298 to 1.4765)

Location of arrest

Emergency department 2357 457 (19.4) 0.2175 (–0.0267 to 0.4618)

Emergency admissions unit 1929 291 (15.1) 0.1055 (–0.0534 to 0.2644)

Ward, obstetric area, intermediate care area or
other inpatient location

12,912 1596 (12.4) 0

Coronary care unit 2057 802 (39.0) 1.2194 (1.0355 to 1.4033)

Critical care unit 1480 408 (27.6) –0.0865 (–0.3600 to 0.1869)

Imaging department or specialist treatment area 565 188 (33.3) 0.2111 (–0.2413 to 0.6634)

Cardiac catheter laboratory 694 386 (55.6) 1.3527 (1.1132 to 1.5923)

Theatre and recovery 276 124 (44.9) 0.3853 (–0.3438 to 1.1145)

Clinic or non-clinical area 160 83 (51.9) 0.6961 (0.2544 to 1.1378)

Presenting rhythm

Ventricular fibrillation 2512 1200 (47.8) 0

Ventricular tachycardia 1077 573 (53.2) 0.1576 (–0.0009 to 0.3161)

Shockable – unknown rhythm 133 36 (27.1) –0.4498 (–0.8724 to –0.0273)
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TABLE 41 Final risk prediction model for hospital survival following in-hospital cardiac arrest (continued )

Predictor
Patients, n
(N= 22,479)

Hospital
survival, n (%)
(N= 4363) Coefficient (95% CI)

Asystole 5454 501 (9.2) –2.4155 (–2.6145 to –2.2165)

Pulseless electrical activity 11,076 1316 (11.9) –1.5656 (–1.7048 to –1.4264)

Bradycardia 156 74 (47.4) –0.0027 (–0.4024 to 0.3970)

Non-shockable – unknown rhythm 492 110 (22.4) –0.6150 (–0.8771 to –0.3529)

Unknown 1579 553 (35.0) –0.0119 (–0.1804 to 0.1567)

Interaction between asystole and location of arrest

Emergency department – – 0.3481 (–0.0661 to 0.7623)

EAU, ward, obstetric area, intermediate care area
or other inpatient location

– – 0

CCU or cardiac catheter lab – – 1.3103 (0.9978 to 1.6228)

Critical care unit – – 1.6794 (1.2840 to 2.0748)

Imaging department or specialist treatment area – – 0.7625 (0.0042 to 1.5208)

Theatre and recovery – – 2.0083 (1.0440 to 2.9725)

Interaction between PEA and location of arrest

Emergency department – – –0.4057 (–0.7026 to –0.1087)

EAU, ward, obstetric area, intermediate care area
or other inpatient location

– – 0

CCU or cardiac catheter lab – – –0.6241 (–0.8736 to –0.3745)

Critical care unit – – 0.5458 (0.2082 to 0.8833)

Imaging department or specialist treatment area – – 0.5060 (–0.0204 to 1.0324)

Theatre and recovery – – 0.8750 (0.0694 to 1.6806)

Interaction between other non-shockable/unknown rhythms and location of arrest

Emergency department – – –0.5479 (–0.9610 to –0.1348)

EAU, ward, obstetric area, intermediate care area
or other inpatient location

– – 0

CCU or cardiac catheter lab – – –0.7431 (–1.1414 to –0.3448)

Critical care unit – – 0.0329 (–0.5010 to 0.5668)

Imaging department or specialist treatment area – – 0.9988 (0.2978 to 1.6998)

Theatre and recovery – – 0.1470 (–0.9878 to 1.2817)

Constant – – 0.8737 (0.5825 to 1.1650)

SD of random effect – – 0.2850 (0.2285 to 0.3556)

ICC – – 0.0241 (0.0156 to 0.0370)

CCU, coronary care unit; EAU, emergency admissions unit; ICC, intraclass correlation coefficient; PEA, pulseless electrical
activity; SD, standard deviation.
a Spline base variables: age1= age; age2= [max((age –42)3,0) – 49×max((age–83)3,0)/8+41×max((age – 91)3,0)/8]/492;

age3= [max((age –67)3,0) –24×max((age–83)3,0)/8+16×max((age –91)3,0)/8]/492; age4= [max((age –76)3,0) –15×
max((age – 83)3,0)/8+7×max((age–91)3,0)/8]/492.
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Discussion

Based on a relatively simple data set, we have developed a risk prediction model with good discrimination
(c-index greater than 0.8) for predicting hospital survival following an in-hospital cardiac arrest attended by
the hospital-based resuscitation team. This model validated well in subsequent data, including external
validation in data from 21 hospitals not included in the development data set. A risk prediction model for
ROSC > 20 minutes performed less well, being potentially more sensitive to inter-hospital variation in the
organisation and delivery of resuscitation practice, but still demonstrated acceptable discrimination (c-index
greater than 0.7). Although there were statistically significant departures from perfect calibration, the
Hosmer–Lemeshow test is highly sensitive to sample size25,26 and graphical plots demonstrated that overall
calibration was generally good in both the development and validation data sets.

The main strengths of the study are the large, representative, high-quality clinical data set, with coverage
approaching 50% of UK acute hospitals; high levels of data completeness, with only 0.3% of patients
excluded because of missing data; and robust statistical modelling techniques, including using multilevel
random-effects models to account for clustering of outcomes within hospitals, using restricted cubic splines
to model non-linear relationships between age and outcome and considering important interactions
between predictors.

There are, however, some limitations. The available predictors and outcomes were limited to those
recorded in the NCAA data set, which were in turn driven by the need to ensure that data could be
collected accurately in all participating hospitals on all eligible patients. Consequently, data were not
available for some variables that have been found to be significant predictors of outcome in other studies
of in-hospital cardiac arrest, such as pre-arrest comorbidities and interventions. In addition, patients were
followed up to discharge from the original acute hospital only, with any patients transferred to another
acute hospital recorded as survivors. Finally, the risk prediction models developed predict only survival and
not quality of survival.

Although several audits and registries of in-hospital cardiac arrest have been established [most notably
the American Heart Association’s ‘Get With The Guidelines®-Resuscitation’ (GWTG-R) registry (formerly
the National Registry of Cardiopulmonary Resuscitation), established in 2000101], the first validated risk
prediction model for outcome following in-hospital cardiac arrest (developed contemporaneously with those
presented here) was only published in 2013.102 Furthermore, this risk prediction model, based on data from
the USA, may not transfer well to different health-care systems.13,103,104 There are several differences
between our models and the GWTG-R model for hospital survival in terms of inclusion criteria and available
predictors; however, there are also many similarities. The GWTG-R is a registry of all in-hospital cardiac
arrests, whereas the NCAA is a national clinical audit monitoring outcomes for hospital-based resuscitation
teams. Consequently, although the majority of arrests in the GWTG-R registry occurred in monitored areas,
many of the arrests in these areas are managed by staff in the monitored area and would not result in an
emergency call to the resuscitation team and, therefore, would not meet the scope of the NCAA. In terms
of predictors included in the models, the GWTG-R registry model includes pre-arrest comorbidities and
interventions, which are not currently available in the NCAA data set. However, other predictors included
in their model were similar. The discrimination of the NCAA model for hospital survival (c-index 0.811)
exceeded that of the GWTG-R registry model (0.734) and also of a previous, more complex, model from the
same database (0.780).105

The findings of our research are consistent with the recognised benefits of the patient being monitored
before an arrest; the arrest being witnessed; staff members with advanced life-support skills being
available in the immediate vicinity of the arrest; and equipment and drugs necessary to treat the arrest
being immediately available. These are all more likely to exist when the arrest occurs in a critical care unit
or coronary care unit. We found that both asystole and pulseless electrical activity were always less likely to
result in ROSC and hospital survival than ventricular fibrillation. It is well recognised that for asystole and
pulseless electrical activity the specific treatment necessary may be unclear, whereas for ventricular
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fibrillation the essential therapy (defibrillation) is readily available in most clinical areas of hospitals. Further,
asystole may occur following ventricular fibrillation and is recognised to be a ‘less survivable’ rhythm. Both
ROSC > 20 minutes and hospital survival were more likely when asystole occurred on the critical care
unit or coronary care unit than on the ward (odds ratios 4.82 and 5.43 for ROSC > 20 minutes, and 4.92
and 12.55 for hospital survival in the critical care unit and coronary care unit, respectively). Similarly,
ROSC > 20 minutes was also more likely when ventricular fibrillation occurred in the critical care unit or
coronary care unit than the ward (odds ratios 1.22 and 2.46, respectively). However, although hospital
survival was more likely when ventricular fibrillation occurred in the coronary care unit than the ward (odds
ratio 3.32), this was not the case for ventricular fibrillation occurring in a critical care unit (odds ratio 0.90),
which probably reflects the underlying severity of illness of patients on the critical care unit.
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Chapter 6 Translation of the risk models into
routine practice

Introduction

A key strength of this project was the nesting of the model development within ongoing national clinical
audits, enabling the rapid translation of the risk models into routine use within these audits. This chapter
reports the adoption of the risk models into routine comparative outcome reporting for the CMP and
NCAA and the wider ongoing dissemination work to communicate the research output to providers,
managers, commissioners, policy-makers and academics in critical care.

Adult critical care: the Case Mix Programme

In 2011, ICNARC became the first critical care audit internationally to publicly report critical care units’
outcomes when it introduced the Annual Quality Report (AQR), a publicly accessible report on potential
quality indicators for adult critical care, including risk-adjusted acute hospital mortality, for critical care units
participating in the CMP.106 For the first 2 years, the report was only for adult, general critical care units.
In 2013, ICNARC introduced separate reports for high-dependency units, specialist neurocritical care units
and cardiothoracic critical care units. As the original ICNARC model was only developed using data from
adult, general critical care units, it was necessary to recalibrate the model using data from these different
unit types in order to produce these separate reports. With the new ICNARC model, which has been
demonstrated to perform well across all unit types, the 2014–15 AQR will now be able to be a single
report encompassing all adult critical care units, regardless of type.

Following consultation with stakeholders, the new ICNARC model is also being incorporated into a new
product for regular routine reporting of results to the adult critical care units participating in the CMP: the
Quarterly Quality Report (QQR). The QQR will be distributed to participating critical care units quarterly,
building up cumulatively to the AQR that is made available to the public. Using the new ICNARC model,
it will incorporate risk-adjusted acute hospital mortality, together with other potential quality indicators,
and will present the indicators in the form of funnel plots, mapped against other critical care units, and as
trends over time within the unit. The purpose of the QQR is to enable timely identification of potential
areas for local quality improvement work and monitoring of trends and changes in the potential
quality indicators.

In-hospital cardiac arrest: the National Cardiac Arrest Audit

Prior to the development of the risk prediction models for in-hospital cardiac arrest in this project, routine
comparative reports to hospitals participating in the NCAA included only crude, unadjusted outcomes
and outcomes stratified by individual risk factors (age, presenting/first documented rhythm and location
of arrest). Following the development of the risk prediction models, these reports now incorporate
risk-adjusted rates for ROSC > 20 minutes and hospital survival presented in the form of funnel plots.
These reports are produced quarterly, 6-monthly or annually, depending on a hospital’s throughput of
eligible arrests.

In addition, now that staff members in the participating hospitals are becoming familiar with the reporting
of risk-adjusted outcomes, the availability of the risk prediction models will enable the NCAA to move
towards public reporting of results, based on the template of the CMP AQR.
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Wider dissemination

During the course of the research, the risk-adjusted outputs of the national clinical audits have greatly
increased in prominence. Clinical Reference Groups have been established for the commissioning of
specialist services within the NHS and we have worked closely with the Clinical Reference Group for Adult
Critical Care in their definition of key service outcomes, which include standardised case-mix-adjusted
mortality using the latest risk prediction models. These key service outcomes are included in quarterly data
submissions from the CMP to underpin the Adult Critical Care Quality Dashboard.107 In addition, the Care
Quality Commission (CQC) has identified critical care as a core service for CQC inspections of NHS acute
hospitals, with both the CMP and NCAA serving as important sources of information for the inspection
teams.108 We are working with the CQC to streamline the provision of data in advance of inspections.
Further dissemination of the results of this project to the wider clinical and academic community is
ongoing through preparation of articles for publication in peer-reviewed journals.

TRANSLATION OF THE RISK MODELS INTO ROUTINE PRACTICE

NIHR Journals Library www.journalslibrary.nihr.ac.uk

102



Chapter 7 Conclusions and recommendations

Summary of findings

We have established that the current ICNARC model14 demonstrates similar performance to that reported
from previous (internal and external) validation within the CMP when externally validated using
independently collected, but similar, data from critical care units in Scotland. Nevertheless, we identified a
number of areas where the current risk prediction model could be improved. The first of these related to
its performance in specialist critical care units. The ICNARC model was developed using data from adult,
general critical care units and the probable performance of a single risk prediction model across various
types of critical care unit was unknown. This is of particular relevance to cardiothoracic critical care units.
The majority of admissions to such units present with considerable derangement to physiology, owing
to the major insult of cardiac surgery, but this insult is transient and usually reversible and, consequently,
mortality is low. We developed a specific risk prediction model for admissions to cardiothoracic critical care
units, which had excellent performance (c-index 0.904 in the validation data set). As well as being
specifically tailored to the unique case mix of these units, this model also served as a baseline for assessing
the performance of a new ICNARC model in cardiothoracic critical care units, acting as a comparator
for the ability of a generic model to work across different types of units.

In developing the new ICNARC model we also addressed further areas for improvement, including the
handling of missing data (both in the development and validation data sets and in the application of the risk
prediction model), continuous non-linear modelling of physiological predictors and making better use of
available data from the hierarchical coding of reasons for admission to the critical care unit. The resulting
risk prediction model performed well not only in the full validation data set (c-index 0.885) but also when
evaluated in specific patient subgroups and specific types of critical care unit.

Finally, using data from the NCAA, we developed risk prediction models to predict two important
outcomes following in-hospital cardiac arrest: the immediate outcome of ROSC sustained for more than
20 minutes and the slightly longer-term outcome of survival to hospital discharge. Based on only a small
number of predictors, the model for hospital survival had good discrimination (c-index 0.811) and validated
well, including among 21 hospitals that did not contribute to the development data set (c-index 0.804).
The performance of the model for ROSC > 20 minutes was less good, possibly reflecting inter-hospital
variation in resuscitation practice, but it still achieved a c-index of 0.725 in the external validation data set.

Discussion

Although the main aim of the project was pragmatic (to improve risk prediction models to underpin quality
improvement programmes for the critically ill), this study provides a number of insights into prognostic
modelling more generally, and modelling of risk-adjusted hospital mortality in particular.

In Chapters 3 and 4, we explored the effect of missing data when modelling under certain situations and
addressed issues to which little attention has been devoted in the literature, such as the impact of
strategies for handling missing data on the application of risk prediction models in routine practice and
on benchmarking.

In Chapters 3–5, we illustrated a practical approach to obtaining the appropriate functional form for
continuous predictors. We described the methods used to specify, estimate and simplify the full models in
order to derive the best risk prediction model, as well as the performance criteria we used. We also offer
some guidance for avoiding overfitting and mis-specification, as well as about the problems that arise
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when modelling with very large samples (see Chapter 4). We have shown that with a large sample size,
stepwise reduction procedures perform better than a literature-based assessment would suggest and
indicate that careful pre-selection of a set of candidate predictors and interactions based on subject
knowledge, combining judgement with computer-based statistics instead of basing the variable selection
on univariable analyses, remains key to good modelling.

Because the aim of this project was prediction rather explanation, it was more appropriate to seek
predictive accuracy than interpretation of regression coefficients, and a model with superior discrimination
and calibration was preferable to one that gave a better explanation of the physiological processes.
However, because the data set was large and comprehensive, there was also interest in the prognostic
models themselves: which factors were predictive of outcome and, in particular, was their effect mediated
through other factors?

This project concentrated solely on predictive accuracy and we did not consider statistical inference in our
evaluations; for example, CI coverage and estimation of effects for individual variables. If learning about
the most important prognostic relationships is the focus of a study, inference issues need more attention in
model development, therefore the methods, conclusions and recommendations for modelling of the
present project should be considered in a risk prediction context.

The project was overseen by an Expert Advisory Group, comprising clinicians, statisticians, health services
researchers, NHS managers and a service user representative (see Acknowledgements), which met five
times during the course of the project. Discussions with the Expert Advisory Group contributed to key
decisions regarding the direction of the project. An early, important decision, guided by the Expert
Advisory Group, was to widen the focus of objective 1 from adult, general critical care units (the setting
for the previous ICNARC model) to encompass all adult critical care units, removing the need for objective
2iii to consider separately units admitting low-risk patients. The resulting model showed good performance
across all types of units, validating the group’s recommendation and contributing to the project’s overall
aim of making fairer comparisons across providers. Other discussions with the Expert Advisory Group
concerned alternative approaches for multiple imputation of missing data; the potential to use
pre-admission physiology data for admissions with no data available from the first 24 hours following
admission to the critical care unit; how to handle physiological predictors for patients who stayed less than
24 hours in the critical care unit; pros and cons of the alternative methods for modelling continuous
predictors; the need for pre-specification of potentially important interaction terms; and how to structure
the categorisation of reasons for admission to the critical care unit.

Implications for health care

The newly developed risk prediction models either have been or are being introduced into routine national
clinical audit comparative reporting for both the CMP and NCAA. For the CMP, this will enable fairer
comparison across critical care units, including, for the first time, across different types of critical care units,
underpinning annual public reporting of critical care unit outcomes.106 For the NCAA, the models permit,
for the first time, genuine risk-adjusted comparisons across hospitals and will enable the NCAA to progress
towards public reporting of results.
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Recommendations for research

Recommendation 1: further research should be conducted by linking with
death registrations to evaluate mortality at fixed time points and using time
to event analyses
To date, the main outcome for national clinical audits, including the CMP and NCAA, has been mortality
at acute hospital discharge, an event-based outcome. Time-based outcomes, for example, mortality at
30 or 90 days following admission or duration of survival, would be less prone to bias arising from
variation in provision of community health- and social care services, which may impact the timing of
patients being discharged from acute hospital. Research from the Netherlands has suggested that
comparison of risk-adjusted mortality across critical care units using mortality at 30 or 90 days, rather than
at hospital discharge, results in less heterogeneity.109 Acute hospital mortality has predominantly been
selected because of its convenience to record and collect, as follow-up of patients beyond acute hospital
discharge has not been seen as practicable. However, with the increased availability of electronic data sets
and the establishment of the NHS Number as a national unique identifier, the vast majority of patients
admitted to UK critical care units will now be able to be followed up for mortality following discharge
from acute hospital by using data linkage with death registrations maintained by the Office for National
Statistics. Furthermore, to enable reporting in a useful timeframe for quality improvement, the main
outcomes for national clinical audit are necessarily relatively short term in nature. However, recovery from
critical illness can be a slow process, with studies reporting substantial ongoing burden of mortality several
years after discharge from hospital.110,111 Data linkage with death registrations would also permit follow-up
of longer-term mortality, enabling us to better understand the time course of recovery from critical illness
and which risk factors impact on longer-term mortality.

Recommendation 2: further research in this field should make better use of
data linkage across national clinical audits
Although mortality is clearly an important and patient-centred outcome, the impact and consequences of
critical care go beyond mortality. As data on longer-term, health-related quality of life for survivors of
critical care are currently not routinely collected, national clinical audits of chronic health conditions provide
an ideal opportunity to better understand the impact and consequences of critical illness on these specific
chronic health conditions, gaining some insight into the wider impact of critical care on patients’
subsequent health status. Critical illness-related hyperglycaemia, for example, has previously been linked
with subsequent development of type 2 diabetes,112,113 and acute kidney injury, common among critically ill
patients, has been strongly linked with subsequent end-stage renal disease.114 Both these conditions have
well-established national clinical audits (the National Diabetes Audit and the UK Renal Registry), and data
linkage across these audits would permit a better understanding of the specific consequences of critical
illness. In addition, the risk prediction models developed in this report were limited to the available
predictors within the CMP and NCAA data sets which, in turn, are limited by what it is feasible to expect
providers to routinely collect for the purpose of national clinical audit. Data linkage across national clinical
audits would also enhance the available pool of candidate predictors on which risk prediction models
could be developed, potentially allowing for improved prediction with no additional data collection
burden. For example, existing literature on predictors of mortality for post cardiac surgery patients suggests
that outcomes are best predicted by a combination of pre-, intra- and postoperative risk factors.51 The
CMP data set is a reliable source of postoperative information, but has limited pre- or intraoperative data.
Data linkage with the National Adult Cardiac Surgery Audit would greatly increase the available pre- and
intraoperative data to improve risk prediction among this patient group.
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Recommendation 3: further research in this field should make better use of
other routinely collected data sets
Making better use of other routinely collected data sets, such as Hospital Episode Statistics (HES), would
also potentially expand the available predictors and outcomes. For example, the recently developed US risk
prediction model for hospital survival following in-hospital cardiac arrest includes information on pre-arrest
comorbidities and interventions. Collection of comorbidities was considered for the NCAA, but it was
decided that this would add a considerable data collection burden. Data linkage with HES would permit
evaluation of comorbidities and interventions through use of diagnostic and procedural codes. If these
factors improve the fit of the model, then options to either undertake this data linkage routinely or to
incorporate specific additional fields into the NCAA data set could be explored. In terms of expanding
available outcomes, survivors of critical care experience significant morbidity with substantial resultant
health-care resource use and costs.115 Data linkage with HES would enable the cost of subsequent
hospitalisations, and its association with severity and/or duration of critical illness and other risk factors,
to be estimated

Recommendation 4: future research should consider the necessity for specific
data collection to support national clinical audit compared with benchmarking
providers using routinely collected data alone
National clinical audits rely on a separate, specific collection of clinical data in addition to the routine data,
such as HES, that are collected in the course of a patient’s journey through the health-care system. It has
generally been held that these detailed clinical data are essential for reliable benchmarking of specific
clinical services. However, national clinical audit is relatively expensive and consideration should therefore be
given to whether or not clinical services, such as critical care, can be benchmarked using routinely collected
data alone. Considerations would include data capture, that is, whether or not the same patients can be
identified from both national clinical audit data and routine data (both in terms of the completeness of data
capture for national clinical audit and also whether the users of a specific service can reliably be identified
from routine data), and also the performance of risk prediction models based on routinely collected data,
compared with those based on detailed clinical data, for identifying providers with potentially
outlying performance.
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Appendix 1 Simulation study of missing values

/* draw a random sample of size 300,000 */ 
 
set seed 33948 
sample 300000, count 
 
/* MCAR */ 
foreach var of varlist hihr lsys htemp lrr pf loph hu1 hicreat1 hina1 lwbc1 
dup spgcs  { 
generate `var'_i=`var'  
replace `var'_i=. if runiform()<.02 
} 
 
Variables examined for missing values 
 
   #  Variable        # Missing   % Missing 
-------------------------------------------- 
   1  hihr_i             5965         2.0 
   2  lsys_i             5940         2.0 
   3  htemp_i            5957         2.0 
   4  lrr_i              6128         2.0 
   5  pf_i               5922         2.0 
   6  loph_i             5974         2.0 
   7  hu1_i              5947         2.0 
   8  hicreat1_i         5931         2.0 
   9  hina1_i            6050         2.0 
   10 lwbc1_i            6008         2.0 
   11 dup_i              6025         2.0 
   12 spgcs_i            5894         2.0 
 
Missing for | 
   how many | 
 variables? |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |    235,572       78.52       78.52 
          1 |     57,603       19.20       97.72 
          2 |      6,359        2.12       99.84 
          3 |        444        0.15       99.99 
          4 |         22        0.01      100.00 
------------+----------------------------------- 
      Total |    300,000      100.0 
 
/* MAR */ 
gen double missing1=3-
2*loph+0.7*ahsurv+1.5*vent1*low_risk+0.1*yulos+0.05*calage+1*short_free 
gen prb_missing1=invlogit(missing1) 
foreach var of varlist hihr lsys htemp lrr { 
generate `var'_i=`var'  
replace `var'_i=. if prb_missing1<=0.0009 
} 
gen double missing2=3-0.3*ahsurv+1*vent-1*low_risk+ 0.05*yulos-
0.07*calage+1*short_free 
gen prb_missing2=invlogit(missing2) 
foreach var of varlist pf loph { 
generate `var'_i=`var'  
replace `var'_i=. if prb_missing2<=0.2 
} 
gen double missing3=3-2*loph+0.7*ahsurv+1.5*vent -1*low_risk+ 
0.1*yulos+0.05*calage 
gen prb_missing3=invlogit(missing3) 
foreach var of varlist hu1 hicreat1 hina1 lwbc1  { 
generate `var'_i=`var'  
replace `var'_i=. if prb_missing3<=0.0009 
} 
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gen double missing4=3-2*loph+0.7*ahsurv+1.5*vent -1*low_risk+ 
0.1*yulos+0.05*calage 
gen prb_missing4=invlogit(missing4) 
gen dup_i=dup  
replace dup_i=. if prb_missing4<=0.0009 
 
gen double missing5=3-2*loph+0.7*ahsurv+1.5*vent -1*low_risk+ 
0.1*yulos+0.05*calage 
gen prb_missing5=invlogit(missing5) 
gen spgcs_i=spgcs  
replace spgcs_i=. if prb_missing5<=0.0009 
 
Variables examined for missing values 
 
   #  Variable        # Missing   % Missing 
-------------------------------------------- 
   1  hihr_i            36537        12.2 
   2  lsys_i            36537        12.2 
   3  htemp_i           36537        12.2 
   4  lrr_i             36537        12.2 
   5  pf_i              34800        11.6 
   6  loph_i            34800        11.6 
   7  hu1_i             39085        13.0 
   8  hicreat1_i        39085        13.0 
   9  hina1_i           39085        13.0 
   10 lwbc1_i           39085        13.0 
   11 dup_i             39085        13.0 
   12 spgcs_i           39085        13.0 
 
Missing for | 
   how many | 
 variables? |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |    238,013       79.34       79.34 
          2 |     22,902        7.63       86.97 
          6 |      2,492        0.83       87.80 
          8 |         56        0.02       87.82 
         10 |     24,695        8.23       96.05 
         12 |     11,842        3.95      100.00 
------------+----------------------------------- 
      Total |    300,000      100.00 
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Appendix 2 The new Intensive Care National
Audit & Research Centre model: ICNARCH-2014

The raw data fields required for calculation of the new ICNARC model for predicting acute hospital
mortality, ICNARCH-2014, are shown in Table 42 and the final model coefficients are provided in

Table 43. For continuous predictors, coefficients are provided for the cubic spline base variables,
calculated for each predictor as follows.

TABLE 42 Raw data fields for the ICNARCH-2014 risk prediction model for acute hospital mortality

Predictor (units of
measurement) Field type (range) Definition/categories

Highest heart rate
(beats per minute)

Integer (0–450) Highest heart rate from the first 24 hours following admission
to the critical care unit

Lowest SBP (mmHg) Integer (0–400) Lowest SBP from the first 24 hours following admission to the
critical care unit

Highest temperature (°C) Real (0.0–46.0) Highest central temperature from the first 24 hours following
admission to the critical care unit. If no central temperature
recorded, use highest non-central temperature+ 0.5 °C

Lowest respiratory rate
(breaths per minute)

Integer (0–100) Lowest rate (either ventilated or non-ventilated) from the first
24 hours following admission to the critical care unit

Lowest PaO2 (kPa) Real (1.0–100.0) Lowest PaO2 from an arterial blood gas using blood sampled
during the first 24 hours following admission to the critical
care unit

Associated FiO2 Real (0.21–1.00) FiO2 associated with the arterial blood gas with the
lowest PaO2

Lowest arterial pH Real (6.10–9.00) Lowest arterial pH from blood sampled during the first
24 hours following admission to the critical care unit

Associated PaCO2 (kPa) Real (0.0–50.0) PaCO2 from the arterial blood gas with the lowest arterial pH

Highest blood lactate
concentration (mmol/l)

Real (0.1–35.0) Highest blood lactate concentration from the first 24 hours
following admission to the critical care unit

Total urine output (ml) Integer (0–99999) Total urine output from the first 24 hours following admission
to the critical care unit. For admissions with a length of stay
less than 24 hours, the total over the entire stay is recorded
and scaled to represent a 24-hour equivalent

Highest urea level (mmol/l) Real (0.0–300.0) Highest serum urea concentration from the first 24 hours
following admission to the critical care unit

Highest creatinine level (µmol/l) Integer (9–5000) Highest serum creatinine concentration from the first 24 hours
following admission to the critical care unit

Highest sodium level (mmol/l) Integer (40, 260) Highest serum sodium concentration from the first 24 hours
following admission to the critical care unit

Lowest WBC count (× 109/l) Real (0.0–9999.9) Lowest WBC count from the first 24 hours following admission
to the critical care unit

Lowest platelet count (× 109/l) Integer (0–9999) Lowest platelet count from the first 24 hours following
admission to the critical care unit
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TABLE 42 Raw data fields for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor (units of
measurement) Field type (range) Definition/categories

Sedation/paralysis Categorical Sedation/paralysis during the first 24 hours following admission
to the critical care unit, categorised as: sedated for the entire
of the first 24 hours; paralysed and sedated for the entire of
the first 24 hours; or neither sedated nor paralysed and
sedated for the entire of the first 24 hours

Lowest total GCS score Integer (3–15) Lowest total GCS score from the first 24 hours following
admission to the critical care unit if neither sedated nor
paralysed and sedated

Age (years) Integer (0–125) Age in whole years at admission to the critical care unit

Severe liver disease in past
medical history

Boolean (yes/no) Biopsy-proven cirrhosis, portal hypertension or hepatic
encephalopathy, evident during the 6 months prior to
admission to the critical care unit and documented prior to
or at admission to the unit

Metastatic disease Boolean (yes/no) Distant metastases documented by surgery, imaging or biopsy,
evident during the 6 months prior to admission to the critical
care unit and documented prior to or at admission to the unit

Haematological malignancy Boolean (yes/no) Acute or chronic myelogenous leukaemia, acute or chronic
lymphocytic leukaemia, multiple myeloma or lymphoma,
evident during the 6 months prior to admission to the critical
care unit and documented prior to or at admission to the unit

Dependency prior to admission Categorical Dependency prior to admission to acute hospital, assessed as
the best description for the dependency of the patient in the
two weeks prior to admission to acute hospital and prior to
the onset of the acute illness

Categorised as: able to live without assistance in daily
activities; some (minor or major) assistance with daily activities;
or total assistance with all daily activities. Daily activities include
bathing, dressing, going to the toilet, moving in/out of
bed/chair, continence and eating

CPR prior to admission Categorical CPR (internal or external cardiac massage) received within
24 hours prior to admission to the critical care unit, categorised
as: in-hospital CPR (administered by an in-hospital resuscitation
team or equivalent); community CPR (not administered by an
in-hospital resuscitation team or equivalent); or no CPR. Where
a patient received CPR both in the community and in-hospital,
this is recorded as community CPR

Source of admission Categorical The location of the patient immediately prior to admission to
the critical care unit, categorised as: emergency department or
not in hospital; other acute hospital; Other critical care unit;
theatre; or ward or intermediate care area. For patients whose
location immediately prior to admission was a transient
location of clinic, imaging department, recovery (used as a
temporary critical care area) or specialist treatment area, their
last non-transient location is recorded

Urgency of surgery Categorical For patients whose location immediately prior to admission
was theatre, the urgency of surgery, categorised as:
elective/scheduled; or emergency/urgent (according to the
classification of the National Confidential Enquiry into Patient
Outcome and Death)
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TABLE 42 Raw data fields for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor (units of
measurement) Field type (range) Definition/categories

Planned admission to the critical
care unit

Categorical Planned admission to the critical care unit, categorised as:
planned; unplanned; or, for transfers from another critical care
unit only, repatriation. For admissions from theatre, planned
admission is defined as acceptance by the critical care unit
prior to induction of anaesthesia. For medical admissions, a
planned admission is a pre-arranged admission for a planned
investigation or high-risk medical treatment. For transfers
from another health-care provider, a planned admission is a
pre-arranged admission after treatment or initial stabilisation
but requiring specialist or higher-level critical care that cannot
be provided at the source. Repatriation is defined as a planned
transfer because the patient either originated from that critical
care unit (i.e. returning after specialist treatment elsewhere)
or from that hospital or local area

Primary reason for admission String (13) Primary reason for admission to the critical care unit, coded
using the ICNARC coding method (www.icnarc.org/Our-Audit/
Audits/Cmp/Resources/Icm-Icnarc-Coding-Method)

Mechanical ventilation Boolean (yes/no) Mechanical ventilation at any time during the first 24 hours
following admission to the critical care unit
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality

Predictor Coefficient (SE)

Constant 19.093 (6.635)

Physiological predictors

Highest heart rate (beats per minute) – RCS (71, 93, 110, 146) [106]

hr1 –0.00005 (0.00325)

hr2 0.05999 (0.01205)

hr3 –0.1927 (0.0350)

Lowest SBP (mmHg) – RCS (66, 89, 102, 130) [95]

sbp1 –0.03310 (0.00735)

sbp2 0.10080 (0.02765)

sbp3 –0.3907 (0.1272)

Highest temperature (°C) – RCS (36.0, 37.2, 38.0, 39.2) [37.6]

temp1 –0.1530 (0.0548)

temp2 –0.1349 (0.3290)

temp3 1.939 (1.495)

Lowest respiratory rate (breaths per minute) – RRCS (8, 12, 13, 15) [13]

rr1 –0.07682 (0.00690)

rr2 0.00772 (0.01019)

rr3 –0.01448 (0.01426)

rr4 0.00698 (0.00797)

rr5 0.00024 (0.00014)

PaO2/ FiO2 (kPa) – RCS (9.7, 26.0, 39.7, 61.4) [33.0]

pf1 –0.04360 (0.00438)

pf2 0.07204 (0.01510)

pf3 –0.17258 (0.04498)

Lowest arterial pH – RCS (7.08, 7.30, 7.36, 7.44) [7.31]

ph1 –0.6547 (0.8709)

ph2 –4.2092 (1.3490)

ph3 29.727 (22.008)

PaCO2 (kPa) – RCS (3.9, 5.2, 7.0) [5.4]

pc1 2.89904 (0.64885)

pc2 0.47630 (0.13307)

Highest blood lactate concentration (mmol/l) – RCS (0.7, 1.5, 2.5, 8.2) [2.8]

bl1 –11.0662 (3.2726)

bl2 188.9267 (51.7254)

bl3 –351.1491 (95.6690)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Urine output (ml) – RCS (164, 1215, 2020, 4255) [1800]

up1 –0.00136 (0.00009)

up2 0.002416 (0.00035)

up3 –0.00466 (0.00097)

Highest urea level (mmol/l) – RCS (2.8, 5.6, 9.3, 28.1) [10.5]

ur1 –0.07858 (0.02591)

ur2 1.8777 (0.36564)

ur3 –3.4724 (0.6610)

Highest creatinine level (µmol/l) – RRCS (53, 80, 106, 168) [141]

cr1 0.00213 (0.00012)

cr2 0.29314 (0.12838)

cr3 –0.11159 (0.05119)

cr4 0.02867 (0.00790)

cr5 –0.00035 (0.00006)

Highest sodium level (mmol/l) – RCS (133, 139, 145) [139]

na1 –0.05476 (0.00357)

na2 0.05908 (0.00386)

Lowest WBC count (× 109/l) – RCS (3.7, 8.7, 12.3, 22.5) [12.0]

wbc1 –0.03935 (0.00759)

wbc2 0.21809 (0.03518)

wbc3 –0.60698 (0.10216)

Lowest platelet count (× 109/l) – RCS (60, 162, 232, 422) [211]

plc1 –0.00646 (0.00041)

plc2 0.02136 (0.00171)

plc3 –0.05719 (0.00520)

Sedated/paralysed/GCS score [15]

15 0

14 0.277 (0.0320)

7–13 0.533 (0.0294)

Sedated 0.745 (0.0295)

6 0.849 (0.0914)

5 or paralysed and sedated 0.928 (0.0582)

4 1.273 (0.1142)

3 1.751 (0.0596)

continued

DOI: 10.3310/hsdr03410 HEALTH SERVICES AND DELIVERY RESEARCH 2015 VOL. 3 NO. 41

© Queen’s Printer and Controller of HMSO 2015. This work was produced by Harrison et al. under the terms of a commissioning contract issued by the Secretary of State for
Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

123



TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Non-physiological predictors

Age (years) 0.03723 (0.00073)

Severe liver disease in past medical history 11.224 (6.501)

Metastatic disease 0.621 (0.0524)

Haematological malignancy 0.673 (0.0583)

Dependency prior to admission

No assistance with daily activities 0

Some assistance with daily activities 0.474 (0.0205)

Total assistance with daily activities 0.890 (0.0870)

CPR prior to admission

Community CPR 0

In-hospital CPR 10.892 (3.500)

No CPR 3.732 (2.449)

Source of admission/urgency of surgery

ED or not in hospital (unplanned admission) 0

ED or not in hospital (planned admission) 0.022 (0.1169)

Other acute hospital (not critical care) 0.369 (0.0838)

Other critical care unit (repatriation) 0.593 (0.1131)

Other critical care unit (planned or unplanned transfer) 0.257 (0.0430)

Theatre (planned admission following elective or scheduled surgery) –0.934 (0.0518)

Theatre (unplanned admission following elective or scheduled surgery) –0.455 (0.0694)

Theatre (admission following emergency or urgent surgery) –0.223 (0.0359)

Ward or intermediate care area 0.405 (0.0264)

Primary reason for admission

Accidental intoxication or poisoning (endocrinea) –0.080 (0.2578)

Acidaemia (endocrine) –0.117 (0.2274)

Burns or hyperthermia (dermatological) 1.004 (0.3180)

Collapse (respiratory) 2.157 (0.6381)

Coma or encephalopathy (neurological) 0.463 (0.2030)

Congenital or acquired deformity or abnormality (cardiovascular) 0

Congenital or acquired deformity or abnormality (musculoskeletal) –0.196 (0.2330)

Congenital or acquired deformity or abnormality (neurological) –2.853 (1.3406)

Congenital or acquired deformity or abnormality (respiratory) 0.940 (0.2046)

Congenital or acquired deformity or abnormality (endocrine; gastrointestinal; genitourinary; or
haematological/immunological)

0.040 (0.2081)

Degeneration (cardiovascular) –0.194 (0.2209)

Degeneration (neurological) 1.837 (0.3511)

Diabetes mellitus (endocrine) –0.494 (2.8285)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Dissection or aneurysm (cardiovascular) 0.246 (0.1817)

Failure (cardiovascular) 0.574 (0.1848)

Failure (genitourinary) 0.257 (0.1774)

Haemorrhage (cardiovascular) –0.366 (0.3263)

Haemorrhage (gastrointestinal) 8.352 (2.8243)

Haemorrhage (genitourinary) –0.574 (0.2988)

Haemorrhage (neurological) 0.370 (0.6378)

Haemorrhage (respiratory) 0.214 (0.2583)

Hyperkalaemia (endocrine) 0.011 (0.2464)

Hypertension (cardiovascular) or over- or under-activity (cardiovascular; genitourinary) 0.198 (0.1800)

Hypokalaemia (endocrine) –0.494 (0.4010)

Hyponatraemia (endocrine) –0.268 (0.2864)

Hypoplasia or dysplasia (haematological/immunological) 0.651 (0.3303)

Hypothermia (endocrine) 0.190 (0.2953)

Infection (cardiovascular) 0.775 (0.2100)

Infection (genitourinary) –0.140 (0.1885)

Infection (respiratory) 2.116 (0.5798)

Infection (dermatological; gastrointestinal; haematological/immunological; musculoskeletal;
or neurological)

0.372 (0.1758)

Inflammation (gastrointestinal) 0.486 (0.1799)

Inflammation (neurological) –0.191 (0.2739)

Inflammation (respiratory) 0.377 (0.1785)

Inflammation (cardiovascular; dermatological; genitourinary; musculoskeletal) –0.017 (0.2435)

Obstruction (cardiovascular) 0.220 (0.1776)

Obstruction (gastrointestinal) 0.437 (0.1783)

Obstruction (genitourinary) –0.420 (0.2600)

Obstruction (respiratory) 0.158 (0.1792)

Other endocrine processesa (endocrine) –0.1557 (0.2333)

Seizures (neurological) –0.138 (0.1872)

Self intoxication or self poisoning (endocrine) 0.513 (1.0021)

Shock and hypotension (cardiovascular) 0.410 (0.1770)

Transplant or related (gastrointestinal) –1.125 (0.2922)

Transplant or related (cardiovascular; endocrine; genitourinary; haematological/immunological;
respiratory)

0.153 (0.3162)

Trauma, perforation or rupture (cardiovascular) 0.128 (0.2558)

Trauma, perforation or rupture (gastrointestinal) 0.398 (0.1771)

Trauma, perforation or rupture (neurological) –0.475 (3.8994)

Trauma, perforation or rupture (dermatological; genitourinary; musculoskeletal; respiratory) 0.260 (0.1827)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Tumour or malignancy (genitourinary) 0.052 (0.2007)

Tumour or malignancy (haematological/immunological) 0.116 (0.2997)

Tumour or malignancy (neurological) 0.590 (0.6974)

Tumour or malignancy (cardiovascular; dermatological; endocrine; gastrointestinal;
musculoskeletal; respiratory)

11.442 (2.581)

Vascular (cardiovascular) 0.593 (0.1989)

Vascular (gastrointestinal) 0.654 (0.1897)

Vascular (neurological) 1.294 (0.2195)

Acute alcoholic hepatitis/alcoholic cirrhosis 0.670 (0.8356)

Anaphylaxis –0.950 (0.3475)

Anoxic or ischaemic coma or encephalopathy 0.687 (1.3371)

Asthma attack in new or known asthmatic –1.132 (0.2533)

Enteroenteric or enterocutaneous fistula 1.667 (0.3242)

Fractured ribs 0.249 (0.2571)

Fungal or yeast pneumonia 1.255 (0.2413)

Haemolysis or thrombocytopenia –0.027 (0.3676)

Hanging or strangulation 1.790 (0.2644)

Intracerebral haemorrhage 32.963 (14.5399)

Leaking large bowel anastomosis/perforated biliary tree or gall bladder 0.670 (0.8356)

Lower limb artery stenosis or occlusion 1.009 (0.2054)

Pulmonary fibrosis or fibrosing alveoli 2.919 (0.2727)

Secondary hydrocephalus –2.218 (6.1830)

Thrombo-occlusive disease of brain 1.899 (0.2010)

Toxic or drug-induced coma or encephalopathy 0.129 (0.2480)

Mechanical ventilation 0.7160 (0.4495)

Interactions

Arterial pH× PaCO2

ph1 × pc1 –0.42784 (0.09097)

ph1 × pc2 –0.03535 (0.01712)

ph2 × pc1 0.58168 (0.21846)

ph3 × pc1 –1.14392 (3.91387)

Arterial pH× blood lactate concentration

ph1 × bl1 1.563 (0.4481)

ph1 × bl2 –26.37 (7.0874)

ph1 × bl3 49.00 (13.111)

ph2 × bl1 –0.1573 (0.12837)

ph3 × bl1 7.797 (2.4084)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Urine output × urea

up1 × ur1 0.00005 (0.00001)

up1 × ur2 –0.00065 (0.00015)

up1 × ur3 0.00116 (0.00027)

up2 × ur1 –0.00002 (0.00002)

up3 × ur1 0.00005 (0.00005)

Liver disease × temperature

temp1 –0.2845 (0.17794)

temp2 0.9400 (0.49252)

temp3 –4.648 (1.8547)

CPR × SBP

In-hospital CPR × sbp1 0.00043 (0.00940)

In-hospital CPR × sbp2 0.01370 (0.03616)

In-hospital CPR × sbp3 –0.03798 (0.16478)

No CPR × sbp1 0.01281 (0.00753)

No CPR × sbp2 –0.07066 (0.02817)

No CPR × sbp3 0.31309 (0.12912)

CPR × temperature

In-hospital CPR × temp1 –0.3232 (0.09522)

In-hospital CPR × temp2 0.8444 (0.45897)

In-hospital CPR × temp3 –3.230 (2.0050)

No CPR × temp1 –0.1547 (0.06646)

No CPR × temp2 0.2818 (0.34462)

No CPR × temp3 –1.556 (1.5416)

Collapse (respiratory) × platelet count

plc1 –0.01305 (0.00547)

plc2 0.02428 (0.02238)

plc3 –0.04071 (0.06688)

Congenital (neurological) × urine output

up1 0.00324 (0.00150)

up2 –0.01064 (0.00576)

up3 0.02702 (0.01488)

Diabetes mellitus (endocrine) × heart rate

hr1 0.00544 (0.03384)

hr2 –0.1944 (0.11643)

hr3 0.7147 (0.32881)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Haemorrhage (gastrological) × sodium level

na1 –0.05819 (0.02074)

na2 0.02272 (0.02189)

Haemorrhage (neurological) × urine output

up1 –0.00010 (0.00050)

up2 0.00080 (0.00188)

up3 –0.00157 (0.00484)

Haemorrhage (neurological) × blood lactate concentration

bl1 0.8467 (0.34277)

bl2 –6.623 (5.9342)

bl3 11.09 (11.197)

Infection (respiratory) × heart rate

hr1 –0.01412 (0.00655)

hr2 0.03690 (0.02251)

hr3 –0.1021 (0.06348)

Infection (respiratory) × PaO2/FiO2

pf1 –0.01559 (0.00611)

pf2 –0.01082 (0.02796)

pf3 0.13753 (0.09825)

Self poisoning (endocrine) × creatinine level

cr1 –0.00098 (0.00174)

cr2 –0.94067 (2.33612)

cr3 0.44148 (0.70236)

cr4 –0.13545 (0.09162)

cr5 0.00024 (0.00073)

Self poisoning (endocrine) × blood lactate concentration

bl1 –1.347 (0.6578)

bl2 29.70 (10.375)

bl3 –56.39 (19.128)

Trauma (neurological) × sodium level

na1 –0.00217 (0.02855)

na2 0.04362 (0.02519)

Trauma (neurological) ×WBC count

wbc1 0.07408 (0.07799)

wbc2 –0.04864 (0.31443)

wbc3 0.23081 (0.88934)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Trauma (neurological) × urine output

up1 0.0004 (0.00047)

up2 –0.00050 (0.00180)

up3 0.00118 (0.00462)

Trauma (neurological) × platelet count

plc1 0.00290 (0.00327)

plc2 –0.02458 (0.01346)

plc3 0.06889 (0.04086)

Tumour (haematological/immunological) ×WBC count

wbc1 0.06610 (0.06833)

wbc2 0.5778 (0.51906)

wbc3 –2.313 (1.6231)

Tumour (neurological) × urine output

up1 0.00007 (0.00075)

up2 0.00033 (0.00282)

up3 –0.00053 (0.00722)

Tumour (other) × sodium level

na1 –0.08002 (0.01897)

na2 0.06770 (0.02276)

Acute alcoholic hepatitis/alcoholic cirrhosis × urea level

ur1 0.02320 (0.17484)

ur2 2.009 (2.6257)

ur3 –4.264 (4.7798)

Anoxic/ischaemic coma × SBP

sbp1 0.00209 (0.01739)

sbp2 0.08982 (0.05797)

sbp3 –0.3009 (0.24374)

Intracerebral haemorrhage × temperature

temp1 –0.8292 (0.39703)

temp2 0.6162 (0.94252)

temp3 0.1163 (3.23562)

Intracerebral haemorrhage × urine output

up1 –0.00026 (0.00055)

up2 0.00181 (0.00212)

up3 –0.00401 (0.00551)
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TABLE 43 Final coefficients for the ICNARCH-2014 risk prediction model for acute hospital mortality (continued )

Predictor Coefficient (SE)

Secondary hydrocephalus × creatinine level

cr1 –0.02572 (0.03126)

cr2 –0.53674 (2.02834)

cr3 –0.30353 (1.05165)

cr4 0.06243 (0.23562)

cr5 0.00220 (0.00542)

Mechanical ventilation × heart rate

hr1 0.00386 (0.00416)

hr2 –0.04434 (0.01538)

hr3 0.1481 (0.04462)

Mechanical ventilation × respiratory rate

rr1 0.03380 (0.01191)

rr2 –0.01425 (0.01245)

rr3 0.03415 (0.01803)

rr4 –0.01939 (0.01019)

rr5 –0.00004 (0.00020)

Mechanical ventilation × PaO2/FiO2

pf1 0.02427 (0.00523)

pf2 –0.05202 (0.001912)

pf3 0.14406 (0.05891)

Mechanical ventilation × PaCO2

pc1 –0.1153 (0.03488)

pc2 0.02085 (0.03791)

ED, emergency department; RCS, restricted cubic splines (knot positions in parentheses); RRCS, right-restricted cubic splines
(knot positions in parentheses).
Square brackets indicate mean/normal value for imputation.
a Alcohol-related disorders, alkalaemia, chromosomal deletion syndromes, contiguous gene syndromes, envenomation,

fluid overload, haemorrhage, hypercalcaemia, hyperglycaemia, hypernatraemia, hyperthermia, hypocalcaemia,
hypoglycaemia, inborn errors of metabolism, obesity, over-activity, sex chromosome disorders, starvation, trisomy and
under-activity.
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Restricted cubic splines with j knots (positioned at k1,. . .,kj) require (j− 1) base variables x1 to xj−1 calculated
from the continuous predictor x as:

x1 = x. (3)

xi+ 1 = ½max ((x−ki)
3, 0)−(k j−kiÞ�max ((x−k j−1)

3, 0)=(k j−k j−1)+ (k j−1−ki)

�max ((x−k j)
3, 0)=(k j−k j−1)�=(k j−k1)

2; i = 1, . . . , j−2: (4)

Right-restricted cubic splines with j knots (positioned at k1,. . ., kj) require (j+ 1) base variables x1 to xj+1

calculated from the continuous predictor x as:

x1 =−x. (5)

xi+ 1 =max ((ki−x)3, 0); i = 1, . . ., j. (6)

The predicted log-odds of acute hospital mortality for patient i, li, are calculated by multiplying each
coefficient from the preceding table by the value of the corresponding predictor variable and summing.
The predicted risk of acute hospital mortality, pi, is calculated from the predicted log-odds by the inverse
logit function:

pi=1=(1+ exp (−li)), (7)

where exp() denotes the exponential function.
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