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Background

Bayesian methods may be defined as the explicit
quantitative use of external evidence in the design,
monitoring, analysis, interpretation and reporting
of a health technology assessment. In outline, the
methods involve formal combination through the
use of Bayes’s theorem of:

1. a prior distribution or belief about the value of
a quantity of interest (for example, a treatment
effect) based on evidence not derived from the
study under analysis, with

2. a summary of the information concerning the
same quantity available from the data collected
in the study (known as the likelihood), to yield

3. an updated or posterior distribution of the
quantity of interest.

These methods thus directly address the question
of how new evidence should change what we
currently believe. They extend naturally into
making predictions, synthesising evidence from
multiple sources, and designing studies: in
addition, if we are willing to quantify the value of
different consequences as a ‘loss function’,
Bayesian methods extend into a full decision-
theoretic approach to study design, monitoring
and eventual policy decision-making. Nonetheless,
Bayesian methods are a controversial topic in that
they may involve the explicit use of subjective
judgements in what is conventionally supposed to
be a rigorous scientific exercise.

Objectives

This report is intended to provide:

1. a brief review of the essential ideas of Bayesian
analysis

2. a full structured review of applications of
Bayesian methods to randomised controlled
trials, observational studies, and the synthesis of
evidence, in a form which should be reasonably
straightforward to update

3. a critical commentary on similarities and differ-
ences between Bayesian and conventional
approaches

4. criteria for assessing the reporting of a Bayesian
analysis

5. a comprehensive list of published ‘three-star’
examples, in which a proper prior distribution
has been used for the quantity of primary
interest

6. tutorial case studies of a variety of types
7. recommendations on how Bayesian methods

and approaches may be assimilated into health
technology assessments in a variety of contexts
and by a variety of participants in the research
process.

Methods

The BIDS ISI database was searched using the
terms ‘Bayes’ or ‘Bayesian’. This yielded almost
4000 papers published in the period 1990–98. All
resultant abstracts were reviewed for relevance to
health technology assessment; about 250 were so
identified, and used as the basis for forward and
backward searches. In addition EMBASE and
MEDLINE databases were searched, along with
websites of prominent authors, and available
personal collections of references, finally yielding
nearly 500 relevant references. A comprehensive
review of all references describing use of ‘proper’
Bayesian methods in health technology assessment
(those which update an informative prior distribu-
tion through the use of Bayes’s theorem) has
been attempted, and around 30 such papers are
reported in structured form. There has been very
limited use of proper Bayesian methods in practice,
and relevant studies appear to be relatively easily
identified.

Results

Bayesian methods in the health
technology assessment context
1. Different contexts may demand different

statistical approaches. Prior opinions are
most valuable when the assessment forms
part of a series of similar studies. A decision-
theoretic approach may be appropriate where
the consequences of a study are reasonably
predictable.

Health Technology Assessment 2000; Vol. 4: No. 38
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2. The prior distribution is important and not
unique, and so a range of options should be
examined in a sensitivity analysis. Bayesian
methods are best seen as a transformation from
initial to final opinion, rather than providing a
single ‘correct’ inference.

3. The use of a prior is based on judgement,
and hence a degree of subjectivity cannot be
avoided. However, subjective priors tend to
show predictable biasses, and archetypal priors
may be useful for identifying a reasonable
range of prior opinion. For a prior to be taken
seriously, its evidential basis must be explicitly
given.

4. The Bayesian approach provides a framework
for considering the ethics of randomisation.

5. Monitoring trials with sceptical and other
priors may provide a unified approach to
assessing whether the results of a trial should
be convincing to a wide range of reasonable
opinion, and could provide a formal tool for
data-monitoring committees.

6. In contrast to earlier phases of development, it
is generally unrealistic to formulate a Phase III
trial as a decision problem, except in circum-
stances where future treatments can be accu-
rately predicted.

7. Observational data will generally require more
complex analysis: the explicit modelling of
potential biasses may be widely applicable but
needs some evidence-base in order to be
convincing.

8. A unified Bayesian approach is applicable to
a wide range of problems concerned with
evidence synthesis, for example in pooling
studies of differing designs in the assessment
medical devices.

9. Priors for the degree of ‘similarity’ between
alternative designs can be empirically informed
by studies comparing the results of randomised
controlled trials and observational data.

10. Increased attention to pharmaco-economics
should lead to further investigation of decision-
theoretic models for research planning,
although this will not be straightforward.

11. Regulatory agencies are acknowledging
Bayesian methods and have not ruled out their
use, and the regulation of medical devices is
leading the way in establishing the role of
evidence synthesis.

12. ‘Comprehensive decision modelling’ is likely
to become increasingly important in policy
making.

13. The BayesWatch criteria described in this
report may provide a basis for structured
reporting of Bayesian analysis.

14. Summaries of fully fledged (‘three-star’)
applications of Bayesian methods in health
technology assessment contain few prospective
analyses but provide useful guidance.

15. Four case studies show:
a. Bayesian analyses using a sceptical prior can

be useful to the data-monitoring committee
of a cancer clinical trial.

b. Bayesian methods can be used to temper
overoptimistic conclusions based on meta-
analysis of small trials.

c. Modern graphical software can easily handle
complex assessments previously analysed
using the ‘confidence profile’ method.

d. Bayesian methods provide a flexible tool
for performance estimation and ranking
of institutions.

Recommendations and implications for
future research and development
Bayesian methods could be of great value within
health technology assessment, but for a realistic
appraisal of the methodology, it is necessary to
distinguish the roles and requirements for five
main participant groups in health technology
assessment: methodological researchers, sponsors,
investigators, reviewers and consumers. Two
common themes for all participants can immedi-
ately be identified. First, the need for an extended
set of case studies showing practical aspects of the
Bayesian approach, in particular for prediction
and handling multiple substudies, in which mathe-
matical details are minimised but details of imple-
mentation are provided. Second, the development
of standards for the performance and reporting of
Bayesian analyses, possibly derived from the
BayesWatch checklist.

Some specific potential areas of research and devel-
opment include:

1. Design. Realistic development of payback
models and consideration of ‘open’ studies.

2. Priors. Investigation of evidence-based prior
distributions appropriate to the participant
group, as well as reasonable default priors in
non-standard situations.

3. Modelling. Efficient use of all available evidence
by appropriate joint modelling of historical
controls, related studies, and so on.

4. Reporting. Development of criteria along the
lines of the BayesWatch checklist, so that future
users can reproduce analyses.

5. Decision-making. Increased integration with
a health-economic and policy perspective,
together with flexible tools for implementation.

Executive summary
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What are Bayesian methods?

Bayesian statistics began with a posthumous publica-
tion in 1763 by Thomas Bayes,36 a non-conformist
minister from Tunbridge Wells.237 His work was
formalised as Bayes’s theorem, which, when
expressed mathematically, is a simple and uncontro-
versial result in probability theory. However, certain
specific uses of the theorem have been the subject of
continued controversy for over a century,128,170 giving
rise to a steady stream of polemical arguments in
a number of disciplines. In recent years a more
balanced and pragmatic perspective has developed.

The basic idea of Bayesian analysis can be illus-
trated by a simple example and, although we shall
try to keep mathematical notation to a minimum in
this review, it will be very helpful if we are allowed
one Greek letter q (theta), to denote a currently
unknown quantity of primary interest. Suppose our
quantity q is the median life-years gained by using
an innovative rather than a standard therapy on
a defined group of patients. A clinical trial is
carried out, following which conventional statistical
analysis of the results would typically produce a
P value, an estimate and a confidence interval as
summaries of what this particular trial tells us
about q. A Bayesian analysis supplements this by
focusing on the question ‘How should this trial
change our opinion about q?’ This perspective
forces the analyst to explicitly state

• a reasonable opinion concerning q excluding
the evidence from the trial (known as the prior
distribution)

• the support for different values of q based solely
on data from the trial (known as the likelihood)

and to combine these two sources to produce

• a final opinion about q (known as the posterior
distribution).

The final combination is done using Bayes’s
theorem.

What, then, is a Bayesian approach to health tech-
nology assessment? We have defined it 415 as “the
explicit quantitative use of external evidence in the

design, monitoring, analysis, interpretation and
reporting of a health technology assessment”.

Reasons for conducting a review

Much of the standard statistical methodology used
in health technology assessment revolves around
that for the classical randomised controlled trial:
these include power calculations at the design
stage, methods for controlling type I error within
sequential monitoring, calculation of P values and
confidence intervals at the final analysis, and meta-
analytic techniques for pooling the results of
multiple studies. Such methods have served the
medical research community well.

The increasing sophistication of health technology
assessment studies is, however, highlighting the
limitations of these traditional methods. For
example, when carrying out a clinical trial, the
many sources of evidence and judgement available
before a trial may be inadequately summarised by a
single ‘alternative hypothesis’, monitoring may be
complicated by simultaneous publication of related
studies, and multiple subgroups may need to be
analysed and reported. Evidence from multiple
sources may need to be combined in order to
inform a policy decision, such as embarking or
continuing on a research programme, regulatory
approval of a drug or device, or recommendation
of a treatment at an individual or population level.
Standard statistical methods are designed for single
studies, and have difficulties dealing with this
pervading complexity.

A Bayesian perspective leads to an approach to
clinical trials and observational studies that is
claimed to be more flexible and ethical than tradi-
tional methods,262 and to elegant ways of handling
multiple substudies, for example when simulta-
neously estimating the effects of a treatment on
many subgroups.72 Proponents have also argued
that a Bayesian approach enables one to provide
conclusions in a suitable form for making deci-
sions: whether for specific patients, for planning
research, or for public policy.299

The increasing interest in the Bayesian approach is
reflected both in the medical and statistical

Health Technology Assessment 2000; Vol. 4: No. 38
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literature and in the popular scientific press.318

Pharmaceutical companies are beginning to
express an interest, possibly helped by the recent
international regulatory authority statistical guide-
lines248 explicitly mentioning the possibility of a
Bayesian analysis. However, many outstanding
questions remain: in particular, to what extent will
the scientific community, or the regulatory authori-
ties, allow the explicit introduction of evidence that
is not totally derived from observed data, or the
formal pooling of data from studies of differing
designs?

Objectives

This report is intended to provide:

1. a brief review of the essential ideas of Bayesian
analysis

2. a full structured review of applications of
Bayesian methods to randomised controlled
trials, observational studies and the synthesis of
evidence, in a form which should be reasonably
straightforward to update

3. a critical commentary on similarities and differ-
ences between Bayesian and conventional
approaches

4. criteria for assessing the reporting of a Bayesian
analysis

5. a comprehensive list of published ‘three-star’
examples (see the following section for a defini-
tion of this term), in which a proper prior distri-
bution has been used for the quantity of primary
interest

6. tutorial case studies of a variety of types
7. recommendations on how Bayesian methods and

approaches may be assimilated into health tech-
nology assessments in a variety of contexts and
by a variety of participants in the research
process.

Review methodology

What do we mean by a ‘systematic’
review?
In common with all such methodological reviews, it
is essential to define what we mean by ‘systematic’.
We have identified three levels of review:

Comprehensive. This seeks to identify all relevant
references, and has only been attempted for what
we have termed ‘three-star’ Bayesian health tech-
nology assessment studies, which we define as those

1. intending to confirm the value of a technology

2. using an informative, carefully considered prior
distribution for the primary quantity of interest

3. updating, or planning to update, this prior distri-
bution by Bayes’s theorem.

Such three-star studies have been summarised
according to a standard pro forma, and are
reported in appendix 1. We note that we do not
require such studies to be prospective, in that
currently most Bayesian examples are re-analyses
of previous studies.

The following are therefore not considered as
three-star studies:

1. exploratory or Phase II studies
2. those using a ‘minimally informative’ or

reference prior, or only using an informative
prior for a nuisance parameter such as between-
study heterogeneity

3. decision analyses in which expected utilities are
assessed without any updating of beliefs using
Bayes’s theorem.

Systematic. This is based on a structured search
and reporting of the literature, and covers many
areas which are not comprehensively reviewed,
such as Bayesian analyses using reference priors
and Phase I and Phase II studies. An attempt has
been made to identify the majority of the relevant
literature.

Peripheral. Minimal references are provided on
topics such as using Bayes’s theorem for prognostic
or diagnostic statements, ‘empirical Bayes’ analysis
which uses elements of Bayesian modelling without
giving a Bayesian interpretation to the conclusions,
preclinical work, pharmacokinetics, decision
analysis, and descriptive studies of clinician’s
personal beliefs.

We emphasise that our definition of ‘Bayesian’
may be more restrictive than that of other
researchers who may, for example, place a much
higher emphasis on decision-making using subjec-
tive probabilities, without necessarily requiring
the use of Bayes’s theorem.

The search procedure
A Bayesian approach can be applied to many scien-
tific issues, and a search of the BIDS ISI database
using the term ‘Bayes’ or ‘Bayesian’ yielded nearly
4000 papers over the period 1990–98. All of the
abstracts were handsearched for relevant material,
and about 300 of these were relevant to health
technology assessment. These were used as a

Introduction
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source for forward and backward searches, and
further techniques included searching other
databases (EMBASE and MEDLINE), personal
collections, handsearching recent journals, and
internet searches of prominent authors.

Since it is very difficult to identify appropriate
health technology assessment literature from
keywords, we would recommend anyone con-
ducting a search for Bayesian methods in health
technology assessment to use ‘bayes’ and ‘bayesian’
in all searches and then view all abstracts.

We identified about 450 relevant papers, including
around 30 reports of studies taking a ‘three-star’
Bayesian perspective. The published studies are
dispersed throughout the literature, apart from
one recent collection of papers,45 and the only
general textbook which might be considered as
Bayesian health technology assessment is on the
confidence profile approach.150

It will be clear that the studies are mainly demon-
strations of the approach rather than complete
assessments, and in spite of numerous articles
promoting the use of Bayesian methods the prac-
tical take-up seems very low, although increasing.
Possible reasons for this will be discussed in our
review. There is also a preponderance of articles
in the literature on methodology for clinical trials,
and an apparent lack of articles on the more
complex issues of synthesising data from studies
of different designs, in spite of this being an
area where Bayesian methods may have much to
offer.

Structure of the review

• Chapter 2 briefly reviews the ‘classical’ statistical
approach to health technology assessment, and
then outlines the main features of the Bayesian
philosophy, including the subjective inter-
pretation of probability, the relation to diag-
nostic testing, predictions, decision-making
and design. There is a brief description of
computational methods, complex Bayesian
modelling, and the theoretical justification for
the approach. Schools of Bayesians are identi-
fied, and a commentary attempts to sort out the
major ideological issues.

• Chapter 3 deals in detail with the possible
sources of prior distributions and their possible
criticism in the light of data, and introduces the
concept of exchangeability and its relation to
hierarchical or multilevel prior distributions.

• Chapter 4 attempts to structure the large litera-
ture on Bayesian approaches to all aspects of
randomised controlled trials, including sequen-
tial analysis, reporting, cost-effectiveness analysis
and the stages of drug development.

• Chapter 5 covers observational studies, such
as case–control designs, the use of historical
controls, and non-randomised comparisons of
institutions.

• Chapter 6 considers meta-analysis and its gener-
alisations, in which evidence from multiple
studies, possibly of different designs, is pooled
using a statistical model.

• Chapter 7 examines how Bayesian analyses for
randomised or non-randomised studies may be
placed in a concrete decision-making context
in order to inform either commercial or public
policies, possibly with explicit costs on the conse-
quences of alternative strategies. The view of
alternative ‘actors’ is emphasised.

• Chapter 8 discusses the reporting of Bayesian
studies, sets out criteria for assessing the quality
of a Bayesian analysis, and provides an example.

• Chapter 9 is a case study in which a sequential
cancer clinical trial, the continuous hyper-
fractioned accelerated radiotherapy (CHART)
study, was monitored using a Bayesian procedure.

• Chapter 10 is a case study concerning the much-
studied issue of magnesium for acute myocardial
infarction (AMI), in which a meta-analysis
conflicted with a mega-trial. We show that a
reasonably sceptical Bayesian meta-analysis
would not have found the initial meta-analysis
convincing evidence.

• Chapter 11 shows by four small case studies
how modern Bayesian software can deal with
the complex modelling problems previously
analysed using the confidence profile approach.

• Chapter 12 provides an example of a institu-
tional comparison, in which the success rates
of UK in vitro fertilisation (IVF) clinics is
compared.

• Chapter 13 provides a final summary, general
discussion and some suggestions for future
research.

• Appendix 1 summarises and lists the ‘three-star’
applications in a structured format, using the
criteria outlined in chapter 9.
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• Appendix 2 briefly describes available software
and internet sites of interest.

Most of the chapters in the review finish with a
critical commentary, in which the arguments
against the Bayesian perspective are summarised,
and a list of key points for each chapter are
repeated in chapter 13. Mathematical and computa-
tional methods will be barely mentioned, and
details should be sought in the references provided.
The review is therefore structured by context rather
than methods, although some methodological
themes inevitably run throughout; for example,
what form of prior distribution is appropriate, and
is it reasonable to adopt an explicit loss function?

Finally, we should be quite explicit as to our own
subjective biases, which will doubtless be apparent
from the organisation and text of this review. We
favour the Bayesian philosophy, and would like to
see its use extended in health technology assess-
ment, but feel that this should be carried out
cautiously, with critical appraisal, and in parallel
with the currently accepted methods.

Key points

1. Bayesian methods are defined as the explicit
quantitative use of external evidence in the
design, monitoring, analysis, interpretation and
reporting of a health technology assessment.

2. Bayesian methods are a controversial topic in
that they may involve the explicit use of subjec-
tive judgements in what is conventionally
supposed to be a rigorous scientific exercise in
health technology assessment.

3. There has been very limited use of proper
Bayesian methods in practice, and relevant
studies appear to be relatively easily identified.

4. The potential importance of Bayesian methods
to a topic is not necessarily reflected in the
volume of published literature: in particular,
publications on the design and analysis of
single clinical trials dominate those on the
synthesis of evidence from studies of multiple
designs.
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In this chapter we give an overview of some of the
generic features of the Bayesian philosophy that

find application in health technology assessment.
Limited references to the literature are given at
this stage, but relevant sections within randomised
trials, observational studies and evidence synthesis
are identified. We shall use a simple running
example to illustrate the general issues: the
Grampian Region Early Anistreplase Trial
(GREAT)204 of early thrombolytic treatment for
myocardial infarction, which reported a 49%
reduction in mortality (23/148 deaths on control
versus 13/163 deaths on active treatment).

The ‘classical’ statistical approach
in health technology assessment
It would be misleading to dichotomise statistical
methods as either ‘classical’ or ‘Bayesian’, since
both terms cover a bewildering range of tech-
niques. It is a little more fair to divide conventional
statistics into two broad schools, Fisherian and
Neyman–Pearson; different Bayesian approaches
will be discussed later in this chapter.

• The Fisherian approach to inference on an
unknown intervention effect q is based on the
likelihood function mentioned previously,
which expresses the relative support given to the
different values of q by the data. This gives rise to
an estimate comprising the ‘most-likely’ value for
q, intervals based on the range of values of q most
supported by the data, and the evidence against
specified null hypotheses summarised by P values
(the chance of getting a result as extreme as that
observed were the null hypothesis true).

• The Neyman–Pearson approach is focused on
the chances of making various types of error so
that, for example, clinical trials are designed to
have a fixed type I error a (the chance of incor-
rectly rejecting the null hypothesis), usually
taken as 5 or 1%, and fixed power (one minus
the type II error b, the chance of not detecting
the alternative hypothesis), often 80 or 90%.
The situation is made more complex if a sequen-
tial design is used, in which the data are

periodically analysed and the trial stopped
if sufficiently convincing results obtained.
Repeated analysis of the data has a strong effect
on the type I error, since there are many oppor-
tunities to obtain a false-positive result, and thus
the P value and the confidence interval need
adjusting477 (although this rarely appears to be
carried out in the published report of the trial).
Such sequential analysis is just one example of a
problem of ‘multiplicity’, in which adjustments
need to be made due to multiple analyses being
carried out simultaneously. A standard example
is the use of Bonferroni adjustments when esti-
mating treatment effects in multiple subsets.

Clinical trials are generally designed from a
Neyman–Pearson standpoint, but analysed from a
Fisherian perspective.398 Methods used for observa-
tional methods and evidence synthesis tend to be
more Fisherian.

Advantages of the traditional framework include
its apparent separation of the evidence in the

data from subjective factors, the general ease in
computation, its wide acceptability and established
criteria for ‘significance’, its relevance to the drug
regulatory framework in which quality control of
statistical submissions must be ensured, the avail-
ability of software, and the existence of robust
non- and semi-parametric procedures.

Critique of the classical approach

Hypothesis testing and P values
Overemphasis on hypothesis testing has been
strongly criticised (although shifting attention
to confidence intervals does not avoid all the
problems, since these are just the set of hypotheses
that cannot be rejected at a certain a level). P
values are explicitly concerned with the chance of
observing the data (or something more extreme)
given certain values of the unknown quantity q,
and use an inverse (and frequently misunderstood)
argument for deriving statements about q.
Arguments against this procedure include: the null
hypothesis may be neither plausible nor of great
interest, the arbitrariness of the 0.05 and 0.01 level,
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the focus on statistical rather than clinical signifi-
cance, the problem over one- or two-sided tests,
the fact that even in some simple circumstances,
such as a 2 × 2 table, the definition of the P value
is unclear, and that P values tend to create a
false dichotomy between ‘significant’ and
‘non-significant’ which is inappropriate for
consequent policy decisions.299 See Schervish392

for a general discussion.

Furthermore, Freeman184 gives a good example of
the limitations of P values as expressions of
evidence: Table 1 shows the results of four hypo-
thetical trials in which equal number of patients
are given treatments A and B and asked which they
prefer, each resulting in an identical ‘significant’ P
value of 0.04.

But, as Freeman states, the first trial would be
considered too small to permit reliable conclu-
sions, while the last trial (with a preference
proportion of 50.07%) would be considered as
evidence for rather than against equivalence. The
importance of sample size and plausibility of
benefits in interpreting P values has often been
stressed, and the Fourth International Study of
Infarct Survival (ISIS-4) investigators state that
“when moderate benefits or negligibly small
benefits are both much more plausible than
extreme benefits, then a 2p = 0.001 effect in a
large trial or overview would provide much
stronger evidence of benefit than the same signifi-
cance level in a small trial, a small overview, or a
small subgroup analysis”.109 Sheiner400 provides a
strong polemic against hypothesis testing and in
favour of an approach in which “we gather data
to model and quantify nature”.

Type I and type II error
Both Bayesians and Fisherians can express strong
criticism of Neyman–Pearson theory. Anscombe,13

quoted by Herson,232 says “the concept of error
probabilities of the first and second kinds …
has no direct relevance to experimentation. The
formalism of opinions, decisions concerning
further experimentation and other required

actions, are not dictated in a simple prearranged
way by the formal analysis of the experiment, but
call for judgement and imagination”, while Healy224

asks “Why the invariable 5% for a? Conditional on
this, why the larger 10% or even 20% for b? Is it
really more important not to make a fool of
yourself than it is to discover something new?”.
Criticism of fixed type I error has particularly
been aimed at sequential analysis (see pages
10 and 29), and relevance of hypothesis testing
and decision-making to health technology
assessment will be a running theme of this review
(see page 14).

Multiple testing
We have already identified the crucial issue that
arises in any context in which simultaneous analysis
of multiple studies, or multiple analyses of the
same study, is required. The traditional approach
warns that repeated hypothesis testing is bound to
raise the chance of a type I error (wrongly rejecting
a true null hypothesis), and so suggests some
adjustment, such as Bonferroni, to try to retain a
specified overall type I error. This will typically give
larger P values and wider confidence intervals: it
has been shown that such results would be consis-
tent with a rather odd prior distribution in which a
constant probability is given to all the null hypoth-
eses being true, regardless of their number.472

The need for any such adjustment, which neces-
sarily depends on the number of hypotheses being
tested, has been strongly questioned from a non-
Bayesian perspective, particularly in epidemi-
ology;356,382 Cole108 states that “in every study, every
association should be evaluated on its own merits:
its prior credibility and its features in the study at
hand. The number of other variables is irrelevant”,
while Cook and Farewell110 say that it is generally
reasonable to report unadjusted conclusions.
However, Greenland and Robins207 are among the
many who have argued that some adjustment is
necessary, but rather than be based on type I errors
it should be derived from an explicit model that
reflects assumptions about variability. We shall
return to this theme on page 12.

Other criticisms of conventional statistical analysis
include that it fails to incorporate formally the
inevitable background information that is available
both at design and analysis and, from a more
ideological perspective, that it disobeys certain
reasonable axioms of rational behaviour (see
page 13). Finally, there is no doubt that classical
inferences are often inappropriately interpreted
in a Bayesian way, in that P values are mistaken
for probabilities of null hypotheses being true,
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Number of patients
receiving A and B

Proportion
preferring A

P value

,,20
,,200

,2,000
2,000,000

15:5
115:86
1,046:954
1,001,445:998,555

0.04
0.04
0.04
0.04

TABLE 1 Four theoretical studies all with the same P value



and 95% confidence intervals as meaning there is a
95% chance of containing the true value.184

Bayes’s theorem

Suppose q is some quantity that is currently
unknown, for example a specific patient’s true
diagnosis or the true success rate of a new therapy,
and let p(q) denote the probability of each possible
value of q (where for the moment we do not
concern ourselves with the source of that proba-
bility). Suppose we have some observed evidence y
whose likelihood of occurrence depends on q,
for example a diagnostic test or the results of a
clinical trial. This dependence is formalised by a

probability p(y|q), which is the (conditional) proba-
bility of y for each possible value of q. We would
like to obtain the new probability for different
values of q, taking account of the evidence y; this
probability has the conditioning reversed, and is
denoted p(q|y). Bayes’s theorem simply says

p(q|y) µ p(y|q) × p(q)

(The proportionality is made into an equality by
making probabilities for all possible values of q
add to 1.) The usual term for p(q) is the prior, for
p(y|q) the likelihood, and for p(q|y) the posterior,
and hence Bayes’s theorem simply says that the
posterior distribution is proportional to the
product of the prior times the likelihood.
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FIGURE 1 (a) Prior, (b) likelihood (based on 23/148 versus 13/163 deaths) and (c) posterior distributions arising from the GREAT trial
of home thrombolysis. (Reproduced by permission of the BMJ from Spiegelhalter et al.426)



Example
Pocock and Spiegelhalter363 discuss the GREAT
trial, in which the unknown quantity q is the true
percentage change in risk of mortality from using
home thrombolytic therapy. They obtained a prior
distribution for q expressing belief that “a 15–20%
reduction in mortality is highly plausible, while the
extremes of no benefit and a 40% reduction are
both unlikely”. This prior is shown in Figure 1a,
while Figure 1b shows the likelihood expressing the
support by the data (23/148 deaths on control
versus 13/163 deaths on active treatment) for
various values of q. In contrast to the prior distribu-
tion, Figure 1b displays strong support for values of
q representing a 40–60% risk reduction.

Figure 1c shows the posterior distribution, obtained
by multiplying the prior and likelihood together
and then making the total area under the curve be
equal to one (i.e. ‘certainty’). The evidence in the
likelihood has been pulled back towards the prior
distribution – a formal representation of the belief
that the results were ‘too good to be true’.

Reporting probability statements

Having obtained a posterior distribution, to produce
probabilities of exceeding certain thresholds, or
lying in certain intervals, is only a computational
task. In Figure 1, the posterior distribution provides
an easily interpretable summary of the evidence,
and probabilities for hypotheses of interest can then
be read off the graph by calculating the relevant
areas under the curve. For example, the most likely
benefit is around a 24% risk reduction (half that
observed in the trial), the posterior probability that
the reduction is at least 50% is only 5%, and a 95%
interval runs from a 43% to 0% risk reduction.

Such an interval is generally termed a ‘credible
interval’ – unlike a confidence interval, it can be
directly interpreted as saying that, given the prior
assumptions, the model and the data, there is a
95% chance that the true reduction lies between 0
and 43%.

In many standard situations a traditional confi-
dence interval is essentially equivalent to a credible
interval based on the likelihood alone, and hence
equivalent to using a ‘flat’ prior. Burton82 claims
that “it is already common practice in medical
statistics to interpret a frequentist confidence
interval as if it did represent a Bayesian posterior
probability arising from a calculation invoking a
prior density that is uniform on the fundamental
scale of analysis”.

The subjective interpretation of
probability
The standard use of probability describes long-run
frequency properties of repeated random events.
This is known as the frequency interpretation of
probability, and so both Fisherian and Neyman–
Pearson schools are often referred to as
‘frequentist’. We have allowed probability to
refer to generic uncertainty about any unknown
quantity, and this is an application of the subjec-
tivist interpretation of probability.

This subjective view of probability is not new, and
used to be standard. Fienberg170 points out that
Jakob Bernoulli in 1713 introduced “the subjective
notion that the probability is personal and varies
with an individual’s knowledge”, and that
Laplace and Gauss both worked with posterior
distributions, which became known as ‘the inverse
method’. However from the mid-nineteenth
century the frequency approach started to
dominate, and controversy has sporadically
continued. Dempster128 quotes Edgeworth in 1884
as saying the critics who “heaped ridicule upon
Bayes’s theorem and the inverse method” were
trying to elicit “knowledge out of ignorance, some-
thing out of nothing”. Polemical opinions are still
expressed: in defence of the explicit introduction
of subjective judgement into scientific research,
Matthews319 states that “it simply makes no sense to
take seriously every apparent falsification of a plau-
sible theory, any more than it makes sense to take
seriously every new scientific idea”.

The Bayesian perspective thus extends the remit of
standard statistical analysis, in that there is explicit
concern for what it is reasonable for an observer to
believe in the light of data. Thus the perspective of
the consumer of the analysis is explicitly taken
into account; for example, in a trial on a new drug
being carried out by a pharmaceutical company,
the viewpoints of the company, the regulatory
authorities and the medical profession may be
substantially different. The subjective nature of the
analysis is therefore unapologetically emphasised.
Berger and Berry38 state that “Bayesian statistics
treats subjectivity with respect by placing it in the
open and under the control of the consumer of
data”.

The prior distribution shown in Figure 1a was based
on the subjective judgement of a senior cardiolo-
gist, informed by empirical evidence derived from
one unpublished and two published trials. Of
course, conclusions strongly based on beliefs that
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cannot be supported by concrete evidence are
unlikely to be widely regarded as convincing, and
so it is important to attempt to find consensus on
reasonable sources of external evidence. The
assessment and use of prior beliefs is discussed
further below and in chapter 3.

The relation to the use of Bayes’s
theorem in diagnostic tests
If q is something that is potentially observable, and
p(q) can be derived from known data, then the use
of Bayes’s theorem is uncontroversial. For example,
it has long been established that sensitivity and
specificity are insufficient characteristics to judge
the result of a diagnostic test for an individual –
the disease prevalence is also needed.

From the health technology assessment perspec-
tive, the more interesting and controversial context
is that of an unknown q, which is a quantity that
is not potentially directly observable, such as
the mean benefit of a new therapy in a defined
group of patients. There have been many argu-
ments80,132,361,429 for the connection between the
use of Bayes’s theorem in diagnostic testing and in
general clinical research, pointing out that just as
the prevalence is required for the assessment of a
diagnostic test, so the prior distribution on q is
required to supplement the usual information (P
values and confidence intervals) which summarises
the likelihood. We need only think of the huge
number of clinical trials that are carried out, with
few clear successes, to realise that the ‘prevalence’
of truly effective treatments is low. We should thus
be cautious about accepting extreme results, such
as observed in the GREAT trial, at face value:
indeed, Grieve213 suggests a Bayesian approach
provides “a yardstick against which a surprising
finding may be measured”.

Brophy and Joseph76 defend a Bayesian approach
to clinical studies by analogy to the differing levels
of certainty which might be demanded by a diag-
nostic test under different circumstances, and
Simon405 provides the following example shown in
Table 2. Suppose 200 trials are performed, but only

10% are of truly effective treatments. Suppose each
trial is carried out with a type I error of 5% (the
chance of claiming an ineffective treatment is
effective) and a type II error of 20% (the chance
of claiming an effective treatment is ineffective).
Then Table 2 shows that 9/25 = 36% of trials with
significant results are in fact of totally ineffective
treatments: in diagnostic testing terms, the ‘predic-
tive value positive’ is only 64%.

Simon refers to this as the ‘epidemiology of clinical
trials’, and suggests this should imbue a spirit
of scepticism about unexpected significant trial
results, which is naturally handled within a
Bayesian perspective.

The prior distribution

Chapter 3 provides a full discussion of the source
and use of prior distributions, including elicitation
from experts, the use of ‘default’ priors to repre-
sent archetypal positions of ignorance, scepticism
and enthusiasm and, when multiple related studies
are being simultaneously analysed, the assumption
of a common prior that may be ‘estimated’.

Four important points should be emphasised
immediately:

1. Despite the name ‘prior’ suggesting a temporal
relationship, it is quite feasible that a prior
distribution is decided on after seeing the
results of a study, since it is simply intended
to summarise reasonable uncertainty given
evidence external to the study in question.
Cox117 states that “I was surprised to read that
priors must be chosen before the data have been
seen. Nothing in the formalism demands this.
Prior does not refer to time, but to a situation,
hypothetical when we have data, where we assess
what our evidence would have been if we had
had no data. This assessment may rationally be
affected by having seen the data, although there
are considerable dangers in this, rather similar
to those in frequentist theory”. Naturally when
making predictions or decisions one’s prior
distribution needs to be unambiguously
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Trial conclusion Treatment truly ineffective Treatment truly effective Total

Not significant 171 4 175
Significant 9 16 25

Total 180 20 200

TABLE 2 The expected results when carrying out 200 clinical trials with a = 5% and b = 20% if only 10% of treatments are truly
effective



specified, although even then it is reasonable to
carry out sensitivity analysis to alternative
choices.

2. There is no such thing as the ‘correct’ prior.
Instead, researchers have suggested using a
‘community’ of prior distributions expressing a
range of reasonable opinions. Thus, a Bayesian
analysis of evidence is best seen as providing a
mapping from specified prior beliefs to appro-
priate posterior beliefs.

3. When multiple related studies are being simulta-
neously analysed, it may be possible to ‘estimate’
the prior for each study – see page 12.

4. As the amount of data increases, the prior will,
unless it is of a pathological nature, be over-
whelmed by the likelihood and will exert negli-
gible influence on the conclusions.

Predictions

Suppose we wish to predict some future observa-
tions z, which depend on the unknown quantity
q through a distribution p(z|q): for example, z
may be the outcomes to be observed on some

future patients. Since our current uncertainty
concerning q is expressed by the posterior
distribution p(q|y), then we can average over
the current beliefs regarding the unknown q to
obtain the predictive distribution p(z|y) for the
future observations z.

Such predictive distributions are useful in many
contexts: Berry and Stangl45 describe their use in
design and power calculations, model checking,
and in deciding whether to conduct a future
trial, while Grieve208 provides examples in bio-
equivalence, trial monitoring and toxicology.
Applications of predictions include power calcula-
tions (see page 28), sequential analysis (see
page 31), payback from research (see page 52)
and health policy making (see page 54).

Sequential analysis

Sequential data fall naturally within the Bayesian
framework, as the posterior distribution following
each observation becomes the prior for the
next. This is discussed with regard to clinical
trials in chapter 4, but for illustration we
consider the example of Berry,53 concerning
the 6-mercaptopurine (6-MP) trial for acute
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Patient pair Preferred nA – nB Two-sided P P(B > A)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A
B
A
A
A
B
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A

1
0
1
2
3
2
3
4
5
6
7
8
9
8
9

10
11
12
13
14
15

1.0
1.0
1.0
0.63
0.38
0.69
0.45
0.29
0.18
0.11
0.065
0.039
0.022
0.057
0.035
0.021
0.013
0.0075
0.0044
0.0026
0.0015

0.25
0.50
0.31
0.19
0.11
0.23
0.14
0.090
0.055
0.033
0.019
0.011
0.0065
0.018
0.011
0.0064
0.0038
0.0022
0.0013
0.0008
0.0005

TABLE 3 Classical P values (adjusted for sequential examination of the data) and posterior probabilities of treatment superiority (no
adjustment necessary because of repeated looks at the data)



leukaemia.186 In this study patients were allocated
in pairs to 6-MP (A) or placebo (B), and the treat-
ment assigned to whichever stayed in remission
longer was considered the preference for that pair.
Of the first 18 pairs, 15 preferred A, and the trial
was stopped with P < 0.01; three subsequent pairs
also preferred A. The data are shown in Table 3,
with the frequentist two-sided P values and the
posterior probability of B being the preferred
treatment, assuming an initial uniform prior on
the probability of B being preferable to A.

We note that the posterior probabilities can be
calculated without regard to any stated stopping
procedure, that the posterior probability that
P(B > A) is simply the prior probability that the
next pair will prefer B, and that the posterior
probabilities suggest the trial could have ended
considerably sooner.

The idea that the data influence the posterior
only through the likelihood is known as the
likelihood principle37,49 (see page 13), and
underlies the strong Bayesian criticism of
sequential analysis.

Decision-making

Suppose we wish to make one of a set of decisions,
and that we are willing to assess some value u(d, q),
known as a utility, of taking the decision d when q
is the true unknown ‘state of nature’. The theory of
optimal decision-making says we should choose the
decision that maximises our expected utility, where
the expectation is taken with respect to our current
probability distribution for q.307

The use of Bayesian ideas in decision-making is a
huge area of research and application, in which
attention is focused on the utility of consequences
rather than the use of Bayesian methods to revise
beliefs.471 This activity blends naturally into cost-
effectiveness analysis (see page 51), but neverthe-
less the subjective interpretation of probability
is essential, since the expressions of uncertainty
required for a decision analysis can rarely be
based purely on empirical data. There is a
long history of attempts to apply this theory to
medicine, and in particular there is a large litera-
ture on decision analysis, whether applied to the
individual patient or for policy decisions.301 The
journal Medical Decision Making contains an
extensive collection of policy analyses based
on maximising expected utility, some of which
particularly stress the importance of Bayesian
considerations.

Therefore there has been a long debate on the use
of loss functions (just the negative of utility), in
parallel to that concerning prior distributions.
Berry53 and others have long argued that the design,
monitoring and analysis of a study must explicitly
take into account the consequences of eventual
decisions. It is important to note that there is also a
frequentist theory of decision-making that uses loss
functions, but does not average with respect to prior
or posterior distributions: the decision-making
strategy is generally ‘minimax’, where the loss is
minimised whatever the true value of the parameter
might be. This can be thought of as assuming the
most pessimistic prior distribution: see, for example,
Bather30 and Palmer.344 Thus all combinations of the
use of prior distributions and/or loss functions are
possible: this is further discussed in the commen-
taries to this chapter and chapter 4.

The explicit use of utility functions within the
design and monitoring of clinical trials is contro-
versial but has been explored in a number of
contexts: for example, Berry and Stangl45 discuss
whether to stop a Phase II trial based on estimating
the number of women in the trial and in the future
who will respond; whether to continue a vaccine
trial by estimating the number of children who will
contract the disease; and the use of adaptive alloca-
tion in a Phase III trial such that at each point the
treatment which maximises the expected number
of responders is chosen. See pages 32 and 37 for
further discussion. A decision-theoretic approach
also leads to formal techniques for assessing the
payback from research (see page 52) and policy
making (see page 54).

Hypothesis testing

Just as the Neyman–Pearson approach focuses on
two competing hypotheses, it is possible to take a
Bayesian hypothesis-comparison approach. This
requires a prior distribution that places a ‘lump’ of
probability on each competing hypotheses, which
is updated to produce a posterior probability in,
say, the null hypothesis that two drugs have equal
effect (note that this is not the same as a P value,
although such a mistaken interpretation of a P
value is often made). Priors that explicitly consider
the ‘truth’ of a null hypothesis are discussed on
page 19. These were particularly promoted by
Cornfield, who emphasised the ‘relative betting
odds’ between two hypotheses, defined as the ratio
of the posterior to the prior odds. This measure of
the relative likelihood of two hypotheses is also
known as the ‘Bayes factor’, and has been the
subject of much research.266
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Design

Bayesian design of experiments can be considered
as a natural combination of prediction and deci-
sion-making, in that the investigator is seeking to
choose a design which will achieve the desired
goals. Chaloner and Verdinelli99 provide a general
review, while Simes401 emphasises that trials that
are designed to help treatment decisions require
specification of utilities and detailed subgroup
information in order to individualise treatment
decisions. A simple design problem, choosing the
size of a clinical trial, is considered on page 28.

Sequential designs present a particular problem
known as ‘backwards induction’,124 in which one
must work backwards from the end of the study,
examine all the possible decision points that one
might face, and optimise the decision, allowing
for all the possible circumstances in which one
might find oneself. This is computationally very
demanding since one must consider what to do
in all possible future eventualities, but limited
examples will be described on pages 32 and 37.
Early phases of clinical trials have attracted this
approach: Brunier and Whitehead81 consider the
balancing of costs of experimentation and errors
in treatment allocation (see page 38).

We emphasise, however, that the likelihood prin-
ciple states that Bayesian inference is carried out
independently of design, so that the reasons for
obtaining particular data points is irrelevant: the
only aspect of interest is the relative likelihood of
observing those particular data given possible
values of the parameters of interest.

Multiplicity

The context of clinical trials may present issues of
“multiple analyses of accumulating data, analyses of
multiple end-points, multiple subsets of patients,
multiple treatment group contrasts and inter-
preting the results of multiple clinical trials”.404

Observational data may feature multiple institu-
tions, and meta-analysis involves synthesis of
multiple studies. The general Bayesian approach
to multiplicity involves specifying a common prior
distribution for the substudies that expresses a
belief in the expected ‘similarity’ of all the indi-
vidual unknown quantities being estimated. This
produces a degree of pooling, in which an indi-
vidual study’s results tend to be ‘shrunk’ towards
the average result by an amount depending on the
variability between studies and the precision of the
individual study: relevant contexts include subset

analysis, between-centre variability, and random-
effects meta-analysis. This is essentially a random-
effect approach, often labelled as ‘empirical Bayes’
or ‘multilevel’ modelling; we shall later distinguish
these from a ‘fully Bayes’ approach.

This is later discussed with respect to hierarchical
models (see page 21), subset analysis (see page 35),
between-centre variability (see page 36), and insti-
tutional comparisons (see page 44 and chapter 12).

Complex modelling

Health technology assessments will generally
involve some synthesis of evidence from a variety
of sources, and a single clinical trial will rarely
provide a definitive conclusion as to a policy
recommendation. Standard statistical methods
are designed for summarising the evidence from
single studies, and although there has been a
huge growth in methods and application of meta-
analysis, these have generally been concerned
with pooling evidence from studies with very
comparable designs, outcome measures and so on.

A Bayesian approach allows evidence from diverse
sources to be pooled through assuming that their
underlying probability models (their likelihoods)
have parameters of interest in common. For
example, the ‘true’ effect of an intervention will
feature in models for both randomised trials and
observational data, even though there may be addi-
tional adjustments for potential biases, different
populations, cross-overs between treatments and so
on. One context in which this has been emphasised
is in the regulation of medical devices (see page
53). This ability to deal with very complex models
is discussed in chapter 6, but in general this great
flexibility brings with it mathematical and computa-
tional challenges.

Computational issues

The Bayesian approach applies probability theory
to a model derived from substantive knowledge
and can, in theory, deal with realistically complex
situations – the approach can also be termed ‘full
probability modelling’. It has to be acknowledged,
however, that the computations may be difficult,
with the specific problem being to carry out the
integrations necessary to obtain the posterior
distributions of quantities of interest in situations
where non-standard prior distributions are used,
or where there are additional ‘nuisance parame-
ters’ in the model. These problems in integration
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for many years restricted Bayesian applications
to rather simple examples. However, there has
recently been enormous progress in methods
for Bayesian computation, generally exploiting
modern computer power to carry out simulations
known as Markov chain Monte Carlo (MCMC)
methods.189,193

Although we will not be particularly concerned
with computational issues, we refer to Carlin et al.90

and Etzioni and Kadane162 who discuss a range
of methods which may be used (normal approxi-
mations, Laplace approximations and numerical
methods including MCMC), Gelman and
Rubin’s189 review of MCMC methods in bio-
statistics, and Vanhouwelingen’s464 commentary
on the importance of computational methods in
the future of biostatistics.

The theoretical justification for
the Bayesian approach
The theoretical foundations for the optimality of
Bayesian inference have been discussed at length
by Cornfield,112 Degroot,124 Lindley,306 Bernardo
and Smith43 and others. The crucial idea is that if
one accepts certain intuitively plausible behav-
ioural axioms, such as not placing bets that are
guaranteed to lose money, then one should act
according to decision theory based on subjective
probabilities.

Apart from this somewhat ideological argument,
the most important theoretical construct (aside
from probability theory itself) is the likelihood
principle,37 which states that all the information
that the data provides about the parameter is
contained in the likelihood. This entails, for
example, that frequentist stopping rules that retain
type I error (with their consequence that the infer-
ences are influenced by what one would have done
had one observed something different) are entirely
irrelevant.

Schools of Bayesians

It is important to emphasise that there is no such
thing as a single Bayesian approach, and that
many ideological differences exist between the
researchers whose work is discussed in this chapter.
Four levels of Bayesian approach, of increasing
‘purity’, may be identified:

1. The empirical Bayes approach, in which a
prior distribution is estimated from multiple

experiments. Analyses and reporting are in
frequentist terms.

2. The reference Bayes approach, in which a
Bayesian interpretation is given to conclusions
expressed as posterior distributions, but an
attempt is made to use ‘objective’ or ‘reference’
prior distributions.

3. The proper Bayes approach, in which informa-
tive prior distributions are based on available
evidence, but conclusions are summarised by
posterior distributions without explicit incorpo-
ration of utility functions.

4. The decision-theoretic or ‘full’ Bayes approach,
in which explicit utility functions are used to
make decisions based on maximising expected
utility.

Our focus in this review is primarily on the third,
proper, school of Bayesianism.

Making the health technology
assessment context explicit
Bayesian methods explicitly allow for the possi-
bility that the conclusions of an analysis may
depend on who is conducting it and their available
evidence and opinion, and therefore the context
of the study is vital. Apart from methodological
researchers, at least four different viewpoints can
be identified for any health technology
assessment:

• sponsors, for example the pharmaceutical
industry, medical charities or granting
agencies

• investigators, that is, those responsible for the
conduct of a study, whether industry or publicly
funded

• reviewers, for example regulatory bodies or
journal editors

• consumers, for example agencies setting health
policy, clinicians or patients.

An analysis which might be carried out solely
for the investigators, for example, may not be
appropriate for presentation to reviewers or
consumers, and Racine et al.370 point out that
“experimentalists tend to draw a sharp distinction
between providing their opinions and assessments
for the purposes of experimental design and
in-house discussion, and having them incorpo-
rated into any form of externally disseminated
report”.
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A characteristic of health technology assessment is
that the investigators who plan and conduct a study
are generally not the same body as those that make
decisions on the basis of the evidence provided in
part by that study: such decision makers may be
regulatory authorities or healthcare providers. This
division is acknowledged both in the structure of
this report (in which chapter 4 considers design
and monitoring of trials, and chapter 7 examines
decision-making) and in the lower profile given to
decision-making compared with inferences.

Further reading

A wide-ranging introductory chapter by Berry and
Stangl45 in their textbook61 covers a whole range
of modelling issues, including elicitation, model
choice, computation, prediction and decision-
making. Non-technical tutorial articles include
those by Lewis and Wears,295 Bland and Altman68

and Lilford and Braunholtz.299 Other authors
emphasise different merits of Bayesian approaches
in health technology assessment: Eddy et al.148

concentrate on the ability to deal with varieties of
outcomes, designs and sources of bias, Breslow72

stresses the flexibility with which multiple similar
studies can be handled, Etzioni and Kadane162

discuss general applications in the health sciences
with an emphasis on decision-making, while
Freedman177 and Lilford and Braunholtz299

concentrate on the ability to combine ‘objective’
evidence with clinical judgement. Stangl and
Berry426 provide a recent review of biomedical
applications.

There is a huge methodological statistical literature
on general Bayesian methods, much of it quite
mathematical. Dempster128 gives a historical back-
ground, while Cornfield112 provides a theoretical
justification of the Bayesian approaches, in terms
of ideas such as coherence. A rather old article156 is
still one of the best technical introductions to the
Bayesian philosophy.

Good tutorial introductions are provided by
Lindley307 and Barnett,29 while more recent books,

in order of increasing technical difficulty, include
those by Berry,56 Lee,287 O’Hagan,338 Gelman et
al.,188 Carlin and Louis,92 Berger36 and Bernardo
and Smith.43

There is a large literature on using Bayesian
methods for specific modelling issues, and only
a few references are provided here. Specific

problems that have attracted a Bayesian analysis
in health technology assessment include survival
analysis,2,7,218,427 longitudinal models,257,282 missing
data and dropouts,116,270,285,354,385 and model criticism
and selection.205

Commentary

As mentioned on page 11, we need to carefully
distinguish the debate as to whether prior distribu-
tions should be used for inferences, from the
question of whether our objective should be esti-
mation, hypothesis testing or a decision requiring
a loss function of some kind. Table 4 considers all
possible combinations of these elements.

All six approaches have been investigated in theory
and, to some extent, in practice, and the resulting
arguments become complex. Here we shall only
give a very brief overview; see the commentaries in
each chapter for further detailed objections.

Prior or no prior?
There have been generic warnings about a
Bayesian approach, and Feinstein167 claims that
“a statistical consultant who proposes a Bayesian
analysis should therefore be expected to obtain a
suitably informed consent from the clinical client
whose data are to be subjected to the experiment”.
However, some seem to misunderstand the
Bayesian explicit acceptance of subjectivity: Lane280

states that “We are told that elimination of subjec-
tivity by use of Bayesian inference paves the way to
truly objective, evidence-based practice. Yet who
but a statistically minded minority can begin to
interpret Bayesian analysis?”.
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Objective

Inference (estimation) Hypothesis testing Decision (loss function)

No prior Fisherian Neyman–Pearson Classical decision theory
Prior Proper Bayesian ‘Bayes’s factors’ Full decision-theoretic Bayesian

TABLE 4 A taxonomy of six possible ‘philosophical’ approaches to health technology assessment, depending on their objective and their
quantitative use of prior information



In general, the objections to the use of a prior
distribution have been pragmatic, and strict ideo-
logical standpoints have been played down: Cox
and Farewell118 say it would be “a great pity if differ-
ences of technical approach were exaggerated
into differences about qualitative issues”, while
Armitage19 maintains it is not appropriate to
polarise the argument as a choice between two
extremes. Practical difficulties in obtaining and
using prior opinions will be described in the
commentary to succeeding chapters: Fisher171 and
O’Rourke343 provide lists of general objections,
while Tukey454 suggests that the Bayesian approach
to multiplicity has little to contribute due to it being
rarely appropriate to assume exchangeability.

Following the discussion on page 13, many
authors have argued that the appropriateness of
the Bayesian approach depends crucially on the
circumstances and the precise question being
asked: for example, both Koch272 and Whitehead476

claim that a proper Bayesian approach may be
reasonable at early stages of a drug’s development
but is not acceptable in Phase III trials.

Estimation, hypothesis testing or
decision-making?
Whether or not to incorporate an explicit loss
function would appear to depend on the question
being asked, and the extent to which a health tech-
nology assessment should lead to an inference
about a treatment effect or a decision as to future
policy has been strongly debated.15,72,223,249,402

Important objections that have been raised to a
decision-theoretic approach include the lack of a
coherent theory for decision-making on behalf of
multiple audiences with different utility functions,

the difficulty of obtaining agreed utility values,
and the fact that future treatments would be
recommended on the basis of even marginal
expected gains, without any concern with the
confidence with which such a recommendation is
made (see also page 39). We also note Kass and
Greenhouse’s267 argument against the Bayes factor
approach, claiming that “in most RCTs, estimation
would be more appropriate than testing”.

Key points

1. Claims of advantages and disadvantages of
Bayesian methods are now largely based on
pragmatic reasons rather than blanket ideolog-
ical positions.

2. A Bayesian approach can lead to flexible
modelling of evidence from diverse sources.

3. Bayesian methods are best seen as a transforma-
tion from initial to final opinion, rather than
providing a single ‘correct’ inference.

4. Different contexts may demand different statis-
tical approaches, both regarding the role of
prior opinion and the role of an explicit loss
function. It is vital to establish contexts in which
Bayesian approaches are appropriate.

5. A decision-theoretic approach may be appro-
priate where the consequences of a study are
predictable, such as when dealing with rare
diseases treated according to a protocol, within
a pharmaceutical company, or in public health
policy.
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Introduction

There is no denying that quantifiable prior beliefs
exist in medicine. For example, in the context of
clinical trials, Peto and Baigent358 state that “it is
generally unrealistic to hope for large treatment
effects” but that “it might be reasonable to hope
that a new treatment for acute stroke or AMI could
reduce recurrent stroke or death rates in hospital
from 10% to 9% or 8%, but not to hope that
it could halve in-hospital mortality”. However,
turning informally expressed opinions into a math-
ematical prior distribution is perhaps the most
difficult aspect of Bayesian analysis. Four broad
approaches are outlined below, ranging from the
elicitation of subjective opinion to the use of
statistical models to estimate the prior from data.
Sensitivity analysis to alternative assumptions is
considered vital, whatever the method used to
construct the prior distribution.

From a mathematical and computational perspec-
tive, it is extremely convenient if the prior
distribution is a member of a family of distributions
that is conjugate to the form of the likelihood, in
the sense that they ‘fit together’ to produce a pos-
terior distribution that is in the same family as the
prior distribution. For example, many likelihoods
for treatment effects can be assumed to have an
approximately normal shape,421 and thus in these
circumstances it will be convenient to use a normally
shaped prior (the conjugate family), provided it
approximately summarises the appropriate external
evidence. Similarly when the observed data are to be
proportions (implying a binomial likelihood), the
conjugate prior is a member of the ‘beta’ family
of distributions which provide a flexible way of
expressing beliefs about the magnitude of a true
unknown frequency. Modern computing power is,
however, reducing the need for conjugacy, and in
this section we shall concentrate on the source of
the prior rather than its precise mathematical form.

We should repeat the statements made on page 9
regarding the fact that there is no ‘correct’ prior:
Bayesian analysis can be seen as a means of trans-
forming prior into posterior opinions, rather than
producing the posterior distribution. It is therefore
vital to take into account the context and audience
for the assessment (see page 13).

Elicitation of opinion

A true subjectivist Bayesian approach requires only
a prior distribution that expresses the personal
opinions of an individual but, if the health tech-
nology assessment is to be generally accepted by a
wider community, it would appear to be essential
that the prior distributions have some evidential or
at least consensus support. In some circumstances
there may, however, be little ‘objective’ evidence
available and summaries of expert opinion may be
indispensable.

There is a very large literature on eliciting subjec-
tive probability distributions from experts, with
some good early references on statistical391 and
psychological aspects,456 as well as on methods
for pooling distributions obtained from multiple
experts.190 The fact that people are generally not
good probability assessors is well known, and the
variety of biases they suffer are discussed by Kadane
and Wolfson.265 Nevertheless it has been shown
that training can improve experts’ ability to
provide judgements that are ‘well calibrated’, in
the sense that if a series of events are given a
probability, say 0.6, then around 60% of these
events will occur. Murphy and Winkler331 discuss
this issue with regard to weather forecasting.

Chaloner97 provides a thorough review of methods
for prior elicitation in clinical trials, including
interviews with clinicians, postal questionnaires,
and the use of an interactive computer program to
draw a prior distribution. She concludes that fairly
simple methods are adequate, using interactive
feedback with a scripted interview, providing
experts with a systematic literature review, basing
elicitation on 2.5 and 97.5% percentiles, and using
as many experts as possible.

Berry and Stangl45 discuss methods for eliciting
conjugate priors and checking whether the assess-
ments are consistent with each other. Kadane and
Wolfson260 distinguish between experiments to
learn for which only the prior of the experimenter
needs to be considered, and experiments to prove,
in which the priors (and utilities) of an audience to
be persuaded need to be considered. They discuss
general methods of elicitation, and give an
example applied to an observational study in
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healthcare. They emphasise the method by which
experts may be asked for predictions about future
observations; from these assessments an implicit
prior distribution can be derived.

The methods used in case studies can be divided
into four main categories using increasingly formal
methods:

1. Informal discussion. Examples include Rosner
and Berry,381 who consider a trial of paclitaxel
(Taxol®) in metastatic breast cancer, in which
a beta prior for the overall success rate was
assessed using a mean of 25% and 50% belief
that the true success rate lay between 15 and
35%. Similarly, Lilford and Braunholtz299

describe how priors were obtained from two
doctors for the relative risk of venous throm-
bosis from oral contraceptives. In the context of
meta-analysis, Smith et al.412 thought that it was
unlikely that the between-study odds would vary
by more than an order of magnitude, and hence
derived a prior distribution on the hetero-
geneity parameter.

2. Structured interviewing and formal pooling of
opinion. Freedman and Spiegelhalter180

describe an interviewing technique in which
a set of experts were individually interviewed
and hand-drawn plots of their prior distribu-
tions elicited. Deliberate efforts were made
to prevent the opinions being over-confident
(too ‘tight’). The distributions were converted
to histograms, and averaged to produce a
composite prior. This was carried out twice for
trials of thiotepa in superficial bladder cancer
and these priors used later in discussing initial
and interim power of the study,416,418 (see pages
28 and 29). A similar exercise was carried out
before a trial in osteosarcoma414 and used in a
discussion of the power of the trial.420 Gore198

introduced the concept of ‘trial roulette’, in
which 20 gaming chips, each representing 5%
belief, could be distributed amongst the bins of
a histogram: in a trial of artificial surfactant
in premature babies, 12 collaborators were
interviewed using this technique to obtain
their opinion on the possible benefits of the
treatment.442 Using an electronic tool so that
individuals in a group could respond without
attribution, Lilford et al.297 presented collabora-
tors in a trial with a series of imaginary patients
in order to elicit their opinions on the benefit
of early delivery.

3. Structured questionnaires. The ‘trial roulette’
scheme described above was administered by

post by Hughes242,243 for a trial in treatment of
oesophageal varices, and by Abrams et al.1,421 for
a trial of neutron therapy.

Parmar et al.348 elicited prior distributions for
the effect of a new radiotherapy regime
(CHART), in which the possible treatment
effect was discretised into 5% bands and the
form was sent by post to each of nine clinicians.
Each provided a distribution over these bands
and an arithmetic mean was then taken. Parmar
et al. provide a copy of the form in their paper,
and results are provided for both lung348 and
head and neck cancer.421

4. Computer-based elicitation. Chaloner et al.98

provide a detailed case study of the use of a
rather complex computer program that interac-
tively elicited distributions from five clinicians
for a trial of prophylactic therapy in AIDS (see
also Carlin et al.90). Kadane258 reports the results
of an hour-long telephone interview with each
of five clinicians, using software to estimate
prior parameters from the results of a series of
questions eliciting predictive probability distri-
butions for responses of various patient types.
When a second round of elicitation became
necessary, the proposal was met by “little enthu-
siasm”. Kadane and Wolfson260 provide an
edited transcript of a computerised elicitation
session in a non-trial context. Dumouchel141

describes a computer program for eliciting
prior distributions in hierarchical models, in
which beliefs about contrasts give rise to infor-
mative prior distributions on between-unit
variability.

Summary of evidence

If the results of previous similar studies are avail-
able it is clear that may be used as the basis for a
prior distribution. Three main approaches have
been used:

1. Use of a single previous experimental result as a
prior distribution. Brown et al.78 and
Spiegelhalter et al.421 both provide examples of
prior distributions proportional to the likeli-
hoods arising from a single pilot trial.

Korn et al.276 could not identify a beta prior
matching the characteristics of their past
empirical experience, but Bring75 pointed out
that had they fitted the mode rather than the
mean of the prior to their past data then the
problem would have disappeared.

The prior distribution
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2. Direct use of a meta-analysis of many previous
studies. Lau et al.284 point out that cumulative
meta-analysis can be given a Bayesian interpreta-
tion in which the prior for each trial is obtained
from the meta-analysis of preceding studies,
while Dersimonian129 derives priors for a trial of
the effectiveness of calcium supplementation in
the prevention of pre-eclampsia in pregnant
women by a meta-analysis of previous trials using
both random effects and fixed effects models.
Smith et al.410 and Higgins and Whitehead233

both use a review of past meta-analyses as a basis
for a prior distribution for the degree of hetero-
geneity in a current meta-analysis. Gilbert et al.192

report an empirical distribution of past trial
results in surgery which could be used as a prior.

3. Use of previous data in some discounted form.
Previous studies may not be directly related to
the one in question and we may wish to discount
its influence. Kass and Greenhouse267 state that
“we wish to use this information, but we do not
wish to use it as if the historical controls were
simply a previous sample from the same popula-
tion as the experimental controls”, and they
investigate a range of such discounting methods
(see appendix 1). Berry and Stangl45 discuss
the use of historical information with trial data,
giving an example of a Bayesian logistic regres-
sion analysis with historical data weighted by
various amounts: see page 5.4 for discussion of
historical controls in randomised trials. Brophy
and Joseph76 pool two previous studies to form a
prior but investigate the effect of downweighting
their influence to 50 and 10%, Cronin et al.121

report a mixture of past evidence and ‘prior
belief of what is a reasonable range of values’,
while Greenhouse and Wasserman206 down-
weight a previous trial with 176 subjects to have
weight equivalent to only 10 subjects.

Default priors

It would clearly be attractive to have prior distribu-
tions that could be taken ‘off-the-shelf’, rather than
having to consider all available evidence external
to the study in their construction. Four main
suggestions can be identified.

‘Non-informative’ or ‘reference’ priors
There has been substantial research in the
Bayesian literature into so-called non-informative
or reference priors, which usually take the form of
uniform distributions over the range of interest,
possibly on a suitably transformed scale of the

parameter.70 Formally, a uniform distribution
means the posterior distribution has the same
shape as the likelihood function, which in turn
means that the resulting Bayesian intervals and
estimates will essentially match the traditional
results, so that posterior tail areas will match one-
sided P values (ignoring any adjustment for multi-
plicity). Hughes243 points out that a careful choice
of scale is necessary and that a uniform prior on,
say, a log(relative risk) might entail an inappro-
priate prior on a risk difference, while Kass and
Wasserman268 review the current status of such
reference priors.

Results with reference priors are generally quoted
as one part of a Bayesian analysis. In particular,
Burton82 suggests that most doctors interpret
frequentist confidence intervals as posterior distri-
butions, and also that information prior to a study
tends to be vague, and that therefore results from
a study should be presented by performing a
Bayesian analysis with a non-informative prior and
quoting posterior probabilities for the parameter
of interest being in various regions. He gives
examples from a hypothetical logistic regression
setting and from the evaluation of the effectiveness
of a Haemophilus influenzae type b (HIB) vaccine in
Aboriginal children.

Other applications of reference priors include
Achcar et al.,7 Briggs73 on net benefit in cost-
effectiveness studies, and almost all the confidence
profile examples in Eddy et al.150 However, Fisher171

points out that “there is no such thing as a
“noninformative” prior. Even improper priors
give information: all possible values are equally
likely”.

‘Sceptical’ priors
Informative priors that express scepticism about
large treatment effects have been put forward both
as a reasonable expression of doubt, and as a way
of controlling early stopping of trials on the basis
of fortuitously positive results. Kass and Green-
house267 suggest that a “cautious reasonable sceptic
will recommend action only on the basis of fairly
firm knowledge”, but that these sceptical “beliefs
we specify need not be our own, nor need they
be the beliefs of any actual person we happen to
know, nor derived in some way from any group of
“experts” ”.

Mathematically speaking, a sceptical prior about a
treatment effect will have a mean of zero and
some spread which determines the degree of
scepticism. Fletcher et al.173 use such a prior, while
Spiegelhalter et al.421 argue that a reasonable
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degree of scepticism may be equivalent to feeling
that the alternative hypothesis is optimistic, forma-
lised by a prior with only a small probability (say
5%) that the treatment effect is as large as the
alternative hypothesis (see Figure 2).

This approach has been used in a number of case
studies,183,348 and has been suggested as a basis
for monitoring trials166 (see page 29) and when
considering whether or not a confirmatory study
is justified (see page 33). Other users of sceptical
priors include Dersimonian129 and Heitjan227 in the
context of Phase II studies, while a senior US Food
and Drugs Administration (FDA) biostatistician339

has stated that he “would like to see [sceptical
priors] applied in more routine fashion to provide
insight into our decision making”.

‘Enthusiastic’ priors
As a counterbalance to the pessimism expressed
by the sceptical prior, Spiegelhalter et al.421 suggest
an ‘enthusiastic’ prior centred on the alternative
hypothesis and with a low chance (say 5%) that
the true treatment benefit is negative. Use of such
a prior has been reported in case studies183,227 and
as a basis for conservatism in the face of early
negative results166 (see page 31). Digman et al.133

provide an example of such a prior, but call it
‘optimistic’.

Priors with a point mass at the null
hypothesis (‘lump-and-smear’ priors)
The traditional statistical approach expresses a
qualitative distinction between the role of a null
hypothesis, generally of no treatment effect, and
alternative hypotheses. A prior distribution that
retains this distinction would place a ‘lump’ of
probability on the null hypothesis, and ‘smear’ the
remaining probability over the whole range of
alternatives: Cornfield112 uses a normal distribution
centred on the null hypothesis, while Hughes243

uses a uniform prior over a suitably restricted
range. The resulting posterior distribution retains
this structure, giving rise to a posterior probability
of the truth of the null hypothesis: this is appar-
ently analogous to a P value but is neither
numerically nor conceptually equivalent (see
page 11).

Cornfield repeatedly argued for this approach,
which naturally gives rise to the ‘relative betting
odds’ as a sequential monitoring tool, defined as
the ratio of the likelihood of the data under the
null hypothesis to the average likelihood (with
respect to the prior) under the alternative.113 The
relative betting odds is independent of the ‘lump’
of prior probability placed on the null (although it

does depend on the shape of the ‘smear’ over the
alternatives), and does not suffer from the problem
of ‘sampling to a foregone conclusion’ (see page
32). He suggests a ‘default’ prior under the alterna-
tive as a normal distribution centred on the null
hypothesis and with expectation (conditional on
the effect being positive), equal to the alternative
hypothesis d, that is, with prior standard deviation
÷(p/2d). This is essentially equivalent to the formu-
lation of a sceptical prior described above, but with
probability of exceeding the alternative hypothesis
of g = 0.21 – this is larger than the value of 5%
often used for sceptical priors, but the lump of
probability on the null hypothesis is already
expressing considerable scepticism. Values for
these prior distributions for 11 outcome measures
are reported for the Urokinase Pulmonary
Embolism Trial.389 This method was used in a
number of major studies alongside more standard
approaches,114,389,458 although relative betting odds
were dropped from the final report of the
Coronary Drug Project.115

A mass of probability on the null hypothesis has
also been used in a cancer trial182 and for sensitivity
analysis in trial reporting243 (see page 33).

Although such an analysis provides an explicit
probability that the null hypothesis is true, and so
appears to answer the question of interest, the
prior might be somewhat more realistic were the
lump to be placed on a small range of values repre-
senting the more plausible null hypothesis of ‘no
clinically effective difference’ (although Corn-
field112 points out that the ‘lump’ is just a mathe-
matical approximation to such a prior). Lachin277

has extended the approach to this situation where
the null hypothesis forms an interval.

‘Robust’ priors

To save all the effort of eliciting a prior distribu-
tion, it seems reasonable when reporting or
monitoring a study to identify how the prior affects
the conclusions. This essentially means identifying
a class of prior distributions, and then seeing how
the posterior conclusions vary with priors within
that class. Greenhouse and Wasserman206 carry out
two such case studies, while Carlin and Sargent93,388

use ‘prior partitioning’ to identify the set of priors
that would lead, say, to stopping a trial according
to specified tail-area posterior probabilities. Those
in authority then simply have to assess whether
their prior lies in the appropriate partition. See
pages 31 and 33 for further discussion of this
approach in clinical trials.
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Exchangeability, hierarchical
models and multiplicity
Suppose we are interested in making inferences on
many parameters q1,…, qk measured on k ‘units’
which may, for example, be true treatment effects
in subsets of patients, multiple clinics, or for each
of a series of trials. We can identify three different
assumptions:

1. All the qs are identical, in which case all the data
can be pooled and the individual units
forgotten.

2. All the qs are entirely unrelated, in which case
the results from each unit are analysed inde-
pendently (for example using a fully specified
prior distribution).

3. The qs are assumed to be ‘similar’ in the
following sense. Suppose we were blinded as to
which unit was which, and all we had was a label
for each, say A, B, C and so on. Then our prior
opinion about any particular set of qs would not
be affected by only knowing the labels, in that
we have no reason to think specific units are
systematically different. Such a set of qs are
called ‘exchangeable’,43 and this assumption can
be shown under broad conditions to be mathe-
matically equivalent to assuming they are drawn
at random from some population distribution,

just as in a traditional random effects model.
Note that there does not need to be any actual
sampling – perhaps these k units are the only
ones that exist – since the probability structure
is a consequence of the belief rather than a
physical randomisation mechanism.

We emphasise that an assumption of
exchangeability is a judgement based on our
knowledge of the context. If there are known
reasons to suspect specific units are systematically
different, then those reasons need to be modelled.
Dixon and Simon134 discuss the reasonableness of
exchangeability assumptions.

The Bayesian approach to multiplicity is thus to
integrate all the units into a single model, in which
it is assumed that q1,…, qk are drawn from some
common prior distribution whose parameters are
unknown: this is known as a hierarchical model.
These unknown parameters may then be estimated
directly from the data using the technique of
‘marginal maximum likelihood’ (known as the
‘empirical Bayes’ approach), or given a (usually
minimally informative) prior distribution (known
as the ‘full Bayes’ approach). The results from
either an empirical or full Bayes analysis will gener-
ally be similar, and lead to the inferences for each
unit having narrower intervals than if they are
assumed independent, but biased towards mean
response. Thus there is a similar conservatism to
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FIGURE 2 Sceptical (solid line) and enthusiastic (broken line) priors for a trial with alternative hypothesis dA. The sceptics’ probability
that the true difference is greater than dA is g (shown shaded). This value has also been chosen for the enthusiasts’ probability that the
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the traditional adjustment, but for a radically
different reason.

Cornfield112,113 was an early proponent of the
Bayesian approach to multiplicity (see page 35).
Breslow72 gives many examples of problems of
multiplicity and reviews the use of empirical Bayes
methods for longitudinal data, small area mapping,
estimation of a large number of relative risks in a
case–control study, and multiple tumour sites in
a toxicology experiments, while Louis309 reviews
the area and provides a detailed case study.
Other examples in clinical trials are described
on page 35.

Empirical criticism of priors

The ability of subjective prior distributions to
predict the true benefits of interventions is clearly
of great interest, and Box69 suggested a method-
ology for comparing priors with subsequent data.
The prior is used to create a predictive distribution
of the future summary statistic, which provides the
prior predictive probability of observing data as
extreme as that actually seen. This probability may
be termed Box’s P value. Spiegelhalter416 showed
how this could be applied to a clinical trial, and
applications have been reported for discrete
data,369,422 while Spiegelhalter et al.421 display predic-
tive distributions and Box’s P values in all their
analyses (see chapter 9 for an application in the
CHART trial.) For normal prior and likelihood,
Box’s P value is simply derived from the standard-
ised difference (denoted Z) between the two
distributions (difference in means divided by the
square root of the sum of their variances).421

There have been a number of prospective elicita-
tion exercises for clinical trials, and many of these
trials have now reported their results. Table 5 shows
a selection of results, including the intervals for the

prior distributions for treatment effects, the
evidence from the likelihood, and Box’s P value
summarising the conflict between the prior and
the likelihood.

Table 5 shows the generally poor experience
obtained from prior elicitation. The clinicians are
universally optimistic about the new treatments
(median of prior hazard ratios > 1), whereas only
one of the trials eventually showed any evidence of
benefit from the new treatment (likelihood hazard
ratio > 1). This also reflects the experience of
Carlin et al.90 in their elicitation exercise.

Commentary
Here we shall only consider comments on how
priors may be best obtained: whether they should
be used or not is discussed elsewhere (see pages 14
and 39).

There have been many criticisms of the process of
eliciting subjective prior distributions in the health
technology assessment context. Claims include:

1. Subjects are biased in their opinions. Gilbert et
al.192 state that “innovations brought to the stage
of randomised trials are usually expected by the
innovators to be sure winners”, and Hughes242

points out that the very fact that clinicians are
participating in a trial is likely to suggest they
expect the new therapy to be of benefit; this
appears to be borne out in the results shown in
Table 5. Altman12 warns that investigators may
even begin to exaggerate their prior beliefs in
order to make their prospective trial appear
more attractive (although this appears to already
happen both in public and industry-funded
studies). Fisher171 believes the effort put into
elicitation is misplaced, since the measured
beliefs are likely to be based more on emotion
than scientific evidence.

The prior distribution

22

Study Prior Likelihood Z P

Hazard
ratio

95%
interval

Reference Hazard
ratio

95%
interval

Reference

CHART (lung) 1.37 0.87–2.14 348 1.32 1.09–1.59 390 0.14 0.89
Thiotepa X1 1.65 0.99–2.74 418 0.90 0.63–1.29 375 1.90 0.06
Osteo 1.11 0.66–1.83 420 0.94 0.69–1.27 413 0.54 0.59
Neutron
(clinical prior)

1.19 0.67–2.08 421 0.66 0.40–1.10 421 1.51 0.14

TABLE 5 A comparison of some elicited subjective prior distributions and the consequent results of the clinical trials. In each case a
pooled prior was provided, assumed normal on a log(hazard ratio) scale – Box’s P value is calculated on this scale. This is transformed
to a hazard ratio scale where a hazard ratio > 1 corresponds to benefit of the new treatment: median and 95% intervals are given



2. The choice of subject biases results. The biases
discussed above mean that the choice of subject
for elicitation is likely to influence the results. If
we wish to know the distribution of opinions
among well-informed clinicians, then trial inves-
tigators are not a random sample and will give
biased conclusions. Lewis292 says statisticians
reviewing the literature should provide much
better prior distributions than clinicians, while
Chalmers95 suggests even lay people are biased
towards believing new therapies will be
advances, and therefore we need empirical
evidence on which to base the prior probability
of superiority.

Fisher171 claims that uncertainty as to whose
prior to use militates against any use of Bayesian
methods. However, it can be argued that taking
context into account (see page 13) means that
it is quite reasonable to allow for differing
perspectives.

3. Timing of elicitation has an influence. Senn397

objects to any retrospective elicitation of priors
as “present remembrance of priors past is not
the same as a true prior”, while Hughes242 points
out that opinions are likely to be biased by what
evidence has recently been represented and by
whom.

4. Subjective judgement of exchangeability may be
inappropriate. Tukey454 says that “to treat the true
improvements for the classes concerned as a
sample from a nicely behaved population … does
not seem to me to be near enough the real world
to be a satisfactory and trustworthy basis for the
careful assessment of strength of evidence”.

These concerns have led to a call for the evidential
basis for priors to be made explicit, and for effort
to go into identifying reasons for disagreement and
attempting to resolve these.171 Even advocates of
Bayesian methods have suggested that the biases in

clinical priors suggest more attention to empirical
evidence from past trials, possibly represented as
sceptical priors: Fayers164 asks, given the long expe-
rience of negative trials, “should we not be using
priors strongly centred around 0, irrespective of
initial opinions, beliefs and hopes of clinicians?”,
while Spiegelhalter et al.421 say that elicited priors
from investigators show predictable positive bias
and may possibly be replaced by archetypal ‘enthu-
siastic’ priors.

Key points

1. The use of a prior is based on judgement and
hence a degree of subjectivity cannot be
avoided.

2. The prior is important and not unique, and so a
range of options should be examined in a sensi-
tivity analysis.

3. The intended audience for the analysis needs to
be explicitly specified.

4. The quality of subjective priors (as assessed by
predictions) show predictable biases in terms of
enthusiasm.

5. For a prior to be taken seriously, its evidential
basis must be explicitly given, as well as any
assumptions made (e.g. downweighting of past
data). Care must, however, be taken of bias in
published results.

6. Archetypal priors may be useful for identifying a
reasonable range of prior opinion.

7. Great care is required in using default priors
intended to be minimally informative.

8. Exchangeability assumptions should not be
made casually.
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A Bayesian: one who asks you what you think before a
clinical trial in order to tell you what you think afterwards.

Stephen Senn398

General arguments

Randomised controlled trials have provided fertile
territory for arguments between alternative statis-
tical philosophies. There are many specific issues
in which a distinct Bayesian approach is identi-
fiable, such as the ethics of randomisation, power
calculations, monitoring, subset analysis, alterna-
tive designs and so on, and these are dealt with in
separate sections below.

There are also a number of general discussion
papers on the relevance of Bayesian methods to
trials. These include tutorial introductions at a
non-technical295 and slightly more technical level,1

while Brophy and Joseph76 explain the Bayesian
approach by demonstrating its use in re-analysing
data from the Global Utilization of Streptokinose
and t-PA for Occluded Coronary Arteries
(GUSTO) trial of different thrombolytic regimes,
using prior information from other studies. More
detailed but non-mathematical discussions are
given by Cornfield113 and Kadane,262 who particu-
larly emphasises the internal consistency of the
Bayesian approach, and welcomes the need for
explicit prior distributions and loss function
as producing scientific openness and honesty.
Pocock and Hughes365 again provide a non-
mathematical discussion concentrating on estima-
tion issues in trials, while Armitage22 attempts a
balanced view of the competing methodologies.
Particular emphasis has been placed on the ability
of Bayesian methods to take full advantage of
the accumulating evidence provided by small
trials.302,317 A special issue of Statistics in Medicine on
‘methodological and ethical issues in clinical
trials’ contains papers both for53,420,459 and
against476 the Bayesian perspective, and features
incisive discussion by Armitage, Cox and others.
Palmer and Rosenberger346 review non-standard

trial designs and suggest circumstances where they
may be appropriate.

Somewhat more technical reviews are given by
Spiegelhalter and colleagues.420,421 Berry52,53,55 has
long argued for a Bayesian decision-theoretic basis
for clinical trial design, and has described in detail
methods for elicitation, monitoring, decision-
making and using historical controls.

Earlier (see page 14), we identified the funda-
mental dual issues of prior distributions and loss
functions, and we have followed this division by
focusing on inferences from a clinical trial in this
chapter, and delaying discussion of subsequent
decisions, whether based on randomised or non-
randomised evidence, to chapter 7. We realise this
is a somewhat artificial separation, as the potential
role for explicit statement of a loss function is a
running theme throughout discussions on design,
sample size, sequential analysis, adaptive allocation
and payback from research programmes, and many
would argue that the eventual decision is insepa-
rable from design and analysis of a study. However,
the health technology assessment context often
means that the investigators who design and carry
out a study are generally not the same body who
make decisions on the basis of the evidence (see
page 13), and so if we take a pragmatic rather than
ideological perspective, then the attempt at separa-
tion appears reasonable.

Ethics and randomisation

Is randomisation necessary?
Randomisation has two traditional justifications: it
ensures treatment groups are directly comparable
(up to the play of chance), and it provides a funda-
mental basis for the probability distributions
underlying conventional statistical procedures.

Since Bayesian probability models are derived
from subjective beliefs and do not require any
underlying random mechanism, the latter require-
ment is irrelevant, and this has led some to
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question the need for randomisation at all,
provided alternative methods of balancing groups
can be established. For example, Urbach459 argues
that a “Bayesian analysis of clinical trials affords a
valid, intuitively plausible rationale for selective
controls, and marks out a more limited role for
randomisation than it is generally accorded”, while
Kadane261 suggests updating clinician’s priors and
only assigning treatments that at least one clini-
cian considers optimal. Berry goes further in
claiming46 “Randomised trials are inherently
unethical”. Papineau347 refutes Urbach’s position
and claims that despite it not being essential for
statistical inference, experimental randomisation
forms a vital role in drawing causal conclusions
(see also Rubin383). The relationship between
randomisation and causal inferences is beyond the
scope of this chapter, but in general the need for
sound experimental design appears to dominate
philosophical statistical issues.246 In fact Berry and
Kadane65 suggest that if there are several parties
who make different decisions and observe

different data, randomisation may be a strictly
optimal procedure since it enables each observer
to draw his or her own appropriate conclusions.
Kadane and Seidenfeld263 make a useful distinc-
tion between experiments to learn and those to
prove, which we will find useful when it comes to
discussing confirmatory trials.

That careful analysis of databases can to some
extent replace randomised trials has been argued
by Howson and Urbach240 and Hlatky.235 Byar84 puts
an opposing view.

When is it ethical to randomise?
If we agree that randomisation is in theory useful,
then the issue arises of when it is ethical to
randomise. This is closely associated with the
process of deciding when to stop a trial (discussed
further on page 29) and is often represented
as a balance between individual and collective
ethics.346,362 The ethics of randomisation and
clinical trials have been covered in Edwards et al.155
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Freedman176 introduced the idea of professional
equipoise, in which disagreement among the
medical profession makes randomisation ethical.
The trial design of Kadane258 (see appendix 1) is
an expression of this principle, in that only a
treatment that at least one clinician thought
optimal could be given to a patient (although it
unfortunately turned out that a computer bug
meant that some patients were allocated to
treatments that all clinicians felt were suboptimal).
Perhaps a more appealing approach is the
‘uncertainty principle’, which is often argued
as a basis for ethical randomisation85: this may be
thought of as ‘personal equipoise’154 in which the
clinician is uncertain as to the best treatment for
the patient in front of him or her. However, a
quantified degree of uncertainty has not been
specified.

The Bayesian approach can be seen as formalising
the uncertainty principle by explicitly representing,
in theory, the belief of an individual clinician that
a treatment may be beneficial to a specific patient –
this could be provided by superimposing the
clinician’s posterior distribution on the range of
equivalence (see page 27) relevant to a particular
patient.421 It has been argued that a Bayesian
model naturally formalises the individual ethical
position,300,345 in that it explicitly confronts the
personal belief in the clinical superiority of one
treatment. Berry,53 however, has suggested that if
patients were honestly presented with numerical
values for their clinician’s belief in the superiority
of a treatment, then few might agree to be random-
ised. One option might be to randomise but with
a varying probability that is dynamically weighted
towards the currently favoured treatment: such
adaptive allocation designs are discussed on
page 37.

Kass and Greenhouse267 argue that “the purpose
of a trial is to collect data that bring to conclusive
consensus at termination opinions that had been
diverse and indecisive at the outset”, and go on
to state that “randomisation is ethically justifiable
when a cautious reasonable sceptic would be
unwilling to state a preference in favour of either
the treatment or the control”. This approach leads
naturally to the development of sceptical prior
distributions (see page 19) and their use in moni-
toring sequential trials (see page 30).

Specification of null hypotheses

Attention in a trial usually focuses on the null
hypothesis of treatment equivalence expressed by

q = 0, but realistically this is often not the only
hypothesis of interest. Increased costs, toxicity and
so on may mean that a certain improvement would
be necessary before the new treatment could be
considered clinically superior, and we shall denote
this value qS. Similarly, the new treatment might
not actually be considered clinically inferior unless
the true benefit were less than some threshold
denoted qI. The interval between qI and qS has
been termed the ‘range of equivalence’179 (see
Figure 3): often qI is taken to be 0.

This is not a specifically Bayesian idea,22 and there
are several published examples of the elicitation
and use of such ranges of equivalence.172,180

Using historical controls

A Bayesian basis for the use of historical controls
in clinical trials, generally in addition to some
contemporaneous controls, is based on the idea
that it is wasteful and inefficient to ignore all past
information on control groups when making a new
comparison. This was first suggested by Pocock,360

and has since been particularly developed within
the field of carcinogenicity studies.386 The crucial
issue is the extent to which the historical informa-
tion can be considered equivalent to contemp-
oraneous data: essentially the inclusion of histor-
ical controls is indistinguishable from using such
data as the basis for a prior opinion (see page 18).

Five broad approaches have been taken:

1. Assume the historical control individuals are
exchangeable with those in the current control
group, which leads to a complete pooling of
historical with experimental controls.

2. Assume the historical control groups are
exchangeable with the current control group,
and hence build or assume a hierarchical model
for the response within each group.127,440 This
leads to a degree of pooling between the
control groups, depending on their observed or
assumed heterogeneity. Gould199 suggests using
past trials to augment current control group
information, assuming exchangeable control
groups. Rather than directly producing a
posterior distribution on the contrast of interest,
he uses this historical information to derive
predictive probabilities of obtaining a significant
result were a full trial to have taken place (see
page 28) (this paper carefully avoids the term
‘Bayesian’, and we might suspect this was a delib-
erate policy).
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3. Assume that the parameter being estimated in
historical data is some function of the parameter
that is of interest, thus explicitly modelling
potential biases, as in the confidence profile
method150 (see page 49).

Atkinson25 suggests this technique in a context
where the historical control data is available on
a general population, but experimental therapy
is only given to an identifiable subset of new
patients. A posterior distribution for the benefit
of treatment can be obtained by constructing a
model for what would have been the control
response on that subset.

4. If there is only one historical group, then
assume a parameter representing the probability
that any past individual is exchangeable with
current individuals, so discounting the contribu-
tion of past data to the likelihood, as used by
Berry44,45 in reanalysis of the extracorporeal
membrane oxygenation (ECMO) study (see
page 37).

5. Assume a certain prior probability that the
historical control group exactly matches the
contemporaneous controls and hence can be
pooled. Racine et al.370 provide a Bayes’s factor
formulation within the context of
bioequivalence studies.

Design: sample size of
non-sequential trials
Here we only deal with trials of fixed sample size:
see page 29 for sequential designs.

We described a taxonomy of six different broad
approaches to health technology assessment
studies earlier (see page 14). Here we focus on how
the four main concepts (ignoring the Bayesian
hypothesis testing and the classical decision-theory
approach) deal with selecting the size of an
experiment.

1. Fisherian. In principle there is no need for
preplanned sample sizes, but a choice may be
made by selecting a particular precision of
measurement and informally trading that off
against the cost of experimentation.

2. Neyman–Pearson. Trials have traditionally been
designed to have reasonable power, defined as
the chance of correctly detecting an alternative
hypothesis, best defined as being both ‘realistic

and important’. Power is generally set to 80 or
90%.

3. Proper Bayesian. As in the Fisherian approach,
there is in principle no need for preplanned
sample sizes, as pointed out by Lilford et
al.153,300,302 Alternatively, it is natural to focus
on the eventual precision of the posterior
distribution of the treatment effect. There is
an extensive literature on non-power-based
Bayesian sample size calculations which may be
very relevant for trial design.9,247,255,256

Considerable attention has been paid to a
hybrid between Neyman–Pearson and Bayesian
approaches, in which the prior might be used
in the design but not in reporting the analysis.
Thus the requirement for a trial being large
enough to detect a plausible difference naturally
leads to the use of prior distributions: either the
prior mean could be taken as the alternative
hypothesis or the power for each value of q
could be averaged with respect to the prior
distribution to obtain an ‘expected’ or ‘average’
power, which should be a more realistic assess-
ment of the chance that the trial will yield a
positive conclusion.

Prior distributions can thus be used for sample
size calculations for trials that will be analysed in
a traditional frequentist or Bayesian manner.421

The prior distributions might be from any
of the sources described in chapter 3, and
examples include sets of subjective assess-
ments,150,180,414,418,442 a single previous study,78 or
a meta-analysis of previous results.96,129

Brown78 predicts the chance of correctly
detecting a positive improvement, rather than
the overall chance of getting a positive result,
and this might be considered a more reasonable
target. Predictive power can also be applied to
null hypotheses defined as ranges of equiva-
lence.328 Gould considers nuisance parameters,
for example overall response rate, and uses
historical data200 or interim data201 for power
calculations.

It is natural to express a cautionary note on
projecting from previous studies,273 and possible
techniques for discounting past studies are very
relevant (see page 27).

4. Decision-theoretic Bayesian. If we are willing
to express a utility function for the cost of
experimentation and the potential benefit of
the treatment, then sample sizes can chosen to
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maximise the expected utility. This was consid-
ered by Canner,88 while Thompson452 estimated
that a trial of electronic foetal monitoring with
180,000 cases per arm would cost US$22 million
but would be expected to provide a benefit of
US$118 million. Detsky131 conducted an early
attempt to model the impact of a trial in terms
of future lives saved, which required modelling
beliefs about the future number to be treated
and the true benefit of the treatment, while Tan
and Smith439 fit the ideas in with ranges of equiv-
alence. In other examples,107,238,239 sample sizes
are explicitly determined by a trade-off between
the cost of the trial and the expected future
benefit: see page 39 for some comments on the
consequences. This approach also attempts to
answer the question ‘what is the expected net
benefit from carrying out the trial?’, which is
discussed further on page 52.

Instead of attempting to model the future
benefit of a trial, Lindley305 considers a utility
function based only on the final interval.

Design and monitoring of
sequential trials

Introduction
Whether or not to stop a trial early is a complex
ethical, financial, organisational and scientific
issue, in which statistical analysis plays a consider-
able role. Furthermore the monitoring of
sequential clinical trials can be considered the
‘front line’ between Bayesian and frequentist
approaches, and Etzioni and Kadane state that the
reasons for their divergence “reach to the very
foundations of the two paradigms”.162 Pocock,362

O’Brien336 and Whitehead478 provide good
reviews.

Four main statistical approaches can be identified,
again corresponding to the four main entries in
Table 4.

1. Fisherian. This is perhaps best exemplified in
trials influenced by Richard Peto’s group, in
which protocols state109 that the data-monitoring
committee should only alert the steering
committee to stop the trial on efficacy grounds
if there is “both (a) ‘proof beyond reasonable
doubt’ that for all, or for some, types of patient
one particular treatment is clearly indicated…,
and (b) evidence that might reasonably be
expected to influence the patient management
of many clinicians who are already aware of the
results of other main studies”.

2. Neyman–Pearson. This classical method
attempts to retain a fixed type I error through
pre-specified stopping boundaries. These may
be considered as stopping guidelines: Demets126

states that “while they are not stopping rules,
such methods can be useful in the decision-
making process”, although regulatory authori-
ties require good reasons for not adhering to
such boundaries.248 Whitehead476,477 is a major
proponent, and Jennison and Turnbull250

provide a detailed review.

3. Proper Bayesian. Probabilities derived from a
posterior distribution may be used for moni-
toring, without formally prespecifying a stopping
criterion – see page 30. There is no real need
in this framework even to prespecify a sample
size.53 As for fixed sample size trials, prior distri-
butions have been used at the design stage but
assuming a Neyman–Pearson analysis.180,321

4. Decision-theoretic Bayesian. This assumes we are
willing to explicitly assess the losses associated
with consequences of stopping or continuing
the study (see page 32), and therefore requires
a full specification of the ‘patient horizon’, the
allocation rule and so on. This approach also
quantifies the expected benefit of the trial and
therefore helps decide whether to conduct the
trial at all.

Here we briefly describe some of the huge litera-
ture on this subject.

A brief critique of Neyman–Pearson
methods in sequential trials
As introduced on page 10, the need to adjust
conclusions because the data have been looked
at during the study has been roundly criticised.
Anscombe13 baldly states that “Sequential analysis is
a hoax”, and Meier323 considers that “provided the
investigator has faithfully presented his methods
and all of his results, it seems hard indeed to
accept the notion that I should be influenced in
my judgement by how frequently he peeked at
the data while he was collecting it”. The crucial
technical point is that Neyman–Pearson theory
disobeys the likelihood principle (see page 13),
and hence there is no need for Bayesians or
Fisherians to take any account of what would have
happened had something other been observed.50

If we were to assign weights to the relative impor-
tance of the two types of error that could be made,
any resulting design would seek to minimise a
linear combination of the type I error rate a and
type II error rate b. The fact that such a design
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would obey the likelihood principle led Corn-
field111 to point out that “the entire basis for
sequential analysis depends upon nothing more
profound than a preference for minimising b for
given a rather than minimizing their linear combi-
nation. Rarely has so mighty a structure, and one
so surprising to scientific common sense, rested on
so frail a distinction and so delicate a preference”.

Freedman177 points out that there is no agreed
method of estimation following a sequential trial,
and Hughes and Pocock244,364 argue that frequentist
sequential rules are “prone to exaggerate magni-
tude of treatment effect” since they would tend
to stop when on a random high. However,
Whitehead478 says one can adjust to get rid of such
biases, and Hughes and Pocock are really looking
at inconsistency with clinical opinion.

Armitage17 agrees that adjusted P values are “too
tenuous to be quoted in an authoritative analysis of
the data”, but still considers frequency properties
of stopping rules may be useful guides for “mental
adjustment”. Heitjan et al.228 says the loss function
implicit in a sequential analysis reflects a focus on
inference rather than decisions.

Pocock and Hughes364 say that “control of the
overall type I error is a vital aid to restricting the
flood of false positives in the medical literature”,
but this appears to introduce the extraneous issue
of selective reporting.

From a practical perspective, the responsibility for
recommending the early termination of a trial is
increasingly vested in an independent data and
safety monitoring committee, which will need to
take into account multiple sources of evidence
when making their judgements. Classical sequen-
tial analysis may be a useful warning to them
against overinterpretation of naive P values.

Monitoring using the posterior
distribution
Following the ‘proper Bayesian’ approach, it is
natural to consider terminating a trial when one
is confident that one treatment is better than the
other, and this may be formalised by assessing the
posterior probability that the treatment benefit q
lies above or below some boundary, such as the
ends of the range of equivalence. It is generally
recommended that a range of priors are consid-
ered, and applications have been reported in a
variety of trials.38,51,77,90,129,182,183,191,348,381 Explicit
comparison with boundaries obtained by
frequentist procedures have been displayed,129,181,183

and the similar conservativism noted. Armitage17

and Simon405 discuss the choice of an appropriate
boundary.

The informal stopping procedure described above
explicitly takes into account the impact of the
results on a range of clinical opinion, and so
follow Kass and Greenhouse267 in claiming that a
successful trial should contain sufficient evidence
to bring both a sceptic and an enthusiast to broadly
the same conclusions (see page 26). This may
be formalised by using the concept of sceptical
and enthusiastic priors (see page 19), in which
stopping with a positive result might be considered
if a posterior based on a sceptical prior suggested
a high probability of treatment benefit, whereas
stopping without a negative result may be based on
whether the results were sufficiently disappointing
to make a posterior based on an enthusiastic prior
rule out a treatment benefit: in other words we
should stop if we have convinced a reasonable
adversary that he or she is wrong. Fayers et al.166

provide a tutorial on such an approach, and
Freedman et al.178 consider it as part of an exercise
for a data-monitoring committee. Digman et al.133

give an example in which the data have over-
whelmed an optimistic prior centred on a 40% risk
reduction, and hence justifies assuming a negative
result and early stopping.

Greenhouse and Wasserman206 and Carlin and
Sargent93,388 consider stopping rules based on
‘robust priors’: Carlin89 argues that this enables
statements of the form “given the data so far, the
prior would have to place a mass of at least p on
the range where the new treatment is considered
superior, in order to avoid stopping now and
rejecting this treatment as inferior”. Emerson159

retrospectively examines what class of priors would
have been needed to replicate stopping used in a
study (see page 20). Posterior probabilities of two
responses can be monitored jointly, and stopping
considered when an event of interest, such as
either outcome occurring,161 exceeds a certain
threshold.

A specific problem occurs when additional infor-
mation becomes available as a trial is continuing,
such as the publication of similar studies. Brophy
and Joseph77 argue that this is a good opportunity
for Bayesian methods, generating considerable
discussion271 and letters.

This monitoring scheme has also been proposed
for single-arm studies, and is discussed within
the context of Phase I and II trials (see page 38).
Criticisms of this procedure include its sampling
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properties (see page 32), lack of explicit loss
function (see page 32), and dependence on prior
(see page 39).

Monitoring using predictions
Investigators and funders are often concerned
with the question ‘Given the data so far, what is
the chance of getting a ‘significant’ result?’ The
traditional approach to this question is ‘stochastic
curtailment’,221 which calculates the conditional
power of the study, given the data so far, for a
range of alternative hypotheses.250

Digman et al.133 point out that it is not, however,
reasonable to condition on a hypothesis that is no
longer tenable. From a Bayesian perspective it is
natural to average such conditional powers with
respect to the current posterior distribution, just as
the pretrial power was averaged with respect to the
prior to produce the average or expected power
(see page 28). The methodology has been illus-
trated in a variety of contexts103,104,286,368,419 in which
initial trial results are used to predict the

probability of eventually gaining ‘significance’.
Since data are available at an interim stage a mini-
mally informative pretrial prior may be used, and
hence the method does not strictly speaking
require a proper Bayesian justification. Armitage22

points out circumstances in which the predictions
can be based on a pivotal quantity that does not
depend on the parameter, and Lan and Wittes’s278

‘B value’ enables calculation of predictive
probability of significance. Chang and Shuster100

use non-parametric predictions of survival
times without a prior, while Frei et al.185 and
Hilsenbeck234 provide practical examples of
stopping studies due to the futility of continuing.

The fact that predicted probabilities of success are
often surprisingly low has been emphasised and is
shown in Figure 4.420 The chance that the result will
even change sign may also be reported.48 The tech-
nique has been used with results that currently
show approximate equivalence to justify the ‘futil-
ity’ of continuing,470 and may be particularly useful
for data-monitoring committees and funders275
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when accrual or event rates are lower than
expected.5

Nevertheless, Armitage17,18,22 warns against using
this predictive procedure as any kind of formal
stopping rule as it gives an undue weight to ‘signifi-
cance’, and makes strong assumptions about the
direct comparability of future data with those
already observed – for example if future data
involve extended follow-up there may be undue
reliance on an assumption of proportional
hazards.421

Monitoring using a formal loss function
The full Bayesian decision-theoretic approach
requires the specification of losses associated with
all combinations of possible true underlying states
and all possible actions. The decision whether
to terminate a trial is then, in theory, based on
whether termination has a lower expected loss than
continuing, where the expectation is with respect
to the current posterior distribution, and the
consequences of continuing have to consider all
possible future actions – this ‘backwards induction’
requires the computationally intensive technique
of ‘dynamic programming’.

Reasonably straightforward solutions can be found
in some circumstances. For example, Anscombe13

considers n pairs of patients randomised equally
to two groups, a total patient horizon of N, a
uniform prior on true treatment benefit, and loss
function proportional to the number of patients
given the inferior treatment times the size of
the inferiority: he concludes it is approximately
optimal to stop and give the ‘best to the rest’
when the standard one-sided P value is less than
n/N – half the proportion of patients already
randomised. Berry and Pearson60 and others59,120,228

have extended such theory to allow for unequal
stages and so on. Backwards induction is extremely
computationally demanding, but Carlin et al.91

do a retrospective analysis on a trial,90 and claim
it is computationally feasible using MCMC
methods, in which forward sampling is used as
an approximation to the optimal strategy. There
is also an extensive theoretical literature on trials
designed from a non-Bayesian decision-theoretic
perspective.30

As a worked (but retrospective) example, Berry et
al.64 consider a trial of influenza vaccine for Navajo
children. They construct a model consisting of
priors for the effectiveness of the vaccine and the
placebo treatment, the probability of obtaining
regulatory approval and the length of time taken to
obtain it, and the probability of a superior vaccine

appearing in the next 20 years and the length of
time taken for it to appear. After each month the
expected number of cases of the strain amongst
Navajo children in the next 20 years is calculated
in the case of stopping the trial, and continuing
the trial (the latter being calculated by dynamic
programming). The trial is stopped when the
former exceeds the latter.

The level of detail required for such an analysis
has been criticised as being unrealistic,72,421 but it
has been argued that trade-offs between benefits
for patients within and outside the trial should be
explicitly confronted.162 See page 39 for further
discussion.

A recent development is reported by Kadane et
al.,264 who are to be allowed to elicit prior distribu-
tions and utilities from members of the data-
monitoring committee for a large collaborative
cancer trials group National Surgical Adjuvant
Breast and Bowel Project (NSABP). They intend to
do individual elicitations using predictive methods
(see page 17) and use the forward sampling
approach to solve the dynamic programming
problem.91 Their success at this ambitious venture
remains to be seen.

Frequentist properties of sequential
Bayesian methods
Although the long-run sampling behaviour of
sequential Bayesian procedures is irrelevant from
a strict Bayesian perspective, a number of investi-

gations have taken place which generally show
good sampling properties.236,293,294,381 In particular,
Grossman et al.217 show that a sceptical prior (see
page 19), centred on zero and with precision equiv-
alent to that arising from an ‘imaginary’ trial of
around 26% of the planned sample size, gives rise
to boundaries that have type I error around 5%
for five interim analyses, with good power and
expected sample size. Thus an ‘off-the-shelf’
Bayesian procedure has been shown to have good
frequentist properties: essentially the conservative
behaviour of a Neyman–Pearson approach is
mirrored by that obtained from assuming a
sceptical prior. The sampling properties of
Bayesian designs has been particularly investigated
in the context of Phase II trials (see page 28).

One contentious issue is ‘sampling to a foregone
conclusion’.21 This mathematical result proves that
repeated calculation of posterior tail areas will,
even if the null hypothesis is true, eventually lead a
Bayesian procedure to reject that null hypothesis.
This does not, at first, seem an attractive
frequentist property of a Bayesian procedure.
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Nevertheless, Cornfield111 argued that “if one is
seriously concerned about the probability that a
stopping rule will certainly result in the rejection
of a null hypothesis, it must be because some
possibility of the truth of the hypothesis is being
entertained”, and if this is the case then they
should be placing a lump of probability on it,
as discussed on page 19, and so fit within the
Bayesian hypothesis testing framework (see
page 11). He shows that if such a lump, however
small, is assumed then the problem disappears in
the sense that the probability of rejecting a true
null hypothesis does not tend to one. Breslow72

agrees with this solution, but Armitage is not
persuaded,16 claiming that even with a continuous
prior distribution with no lump at the null
hypothesis, one might still be interested in type I
error rates at the null as giving a bound to those at
non-null values.

The role of ‘scepticism’ in
confirmatory studies
After a clinical trial has given a positive result for
a new therapy, there remains the problem of
whether a confirmatory study is needed. Fletcher et
al.173 argue that the results of the first trial might be
treated with scepticism, and Berry57 points out that
using a sceptical prior is a means of dealing with
‘regression to the mean’, in which early extreme
results tend to return to the average over time.

Example
Parmar et al.349 consider two trials and show that,
when using a reasonable sceptical prior, doubt can
remain after both the first trial and the confirma-
tory trial about whether the new treatment
provides a clinically important benefit.

Figure 5 shows an example with a sceptical prior
distribution with a median of 0 months benefit,
which is equivalent to an ‘imaginary’ trial in which
33 patients died on each treatment. The dashed
vertical lines display the null hypothesis of no
improvement and the minimum clinically worth-
while improvement of 4 months: between these lie
what can be termed the ‘range of equivalence’, and
the figure shows that the sceptical prior expresses a
probability of 41% that the true benefit lies in the
range of equivalence, and only 9% that the new
treatment is clinically superior.

The likelihood plot shows the inferences to be
made from the data alone, assuming a ‘uniform’
prior on the range of possible improvements:
Parmar et al. call this an ‘enthusiastic’ prior. The

probability that the new treatment is actually
inferior is 0.004 (equivalent to the one-sided P
value of 0.008/2.) The probability of clinical
superiority is 80%, which might be considered
sufficient to change treatment policy.

The posterior plot shows the impact of the
sceptical prior, in that the chance of clinical
superiority is reduced to 44% – hardly sufficient
to change practice. In fact, Parmar et al. report
that the National Cancer Institute (NCI) Inter-
group Trial investigators were unconvinced by the
Cancer and Leukemia Group B (CALGB) trial
due to their previous negative experience, and so
carried out a further confirmatory study. They
found a significant median improvement but of
only 2.4 months, suggesting the sceptical approach
might have given a more reasonable estimate.

Reporting, sensitivity analysis, and
robustness
The only ‘guidelines’ available for reporting
Bayesian analyses appear to be those of Lang and
Secic:281

1. Report the pretrial probabilities and specify how
they were determined.

2. Report the post-trial probabilities and their
probability intervals.

3. Interpret the post-trial probabilities.

These seem very limited: see chapter 8 for an
attempt to set more stringent standards for
reporting.

An integral part of any good statistical report is
a sensitivity analysis of assumptions concerning
the form of the model (the likelihood). Bayesian
approaches have the additional concern of sensi-
tivity to the prior distribution, both in view of its
controversial nature and because it is by definition
a subjective assumption that is open to valid
disagreement. As part of the general discussion
of priors in chapter 3, the need to consider the
impact of a ‘community of priors’267 was stressed,
and three main types of ‘community’ may be
identified:

1. Discrete set. Many case studies carry out sensi-
tivity analysis to a limited list of possible priors,
possibly embodying scepticism, enthusiasm,
clinical opinion and ‘ignorance’: the studies
described in appendix 1 provide many
examples.
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2. Parametric family. O’Rourke343 emphasises that
posterior probabilities “should be clearly and
primarily stressed as being a ‘function’ of the
prior probabilities and not the probability of
treatment effects”. If the community of priors
can be described by one varying parameter, then
it is possible to graphically display the depend-
ence of the main conclusion to that parameter.
Hughes242 suggested examining sensitivity of
conclusions to priors based on previous trial
results and that reflecting investigators’
opinions, and later243 gives an example which
features a point-mass prior on zero, and an

explicit plot of the posterior probability against
the prior probability of this null hypothesis.
Hughes’s approach of plotting prior and against
posterior summaries is an example of the
‘robust’ Bayesian approach, in which an attempt
is made to characterise the class of priors
leading to a given decision (see appendix 1).

3. Non-parametric family. The ‘robust’ Bayesian
approach has been further explored by allowing
the community of priors to be a non-parametric
family in the neighbourhood of an initial prior
(see page 20). For example, Gustafson219
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FIGURE 5 (a) Sceptical prior (equivalent to 33 deaths in each group), (b) likelihood (observed hazard ratio = 1.63 after 120 deaths)
and (c) posterior distributions arising from the CALGB trial of standard radiotherapy versus additional chemotherapy in advanced lung
cancer. The dashed lines give the boundaries of the range of clinical equivalence, taken to be 0–4 months median improvement in
survival. Percentages by each graph show the probabilities of lying below, within and above the range of equivalence. (Reproduced by
permission of the BMJ from Spiegelhalter et al.426)



considers the ECMO study (see page 37)
with a community centred around a ‘non-
informative’ prior but 20% ‘contaminated’
with a prior with minimal restrictions, such
as being unimodal. The maximum and
minimum posterior probability of the treat-
ment’s superiority within such a class can be
plotted, providing a sensitivity analysis. Such
an approach has also been explored by
Greenhouse and Wasserman206 and Carlin
and Sargent.93

Stangl and Berry426 emphasise the need for a
fairly broad community, with sensitivity analysis
not just to the spread of the prior but also its
location, while they also stress that sensitivity to
exchangeability and independence assumptions
should be examined. In fact, the ‘community’
approach to prior distributions of treatment
effects can also be applied to the distribution
of random effects in hierarchical models: for
example, Gustafson219 considers a non-parametric
approach to the effect of non-normality in a
random effects distribution. Stangl and Berry426

finish by saying that while sensitivity analysis is
important, it should not serve as a substitute for
careful thought about the form of the prior
distribution.

There is limited experience of reporting such
analyses in the medical literature, and it has been

suggested by Koch,272 Hughes242 and Spiegelhalter
et al.421 that a separate ‘interpretation’ section is
required to display how the data in a study would
add to a range of currently held opinions. It would
be attractive for people to be able to carry out their
own sensitivity analysis to their own prior opinion:
Lehmann and Shachter290 describe a computing
architecture for this, and available software and
web pages are described in appendix 2.

Subset analysis

The discussion on multiplicity on page 12 has
already described how multiple simultaneous infer-
ences may be made by assuming a common prior
distribution with unknown parameters, provided
an assumption of exchangeability (the prior does
not depend on units’ identities) is appropriate.
Within the context of clinical trials this has imme-
diate relevance to the issue of estimating treatment
effects in subgroups of patients.

By placing an identical prior on each subgroup,
the unknown between-subgroup variability is essen-
tially estimated from the data. As Cornfield113

points out, this procedure “leads to 1) pooling
subgroups if the differences among them appear
small, 2) keeping them separate if differences
appear large, and 3) providing intermediate results
for intermediate situations”.
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FIGURE 6 Traditional (solid line) and Bayesian (broken line) estimates of standardised treatment effects in a cancer clinical trial. The
Bayesian estimates are pulled towards the overall treatment effect by a degree determined by the empirical heterogeneity of the subset
results. (Reproduced by permission of the BMJ from Spiegelhalter et al.426)



Published applications are generally based on
assigning a reference (uniform) prior on the
overall treatment effect, and then assuming the
subgroup-specific deviations from that overall
effect have a common prior distribution with zero
mean. This prior expresses scepticism about widely
differing subgroup effects, although the variability
allowed by the prior is usually estimated from the
data. Thus this specification avoids the need for
detailed subjective input, which may be seen as an
attractive feature. Many applications consider this
an empirical Bayes’s procedure123,309,365 which gives
rise to traditional confidence intervals which are
not given a Bayesian interpretation. Donner139

sets out the basic ideas, and Dixon, Simon and
co-authors elaborate the techniques in several
examples.134,135,136,403,405,406 Dixon and Simon134

discuss the reasonableness of the exchangeability
assumption.

Example: Bayes’s theorem for subset
analysis
Dixon and Simon135 describe a Bayesian approach
to dealing with subset analysis in a clinical trial in
advanced colorectal cancer. The solid horizontal
lines in Figure 6 show the standardised treatment
effects within a range of subgroups, using tradi-
tional methods for estimating treatment by
subgroup interactions. Four of the 12 intervals
exclude zero, although due to the multiple hypoth-
eses being tested an adjustment technique such as
Bonferroni might be used to decrease the apparent
statistical significance of these findings.

The Bayesian approach is to assume subgroup-
specific deviations from the overall treatment effect
have a prior distribution centred at zero but with
an unknown variability: this variability parameter
is then given its own prior distribution. Since the
degree of scepticism is governed by the variance of
the prior distribution, the observed heterogeneity
of treatment effects between subgroups will influ-
ence the degree of scepticism being imposed.

The resulting Bayesian estimates are shown as
dashed lines in Figure 6. They tend to be pulled
towards each other, due to the prior scepticism
about substantial subgroup-by-treatment interac-
tion effects. Only one 95% interval now excludes
zero: the subgroup with non-measurable metastatic
disease. Dixon and Simon mention that this was
the conclusion of the original trial, but that the
Bayesian analysis has the advantage of not relying
on somewhat arbitrary adjustment techniques,
being generalisable to any number of subsets, and
provides a unified means of both providing esti-
mates and tests of hypotheses.

Multicentre analysis

Methods for subset analysis (see page 35) naturally
extend to multicentre analysis, in which the centre-
by-treatment interaction is considered as a random
effect drawn from some common prior distribution
with unknown parameters. Explicit estimation of
individual institutional effects may be carried out,
which in turn relates strongly to the methods used
for institutional comparisons of patient outcomes
(see page 44).

There have been numerous examples of this proce-
dure,203,218,409,425,427,428 generally adopting MCMC
techniques due to the intractability of the analyses.
Recent case studies include Gould,202 who provides
BUGS code (see appendix 2) for Gibbs sampling
analysis, and Jones et al.,251 who compare estima-
tion methods. Matsuyama et al.316 allow a random
centre effect both on baseline hazard and treat-
ment effect, and examine the centres for outliers
using a Student’s t prior distribution for the
random effects.

Senn398 discusses the general issue of when a
random-effects model for centre-by-treatment
interaction is appropriate, emphasising the
possible difficulty of interpreting the conclusions,
particularly in view of the somewhat arbitrary defi-
nition of ‘centre’.

Multiple end-points and
treatments
Multiple end-points in trials can often be of
interest when dealing with, say, simultaneous
concern with toxicity and efficacy. This tends
to occur in early phase studies, and a Bayesian
approach allows one to create a two-dimensional
posterior distribution over toxicity and
efficacy.137,161,451 General random effects models for
more complex situations can be constructed.288

Naturally, a two-dimensional prior is required, and
particular care must be taken over the dependence
assumptions.

A similar situation arises with many treatments: if
one is willing to make exchangeability assumptions
between treatment effects, then a hierarchical
model can be constructed to deal with the multiple
comparison problem. This was proposed long ago
by Waller and Duncan.468 Brant et al.71 update this
procedure by assuming exchangeable treatments
and setting the critical values for the posterior
probabilities of treatment effects by using a
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decision-theoretic argument based on specifying
the relative losses for type I to type II error.

Data-dependent allocation

‘Bandit’ problems
So far we have only covered standard
randomisation designs, but a full decision-theoretic
approach to trial design would consider data-
dependent allocation so that, for example, in order
to minimise the number of patients getting the
inferior treatment, the proportion randomised to
the apparently superior treatment could be
increased as the trial proceeded. Such ‘adaptive’
designs would appear to satisfy ethical consider-
ations for the patients under study303 (see page
25). These designs can pose so-called ‘bandit’
problems, as they are analogous in theory to a
gambler deciding which arm of a two-armed bandit
to pull in order to maximise the expected return.
An extreme example is Zelen’s ‘play-the-winner’
rule in which the next patient is given the currently
superior treatment, and randomisation is
dispensed with entirely;485 there is an extensive
literature on this and other designs.47

There has been considerable criticism of these
ideas as not being practically rooted in the realities
of clinical trials. Byar et al.86 identify as objections:
(1) responses have to be observed without delay,
(2) adaption depends on a one-dimensional
response, (3) sample sizes may have to be bigger
and (4) patients may not be homogeneous
throughout the trial. Armitage15 and Peto357 add
that clinicians are likely to be unhappy with
adaptive randomisation, the trial will be complex
and may deter recruitment, and estimation of the
treatment contrast will lose efficiency. Palmer and
Rosenberger346 suggest that unbalanced allocation
will make blinding difficult as clinicians may guess
which treatment is ‘in the lead’, but point out that
modern technology is making such designs more
feasible. Finally, Senn398 emphasises that future
patients, greatly outnumbering those in the trial,
would value a more precise treatment estimate.

A careful analysis has been carried out by Berry
and Eick,58 who conclude that such adaptive
designs are more likely to yield a large improve-
ment in the expected number of successful
treatments when a large proportion of patients
with the disease are likely to be in the trial. Tamura
et al.438 report one of the few adaptive clinical trials
to take place, in patients with depressive disorder:
the trial designed by Kadane258 also adapts its

allocation rules, in a somewhat complex way, to the
current evidence.

Although there are specific aspects of adaptive
allocation that cause practical problems, it is
possibly the formulation of a trial as a decision
rather than an inference that leads to most
objections – see page 39.

The ECMO studies
Two studies of extracorporeal membrane oxygena-
tion (ECMO) have been considered by many
authors. ECMO is a rescue therapy for severe lung
disease in newborns which carries the chance of
greatly improved survival but at the risk of side-
effects. An initial Zelen play-the-winner study was
followed by the Harvard two-phase adaptive study
designed to minimise the number of infants
exposed to an inferior treatment: the design was
to randomise between ECMO and conventional
medical treatment (CMT) in balanced blocks
of four, until one treatment had four deaths, at
which point all subsequent patients were to receive
the currently superior therapy. Nineteen patients
were enrolled in the first phase, with 4/10 deaths
under CMT and 0/9 deaths on ECMO – in the
second phase,20 patients were randomised to
ECMO and one died. Interest has focused on
what might have been concluded during the first
phase of the study, and Bayesian analyses have
been provided by Ware,469 Berry,45,46,51 Kass and
Greenhouse,267 Greenhouse and Wasserman,206

and Gustafson.219 Each of these is considered in
detail in appendix 1.

Ware469 and his discussants46,47,267 provide a range
of views on the ethics and appropriate analysis of
this trial, and how existing information both about
ECMO and the control therapy could have been
used in formulating a prior opinion.

Trial designs other than two
parallel groups

Equivalence trials
There is a large statistical literature on trials
designed to establish equivalence between
therapies. From a Bayesian perspective the solution
is straightforward: define a region of equivalence
(see page 27) and calculate the posterior proba-
bility that the treatment difference lies in this
range – a threshold of 95 or 90% might be chosen
to represent strong belief in equivalence. Several
examples of this remarkably intuitive approach
have been reported.31,72,174,211,314,332,370,394,395 Racine et
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al.371 consider two-stage designs, Metzler324 studies
sample size while Lindley308 takes a decision-
theoretic approach.

Cross-over trials
The Bayesian approach to cross-over designs, in
which each patient is given two or more treatments
in an order selected at random, is fully reviewed
by Grieve.212 More recent references concentrate
on Gibbs sampling approaches175 and sensitivity
analysis to different assumptions about carry-over
effects.11,209,210,214,215,370

N-of-1 trials
N-of-1 studies can be thought of as repeated cross-
over trials in which interest focuses on the response
of an individual patient, and Zucker et al.488 pool
23 N-of-1 studies using a hierarchical model
producing the standard shrinkage of the individual
conclusions towards the average result. This can
be thought of as an extreme example of the subset
procedure described previously, in which the
subsets have been reduced to individual patients.

Factorial designs
Factorial trials, in which multiple treatments are
given simultaneously to patients in a structured
design, can be seen as another example of multi-
plicity, and hence a candidate for hierarchical
models. Simon and Freedman407 and Miller and
Seaman325 suggest suitable prior assumptions that
avoid the need to decide whether interactions do
or do not exist.

Other aspects of drug
development

Pharmacokinetics
The ‘population’ approach to pharmacokinetics, in
which the parameters underlying each individual’s
drug clearance curve are viewed as being drawn
from some population, is well established and is
essentially an empirical Bayes procedure. Proper
Bayesian analysis of this problem has been exten-
sively reported by Wakefield and colleagues,372,466

emphasising MCMC methods for estimating both
population and individual parameters, as well as
individualising dose selection.467

Phase I trials
Phase I trials are conducted to determine that
dosage of a new treatment which produces a level
of risk of a toxic response which is deemed to be
acceptable. The primary Bayesian contribution to
the development of methodology for Phase I trials

has been the continuous reassessment method
(CRM) developed by O’Quigley and colleagues.342

In CRM a parameter underlying a dose–toxicity
curve is given a proper prior which is updated
sequentially and used to find the current ‘best’
estimate of the dosage which would produce the
acceptable risk of a toxic event if given to the
next subject, as well as giving the probability of a
toxic response at the recommended dose at the
end of the trial.340 High sensitivity of the posterior
to the prior distribution187 has been reported in a
similar procedure. Numerous simulations and
modifications of the method have been
proposed.10,102,163,197,222,274,326,329,341,445,479

Etzioni and Pepe161 suggest monitoring a Phase I
trial with two possible adverse outcomes via the
joint posterior distribution of the probabilities of
the two outcomes with frequentist inference at the
end of the trial.

Phase II trials
Phase II clinical trials are carried out in order to
discover whether a new treatment is promising
enough (in terms of efficacy) to be submitted to a
controlled Phase III trial, and often a number of
doses may be compared. Bayesian work has focused
on monitoring and sample size determination.
Monitoring on the basis of posterior probability of
exceeding a desired threshold response rate has
been recommended by Mehta and Cain,322 while
Heitjan227 adapts the proposed use of sceptical and
enthusiastic priors (see page 30) in Phase III
studies. Korn et al.276 consider a Phase II study
which was stopped after three out of four patients
exhibited toxicity; Bring75 and Greenhouse and
Wasserman206 re-examine their problem from a
Bayesian perspective.

Herson231 used predictive probability calculations
to select among designs with high power in
regions of high prior probability. Thall and co-
workers have also developed stopping boundaries
for sequential Phase II studies based on posterior
probabilities of clinically important events,
but where the designs are selected from the
frequentist properties derived from extensive
simulation studies.160,408,444,446,447,448,449,450 However,
Stallard424 has criticised this approach as being
demonstrably suboptimal when evaluated using a
full decision-theoretic model with a monetary loss
function.

Finally, Whitehead and colleagues81,473,474,477 have
taken a full decision-theoretic approach to allo-
cating subjects between Phase II and Phase III
studies. For example, Brunier and Whitehead81
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consider the case where a single treatment with
a dichotomous outcome is being evaluated for a
possible Phase III trial, and use Bayesian decision
theory to determine the number of subjects
needed. They place a prior on the probability
of success and calculate the expected cost of
performing or not performing a Phase III trial,
using a cost function which includes consideration
of the costs to future patients if the inferior treat-
ment is eventually used, the power of the possible
Phase III trial (which they assume will be carried
out by frequentist methods), and the costs of
experimentation. They show how to determine,
for given parameter values, the expected cost of
performing a Phase II trial of any particular size,
and thus the optimal size for a trial. (The work is
said to correct earlier work of Sylvester and
Staquet.430,435,436,437)

When faced with selecting among a list of treat-
ments and allocating patients, Pepple and Choi355

have considered two-stage designs, Yao et al.482

deal with screening multiple compounds and
allocating patients within a programme, while
Straus and Simon432 use a prior distribution and
horizon.

Phase IV – safety monitoring
A considerable literature exists on Bayesian
causality assessment in adverse drug reactions: see
for example Hsu et al.241 and Lanctot et al.279

Commentary

Table 6 briefly summarises some major distinctions
between the Bayesian and the frequentist approach
to trial design and analysis.

Use of prior distributions
As well as the general issues concerning the specifi-
cation and use of prior distributions (see page 22),
specific questions arise in the context of clinical
trials. These include:

1. Whose prior? Pocock366 states that the
“hardened sceptical triallist, the hopeful
clinician and the optimistic pharmaceutical
company will inevitably have grossly different
priors”, while Fisher171 also emphasises the
differing views of participants in health tech-
nology assessment.

As mentioned on page 13, context is an essential
aspect of any assessment, and chapter 7
describes the relevant perspectives of regulatory
authorities and health policy makers.

2. What about type I error? A common objection
to Bayesian methods is their apparent lack of
concern with type I error, with the eventual
certainty of rejecting a true null hypothesis.249

Counter-arguments to this position were given
on page 29 and 32.
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Issue Frequentist Bayesian

Information other than that in the
study being analysed

Informally used in design Used formally by specifying a prior
probability distribution

Interpretation of the parameter of
interest

A fixed state of nature An unknown quantity which can have a
probability distribution

Basic question ‘How likely is the data given a
particular value of the parameter?’

‘How likely is a particular value of the
parameter given the data?’

Presentation of results Likelihood functions, P values,
confidence intervals

Plots of posterior distributions of the
parameter, calculation of specific
posterior probabilities of interest, and
use of the posterior distribution in
formal decision analysis

Interim analyses P values and estimates adjusted for
the number of analyses

Inference not affected by the number
or timing of interim analyses

Interim predictions Conditional power analyses Predictive probability of getting a firm
conclusion

Dealing with subsets in trials Adjusted P values (e.g. Bonferroni) Subset effects shrunk towards zero by
a ‘sceptical’ prior.

TABLE 6 A brief comparison of Bayesian and frequentist methods in clinical trials



3. Stopping rule dependence. A somewhat more
subtle objection, well described by Rosenbaum
and Rubin,380 is that a Bayesian stopping rule
based on posterior tail areas may be over-
dependent on the precise prior distribution.249

A possible response is that Bayesian stopping
should not be based on a strict rule derived
from a single prior, and instead a variety of
reasonable perspectives investigated and a trial
stopped only if there is broad convergence of
opinion.

4. What are the implications for the size of trials?
There is no single implication for trial size.
Matthews317 and Edwards et al.153 have suggested
that small, open, trials fit well into a Bayesian
perspective in which all evidence contributes
and there is no demand for high power to reject
hypotheses.300 Alternatively, monitoring with a
sceptical prior may demand larger than standard
sample sizes in order to convince an archetypal
sceptic about treatment superiority.

The distinction made by Kadane and Seidenfeld263

between ‘experiments to learn’ and ‘experiments
to prove’ appears useful: trial design must naturally
reflect one’s objectives and different contexts may
therefore demand differing designs.

Whitehead475.476,478 argues that where a limited
group of investigators are engaged on a project,
for example in a drug development programme,
then a full Bayesian approach with a loss function
may be sensible, but that there is no place for
prior opinions in publicly scrutinised Phase III
studies.

As a final comment, O’Rourke343 suggests that
all methods have arbitrary aspects; a Bayesian
approach has at least the simplicity of collecting
all of this arbitrariness into the prior.

Use of a loss function: is a clinical trial
for inference or decision?
There has been a long and intense dispute about
whether a clinical trial should be considered as a
decision problem, with an accompanying loss
function, or as an inference.

1. A clinical trial should be a decision. Lindley304

categorically states that “Clinical trials are not
there for inference but to make decisions”,
while Berry54 states that “deciding whether to
stop a trial requires considering why we are
running it in the first place, and this means
assessing utilities”. Healy223 considers that “in
my view the main objective of almost all trials

on human subjects is (or should be) a decision
concerning the treatment of patients in the
future”.

Claxton106,107 argues from an economic perspec-
tive that a utility approach to clinical trial design
and analysis is necessary in order to prevent
conclusions based on inferential methods
leading to health or monetary losses. He points
out that “Once a price per effectiveness unit has
been determined, costs can be incorporated,
and the decision can then be based on
(posterior) mean incremental net benefit
measured in either monetary or effectiveness
terms”. The assumptions that need to be made
about rapid dissemination of superior treat-
ments are reasonable, he claims, since we
should be designing trials that are ‘best’ for a
healthcare system: the need for incentives or
arrangements to persuade decision makers is a
separate issue.

See page 52 where methods for evaluating the
‘payback’ of health research are discussed.

2. A clinical trial provides an inference. Armitage,15

Breslow,72 Demets,125 Simon402 and O’Rourke343

all describe how it is unrealistic to place clinical
trials within a decision-theoretic context,
primarily because the impact of stopping a trial
and reporting the results cannot be predicted
with any confidence: Peto357 states that “Bather,
however, merely assumes … “it is implicit that
the preferred treatment will then be used for all
remaining patients” and gives the problem no
further attention! This is utterly unrealistic, and
leads to potentially misleading mathematical
conclusions”. Peto goes on to argue that a
serious decision-theoretic formulation would
have to model subsequent dissemination of
treatment – attempts to do this will be discussed
on page 52.

3. It depends on the context. Whitehead478 points
out that the theory of optimal decision-making
only exists for a single decision-maker, and
that no optimal solution exists when making
a decision on behalf of multiple parties with
different beliefs and utilities. He therefore
argues that internal company decisions at
Phase I and Phase II of drug development can
be modelled as decision problems, but that
Phase III trials cannot be.476 Koch272 also
provides a non-dogmatic discussion, in which
the relevant approach depends on the question
being asked.

Randomised controlled trials
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Key points

1. The Bayesian approach provides a framework
for considering the ethics of randomisation.

2. Monitoring trials with a sceptical and other
priors may provide a unified approach to
assessing whether a trial’s results would be
convincing to a wide range of reasonable
opinion, and could provide a formal tool for
data monitoring committees.

3. Various sources of multiplicity can be dealt with
in a unified and coherent way.

4. In contrast to earlier phases of develop-
ment, it is generally unrealistic to formulate a
Phase III trial as a decision problem, except in
circumstances where future treatments can be
accurately predicted.

5. An empirical basis for prior opinions in clinical
trials should be investigated, but archetypal
prior opinions play a useful role.

6. The structure in which trials are conducted must
be recognised, but can be taken into account by
specifying a range of prior opinions.
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Introduction

Since the probability models used in Bayesian
analysis do not need to be based on actual
randomisation, non-randomised studies can be
analysed in exactly the same manner as random-
ised comparisons, perhaps with extra attention to
adjusting for covariates in an attempt to control
for possible baseline differences in the treatment
groups with respect to uncontrolled risk factors
or exposures. For example, the results from an
epidemiological study, whether of a cohort or
case–control design, provide a likelihood which
can be combined with prior information using
standard Bayesian methods. The dangers of this
approach have been well described in the medical
literature,86 but nevertheless there are circum-
stances where randomisation is either impossible
or where there is substantial valuable information
available in historical data. There is, of course,
a degree of subjective judgement about the
comparability of groups, which fits well into the

acknowledged judgement underlying all Bayesian
reasoning. It is possible that the effect of unmea-
sured confounders can be modelled by means of
a prior distribution, which could be considered
as part of the explicit modelling of biases discussed
on page 41. In this chapter we consider four
aspects of non-randomised comparisons: case–
control studies, complex epidemiological models,
explicit modelling of biases, and comparisons of
institutions on the basis of their outcomes. The
discussion of historical controls within randomised
trials (see page 27) is also relevant to the situation
in which no contemporaneous controls are
available.

Case–control studies

Case–control designs have been considered in
detail by a number of authors,24,313,335,486,487 generally
relying on analytic approximations in order to
obtain reasonably simple analyses. For example,
Ashby et al.24 examine two case–control studies
(one being very small) and a cohort study of
leukaemia following chemotherapy treatment for

Hodgkin’s disease, and consider the consequences
of various prior distributions based on past studies,
possibly downweighted. Lilford and Braunholtz’s
tutorial article concerns potential side effects of
oral contraceptives, with likelihoods arising from
case–control studies299 (see appendix 1 for further
details).

Complex epidemiological models

One approach to assessing the value of an inter-
vention is to construct a model for the natural
history of a chronic disease, and predict the
consequences of implementing a specific policy.
Such models can be developed by synthesising
evidence from multiple sources (see chapter 6)
in order to provide a ‘comprehensive decision
model’ for cost-effectiveness analyses. However,
Craig et al.119 point out that predictions based on
such a model require assumptions of parameter
independence which do not need to be made if
estimation and prediction are carried out
simultaneously.

Such simultaneous analysis can be carried out if
a large cohort database is available and the joint
posterior distribution of the parameters of the
model obtained, say through MCMC techniques.
Craig et al.119 describe such an analysis of a
population-based cohort of patients with diabetic
retinopathy in order to evaluate different
screening policies. They construct a Markov model
for transitions between disease states, using reason-
ably non-informative prior distributions and
MCMC estimation.

There is also a substantial literature on Bayesian
methods for complex epidemiological modelling,
particular concerning problems spatial correla-
tion,23,40,226,377 measurement error376 and missing
covariate data.373 Analysis is now almost universally
by MCMC methods, and considerable use has
been made of Bayesian graphical modelling tech-
niques,417 which are further explored in the
Magnesium (see chapter 10) and confidence
profile (see chapter 11) case studies.
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Explicit modelling of biases

The fullest Bayesian analysis of non-randomised
data for health technology assessment is probably
the confidence profile method of Eddy and
colleagues.150 This is seen primarily as a tool for
evidence synthesis (discussed in chapter 6), but
also emphasises the ability to explicitly model
potential biases that occur both within studies and
in the attempt to generalise studies outside their
target population.

They identify as ‘biases to internal validity’
those features of a study that may mean that
the effect of interest is not being appropriately
estimated within the circumstances of that
study: these include dilution and contamination
due to those who are offered a treatment not
receiving it (see chapter 11), errors in measure-
ment of outcomes, errors in ascertainment of
exposure to an intervention, loss to follow-up,
and patient selection and confounding in which
the groups differ with respect to measurable
features. These biases may occur singly or in
combination.

‘Biases to external validity’ concern the ability of
a study to generalise to defined populations or to
be combined with studies carried out on different
groups. These include ‘population bias’ in which
the study and general population differ with
respect to known characteristics, ‘intensity bias’ in
which the ‘dose’ of the intervention is varied when
generalised, and differences in lengths of follow-
up. Finally, when combining studies it is possible
to downweight the likelihood, much as historical
control data can be downweighted when forming
a prior (see page 27).

Eddy et al.150 show how each of these biases can be
given a mathematical formulation, and hence can
be used to adjust the findings of any study. Two
requirements are necessary. First, analytic solu-
tions are rarely possible, and so approximations
or simulations are necessary: chapter 11 shows
how these are now reasonably straightforward.
More serious are the necessary assumptions
required concerning the extent of the biases.
Data may be available on which to base accurate
estimates, but there is likely to be considerable
judgemental input. Any unknown quantity can,
of course, be given a prior distribution, and Eddy
et al. claim this obviates the need for sensitivity
analysis. Rittenhouse378 has argued that explicit
allowance for external biases is necessary for
cost-effectiveness studies.

Institutional comparisons

A classic ‘multiplicity’ problem arises in the use of
performance indicators to compare institutions
with regard to their health outcomes or use of
particular procedures. Analogously to subset
estimation (see page 35) and meta-analysis (see
page 47), hierarchical models can be used to make
inferences based on estimating a common prior
or ‘population’ distribution.195,333 An additional
benefit of using MCMC methods (see page 12) is
the ability to derive uncertainty intervals around
the rank order of each institution.312 Fully Bayesian
methods have also been used in the analysis of
panel agreement data on the appropriateness of
coronary angiography.27

The case study in chapter 12 describes an analysis
of success rates in in vitro fertilisation clinics, in
which Bayesian methods are used both to make
inferences on the true rank of each clinic, as well
as estimating the true underlying success rates with
and without an exchangeability assumption.

Commentary

To date there has been relatively little work done
on Bayesian health technology assessment in an
epidemiological setting compared with that in
randomised controlled trials. One important
reason for this is the often complex regression
models that are used routinely in epidemiology
to, for example, adjust for known confounders,
with corresponding computational difficulties
of Bayesian analysis. The advent of computer-
intensive methods (see page 12) has largely
overcome that problem.

In the future we can expect demands for increas-
ingly complex analyses, such as of institutional
comparisons and epidemiological data concerned
with gene–environment interactions, which will
place great demands on traditional hypothesis
testing and estimation procedures which
were essentially intended for fairly simple low-
dimensional problems. This is likely to lead to
increased demands for Bayesian analyses.

Key points

1. Epidemiological studies tend to demand a more
complex analysis than randomised trials.

2. Computer-intensive Bayesian methods in
epidemiology are becoming more common.

Observational studies
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3. There are likely to be increased demands
for Bayesian analyses, particularly in areas
such as institutional comparisons and gene–
environment interactions.

4. The explicit modelling of potential biases in
observational data may be widely applicable
but needs some evidence base in order to be
convincing.
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Meta-analysis

Bayesian meta-analysis follows the idea that has
already been explored in other contexts of multi-
plicity, such as subset analysis (see page 35),
multicentre trials (see page 36) and multiple
outcomes (see page 36), in considering each trial
to be a ‘unit’ of analysis within a hierarchical struc-
ture. The ‘true’ treatment effect in each trial is
considered, assuming that the trials are exchange-
able, as a random quantity drawn from some
population distribution. This is exactly the same
as the standard random-effects approach to meta-
analysis,130 but the latter tends to focus on esti-
mating an overall treatment effect while a full
Bayesian approach also concentrates on estimating
trial-specific effects. The Bayesian approach also
requires prior distributions to be specified for the
mean effect size and for the between- and within-
study variances: these will generally be default
‘reference’ priors, but including the uncertainty of
all the parameters will tend to give wider interval
estimates than a classical random effects analysis.
Sutton et al.434 review the whole area of meta-
analysis and Bayesian methods in particular:
other reviews are provided by Jones,254 Normand334

and Hedges.225

Empirical Bayes approaches have received most
attention in the literature until recently, largely
because of computational difficulties in the use of
fully Bayesian modelling.374,431 However, the full
Bayesian hierarchical model has been investigated
extensively by Dumouchel and colleagues142,143,144,145

and Abrams and Samso4 using analytic approxima-
tions, and also using MCMC methods.327,412 Carlin,94

for example, considers meta-analyses of both
clinical trials and case–control studies; he examines
the sensitivity to choice of reference priors, and
explores checking the assumption of normal
random effects. There have been many compara-
tive studies of the full Bayesian approach,
including trials,379,433,455 and observational
studies.66,433,457 These comparative studies between
different approximations show few substantial
effects: the primary finding is that when there are
few studies, and hence the between-study variability

cannot be accurately estimated from the data
alone, the prior for this parameter becomes impor-
tant and the empirical Bayes approach, in which
the uncertainty about the between-study variability
is ignored, tends to provide intervals that are too
narrow.

It is natural to use a cumulative meta-analysis as
external evidence when monitoring a clinical
trial,230 and cumulative meta-analysis can also be
given a Bayesian interpretation as providing a prior
distribution284 (see page 18): in this situation the
Bayesian approach relies on the assumption of
exchangeability of trials but avoids concerns with
retaining type I error over the entire course of the
cumulative meta-analysis.

Others have investigated relationship of treatment
effect to underlying risk320,393,453 – see the accompa-
nying case study for an application of this approach
(see chapter 10). Priors on the heterogeneity
parameter were considered in chapter 3: Higgins
and Whitehead233 use proper priors derived from
a series of meta-analyses. Another application is
investigation of publication bias, which has been
modelled by Begg et al.34 and Givens et al.,194 while
Daniels and Hughes122 pool studies in order to
model a joint distribution of a surrogate end-point
and eventual response.

Sutton et al.434 summarise the potential advantages
of the Bayesian approach to meta-analysis as
including:

1. Unified modelling. The conflict between fixed
and random effect meta-analysis is overcome
by explicitly modelling between-trial variability
(which could be assumed to be small), as well as
allowing regression models for the treatment
effect in each trial.

2. Borrowing strength. As in all areas in which
Bayesian hierarchical modelling is adopted,
the exchangeability assumption leads to each
experimental unit ‘borrowing’ information
from the other units, leading to a shrinkage of
the estimate towards the overall mean, and a
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reduction in the width of the interval estimate.
This degree of pooling depends on the
empirical similarity of the estimates from the
individual units.

3. Allowing for all parameter uncertainty. The full
uncertainty from all the parameters is reflected
in the widths of the intervals for the parameter
estimates.

4. Allowing for other sources of evidence. Other
sources of evidence can be reflected in the prior
distributions for parameters, or in pooling
multiple types of study (see below).

5. Allowing direct probability statements. As with
all Bayesian analyses, quantities of interest can
be directly addressed, such as the probability
that the true treatment effect in a typical trial is
greater than 0.

6. Predictions. The ease of making predictions
allows, for example, current meta-analyses to be
used in designing future studies.

Cross-design synthesis

The previous section has dealt with meta-analysis
of studies with similar basic design, but a more
general approach allows mixing of different types
of study. Rubin384 emphasises pooling evidence
through modelling in order to “build and extrapo-
late a response surface”, which models the true
treatment effect conditional on both the design
of the study and on subgroup factors.

As noted when discussing observational studies
(see chapter 5), in some circumstances random-
ised evidence will be less than adequate due to
economic, organisational or ethical consider-
ations.67 Considering all the available evidence,
including that from non-randomised studies, may
then be necessary or advantageous. Droitcour
et al.140 describe the limitations of using either
randomised controlled trials or databases alone, in
that randomised controlled trials may be rigorous
but restricted, whereas databases have a wider
range but may be biased. They introduce what
they term cross-design synthesis, an approach for
synthesising evidence from different sources, with
the aim “not to eliminate studies of overall low
quality from the synthesis, but rather to provide
the information needed to compensate for specific
weaknesses”.140 Although not a Bayesian approach,
they are following the explicit modelling of biases
considered by the confidence profile method (see

pages 44, and 49), and work on generalising the
results of clinical trials for broader populations.
Cross-design synthesis was outlined in a report
from the US General Accounting Office,337 but a
Lancet editorial152 was critical of this approach,
suggesting it would deflect attention from carrying
out serious controlled trials: this was denied in a
subsequent reply.101 A review by Begg33 suggested
they had underestimated the difficulty of the task,
and appeared to assume that randomised trials and
databases could be reconciled by statistical adjust-
ments, whereas selection biases and differences in
experimental rigour could not be eliminated so
easily.

It is natural to take a Bayesian approach to the
synthesis of multiple trial designs, and a hierar-
chical model can specifically allow for the quanti-
t ative within- and between-sources heterogeneity,
and for a priori beliefs regarding qualitative differ-
ences between the various sources of evidence. A
full Bayesian version of cross-design synthesis was
subsequently applied to data on breast cancer
screening.3,411 The concept of combining different
types of study in a model has also been termed
‘grouped meta-analysis’; Li and Begg296 combine
controlled and uncontrolled studies, Larose and
Dey283 integrate open and closed studies within a
single model, while Dominici et al.138 pool open
and closed studies on migraine using a graphical
model, different treatment contrasts and different
designs. Muller et al.330 combine case–control and
prospective studies.

Other examples include Berry et al.,62 who consider
a complex synthesis of studies concerning breast
cancer therapy, facing up to issues such as
unplanned analyses, multiple variables, lack of
exchangeability across and within studies, and the
problem of convincing practitioners on the basis
of such a complex analysis. Belin et al.35 combine
observational databases in order to evaluate inter-
ventions to increase screening rates, needing
to impute missing data in some studies. Such
integrated analyses naturally lead on to the
‘comprehensive decision models’ discussed in
chapter 7.

It has yet to be established when such analyses are
appropriate, as there is concern that including
studies with poorer designs will weaken the
analysis, though this issue is partially addressed
by conducting sensitivity analyses under various
assumptions. However, an example of such a
synthesis is provided in the context of regulatory
approval of medical devices (see page 53).

Evidence synthesis
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Confidence profile method

This approach was developed by Eddy and
colleagues and promulgated in a book with
numerous worked examples and accompanying
software,150 as well as tutorial articles.146,148,149,151,399

They use directed conditional independence
graphs to represent the qualitative way in which
multiple contributing sources of evidence relate to
the quantity of interest, explicitly allowing the user
to discount studies due to their potential internal
bias or their limited generalisability (see page 44).
Their analysis is essentially Bayesian, although it is
possible to avoid specification of priors and use
only the likelihoods.

The software for carrying out the confidence
profile method, FAST*PRO, has been used in
meta-analysis of the benefits of antibiotic therapy,28

mammography of those aged under 50 years147 and
angioplasty.8

The need to make explicit subjective judgements
concerning the existence and extent of possible
biases, and the limited capacity and friendliness of
the software, has perhaps restricted the application
of this technique. However, we show in chapter 11
that modern software can allow straightforward
implementation of their models promulgated by
Eddy and co-workers.

Key points

1. A unified Bayesian approach appears to be
applicable to a wide range of problems
concerned with evidence synthesis.

2. In the past, prospective evaluation of clinical
interventions concentrated on randomised
controlled trials, but more recent interest
has focused on more diffuse areas, such as
healthcare delivery or broad public health
measures. This means methods that can
synthesise totality of evidence are required,
for example in assessing medical devices.

3. Evaluations of current technologies may often
be seen as unethical subjects for randomised
controlled trials, and hence modelling of
available evidence is likely to be necessary.

4. Perhaps one reason for lack of uptake is that
syntheses are not seen as ‘clean’ methods, with
each analysis being context-specific, less easy to
set quality markers for, easier to criticise as
subjective and so on.

5. Priors for the degree of ‘similarity’ between
alternative designs can be empirically informed
by studies comparing the results of randomised
controlled trials and observational data.
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Contexts

Throughout this report we have emphasised that it
was vital to take into account the context of health
technology assessment is being made. The appro-
priate prior opinions, and the possibility of explicit
loss functions, depend crucially on whose behalf
any analysis is being reported or decision being
made.

In this chapter we specifically address this issue
using the broad categories of ‘actors’ introduced in
chapter 2:

• Sponsors, for example the pharmaceutical
industry, medical charities or granting agencies.
In deciding whether to fund studies, they will be
concerned with the potential ‘payback’ from
research (see page 52), which within industry
takes the form of a drug development
programme.

• Investigators, that is, those responsible for the
conduct of a study, whether industry or publicly
funded. In previous chapters we have focused
primarily on those carrying out a single study,
who are primarily concerned with the accuracy
of the inferences to be drawn from their work.

• Reviewers, for example regulatory bodies
(see page 53) or journal editors. They will be
concerned with the appropriateness of the infer-
ences drawn from the studies, and so may adopt
their own prior opinions and reporting
standards (see page 33).

• Consumers, for example agencies setting health
policy, clinicians or patients. Healthcare organi-
sations may be concerned with the cost-
effectiveness of an intervention (see page 51)
although the sponsor or investigator may carry
out this analysis on their behalf. Decisions about
health policy, whether at a community or indi-
vidual level, may involve explicit consideration
of costs and benefits (see page 54) – here we
distinguish between those based only on prior

opinions (forming a decision analysis), and
those requiring a full Bayesian statistical analysis.

In the remainder of this chapter we examine the
potential Bayesian contribution to these different
perspectives.

Cost-effectiveness within trials

The traditional tool for dealing with uncertainty in
cost-effectiveness analysis has been sensitivity
analysis, although there has been considerable
recent work on developing classical confidence
intervals for cost-effectiveness ratios. This area has
recently been reviewed by Briggs and Gray,74 who
mention the use of probabilistic sensitivity analysis,
in which prior probability distributions are placed
over uncertain inputs into the analysis and the
resulting distribution of potential cost-effectiveness
ratios is generated by simulation. This is a partic-
ular case of a Bayesian method: the general way in
which uncertainty is handled by the Bayesian
approach has been emphasised by Manning et al.311

and Jones.252,253

From a technical perspective, Grieve216 shows
how pharmaco-economics naturally gives rise to
a bivariate posterior distribution of costs and
effectiveness, which can be plotted and from
which the probability of specific conclusions may
be obtained. Heitjan et al.229 illustrate this bivariate
approach with a number of examples, while
Briggs73 avoids the problem of possible zero
denominators in the cost-effectiveness ratio by
working directly with the prior and likelihood for
net benefit relative to a specified baseline ratio.

Luce and Claxton310 present a strong argument
that Bayesian methods should be applied in cost-
effectiveness studies and pharmaco-economics in
general. They point out that hypothesis testing is
of limited relevance in economic studies, and that
additional evidence outside a study is likely to be
relevant. Furthermore, when a cost-effectiveness
analysis is being used as one of the inputs into a
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formal decision concerning drug regulation
or health policy, then they recommend a full
decision-theoretic approach in which an explicit
loss function of the decision maker is assessed.
This view has led to a Bayesian initiative in
pharmacoeconomics (see appendix 2). Felli and
Hazen168,169 extend this utility perspective to sensi-
tivity analysis, suggesting that an analysis should be
considered sensitive to a particular uncertain input
if the expected gain in utility from eliminating
the uncertainty about that input exceeds a certain
specified threshold. The use of such an expected
value of perfect information (EVPI) approach has
also been recommended when deciding research
priorities (see page 52).

Finally, Rittenhouse378 suggests that trial results
may need to be adjusted to in order to generalise
the cost-effectiveness analysis to other populations
of interest. This essentially is concerned with the
type of adjustments used in cross-design synthesis
(see page 48) and the explicit modelling of biases
in observational studies (see page 44).

Cost-effectiveness of carrying out
trials – ‘payback models’

Research planning in the public sector
Any organisation funding clinical trials must
make decisions concerning the relative importance
of alternative proposals, and there have been
increased efforts to measure the potential
‘payback’ of expenditure on research. Buxton and
Hanney83 review the issues and propose a staged
semi-quantitative structure, while Eddy146 suggests
a fully quantitative model based on assessing
the future numbers to benefit and the expected
benefit, with a subjective probability distribution
over the potential benefits to be shown by the
research. However, Eddy’s146 limited approach was
not adopted by its sponsors, the US Institute of
Medicine, who preferred a less structured model
that employed weights.

It is clearly possible to extend this broad approach
to increasingly sophisticated models within a
Bayesian framework, and Hornberger and
Eghtesady state that “by explicitly taking into
consideration the costs and benefits of a trial,
Bayesian statistical methods permit estimation
of the value to a healthcare organisation of
conducting a randomised trial instead of contin-
uing to treat patients in the absence of more
information”.238 Clearly this is a particular example
of a decision-theoretic Bayesian approach, applied
at the planning stage of a trial (see page 28) rather

than at interim analyses (see page 32). Examples
given on page 28 by Detsky,131 Hornberger238,239

and others explicitly calculate the expected utility
of a trial in order to select sample sizes, and such
calculations can also, in theory, be used to rank
studies that are competing for resources, and
hence to decide whether the trial is worth doing
in the first place.

Detsky’s early analysis131 assumed that a trial
would need to achieve statistical significance in
order to have an impact on future treatments, but
Claxton106 strongly argues that dependence on
such inferential methods, whether classical or
Bayesian, will lead to suboptimal use of health
resources. He recommends a full decision-
theoretic approach to both fixed107 and sequen-
tial106 trials, basing his analysis on a univariate
scale comprising the net benefit relative to a
prespecified standard measure of effectiveness
per unit cost. The EVPI must be higher than the
cost of research in order to pass the first ‘hurdle’
for a proposed programme to overcome, and
the expected value of sample information (EVSI)
(essentially the EVPI allowing for the sampling
error of a trial) must exceed the sample costs
to overcome the hurdle for a specific proposed
trial. This model allows for unbalanced allocation
of patients between arms, and the ability to
revise design based on interim analyses,452 in
order to optimise the expected net benefit from
sampling (ENBS), which is the EVSI minus
sample costs.

The standard criticisms of decision-theoretic
approaches to trials apply (see page 40), particu-
larly regarding unrealistic assumptions concerning
the impact of research results (which may not
even be ‘significant’) on clinical practice. Claxton
replies that the first step should be to establish a
normative framework that best meets the needs of
a system, and separately to conduct studies to see
how to get the research into practice.106

More generally, the role of decision analysis in
all aspects of health services research has been

emphasised by Lilford and Royston.298

Research planning in the
pharmaceutical industry
Berry49,59 has stressed the decision-theoretic
approach to sequential trial design as being
relevant to a a pharmaceutical company seeking to
maximise profit. However, here we are concerned
with a whole research programme in which there
are multiple competing projects at different stages

Strategy, decisions and policy making
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of drug development. It is natural that the pharma-
ceutical industry would wish to organise its
programme in a cost-effective way, and Bergman
and Gittins39 review quantitative approaches to
planning a pharmaceutical research programme.
Many of the proposed methods are sophisticated
uses of bandit theory in order to allocate resources
in a dynamically changing environment, but
Senn396,398 suggests a fairly straightforward scheme
based on the Pearson index, which is the expected
net present value divided by expected net present
costs. He discusses the difficulties of eliciting
suitable probabilities for the success of each stage
of a drug development programme, conditional
on the success of the previous stage, but suggests
formal Bayesian approaches involving subjective
probability assessment and belief revision should
be investigated in this context.

The regulatory perspective

Regulation of pharmaceuticals
Regulatory bodies have a duty to protect the public
from unsafe or ineffective therapies, and increas-
ingly are taking on responsibility for assuring cost-
effectiveness.

Opinions on the relevance of Bayesian methods to
drug or device regulation cover a broad spectrum:
Whitehead478 and Koch272 see any use of priors as
being controversial and inappropriate, while on
the other hand Matthews319 claims that the use of
sceptical priors “should not be optional but manda-
tory”. Keiding269 criticises the “ritual dances”
currently prescribed for regulation, but wonders
whether Bayesian methods will allow anything less
ridiculous. Claxton105 suggests that agencies take
on a full decision-theoretic approach to regulation,
that evaluates the expected value of further investi-
gation in order to assess whether sufficient
evidence is available to permit approval. O’Neill,339

as a senior US FDA statistician, acknowledges the
appropriate conservatism arising out of the use
of sceptical priors, and considers that Bayesian
methods should be investigated in parallel with
other techniques.

The website of the FDA allows one to search for
references to Bayesian methods among their
published literature (see appendix 2). Much of the
discussion concerns medical devices (see page 53).
Guidelines for population pharmacokinetics are
provided,462 which can be thought of as an empir-
ical Bayes procedure (see page 38). There is also
an interesting use of a Bayesian argument in the
approval of the drug enoxaparin (Lovenox®). The

transcript of the Cardiovascular and Renal Drugs
Advisory Committee meeting on 26 June 1997461

shows the pharmaceutical company had been
asked to make a statement about the effectiveness
of enoxaparin plus aspirin as compared to placebo
(aspirin alone), whereas their clinical trial had
used an active control of heparin plus aspirin.
They therefore used meta-analysis data comparing
heparin plus aspirin versus aspirin alone in order
to produce a posterior distribution on the treat-
ment comparison of interest: an example of
cross-study inference (see page 7.2). Analyses
were repeated using the meta-analysis data
directly, but also expressing scepticism about its
relevance and reducing its influence, with results
being expressed as posterior probabilities of treat-
ment superiority over placebo. The committee
welcomed this analysis and voted to approve the
drug.

It is important to note that the latest international
statistical guidelines for pharmaceutical submis-
sions to regulatory agencies state that “the use of
Bayesian and other approaches may be considered
when the reasons for their use are clear and when
the resulting conclusions are sufficiently robust”.248

Unfortunately, they do not go on to define what
they mean by clear reasons and robust conclusions,
and so it is still open as to what will constitute an
appropriate Bayesian analysis for a pharmaceutical
regulatory body.

Regulation of medical devices
The greatest enthusiasm for Bayesian methods
appears to be in the FDA Center for Devices and
Radiological Health (CDRH). They co-sponsored
a workshop on Bayesian methods in November
1998, and are currently proposing to produce the
document Statistical Guidance on Bayesian Methods in
Medical Device Clinical Trials.460

Campbell recently described the potential for
Bayesian methods in assessing medical devices,87

emphasising that devices differed from
pharmaceuticals in having better understood
physical mechanisms, which meant that effective-
ness was generally robust to small changes. Since
devices tended to develop in incremental steps,
a large body of relevant evidence existed, and
companies did not tend to follow established
phases of drug development. The fact that an
application for approval might include a variety of
studies, including historical controls and registries,
suggests that Bayesian methods for evidence
synthesis might be appropriate. However, the
standard conditions apply that the source and
robustness of the prior information must be
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assessed, and that Bayesian analysis does not
compensate for poor science and experimental
design.

Campbell draws attention to the Transcan Breast
Scanner®, which was approved by the CDRH in
April 1999.463 A primary ‘intended use’ study on
72 women was supplemented by two additional
studies of differing designs, using a hierarchical
multinomial logistic regression model with study
introduced as a random effect. MCMC simulation
methods were used by means of the BUGS
software.423

Policy making and ‘comprehensive
decision modelling’
The primary advantage of a Bayesian approach is
that it allows the synthesis of all available sources of
evidence, whether from RCTs, databases or expert
judgement, into a single model that can then be
used to evaluate the cost-effectiveness of alternative
policies. The approach has been termed ‘compre-
hensive decision modelling’, and can be thought
of as extending the evidence synthesis methods
described in chapter 6 to allow for costs in partic-
ular and utilities in general.

Parmigiani and colleagues350,352 apply this idea to
screening for breast cancer, in which many sources
of evidence are brought together in a single model
that predicts the consequences of alternative
screening policies, while Cronin et al.121 use micro-
simulation at the level of the individual patient to

predict the consequences of different policy deci-
sions on lowering expected mortality from prostate
cancer. Samsa et al.387 consider ischaemic stroke,
and construct a model for natural history using data
from major epidemiological studies, and a model
for the effect of interventions based on databases,
meta-analysis of trials and Medicare claim records.
They also use micro-simulation of the long-term
consequences of different stroke prevention
policies in order to compare their cost-effectiveness:
Matchar, Parmigiani and colleagues315,351,353 consider
further use of the stroke prevention policy model
(SPPM), developed under the auspices of the
Stroke PORT (Patient Outcomes Research Team).

Key points

1. A Bayesian approach allows explicit recognition
of multiple perspectives.

2. Increased attention to pharmaco-economics
may lead decision-theoretic models for research
planning to be explored, although this will not
be straightforward.

3. There appears to be great potential for formal
methods for planning in the pharmaceutical
industry.

4. The regulation of devices is leading the way in
establishing the role of evidence synthesis.

5. ‘Comprehensive decision modelling’ is likely to
become increasingly important in policy making.

Strategy, decisions and policy making
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In this chapter we present a checklist against
which published accounts of Bayesian assess-

ments of health technologies can be compared. We
aim to ensure that an account which adequately
contains all the points mentioned here would have
the property the analysis could be replicated by
another investigator who has access to the full data.

These guidelines should be seen as complementary
to the CONSORT (Consolidated Standards of
Reporting Trials) guidelines, in that they focus on
those aspects crucial to an accountable Bayesian
analysis, in addition to standard sections
concerning the technology, the design and the
results.

Introduction

1. The technology. The intervention to be
evaluated must, of course, be clearly described
with regard to the population of interest and so
on.

2. Objectives of study. It is important that a clear
distinction is made between desired inferences
on any quantity or quantities of interest, repre-
senting the parameters to be estimated, and any
decisions or recommendations for action that
are to made subsequent to the inferences. The
former will require a prior distribution, while
the latter will require explicit or implicit consid-
eration of a loss function/utility.

Methods

1. Design of study. This is a standard requirement,
but when synthesising evidence, particular
attention will be necessary to the similarity of
studies in order to justify assumptions of
exchangeability.

2. Statistical model. The probabilistic relationship
between the parameter(s) of interest and the
observed data should be explicitly described.
The relationship should either be given

mathematically, or its structure should be
described in such a way as to allow its mathemat-
ical form to be unambiguously obtained by a
competent reader. If this likelihood has been
obtained by a method of model selection,
whether Bayesian or not, this should be stated
and the method described.

3. Prospective analysis? It needs to be made clear
whether the prior and any loss function were
constructed preceding the data collection, and
whether analysis was carried out during the
study.

4. Loss function. If an explicit method of
deducing scientific consequences is decided
prior to the study, this should be explicitly
stated. This will often be a range of equivalence
(a range of values such that if the parameter of
interest lies in that range, two different technol-
ogies may be regarded as being of equal effec-
tiveness), or a loss function whose expected
value is to be minimised with respect to the
posterior distribution of the parameter of
interest yielding an estimated value of the
parameter. If these have been obtained by an
elicitation process from experts, this should be
stated and the process described. Any intention
to investigate the dependence of the final
conclusion on the range of equivalence, etc.,
should be described.

5. Prior distribution. Explicit priors for the param-
eters of interest should be given, clearly showing
whether an informative or ‘non-informative’
prior is being used. If they have been obtained
by an elicitation process this should be stated
and described. If it is intended to examine the
effect of using different priors on the conclusion
of the study, the alternative priors explicitly
should be stated. Any empirical evidence
underlying the prior assessment should be
provided.

6. Computations. These need to be described to
the extent that a mathematically competent
reader could, if necessary, repeat all the
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calculations and obtain the required results.
Details of any software used to obtain the
results should be given. If MCMC methods are
being used, the choice of starting values, the
number and length of runs and convergence
diagnostics to be used should be clearly stated
and justified

Results

1. Evidence from study. As much information
about the observed data – sample sizes, measure-
ments taken – as is compatible with brevity and
data confidentiality should be given.

Interpretation

1. Reporting. The posterior distributions should be
clearly summarised. In most cases, this should
include a presentation of posterior credible
intervals and a graphical presentation of the
posterior distribution. If either a formal or
informal loss function has been described, the
results should be expressed in these terms.

It is also essential that the likelihood can be
reconstructed, usually through information
given under ‘evidence from study’, so that subse-
quent users can establish the contribution from
the study to, say, a meta-analysis. There should
be a careful distinction between the report as
a current summary for action, in which case a
synthesis of all relevant sources of evidence is
appropriate, and the report as a contributor of
information for future action.

2. Sensitivity analysis. If alternative priors and/or
expressions of the consequences of decisions
have been given in the sections above, the
results of these should be presented.

Example

The following is a single example from the litera-
ture summarised using the BayesWatch headings. A
full list of ‘three-star’ Bayesian health technology
assessment studies is provided in appendix 1.

Author. Abrams K, Ashby D and Errington D.1

Title. Simple Bayesian analysis in clinical trials –
a tutorial.

Year. 1994.

The technology. High-energy neutron therapy
against standard photon therapy in treatment of
pelvic cancers.

Objectives of study. To estimate the odds ratio for
12 month survival.

Design of study. Randomised controlled trial.
Separate trials were ran concurrently for cancers
of the rectum, bladder, colon and cervix. Subjects
were randomised in a ratio of 3:1 towards neutron
therapy from 10 February 1986 until 11 January
1988 and then in a ratio of 1:1 until 12 February
1990.

Evidence from study. Twelve-month survival: 61
subjects on photon treatment, 36 alive, 25 dead;
90 subjects on neutron treatment, 44 alive, 46
dead.

Statistical model. Binomial model with 12 month
mortality rate qp on photon treatment and qn on
neutron treatment. Inference is on the log(odds
ratio) log[(qn(1 – qp)/qp(1 – qn)].

Prospective analysis? Partly: prior distributions
elicited prospectively, analysis performed
retrospectively.

Loss function. No explicit loss function. An
average of 10 clinicians demanded an odds ratio of
less than 0.63 before routinely preferring neutron
therapy.

Prior distribution. Ten clinicians were asked to
specify their prior for 12 month mortality on
neutron therapy by the roulette method assuming
12 month mortality on photon therapy to be 0.5.
The arithmetic mean of these was taken and a
beta prior superimposed by equating moments:
qp ~ Beta(5.25, 6.17). The 12 month survival on
proton therapy was taken to have a beta prior
with a mean of 0.5 (specified by clinicians) and a
variance of 0.01: qn ~ Beta(12, 12) (suggested by
variability of previous studies).

Computations. Conjugate analysis for qp and qn,
and normal approximation for the posterior of the
log(odds ratio).

Reporting. Kaplan–Meier survival curves. Plots
are shown of the prior, likelihood (‘reference
prior’) and posterior. Medians, 95% credible
intervals and probabilities of the odds ratio being
less than 1, and less than the clinical demand
(0.63), are given.

BayesWatch

56



Sensitivity analysis. The analysis was repeated using
a reference prior.

Comments. Likelihood conflicts with the prior
distribution in the direction of effect. There is

deliberate use of an analytically tractable model for
tutorial purposes. This study is also considered by
Spiegelhalter et al.421 using a log(hazard ratio)
scale.
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This case study briefly describes the prospective
use of an informal Bayesian monitoring

procedure. The information has been kindly
provided by Dr Mahesh Parmar, MRC Clinical
Trials Unit (Cancer Division), Cambridge. Primary
references are Saunders et al.390 and Parmar et al.348

The technology. In 1986 a new radiotherapy tech-
nique called CHART was introduced. Its concept
was to give radiotherapy continuously (no weekend
breaks), in many small fractions (three a day) and
accelerated (the course completed in 12 days). It
should be clear that there are considerable logis-
tical problems in efficiently delivering CHART.
Promising non-randomised and pilot studies led
the UK Medical Research Council to instigate two
large randomised trials for head-and-neck and lung
cancer. Only the lung cancer trial390 is considered
here.

Objectives of study. To estimate the change in
survival in lung cancer patients when given CHART
compared with conventional radiotherapy, in
particular the probability that it provides a clini-
cally important difference in survival that
compensates for any additional toxicity and
problems of delivering the treatment.

Design of study. A 60:40 randomisation in favour
of CHART was selected, with 90% power (with a
two-sided 5% significance level) to detect a 10%
improvement in 2 year survival over the 15%
expected under conventional treatment. This
would require around 600 patients with 470
expected events, with accrual expected to last
4 years and a further 1 year of follow-up. The
alternative hypothesis of 10% is the mean of the
subjective prior distribution expressed by 11
clinicians (see below).

The trial began recruitment in January 1990, with
planned annual meetings of the Data Monitoring
Committee (DMC) to review efficacy and toxicity
data. No formal stopping procedure was specified
in the protocol.

Evidence from study. The data reported at each
meeting of the DMC is shown in Table 7.

Recruitment stopped in early 1995 after 563
patients had entered the trial. It is clear that the
extremely beneficial early results were not retained
as the data accumulated, although a clinically
important and statistically significant difference
was eventually found.

The statistical model. We assume a proportional
hazards model where the hazard ratio is defined as
the hazard under standard treatment to the hazard
under CHART, and hence hazard ratios greater
than 1 indicate the superiority of CHART. If
randomisation were balanced between the arms of
the trial, the likelihood for the log(hazard ratio) q
may be assumed to be normally distributed with
mean 4L/m and variance 4/m, where L is the log-
rank statistic (observed number of deaths in the
CHART group minus the expected number under
the null hypothesis) and m is the total number
of deaths.421 Since the randomisation ratio is
60:40 in favour of CHART, this variance must
be changed to 3.84/m. The log(hazard ratio)
q can be transformed, under the proportional
hazard assumption, to an improvement in
2 year survival rate d through the relationship
eq = log p0/log(d + p0), where p0 is the 2 year
survival rate under conventional treatment,
assumed to be 15%. This relationship allows us to
obtain estimates and intervals for d from normal
posterior distributions calculated on the q scale.

Health Technology Assessment 2000; Vol. 4: No. 38

59

Chapter 9

Case study 1: the CHART (lung cancer) trial

Date No. of patients No. of deaths Observed
hazard ratio

2 year % survival
improvement
(95% CI)

Two-sided
P value

1992 256 78 1.82 20 (5, 36) 0.007
1993 346 175 1.69 18 (7, 28) 0.0004
1994 460 275 1.43 12 (4, 20) 0.003
1995 563 379 1.33 9 (3, 16) 0.004
1996 563 444 1.32 9 (3, 15) 0.003

TABLE 7 Summary data reported at each meeting of the CHART lung cancer trial DMC



Prospective analysis? The priors were elicited
before the start of the trial, and the Bayesian
results presented to the DMC at each of their
meetings.

Loss function. No formal loss function was elicited,
but a pretrial survey of 11 clinicians participating in
the trial revealed that, on average, they would be
willing to use CHART routinely if it conferred a
13.5% improvement in 2 year survival (from a
baseline of 15%).348

Prior distribution. Although the participating clini-
cians were enthusiastic about CHART, there was
considerable scepticism expressed by oncologists
who declined to participate in the trial. Three
forms of prior distribution are considered:

1. A reference prior comprising a locally uniform
distribution on the log(hazard ratio) scale,

2. A clinical prior distribution was elicited from 11
clinicians before the trial started using the
methods of Spiegelhalter et al.421 (see page 17),
who report the parallel elicitation exercise for
the head-and-neck CHART trial. The prior

distribution, when averaged over the clinicians,
expressed a median anticipated 2 year survival
benefit of 10%, and a 10% chance that CHART
would offer no survival benefit at all. When
transformed to a log(hazard ratio) scale, this
subjective prior distribution had a mean of 0.314
(hazard ratio of 1.37) and a precision equivalent
to a trial with 60:40 allocation in which 73
deaths had occurred (50 under CHART, 23
under standard treatment).

3. A sceptical prior was derived using the ideas in
chapter 3: the prior mean is 0 and the precision
is such that the prior probability that the true
benefit exceeds the alternative hypothesis is low
(5% in this case). This gives a prior equivalent to
trial with 60:40 allocation with 112 events and an
observed log(hazard ratio) of 0.

Both the sceptical and clinical prior distributions
are displayed in Figure 7. The probabilities of no
improvement in 2 year survival, and of an improve-
ment greater than 7% (corresponding to a
log(hazard ratio) of 0.225) are shown. The value of
7% as a clinically important difference has been
subjectively chosen to be half the 13.5% originally

Case study 1
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FIGURE 7 The situation at the first interim analysis of the CHART lung cancer trial in 1992 (hazard ratio = 1.82 based on 78 events).
The sceptical (solid) and clinical (dashed) (a) prior and (b) posterior distributions are shown, with probabilities of lying below, within and
above the range of equivalence (corresponding to between a 0 and 7% improvement in the 5 year survival rate. (c) Likelihood (m = 78).
(d) Predictive distribution



demanded by the clinicians, in view of the unex-
pected lack of toxicity of the new treatment.

Computations. All analysis has been carried out
using S-plus BART functions previously used in
Spiegelhalter et al.421

Reporting. The DMC were presented with survival
curves, reference and sceptical posterior distribu-
tions and tail areas.

Sensitivity analysis. The three priors provided the
sensitivity analysis.

Figure 7 shows the sceptical and clinical prior distri-
butions, the likelihood for the results available in

1992 (equivalent to the reference posterior), the
corresponding sceptical and clinical posterior distri-
butions, and the predictive distributions for the
observed log(hazard ratios) under the two priors.

Figure 8 shows the results progressing over the
5 years of the study. Under the reference prior
there is substantial reduction in the estimated
effect as the extreme early results are attenuated.
The sceptical prior is remarkably stable, and its
initial estimate in 1992 is essentially unchanged as
the trial progresses.

The detailed results under the sceptical prior
are shown in Table 8, showing the stable results
over time.

Health Technology Assessment 2000; Vol. 4: No. 38

61

–10  –5   0   5  10  15  20  25  30  35

Improvement in 2 year survival rate (%)

Reference prior

Sceptical prior

Clinical prior

FIGURE 8 Estimates and 95% intervals for the improvement in 2 year survival rate attributable to CHART treatment, under the
reference, sceptical and clinical priors ( , 1992; , 1993; , 1994; , 1995; , 1996)
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Year No. of
deaths

Estimates under the sceptical prior

Hazard
ratio

2 year % survival
improvement
(95% CI)

P(improvement > 0%) P(improvement > 7%)

1992 78 1.27 7 (–1,17) 0.044 0.46
1993 175 1.37 10 (3,18) 0.003 0.21
1994 275 1.28 8 (2,15) 0.006 0.40
1995 379 1.25 7 (1,13) 0.006 0.52
1996 444 1.24 7 (2,12) 0.004 0.54

TABLE 8 Estimates presented to the CHART DMC in successive years, obtained under a sceptical prior distribution



The technology. This example has been consid-
ered at length in the medical and statistical

literature, as it features an apparent contradiction
between a meta-analysis and a ‘mega-trial’. An
abbreviated history follows. Epidemiology, animal
models and biochemical studies have suggested
intravenous magnesium sulphate may have a protec-
tive effect in patients with AMI, particularly through
preventing serious arrhythmias.443 A series of small
randomised trials culminated in a meta-analysis in
1991443 which showed a highly significant (P < 0.001)
55% reduction in odds of death. The authors
concluded that “further large scale trials to confirm
(or refute) these findings are desirable”, and in
1992 the Second Leicester Intravenous Magnesium
Intervention Trial (LIMIT-2)481 published results
showing a 24% reduction in mortality in over 2000
patients. An editorial in Circulation was entitled ‘An
effective, safe, simple and inexpensive treatment’,484

but recommended further trials to obtain “a more
precise estimate of the mortality benefit”. Early
results of the massive Fourth International Study of
Infarct Survival (ISIS-4) trial pointed, however, to a
lack of any benefit, and final publication of this trial
on 58,000 patients showed a non-significant adverse
mortality effect of magnesium. ISIS-4 found no
effect in any subgroups, and concluded that
“Overall, there does not now seem to be any good
clinical trial evidence for the routine use of
magnesium in suspected acute MI”.109

There have been many responses to this apparent
contradiction between meta-analysis and mega-
trial, which can be summarised under four broad
headings:

• Essential scepticism about large effects. In
response to the ISIS-4 results, Yusuf, the main
author of the optimistic Circulation editorial,
claimed “since most treatments produce either
no effect or at least moderate effects on major
outcomes such as mortality, investigators should
be sceptical if the results obtained deviate
substantially from this expectation (“too good to
be true”)”.483 This expression of prior scepticism
was echoed by Peto and colleagues,359 who
argued that the risk reduction of the initial
overview was “implausibly large”, and that even

when combined with the LIMIT-2 data “still
indicated an implausibly large reduction of one-
third in mortality”. However, Peto reports that
the ISIS-4 steering committee was convinced
there would be at least some benefit, right up
until they were shown the results.

• Criticism of the meta-analysis. Egger and
Davey-Smith157,158 claim that the meta-analysis
was flawed, as a funnel plot (of numbers of
participants against observed treatment effect)
suggested smaller negative studies might not
have been published, and sensitivity analysis
could have prevented the misleading conclu-
sions. Using a different argument, Pogue and
Yusuf367 claim that a frequentist stopping rule
applied to the meta-analysis, designed to have
high power to detect a moderate effect (15%
reduction in mortality), would also have led to
the meta-analysis not being significant at the 1%
level even taking into account the LIMIT-2 data.

• Criticism of the mega-trial. Woods480 has argued
that a mega-trial such as ISIS-4 will tend to bias
results towards the null due to protocol viola-
tions and inaccurate data. In addition, he claims
that the benefit of magnesium is to prevent
reperfusion injury, and yet the ISIS-4 protocol
expected all patients to be given thrombolytic
therapy (which tends to induce reperfusion)
before randomisation, and hence magnesium
would generally be given too late to provide
benefit. He claims the subgroup who did not
receive thrombolytic therapy did not provide
sufficient power to detect an important
difference.

• Treatment effect depending on baseline risk.
Antman14 and others have pointed out that in
ISIS-4:
– the control group mortality was 7.2% in

contrast to 11.0% observed in the data
available at the time of the 1993 Circulation
editorial

– patients were randomised at a median of 8
hours after onset

– 70% received thrombolytics and 94%
received antiplatelets.
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Antman concluded that “patients who are at low
risk of mortality, at least in part due to other
potent mortality-reducing therapies such as
thrombolytics and aspirin, show little benefit from
magnesium”. The methodology for examining
whether the benefit of treatment may depend on
underlying risk has been recently explored in a
series of papers,320,453 emphasising that simple
techniques can detect a spurious relationship due
to the natural correlation between baseline and
change.

Objectives of analysis. To investigate how a
Bayesian perspective might have influenced the
interpretation of the published evidence on
magnesium sulphate in AMI available in 1993. In
particular, what degree of ‘scepticism’ would have
been necessary in 1993 not to be convinced by the
meta-analysis reported by Yusuf and colleagues,484

and is there evidence that the treatment effect
depends on sample size or baseline risk?

Design of study. Meta-analysis of randomised
trials, allowing for sceptical prior distributions and
dependence of treatment effect on baseline risk.

Available evidence in study. We use the data shown
in Table 9 as quoted by Yusuf and colleagues,484

which comprise the data in the 1991 meta-
analysis443 and LIMIT-2.481

The log(odds ratio) for the first eight trials,
including LIMIT-2, using the standard Peto fixed
effect analysis, would be estimated as –0.43 with
standard error 0.12. The corresponding likelihood
is as if a single trial had been carried out with 261
deaths in total (compared with the actual 286
deaths) and an observed log(odds ratio) of –0.43.

Statistical models. The basic sampling model is
assumed to have the following form:

Different models (numbered 1 to 4 below) corre-
spond to different assumptions about the form of
the baseline risks mi and the treatment effects di:

1. Fixed effect (pooled estimate) model:

2. Random effects model:

3. Random effects model allowing effect to depend
on (logarithm of) sample size:

4. Random effects model allowing effect to depend
on baseline risk (this is a Bayesian analogue of
the bivariate meta-analysis model320,465):

Note that by assuming the mis come from a
normal distribution, we are in fact assuming a
bivariate normal distribution for the baseline
risk and treatment effect.

The value m0 is the baseline risk (on a logit
scale) at which the treatment has no effect.

Prior distribution. We consider that a reasonable
degree of scepticism is to think it unlikely (only
10% chance) that magnesium would change the
odds on mortality by more than 25%. This can be
translated into a normal prior distribution, centred
on 0 and with precision equivalent to a ‘trial’ with
65 deaths in each group:

(see chapter 3 for further discussion of such
sceptical priors). An alternative, very sceptical prior
was also examined, equivalent to having already
observed 450 deaths in each group.

All other parameters are given proper minimally
informative priors: Normal(0, 106) for location
parameters and Gamma(0.001, 0.001) for
precisions.

Loss function. No explicit loss function, but a 10%
reduction in odds of death has been selected as a
‘clinically important difference’.

Computations. Fixed effect analysis using the
BART S-plus functions (see appendix 2), random
effects analysis in BUGS).
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Results and sensitivity analysis.

Fixed effect analysis. Figure 9 shows the prior, likeli-
hood and posterior for two sceptical priors: a
‘reasonable’ one and one designed to produce a
posterior distribution with 5% chance that there is
no benefit from magnesium.

The prior necessary not to have found the meta-
analysis ‘significant’, even at a one-sided 5% proba-
bility, is clearly a very extreme form of scepticism.
Table 10 shows that a reasonably sceptical prior
even finds the meta-analysis quite convincing
concerning a clinically worthwhile improvement, in
that there is 97% chance that the treatment benefit
is at least 10%.

We therefore can reject Yusuf and Flather’s claim
that a sceptical approach applied to their analysis
would have led to caution.

Random effect analysis. The random effects analysis
leads to a different conclusion. Figure 10 shows the
95% posterior credible intervals for the mortality
odds ratio associated with magnesium, for both
fixed and random effect analysis, and a ‘flat’ refer-
ence prior and the reasonably sceptical prior. The
random effects analysis combined with a ‘flat’
reference prior, and the fixed effect analysis with a
flat or sceptical prior (as also shown in Figure 9), all
lead to highly ‘significant’ results. However the
random effects analysis with a sceptical prior leads
to a 95% interval that includes one, and hence the
cautious result sought by Yusuf. Inclusion of the
ISIS-4 results has a strong impact on the fixed
effect analysis, but little influence on the random
effect (see discussion below).

Figure 11 shows the consequences of a fully Bayesian
sceptical random effects analysis on the estimates
given to the individual trials. The LIMIT-2 results
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Magnesium superior
p(d < 0)

Magnesium clinically superior
p(d < –0.1)

Very sceptical (450 in each group) 0.95 0.48
Reasonably sceptical (65 in each group) 0.998 0.97

TABLE 10 Posterior probabilities of absolute and clinical superiority of magnesium, given two levels of sceptical prior

¨ Magnesium superior  * log(odds ratio)  * control superior Æ

–0.8 –0.4 0.0 0.2 0.4
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0
1
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5
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< equiv.:  0.067 
= equiv.:  0.433 
> equiv.:  0.500
< equiv.:  0.284 
= equiv.:  0.216 
> equiv.:  0.500

¨ Magnesium superior  * log(odds ratio)  * control superior Æ

–0.8 –0.4 0.0 0.2 0.4

< equiv.:  0.996 
= equiv.:  0.004 
> equiv.:  0.000

¨ Magnesium superior  * log(odds ratio)  * control superior Æ

–0.8 –0.4 0.0 0.2 0.4

< equiv.:  0.477 
= equiv.:  0.473 
> equiv.:  0.050
< equiv.:  0.968 
= equiv.:  0.030 
> equiv.:  0.002

Observed log(odds ratio)

–0.8 –0.4 0.0 0.2 0.4

< observ.: 0.001 
> observ.: 0.999

< observ.: 0.023 
> observ.: 0.977
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FIGURE 9 (a) Prior, (b) likelihood (m = 261, x = –0.43) and (c) posterior distributions for two sceptical prior distributions (450 and 65
deaths): the wider is a ‘reasonable’ expression of scepticism (equivalent to a ‘trial’ with 65 deaths in each group), while the narrower
prior is the scepticism necessary not to have found the meta-analysis ‘significant’ (equivalent to a ‘trial’ with 450 deaths in each group).



are hardly changed, whereas the smaller studies are
pulled towards a cautious conclusion.

Does effect depend on sample size? Egger and Davey-
Smith157,158 have claimed that one problem with the
initial meta-analysis443 is publication bias against
smaller negative trials. Using the data available to
Yusuf et al. in 1993, and a minimally informative
reference prior, we fit the following model to see
whether there is evidence that the treatment effect
does depend on sample size as suggested in their
funnel plot:

A positive b corresponds to smaller trials having
smaller expected odds ratios, corresponding to a
larger treatment effect of magnesium. Table 11
shows the estimated bs are positive but with very
wide intervals, so that there is therefore only weak
evidence that smaller studies had more extreme
results.

Relationship to underlying risk. Figure 12 shows the
apparent relationship between the observed
treatment effect and underlying risk. Fitting a
regression line through these points, using the
appropriate bivariate model described earlier,

provides the results shown in Table 12, with and
without the ISIS-4 data, where p0 is the risk in the
control group at which the treatment has no effect.

The relationship to underlying risk is suggested
before inclusion of ISIS-4, but with a very wide
interval. Nevertheless, the model would have
predicted that the treatment would not be effective
with an underlying risk below 9.1%. Inclusion of
the ISIS-4 results, whose underlying risk was 7.2%,
strongly confirmed this relationship.

Discussion. We conclude that one would need to
have been unreasonably extremely sceptical not to
have found the 1993 meta-analysis convincing, if
one had carried out a standard Peto fixed-effect
analysis. Reasonable scepticism and a random
effects meta-analysis would have led to appropriate
caution. There was limited evidence available in
1993 that treatment effect was related to sample
size or underlying risk, but both have been
confirmed by ISIS-4.

It is important to recognise the limitations of such
a statistical analysis. There is obvious heterogeneity
between the studies, and it is vital to investigate the
possible reasons for this using substantive knowl-
edge, through inclusion of covariates and so on.
Many sorts of sensitivity analysis are necessary (and
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FIGURE 10 Ninety-five per cent posterior credible intervals for the mortality odds ratio associated with magnesium, for both fixed and
random effect analysis, and a ‘flat’ reference prior and the reasonably sceptical prior (10% chance of at least a 25% change in mortality
odds) (solid line, Yusuf et al. (1993); broken line, Yusuf et al. plus ISIS-4)
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feasible). The random effects methodology can be
questioned when used on studies of very different
sizes, in that the very large studies may be unrea-
sonably downweighted. It suggests the question
‘What is a “study”?’. We could always break down
a large study into smaller ones to add weight: for
example ISIS-4 included 31 countries and 1086
hospitals, and it would be very interesting to inves-
tigate the heterogeneity between these centres in a
structured way.

The Bayesian analysis, while not necessarily
providing qualitatively different conclusions to
a traditional analysis, does allow subjective judge-
ments to be formally incorporated and the
sensitivity of the conclusions to those beliefs
explored within a coherent framework.
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FIGURE 11 Ninety-five per cent intervals for individual studies, from a random effects analysis with a reasonably sceptical prior (solid
line, fixed effects; broken line, random effects with sceptical prior)

Model b 95% interval

Fixed effect 0.50 (–1.45, 2.42)
Random effect 0.29 (–0.20, 0.68)

TABLE 11 Estimate and 95% interval for the influence of
increased sample size on the effect of magnesium treatment

Model for
baseline risks

b 95%
interval

p0 (%)

Without ISIS-4 –1.4 (–24, 14) 9.1 (0.5–54)
With ISIS-4 –1.2 (–2.2, –0.2) 7.2 (1.9–8.4)

TABLE 12 The estimated influence of underlying risk on
magnesium treatment effect: a negative b corresponds to the
treatment effect becoming smaller as the underlying risk declines,
with the treatment effect becoming zero when the underlying risk
is p0
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FIGURE 12 Plot of observed mortality odds ratio associated with magnesium, for seven trials contributing to the Teo et al. meta-
analysis, LIMIT-2 and ISIS-4. The size of each point is proportional to the precision of estimation, so that corresponding to ISIS-4 is very
large. A bivariate distribution of treatment effect and baseline risk has been fitted, and a predictive distribution around the regression
line plotted



Here we revisit four short examples provided by
Eddy et al. in their text on the confidence

profile method150 (see chapter 6 for a discussion of
their work and possible reasons for its lack of
impact).

The confidence profile method made extensive
use of graphical models for communication of
the essential features of a model, although their
software, FAST*PRO, was menu-driven. In contrast,
more recent developments in Bayesian graphical
modelling have led to software, for example
WinBUGS (see appendix 2), in which the graph
explicitly drives the analysis through generating
the code for performing the required simulations
(see chapter 2 for background on simulation-based
Bayesian analysis). The re-analysis of some of their
examples thus serves two purposes: to emphasise
the versatility and power of their approach, and to
show how current (freely available) software can
make its implementation reasonably
straightforward.

The four specific applications have been selected
to illustrate various facets of Bayesian graphical
modelling applied to evidence synthesis in health
technology assessment, and each example is
structured according to the BayesWatch criteria.
However, they are clearly rather dated and hence
should not be taken as having any substantive
value, and we have simply reproduced the
original description and have not attempted to
carry out a full analysis to appropriate quality
standards.

Analysis of surveillance of
colorectal cancer patients: a
modelling exercise based entirely
on judgements

Reference. This example forms chapter 29 of
Eddy et al.150

The technology. Surveillance of colorectal cancer
patients in order to reduce the risk of liver meta-
stases. No direct evidence for the effectiveness of
this intervention is available.

Objectives of analysis. To estimate the reduction in
mortality rate from liver metastasis due to introduc-
tion of surveillance, denoted dsurv.

Statistical model. We assume that a death is
prevented if:

1. a case has a solitary liver metastasis at the time of
examination (with probability pexist)

2. the metastasis is detected at examination (with
probability pdetect.if.exist)

3. the detected metastasis is treatable (with proba-
bility ptrt.if.detect)

4. the treatment leads to the patient surviving
5 years, who would not otherwise have survived
without surveillance (survival probability has
increased dsurv.if.trt)

The overall improvement in survival rate is given by
the logical product:

dsurv = dsurv.if.trt × ptrt.if.detect × pdetect.if.exist × pexist

The graph in Figure 13 shows this logical depend-
ence, using the DoodleBUGS graph drawing
facility in WinBUGS.

Prior distributions. The subjective prior distribu-
tions shown in Table 13 are those provided by Eddy
and colleagues.

Computations. Since no data are involved a
forwards Monte Carlo simulation can be carried
out without a burn-in stage and without concerns
with convergence. A total of 100,000 iterations
were carried out, taking 2 seconds on a 400 MHz
personal computer.

Results. Summary statistics for the simulated poste-
rior distributions are shown in Table 14.

The posterior distributions are the same as the
prior distributions (up to simulation error) since
no data have been observed. We estimate 0.022%
increase in survival (95% interval –0.010 to
0.092%), compared with Eddy and colleagues’
estimate of 0.025% (95% interval –0.031 to
0.075%). Their estimate is based on assuming a
normal posterior distribution for dsurv, and the
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skewness of the posterior distribution displayed in
Figure 14 clearly shows this is inappropriate.

Sensitivity analysis. The whole case study can be
thought of as a sensitivity analysis to the assump-
tion of known parameter values – if the best
guesses had been used the conclusion would have
been an increase in survival, with no allowance for
uncertainty.

Comments. This analysis illustrates the propagation
of uncertainty through a logical model, akin to
placing probability distributions on the inputs to
a spreadsheet. The resulting skewness shows the
dangers of making normal approximations to poste-
rior distributions of logically transformed quantities.

Analysis of HIP trial of breast
cancer screening: adjusting a trial’s
result for uncertain internal biases

Reference. This example forms chapter 19 of Eddy
et al.150

The technology. Breast cancer screening offered to
women aged under 50 years.

Objectives of analysis. To estimate the reduction in
mortality in breast cancer mortality associated with
accepting screening, denoted ed = qc – qt, where qc

is the true mortality rate in those not screened,
and qt is the rate in those actually screened. We
also require a 95% interval and the chance that the
reduction is greater than 2/1000.

Design of study. Randomised controlled trial.

Available evidence in study. The HIP published in
1988 the results shown in Table 15. Note that the
data reflect the mortality rate of those offered
screening, whereas we wish to make statements
about those actually taking up screening.

Statistical model. Let qoff and qc be the underlying
mortality rate of those offered and not offered
screening respectively, so that rt ~ Binomial(nt, qoff),
and rc ~ Binomial(nc, qc). Eddy and colleagues
consider four increasingly complex models:

1. ‘Intention to treat’: act as if those screened have
the same mortality rate as those offered, that is
qoff = qt.

2. Adjustment for dilution: assume the proportion
d who do not accept the screening has the same
mortality rate as those not offered screening,
that is qoff = (1 – d)qt + dqc. In this example d is
initially assumed to be 45%.

3. Adjustment for selection bias: suppose it were
hypothesised that those women who would
reject screening were at lower average risk than
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FIGURE 13 A ‘doodle’ from WinBUGS illustrating the structural dependencies of the model: this graphical representation directly
generates the code which carries out the simulations



those who would accept. Specifically, let pn and
pt be the relative risks associated with the charac-
teristics that would lead to screening being
rejected, in the groups not offered and offered
screening respectively. Then it can be shown
(Eddy and colleagues,150 Chapter 15) that

pn and pt are initially assumed to be 0.9.

4. Uncertainty on the biases: informative prior
distributions are now placed on the bias parame-
ters (see below) to represent the more realistic
assumption that the biases are only imprecisely
known.

Figure 15 shows the model for the first analysis.

Prior distribution. The prior distributions shown in
Table 16 and provided by Eddy and colleagues are
‘non-informative’ (Jeffreys priors) for the primary
parameters, and specify a standard deviation of 0.1
for the distributions of d, pn and pc. The distribu-
tions for pn and pc are log-normal, that is their
logarithms are assumed to have a normal distribu-
tion with the appropriate mean and standard
deviation.
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Parameter Posterior
mean (%)

95% credible
interval

pexist 1.0 (0.3, 2.0)
pdetect.if.exist 75.0 (41.0, 96.7)
ptrt.if.detect 30.0 (6.1, 62.6)
dsurv.if.trt 10.0 (– 4.9, 24.7)
dsurv 0.022 (–0.010, 0.092)

TABLE 14 Results for cancer surveillance example

delta.survive  sample: 50,000

–0.2 0.0 0.2

FIGURE 14 Posterior distribution of the change in survival
attributable to screening dsurv, showing strongly skewed distribution

Parameter Best guess (%) 95% confidence range (%) Distribution

pexist 1 0.3 to 2 Beta(4.83, 488)
pdetect.if.exist 75 40 to 95 Beta(5.5, 1.83)
ptrt.if.detect 30 5 to 65 Beta(2.5, 5.83)

dsurv.if.trt 10 –5 to 25 (2 × Beta(96.25, 78.75)*2) – 1

TABLE 13 Prior distributions provided by Eddy and colleagues for cancer surveillance example
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FIGURE 15 A ‘doodle’ illustrating the structural dependencies of the model; thick lines represent logical dependencies, and thin lines
represent stochastic dependencies

Not offered
screening

Offered
screening

Breast cancer deaths rc = 65 rt = 49
Total nc = 12,000 nt = 12,000

TABLE 15 Results of HIP screening trial published in 1988
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Computations. A total of 100,000 iterations were
carried out, taking 2 seconds on a 400 MHz
personal computer.

Results. The posterior distribution of ed had the
properties shown in Table 17.

These agree closely with the results of Eddy et al.
The crucial finding is that the results are very sensi-
tive to the introduction of an allowance for bias
(moving from model 1 to 2), but robust to specifi-
cation of its precise nature.

Comments. As Eddy et al. point out, many addi-
tional issues might be addressed in this framework,
including: varying degrees of dilution in which
different proportions of women receive different

numbers of examinations, the possibility of
contamination in the control group, loss to
follow-up, errors in measurement of outcome,
and the possibility that the technology might have
improved over time. It would be interesting to
contrast this analysis with recent investigations of
this still-controversial topic.

Analysis of screening for maple
syrup urine disease (MSUD):
modelling using evidence from
multiple studies

Reference. This example forms chapter 27 of
Eddy et al.150
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Parameter Mean Standard deviation Distribution

qt Beta(0.5, 0.5)
qc Beta(0.5, 0.5)
d 0.45 0.1 Beta(10.69, 13.06)
log pn –0.105 0.0953 N(–0.105, 1/111.1)
log pt –0.105 0.0953 N(–0.105, 1/111.1)

TABLE 16 Prior distributions provided by Eddy and colleagues for the cancer-screening example

Model Posterior mean 95% credible interval P(ed < –0.002)

1 –0.0013 (–0.0031, 0.0004) 0.23
2 –0.0027 (–0.0061, 0.0005) 0.66
3 –0.0025 (–0.0058, 0.0005) 0.63
4 –0.0028 (–0.0061, 0.0006) 0.66

TABLE 17 Results for the cancer-screening example

Factor Notation Outcomes Observations

Probability of MSUD r 7 724,262
Probability of early detection with screening fs 253 ,276
Probability of early detection without screening fn 8 ,18
Probability of retardation with early detection qem 2 ,10
Probability of retardation without early detection qlm 10 ,10

TABLE 18 Data used in the MSUD example

Factor Notation Derivation

Probability of retardation for a case of MSUD who is screened qsm fsqem + (1 –fs)qlm

Probability of retardation for a case of MSUD who is not screened qnm fnqem + (1 – fn)qlm

Expected retardations per 100,000 newborns who are screened 100,000qs 100,000qsmr
Expected retardations per 100,000 newborns who are not screened 100,000qn 100,000qnmr
Change in retardations due to screening 100,000 newborns ed qs – qn

TABLE 19 Model and notation for the MSUD example



The technology. Neonatal screening for MSUD, an
inborn error in amino acid metabolism, for which
early detection should lead to reduced rates of
retardation.

Objectives of analysis. To estimate the probability
of retardation without screening, and the change
in retardation rate associated with screening. The
latter is denoted ed = qs – qn, where qn is the retarda-
tion rate in those not screened, and qs is the rate in
those screened.

Design of study. Modelling exercise using results
from multiple epidemiological cohort studies.

Available evidence. There was no direct evidence
on the change in retardation rate in screened
and unscreened populations. The data shown in
Table 18 was used (references provided by Eddy
and colleagues).

Statistical model. The data described in Table 18
are all assumed to arise from binomial distributions
with the appropriate parameters. The functional
relationships shown in Table 19 then exist. The
graphical model is shown in Figure 16.

Prior distribution. The prior distributions for all
the binomial parameters provided by Eddy and
colleagues are ‘non-informative’ (Jeffreys priors –
Beta(0.5, 0.5)).

Computations. A total of 100,000 iterations were
carried out, taking 3 seconds on a 400 MHz
personal computer.

Results. The posterior distribution of ed had the
properties shown in Table 20.

Eddy and colleagues display a normal approxima-
tion to the posterior distribution for ed, with an
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FIGURE 16 Doodle for the MSUD example

Parameter Notation Posterior
mean

95% credible
interval

Expected retardations per 100,000 newborns who are not screened qn 0.65 (0.25, 1.27)
Change in expected retardations due to screening 100,000 newborns ed –0.35 (–0.77, –0.11)

TABLE 20 Results for the MSUD example



estimate of –0.35 (95% interval –0.69 to –0.19).
Our wider interval accurately reflects the skewed
posterior distribution.

Comments. This example illustrates the synthesis
of evidence from multiple studies, with appropriate
allowance for the uncertainty of the parameter esti-
mates. Further extensions could include allowance

for various biases and uncertainty on the inputs to
the model.

Analysis of colon cancer screening
trial: power calculations allowing
for cross-over between treatment
arms

Reference. This example forms chapter 30 of Eddy
et al.150

The technology. Screening for colon cancer.

Objectives of analysis. To estimate the probability
of a statistically significant result in a future trial
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Treatment Offered
screening

Not offered
screening

Colon cancer deaths rt rc

Number of cases nt nc

TABLE 21 Data to be observed in the colon cancer screening
example

Factor Notation Derivation

Proportion of those offered screening who cross-over dt

Proportion of those not offered screening who cross-over dc

Mortality rate in group offered screening pt (1 – dt)qt + dtqc

Mortality rate in group not offered screening pc (1 – dc)qc + dcqt

Chi-squared statistic chisquare [ ( ) ( )] ( )
( )(

r n r r n r n n
n n r r n n r r
t c c t c t c

t c t c t c t

− − − +
+ + − −

2

c )

Significant result? Significant? chisquare > 3.84

TABLE 22 Model and notation for colon cancer screening example
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FIGURE 17 Doodle of the model for predicting the power of the colon cancer screening trial



(the power), assuming a two-sided type I error (a)
of 0.05. This will be calculated assuming 50,000
individuals per group as an example. The analysis
will be by intention-to-treat, but we want to
adjust for the possibility of some of those offered
screening ‘crossing over’ to the unscreened group,
and some of those not offered screening crossing
over to the screened group. Eddy terms this
‘dilution’.

Design of study. Proposed randomised controlled
trial.

Available evidence in study. None yet, but the final
evidence will have the form shown in Table 21.

Statistical model. Let pt and pc be the underlying
mortality rate of those offered and not offered
screening, respectively, so that rc ~ Binomial(nc, pc),
rt ~ Binomial(nt, pt). Let qt and qc be the assumed
mortality rates in those actually obtaining and not
obtaining screening, respectively. Under the cross-
over assumption, we have the relationships shown
in Table 22. The graph of the model is shown in
Figure 17, from which the WinBUGS analysis is
driven.

Prior distribution. Eddy and colleagues assume
the following point estimates for the parameters:
qc = 0.005, qt = 0.004, dt = 0.3, dc = 0.2. Thus they
are attempting to detect a 20% mortality reduction,
assuming 30% of those offered screening refuse,

and 20% of those not offered screening are
screened outside the trial.

Computations. Sampling from the binomial
distribution with a large denominator is slow, and
so 5000 iterations took nearly 3 minutes on a
400 MHz personal computer.

Results. These are shown in Table 23, with the results
of Eddy et al. in bold; ‘dilution’ refers to the allow-
ance for cross-over between intervention groups.

Comments. The results of Eddy et al. appear to be
incorrect for the trial with dilution. It is clear that
if a moderate amount of cross-over is plausible,
then a clinical trial needs to be very large in order
to have a reasonable chance of correctly obtaining
a significant conclusion.

Commentary

The confidence profile technique can easily be
transformed into the form of Bayesian graphical
modelling used by the WinBUGS software. It is a
very powerful method, but has perhaps been
limited by its implementation, and WinBUGS
appears to allow straightforward application.
However, there are inevitably dangers with such a
modelling exercise, which can only be as good as
its structural assumptions and the quality of the
data going into it.
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Sample size per group With dilution Without dilution

WinBUGS Eddy WinBUGS Eddy

50,000 0.21 0.48 0.66 0.66
150,000 0.53 0.91 0.98 0.98

TABLE 23 Power of the proposed colon cancer screening trial





The UK Human Fertilisation and Embryology
Authority (HFEA) has a responsibility to

monitor clinics in the UK licensed to carry out
donor insemination (DI) and in vitro fertilisation
(IVF). Their annual publication – The Patients
Guide to DI and IVF Clinics – is designed to help
people who are considering fertility treatment to
understand the services offered by licensed clinics
and to decide which clinic is best for them.245

One of the statistics provided regarding IVF treat-
ment at each clinic is an adjusted live-birth rate per
treatment cycle started. A live birth is defined as any
birth event in which at least one baby is born and
survives for more than 1 month, and a treatment
cycle begins with the administration of drugs to
induce superovulation. The adjustment, which is
intended to take account of the mix of patients
treated by the clinic by using factors such as age,
duration of infertility, number of previous treat-
ment cycles and so on,441 varies from year to year
and is based on a pooled logistic regression of all
IVF treatments carried out in the UK in the relevant
year. Also provided are associated 95% confidence
intervals for each adjusted live-birth rate.

Marshall and Spiegelhalter312 analyse the data
published in 1996, using Figure 18 to show the
substantial range of success rates displayed by the
clinics.

They then use MCMC techniques to derive poste-
rior distributions for the ranks of the institutions:

this is easily done by calculating the current rank of
each institution at each iteration of the simulation,
and then summarising the distribution of these
calculated ranks after many thousands of iterations.
Figure 19 shows that there is considerable uncer-
tainty in the true rank of an institution, even when
they show substantial differences in performance.

We now assume the clinics are fully exchangeable
(see page 21) with the true rates (on a logit scale)
being drawn from a common normal distribution:
if, after adjusting for case mix, we can find no
other contextually meaningful way to differentiate
between the institutions a priori, then the assump-
tion of their exchangeability seems justified. It
is clear from Figure 20 that there is substantial
‘shrinkage’ towards the overall mean performance,
although there are still a number of clinics that
would be considered ‘significantly’ above or below
average. It can be argued that this adjustment is an
appropriate means of dealing with the problem of
multiple comparisons. In addition, this shrinkage
should deal with ‘regression-to-the-mean’, in which
extreme institutions will tend back towards the
overall average when they recover from their
temporary run of good or bad luck.

The consequence of assuming exchangeability is to
reduce the differences between clinics and hence
to make their ranks even more uncertain. Figure 21
shows this is the case to a limited extent, although
since many of the extreme clinics are also fairly
large, their rank is not unduly affected.
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FIGURE 18 Estimates and 95% intervals for the adjusted live-birth rate in each clinic. The vertical line represents the national average
of 14%. The estimated adjusted live-birth rate for each clinic is given in parentheses, together with the number of treatment cycles
started
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FIGURE 19 Median and 95% intervals for the rank of each clinic. The estimated adjusted live-birth rate for each clinic is given in
parentheses, together with the number of treatment cycles started. The dashed vertical lines divide the clinics into quarters according to
their rank
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FIGURE 20 Estimates and 95% intervals for the adjusted live-birth rate in each clinic, assuming exchangeability between clinics. The
dashed vertical line represents the national average of 14%
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FIGURE 21 Estimated true ranks and 95% intervals for each clinic, assuming exchangeability





Introduction

This review has described the general use of
Bayesian methods in health technology assessment,
and has considered a number of specific areas of
application, for example, randomised controlled
trials. While in many of these areas the advantages
of adopting a Bayesian approach have been clearly
demonstrated, a number of problems have also
been identified. This chapter summarises many of
these advantages and disadvantages, and makes a
series of recommendations for the main partici-
pant groups in health technology assessment. The
next section summarises the specific conclusions
that have been drawn in the preceding chapters,
after which the general advantages and problems
associated with adopting a Bayesian approach are
considered. The chapter concludes by summarising
the areas requiring further research.

Specific conclusions

Introduction
1. Bayesian methods are defined as the explicit

quantitative use of external evidence in the
design, monitoring, analysis, interpretation and
reporting of a health technology assessment.

2. Bayesian methods are a controversial topic in
that they may involve the explicit use of subject-
ive judgements in what is conventionally
supposed to be a rigorous scientific exercise
in health technology assessment.

3. There has been very limited use of proper
Bayesian methods in practice, and relevant
studies appear to be relatively easily identified.

4. The potential importance of Bayesian methods
to a topic is not necessarily reflected in the
volume of published literature: in particular,
publications on the design and analysis of single
clinical trials dominate those on the synthesis of
evidence from studies of multiple designs.

Bayesian methods in the health
technology assessment context
1. Claims of advantages and disadvantages of

Bayesian methods are now largely based on
pragmatic reasons rather than blanket ideolog-
ical positions.

2. A Bayesian approach can lead to flexible
modelling of evidence from diverse sources.

3. Bayesian methods are best seen as a transforma-
tion from an initial to a final opinion, rather
than providing a single ‘correct’ inference.

4. Different contexts may demand different statis-
tical approaches, both regarding the role of
prior opinion and the role of an explicit loss
function. It is vital to establish contexts in which
Bayesian approaches are appropriate.

5. A decision-theoretic approach may be appro-
priate where the consequences of a study are
predictable, such as when dealing with rare
diseases treated according to a protocol, within
a pharmaceutical company, or in public health
policy.

The prior distribution
1. The use of a prior is based on judgement, and

hence a degree of subjectivity cannot be avoided.
2. The prior is important and not unique, and so a

range of options should be examined in a sensi-
tivity analysis.

3. The intended audience for the analysis needs to
be explicitly specified.

4. The quality of subjective priors (as assessed by
predictions) show predictable biases in terms of
enthusiasm.

5. For a prior to be taken seriously, its evidential
basis must be explicitly given, as well as any
assumptions made (e.g. downweighting of past
data). Care must, however, be taken of bias in
published results.

6. Archetypal priors may be useful for identifying a
reasonable range of prior opinion.

7. Great care is required in using default priors
intended to be minimally informative.

8. Exchangeability assumption should not be made
lightly.

Randomised trials
1. The Bayesian approach provides a framework

for considering the ethics of randomisation.
2. Monitoring trials with sceptical and other priors

may provide a unified approach to assessing
whether a trial’s results should be convincing to
wide range of reasonable opinion, and could
provide a formal tool for Data Monitoring
Committees.
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3. Various sources of multiplicity can be dealt with
in a unified and coherent way.

4. In contrast to earlier phases of development, it
is generally unrealistic to formulate a Phase III
trial as a decision problem, except in circum-
stances where future treatments can be accu-
rately predicted.

5. An empirical basis for prior opinions in clinical
trials should be investigated, but archetypal
prior opinions play a useful role.

6. The structure in which trials are conducted must
be recognised, but can be taken into account by
specifying a range of prior opinions.

Observational studies
1. Epidemiological studies tend to demand a more

complex analysis than randomised trials.
2. Computer-intensive Bayesian methods in epi-

demiology are becoming more common.
3. There are likely to be increased demands, partic-

ularly in areas such as institutional comparisons
and gene–environment interactions.

4. The explicit modelling of potential biases in
observational data may be widely applicable
but needs some evidence base in order to be
convincing.

Evidence synthesis
1. A unified Bayesian approach appears to be

applicable to a wide range of problems
concerned with evidence synthesis.

2. In the past, prospective evaluation of clinical
interventions concentrated on randomised
controlled trials, but more recent interest
has focused on more diffuse areas, such as
healthcare delivery or broad public health
measures. This means methods that can synthe-
sise totality of evidence are required, for
example in assessing medical devices.

3. Evaluations of current technologies may often
be seen as unethical subjects for randomised
controlled trials, and hence modelling of
available evidence is likely to be necessary.

4. Perhaps one reason for lack of uptake is that
syntheses are not seen as ‘clean’ methods, with
each analysis being context-specific, less easy
to set quality markers for, easier to criticise as
subjective and so on.

5. Priors for the degree of ‘similarity’ between
alternative designs can be empirically informed
by studies comparing the results of randomised
controlled trials and observational data.

Strategy, decisions and policy making
1. A Bayesian approach allows explicit recognition

of multiple perspectives.

2. Increased attention to pharmaco-economics
may lead decision-theoretic models for research
planning to be explored, although this will not
be straightforward.

3. There appears to be great potential for formal
methods for planning in the pharmaceutical
industry.

4. The regulation of devices is leading the way in
establishing the role of evidence synthesis.

5. ‘Comprehensive decision modelling’ is likely to
become increasingly important in policy making.

Practical examples and case studies
1. The BayesWatch criteria may provide a basis for

structured reporting of Bayesian analysis.
2. Summaries of fully fledged (‘three-star’) applica-

tions of Bayesian methods in health technology
assessment contain few prospective analyses but
provide useful guidance.

3. Four case studies show:
a. Bayesian analyses using a sceptical prior can

be useful to the data monitoring committee
of a cancer clinical trial (case study 1 (chapter
9): the CHART trial).

b. Bayesian methods can be used to temper over
optimistic conclusions based on meta-analysis
of small trials (case study 2 (chapter 10):
magnesium sulphate after AMI).

c. Modern graphical software can easily handle
complex assessments previously analysed
using the ‘confidence profile’ method (case
study 3 (chapter 11)).

d. Bayesian methods provide a flexible tool for
performance estimation and ranking of institu-
tions (case study 4 (chapter 12): IVF clinics).

General advantages and problems

Potential advantages of Bayesian
approaches in health technology
assessment
1. All evidence regarding a specific problem can be

taken into account.
2. Specification of a prior distribution requires

sponsors, investigators and policy makers to
think carefully and be explicit about what
external evidence and judgement they should
include.

3. Hierarchical models, which also can be handled
within a non-Bayesian framework, allow pooling
of evidence and ‘borrowing of strength’ between
multiple substudies.

4. Potential biases can be explicitly modelled,
allowing the synthesis of studies of varying
designs.
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5. The Bayesian approach focuses on the vital
question ‘How should this piece of evidence
change what we currently believe?’.

6. Probability statements can be made directly
regarding quantities of interest, and predictive
statements are easily derived.

7. Juxtaposition of current belief with clinical
demands provides an intuitive and flexible
mechanism for monitoring and reporting studies.

8. The inferential outputs from a Bayesian analysis
feed naturally into a decision-theoretic and
policy-making context.

9. Explicit recognition of the importance of
context makes Bayesian methods particularly
suitable for health technology assessment, in
which multiple parties may well interpret the
same evidence in different ways.

Generic problems
1. Unfamiliarity with Bayesian techniques, perhaps

along with their perceived mathematical
complexity, and some conservatism on the part
of potential users, has resulted in limited use of
proper Bayesian methods in health technology
assessment practice to date.

2. The use of prior opinions acknowledges a
subjective input into analyses, which may appear
to contravene the scientific aim of objectivity.

3. Specification of priors, whether by elicitation or
choice of defaults, is a contentious and difficult
issue.

4. There are no established standards for the
design, analysis and reporting of Bayesian studies.

5. A full decision-theoretic framework can lead to
innovative but non-standard trial designs very
different from those currently in
use.

6. Specification of expected utilities is difficult and
may require extensive assumptions about future
use of technology.

7. There is no automatic measure of statistical
significance and lack of model fit, such as a
deviance measure and a P value.

8. The computational complexity of the methods
has been a major issue until recently.

9. Software for implementation of the methods is
still limited in availability and user-friendliness.

Many of the issues raised above have been
mentioned in more specific contexts by others, for
example Sutton et al.434

Future research and development

Bayesian methods could be of great value within
health technology assessment. For a realistic

appraisal of the methodology, it is necessary to
distinguish the roles and requirements for five
main participant groups in health technology
assessment: methodological researchers, sponsors,
investigators, reviewers and consumers. However,
two common themes for all participants can
immediately be identified. First, the need for an
extended set of case studies showing practical
aspects of the Bayesian approach, in particular for
prediction and handling multiple substudies, in
which mathematical details are minimised but
details of implementation are provided. Second,
the development of standards for the performance
and reporting of Bayesian analyses, possibly
derived from the BayesWatch checklist described in
this report.

The potential roles for each of the participant
groups are summarised below under each aspect of
a Bayesian assessment: design, priors, modelling,
reporting and decision-making.

1. Methodological researchers:
a. Design. There is a need for transferable

methods for sample size calculation that are
not based on type I and type II error, such as
targeting precision, and realistic development
of payback models, with modelling of
dissemination.

b. Priors. Simple and reliable elicitation
methods for ‘non-enthusiasts’ require
testing, as well as demonstrations of the
use of empirical data as a basis for prior
distributions. Reasonable default priors in
non-standard situations need to be available.

c. Modelling. Methods for flexible model
selection and robust MCMC analysis require
development and dissemination. With regard
to implementation, there is a need for user-
friendly software for clinical trials and
evidence synthesis.

d. Reporting. It is essential to have appraisal
criteria along the lines of the BayesWatch
checklist, with possible reformulation as
guidelines along the lines of ‘How to read a
Bayesian study’. It would be useful to have the
term ‘Bayesian’ in all relevant papers in order
to aid literature searches.

e. Decision-making. Increased integration with
a health economic and policy perspective is
highly desirable, together with flexible tools
for implementation.

2. Sponsors:
a. Design. Both public sector and industry could

extend their perspective beyond the classical
Neyman–Pearson criteria, and in particular
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investigate quantitative payback models. The
pharmaceutical industry might also investi-
gate formal project prioritisation schemes.

b. Priors. All sponsors could focus on the eviden-
tial basis for assumptions made concerning
alternative hypotheses and the potential gains
from technology, and use empirical reviews to
establish reasonable prior opinions.

3. Investigators:
a. Design. Apart from the considerations given

above under ‘sponsors’, there is also potential
for ‘open’ studies in which interim results are
reported to investigators.

b. Priors. It would be valuable to gain experi-
ence in eliciting prior opinions from both
enthusiasts and a general cross-section of the
target community.

c. Modelling. There is great scope, when
analysing data, to go beyond the usual limited
list of models and consider a range of priors
and structural assumptions.

d. Reporting. It is vital that any Bayesian
reporting allows future users to include the
evidence in their synthesis or decision. The
use of BayesWatch or a similar scheme for
reporting should help in this.

4. Reviewers/regulatory bodies:
a. Priors. Regulatory bodies could establish

reasonable prior opinions based on past
experience in order to provide default
priors.

b. Modelling. Regulatory bodies could take a
more flexible approach to the use of data,
particularly in areas such as medical devices,
and encourage efficient use of data by appro-
priate use of historical controls, evidence
synthesis and so on.

c. Decision-making. More experimental would
be the explicit modelling of the conse-
quences of decisions in order to decide
evidential criteria.

5. Consumers/policy makers. There is a need for
careful case studies in which policy makers
explicitly go through the following stages in
reaching a conclusion based on a full Bayesian
analysis:
a. Priors: specify prior opinions relevant at the

time of decision-making
b. Modelling: pool all available evidence into a

coherent model
c. Reporting: make predictive probability state-

ments about the consequences of different
policies

d. Decision-making: assign costs to potential
consequences and so assess (with sensitivity
analysis) the expected value of different
actions.
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Appendix 1

Three-star applications

Author(s) Year Design Model Prospective
study

Elicited
prior
from
experts

Loss
function
used

Computations Sensitivity

Abrams et al.1 * 1994 RCT B 7 3 3 C 3

Abrams et al.2 1996 RCT S 7 7 7 L 3

Berry51 1989 RCT B 7 7 7 NI 7

Berry et al.64 1994 RCT P 7 7 33 D 33

Brophy and Joseph76 1995 RCT NA 7 7 7 C 33

Brophy and Joseph77 1997 RCT NA 7 7 7 C 7

Carlin et al90 1993 RCT S 7 3 3 NA/NI 33

DerSimonian129 1996 RCT NA 3 7 7 C 33

Digman et al.133 1998 RCT NA 3 7 7 C 33

Fayers et al.166 1997 RCT NA 3 7 3 C 33

Fletcher et al.173 1993 RCT NA 7 7 3 CNR NR
Freedman and
Spiegelhalter182

1992 RCT NA 7 7 3 C 33

Freedman et al.183 1994 RCT NA 7 7 3 C 33

George et al.191 1994 RCT S 7 7 7 MCMC 33

Greenhouse and
Wasserman206

1995 RCT B 7 7 7 NI 33

Gustafson219 1996 RCT B 7 7 7 NES 33

Hughes242 1991 RCT NA 3 3 7 C 33

Kadane258 1996 ETH N 3 3 7 C 33

Kass and
Greenhouse267

1989 RCT B 7 7 7 NES 33

Lewis293 1996 RCT B 3 7 33 C 33

Lilford and
Braunholtz299

1996 M-A NA 7 3 7 C 33

Parmar et al.348 1994 RCT NA 3 3 3 C 33

Parmar et al.349 1996 RCT NA 7 7 7 C 33

Pocock and
Hughes364

1989 RCT NA 7 7 7 C 33

Pocock and
Spiegelhalter363

1992 RCT NA 7 3 7 C 7

Sasahara et al.389 1973 RCT NA 3 7 7 C 7

Spiegelhalter et al.420 1993 RCT NA 3 3 3 C 33

Spiegelhalter et al.421 1994 RCT NA 7 7 3 C 33

Stangl427 1995 RCT S 7 7 7 MCMC 7

Ware469 1989 RCT B 7 7 7 A 7

Key: design (RCT, randomised controlled trial; ETH, ‘ethical’ study; M-A, meta-analysis); model (B, binomial; NA, normal
approximation; N, normal; P, Poisson; S, Survival); prospective analysis (3, yes; 7, no); elicited prior from experts (3, yes; 7, no); loss
function used (33, yes; 3, just demands; 7, no); computations (A, analytical/closed-form; C, conjugate; D, dynamic programming; L,
Laplace; NA, normal approximations; NI, numerical integration; NES, not explicitly stated); sensitivity analysis (33, full; 3, reference
only; 7, no; NR, none reported)
* This three-star application is provided earlier in this report in chapter 8 (see page 56)

TABLE 24 Summary of three-star applications with respect to BayesWatch criteria



What is a three-star application

In chapter 1 we defined ‘three-star’ Bayesian health
technology assessment studies as those

1. intending to confirm the value of a technology
2. using an informative, carefully considered prior

distribution for the primary quantity of interest
and

3. updating, or planning to update, this prior
distribution by Bayes’s theorem.

Table 24 summarises the three-star applications
identified by the review with respect to the
BayesWatch criteria outlined in chapter 8,
although we have placed ‘evidence from study’
earlier in the list. Out of the 30 studies identified,
all but two considered the application of Bayesian
methods in a randomised controlled trial setting,
with 17 studies adopting a normal approximation
to the appropriate likelihood and a corresponding
conjugate analysis. This is particularly interesting
since the majority of papers appeared after 1993
yet only two used a MCMC technique, and high-
lights the wide applicability of a normal–normal
conjugate model. Perhaps more disappointingly
only nine studies conducted the analysis prospec-
tively, of which four also undertook elicitation of
subjective prior beliefs from experts, though an
additional four studies undertook some form of
elicitation exercise before conducting a retrospec-
tive analysis. Although 11 of the 30 studies
considered some form of clinical/policy demand,
only two of these did so using a formal loss
function. Particularly encouraging was the fact
that all but five of the studies undertook some
form of sensitivity analysis.

Three-star applications

Author. Abrams K, Ashby D, Houghton J and
Riley D.2

Title. Assessing drug interactions: tamoxifen and
cyclophosphamide.

Year. 1996.

The technology. Tamoxifen and cyclophosphamide
as treatments in early breast cancer.

Objectives of study. To compare overall and
disease-free survival with each drug separately and
in combination.

Design of study. Randomised controlled trial: 2 × 2
factorial study with 2230 women randomised.

Evidence from study. Survival curves and estimated
hazard ratios.

Statistical model. Proportional hazards with a fully
parametric exponential model.

Prospective analysis? No.

Loss function. No.

Prior distribution. Priors for main effects obtained
from trial evidence available at the start of the trial
(1980) – uniform reference prior on interaction.

Computations. Laplace approximation.

Reporting. Posterior distributions and probability
that effects are less than 0, for survival and disease-
free survival.

Sensitivity analysis. Reference and data-based
prior.

Comments. Model checking of proportional
hazards assumption is carried out. Problem of using
a clinical prior for the interaction is discussed. This
is an example of the direct use of a previous trial’s
results to provide a prior, although strictly speaking
the parameter addressed is not the same in the two
studies – the current model includes another main
effect and an interaction term.

Author. Berry DA.51

Title. Monitoring accumulating data in a clinical
trial.

Year. 1989.

The technology. ECMO.

Objectives of study. To determine the probability
of superiority and the difference in expected
mortality between the ECMO and CMT treatment
groups.

Design of study. Adaptive randomised controlled
trial.

Evidence from study. Four deaths out of 10
controls, and zero deaths out of nine ECMO
patients.
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Statistical model. Models probability of death in
each group via a logistic function.

Prospective analysis? No.

Loss function. No.

Prior distribution. Arbitrary prior assumed.

Computations. Numerical integration.

Reporting. Reports as the posterior probability of
patient receiving superior, in terms of mortality
and probability of death related to initial prog-
nostic score.

Sensitivity analysis. Not explicitly reported.

Comments. See also Berry and Stangl,45 Green-
house and Wasserman206 and Kass and
Greenhouse.267

Author. Berry DA, Wolff MC and Sack D.64

Title. Decision making during a Phase III random-
ised controlled trial.

Year. 1994.

The technology. The paper describes a trial of
the effectiveness of a vaccine, that links the HIB
capsular polysaccharide to the outer-membrane
protein complex (OMPC) of Neisseria meningitidis
serogroup B, in preventing HIB infection.

Objectives of study. To minimise the expected
number of cases of HIB amongst Navajo children
in the next 20 years.

Design of study. Randomised controlled trial.

Evidence from study. A total of 5190 children in
Navajo were vaccinated at 2 and 4 months, with
either the vaccine being tested or a placebo.
Evidence is the number of children who contract
HIB in the vaccinated and unvaccinated group
each month’, where a ‘month’ is the length of time
taken to enrol 105 children in each group.

Statistical model. Poisson event model.

Prospective analysis? No, retrospective analysis,
with prior assessed after trial had taken place.

Loss function. Assumed to be linear in the number
of HIB cases.

Prior distribution. lv, the rate of vaccinated
children affected by HIB per child month was
given a gamma prior with parameters (1, 3200)
and lp, the rate for placebo children, was given
a gamma prior with parameters (5, 10,700).
This was based on the judgement of one of the
authors, derived from published background
information.

Computations. Dynamic programming.

Reporting. After each month, the authors calcu-
lated the expected number of cases of HIB under
the following assumptions:

1. The probability of the vaccine being accepted
by the regulatory authorities, following a subjec-
tively assessed model by one of the authors.

2. The time taken for the vaccine to become
available once the vaccine is approved (if it is) is
given by the smaller of 1 year and (2 × g) years,
where g is the probability of accepting the
vaccine as given above.

3. If the vaccine is rejected, it is assumed that
one of 50% efficiency will be developed
in 10 years. (Efficiency is defined as
1 – [(incidence among vaccinated)/
(incidence among non-vaccinated)].)

Sensitivity analysis. The excess number of HIB
cases in the case of stopping as opposed to not
stopping is plotted against month for:

1. different horizons, that is, different lengths of
time over which the expected number of HIB
cases is to be minimised (5, 10, 40 and 80 years)

2. different priors for lv and lp

3. different values for the parameter s.

Comments. A rare example of a full decision-
theoretic analysis, but a retrospective study. Mathe-
matical details are described by Berry et al.63

Author. Brophy JM and Joseph L.76

Title. Placing trials in context using Bayesian
analysis – GUSTO revisited by Reverend Bayes.

Year. 1995.

The technology. Thrombolytic therapy following
myocardial infarction.

Objectives of study. To estimate the mortality
and stroke rate difference between tissue
plasminogen activator (t-PA) and streptokinase.
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Design of study. Randomised controlled trial
(GUSTO).

Evidence from study. Event rate data from
GUSTO.

Statistical model. Binomial.

Prospective analysis? No, carried out after publica-
tion of GUSTO results.

Loss function. No explicit loss.

Prior distribution. Based on pooled data from two
previous trials (Gruppo Italiano per lo Studio della
Sopravvivenza dell'Infarto Miocardico 2 (GISSI-2)
and Third International Study of Infarct Survival
(ISIS-3)), downweighted to 50 and 10%,
respectively.

Computations. Conjugate normal approximations.

Reporting. Posterior plots and probabilities of net
benefit.

Sensitivity analysis. Reference, full prior and
discounted prior.

Comments. Letters: Avins26 says null hypothesis
should be shifted to a 1% difference, Browne79 says
Bayesian methods are not appropriate, and
Goodman and Langer196 warn about assuming
exchangeability.

Author. Brophy JM, Joseph L.77

Title. Bayesian interim statistical analysis of
randomised trials.

Year. 1997.

The technology. Angiotensin-converting enzyme
(ACE) inhibitors for congestive heart failure.

Objectives of study. To estimate mortality benefit
over placebo.

Design of study. Randomised controlled trial
(Trandolapril Cardiac Evaluation, TRACE).

Evidence from study. Event rate data from TRACE.

Statistical model. Binomial.

Prospective analysis? No, carried out after publica-
tion of TRACE results.

Loss function. No explicit loss.

Prior distribution. Based on pooled data from two
previous trials (Survival And Ventricular Enlarge-
ment (SAVE) and Acute Infarction Ramipril
Efficacy (AIRE) studies).

Computations. Conjugate normal approximations.

Reporting. Posterior plots and probabilities of net
benefit.

Sensitivity analysis. None.

Comments. The authors suggest that TRACE could
have ended earlier owing to consistency with
previous findings. In a reply, Kober et al.271 say
previous trials were not sufficiently relevant.
Letters: Hall220 points out a simple normal approxi-
mation, Fayers165 suggests monitoring using a
sceptical prior, and Abrams and Jones6 point out
that DMC can also make predictions.

Author. Carlin BP, Chaloner K, Church T, Louis
TA and Matts JP.90

Title. Bayesian approaches for monitoring clinical
trials with an application to toxoplasmic encepha-
litis prophylaxis.

Year. 1993.

The technology. The use of the drug pyrimeth-
amine in preventing toxoplasmic encephalitis
among HIV-positive patients.

Objectives of study. To estimate log(hazard ratio)
associated with the treatment for time until devel-
opment of toxoplasmic encephalitis.

Design of study. Randomised controlled trial.

Evidence from study. Survival data available at
three interim analyses, with 12 events at the final
analysis, when the trial was stopped early on an
informal stopping rule.

Statistical model. Cox regression with two
covariates: treatment and baseline CD4 counts.

Prospective analysis? Priors elicited prospectively,
and analyses carried out retrospectively and not
used in monitoring study.
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Loss function. No explicit loss function, but 25%
reduction in hazard used as the lower bound of
range of equivalence.

Prior distribution. Priors elicited from five AIDS
experts (three are clinicians) using techniques
described in Chaloner et al.98 Beliefs about 2 year
survival were transformed into a 31-point histo-
gram on treatment coefficient. Priors were not
given, but the prior of one of the experts was
plotted.

Computations. Normal likelihood, exact posterior
by discretisation, and normal approximation to
posterior.

Reporting. Number of events at each reporting
date; plots of likelihood, prior, posterior and
normal approximation to posterior for the first two
experts; and plots of probability of 25 and 50%
reductions in hazard rates at each reporting stage
with priors of the first two experts with likelihood,
exact posterior and normal approximation to
posterior.

Sensitivity analysis. Five priors from different
experts.

Comments. Marked conflict between the optimism
of the prior distribution and the ineffectiveness of
treatment (see page 22). Authors discuss possible
reasons. This trial is further discussed by Carlin
and Sargent,93 where the use of robust monitoring
schemes (identifying what class of priors would
lead to specific conclusions) are explored
retrospectively.

Author. Dersimonian R.129

Title. Meta-analysis in the design and monitoring
of clinical trials.

Year. 1996.

The technology. Calcium supplementation in the
prevention of pre-eclampsia in pregnant women.

Objectives of study. To estimate the odds ratio
associated with treatment with regard to preven-
tion of pre-eclampsia.

Design of study. Randomised controlled trial of
maximum size 4500 with interim analyses.

Evidence from study. None: trial is being designed.

Statistical model. Normal approximation to likeli-
hood for log(odds ratio).

Prospective analysis? Yes.

Loss function. No explicit loss function.

Prior distribution. ‘Enthusiastic’ normal prior
derived from the meta-analysis of previous studies,
and sceptical prior centred at 0 with same precision
as the enthusiastic prior, equivalent to an experi-
ment in which 8% of the intended sample size had
been entered with no observed treatment effect.

Computations. Conjugate analysis.

Reporting. Stopping boundaries plotted under all
three priors, as well as those obtained under
Pocock and O’Brien–Fleming rules.

Sensitivity analysis. Boundaries for priors with four
combinations of mean and precision are
compared.

Comments. None.

Author. Digman JJ, Bryant J, Wieand HS, Fisher B
and Wolmark N.133

Title. Early stopping of a clinical trial when there is
evidence of no treatment benefit: protocol B-14 of
the National Surgical Adjuvant Breast and Bowel
Project.

Year. 1998.

The technology. Tamoxifen therapy for prevention
of recurrence of breast cancer.

Objectives of study. To estimate the disease-free
survival benefit from tamoxifen over placebo.

Design of study. Sequential randomised
controlled study (protocol B-14 of the National
Surgical Adjuvant Breast and Bowel Project)
using O’Brien–Fleming stopping boundaries.

Evidence from study. At the third interim analysis
there were 32 events on placebo and 56 on
tamoxifen, giving a normalised likelihood with a
mean of –0.53 and standard deviation of 0.21.

Statistical model. Proportional hazards.

Prospective analysis? Yes.
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Loss function. No explicit loss.

Prior distribution. An ‘optimistic’ prior centred on
a 40% hazard reduction and a 5% chance of no
effect, equivalent on the log(hazard ratio) scale to
a normal prior with a mean of 0.51 and standard
deviation of 0.31.

Computations. Conjugate normal.

Reporting. Posterior distribution, probability of
benefit from tamoxifen, and 95% interval for the
hazard ratio.

Sensitivity analysis. Range of prior distributions
with means varying between optimistic and
sceptical.

Comments. Analysis suggested that an optimist
would have a 13% belief of treatment benefit, and
therefore would not rule out further trials. But a
predictive calculation suggests that continued
follow-up would almost certainly not lead to
evidence of benefit for tamoxifen.

Author. Fayers PM, Ashby D and Parmar MKB.166

Title. Bayesian data monitoring in clinical
trials.

Year. 1997.

The technology. Pre-operative chemotherapy for
resectable oesophageal cancer.

Objectives of study. To estimate log(hazard ratio)
associated with treatment with respect to survival,
and to suggest stopping criteria for a sequential
trial.

Design of study. Randomised controlled trial, with
interim analyses.

Evidence from study. Survival in each arm at
interim analyses.

Statistical model. Proportional hazards model.

Prospective analysis? Yes: methods are being used
for monitoring, but the study is continuing and
data are confidential, so imaginary data were used
in this tutorial.

Loss function. No explicit loss function, although
the chances of 5 and 10% improvement in 2 year
survival were used as quantities of interest.

Prior distribution. Archetypal reference, and
sceptical and enthusiastic priors, following the
suggestions of Spiegelhalter et al.421

Computations. Conjugate analysis using normal
approximation to the likelihood.

Reporting. Observed log(hazard ratio), and
posterior probability of 0, 5 and 10% improve-
ments in 2 year survival.

Sensitivity analysis. Results reported for reference,
sceptical and enthusiastic priors.

Comments. This study suggests monitoring
sequential trials according to whether a sceptic

is ‘convinced’ of efficacy, or an enthusiast is
convinced of inefficacy.

Author. Fletcher A, Spiegelhalter D, Staessen J,
Thijs L and Bulpitt C.173

Title. Implications for trials in progress of publica-
tion of positive results.

Year. 1993.

The technology. The treatment of isolated systolic
hypertension with the aim of preventing coronary
heart disease and stroke in the elderly.

Objectives of study. To estimate the risk reduction
associated with treatment and hence judge whether
a confirmatory trial is justifiable.

Design of study. Randomised controlled trial
(Systolic Hypertension in the Elderly Program,
SHEP).

Evidence from study. Thirty-seven per cent reduc-
tion in fatal strokes (P = 0.0004; 95% confidence
interval, 18 to 51%). Other reductions seen for
fatal stroke, myocardial infraction or coronary
heart disease deaths.

Statistical model. Normal approximation to likeli-
hood for risk reduction.

Prospective analysis? No, retrospective analysis.

Loss function. No explicit loss function, but range
of equivalence of 0–15% risk reduction selected as
being ‘reasonable’.
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Prior distribution. Archetypal sceptical prior (“only
to give a flavour of the approach”) normal, mean 0
and Pr(|x|) > 33% = 0.05.

Computations. Conjugate normal.

Reporting. Observed values with confidence inter-
vals and P values, plots of likelihood and posteriors
for strokes and coronary heart disease deaths,
probabilities of any effect greater than zero and
effect greater than upper point of range of equiva-
lence, and probability of future trials yielding a
significant result.

Sensitivity analysis. Not mentioned.

Comments. None.

Author. Freedman LS and Spiegelhalter DJ.182

Title. Application of Bayesian statistics to decision
making during a clinical trial.

Year. 1992.

The technology. The study described was
intended to compare six treatments of colorectal
cancer. This paper concentrates on comparisons
between:

1. subjects receiving the standard treatment, the
chemopheraputics agent 5-fluorouracil

2. subjects receiving the standard treatment plus
high-dose leucovorin

3. subjects receiving the standard treatment plus
high-dose cisplatinum.

Objectives of study. Estimation of
log(hazard ratio).

Design of study. Randomised controlled trial.

Evidence from study. 5-Fluorouracil versus
5-fluorouracil plus leucovorin after 70 subjects
had entered each arm: 82 deaths had occurred
and the estimated log(hazard ratio) was 1.65.
5-Fluorouracil versus 5-fluorouracil plus
cisplatinum after 70 subjects had entered each
arm: 96 deaths had occurred and the estimated
log(hazard ratio) was –0.01.

Statistical model. Proportional hazards model.

Prospective analysis? No, retrospective analysis.

Loss function. No explicit loss function, but the
range of equivalence was log(1)–log(1.5).

Prior distribution. As a prior distribution the
authors use a mixture distribution with a mass of p0

on 0, and a mass of 1 – p0 on a normal distribution
with a mean of 0 and a variance of 4/n0, truncated
at 0. The authors use values of p0 = 0.25 and n0 = 25
as giving a 5% chance that the experimental
regimen doubles survival time, with a small chance
of no benefit “in view of the observed regression of
tumours”.

Computations. Closed form normal
approximations.

Reporting. Plots of likelihood and posterior,
mention of likelihood/prior agreement, z values,
and posterior probabilities critical to stopping
decisions.

Sensitivity analysis. In the 5-fluorouracil plus
leucovorin trial, posterior probabilities are calcu-
lated for four different sets of values of parameter
values for the prior.

Comments. Further analyses of this study are
provided by Greenhouse205 and Dixon and
Simon.135

Author. Freedman LS, Spiegelhalter DJ and
Parmar MKB.183

Title. The what, why and how of Bayesian clinical
trials monitoring.

Year. 1994.

The technology. The treatment of Duke’s C
colorectal cancer with levamisole plus
5-fluorouracil.

Objectives of study. To estimate log(hazard ratio).

Design of study. Randomised controlled trial.

Evidence from study. Data from published study.

Statistical model. Proportional hazards, and
approximate normal likelihood for
log(hazard ratio).

Prospective analysis? No.

Loss function. No, but range of equivalence
assessed: 0–log(1.33) on log(hazard ratio) scale.
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Prior distribution. A sceptical prior with a mean of
0 and a 5% chance that log(hazard ratio) is greater
than the alternative hypothesis of 0.3, and an
enthusiastic prior with the same precision but a
mean of 0.3.

Computations. Conjugate normal.

Reporting. Number of deaths in each group; esti-
mated log(hazard ratio); plots of prior, likelihood
and posterior; posterior mean and standard devia-
tion; and the probability of log(hazard ratio) being
in range of equivalence range and on either side.

Sensitivity analysis. Reference, sceptical and enthu-
siastic priors.

Comments. Discussed further by Spiegelhalter
et al.421

Author. George SL, Li CC, Berry DA and
Green MR.191

Title. Stopping a clinical trial early – frequentist
and Bayesian approaches applied to a CALGB trial
in non-small-cell lung cancer.

Year. 1994.

The technology. The addition of two cycles of
induction chemotherapy prior to thoracic radia-
tion in subjects with Phase II non-small cell cancer.

Objectives of study. To compare survival by esti-
mating log(hazard ratio).

Design of study. Sequential randomised controlled
study (CALGB 8433) using O’Brien–Fleming
stopping boundaries.

Evidence from study. Stopped at the fifth interim
analysis, there had been 56 deaths and the survival
difference had an adjusted P value of 0.0015.

Statistical model. Exponential survival model.

Prospective analysis? No, prior distributions
chosen after the trial.

Loss function. No explicit loss.

Prior distribution. A gamma prior for the rate on
standard treatment assessed from explicit
evidence, and a sceptical prior distribution for
log(hazard ratio) with standard deviation of 1,

giving 16% chance that the true effect exceeds the
alternative hypothesis.

Computations. Gibbs sampling.

Reporting. Posterior distribution, probability of
log(hazard ratio) being less than –0.25 and –0.5.

Sensitivity analysis. Analysis by proper and sceptical
priors.

Comments. The authors simulate and display
predictive distributions of what demand probabili-
ties would have been estimated had the trial run
its full course given the data at the final analysis.
This trial is also analysed using a more complex
Weibull model, but a matching prior opinion, by
Qian et al.368

Author. Greenhouse JB and Wasserman L.206

Title. Robust Bayesian methods for monitoring
clinical trials.

Year. 1995.

The technology. ECMO for premature babies.

Objectives of study. To compare survival with
ECMO (new) and without (conventional regimen
CMT).

Design of study. Sequential adaptive randomised
controlled trial.

Evidence from study. Six out of 10 survivors on
CMT, and nine out of nine on ECMO.

Statistical model. Binomial.

Prospective analysis? No.

Loss function. No.

Prior distribution. Uniform prior on survival rates
as the baseline; e contaminated the prior around
this.

Computations. Numerical integration.

Reporting. Upper and lower bounds on “P(ECMO
superior to CMT)”, over all possible priors.

Sensitivity analysis. Search over all priors with e =
0.1, 0.2, 0.3 and 0.4.
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Comments. The authors also consider the single-
armed Phase II study of Korn et al.,276 in which
3/4 patients showed toxicity. They again use a
robust prior based on past trial evidence (with
and without discounting), reporting the bounds

on the posterior probability of at least 20%
toxicity.

Author. Gustafson P.219

Title. Robustness considerations in Bayesian
analysis.

Year. 1996.

The technology. ECMO.

Objectives of study. To estimate the probability
of survival better for ECMO patients, that is,
P(qE > qC|Data).

Design of study. Adaptive randomised controlled
trial.

Evidence from study. Four deaths out of 10
controls, and zero deaths out of nine ECMO
patients.

Statistical model. Model/likelihood: (qC, qE),
the survival probabilities for control and
ECMO patients, respectively, are assumed
independent.

Prospective analysis? No.

Loss function. No.

Prior distribution. Arbitrary, initial Beta(1.25, 1.25)
prior distributions are assumed for both qC and qE.

Computations. Not explicitly reported.

Reporting. Ranges of posterior probabilities for the
three different classes of prior distributions as data
accumulates.

Sensitivity analysis. Uses three different classes
of unrestricted, restricted and density-bounded
contamination classes of prior distributions,
assuming qC and qE are independent, and
assuming that the prior for one parameter is
fixed throughout.

Comments. None.

Author. Hughes MD.242

Title. Practical reporting of Bayesian analyses of
clinical trials.

Year. 1991.

The technology. Beta-blocker treatment for preven-
tion of bleeding oesophageal varices.

Objectives of study. To compare the incidence of
bleeding and survival with a beta-blocker (new
regimen) and placebo (existing regimen).

Design of study. Randomised controlled trial.

Evidence from study. No evidence available at the
time of analysis: hypothetical data used.

Statistical model. Approximate normal likelihood
for log(odds ratio).

Prospective analysis? Yes.

Loss function. No.

Prior distribution. Reference prior, data-based
prior obtained from simple pooling of previous
studies, and subjective prior elicited from six
participating clinicians as a histogram with a risk-
difference scale. Also considers Bayes factor
analysis in which a lump of prior is placed at 0.

Computations. Conjugate normal analysis.

Reporting. Posterior distributions and probabilities
of benefit.

Sensitivity analysis. Reference, clinical and data-
based posterior distributions. For ‘lump’ prior,
the study explores the sensitivity of the “posterior
probability of no effect” versus “prior probability of
no effect”.

Comments. See Hughes243 for more details.

Author. Kadane JB.258

Title. Bayesian methods and ethics in a clinical trial
design.

Year. 1996.

The technology. Drug treatment to control hyper-
tension following open-heart surgery.
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Objectives of study. To compare verapamil with
nitroprusside with respect to post-operative blood
pressure.

Design of study. ‘Ethical’ design, in which a
patient will only receive a treatment if at least one
member of a team of experts (represented by a
model of his or her current posterior beliefs)
considers that the treatment is optimal for the
patient’s covariates. If more than one member
considers a treatment to be optimal, then the
treatment is allocated to balance prognostic
factors between groups.259,261

Evidence from study. A total of 49 patients were
enrolled, of which 30 could be studied: 12 on
nitroprusside, 18 on verapamil. As the trial
proceeded, there was an imbalance towards
verapamil as the experts’ opinions changed.

Statistical model. Normal linear model for blood
pressure depending on four covariates and
treatment.

Prospective analysis? Yes.

Loss function. No.

Prior distribution. Pilot data on five patients were
available. Prior opinions were elicited from five
participating clinicians through hour-long interac-
tive computer sessions.

Computations. Conjugate normal/t analysis.

Reporting. Prior and posterior distributions were
presented for each of the five experts, and for each
of 16 types of patient. However, the primary results
of the trial (see chapter 12) were presented using a
non-Bayesian analysis.

Sensitivity analysis. Results for each expert were
displayed.

Comments. The study was passed by the internal
review board of the Johns Hopkins Hospital.
Further elicitations were necessary midway through
the study when the safety criterion being updated
was changed. The elicitation procedure is discussed
in detail and difficulties acknowledged. A bug in
the allocation program was found midway, which
had meant that some of the early patients had not
in fact been allocated to the appropriate treatment,
although it is claimed that no adverse effects
resulted.

Author. Kass RE and Greenhouse JB.267

Title. Comments on ‘Investigating therapies of
potentially great benefit: ECMO’ by J H Ware.

Year. 1989.

The technology. ECMO.

Objectives of study. To estimate the log(mortality
odds ratio) associated with ECMO patients.

Design of study. Adaptive randomised controlled
trial.

Evidence from study. Four deaths out of 10 controls,
and zero deaths out of nine ECMO patients.

Statistical model. Model/likelihood: (d, g) where
d = nC – nE and g = (nC + nE)/2 and nC and nE are
log(odds ratio) of death in the control and ECMO
patients, respectively.

Prospective analysis? No.

Loss function. No, but log(odds ratio) of 0.4
considered important, not based on clinical
demands.

Prior distribution. Historical clinical series of 13
patients receiving conventional medical therapy, of
whom two survived.

Computations. Not specifically reported, but
possibly used Laplace approximations to the poste-
rior distribution.

Reporting. Posterior probabilities, but also
consider the use of Bayes factors, based on each
of the five prior-to-posterior analyses, in order to
determine the evidence for and against a treatment
effect, that is, on the log(odds ratio) scale, of zero.

Sensitivity analysis. Five different prior distribu-
tions used in the analysis reported, with the
historical evidence downweighted in each.

Comments. See also Berry and Stangl45 Berry51 and
Greenhouse and Wasserman.206

Author. Lewis RJ.293

Title. Bayesian hypothesis testing: interim analysis
of a clinical trial evaluating phenytoin for the
prophylaxis of early post-traumatic seizures in
children.
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Year. 1996.

The technology. Phenytoin for the prophylaxis of
early post-traumatic seizures in children.

Objectives of study. To estimate the difference
in 48 hour seizure rates with and without phenytoin.

Design of study. Randomised controlled trial, with
95% power to detect a 50% reduction in the
seizure rate.

Evidence from study. First interim analysis, 0/7
versus 2/7 seizures on phenytoin.

Statistical model. Binomial model.

Prospective analysis? Yes.

Loss function. Yes, an implicit loss function is
found that would lead to a decision-theoretic
design with good type I and type II error rates.

Prior distribution. “Wide, pessimistic and opti-
mistic” priors assessed.

Computations. Conjugate binomial analysis.

Reporting. Posterior distributions and probability
that rate difference is greater than 12.5% and 0.

Sensitivity analysis. Results for the three priors are
given.

Comments. The decision to continue was made, in
spite of initially unencouraging results.

Author. Lilford RJ and Braunholtz D.299

Title. The statistical basis of public policy: a
paradigm shift is overdue.

Year. 1996.

The technology. Third-generation contraceptive
pill.

Objectives of study. To assess the risk of venous
thrombosis associated with the third-generation
contraceptive pill.

Design of study. Meta-analysis of case–control
studies.

Evidence from study. Odds ratio of 2 and 95%
interval of 1.4 to 2.7.

Statistical model. Normal likelihood for
log(odds ratio).

Prospective analysis? No.

Loss function. No.

Prior distribution. Priors were subjectively assessed
by two experts.

Computations. Conjugate normal.

Reporting. Posterior distributions and 95%
intervals.

Sensitivity analysis. Different priors examined, as
well as discounting likelihood by 30% additional
dispersion (undirected bias) and allowing for
the possibility of a 30% overestimate (directed
bias).

Comments. Critical letters included one by Cox
and Farewell,118 who pointed out that bias could be
explored through sensitivity analysis and that the
authors were setting up an unrealistic “straw man”
of traditional statistics as relying heavily on signifi-
cance testing.

Author. Parmar MKB, Spiegelhalter DJ and
Freedman LS.348

Title. The CHART trials: Bayesian design and
monitoring in practice.

Year. 1994.

The technology. CHART radiotherapy regimen for
non-small-cell lung and head-and-neck cancer.

Objectives of study. To compare survival with
(new regimen) and without (existing regimen)
CHART .

Design of study. Randomised controlled trial.

Evidence from study. No evidence available at the
time of analysis: hypothetical data used.

Statistical model. Proportional hazards and approx-
imate normal likelihood for log(hazard ratio).

Prospective analysis? Yes.

Loss function. No, but ranges of equivalence
assessed.
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Prior distribution. Elicited from 11 participating
clinicians.

Computations. Conjugate normal analysis.

Reporting. Posterior distributions and probabilities
relative to ranges of equivalence.

Sensitivity analysis. Reference, clinical and
sceptical priors.

Comments. See chapter 9 for details of this study.
The eventual results of these studies are discussed
on page 4.7.

Author. Parmar MKB, Ungerleider RS and
Simon R.349

Title. Assessing whether to perform a confirmatory
randomised clinical trial.

Year. 1996.

The technology. Adjunct chemotherapy for non-
small-cell lung cancer.

Objectives of study. To compare survival with
(new regimen) and without (existing regimen)
chemotherapy

Design of study. Randomised controlled trial
conducted between 1984 and 1987.

Evidence from study. Hazard ratio of 1.63
(1.14–2.33).

Statistical model. Proportional hazards and
approximate normal likelihood for log(hazard
ratio).

Prospective analysis? No.

Loss function. No.

Prior distribution. Default reference and sceptical
priors.

Computations. Conjugate normal analysis.

Reporting. Posterior distributions and probabilities
relative to median survival improvements of 3, 4
and 5 months.

Sensitivity analysis. Reference, clinical and
sceptical priors.

Comments. See page 33 for details of this study.
This paper also considers another chemotherapy
study using the same prior distribution.

Author. Pocock SJ and Hughes MD.364

Title. Practical problems in interim analyses, with
particular regard to estimation.

Year. 1989.

The technology. Anisoylated plasminogen strepto-
kinase activator complex (APSAC) thrombolytic
therapy after myocardial infarction.

Objectives of study. To compare 30 day mortality
under APSAC (new regimen) and placebo
(existing regimen).

Design of study. Randomised controlled trial
(APSAC Intervention Mortality Study, AIMS).

Evidence from study. At the second interim
analysis: 32 versus 61 deaths with 502 patients in
each arm.

Statistical model. Approximate normal likelihood
for log(risk ratio).

Prospective analysis? No.

Loss function. No.

Prior distribution. Normal on log(risk ratio) scale,
with a median risk ratio of 0.8, a 7% chance of a
risk ratio above 1, with a 10% chance of a risk ratio
below 0.67 that “seems plausible given earlier
clinical trials of other thrombolytic agents”.

Computations. Conjugate normal analysis.

Reporting. Median and 95% intervals for risk ratio.

Sensitivity analysis. Four choices of prior median
and standard deviation explored.

Comments. Simulation exercise to see how the
prior generates results, and what kind of biases
would occur with sequential trials.

Author. Pocock SJ and Spiegelhalter DJ.363

Title. Domiciliary thrombolysis by general
practitioners.
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Year. 1992.

The technology. Home thrombolytic therapy after
myocardial infarction.

Objectives of study. To compare the 30 day
mortality rate under antistreplase (new regimen)
and placebo (existing regimen).

Design of study. Randomised controlled trial
(GREAT).

Evidence from study. At interim analysis: 23/148
on control versus 13/163 deaths on new treatment.

Statistical model. Approximate normal likelihood
for log(odds ratio).

Prospective analysis? No.

Loss function. No.

Prior distribution. Elicited from an expert, who
based his opinion on published and unpublished
data.

Computations. Conjugate normal analysis.

Reporting. Posterior distribution of risk ratio,
mean and 95% interval.

Sensitivity analysis. None.

Comments. See chapter 2 for further discussion of
this example.

Author. Sasahara AA, Cole TM, Ederer F, Murray
JA, Wenger NK, Sherry S and Stengle JM.389

Title. Urokinase Pulmonary Embolism Trial, a
national cooperative study.

Year. 1973.

The technology. Urokinase treatment in pulmo-
nary embolism.

Objectives of study. To compare thrombolytic
capability on urokinase (new regimen) with
heparin (standard regimen).

Design of study. Randomised controlled trial.

Evidence from study. Multiple end-points on 160
patients entered between 1968 and 1970.

Statistical model. Normal model.

Prospective analysis? Yes.

Loss function. No.

Prior distribution. Point mass on null hypothesis,
with remainder normally distributed around 0,
with standard deviation such that the expected
effect, were it to be present, would be equal
to the alternative hypothesis (see page 19). Alter-
native hypotheses were “based on what appeared
reasonable from previous experience with
thrombolytics”.

Computations. Conjugate normal analysis.

Reporting. “Relative betting odds”, that is,
posterior odds on null hypothesis.

Sensitivity analysis. None.

Comments. No P values were provided in the
analysis.

Author. Spiegelhalter DJ, Freedman LS and
Parmar MKB.420

Title. Applying Bayesian ideas in drug development
and clinical trials.

Year. 1993.

The technology. Chemotherapy for osteosarcoma.

Objectives of study. To compare survival in
multi-drug (new) and two-drug (existing)
regimens.

Design of study. Randomised controlled trial.

Evidence from study. None available at time of
analysis.

Statistical model. Proportional hazards and
approximate normal likelihood for log(hazard
ratio).

Prospective analysis? Yes.

Loss function. No, but a range of equivalence of
0–10% improvement in 5 year survival.

Prior distribution. Elicited priors from seven partic-
ipating oncologists, averaged to give a median
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hazard ratio of 1.11, and 95% interval (0.66–1.83)
in favour of new therapy. Sceptical prior with the
same precision but centred on 0.

Computations. Conjugate normal analysis.

Reporting. Posterior distributions and probabilities
relative to range of equivalence.

Sensitivity analysis. Reference, clinical and
sceptical priors.

Comments. Final results are now available413

showing no evidence of benefit: hazard ratio = 0.94
(0.69–1.27) (see page 4.7).

Author. Spiegelhalter DJ, Freedman LS and
Parmar MKB.421

Title. Bayesian approaches to randomised trials
(with discussion).

Year. 1994.

The technology. Misonidazole as adjunct chemo-
therapy for head and neck cancer.

Objectives of study. To compare primary control
with (new regimen) and without (existing
regimen) misonidazole.

Design of study. Randomised controlled trial.

Evidence from study. Third interim analysis: 108
events and a hazard ratio of 0.9 (0.62–1.31).

Statistical model. Proportional hazards and approx-
imate normal likelihood for log(hazard ratio).

Prospective analysis? No.

Loss function. No, but a range of equivalence of
0–0.414 in log(hazard ratio), corresponding to a
rise from 25 to 40% improvement in 2 year primary
control.

Prior distribution. Default reference, sceptical and
enthusiastic priors.

Computations. Conjugate normal analysis.

Reporting. Posterior distributions and probabilities
relative to a range of equivalence.

Sensitivity analysis. Reference, clinical and
sceptical priors.

Comments. The probability of clinical superiority
was low even with an enthusiastic prior. In fact,
the trial was terminated at this third analysis.
This paper also considers ‘three-star’ analyses
of the neutron study1 and the levamisole plus
5-fluorouracil study.183

Author. Stangl DK.427

Title. Prediction and decision-making using
Bayesian hierarchical-models.

Year. 1995.

The technology. Imipramine hydrochloride for
prevention of or delaying a return to depression.

Objectives of study. To compare the time to recur-
rent depression with (new regimen) and without
(existing regimen) imipramine.

Design of study. Five-centre randomised controlled
trial.

Evidence from study. Survival data from five centres.

Statistical model. Exponential survival model, with
the option of a change point to allow for a non-
constant hazard.

Prospective analysis? No.

Loss function. No.

Prior distribution. Gamma priors were obtained
by considering the first gamma parameter to be a
sample size, and making the second have a gamma
prior which itself has a second parameter equal to
the maximum likelihood estimate. Three different
sets of priors were used.

Computations. MCMC (Gibbs sampling).

Reporting. The expectation of the time to recur-
rence for patient in each treatment group, and
the expected difference between the treated and
untreated group and at each clinic, were provided
under each model and prior, and the predictive
distribution of the difference at each clinic under
one model and prior was plotted.

Sensitivity analysis. Three different priors were
explored.

Comments. The use of decision theory is explored
in deciding which treatment to give to a patient.
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This study was also analysed using Laplace approxi-
mations425 in which further sensitivity analysis to
prior assumptions is carried out.

Author. Ware J.469

Title. Investigating therapies of potentially great
benefit: ECMO (with discussion).

Year. 1989.

The technology. ECMO.

Objectives of study. To estimate the difference in
mortality associated with ECMO patients.

Design of study. Adaptive randomised controlled
trial.

Evidence from study. Four deaths out of 10 controls,
and zero deaths out of nine ECMO patients.

Statistical model. Model/likelihood: (pC, pE), the
survival probabilities in the control and ECMO

groups, respectively, such that a beta prior is
assumed for pC, and the conditional distribution of
pE, given pC, is such that P(pC < pE) = P(pC = pE) =
P(pC > pE) = 1/3.

Prospective analysis? No.

Loss function. No.

Prior distribution. Historical clinical series of 13
patients receiving conventional medical therapy, of
whom two survived.

Computations. Due to the model formulation,
posterior probabilities could be obtained in a
closed form.

Reporting. Posterior probabilities: P(pC < pE),
P(pC = pE), P(pC > pE).

Sensitivity analysis. Both an informative data-based
prior and a vague prior for pC were used.

Comments. None.
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Here we provide a selection of sites that
currently provide useful material on Bayesian

methods applicable to health technology assess-
ment and lists of links. This list is not exhaustive
but should provide some entry into the huge range
of material available on the Internet.

This sites below were all functioning in November
2000.

Bayesian methods in health
technology assessment

http://www.fda.gov/cdrh/
This is the home page for the US Food and Drug
Administration’s Center for Devices and Radiolog-
ical Health, which contains a number of items
relating to Bayesian methods. To identify these,
use the search facility with the keyword ‘Bayesian’.

http://www.bayesian-initiative.com/
The Bayesian Initiative in Health Economics and
Outcome Research provides useful background
material on Bayesian approaches to pharmaco-
economics, but does not appear to have been
updated for some time.

Bayesian software

http://www.shef.ac.uk/~st1ao/1b.html
The First Bayes software is freely available, and
features good graphical presentation of conjugate
analysis of basic data sets. It is suitable for teaching,
and is strong on predictive distributions.

http://www.mrc-bsu.cam.ac.uk/bugs/
The BUGS software is designed for analysis of
complex analysis using MCMC methods. The
WinBUGS version features an interface for speci-
fying models as graphs. The software assumes
familiarity with Bayesian methods and MCMC
computation.

http://www.epi.mcgill.ca/~web2/Joseph/
software.html
Lawrence Joseph’s Bayesian Software site provides
downloadable code for a wide variety of sample size
calculations using prior opinion.

http://omie.med.jhmi.edu/bayes/
The Bayesian Communication website is hosted
by Harold Lehmann, and features a prototype
example in which a Bayesian analysis can be
carried out on-line.289–291

http://www.research.att.com/~volinsky/bma.html
The Bayesian Model Averaging web page provides
S-plus and Fortran software for carrying out model
averaging, as well as featuring reprints and links.

http://www.palisade.com/
The Palisade Corporation markets the @RISK®

software, which is an add-on to spreadsheet
packages that allows probability distributions to be
placed over the inputs to spreadsheets. Predictive
distributions over the outputs are then obtained by
simulation. Demonstrator versions are available for
downloading.

http://www-math.bgsu.edu/~albert/mini_bayes/
info.html
This site is an adjunct to Jim Albert’s book Bayesian
Computation Using Minitab, and features macros for
carrying out a variety of analyses.

General Bayesian sites

http://bayes.stat.washington.edu/
bayes_people.html
The Bayesian Statistics Personal Web Pages site has
links to the home pages of many researchers in
Bayesian methods. These provide a vast array of
lecture notes, reprints and slide presentations.

http://www.bayesian.org/
The International Society for Bayesian Analysis
provides information on its activities and useful
links.

http://www.stat.ucla.edu/~jsanchez/sbssnews/
sbssnews.html
The American Statistical Association Section on
Bayesian Statistical Sciences (SBSS) has a preprint
archive and links to other sites.

http://www.isds.duke.edu/sites/bayes.html
This web page hosted from Duke University
provides a list of Bayesian sites.
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