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Objectives
• To describe systematically studies that 

directly assessed the learning curve effect 
of health technologies.

• Systematically to identify ‘novel’ statistical tech-
niques applied to learning curve data in other
fields, such as psychology and manufacturing.

• To test these statistical techniques in data sets
from studies of varying designs to assess health
technologies in which learning curve effects 
are known to exist.

Methods

Study selection
Health technology assessment literature review
For a study to be included, it had to include a
formal analysis of the learning curve of a health
technology using a graphical, tabular or 
statistical technique.

Non-health technology assessment literature
search
For a study to be included, it had to include a
formal assessment of a learning curve using a
statistical technique that had not been identified 
in the previous search.

Data sources
Six clinical and 16 non-clinical biomedical data-
bases were searched. A limited amount of hand-
searching and scanning of reference lists was 
also undertaken.

Data extraction
Health technology assessment literature review
A number of study characteristics were abstracted
from the papers such as study design, study size,
number of operators and the statistical 
method used.

Non-health technology assessment literature
search
The new statistical techniques identified were
categorised into four subgroups of increasing
complexity: exploratory data analysis; simple 
series data analysis; complex data structure
analysis, generic techniques.

Testing of statistical methods
Some of the statistical methods identified in the
systematic searches for single (simple) operator
series data and for multiple (complex) operator
series data were illustrated and explored using
three data sets. The first was a case series of 
190 consecutive laparoscopic fundoplication
procedures performed by a single surgeon; the
second was a case series of consecutive laparo-
scopic cholecystectomy procedures performed by
ten surgeons; the third was randomised trial data
derived from the laparoscopic procedure arm of 
a multicentre trial of groin hernia repair, supple-
mented by data from non-randomised operations
performed during the trial.

Results

Health technology assessment
literature review
Of 4571 abstracts identified, 272 (6%) were later
included in the study after review of the full paper.
Some 51% of studies assessed a surgical minimal
access technique and 95% were case series. The
statistical method used most often (60%) was
splitting the data into consecutive parts (such 
as halves or thirds), with only 14% attempting a
more formal statistical analysis. The reporting of
the studies was poor, with 31% giving no details 
of data collection methods.

Non-health technology assessment
literature search
Of 9431 abstracts assessed, 115 (1%) were deemed
appropriate for further investigation and, of these,
18 were included in the study. All of the methods
for complex data sets were identified in the non-
clinical literature. These were discriminant analysis,
two-stage estimation of learning rates, generalised
estimating equations, multilevel models, latent
curve models, time series models and stochastic
parameter models. In addition, eight new shapes 
of learning curves were identified.

Testing of statistical methods
No one particular shape of learning curve
performed significantly better than another. The
performance of ‘operation time’ as a proxy for
learning differed between the three procedures.

Executive summary
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Multilevel modelling using the laparoscopic
cholecystectomy data demonstrated and measured
surgeon-specific and confounding effects. The
inclusion of non-randomised cases, despite the
possible limitations of the method, enhanced 
the interpretation of learning effects.

Conclusions

Health technology assessment
literature review
The statistical methods used for assessing learning
effects in health technology assessment have been
crude and the reporting of studies poor.

Non-health technology assessment
literature search
A number of statistical methods for assessing
learning effects were identified that had not
hitherto been used in health technology assess-
ment. There was a hierarchy of methods for the
identification and measurement of learning, and
the more sophisticated methods for both have had
little if any use in health technology assessment.
This demonstrated the value of considering fields
outside clinical research when addressing methodo-
logical issues in health technology assessment.

Testing of statistical methods
It has been demonstrated that the portfolio of
techniques identified can enhance investigations 
of learning curve effects.

Implications and recommendations

For health technology assessment
• A change over time in the performance of a

technology because of learning complicates
evaluation and impedes rigorous evaluation.

• Useful parameters for describing learning in
health technology assessment are the rate and
length of learning and the final skill level.

• Reliable assessment of learning effects is most
likely to come from prospectively collected data
on multiple operators or institutions.

• The experience of the operator should 
be described each time the procedure is
performed. This is particularly important in
circumstances, such as randomised trials, in

which the technology may have parallel use
outside the trial.

• Collection of non-randomised data alongside 
a randomised controlled trial may, despite
possible limitations, aid the interpretation of
learning effects.

• Reports of studies of learning should, as a
minimum, describe the number and experience
of the operators, the data source, the proportion
of procedures performed by individual
operators and the level of care.

• Proxy measures of learning have advantages 
and limitations, and finding a suitable measure
can be difficult.

• Investigators should consider and adjust for 
any confounding factors.

• The simplest methods within the hierarchies
described in this report should be used in a
parsimonious way.

• When there are multiple operators, a method
should be used which takes into account the
hierarchical nature of the data.

For further research
• Further empirical testing of the techniques

identified is required. The generalisability of 
the various shapes and methods that were
identified needs to be assessed for a variety 
of health technologies.

• Methods for estimation of the time taken to
reach an asymptote should be explored further.

• Variables that are good proxies for learning
need to be identified.

• Relatively rare, dichotomous outcomes are 
often the best measures of performance but 
are currently the least tractable to analysis.
Further methodological research is needed 
to address this issue.

• Further empirical work is required to identify
the optimal method for assessing learning
curves within randomised controlled trials.

• The impact of learning curve factors on
economic evaluations should be explored.

• Appropriate prospective data collection should
be built into future evaluations.

• A theory-based approach to learning should 
be investigated in the context of health
technology assessment.

• Parallels between learning curve and quality
assurance issues should be explored.
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The performance of many repeated tasks
changes with experience over time. Improve-

ment tends to be most rapid at first and then to
tail off over time until a steady state is reached.
The term ‘learning curve’ is often used as short-
hand to describe this phenomenon. Learning
curves have long been recognised outside health
technology assessment, in psychology, manu-
facturing and aviation. The term was first used 
in healthcare in the 1970s, and came to greater
prominence in the 1980s in the context of 
minimal access surgery.

Changes in performance due to learning present
particular difficulties in health technology assess-
ment.1–6 Many innovators and early enthusiasts are
reluctant to apply rigorous evaluation to a new
technology whose performance may change with
learning. They argue, often vociferously, that early
assessment gives a distorted picture which is biased
against the new technology.7,8 The argument is
illustrated in Figure 1. If assessment is carried out 
at time point A, then the conventional treatment 
is preferred to the new treatment; if assessment 
is carried out at time point B further along the
learning curve, then the new treatment performs
better than the standard. Often, however, by the
time that the technology has clearly stabilised
(time point B, say), these same people have been
convinced of the worth of the technology on the
basis of poor quality evidence. They then argue
that rigorous evaluation is now unethical if it
involves withholding the technique or procedure

from potential patients.9 This situation has 
been encapsulated in what has become known as
Buxton’s law – “It is always too early [for rigorous
evaluation] until, unfortunately, it’s suddenly 
too late”.10

In principle, statistical description of a learning
curve and subsequent adjustment of an evaluation
to take account of learning effects should solve this
problem. Identifying the point at which the curve
flattens (the asymptote) would allow subsequent
evaluation free of any learning effect; description
of the learning curve could allow adjustment of
earlier evaluation during the learning period, and
characterisation of user performance could guide
training and subsequent implementation policies.
While the advantages of such formal statistical
analyses have been suggested previously,7,11–14

exactly how they should be undertaken has 
been unclear.

One reason for this is that changes in performance
with learning are more complex than they may at
first seem. This can be illustrated by minimal access
surgery. Learning is likely to depend on whether
the operator is using minimal access techniques 
for the first time or whether he or she already has
experience of another different minimal access
operation. The learning curve will be influenced 
by the experience of the supporting surgical team.
Performance is likely to be less good if everyone in
a team is learning their role in the operation (so-
called ‘institutional learning’), rather than just the

Chapter 1
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FIGURE 1 Outcome of evaluation at two points on the learning curve
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operator.15 The broader clinical community also
influences individual learning through policy
decisions, such as the number of operations that
must be performed before the operator is con-
sidered ‘experienced’ or the type of equipment 
to be used for an operation.

Changes in case-mix complicate the assessment of
learning curves. Sometimes, as an operator becomes
more experienced, the cases that are attempted
become more difficult. As a consequence, out-
come may appear to deteriorate.4,9,11–13,16–18

Another difficulty is the identification of reliable
measures of learning. Again using the example 
of minimal access techniques, the most obviously
relevant measures, such as complications or con-
versions, may be too infrequent or unreliable15 for
reliable analysis. Other proxies for learning, such
as duration of an operation, may be more tractable
to statistical analysis but relatively poor measures 
of performance. (Performing an operation more
quickly does not necessarily indicate better per-
formance; it may, for example, increase the risk 
of complications.)

It was against this background that the authors
were commissioned by the NHS R&D HTA
Programme to undertake this study. The aim was
to identify statistical methods for characterising
learning that would allow reliable description of

learning curves of both individuals and institutions.
It was important that the methods would be applic-
able to the various study designs (randomised
controlled trials (RCTs)), observational case series
and cohort studies) that can be used to assess
health technologies whose performance might 
be influenced by learning.

The project had three components.

1. A systematic description of studies that directly
assessed the learning curve effect of health
technologies, describing the strengths and
weaknesses of the study designs and statistical
methods that were employed (reported in
chapter 2).

2. A systematic identification of ‘novel’ statistical
techniques applied to learning curve data in
other fields, such as psychology and manu-
facturing (described in chapter 3).

3. Empirical testing of these statistical techniques
in sets of data describing a variety of health
technologies for which learning curve effects 
are known to exist: single operator case series
(chapter 4); multiple operator case series
(chapter 5); multiple operator RCTs with 
and without non-randomised data (chapter 6).

The main conclusions and implications of the
project, including recommendations for future
research, are presented in chapter 7.
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Introduction
The first phase of the project was a systematic
description of studies that directly assessed the
learning curves of health technologies. The aim
was to characterise the various methods identified,
to quantify the extent of their use, and to explore
their strengths and weaknesses.

Methods

Search strategy for the identification 
of studies
The search strategy was first developed using
MEDLINE by a statistician and a researcher who
were experienced in literature searching. Search
terms were developed from Medical Subject
Headings (MeSH) terms, using the MeSH tree 
with scope notes and permuted index. Textword
searching, that is, searching for terms in titles and
abstracts, was also employed, using truncation 
and adjacency where appropriate.

The numbers of abstracts retrieved for each 
term were noted and the first 50 were assessed 
for relevance to learning curves. To optimise 
the return on the resources available, a focused
search strategy was then developed. The most
specific search term was chosen for use in
MEDLINE (see appendix 1). Other less specific
terms were tested but rejected because too many
irrelevant studies were retrieved (appendix 1). 
The search strategy imposed no language or 
other similar limitations.

The search strategy was modified for other
databases. The syntax was changed to suit that 
of the relevant search software and the thesaurus
or indices of each database were used to identify
equivalents of the MeSH terms used in MEDLINE
(see appendix 1). Other terms were also tested in
each of the other databases but were found to be
less specific and were thus rejected (appendix 1).
Search terms describing complex statistical tech-
niques that may have been appropriate for
assessment of the learning curve were also 
tested (appendix 1).

Systematic electronic bibliographic
database searching
Eight databases were searched systematically:
MEDLINE (1966 to March 1999); HealthSTAR
(1975 to November 1998); EMBASE (1980 to
February 1999); Science Citation Index (1981 to
March 1999); Social Science Citation Index (1981
to March 1999); CINAHL (1982 to December
1998); BIOSIS (1985 to March 1999); the
Cochrane Library (1999).

To estimate the number of studies that described
the assessment of the learning curve in the body 
of an article but which would not have been
identified by searching the abstract and title only,
the full texts of the following databases were
searched: MEDLINE Core Biomedical Collection
(1993 to August 1998); Biomedical Collection II
(1995 to October 1998); Biomedical Collection 
III (1995 to June 1998) (see appendix 1). This
covered 46 journals in total.

Two electronic databases of ongoing studies 
were searched: British National Research 
Register (Issue 1, 1998) and Current Controlled
Trials (to January 1999). The NHS Economic
Evaluation Database (to April 1999) was 
also searched.

Handsearching of specific journals
No journal was identified for which handsearching
was likely to yield a substantial dividend in terms 
of the identification of extra relevant studies – 
the relevant literature covered too many fields 
and journals. However, the International Journal of
Technology Assessment in Health Care was identified as
the place where new techniques to assess learning
curves were most likely to be published. Rather
than perform a full handsearch of the journal, 
a handsearch of all abstracts of full papers 
was undertaken.

Other methods of ascertainment 
of studies
To identify any other relevant studies, experts in
the field were contacted, mainly members of the
International Society for Health Technology
Assessment and biostatisticians.

Chapter 2

Assessment of the learning curve in health
technologies: a systematic review 
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Register of possible studies
All possibly relevant reports were electronically
imported or manually entered into the software
package Reference Manager (v. 9.0 N: ISI
ResearchSoft, USA). Details of the source 
of each article were added. All electronically
derived abstracts and study titles were read by 
one statistician, in order to assess subject rele-
vance. Those that were deemed to be of possible
relevance, because they described a health tech-
nology assessment and also referred to a learning
curve, were assigned keywords in Reference
Manager and the full published paper was
obtained. The exception was the searching 
of the full text version of MEDLINE, for which 
the full published paper was assessed for 
relevance to learning curves.

Full copies of study reports were assessed by the
statistician, using a standard form, for subject
relevance, eligibility and methodological quality.
The assessor was not blinded to author, institution
or journal.

Inclusion criteria
To be included in the review, a study had to
analyse the learning curve formally using a graph,
table or statistical technique. The methods of
analysis were categorised as follows.

Descriptive
No statistical testing was performed but results
were tabulated by experience or shown graphically.
The graphical method required one axis to be the
case sequence (or grouped case sequence).

Split group
The data were split by experience, and univariate
testing of the discrete groups (generally halves or
thirds) was performed. The statistical methods
used included t-test, chi-squared test, Mann–
Whitney U-test and simple analysis of variance
(ANOVA). Also included in this category were
reports that compared experienced with
inexperienced surgeons.

Univariate (trend)
These tested for some form of trend by experience
in the data. Methods included curve fitting, 
chi-squared test for trend or repeated measures
ANOVA. If the data were split into categories, at
least three categories were required, with the
ordering formally taken into account.

Multivariate (split)
The data were split by experience as in the split
group and multivariate testing of the groups was

performed to adjust for other variables. For
example, a study was included in this category if
the experience variable had been dichotomised
into the first 50 and the second 50 patients, and
then included as a potential confounding variable
in a regression analysis along with confounders
such as the age and sex of patients.

Multivariate (trend)
Trend by experience was tested for in the data 
but adjustment for possible confounding variables
was also included. These methods included 
logistic regression and multiple regression, 
with the experience variable treated as either
continuous or ordinal.

Cumulative sum
Trend in experience was measured using the
cumulative sum (cusum) procedure.19 This is a
graphical method for identifying trends in data.

Data abstraction and analysis
A single statistician abstracted the following: 
study design; study size; type of technology
(minimal access, other surgical, or diagnostic);
type of patient; level of learning assessed (operator
or institution); number of operators; proportion 
of operators performing half of the procedures 
(to see whether one or a few operators dominated
the series); type of institution; data source; prior
knowledge of outcome before inclusion of patient;
type of outcome used to assess learning; statistical
method used (as categorised above).

A random 10% sample of possible studies was
independently assessed by another statistician, 
with double abstraction of data from those studies
meeting the inclusion criteria. A kappa statistic 
was calculated to measure agreement between
assessors. Any differences of opinion were 
resolved by discussion.

Results

Literature search
Of the 4571 abstracts assessed, 559 (12%) were
deemed appropriate for further investigation 
and 272 were later judged, on review of the full
paper, to have included a formal assessment of 
the learning curve (Table 1). A complete list of 
all 272 studies is included in the references (see
page 71). Of the 272 studies, 202 (74%) were
identified from MEDLINE, with the next largest
number being identified from EMBASE; however,
this was at least in part a function of the order of 
the searching rather than the coverage of each



Health Technology Assessment 2001; Vol. 5: No. 12

5

database. Of the included papers, 39 (15%) were
published in non-English language journals. In a
further 24 (4%) of the 560 assessed full papers, the
authors mentioned that learning did (or did not)
take place in their study but gave no indication as
to how it had been assessed; hence, these papers
were excluded. The numbers of studies published

per year are displayed in Figure 2; a progressive rise
is seen in number of relevant studies, particularly
during the 1990s.

An additional seven papers were identified in 
the MEDLINE (full text) database that assessed
learning which would not have been identified by

TABLE 1  Summary of the bibliographic searches

Source† Number of abstracts Number of full Papers included in 
assessed papers assessed the review

MEDLINE 736 363 203

EMBASE 588 64 30

Science Citation Index 1235 43 25

MEDLINE (full text) 66 66 7

BIOSIS 629 5 5

CINAHL 28 2 1

HealthSTAR 21 3 1

Cochrane Library 54 4* 0

International Journal of Technology 862 10 1
Assessment in Health Care

Social Science Citation Index 352 0 0

Total 4571 560 273

† Details of electronic databases are presented in appendix 3
* These were four systematic reviews of technologies that mentioned learning curve effects

0

10

20

30

40
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60

70

80

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Year of publication

Number of studies

FIGURE 2 Year of publication of included studies
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searching the abstract and title only (Table 1).
However, these papers did not contain any 
further novel techniques. Of the 46 questionnaires
sent to experts in the health technology assess-
ment field, 35 (76%) were returned. No extra
studies were identified but additional methods
were suggested.

The double assessment of the 10% sample of
possible studies showed perfect agreement on 
the inclusion of papers (kappa = 1) and very 
good agreement on the methods used (kappa =
0.81). All disagreements were due to a descriptive
method being omitted when split group methods
were also used. This high rate of agreement
convinced us that double assessment of all papers
was not justified. Handsearching of abstracts from
the International Journal of Technology Assessment in
Health Care identified one additional study but 
no new methods.

Included studies
Of the 272 included studies, 140 (51%) assessed 
a surgical minimal access technique such as
laparoscopic cholecystectomy, hernia repair 
or fundoplication (Table 2 ). Other treatment
procedures, such as heart transplantation, were
assessed in 41% of studies and diagnostic
technologies, such as interpretation of MRI 
scans, in 8%. Most of the techniques (96%) 
were performed on humans.

The majority of the studies (95%) were case series.
Only 2% used data collected from an RCT. Study
sizes varied considerably but about 40% were less
than 100 (Figure 3). In 64%, the study addressed
the learning curve for a single operator or a single
institution only. Approximately half of the studies
assessed learning only by individual operators. 
The remainder assessed learning at the level 
of the institution (or both).

TABLE 2  Study characteristics

Study characteristic Number (%)

Type of procedure
Laparoscopic 140 (51)
Other surgical 110 (41)
Diagnostic 22 (8)

Assessed on:
Humans 262 (96)
Animals 6 (2)
Machines 4 (2)

Design
Case series 259 (95)
Controlled, non-randomised 7 (3)
Randomised, controlled 6 (2)

Sample size
0–50 58 (22)
51–200 114 (41)
201–800 59 (22)
> 800 41 (15)

Number of operators or institutions
1 only 174 (64)
2–5 43 (16)
6–20 25 (9)
Over 20 30 (11)

Level of assessment
Operators 128 (47)
Institutions 140 (52)
Operators and institutions 3 (1)
Not operators or institutions 1 (< 1)

Study characteristic Number (%)

Proportion of surgeons performing 
50% of procedures
All 141 (52)
1–10% 7 (3)
11–30% 16 (6)
31–50% 28 (10)
Unclear 80 (29)

Level of care of institutions
Tertiary 98 (36)
Secondary 66 (25)
Mixed (tertiary and secondary care) 23 (8)
Unclear 85 (31)

Data source
Prospective 108 (40)
Retrospective 71 (26)
Registry 10 (4)
Unclear 83 (31)

Prior knowledge of outcome
Prior knowledge 71 (26)
No prior knowledge 101 (37)
Unclear 100 (37)

Type of outcome used to assess learning
Intra-operative – continuous 122 (45)
Intra-operative – dichotomous 138 (51)
(not rare)
Intra-operative – dichotomous (rare) 84 (31)
Intra-operative – categorical 2 (1)
Postoperative – continuous 38 (14)
Postoperative – dichotomous (not rare) 22 (8)
Postoperative – dichotomous (rare) 15 (6)
Postoperative – categorical 1 (< 1)
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A few studies with more than one operator were
dominated by a small number of operators; for
example, fewer than 10% of the operators may
have performed 50% of the procedures. However,
this was unclear in 29% of the studies.

Most studies were performed in either tertiary 
or secondary care centres but the level of care 
was unclear for nearly a third. No studies were
identified in primary care.

The data were collected prospectively in 40% 
of studies and retrospectively in 26% but in the
remaining 34% this was unclear. The outcome 
was known before the analysis of learning began 
in 26% of the studies, was not known in 37%, and
was unclear in 37%. In some studies, data were
collected prospectively but only submitted to a
registry or study after the outcome was known.

The types of outcome used to assess learning were
mainly intra-operative continuous process variables
(45%), such as operation time, and intra-operative
dichotomous outcome variables (51%), such as
complications. Rare intra-operative events were
mentioned in 31% of studies and rare
postoperative events in 6%.

The interrelationship between some of the study
characteristics and the type of technology was also

examined (Table 3). Minimal access studies were
more likely to have fewer than 50 patients (29%)
than studies of other surgical procedures (16%).
The type of variables used to assess learning
differed between minimal access and other 
surgical procedures. Minimal access studies 
more commonly used continuous outcomes 
than dichotomous outcomes (63% vs. 40%). 
This pattern was reversed in the other surgical
studies in which continuous outcomes were less
commonly used (30% vs. 59%). The majority of
diagnostic studies used dichotomous outcomes.

Statistical methods used
The statistical methods for assessing learning in 
the different groups of technologies are described
in Table 4.

Descriptive
In 120 (44%) studies, the data were displayed
graphically as a plot of outcome against experi-
ence or as a table reporting when results or com-
plications occurred within the series (Table 4). In
all studies in this group, this was done without
statistical analysis.

Split groups
The most common statistical method, used in 
165 (60%) studies, involved splitting the data into
groups by ‘experience’. This was usually performed
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TABLE 3  Selected study characteristics by type of technology

Study characteristic Minimal access: Other surgical: Diagnostic:
number (%) number (%) number (%)

Sample size
0–50 40 (29) 16 (16) 2 (9)
51–200 46 (33) 57 (51) 11 (50)
201–800 32 (23) 21 (19) 6 (28)
> 800 22 (16) 16 (14) 3 (13)

Design
Case series 131 (94) 106 (96) 22 (100)
Controlled 5 (3) 2 (2) 0 (0)
Randomised controlled 4 (3) 2 (2) 0 (0)

Type of outcome used to assess learning
Intra-operative – continuous 88 (63) 33 (30) 1 (4)
Intra-operative – dichotomous (not rare) 56 (40) 65 (59) 17 (77)
Intra-operative – dichotomous (rare) 50 (36) 34 (31) 0 (0)
Intra-operative – categorical 1 (1) 1 (1) 0 (0)
Postoperative – continuous 21 (15) 17 (15) 0 (0)
Postoperative – dichotomous (not rare) 4 (3) 13 (12) 5 (23)
Postoperative – dichotomous (rare) 6 (4) 7 (6) 2 (9)
Postoperative – categorical 0 (0) 1 (1) 0 (0)

Statistical method
Descriptive 74 (53) 40 (37) 5 (23)
Split group 71 (51) 74 (67) 20 (91)
Univariate (trend) 19 (14) 14 (13) 0 (0)
Multivariate (split) 3 (2) 1 (1) 0 (0)
Multivariate (trend) 4 (3) 2 (2) 0 (0)
Cusum 5 (4) 1 (1) 0 (0)

TABLE 4  Statistical methods used in included studies

Statistical method Number (%)*

Descriptive 120 (44)
Split groups (no test for trend) 165 (60)
Univariate (trend) 33 (12)
Curve fitting 25 (9)
χ2 test for trend 2 (1)
Pearson correlation 2 (1)
Repeated measures ANOVA 3 (1)
Komolgorov–Smirnoff 1 (< 1)
Multivariate (split – experience dichotomised) 4 (1)
Logistic regression 3 (1)
Cox’s regression 1 (< 1)
Multivariate (trend – experience continuous) 6 (2)
Multiple regression 2 (1)
Logistic regression 3 (1)
Generalised linear mixed models 1 (< 1)
Cusum 6 (2)

* Can exceed 100% in total as some studies used more than one method
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by arbitrary splitting of a series of consecutive cases
for individual operators into halves or thirds. The
means of the two or three groups were then com-
pared by test or ANOVA. If these means differed,
the authors assumed that learning had taken 
place. Alternatively, a chi-squared test was used 
for dichotomous outcomes such as complication
rates. Eight (5%) of the ‘splitting’ studies com-
pared mean operation time between ‘experienced’
operators and ‘inexperienced’ operators, to test
whether the extent of learning differed between
the groups.

Split group methods were used less in minimal
access studies (51%) than in other surgical studies
(67%) (Table 3). Similarly, descriptive methods
were used more in minimal access studies (53%)
than in other surgical studies (37%). The split
group method was generally used for assessing 
the learning curve in diagnostic studies.

Univariate trend
A more sophisticated approach, used in 25 (9%)
studies, was that of fitting a line to the data by 
least squares regression (Table 4 ). A linear relation-
ship between experience and outcome was most
commonly described.20–31 A variety of other curves
were used to describe the learning relationship:
logarithmic,32–35 negative exponential,36,37 double-
negative exponential,38 power form,39 reciprocal,40

quadratic41,42 and cubic.43 In addition to the 
24 papers using least squares regression, Monte
Carlo simulation was used in another paper to
estimate the shape of the learning curve.44

The correlation between experience and 
outcome was tested by Spearman’s correlation
coefficient,45,46 chi-squared test for trend,47,48 or 
a Komolgorov–Smirnoff test.49 In three studies 
an attempt was made to model the relationship
between experience and outcome using repeated
measures ANOVA.50–52

Multivariate (split group)
A number of multivariate techniques were used.
Logistic regression was used in three studies to test
whether there was a relationship between a dichot-
omous outcome and experience.53–55 In another
study, Cox’s regression was used to look for a learn-
ing effect in time-to-event data.56 In all these studies,
adjustments were made for other confounding
factors such as age or sex but the experience
variable was split arbitrarily into equal categories.

Multivariate (trend)
The experience variable was continuous in the
remaining papers. Logistic regression was used in

three papers57–59 and multiple regression in two52,60

to adjust for confounding factors before testing for
a relationship between experience and operation
time. Generalised linear mixed models were used
once.61 From 1996 onwards, multivariate tech-
niques of both types were increasingly reported.

Cusum
A cusum technique was used in six studies.40,44,62–65

Discussion

Systematic search strategy
The aim was to describe the ‘epidemiology’ of 
the statistical methods that investigators have used
to assess learning in health technology assessment.
To avoid bias, a systematic approach was used to
identify relevant studies and to extract data. To
make the task manageable, the search strategy 
was kept sufficiently specific to avoid highlighting 
a large number of irrelevant papers. Even limiting
this strategy to searching for ‘learning curve’
produced nearly 5000 abstracts requiring assess-
ment. Exploratory searching using other search
terms made it clear that the dividend was not
worth the resources required. Full text searching 
in MEDLINE allowed the assessment of how 
many relevant articles might have been missed 
as a consequence of basing the search on titles 
and abstracts only. In the event, this did identify
seven (3%) studies that would otherwise have 
been missed; however, these studies did not 
use any statistical method that had not been
identified elsewhere.

Further searches for other statistical techniques
were undertaken after performing the review of
the included studies. After identifying additional
statistical methods known to us that could have
been used to assess learning in the clinical field, 
a new strategy was created to search for these 
and the abstracts generated were assessed for
relevance to learning curves. No evidence was
found indicating that any of these had been used
for this purpose, so it is considered unlikely that 
an important technique has been missed.

Approximately three-quarters of the included
studies were identified on MEDLINE. This 
reflects the ordering of searches as MEDLINE 
was searched first. As 70 studies were identified
only in databases other than MEDLINE, this
confirmed the importance of broader searching.

Use of the term ‘learning curve’ increased over
time. During the early 1980s, the term was rare 
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and mainly related to organ transplantation. The
increase since the late 1980s coincided with the
introduction of minimally invasive procedures,
especially laparoscopic cholecystectomy. However,
some 40% of included studies related to other
surgical procedures. Only 8% of included studies
related to diagnostic methods.

Proxies for learning
Two types of variable were used to assess learning
in the 272 studies – measures of patient outcome
or quality assurance and measures of clinical
process or task efficiency.18 Unfortunately, the
patient outcomes used, although acceptable
proxies for the goals of healthcare, tend to be
dichotomous rare events like complications or
survival, which are relatively intractable to statis-
tical analysis. This may be why, in most studies,
continuous process measures were chosen; typical
examples in surgery were the time to complete 
an operation and the period of hospitalisation. 
In minimal access surgery, operation time was
more commonly used to assess learning than in
other surgical procedures. Although operation
time is relatively easy to collect, it is only a weak
proxy for learning and does not necessarily relate
to proficiency.63,66 As Darzi and colleagues66

pointed out, “measuring competence merely 
by setting time targets for certain procedures 
is crude and probably unacceptable”. Other
proxies have been suggested, such as movement 
of instruments66 or ‘near misses’,67 but these too
are probably weak proxies for patient outcome
and, hence, learning.

Statistical methods used
This review confirmed that the statistical methods
used to assess learning in health technology assess-
ment have almost always been crude. A substantial
number of studies (44%) have relied upon descrip-
tive data to claim learning without any formal
statistical testing.

The most common formal approach was the split
group method. Often papers gave no rationale for
the cut points, raising concerns about bias caused
by data-dependent splitting. Arbitrarily splitting the
data into halves was not uncommon. Yet it takes a
minimum of three points before a trend can be
characterised. Even when splitting suggests that
learning has occurred, it is not possible to describe
the underlying curve or to identify where on that
curve particular operators lie.

A univariate test for trend using curve-fitting
procedures was the most commonly used of the
more advanced techniques. Papers used a variety

of different shapes but rarely gave a rationale 
for that selected. A linear relationship was often
described but this could reflect the fact that the
series was too short and the operators had not yet
reached their final asymptote or plateau.

Multivariate techniques that adjust for a drift in
case-mix are more robust and potentially useful 
for investigating trends over time. Unfortunately,
in the studies identified the potential of these
methods had not been maximised. Firstly, some
studies dichotomised the experience variable and,
thus, have limitations similar to the split group
studies. Secondly, few studies have attempted to
model inter-operator differences.

The cusum technique has been advocated as a
method for monitoring surgical performance.67,68

The technique can be useful for identifying when
an operator begins to perform poorly but it is not
so effective for describing inter-operator differ-
ences. The appropriate use of this method within 
a health technology assessment based on an 
RCT remains unclear but is useful for 
exploratory analysis.

The assessment of learning curves in diagnostic
technologies was not the primary aim of our study
but operators have been compared through
receiver-operator characteristic curves.69

Individual or institutional learning
The included studies generally considered 
learning only within an individual operator or
institution. While this approach is useful in looking
for learning curves, it suffers from three inherent
weaknesses. First, since there is no comparison 
with other operators or institutions, it is difficult 
to assess where an operator is on the learning
curve. Second, it is difficult to use rare compli-
cations to assess whether there is a relationship
between experience and complication rate 
for one operator. Finally, these problems are
aggravated by the tendency of single-operator
studies to rely on retrospective data collection 
from medical records, raising concerns about 
the danger of biased abstraction.

It is therefore desirable to obtain prospective 
data on many operators or institutions. In partic-
ular, the creation of data registries for specific
technologies could provide a resource for assessing
learning curves. To avoid bias, such registries
should be prospective and outcomes should 
not be collected before a patient is registered.
However, the continual updating, disseminating
and funding of such registries is difficult.70
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Learning by individuals and by institutions are
inextricably linked. Institutional learning adapts
processes like those governing referral, patient
selection and aftercare to the circumstances of 
the new technology. At the same time, individual
operators refine their skills in performing the
procedure. Any statistical analysis of learning
curves should account for this inherent hierarchy.

RCTs
Nearly all the included studies were case series,
only five (2%) being RCTs. However, this could
reflect the search strategy. Assessing the learning
curve seems more likely to be presented as only 
a small part of the analysis of a clinical trial and,
hence, is less likely to be mentioned in the
abstract. The Cochrane Register of Controlled
Trials was therefore searched in an attempt to 
find more RCTs that assessed learning; however,
none were found.

Initial patients receiving a particular technology
tend to be either relatively more fit or relatively
more sick than those for whom it is later judged 
to be appropriate.7,18 Within a randomised
comparison, such a drift in case-mix will apply 
to both groups equally and can be taken into
account during analysis.

There are strong arguments that assessment 
of non-pharmacological technologies should in-
clude a pragmatic randomised trial and that this
should start as soon as feasible.12 Nevertheless, it is
recognised that this will not be the only element 
of assessment. Many assessments will include a 
pre-randomisation phase of observational data
collection as the technique is developed or refined.
Thus, methods for evaluating learning in these
studies are also needed. Such methods would also
help to decide whether and when an operator has
reached a particular level of competence, and to
monitor subsequent performance.

Conclusions

Implications for designing studies
This review has implications for the design of
studies, including RCTs. The experience of
operators should be collected during a study. 
If this is done, the investigators can look for 
trends over time throughout the study. As it is
unlikely that every patient having a new pro-
cedure will be included in a randomised trial, 
it would also be important to record the 
number of procedures performed between
randomised patients.

Implications for reporting 
primary studies
Completed studies need better reporting of 
the key factors that may be related to the learning
curve. As a minimum standard, the number and
experience of the operators, the data source and
the level of care should be explicitly mentioned.
This review has shown poor reporting of these
factors, causing problems with interpretation and
generalisation. In particular, an unreported data
source implies that the validity of the study should
be viewed with caution. The level of care could 
also affect the learning curve; for example, the
reporting of results from a tertiary care institution
might not be generalisable to secondary care.
Finally, to be confident that the aggregated 
results of a multi-operator study were not influ-
enced by a single operator performing most 
of the procedures, the proportion of surgeons
performing half of the procedures is important.

The difficulties of assessing health technologies
with learning curves could be better addressed 
if rigorous statistical methods were available for
measuring and, hence, adjusting for learning.
Randomisation could begin as soon as possible
consistent with safety and the completion of basic
training,12,14 and continue until well after the
learning curve has stabilised. The subsequent
analysis would estimate both the point at which 
the learning curve stabilised and the level of
performance achieved (both to within a con-
fidence interval (CI)). These two estimates 
would lead to two distinct but complementary
evaluations. The first evaluation would focus 
on the benefits and costs of introducing the 
new technology; the second on the benefits 
and costs of the new technology in steady state.
While the second evaluation would play the 
major role in deciding where and when a new
technology should be adopted, the first would
influence how it should be introduced and 
what additional training and precautions 
were needed.

Implications for further research
This first component of this study has shown 
that currently used statistical methods are not
sufficiently rigorous. There is a need for methods
that can estimate the rate and length of learning,
together with the final skill level. These should 
also be capable of exploring and estimating
differences between individual operators. In 
the next chapter the search for such techniques 
is described, notably in fields where learning
effects have been of concern, such as 
psychology and engineering.
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Introduction
The first phase of the project, described in 
chapter 2, showed that the reporting of studies
describing the learning curve effect in health
technologies could be improved and that the
statistical methods used had been sub-optimal. 
A clear need for more sophisticated statistical
methods for describing learning curves 
was identified.

Learning curve effects have long been described
outside health technology assessment and this is
why the search for statistical methods was moved
outside the health field. As early as 1936, Wright71

observed that the manufacture of aircraft followed
a learning curve – that is, as more aircraft were
built, the amount of human labour (and hence
cost) to produce each aircraft reduced in a curve-
like relationship. He used this relationship to
predict the level of labour requirements in the
future. The effect was attributed to the skill of 
the manufacturers increasing over time. The 
term ‘learning curve’ became part of everyday
language from the 1960s as many psychological
studies of human skilled performance were 
carried out. Fitts and Posner72 summarised 
the large amount of literature characterising
quantitative and qualitative changes in skill that
occur with practice. Much of this work was in
finding the correct slope of the learning curve; 
for example, a number of studies have suggested
that learning follows a power model of learning71–74

or some variant of it.75 Commonly, only simple
perceptual-motor tasks were studied and sub-
sequent research in applied psychology and 
human factors has sought to apply it to more
complex tasks.73

The searches were extended into these other 
areas (such as psychology and engineering) with
the aim of finding ‘novel’ techniques that had 
not been used in health technology assessment.
These techniques were either those that had 
not been identified in the search of the clinical
literature or those that improved an existing

technique. The novel techniques also had to 
model or summarise data from learning curves
(performance changes). The results of this search
are described here.

The search was for methods that would allow
estimation of rate and length of learning, provide 
a proxy for final skill level and allow individual
operator differences to be explored and estimated.
Of particular interest were ways of describing 
the learning curve effect using binary events 
(for example, presence or absence of compli-
cations), especially for the case in which the 
events are rare.

Methods

Systematic electronic bibliographic
database searching
First, clinical databases were explored for 
further non-health technology assessment use 
of methods for assessing learning. The search 
was then extended into other fields, with advice 
on the most important databases being taken 
from experts in these fields. The searches were
incremental, in the sense that the product of 
each search is the extra dividend obtained 
from that database after excluding duplicates
found previously.

To optimise the return on resources available, a
specific (i.e. focused) search was developed for
each database. The most specific search terms 
were chosen and are shown in appendix 2. Details
of other less specific terms tested, but rejected
because they retrieved too many irrelevant studies,
are also given in appendix 1. There were no
language or other limits applied to the search
strategy. Search terms describing complex statis-
tical techniques and terms searching for binary
events were also tested and are presented in
appendix 2.

Systematic searches were made of 22 electronic
databases (see Table 5).

Chapter 3

A systematic identification of methods 
for assessing the learning curve in 

non-clinical literature 
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• Clinical databases Many of these also include
journals from other fields and specialities. For
example, MEDLINE includes a number of
psychology journals. Six clinical databases 
were searched.

• Non-clinical databases In all, 16 non-clinical
databases were searched for a 10-year period
from 1989, unless otherwise stated.

A description of each database is given in 
appendix 3.

Full text electronic databases searched
systematically
As in the first phase of the project, the full texts 
of selected journal articles were electronically
searched to estimate the number of articles that

TABLE 5  Summary of the literature searches

Database† Field Number of Possibly relevant Relevant papers
abstracts papersa

Clinical databasesb,c

MEDLINE Index Medicus 736 5 3
EMBASE Excerpta Medica 588 5 1
CINAHL Nursing and allied 28 0 0
HealthSTAR Health research 21 0 0
ISI Science Citation Index Science 1235 9 0
BIOSIS Biologyd 629 0 0

Clinical total 3237 19 4

Non-clinical databasesc

RSC Chemistry 13 0 0
ISI Social Science Citation Index Social sciences 352 17 4
ISI Arts and Humanities Citation Index Arts/humanities 10 0 0
PsycLIT Psychology 242 17 3
IBSS Economics 26 0 0
ISTP Scientific conference 67 0 0

proceedings
Ei Compendex/Page One Engineering 346 3 0
SOCIOFILE Sociology 11 0 0
ABI/INFORM Business 562 2 0
ECONLIT Economics 50 0 0
CAB abstracts Agriculturee 17 0 0
INSPEC Engineering 255 0 0
IngentaJournals Online Many topics 14 0 0
Index to Theses (GB & Ireland) Theses 8 0 0
Dissertation Abstracts Theses 147 0 0
NASA Technical Reports Server Space/aviation sciences 353 0 0

Non-clinical total 2473 39 7

Other sources
Other terms tested in electronic databasesf 3375g 32h 1i

Experts in the field 61b 8 4 
Reference lists (of relevant papers + other lists) 21 2 2
Citation indices 264j 15 0
Total other sources 3721 57 7

Total 9431 115 18

† Details of electronic databases are presented in appendix 3
a Full papers assessed if technique not previously used in health technology assessment
b Excludes health technology assessment
c Search term: learning curve*
d Included clinical and experimental medicine
e Also includes forestry, animal health and environmental sciences
f Known methods; binary terms; skill acquisition; learning effect; slips & mistakes; other terms 
g Known methods, 709; binary terms, 813; skill acquisition, 503; learning effect, 266; slips & mistakes, 245; other terms, 839
h Known methods, 19; skill acquisition, 6; binary terms, 5; other terms, 2
i From curve analysis
j Number of key papers used = 13
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described the assessment of the learning curve in
the body of the report – a finding that would not
have been identified by searching the abstract 
and title only. To do this, Ingentajournals database
was used; this provides access to full text versions
of a range of academic journals produced by 
BIDS (over 550 journals covering economics,
engineering, mathematics, psychology and other
subjects) on BIDS online. The search strategy 
used is presented in appendix 2.

Other methods of ascertainment 
of articles
The reference lists of included articles and other
articles of interest that had used novel statistical
techniques were followed-up to identify further
relevant reports. Citation indices were used to
track the subsequent citation of relevant reports. 
A number of experts in the field were contacted
also and asked to identify any other relevant 
novel techniques.

Handsearching was considered but no journals 
were identified in which this was likely to lead to 
a substantial dividend in terms of extra relevant
articles identified. This reflected the spread 
of the relevant literature across many fields 
and journals.

Identification of possibly 
relevant articles
References to all possibly relevant articles were
electronically imported or manually entered 
into the software package Reference Manager 
(v. 9.0 N: ISI ResearchSoft, USA). Details of the
source of articles were added. To assess subject
relevance, all electronically derived abstracts and
titles were read by one statistician. An abstract was
deemed possibly relevant if the study was not a
health technology assessment, the body of the
abstract referred to the statistical modelling of a
learning curve, and the statistical method used 
had not previously been identified. A subject
expert assessed full copies of articles for subject
relevance, eligibility and methodological quality.
The assessor was not blinded to author, 
institution or journal.

Inclusion criteria
To be included in the review, a study had to 
assess a learning curve formally using a novel
statistical technique. These were categorised 
into four subgroups of increasing complexity.

• Exploratory data analysis: techniques that 
do not estimate statistical parameters or test
hypotheses. These included graphical 

displays of data or the creation of cusums of
consecutive cases.19

• Simple series data analysis: techniques that 
use data collected on a single operator or
summarised over many operators. For example:
(a) a t -test that compared the mean operation
time for the first 50 procedures with the mean
time for the next 50; (b) a study of ten operators
performing 20 procedures each, in which the
data were analysed as the average performance
of the ten operators; (c) fitting the best shape of
curve to each individual operator’s performance
and describing the various shapes that these
curves took.

• Complex data structure analysis: techniques
that used data collected on many individuals
and measured both differences between
individuals and the overall pattern of learning.

• Generic techniques: techniques that could be
applied to both simple series and complex 
data structures.

Double assessment
A second statistician independently assessed each
included study. Any differences of opinion were
resolved by discussion.

Results

Literature search
The numbers of possibly relevant abstracts
generated by the systematic searches are shown 
in Table 5. Of 9431 abstracts assessed, 115 (1%)
were deemed appropriate for further investigation.
Of these, 18 were later judged on review of the 
full paper to describe a novel technique or to 
make a significant addition to a previously
recognised technique. The dividends from each 
of the searches are also shown in Table 5. Of 
the 18 included studies, four were identified in
Social Science Citation Index and three each 
from PsycLIT and MEDLINE. A complete list 
of all 18 studies is given in the references to 
all included studies (see page 80).

Of the 61 questionnaires sent to experts in their
fields, 50 (82%) were returned. Four additional
methodologies were suggested. The reference 
lists of the selected papers produced two other
novel techniques.

The most useful single term in the electronic
searching was ‘learning curve*’ across a broad
spectrum of databases, identifying 58 possibly
relevant articles of which 11 were actually useful.
Of the other terms tested, skill* + (acquir* or
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acquisit*) appeared the most promising with six
potentially relevant papers; however, on assessment
of the full papers, none were relevant and this
term was therefore abandoned. Other specific
terms were also tested: those related to known
methods and those describing binary type data 
in some of the major electronic databases in other
fields. These produced very few possibly relevant
abstracts of papers and none of these proved
relevant; these terms were therefore not pursued
further. No studies were identified in which an
attempt was made to model rare, binary events 
in a learning curve.

Included techniques
The 18 included papers were categorised in two
ways: shapes of learning curves (Table 6 ) and
statistical techniques (Table 7 ). In Table 6 the 
curves are presented that were identified from 
the health technology literature on learning 
curves (top), together with the additional eight

shapes identified from the non-health technology
assessment search (bottom). All of the newly
identified curves had a similar basic shape that
decreased to an asymptote. The additional curves
came from psychology,72,74,76,77 manufacturing78,79

and aviation.80 The most widely cited shape of
learning curve across all fields was the power 
law (of practice). All of the shapes presented 
in Table 6 may be assessed using the ‘curve 
fitting’ techniques that are available in most
statistical software packages.

The statistical techniques that were previously
identified in the health technology assessment
literature and the dividend from searching the
non-health technology assessment literature are
presented in Table 7. A number of techniques 
were identified for exploratory data analysis 
and simple series data in the health technology
assessment literature but none were identified 
that analysed learning curve effects using 

TABLE 6  Shapes of learning curves

Type of curve Equation§

Curves previously used in health technology assessments
Linear y = a + bX

Quadratic y = a + bX + cX2

Cubic y = a + bX + cX2 + dX3

Power law (asymptote at zero) y = bX–c

Reciprocal b
y = a + ––

X

Exponential y = ae–bX

Double exponential y = ae–bX + ce–dX

Logarithmic y = a ln X + b

Potentially useful curves identified outside health technology assessments
Power law (with non zero asymptote) y = a + bX–c

Log-log–linear model ln y = a (ln (X + 1))b

Log–linear curve ln y = aXb

Logistic curve a
y =

1 + becX

Weibull curve y = a – be–cX
d

Exponential difference equation ξ (X) = a – [a – ξ (X – 1)] e–b

Cumulative performance curves
k

n

y = ∑ X–s––
X

X = 1

Exponential cumulative performance curves y = (an – 1)(b – c) + c
(a – 1) n

§ y denotes the continuous outcome (for example, ‘time’) and X denotes the case sequence number (for example, X = 1 is the first
procedure, X = 2 the second, and so on)
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complex structured data techniques. In contrast,
the non-health technology assessment studies
described a number of potentially useful
techniques for assessing learning curves using
complex structured data that had not been
identified in the health technology assessment
literature. A brief outline follows of the more
complex methods and the studies in which 
they were used.

Discriminant analysis
One study measured active avoidance learning 
in 24 rats with streptozotocin diabetes and com-
pared these with 27 control rats over 100 consecu-
tive trials.81 The average final success rate (asymp-
tote), latency (the period from initial point to 

50% success level) and rate (number of trials 
to reach asymptote) were measured. These
measurements were then used in a discriminant
analysis to search for subgroups of rats with similar
learning characteristics.

Two-stage estimation of learning rates
This study involved 115 students performing a
simulated air traffic control task on 18 consecutive
trials.76 The simulation had three task components:
accepting aircraft into the airspace, moving aircraft
in a three-level hold pattern, and landing aircraft
on appropriate runways. The number of correct
landings per trial was the outcome of interest 
and individual learning curves were estimated 
by two-stage estimation using a negative

TABLE 7  Techniques used to detect the learning curve

Techniques previously used in health technology assessment

Exploratory data analysis
Graphical
Cusum techniques

Techniques for simple series data
t-test, one-way ANOVA
χ2 test (for trend)
Repeated measures ANOVA*
Curve fitting
Multiple regression*
Logistic regression*

Techniques for complex structured data
None identified

Techniques that can be applied to both simple and complex data types
None identified

Potentially useful techniques identified outside health technology assessment

Exploratory data analysis
None identified

Techniques for simple series data
Curve fitting

Techniques for complex structured data
Discriminant analysis*
Two-stage estimation of learning rates 
Generalised estimating equations
Multilevel models
Latent curve models
Time series models (ARIMA)
Stochastic parameter models

Techniques that can be applied to both simple and complex data types
Generalised linear models

* These techniques are special cases of generalised linear models
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exponential curve. This is a relatively simple
procedure that can be applied using most 
standard statistical packages.

Generalised estimating equations
Generalised estimating equations allow the cor-
relation of outcomes within an individual to be
estimated and accounted for in any subsequent
analyses.82,83 This procedure is similar to the 
two-stage estimation procedure above but is
strengthened by the fact that the estimates 
are obtained iteratively, not just in two stages.

Multilevel models
This method has been increasingly used in 
clinical research84,85 and involves partitioning 
the variability between and within hierarchies in
the data set (learning curve data have an inherent
hierarchy – individuals performing multiple
procedures). Multilevel models could have been
applied to the air traffic control task in the earlier
study.76 In that case, the students would have 
been the highest hierarchy (level) and the 
18 trials recorded for each student would be 
the lower level units.

Latent curve/stochastic parameter/
ARIMA models
Both latent curve models and stochastic 
parameter models are specialised cases of struc-
tural equation models.86 In both cases, factors are
calculated for each individual’s asymptote, total
growth (increase from first to last trial) and rate of
growth. The complex structured data techniques
identified are completed by time series modelling
using autoregressive integrated moving averages
(ARIMA) models. A comparison of these three
methods was made using data from a study that
measured 137 US Air Force personnel performing
an air traffic control task on six occasions.87 Again,
the number of correct landings per trial was the
outcome of interest.

Generalised linear models
Generalised linear models were included as a
method that could be applied to both complex
and simple structured data. Multiple and logistic
regression are used in generalised linear models
that have been used in the clinical literature to
assess learning curves of individual operators. 
They have not, however, been used to assess
differences between operators (although they
could have been).

Other included papers
In addition to the papers included so far, two 
other papers were added. The first was a paper 

by Baloff and Becker88 that discussed the 
danger of using an aggregated learning curve. 
The authors described how the aggregation of
curves for many families results in curves that 
are different from the individual curves being
aggregated. For example, the individual curves
could be step functions but, when aggregated, 
they yield a continuous group curve (exponential
or sigmoid) that does not describe any of the
individual functions. This problem is not 
restricted to step functions. Hayes89 demonstrated
that aggregating convex exponential functions 
can result in a concave exponential function 
and that aggregating exponential functions can
yield a sigmoidal function. Sidman90 has also
shown that aggregating linear learning curves 
with different learning rate parameters can, in
theory, yield an exponential function. Estes
summed up the problem:

“…the uncritical use of mean curves even for such
purposes as determining the effect of an experi-
mental treatment upon rate of learning … 
is attended by considerable risk.”91

The final paper included was by Delaney and
colleagues92 and described a study in which the
aggregated operator learning curve was sub-
stantially different from the individual 
operator’s learning curves.

Discussion

The primary aim of this phase of the project 
was to search the non-health technology assess-
ment literature to identify novel statistical
techniques that could be used to assess the
learning curve effect in health technology
assessment. A range of potential sources was
searched systematically. An incremental 
approach was used, based on formal assessment 
of full papers whose abstracts suggested that 
the statistical techniques used had not been 
identified previously.

The resources required for the searches were con-
siderable. Even limiting searches to simple search
terms identified approximately 10,000 abstracts
that required assessment. The apparently poor
cross-fertilisation of techniques between fields
meant that there was concern about missing 
useful methods. An alternative search strategy
would have been to select a few key databases 
and to explore thoroughly the keywording in 
these . A decision was made against this and in
favour of covering a broad range of non-health
technology assessment fields. Nevertheless, even 
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when no relevant papers were identified from 
a database it may not mean that it contained
nothing of relevance, but rather that the 
searches were too limited. The authors were 
also aware of other databases that might have 
been useful but had insufficient resources to 
assess them fully (for example, ASSIA PLUS, 
Ergonomic Abstracts and the educational 
database, ERIC).

In all, 18 papers were identified in which a novel
technique was used. Because an incremental
approach was used, the order of searching each
database influenced the number of relevant 
papers identified. For example, some of the
relevant papers in PsycLIT were also identified 
in the NASA [National Aeronautics and Space
Administration] database. Contacting experts in
the field proved one of the most fruitful sources 
of relevant studies. Four of the 18 relevant papers
were identified by this method. It is recommended
that reviews of methods used in other fields 
should include this approach.

The novel techniques that were found were cate-
gorised into shapes of learning curves and tech-
niques for modelling learning curves. This reflects
an important distinction between methods for
identifying a learning effect and those for measur-
ing (characterising) a learning effect. Fitting a
particular shape of learning curve to the data 
can be used initially to assess if there is a trend
over time, whereas the comparison of many
different shapes measures the learning effect; for
example, best estimates for the asymptote or rate
of learning can be obtained. The more advanced
modelling techniques then use the ‘best’ shape 
of individual curves to explain observed differ-
ences between operators.

An extra eight shapes of curves were identified. 
In contrast to the health technology assessment
literature, the non-health technology assessment
literature tended to give rational explanations for
the shape of curves used; for example, Newell and
Rosenbloom74 give a ‘chunking’ theory of learning
to explain a power-curve type of relationship. The
health technology assessment literature tended 
to describe fitting a curve without explanation for
the choice of shape or comparison of different
shapes. It is recommended that any analyses of
health technologies using simple series data 
should consider the likely shape of the learning
curve a priori, bearing in mind that there are a
number of different types of learning curves. 
The type of technology, for example, may
influence the shape of the curve.

The ability to describe a learning curve is 
often limited by the type of data collected. 
For example, to assess the effect of learning
rigorously will often require data from more 
than one person. That data were often limited 
to a single operator might have been the explan-
ation for the relatively simple statistical tech-
niques employed in the health technology
assessment literature. However, the systematic
review of this literature found that 35% of studies
had more than one operator but used an analysis
of the mean effect. It is well recognised that the
shape of an individual learning curve is not
necessarily the same as the average shape of
many individuals.88 The use of such averaging
should therefore be applied with caution.
Another limitation is the availability of software
to perform many of the methods. The more
sophisticated the method becomes, the more
difficult it is to find a standard statistical package
that can perform it. For example, multilevel
models are available through MLWin software93

and the SAS PROC MIXED procedure.

Nine novel statistical techniques for measuring
learning curves were identified that had not
been found in the health technology assessment
field. The non-health technology assessment
fields used methods that were more sophisti-
cated and this was reflected in the hierarchy 
of methods that were identified. The techniques
used for complex structured data were only
identified in the non-health technology assess-
ment literature. There are clear advantages in
using these – a measure of how an individual
operator performs is obtained, together with a
measure of how the operator is performing in
relation to other operators in the study. This
enables investigators to explore the influence 
of each operator in a study. These methods 
also use more data and are statistically 
more powerful.

Thus, there is a hierarchy of statistical methods
that can be used to analyse learning curves. It is
not advocated that all learning curve analyses
should use the most complex methods, rather
that they should employ the simplest method
that can answer the questions being posed. 
The methods used should be parsimonious; 
that is, they should not use more parameters
than are necessary. For example, if a Weibull
curve and exponential curve produced similar
results, then the exponential curve would be
preferred since it only requires two parameters
to be estimated rather than the four required 
by a Weibull curve.
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Conclusions
Implications for literature searches
addressing methodological problems
This study shows that when investigating a
methodological problem in clinical evaluation,
searches should not be confined to the clinical
field. Many methods begin in fields outside
healthcare. The task can expand very quickly,
however, so it is suggested that any searches 
should be kept specific in the first instance. 
When searching non-clinical fields, it is very
helpful to get an expert from that field to 
identify appropriate sources.

Implications for simple series 
data analyses
In reality, the shape of an individual operator’s
learning curve is unlikely to follow precisely the
curves that have been identified. There is often 
a drift in case-mix as the operator becomes more
experienced; for example, the operator may
perform the procedure on increasingly difficult 
(or easier) cases. This can exaggerate or conceal
the learning curve. Reliable and robust statistical
techniques for adjusting clinical outcomes for 
case-mix effects are required and it is suggested
that analyses of single operators adjust for these
factors, for example, using logistic or multiple
regression. These techniques may not work for
binary outcomes if they are rare. No statistical
methods were identified that modelled them in
learning curves.

Implications for data collection in
clinical trials
The reviews of published research have shown 
that the effects of learning curves on the outcome
and interpretation of clinical trials are not clear 
at present. Statistically adjusting or investigating
individual operators’ experience in clinical trials
would be a first step to better understanding. 
This would require systematic data collection of
factors known to influence the learning curve.
Such factors include the number and order of
procedures that an operator performs, the 
number of procedures performed before entering
any patients into the trial, and an approximate
estimate of the number of procedures performed
between randomised patients (as not all pro-
cedures are necessarily randomised). Without 
data on the individual operators during the trial, 
it is not possible to apply complex structured 
data techniques.

Implications for conduct of 
clinical trials
In the past, there has been controversy over the
timing of the assessment of those technologies 
that need some form of learning before they are 
at their most effective or efficient. Early assessment
is open to the criticism that a new technology is 
at a disadvantage because operators are not fully
proficient. Late assessment runs the risk that
operators will draw their own conclusions 
about the advantages and disadvantages 
of a new technology.10

In the authors’ view, the portfolio of statistical
methods described in this chapter opens the 
door to another approach. Randomisation could
begin as soon as possible, consistent with safety 
and the completion of basic training, and then
continue until well after the learning curve 
has stabilised. The subsequent analysis would
estimate both the point at which the learning
curve stabilised and the level of performance
achieved (both to within a CI). These two 
estimates would lead to two distinct but com-
plementary evaluations. The first evaluation 
would focus on the benefits and costs of
introducing the new technology; the second 
on the benefits and costs of the new technology 
in steady state. While the second would play 
the major role in deciding where and when 
the new technology should be adopted, the 
first would influence how it should be intro-
duced and what additional training and
precautions are needed.

Implications for further research
A number of more sophisticated statistical 
methods have been found that could be used 
to model the learning curve effect during 
health technology assessments. The relative
performance of these methods requires assess-
ment before general recommendations can be
made. Some of these methods are explored
empirically in the next three chapters, using 
health technology assessment data sets known 
to exhibit learning effects. All of the data sets 
used are related to laparoscopic surgery (fundo-
plication, cholecystectomy and groin hernia
repair). This choice was pragmatic, in the sense
that there had been a documented learning 
curve effect for these technologies. However, 
it should be borne in mind that it is not known
whether these results will be transferable to 
non-laparoscopic technologies.
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Introduction
Some of the statistical methods identified in 
the previous chapters for simple series data are
illustrated and explored here, using a case series 
of 190 consecutive laparoscopic fundoplication
procedures performed by a single surgeon. In
particular, the aims were:

• to compare statistical methods for identifying
learning curve effects when using continuous
measures of performance

• to compare the various possible shapes of the
learning curves identified through the syste-
matic searches described in chapters 2 and 3

• to explore statistical methods for identifying
learning curve effects when using dichotomous
measures of performance.

Case series designs
The majority (95%) of studies in which the
learning curve issue in health technologies were
assessed are case series (see chapter 2). The
limitations of this design (i.e. the fact that there 
is no control group or a potentially biased one) 
are less important in the context of learning
curves, where the interest is in changes over time
in a technology rather than in comparisons with 
an alternative form of care. Furthermore, case
series do have advantages. Recruitment is relatively
easy and all those treated using the new technology
can be included in the study. The main concern is
that changes over time, in the types of people on
whom the procedure is used, may hide or distort
any learning effect. However, as discussed further
below, changes in case-mix can be monitored and
the analyses subsequently adjusted accordingly for
any known prognostic variables.

As discussed in the earlier chapters, the statistical
methods that can be applied to learning curve 
data are primarily influenced by three factors.
These are: the size of the data set, its complexity
(single or multiple operators), and the type of
variable (continuous or dichotomous) that is 
being used as the proxy for learning. In chapter 3,
a number of statistical techniques available for
investigating learning curves in single series data

were described. These ranged from methods for
identifying learning curves (such as graphical
techniques) to methods for measuring the
magnitude of the effect (such as curve fitting), 
and it was argued that the strengths and weak-
nesses of the different methods required 
further investigation.

Laparoscopic fundoplication
From the early 1960s, Nissen fundoplication has
been the surgical technique used most frequently
in the management of patients with gastro-
oesophageal reflux disease (GORD).94 In this
operation, part of the stomach is wrapped around
the lower end of the oesophagus. It is a traumatic
operation when conventional techniques are 
used because of the difficulties of surgical access.
Developments in ‘keyhole’ surgical techniques
have greatly reduced the surgical trauma associ-
ated with the procedure, and there has been a
dramatic increase in laparoscopic fundoplication
since the procedure was first reported in 1991 by
Dallemagne and colleagues.95 It is widely accepted,
however, that the laparoscopic procedure is tech-
nically demanding. Reflecting this, studies have
shown that performance does change over time:
early operation times tend to take longer and
technical difficulties are more common.96–99

Watson and colleagues,96 for example, used 
data describing 280 laparoscopic fundoplications
performed by 11 surgeons to show that the rates 
of complication, reoperation and conversion 
were higher for the first 20 patients in a series 
than for later patients. The surgeons were
subsequently categorised as ‘early’ or ‘late’,
depending on whether they were the first to use
the procedure in their institution or whether they
began doing the operation at least 18 months 
after the first laparoscopic fundoplication had
been performed in their hospital. The results
suggested that problems could be reduced by
experienced supervision. There was no attempt 
to measure these relationships statistically, how-
ever. Estimates of the number of cases that were
considered to constitute the learning phase 
ranged from 20 to 30 but no explanation was 
given of how these figures were derived.

Chapter 4

Single case series data – a case study of
laparoscopic fundoplication 
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Methods

The laparoscopic fundoplication data set
The first 190 patients of one consultant surgeon
comprised the case series used in the analyses for
this chapter. These patients underwent laparo-
scopic surgery for GORD in Aberdeen over a 
5-year period between August 1993 and August
1998. The indications for surgery included failed
medical therapy with either persisting symptoms 
of pain or volume regurgitation, intolerance of
medication, or a patient’s wish to avoid long-term
medical therapy.

Information was collected prospectively on 
patient demographic characteristics and operative
technical details. These data were supplemented 
by case-note review to extract information on
preoperative symptoms, drug management and
investigations. Endoscopic, radiological and
physiological data were recorded, although not 
all patients had all the investigations. Patients 
were reviewed at 4–6 weeks postoperatively.

Continuous measures of performance
Exploratory techniques
Scatter diagram
The first exploratory method described in chapter
3 for addressing a learning curve in case series data
was drawing a scatter diagram of the continuous
proxy measure of learning against the sequence
number (1, 2, 3, …, n) of the procedure. The
sequence number is determined by ordering 
the cases by date of procedure, with the earliest
procedure being allocated the number one, the
next earliest number two, and so on until the 
final procedure is allocated n (the total number 
of cases in the series). The scatter diagram can 
be used as a visual aid to look for trends or
patterns over time.

Moving averages
In practice, it can often be difficult to observe a
pattern in serial data because of variability in the
observations. In this situation, a simpler summary
measure of the learning variable can be obtained
by using moving averages of the series. A moving
average of a series of data points is a method for
accentuating important trends in the data, while
playing down the random fluctuations that are
invariably present in this type of serial data.100 In
other words, moving averages attempt to smooth
the data. This procedure averages a number of
successive observations centred on the time point
of current interest. The order of the moving
average is derived from the number of obser-
vations that are used to summarise the data from

each point. Thus, a moving average of order 3 
uses the current point of interest and the point on
either side of the current point. This is illustrated
in Figure 4.

In general, a moving average of n data points 
{y

t
: t = 1, …, n} is another series, s

t
say, defined by:

p Equation 1
s

t
= ∑ w

i
y

t + i
: t = p + 1, …,n – p

i = – p

where p is a positive integer and w
i
are weights,

with ∑w
i
= 1. The order of the moving average is 

2p + 1. It should be noted that this formula gives
no moving averages for observations at either end
of the series. For example, in a moving average 
of order 3, no value is calculated for the first and
last observations in the series. There are ways to
extend the above formulation to take this into
account100 but, for most practical applications,
there are enough data points in the series to 
make this unnecessary.

Data splitting
A commonly used approach to assessing learning
within case series (see chapter 2) is to split the 
data into consecutive time blocks and calculate 
the mean and variability of each segment. Differ-
ences between groups can be tested using the
Scheffe pairwise multiple comparison procedure101

and a trend across groups can also be tested. 
As discussed in chapter 2, this approach gives
limited information about the nature of the
learning curve; these limitations are illustrated
later in this chapter.

Simple series data statistical techniques
Curve fitting
A number of possible shapes of learning curves
were identified in chapter 3 and these are listed in
Table 8. It was not possible to compare the models
when fitted as shown in the original equation
because the measurement scales of the models
were different. For example, the power law used
the same units as the variable being measured 
(y = ), whereas the log–linear model used the
logarithm of the variable (loge y = ). Therefore, 
all the equations were transformed on to the 
same scale, namely the y scale, and the resultant
equations are displayed in the transformed
equation column of Table 8.

These equations were fitted using weighted non-
linear regression techniques that are available in
most statistical packages. The weighted part of the
regressions used a loss function of the form:
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FIGURE 4 Example of a moving average (order 3)

TABLE 8  The learning curve equations

Type of curve Original equation Transformed equation

Linear y = a + bX y = a + bX

Quadratic y = a + bX + cX 2 y = a + bX + cX2

Cubic y = a + bX + cX 2 + dX 3 y = a + bX + cX 2 + dX 3

Power law y = bX–c y = bX–c

Inverse
y = a + 

b
y = a + 

b––
X

––
X

Exponential y = ae–bX y = ae–bX

Double exponential y = ae–bX + ce–dX y = ae–bX + ce–dX

Logarithmic y = a ln X + b y = a ln X + b

Log–linear ln y = aXb y = exp (aX b )

Log-log–linear ln y = a (ln (X + 1))b y = exp (a (ln(X + 1))b)

Logistic
y =

a
y =

a
1 + be–cX 1 + be–cX

Weibull y = a – be–cX d
y = a – be–cX d
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n

∑ w
i
(y

i
– ŷ )2

i = 1

where ŷ is the predicted value from the model for
point i, y

i
is the observed value at point i, w

i
are

the weights at point i, and n is the total number 
of data points.

Examination of the residuals from the models
indicated that error variance was approximately
proportional to the square of the predicted values.
To permit impartial comparison of the models, the
weights were kept constant between models and
were denoted by:

w i = 1 Equation 2

(ŷ
i power

)2

where ŷ i power
is the predicted value at time i for the

power curve model.

The models were not nested within one another, so
the standard statistical method of comparison using
the reduction in the residual sum of squares (RSS)
was not appropriate. The models were compared
using the Akaike information criterion (AIC),102

which evaluates each model according to its RSS
and the number of estimated parameters it contains.
It was calculated using the following formula:103

AIC = –2ln(θ̂ ) + 2k Equation 3

where ln(θ̂ ) is the natural logarithm of the
maximum likelihood of the model and k is the
number of estimated parameters in the model.
After testing for whether the errors were normally
distributed, the maximum likelihood of the 
models was calculated, thus:

Equation 4

ln(θ̂ ) = n {loge(n) – loge(2π) – 1 – loge (RSS)}
2

where n is the total number of observations and
RSS the loss function given above.

The possibility of autocorrelation (serial corre-
lation) was investigated using the autocorrelation
function and the partial autocorrelation function.

Extension of curve fitting to include covariates
The curve fitting techniques can be extended to
include other covariates. The effects of possible
confounders Z i on operation time (y) were

explored by extending the linearised power 
curve model using sequence order X, from:

loge(y) = loge(� 0) – � 1 loge(X )
to
loge(y) = loge(� 0) – � 1 loge(X ) + ∑ α iZ i

where � 0 and � 1 are the coefficients associated with
the power curve and α i the coefficients associated
with the confounding factors.

Dichotomous measures 
of performance
Measures of performance that involved a
dichotomous (yes or no) outcome were
investigated using the following methods.

Exploratory techniques
Cusum chart
A cusum chart represents the sequential level 
of performance of a series of data.19 For a series 
{(X 1, …, X i):i = 1, 2, …, n}, where X i are dich-
otomous (0 = success, 1 = failure) measures of
performance, then the cusum series is defined as:

i

s i =∑ (X j – X 0) Equation 5
j = 1

where X 0 is a predetermined reference level
representing the level of performance that is
desirable (90% success, say). A cusum chart is
interpreted in three ways:

(i) if the true success rate is X 0, then cusum 
will be flat

(ii) if the true success rate exceeds X 0, then 
cusum will decrease

(iii) if the true success rate is less than X 0, then
cusum will increase.

The cusum technique was applied to intra-
operative complications and postoperative
complications of laparoscopic fundoplication.

Simple series data statistical techniques
Data splitting
The variables ‘intra-operative complication’ 
and ‘postoperative complication’ were used as
dichotomous proxies for learning to explore data
splitting methods. The series were split into thirds
and quarters, and trends across groups were tested
using a chi-squared test for trend.

Logistic regression
Logistic regressions can be used to determine
whether the sequence number of the procedure
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and other possible confounding factors predict
outcome. This was done by assessing the
relationship between age and sex of the patient,
and operative and postoperative complications.

Results

Operative details
The mean age of the 190 consecutive patients 
in the study was 45.8 years (standard deviation
(SD) 13.7) and 78 of them (41%) were female. 
At the time of operation, 130 (68%) patients 
were reported to have a hiatus hernia (29 large, 
32 medium, 69 small). No procedure was con-
verted to an open approach. The average
operation time was 87 minutes.

Analysis of the continuous variable
‘operation time’
Scatter diagram
A scatter diagram of operation time against
operation sequence number is shown in 
Figure 5. The figure demonstrates that the
operation times were extremely variable but 
there is a suggestion that the operation time
decreased over time.

Moving average
An order 10 moving average of the operation time
is shown in Figure 6. This demonstrates a decrease
in operation time from approximately 130 minutes
in the first ten operations to about 80 minutes
from the 60th case onwards.

Data splitting
The operation times were split sequentially into
quarters and thirds, and the respective group
means of operation time are shown in Table 9.
When the data had been split into quarters, the
mean operation time for the first 50 cases was 
104.3 minutes compared with 75.6 minutes for 
the last 40 cases. There was a highly significant
decreasing trend across the four groups (p < 0.001)
and the Scheffe multiple comparison showed that
operation times for the first 50 cases were signifi-
cantly longer than those for the other three groups.
A similar pattern was observed when the data were
split into thirds, however, and the mean operation
time for the first 70 cases was significantly different
from that for the other groups.

Curve fitting
The results of the 12 curve fits are displayed in
Table 10, with the curves ranked by increasing size
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FIGURE 5 Scatterplot of operation time against operation sequence
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of AIC (low AIC denoted a better fit). The best
fitting shape was the logarithmic curve and the
worst the inverse curve. There were no marked
differences between the fits of the logarithmic,
power law and log–linear curves. The predicted
operation times for the 5th, 30th, 100th and 
190th procedures were similar, to within 2 minutes,
across the first three models. All of the predicted
values are shown in Figure 7 (A–L). The figure
shows clearly that most of the curves were of
similar shape except for the linear, quadratic, 
cubic and inverse curves. However, the predicted
operation times for the first procedure ranged
from 105 minutes to 205 minutes. Inspection of
the autocorrelation function and the partial
autocorrelation function suggested that
autocorrelation was not present.

Extension of curve fitting
The effects of the logarithm of sequence order, 
sex of patient, age of patient and size of hernia
were explored using multiple regression. The
results are shown in Table 11. Both sequence of
operations and age of patient had a significant
impact on operation time – the older the patient,
the longer the operation took. For example, if 
the operation is the 100th that a surgeon per-

formed and the patient was 30 years old, then 
the predicted operation time was 71 minutes. 
If the patient was 45 years old, the predicted
operation time was 77 minutes. The value of the
coefficient of determination, R2, improved from
19%, with only the logarithm of sequence order 
in the model, to 24% when age was included.

Analysis of the dichotomous variables
‘intra-operative complication’ and
‘postoperative complication’
There were 20 patients with an intra-operative
complication (such as liver injury or bleeding) 
and 32 patients with a reported postoperative
complication (such as difficulty in swallowing).

Cusum charts
Figure 8 is a cusum chart of intra-operative com-
plications assuming a proficiency level of 90%. It
shows that performance improved over at least the
first 40 procedures, although arguably the improve-
ment was over the first 60 because the cusum chart
was increasing over this period. The level of per-
formance achieved was approximately 90% from
cases 70 to 100 (cusum chart level), and exceeded
90% for the rest of the series. This is the expected
shape of a cusum chart if learning is present.
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Figure 9 shows a cusum chart of postoperative
complications, assuming a proficiency level of 80%.
In contrast with the intra-operative complications
chart, the postoperative cusum chart shows that
performance consistently exceeded 80% over the
first 100 cases but then remained at 80% for the
rest of the series.

Data splitting
The complication rates for the series split into
quarters and thirds are shown in Table 12. The 
rate of intra-operative complications decreased
from 18% in the first quarter to 5% in the final
quarter. There was a highly statistically significant

decreasing trend across the quarters. A similar
pattern was observed when the series was split 
into thirds. In contrast, there were no significant
trends in postoperative complication rates 
across either set of grouping.

Logistic regression
From Table 13 it can be seen that the operation
sequence number was a statistically significant
predictor of an intra-operative complication 
(the risk decreasing as more procedures were
performed) but that no other potentially con-
founding factors were significant. None of the
identified variables predicted a post-operative

TABLE 9  Splitting operation time data into quarters and thirds

Group n Mean (SD) Linear trend  Scheffe pairwise multiple comparison
across groups 
(significance)

Quarters
1st 50 104.3 (30.0) p < 0.001 1st group significantly different from all other groups

(p < 0.001). No other groups were different

2nd 50 85.7 (26.4)

3rd 50 79.1 (25.2)

4th 40 75.6 (27.1)

Thirds
1st 70 98.4 (31.2) p < 0.001 1st group significantly different from all other groups

(p < 0.001). No other groups were different

2nd 60 83.0 (23.4)

3rd 60 76.8 (27.8)

TABLE 10  Parameter estimates and AIC values of the learning curves

Type of curve AIC Rank Parameter estimates Predicted values (minutes)

A B C D 5th 30th 100th 190th

Logarithmic 92.126 1 145.27 –13.72 123.2 98.6 82.1 73.3

Power law 92.555 2 158.25 –0.14 125.7 97.2 81.8 74.6

Log–linear 92.876 3 5.08 –0.03 125.8 96.8 81.8 75.0

Logistic 93.480 4 75.76 –0.44 0.02 126.4 99.5 80.3 76.4

Cubic 93.748 5 130.75 –1.36 0.012 –0.00004 124.3 100.0 81.3 65.6

Exponential 93.911 6 77.11 56.53 0.03 125.7 99.8 79.8 77.3

Double exponential 94.183 7 51.19 0.06 91.98 0.001 129.6 97.5 81.9 73.6

Weibull 95.588 8 73.59 71.75 0.11 0.67 126.1 99.2 80.8 75.7

Quadratic 97.427 9 113.68 –0.46 0.0013 111.4 101.1 81.4 76.0

Log-log–linear 97.526 10 5.06 –0.09 121.9 92.5 82.0 77.9

Linear 98.878 11 103.29 –0.18 102.4 97.9 85.2 68.9

Inverse 111.510 12 81.62 121.85 106.0 85.7 82.8 82.3
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complication and, hence, there was no evidence of
a learning curve effect for this outcome.

Discussion

Learning curve effects are commonly observed 
in case series studies of non-pharmacological
technologies such as minimal access surgical
procedures. As discussed in chapter 2, the statis-
tical methods that have been used in the past to

measure these effects have been sub-optimal. In
this chapter, a hierarchy of statistical methods to
identify and measure learning curve effects were
illustrated and explored using a case series data set
on laparoscopic fundoplication. These methods
were identified by literature searches of both
clinical and non-clinical fields as described in
chapters 2 and 3.

Operation time was used to illustrate statistical
methods that are applicable to continuous meas-

TABLE 11  Regression analysis of the logarithm of operation time

Variable Coefficient 95% CI Significance

Included in model
Constant 4.850 (4.627 to 5.079) p < 0.001**

Logarithm of sequence –0.159 (–0.202 to –0.115) p < 0.001**

Age 0.005 (0.002 to 0.008) p = 0.001**

Not included
Male 0.076 (–0.010 to –0.165) p = 0.09
Medium hernia 0.042 (–0.094 to 0.141) p = 0.68
Large hernia –0.085 (–0.178 to 0.008) p = 0.07

** Significant at the 0.1% level
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FIGURE 8 Cusum chart for intra-operative complications at 90% proficiency
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ures of performance. As discussed in chapter 2,
there are problems in using operation time as a
proxy for performance. Nevertheless, operation
time was used often in the literature as evidence 
of changes in technique over time, and it is
certainly one aspect of performance. There were
no other continuous measures of performance 
in the laparoscopic fundoplication data set.

There was great variability in operation times across
the study period; this variability was smoothed using
a moving average procedure. The smoothed data
clearly showed a decrease in operating time over
time. However, applying a moving average pro-
cedure to data requires a degree of caution. The
order of smoothing can affect the observed pattern
in the data. If the order is very high it can make 
the data too smooth, thus disguising real variability
in the data. Conversely, a low order may not 
smooth the data enough and so no pattern is
discernible. In practice, it is suggested that
investigators try fitting a variety of orders to the
data. Also, it should be emphasised that a moving
average is an exploratory technique and should 
not be used as the sole basis for recommendations
on the learning curve. The authors also recognise
that a moving average is not the only statistical
method used to smooth data. Other methods that
have been described include kernel smoothing,
differencing and polynomial regression.100

It has been demonstrated that split groups can
certainly be used to identify a change over time
when the change is large, but the usefulness of this
method in the context of measuring the size of a
learning curve effect is questionable. The results 
of splitting the operation time data into quarters or
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FIGURE 9 Cusum chart for postoperative complications at 80% proficiency

TABLE 12  Splitting complication rate data into quarters 
and thirds

Group Number  Complications
of patients

Operative Postoperative
n (%) n (%)

Quarters
1st 50 9 (18) 8 (16)
2nd 50 6 (12) 8 (16)
3rd 50 3 (6) 11 (22)
4th 40 2 (5) 5 (10)
Linear trend p = 0.024 p = 0.933

Thirds
1st 70 13 (19) 10 (14)
2nd 60 5 (8) 13 (22)
3rd 60 2 (3) 9 (15)
Linear trend p = 0.004 p = 0.873
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thirds led to the similar overall conclusion that early
patients had a longer average operation time than
later groups. The length of the learning curve is
unclear, however, and could be considered to be
either 50 cases or 70 cases depending on the type of
data splitting performed. The authors recommend
that the split group method should only be applied
using a linear trend component, and then inter-
preted as statistical (instead of graphical) evidence
of a change in performance over the series.

A range of curves were fitted and statistical
methods were demonstrated that can be used to
compare these curves using nonlinear regression
and the AIC. There are other ways in which this
might have been explored, such as the Bayesian
information criterion,104 but these were not investi-
gated further. It is recommended that any analysis
of learning curves should compare at least three 
or four of these curves. Within the laparoscopic
fundoplication data, there were only small differ-
ences between curves. However, the logarithmic,
power and log–linear models provided the best 
fits, accounting for approximately 20% of the vari-
ability. The apparently poor fit to the first four or
five data points is not surprising, as it has been
observed in many other performance-related 
data sets.74 Further research is required to assess 
the generalisability of the various shapes in 
other health technologies.

Measurements taken close together in time are
often more similar to each other than to those
taken further apart in time, irrespective of any
other reason for change such as learning. On this
basis, it could be hypothesised that the outcome 

of the first procedure would be more similar to that
of the second procedure than it would be to that 
of the 200th procedure. This type of relationship 
is termed autocorrelation or serial correlation, 
the presence of which complicates assessment. 
The standard error of the estimated parameters is
reduced by positive autocorrelation (or increased
by negative autocorrelation) and, hence, the appar-
ent significance of each parameter is overestimated
(or underestimated). Autocorrelation should be
investigated using the appropriate function that is
found in most standard statistical packages. Cook
and Campbell105 give a detailed discussion of the
interpretation of these techniques.

Changes in patient referral and selection often
mean that the type of patient changes as the
operator (or institution) performs more pro-
cedures. This can be investigated by including
potentially confounding factors, such as age or 
sex, in the curve equations. This is a relatively
simple procedure that provides a more infor-
mative result. It was shown here that the age 
of the patient was associated with a significant
increase in the operation time for fundoplication.
Investigators should consider and adjust for any
confounding factors when investigating learning
curve effects in case series designs.

The cusum chart is an effective graphical method
for looking for trends or changes over time in
dichotomous proxies for learning. It was shown 
that there was almost certainly a decrease in the
rate of operative complications during laparoscopic
fundoplication, with lower rates from about the
25th procedure onwards, and even lower rates 

TABLE 13  Logistic regression analysis of intra- and postoperative complications

Variable Coefficient (95% CI) Significance

Intra-operative complications
Constant –0.756 (–2.854 to 1.342) p = 0.48
Sequence –0.013 (–0.023 to –0.003) p = 0.007**

Male –0.170 (–1.192 to 0.852) p = 0.75
Age –0.011 (–0.047 to 0.025) p = 0.56
Medium hernia 0.689 (–1.173 to 1.699) p = 0.72
Large hernia –0.756 (–0.364 to 1.742) p = 0.20

Postoperative complications
Constant –1.406 (–3.125 to 0.313) p = 0.11
Sequence –0.001 (–0.008 to 0.006) p = 0.84
Male 0.100 (–0.716 to 0.916) p = 0.81
Age –0.001 (–0.030 to 0.028) p = 0.97
Medium hernia –1.237 (–1.762 to 0.288) p = 0.11
Large hernia 0.029 (–0.784 to 0.842) p = 0.94

** Significant at the 0.1% level
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from about the 125th procedure. This type of
information is invaluable for the evaluation of 
new technologies. If operators (or institutions) 
are beyond their learning curve, then an RCT 
can be initiated that is free from this source of 
bias. Alternatively, if an RCT included operators at
various levels on the learning curve, then cusum
charts for each operator can be used to investigate
potential operator differences. The cusum chart 
is a graphical method. However, de Leval and
colleagues67 showed that it can be used to monitor
surgical performance statistically. It may also be
extended to monitor paired binary events simul-
taneously.68 Lovegrove and colleagues106 illustrated
the use of the cusum chart for adjusting for case-
mix. In all these studies, the cusum chart was used
to monitor a system going out of control, whereas
learning curve data represent a system coming
under control. The cusum method is undoubtedly
a powerful tool for observing differences between
operators; however, it is not yet clear to the authors
how data derived from a cusum chart could be
extrapolated to a rigorous assessment by RCT.
Further empirical research is needed to 
investigate the implications of this difference.

Predictors of dichotomous outcomes can be tested
using logistic regression. The sequence number
was identified as predicting an intra-operative
complication – the earlier the procedure, the
higher the risk of an operative complication.
Nevertheless, dichotomous outcomes can be
particularly difficult to analyse statistically if they
are rare. No statistical techniques designed for 
rare events were identified.

Conclusion

It has been shown here how the extension of
currently used methods to more appropriate
methods can improve the analysis and interpret-
ation of learning curves in single operator case
series of new health technologies. In the case 
series of laparoscopic fundoplication used as 
an example, the analysis of operation times and
intra-operative complications strongly suggested 
a learning curve for this surgeon. The applicability
and extension of these methods to studies that
have multiple case series are discussed in the 
next chapter.
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Introduction
Some of the statistical methods that can be 
applied to complex structured data are illustrated
and explored in this chapter. For this, a case series
of consecutive laparoscopic cholecystectomy
procedures performed by ten surgeons has 
been used. In particular, the aims were:

(i) to illustrate that the statistical techniques 
for simple series data can be applied to
complex structured data for preliminary
examination

(ii) to describe the strengths and weaknesses 
of multilevel modelling of learning 
curve effects.

Laparoscopic cholecystectomy
Cholecystectomy (removal of the gallbladder) is 
a long-accepted method of treating patients with
symptomatic gallstones. Open cholecystectomy 
was first performed by Langenbuch in 1882. 
Open or traditional cholecystectomy involves
making a 10–15 cm incision, through which the
gall bladder is removed. In contrast, laparoscopic
cholecystectomy involves making three or four
incisions, varying from 0.5 cm to 1 cm, to 
provide access for the laparoscopic and surgical
equipment and an opening through which 
the gallbladder is removed.

Laparoscopic cholecystectomy is a minimally
invasive procedure that is associated with shorter
times for operating, hospitalisation and recovery
than open cholecystectomy. Despite this, there
remains some uncertainty about the safety of
laparoscopic procedures compared with open
procedures.107 In particular, several studies have
documented possible learning curve effects with
this new procedure.108–113 These studies suggested
that operation times, conversion rates and
operative complication rates decreased as 
the surgeon (or institution) performed more
procedures. Estimates of the number of cases 
that were considered to constitute the learning
phase ranged from 8 to 40 but there was no 
clear justification for the derivation of 
these figures.

Methods
The laparoscopic cholecystectomy 
data set
The first groups of patients of ten surgeons were
the case series used in these analyses. The total
number of patients included in the analyses was
1481. The patients underwent laparoscopic chole-
cystectomy in Aberdeen over an 8-year period
between March 1991 and March 1999. Information
was collected prospectively on patient character-
istics, operative technical details and hospitalis-
ation. No postoperative details were available.

Preliminary examination of multiple
operator data
Some of the techniques for simple series that were
described in chapter 4 can be used for initial
exploration of complex structured data. These
techniques are described below.

Box and whisker plots
A box and whisker plot is a summary plot of the
data based on the median, quartiles and extreme
values. The box represents the interquartile range,
which contains that 50% of values between the
25th and 75th percentiles (Figure 10 ). The line
across the box indicates the median. The whiskers
are lines that extend from the box to the highest
and lowest values, excluding unusually high or 
low values. An observation is an outlier (denoted
by a circle in Figure 10) if it lies between 1.5 and 
3 box-lengths from the box edge, and an obser-
vation is an extreme value if it lies beyond three
box-lengths (denoted by an asterisk in Figure 10 ).
The usefulness of this plot is illustrated by sum-
marising the operation times of the ten laparo-
scopic cholecystectomy surgeons (Figure 11 ).

Error bars
If data are normally distributed, then the mean
and 95% CI of the mean can be plotted for each
operator. These are called error bar plots.

The box and whisker and error bar plots are used
to summarise the data for individual operators or
institutions; they do not give information about
changes over time (i.e. learning effects). Changes

Chapter 5

Multiple operators: a case study of 
laparoscopic cholecystectomy 
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in individual operators’ performance within
multiple operator data sets can be investigated
using moving averages and curve fitting as
described in chapter 4.

Moving averages
The results of the three surgeons who performed
the most procedures were selected to illustrate
moving averages of operation time within the
cholecystectomy data.

Curve fitting
The three best fitting curves were chosen from
chapter 4 (logarithmic, power and log–linear) 
and were applied, using non-linear regression, 
to the results of the three selected surgeons. 
Two regressions per surgeon were performed 
for each shape. The first used all of the operation
times for each surgeon and the second used 
only the first 150 cases per surgeon. The 
predicted values from these curve fits were 
used to investigate graphically any intra- and 
inter-operator differences.

* – Extreme

– Outliers

– 75th percentile

– 50th percentile (median)

– 25th percentile

– Lowest value

– Highest value
   (excluding outliers)

FIGURE 10 A box and whisker plot
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Techniques for complex structured data
In chapter 3, a number of statistical techniques
were identified that could be applied to learning
curve data during a health technology assessment:
discriminant analysis, two-stage models, multilevel
models, latent curve models, stochastic process
models and ARIMA models. Of these, multilevel
models were focused on in response not only to
time constraints but also to the responses received
from the questionnaire sent to experts in various
fields. A number of experts have suggested that
multi-level models might have been applicable to
hierarchical learning curve type data – procedures
within operators within institutions.

Multilevel models
The main aim of multilevel analysis is not to
describe the individual operators (surgeons) in 
the sample but to estimate the pattern of variation
in the underlying population of operators. In 
the subsequent discussion of the methodology 
a two-level model is assumed, namely patients
(level 1) nested within operators (level 2). The
methodology can be extended easily to more 
than two levels.

Constant rate of learning and fixed 
starting levels
It was assumed that, perhaps after an appropriate
transformation, the learning curve for each
operator (j) could be expressed as a linear
regression equation for the i -th patient. Moreover,
it was assumed that the regression equations for
the different operators were parallel to each 
other. Thus:

y ij = α j + � 0x ij + e i j Equation 6

where α j allows a different starting value for each
operator and � 0 represents a common rate of
learning. The var(ei j) = σ e

2 represents the variance
of the measurements in the patients. The variation
in starting level from operator to operator can 
be modelled simply using standard regression
techniques with fixed effects. The fixed effect
assumes that all individuals in a data set are
distinctive. In contrast, the regression model can
be generalised by postulating random effects.

Constant rate of learning and random 
starting levels
There is now an assumption that there is some
overall starting value (α 0) for the population of
operators as a whole and that u j is the random
(rather than distinctive) departure of the j -th
operator from this overall value. The departure 
is assumed to come from a normal distribution

with mean zero and variance, σ u
2. The model can

now be written as:

y ij = α 0 + u j + � 0x ij + e i j Equation 7

where u j and e i j are random effects at different
levels, and it is the existence of these variables 
that makes it a multilevel model. A multilevel
model of this type is known as a variance com-
ponents model. The intraclass correlation co-
efficient for this model can be calculated by
dividing the variability between operators by the
total variability in the model. This is calculated 
as σ u

2/(σ u
2 + σ e

2) and represents the proportion 
of variability in the data that is due to differences
between operators compared with within-
operator variability.

Fixed rate of learning and random starting levels
The above model can be extended to allow the
rate of learning to differ between operators. The
model can now be written as:

y ij = α 0 + u j + � 0 j x i j + e i j Equation 8

The fixed effect (� 0 j) assumes that all rates of
learning per operator are distinctive. These are
commonly modelled as dummy variables for each
operator in a standard regression analysis.85

Random rate of learning and random 
starting levels
In a two-level hierarchy, in addition to a random
starting level, it is often desirable to consider if 
the regression coefficient for the rate of learning
varies randomly between operators. The model 
is a simple extension of the variance components
model to:

y ij = α 0 + u j + (� 0 + v j) x ij + e i j Equation 9

where v j is the departure of the j-th operator from
the true population rate of learning (� 1) with
mean zero and variance, σ v

2. The equation for the
model is usually written in the following way:

y ij = α 0 j + � 0 j x i j + e i j Equation 10

with α 0 j = α 0 + u j and � 0 j = � 0 + v j. To specify the
model fully:

E(α 0 j) = α 0 ; E(� 0 j) = � 0 ; var(α 0 j) = σ u
2; 

var(� 0 j) = σ v
2; cov(α 0 j, � 0 j) = σ u v; 

and var(e i j) = σ e
2

where α 0 is the overall starting value; � 0 is the
overall rate of learning; σ u

2 is the variance of
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starting values between operators; σ v
2 is the

variance of slopes between operators; σ u v is the
covariance between the starting values and the
rates of learning; and σ e

2 is the intercept
component of level one patient variance.

The rate of learning and starting value was esti-
mated for each operator and CIs were derived from
the residuals from the random effects. Differences
between models were tested using the reduction 
in log-likelihood compared to a chi-squared distri-
bution with the appropriate degrees of freedom.

Covariates in multilevel models
It is possible to explain the pattern of variation 
in terms of characteristics of operators by incorp-
orating further variables into the model. Further
mathematical details are not given here but read-
ers are referred to Goldstein’s book114 for further
information. The use of additional fixed effects
(sex of patient, previous sphincterotomy, operative
cholangiogram, and ruptured or inflamed gall
bladder) on operation time are illustrated for 
the cholecystectomy data set.

Multilevel models are fitted using an iterative
algorithm, so there can be problems with con-
vergence to a sensible solution. In our data set, 
the operation times were positively skewed and
convergence was not possible using untransformed
data. Hence, the linearised form of the power
curve was used to test for changes over time. 
The power learning curve is of the form (see 
also chapter 4):

operation time i j = αj (sequence i j)
b 0 Equation 11

but, if the logarithm of this equation is taken, 
then the new equation is:

Equation 12

log e (operation time i j) = 
log e (a j) + b 0 log e (sequence i j)

This equation is a linear regression model as
described above and so the multilevel modelling
procedure described above can now be applied. 
All of the subsequent analyses had to be
performed on the logarithmic scale for 
both operation time and experience.

Results

Preliminary examination of data
The ten surgeons performed 1481 laparoscopic
cholecystectomies in total, with the number of

procedures they each performed ranging from 
31 to 727. Approximately 75% of the patients 
were female. Of all patients, 8% had an operative
cholangiogram and 6% had had a previous
sphincterotomy. The gall bladder was inflamed in
20% of patients and ruptured in 23% of patients.

Box plots and error bars
Box and whisker plots of operation times for each 
surgeon are shown in Figure 11. These demonstrate
how the median operation times varied between
surgeons. The surgeons were ordered according 
to the number of procedures each had performed. 
There is no evidence from this figure that the vari-
ability of operation times decreased as the number
of procedures performed by each surgeon in-
creased. However, this observation is based solely
upon between-surgeon times rather than within-
surgeon times.

Operation times were positively skewed within 
each surgeon; there were disproportionately more
high operation times than expected. Logarithms
were taken of the operation times to ameliorate
this skewness. It was now possible to calculate the
mean and 95% CIs of the logarithm of the oper-
ation times and these are illustrated in Figure 12
as error bars. The error bars indicate that there 
are differences between the average (geometric)
operation times of the surgeons.

Moving averages
A moving average of order 10 for three selected
surgeons is shown in Figure 13 (a–c). A small
decrease in operation time with experience 
is shown.

Curve fitting
The parameter estimate and R2 values for the log,
power and log–linear models are shown in Table 14
for each of the three surgeons. All of the curve fits
were statistically significant at the 1% level but 
the small R2 values showed that there were large
variabilities in the operation times that could not
be explained. Within each surgeon there was no
apparent difference between the statistical fits of
the three models.

The predicted operation times for each of the
surgeons are shown in Figure 14 (a), assuming a
power curve relationship. The curves suggested
that there was a difference between surgeons, 
with starting values ranging from 103.05 to 
121.57 minutes per operation and rates of learn-
ing from –0.08 to 0.14 minutes per operation.
These differences were not tested for 
statistical significance.
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It was possible that these differences may have
been an artifact of the varying number of pro-
cedures per surgeon. For example, in chapter 4 
it was demonstrated that these curves often could
not fit the initial values accurately. Hence, the first
150 cases only for each surgeon were selected and
these results are also shown in Table 14 with the
predicted curves shown in Figure 14 (b). Again, 
there was no apparent difference between the
different slopes of curves, and the difference in
predicted operation times between surgeons
persisted. There was a suggestion that as the
starting value (parameter ‘a’ in the power law)
decreased, the rate of learning increased. The
multilevel modelling procedure was used to
investigate these issues further.

Techniques for complex structured data
Multilevel models
Initially, the total variability in the data set was
partitioned between and within operators. The

intraclass correlation coefficient was 0.15 and,
hence, 15% of the total variability in operation times
was explained by between-operator differences.

The results of the multilevel modelling, using 
the logarithm of operation sequence (LNSEQ) 
as the only covariate, are presented in Table 15.
The reduction in log-likelihood from a model 
that did not include LNSEQ to one that included
LNSEQ with random intercepts was highly
statistically significant. The subsequent reduc-
tion in log-likelihood for the random starting 
levels and random rate of learning model was 
also significant at the 5% level and, hence, 
there was evidence that the rate of learning 
and the starting level were different for 
each surgeon.

The parameter estimates of the random intercept
and slopes model are shown in Table 15. The
predicted deviations from the overall rate of
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learning and overall starting values for each
surgeon were estimated for this model and the
corresponding 95% CIs for these deviations were
calculated. These deviations are displayed in 
Figure 15. Differences between the starting levels
for each surgeon appear less marked than the
differences between the rates of learning, partic-
ularly between surgeon 10 and surgeons 5, 6 and 7.

The starting value/rate of learning covariance
(σ u v) was positive and demonstrated that, as 
the starting value increased, the rate of learning
decreased (since the higher the negative rate, 
the faster the surgeon is learning). This
relationship was also suggested by the earlier 
curve fits in the previous section. The statistical
evidence for this was weak.

Multilevel models with additional covariates
The random intercepts and slopes model was
extended to include a number of covariates. 
These covariates were included as fixed effects
only. The results of this model are shown in 
Table 16. All of the fixed-effect covariates were

statistically significant and improved the model 
fit. For example, an operative cholangiogram 
on a patient would increase the logarithm of
operation time by 0.50. There were no resulting
significant changes in the parameter estimates for
the random effects and variances/covariances.

This model can be used to predict the mean
operation times for a patient with certain char-
acteristics. For example, a male patient who 
had had a preoperative sphincterotomy, and 
who was the tenth patient on whom that surgeon
had performed the procedure, would have a
predicted logarithm of operation time of:

4.428 + log e(10) × (–0.101) + 0.107 + 0.164 
= 4.466 (or 87 minutes).

However, if this was the 200th procedure
performed by that surgeon, then the predicted
logarithm of operation time is:

4.428 + loge(200) × (–0.101) + 0.107 + 0.164 
= 4.164 (or 64 minutes).

TABLE 14  Comparison of curve fits for three surgeons

Operator Number of Logarithmic Power Log–linear 
cases, n

a b R2 (%) a b R2 (%) a b R2 (%)

All cases
6 (257) 108.12 –8.29 7.9 113.95 –0.11 7.9 4.75 –0.02 7.9
7 (168) 120.23 –7.82 4.9 121.57 –0.08 4.7 4.80 –0.02 4.7
10 (727) 92.31 –7.86 5.7 103.05 –0.14 5.5 4.66 –0.03 5.5

First 150
6 (150) 108.95 –8.48 7.7 112.99 –0.10 7.7 4.74 –0.02 7.7
7 (150) 113.78 –5.79 2.6 114.81 –0.06 2.6 4.75 –0.01 2.5
10 (150) 84.61 –5.48 2.1 86.31 –0.08 2.1 4.46 –0.02 2.1

TABLE 15  Multilevel modelling using logarithm of operation sequence only

Parameter Estimate (95% CI)

α 0, overall starting level 4.587 (4.476 to 4.698)
� , overall rate of learning –0.107 (–0.142 to –0.072)
σ u

2, variance of starting level between surgeons 0.005 (–0.019 to 0.029)
σ v

2, variance of rate of learning between surgeons 0.001 (–0.001 to 0.003)
σ e

2, starting level component of patient variance 0.197 (0.182 to 0.211)
σu v , starting level/rate of learning covariance at patient level < 0.001 (–0.006 to 0.006)

Reduction in Significance
–2 × log (likelihood)

Rate of learning constant, starting level random – –
Rate of learning fixed, starting level random 113 p < 0.001
Rate of learning and starting level random 6.5 p < 0.05
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Discussion
Statistical methods to identify and measure
learning curve effects have been explored using
multiple case series of laparoscopic cholecystec-
tomies. It has been demonstrated that some of 
the methods identified in the systematic searches
described in chapters 2 and 3 can be extended to
more complex structured data sets such as these.

Some of the simple series techniques can be used
as graphical aids to investigate differences between
operators and to check for trends over time. It is
recommended that box plots, moving averages
(continuous data) and cusum charts (dichotomous
data) are applied to the data where applicable.
These methods are useful for identifying if
learning curve effects are present in the data.

For comparative purposes, some of the shapes 
used in chapter 4 were also fitted. These shapes
did not describe the change in operation times 
for cholecystectomy as well as they did for
fundoplication (R2 values: approximately 7% 
for cholecystectomy; 20% for fundoplication). 
This apparent discrepancy illustrates two points.
First, there is a difference between different 
health technologies. Second, the same proxy 
for learning (operation time in this example) 
does not necessarily have the same strength of
effect in other technologies. Nevertheless, investi-
gators should try fitting some of the learning
curves described in chapter 4. The results aid 
the multilevel modelling. For example, no great
difference was observed between the various
shapes of curve and so a simple power curve 
was used in the multilevel modelling.

The multilevel modelling gave an insight into 
the variability in the cholecystectomy data set 

that ordinary regression techniques could not.
Differences between surgeons’ rates of learning
and starting levels between surgeons were con-
sidered as random effects around the population
average. This implied that there was an underlying
true population and that surgeons deviated from
this true value by some random distribution. From
this information it was possible to derive slope 
and starting value residuals for each surgeon. 
This illustrated that there were differences 
between surgeons.

The rate of learning residuals disentangle the
proportion of total variability that can be attributed
to true variation in rates of learning from surgeon
to surgeon from that proportion which can be
attributed to random variation between patients. 
In other words, this technique can separate vari-
ation due to the surgeons being different from
variation caused by the surgeon having more
extreme cases. The differences in these rates of
learning residuals should be smaller than those
obtained from a standard multiple regression
analysis carried out on each surgeon separately,
because other sources of variation have been 
taken into account.83

Multilevel modelling can also estimate the corre-
lation between the residuals for rate of learning and
starting value. There was a weak positive correlation
between these two sets of residuals. This means that
as the starting value decreased the rate of learning
got faster. This is consistent with surgeons with 
more natural aptitude for laparoscopic surgery
beginning faster and learning faster than those with
less natural aptitude. This is one of many possible
explanations that require testing in a larger data set.

Multilevel models can easily be extended to
include other covariates as fixed or random 

TABLE 16  Extension of the single covariate multilevel model to include other fixed effects

Parameter Estimate (95% CI)

α 0 , overall starting level 4.428 (4.296 to 4.561)
� , overall rate of learning –0.101 (–0.139 to –0.063)
σ u

2, variance of starting level between surgeons 0.021 (–0.017 to 0.058)
σ v

2, variance of rate of learning between surgeons 0.001 (–0.001 to 0.004)
σ e

2, starting level component of patient level variance 0.150 (0.139 to 0.161)
σ u v , starting level/rate of learning covariance at patient level –0.003 (–0.012 to 0.006)

Fixed effects
Male 0.107 (0.060 to 0.154)
Sphincterotomy 0.164 (0.079 to 0.248)
Gall bladder ruptured 0.130 (0.081 to 0.179)
Operative cholangiogram 0.499 (0.425 to 0.572)
Gall bladder inflamed 0.294 (0.242 to 0.345)
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effects. Multilevel models can also test for inter-
action, explore more complex variation such 
as autocorrelation, and use other estimation
procedures such as Markov chain Monte Carlo
methods.93 The authors did not have time within
the constraints of this project to explore these.

If the proxy for learning is a dichotomous out-
come, then multilevel models can still be applied
to the data. This is the great advantage of this
method and one of the stronger arguments for
using it. Multilevel models also allow a natural
extension to the study of institutional learning
effects. If a data set covers many institutions and
different operators within each institution, 
then the interaction between institutions 
and operators could also be investigated.

The other statistical techniques were not tested 
for the complex structured data that were

identified in chapter 3. Further empirical work 
is required to assess the relative strengths and
weaknesses of these techniques in comparison 
to multilevel modelling.

Conclusion

This chapter illustrates how relatively simple
techniques can be applied to health technology
data sets to investigate learning curve effects. 
These can be used to explore whether differences
between operators do exist. The use of multilevel
models enabled differences between and within
operators to be described more accurately than 
in the existing literature. In the next chapter
consideration is given to data from randomised
trials with multiple operators, in which learning
may have affected one or both of the inter-
ventions being compared.
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Introduction
The RCT is the standard approach to evaluating
new technologies. The principle advantage is the
avoidance of selection biases such as case-mix
differences or changes over time. Investigators
sometimes believe that their randomised trial may
have been compromised or biased by learning
effects in one or both arms of the trial.

The recommended method of analysis of a learning
curve effect in a clinical trial is unclear; however, it
will be influenced by the question being posed. If
the trends over time in one arm of the trial were
‘nuisance’ parameters, they could be taken into
account during an evaluation by fitting curves to
the data as described earlier. The treatment effect
could then be introduced into the model as a fixed
effect. Further empirical work is required on this
method of analysis using clinical trial data sets
before any strong recommendation can be made.
In particular, there are potential biases in trials 
that do not have information on every procedure
that an operator has performed. If, however, the
purpose were to describe the learning curve effect
in one arm of the trial only, then an analysis 
similar to that undertaken on the laparoscopic
cholecystectomy data would be appropriate.

To begin to address this issue, investigators 
require to identify and measure any learning 
effect in that arm (or arms) of the trial. Unless 
the procedure is limited to the trial, however, the
assessment is commonly complicated by incom-
plete case series for the operators in the trial 
(not every case is included in a trial). In this
chapter the analysis of complex structured data 
is extended to randomised trial data derived from
the laparoscopic procedure arm of a multicentre
clinical trial of groin hernia repair.115 The ran-
domised data were supplemented by information
on non-randomised operations performed during
the trial. The specific aims were:

(i) to consider methods for coding the
experience variable

(ii) to quantify the learning curve effect under 
the different experience variables

(iii) to discuss the strengths and disadvantages of
collection of non-randomised data in relation
to learning curve effects in RCTs.

Laparoscopic groin hernia repair
Groin hernia repair is one of the most common
procedures in general surgery. Laparoscopic
hernia repair has been proposed as an alternative
to standard open repair but, unlike laparoscopic
cholecystectomy, it has been slow to gain accept-
ance in the surgical community. There have 
been reports of rare operative and postoperative
complications and, because the procedure is
technically demanding, several studies have
described a long learning curve that included 
a high failure rate while surgeons were in this
‘learning phase’.115–120

Typically, the variables used to assess the learning
curve of laparoscopic hernia repair have been
operation time, recurrence rate and conversion 
to open surgery. There have been no firm recom-
mendations on the number of procedures that
should be performed before the learning curve is
ascended. Liem and colleagues116 indicated that
most of the recurrences in their studies were
among patients treated by a surgeon with ‘limited
experience’ but do not go on to say how ‘limited’
was defined. Champault and colleagues118 per-
formed 50 procedures before including patients 
in their study, and the MRC Laparoscopic Groin
Hernia Trial Group115 required surgeons to have
performed ten procedures before they could
randomise patients. Again, there was no rationale
given for the number of procedures chosen as 
the learning phase.

Methods

The laparoscopic hernia data set
The data set used in the analyses for this chapter
had two components. The first was 421 patients
from the laparoscopic arm only of a pragmatic
multicentre, randomised, controlled comparison 
of open versus laparoscopic hernia repair. Patients
were recruited between January 1994 and March
1997. All of the surgeons had experience of at 

Chapter 6

Multiple operators in an RCT: a case study of
laparoscopic groin hernia repair 
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least ten procedures and, if they felt they were 
still learning the technique, they received addi-
tional training from an experienced surgeon. 
The second component of the data set was a
prospective clinical audit of all non-randomised
laparoscopic cases (281 in total) performed by
each surgeon over the same period. Thus, there
were details on both randomised and non-
randomised cases.

Information was collected prospectively on
standard forms to record patient demographic
characteristics, operative and postoperative
measures. The forms were identical for the
randomised and non-randomised cases.

Coding of experience variable
The experience variable was coded in three ways,
as illustrated in Figure 16. The ‘true’ experience is
denoted by the position within the case series of all
cases (randomised and non-randomised). Hence
the first case was coded as 1, the second as 2, and
so on. If analyses of only the randomised cases
were available (denoted by the arrows in Figure 17),
the coding of experience was performed in two
ways. First, the sequence number was denoted by
the position of the randomised case within the 
case series of all cases: for example, the second 
and fifth laparoscopic procedures were included 
in the trial, so the trial cases sequence numbers
associated with these procedures were 2 and 5.
Second, the sequence number was coded as the
order that patients were recruited into the trial.
Using the example above, the coding would be 
1 and 2 instead of 2 and 5. This was the closest
proxy for experience when no information on 
non-randomised cases was available.

Proxies for learning
Two possible proxies for learning were investigated
– operation time (continuous) and complications
at 1 week (dichotomous). Operation time was the
time taken from first incision to last stitch. Compli-
cations at 1 week included wound complications
such as bruising, scrotal complications such as
hydrocele, special complications such as nerve
injury, and general complications such as
pulmonary embolism.

Statistical analysis
Preliminary investigation of data
Preliminary investigation of the two outcomes
involved graphical and tabular techniques as
described in chapter 4.

Multilevel modelling
The relative impact of the three ways of coding 
the experience variable on operation time and
complications was investigated using multilevel
models (as described in chapter 5). Because of
convergence problems, the analyses for operation
time and experience had to be performed after
logarithmic transformation.

The equation for the fitted model is:

y i j = α 0 j + � 0 j x i j + e i j Equation 14

where y i j is the logarithm of operation time and 
x i j is the logarithm of the sequence number; 
α 0 j = α 0 + u j and � 0 j = � 0 + v j , where u j and v j

have mean zero and variance of σ u
2 and σ v

2,
respectively, and are the departure of the j-th
operator from the true population rate of 
learning � 0 . To specify the model fully:

Sequence number of patients

All cases 1 2 3 4 5 6 7 8 9 10

Trial cases 2 5 6 8 10

Trial order 1 2 3 4 5

, denotes a randomised patient

FIGURE 16 Sequence numbers used in the analyses
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E(α 0 j) = α 0 ; E(� 0 j) = � 0 ; var(α 0 j) = σ u
2; 

var(� 0 j) = σ v
2; cov(α 0 j, � 0 j) = σ u v; 

and var(e i j) = σ e
2.

Consultant surgeons did not undertake all the
procedures. In some cases, a senior registrar
performed the operation with the consultant in
attendance as the assistant. To investigate the
possible impact of grade of surgeon upon the
outcomes, a fixed effect for grade of operator 
was entered into the multilevel models.

Results

Operation time
The 27 surgeons performed 421 randomised
laparoscopic hernia repairs in total, with the
numbers of randomised procedures performed
individually ranging from 1 to 149. One surgeon
(number 3) performed 35% of the randomised
cases. By adding the non-randomised cases to the
randomised cases, the total number of laparo-

scopic procedures increased from 421 to 702.
Senior registrars performed approximately 28% 
of the procedures.

The number of patients for each surgeon and 
the corresponding mean operation times for
laparoscopic repair are shown in Table 17. The
mean operation times for the randomised cases
only and for all cases showed that operation times
varied between surgeons. The mean operation
time varied within surgeon for some surgeons
when comparing the randomised cases to all cases.
For example, for surgeon 14 the mean operation
time for the randomised cases was 64.9 minutes
and for all cases was 74.8 minutes. However, the
majority of the operation times varied only
marginally between randomised and all cases.

To explore the position of randomised and non-
randomised cases within a case series, operation
time versus sequence number was plotted for 
three surgeons (Figure 17 ). For surgeon 7, the 
non-randomised cases appeared to follow a 

TABLE 17  Comparison of mean operation times for randomised and all patients

Operator Randomised cases All cases
number

Number of patients Mean time Number of patients Mean time 
(minutes) (minutes)

1 2 75.0 27 68.4
2 5 66.0 21 72.0
3 149 51.3 153 51.2
4 41 56.2 41 56.2
5 4 87.5 4 87.5
6 2 81.0 26 81.7
7 53 66.9 109 69.9
11 3 86.7 3 86.7
13 15 73.7 36 79.6
14 15 64.9 31 74.8
15 5 72.8 19 69.8
16 18 66.1 85 65.9
21 13 66.2 24 62.3
24 4 74.5 5 71.0
26 4 45.0 6 50.8
29 9 78.3 10 78.5
30 3 48.3 23 38.7
31 7 54.3 7 54.3
33 8 60.0 8 60.0
34 5 57.6 6 58.0
36 15 36.9 15 36.9
38 5 98.0 6 96.7
39 1 – 1 –
43 8 65.5 9 62.7
46 5 54.8 5 54.8
47 17 52.4 17 52.3
48 5 83.0 5 83.0

Total 421 59.2 702 63.2
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similar pattern to the randomised cases. That 
is, the operation times appeared to decrease at
approximately the same rate for both types of 
data. For surgeon 14, the variability between non-
randomised cases was greater than for the random-
ised cases. Nevertheless, there was no discernible
change in mean operation time with experience
for surgeon 14. In contrast, surgeon 16 showed a
decrease in operation time with experience but the
rate of decrease was greater in the randomised
cases compared with non-randomised cases.

The intraclass correlation coefficient was 0.24 
for the randomised cases and 0.29 for all cases.
Hence, there was considerable variability 
between surgeons.

The results of the multilevel modelling of
logarithm of operation time and logarithm of
sequence for each of the three methods of coding
sequence are shown in Table 18. There was strong
evidence (p < 0.001) that random starting levels
were preferred over fixed starting levels for all
three models. However, there was no statistical
evidence that random rates of learning were

applicable for the all cases coding. There was
evidence that a random rate of learning was
preferred to a fixed rate for the trial order 
coding. The multilevel model for a random rate 
of learning using the trial cases coding would 
not converge to a solution and, thus, fixed 
rates are shown in Table 18.

The parameter estimates for the overall starting
levels and variances were similar for all three
models. The estimates of the rates of learning
differed between models – the trial order rate of
learning was higher than either the trial cases or
all cases coding. Based on these estimates, the
predicted mean values (transformed back to the
original scale using the antilogarithm function)
were calculated for different levels of experience;
these are displayed in Table 19. The predictions 
for the first case were 70.0, 71.7 and 70.5 minutes,
respectively, for the trial order coding, trial cases
coding and all cases coding. By the 200th pro-
cedure, the estimates were 44.1, 48.7 and 
49.1 minutes, respectively. The predicted fall 
in operation time over the first 50 cases was
greatest for the trial order coding (20.2 minutes).
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FIGURE 17 contd Distribution of operation times for three operators using randomised (■■) and non-randomised (●●) data
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Surgeon number 3 performed over one-third of 
all cases; in order, therefore, to test the sensitivity
of the results, this surgeon was excluded from the
data and the models were refitted. There was no
difference in the conclusions derived from these
analyses. For example, the overall starting level
changed from 4.248 to 4.257 and the overall rate
of learning changed from –0.087 to –0.092 for 
the trial order coding.

Grade of surgeon (coded 1 for senior registrar, 0
for consultant) was entered into the three models
as a fixed effect. There was no significant reduc-
tion in the log-likelihood for any of the models
when this variable was entered and, hence, there
was no evidence that grade of surgeon affected 
the operation time. For example, for the all cases
coding, the point estimate for the effect of a 
senior registrar performing the procedure was
–0.012 (95% CI, –0.078 to 0.054).

Any complication at 1 week
There were some patients for whom no
information on complications at 1 week was
recorded. Data for only 18 surgeons performing

341 randomised laparoscopic hernia repairs in
total were included, and 586 repairs were included
when the non-randomised cases were added.

The number of patients for each surgeon and the
corresponding proportion of those patients who
had a complication are shown in Table 20. The
complication rates for the randomised cases only
and for all cases varied between surgeons but were
reasonably consistent within surgeon. The intra-
class correlation coefficients were 0.054 and 0.089,
respectively, for trial cases and all cases. So the
variation between surgeons was about 5–9% of 
the total variability in the data set. The intraclass
correlation coefficient for these binary outcomes
were calculated from an ANOVA table under the
assumption of normality.

The overall complication rates within the ran-
domised cases only were divided into sequential
groups of ten patients. The mean and correspond-
ing 95% CIs were calculated, and are displayed in
Figure 18. There was no detectable increase or
decrease in the overall complication rate with
experience. The figure may, however, have hidden

TABLE 18  Operation time: parameter estimates of the models using the three different sequence numbering

Parameter All casesa Trial casesa Trial orderb

estimate (95% CI) estimate (95% CI) estimate (95% CI)

α0, starting level 4.255 (4.147 to 4.363) 4.273 (4.150 to 4.396) 4.248 (4.132 to 4.364)

�, rate of learning –0.068 (–0.095 to –0.041) –0.073 (–0.110 to –0.036) –0.087 (–0.111 to –0.063)

σu
2, variance of starting level 0.047 (0.016 to 0.078) 0.040 (0.011 to 0.069) 0.063 (0.014 to 0.112)

between operators

σv
2, variance of rate of learning – (–) – (–) 0.002 (< 0.001 to 0.004)

between operators

σe
2, patient level variance 0.110 (0.098 to 0.122) 0.109 (0.093 to 0.125) 0.105 (0.091 to 0.119)

σ u v , covariance between starting – (–) – (–) –0.012 (–0.022 to –0.002)
level and rate

a Log sequence modelled as a fixed effect (random effect was non-significant)
b Log sequence was modelled as a random effect (X2 difference = 8.5; p < 0.025)

TABLE 19  Predicted mean operation times

Operating time (minutes)

Sequence number 1 25 50 100 200

Trial ordera 70.0 52.9 49.8 46.9 44.1
Trial casesb 71.7 56.7 53.9 51.3 48.7
All casesc 70.5 56.6 54.0 51.5 49.1

a Prediction equation was optime = e4.248 x (order)–0.087

b Prediction equation was optime = e4.273 x (order)–0.073

c Prediction equation was optime = e4.255 x (order)–0.068
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TABLE 20  Comparison of 1-week complication rates for randomised and all patients

Operator Randomised cases All cases
number

Number of Percentage with Number of Percentage with 
patients complications patients complications

1 1 0 13 46
2 5 40 13 31
3 146 47 150 45
4 41 63 41 63
5 4 50 4 50
6 2 50 26 58
7 53 38 109 34
11 3 0 3 0
13 15 40 36 50
14 19 32 33 27
15 2 50 18 33
16 18 61 86 46
21 13 38 24 38
24 3 33 5 20
25 0 0 6 17
26 4 50 6 67
29 9 56 10 50
36 3 67 3 67

Total 341 46 586 43
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FIGURE 18 Distribution of complications rate and corresponding 95% CIs for randomised cases only (numbers above the 95% CIs
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changes in individual performance. Cusum charts
for the three operators who contributed most of
the randomised cases are shown in Figure 19 (a–c).
The cusum charts were random for all three oper-
ators. The apparent increase relating to operator 4
means that that operator was not attaining a 55%
rate of complication; however, the randomness of
the deviations as the cusum increases means that
the complication rate did not change significantly
with experience.

The results of modelling the complication rate 
by the three methods of coding experience are
shown in Table 21. In all three cases, there was 
no statistically significant relationship between
complication rate and experience (although the
direction of effect suggested that complication 
rate increased with experience). The overall mean
predicted probabilities of a complication were
39%, 45% and 45% for all cases, trial cases and
trial order variables, respectively. Again, the effect
of inclusion of grade of surgeon as a fixed effect 
in the models was not significant.

Discussion

The analysis of multiple case series learning 
curve data using multilevel models was extended 
to the investigation of a randomised cohort of
cases embedded within a case series. It was
demonstrated that some parameters of learning
curve effects were changed by the inclusion of 
the non-randomised data.

Coding of the experience variable
One of the critical components when assessing 
the learning curve effect in a randomised cohort 
of patients is attributing a level of experience to
each of the randomised patients. Three different
sequences for experience were applied to the
laparoscopic hernia data. The first ignored the fact
that there were randomised patients and described
the learning curve effects in terms of all patients
(randomised and non-randomised). The second
sequence used the non-randomised data to estimate
the number of procedures performed between
randomised cases and modelled only the random-
ised cases. The third sequence assumed that there
was no knowledge of the position of each operator
in their complete case series and modelled the
order in which patients were entered into the trial.
There were a number of assumptions underpinning
the appropriateness of the various sequences.

First, non-randomised cases were assumed to be
the same as randomised cases. Second, it was

assumed that all non-randomised cases contributed
to an operator’s learning curve. When both these
assumptions were made, it was shown, using
multilevel modelling, that ignoring the non-
randomised cases overestimated the rate of change
in operation times in the laparoscopic hernia trial
(Table 19). It is possible that the non-randomised
cases were different from the randomised cases,
since the non-randomised cases failed to meet the
entrance criteria of the trial. This potential bias
was not addressed.

Preliminary investigation of data
The graphical and tabular representations of the
randomised and non-randomised data on oper-
ation times were useful methods of describing the
data. It was demonstrated that there were changes
in operation time with experience but that it was
not consistent across operators.

Multilevel modelling
The multilevel modelling of operation time
demonstrated a statistically significant relation-
ship between experience and operation time for
the three different types of coding of experience.
Experience was, therefore, potentially a confound-
ing factor in the analysis of the randomised trial.
The trial order coding of experience appeared to
overestimate the rate of learning in comparison 
to the other two methods of coding. There was,
however, great variability between operation times
within surgeons and, thus, the 95% CIs for the rate
of learning in the three models had substantial
overlap. Sources of variability could have included
case-mix factors such as age, sex or body mass
index of the patient.

There was no evidence of a relationship between
experience and 1-week complications. Operative
complications may have been more likely to show 
a relationship with experience but there were only
25 operative complications in the hernia data set,
which is too few for statistical analysis. In contrast,
there were 156 complications at 1 week (but not
necessarily as a direct consequence of the proce-
dure). The intraclass correlation coefficient for 
the complications was between 5% and 9%. This
was substantially smaller than the coefficient for
operation time (24–29%). This result implies that
variability between operators was less for compli-
cations. This is in agreement with research into the
size of intraclass correlation coefficients in other
areas.121 Campbell and colleagues121 demonstrated
that the size of an intraclass correlation coefficient
on a process of care variable (for example, oper-
ation time) was greater than the intraclass corre-
lation coefficient of an outcome variable (for
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example, a complication). This observation may 
be explained by biological variability in measures
of patient outcomes compared with measures 
of operator performance.

A single operator performed about one-third of 
all cases and might have disproportionately influ-
enced the results. This surgeon had relatively 
more experience with the procedure and, hence,
the learning curve might have reached a plateau.
In the event, however, the results of the multilevel
modelling did not change substantially when the
data for this surgeon were excluded.

The grade of the operator performing each
procedure did not have, apparently, a great

influence on outcomes. This may be because a 
surgical procedure such as laparoscopic hernia 
is a team effort or because the registrars had
experience of other laparoscopic procedures.
Indeed, although senior registrars performed 28%
of the laparoscopic hernia procedures, there was
no evidence of differences in operation times or
complications between them and consultants.

Limitations of the hernia data set
The analysis of the hernia data presented in this
chapter has a number of limitations. First, it is
likely that some of the non-randomised cases were
not reported to the study; hence the methods of
coding experience may be inaccurate for some
surgeons. Secondly, no attempt was made to
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TABLE 21  Any 1-week complication: parameter estimates of the models using the three different coding sequences 

Parameter All casesa Trial casesa Trial orderb

estimate (95% CI) estimate (95% CI) estimate (95% CI)

α0, starting level –0.433 (–0.751 to –0.115) –0.215 (–0.609 to 0.179) –0.209 (–0.559 to 0.141)

�, rate of learning 0.005 (–0.001 to 0.011) 0.001 (–0.005 to 0.007) 0.002 (–0.004 to 0.008)

σu
2, variance of starting level 0.126 (–0.066 to 0.318) 0.071 (–0.113 to 0.255) 0.070 (0.114 to 0.254)

between operators

a Log-sequence modelled as a fixed effect (random effect was non-significant)
b Log-sequence modelled as a random effect (X 2 difference = 8.5; p < 0.025)
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identify how many procedures each surgeon 
had performed before recruiting patients; hence,
the assumption of a starting experience number 
of one in the sequences was also potentially
misleading.

Comparison with laparoscopic
cholecystectomy results
The results of the multilevel modelling of
operation time with the hernia repair data 
can be contrasted with those obtained from the
laparoscopic cholecystectomy data (see chapter 5). 
The estimated operation time for the first pro-
cedure was lower for the laparoscopic hernia 
data (70 minutes) than for the laparoscopic
cholecystectomy data (98 minutes); however, the
rate of learning was quicker in the laparoscopic
cholecystectomy data. Other researchers have
suggested that laparoscopic hernia repair typically
takes longer than 70 minutes.120 This may support
the hypothesis that these hernia surgeons were
further along their learning curve at the beginning
than the data suggested. Indeed, each surgeon
should have performed at least ten laparoscopic
hernia procedures before recruiting patients. 
The apparently slower rate of learning in the
hernia data may therefore have been caused by 
the surgeons being further along their learning 
curves, with less improvement available for 
them to make.

Implications for the design of trials 
that include possible learning effects
These findings indicate that non-randomised 
data should be collected in a trial if learning 
curve effects are to be investigated. Unfortunately,
this could potentially make the costs of running
the trial prohibitively high or adversely affect trial
recruitment. A simpler alternative is to identify 
the number of procedures between randomised
patients (but not collect outcome data for them).
This can be done in several ways. First, for each
recruited patient the operator could be asked how
many previous procedures they have performed.
This is certainly one of the easiest methods of
collecting previous experience information but 
has questionable validity because of possible 
recall bias. Second, the hospital records (or
general practioners’ notes if the treatments are 
in primary care) of all patients with the condition
can be checked. This is resource intensive. Third,
if there are computerised databases available at
institutional or national level, they can be a cost-
effective source of information provided that the
records are up-to-date and accurate.

A further advantage of adding non-randomised
data is that they increase the sample size of the
study and, hence, may enable the learning effects
of relatively rare events to be incorporated into 
any analysis.

Implications for the analysis of learning
in trials
As described in chapter 5, multilevel modelling 
is a promising approach to addressing the learning
curve issue in case series type data. If possible
learning effects are to be investigated in future
trials, it would be helpful if further comparisons
could be made of the three methods of coding 
of experience illustrated in this chapter. The
extension of this type of analysis to other health
technology data sets is required before recom-
mendations on addressing learning curves in
randomised trials can be made.

It is sometimes not possible to use multilevel
modelling. There can be problems with con-
vergence to a meaningful solution. For example,
the analyses here used ten operators to investigate
between-operator differences but often 20–30 are
recommended.85 The minimum number will
depend upon the context. The iterative estimation
technique can also be problematic. In the case
study in this chapter, the trial cases variable would
not converge to a solution as a random factor.
Strategies for attempting to solve convergence
problems include centring the variable, or chang-
ing the algorithm from iterative generalised least
squares (IGLS) to restricted iterative generalised
least squares (RIGLS).114

Conclusions

It was demonstrated that the addition of the non-
randomised data changed the interpretation of the
learning curve effect in one arm of a trial of groin
hernia repair. This finding should be interpreted
cautiously, however, because of concerns about the
completeness of the non-randomised data and the
generalisability of the finding.

A promising approach to assessing learning 
effects in one arm of an RCT is to use the non-
randomised data to gauge the position on the
learning curve for each of the randomised cases
(trial cases coding), without using the actual data
from the non-randomised cases. Empirical testing
of this strategy is now required within a variety 
of health technologies.
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Overall conclusions
It is clear that both individual operators and
institutions learn through experience. This 
change in effectiveness over time could invalidate
health technology assessments. The overall aim 
of this project was to determine whether there
were existing methods that had been, or could 
be, adapted to the purpose of allowing for 
‘the learning curve’ when assessing a new 
health technology.

The systematic search of the health technology
assessment literature revealed that, while many
researchers were aware of the problem, there 
were no satisfactory methods for addressing it. 
The search of non-health technology assessment
literature in areas such as psychology and human
factors revealed some additional techniques but,
again, none that provided an obvious solution to
the problem in hand. Finally, some of the curves
and methods identified in the reviews of health
technology assessment and non-health technology
assessment literature were fitted to some large 
data sets. These revealed further weaknesses 
in current data collection systems and 
statistical methods.

Given the effort put into the search for data and
references, our main conclusion is drawn with
confidence – new methods will have to be devel-
oped and this will require considerable further
research. This research will only be possible if
health technology assessments record and 
report much richer data. In particular, infor-
mation is required about individual operator
experience and outcome measures additional 
to operation time.

Specific conclusions

Learning curves are an important part of health
technology assessment and the following
conclusions are well-recognised.

1. Changes over time in the performance of 
a technology because of learning effects
complicate evaluation and are an impediment 
to rigorous assessment.

2. Useful parameters for describing learning 
and hence exploring or adjusting for its 
effects are the rate and length of learning 
and the final skill level.

3. The effects of learning can be complex 
and an important distinction can be drawn
between individual (operator) learning and
institutional learning.

Searching for statistical techniques
A solution to the type of statistical analysis 
required to address learning curve effects in 
health technology assessment might have existed 
in the clinical literature but was not widely dis-
seminated. Therefore, a systematic review of
studies in the health technology assessment
literature was undertaken. The purpose of the
systematic review was not to track down every
single paper related to learning curves but to
describe the ‘epidemiology’ of studies that have
addressed learning curve effects in health tech-
nology assessment. It was important to avoid
missing a useful paper that described a new
statistical method. The advantage of a systematic
approach is that the results are transparent and
potentially reproducible by other researchers. 
The review was extremely resource intensive –
some 4571 abstracts had to be read and 559 full
papers required assessment. Data were abstracted
from 272 included papers. In addition, question-
naires were sent out to experts in health tech-
nology assessment. The conclusions from the
review were as follows.

4. As in other systematic reviews of
methodological issues in health technology
assessment, designing search strategies for
studying learning effects was difficult because
there is little relevant indexing or key-wording.
Even limiting electronic searches to ‘learning
curve’ generated thousands of abstracts, most
of which were not relevant. Contacting experts
in the field proved particularly useful in a
search for novel methods.

5. Often there was too little information 
contained in the papers to make a decision 
on study quality.

6. Systematic searching of published clinical
literature showed that the statistical methods
used in health technology assessment have

Chapter 7

Conclusions and implications 
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generally been crude, and many reports rely 
on simple description without any formal
statistical analysis.

Learning curve effects exist in other fields, 
such as psychology, aviation and manufacture, 
and it was possible that more advanced statistical
techniques had been used these fields than in
health technology assessment. To keep the task 
of finding these techniques as unbiased as possible,
a systematic search of a number of fields was
undertaken. Once again, the resources required
were considerable. Nearly 10,000 abstracts were
reviewed, 100 full papers assessed and 18 papers
were included in the review. Experts in the various
fields were also sent questionnaires.

Based upon the results of the searches, the
conclusions were as follows.

7. The systematic searching in these fields
identified an additional eight possible shapes
of curve and nine statistical methods for
assessing learning effects which had not
hitherto been used in health technology
assessment. This demonstrated the value of
considering fields outside clinical research
when addressing methodological issues in
health technology assessment.

8. Statistical methods for exploring learning 
can be categorised as either for identifying
learning (Was there a change over time?), 
or for measuring learning (What size was 
the change?).

9. There is a hierarchy of methods for
identifying and measuring learning, and 
the more sophisticated methods for both 
have had little, if any, use in health 
technology assessment.

Single operator case series
The systematic reviews identified a hierarchy of
techniques that could be applied to simple and
complex data. Case series design was used in 95%
of the studies identified in the review of the health
technology assessment literature and, hence, it is
important to understand how to identify and
measure changes in performance in case series
designs. Some of the statistical methods identified
in the reviews were illustrated and explored by
applying them to a case series of 190 consecutive
laparoscopic fundoplication procedures performed
by a single surgeon, from which the following
conclusions were drawn.

10. Splitting the series into thirds or quarters can
be misleading.

11. The various curves that were identified can be
compared statistically using the AIC (although
there may well be alternatives).

12. Finding measures that are reliable proxies for
learning can be difficult. Measures of patient
outcome tend to be dichotomous rare events
(such as complications) and therefore
relatively intractable to statistical analysis; 
no method was identified that was entirely
suitable for these. Methods are available for
analysing continuous process measures, such
as time to complete an operation, but the
relationship of these variables to learning 
may be weak.

13. Adjustment for case-mix may be required 
in analyses of learning. Variation in case-mix
may obscure learning effects by introducing
background noise into the analysis and case-
mix changes over time can confound any
learning effect.

Multiple case series designs
Ascertaining the correct learning curve shape 
of an individual operator is important but does 
not give an indication of how that operator 
differs from another operator. To begin to
compare operators it is necessary to use data 
from a number of operators. Some of the
techniques identified in the reviews were illus-
trated and explored using multiple case series 
of laparoscopic cholecystectomy procedures
performed by ten surgeons.

It is apparent that the structure of multiple case
series data in the simplest scenario is hierarchical
in nature. That is, the operators are a higher level
of the hierarchy and the many procedures are at 
a lower level. The institution adds an extra level 
to the hierarchy in multiple institution studies. It
was decided to illustrate only one of the complex
methods (multilevel models), because it appeared
to fulfil the necessary characteristics of modelling
the hierarchy and enabling flexibility in the type of
shape of learning. The multilevel models statistical
package MLWin93 was used for the model fitting.

The following conclusion was drawn from the
analysis of the cholecystectomy data.

14. Assessing learning in multiple operators is
complex and requires a multilevel approach.
These derive measures of individual operator
performance and of how each operator
compares with other operators. Of the
possible methods identified for doing this,
only multilevel modelling was tested within
this project.
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Incomplete data from an RCT
Investigators sometimes believe that their
randomised trial may be compromised or biased 
by learning effects in one arm of the trial. To 
begin to address this issue, investigators need to
identify and measure any learning effect in that
arm of the trial. Such assessment is commonly
complicated, however, by incomplete case series 
on the operators in the trial (not every case is
necessarily included in a randomised trial). The
analysis of complex structured data was extended
to randomised trial data derived from the
laparoscopic procedure arm of a multicentre
randomised trial in groin hernia repair. The
randomised trial data were supplemented by
information on non-randomised operations
performed over the period of the trial.

The data were analysed using multilevel models
and the following conclusions were drawn.

15. The coding of the experience variable plays 
an important role in ascertaining the rate 
of learning.

16. The addition of the non-randomised data
changed the learning curve parameters,
suggesting that coding experience using 
only randomised trial data may spuriously
overestimate the rate of learning.

17. While complete data on non-randomised 
cases is optimal, collection of such data may
be too resource intensive to be feasible in a
pragmatic randomised trial. A compromise
could be to limit collection of non-randomised
data to determine the position of the ran-
domised cases in the operator’s full series.

Implications for health 
technology assessment
1. Reliable assessment of learning effects is most

likely to come from prospectively collected
data on multiple operators or institutions.

2. Reports of studies of learning should, as 
a minimum, describe the number and
experience of the operators, the data source,
the proportion of procedures performed by
individual operators (to ensure that no one
operator dominates) and the level of care.

3. Any study of a methodological topic related to
health technology assessment should consider
other fields.

4. Investigators of a methodological topic should
consider contacting experts in other fields.

5. Researchers should give due attention to 
the intensive resource implications of

undertaking systematic reviews of
methodological issues inside and outside
health technology assessment.

6. As a principle, the simplest methods 
within the hierarchies of statistical methods
described in this report should be used in 
a parsimonious way.

7. The split group method should only be used
in the context of a linear trend component,
interpreted as statistical rather than graphical
evidence of performance change.

8. Given that the power curve has been used
extensively across many fields as the shape 
of learning, any comparison of different 
curve shapes should be made against the
power curve.

9. Autocorrelation may be present in learning
curve data and should be investigated using 
an appropriate statistical method.

10. Investigators should consider, and adjust for,
any confounding factors.

11. When there are multiple operators in a study,
a method should be used which takes into
account the hierarchical nature of the data.

12. Collection of non-randomised data alongside
an RCT may, despite possible limitations, aid
the assessment of learning curve effects.

13. To analyse trends in operator performance
within RCTs requires the positions of the
operators on their learning curves to 
be known.

Recommendations for 
further research
The implications of this work for future 
research are explored below, and some of the
issues surrounding learning curve effects that
require to be addressed are described.

1. Further empirical testing of the techniques
identified is required. In particular, the gener-
alisability of the various shapes and methods
that were identified needs to be assessed for 
a wider variety of health technologies.

The shape of learning curves associated with 
three laparoscopic technologies has been 
explored empirically in this report. However,
minimal access techniques are only one type of
technology that exhibits learning effects. The
testing of the various shapes should be extended 
to other health technologies that require skill and
learning. These include other surgical techniques,
diagnostic methods and where dosage decision-
making is necessary.
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There are several ways to take the statistical analysis
of the shapes of learning forward.

• Shifting the axis of the curves In the analyses
described here it was assumed that the experi-
ence axis started at zero. Many of the curves 
can be transformed by shifting the starting 
point of experience by a constant, c. For
example, the power law denoted by y = aX–b 

(see chapter 4) can be transformed to 
y = a(X + c). The possible advantage of this 
is to get a better fit to the initial points on 
the curve.

• Adding covariates to the curve shapes Many
results of procedures are confounded by patient
characteristics such as age, sex and weight. The
interaction of these characteristics with the
various curve shapes should be investigated.

• Curve shapes within a technology As well as
comparing the shapes of learning between
technologies, a comparison of the shape of
individual operators’ or institutions’ learning 
of a technology should be investigated.

• Prior experience of operators Questionnaires
could be sent to operators in a particular study
asking for prior experience/training in the
technology under investigation. The results 
of the questionnaire could then be used to
investigate if prior experience/training
influences the learning curve.

• Asymptote of learning Methods should be
explored for estimation of the asymptote for
each of the curve shapes (see recommendations
on asymptotes below).

A number of methods for complex structured 
data were identified and require to be tested on
data sets with different numbers of operators 
and procedures.

• Applicability of data sets Some of the methods
may be more appropriate for data that have
many operators but relatively few observations
per operator (for example, generalised estim-
ating equations). The current data sets could be
used in simulation studies to generate data with
certain characteristics that could then be used 
to test the limitations of the various techniques.
Preferably more data sets should be obtained.

• Dichotomous outcomes Many of the 
complex methods identified cannot be used 
on dichotomous data. For example, stochastic
parameter and latent curve models require 
the data to be normally distributed. However,
multilevel models can be applied to dichot-
omous data and should be explored further
using a number of different data sets.

• Bayesian techniques  Bayesian hierarchical
models are commonly used for multilevel
modelling and their usefulness for modelling
learning curves should be explored.

2. Estimation of the time taken to reach an
asymptote should be explored further.

The asymptote of learning is the final level 
of performance obtained by an operator. An
estimate of the asymptote is important for two
reasons. First, the number of procedures required
to reach the asymptote can be calculated and 
this gives an indication of the potential costs 
of learning the new procedure. Second, know-
ledge of the asymptote enables investigators 
to discard the cases in the learning phase 
and, hence, to evaluate the optimal results 
for a procedure.

There are a number of difficulties with estimating
the asymptote of performance, and further
research is required on the following issues.

• Large variability in the process and outcome
variables can mean that estimates for the
asymptote can vary considerably.

• Often a series of datapoints is too short to 
make a reliable estimate of the asymptote. 
For example, an RCT may only have several
observations per operator.

• The full series of cases for an operator is often
not collected; it can be difficult, therefore, 
to judge if the asymptote has been reached.

• There are no guidelines for what is a clinically
important distance from the asymptote,
although this is likely to vary from technology 
to technology.

3. Further research is required on variables that
are good proxies for learning.

The variables used most commonly to assess
learning are the operation time and the number 
of complications. Operation time is certainly a
dimension of learning but relates to the process 
of the technique and is not a measure of com-
petence. In contrast, complications are a measure
of outcome of a procedure but, often, the com-
plications are too rare for statistical analysis. 
The complications (and operation times) arise
through a variety of factors, only some of which 
are under the control of the operator. These
factors include the severity of disease, patient
compliance, financial and institutional constraints,
limitations of the technology and personal
characteristics of the operator and patient.122
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Alternative proxies for learning should be
investigated. These possibly include surgical 
near-misses,67 length of stay, blood use, economy 
of motion,66 and disease-specific quality-of-life
measures. The statistical techniques identified in
chapters 2–6 could be used to explore learning
with all of these measures.

4. Relatively rare, dichotomous outcomes are often
the most important measures of performance
but are currently the least tractable to analysis.
Further methodological research is needed to
address this issue.

Measuring the learning curve statistically using 
rare events is difficult. The systematic searches
described in this report did not identify any
promising statistical techniques. As a first step,
better reporting of complications is needed, ideally
through a central data collection system. This
would maximise the number of events.123 Even 
if this was set up, there would still be difficulties 
in determining individual learning curves if there
are few events per individual.

5. Further empirical work is required to identify
the optimal method for assessing learning
curves within RCTs. In principle, a randomised
trial design should protect against case-mix 
drift over time.

The RCT is rightly recognised as the gold 
standard design for evaluating the effectiveness
and cost-effectiveness of new technologies.
Learning effects in the new technology can
complicate the evaluation. The analysis of the
laparoscopic hernia repair trial (chapter 6)
illustrated that the learning curve in the laparo-
scopic arm of the randomised trial was distorted 
if no consideration was given to the operations
performed between randomised cases. The analysis
did not consider the impact of learning curve
effects upon the size of differential effects between
trial groups. In principle, changes in case-mix 
will be equalised in the treatment and control 
arms of the randomised trial, but it is still con-
ceivable that such changes will influence the new
treatment arm only (or more so than the standard
approach). For example, selection of less obese
patients might aid laparoscopic surgery but make
relatively little difference to the performance of
the standard technique. Therefore, further
analyses required to investigate these 
influences include:

• more extensive testing in other technologies 
of the influence of observational data in the

analysis of learning effects in one arm of a
randomised trial

• mathematical simulation techniques 
employed to investigate the impact of ‘missing’
information on the estimates of learning effects

• analysis of trial data using multilevel modelling
that adjusts for learning effects

• investigation of case-mix influences in both 
arms of a trial using the techniques identified 
in this report

• assessment of the impact of differing skill levels
on the effect sizes using simulation techniques

• assessment of the effects of varying the 
number of procedures performed by 
individual operators.

6. The impact of learning curve factors on
economic evaluation should be explored.

Increasingly, pragmatic trials have an economic
evaluation relating costs to effectiveness. The
learning curve will impact not only on the
effectiveness but also on costs.37,124 For example, 
in laparoscopic surgery the staff costs will be
affected by changes in operation time (calculated
as (staff costs + overheads) × operation time) and
the seniority of the surgeons. However, the net
impact of the learning curve on cost is uncertain:
more junior staff are less experienced and less
costly than senior staff; hence, the impact on cost
may not be significant. Hospitalisation costs may
also vary with experience if the learning curve
impacts upon the length of stay of a patient.

There are certainly at least two complementary
analyses that could be performed in this context.
The first would be an exploratory sensitivity analy-
sis that measured the average cost of a procedure
per hospital as the operation time is varied. The
second analysis would use the costs per patient
data to look for factors that contributed to the
costs, and so the experience variable would be
used as a predictor in this analysis. Learning 
could, therefore, have an important impact on
cost-effectiveness and, hence, further work on the
influence of learning and skill on the benefits and
costs of introducing new technologies is required.

7. Data sets for addressing these issues are most
likely to come from prospective data collection;
this should be built into the design of future
evaluations of technologies likely to show a
learning effect.

While learning curve effects can potentially
confound rigorous evaluations of health
technologies, such as in the context of RCTs,
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learning curve effects can be explored using data
from less rigorous observational studies. It is a
challenge to healthcare assessors to come up with
scientifically adequate, yet economically viable,
research designs. Lilford and colleagues125 have
recently proposed a design, called a tracker study,
that may provide a solution.

A tracker study consists of a number of 
randomised comparisons of a new type of tech-
nology to standard treatment. These technologies
will not necessarily be stabilised but, rather, the
tracker study would be able to monitor progress 
of the technology from specific to general use. In
these studies, each clinician would be allowed to
randomise between trial arms that they considered
were reasonable alternatives. In addition, data
would also be collected on an observational basis,
because many operators or institutions may use
only one of the treatment options. A tracker study
would be flexible to changes in procedure and
would include all operators and institutions,
irrespective of skill or experience. In this way, 
the equipoise126 of each individual can be utilised
to a maximum, since the time lag between an
operator wanting to undergo a rigorous evaluation
and the setting up of a randomised trial would be
minimised. Also, the data collection would be
maximised and, therefore, could aid the develop-
ment of a technology. Lilford and colleagues125

expected that the tracker study would be used 
as an early warning system for treatments that
perform poorly and could be used to reject
unpromising new treatments.

Of course, the method of analysis of these studies
would be complex in relation to the learning
curve. In theory, the methods proposed in this
report would at least provide a sufficient starting
place. The funding arrangements required for a
tracker trial would need to be more sophisticated
than for a standard evaluation. The commissioning
body would require flexible budgets to handle the

unknown duration of the study and the research
group would have to be flexible to respond to
changes in the technology. A compromise, in 
terms of the learning curve issue, would be for
funding bodies to commission observational 
data collection alongside a clinical trial.

8. A theory-based approach (instead of statistical)
should be investigated.

This report has focussed on methods for 
analysing learning curves statistically; ways to
develop these further are suggested above. There 
is also, however, a large amount of literature on 
the theoretical aspects of learning, such as 
skill acquisition.127 The research agenda could 
be broadened to consider theoretical aspects 
of learning in the context of health 
technology assessment.

9. Parallels and possible overlap between the
identification and description of learning and
the statistical aspects of quality assurance
(identifying a system going out of control)
should be explored further.

Quality control is a major component of
healthcare, and statistical methods for safety
monitoring that take into account operator 
effects and identify those operators who are
performing below standard are required. This 
was brought to public attention by the deaths of
babies undergoing congenital heart surgery in
Bristol.128 Indeed, the surgeon at the centre of 
the inquiry attributed part of the poor perform-
ance to the “learning curve”.129 There is extensive
literature on statistical quality control.130 The 
main aim of quality control is to identify when 
a system goes out of control. In contrast, the
learning curve effect typically involves the
beginning of the series and is concerned with 
a system coming under control. Nevertheless, 
the similarity should be investigated further.
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Search terms used for the identification
of studies related to learning curves
MEDLINE, EMBASE, CINAHL, HealthSTAR:
Learning adj4 curve$.tw.

MEDLINE (full text): Learning adj4 curve$.tx.

Science Citation Index, Social Science Citation
Index, BIOSIS: Learn* and curve* (in title,
abstracts and keywords).

Cochrane Library, National Research Register:
Learn* and curve* (in all fields).

NHS Economic Evaluation Database: Learning
curve$ (all fields).

Current Controlled Trials: Learning (any field, 
any Register).

Search terms for statistical methods
used in assessing the learning curve

Curve analysis; hierarch* model*; multilevel
model*; random effect* model*; generali#ed
estimat* equation*; latent curve model*.

Other search terms tested but rejected

Skill* and (acquir* or acquisit*); learning rate*;
((operator$ or surgeon$) adj4 experience$).tw.;
calibrat* and (skill* or learn*).

Appendix 1

Literature search strategies used in phase 1 
of the project†

† Key: $ = wildcard; adj(n) = adjacent, within n words either side of the other term; tw = textword, searches in title and
abstract; tx = full text, * = wildcard; # = substitutes for one character.
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Search terms for the identification of
articles related to learning
The following search terms were used; searches
were from 1989 unless otherwise stated (dates
covered by the searches are given in parentheses
after the name of each database). Details of the
individual databases are given in appendix 3.

MEDLINE (1966–March 1999); EMBASE (1980–
February 1999); CINAHL (1982–December 1998);
HealthSTAR (1975–November 1998); CAB Abstracts
(to September 1998): Learning adj4 curve$.tw.

MEDLINE (full text) (1993–October 1998):
Learning adj4 curve$.tx.

Science Citation Index (1981–March 1999); 
Social Science Citation Index (1981– March 
1999); Arts and Humanities Citation Index (to 
July 1999); BIOSIS (1985–March 1999); Sociofile
(to June 1998); PsycLIT (to June 1998): Learn*
and curve* (in title, abstracts and keywords).

INSPEC (to September 1995,  January–March
1997); ABI/INFORM (to September 1997),
Dissertation Abstracts (to March 1998); Index to
Theses Great Britain and Ireland (vols. 21–42; 
to December 1993): Learning curve? (title,
abstract).

Ei Compendex Plus/Page One (to March 1999);
ISTP (to March 1999); EconLit (to August 1998);
IBSS (to June 1999); RSC bibliographic databases
(to June 1999); IngentaJournals online (date of
search 23 July 1998): learning curve* (title,
abstract, keywords).

Search terms for known statistical
methods used in assessing the 
learning curve
Curve analysis; hierarch* model*; multilevel
model*; random effect* model*; generali#ed
estimat* equation*; latent curve model*.

Curve analysis
MEDLINE (1995–May 1998); EMBASE
(January–May 1998); CINAHL (1982–March 1998);
HealthSTAR (1996–May 1998); Social Science
Citation Index (January–July 1998); Science
Citation Index (January–July 1998); BIOSIS
(January–July 1998); Ei Compendex Plus/Page
One (January–July 1998); IBSS (1995–July 1998);
RSC (1995–July 1998); ISI Arts & Humanities
Citation Index (January–July 1998); ISTP
(January–July 1998): curve analysis.

Hierarchical model, multilevel model,
random effects model and generalised
estimating equations
MEDLINE (1995–May 1998); EMBASE
(January–May 1998); CINAHL (1982–March 
1998); HealthSTAR (1996–May 1998): (hierarch$
model$ or multilevel model$ or random effect$
model$ or generali#ed estimat$ equation$).tw.
Social Science Citation Index (January–July 1998);
Science Citation Index (January–July 1998);
BIOSIS (January–July 1998); Ei Compendex
Plus/Page One (January–July 1998); IBSS
(January–July 1998); RSC (1995–July 1998); 
ISI Arts & Humanities Citation Index (January–
July 1998); ISTP (January–July 1998): (hierarch*
model*, multilevel model*, random effect*
model*, ((generalised, generalized) estimat*
equation*).ti,ab,kw.

Latent curve model
MEDLINE (1996–June 1999): latent curve$.tw.
Science Citation Index (1981–July 1999): latent
curve* (ti,ab,kw).

Search terms for rare events or 
binary data
These terms were used only in PsycLIT
(1996–December 1998); Science Citation Index
(1998–January 1999); Ei Compendex (1998–
January 1999): (logit or log linear or logistic or
probit or dichotomous or binary or categorical or

Appendix 2

Search terms used in phase 1 and 2 of 
the project†

† Key $ = wildcard; adj(n) = adjacent to or within n words either side of the specified term; tw = textword, searches in
title and abstract; tx = full text; * = wildcard; # = substitutes for one character; in DE = in descriptors; ti, ab, kw =
searches in title, abstract and keywords.
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nominal or ordinal or discrete or rare event* or
poisson or error* or adverse event* or count or
counts or low frequenc* or adverse outcome* or
complication* or defect*) and (learn* or skill* or
performanc* or experience*).

Skill acquisition – terms used and 
dates searched
MEDLINE (January–July 1998); EMBASE
(January–May 1998); CINAHL (January–May
1998); HEALTHSTAR (January 1996–July 1998,
restricted to non-MEDLINE); CAB Abstracts
(January 1973–September 1998): Skill$ adj2
(acquir$ or acquisit$).
ISI Science Citation Index (January–July 1998); ISI
Social Science Citation Index (January–July 1998);
ISI Arts and Humanities Citation Index
(January–July 1998); ISTP (January–July 1998);
IBSS (January–July 1998); Ei Compendex Plus
(January–July 1998); Ei Page One (January–July
1998); BIOSIS (January–July 1998); RSC
(January–July 1998): Skill* + (acquir*, acquisit*).
PsycLIT (January 1993–June 1998): (skill* near2
acquisit*) or (skill* near2 acquir*) or (skill*
learning) – all fields including controlled
vocabulary but only first 50 assessed out of 851.
Sociofile (1974–-June 1998 but only first 20 assessed
out of 188); ECONLIT (1969–August 1998): (skill*
near2 acquisit*) or (skill* near2 acquir*).
ABI/INFORM (January 1996–September 1997):
(skill? Acquir?) or (skill? Acquis?).
INSPEC (January–March 1997): skill* 
near (acquir* or acquisit*).

Learning effect – search terms used 
and dates searched
PsycLIT (January 1996–June 1998); Sociofile
(1974–June 1998); ECONLIT (1969–August 1998):
learn* near 2 effect*.
ABI/INFORM (January 1996–September 1997):
learning effect?

Slips and mistakes – search terms used
and dates searched
PsycLIT (January 1988–December 1998): (slip* or
mistake*) and error*.
INSPEC (January–September 1995): (slip? or
mistake?) and error?

Other search terms tested
Learning rate; operator/surgeon experience;
calibration and (skill* or learn*); learning
methods; maturity model.

Learning rate
MEDLINE (1995–October 1998): learning 
rate$.tw.

PsycLIT (1996–June1998): learning rate* 
(all fields).
Sociofile (1974–June 1998); EconLit (1969–
August 1998): learn near2 rate*.
ABI/INFORM (1996–September 1997): 
learning rate?

Operator/surgeon experience
MEDLINE (1993–October 1998): ((operator$ 
or surgeon$) adj4 experienc$).tw.
INSPEC (January–March 1997): operator* 
near experience*.

Calibrate and (skill or learn)
MEDLINE (1995–May 1998); CINAHL
(1982–March 1998); HealthSTAR (1996–May
1998): calibrat$ and (skill$ or learn$).
ISI Science Citation Index (January–July 1998); ISI
Social Science Citation Index (January–July 1998);
ISI Arts and Humanities Citation Index
(January–July 1998); ISTP (January–July 1998);
IBSS (January–July 1998); Ei Compendex
Plus/Page One (January–July 1998); BIOSIS
(January– July 1998); RSC (January–July 1998):
calibrat* + (skill*, learn*).

Learning methods
PyscLIT (1996–June 1998); Sociofile (1974–June
1998); ECONLIT (1969–August 1998): learn*
near2 method*
ABI/INFORM (1996–September 1997): 
learning method?

Maturity model
PyscLIT (1996–June 1998); Sociofile (1974–June
1998); ECONLIT (1969–August 1998): maturity
model*.
ABI/INFORM (1996–September 1997): 
maturity model?

Rejected terms from preliminary work
Learning performance; development of com-
petence; Weibull; ergonomics; power law 
(of practice); power function of practice; 
fan effect.

Learning performance
BIOSIS (1994–July 1997); PsycLIT (1991–June
1997); International ERIC (1976–March 1997);
ERIC (1982–June 1994); Sociofile (1974–April
1997): learning perform*.

Development of competence
MEDLINE (1993–June 1997); CINAHL (1982–
May 1997): develop$ adj2 competen$.
Science Citation Index (1981–July 1997); 
Social Science Citation Index (1981–July 1997);
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Arts & Humanities Citation Index (1981–
July 1997); ISTP (1982–July 1997); Ei Com-
pendex Plus (1994–July 1997): develop*
competen*.

Weibull
Science Citation Index (1994–July 1997); Social
Science Citation Index (1981–July 1997); Arts &
Humanities Citation Index (1981–July 1997); ISTP
(1982–July 1997); Ei Compendex Plus (1994–July
1997): weibull.

Ergonomics
ASSIA PLUS (Spring 1997); Sociofile (1974–April
1997): ergonom*.
PsycLIT (1991–June 1997): human factors
engineering (in DE).

Power law
MEDLINE (1993–June1997); Science Citation
Index (1994–July 1997); Social Science Citation
Index (1981–July 1997); Arts & Humanities

Citation Index (1981–July 1997); ISTP (1982–July
1997); Ei Compendex Plus (1994–July 1997):
power law.

Power law of practice
Science Citation Index (1981–July 1997); ISTP
(1982–July 1997); Ei Compendex Plus (1994–July
1997): power law practice.

Power function of practice
Science Citation Index (1981–July 1997); Social
Science Citation Index (1981–July 1997); Arts &
Humanities Citation Index (1981–July 1997); ISTP
(1982–July 1997); Ei Compendex Plus (1994–July
1997): power function practice.

Fan effect
Science Citation Index (1981–July 1997); Social
Science Citation Index (1981–July 1997); Arts &
Humanities Citation Index (1981–July 1997); ISTP
(1982–July 1997); Ei Compendex Plus (1994–July
1997): fan effect.
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Non-clinical databases
• Social Science Citation Index (Institute for

Scientific Information, Philadelphia, PA, USA)
via BIDS online.

• Ei Compendex Plus (Computerized Engineering
Index, electronic version of Engineering Index:
Engineering Information Inc. (EI), Hoboken,
NJ, USA) on BIDS online.

• Ei Page One (Engineering Information Inc.
(EI), Hoboken, NJ, USA) on BIDS online.

• IBSS (International Bibliography of the Social
Sciences: British Library of Political and
Economic Science, London School of
Economics and Political Science, London, 
UK) on BIDS online.

• RSC bibliographic databases (five of the
available databases were searched. Chemical
Engineering and Biotechnology Abstracts
(CEABA): Royal Society of Chemistry;
DECHEMA 1997, Analytical Abstracts (AA),
Chemical Business NewsBase, Chemical Safety
NewsBase, Mass Spectrometry Bulletin: Royal
Society of Chemistry (RSC)) on BIDS online.

• PsycLIT (from PsycINFO database, American
Psychological Association, Washington DC,
USA) from SilverPlatter Information Ltd 
on CD–ROM.

• SOCIOFILE (Cambridge Scientific Abstracts,
Bethesda, MD, USA, under license from
Sociological Abstracts; SOPODA (Social
Planning/Policy and Development Abstracts);
also includes enhanced dissertation citations
from Dissertation Abstracts International) from
SilverPlatter Information Ltd on CD–ROM.

• ABI/INFORM (Bell & Howell Information and
Learning, Ann Arbor, MI, USA).

• ECONLIT (American Economics Association,
Nashville, TN, USA) from SilverPlatter
Information Ltd on CD–ROM.

• Dissertation Abstracts (Proquest by UMI, Bell &
Howell Information and Learning, Ann Arbor,
MI, USA) on CD–ROM.

• Index to Theses, Great Britain and Ireland
(Expert Information Ltd, London, UK, on
KawareF Retrieval System) on CD–ROM.

• CAB Abstracts (CAB International, 
Wallingford, UK).

• INSPEC (Institution of Electrical Engineers,
London, UK, covering physics, electronics,
computing) on CD–ROM).

• NASA Technical Reports Server
(http://techreports.larc.nasa.gov/cgi-
bin/NTRS/).

• ISI Arts & Humanities Citation Index 
(Institute for Scientific Information,
Philadelphia, PA, USA).

• ISTP (Index to Scientific and Technical
Proceedings: Institute for Scientific Information,
Philadelphia, PA, USA).

Clinical databases
• MEDLINE (National Library of Medicine, 

USA; electronic version of Index Medicus) 
from Ovid Technologies Inc. on CD PLUS.

• EMBASE (Elsevier Science Publishers BV,
Amsterdam, The Netherlands; electronic 
version of Excerpta Medica) from Ovid
Technologies Inc. via BIDS online.

• Science Citation Index (Institute for Scientific
Information. Philadelphia, PA, USA) via 
BIDS online.

• BIOSIS (Biological Abstracts Inc. USA;
electronic version of Biological Abstracts) 
on Edina.

• CINAHL (Cumulative Index of Nursing and
Allied Health Literature: CINAHL Information
Systems, Glendale, CA, USA) from Ovid
Technologies Inc., on CD PLUS.

• HealthSTAR (National Library of Medicine,
Bethesda, MD, USA, and the American Hospital
Association) from Ovid Technologies Inc. on 
CD PLUS.

Appendix 3

Details of electronic databases searched in 
phase 2 of the project 
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