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Objectives
Quality of life has become an important issue in
health care, especially in studies of chronic diseases.
Substantial amounts of quality-of-life data are now
being gathered in clinical trials, using a variety of
instruments. In longitudinal studies of quality of life
in which survival is also an endpoint, patients are
generally severely ill and it is common for partic-
ipants to drop out of the study because of illness or
death. In such situations, the drop-out process may
depend on the quality of life being experienced,
rather than being random; hence the incomplete
follow-up of patients is called informative drop-out.
This must be appropriately accounted for in any
analysis of the data to avoid the introduction of bias.

This study identifies and reviews critically the
methods proposed for the analysis of quality-of-life
and survival data in health technology assessment,
particularly those that assess both these endpoints
simultaneously. In this way methodology that
requires wider dissemination can be identified
together with areas requiring further research. It
was not within the remit of this study to address
issues related to the meaning, definition and
measurement of quality of life.

Methods

The scientific and medical literature was searched
for relevant methodological articles. Electronic
searches were carried out systematically using
Science Citation Index, Social Science Citation
Index and the EMBASE database provided by BIDS
(Bath Information and Data Service). The searches
were supplemented by exploded references,
personal collections and handsearching of the
journal Quality of Life Research.

Results

Methods for analysing quality-of-life and survival
data were found to fall into three broad categories,
as described below, according to the research
question underlying the study; this in turn 
depends on the disease and treatments 
under investigation.

Quality-of-life analysis in the presence
of informative drop-out
The use of standard methods for the analysis of
longitudinal data is discussed in terms of their
application to longitudinal quality-of-life data. 
All methods, from simple descriptive analysis to
complex modelling techniques, will give biased
results when informative drop-out is present in 
the data. Standard methods should therefore be
used with caution when analysing longitudinal
quality-of-life data. Modelling techniques that 
deal with informative drop-out have been
developed and their application to quality-
of-life data is discussed.

Analysis of survival data adjusting for
quality of life
In comparing treatments in terms of survival, 
it is often necessary to adjust for other patient-
related factors, known as covariates, that could
potentially affect the survival time of a patient. 
In some situations the survival analysis may need 
to adjust for baseline measures of quality of life
(fixed covariates), while in others, allowance for
changing quality of life over time may be required
(time-dependent covariates). If assessments of
quality of life are infrequent or data are missing 
for reasons other than death, then it may be
difficult to adjust for changes in quality of life 
with any degree of accuracy. Modelling quality 
of life and survival as two simultaneous processes
may improve the analysis in this situation.

Simultaneous analysis of quality-of-life
and survival data
In studies in which quality of life and survival are
both important endpoints, it may be advantageous
to assess health technologies in terms of these
endpoints simultaneously. Three different
approaches can be used to achieve this:

• combining quality and quantity of life into a
single endpoint and using quality-adjusted
survival analysis methods to compare 
treatments

• using multistate models to model the movement
of patients between various health states, defined
by levels of quality of life and by death, and
exploring how treatments differ in terms of 
these movements

Executive summary
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• considering quality of life and survival as two
simultaneous processes and describing the data
in terms of two interlinked models.

Quality and quantity of life can be combined 
into a single endpoint by weighting periods of
survival time according to the quality of life
experienced. The resulting outcome measures are
generally referred to as QALYs (quality-adjusted life
years) with special forms known as TWiST (time
spent without symptoms of disease and toxicity of
treatment) and Q-TWiST (quality-adjusted TWiST).
The use of standard survival analysis techniques 
on the QALY endpoint will generally give biased
results because individuals with a worse quality of 
life will be censored earlier than those with a good
quality of life, resulting in informative censoring.
Methods of overcoming this problem, including
partitioned survival analysis, are discussed. Quality-
adjusted survival analysis overcomes problems of
informative drop-out due to death and has the
potential to be extended to deal with other disease-
or treatment-related reasons for drop-out.

Multistate models are defined by categorising 
the period of follow-up of patients in a trial into 
a number of different health states defined in
terms of levels of quality of life and death. The
movement between health states is described by
transition rates, which are modelled using the
transition times for patients. Various modelling
approaches are discussed. The inclusion of death 
as a health state in the model enables the analysis
to deal with informative drop-out due to death 
and the inclusion of a ‘drop-out’ state could 
cover other reasons.

The most recently developed, and potentially 
most powerful, approach to analysing quality-
of-life and survival data is to model the longi-
tudinal quality-of-life data and the drop-out
process, which includes drop-out due to death, 
as two simultaneous processes. Such an approach
has the advantage of allowing quality-of-life data 
to be assessed longitudinally while adjusting for
informative drop-out. In addition, the inter-
relationship between the two can be explored.

Conclusions and
recommendations
Obtaining appropriate data
• The method of analysis needs to be decided at

the design stage of a study so that appropriate

quality-of-life data can be collected. Issues to
consider are:
– the quality-of-life instrument to be used
– the frequency and timing of quality-of-

life assessments
– the need to minimise non-compliance
– the collection of additional information, 

such as reason for drop-out
– the sample size required.

Choosing the appropriate method
• The choice of method should be based on 

the research question that the study aims to
answer. The advantages and disadvantages 
of each method should be considered 
carefully together with the relevance and
interpretability of the results to clinicians 
and patients.

• Methods used to analyse longitudinal quality-
of-life data must allow for informative 
drop-out.

Reporting the analysis
• Methods used should be reported clearly, with

details of definitions and assumptions used in
the analysis.

• A sensitivity analysis should be carried out to 
assess the robustness of conclusions to any
critical assumptions made in the analysis.

Recommendations for 
further research
• Further experience in the application of 

quality-adjusted survival analysis techniques to
quality-of-life data is needed to enable a proper
evaluation of such methods.

• Further research is needed in order to develop
hierarchical models, multistate models and
simultaneous modelling methods in their
practical application to quality-of-life and 
survival data using both classical and Bayesian
approaches. Consideration should be given 
to how methods could deal with the multi-
variate nature of the quality-of-life endpoint.

• A full review of available software for methods
that simultaneously analyse quality-of-life and
survival data is needed to highlight areas
requiring further development.

• Progress in the most rapidly developing areas 
of multistate survival analysis and simultaneous
modelling should be monitored, together with
parallel areas of methodological development
such as in the field of AIDS research.

Executive summary
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Aims
The methods that have been proposed for the
analysis of quality of life and survival data in health
technology assessment are reviewed, with particular
reference to those that assess these two endpoints
simultaneously. The key objectives were to:

• identify proposed methodology for the
simultaneous analysis of quality and length 
of life

• review critically the proposed methodology
• illustrate such methodology where possible 

by application to data from a previously
conducted study

• identify on the basis of the review:
– methodology that requires dissemination

within the health research community and 
the NHS

– areas of non-existent or deficient methodology
– areas that require further research.

Rationale for the study

Quality-of-life assessment has become an important
issue in healthcare research and the study of new
technologies, especially in many chronic diseases.
Although survival is usually the standard endpoint
for assessing treatments in clinical trials, informed
clinical decisions generally require quantification
and interpretation of quality-of-life measures,
especially with respect to variation over time and
the interrelationship with length of life. The role 
of quality of life will become even more prominent
in the future as, for many diseases, improvements
in survival due to treatment are either unlikely to
be dramatic or likely to be made at the expense 
of quality of life.

There has been much research into the devel-
opment of instruments with which to measure 
quality of life. This has resulted in a plethora of
instruments and substantial amounts of quality-of-
life data being gathered in trials. Hence there is 
a need for methods that enable the effective and
efficient analysis and interpretation of such data. 
It is therefore timely that the range of statistical
methods which have been proposed for dealing 
with such data are systematically reviewed and

evaluated. There are a number of previous reviews
of the analysis of quality of life in clinical trials.1–7

In longitudinal studies of quality of life in which
survival is also an endpoint, the patient population
will not be stable over time. Patients are generally
severely ill and individuals may have incomplete
follow-up of quality of life for reasons related to
disease or treatment, including death. This drop-
out process may be informative and can make
statistical analysis particularly problematic. There 
is, therefore, a need to identify appropriate
methods which will yield unbiased and clinically
relevant assessment of health technologies in 
such situations.

This study will therefore yield two benefits.

• The identification of existing methodology that
has been shown to benefit the assessment of
health technologies with respect to both quality
and length of life, and thus enable more
informed decision-making within the NHS.

• The identification of those areas in which
further work is required so that existing 
methods can either be more appropriately
applied or be realistically developed.

Introduction to this report

Coverage
The first four chapters of this report provide 
an introduction and background. They include
details of the methodology used to carry out 
the review and they provide a background to 
both types of data encountered in the report – 
quality-of-life data and survival data. The early
chapters also provide a background to the clin-
ical trial from which quality-of-life and survival 
data were taken to illustrate some of the 
proposed methodology.

Health technology assessment is the evaluation 
of any intervention intended to improve health.
The investigation of quality of life and survival 
most often takes place in the context of a random-
ised clinical trial that compares treatments and the
report focuses on this scenario. The main body of
the report, in which the proposed methods for

Chapter 1

Introduction
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analysing quality-of-life and survival data are
discussed, is in three parts according to the
definition of the research question of interest. 
This research question depends on the disease 
and treatments under investigation.

The first approach, discussed in chapters 5–9,
covers studies in which the primary aim is to
compare health technologies in terms of quality 
of life. Survival is also considered but only in 
terms of the problematical impact it has on the
quality-of-life assessment data. Deaths of patients
during the course of a study may result in inform-
ative drop-out, causing quality-of-life data to be
missing. The problems for analysis caused by
informative drop-out are discussed.

The second approach, discussed in chapters 10–13,
covers studies in which the primary aim is to com-
pare health technologies in terms of survival.
Quality of life may also be measured and any
survival analysis may need to be adjusted for this.

The third approach, discussed in chapters 14–20,
includes studies in which quality of life and survival
are both important endpoints for assessing health
technologies. Instead of analysing each endpoint
separately, it may be more appropriate to analyse
both endpoints simultaneously. The focus of the
report is on this type of methodology.

In the final chapter of the report the methods
discussed are summarised and the implications 
for the design and conduct of health technology
assessment research are considered. Methodology
that requires wider dissemination is identified 
and recommendations for further research 
are made.

Format of the report and guidance 
for readers
The report can be approached in a variety 
of ways depending on the needs of the individual
reader. Although the report is cross-referenced, the
section addressing each approach can be read as a
single entity, thus enabling the reader to focus on
just that part of the report that relates to the
particular problem that they wish to address.

Technical detail has been kept to a minimum in
order to make the report accessible to a wide range

of readers. For clarification, most key methods 
are illustrated with worked examples, using data
from a real study. However, the analysis presented
here is purely to illustrate the methodology and
should not be interpreted as a report of the results
of this study; these will be presented elsewhere.

It was not within the remit of this study to 
address issues relating to the meaning, definition
and measurement of quality of life. Use of the
term, quality of life, in the literature has thus 
been accepted uncritically. The term, quality of 
life, is used here to mean anything that purports 
to measure health-related quality of life or some
aspect of it. This does not affect any discussion of
the methodological problems of analysing such
data when it is assessed longitudinally in
conjunction with survival data.

References
1. Cox DR, Fitzpatrick R, Fletcher AE, Gore SM,

Spiegelhalter DJ, Jones DR. Quality-of-life assess-
ment: can we keep it simple? J R Stat Soc (A)
1992;155:353–93.

2. Hopwood P, Stephens RJ, Machin D. Approaches 
to the analysis of quality of life data: experiences
gained from a Medical Research Council Lung
Cancer Working Party palliative chemotherapy 
trial. Qual Life Res 1994;3:339–52.

3. Fletcher A, Gore SM, Jones DR, Fitzpatrick R,
Spiegelhalter DJ, Cox DR. Quality of life measures
in health care. II: design, analysis and interpret-
ation. BMJ 1992;305:1145–8.

4. Olschewski M, Schumacher M. Statistical analysis of
quality of life data in cancer clinical trials. Stat Med
1990;9:749–63.

5. Schumacher M, Olschewski M, Schulgen G.
Assessment of quality of life in clinical trials. 
Stat Med 1991;10:1915–30.

6. Pocock SJ. A perspective on the role of quality-of-life
assessment in clinical trials. Control Clin Trials
1991;12:S257–65.

7. Scott CB, Stetz J, Bruner DW, Wasserman TH.
Radiation Therapy Oncology Group quality of life
assessment: design, analysis, and data management
issues. Qual Life Res 1994;3:199–206.



Health Technology Assessment 1999; Vol. 3: No. 10

3

Introduction
The literature search forms the basis of the 
review and in this chapter details are presented 
of the methodology used in the search. The aim
was to identify all statistical methodology that has
been proposed for the analysis of data for health
technology assessment with respect to both quality
and length of life. The focus was on methods that
analyse quality-of-life data over time in situations 
in which length of survival is an issue and, in
particular, methods that simultaneously analyse
quality of life and survival.

Search methodology

Introduction
A systematic and repeatable strategy was devised 
to search the literature for relevant articles. A
complete list of all papers citing relevant statistical
methods was not necessary, since enumeration 
of usage was not an objective. However, the search
did seek to identify the full range of methods and
so was kept as broad and as thorough as possible
within the time constraints of the study.

Statistical methodology is represented, not 
only in theoretical but also in applied literature.
The literature of greatest interest therefore was
essentially of a statistical or medical nature. The
search, however, was not limited to these areas
since methods found in other fields, such as
industry, agriculture and education, could be
adapted to be applicable in a health context.
Journal articles comprised the main body of
literature but all types, including books, reports,
conference papers and theses, were considered 
for inclusion.

The search strategy consisted of a variety of 
different approaches. The main part was under-
taken using electronic databases but a considerable
number of references were also obtained by other
methods, such as handsearching journals, explod-
ing references, and personal recommendations.
When identified, references were stored and
managed on a database using Reference Manager
bibliographic software v. 7 (Research Information
Systems, USA, 1995).

Electronic database searching
A variety of electronic databases provided by 
Bath Information and Data Service (BIDS) 
were used to search the scientific literature. BIDS
Science Citation Index provides access to over 
4400 journals in natural, physical and biomedical
science and technology, BIDS EMBASE to over
3500 pharmacological and biomedical journals,
and BIDS Social Science Citation Index to over
1400 journals in behavioural and social sciences.

The search was kept as broad as possible with
articles in any language being included and
searches going back in time as far as databases
would allow (1980 for EMBASE;1981 for Science
Citation Index and Social Science Citation Index).
A broad strategy was maintained by searching
articles for relevant words and phrases (search
terms), not only in keywords but also in titles 
and abstracts.

The search terms fell into three main categories;
quality of life, survival and methodology (see
appendix 1 for details). The terms were chosen 
to achieve an adequate balance between sensitivity
and precision (or specificity). Sensitivity is the
proportion of relevant references captured by 
the search, while precision is the proportion of
articles captured by the search which are relevant.
Searches need to be sensitive, in order to achieve 
a comprehensive result overall, and precise, so 
that the number of references to check for
relevance is not impractical.

The search strategy, applicable to each database,
was split into three stages as follows.

Stage 1  Journals in the fields of statistics,
epidemiology, clinical trials and biometry (see
appendix 1 for details on how these were selected)
were searched for articles containing quality-of-life
search terms.
Stage 2  All journals on the database were searched
for articles containing methodology search terms,
that is, terms relating to known statistical method-
ologies used in the simultaneous analysis of 
quality-of-life and survival data.
Stage 3  All journals on the database were searched
for articles containing both quality-of-life and
survival search terms.

Chapter 2

Literature search
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The first and second stages were devised to retrieve
methodological articles. At Stage 1 this was achiev-
ed by restricting the search to the more methodo-
logical journals, while at the same time allowing 
any article that had a reference to quality of life.
Conversely, at Stage 2 the search allowed any type
of journal available on the database but restricted
to those articles that specifically used a known
relevant methodology. Both stages were devised to
produce a relatively small number of references
with a high degree of precision. Applying the first
two stages of the search strategy to Science Citation
Index, Social Science Citation Index and EMBASE
produced a manageable number of references,
which contained the bulk of the references for 
the review, including many key papers.

The third stage was devised to make the overall
search more comprehensive. It proved, however, 
to be problematic by producing an unmanageable
number of references (approximately 1400 new
references from Science Citation Index alone).
Attempts were made to make the number of
references more manageable by splitting them
according to whether or not they contained a
longitudinal search term (see appendix 1), with 
the expectation that papers containing such a 
term would have a greater chance of being rele-
vant to the review. In practice, however, this did 
not prove to be helpful since relevant references
were found in both categories. Given the time
constraints of the study, it was decided to abandon
this part of the search strategy.

Other searching methods
The electronic database searching was
supplemented by the following methods:

• the journal Quality of Life Research was
handsearched from its first issue (1992) for
relevant articles

• references known by the researchers or
colleagues to be relevant to the study were 
added to the database

• reference lists of articles already identified 
were checked and added to the database where
relevant (‘exploded’ references).

Selection of relevant literature
The criteria thought to make an article ‘relevant’ 
to the study are defined formally below, together
with a description of the process of checking an
article for relevance.

Criteria
The criteria for judging the relevance of an article
were as follows.

• A paper had to include some sort of quality-
of-life assessment over time. Papers in which
quality of life was studied at a single time 
point or as a change from baseline, and in 
which standard non-longitudinal statistical
methods of analysis were used, were 
rejected.

• Papers in which quality of life was assessed
longitudinally in circumstances where survival
was not an issue were rejected.

• A paper had to use either a known methodo-
logy of interest or a new and clearly detailed
methodology. Papers that purely discussed
quality of life were rejected.

• Papers that described an application for 
which the methodology was not clearly 
detailed were rejected.

• Papers that were essentially discussions of 
issues relating to quality-of-life instruments,
including validity and reliability, were 
rejected.

As a general rule, if there was any doubt as to
whether a paper should be included or not, 
then it was included.

A paper was defined as ‘key’ if it contained 
all the elements relevant to the study, that is, it
described a methodology used to simultaneously
assess health technologies in terms of longitudinal
quality of life and survival.

Methodology
A strategy was devised (see Figure 1) to assess 
papers for their relevance to the project using 
the above criteria. For most articles, abstracts 
were available and these were used initially to 
assess the article’s relevance. If the relevance 
was not clear from the abstract and the journal
containing it was readily accessible, then it was
assessed by skim-reading the whole paper. In 
some cases it was not until a paper was obtained
and read in detail that it became apparent that 
it was not relevant; such papers were discarded. 
Many papers were in journals that were not
available from the university libraries and depart-
mental collections at Leicester and Birmingham;
copies of these papers were obtained from the
British Library.

One author (LJB) made the first trawl, discard-
ing the obviously non-relevant references and
including the obviously relevant ones. All three
authors then checked the abstracts of the more
questionable references and if at least one author
thought a paper might be relevant then it 
was included.



Health Technology Assessment 1999; Vol. 3: No. 10

5

Results of the search
The search produced 1127 references in total, of
which 361 were included in the report as relevant
(see Table 1). Key papers were obtained from all
parts of the search strategy.

At Stage 1 of the database search, statistics 
and biometry journals produced a small 
number of papers, of which most were key
references, whereas the clinical trial and epi-
demiology journals produced a large number 
of references, of which the majority were 
not relevant.

At Stage 2 of the search a large number of
references were brought up, of which a large
proportion were associated with quality-adjusted
life years (QALYs) and, in particular, their use 
in decision analysis and health economics (see 
page 61). These papers were of no direct interest
and only a selected group of these references 
(in general, those that were in readily accessible
journals) were included.

Further potential searching
Time limitations resulted in only three electronic
databases being searched. These provided good
coverage of the literature but, for complete com-
prehensiveness, other databases should be searched.
A variety of medical databases were considered 
(but not formally used) for the review: MEDLINE,
CINAHL, CANCERLIT, AIDSLINE and HEALTH-
PLAN. In addition, other specialised databases 
were considered, such as the psychological database
PsycLIT, the social sciences database ASSIA, and 
the statistical databases MATHSCI and CIS.

The overall search strategy identified some grey
literature, such as reports, conference papers and
theses, which were mainly acquired following
recommendation by colleagues. A fully compre-
hensive search would require a more thorough
searching of the grey literature. This would include
contacting individuals and departments who are
known to be working in the field, together with
more formal methods, such as using the special
electronic database for grey literature, SIGLE.

Skim-read paper
if journal available

Photocopy

Read abstract Reject

Reject

Reject Relevant paper Key paper Reject Relevant paper Key paper

Order copy from British Library

FIGURE 1  Strategy to obtain relevant papers from the literature search

TABLE 1  Numbers of references obtained from each part of the search strategy

Part of search strategy References retrieved Relevant references

BIDS search stage 1
QoL search terms in statistical journals 40 17
QoL search terms in biometry journals 4 4
QoL search terms in clinical trial journals 69 5
QoL search terms in epidemiology journals 198 10

BIDS search stage 2
Methodology search terms in all journals 600 165
Handsearching Quality of Life Research 29 12
Recommended references 92 65
Exploded references 95 83

Total 1127 361
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The electronic searches only went back until 1980.
This may well be adequate since quality-of-life
research is a relatively new phenomenon and
exploded references should identify the most
important earlier articles. More formal searching 
of databases or journals, however, could be carried
out to check for all relevant articles published
before 1980.

Other approaches to searching electronic databases
were considered but were not carried out because
of time limitations. An alternative to using search
terms would be to search by author, using the
names of people active in the area of quality-of-
life research. Also, citation searches of key papers
found from the existing search could be tried. In
addition, an Internet search could be attempted.

The timing of the electronic searches was such 
that references were restricted to all those

published before 1997. Searching is an ongoing
process and the search strategy could be re-run to
create a more up-to-date reference database. Rele-
vant articles published after the search that have
been brought to our attention have been included
in our reference database but have not necessarily
been referenced in the report. The bibliography
(see page 109) highlights key papers that were
published too late for inclusion in this report.

Conclusions

The search aimed to identify all methods proposed
for the analysis of quality-of-life and survival data. 
It is not possible to determine if this has been
achieved but the broadness of the search strategy
used, together with the method of exploding
references, should ensure a reasonably complete
coverage of relevant material.
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The meaning of quality of life
In its most general context, quality of life is a
concept incorporating all the factors that might
impact on an individual’s life. In health service
research it is more usual to consider health-related
quality of life, which includes only those factors
that affect an individual’s health. There is no
general agreement regarding the identification 
of such factors.1,2

WHO defines health as ‘a state of complete
physical, mental and social well-being, and not
merely the absence of disease and infirmity’.3

Quality of life is often referred to in these terms.
For example, Schumacher and colleagues4 specify
the dimensions comprising quality of life 
as follows:

• symptoms of disease and side-effects of treatment
(e.g. nausea, pain, anorexia)

• physical and functional status (e.g. mobility, 
self-care, fatigue)

• emotional status (e.g. anxiety, depression,
satisfaction with care)

• social functioning (e.g. family interaction,
work/recreation, time with friends).

In this study, a pragmatic view is taken and quality
of life is accepted as any measure that purports to
reflect health-related quality of life or some aspect
of it.

Measuring quality of life

There are many issues to consider when 
attempting to measure quality of life, such as, 
what questions should be asked, how should
responses be recorded, when should questions 
be asked, of whom should questions be asked and
who should do the asking. These, together with
other aspects of measuring quality-of-life data in
clinical trials, have been extensively reviewed and
discussed elsewhere.5–7

The quality of life of a patient is usually measured
using an instrument in the form of a questionnaire
designed for patient completion. The question-
naire generally comprises sets of questions or 

items relating to the various dimensions of 
quality of life, such as physical, psychological or
social. The format of responses may be ‘yes/no’, 
a series of ordered categories, or a linear 
analogue scale.

Many instruments are used in the assessment 
of quality of life,8–10 for example, Rotterdam
Symptom Checklist, Nottingham Health Profile, 
Sickness Impact Profile, Hospital Anxiety and
Depression Scale, Short Form (SF) 36. Generic
quality-of-life instruments measure general 
aspects of quality of life and are applicable in a
wide range of research settings, while non-generic
instruments are relevant for a specific disease or
treatment. Some questionnaires are dimension-
specific, that is, they only ask questions relating to 
a particular aspect of quality of life (e.g. Hospital
Anxiety and Depression Scale). A review of the 
use made of quality-of-life instruments is currently
being undertaken.11

Much work has been done to test the validity 
and reliability of some such instruments. An
instrument is valid if it is actually measuring 
what it is designed to measure and it is reliable 
if, all things being equal, it measures consistently
from one occasion to the next. There has been
much discussion regarding the requirements of
quality-of-life measures and methods for assessing
such requirements, for example, Cronbach 
alpha coefficients and factor analysis.2,12–15 The
criteria for assessing quality-of-life instruments 
are reviewed in another NHS R&D Health
Technology Assessment report.16

Another approach to measuring quality of life 
is based on the valuations of or preferences for
different quality-of-life states. The advantage of 
this approach is that it yields a single value, 
often referred to as a utility, as a measure of 
quality of life. The utility value is a single score
ranging from 0 – representing a quality of life
equivalent to death, to 1 – representing perfect
health. The relationship between descriptive 
and valuation approaches has been explored.17,18

This method of measurement is usually used 
in the context of the QALY (as this is covered 
later in chapter 15, details of the methodology 
are included there).

Chapter 3

Background to quality-of-life and survival data
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Quality-of-life data

Nature of quality-of-life data
Quality-of-life data is generally longitudinal in
nature. Some studies assess quality of life at one
time point only or take a baseline measure and 
a follow-up measure but, generally, quality of life 
is recorded at more than two time points during
the course of a study. There can be any number 
of time points and these will not necessarily be
evenly spaced or consistent across individuals.

Quality-of-life data is generally multivariate 
in nature. At one extreme, quality of life can 
be measured by a single global measurement 
such as the Karnofsky Index,19 while at the other,
assessment is made by a multitude of items
measuring a variety of conceptual dimensions, 
for example, the Sickness Impact Profile measures,
in 136 items, 12 dimensions. Items within each
dimension are sometimes combined as a weighted
or unweighted sum to create dimension-specific
global measures, or sometimes all items from the
questionnaire are combined to create an overall
global quality-of-life score. Thus, at each time
point, quality-of-life data may comprise a single
measure or a large set of measures.

Quality-of-life data may take various forms 
(binary, ordinal or continuous) for which a variety
of distributional assumptions are appropriate.
Responses to each item on a questionnaire may
yield binary data from a yes/no response, ordinal
data from a categorical scale or continuous data
from a linear analogue scale. The aggregation of
items, to give a global measurement of a dimension
or of overall quality of life, results in data that is
usually treated as continuous, despite the fact that
the global measure may take only a restricted set 
of values from a restricted range. The distribution
of quality-of-life variables as measured from a linear
analogue scale or as an aggregated global score
may or may not be normally distributed. Sometimes
data may be transformed to create normally distri-
buted data for analysis but on other occasions 
(e.g. when there is a heavy preponderance of a
particular response value, perhaps corresponding
to ‘no problem’) this may be difficult.

Problem of missing data
One of the main problems in analysing longi-
tudinal quality-of-life data is caused by missing 
data. The validity of the analysis of data with
missing values is dependent on the mechanism
associated with the missing data. Responses missing
at a particular time point, t, may be categorised in
three ways, as defined by Little and Rubin:20

(i) missing completely at random, when the
probability of response at time t is inde-
pendent of both the previously observed 
values and unobserved values at time t

(ii) missing at random, when the probability of
response at time t depends on the previously
observed values but not the unobserved 
values at time t

(iii) non-ignorable non-response, when the
probability of response at time t depends on
the unobserved values at time t and possibly 
on the previously observed values as well.

There are three different forms of missing data 
that can arise in a longitudinal quality-of-life study
designed to take at least three serial measures of
quality of life from each participant:

(i) single missing items from an otherwise
complete questionnaire

(ii) intermittent missing whole questionnaires
(iii) missing data resulting from a patient dropping

out of the study.

The problems associated with each form of missing
data and the ways of handling them are discussed
in general below and, in relation to the illustrative
example, in chapter 4 (see pages 15–16).

Single missing items
Missing single items mainly cause problems 
in terms of calculating global scores since a
dimension-specific score is based on the values 
of all items within the dimension. If values for 
items are missing in the dataset, then they 
either need to be imputed or the calculation 
of global scores needs to accommodate them 
(see page 10).

Problems will also occur if the item with missing
values is to be analysed independently as a measure
of quality of life. Single missing items may not
prove to be a major problem in this case, since it is
usually not unreasonable to assume that this sort of
missing data is missing completely at random. This
assumption would be untenable in situations where
consistent non-response to an item suggests that
the question is inappropriate or difficult to answer.

Intermittent missing whole questionnaires
An intermittent missing questionnaire occurs if a
patient does not complete a questionnaire at the
required time point but has completed question-
naires at time points before and after the missing
form. It may be possible to assume that this sort of
data is missing completely at random, since the
patient has not dropped out of the study altogether.
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The probability of response may, however, depend
on covariates, such as treatment, or may depend 
on the quality of life experienced at that time, in
which case it would be invalid to assume that the
missing data mechanism was ignorable.

Missing data resulting from patient drop-out
A drop-out is defined as a patient who withdraws
from a study before they have completed all
planned assessments. Patients may withdraw 
from a study for a number of reasons, illness, 
death, cessation of treatment, lack of treatment
effect, lost to follow-up, or they may reach the
censor date of the study. In studies where survival,
as well as quality of life, is an endpoint, patients 
are generally severely ill; thus drop-out caused by
death or illness will be a common occurrence. In
such situations, the drop-out process may depend
on the unobserved measurements (i.e. those
measurements that would have been observed had
the patient not dropped out) and the incomplete
follow-up of subjects is called informative drop-out
(other terms used include informative censoring
and non-ignorable drop-out). 

Once a patient has dropped out of a study, no more
information on quality of life is available from that
point onwards. Quality-of-life information could be
considered as censored at the date of drop-out. In
terms of analysis, drop-outs cause problems because
they create missing data which are not just missing
at random. The missing data mechanism is likely to
depend upon the health status of the patient and is
therefore non-ignorable.

One way of dealing with missing data from drop-
outs is to impute values to replace the missing 
data from data that already exist. There are a
variety of methods for doing this20 but it may be
difficult if there is a large amount of missing data.
Otherwise the method of analysis must allow for
informative drop-out. Methods of analysis which
simultaneously assess quality-of-life and survival
data (see chapters 14–20) overcome the problems
associated with drop-out due to death but inform-
ative drop-out for other reasons also needs to be
considered in any analysis.

Handling the multivariate nature of the
quality-of-life endpoint
Quality-of-life instruments consist of many 
items, often grouped into a number of dimensions.
Because quality of life can be considered in terms
of individual items or in terms of separate dimen-
sions, it is, as an endpoint, potentially multivariate
in nature. In some situations it may be desirable 
to consider each item or dimension as a separate

quality-of-life endpoint. In a descriptive analysis,
this will only cause problems of presentation and
interpretation if the different items or dimensions
give conflicting conclusions. If hypothesis testing 
is involved, analysis of multiple endpoints will lead
to the problem of multiple testing, where the prob-
ability of a finding false-positives increases as the
number of tests performed increases. When quality-
of-life measures consist of only a few dimensions,
the problem of multiple testing should not be a
major one.

In some studies it may be possible to limit the
amount of hypothesis testing by specifying in
advance a few key quality-of-life measures on 
which hypotheses will be tested, leaving the remain-
ing variables to be analysed purely descriptively.21–24

If this approach is not practical or desirable then
the analysis will need to account for the multi-
variate nature of the quality-of-life endpoint.

There are a variety of ways of handling multiple
endpoints in clinical trials.25 The application of
such approaches to quality-of-life data has been
discussed4,22 and some methods have been applied
and compared in the analysis of quality-of-life
data.26 One approach is to combine multiple
endpoints to create global scores before analysis.
Another approach is the post-analysis combination
of results from the univariate analysis of each
separate endpoint. Alternatively, a hierarchical
approach to the analysis can be used. These are
now considered in turn.

Combining multiple endpoints to create 
global scores
For each individual, the values of the items 
that make up a quality-of-life endpoint can be
combined in some way to form a global score. 
In some cases the items within each quality-of-life
dimension may be combined to create dimension-
specific global scores, while in others an overall
quality-of-life global score may be created either 
by combining all items on a questionnaire or by
combining dimension-specific global scores. Use 
of a single global quality-of-life score simplifies
statistical analysis and should be aimed at when
sensible and justifiable.27 If treatments are likely 
to affect dimensions differently, then combining
dimensions into a global score may not be
sensible.24 Global scores can be analysed using
standard univariate techniques.

Global scores can be calculated using either 
an unweighted or a weighted sum. It is suggested
that unweighted sums should only be used to
combine items which are highly positively
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correlated.27 However, a weighted sum may make
interpretation difficult and the weights used may 
be controversial.24 Weights can be determined
either from the data, using scores from a factor
analysis, or from decision theory, using utility
analysis techniques, or arbitrarily.21 Olschewski 
and Schumacher27 recommend aggregation using
data-oriented procedures.

A method for calculating global scores proposed by
O’Brien28 has been applied to quality-of-life data.26,29

It is a non-parametric approach and creates global
scores from ranks rather than actual data values.
The data for all treatment groups are pooled and,
for each variable in the multivariate quality-of-life
endpoint, the values across all individuals are
ranked. A global score is created for each individual
by summing the ranks for all variables.

Problems in calculating global scores can occur if
data are missing on some of the items within the
score. One way to tackle the problem is to impute
the missing values. This is only feasible if they are
limited in number. If a subject has a missing value
for an item then the value could reasonably be
imputed from:

• values of the other items within the dimension
for that patient

• values of the other items in the patient’s
questionnaire

• values of the item on the patient’s questionnaires
at time points on either side of the missing value.

If missing values are not imputed then the formula
for calculating global scores needs to allow for the
number of items involved in the calculation. Using
a mean rather than a sum allows accommodation of
missing values into the global score since the mean
can be calculated for a reduced number of items.
Alternatively, expressing the sum as the percentage
of the maximum achievable score24 allows for the
possibility of a reduced number of items. Otherwise
the global score should be recorded as missing if
any item within it is missing.

Combining results from univariate tests on
multiple endpoints
The simplest method for testing a global null
hypothesis of no treatment effect, using the 
results from multiple univariate tests, is to use 
a Bonferroni-type adjustment. The p-values from
the multiple univariate tests are adjusted by
multiplying each p-value by the number of tests
carried out. Each endpoint can be assessed using
these adjusted p-values or a global null hypothesis
can be assessed using the minimum p-value. 

This method has been recommended for use 
with quality-of-life data21 and has been applied 
and compared to other methods in a quality-of-life
setting.26 The main drawback with the global null
hypothesis approach is that it confines attention to
the smallest p-value and may be too conservative.

A parametric method for combining results 
from multiple univariate t tests, originally pro-
posed by O’Brien28 but developed by Pocock 
and colleagues,30 has been applied to quality-
of-life data.26,29 The following test statistic can 
be used to assess a global null hypothesis of no
treatment effect:

J T S–1 t /( J T S–1 J )
1–
2 (1)

where J is a vector of ones, S is an estimated
correlation matrix and t is a vector of t statistics
from the separate univariate t tests. The test statistic
has an asymptotic standard normal distribution.

The main drawback of these methods is that they
do not give an estimate of the treatment effect, 
they just provide a test statistic.

Hierarchical approach
Multilevel models have been advocated for the
analysis of data that have a hierarchical structure.31

Longitudinal data can be thought of as hier-
archical data, with level one of the hierarchy 
being observations over time within a patient 
and level two being the patient. Multilevel models
have been used to analyse longitudinal quality-of-
life data32,33 and their application is discussed in
more detail in chapter 7.

The hierarchical approach also provides a means 
of handling the multivariate nature of the quality-
of-life endpoint.32,33 The multiple dimensions that
constitute quality of life can simultaneously be
analysed in a multilevel model by adding an extra
level to the standard longitudinal data model, 
with level one becoming the various quality-of-life
dimensions, level two the observations over time
and level three the patients. Models are fitted 
to the data in the usual way using a variety 
of assumptions.

Multilevel models have an advantage over 
methods discussed previously in that they provide
estimates of the treatment effect as well as test
statistics. Treatment effects are estimated for each
dimension separately and, if appropriate, an overall
summary estimate may be obtained. The model
also allows the correlation between dimensions 
to be estimated. Multilevel models are flexible in
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that they can cope with situations where some of
the dimension scores may be missing for some 
patients. However, the application of multilevel
models to quality-of-life data in general is proble-
matic since the method assumes the missing data
mechanism is ignorable, which is not generally 
true of quality-of-life data.

Survival data

Nature of survival data
Measurements of the time between two events, 
an initial occasion and an endpoint of interest, 
are known as survival data. In a clinical trial, the
initial occasion will usually be defined as the same
event for all individuals, such as date of random-
isation, date of starting treatment or date of
diagnosis. The endpoint of interest will depend 
on the nature of the disease and treatments under
investigation but is often death or relapse from a
period of disease remission.

Survival data are different from other types of
continuous data because over the period of a study
the endpoint of interest is not necessarily observed
in all subjects. This may occur because:

(a) some patients are lost to follow-up, that is, they
are not followed to the end of the study and,
when last seen, have not experienced the event
of interest, or

(b) the event has not occurred in some patients by
the time the study closes for analysis.

Such data are referred to as censored survival times
and are different from missing data in that they
provide a lower bound for the actual non-observed
survival times. Any analysis carried out on survival
data should use statistical methods that do not
disregard censored data and, indeed, make the
fullest possible use of it to avoid loss of information.

This study is specifically interested in the analysis 
of quality-of-life and survival data where survival
generally means time to death. Thus in the context
of this report, unless specified otherwise, survival
will refer to time to death from a fixed origin,
typically randomisation in a clinical trial. Most
findings, however, will also be applicable to survival
defined in other ways such as, for example, time
from randomisation to relapse or death (which-
ever occurs first).

Informative censoring
Most analytical methods used for survival data with
censored observations are only valid if censoring is

non-informative. This means that the censoring is
not related to any factors associated with the actual
survival time, that is, the actual survival time, t, of
an individual is independent of any mechanism
which causes that individual’s survival time to be
censored at time c, where c < t.34 When the censor-
ing mechanism is not independent of survival 
time, informative censoring occurs and standard
methods used for survival analysis are invalidated.

Informative censoring is a particular problem when
analysing quality-of-life and survival data simultan-
eously and will be discussed in more detail in the
context of each proposed statistical methodology.
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Introduction
The methods identified by the review and discussed
in this report are illustrated by application to data
from a previously conducted study, referred to here
as the MIC study. This illustrative example is, in
fact, the second of two concurrent Phase III trials 
of MIC (mitomycin, ifosfamide and cisplatin)
chemotherapy which were conducted in patients
with non-small cell lung cancer. The results from
both trials are reported elsewhere1 and this report
focuses on the quality-of-life and survival data from
the second trial (MIC2) only.

The general background to the trial is presented
below, including the characteristics of patients in
the quality-of-life study. The measurement of
quality of life in the MIC study is described
together with details of missing data.

Background

In 1988, a randomised Phase III trial was initiated
at the Cancer Research Campaign Clinical Trials
Unit, Birmingham, to evaluate the role of chemo-
therapy in the treatment of non-small cell lung
cancer in patients with extensive stage disease.
Patients were randomly allocated to receive either
standard palliative treatment (PAL arm), usually
radiotherapy, or MIC chemotherapy, to a maximum
of four courses, followed by palliative care (CT
arm). The aim of the study was to compare treat-
ments in terms of both survival and quality of life.
Quality of life was an important endpoint in the
study because both treatments were considered
largely palliative and MIC chemotherapy was
considered by some clinicians to be highly toxic.

The trial closed in March 1996, by which time 
359 patients had been randomised into the study.
For practical reasons associated with the availability
of the research nurse, the quality-of-life component
of the study was carried out only on a subset of 
trial patients, essentially consisting of patients
treated at three main oncology centres. Quality-of-
life data were collected for 109 patients from the
trial, 67 on the CT arm and 42 on the PAL arm.

The sex, age, histology and performance status of
the patients on entry to the quality-of-life study are
given in Table 2.

The palliative group, in comparison to the 
chemotherapy group, had a slightly greater
proportion of males, was on average an older 
group and had a greater proportion of squamous
tumours. In addition, the group appeared to 
have poorer performance status at baseline
compared with the chemotherapy group. These
differences in patient characteristics may need to
be considered in any comparison of treatments.

Measuring quality of life

Instrument
Quality of life was assessed using questionnaires
completed by the patients with help of a dedicated
quality-of-life research nurse. The questionnaire
was designed specifically for the trial but was based
on the EORTC QLQ-LC13, the lung cancer module

Chapter 4

Background to the illustrative example – 
the MIC study

TABLE 2  Characteristics of patients in the MIC quality-of-
life study

Characteristic CT arm PAL arm 
(n = 67) (n = 42)

Sex
Male 47 (70%) 32 (76%)
Female 20 (30%) 10 (24%)

Age
Median 62 66
Range 42–75 49–75
Inter-quartile range 56–68 61–71

Histology
Squamous 35 (52%) 26 (62%)
Adenocarcinoma 28 (42%) 10 (24%)
Large cell undifferentiated 2 (3%) 1 (2%)
Not known 2 (3%) 5 (12%)

WHO performance status
0 20 (30%) 7 (17%)
1 29 (43%) 17 (40%)
2 17 (25%) 18 (43%)
Not known 1 (2%) 0 (0%)
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of the quality-of-life questionnaires designed by 
the European Organisation for Research and
Treatment of Cancer (EORTC).2

The questionnaire consisted essentially of 
11 questions evaluating specific physical and
psychological aspects of a patient’s quality of 
life, plus a more general question on malaise 
(see Table 3). All questions related to how the
patient had been feeling over the previous 
3 weeks. Responses were on a four-level ordered
categorical scale (‘None’, ‘A little’, ‘Quite a bit’ 
and ‘Very much’) and for analytical purposes 
have been coded from 0 to 3, respectively.

The questionnaire also asked about the patient’s
performance status using WHO categories and
asked how they felt in comparison to the time 
of the previous questionnaire; however, these
questions will not be considered for the purposes 
of this report.

Two measures of quality of life from the MIC study,
one ordinal and one continuous, are used here to
demonstrate the various methodologies: these are,
respectively, the malaise question (MAL) and the

mean quality-of-life score (MQS). The MQS was
calculated from the answers to the 12 questions
presented in Table 3. If a patient did not respond 
to all 12 items, then the mean was calculated as 
the mean of the reduced number of non-missing
values. In total, 399 MQSs were calculated and 
11% of these were calculated from incomplete 
data (see page 15).

Timing of assessments
In the MIC study, the quality of life of patients was
assessed only during their treatment period. There
were several reasons for this decision, which was
made when the study was designed:

(i) the main aim of the quality-of-life part of the
study was to assess both treatments in terms 
of their immediate impact on quality of life

(ii) the survival time of patients in the study in
general is short (median survival time for 
all patients in trial was 5.6 months) and thus
long-term quality of life was not thought to 
be an issue when comparing treatments

(iii) the collection of data during this period 
was most practicable in that the patients 
were attending clinic for treatment and 
were therefore readily accessible.

The study was designed so that patients com-
pleted questionnaires on entry to the trial and 
then every 3 weeks thereafter, completing five
forms in total on the CT arm and four forms 
in total on the PAL arm. In theory, all question-
naires should thus have been completed within 
12 weeks of entering the trial; however, in reality
the timing of the questionnaires varied consid-
erably from this planned administration (see 
Table 4). On average, the baseline questionnaire
was completed 1 week after entry to the trial and
then subsequent questionnaires were completed
every 3 weeks after this.

The analysis of the data needed to focus on 
the period during which quality-of-life data was
collected and applicable. A cut-off point defining

TABLE 3  Questions from the MIC quality-of-life questionnaire

Item Question

Cough Do you have a cough?

Severe dyspnoea Do you get breathless on mild 
activity like dressing?

Moderate dyspnoea Do you get breathless when 
walking on the flat?

Mild dyspnoea Do you get breathless on stairs or 
walking uphill?

Haemoptysis Have you coughed blood?

Pain How much pain are you getting?

Appetite Have you noticed any loss 
of appetite?

Anxiety Have you been worrying?

Depression Have you been depressed?

Dysphagia Have you any difficulty swallowing?

Nausea Did you feel sick during or since 
your last treatment? (CT arm)
Have you been feeling sick? 
(PAL arm)

Malaise Have you been feeling generally ill?

TABLE 4  Timing of questionnaires (in weeks) from date of 
entry to trial

Q1 Q2 Q3 Q4 Q5

Planned 0 3 6 9 12

Median 0.9 4.0 7.2 10.3 13.0

Minimum 0 1.9 5.4 8.7 10.9

Maximum 6.7 9.0 26.0 27.0 23.3
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this period needed to be established. Of the 
399 completed questionnaires, 41 questionnaires
were not completed within the 12 weeks from date
of entry to the trial. If a 12-week cut-off was chosen
for the analysis then the information from these
questionnaires would be lost. Investigation of the
distribution of times of the questionnaires indi-
cated that 18 weeks from entry to trial would be 
the optimal cut-off value. This value enabled the
majority of the questionnaires to be incorporated
in the analysis, with information from only four
(three participants) being lost, while at the same
time not creating a situation in which individuals
had large time spans with no quality-of-life inform-
ation. It should be noted that 37 participants
(34%) died during this 18-week period.

Missing data in the quality-of-
life study
The number of returned questionnaires in the 
MIC study diminishes with time. A reduction in
numbers from one time point to the next results
either from intermittent missing whole question-
naires or from individuals dropping out of the
study (see Table 5). For example, with the second
questionnaire on the CT arm, only 63 question-
naires from an expected 67 were returned; three
were intermittently missing and one was missing
because the patient had dropped out of the study,
leaving 66 patients left in for the third question-
naire. These types of missing quality-of-life data
were discussed in general in chapter 3 (see page 8).
A third type of missing data, single missing items
from otherwise complete questionnaires, was also

covered in this chapter and all three are discussed
here in the context of analysis and interpretation 
of quality-of-life data from the MIC study.

Single missing items
For some returned questionnaires in the study,
responses were not given to all questions. The
extent of this problem was not great (see Table 6),
with 89% of questionnaires being completed fully
and only 3% having more than one item missing.
The maximum number of missing items on any
one questionnaire, five out of 12, occurred just
once. This type of missing data caused problems 
in calculating MQSs (see page 14) and when data
were missing on a questionnaire, the calculation 
of the mean was based on the reduced number of
non-missing items. This assumes that the missing
data is ignorable, that is, the reason for it being
missing is not related to the quality of life at 
that time.

Because this report analyses the malaise item
independently, the missing data for this specific
item causes problems. Missing values for the MAL
variable could be considered either as intermittent
missing data or as drop-out data depending on the
questionnaire from which the item was missing.
The malaise item was missing on eight question-
naires. In four of these, the missing item could be
classed as intermittent, in that MAL values were
available on questionnaires both before and after
that with the missing value. These missing values
were tackled in the same way was as if the whole
questionnaire was missing (see below). The
remaining four missing values occurred in the 
final questionnaires of three patients (two values
were on consecutive questionnaires belonging to
one participant) and, for the purposes of this
report, were treated in the same way as missing 
data resulting from drop-out (see below). In
general, the nature of this type of missing data is
different from drop-out data since, with this type of
data, the patient is still participating in the study;
treating them as drop-outs is, thus, questionable.

TABLE 5  Number of returned questionnaires over time in the
MIC study

Q1 Q2 Q3 Q4 Q5 Total

CT arm
Patients in study 67 67 66 53 46
Returned 

questionnaires 67 63 52 45 38 265

Reasons for missing questionnaires
Intermittent missing 0 3 1 1 0 5
Patient drop-out 0 1 13 7 8 29

PAL arm
Patients in study 42 42 36 32 –
Returned 

questionnaires 42 35 32 25 – 134

Reasons for missing questionnaires
Intermittent missing 0 1 0 0 – 1
Patient drop-out 0 6 4 7 – 17

TABLE 6  Number of missing items from returned questionnaires

Number of missing items Frequency (%)

0 356 (89)

1 33 (8)

2 8 (2)

3–5 2 (1)

Total 399
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Intermittent missing whole
questionnaires
In the MIC study, five patients had intermittent
missing whole questionnaires, with one having two
consecutive questionnaires missing. In the analysis
of the data, the values from the questionnaire prior
to the intermittent missing one were assumed to
carry over until the questionnaire after the missing
one. In this way intermittent missing questionnaires
were effectively ignored. This assumes that the
reason for them being missing was not related to
the patient’s quality of life at that time.

Missing data resulting from drop-out
In the MIC study, a drop-out is defined as a partici-
pant who did not complete a final questionnaire
(fifth on CT arm and fourth on PAL arm). Partici-
pants dropped out at various times during the study
(see Table 5).

There are four categories of drop-out:

• drop-out directly caused by death (i.e. patient
died within 3 weeks of last completed question-
naire before the next planned assessment

• drop-out not due to death (i.e. patient was alive
at next planned assessment) and patient died
before the analysis cut-off time (i.e. within 
18 weeks of entry to trial)

• drop-out not due to death (i.e. patient was alive
at next planned assessment) and patient died
after the analysis cut-off time (i.e. after 18 weeks
from entry to trial)

• drop-out patient last known to be still alive 
(after 18 weeks).

In the MIC study, 46 patients dropped out of the
study at some point. They were balanced across 
the two treatment arms: 43% (29/67) of patients
on the CT arm and 40% (17/42) on the PAL arm.
The type of drop-out, in terms of time of death
relative to last returned questionnaire, appeared 
to be slightly different on the two arms (see Table 7
and Figures 2 and 3), with almost half of the drop-

outs on the CT arm (14/29) surviving the 18-week
period from entry to trial but only three surviving
the 18-week period of analysis on the PAL arm.

In some analyses of the MIC data, values for
missing data caused by drop-out were imputed.
Several approaches to imputing this missing data
were considered (see Table 8). Each have their
disadvantages and it was decided, in situations
where imputation was necessary, to use the last
value carried forward approach. The impact of
different methods for imputation should be
investigated in a sensitivity analysis.
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TABLE 7  Categories of drop-out in the MIC study

CT arm PAL arm Total

Drop-out due to death 6 4 10

Drop-out not due to death 
but died within 18 weeks 9 10 19

Drop-out not due to death 
and died after 18 weeks 13 3 16

Drop-out last known 
to be alive 1 0 1

Total 29 17 46
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FIGURE 2  Drop-outs on CT arm of the MIC study: timing of last questionnaire and death in relation to study entry time (NB: patient 106
was still alive when last seen, 186 weeks after study entry)
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FIGURE 3  Drop-outs on PAL arm of the MIC study: timing of last questionnaire and death in relation to study entry time (NB: patient 97
died on same day as last questionnaire; patients 131 and 184 completed only one questionnaire, on day of study entry)
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TABLE 8  Possible approaches to imputing missing data in the MIC study

Approach Description Problems

Last value carried Assume drop-outs stay in the same • If last recorded measure of QoL was ‘good’, it may be invalid 
forward health state, as measured at the last to assume patient remains in a ‘good’ state until death.

assessment, until date of death or • If dropped out early, assumption of steady state needs to be 
censor date, whichever comes first. applied to long period.

Worst value Assume drop-out caused by ill health • Choice of time at which patient is moved to ‘poor’ health 
carried forward and thus drop-outs move into the state may not be obvious – time of next planned assessment 

poorest health state (if they are not could be used.
already in that state) from the time • If drop-out is not caused by ill health, as may well be true 
of drop-out onwards. for those patients who die a considerable time after drop-

ping out, they may be allocated to ‘poor’ state too early.
• Bias may result since assumption only applicable to 

those who dropped out while in ‘good’ state.

Linear decrease Assume QoL decreases linearly from • Bias may result since assumption only applicable to those 
over time time of drop-out until death. patients who dropped out while in ‘good’ state.

• Assumption of linearity may be questioned.
• Method difficult to apply to individuals with censored 

survival times.
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In some studies, the main criterion by which 
health technologies are assessed is quality of 

life. When the disease under study is potentially
fatal, such as cancer, survival will also be an issue,
whereas with long-term chronic diseases, such as
arthritis, this will not be the case. This review
considers situations where both quality of life and
survival are of interest. Quality of life is usually the
main endpoint of interest in cancer clinical trials
investigating treatments which are purely palliative
in nature and, within this context, the relief of
symptoms is weighed against the adverse effects 
of treatment. It will also be the main endpoint 
in trials of new treatments which have been
developed to reduce treatment toxicity compared
with standard treatments, without any detrimental
effect on survival. In these types of studies, survival
is an issue but mainly through the problems it
causes in interpreting the quality-of-life endpoint.

In studies of seriously ill patients who are near 
to death, the collection of quality-of-life data 
over time is problematic. Patients drop out of the
study because of illness or death and this results 
in patient attrition, that is, a reduction in the
number of subjects in the quality-of-life study 
over time. The drop-out process is related to the
health status of the patient and is therefore likely 
to be informative (see page 9); thus the missing
data mechanism in such studies is non-ignorable.
Ironically, the situations in which quality of life is
most likely to be the main endpoint, such as clinical
trials of palliative treatments for cancer patients,
are the situations in which the problem may well 
be most serious.

The aim of this part of the report (chapters 5–9) 
is to discuss methods for analysing longitudinal
quality-of-life data. Although the methods discussed
here relate to longitudinal data collected over 
three or more time points, which may be fixed or
varying, some could be satisfactorily and usefully

applied to data sets with measurements at just two
time points. However, in situations where data is
collected at two time points, the analysis is usually
in terms of change in quality of life and, as with
data collected at just one time point, standard 
non-longitudinal statistical methods can be used.
Informative drop-out may still cause problems in
these circumstances and cautious interpretation 
of the results is needed.

The analysis of quality-of-life data should begin
descriptively to give the investigator and reader
insight into the data. The methods that can be 
used to describe quality-of-life data over time are
discussed in chapter 6, where the problems of
interpretation caused by informative drop-out are
highlighted and methods that attempt to account
for the problems are described.

Quality-of-life data collected over time are often
analysed using standard methods of longitudinal
data analysis. These methods all assume that the
missing data mechanism is ignorable. This could 
be appropriate in studies in which survival is not 
an issue but, where there is informative drop-out,
analysis using these longitudinal methods could
lead to invalid conclusions. Although the focus 
of this report is on the analysis of quality-of-life 
data in situations in which survival is also an 
issue, chapter 7 is dedicated to describing some 
of the standard methods of longitudinal data
analysis. Despite the general inappropriateness 
of these methods in situations of informative 
drop-out, the methods are described briefly 
with a discussion of their potential problems and
possible use with quality-of-life data. In chapter 8
methods for modelling longitudinal quality-of-life
data are described which attempt to deal with the
problem of informative drop-out. A summary 
and discussion of quality-of-life analysis in the
presence of informative drop-out is presented 
in chapter 9.

Chapter 5

Quality-of-life analysis in the presence of
informative drop-out: introduction
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Introduction
The interpretation of longitudinal quality-of-life
data can be difficult and an initial exploratory
analysis often gives an insight into the data before
any formal testing or modelling is carried out.
Descriptive methods of analysis do not have the
problems associated with multiple testing and,
hence, the quality-of-life data can be explored 
as extensively as desired. The variety of ways of
exploring the data both at the patient level and 
the treatment group level are discussed below. 
In general, the clearest way to describe data is
graphically but, at the group level, it may be
preferable to tabulate the results. Descriptive
methods for analysing quality-of-life data have 
been reviewed elsewhere.1,2

Patient profiles

The examination of each patient’s quality-of-life
data over time individually can be very helpful. 
It may reveal a consistent pattern across patients
and will highlight errors, outliers and patterns 
of missing data.

Patient profiles can be examined by plotting
individual patient scores over time. This technique
is most useful for continuous data but may also 
be used for ordinal data. Carlens and colleagues3

and Nou and Aberg4 plotted each patient’s quality
of life over time and called them vitagrams. Profiles
for each patient can be plotted as a set of mini-
graphs or they can be overlaid on one graph. Indi-
vidual profiles can be overlaid for each treatment
group separately and then used to compare
patterns within each treatment group.

Individual patient profiles of MQSs over time are
plotted and overlaid for each treatment group in
the MIC study (see Figures 4 and 5). These show
that the data vary widely at all time points and no
obvious patterns, in terms of change in quality of
life over time, are apparent.

The main problem with patient profile data is 
that it is often impractical to display data from 

large numbers of patients. One solution is to plot 
a simple random sample of the patients in a study,2

another may be to categorise and plot the data on 
a Lexis diagram, as described below.

Lexis diagrams, or variations of such (as used for
the MIC data in Figures 6 and 7), describe individual
patient data and allow data for reasonably large
numbers of patients to be displayed at once.2 Each
patient profile is represented by a line over time
which is solid or dotted depending on the value 
of a binary quality-of-life variable at that time. The
patient profiles are usually ordered by date of entry
to study. If desired, a Lexis diagram can be extend-
ed to incorporate a higher level categorical variable
by using several different types of line but the dia-
gram becomes difficult to interpret as the number
of categories increases. The technique is most
appropriate for binary data but can also be used for
ordinal data with few categories. Continuous and
ordinal level data can be adapted for a Lexis dia-
gram by grouping the values into, ideally, two levels.

Patient profiles showing time spent with malaise
(MAL = 1, 2 or 3) or without malaise (MAL = 0)
were plotted for the MIC study (see Figures 6 and 7)
by assuming the value of MAL measured at each
questionnaire point carries over to the next assess-
ment. Values at the last questionnaire (fifth for 
CT group and fourth for PAL group) were carried
over to the time when the next assessment would
have taken place. The graphs do not show any 
clear patterns in terms of change in quality of 
life over time.

Plots of individual patient profiles may reveal
patterns of missing data. Intermittent missing data
will be apparent as gaps in the lines, while a profile
ending early will signify a patient drop-out. If a
patient dies during the course of the quality-of-life
study then this can be plotted as a symbol at the
appropriate time. Patient profiles can be grouped
and overlaid according to differing lengths of
follow-up and also, possibly, differing reasons for
shortened follow-up, giving a possible insight into
the association of the drop-out process with previ-
ous quality of life (see page 25 for further details 
on this approach relating to group profiles).

Chapter 6

Descriptive methods for the analysis of 
longitudinal quality-of-life data
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FIGURE 4  Patient profiles of MQS over time for the CT arm of the MIC study
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FIGURE 5  Patient profiles of MQS over time for the PAL arm of the MIC study
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Group profiles
After examining individual patient profiles of
quality of life, it is necessary to summarise the
experience of patients in each treatment group 
to enable the treatments to be compared more
clearly in relation to their effect on quality of 
life over time. Plots of group profiles over time,
overlaid on the same graph, enable a clear
comparison of groups. Informative drop-out can
cause problems in interpretation and possible
approaches for analysis are discussed below.

Summary measures to plot
There are two main types of group summary
statistic that can be plotted over time, an average
measure of quality of life or a proportion with a
certain level of quality of life. The choice depends
on the type of quality-of-life measure being sum-
marised. In situations where the population is 
not stable over time, there are several choices
regarding which subjects to include in the calcu-
lation of the summary measure at each time point
and this is discussed below, followed by examples
from the MIC study.

1 2 3 4 5

Questionnaire

Patient number
357
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348
345
331
327
251
186
185
178
172
171
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80
76
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59
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53
51
50
49
48
47
45
44
43
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32
9
4
2

FIGURE 6  Patient profiles of malaise over time for the CT arm of the MIC study (——, malaise; - - - -, no malaise)
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Averages
The mean or median quality-of-life scores in each
group can be plotted over time (examples of means
are given in O’Brien, et al., Figure 35 and in Ander-
son, et al., Figure 1;6 examples of medians are given
by the MRC Lung Cancer Working Party, 1996,
Figure 27). Bars at each time point representing
95% confidence intervals (CIs) for the mean or
median should be included. This is the most useful
way to represent continuous data. For ordinal data,
the use of means is not theoretically correct but
may be considered if the ordinal scale is long.

Proportions
If the data are binary then the proportion with 
a symptom or side-effect can be plotted over time.
Bars at each time point representing 95% CIs for
the proportion should be included.

If the data are ordinal or continuous then the
proportion reaching or exceeding a certain 
level of quality of life over time can be plotted 
(for example, see Figures 2 and 3 in the report 
of the MRC Lung Cancer Working Party, 1992,8

Figure 2 in their 1991 report,9 and Figure 3 in 
their 1996 report7). Again, bars representing 95%
CIs for the proportion should be included at each
time point. Detail on the severity of the symptom 
or side-effect will be lost.

Inclusion criteria for plot
Summarising the quality of life of patients in each
treatment group over time is complicated by the
problem of missing data, especially when inform-
ative drop-out occurs. Cautious interpretation 
of the data is needed in these situations. There 
are several choices regarding which subjects to
include in the calculation of the summary measure
over time. Summary measures can be calculated
and plotted either for the whole sample of patients
in the study, or for the subgroup of patients who
completed all assessments, or for subgroups of
patients according to different lengths of follow-
up and reasons for drop-out.10,11

All patients
If the whole sample of patients is used then,
because of drop-out due to death and illness, 

1 2 3 4

Questionnaire

Patient number
184
183
182
174
173
170
168
166
165
156
155
153
151
150
147
137
136
135
134
131
130
128
127
116
114
113
112
111
100
97
88
87
86
83
74
70
69
56
46
34
33
3

FIGURE 7  Patient profiles of malaise over time for the PAL arm of the MIC study (——, malaise; - - - -, no malaise)
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the sample reduces over time and this should be
made clear in any graph or table by specifying the
number contributing to the descriptive measure at
each time point. Interpretation of such data needs
caution because a comparison of results at different
time points compares different groups of patients.
Subjects contributing to summary measures at later
time points are likely to be the ‘healthier’ members
of the original group. In situations in which quality 
of life is measured on a 0–1 scale, where 0 repre-
sents quality of life equivalent to death, a more
realistic description may be obtained by including
patients who drop out because of death, which
gives them a quality-of-life score of 0.6

Complete case analysis
If the analysis is restricted to just those patients 
with complete data, then not only will it greatly
reduce the sample size but it will also result in
biased estimates, unless missing data is missing
completely at random. Those included are not
likely to be a representative subset of the overall
sample, because patients who complete all
assessments must be survivors and compliers and,
hence, are probably a ‘healthy’ subgroup of the
overall sample. The longer the follow-up period,
the greater the level of attrition and the more
reduced, and possibly more biased, the sample 
for analysis will be.

Subgroups according to differing lengths 
of follow-up and reasons for drop-out
Patients can be split into subgroups according to
differing lengths of follow-up. Subgroups can be
formed according to number of completed assess-
ments,10 or a more detailed break-down based on
different reasons for drop-out, such as censoring,
death or lost to follow-up, could be used.11 Quality
of life over time can be compared across subgroups
to establish its association with the drop-out pro-
cess. If there are no obvious differences between
the subgroups then it may be valid to combine the
data for analysis.10 A quality-of-life study needs a
large number of participants for subgroups to
contain adequate numbers of subjects for this 
type of analysis. This type of approach is used by 
de Stavola and Christensen12 in their method for
dealing with informative drop-out in longitudinal
data modelling (see chapter 8).

Group profiles for the MIC data
All patients
Summary measures for MQS and MAL in the 
MIC study were calculated for all patients in the
study. The numbers of patients contributing to 
the summary measure at each time point have 
been specified in the graphs to highlight the

problems of informative drop-out and aid 
cautious interpretation.

Treatment group means together with their
associated 95% CIs are plotted over time for MQS
(see Figure 8). A possibly naïve interpretation of
these plots, ignoring the effect of missing data, may
be as follows. MQS reduces slightly (i.e. quality of
life improves) over the first three time points in 
the CT group and increases slightly (i.e. quality of
life deteriorates) in the PAL group, with 95% CIs
suggesting that the groups significantly differ at the
third time point. After this point, the curves move
back towards each other again and quality of life 
in both treatment groups seems comparable.

The proportions of patients with malaise (i.e. MAL
= 1, 2 or 3) are plotted over time for each treat-
ment group in the MIC study (see Figure 9). Bars
representing 95% CIs for the proportions are
included. This shows the extent of malaise in the
two groups is fairly high (at about the 60% level)
and reasonably comparable over time. In both
groups, the extent of malaise reduces initially but
then increases again. As with MQS, this interpret-
ation could be questionable since it ignores the
effect of patient drop-out.

Complete case analysis
Plots of MQS and malaise were plotted over time
only for those patients who completed the first four
questionnaires (see Figures 10 and 11). For MQS,
only 43 patients on the CT arm had complete data,
with 21 dropping out before completing the fourth
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FIGURE 8  Treatment group means (and 95% CIs) over time for
MQS in the MIC study (——, CT; - - -, PAL)
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questionnaire and three having intermittent missing
questionnaires, while on the PAL arm, 25 had com-
plete data, with 17 dropping out. For malaise, a
further four patients on the CT arm and one on the
PAL arm were excluded because they had missing
values for malaise on one of the first four question-
naires. These plots contain data for those patients
who did not drop out of the study and are thus
likely to represent the ‘healthier’ patients from the
MIC study. The plots, however, are not dissimilar to
those for all patients (see Figures 8 and 9).

Subgroups according to differing lengths 
of follow-up
The patients in the MIC study (from both treat-
ment arms) were split into subgroups according to
the number of the last completed questionnaire
(see Table 9). The mean MQS for each subgroup
was plotted over time (see Figure 12). This shows
that quality of life in those who dropped out after
one questionnaire was worst at baseline and, in
those who dropped out after two or three question-
naires, quality of life over time deteriorated slightly
before dropping out. Quality of life in those who
did not drop out during the first four question-
naires appears to be reasonably stable. Although
the plot needs to be interpreted with caution,
because the numbers in some of the subgroups 
are small, it suggests that there may be some
association between drop-out and quality of life.
This means that for a valid analysis of quality-of-life
data, the drop-out process should probably not 
be ignored.
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FIGURE 9  Percentage of patients with malaise (and 95% CIs)
over time for each treatment group in the MIC study (——, CT;
- - -, PAL)
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FIGURE 10  Treatment group means (and 95% CIs) over 
time for MQS in MIC study patients with complete data 
(——, CT (n = 43); - - -, PAL (n = 25))
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FIGURE 11  Percentage of patients with malaise (and 95% CIs)
over time for patients with complete data in each treatment group
in the MIC study (——, CT (n = 39); - - -, PAL (n = 24))

TABLE 9  Number of patients in the MIC study in each 
follow-up subgroup

Number of last completed Number of 
questionnaire patients

1 7

2 17

3 14

4 or 5 71
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Introduction
The methods discussed in this chapter are 
standard approaches to analysing longitudinal 
data and all assume that the mechanism giving 
rise to missing data is ignorable. The application 
of these methods to longitudinal quality-of-life 
data is problematic because, in this situation, 
the missing data are generally a result of inform-
ative drop-out and, hence, the missing data
mechanism is non-ignorable. Methods discussed
here should therefore be applied with caution 
to quality-of-life data, as they may result in 
invalid conclusions.

For continuous measures, such as those derived
from a linear analogue scale or an aggregated
global score, the appropriateness of parametric 
or non-parametric methods depends on the
normality of the data distribution. It could be
argued that since the continuous measures have
truncated distributions, parametric methods will
always be inappropriate.1 It may be possible to
normalise a distribution using a transformation,
such as log or square root, and then compare
treatments using a parametric approach on the
transformed variable.2,3

Analysis of each time 
point separately
If quality of life is assessed at fixed time points
during the study then the data can be analysed by
considering each time point separately. At each
time point, there may be three different research
questions of interest.

1. To what extent do treatment groups 
differ in terms of quality of life at that 
time point?

2. To what extent do treatment groups 
differ in terms of change in quality of 
life relative to a previous time point 
(usually baseline)?

3. Is the change in quality of life between the
given time point and a previous time point
statistically significant?

All these research questions can be tackled 
using simple, standard statistical methods. The
method of analysis depends on the type of variable 
used to measure quality of life (binary, ordinal,
continuous non-normal or continuous normal) 
and the number of treatment groups being
compared. Examples of quality-of-life studies, 
in which the data are analysed at each time 
point can be found in the literature.1,2,4

There are three major problems with this simple
approach to longitudinal data analysis:

• fixed time points are required
• the longitudinal nature of the data is ignored
• multiple analyses are involved, which may result

in differences being regarded as significant 
by chance.

In addition to these problems, the approach is 
not generally suitable for quality-of-life data since 
it will not overcome the problem of informative
drop-out. The patients at each time point will 
be a subset of the original sample of patients
recruited to the study and, the further from
baseline the time point, the more biased the
sample will be, in that they will be the most 
‘well’ patients from the original group.

Summary measures

Using summary measures, as promoted by
Matthews and colleagues,5,6 is the simplest 
method for analysing longitudinal data. It 
reduces the repeated measures over time on 
an individual to a single summary measure, 
which can then be analysed using standard
statistical methods, for example, for treatment
group comparisons. The choice of summary
measure needs to be clinically meaningful and 
will depend on the nature of the measure under
investigation, together with the disease and
treatment under study. In quality-of-life studies, 
the calculation of summary measures in patients
who drop out may be difficult and if the drop-out
process is informative, the analysis of the summary
measure may give biased results.

Chapter 7

Standard methods for the analysis of 
longitudinal data
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Simple summary measures for longitudinal
quality-of-life data
A wide range of summary measures could be
chosen to represent longitudinal quality-of-life
data. For example, the maximum score reached
over time may be appropriate, or change in quality
of life between two time points. Alternatively, the
slope representing change over time for each
individual could be computed.7

Summary measures may be difficult to calculate
when informative drop-out is present in the data;
however, it may be possible to accommodate 
drop-outs into the analysis by imputing appro-
priate quality-of-life values. For example, in
situations where quality of life is measured on 
a 0–1 scale, with 0 representing quality of life
equivalent to death, time points with missing
quality-of-life data caused by death may be allo-
cated values of 0. This enables patients who drop
out of the study because of death to be included 
in the analysis7 and may reduce bias caused by
informative drop-out.

A standard summary measure used for longitudinal
data is area under the curve. For each individual,
the area under the curve of their repeated quality-
of-life measures over time can be calculated and
used as a summary measure.7,8 If patients do not
have full follow-up then their summary measure
will be censored, suggesting that methods of
survival analysis may be appropriate. Censoring,
however, will be informative and standard methods
will give biased results. An alternative estimator 
has been proposed but is still biased.9 An outcome
measure that combines quality-of-life and survival
data, the QALY, is a special form of this summary
measure and is discussed in detail later (see
chapters 15 and 16).

Simple binary indicator summary measures can 
be used to define palliation.10–12 For example, an
indicator may be set to show whether an individual
experienced a decrease in the level of severity of 
a particular symptom or in overall quality of life 
at any time compared with baseline or, altern-
atively, whether the individual experienced total
disappearance of a symptom at any time. Other
summary measures include duration of palliation
and percentage of patient survival time during
which there was palliation.11,12 These summary
measures will only be valid if all patients have died,
otherwise they should be restricted to a set follow-
up time for which all patients in the study have
been followed. Again, calculation of these summary
measures may be problematic in the presence of
informative drop-out.

Time to the occurrence of a quality-of-life
related event
Longitudinal quality-of-life data can be 
summarised by a single value representing the 
time to the occurrence of a quality-of-life related
event. The most widely used clinical endpoint,
which in some situations will be quality-of-life
related, is relapse-free survival, that is, the time
from study entry to disease relapse. Nabholtz 
and colleagues13 used time to first occurrence 
of an important clinical adverse event or disease
progression as a quality-of-life oriented endpoint.
Rosenman and Choi14 used the Karnofsky index 
as a global measure of quality of life and used the
time until first occurrence of a Karnofsky index 
of less than 60 as the summary measure on which
to compare treatments. Hopwood and colleagues15

suggest time to first improvement or time to first
worsening of quality of life from baseline as a
summary measure, with times for patients not
achieving such targets being censored. Time to
palliation of various symptoms, in those patients
with the symptom present pre-treatment, has 
also been used as a summary measure for 
treatment comparison.16

Once a quality-of-life oriented endpoint has 
been defined, standard survival analysis techniques
(see chapter 11) can be used to analyse the data.
One advantage of this method is that patients who
do not achieve the endpoint because of death or
censoring would still be included in the analysis 
as a censored data point, thus dealing with the
problem of informative drop-out. However, 
because the censoring mechanism may be related
to the ‘survival’ time, standard survival analysis
techniques may be invalidated by informative
censoring (see page 11). Another advantage 
of this summary measure is that it can be used in
situations where quality of life has been assessed 
at varying time points. However, if quality of life is
assessed at only a few widely spaced time points,
then the summary measure will be very crude.

A problem with this approach is that the potential
for change, whether in terms of improvement or
worsening, depends on the baseline value. For
example, the worse a patient is at baseline, the
greater the potential for improvement, so patients
who do not experience a symptom at baseline are
not able to improve and are thus excluded from
the analysis. This will only be a problem in the
comparison of treatments if the treatment groups
differ with respect to baseline symptoms. The fact
that a treatment may prevent a symptom from
starting may be important and would not be
assessed by this type of endpoint.
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Repeated measures analysis 
of variance
A conventional repeated measures analysis of
variance17 may be an appropriate statistical model
to use in situations where quality of life is measured
at fixed time points and will be most appropriate
when the number of time points is reasonably
small. The method assumes the data to be normally
distributed, with the covariance matrix the same 
for all treatment groups. Generalisations on this
simple model are possible.18 Using the model it 
can be determined if quality of life changes over
time and if treatment groups vary in terms of
changes in quality of life, while taking account 
of within-patient correlations.

Patient drop-out in quality-of-life studies results 
in missing measurements and causes the data to 
be unbalanced. One strategy to enable the use 
of repeated measures analysis of variance in this
situation is to undertake a complete case analysis,
in which treatment comparisons are made only 
in patients with complete data. Problems of
reduced numbers for analysis and potential bias
make this approach problematic and so an altern-
ative strategy, which allows all available data to be
included, may be preferable. This latter approach 
is based on the assumption that missing data are
missing at random and, if this is not the case, then
a method of analysis that allows for informative
drop-out needs to be considered (see chapter 8).

Complete case analysis
A complete case analysis will not generally be
applicable to quality-of-life data since it is only 
valid if missing data are missing completely 
at random. If there are very few subjects with
complete data then a complete case analysis 
would be based on a very small sample. Even if 
the reduced sample is reasonably large, it is not
likely to be representative of the whole sample.
Those patients who survived for the duration of 
the study and were well enough throughout to
complete questionnaires would generally be the
‘healthier’ participants and thus estimates of 
mean quality of life over time are likely to be 
biased (upwards). If the change in quality of life
over time is independent of the level of quality 
of life, then, although estimates at each time 
will be biased, the estimates of the change may 
be unbiased.

In situations where quality of life is measured on 
a 0–1 scale, where 0 represents quality of life equi-
valent to death, patients who drop out because 
of death can be included in the analysis by giving

them a quality-of-life score of 0.19 This will minimise
the problem of reduced numbers and may provide
more realistic conclusions.

Analysis based on assumption of missing data
being missing at random
The analysis suggested by Zwinderman20 for 
quality-of-life data with missing measurements is
based on the assumption that the missing data are
missing at random, that is, non-response depends
only on past measurements and not on future ones.
This assumption enables the mean change pattern
to be estimated using just the observed data.

The mean at time point, t + 1, is estimated as:

m t + 1 = m t + d t, t + 1 (2)

where m t is the estimated mean at time point t and
dt, t + 1 is the mean difference in measurements at
time points t and t + 1 for those patients who have
measurements at both time points.

This method assumes that the change in quality 
of life over time is independent of the level of
quality of life. Allen-Mersh and colleagues21

assessed longitudinal quality-of-life data using a
repeated measures analysis of covariance based 
on Zwinderman’s approach.

Zwinderman20 discusses various computer
programs in relation to this type of analysis. 
If the data are in the format of one record per
patient containing all repeated measurements 
then BMDP5V22 automatically uses all available
data. The GLM procedure in SAS/STAT,23 however,
cannot deal with the missing data and performs 
a complete case analysis only, unless the data are
transformed so that they consist of one record 
per patient per repeated measure. Brooks and
colleagues3 used BMDP5V to carry out a repeated
measures analysis of variance on quality-of-life 
data and thus, intentionally or unintentionally,
assumed missing data were missing at random.

More complex modelling
techniques for longitudinal data
Models for longitudinal quality-of-life data 
examine the patterns of change over time and 
the factors, such as treatment, that may have 
some influence on these patterns. The modelling
needs to account for the correlation among 
values within each subject which is present in
longitudinal data. There is much literature on
modelling longitudinal data18,24,25 and such
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methods are considered here in terms of their
application to quality-of-life data.

Longitudinal quality-of-life studies usually give 
rise to unbalanced data. This may be a result of
assessment times varying from subject to subject 
or because of missing data. The impact of different
types of missing data mechanisms on longitudinal
data analysis has been discussed.26 Analysis of
longitudinal quality-of-life data requires modelling
techniques that both capture the dynamic nature 
of the data and cope with the unbalanced struc-
ture. Techniques also need to be able to handle 
all types of data, since quality-of-life measures 
could be binary, ordinal or continuous.

Some of the more complex modelling approaches
that satisfy these requirements fall into two main
categories: marginal models (sometimes called
population-averaged models) and random effects
models (sometimes called subject-specific models).
Both approaches are based on the theory of gen-
eralised linear models27 and allow the analysis of
binary, ordinal or continuous response variables. 
As such, the expected response is related to the
explanatory variables in the model via a link
function. The choice of link function depends on
type of response variable; logit or probit link for
binary responses, cumulative logit link for ordinal
responses, log link for counts and identity link for
continuous data.

In a marginal model, the regression coefficients
estimate ‘population-averaged’ effects, that is, they
give the estimated effect of explanatory variables on
the response of the population as a whole. Random
effects models allow each individual to have their
own regression coefficients; these subject-specific
effects are assumed to have been drawn from an
overall population distribution, which is often the
primary focus of the analysis.

Another difference between the two classes of
model is the way in which they incorporate within-
subject correlation. In the marginal modelling
approach, the effect of explanatory variables 
on the marginal distributions of response and 
the within-subject correlation are modelled
separately, with the latter treated as a nuisance
factor. In the random effects approach, within-
subject correlation is accommodated by incorp-
orating a subject-specific random effect into 
the model. 

For normally distributed data, parameter estimates
can be obtained by using maximum likelihood
methods. Laird and Ware28 computed maximum

likelihood estimates in random effects models
using the EM algorithm. An alternative for para-
meter estimation is to use a Bayesian approach
using Gibbs sampling.28

For categorical responses, full likelihood estimation
of regression parameters is generally not feasible.
One alternative is to use a weighted least-squares
approach.29 There are two main limitations to this
approach: large numbers of subjects are required
and continuous explanatory variables cannot be
accommodated. Another alternative is the gener-
alised estimating equations method, developed 
for marginal models and based on the concept 
of quasi-likelihood.30,31 Generalised estimating
equations offer one way of estimating regression
parameters together with their variances, while
taking within-subject correlation into account, 
and can be used for both marginal and random
effects models.32 Bayesian analysis can also be 
used to estimate parameters.33

Hierarchical or multilevel models34 are becoming 
a standard method in the analysis of longitudinal
data where the lowest level of the hierarchy consists
of the observations over time within each subject
and second level units are the subjects. They have
been applied to quality-of-life data.35,36

Modelling techniques for longitudinal data have
been discussed in general,37 in relation to normally
distributed responses,38 in relation to non-normally
distributed responses,39 and in relation to categor-
ical responses.40–47 Software for implementing the
sort of modelling techniques discussed here are
available, such as PROC MIXED in SAS/STAT 48

and MLn.49 Examples of their application to
quality-of-life data is limited,35,36,50 possibly because
of their complexity. The main problem with apply-
ing these models to quality-of-life data is that they
assume the missing data mechanism is ignorable. 
In particular, the generalised estimating equations
approach requires missing data to be missing
completely at random. When there is informative
drop-out, standard modelling techniques will give
biased parameter estimates and modelling tech-
niques that allow for informative drop-out should
be considered (see chapter 8).
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Introduction
In longitudinal studies of quality of life with
informative drop-out, the standard methods of
longitudinal data analysis discussed in chapter 7 
are frequently invalid, since they assume that the
missing data mechanism is ignorable. Using stand-
ard methods in situations of informative drop-out
may give biased results. A variety of methods for
analysing longitudinal data in the presence of
informative drop-out have been proposed but 
there is little evidence of their application to
quality-of-life data. This chapter provides a brief
overview of such methods.

Methods

A variety of methods have been proposed for
modelling the change in a continuous variable 
over time while accounting for informative drop-
out, and Little1 provides a review of such methods.
Methods are generally based on random effects
models, although an approach based on marginal
models has also been considered.2 The techniques
focus on a classical approach but a Bayesian
approach to longitudinal data models with
informative drop-out has been discussed.3

Most methods are developed from a linear random
effects model,4–8 in which it is assumed that each
subject’s measurements follow a linear regression
with random intercept and slope. The average 
rate of change can be estimated using likelihood-
based approaches or using either weighted or
unweighted averages of the individual least-squares
slope estimates. In the presence of informative
drop-out, likelihood-based approaches and
weighted averages have been shown to be seriously
biased and, although unweighted averages were
generally found to be unbiased, they are too
inefficient to merit consideration.4,6,9 Thus, inform-
ative drop-out needs to be accounted for when
modelling longitudinal quality-of-life data with 
such data missing.

Assuming a linear random effects model for the
response variable over time, Wu and Carroll4

model the relationship between the probability of
drop-out and the path of the response variable, as
described by the intercept and slope parameters,
using a probit model. Parameters were estimated
using pseudo-maximum likelihood. They suggest
that Cox proportional hazards and logistic models
could also be appropriate.

Wu and Bailey5,6 developed methods that 
account for informative drop-out without actually
modelling the drop-out process. They proposed 
a conditional linear model for the individual 
least-squares estimated slopes, assuming them 
to be linear functions of total follow-up time. 
Two methods for estimating the population rate 
of change, based on a weighted least-squares
approach were suggested and compared to 
pseudo-maximum likelihood estimates; linear
minimum variance unbiased estimates and linear
minimum mean squared error estimates. Mori 
and colleagues7 developed the method further 
by using empirical Bayes methodology to estimate
rate of change, enabling estimation of individual 
as well as population slopes.

The problem with the probit drop-out model
approach and the conditional linear model
approach is that at least two measurements 
per subject are needed to enable least-squares
estimation of individual slopes. A further limitation
of the conditional linear model approach is that
the method assumes the potential follow-up time 
is the same for all subjects and thus application 
of such methods to studies with staggered 
patient entry times may be invalid.

Schluchter8 developed the conditional linear
model approach to allow for staggered patient
entry and individuals with single measurements.
The method assumes that the individual intercept,
slope and log survival time follow a trivariate
normal distribution and the maximum likelihood
estimates of model parameters are calculated 
using the EM algorithm. Disadvantages of this
approach are that it is computationally complex
and, hence, not easily accessible and that large
amounts of data may be required. A multilevel
version of Schluchter’s model has been applied 
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to quality-of-life data.10 Related methods based on
general rather than linear random effects models
have also been proposed11,12 but these suffer from
the same limitations.

The method of multilevel modelling has been
adapted to deal with informative drop-out by
analysing sequentially overlapping portions of 
the follow-up information.13 This is comparable 
to the descriptive method discussed earlier in
which patients are split into subgroups according 
to differing lengths of follow-up (see page 25). 
A set of sequential time points, T1, T2, ... Tk, ... TK,
which are meaningful to the study are determined.
All those patients who are still in the trial at time 
T k form the risk set for that time point and the 
follow-up information for each of those patients
consists just of the data up to time T k. In this way,
overlapping risk sets are created with patients 
with long overall follow-up contributing to most
risk sets while patients who dropped out early
contribute to the first few only. Multilevel models
are fitted to each of the K risk sets. An overall
multilevel model, including a third level repre-
senting the last risk set to which a patient belonged,
can be fitted to evaluate the extent of informative
drop-out in the data and provide a direct com-
parison of time profiles of patients with different
follow-up times.

Discussion

Longitudinal data models that deal with inform-
ative drop-out may be appropriate methods for
analysing quality-of-life data but there is little
evidence of their application in this field. The
proposed methods have focused on continuous
responses and thus may not be applicable to
quality-of-life measures that are categorical or
highly skewed continuous variables. De Stavola 
and Christensen13 claim that their multilevel 
model approach can include categorical variables.
Beacon10 suggests that the conditional linear
models proposed by Wu and Bailey5,6 and, in
particular, the trivariate normal model proposed 
by Schluchter8 are the most suitable for application
to quality-of-life data. Further work is needed to
fully investigate the use of these methods in 
quality-of-life assessment, especially in relation 
to the application to categorical responses.
Although the methods discussed here allow for
informative drop-out, simultaneous modelling

methods, discussed later in chapter 19, in which
both the quality-of-life and the drop-out process 
are explicitly modelled, may provide a potentially
more powerful approach.
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In quality-of-life studies where survival is also 
an issue, patients are often severely ill, and 

drop-out caused by illness or death is a common
occurrence. This drop-out process may be inform-
ative but the situation may be complex, involving
drop-outs of several types. Standard analytical
methods for longitudinal data assume that the
missing data mechanism is ignorable, and thus 
use of these methods for longitudinal quality-
of-life data may give biased results and invalid
conclusions. However, if the drop-out rates and 
reasons for drop-out are balanced across treatment
arms then between-treatment comparisons may
remain unbiased.1,2

The analysis of longitudinal quality-of-life data
should begin descriptively to give insight to the data
before any formal testing or modelling is carried
out. Graphs of individual patient profiles allow data
to be examined at the most basic level, while treat-
ment group profiles enable a clearer comparison 
of treatments in relation to their effect on quality 
of life over time. Interpretation of group profiles
needs caution when informative drop-out is present,
as group summary measures may well be biased.

An initial approach to the formal analysis is to use
summary measures, in which treatment comparison
is based on a single value summarising the quality-of-
life data over time. The method enables the use of
simple standard statistical techniques and thus has
the advantage of being easy to apply. It is also reason-
ably flexible in terms of the type of data to which it
can be applied and gives results that are clinically
meaningful. In replacing a set of repeated measures
with a single summary measure, however, the
method does not fully capture the dynamic nature 
of quality-of-life data. Furthermore, calculation of
summary measures may be difficult and analysis may
be biased if informative drop-out is present.

If quality-of-life data are collected at a reasonably
small number of fixed time points and have an
underlying normal distribution, then a simple
repeated measures analysis of variance may be
appropriate. Strategies that enable application of the
method to quality-of-life data with missing measure-
ments are available3 but these methods assume the

missing data mechanism is ignorable, which will not
of course be the case if drop-out is informative.

More complex modelling techniques, such as
random coefficient and marginal models, allow
greater flexibility in terms of being able to cope 
with unbalanced data, varying time points and non-
normality, but their application to quality-of-life data
may be difficult and problematic because of the
complexity of the models.4 Examples of the appli-
cation of more complex modelling techniques to
quality-of-life data is limited.5–7 Although these tech-
niques model change over time, they do not explic-
itly model the missing data mechanism and thus are
not valid when informative drop-out is present.

Methods which assume data are missing at random,
rather than missing completely at random,3,7 go
some way to dealing with the missing data problem
in longitudinal quality-of-life studies but will still
give biased results in situations of informative 
drop-out. There are no easy ways to test if missing
data are missing at random or are informative, and
assumptions have to be based on subjective judge-
ment. The assumptions should be assessed as part
of a sensitivity analysis.

Modelling techniques that deal with informative
drop-out have been developed but are complex
and focus on continuous response data. The
practical application of such methods may be
difficult since appropriate software is not readily
available. The application of such methods to
quality-of-life data has, as yet, not been fully
investigated and further work is needed to assess
their use in this context. Simultaneous modelling
methods (discussed later in chapter 19) which
explicitly model both the quality-of-life and the
drop-out process may provide an approach that 
is potentially more powerful.
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In many studies, especially cancer clinical trials,
treatments are assessed primarily in terms of

survival, usually defined as time from entry to 
trial until death. Survival is the main endpoint in
studies evaluating potentially curative treatments 
or treatments which are expected to prolong life
significantly. There may also be an interest in
quality of life as a secondary endpoint, especially 
in situations where treatments have side-effects.

In comparing treatments in terms of survival, 
it is often necessary to adjust for patient-related
factors that could potentially affect the survival
time of a patient. These covariates may include
demographic variables such as age and sex,
physiological variables such as white blood cell
count, or disease-related variables such as type of
tumour or stage of disease at entry to the study.
One such patient-related factor to consider as a
covariate may be quality of life, either in terms 
of a baseline measure or in terms of its changing

values over time. In chapters 11–13 methods 
of analysing quality-of-life and survival data are
dealt with, in which the aim of the study is to
compare treatments in terms of survival while
adjusting for quality of life. The analysis also 
allows the effect of quality of life on survival 
(that is, as a predictor) to be explored.

In chapter 11, some background to the analysis 
of survival data is given and the standard methods
of analysis used to compare treatments in terms of
survival without any covariate adjustment are out-
lined. In chapter 12, methods of analysis are dis-
cussed which enable a comparison of treatments
while adjusting for the effects of covariates. Inclu-
sion of both fixed and time-dependent covariates
are considered and the particular application of
these methods to situations with quality of life 
as a covariate is also discussed. The findings of 
this section of the review are summarised and
discussed in chapter 13.

Chapter 10

Analysis of survival data adjusting for quality 
of life: introduction
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Introduction to survival analysis
Survival data differs from other types of continuous
data in that the actual survival time may not neces-
sarily be observed for all subjects in the study, thus
giving rise to censored data (see chapter 3). Any
methods used to analyse survival data must be able
to deal with censored data.

There are many books and papers that discuss
statistical methods for survival analysis. Parmar 
and Machin1 provide non-technical coverage, while
Collett2 and especially Kalbfleisch and Prentice3

provide the reader with more theoretical detail.

Survivor and hazard functions

Survival data is generally described and modelled
in terms of two related functions, the survivor
function and the hazard function. The survivor
function, S(t), represents the probability that an
individual survives from the time origin to some
time beyond t, and is given by:

t

S(t) = p(T > t) = 1 – F(t) = 1 – ∫ f(u)du (3)
u = 0

where T is the random variable representing
survival time, and the distribution of survival 
times is described by f(t), the probability density
function, and F(t), the associated cumulative
distribution function.

The hazard function, h(t), is the probability that 
an individual dies at time t, given that they have
survived up to that time. It represents the instan-
taneous death rate for an individual surviving to
time t. It is linked to the probability density
function and survivor function by:

f(t) d
h(t ) = ____ =  – __ [log S(t)] (4)

S(t) dt

The survivor function and hazard function can be
estimated from observed data. If the form of f(t) is
not specified then non-parametric procedures can
be used, otherwise parametric models can be fitted
to the data.

Some parametric forms for survival data
In some situations it may be appropriate to assume
a distribution for f(t), the probability density
function of the survival time. The most common
distributions used to model survival data are the
exponential and Weibull distributions, the expon-
ential being a special form of Weibull distribution.
Only these two distributions are considered in 
this report but, in general, other distributions 
such as log-normal, log-logistic and gamma may 
be more appropriate.2

If survival times have an exponential distribution
then

f(t) = λ exp (–λ t) (5)

the survivor function is given by

S(t) = exp (–λ t) (6)

and the hazard function is given by 

h(t) = λ (7)

Thus an exponential distribution assumes that the
hazard rate is constant over time.

If the constancy of the hazard rate is not a valid
assumption, then a Weibull distribution may be a
more appropriate distribution for survival times. 
In this case,

f(t ) = λ γ t γ – 1 exp (–λ t γ) (8)

the survivor function is given by

S(t ) = exp (–λ t γ) (9)

and the hazard function is given by

h(t) = λ γ t γ – 1 (10)

The parameters γ and λ determine the shape and
scale of the hazard function and are thus called 
the shape and scale parameters, respectively. In 
the special case of γ = 1, the distribution of survival
times is exponential and the hazard is constant. 
If γ > 1, the hazard increases with time and if 
0 < γ < 1 then the hazard decreases monotonically.

Chapter 11

Comparison of treatments in terms of survival
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The suitability of these parametric models can 
be assessed using a log-cumulative hazard plot. 
This is a graph of log(–log [S(t )]) against log t
where S(t ) is the survivor function estimated by 
the Kaplan–Meier method (see below). If a Weibull
model is appropriate, the line will be approximately
straight, with the slope giving an estimate of the
shape parameter for the distribution. If an expon-
ential model is appropriate, the slope of the line
will be approximately 1.

The parameters for a model are estimated from 
the survival data using the method of maximum
likelihood. In SAS/STAT, the LIFEREG procedure4

fits parametric models to survival data.

Comparison of treatments using
Kaplan–Meier estimates
The survivor function can be estimated non-
parametrically from observed data, both censored
and uncensored, using the Kaplan–Meier method.
This method is also called the product-limit
method and is based on maximum likelihood
estimation.5 Suppose deaths occur at times 
t 1 < t 2 < ... < t j < ... < t n , then the Kaplan–Meier
estimate of the survivor function is given by

k d j^
S(t) =∏(1 – __) for all t k ≤ t (11)

j = 1
n j

where n j is the number of individuals alive just
before time t j and d j is the number of deaths at
time t j. Survival times censored at time t j are
assumed to occur immediately after the death 
time when computing values of n j. CIs for the
survivor function can be calculated using a 
variety of different methods.1,2

The calculation of Kaplan–Meier estimates 
is based on the assumption that the deaths of
individuals in the sample occur independently 
of one another. This allows the probabilities 
of surviving from one interval to the next to 
be multiplied together to give the survivor
function. It should also be noted that the 
Kaplan–Meier method gives the maximum
likelihood estimate of the survivor function 
only if deaths and censoring are independent.5

Thus, for unbiased Kaplan–Meier estimates, it 
is necessary for the censoring mechanism to 
be non-informative.

Kaplan–Meier estimates of the survivor function
S(t) can be plotted against time t as a survival

curve. The survival curve is a stepped plot 
with the survivor function dropping instant-
aneously at each time of death and remaining 
level between successive death times. These 
provide a useful summary of the data and can 
be used to determine summary statistics such as
median survival time. Survival curves for different
treatment groups can be used to compare treat-
ments descriptively in terms of survival. A more
formal comparison of survival curves can be 
made using various non-parametric tests (see 
page 43). The SAS/STAT LIFETEST procedure4

calculates Kaplan–Meier estimates and plots
survival curves.

Survival analysis of the MIC data
Kaplan–Meier estimates of the survivor function 
for each treatment group in the MIC study were
calculated for just those patients in the quality-of-
life study and plotted as survival curves (Figure 13).
Summary statistics for each treatment group were
calculated from these survival curves (Table 10). 
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FIGURE 13  Overall survival for patients in the MIC quality-of-life
study (——, CT; - - -, PAL)

TABLE 10  Summary statistics of survival for the MIC study

CT arm PAL arm 
(n = 67) (n = 42)

Number of deaths 65 42

Median (95% CI) 7.9 months 4.2 months 
(5.5–10.2) (3.3–6.3)

% surviving 1 year 31% 12%
(95% CI) (20–42%) (2–22%)
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For those individuals in the quality-of-life study,
survival appeared to be better in the CT group 
than in the PAL group.

The 18-week period from entry to trial has been
selected as the time on which the analysis will 
focus, since it was during this time that quality-
of-life data was collected (see page 14). Survival
within 18 weeks of entry to the trial can be exam-
ined using Kaplan–Meier estimates. The survival
curves of each treatment group were plotted 
(Figure 14). These are just the overall survival curves
(from Figure 13) magnified and cut-off at 18 weeks
to highlight that period. The summary statistics for
survival were taken from the curves (Table 11).
Within the first 18 weeks of entry to trial, the CT
group appeared to have a better survival than the
PAL group.

Non-parametric tests for
comparing survival
Survival in two or more groups of patients can 
be compared using a non-parametric test such as
the log-rank test, also called the Mantel–Cox test.1,2

This is the most widely used method of comparing
survival curves.

The method essentially calculates at each death
time, for each treatment group, the expected
number of deaths under the null hypothesis 
of no difference between groups. These are then
summed to give the total expected number of
deaths in each treatment group, say E i for treat-
ment group i. The log-rank test compares the
observed number of deaths in each treatment
group, say Oi for treatment group i, to the 
expected number by calculating the test statistic

g
(Oi – Ei)2

χ2 = ∑ _______ (12)
i = 1 Ei

and comparing it to a chi-square distribution with
(g – 1) degrees of freedom, where g is the number
of treatment groups.

In the situation where two groups are being
compared, the log-rank test is testing the null
hypothesis that the ratio of the hazard rates in the
two groups is equal to 1. The hazard ratio is a
measure of the relative survival experience in the
two groups and is estimated by

O 1 / E 1
HR = _______ (13)

O 2 / E 2

where Oi /Ei is the estimated hazard rate in group
i. A CI for the hazard ratio can be calculated.1

Other non-parametric tests which are sometimes
used to compare groups in terms of survival are 
the Mantel–Haenszel test and the Wilcoxon test.
These are more suitable than the log-rank test
when the assumption of proportional hazards is 
not valid for the alternative hypothesis.1 The
assumption of proportional hazards can be 
assessed by means of a log-cumulative hazard 
plot (see page 46). 

Survival analysis of the MIC data
Hazard ratios were calculated and log-rank tests
performed to compare the two treatment groups 
in the MIC study in terms of both survival and
survival within 18 weeks (Table 12). There was
strong evidence to suggest that chemotherapy
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FIGURE 14  Survival within 18 weeks for patients in the MIC
quality-of-life study (——, CT; - - -, PAL)

TABLE 11  Summary statistics of survival within 18 weeks for 
the MIC study

CT arm PAL arm 
(n = 67) (n = 42)

Number of deaths 16 21

% surviving 18 weeksa 76% 50% 
(95% CI) (66–86%) (35–65%)

Note: medians were not reached in this analysis
a Since there were no censored data before 18 weeks, the
Kaplan–Meier estimates are the same as the crude
proportions
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reduced the risk of death compared with standard
palliative treatment both overall and within 
18 weeks of entry to trial.
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TABLE 12  Hazard ratios and log-rank test for survival and
survival within 18 weeks for the MIC study

CT vs PAL Results from 
hazard ratio log-rank test

(95% CI)

Survival 0.56 χ2 = 9.06, p = 0.0026
(0.37, 0.86)

Survival within 0.40 
18 weeks (0.20, 0.79) χ2 = 8.07, p = 0.0045
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Introduction
In comparing treatments in terms of survival, 
it is often necessary to adjust for patient-related
factors, known as covariates, that could potentially
affect the survival time of a patient. Covariates may
be continuous measures, such as tumour size, or
they may be ordinal variables, such as, for example,
performance status rated as poor, fair and good.
They may also be binary measures, such as the
presence/absence of a symptom.

Covariates that keep the same value for the
duration of a study are called fixed or time-
independent, while those with possibly changing
values over time are called time-dependent. Fixed
covariates can be adjusted for in a survival analysis
either using stratified survival analysis or using a
Cox proportional hazards model. Time-dependent
covariates can also be adjusted for in a Cox model.

Stratified survival analysis

The simplest way to incorporate covariates into 
a survival analysis is to use a stratified survival
analysis. This compares survival between treatment
groups within each level of a covariate. The log-
rank test methodology can be used to test for any
differences between treatments, and comparisons 
of treatments within each stratum are combined 
to give an overall comparison of treatments that 
has been adjusted for the effect of the covariate.

Stratified survival analysis has two main limitations.
Firstly, the method is only applicable to fixed

covariates and, secondly, the covariate has to be 
in a categorical format with, in practice, very few
levels. Thus it may be preferable, especially when
several variables are involved, to use a Cox model
(see page 46).

For situations with quality of life as a covariate, 
a stratified survival analysis could be used if the
quality-of-life measures are available at the start 
of the analysis and remain unchanged throughout,
such as, for example, baseline measures. The
measure of quality of life may need to be categor-
ised so that it consists of a few levels containing 
a reasonable number of subjects.

Stratified survival analysis of the MIC data
The overall survival and survival within 18 weeks
were compared for both treatment groups in 
the MIC study using a stratified survival analysis.
Stratification according to two different measures
of baseline quality of life taken from the first
questionnaire were considered. Using MAL, base-
line quality of life was categorised as no malaise
(MAL = 0) and malaise (MAL = 1, 2 or 3), and 
using MQS, baseline quality of life was categorised
as above and below the median value of MQS 
(i.e. MQS ≥ 0.75 and MQS < 0.75).

Although baseline malaise does not appear to 
affect survival (see Table 13), there is evidence 
of a relationship between the baseline values 
of MQS and overall survival (see Table 14). The 
hazard rates suggest that the risk of death is
reduced if the baseline value of MQS is below 
the median, that is, if the baseline quality-of-life
measure is ‘good’. In a comparison of treatments,

Chapter 12

Comparison of treatments in terms of survival
adjusting for covariates

TABLE 13  Survival analysis of MIC data by baseline malaise

n Observed Expected Hazard rate χ2 p-value
deaths deaths (observed/expected)

Survival
No malaise at baseline 42 41 41.48 0.99 0.009 0.92
Malaise at baseline 67 66 65.52 1.01

Survival within 18 weeks
No malaise at baseline 42 16 14.51 1.10 0.25 0.62
Malaise at baseline 67 21 22.49 0.93
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stratification by these covariates does not greatly
affect the results of the log-rank tests, with p -values
from the stratified log-rank tests being similar to
those from the unstratified test (see Table 15).

Cox proportional hazards model
with fixed covariates
Background
Survival data can be modelled using the Cox
proportional hazards model.1 This is a regression
model suitable for survival data, which allows the
variation in survival, as expressed by the hazard
function, to be explained by certain factors. By
incorporating treatment with other covariates in
the model, the differences in survival between
treatment groups can be investigated while
adjusting for the other covariates. Here the 
model is considered when covariates are fixed 
but the model can be extended to include time-
dependent covariates (see page 47). The variables 
in the model can be continuous or categorical – 
in the latter case they take the form of 
dummy variables.

In the Cox proportional hazards model, the hazard
function h(t) is modelled as:

h(t) = h0(t) exp (â T x) (13)

where h0(t) is the underlying baseline hazard
function, x is a vector of fixed covariates and 
â is a vector of regression coefficients. Para-
meters are estimated by maximising a partial
likelihood function.2

The model does not assume any particular 
form of probability distribution for the survival
times and thus the underlying baseline hazard 
is allowed to be arbitrary. It does, however, 
have one underlying assumption, that of
proportionality of hazards and, because of this
restriction, the model is usually referred to as 
semi-parametric. If the proportional hazards
assumption is valid, the ratio of the hazards in 
the subgroups defined by the covariate values
remains approximately constant over time. 
The assumption of proportional hazards can 
be assessed by means of a log-cumulative hazard 
plot where, using Kaplan–Meier estimates of the
survivor function, log(–log S(t)) is plotted against
log t for each subgroup. If the assumption of
proportional hazards is valid, the graphs will 
be parallel.3

Nested models can be compared by checking the
change in the value of –2 log (likelihood) against 
a chi-square distribution with degrees of freedom
equal to the difference in the number of para-
meters being estimated.3 Most standard statistical
software packages, including the PHREG pro-
cedure in SAS/STAT software,4 can be used to 
fit Cox regression models with fixed covariates.

Application to quality-of-life data
The quality of life of a patient on entry to a study
may be related to the survival of that patient and
could be included in a survival model as a fixed
covariate. Including baseline quality of life, to-
gether with treatment as covariates in the model,
enables the difference in survival between treat-
ment groups to be assessed, while accounting for
the baseline effect of quality of life. Measures of
quality of life may be continuous or categorical.

TABLE 14  Survival analysis of MIC data by baseline MQS

n Observed Expected Hazard rate χ2 p-value
deaths deaths (observed/expected)

Survival
MQS < 0.75 50 48 59.74 0.80 5.38 0.02
MQS ≥ 0.75 59 59 47.26 1.25

Survival within 18 weeks
MQS < 0.75 50 14 18.35 0.76 2.05 0.15
MQS ≥ 0.75 59 23 18.65 1.23

TABLE 15  Stratified and unstratified survival analysis for
treatment comparison in the MIC study (new results in bold)

χ2 p-value

Survival
Unstratified 9.06 0.0026
Stratified by baseline malaise 8.70 0.0032
Stratified by baseline MQS 8.54 0.0035

Survival within 18 weeks
Unstratified 8.07 0.0045
Stratified by baseline malaise 8.09 0.0044
Stratified by baseline MQS 8.25 0.0041
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Cox regression analysis of MIC data with quality
of life as fixed covariate
A Cox model was fitted to the MIC survival data
with two fixed covariates, treatment and baseline
quality of life. Treatment was included as a binary
variable with 1 representing chemotherapy and 
0 representing standard palliative care. As with 
the stratified survival analysis (see page 45), two
different measures of baseline quality of life taken
from the first questionnaire were included. Using
MAL as before, quality of life was included as a
binary variable with 0 representing no malaise
(MAL = 0) and 1 representing malaise (MAL = 
1, 2 or 3). MQS was used as an alternative measure
of quality of life and was included in the model as 
a continuous variable, rather than as a categorical
variable in the stratified analysis.

The regression coefficients and hazard ratios for
the quality-of-life covariates suggest that there is no
relationship between baseline malaise and survival
(see Table 16) but there is evidence of a relationship
between baseline values of MQS and overall survival
(see Table 17). Hazard rates suggest that increasing
values of baseline MQS (i.e. worsening quality of
life) are associated with an increased hazard of
death. These results are comparable to the strati-
fied analysis (see page 45). Regression coefficients
and hazard ratios (see Tables 16 and 17) together
with likelihood ratio tests (see Table 18) show that
after adjusting for baseline values of malaise and
MQS, there is still a significant treatment effect 
on both survival and survival within 18 weeks. 
The results show that chemotherapy reduces 
the hazard of death.

Cox model with time-dependent
covariates
Background
A time-dependent covariate is a variable which 
may explain survival differences; its value for any
individual may vary over time. Unlike fixed co-
variates, which remain constant over the study
period, time-dependent covariates are assessed
throughout a patient’s follow-up period. The assess-
ment times are not necessarily at regular intervals
and often differ between patients. There are often
problems in collecting complete data on time-
dependent covariates and, in some circumstances,
the data may be censored. Time-dependent co-
variates could be continuous, ordinal or binary. In
particular, a time-dependent binary covariate may
represent the occurrence of an event, that is, an
indicator variable whose value remains at zero until
the event occurs, at which time it becomes 1.

TABLE 16  Cox regression analysis with baseline malaise as 
fixed covariate

β (95% CI) Hazard ratio 
(95% CI)

Survival
Malaise 0.04 (–0.35, 0.43) 1.04 (0.70, 1.54)

Treatment 
(adjusted for 
malaise) –0.60 (–1.00, –0.20) 0.55 (0.37, 0.82)

Survival within 18 weeks
Malaise –0.15 (–0.80, 0.50) 0.86 (0.45, 1.65)

Treatment 
(adjusted 
for malaise) –0.91 (–1.56, –0.26) 0.40 (0.21, 0.77)

TABLE 17  Cox regression analysis with baseline MQS as 
fixed covariate

β (95% CI) Hazard ratio 
(95% CI)

Survival
MQS 0.79 (0.36, 1.22) 2.20 (1.43, 3.40)

Treatment 
(adjusted 
for MQS) –0.55 (–0.95, –0.15) 0.58 (0.39, 0.86)

Survival within 18 weeks
MQS 0.45 (–0.15, 1.05) 1.56 (0.86, 2.85)

Treatment 
(adjusted 
for MQS) –0.85 (–1.51, –0.19) 0.43 (0.22, 0.83)

TABLE 18  Cox regression analysis with fixed covariates
compared with stratified and unstratified survival analysis for
treatment comparison in the MIC study (new results in bold)

χ2 p-value

Survival
Unstratified 9.06 0.0026
Stratified by baseline malaise 8.70 0.0032
Stratified by baseline MQS 8.54 0.0035
Adjusted for baseline malaise 8.40 0.0038
Adjusted for baseline MQS 6.86 0.0088

Survival within 18 weeks
Unstratified 8.07 0.0045
Stratified by baseline malaise 8.09 0.0044
Stratified by baseline MQS 8.25 0.0041
Adjusted for baseline malaise 7.53 0.0061
Adjusted for baseline MQS 6.41 0.0113
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The Cox proportional hazards model has been
discussed above in relation to fixed covariates but
the model can be extended to incorporate time-
dependent covariates. The Cox model for the
hazard function can be written as

h(t) = h 0(t) exp(â T x + δT z(t)) (15)

where h0(t) is the underlying baseline hazard, x is a
vector of fixed covariates with associated regression
coefficients vector â and z(t) is a vector of time-
dependent covariates with associated regression
coefficients vector γ. The variables in z(t) represent
successive measures of a binary, ordinal or
continuous covariate.

When time-dependent variables are included in 
the model the relative hazard, h(t) / h0(t) becomes
time-dependent and so the model ceases to be a
proportional hazards model.

Estimating model parameters
Suppose the death times of the n individuals in a
study are t 1 < t 2 < ... < t i < .... < t n, where some of
these death times may be censored, and suppose
R(t i) is the set of individuals at time t i who are at
risk of death. To fit the Cox model with a time-
dependent covariate z(t), the value of the covariate
z(t i) at each uncensored death time t i is needed 
for all individuals in the risk set R(t i). The value 
of the covariate at any time t is usually taken to 
be the last recorded value prior to t. In situations
where there are recorded values either side of 
the time of interest, then it may be preferable 
to use either the value at the closest time or, for
continuous variables, a linearly interpolated value.

Nested models can be compared by checking the
change in value of –2 log (likelihood) against a chi-
square distribution with degrees of freedom equal
to the difference in the number of parameters
being estimated. In SAS/STAT,4 the PHREG pro-
cedure can be used to fit survival models with time-
dependent covariates, although the agreg function
in S-PLUS5 may be more straightforward to use.

Application to quality-of-life data
During a study, a patient may experience changes
in quality of life as time passes. This could be
described either by a changing quality-of-life score
or by the movement in and out of various quality-
of-life health states. The change in score or pattern
of movement between states may help to explain
survival differences and should be considered for
inclusion in any survival model as a covariate. The
change in quality of life over time is clearly a time-
dependent covariate.

Consideration of models that include a time-
dependent covariate representing quality of life
and a treatment term may provide useful inform-
ation on the effectiveness of the treatment. If 
the model includes a quality-of-life term but the
estimate of treatment effect is not clearly different
from zero, this could indicate that the treatment
affects quality of life, which in turn affects survival,
but the treatment has no additional effect.

Cox regression analysis of MIC data with
quality of life as time-dependent covariate
In a survival analysis of the MIC study, quality of life
was included as a time-dependent covariate in two
different ways. Patients were successively assessed
for quality of life over time for 18 weeks from entry
to study and the values of both MQS and MAL were
included as time-dependent covariates in a Cox
model of survival within 18 weeks. MQS was includ-
ed in terms of the changing value over time while
malaise was included in terms of the movement
between two different health states: no malaise
(MAL = 0) and malaise (MAL = 1, 2 or 3). Time
spent with no malaise was allocated the value 0 
and with malaise was allocated the value 1. Treat-
ment was included in the model as a binary vari-
able, with 1 representing chemotherapy and 
0 representing standard palliative care.

The analysis required, for the whole survival time 
of a patient, a value of quality of life to be available
continuously over the 18-week analysis period. To
enable this, two assumptions regarding the quality-
of-life data were made (see page 58 for further
details of these assumptions).

• Changes in quality of life were assumed to 
occur midway between assessments and 
patients were assumed to remain in steady 
state between changes.

• Patients were assumed to remain in steady state
from time of last assessment to either death or
18 weeks (whichever came first).

The S-PLUS5 program was used to perform the
analysis. The data were transformed so that it
consisted of multiple lines per patient, with each
line representing the time a patient spent either in
different states of malaise or with different values of
MQS. Each line of data consisted of the times of
entry to and exit from the state relative to date of
entry to study, an indicator variable representing
whether the patient had died or not at the end of
the interval, and a variable representing treatment.

The regression coefficients and hazard ratios for
the quality-of-life covariates suggest that there is 
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no relationship between the changing values of
malaise and survival within 18 weeks (see Table 19)
but there is evidence of a relationship between the
changing values of MQS and survival within 18
weeks (see Table 20). Hazard rates suggest that
increasing values of MQS (i.e. worsening quality 
of life) are associated with an increased hazard of
death. Regression coefficients and hazard ratios
(see Tables 19 and 20), together with likelihood
ratio tests (see Table 21), show that after adjusting

for the effect of changing values of both malaise
and MQS over time, survival within 18 weeks is still
significantly different between treatments.
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TABLE 19  Cox regression analysis with malaise as time-
dependent covariate

β (95% CI) Hazard ratio 
(95% CI)

Survival within 18 weeks
Malaise 0.72 (–0.01, 1.45) 2.05 (0.99, 4.25)

Treatment 
(adjusted for 
malaise) –0.94 (–1.59, –0.29) 0.39 (0.20, 0.75)

TABLE 20  Cox regression analysis with MQS as time-dependent
covariate

β (95% CI) Hazard ratio 
(95% CI)

Survival within 18 weeks
MQS 0.99 (0.44, 1.54) 2.68 (1.55, 4.66)

Treatment 
(adjusted for 
MQS) –0.70 (–1.37, –0.03) 0.50 (0.25, 0.97)

TABLE 21  Cox regression analysis with time-dependent
covariates compared with fixed covariate, stratified and unstratified
survival analysis for treatment comparison in the MIC study 
(new results in bold)

χ2 p-value

Survival within 18 weeks
Unstratified 8.07 0.0045
Stratified by baseline malaise 8.09 0.0044
Stratified by baseline MQS 8.25 0.0041
Adjusted for baseline malaise 7.53 0.0061
Adjusted for baseline MQS 6.41 0.0113
Adjusted for changing malaise 8.02 0.0046
Adjusted for changing MQS 4.30 0.0381
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Treatment comparison in terms of survival 
may, in some circumstances, need to adjust 

for the effects of quality of life. Standard survival
analysis techniques can be used for this purpose.
Quality of life may be included as a covariate, either
in terms of baseline values or in terms of changing
values over time. The quality-of-life measure may 
be binary, ordinal or continuous, and survival 
times may have a specified or unspecified
underlying distribution.

If adjustment for baseline quality-of-life measures 
is necessary, then a stratified survival analysis can 
be used. Although the method is simple, it has
limited use; the stratification variable must be cate-
gorical and have a small number of levels, and the
method is unable to cope with more than a few
covariates. Categorisation of a continuous quality-
of-life measure for use in a stratified survival analy-
sis may result in a loss of information; a modelling
approach, which can incorporate any number and
type of covariates, may be more appropriate.

Cox proportional hazards regression models 
can be used to adjust for baseline measures 
of quality of life in a survival analysis, by incor-
porating the values as a fixed covariate. Cox 
models can also be used to adjust for quality of 
life in terms of change over time by including the
changing values as a time-dependent covariate.
Modelling in this way also enables investigation 
of possible interactions between treatment and
quality of life, which may be particularly important
if a treatment, for example, causes early toxicity.

If assessments of quality of life are infrequent or
data are missing for reasons other than death, then 
it may be difficult to adjust for changing quality 
of life with any degree of accuracy. The analysis 
may be improved by modelling quality of life and
survival as two simultaneous processes, as discussed
later in chapter 19. In this approach, values of
quality of life incorporated into a survival analysis
as a covariate are estimated from the model for
quality-of-life data over time fitted to all patients.

Chapter 13

Analysis of survival data adjusting for quality of life:
summary and discussion
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Health technology assessment often 
requires evaluation in terms of a trade-off

between quality and length of life. In comparing
the effectiveness of a new treatment against a
standard treatment in a randomised clinical trial,
benefits in terms of survival often have to be
weighed up against the extent of undesirable 
side-effects. Alternatively, a new treatment may 
have no extra benefit in terms of survival but it 
may result in improved quality of life through
improved relief of symptoms or reduced toxicity.

When quality of life and survival are analysed 
as separate endpoints, it is often difficult to 
assess the balance between the two in selecting 
the optimal therapy for patients, especially when
the two endpoints indicate conflicting treatment
preferences. It may therefore be preferable to
assess the effect of a treatment on quality of life 
and survival simultaneously, and the statistical
methods appropriate for that purpose are 
discussed in chapters 15–20.

The concept of QALYs is introduced in chapter 15.
This is a composite outcome measure in which the
survival time of a patient is scaled down according
to the quality of life they experience. The quality-
adjusted survival time is then used to compare
treatments in a quality-adjusted survival analysis,

discussed in chapter 16, which includes the TWiST
(time spent without symptoms of disease and
toxicity of treatment) concept and Q-TWiST
(quality-adjusted TWiST) methodology.

An alternative approach to the simultaneous
analysis of quality-of-life and survival data, dis-
cussed in chapter 17, is multistate survival analysis.
Rather than analysing quality-adjusted survival
times, this method models the movement of
patients between a finite number of health states
defined in terms of quality of life. Some relatively
new methodology is outlined in chapter 18, which
combines this approach with the previous quality-
adjusted survival analysis approach by incorporat-
ing the results from a multistate model into a 
Q-TWiST analysis.

The direct modelling of quality of life and survival
is considered as two simultaneous processes in
chapter 19, in particular, how the two interrelate.
Such modelling allows for the comparison of
quality of life conditional upon survival. A more
general approach, which considers modelling 
the drop-out process rather than survival, is 
also discussed.

The findings of this part of the study are
summarised and discussed in chapter 20.

Chapter 14

Simultaneous analysis of quality-of-life and 
survival data: introduction
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Introduction
QALYs are a measure of health status and can be
used as an alternative to survival time in some areas
of health technology assessment. They account for
both quality and duration of survival in a single
outcome measure and express health status in
terms of well years of life.

The QALY methodology (see page 57) consists of
down-weighting periods of survival time for which
patients experience sub-optimal levels of quality of
life. A special type of weight, often used in QALY
calculations, is the utility, which was mentioned
briefly in chapter 3 as a means of measuring quality
of life. An introduction to utilities follows below.
The QALY methodology is illustrated with data
from the MIC study.

QALYs were first proposed in the USA by Fanshel
and Bush1 and have been developed in the UK by
Alan Williams and colleagues at York University.2

They are extensively used in health economics,
forming the basis for cost–utility analysis, and
Torrance3 was at the forefront of the methodology
in this field. They are also widely used in the field
of decision analysis. These QALY applications are
discussed below. In this report, the main appli-
cation of the QALY concept is in chapter 16, 
where the assessment of health technologies in
terms of quality-adjusted survival analysis is
discussed. The advantage of QALYs lies in their
simplicity but they have been the subject of 
much criticism (see page 61) and a number 
of alternatives have been proposed.

Utilities

Each health state experienced by an individual
during the course of their disease and treatment 
is associated with a quality of life. Each can be
assigned a value that measures the preference of
the individual for a health state relative to other
states. The value reflects the quality of life in that
health state. The value generally lies between 0,
representing death, and 1, representing perfect
health, although it can be negative, representing
health states judged to be worse than death. Tech-
nically, these values are utilities when they are

measured under conditions of uncertainty but they
may approximate to utilities when measured under
other conditions.

Once the health states experienced by patients in a
study have been defined, then the utilities for these
states need to be determined. Methods of measur-
ing health state utilities have been discussed4–6 and
Torrance,7 in particular, provides a comprehensive
review. There are three broad methods available to
researchers for determining utilities for a study;
using subjective judgement, using values in the
literature or measuring the values. The values 
can be measured by using a holistic approach in 
which the health state being valued is considered 
as a complete entity or by using a decomposed
approach which values a health state indirectly by
considering particular aspects of a health state.

Determining utilities using 
subjective judgement
The researchers themselves can make subjective
assessments as to the utilities of various health
states in their study or they can call on clinicians 
or other experts for their opinion on the values.
This is a quick and inexpensive way to determine
utilities but will not necessarily provide realistic
measures. Sensitivity analysis should be carried out
to determine the robustness of the conclusions to
the choice of utility values.

Taking utilities from the literature
The literature can be searched for utility values
from previously conducted studies that could 
be used in the present study. The subjects and
health states for which utilities were calculated 
in a published study should be appropriate for 
the current need. One very commonly used study 
is that by Rosser and Kind,8 whose valuations are 
at the forefront of the work on QALYs undertaken
in the UK.

Rosser and Kind valuation matrix
The matrix of utilities derived by Rosser and 
Kind8 is based on a classification system derived by
Rosser and Watts9 and values paired combinations
of eight categories of disability (no disability to
unconscious) and four categories of distress (none,
mild, moderate and severe). The matrix represents
the average valuation by 70 people (20 patients, 

Chapter 15

Quality-adjusted life years
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20 nurses, 20 healthy volunteers and ten doctors),
given on a scale of 0, representing death, to 1,
representing perfect health, with two negative
values representing states worse than death.

If patients in a study are categorised into the same
health states as the Rosser and Kind valuation
matrix,8 then the utilities from the matrix can be
used in QALY calculations. One approach is to use
clinical judgement to place patients into the cate-
gories,10–13 while another approach is to use the
Health Measurement Questionnaire, as developed
at the University of York.14 The questionnaire has
been specially devised so that responses given by
individuals can be used to place them into one 
of the Rosser and Kind categories.15,16 A further
approach may be to reprocess quality-of-life data
collected by other means to categorise patients.17–21

There has been some discussion regarding the
appropriateness of using the Rosser and Kind
valuation matrix.21–24 Criticisms relate to the study
being out-of-date, the sample on which valuations
were measured being small and unrepresentative 
of the general population, and the scale being
insensitive. There has also been criticism regarding
the use of the Health Measurement Questionnaire
before proper testing and validation of the instru-
ment has been carried out.25 The use of the Rosser
and Kind valuation matrix has been largely super-
seded by others such as the EuroQol.26

Measuring utilities: the holistic approach
The most accurate way to measure utility values is
by questioning a sample of individuals and eliciting
their relative preferences for health states. The
holistic approach considers a health state as a
complete entity. The subjects could be the patients
themselves, health professionals or the general
public. The choice of subjects may not be import-
ant since large differences in utilities between
different groups of people are unusual,7 although
some differences have been observed.27–29

In a clinical trial scenario, patients are the most
appropriate subjects when measuring the utility 
of their condition. If, for example, health profes-
sionals or the general public are asked to measure
the utility of a health state then a clear description
needs to be given, since, unlike a patient, they 
are not actually in that health state and have 
not experienced it. The description should be
abbreviated in terms of the physical, emotional 
and social functioning of the condition and should
include age at onset, duration of the state, exact
prognosis for what follows the state and whether 
it applies to them or someone else.7 The general

public may need a different level of detail to that
given to health professionals.

Having selected the individuals on whom utilities
will be measured, an appropriate approach to
measuring utilities needs to be chosen. There are
three main methods that will be discussed here,
although other methods such as ratio scaling7

may also be used. The rating scale is a direct
method for eliciting subject preferences while 
the standard gamble and time trade-off (TTO) 
are indirect methods.

Rating scale
The rating scale method involves presenting
subjects with a line on a page, with one end of 
the line clearly defined as the most preferred
health state and the other end as the least pre-
ferred. The subjects are asked to place health 
states on the line, such that the order and 
spacing represent preferences and differences 
in preferences as perceived by the subject.

Standard gamble
This is the classical method of measuring cardinal
preferences and is the technique used in economic
theory to measure utilities. It is based directly on
the utility theory presented by von Neumann 
and Morgenstern.30

The subject is presented with two scenarios that
they must choose between:

(i) treatment resulting in either normal healthy
life for t years with probability p or immediate
death with a probability of 1 – p

(ii) a certain health state for life (t years).

The probability p is varied until the respondent is
indifferent to the two choices, thus giving the utility
value, p, for that state. There is evidence to suggest
that the standard gamble method overestimates
utilities for health states and an improved version
has been proposed.31

TTO
This method was developed specially for use in
health care by Torrance and colleagues.32 The
subject is asked how much time, x, in a state of
perfect health he/she considers equivalent to a
period, t, in his/her current health state (worse
than perfect health). The choice of the length of
period t is problematic. In practice, the subject
chooses between:

(i) a certain health state for timet followed by death
(ii) healthy for time x < t followed by death.
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Time x is varied until the respondent is indifferent
to the choices and x / t , the TTO-score, ranging
from 0 to 1, provides an estimate of the utility for
that state.

When the TTO-score assessed for time t is applied
to other periods then constant proportional 
trade-off is assumed. For example, if an individual
considers 16 years in perfect health equivalent 
to 20 years in a reduced health state, then it is
assumed they would also consider 4 years in perfect
health to be equivalent to 5 years in the reduced
health state. Studies have shown that this assump-
tion may not always be valid.27,33,34 A violation of 
the proportionality assumption invalidates the
calculation of a TTO-score and subsequent appli-
cation of this score to periods of length other 
than t in QALY calculations (see page 62). For
further discussion regarding the interpretation 
of the TTO score as a measure of utility, see the
paper by Stalmeier and colleagues.35

Comparison of methods
The standard gamble method is the gold 
standard for measuring utilities but is impractical,
especially when a large number of health states
need to be measured, and can be expensive
because of the need for interviewers. The TTO 
is similar to the standard gamble but is easier to
use, and the rating scale method is the simplest 
of all. The TTO and rating scale methods, however,
do not in general measure utility directly since 
they do not involve probabilities, and utilities 
are preferences measured under conditions of
uncertainty. Preference values, v, from methods
such as TTO and rating scale, can be converted 
to utilities, u, using a power function:36,37

(1 – u) = (1 – v)α (16)

where α reflects the risk attitude of the individuals
(0 < α < 1 reflects risk-averse, α > 1 reflects risk-
seeking, and α = 1 reflects risk-neutral) and may 
be estimated by measuring values and utilities on
the same health states. The TTO method only
measures the true utility when people are risk-
neutral (α = 1) and the utility function is linear in
time. Studies have shown that the TTO method
tends to underestimate utilities since individuals
are generally risk-averse rather than risk-neutral.38

The rating scale, standard gamble and TTO
methods have been compared with each other and
with other methods.29,39–43 The different methods
can give very different results and this can then
affect any analysis that incorporates them.29,40

Torrance41 recommended researchers to use 

the TTO technique if they could afford it and,
otherwise, to use the rating scale with power 
curve correction (equation 16).

Measuring utilities: the decomposed
approach
The decomposed approach to measuring utilities 
is based on multi-attribute utility theory,37 in 
which health status is described in terms of a set 
of core attributes, each broken down into a series
of levels describing the range of functioning (as
shown by Barr and colleagues,44 for example). 
Each different combination of levels, one from
each attribute, represents a unique health state.

Utility values for each subject in the study are
estimated by measuring the health status of a
patient using a questionnaire, and converting their
responses into a utility by combining them in a
predetermined formulation. A variety of question-
naires have been devised to measure preferences
using a decomposed approach, including the
Health Utility Index, the Quality of Well-being
Scale, the Rosser Index and the EuroQol26 (now
called the EQ-5D). A comparison of these instru-
ments is reported in another issue of Health
Technology Assessment.45

QALY methodology

The QALY model
To calculate QALYs, years of life are multiplied 
by a fraction, the quality-adjustment fraction, 
which expresses the impairment in quality of 
life experienced during this time. The quality-
adjustment fraction, ranging from 0, representing
quality of life equivalent to death, to 1, represent-
ing perfect health, may represent the utility and
can be derived in several ways (see above).

If the patient experiences or is expected to
experience a series of health states s i (i = 1 to n),
with different levels of quality of life measured 
by utilities u i (i = 1 to n), and the time spent in
each state s i is given by t i (i = 1 to n), then the
conventional approach to calculating QALYs is 
to sum the weighted times spent in the different
states. This gives the following standard form 
for the QALY model:

n

QALY = ∑ u i t i (17)
t = 1

In graphical terms, if the quality of life of an
individual, represented by utility values, is plotted
over time, then the QALYs for that individual are
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calculated as the area under this curve (see below
and also Figures 16 and 17 later for examples from
the MIC data).

Discounting
QALYs are sometimes discounted to adjust for 
the fact that immediate benefits are generally
valued more highly than later ones. The benefits 
of future life years are converted into present
values by discounting. A discount rate of 5% per
annum is used in most studies. If discounting is 
at a rate of r % per year, then the discount factor 
for year n is given by:

Discount factorn = (1 + r/100)–n (18)

For example, suppose an individual lives for 5 years
with a quality-adjustment fraction of 0.8, then the
total number of non-discounted QALYs will be 4
(i.e. 5 × 0.8). If discounting at 5% per year then the
total number of discounted QALYs will be 3.46 (i.e.
(1.05–1 × 0.8) + (1.05–2 × 0.8) + ... + (1.05–5 × 0.8)).
Gudex and Kind14 expand further on discounting
in their explanation of QALY methodology using
Rosser and Kind valuations.

Model assumptions
Glasziou and colleagues46 discuss the assumptions
on which the QALY model is based, which are 
as follows:

• utility independence: the utility value for a
health state does not depend on the time 
spent in that state

• context independence: the utility value assigned
to a health state is independent of previous 
or future quality of life or the amount of
remaining life

• risk neutrality: all life years are valued
equivalently.

The risk neutrality assumption means that time 
is included in the model as a linear term, t, rather
than as a non-linear function of time, that is, f(t).
More general models, that include some sort 
of discounting or risk-adjustment, have also 
been suggested.46–48

Practical issues
Given longitudinal quality-of-life data and 
survival times for a group of subjects, there are 
two approaches to calculating QALYs. The first 
is to use the serial measurements as utility values
over time and thus calculate QALYs for each
individual. This is straightforward if the instrument
for measuring quality of life yields a utility-type
value, otherwise the quality-of-life scores need to 

be transformed so that they are on a 0–1 scale, with
0 representing death and 1 representing perfect
health. The second approach is to use the quality-
of-life data to categorise a patient at any time into
one of a number of health states. The utility values
for these health states are determined separately
and can be combined with the time spent in each
health state to form QALYs for each patient.

If the quality of life for an individual changes
between two consecutive assessments then, for 
both approaches to QALY calculation, a technique
for determining the exact time of the change is
required. Three possible techniques are as follows
(see Figure 15):

(a) assume that quality of life changes linearly
between assessments

(b) assume that quality of life is maintained from
one assessment to the next

(c) assume that quality of life changes at the mid-
point between assessments.

The appropriate choice may depend on the type 
of quality-of-life measurement, the timing of the
assessments and the period to which the questions
relate. Ganiats and colleagues49 compared the 
first two techniques and concluded that either the
appropriate choice for a study should be decided 
at the protocol stage or a sensitivity analysis should
be carried out to establish the extent to which the
conclusions are affected by the technique chosen.

Example: calculating QALYs in 
the MIC study
In the MIC study, quality-of-life data is available
only for the first 18 weeks from study entry (see
chapter 4) and so only the survival time for this
limited period can be adjusted for quality of life.
Assessments were made at several distinct time
points during this period and various assumptions
are needed in order to translate the quality-of-life
information so that it is available over continuous
time (see below). Sensitivity analysis could be 
used to assess the impact of the assumptions 
on the conclusions of any analysis. The two
approaches to calculating QALYs, based on 
these assumptions, are described below.

Assumptions regarding quality of life
over time
Time between study entry and first assessment
Quality of life during the time between study 
entry and first assessment was assumed to be that
measured at the first assessment, that is, the first
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value was carried backwards to date of study 
entry. This is not an unreasonable assumption,
firstly because the questionnaire related to the
previous 3-week period and, secondly, because 
the time between study entry and first assessment
was reasonably short (median, 1 week; range, 
0–6.7 weeks).

Time between last assessment and either death
or 18 weeks
Quality of life during the time between last
assessment and either death or 18 weeks (which-
ever came first) was assumed to be that measured 
at the last assessment, that is, the last value was
carried forward. This is not an unreasonable
assumption if the period is short but, for those who
drop out of the study for reasons other than death,
this assumption may be problematic (see Table 8).
Other approaches, such as worst value carried
forward and linear decrease over time were
considered. Each has its own problems, especially
when dealing with drop-outs (see Table 8).

Times of changes in quality of life
If quality of life changes between two consecutive
assessments then the change is assumed to occur 
at the midpoint between the two assessment times.
This is assumption (c) discussed above under
‘Practical issues’. Quality of life is assumed to
remain constant between changes. Intermittent
missing quality-of-life values are handled by
considering consecutive non-missing assessments
when determining changes in quality of life. 
Thus, if there was a change in quality of life
between assessment m taken at t m and assessment 
n taken at t n, where m < n, then the time of 
change was taken as:

Time of change = t m + 0.5 (t n – t m) (19)

Alternatives for estimating the exact times of
change were considered. The actual assessment
date when the change in quality of life was
measured could have been used, that is, assump-
tion (b) discussed above under ‘Practical issues’.
However, this option takes no account of the 
fact that the questionnaire was retrospective. To
accommodate this, an alternative was considered 
in which time of change was chosen as the date 
3 weeks before the date when the change in quality
of life was measured. For various reasons, this was
problematic and it was considered that, in reality,
the patient would probably not recall their quality
of life that far back. The midpoint option therefore
seemed the most realistic and the effect of this
choice on the analysis could be investigated in a
sensitivity analysis.
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FIGURE 15  Handling the change in quality of life between
assessments
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Calculating QALYs
Two different approaches, as discussed earlier, 
were considered for calculating QALYs in the 
MIC study. One approach was to use MQSs to
estimate utility over time and calculate QALYs. 
The other approach was to use MAL to divide
survival time into periods of differing quality 
of life and use selected utility values to 
calculate QALYs.

In order to use the MQS as a utility, transformation
of the score was required. The maximum possible
score of 3, occurring when all symptoms and side-
effects were severe, was not deemed to be equi-
valent to death and so a score of 4 was allocated to
death. The minimum possible score was 0, which
occurred when there were no symptoms or side-
effects, reflecting perfect health. The following
transformation reverses the score and places it 
on a 0 to 1 scale:

MQS′ = 1 – MQS / 4 (20)

with MQS′ = 0 assumed to be the quality-of-life
score for death. The problem with this approach 
in the MIC study is that quality of life was not
measured as a utility. In particular, the responses
were categorical and quality of life was not 
assessed relative to death. Thus the use of the
transformed score as a utility is subjective and
controversial, and should be viewed only as an
illustrative example.

As an alternative, MAL was used to divide each
patient’s survival time within 18 weeks into periods
of ‘good’ (MAL = 0) and ‘poor’ (MAL = 1, 2 or 3)
quality of life. To illustrate this approach, utility
values for these two health states were chosen
arbitrarily as 1 and 0.8, respectively. The choice 
of utility values is subjective but alternative 
values can be considered as part of a sensitivity
analysis. This approach to QALY calculation was
chosen as the preferred option for the MIC 
study, since it was more flexible with regard 
to utilities.

As an illustration, the QALYs calculated from 
each approach were compared for two individuals
in the MIC study, one who died within the 18-week
period (see Figure 16) and one who died after 
18 weeks (see Figure 17). The values of MQS′ were
plotted over time, together with the division of
survival time based on MAL. The area under each
of these curves gives the QALYs within 18 weeks 
for those individuals. The plots in Figure 16 gave
QALYs of 13.58 for MQS′ and 16.21 for MAL, while
those in Figure 17 gave QALYs of 12.21 for MQS′

and 15.27 for MAL. The QALYs based on MAL are
used in chapter 16 to illustrate a quality-adjusted
survival analysis.

Applications of QALYs

QALYs are widely used in the fields of health
economics and decision analysis and a brief 
outline of such applications follows. Examples are
given and further examples can be found in the
bibliography (see page 109). QALYs can also be
used as the outcome measure in an assessment of
treatments in a clinical trial. This forms the basis

1.0

0.8

0.6

0.4

0.2

0

Utility score

0 642 8 10 12 14 16
Time from entry to study (weeks)

18

FIGURE 16  Quality-of-life profile for an individual in the MIC
study who died within 18 weeks (——, MAL; – – –, MQS; vertical
dotted lines represent QoL assessment times)
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for quality-adjusted survival analysis, discussed in
chapter 16.

The use of QALYs in health economics
Cost–utility analysis assesses health technologies 
in terms of cost per QALY. For example, a hip
replacement costs £750 per QALY gained and a
heart transplant costs £5000 per QALY gained.2

Different strategies for treating a group of patients
can be compared in terms of this outcome mea-
sure, to aid determination of the optimal treat-
ment.50–56 The use of QALYs in this context has
been discussed.57–59 Cost–utility analysis can also be
used to assess the benefits of health interventions
such as disease prevention programmes,60 screen-
ing programmes61,62 and healthcare guidelines.63

Further examples can be found in the decision-
analysis field (see below).

A major use of cost–utility analysis is in the
prioritisation of strategies for treating different
groups of patients, aiding decisions regarding
resource allocation. Gudex21 provides a detailed
example of the use of QALYs for this purpose. 
The use of QALYs in resource allocation has been
discussed,2,64–68 although there is much controversy
regarding such applications (see below).

The use of QALYs in decision analysis
Decision analysis is a technique used to aid clinical
decision making and is sometimes seen as an
alternative to other approaches, such as clinical
trials and meta-analysis, for health technology
assessment. It provides a means of synthesising all
existing knowledge on an intervention and quanti-
fying the net benefits. Decision analysis is not only
useful for evaluating optimal treatment for
patients, but also for identifying the most import-
ant variables in decision-making processes.69

Life expectancy has been the most popular
outcome measurement for decision analyses 
but QALYs are also now being widely used as 
an alternative.70 Using QALYs as an outcome
measure requires estimates of life expectancy,
together with appropriate quality-of-life adjust-
ments. Cost–utility analysis is a specialised form 
of decision analysis using cost per QALY as an
outcome measure. There are many examples 
in the literature in which QALYs have been 
used in a decision analysis to evaluate various
health technologies.71–113

Weinstein and Feinberg69 provide a definitive guide
to the methodology of clinical decision analysis,
while others discuss the use of Markov models in
this context.114,115 The basic model for a decision

analysis, which defines the clinical situation for
which a decision is needed, is usually represented
by a decision tree. For each treatment alternative,
the sequence of possible events are represented 
by a series of decision nodes (events over which
clinician has some control) and chance nodes
(events over which there is no control). Transition
probabilities are allocated to each chance event,
using existing knowledge from previous studies,
routinely collected data or subjective expert
opinion. In the same way, utility values need 
to be assigned to each health state to reflect 
the quality of life in that state.

If the outcome measures for the decision analysis 
are QALYs, then estimates of life expectancy are
combined with appropriate utility values. Life
expectancy can be estimated using methods 
such as declining exponential approximation 
to life expectancy (or DEALE) and Gompertz
models,116,117 or methods based on Markov models,
such as Markov cohort simulation and Monte Carlo
simulation.114,115 Quality-adjusted life expectancy
can be calculated for each treatment option, with
the treatment with the maximum value assumed 
to be optimal.

Sensitivity analyses are usually carried out to
explore how possible ranges of values in terms 
of transition probabilities, utilities and costs may
affect the conclusions. Considering the effects of
changing more than one variable at a time, in a
two- or three-way sensitivity analysis, for example,89

may be more realistic but can become complex.
Another complex approach, probabilistic sensitivity
analysis, uses probability density functions for each
variable to account for uncertainty.89 Receiver–
operator-characteristic curves can also be used in 
a sensitivity analysis to identify the most important
variables for a decision problem.112

Critical appraisal of QALYs

There has been much discussion about QALYs
relating to both the theoretical and practical
difficulties associated with their calculation, 
and controversy remains regarding their usage. 
A selection of references discussing QALYs are
given here and further references can be found 
in the bibliography (page 109).

Theoretical and practical difficulties
A major difficulty with QALYs is the derivation of
appropriate quality-adjustment fractions. QALYs
need to be theoretically and methodologically
correct but they also need to be based on ‘good’



Quality-adjusted life years

62

quality (i.e. accurate) data.6 The basic concept that
quality of life can be measured in cardinal numbers
on a ratio scale could itself be questioned118 but,
assuming that quality of life is measurable, there is
still the difficulty that quality-adjustment fractions
need to account for the many different ways in
which quality of life can be impaired.119

Quality-adjustment fractions need to be derived
from an appropriate and reliable source. The
extensive use of the Rosser valuation matrix8

as quality-adjustment fractions in QALYs is
questioned;119–121 the quality ratings were based 
on judgements from a small sample of arbitrarily
chosen respondents and were never intended to 
be used for calculating QALYs. A further difficulty
in the derivation of quality-adjustment fractions is
the requirement for them to satisfy ‘reciprocal
commensurability’ between duration and quality 
of survival (called constant proportional trade-off
on page 57), that is, x years of life at x –1 quality
should be equivalent to 1 year of life at unimpaired
quality.119 There is some empirical evidence that
validates this concept.122

There has been much discussion regarding the
validity of the assumptions underlying the QALY
model (see page 58), especially by authors advo-
cating an alternative measure (see below). Carr-
Hill123 examines in detail the theoretical assump-
tions underlying the QALY procedure. There is
some empirical evidence to show that none of the
assumptions hold.124 In particular, empirical
evidence from Richardson and colleagues125 casts
doubt on the validity of the additive assumption 
in the usual QALY model. The advantage of the
model assumptions is that they greatly simplify 
the measurement requirements126 and alternatives, 
such as the healthy-years equivalent (HYE), which
overcome the restriction of the assumptions are
difficult to implement practically (see below).
QALYs are based on utility theory and, since this is
the source of some weaknesses of the methodology,
regret theory and prospect theory have been
suggested as alternatives.127

Ethics and criticisms regarding the use
of QALYs
There is much debate about the ethics of using
QALYs.119,120,127–143 When QALYs are used to deter-
mine the optimal treatment for patients, there
appear to be no ethical arguments against them.
However, when QALYs are used as an aid to
resource allocation, that is, to prioritise which
patients to treat, then there are many ethical
arguments against them. Harris138 believes in 
this context that they are “positively dangerous 

and morally indefensible” and discusses the
unfairness of using QALYs for resource allocation,
with particular reference to the fact that they 
are ageist.

Another concern regarding the use of QALYs 
for resource allocation is that like should be
compared with like;144 if, in the calculation of
QALYs for different health technologies, different
types of valuational measures have been used, 
then it is not valid to make a direct comparison.65

Furthermore, if QALYs are to be used in a social
context, such as for resource allocation decisions,
then the derivation of utilities for input into QALY
calculations needs to be based on a social context
rather than on an individual basis.145,146

Alternative and related methods
to QALYs
Healthy-years equivalents
HYEs were originally proposed by Mehrez and
Gafni147 as an alternative measure to QALYs. Like
QALYs they combine two outcomes of interest:
quality and quantity of life. QALYs were criticised
for only partially incorporating patient preferences,
with the utility approach used to obtain quality-
adjustment fractions for each state separately in 
a patient’s health profile. HYEs were proposed 
as superior since they obtain the utility for the
whole health profile and, therefore, fully represent
the individual’s preferences.

The advantages of using HYEs are that they do 
not rely on the restrictive assumptions of the 
QALY model (see page 58) and they allow attitudes
towards risk to be incorporated.124,147 There has
been much debate regarding these claims, together
with comparisons between HYEs and QALYs126,148–157

(see Bibliography for further references).

HYEs are calculated using a two-stage scheme
involving two standard gamble questions (see 
page 56 for information on the standard gamble
procedure). It has been argued126,149 that this two-
stage procedure is unnecessary since it is equivalent
to a straightforward TTO (see page 56 for inform-
ation on the TTO technique). One of the major
problems with HYEs, admitted by Mehrez and
Gafni in their original paper,147 is their feasibility.
Individuals have to participate in much longer and
more complex interviews, and the costs associated
with this, together with the willingness of partici-
pants, may be prohibitive. The completeness,
validity and reliability of the answers given in 
such a situation are questionable.
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Saved young life equivalent
Nord158 proposed an alternative to QALYs for
comparing health technologies that would over-
come some of the problems associated with them.
He suggested comparisons in terms of units of
saving a young life and restoring the young life to
full health, referred to as the saved young life
equivalent (SAVE). It was chosen in the belief that
most people would regard it as the maximum
benefit that a single individual could obtain.
Outcomes from interventions, described as fully 
as desired, could then be valued in terms of
numbers of SAVEs. Nord proposed that SAVEs,
which measure social value, should be used in
addition to QALYs rather than to replace them.

This proposed measure was criticised for not 
being adequately defined, particularly in terms 
of what was meant by ‘young’ and also for dis-
advantaging older or disabled patients.159–161 Nord
defended his measure, saying that SAVEs allow
society to decide on the importance of age in
valuing interventions.162 The SAVE procedure is 
a specific form of a more general approach called
the ‘person-trade-off approach’, proposed by 
Nord as an alternative to the QALY.163

Quality-adjusted lives
Another alternative to the QALY is the quality-
adjusted life (QAL), where treatments are assessed
in terms of numbers of lives saved rather than
length of life. Stevenson and colleagues164 assessed
neonatal intensive care for low birthweight babies
using QALs as well as QALYs but only presented
results based on QALs, claiming that the two
measures gave similar results in this context. The
method assessed neonatal intensive care purely in
terms of numbers of surviving babies but each life
was weighted according to the level of disablement
of the child.

Healthy life expectancy
Healthy life expectancy (or health expectancy) is
an indicator of the health status of a population,
combining mortality and morbidity into a single
index, and is used in an epidemiological context. 
It has been defined as the number of further years
of life in good health that someone of a specified
age can, on average, expect to enjoy, given the age-
specific rates of mortality and morbidity prevailing
in the population.165

Healthy life expectancy is known under various
different names depending on the definition 
of ‘healthy’. Examples include disease-free life
expectancy, disability-free life expectancy and 
quality-adjusted life expectancy. There has been

some discussion regarding terminology used in the
field of healthy life expectancy.166,167

There are three different methods for calculating
healthy life expectancy: the Sullivan method, the
double decrement method and the multistate
method. These are described and compared by
Barendregt and colleagues.168 All three methods
are variations on the standard procedure for
calculating life expectancy using life tables and
each has different data requirements. The Sullivan
method is the most widely used because it is the
simplest and is the least demanding in terms of
data requirements but it can be unreliable.168

Healthy life expectancy can be used to assess 
the impact of chronic diseases on the health 
of a population,169,170 to assess the impact of an
intervention on the health of a population,171

or to examine the underlying trend in the health 
of a population.172 If healthy life expectancy is 
to be used as a measure by which to compare 
populations then standardisation, in terms of
definitions and instruments measuring morbidity, 
is required.165,173 Conceptual and ethical issues
regarding the use of healthy life expectancy 
have also been raised.174,175
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Introduction
Quality-adjusted survival analysis can be used as an
alternative to survival analysis in assessing health
technologies in studies in which quality of life and
survival are both important endpoints. Adjustments
are made to account for the quality of life experi-
enced during the survival time using approaches
based on the QALY model (see chapter 15).

There are two main approaches to quality-adjusted
survival analysis depending on the level of aggre-
gation of the data. The subject-based approach
combines quality-of-life and survival data at the
patient level, thus creating a single endpoint for
each subject on which to compare health tech-
nologies, while the population-based approach
aggregates the quality-of-life and survival data 
at a (pre-defined) group level.

The first part of this chapter covers both subject-
based and population-based approaches to quality-
adjusted survival analysis using QALYs. A special
form of QALY, known as TWiST is described; the
analysis of this endpoint is discussed in terms of a
subject-based approach. An extension of the TWiST
concept, Q-TWiST, is also described; here the
analysis takes the population-based approach.

Quality-adjusted survival analysis
using a QALY model
Subject-based approach
In any study assessing health technologies, 
QALYs can be calculated for each subject by
weighting periods of survival time according to 
the quality of life experienced during these periods
(see chapter 15). The sum of these weighted
survival times creates a single endpoint for each
subject for which health technologies can then 
be compared.

If survival times are known for all the patients 
in a study (i.e. none are censored), then standard
techniques for dealing with continuous data can be
used.1 The sample mean and standard deviation of
the QALYs for the patients in each treatment arm
could be used to provide an estimate of the mean
treatment difference in QALYs, together with an

appropriate CI. The hypothesis of no difference
between treatments in terms of QALYs can be
tested using a t test, for example, if distributional
assumptions were satisfied.

If the data for some patients are censored, then 
a standard survival analysis using QALYs for each
individual as an endpoint rather than actual
survival time may seem appropriate. However, 
there will be a problem of informative censoring
(see page 11). Survival time for patients with 
poor quality of life will receive a lower weighting
than that for patients with good quality of life.
Patients with poor quality of life will thus accum-
ulate QALYs at a slower rate and will, therefore, 
be censored earlier on the QALY timescale than
those with good quality of life. This will give biased
Kaplan–Meier estimates and invalidate the log-rank
test, as well as other standard survival analysis
techniques, as a means of comparing treatments.

In the situation of informative censoring, there are
two options available for a valid analysis.

1. The censoring date for the analysis could 
be set as the smallest censored survival time
value, thus restricting the analysis to a period
during which all subjects have full follow-up
and eliminating censoring. This is only feasible
if the smallest censored value is quite large,
otherwise a considerable number of events
may be lost, thus reducing the statistical power
of the analysis.

2. A population-based approach such as that
based on the QALY model or the Q-TWiST
model may be used. Using this approach,
survival analysis is applied to unweighted
survival times, for which censoring is non-
informative, and the quality-of-life weightings
are then applied to treatment group averages
obtained from this unbiased survival analysis.

Example using the MIC data
Quality-of-life data was restricted to the 18 weeks
from entry to the study, hence a quality-adjusted
survival analysis was only possible over this period.
An unadjusted survival analysis (see page 44)
showed a statistically significant difference in
survival within 18 weeks of entry to trial (log-rank
test χ2 = 8.07, p = 0.005).

Chapter 16

Quality-adjusted survival analysis
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QALYs within 18 weeks of study entry were
calculated for each individual (see page 58). All
were followed-up for at least 18 weeks; hence, there
were no censored survival times within this period.
Quality-adjusted survival analysis using QALYs for
each patient as an endpoint is thus straightforward
since, with no censored data, informative censoring
is not a problem. Restricting the analysis of the MIC
data to 18 weeks from study entry, because of the
availability of quality-of-life data, has essentially
resulted in overcoming the informative censoring
problem in a way equivalent to the first option
discussed above.

With no censored data, treatment comparisons 
can be made using either standard techniques 
for continuous measures or standard survival
techniques without concern about bias. Since the
data distribution was not normal, standard survival
analysis techniques were used to compare treat-
ments. Kaplan–Meier survival curves for quality-
adjusted survival (see Figure 18) showed chemo-
therapy to be superior to palliative therapy but the
difference was not of statistical significance (log-
rank test χ2 = 1.33, p = 0.25). It should be noted
that the steps on these Kaplan–Meier curves do 
not represent deaths, as they would for a standard
survival endpoint, but show reductions in the
proportion of patients achieving increasing levels
of quality-adjusted survival time.

In conclusion, although treatments differed in
terms of survival within 18 weeks, they were not
found to differ in terms of quality-adjusted survival.
This is based on the use of a value of 0.8 to weight

periods with poor quality of life. Sensitivity analysis
should be used to establish the robustness of
conclusions to the choice of weighting factor 
used to calculate the QALY endpoint for 
each patient.

Population-based approach
The subject-based approach to quality-adjusted
survival analysis using QALYs can be problematic
and lead to biased results in situations with 
censored survival times. It may therefore be
preferable to use a population-based approach.
This method combines the quality-of-life and
survival data at the population or group level 
rather than at the subject level.

Essentially, a quality-adjusted survival curve for 
a population is formed by plotting, against time t,
the product of the mean quality of life of patients
living at time t and the probability of surviving 
to time t. The area under this quality-adjusted
survival curve gives the mean quality-adjusted
survival for the population. Beacon2 refers to 
this method as the integrated quality–survival
product and illustrates the method using 
quality-of-life data.

In situations in which quality of life is measured 
at k discrete time points, t 1, t 2, ... t k , the following
function is an estimator of the expected quality-
adjusted survival time (QAS).3

k

QAS = ∑((Q i + Q i +1)/2)((Si + Si +1)/2)(ti +1 – ti) (21)
i = 1

where Q i (i = 1–k) is an estimate of the mean
quality of life at time t i and S i (i = 1–k) is an
estimate of the probability of survival to time t i. 
In this model, the quality-of-life and survival
probabilities in the interval between two time
points are assumed to be the average of the values
at the time points at each end of the interval.

Hwang and colleagues3 suggest that survival
probabilities could be estimated using standard
methods such as the life table method, Kaplan–
Meier estimates, or by using parametric models;
they also suggest estimating the mean quality 
of life at the given times using kernel smoothing
methods. Calculation of the standard error of 
the mean quality-adjusted survival time is mathe-
matically complex and here they suggest using
bootstrap methods4,5 (see page 77).

Ganiats and colleagues6 identified and compared
three methods for estimating the mean quality of
life and survival probabilities for input into

100

75

50

25

0

Cumulative proportion (%)

0 642 8 10 12 14 16
Quality-adjusted time (weeks)

18

Numbers at risk
CT
PAL

67
42

61
36

56
28

9
4

FIGURE 18  Quality-adjusted survival analysis of the MIC data
using QALYs (——, CT; - - -, PAL)



Health Technology Assessment 1999; Vol. 3: No. 10

73

equation 21. The simplest method is to use the
mean of the quality-of-life data at time t i and the
proportion of subjects surviving this time as the
crude survival estimate. A refinement of this
method is to use Kaplan–Meier estimates of the
probability of survival to time t i instead of the
crude estimates. A third suggested method is 
to use maximum likelihood estimates of the 
quality of life and the probability of survival 
at each time point.

Each method has both advantages and
disadvantages.6 In summary, although the
maximum likelihood method is theoretically 
the most appealing, it is technically the most
difficult to implement and software is not readily
available. Otherwise the method using Kaplan–
Meier estimates is generally preferable to the 
crude method but has the disadvantage that
calculation of the CIs for the mean quality-
adjusted survival time is not straightforward,
requiring bootstrap methods4,5 (see page 77).

TWiST

Introduction
A special QALY endpoint for comparing 
therapies, which incorporates both length and
quality of survival into a single measure, has been
developed by Gelber and colleagues7 in a subject-
based approach to quality-adjusted survival analysis.
The endpoint which they devised, TWiST, is a
measure of the ‘good’ quality time experienced 
by the patient. It was originally developed to 
assess treatments for breast cancer,7–9 and has 
also been used in the assessment of treatments 
for ovarian cancer.10,11

Defining TWiST
TWiST is calculated for each patient by subtracting
from overall survival those periods during which

treatment or disease reduces their quality of 
life. This is equivalent to calculating QALYs 
for a patient using utility values of 0 for times 
with symptoms (REL) and toxicity (TOX), and
utility values of 1 otherwise.

Suppose that for patient i, TR i is the time from
start of treatment to symptomatic disease relapse
and TOX i is the amount of time spent (not
necessarily in consecutive periods) with toxicity
prior to relapse (see Figure 19): then

TWiSTi = TR i – TOX i (22)

If the follow-up for patient i is such that neither
TR i nor TOX i have been observed, then TWiST for
this patient will be censored and calculated as

TWiSTi = Ui – OTOX i (23)

where Ui is the length of follow-up for patient i 
and OTOX i is the value of TOX i observed during
follow-up. The follow-up for this patient may 
be such that the actual value of TOX i has been
observed but TR i has not, in which case TWiST 
for this patient will be censored and can be
calculated as

TWiSTi = Ui – TOXi (24)

where Ui is the length of follow-up for patient i.

The definitions of time with symptoms of 
disease (REL) and time with toxicity of treatment
(TOX) can be adjusted for different clinical
situations depending on disease and treatment
under study. Defining the untoward events that 
can occur and determining the importance
attached to each one, in terms of the amount 
of time subtracted from total survival, are of
paramount importance in creating a meaningful
TWiST measure.12
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FIGURE 19  An example of TWiST
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The definitions of TWiST in the literature have, 
in general, been based on clinical criteria rather
than patient-based measures of quality of life.
However, quality-of-life data collected via question-
naires at repeated assessments over time could 
be used to define TWiST. For example, Glimelius
and colleagues13 used average quality-of-life scores
from various parts of their questionnaire to define
TWiST for their study. They assigned a quality
weighting factor of 1 to the survival time during
which a patient had either an unchanged high
quality of life and no signs of symptomatically
progressive disease or improvement in quality-of-
life estimates without being hospitalised; all other
survival time was assigned a weighting factor of 0.
In further examples,2,14 survival time spent with
‘normal’ quality-of-life scores (as defined by the
quality-of-life instrument) is used as the definition
of TWiST.

Comparing treatments using TWiST
Redefining the endpoint for treatment
comparisons
Standard methods of survival analysis, such as
Kaplan–Meier, log-rank tests or Cox regression
models (see chapters 11 and 12), could be used 
on the TWiST endpoint to compare treatments.
However, as with the subject-based approach to
quality-adjusted survival analysis using QALYs 
(see page 71), standard survival techniques will 
be invalid because of informative censoring (see
page 11). For example, two patients may have 
been followed-up for the same length of time 
and both be censored but the one with longer
duration of toxicity will be censored earlier than
the one with shorter duration. This informative
censoring results in the Kaplan–Meier estimates 
of TWiST being overestimates of the true
(uncensored) TWiST.7

In order to reduce (or preferably eliminate) 
the amount of censoring, thus overcoming the
problem of informative censoring, Gelber and
colleagues7 suggested using accumulated TWiST
rather than TWiST as the endpoint for treatment
comparisons. Accumulated TWiST, TWiST(L), is
defined as the amount of TWiST observed within 
L time units from the start of treatment. If the 
cut-off time, L, is chosen such that all patients are
followed-up beyond that time (i.e. L ≤ Ui for all i),
then TWiST(L) is not censored and the standard
Kaplan–Meier method could be used to estimate
the survivor function of TWiST(L) without bias. In
addition to sensitivity analysis on the choice of L,
estimating TWiST(L) for various values of L may
show over time how the delay in relapse justifies
earlier toxic effects.

Comparison of treatments using means
Treatment comparison may be based on the 
mean TWiST(L), that is, the mean TWiST 
achieved within time L from start of treatment.
Gelber and colleagues7 considered estimating
mean TWiST(L) using the area under the Kaplan–
Meier curve for TWiST(L) but, from simulations,
they discovered that even when only 10–20% of
TWiST(L) observations were censored, the positive
bias of the Kaplan–Meier-derived means was
unacceptably large.

A replacement procedure may be preferable 
to the Kaplan–Meier method when estimating
mean TWiST(L).7 In using replacement pro-
cedures, censored values of TWiST(L) are 
replaced with some value in the interval of possible
values and then a simple average can be used 
as the estimate for mean TWiST(L). Standard
parametric or non-parametric methods can then 
be used to compare the means for two treatments.
Simulations showed that of the five possible
replacement values considered by Gelber and
colleagues,7 all resulted in reasonable estimates 
of mean TWiST(L).

Alternative methods of comparing treatments
As an alternative to comparing treatments using
mean TWiST(L), Gelber and colleagues7 suggested
that treatments could be compared with respect 
to TWiST(L) using quantile distance plots. The
quantile distance function, which represents 
the horizontal distance between the survivor
functions for two treatments, is plotted against 
the population percentile.

Willemse and colleagues10 suggested assessing
treatments using the ratio between TWiST and
progression-free survival, the TWiST index. This
measures the proportion of progression-free time
with ‘good’ quality of life and can be used as a kind
of cost–benefit ratio. Interpretation may be difficult
in situations in which some patients have censored
progression-free survival times.

TWiST analysis of MIC data
In the MIC study, MAL was used to define TWiST.
Periods within the first 18 weeks where no malaise
was experienced were defined as TWiST. For 
each patient, these periods were summed to 
give a total value for TWiST. As with the QALY
endpoint, the analysis of the TWiST endpoint in
the MIC data is straightforward, since there are 
no censored survival times within the18-week
analysis period. Restricting the analysis of the 
MIC data to18 weeks from study entry, for reasons
of quality-of-life data availability, is effectively
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equivalent to analysing accumulated TWiST(L)
within 18 weeks, i.e. TWiST(18).

With no censored data, treatment comparisons 
can be made using either standard techniques for
continuous measures or standard survival tech-
niques without concern for bias. Since data were
not normally distributed, standard survival analysis
techniques were used to compare treatments. The
area under the Kaplan–Meier survival curves (see
Figure 20) give estimates of the mean TWiST(18) in
each treatment group (mean = 6.6 weeks for CT
arm and 6.5 weeks for PAL arm). The treatments
were clearly very similar in terms of TWiST(18)
(log-rank test χ2 = 0.04, p = 0.85). Thus, although
treatments differed significantly in terms of survival
within 18 weeks (see page 44), they did not differ
with respect to TWiST(18).

Critical appraisal of TWiST and
suggested extensions
The TWiST model is a simplistic way of
incorporating quality-of-life into a survival-type
endpoint. Brunner15 criticised the model for many
reasons including the fact that the amounts of 
time deducted from overall survival to create the
TWiST endpoint are arbitrary and that the model
does not account for the quality-of-life experienced
during these times. Brunner considered that the
TWiST model obscured rather than clarified the
problem of weighing up the gains and losses in
quality of life associated with treatment, and
advocated subjective judgement in preference.

Gelber and colleagues7 suggested several
generalisations to their TWiST methodology:

• QALYs could be determined for individual
patients, based on personalised weightings

• constant proportions of TOX and REL could 
be added to TWiST to avoid equating these
periods to death

• application of a discount factor to adjust the
value of future gains relative to the present.

The second suggestion forms a basis for the 
Q-TWiST methodology (see below). The TWiST
model may be preferred to Q-TWiST, since it 
avoids the subjective quantification of times with
symptoms and toxicity.8 In addition, the TWiST
methodology is useful for clinical situations in
which toxic therapies are administered to 
patients who are free of symptomatic disease.8,9

In particular, TWiST may also be useful for solving
the dilemma of treatment selection when disease-
free survival differences are statistically significant
but overall survival differences are not, since it
deals with the fact that extensions to disease-free
time may be at the expense of treatment toxicity.7

Q-TWiST

Introduction
The Q-TWiST endpoint is a natural extension 
of the quality-of-life oriented endpoint TWiST 
and an adaptation of the concept of QALYs. 
TWiST methodology is extended so that periods
spent with toxicity or relapse are included in the
analysis but are weighted to represent their quality
value relative to TWiST. Thus, overall survival is
scaled downwards by arbitrarily giving survival
during treatment or symptoms a reduced value.

Q-TWiST was originally developed and used to
assess the effects of adjuvant therapy in women 
with breast cancer.1,16–18 It has since been modified
where necessary for use with other cancers, such as
lung cancer,19 lymphoma20 and rectal cancer,21 and
in other diseases, such as AIDS.22 Further work is
being done to develop Q-TWiST so that it can be
applied to neurological diseases such as multiple
sclerosis23 and epilepsy.24

Glasziou and colleagues1 provide a generalised 
and more mathematical background to the 
Q-TWiST methodology introduced by Goldhirsch
and colleagues.16 Gelber and colleagues25 provide
an updated overview of the Q-TWiST method that
includes all recent developments and extensions 
to the method.

There are three main steps in applying the 
Q-TWiST methodology:
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(i) defining the Q-TWiST model, which includes
defining the quality-of-life oriented health 
states and their associated weights

(ii) partitioning the overall survival time into the
defined health states in order to calculate the
average time spent in each state

(iii) comparing the treatments using Q-TWiST,
calculated from a weighted sum of the average
time spent in each state.

Defining the Q-TWiST model
Defining health states
During the course of a clinical trial it is assumed
that the patient passes through a series of progres-
sive health states that differ in terms of quality of
life. The length of time spent in each health state
may be affected by the treatment being received 
by the patient. It is a key assumption that patients
progress through the health states in sequence 
but that any state may be skipped. The first step 
in a Q-TWiST analysis, therefore, is to define 
these health states so that they are clinically
meaningful and such that they will highlight
specific differences between the treatments 
being compared.

In general, any number and type of health 
states can be defined, say H 1, H 2, ..., H k + 1 where 
H k + 1 usually represents death. In the original
breast cancer application for which the method 
was developed,16 the following health states 
were defined:

TOX time having subjective toxic side-effects
TWiST time without symptoms or toxicity
REL time following systemic relapse (including

time spent recovering from treatment for
local recurrence).

The clinical criteria which defined those sections of
a patient’s follow-up time that would fall into these
health states were fully specified.

Applications of Q-TWiST tend to use either 
the same health states as the original breast 
cancer example, with slightly different definitions
or a slightly modified version. Rosenthal and
colleagues19 used the same TOX, TWiST and 
REL health states in their lung cancer study, 
as did Gelber and colleagues21 in their adjuvant
study of rectal cancer. Gelber and colleagues22

used slightly modified states in their Q-TWiST
analysis of symptomatic HIV patients. In this 
study, patients could move from TWiST to a state
where first adverse events were experienced and
then on to a state of disease progression. Feldstein12

extended the original breast cancer states, adding 

a further ‘recovery’ state. Gelber and colleagues17

suggest that in some trials, it may be necessary to
define a second period of toxicity in addition to
TOX, to represent the late toxic effects of treat-
ments on a patient’s quality of life. The Q-TWiST
methodology is not always immediately applicable
to other diseases, since clear-cut health states 
may be difficult to define.23,24 Health states in 
most Q-TWiST applications are defined using
clinical criteria but patient-assessed quality-of-life
data has been used.2

The Q-TWiST model
The model used for Q-TWiST is a QALY one 
(see page 57). In general, weights (which may 
be utilities) taking values between zero and one,
inclusive, are allocated to each health state. These
represent the quality values of each health state
relative to TWiST, with 0 indicating a state as bad 
as death and 1 indicating perfect health. Quality-
adjusted survival is then defined as the weighted
sum of the time spent in each health state. The
assumptions for a QALY model (see page 58) are
applicable to the Q-TWiST model.

One particular form of the model16 is represented
by

Q-TWiST = u tTOX + TWiST + u r REL (25)

where TOX is the time spent with toxicity resulting
from treatment, REL is the time spent with symp-
toms of disease, and u t and u r are the utilities
associated with these periods of survival.

Discounting in the Q-TWiST model
The Q-TWiST analysis can be adapted so that a
greater emphasis is placed on the earlier years.
Discounting may be included by apply an appro-
priate transformation to the times in the data and
then using these transformed times in the subse-
quent partitioned survival analysis.1

The transformation used by Goldhirsch and
colleagues16 is such that each time t is replaced by

t new = 1 – (1 + r)–t (26)

where r is the required discount rate.

Partitioned survival analysis
It may seem appropriate to calculate Q-TWiST 
for each individual patient and then use a standard
survival analysis on this new quality-of-life oriented
endpoint to compare treatments. However, as 
with TWiST, Q-TWiST is related to the censoring
mechanism; patients with poor quality of life are
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censored earlier than those with better quality of
life. This problem of informative censoring (see
chapter 3) will give biased Kaplan–Meier estimates
of the survival function and invalidate any standard
survival analysis techniques. Partitioned survival
analysis, a population-based approach proposed 
by Glasziou and colleagues,1 provides a means of
handling the problem of informative censoring.
Overall survival is partitioned into the time spent 
in each health state and the mean duration in each
state for each group are combined as a weighted
sum according to the Q-TWiST model. Weighting
the time spent in each health state at the group
level, rather that at the individual level, avoids the
need to weight censored survival times and thus
overcomes the problem of informative censoring.

The date of exiting each successive health state 
is regarded as an endpoint and Kaplan–Meier
estimates are calculated for the time from a fixed
origin, such as date of randomisation, to each
endpoint. If the exit time from one health state is
censored at time t for a patient, then all subse-
quent exit times will be censored at time t. If a state
H i is skipped, then entering and exiting times are
set equal and the exit time for H i will be the same 
as for H i – 1. Kaplan–Meier survival curves corres-
ponding to each transition time can be overlaid 
on one graph to show the partitioning of overall
survival. These are called partitioned survival plots
and separate graphs should be produced for each
treatment group (see Figures 21 and 22 relating to
the MIC data).

For survival time T, the area under a survival curve
defined by the survivor function, S(t), provides an
estimate, of the mean survival time, E(T), given by

∞

E(T) = ∫ S(t) dt (27)
t = 0

The areas under the survival curves for successive
endpoints can therefore be estimated and used to
compute the areas between the curves giving estim-
ates of the mean duration of each health state.26

If censored data exist, the entire survival curve
cannot be estimated; thus these areas can only be
calculated if a specified time from randomisation is
chosen as the upper time limit for the analysis, that
is, the upper limit of the integral will be this time
limit rather than infinity. This is usually the upper
limit of observation or is based on the follow-up
time of the study cohort; it should be chosen so as
to reduce or, ideally, eliminate censoring. The
median follow-up time, as calculated from the

censoring distribution, is often used as the time
limit but will only be appropriate if it adequately
reduces the amount of censoring.

Mean times from randomisation to exiting 
each health state, restricted to the upper time 
limit, are calculated from the area beneath each
estimated survivor function from zero to the
chosen finite limit. In practice, the area under 
a survivor function is estimated by summing the
rectangular areas under the Kaplan–Meier 
curve using the following formula:

L

Area = ∑ ^
S (t i) (t i + 1 – t i) (28)

i = 0

where each t i (from i = 1 to i = L – 1) is a death
time, with t 0 defined to be zero and t L defined to
be the chosen upper time limit. The mean survival
time given by the SAS Institute in their LIFETEST
procedure27 gives the area under the survival curve.

Differences between successive restricted means 
for time from randomisation to exiting each health
state give the restricted mean duration in each
state. The restricted mean quality-adjusted survival
is estimated by combining the restricted mean
durations as a weighted sum according to the 
Q-TWiST model. Restricted means based on the
product limit method are asymptotically unbiased
and normally distributed.28 Consequently, statistical
inferences for quality-adjusted survival can be based
on the asymptotic normality of the estimates and
require the calculation of standard errors of the
estimates. The variance for quality-adjusted survival
can be estimated from the vector of utility weights
and the variance–covariance matrix for the mean
times in each state.1

Glasziou and colleagues1 found no simple
expression for the covariance terms when dealing
with restricted means and, hence, estimated the
variance–covariance matrix using the bootstrap
method.4,5 This means creating a new sample of
patients, N, by repeatedly sampling with replace-
ment from the N individuals in the trial. This
process is repeated thousands of times to obtain a
whole series of new data sets. Restricted means for
times spent in each state are calculated for each
data set to produce an empirical sampling distri-
bution, called a bootstrap sampling distribution, 
for the statistic. The variances and covariances
computed from these values are used as the
variance–covariance estimates. Gelber and
colleagues17 used variance–covariance estimates
based on a series of 1000 new data sets.
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Comparing treatments in terms 
of Q-TWiST
In some situations it may be possible to compare 
Q-TWiST for treatments using specific utility values.
These may be chosen arbitrarily if no patient-
derived information is available or they could be
based on a TTO or standard gamble study, for
example. In a study of patients with small-cell lung
cancer, Rosenthal and colleagues19 justified their
choice of utility coefficients for their final conclu-
sions (u t = 0.75 and u r = 0.25) as those which they
perceived to most closely resemble the clinical
experience of the patients. They compared their 
Q-TWiST results with those from a study by Good-
win and colleagues,29 who obtained their utility
coefficients (u t = 0.57 and u r = 0.15) from a proxy
group of patients and health professionals.

Other endpoints on which treatments are assessed,
such as overall survival, disease-free survival and
TWiST, correspond to Q-TWiST with extreme
values of u t and u r (see Table 22).

In most cases, utility weights will be unknown. One
approach in this situation is to compare treatments
using a spectrum of u t and u r values. Rosenthal and
colleagues19 examined quality-adjusted survival for
a range of utility coefficients and found that the
utility coefficient for TOX was far more influential
than that for REL.

Another approach is to carry out a threshold utility
analysis, a form of sensitivity analysis, in which trial
data are used to determine the utility values which
would give no difference between treatments, that
is, when restricted mean quality-adjusted survival
times for both treatments are equal. When there
are two unknown utility coefficients, the set of
values that give equal quality-adjusted survival is
described by a straight line on a two-dimensional
plot. CIs can be calculated for this ‘threshold line’
by finding pairs of utility coefficient values for
which the lower and upper bounds of the CI for
the treatment effect equals zero.1,25

Q-TWiST analysis of MIC data
The main problem with carrying out a Q-TWiST
analysis on the MIC data is defining progressive

health states. The MIC data do not conform to the
textbook categories of TOX, TWiST and REL for
two reasons. First, the patients in the MIC study
have extensive disease and are receiving palliative
treatments. They are therefore unlikely to experi-
ence time totally free of the symptoms of disease
and, thus, do not experience TWiST. This is likely
to be a common problem in many quality-of-life
studies. Second, the quality-of-life data are only
collected during the treatment stage of their
survival; hence, during the period of analysis (i.e.
18 weeks from entry to trial) they are constantly 
in the TOX state.

Since the data did not conform to the standard 
Q-TWiST health states, alternative progressive
health states had to be considered which could 
be derived from the data and were also clinically
meaningful. MAL, expressed as a two-level vari-
able, no malaise (MAL = 0) and malaise (MAL = 1,
2 or 3), was used to define ‘good’ and ‘poor’ states
of quality of life, respectively. Various sequences of
good and poor quality-of-life periods were experi-
enced by patients within the 18 weeks from study
entry and these were explored to help define 
the progressive sequence of health states (see 
Table 23).

To incorporate the sequences experienced by 
all patients (i.e. to include both GPGP and PGPG,
where G = good and P = poor), the definition of
progressive health states needed to include five
progressive health states (i.e. GPGPG or PGPGP).
This was considered to be beyond both the limit 
of intelligibility and the limited amount of data.
Hence, although a few patients would need to 
be excluded from the analysis, a definition
consisting of four progressive health states 
was considered preferable.

TABLE 22  Endpoints corresponding to various utility coefficients
in a Q-TWiST analysis

TOX (ut) TWiST REL (ur) Endpoint

1 1 1 Overall survival

1 1 0 Disease-free survival

0 1 0 TWiST

TABLE 23  Sequences of good (G) and poor (P) quality of life in
the MIC data 

Sequence Frequency

G 19

GP 19

GPG 2

GPGP 3

P 36

PG 18

PGP 10

PGPG 2
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Having decided on a definition consisting of four
progressive health states, there were two possible
sequences to consider; PGPG or GPGP. The first
option would exclude three patients with a GPGP
sequence and the second option would exclude 
two patients with a PGPG pattern. In general, 
given several options for a definition, the final
choice should be based on what is most clinically
meaningful. In this case, neither option seemed
clinically preferable to the other and there was 
no clear clinical explanation for the potential
continued fluctuation between the two health
states. The decision, therefore, to use the second
option, GPGP, was arbitrary, although it did mini-
mise the number of patient exclusions (n = 2). To
determine if using a different definition affects the
conclusions of the analysis a sensitivity analysis
should be performed.

The progressive health states were defined as
GOOD1, POOR1, GOOD2 and POOR2, where the
numbers indicate the first and second visits to the
‘same’ health state. With this sort of definition of
progressive health states, where a patient returns 
to a health state previously visited, the degree of
similarity between the first and second visit to a
state needs to be considered. For example, a return
to a good quality-of-life state after a patient has
been in a poor state (i.e. GOOD2) might describe 
a very different experience to the first good 
quality-of-life state (i.e. GOOD1).

Having defined the four progressive health states,
the date of exit from each formed successive end-
points for analysis. The time from entry to study to
each endpoint was calculated for each patient, with
entry and exit times set equal if a state was skipped.
For example, if a patient was in a poor state on
entry to the study, then they were assumed to have
skipped the first state, and their exit time from
GOOD1 was set at zero. Also, for example, if a
patient exited POOR1 at 18 weeks and did not
therefore experience the other two states within the
18-week analysis period, then the exit times from
GOOD2 and POOR2 were both set at 18 weeks.

Kaplan–Meier survival curves for successive
endpoints were calculated and overlaid to give a
partitioned survival plot for each treatment group
(see Figures 21 and 22 ). The area under each curve,
with an upper time limit of 18 weeks, was obtained
from SAS/STAT output 27 (corresponding to
equation 28) and gave the restricted mean survival
times from date of entry to trial to each endpoint
(see Table 24). The differences between successive
means gave the mean time spent in each health
state (see Table 25).

TABLE 24  Restricted mean survival times from study entry to
exiting each health state

Health CT arm: restricted PAL arm: restricted 
state mean survival time mean survival time 

(weeks) (weeks)

GOOD1 3.37 4.22

POOR1 11.47 12.18

GOOD2 14.63 14.33

POOR2 16.29 14.52

100

75

50

25

0

Cumulative proportion (%)

0 642 8 10 12 14 16
Time from entry (weeks)
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POOR2

FIGURE 21  Partitioned survival analysis of the MIC data:
CT arm
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FIGURE 22  Partitioned survival analysis of the MIC data:
PAL arm
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The Q-TWiST model for the MIC data was defined
as follows:

Q-TWiST = t GOOD1 + u1t POOR1 + t GOOD2 + u2t POOR2 (29)

where t i represents time spent in state i and the
utility values, u 1 and u 2 (0 ≤ u 1 ≤ 1, 0 ≤ u 2 ≤ 1) are
unknown and reflect the reduction in quality of life
during the first and second visits, respectively, to
the poor quality-of-life state. This model assumes
that the quality of life in the good state, whether 
at first or second visit, was equivalent to perfect
health. It also assumes that the quality of life
experienced in the poor state differed depending
on whether it was the first or second visit.

Utility values are not known and so a threshold
utility analysis was undertaken (see Figure 23).
Substituting the mean times spent in each state
(see Table 25) into equation 29 gives the following
equations for the two treatment groups:

Q-TWiSTCT = 3.37 + 8.10u 1 + 3.16 + 1.66u 2 (30)

Q-TWiSTPAL = 4.22 + 7.96u 1 + 2.15 + 0.19u 2 (31)

Equating equations 30 and 31 gives the threshold
line (see Figure 23), indicating pairs of utility
coefficients for which the treatments have equal 
Q-TWiST. The threshold line is given by

u 1 = –1.14 – 10.50u 2 (32)

The threshold utility plane, i.e. the plane
containing all possible pairs of values for u 1 and 
u 2 (0 ≤ u 1 ≤ 1 and 0 ≤ u 2 ≤ 1), lies completely 
above this line in the region where Q-TWiSTCT

> Q-TWiSTPAL (see Figure 23). Thus, whatever 
values are chosen for u 1 and u 2, Q-TWiST within 
18 weeks of entry to the study is always greater 
on the chemotherapy arm than on the palliative
arm of the trial. A confidence region for the
threshold line could not be calculated because

bootstrap estimates of the standard error for 
Q-TWiST were not readily available.

Investigating the effect of imposing an
upper time limit
Using an upper time limit for the analysis allows 
for the possibility that further follow-up could 
alter the conclusions of the analysis. There is a
need to examine the potential effects of having
further follow-up time, in terms of changing the
conclusions based on the restricted means.
Glasziou and colleagues1 suggest two possible
analyses for this purpose.

One method is to examine the difference in 
Q-TWiST for a range of truncation times. Using 
a reasonable set of values for the utility weights, 
Q-TWiST for each treatment can be calculated 
for a range of upper time limits from 0 to L, 
the chosen upper time limit. The difference
between treatments can then be plotted against 
the restriction time. This analysis can be enhanced
further by plotting not only the treatment differ-
ence for a particular set of utility coefficients as a
curve but also the whole range of possible treat-
ment effects for all possible utility coefficients
between 0 and 1 as a shaded region. This is called
the Q-TWiST gain function.25 Based on clinical
knowledge, a subjective judgement can be made 
as to whether the graph is sensible and has 
reached a level of stability.

The second method suggested1 is to fit a 
parametric survival model either to the entire
distribution or just to the tail of the distribution. 
In this way, quality-adjusted survival can be extra-
polated beyond the time limit L and the con-
clusions regarding which treatment is superior 
can be examined. Gelber and colleagues30

discuss projecting survival estimates beyond 

TABLE 25  Restricted mean survival times spent in each 
health state

Health CT arm: restricted PAL arm: restricted 
state mean survival time mean survival time 

(weeks) (weeks)

GOOD1 3.37 4.22

POOR1 8.10 7.96

GOOD2 3.16 2.15

POOR2 1.66 0.19

1.0

 0.5

0

–0.5

–1.0

–1.0 –0.5 0 0.5 1.0

u1

u2

Threshold utility planeQ-TWiSTCT > Q-TWiSTPAL

Q-TWiSTCT < Q-TWiSTPAL

u1 = –1.14 – 10.50u2

FIGURE 23  Threshold utility analysis for the MIC data
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the follow-up period of a trial by fitting parametric
survival models to the tails of Kaplan–Meier survival
curves and using the estimated models to make
projections. They suggest that Weibull and log-
normal models are likely to be the most useful. For
the method to be successful in practice, there must
be sufficient data in the tail of the survival curve for
adequate estimation of a parametric model.

Extending Q-TWiST to incorporate
covariates
In the standard Q-TWiST method, covariates are
included by stratifying the sample of patients by 
the covariate values and performing a separate
analysis on each stratum.1 The problem with this
approach is that the sample sizes in some strata 
may not be sufficient for estimating the mean
quality-adjusted survival with reasonable accuracy.
In order to avoid stratification and thus enable 
the entire sample of patients to be used, Cole and
colleagues31 extended the Q-TWiST methodology
to allow for covariates using a Cox proportional
hazards model.32 Accelerated failure time
regression could be used in a similar manner.25

The survivor functions, for time from study 
entry to exiting each successive health state, are
estimated using the results from Cox proportional
hazards models fitted to each endpoint, instead 
of the Kaplan–Meier method. When comparing 
two treatments, the treatment can be included
either as a covariate in a Cox regression or, if the
proportional hazards assumption is not valid, a
stratified regression can be used. The proportional
hazards assumption can be checked for each 
health state endpoint by plotting log (–log S(t ))
against log t for the different levels of a covariate. 
If the proportional hazard assumption is valid, 
the curves will be parallel.

The use of Cox regression models allows quality-
adjusted survival, for specific sets of covariate
values, to be estimated for each treatment, 
allowing treatment comparisons in specific
subgroups of patients. In a study of zidovudine
therapy in asymptomatic HIV-infected patients,
Lenderking and colleagues33 used proportional
hazards models to investigate differences between
treatments in terms of quality-adjusted survival, 
for different baseline values of CD4+ cell counts. 
In a breast cancer application, Gelber and
colleagues34 used covariate values to define two
patient profiles corresponding to a good and a
poor prognosis, and used Cox models to compare
treatments in terms of quality-adjusted survival 
in both types of patient. A further application 
in melanoma enabled the effect of the initial 

stage of disease on quality-adjusted survival to 
be investigated.35

Extending Q-TWiST to perform 
meta-analysis
Meta-analysis is an analytical technique used to
summarise quantitatively the results from a number
of different studies all addressing the same basic
research question.36 Cole and colleagues37 devel-
oped a meta-analysis methodology for combining
the Q-TWiST results from individual trials in 
which patient-level data is not required. The
method is a modified version of the standard 
Q-TWiST analysis and is summarised by Gelber 
and colleagues.25 Regression models are used to
combine trials, enabling an overall comparison 
of treatments in terms of quality-adjusted survival
that accounts for the differing follow-up times.

The method was applied to data from eight 
clinical trials comparing adjuvant chemotherapy
with no adjuvant systemic therapy in pre-
menopausal women with breast cancer.37,38

Gelber and colleagues39 also used the technique 
to combine the results from nine trials in order 
to compare the effect of adjuvant chemotherapy
plus tamoxifen with tamoxifen alone in post-
menopausal node-positive breast cancer.

Critical appraisal of quality-
adjusted survival analysis
Quality-adjusted survival analysis is based on the
concept of combining quality-of-life and survival
data in a QALY model, with TWiST and Q-TWiST
being special forms of QALYs. The assumptions
and criticisms of the QALY model (see pages 58
and 61) also therefore apply to quality-adjusted
survival analysis and these assumptions have 
been discussed in relation to a Q-TWiST model.40,41

A parametric approach to quality-adjusted sur-
vival analysis, as discussed later in chapter 18, 
allows a more general form for the function
combining quality-of-life and survival data and 
may overcome some of the assumptions of the
QALY model.

The concept of creating a quality-adjusted 
survival time for each patient in a study to be 
used as an endpoint in treatment comparison
instead of survival time seems sensible. However,
subject-based approaches in general suffer from 
the problem of informative censoring. Thus,
population-based approaches to quality-adjusted
survival analysis, which overcome this problem, 
are preferable in that respect.
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Partitioned survival analysis is a population-
based approach to quality-adjusted survival 
analysis, usually used with a Q-TWiST model 
but applicable to any QALY model. It has the
advantage of being able to include covariates 
and requires few assumptions,1 being based on
either the non-parametric methods of Kaplan 
and Meier or the semi-parametric method of 
Cox regression. It has two main limitations:1

• the need to use progressive health states
• the need to restrict the period of analysis to 

an upper time limit.

Further, it has the disadvantage of not being 
readily accessible to researchers, since calculation
of CIs for quality-adjusted survival uses the
bootstrap method.

Partitioned survival analysis is sometimes difficult 
to apply because of the need for progressive 
health states. It may be possible to overcome this 
by specifying different phases of the same state, 
as in the MIC study, but this can become clumsy
and may lose clinical meaning. An alternative
method of analysis, multistate survival analysis,
discussed in the next chapter, does not require
progressive states and is thus a more flexible 
way of modelling the data.

There is no unique way of dividing the survival 
time of patients into periods of differing quality 
of life and the accuracy depends on the frequency
of quality-of-life assessments. Different divisions
should be considered as part of a sensitivity
analysis. Missing quality-of-life data will also 
cause difficulties since, although quality-adjusted
survival analysis deals with informative drop-out
caused by death, it does not deal with other 
reasons for drop-out. Values for the missing 
data can be imputed or it may be possible to
incorporate into the model the time spent as a
drop-out, with an appropriate weighting factor 
to reflect quality of life. Alternatively, methods 
that explicitly model the drop-out process, such 
as multistate survival analysis (see chapter 17) 
or simultaneous modelling (see chapter 19) 
should be considered.

A further limitation of partitioned survival analysis
is the need to restrict the period of analysis to an
upper time limit. In some situations, as with the
MIC study, the quality-of-life data may only be
collected for a limited time, and the period of
analysis will automatically be restricted to an upper
time limit. Otherwise, methods to investigate the
effect of imposing an upper time limit should be

applied. The parametric approach to quality-
adjusted survival analysis, as discussed in chapter
18, overcomes this limitation.

Quality-adjusted survival is calculated using a
weighted sum of time spent in each health state.
The choice of values for the weights is based on 
the perceived quality of life experienced in each
health state and can be problematic. Consideration
of a range of possible values should form part of 
a sensitivity analysis and, in particular, threshold
utility analysis allows all possible combinations 
of values to be investigated.
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Introduction
Multistate models have been advocated in a
number of reviews and discussions regarding 
the analysis of quality of life data as a possible
means of analysing quality of life and survival 
data simultaneously.1–6 They were first proposed 
in a medical context by Fix and Neyman in 1951.7

The approach is discussed in some detail by
Olschewski and Schumacher8 in their paper 
on the analysis of quality-of-life data in cancer
clinical trials.

The statistical background to multistate survival
analysis is derived from the analysis of event-
history data9 and stochastic processes.10,11 Many 
of the theoretical aspects of multistate models 
fall within a counting process framework.12–14 The
study of events occurring in individuals over time
generates event-history data. In studies such as
these, individuals can be thought of as occupying
one of a finite number of states at any point in 
time and the movement between states can be
described by conditional probabilities or trans-
ition rates. This dynamic process is known as a
stochastic process. Quality-of-life assessment in
clinical trials generates event-history type data, 
with events being defined as entry and exit from
pre-defined health states. The movement of
individuals between quality-of-life states can 
then be considered as a stochastic process 
and modelled accordingly.

As with quality-adjusted survival analysis, multi-
state survival analysis starts by defining a finite
number of health states, including death, that
patients experience during the study. Defining
these health states and the possible transitions
between them describes the multistate model. 
The transition rates, which describe the move-
ment between health states, can then be modelled,
possibly using covariates. In this way, the time-
dependent structure and dynamic nature of 
quality-of-life data can be incorporated into an
analysis comparing treatments and the effect of
explanatory variables on transition rates from one
state to another can be investigated. Multistate
models overcome some of the limitations of the 
Q-TWiST approach, such as the requirement 
for progressive health states.

Multistate models in survival analysis have been
applied in a variety of clinical settings such as
diabetes,15,16 liver transplantation,17 bone marrow
transplantation,18 heart transplantation,19 breast
cancer,20 prostate cancer21 and HIV.22 These
applications, however, used clinical criteria rather
than quality-of-life data to define health states.
There are limited examples of applications of
multistate models to quality-of-life data.23,24 In this
study, the multistate survival analysis methodology
is illustrated by application to quality-of-life data
collected in the MIC study.

Defining the model

Health states
The set of health states chosen for the model
should be clinically meaningful and fully describe
the experiences of the patients. The states should
be mutually exclusive and exhaustive. The number 
of states should be restricted so that the model 
does not become overcomplicated and also to
ensure that the number of patients passing from
one state to another is sufficient for adequate
modelling of the data.

There are two main types of health states. 
A transient state is one that a patient can pass
through during the course of their follow-up and
an absorbing state is one that a patient cannot 
leave once it has been entered. The standard
model for survival analysis corresponds to the
simplest multistate model, in which the patient 
can be in one of two possible states, a transient
‘alive’ state or an absorbing ‘death’ state. The
competing risks model25 is an extension of this 
two-state survival model and forms a multistate
model, with one transient alive state and several
absorbing death states corresponding to different
causes of death. In terms of modelling quality-
of-life data, it is more relevant to extend the 
simple two-state survival model so that there are
several transient alive states and one absorbing
death state.

The simplest version of this sort of multistate 
model is the three-state disability model (also
called the illness–death model), where there are
two transient alive states: ‘alive without disability’

Chapter 17

Multistate survival analysis
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and ‘alive with disability’, and one absorbing 
death state. Andersen15 modelled diabetes data
using a model with this structure (see Figure 24).

Quality-of-life states for the MIC study
The MIC quality of life data were modelled using a
three-state illness–death model (see Figure 25). The
patients’ health states were determined from the
malaise question, which asked if they had been
feeling generally ill. Patients were categorised as
being in an ‘alive and well’ state if the patient had
no malaise (MAL = 0) and were categorised as
‘alive and ill’ if the patient had malaise at any 
level (MAL = 1, 2 or 3).

The health states used in the model could have
been defined using different cut-offs for responses
to the malaise question or could have been based
on other questions asked in the study or on a cut-
off value for the MQS. A more complex model 
with more than three states was considered but
such a formulation would have meant that there
were too few transitions for adequate modelling 
of the data.

Health state transitions
The movement between states can be described
using either a transition probability or a transition
rate. A transition probability is the likelihood 
of an individual moving from one state to another
within a specified period; a transition rate is the
instantaneous potential of transition at any point 
in time.26 While the transition probability can 
take values between 0 and 1, the transition rate,
sometimes called a transition intensity, has no
upper bound. In the simple two-state survival
model, the transition rate from a transient alive
state to an absorbing death state is the standard
hazard rate function for the survival time
distribution (see page 41).

The two measures are related26 and, when the
instantaneous transition rate r remains constant
during the period, t 1 to t 2 , a transition probability 
p can be estimated using

p = 1 – exp (–r (t 2 – t 1)) (33)

In some situations, patients in the trial may
experience ‘recovery’ during the follow-up period
and in these circumstances the model may need to
include reverse transitions, allowing the ability to
return to a state previously occupied. Andersen and
colleagues27 model data from a liver cirrhosis trial
as a three-state illness–death model but they allow
patients with low prothrombin index to recover
and return to the ‘alive with normal prothrombin
index’ state, thus incorporating reverse transitions
in their model. If reverse transitions are possible
then repeat transitions may occur, that is, a patient 
may experience a particular transition more 
than once during follow-up. In some circum-
stances, it may be preferable to model repeat 
and initial transitions as separate events.28 This
would only be possible if the number of patients
experiencing repeat transitions was large 
enough for adequate modelling.

In the MIC study, patients moved between health
states, often several times, until finally moving to
the absorbing state of death. The model, therefore,
included reverse and, hence, repeat transitions
(shown in Figure 25 by arrows in both directions
between the alive states).

Assumptions of the underlying
stochastic process
In the most general model, the transition rates
would depend on the whole history of the patient.
However, it is often reasonable to assume that at
any time point the state currently occupied by a
patient contains all the information relevant to 
that patient’s future course. Under this assump-
tion, the model represents a Markov process. If 
the transition rates from each state are conditional 
on the duration of time spent in the state, often
called the sojourn time, then the model represents
a semi-Markov process.9

It may be necessary to define the health states 
of the model so that the Markov assumption is

Alive without
disability

Alive with
disability

Dead

FIGURE 24  A three-state disability model

Alive and well Alive and ill

Dead

FIGURE 25  Multistate model for the MIC study
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valid. For example, in the MIC study, if the
transition of patients between the alive–well and
death states depended on whether the patient had
originally been in the alive–ill state, then it would
be necessary to create two alive–well states: an
‘always been alive and well’ state and a ‘was ill but
now alive and well’ state. In this way the validity 
of the Markov assumption could be retained.

If the transition rates remain constant over time
(i.e. are independent of time) then the process 
is time-homogeneous; otherwise, if they vary over
time (i.e. are functions of time), the process is time-
inhomogeneous. In some situations the transition
rates may be ‘piecewise’ constant, that is, constant
over defined subdivisions of the follow-up time.

Modelling the transition rates

In a standard survival model, the transition rate
from the alive state to the dead state is commonly
represented by a Cox regression model.29 The
application of Cox regression models to the more
general multistate framework, which allows several
transient disease states between entry to study and
death, has been discussed.19,30–33 The exact dates of
transition from one state to another, or estimates 
of them, are needed for this type of analysis. Cox
regression models have been used to model the
transition rates in various multistate survival
analysis applications.15,17,18,20,28

The transition rate from state i to state j, λ i j(t ) 
can be modelled using a Cox regression model 
as follows:

λ i j(t ) = λ 0 i j(t ) exp (â T
i j x i j) (34)

where λ 0 i j(t ) is a baseline transition rate for the
transition from i to j, x i j is a vector of covariates
specific to that transition and âi j is a vector of
unknown regression coefficients specific to that
transition. The model could be generalised to
include time-dependent covariates by replacing 
x i j with x i j(t ).

Markov or semi-Markov
When modelling the transition rates, consideration
needs to be given to whether the process is Markov
or semi-Markov. Semi-Markov processes have been
discussed in relation to multistate models.30–32,34 In 
a Markov process, as discussed above, the transition
rate to another state depends only on the present
state occupied, while in a semi-Markov process the
transition rate is also dependent upon the duration
of time spent in the present state.13

The type of process is related to the timescale 
on which time in the model for a transition 
rate is measured, that is, it relates to the time 
at which the clock starts. If, in modelling the
transition rate from state i to state j, time (t ) is
measured from the time of entry to the study 
(i.e. t = 0), then the model represents a Markov
process, since duration of time in state i is not
included. Otherwise, if time is measured in 
the model from time of entry to state i, say w 
in relation to study entry time, then time is
included in the model as t – w rather than t 
and, with sojourn time now included, the 
model represents a semi-Markov process.20

In a semi-Markov process, the clock is effectively
‘reset to zero’ every time a state is entered.9

Information regarding the history of the 
process prior to entering state i may be included 
as covariates. In particular, when individuals can
experience the same transition more than once,
the transition rate from state i to state j may 
depend on such aspects as whether state i has 
been occupied before, the number of times 
state i has been visited before and the total time
previously spent in state i. If the covariates in 
the model do not include information regarding
states prior to the current one, then the model
implicitly assumes that the changes of state form 
a Markov process.19 The time from study entry 
to entry to state i could also be included as a
covariate.20 When the time origin is taken as 
date of entry to study, then the covariates
containing information on history before 
entering state i will be time-dependent, while 
if the origin is taken as date of entry to state i, 
then the history is already determined at the 
origin and the information will be included 
as fixed covariates.

Semi-parametric or fully-parametric
The transition rates can either be modelled 
semi-parametrically using a Cox regression 
model where the underlying baseline transition
rate is left unspecified19 or parametrically by
assuming the transition times follow a specific
distribution, thus giving a parametric form 
to the baseline transition rate.35,36 The most
commonly used distributions are the exponential
and Weibull distribution, the exponential being 
just a special form of Weibull distribution (see 
page 41). If an exponential distribution is 
assumed for the transition times from state i to 
state j, then the underlying baseline transition 
rate is constant:

λ 0 i j (t ) = λ i j (35)
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and the model is, thus, time-homogeneous, while
for a Weibull distribution the underlying baseline
transition rate takes the form

λ 0 i j (t ) = λ i j γi j t γ i j – 1 (36)

and the model is time-inhomogeneous. If an
exponential distribution is assumed for the trans-
ition times then, since the underlying transition
rate is not dependent on time, the models under
the assumption of either a Markov or a semi-
Markov process will be equivalent. This, however, 
is not the case for other distributions, such as
Weibull, since the baseline transition rate 
changes over time.

Estimating parameters
Kay19 showed that the partial likelihood for a
transition from state i to state j is identical to 
the partial likelihood for the standard Cox
regression model,37 with transitions from i to 
states other than j treated as censored data. In
situations where individuals may experience 
the same transition more than once, the partial
likelihood is still valid.19 Thus, for each transition 
in the model, estimates of the â regression
coefficients are obtained by maximising the
relevant partial likelihood.

Significance testing and CIs for the â parameters
can be based either on the asymptotic normality 
of the distribution of the estimators or on the 
large sample likelihood ratio test for nested
models,19 where changes in –2 log (likelihood) 
are compared to a chi-square distribution. As 
with a standard regression analysis, the selection 
of covariates can be made using backward
elimination, forward elimination or a 
stepwise approach.

Model checking
The assumption of proportional hazards for
covariates in the model should be checked using
standard graphical techniques and the fit of 
model can be assessed using residual analysis.38

These standard techniques require independent
observations and so, in the case of repeat trans-
itions, assessment of the model is problematic.

Computing issues
When modelling the transition rate from state i 
to state j as a semi-Markov process, that is, with 
the time origin taken as date of entry to state i, 
the PHREG procedure (SAS Institute)39 can 
be used to fit semi-parametric models and the
LIFEREG procedure (SAS Institute)40 can be 
used to fit parametric models.

In the parametric modelling of transition times T,
the SAS software fits an accelerated failure time
model, which has the general form

log (T i) = µ + α T x i + σε i i = l, ... n (37)

where x i is a vector of covariates, α is a vector of
unknown regression coefficients, σ is an unknown
scale parameter, µ is an unknown intercept para-
meter, and ε i is an error term where errors are
assumed to come from a known distribution. If
transition times are assumed to follow a Weibull
distribution then there is a direct correspondence
between the parameters under an accelerated
failure time model (µ, σ and α in equation 37) and
those under a proportional hazards model (λ, γ
and â in equations 34 and 36). The relationships
are given by the following formulae:38

λ = exp (–µ/σ)
γ = 1/σ (38)
â = (–α/σ)

When modelling the transition rate from state i
(the base state) to state j as a Markov process, that
is the time origin is taken as date of entry to study,
SAS software cannot be used since it will not allow
for times of entry to the base state other than zero.
Other statistical software, in particular the agreg
function in S-PLUS (Statistical Sciences),41 allows
entry times to the base state other than zero in
semi-parametric models and thus can be used for
Markov modelling. Specially written functions in 
S-PLUS23 needed to be written to fit Weibull–
Markov models.

Modelling transition rates in the 
MIC data
Introduction
A three-state illness–death model was used to
describe the MIC quality-of-life and survival data
(see Figure 25). For reasons of data availability, 
the analysis was restricted to the 18-week period
from study entry (see page 14). Before any model-
ling of the data could be undertaken, various
assumptions relating to the quality-of-life data
needed to be made.

Quality of life was assessed at distinct time points
and assumptions were necessary to infer values 
over continuous time. These assumptions were 
the same as those made to calculate QALYs (see
page 58). In particular, changes in quality of life
were assumed to occur at the midpoint between
assessments. This enabled the exact dates of
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transition between the two alive states to be
estimated. Dates of death for patients in the study
were known and so exact dates for transitions to
death were available. Sensitivity analysis should be
used to assess the impact of the assumptions on 
the conclusions of the analysis.

Drop-outs in the data were dealt with by 
imputing values using a ‘last value carried forward’
approach. As well as other methods of imputation
(see Table 7), other strategies for dealing with 
drop-outs in the context of multistate survival
analysis were considered. Patients who dropped 
out of the quality-of-life study because of death
were not a problem since their transition to death
was included in the model. Transition times for
patients who dropped out for reasons other than
death could be censored at date of drop-out, with
date of drop-out possibly defined as the next
planned assessment date, although this is likely 
to result in informative censoring. Another option
considered was to include ‘drop-out’ as a state in
the model but this made the model too complex
for the limited amount of data available.

Models fitted to the data
During the 18-week period from study entry, 
113 transitions in total were experienced and 
these data are used to model the four transition
rates (see Table 26). The transition rates were
modelled using a Cox regression model with only 
a covariate for treatment (trt ) included. In all cases
the comparison is chemotherapy (trt = 1) against
standard palliative treatment (trt = 0). Although
treatment was the only covariate in the model,
Kaplan–Meier survival estimates and log-rank 
tests could not be used for treatment comparison
since the MIC data includes repeat transitions and
therefore observations would not be independent.

For illustrative purposes a variety of models were
fitted, all adaptations of the basic Cox regression
model according to whether the process was
assumed to be Markov or semi-Markov, and
whether a parametric form for the underlying
transition rate was specified (see Table 27).

The transition rates were analysed one at a time.
When modelling the transition rate from state i 
to state j, only individuals who occupied state i at
some point during the analysis period contributed
to the model, although individuals who passed 
out of state i at some point and then returned 
back to it later contributed twice to the model. 
If an individual was in state i, then they were 
‘at risk’ for the state i to state j transition. If they
moved to state k rather than state j, then the time
for the i – j transition was censored at the time 
of passing to state k. If they did not move from 
state i before the 18-week time limit, the i – j
transition time was censored at 18 weeks.

The set-up of the data for analysis was different
depending on whether the model being fitted 
was Markov (Models 1 and 4) or semi-Markov
(Models 2 and 5). The data set-up for the time-
homogeneous model (Model 3) was the same as
that for a semi-Markov model.

• Markov model: The data for the transition 
from state i to state j consisted of one line 
per patient per visit to state i. Each line 
consisted of the time of entry to and exit 
from state i in relation to trial time and an
indicator variable which was 1 for an exit to 
state j, representing an actual event, and 0 
for either an exit to state k or an exit time
censored at 18 weeks.

• Semi-Markov model: The data for the transition
from state i to state j consisted of one line per
patient per visit to state i. Each line consisted 
of the duration of time spent in state i on that
visit and an indicator variable which was 1 for 
an exit to state j , representing an actual event, 
and 0 for either an exit to state k or an exit 
time censored at 18 weeks.

S-PLUS was used to fit Markov models, with 
the agreg function41 used for semi-parametric
models (Model 1) and specially written functions23

used for Weibull models (Model 4). SAS/STAT
software was used to fit semi-Markov models, with
the PHREG procedure39 used for semi-parametric

TABLE 26  Frequency of each transition in the MIC data

Transition Number at risk Total CT arm PAL arm

Alive and well → alive and ill 79 39 28 11

Alive and ill → alive and well 106 37 27 10

Alive and well → dead 79 10 3 7

Alive and ill → dead 106 27 13 14
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models (Model 2) and the LIFEREG procedure40

used for parametric models (Models 3 and 5).

Results for treatment comparison
The semi-parametric models (Models 1 and 2) 
give estimates only for the treatment regression
parameter, while the parametric models (Models 3,
4 and 5) also give estimates for the parameters 

of the underlying distributions for the transition
times. The five different models were only fitted 
for illustrative purposes. The effect of treatment 
on each transition rate is the main interest and 
thus the estimates of the treatment regression
parameter given by each model are given here 
(see Table 28). Determination of which model 
best fits the data was not relevant here, hence,

TABLE 27  Models fitted to transition rates in the MIC study

Model Distribution for Process Model for transition rate from state i to state j
transition times

1 Unspecified Markov λ i j (t|trt) = λ 0 i j (t) exp (âi j trt)Yi j (t )
where:
λ 0 i j (t) is baseline transition rate
âi j is the regression parameter for treatment
Yi j (t ) is the ‘at risk’ process – if an individual is in state i at time t and 
therefore at risk for transition to state j then Yi j (t ) = 1, otherwise Yi j (t ) = 0
t represents time from study entry

2 Unspecified Semi-Markov λ i j (t|trt, t i) = λ 0 i j (t – t i ) exp (âi j trt)
where:
λ 0 i j (t – t i) is the baseline transition rate
âi j is the regression parameter for treatment
t i represents time from study entry to entry to state i

3 Exponential, i.e. Not applicable λ i j (t|trt) = λ i j exp (âi j trt)
transition rates (Markov where:
assumed to be equivalent to λ i j is the constant baseline transition rate
constant over time semi-Markov) âi j is the regression parameter for treatment

t can be either time from study entry or time from entry to state i

4 Weibull, i.e. transition Markov λ i j (t|trt) = λ i jγi j t
γ i j – 1 exp (â i j trt)Yi j (t )

rates assumed to vary where:
over time λ i j and γi j are the scale and shape parameters for the Weibull distribution

â i j is the regression parameter for treatment
Yi j (t ) is the ‘at-risk’ process described in Model 1
t represents time from study entry

5 Weibull, i.e. transition Semi-Markov λ i j (t|trt, t i) = λ i jγi j (t – t i )
γ i j – 1 exp (â i j trt)

rates assumed to vary where:
over time λ i j and γi j are the scale and shape parameters for the Weibull distribution

â i j is the regression parameter for treatment
t i represents time from study entry to state i

TABLE 28  Comparison of treatment regression parameters in all five multistate models

Transition Model 1: Model 2: Model 3: Model 4: Model 5:
semi-parametric semi-parametric exponential Weibull Markov Weibull semi-
Markov semi-Markov Markov/ Markov

semi-Markov

Well → ill 0.48 (–0.22, 1.18) 0.47 (–0.23, 1.17) 0.46 (–0.24, 1.15) 0.47 (0.10, 0.84) 0.45 (–0.25, 1.15)

Ill → well 0.40 (–0.32, 1.13) 0.31 (–0.41, 1.04) 0.34 (–0.39, 1.07) 0.36 (–0.02, 0.74) 0.34 (–0.39, 1.06)

Well → dead –1.39 (–2.74, –0.04) –1.26 (–2.61, 0.09) –1.33 (–2.68, 0.03) –1.40 (–2.53, –0.27) –1.27 (–2.63, 0.08)

Ill → dead –0.77 (–1.53, –0.01) –0.71 (–1.46, 0.05) –0.73 (–1.48, 0.03) –0.78 (–1.32, –0.23) –0.70 (–1.45, 0.06)
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parameter estimates for the exponential and
Weibull distributions have not been given.

The treatment parameter estimates for the five
models are reasonably comparable, although 
there is some discrepancy regarding the width 
of the CIs, which warrants further investigation.
The results for the semi-parametric Markov 
model (Model 1) suggest that, although the 
effects were not statistically significant, chemo-
therapy increased the risk of transition between 
the two different quality-of-life states. There was
also statistically significant evidence to suggest 
that chemotherapy reduced the risk of transition 
to death from both the well and ill quality-of-life
states. Although the significance of the treatment
effects in the equivalent semi-Markov model
(Model 2) differed from the Markov model, the
point estimates and also, to a great extent, the CIs
did not greatly differ. Thus, in this study, taking
account of duration of time in a state has relatively
little effect on the transition rates out of the state.
The significance of the treatment effects for the
parametric models (Models 3–5) also differ but,
again, there is little to discriminate between the
point estimates and CIs, indicating that assuming
such underlying distributions for the transition
times between states does not greatly influence 
the transition rates.

Alternative modelling approaches
when exact transition times are
not known
Introduction
In many prospective studies, although the exact
time of death is known, it is not possible to observe
the actual transitions of patients from one health
state to another, all that is known for a patient is
the health state occupied at certain follow-up times.
The transition times in this situation are interval-
censored data and the transition rates cannot be
modelled directly using the methods discussed
above. One approach, used in the analysis of the
MIC data above, is to estimate the exact transition
dates from the data. The most widely used approxi-
mations to exact transition dates are the actual
follow-up dates or the mid-point between follow-up
dates. Estimates of transition rates obtained from
approximated data may be incorrect.27 Alternative
approaches to modelling transition rates, that
account for the interval censored data, are dis-
cussed here. The application of these methods is
difficult in practice because standard software
cannot be used, although special FORTRAN
computer programs have been developed.42–44

Models in which time is continuous
In situations when exact transition times are not
known, Kay42 proposed modelling transition rates
using a general continuous-time Markov chain.
Transition rates are assumed to be constant over
time, although piecewise constant transition rates
could be accommodated, by splitting time at a
number of pre-defined points and estimating
separate transition rates for each period. This
method of multistate modelling has been applied
to the data in a number of studies.16,22,27,45–47

Estimates of transition rates are obtained using
maximum likelihood methods, where the likeli-
hood function is formulated from the probability 
of each individual’s passage through the health
states. The standard relationship between the
matrix of transition rates and the matrix of tran-
sition probabilities, as described by Kolmogorov
equations,10,11 enables the maximum likelihood
estimation of transition rates. The maximisation
process is an iterative procedure and computer
routines in FORTRAN are available to compute
parameter estimates together with their 
standard errors.42

Covariates such as treatment can be included in 
the modelling process as a proportional factor 
over the constant baseline transition rates, as in 
a Cox model,42 so that the transition rate from 
state i to state j can be represented by

λ i jx = λ 0 i j exp (â
T
i j x) (39)

where λ 0 i j is the constant baseline transition 
rate, x is the vector of covariates and â i j is the 
vector of associated regression parameters for 
that particular transition. A computer program
written in FORTRAN called MARKOV 43 has been
designed to allow the inclusion of covariates in 
the model. The number of model parameters may
be reduced either by assuming the effect of the
covariates is either the same for all progressive 
and for all regressive transitions or is the same 
for all transitions.16

Hypothesis testing can be carried out using 
either likelihood ratio tests or Wald tests but
opinions regarding which is optimal for various
circumstances lack consistency. In the comparison
of transition rates (i.e. H 0: λ i = λ j), the Wald test,
which calculates a χ2 test statistic based on estim-
ated transition rates and associated covariances, 
has been advocated.42 Gentleman and colleagues,22

however, have sometimes found the normal
approximation to be unreliable and therefore
recommend the use of likelihood ratio tests for
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such comparisons. Other hypothesis tests of
interest might be regarding the comparison of
regression parameters for different transition 
rates (i.e. H 0: â i j = â mn). In this case, Marshall and
Jones16 recommend the Wald test, whereas Kay42

recommends likelihood ratio tests. Marshall and
Jones16 recommend likelihood ratio tests for
covariate selection within the modelling of 
each transition rate.

Modelling transition times using a general
continuous-time Markov chain is only valid 
when the pattern of follow-up times, called the
examination scheme, is noninformative for the
disease process.48 This condition is equivalent to
noninformative censoring in survival analysis. 
In situations where examinations take place
because of patient self-selection, the examination
scheme may be informative and estimates of
transition rates may be biased.

Related methods have been described for studies 
in which individuals move from state to state,
according to a continuous-time Markov process,
but examination times are fixed. Methods have
been proposed for situations in which the data 
is in aggregate form, that is, it consists of the
number of individuals in each state at the fixed
time points.49 Alternatively, if individual patient
data is known, a more flexible method that 
assumes transition rates are proportional over-
comes the limitations of Kay’s method of 
constant transition rates.50

Models in which time is a 
discrete variable
In some studies it may be preferable to view 
follow-up time as a series of discrete time points, 
at a given interval apart, rather than a continuous
scale. In this way follow-up time is divided into
segments called Markov cycles. For example, 
Myers and colleagues21 measured time in units 
of 90 days where time point 0 was at study entry 
and time point 1 was 90 days later, and so on. 
They then determined a patient’s state at each 
time point from the last available measurement 
in the preceding 90-day interval.

Various considerations are relevant when deciding
on the length of the time interval. The model
assumes that each patient may make only one
transition during each cycle; hence the time inter-
val needs to be kept short enough for this assump-
tion to be tenable but needs to be long enough to
allow a reasonable number of patients to experi-
ence transitions. The tenability of the Markov
property will depend on the length of the time

interval employed. For a time-homogeneous
Markov process, the length of the cycles must be
uniform, while for time-inhomogeneous processes
the cycles may vary in length.

Time-inhomogeneous process
If the Markov process is time-inhomogeneous then
each cycle, which may vary in length, will have its
own transition probability matrix. Each matrix can
be estimated from the data and can be used to
estimate, for each fixed time point t defining the
cycles, the probabilities of being in each state.51

Suppose the process consists of s states and Pt – 1, t

is the (s × s ) transition matrix for the time interval
(t – 1, t ), then the maximum likelihood estimate
for the (i, j )th element of the matrix is given by

Pt – 1, t (i, j ) = n t – 1, t (i, j )/ n t – 1(i ) (40)

where n t – 1, t (i, j ) is the number of transitions from
state i at time t – 1 to state j at time t, and n t – 1(i ) is
the number of individuals in state i at time t – 1
that are not censored in the interval (t – 1, t ).

Given these estimated transition matrices, the
vector p t containing the unconditional probabilities
of being in each state i (i = 1 to s) at time t can be
estimated using

t

p t = p 0 ∏ Pk–1, k = p t – 1 Pt – 1, t (41)
k = 1

where p 0 is the initial probability vector estimated
from the data using the proportion of patients in
each state at time 0.

This methodology is analogous to a standard life-
table analysis, in that the probabilities are estimated
using observed frequencies and the cumulative
survival probability for any time t is the product of
all the preceding interval survivals.51 The method is
based on the assumption that incomplete follow-up
is not related to patient outcome.

Time-homogeneous process
If the Markov process is assumed to be time-
homogeneous, then the probability of changing
from state i to state j between times t – 1 and t 
is equal to that between times t and t + 1. Based 
on this assumption, estimates of transition prob-
abilities can be calculated from the data. The prob-
ability of transition from state i to state j can be
estimated by calculating

p i j = ∑ n t – 1, t (i, j) / ∑ n t – 1 (i ) (42)
t t
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where n t – 1, t (i, j ) and n t – 1 (i ) are as specified
above in equation 40.

These can be presented in the form of a transition
probability matrix, P, which provides a useful
summary description of the movement between
states.21 The transition probabilities in the matrix
can be modelled using log-linear models52 or the
matrix can be calculated to the n th power to
indicate, for each starting state, the probabilities 
of being in each state after n cycles. These can 
be plotted on a graph over time.53

The expected duration in each state can be
calculated from the transition probability 
matrix.53 A submatrix, P*, of the transition
probability matrix can be formed from the
probabilities of transition between the non-
absorbing states. The matrix N, known as the
fundamental matrix of an absorbing chain, 
can then be calculated as

N = (I – P*)–1 (43)

where I is the identity matrix. This matrix 
gives the expected number of cycles patients 
would spend in each health state given their 
initial state. The matrix V containing the vari-
ances of the expected number of cycles can 
be calculated as

V = N (2N* – I) – N 2 (44)

where N* is a copy of the N matrix with 
only the diagonal elements preserved and 
zeros elsewhere.54

Critical appraisal of multistate
survival analysis
Multistate survival analysis can be problematic 
since the method requires extensive data and is
based on quite strong simplifying assumptions.3

However, as quality of life increases in importance
in clinical trials and becomes more routinely
collected, the problem of lack of data should be
less of an issue.4 Furthermore, if multistate models
are proposed at the design stage of a clinical trial,
then collection of data can be planned so that it
yields adequate and appropriate data.

The data requirements for multistate modelling 
are strict, with not only dates of entry, death and
censoring needed but also ‘exact’ dates of trans-
ition between health states. Transition dates can 
be estimated and the accuracy is determined by 

the frequency of the quality-of-life assessments.
Alternative methods that do not require exact
transition dates are available but are not readily
accessible to researchers because specialised
computer software is required.

Defining health states for a multistate model may
be problematic, despite the fact that progressive
health states are not required. The definitions
based on quality-of-life data are subjective and
different definitions need to be considered as 
part of a sensitivity analysis. The investigator has 
to make decisions on which quality-of-life variable
to use, the number of health states to be included
and the cut-off values used to discriminate between
health states. At one extreme, the model needs 
to be complex enough to be clinically meaningful
and to ensure that information from the data is
utilised to a maximum. At the other extreme, 
a simple model is needed to allow an adequate
number of transitions between health states, both
to enable transition rates to be estimated with
sufficient precision and to ease interpretation 
of the analysis.

Definition of the health states may be such that
clinically important information is lost. It may 
not be possible to include the most clinically
important transition in the model because of 
the small number of participants in the study
experiencing it. For example, in the MIC study 
the moderately ill to severely ill transition could 
not be modelled because of too few patients but
this could be a very important transition from a
clinical viewpoint. Also the transition between
health states may result from very small changes in
quality of life while large changes in quality of life
are not reflected in the model. For example, if the
MQS had been used in the MIC study to define
health states and a value of 1 had been used to
discriminate between the alive–well and alive–ill
states, then a small change in MQS from 0.9 to 1.1
would result in a transition while a large change
from, say, 1.1 to 3 would not be reflected in 
the model.

A multistate model, despite its complexity, may 
be preferable to an overall survival model since 
a greater biological insight may be gained by
analysing the steps in a disease process.15 Different
covariates may affect different transitions and the
effects of important covariates may be lost when
considering just overall survival. Examples of
applications of multistate models to quality-of-life
data are limited. Such applications, including the
possibility of the inclusion of drop-out states in 
the model to overcome problems of informative
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drop-out, require further investigation. Methods
discussed in this chapter have been based on a
classical approach and, although there has been
some work on Bayesian approaches to multistate
modelling,23,55 further work in this field is needed.
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Introduction
The quality-adjusted survival analysis discussed
previously (see chapter 16) is, in general, a non-
parametric technique for comparing health
technologies in terms of both quality of life and
survival simultaneously. Cole and colleagues1

devised a parametric approach to quality-adjusted
survival analysis that enabled many of the limit-
ations of the Q-TWiST model to be overcome.
Essentially the method uses the results from a
multistate survival analysis to carry out a more
refined Q-TWiST analysis. This chapter is based
purely on this paper,1 which is a seminal one on
this topic.

The method was illustrated by Cole and colleagues1

by data from a breast cancer clinical trial. The
health states used in the analysis were the usual 
Q-TWiST states (i.e. TOX, TWiST and REL), 
which were determined using clinical criteria
rather than quality-of-life data. However, quality-
of-life data rather than clinical criteria could be
used to define the health states in the model.

Methodology

As with both Q-TWiST and multistate survival
analysis, the analysis starts by defining the 
health states that patients occupy during the 
study. Possible transitions between health states 
are also defined. A multistate survival analysis
approach is then used to model the transition
intensities. Each successive transition is repre-
sented by a cause-specific hazard function which 
is conditional upon previous transitions. The
model is equivalent to a semi-Markov model 
with hazard functions being conditional on the
current state, the transitions to the current 
state and the duration of the current state.
Covariates can be included in the model. Cole 
and colleagues1 used conditional log-normal
distributions and conditional Weibull distri-
butions to model their hazard functions and
included covariates using accelerated failure-
time models. Parameter estimates are obtained 
by maximum likelihood.

Using the models fitted to the health state
transitions, the expected amount of time spent 
in each health state can be estimated using simu-
lation for specific sets of covariate values. Standard
errors for these estimates can be obtained using 
the bootstrap method. Cole and colleagues1

estimated the average time spent in each health
state for two sets of covariate values, one relating 
to a good prognosis and the other to a poor
prognosis. The estimates were restricted to a 
10-year follow-up period but, in general, the
estimates can be unrestricted.

The next stage is to combine the average time
spent in each health state with utility measures
representing the quality of life experienced in 
each health state. Cole and colleagues1 referred to
the function which combines quality and quantity
of life into a composite measure as a quality
function. The non-parametric Q-TWiST model 
is a quality function but more general functions 
can be defined to allow the utility coefficients for 
a health state to depend on the entry and exit 
times and the duration of time spent in the state.
Quality functions can also be defined to incorp-
orate discounting. Cole and colleagues1 used 
the standard non-parametric Q-TWiST quality
function in their analysis and compared treat-
ments in terms of quality-adjusted survival using
various arbitrary utility values. The significance 
of the difference between treatments can be
established from the CIs for the difference in
quality-adjusted survival.

Conclusions

The parametric approach to quality-adjusted survival
analysis overcomes many of the limitations associ-
ated with a non-parametric Q-TWiST analysis. It 
does not restrict estimates to the follow-up period 
of the data and allows covariate values to be easily
included. In theory it does not require progressive
health states, although there may be strong assump-
tions in relation to repeat transitions. The method
also allows quality of life and survival to be combined
in a more general way than the Q-TWiST model
with, for example, utility coefficients being functions

Chapter 18

Incorporating results from a multistate model 
into a Q-TWiST analysis
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of time rather than just constants and discount rates
being included where appropriate.

The method requires the number of observations
and the number of states to be such that there 
are sufficient data for estimating each of the
conditional cause-specific hazard functions. If
estimation is based on few data, the variability of
the estimates will be large giving perhaps excessive
variability in the quality-adjusted survival.

In conclusion, when a particular parametric model
is appropriate and a reasonably large amount of
data is available, this method will give more effi-
cient estimation than a non-parametric approach.
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In studies where quality of life and survival are
both important endpoints, the change in quality

of life over time and the time to death can be con-
sidered as two simultaneous processes occurring in
patients, and can be modelled as such. Models for
analysing longitudinal quality-of-life data and survival
as two separate processes were discussed earlier in
this review (see chapters 5–9 and chapters 10–13,
respectively). Simultaneous modelling allows survival
data to be incorporated into the model for quality-
of-life data, thus adjusting for informative missing
data caused by drop-out due to death. Conversely,
the analysis of survival data with quality of life as a
time-dependent covariate is enhanced in simultan-
eous modelling, since covariate values are estimated
from the model for quality-of-life data over time
fitted to all subjects.

The simultaneous modelling of repeatedly
measured covariates and survival data has 
been described for covariate data in the form of
normally distributed clinical markers1,2 but not for
quality-of-life data, which may be non-normally
distributed continuous measures or even ordinal
measures. Models are set up for each process and
Gibbs sampling is used to simultaneously fit the
models in a single analysis.1,2 Faucett and Thomas1

refer to the two parts of the model as the ‘covariate
tracking model’ for the repeated measures process
and the ‘disease risk model’ for the survival pro-
cess. In their simultaneous modelling they assume 
a random effects model for the covariate tracking
part (see equations 45 and 46 below) and a pro-
portional hazards model for the disease risk part
(see equation 47).

Thus, z i j , the single continuous time-dependent
covariate for the j th measurement of subject i at
time t i j is modelled using:

z i j = x i(t i j) + εi j (45)

where x i(t i j) is the value of the true unobserved
covariate at time t i j and ε i j are independent,
normally distributed errors, and 

x i(t) = αi + âi t (46)

where the random effects α i and âi have a bivariate
normal distribution.

At the same time, the hazard of death for subject i
is modelled using

λ i(t ) = λ 0(t ) exp (γx i(t )) (47)

where λ 0(t ) represents the underlying baseline
hazard function and γ is the regression coefficient
for estimation.

The method is flexible in that it allows for
unequally spaced and missing repeated measures
data, with varying numbers of observations per
subject, and it allows for censored survival times.
Simulation was used to compare results from
modelling each process separately with results from
the combined model and showed that the separate
models underestimated parameters while the
combined model virtually eliminated the bias.1

Instead of modelling the survival process simultan-
eously with a longitudinal measurements process, a
more general approach would be to model the drop-
out process,3 which includes other reasons for drop-
out apart from death. Lindsey3 mentions that any
appropriate standard longitudinal repeated measures
model can be used to analyse, conditionally, all
observed responses up to drop-out, and his paper is
focussed instead on modelling the drop-out process.
A survival model in a log-linear form is used to model
the drop-out process, with subjects not dropping out
being uninformatively censored. The longitudinal
measurements can be included as covariates in the
drop-out model. If the study is such that drop-outs
occur for different reasons, modelling them as
distinct risk processes should be considered. Lindsey3

considers that the drop-out process should be
modelled together with the longitudinal measure-
ments process, since it is an integral part of the
phenomenon under study.
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Modelling quality of life and survival as two
simultaneous processes
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In studies in which quality of life and survival 
are both important endpoints, it may be 

advantageous to assess health technologies in 
terms of these endpoints simultaneously. Three
different approaches can be used to achieve this.
One approach is to combine quality and quantity 
of life into a single endpoint and use quality-
adjusted survival analysis to compare treatments.
Another approach is to use multistate models 
to describe the movement of patients between
various health states, defined by levels of quality 
of life and death, and to explore how treatments
differ in terms of these movements. Finally, a
simultaneous modelling approach considers 
quality of life and survival as two simultaneous
processes and describes the data in terms of two
inter-linked models.

There is some controversy regarding the simultan-
eous analysis of quality-of-life and survival data.
One view held is that the time-dependent structure

of the individual quality-of-life process can best be
accounted for when quality and quantity of survival
are analysed simultaneously,1 while another is that
methods which attempt to combine quality of life
and survival into a single measure are generally
inappropriate.2,3 It may be preferable to analyse
and report quality-of-life and survival outcomes
separately so that any conflict between them in
terms of treatment differences is apparent.4

If simultaneous analysis is deemed to be appro-
priate, the choice of method depends on the aims
of the study, the nature of the disease and treat-
ments, and the quality-of-life data collected. The
strengths and limitations of each method should 
be considered carefully (see Table 29). Quality-
adjusted survival analysis is the most straight-
forward approach but may be difficult to apply
because of the need for progressive health states.
Multistate modelling is more flexible but more
complex and has stringent data requirements. In

Chapter 20

Simultaneous analysis of quality-of-life and survival
data: summary and discussion

TABLE 29  Comparison of quality-adjusted survival analysis and multistate survival analysis

Quality-adjusted survival analysis Multistate survival analysis

Aim
• Compares treatments in terms of a composite measure of • Compares treatments in terms of movements 

quality and quantity of life between different health states

Limitations
• Need to be able to define a finite, mutually exclusive • Need to be able to define a finite, mutually exclusive 

and exhaustive set of health states that are clinically and exhaustive set of health states that are clinically 
meaningful and fully describe the experiences of patients meaningful and fully describe the experiences 

• For partitioned survival analysis, the health states must of patients
be progressive • QoL assessments need to be frequent enough to be 

• QoL assessments need to be frequent enough to be able to able to estimate exact transition times adequately,
estimate transition times adequately otherwise specialised software needs to be available 

• The assumptions underlying the QALY model may not be valid for the use of alternative methods
• For a subject-based approach, a cut-off time for the analysis • Sample size needs to be large enough to ensure 

needs to be chosen to minimise the number of censored survival the numbers of patients passing from one state to 
times, otherwise a population-based approach should be used another is sufficient for adequate modelling of 

• Partitioned survival analysis requires the period of analysis the data
to be restricted to an upper time limit

• Calculation of CIs in a partitioned survival analysis requires 
specialised methods

Strengths
• Enables covariates to be included • Enables different covariates to be considered for 

different transitions
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both cases, defining health states can be proble-
matic and different definitions should be consid-
ered as part of a sensitivity analysis. The accuracy 
of the results from both methods depends on 
the frequency of the quality-of-life assessments.
Simultaneous modelling could potentially pro-
vide the most flexible and powerful approach but
further research of the method is required before 
it can be fully evaluated.

Methods that simultaneously analyse quality-of-life
and survival data are based on a single measure 
of quality of life. This may cause problems in situ-
ations with several distinct quality-of-life measures,
when the analysis would need to be repeated for
each, and large numbers of quality-of-life endpoints
could lead to problems of interpretation and
multiple testing. All methods, however, not only
have the advantage of allowing for informative
drop-out due to death but also have the potential 
to be extended to deal with informative drop-out
for reasons other than death. Further research 

into the application of these methods to quality-
of-life data is required.
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Overall summary and discussion
In health technology assessment with both quality
of life and survival as endpoints, the appropriate
method of analysis depends on which endpoint is
most important. In some situations, the primary
focus of the analysis will be quality of life, with
consideration also given to survival but only in
terms of the problematical impact the latter may
have on the quality-of-life data. In other situations,
the focus will be primarily on survival with the
analysis adjusting for the effects of quality of 
life and, in further scenarios, both endpoints 
will be important.

Quality-of-life data are usually longitudinal in
nature and, as with most longitudinal studies, the
data suffer from the problem of missing values,
especially as a result of patient drop-out. The
missing values do not only cause the data to be
unbalanced but also cause problems for the analysis
because the missing data mechanism is likely to be
non-ignorable. This is because, in quality-of-life
studies in which survival is also an issue, patients
are generally severely ill and drop-out caused by
illness and death is a common occurrence. This
drop-out process may be informative and needs 
to be accounted for in any analysis of the data.

Another problem with quality-of-life data is in 
the multivariate nature of the endpoint. Quality-
of-life data may comprise a single global measure
but often consist of a set of item or dimension
scores. The analysis may require each quality-of-
life endpoint to be considered separately but, if 
the number of endpoints is large, multiple testing
and estimation may be a problem. Methods that
handle the multivariate nature of the quality-of-
life endpoint have been proposed but they either
suffer from the disadvantage of providing results
purely in terms of hypothesis testing and do not
give an estimate of treatment effect, or they do 
not deal with the problem of informative drop-
out. The analysis should either focus on a few 
key quality-of-life measures or should attempt to
combine measures into an aggregate score on
which the analysis can then be based.

Any analysis of longitudinal quality-of-life data
should begin descriptively, using plots of individual

patient profiles and group profiles, to give 
insight into the data before any formal testing or
modelling is carried out. Group profiles should 
be interpreted with caution since, if informative
drop-out is present, group summary measures 
may well be biased. A descriptive analysis can be
used to explore the drop-out problem in the data,
although establishing if drop-out is informative is
not possible.

The application of standard methods of
longitudinal data analysis to quality-of-life data 
is generally problematic because of the likely
presence of informative drop-out. The simple
approach of using summary measures does not
fully capture the dynamic nature of the data 
and may be problematic in the presence of
informative drop-out; although the more complex
modelling techniques model the change in 
quality of life over time, they assume the missing
data mechanism is ignorable. These methods 
could therefore give biased results and invalid
conclusions when informative drop-out is present
in the data. Modelling techniques that deal 
with informative drop-out have been developed
and their application to quality-of-life data 
needs investigation.

If the treatment comparison is in terms of survival,
then the analysis can adjust for the effects of 
quality of life by including it as a covariate in a
standard survival model. This also enables the
prognostic value of quality of life to be explored.
Quality of life can be included either in terms of
baseline values as a fixed covariate or in terms of
changing values over time as a time-dependent
covariate. If assessments of quality of life are
infrequent or data are missing for reasons other
than death, then it may be difficult to adjust 
for changing quality of life with any degree of
accuracy. The analysis may be improved by
modelling quality of life and survival as two
simultaneous processes. In this approach, 
values of quality of life incorporated into a 
survival analysis as a covariate are estimated 
from the model for quality-of-life data over 
time fitted to all subjects.

In studies where quality of life and survival 
are both important endpoints, it may be

Chapter 21

Conclusions and recommendations
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advantageous to assess health technologies 
in terms of these endpoints simultaneously. Three
different approaches can be used to achieve this.
One approach is to combine quality and quantity 
of life into a single endpoint and use quality-
adjusted survival analysis to compare treatments;
another is to use multistate models to describe 
the movement of patients between various health
states, defined by levels of quality of life and death,
and to explore how treatments differ in terms of
these movements (see Table 29 for a comparison 
of these two approaches). Finally, in a simultaneous
modelling approach, quality of life and survival 
are considered as two simultaneous processes 
and the data are described in terms of two inter-
linked models.

The method of quality-adjusted survival analysis 
is technically straightforward, except for the calcu-
lation of CIs, but may be difficult to apply because
it requires survival time to be partitioned into
progressive health states. These may not always 
be easy to define in a clinically relevant way. A
further limitation is the need to restrict the period
of analysis to an upper time limit, although this can 
be overcome using a parametric approach. Quality-
adjusted survival analysis deals with the problem 
of informative drop-out due to death and has the
potential to be extended to deal with drop-out for
reasons other than death.

Multistate survival analysis does not necessarily
require progressive health states and provides a
more flexible means for modelling quality-of-life
and survival data. The inclusion of death as a
health state in the model enables the analysis to
deal with informative drop-out due to death, and 
it may be possible to deal with drop-out for other
reasons by including a ‘drop-out’ health state.
Depending on the multistate model, methods are
reasonably accessible to researchers, except in
those situations where exact transition times are
not known. In general, multistate survival analysis
can be problematic since the method requires
extensive data for adequate modelling of 
the data.

Modelling quality of life and survival as two
simultaneous processes has already been suggested
as a method that may enhance the analysis of
survival data with quality of life as a time-
dependent covariate. Further, this approach 
allows both the interrelationship between the 
two processes to be assessed and, in particular, 
for the changes in quality of life over time to be
explored while adjusting for informative drop-
out due to death. Other reasons for drop-out 

can be included by modelling the drop-out rather
than the survival process explicitly. The benefits 
of simultaneous modelling in a quality-of-life
context need further investigation.

Recommendations

Implications for the design and conduct
of HTA research
This review of the methods proposed in the
scientific and medical literature for the analysis 
of quality-of-life and survival data, together with
their application to data from a previously con-
ducted study, has given rise to a series of recom-
mendations for practitioners and researchers.
These recommendations should complement 
those given by other groups reviewing quality-
of-life assessment in clinical trials.1,2

Obtaining appropriate data
Consideration of the proposed analysis of quality-
of-life and survival data at the design stage of a
study could result in better quality and more
appropriate data for analysis. The method of
analysis may influence decisions regarding the
frequency and timing of quality-of-life assessments
and also the instrument used to measure quality of
life. Some methods, such as those using exact dates
of health state transitions, may require frequent
collection of data to ensure accurate assessment 
of changes in quality of life. The choice of fixed or
varying assessment times may be partly influenced
by the proposed analytical method.

In choosing the instrument with which to 
measure quality of life, consideration should be
given to the number of quality-of-life endpoints
that will be measured. Some instruments result 
in a single global measure of quality of life, while
others produce a number of dimension-specific
scores. In some cases, large numbers of quality-of-
life measures will be produced. Most methods of
analysis are based on a single measure of quality 
of life and the analysis will need to be repeated 
for major quality-of-life endpoints. If a large
number of quality-of-life measures are produced
then both the analysis and the interpretation 
may become problematic. Use of a single global
measure of quality of life simplifies statistical
analysis and should be aimed at when sensible 
and justifiable.3 Otherwise, to overcome problems
of multiple testing, the most important quality-
of-life endpoints on which hypothesis testing will 
be based should be specified at the design stage,
with all other outcomes assumed to be of 
secondary importance.
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Missing data cause the most serious problems 
for the analysis of quality-of-life data and thus the
study design, in terms of quality-of-life assessment,
should be chosen to minimise the chance of non-
compliance. Patient drop-out is still likely to occur
and recording reasons for drop-out during data
collection will maximise insight into the drop-out
process, thus enabling modelling of separate drop-
out processes when necessary. The number of
patients required for a study will also depend on
the method of analysis. Multistate survival analysis,
for example, needs a relatively large overall sample
size, so that there are sufficient patients in each
transition for adequate modelling of the data.

• The method of analysis needs to be decided
upon at the design stage of a study so that
appropriate quality-of-life data can be collected.
Issues to consider are:
– the quality-of-life instrument to be used
– the frequency and timing of quality-of-

life assessments
– the need to minimise non-compliance
– the collection of additional information, 

such as reason for drop-out
– the sample size required.

Choosing the appropriate method
There are several factors affecting the choice of
method for analysing quality-of-life and survival
data. The research question that the study aims to
answer is a major factor and, if the choice is being
made after data collection rather than at the design
stage, the nature of the quality-of-life data that has
been collected will also have an effect. The analysis
needs to produce results that are relevant and
accessible to health service professionals and
patients. Some methods of analysis are complex
and interpretation of results may be difficult. 

In broad terms, it may be argued that, in view 
of the problems of data definition and collection,
too much sophistication in analysis would be
misguided and the methods used for analysis
should broadly match the quality of the data.4

In general, when choosing the appropriate 
method of analysis the advantages and dis-
advantages of each method should be weighed
against each other, with consideration given to 
the quality of the data.

• The choice of method should be based on the
research question that the study aims to answer.
The advantages and disadvantages of each
method should be considered carefully, together
with the relevance and interpretability of the
results to clinicians and patients.

Analysis of longitudinal quality-of-life data must
consider the problem of informative drop-out.
Standard methods for longitudinal data analysis
assume missing data mechanisms are ignorable 
and should be avoided because they may produce
biased results and invalid conclusions. Methods
that deal with informative drop-out should be 
used. The appropriate method will depend on
whether drop-out is primarily caused by death 
or occurs for multiple reasons.

• Methods used to analyse longitudinal quality-of-
life data must allow for informative drop-out.

Reporting the analysis
The method used for analysis of quality-of-life 
and survival data should be described clearly 
when reporting the results. Some justification for 
the choice could also be included. To analyse the 
data, various assumptions usually need to be made,
whatever method is used. Assumptions such as these
should be reported clearly. In the MIC study, for
example, most methods of analysis were based on
the major assumption that changes in quality of life
occurred midway between assessments rather than
on the actual assessment date. Sensitivity analysis
should be carried out to assess the effect of the
assumptions on the conclusions of the analysis.

• Methods used should be reported clearly, with
details of definitions and assumptions used in
the analysis.

• Sensitivity analysis should be carried out to assess
the robustness of conclusions to any critical
assumptions made in the analysis.

Recommendations for further research
Some of the methods described in this report have,
to date, been applied to only a few examples of
quality-of-life and survival data. Although used
fairly extensively, the application of quality-adjusted
survival analysis has been based mainly on clinical
data rather than on patient-assessed quality-of-life
data; hence, further work evaluating the use of
such a technique in a quality-of-life context needs
to be addressed. There has been limited use of
other techniques, such as hierarchical modelling,
multistate modelling and simultaneous modelling,
in the quality-of-life field and further research is
needed. Most methods are based on a classical
approach and the application of Bayesian methods
requires further investigation. Although the avail-
able computer software has not been reviewed 
in this project, it has become apparent through
worked examples that development of software 
may be required; a review of this would form a
useful supplement to this review.
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The number of applications of the methodology
discussed in this review to quality-of-life data 
should continue to expand; the methodological
areas most likely to develop rapidly are multistate
survival analysis and simultaneous modelling. 
The problems of analysing longitudinal data with
informative drop-outs are also being addressed 
in other parallel areas, such as AIDS research;
developments within this context should also 
be monitored.

• Further experience in the application of 
quality-adjusted survival analysis techniques to
quality-of-life data is needed to enable a proper
evaluation of such methods.

• Further research is needed to develop
hierarchical models, multistate models and
simultaneous modelling methods in their
practical application to quality-of-life and 
survival data using both classical and Bayesian
approaches. Consideration should be given 
as to how such methods could deal with 
the multivariate nature of the quality-
of-life endpoint.

• A full review of available computer software for
methods that simultaneously analyse quality-of-

life and survival data is needed to highlight areas
requiring further development.

• Progress in the most rapidly developing areas,
multistate survival analysis and simultaneous
modelling, should be monitored, together with
parallel areas of methodological development,
such as in AIDS research.
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Notes on searching in BIDS
• Putting an asterisk at the end of a search term

allows any ending to the word to be searched for
on the database.

• Search terms consisting of hyphenated 
words need to be enclosed in double quotes
otherwise the hyphen will interpreted as an
exclusion sign.

• Using a comma between two search terms 
allows the database to be searched for articles
containing either term.

Selecting type of journal
The following criteria were used in BIDS to restrict
the search to just the statistical, biometry, clinical
trial and epidemiology journals.

journal = statistic*, biometri*, clinical trial*,
epidemiol*

Quality-of-life search terms
The search terms used in BIDS to select articles
containing some information of interest on quality
of life are shown in Table 30.

Survival search terms
The search terms used in BIDS to select articles
with some interest in survival are shown in 
Table 31.

Appendix 1

Details of search terms used in electronic 
database searching

TABLE 30  Search terms: quality of life

Search terms Comments

quality of life, Also captures more specific 
“quality-of-life” phrases such as health-related 

quality-of-life.

life quality,“life-quality”

quality life Also captures articles where 
a non-standard hyphenated 
version has been used, e.g.
quality-of life, quality-of- 
life, quality- of-life, quality 
of-life.

“well-being”,
wellbeing, well being

TABLE 31  Search terms: survival

Search terms Comments

survival Captures a whole range of 
survival-type phrases, e.g.
survival time, survival analysis,
survival date, survival endpoints,
survival rate, survival curve,
survival probability, disease-free 
survival, event-free survival.

length of life

relapse Also captures more specific 
terms such as time to relapse.

failure time*, * captures both time and times 
“failure-time*” and also hyphenated phrases 

such as failure-time-data.

time to death, time to Also captures more specific 
recurrence, time to phrases such as time to disease 
progression, time to progression, time to disease 
disease, time to failure recurrence.

life table*,“life-table*” * captures both table and tables 
and also hyphenated phrases 
such as life-table-analysis.

Kaplan Meier,
“Kaplan-Meier”

log rank,“log-rank”

proportional hazard*, * captures both hazard and 
“proportional-hazard*” hazards and also hyphenated 

phrases such as proportional-
hazards-analysis.

Cox* + (model*, Cox* allows for various versions
analys*, regression*, such as Cox, Coxs or Cox’s.
test*, method*, Cox* can not be used as a 
proportional*) search term on its own because 

it lacks precision.
The specification captures 
phrases such as Cox multi-
variate regression or multiple 
regression model of Cox.

event histor*, * captures both both history and 
“event-histor*” histories and also hyphenated 

phrases such as event-history-
analysis.

censor* * captures censor, censored and 
censoring and thus captures 
more specific phrases such as 
informative censoring.
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Methodology search terms
The search terms used in BIDS to select articles
which used a known methodology for the simultan-
eous analysis of quality-of-life and survival data are
shown in Table 32.

Longitudinal search terms
The search terms used in BIDS to select articles
describing longitudinal studies (which were more
relevant to this review) are shown in Table 33.

TABLE 32  Search terms: known methodology for simultaneous
analysis of quality-of-life and survival data

Search terms Comments

quality adjusted* , * captures hyphenated phrases 
“quality-adjusted*” such as

...-life, ...-life-years, ...-years.
Captures other phrases such as 
... life, ... life years, ... years of life,
... life expectancy, ... loss in life 
expectancy, ... survival, ... days, ...
time, ... tooth years.

quality of life adjusted*, * captures hyphenated phrases.
“quality-of-life 
adjusted*”,“quality-of-
life-adjusted*”

QALY*, QALD*, * allows for plurals.
QALE*, QTIME, Could not use TWIST as a 
“Q-TIME”, QTWIST, search term because it lacked 
“Q-TWIST”, HYE, precision.
HYES, HYE’S Had to specify HYE, HYES,

HYE’S rather than HYE* 
because HYE* lacked precision.

quality survival time,
“quality-survival time”,
“quality survival-time”,
“quality-survival-time”

healthy life expectancy,
“healthy-life expectancy”,
“healthy life-expectancy”,
“healthy-life-expectancy”

healthy years equival*, * captures equivalent 
“healthy-years equival*”, and equivalence.
“healthy year-equival*”,
“healthy-years-equival*”

healthy year equival*, * captures equivalent 
“healthy-year equival*”, and equivalence.
“healthy year-equival*”,
“healthy-year-equival*”

(“multi-state”, Captures articles using 
multistate) + multistate survival analysis.
(survival, censor*)

TABLE 33  Search terms: longitudinal studies

Search terms Comments

longitudinal

repeated measure*, Measure* captures measure,
“repeated-measure*”, measures, measurement 
repeated assessment*, or measurements.
“repeated-assessment*” Assessment* captures 

assessment or assessments.

serial measure*, Measure* captures measure,
“serial-measure*”, measures, measurement 
serial assessment*, or measurements.
“serial-assessment*” Assessment* captures 

assessment or assessments.

measure* over time, Measure* captures measure,
assess* over time measures, measurement 

or measurements.
Assess* captures assessment 
or assessments.

profile, profiles Profile* could not be used 
because it had a lack of 
precision.

dynamic
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