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Objectives: To identify the role of modelling in
planning and prioritising trials. The review focuses on
modelling methods used in the construction of disease
models and on methods for their analysis and
interpretation.
Data sources: Searches were initially developed 
in MEDLINE and then translated into other 
databases.
Review methods: Systematic reviews of the
methodological and case study literature were
undertaken. Search strategies focused on the
intersection between three domains: modelling, health
technology assessment and prioritisation. 
Results: The review found that modelling can extend
the validity of trials by: generalising from trial
populations to specific target groups; generalising to
other settings and countries; extrapolating trial
outcomes to the longer term; linking intermediate
outcome measures to final outcomes; extending
analysis to the relevant comparators; adjusting for
prognostic factors in trials; and synthesising research
results. The review suggested that modelling may offer
greatest benefits where the impact of a technology
occurs over a long duration, where disease/technology
characteristics are not observable, where there are
long lead times in research, or for rapidly changing
technologies. It was also found that modelling can
inform the key parameters for research: sample size,
trial duration and population characteristics. One-way,
multi-way and threshold sensitivity analysis have been

used in informing these aspects but are flawed. The
payback approach has been piloted and while there
have been weaknesses in its implementation, the
approach does have potential. Expected value of
information analysis is the only existing methodology
that has been applied in practice and can address all
these issues. The potential benefit of this methodology
is that the value of research is directly related to its
impact on technology commissioning decisions, and is
demonstrated in real and absolute rather than relative
terms; it assesses the technical efficiency of different
types of research. Modelling is not a substitute for data
collection. However, modelling can identify trial designs
of low priority in informing health technology
commissioning decisions.
Conclusions: Good practice in undertaking and
reporting economic modelling studies requires further
dissemination and support, specifically in sensitivity
analyses, model validation and the reporting of
assumptions. Case studies of the payback approach
using stochastic sensitivity analyses should be
developed. Use of overall expected value of perfect
information should be encouraged in modelling studies
seeking to inform prioritisation and planning of health
technology assessments. Research is required to assess
if the potential benefits of value of information analysis
can be realised in practice; on the definition of an
adequate objective function; on methods for analysing
computationally expensive models; and on methods for
updating prior probability distributions. 
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Background
Most decision-analytic models in health technology
assessment describe pathways through health states
and events in a population. Mathematical models
of the natural history of a disease are used to
estimate health outcomes, resource usage and
costs, and to compare the clinical and economic
effectiveness of the technologies under assessment.
The most common mathematical techniques used
are decision analysis, state transition models and
discrete event simulation. The appropriate
technique depends on the characteristics of the
treatment under evaluation.

Objectives
❷ To assess modelling methods used in the

construction of disease models to support
health technology assessment, and methods for
their analysis and interpretation.

❷ To identify the role of mathematical modelling in
planning and prioritising trials. ‘Trials’ is defined
as all forms of primary research supporting
health technology assessment of the clinical and
economic consequence of alternative
interventions. 

Methods
Systematic reviews of the methodological and case
study literature were undertaken. Search strategies
focused on the intersection between modelling,
health technology assessment, and priorities and
prioritisation.

Results and conclusions
Five central questions were addressed.

(1) In what ways can modelling extend
the validity of trials?
By:

❷ generalising from trial populations to specific
target groups

❷ generalising to other settings and countries
❷ extrapolating trial outcomes to the longer term
❷ linking intermediate outcome measures to final

outcomes

❷ extending analysis to relevant rather than trial
comparators

❷ adjusting for prognostic factors in trials
❷ synthesising primary research results.

These conclusions are drawn from the review of
methodological and case studies of economic
models from the general health technology
assessment literature that claims some value in
research planning and design. In undertaking
modelling or interpreting the results of modelling
studies, the degree of reliance that can be placed
on these studies is important, so close attention
must be paid to guidelines for good practice.

(2) What characteristics of the
trial/technology affect the success of
modelling?
The review does not highlight specific success
factors within the trials or technologies; given
analytical expertise, there are no theoretical
distinctions between alternative disease areas.
Modelling may offer greater benefits as an
evaluative tool for certain forms of health
technology, such as diagnostics and screening,
which may have an impact over a long period and
where key disease/technology characteristics may
not be directly observable. It may also provide
more substantial benefits for technologies with
long lead times in research, or for rapidly
changing technologies.

A limited evidence base will reduce the ‘success’ of
modelling, if the criterion is usefulness of a model
in deciding on the adoption of the technology in
practice. However, if the criterion for a model’s
success is its usefulness in helping to decide on
further research, then a limited evidence base is
inevitable, and provides the key source material to
describe the current uncertainty.

(3) What aspects of trial design can
modelling feasibly inform?
Cost-effectiveness modelling and sensitivity
analysis can inform research design by: identifying
key parameters requiring further investigation,
specifying the minimum clinical difference needed
for sample size calculations for a proposed trial,
and defining the duration and population
characteristics of a proposed trial.

Health Technology Assessment 2003; Vol. 7: No. 23
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Some methodological discussion and case studies
use standard methods of sensitivity analysis in
informing these aspects, but these methods have
weaknesses. Analytical methods focusing on trial
design and prioritisation are required. Two
methods identified in the literature are payback
methods and expected value of information (EVI)
analysis.

❷ Payback methodology presupposes a specific
trial design and therefore does not explicitly
address this issue. Specific applications have
focused on its role in informing the sample size
of trials.

❷ EVI analysis of economics models has been
applied in practice and can address all these
issues.

(4) How feasible, costly and beneficial
might modelling be as part of the
prioritisation process?
Although the payback approach has not always
been implemented successfully, it has potential
feasibility. There are no published results on its
implementation costs. The benefits are unproven
but are often conceived as increased explicitness of
the prioritisation process and improved decision-
making. The main requirement for research into
payback methods is the implementation of
stochastic sensitivity analysis within exemplar case
studies.

EVI analyses have been shown to be possible
within the financial, resource and time constraints
of the NHS HTA R&D Programme. The potential
benefits of EVI are:

❷ The value of further research relates directly to
its impact on technology commissioning
decisions and the consequential health and
economic benefits, and is demonstrated in real
and absolute rather than relative terms. 

❷ It avoids the misleading rankings of
uncertainties that may result from conventional
sensitivity analyses. 

❷ It does not start from a prespecified research
design, but identifies key uncertainties and
allows the technical efficiency of many different
types of research to be assessed. Further research
is required to establish the benefits in practice.

(5) How far can modelling substitute
for low-priority trials?
Modelling is not a substitute for data collection.
By identifying the absolute and relative value of
further research on specific parameters, EVI
analysis directly identifies trial designs of low
priority in informing technology commissioning
decisions.

Recommendations for further
research
❷ To report issues of good practice in undertaking

and reporting economic modelling. Areas for
development include model validation,
stochastic sensitivity analyses, and specifically
the cost-effectiveness acceptability curve
presentation of uncertainty and the explicit
reporting of assumptions. The guidelines
identified here should be recommended to
journals that publish economic evaluations to
provide a structure for peer review.

❷ To develop case studies using stochastic
sensitivity analyses within the payback 
approach to prioritisation of research.

❷ To encourage the calculation of the overall
expected value of perfect information for a
decision problem in modelling studies seeking
to inform the prioritisation and planning of
health technology assessment.

❷ To identify the potential benefits of EVI 
analysis and assess whether they can be realised
in R&D prioritisation and planning in 
practice.

❷ To define an objective function that captures
the issues of importance to decision-makers in
health technology assessment planning and
prioritisation, and includes quantifiable aspects
to incorporate into a process that supports the
arbitration of subjective judgement.

❷ To develop approximation methods to allow the
general application of EVI methods. 

❷ To develop a general method to estimate
expected value and expected net benefit of
sample information, through methodological
research into updating of prior probability
distributions. These methods should be
demonstrated in case studies.

Executive summary
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The research questions
This report is the result of a project commissioned
by the National Co-ordinating Centre for Health
Technology Assessment (NCCHTA) with the
original title: ‘A systematic review of the use of
modelling in planning and prioritising clinical
trials’. The commissioning brief identified five
questions to be addressed:

� How feasible, costly and beneficial might
modelling be as part of the prioritisation and
design process?

� What aspects of trial design can modelling
feasibly inform?

� What characteristics of the trial/technology
affect the success of modelling?

� How far can modelling substitute for low-
priority trials?

� In what ways can modelling extend the validity
of trials (e.g. through adding to their
generalisability)?

Other research questions have evolved during the
course of the review, including:

� Where might modelling be most beneficial in
the cycle of tasks in the NHS research and
development (R&D) process (as described in
Figure 1)? 

� Which methodological approach should 
be recommended for attempting to assess 
the potential value of a research 
project?

In addition, several subquestions evolved
concerning the appropriate methodology for the
different steps in the methods. These questions
were of the form ‘what is the best way to do step X
of the method?’ The report makes
recommendations on these detailed aspects of
method, which might be considered good practice.

Defining terms
In order to complete the research successfully, it
was important to define clearly each of the terms
used in the statement of the research question.
Being clear on the definitions of these terms from
the beginning will help the reader to understand
the scope of the report, its findings and its
recommendations.

Systematic review
A systematic review is the systematic search for,
and review of, published and unpublished work
concerning aspects of the research question.

Clinical trials and health technology
assessments
A clinical trial usually involves the comparative
assessment of two or more interventions on the
health outcomes of a group of people. Study
participants can be randomised to the different
treatments to minimise selection bias. Both
participants and providers of the treatment can be
blinded so that knowledge of the intervention
received cannot influence patient response. This
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double-blind, randomised control trial (RCT) is
the gold standard for the scientific assessment of
the efficacy of a treatment. Alternative forms of
retrospective and prospective observational studies
can also be used to inform the effectiveness of
competing interventions. The choice of study will
depend on the exact nature of the interventions
and research questions concerned.

This review has widened the scope slightly, to include
the broader subject area of health technology
assessment. Health technology assessment is the
systematic examination of the effectiveness of a
health technology, to assist decision-making in policy
and practice. The outcomes of health technology
assessments are intended to capture both the
comparative clinical effectiveness and the cost-
effectiveness of new and existing technologies
against their appropriate comparator therapies. In
essence, health technology assessments, which can
incorporate clinical trial evidence, are aimed at
answering not whether an intervention works at all,
but rather whether it should be used in practice.

Modelling
Modelling is the use of a quantitative, mathematical
approach to assess the potential effects of different
decision options. A model is a representation of the
world, based on explicit assumptions concerning
the reality of a particular decision problem.1 In the
context of this review, the modelling studies focus
on quantifying the comparative costs and benefits
of competing health technologies.

The central role of any modelling technique is to
develop a representation of the treatment area of
interest at an appropriate level of detail to support
the reasoning of the practitioner. The model acts
as an aid, offering practitioners insight into the
complex relationships between variables associated
with patient pathways.

Models also enable the integration of evidence
from a wide range of relevant sources, such as the
incorporation of expert opinion alongside the
results of primary and secondary data analyses.
Another important dimension of modelling is that
the assumptions and values used in the model are
explicit.

The use of models provides an opportunity to
explore the sensitivity of the results to variations in
the assumptions that underpin the model. 

Variables and parameters
The language of modelling has several other
useful terms. Variables are items in the model

whose value can change, for example the cost of a
medical procedure that may vary between
countries. A parameter is a quantifiable
characteristic associated with a variable and used
in defining the mathematical model, for example
the mean or standard deviation of a variable. A
model also has structure, which defines the
relationships between one variable and another.
The model structure is based on explicit
assumptions concerning the state of reality
represented by the model.

Planning (a trial)
By planning a clinical trial or a wider health
technology assessment study we mean such tasks
as deciding on:

� definition of primary outcomes
� definition of comparator therapies
� definition and size of the study population
� length of the study.

Prioritising
By prioritising a clinical trial or a wider health
technology assessment study, we mean the task of
deciding whether the study is important or
valuable enough to go ahead. Assessing the
potential value of a trial might suggest that the
resources required would be better used on
another research study. Prioritising can be absolute
(estimating the potential benefits or value of the
study on its own terms against some kind of
benchmark) or relative (ranking a series of
proposed studies into priority order).

Background: why the research
questions are important
Health-related research is a significant endeavour
worldwide. Total funding for health R&D in
England is over £2000 million, of which industry
funds almost 60%, the Department of Health 15%
and the research councils 10%, with the rest
coming from charities and universities. Spending
has risen over recent years to around 1.5% of the
total health expenditure. R&D commissioning
continues to be the subject of close scrutiny. In the
UK, Research for Health2 in 1993 identified the
need for a more robust relationship between
health problems and scientific multidisciplinary
investigation, and a move from investigator-led
research to problem-led research.

The growth in new health technologies, together
with the backlog of existing unassessed therapies,
far outstrips the capacity of the agencies

Introduction
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undertaking those assessments. Thus, there is a
need for prioritisation of the health technology
assessment process to ensure that resources for
assessment are applied to those disease areas and
technologies where an assessment exercise is likely
to have most impact on decision-making.3

Furthermore, the design of funded assessments
should be such that their impact on decision-
making is maximised.

There is growing interest in the use of modelling
methods to help to prioritise and plan research
because modelling:

� may help to make prioritisation more explicit
and rational by identifying:
– which technologies have the greatest

potential to be cost-effective
– where crucial uncertainties lie
– what form of research could best be used to

inform these uncertainties
� can demonstrate the key areas of data paucity

and show that these may not actually be
addressed by a particular trial. As a
consequence, a different and potentially simpler
study could be undertaken

� can also have a role in the design of trials, for
example, by indicating key parameters to which
costs and benefits are sensitive

� can facilitate the synthesis of evidence from
diverse data sources to address decision
problems that have not been the subject of
direct primary research.

However, there are also doubts concerning the
value of mathematical modelling. Modelling could
be costly in terms of time, scarce skills might be
better used elsewhere and the models produced
may not provide improvements in decision-making.

Although there have been case studies and
discussion papers, a thorough methodological
review in this area has not been conducted. The
findings of this report and the recommendations
based upon them should help:

� to increase the appropriate use of modelling
in the R&D commissioning and prioritisation
process

� in some cases, to reduce expenditure both
within the NHS and by other bodies on trials
that are either unnecessary or designed with
limited added value to the evidence base.
(Given that even small trials can cost between
£100,000 and £200,000, the benefits of small,
focused modelling exercises on the particular
topic could be significant if abandonment or
design changes occur)

� to enable more cost-effective trials to be
designed by ensuring that the right questions
and data are considered

� to reduce the inappropriate use of modelling
by aiming to develop practical guidance and
quality-control criteria

� to highlight the potential of already existing
models, often built to produce an economic
evaluation, but which could be reused with a
focus on future research questions and trial
design.

Scope of the review
Included in the review are methodological papers,
discussion papers and case studies that concern
the use of a modelling approach either to 
plan clinical trials and health assessment
technology studies or to evaluate their priority 
(or both). 

In the review, three separate but linked areas for
modelling are clearly identified:

� the use of modelling to attempt to assess a
particular technology, the results of which can
inform future research

� the use of modelling in planning a future trial
or study

� the use of quantified approaches to assess the
priority of several studies competing for
funding.

As time progresses and the evidence base for a
particular technology increases, a developing
model of a technology’s cost-effectiveness can be
used in all three areas.

The review is not intended to cover the literature
describing standard sample size calculation,
general simulation, the use of modelling in
engineering design and the general literature on
extrapolation, prediction and survival analysis.
These areas are outside the scope of the review,
unless a study has specifically involved some kind
of modelling of disease or associated clinical
pathways. There is also literature on priority
scoring mechanisms for health research funding;
this is not modelling (see definitions earlier);
however, the relevant discussion papers have been
reviewed because they constitute conventional
current practice in R&D priority setting and thus
comprise both the comparator for modelling and
the context in which modelling for decision
support may be used. There is also a very small
body of published literature concerning
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approaches taken by commercial companies.
These papers are reviewed, although they are
probably not representative of the large amount of
(unpublished and commercial-in-confidence)
effort to prioritise R&D, particularly in the
pharmaceutical industry.

Audience for the report
This report is intended for three separate
audiences:

� Commissioners of clinical trials and health
assessment technology in various contexts: to
support them in deciding how and when to
incorporate modelling into their prioritisation
and planning processes.

� Expert modellers: to provide a review of the
state of the art, a discussion on methodological
issues for further study, and a discussion of the
ways in which established modelling methods
can be adapted to the context of research
planning and prioritisation.

� Researchers involved in planning clinical
trials and other studies: to provide a better
understanding of how a modelling approach
can help to ensure that studies are well planned
(i.e. they include the appropriate patient
groups, number of people, length of the study
and, most importantly, items measured) and
hence provide enough value to make the
proposed research a priority.

Structure of the report
Chapter 2 provides a detailed account of the
systematic search and review methods and
includes recommendations on further research
requirements in the methodology of undertaking
methodology reviews.

Chapter 3 reports on the roles, and indeed the
value, of mathematical modelling for health
technology assessment, focusing on the general
health economic modelling methodology
literature and case studies of models that claim
some value in trial planning and prioritisation.

Chapter 4 reports a review of the literature on
good practice and critical appraisal of modelling
studies in health technology assessment.

Chapter 5 introduces the issue of research
prioritisation within the healthcare field through
analyses of previous work that has assessed

alternative approaches to the prioritisation of
research. The chapter describes a range of criteria
that should be accounted for in a research
prioritisation process, and establishes the
arguments that have previously been made 
both for and against alternative prioritisation
processes.

Chapter 6 reviews the literature on direct attempts
to assess the cost-effectiveness of research itself.
The purpose of this method is to inform the
priority of the research by establishing whether
the proposed trial or study will be cost-effective.
The principle is to consider the likely outcomes of
the research and its potential benefits in
improving health and healthcare. The approach
attempts to address the question: ‘Given a
particular proposal for research, what are its
estimated costs and benefits?’ The likely outcomes
of the research are called delta results, defined as
‘a result of an assessment that can potentially
cause a change in the use of the technology’.4 The
approach has an intuitive appeal, because it is
exactly the question facing research funding
bodies. The chapter also includes the literature on
payback, that is, retrospective assessment of the
value gained by doing earlier research.

Chapter 7 reviews the literature on the value of
information approach, also known as the Bayesian
or decision-analytic approach. This analytical
technique provides a framework that can be
helpful both for the planning of trials and for
prioritisation across different disease areas. It uses
a well-developed methodology for decision-
making under uncertainty, developed in the 1950s
and 1960s.5 The questions addressed by this
approach are: “Suppose we had more information
about a new technology, how would that reduce
the likelihood of making the wrong policy
decision? How would it reduce the ‘expected loss’
associated with such a decision?” The approach is
based on the decision tree for choosing between
intervention treatment options (e.g. between the
current standard treatment and a new
experimental health technology). The
consequence of each option has an estimated
value that is subject to some uncertainty. The
decision problem is to choose the option with the
greatest expected net benefit. The decision could,
however, be informed by gathering more
information through further research. The value
of gathering the further information lies in
enabling the decision-maker to avoid making the
wrong decision (e.g. incorrectly deciding to retain
the standard intervention when in fact the
experimental treatment is more cost-effective).

Introduction
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That is, the value of information is related to the
reduction in the decision-maker’s uncertainty. The
approach requires an assessment of the ‘correct’
decision given the current information, together
with a quantification of the probability that this
‘prior to research’ decision might be wrong and,
finally, the calculation of the ‘expected loss’
incurred by making the wrong decision. The
approach can be used at two levels: ‘perfect
information’, where the uncertainty about a
parameter is removed completely, and ‘sample
information’, where research produces a better
estimate with a narrower confidence interval. 

Chapter 8 presents a review of methodology and
case study papers concerned with the value of
information approach and makes
recommendations both on detailed aspects of the
methodology and on its use in planning and
prioritising research.

Chapter 9 reports on other miscellaneous studies,
which do not fit easily into the other chapters.

These include the small amount of published work
on commercial approaches to R&D prioritisation
in the pharmaceutical and healthcare technology
industries.

Chapter 10 presents conclusions and
recommendations on the role of modelling 
in the process of planning and prioritising
research. 

Appendix 1 presents a review of case studies
addressing the planning and design of future
research.

Appendix 2 presents a summary of three
identified modelling guidelines which 
describe good practice for use, and critical
appraisal of decision-analytic modelling as 
a tool for the assessment of health 
technologies.

Appendices 3–5 reproduce the data extraction
sheets used.
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Introduction
Recent work on the methodology of
methodological systematic reviews has revealed
that they have a number of distinguishing
characteristics compared with the more orthodox
Cochrane-type review of effectiveness.6 These
differences question assumptions about the review
process and also present a challenge to the validity
of methodological reviews through the potential
introduction of bias. As a preface to the
description of the methods of this particular
review, therefore, some of these issues are
confronted and their implications for other
methodological reviews in health technology
assessment spelt out. There are four main
elements to a systematic review and attention to
each of these is required for a review to be classed
as truly systematic. These are: study identification,
study selection, data extraction and appraisal of
studies, and presentation of results.

Study identification
Issues
The assumption of a literature search in an
effectiveness systematic review is that it will be
comprehensive in order to identify as many items
in the study population (i.e. studies) as possible.7

Failure to do this can result in database bias8,9

(selectivity occasioned by the journal coverage
policies of a database), language bias10,11 (a
predominance of a language that is more
comprehensively covered by databases over other
important, yet less accessible, languages) or
publication bias12,13 (a preoccupation with articles
that have positive results and that are therefore
more likely to be published in a journal).14

Approaches
Approaches to counter, or at least acknowledge,
these various types of bias include using the widest
possible selection of database and unpublished
sources, reporting references identified in other
languages even if not formally covered by the
review and using a funnel plot technique15

(plotting trials’ effect estimates against their
sample size to identify whether a certain size of
study or effect size data appears to be missing).

Implications for this review
Given the size of the literature on the use of
modelling, it is clearly not possible to identify all
items from the methodological literature. The
methodological review, therefore, attempts to be
systematic in the following ways.

� Identifying all the major schools of thought in a
particular area while being alert to the
identification of variants, minority views and
dissenters. In this review this was done through
following up cited references and by using
citation searching techniques. It has to be
recognised, however, that the most effective way
of countering a discordant argument in research
terms is to ignore it. This can result in reference
or citation bias.16

� Searching within a broad range of disciplines so
as to bring different views (e.g. health
economist, statistician, health technology
assessment commissioner) to bear on the topic
in hand. This review included literature
searches of operational research, economics and
general science databases in addition to general
health and specific health technology
assessment databases. 

� Using a broad range of electronic and manual
search techniques to ensure that materials were
not missed either through the inadequacies of
indexing or through selective coverage of
databases.16,17 In addition to database
searching, this review used contact with expert
agencies, handsearching and the Internet.

Optimally, a methodological search will reach a
point of data saturation, where no further
perspectives or schools of thought are added by
further acquisition of articles. However, this is
more likely to occur around the use of a specific
technique rather than in a broader domain such as
modelling.18

Study selection
Issues
An effectiveness review typically specifies a
threshold of study designs, or at the very least, a
hierarchy of study designs within which retrieved
items will be located. For a methodology review
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study selection is more problematic; the potential
range of types of article that can inform such a
review is diverse. The range includes discursive
articles, methodology texts and varied study
designs such as individual case reports, case series
and even RCTs. A methodology relating to clinical
trials, that has potential benefit to health
technology assessment need not necessarily have
been trialled in an experimental setting. However,
extra weight can at least be afforded to
methodologies when a case study has established
that a particular technique is feasible over
methodology studies that just hint at its potential.
Judgements on inclusion can be made either from
a reading of the article itself or in a two-stage
process involving the initial review of abstracts
followed by a more detailed consideration upon
receipt of candidate articles.

Approaches
Two independent reviewers usually conduct study
selection for a systematic review and a test of inter-
rater reliability (kappa) is performed to indicate
the level of agreement. The reviewers will be
provided with inclusion criteria and study-type
selection or methodological checklists to ensure
rigorous and consistent application of selection
methods. In instances where it is not feasible for
all abstracts to be read by two observers it has
been known for kappa tests to be performed on a
subset of articles and selection rules progressively
clarified until an acceptably high degree of
agreement is achieved.

Implications for this review
The large volume of abstracts retrieved and a
proportionately low yield of articles from database
searching meant that, once repeated kappa tests
had contributed to the refinement of the study
selection decision rules, selection was done by
either one of two independent reviewers. Poor
indexing and a low frequency of abstracts meant
that a very forgiving standard was used for
identification of ‘candidate’ articles (if there was
any doubt about inclusion, a photocopy of the
item was obtained). Tighter imposition of
inclusion criteria was therefore applied at the
stage of review of the actual articles.

The absence of criteria for selection according to
study design, a characteristic of effectiveness
reviews, necessitated a simple binary classification
that separated methodology articles from case
study articles. Within these two broad categories
there were a number of subcategories that could
either be established from the abstract, where
present, or, more commonly, at the time the article

was obtained and read. These subcategories are
not mutually exclusive; rather, a paper is included
in the highest possible ranking. Thus, a paper
classified as M1, while certainly addressing
prioritisation issues, may also address trial design
issues (M2), but a paper classified as M2 will not
discuss prioritisation issues (Table 1).

Data extraction and appraisal of
studies 
Issues
In an effectiveness review, the appraisal of studies
is usually conducted according to an already
published checklist with criteria covering both
study quality and level of informativeness. There is
an implicit assumption that good studies will often
be characterised by a good level of reporting. In a
methodology review there is likely to be a broad
range of types of evidence, hence a single checklist
orientated to a particular study design is unlikely
to suffice. In addition, in case studies as opposed
to methodological articles, the description of the
methodology may be less well defined, as more
weight is afforded to its application in a specific
context. The level of information provided is likely
to fall short of the ideal required by the
methodology review.

Literature search and review methods
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TABLE 1 Classifications used in the literature search

M: Methodology C: Case studies

M1: Discussion paper C1: Modelling concerning 
clearly about the use of prioritisation of research 
modelling in prioritising (pretrial)
research

M2: Paper clearly about C2: Modelling concerning
the use of modelling in the the design of a trial 
design of research (pretrial)

M3: General discussion C3: Modelling in relation 
paper on modelling but to economic evaluation in 
not clearly about HTA (post-trial)
prioritisation or design

M4: General discussion of O: Other
research prioritisation but 
with no explicit modelling

M5: General discussion of O (UN): Unconnected to 
trial design (not included review topic
in review)

M6: General economic O (NK): Not known. 
evaluation discussion but Holding category, 
with no explicit modelling reclassified following

receipt of the article



Approaches
A plethora of scales and checklists have been
developed, each with an apparent justification for
its independent existence. However, problems
arise from issues of validation and reproducibility.
It is generally accepted that scoring systems, which
appraise the quality of a study, are prone to
oversimplification and flawed logic.19 However, a
tailored checklist or data extraction form can at
least achieve consistency of analysis and
subsequent reporting. Finally, in contrast to
quantitative effectiveness reviews, methodology
reviews require an approach that handles the
appraisal of qualitative statements or judgements.

Implications for this review
Purpose-specific data extraction forms were
developed for the methodology and case study
articles. In both cases the emphasis was on their
informativeness rather than any judgement of
study quality. These data extraction criteria are
reproduced in Appendices 3–5.

The study team carried out an extensive literature
search to try to identify a methodology by which
the qualitative statements made by the various
authors could be brought into a common
framework for analysis and synthesis. The only
qualitative review methodology that offers
potential in this regard was meta-ethnography.20

This technique, initially used in an educational
context to compare published reports of schools,
takes the researcher through progressive and
iterative approaches of identification and then
synthesis of major themes. This process is,
however, highly labour intensive and requires
considerable powers of analysis, interpretation and
subject knowledge to identify commonalities
expressed using different terminologies. The
benefits of this particular methodology can be
seen in the Results section of this chapter (for
example, in the identification of a commonality in
the meanings of the terms ‘delta results’ and
‘exemplar outcomes’). It is recommended that
future methodology systematic reviews investigate
the use of this structured approach to qualitative
overview.

Presentation of results
Issues
Quantitative systematic reviews of effectiveness are
able to indicate strength of agreement, direction
of results and, in many cases, a single summary
estimate by drawing on a range of accepted
statistical methods. In qualitative methodological
reviews it is very difficult to indicate a weight that
can be attached to a particular qualitative

argument or line of reasoning. For example, an
attempt to attribute the importance of a particular
concept according to how often it is repeated or
how often it is cited is analogous to deciding the
outcome of a consensus conference according to
whoever speaks the loudest or most often. Having
said this, there is precedence for bibliometric
analysis of impact in many of the citation studies
conducted by funding agencies or scientific
organisations. However, it has to be acknowledged
that such approaches are more suited to an
evaluation of the importance of a single study
than in deciding on the relative merits of
conflicting or competing approaches. Quite clearly
in the context of methodology, particularly in an
area such as health technology assessment where
established ideas or approaches are subject to
continual challenges from newer and less well-
known approaches, acknowledgement must be
made of minority voices.

Approaches
It is interesting to note that even a methodological
review aimed at looking at the methodology
behind systematic reviews and meta-analysis does
not attempt to attribute relative weight or
importance to particular views or opinions.21 This
has the unfortunate effect of occasionally implying
equal value. The absence of a relative weight can
imply that an isolated pronouncement has equal
value to an established theory entrenched in
orthodox dogma. Clearly, there is a need for
methodologies that are able objectively to record
and present different lines of thought or reasoning
according to their level of acceptance or
popularity. One approach exemplified in the
above-mentioned report is to characterise
particular schools of thought (an artificial but
nevertheless practically useful concept) and then
to analyse these according to supporters, variants,
critics and opponents. However, it should be noted
that the most popular line of thought is not
necessarily the most accurate and this should be
recognised in the systematic review process.

Implications for this review
It can be seen from the Results section that one
school identified as being particularly prevalent
and influential in this context is the cost–benefit
school based on work by Eddy.4 Description of this
work then leads to a discussion of a variant on this
approach22 before rehearsing arguments and
limitations of these and then exploring conflicting
schools (e.g. the expected value of perfect
information school). This approach can be seen to
steer the reader through the essential stages of
theory formulation, modification, feedback and
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counter-proposition in attempting to arrive at an
interpretation of the methodological review’s
results.

Conclusion regarding chosen
methodologies
The above discussion is essential to an
understanding of this review as it locates the
following work in the context of an increasing
awareness of the limitations of the Cochrane-type
review paradigm for systematic reviews of
methodology.6 The chosen methodologies of this
review are informed by past experience in
conducting a methodology review,23 and by
extensive consideration of studies of review
methodology. The choices made have been
pragmatic, rather than ideal, and this emphasises
the need for further work in producing guidelines
on methodological review, comparable to those
already available from the Cochrane
Collaboration24 and the NHS Centre for Reviews
and Dissemination.25

Study identification 
Search strategy for identification of
studies
The search strategy employed was constructed
empirically using a number of intersects of key
concepts. The four concepts used were:

� concept A: modelling
� concept B: health technology assessment

concept B1: clinical trials 
� concept C: priorities and prioritisation
� concept D: specific named health technology

assessment organisations.

For each concept a detailed search strategy was
initially developed in MEDLINE and then
translated into other databases. Combining each
permutation (e.g. concept A and concept B)
produced an intersect. Each intersect was then
evaluated on the MEDLINE database in terms of its
yield and a decision was made regarding whether
that particular intersect should be pursued across
additional databases. Samples were taken from each
intersect and the hit rate and the incremental hit
rate were examined to ascertain the likely yield
from each approach. It should be emphasised at
this stage that the initial list of intersects was quite
exhaustive in its approach, so that strategies with a
poor yield could be subsequently omitted with a
fairly high degree of confidence that relevant
articles would not be missed by other intersects.
Samples examined in order to evaluate each

intersect were taken from the more recent articles
from the database as it was noticeable that there is a
marked degradation in yield as one goes back in
time, as a result of both imperfect indexing and the
immaturity of the concepts involved. The
hypothesis behind concept D was that there could
possibly exist documents mentioning the activities
of a specific health technology assessment
organisation that did not contain any of the health
technology assessment-related terms contained in
concept B. However, on analysis it was revealed that
this did not retrieve any relevant papers over and
above those already identified by concept B, and
this intersect was subsequently discontinued.

Itemising the various intersects gives the following
permutations:

1. health technology assessment  intersect
modelling (B AND A)
1a. clinical trials intersect modelling (B1 AND A)

2. health technology assessment  intersect
priorities (B AND C)

3. health technology assessment  agencies intersect
modelling (D AND A)

4. health technology assessment  agencies intersect
priorities (D AND C).

The intersect of health technology assessment,
modelling, and priorities (A AND B AND C) was
expected to yield the most specific materials, but
this benefit was not realised because of the lack of
specificity of indexing terminology with regard to
modelling and to prioritisation processes. It was
therefore decided to maximise the sensitivity of
the search strategy by breaking this intersect into
two separate intersects (namely A AND B and B
AND C). It was considered preferable to have
expert assessment of a large number of references
retrieved by sensitive searches than to risk
premature exclusion owing to indexing
irregularities. 

Other facets initially considered but subsequently
rejected include:

(a) modelling and the specific names of health
technology assessment agencies

(b) prioritisation and the specific names of health
technology assessment agencies

(c) screening and modelling
(d) screening and prioritisation
(e) modelling and clinical trials
(f) prioritisation and economic evaluation.

It was also decided not to use the methodological
term ‘health services research’ (HSR) which
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embraced all HSR methodologies; the preference
was to search using ‘health technology assessment’
as this term is used more contextually.

Decisions on the viability of the above-listed facets
(a–f) were based on review of a substantial number
of abstracts (typically between 500 and 1000
records). If retrieval of relevant articles fell below
1%, or if it failed to yield articles that were not
already covered by the indexing of the principal
intersects (1–4), searching was discontinued. It is
recognised that such an approach, analogous to
the implementation of clinical trial ‘stopping
rules’, would not be appropriate for a clinical
effectiveness systematic review. However, such an
approach is methodologically defensible within the
context of a methodological review with the
following aims:

� representation of all major bodies of opinion or
schools of thought relating to modelling

� an indicative, not comprehensive, sample of
modelling case studies.

It is acknowledged that further research is needed
with regards to exactly what constitutes a
comprehensive search for methodological
literature. However, we are confident that the
multifaceted approach to searching described
below, using subject searching, manual and
automated citation searching, contact with experts
and handsearching, is vastly superior to that
advocated for the more demanding systematic
review of clinical effectiveness: 

“To be pragmatic (there is no empirical evidence
supporting this), we suggest that a review with a
comprehensive search uses at least 3 sources and
provides a description of efforts to identify
unpublished trials. A particularly effective
combination could be 1 bibliographic database (e.g.
MEDLINE or The Cochrane Library), a hand search
of reference lists of eligible trials, and direct contact
(by mail, fax, e-mail, and/or telephone) with the
corresponding authors of eligible trials asking for
additional published or unpublished trials. Such a
review should include a discussion of the search’s
limitations.”7

Databases used
The following databases were searched
electronically:

� medical and health:
MEDLINE
HEALTHSTAR
EMBASE
HELMIS
DHSS-DATA
King’s Fund Catalogue

� health economics:
Office of Health Economic Evaluation Database
(HEED)
NHS Economic Evaluations Database (NEED)

� general science:
Science Citation Index
Social Science Citation Index

� operational research:
INFORMS
IAOR.

The systematic search generated a database of
over 8000 references.

Citation pearl growing
Pearl growing is an “application of the method
used for searching citation indexes, in which the
index terms accompanying a located citation are
used to find a new set of documents”.26 It is
particularly appropriate for identifying a corpus of
knowledge where there are known deficiencies in
indexing or terminology. The efficacy of citation
retrieval within health and related subjects has
been established in a field study that found that
citation searching added an average of 24% recall
to traditional subject retrieval.27

Pearl growing is analogous to the key informant
technique in qualitative research; key documents
are identified and then references citing these
documents are retrieved and reviewed for
relevance. Its limitations are similar to the key
informant technique in that it relies on the prior
selection of a sufficiently diffuse sample of records
in initiating the process. It has been demonstrated
with regard to subject searching that the more cited
references used for a citation search, the better the
performance, in terms of retrieving more relevant
documents, up to a point of diminishing returns.28

Citations to a sample of known relevant 
references (n = 34) were selected for searching
using the Science Citation and Social Science
Citation Indexes. These items were selected on the
basis of centrality to the review topic (in terms of
subject content and relevant keywords) and no
attempt was made to evaluate either the extent of
the contribution of a particular article or whether
it belonged to a specific school of thought.
Twenty-seven of the 34 articles were identified in
the two citation indexes and these were cited by an
average of 97 articles on Science Citation Index 
(n = 2639, range 0–952) and by an average of 43
articles on Social Science Citation Index 
(n = 1160; range 0–263). Formal evaluation of the
pearl articles was undertaken only after this stage
of the searching had been completed. 
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Cited references were retrieved and reviewed for
relevance. A follow-up search was then conducted
for articles citing these additional relevant items
(n = 200) in their turn. This process was then
continued for a further round before being
concluded at this third level of retrieval for
pragmatic reasons (n = 425). Ideally, this process
would be continued until a point of data
saturation, that is, when no new references are
identified. Such an exhaustive approach is only
feasible for tightly defined areas such as works by
a single author or development of a school of
thinking. Within the context of a diffuse and
uncontrolled area of methodological writing,
where the law of diminishing returns can be
observed to apply in a quite striking manner, the
principal value of this approach is to identify the
central corpus of the literature and to cross-
validate items identified through subject searching.
In this way further modification of search
strategies, using terms suggested by the pearl
literature, could be undertaken where necessary.

Web searching
Web searching in the context of systematic reviews
is still in its infancy and the only attempt to
evaluate its usefulness in this context is an
unpublished abstract presented by Campbell at
the Systematic Reviews Symposium in Oxford in
January 1998. In this particular case report, yield
from the Internet for a subject search had been
very poor, with the only reference additional to
those identified from traditional routes being a
trial that was uncompleted. Such a situation was
likely to appertain even more with a methodology
search, particularly where non-context-specific
terms such as planning and prioritisation appear.
The experience of the project team in this
connection confirmed these anticipated difficulties.
Nevertheless, the team did bring to bear state-of-
the-art techniques and technology in including
web searching in their approach. Copernic99®, a
software tool that can be downloaded onto a local
machine, can be used to specify simultaneous
searches of a number of the major search engines,
and to store and analyse the results. Two very
sensitive searches were performed to maximise
retrieval:

� Plan* AND clinical trial* AND model*
� Priorit* AND clinical trial* AND model*

The results are presented in Table 2.

Each entry was downloaded by an information
specialist using the Copernic99 software and
reviewed for relevance to the systematic review

question. A second reviewer, a modelling expert,
then reviewed candidate items.

Contacting the experts
Although contact with experts is an acknowledged
part of systematic review methodology, initial
results as documented in the literature have been
disappointing. The Cochrane Collaboration found
that contact with 42,000 obstetricians and
paediatricians identified only 18 studies that had
been completed outside a 2-year potential
publication timeframe.29 However, in more recent
years, possibly with the greater awareness of the
importance of systematic reviews and a
corresponding increased willingness to contribute
to their production, results have been more
impressive. Roberts and Schierhout recently
emphasised the importance of writing letters to
the authors of trials in order to locate additional
references for systematic reviews,30 while follow-up
correspondence from McGrath and co-workers31

found that writing 133 letters to authors of papers
elicited further data in 17% of cases. However, it
has to be acknowledged that the latter instances
involve writing to those who are known to be
involved in a clinical trial for additional data, and
therefore it is expected that these would elicit a
better response than the speculative efforts
mentioned above which sought to establish the
existence of trials. 

The authors contacted 131 health technology
assessment agencies identified in the 1998
Directory of Health Technology Assessment
Organizations Worldwide, published by the
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TABLE 2 Results of web searches

Plan* AND Priorit* AND
model* AND modelt* AND
clinical trial* clinical trial*

Alta Vista (0a) 1457 80
Euroseek 14 0
Excite 300b 0
Fastsearch 295 0
HotBot 300b 300
Infoseek 11 0
Lycos 297 0
Magellan 48 0
MSN Web Search 287 279
Netscape Net Center 0 0
Webcrawler 48 0
Yahoo 0 0

a The result for Alta Vista was not recognised by the
search engine syntax and therefore the search was
rerun using the search engine directly.

b Upper limit on number of results.



Medical Technology and Practice Patterns
Institute. In May 1998 a standard letter was sent
to 149 agencies involved in undertaking health
technology assessment reviews within the UK and
109 international agencies responsible for
commissioning technology assessments describing
the systematic review and characterising the
information required. The overall response rate
from agencies was 48%. Twenty organisations, 16%
of those who responded, had undertaken
modelling before initiating primary research and a
further 12 organisations were aware of modelling
that had been undertaken in these circumstances.
Twelve of the agencies contacted gave references
to relevant published material, and a further 18
cited examples or case studies of early pretrial
modelling.

Handsearching
Handsearching had been seen as an important
method for the identification of relevant studies.
To investigate its utility and to assist in the
identification of target journals, a pilot study was
conducted whereby expert reviewers were required
to identify candidate articles from the contents
pages and subject indexing of a core set of
journals. The objectives of the pilot journal
searches were:

� to clarify the scope of the planned systematic
searches

� to inform the definition of inclusion/exclusion
criteria

� to inform the definition of indexed and free-
text search terms.

It was argued that if a threshold limit of potentially
useful articles could be identified from any of these
journals then it would be worthwhile to conduct a
handsearch. An initial list of eight key journals to
be handsearched, prepared for the research
proposal, was thus whittled down following review
of a sizeable sample (between 40 and 100) of
consecutive article titles and abstracts. Each
abstract listing was reviewed by individuals of the
project team and articles were marked as ‘In’, ‘Out’
or ‘Questionable’. These were discussed at a project
team meeting and a number of issues resolved.
The eight journals involved, together with their
corresponding hit rates, are given in Table 3.

That handsearching of journals would be less
productive than in the context of a clinical
Cochrane-type systematic review can be seen by
the fact that 90 out of the 425 items retrieved by
pursuing references from pearl articles were from
books, book chapters or reports. Other

characteristics of the literature were that, given the
prevalence of case study articles, a large number of
the pearls were from general medical journals, for
example, British Medical Journal (19), Journal of the
American Medical Association (19), New England
Journal of Medicine (18), Annals of Internal Medicine
(10), Lancet (5) and Archives of Internal Medicine (5).
Nevertheless, the candidate journals identified
above were strongly represented in both the
methodological and case study literature, with 77
articles identified from the pearl growing
approach: Pharmacoeconomics (29), Medical Decision
Making (17), Health Economics (17) and
International Journal of Technology Assessment in
Health Care (14).

Summary and conclusions from study
identification
Within the specific context of a methodological
systematic review, the conclusions are as follows.

� A comprehensive subject search is likely to
yield about one-third of all relevant articles but
between 97 and 99% of references initially
reviewed will prove irrelevant.

� Citation searching is likely to yield the highest
proportion of relevant articles, with references
usually being placed in context within the citing
article. However, citation searching is open to a
number of biases, including editorial policies
over which journals are included, the propensity
to cite articles that are more easily identified or
retrieved, and time delays before literature
makes its way into the corpus of knowledge.

� Handsearching, one of the proposed methods
for identifying the core literature, actually
proved less significant, both because of the
success of citation searching and the diffusion of
case studies across a wide range of general
medical journals. 
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TABLE 3 Yield from handsearches of chosen journals

Journal title Yield

Controlled Clinical Trials 15 articles/100 reviewed

Health Economics 1 article/100 reviewed

International Journal of 3 articles/100 reviewed
Technology Assessment in 
Healthcare

Journal of Health Economics 1 article/100 reviewed

Journal of Health Services 4 articles/43 reviewed
Research and Policy

Medical Decision Making 13 articles/50 reviewed

Pharmacoeconomics 6 articles/73 reviewed

Statistics in Medicine 1 article/100 reviewed



� Contact with experts yielded little material of
direct relevance but had the benefit of giving
the review a higher profile among the
international health technology assessment
community.

� Internet searching yielded a very high
proportion of material of low relevance or low
quality. However, comprehensive methods of
searching using the latest technologies ensured
that coverage of the World Wide Web was
achieved in a systematic and efficient manner. 

Study selection
Inclusion/exclusion criteria
Although provisional criteria for inclusion and
exclusion were identified a priori and recorded in a
review protocol, it was necessary to firm up these
criteria with reference to general methodological
issues as well as to specific items identified from
pilot literature searches. Inclusion and exclusion
criteria were defined in the following ways:

� review of contents listings from key journals
identified in the protocol, which identified
relevant literature not previously defined in the
protocol

� review of the preliminary results from the
principal intersects

� discussions on scope with members of the
Project Advisory Group, both collectively and
through in-depth individual interviews. 

As a result of this process of protocol refinement,
the following decisions were taken and formally
documented.

� Statistical methods papers including
stratification, sample size, meta-analysis and
unequal randomisation would be excluded
from the review.

� Methods for eliciting expert opinion, such as
the Delphi technique, would not be included
per se; however, where such papers were
retrieved because of the incorporation of a
modelling concept they would necessarily be
included and analysed.

� Distinctions between sensitivity analysis and
modelling would not be made at the searching
stage but would be resolved at the data
extraction phase.

Application of criteria
Initial assessment of articles for inclusion was done
on the basis of article abstracts and keywords by
two research assistants (FS and MS). While

selection criteria were being developed, validated
and refined, all database printouts were reviewed
in parallel by both assistants, with disagreements
being resolved with reference to the project team.
However, following training, review and feedback,
inter-rater reliability between the two investigators
was assessed on the basis of a sample of 713
articles. It was found that the kappa for their
relevance judgements was sufficient to justify
single observer selection, particularly since the
yield of around 6% was relatively low (Table 4). 

A total of 601 articles was obtained and read by
one or more reviewers (JC, AB, FS and MS). The
nature of this review and the inadequacy of
indexing terminology on the major databases
meant that more reliable judgements could only
be conducted where the article itself was obtained.
A valuable source of additional literature was
‘references in context’, that is, where a citation in a
relevant article provided a pointer to an additional
relevant reference. The context and accompanying
text around these citations provided a stronger
indication of relevance than many of the
bibliographic citations and abstracts reviewed by
the team. Nevertheless, the possibility of citation
bias should be acknowledged here. The
identification of an ‘Eddy school’, for example,
may well reflect an important body of literature
that is thematically and conceptually linked.
However, it conceivably may reflect a citation
artefact, whereby the influence of Eddy’s work is
artificially augmented by lack of acknowledgement
of citations from critics of his work and the
perpetuation of the citation pearl by his
proponents.

Summary of literature retrieved
Pretrial prioritisation modelling literature is
considerably less plentiful than that dealing with
use of modelling alongside trials or, more
commonly, post-trial modelling. This is true for
both methodological literature and case study
literature (Table 5).

Data extraction and appraisal of
studies
It was acknowledged at a very early stage in the
project that the characteristics of case study
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TABLE 4 Kappa statistic for inter-rater reliability 

Number of reviewers 2

Sample size 713

Kappa statistic 0.91



articles were quite different and distinct from
those of methodology articles. 

For identification of the roles of modelling a two-
stage process was used. An initial form was used to
identify key issues from those references identified
in the first phase of citation pearl growing. A
second data extraction form was then designed to
collect detailed methodological discussion
concerning the key issues previously identified. 

The data extraction form for the case studies
included bibliographic information, its place in
the R&D cycle, its setting, the nature of the
intervention and of the management decision, a
brief description of study objectives and the
objectives of the modelling process. A detailed
taxonomy was used for the modelling methods,
which included how the model was structured, the
outcomes that are modelled, how the model was
validated and how sensitivity analyses were
conducted. The data extraction form concluded by
recording any implications for further research
identified by the study.

The data extraction for the methodology papers
focusing on prioritisation between disease areas
was less structured, as befitting the topic, with
provision for more extensive qualitative extracts
from each article. Key statements were extracted
from the articles and then these were matched
against dominant themes, for example, ‘valuation
and prioritisation of potential trials’, in a process
of textual synthesis. Cross-references were also
made to other articles cited in support of each
statement and these were then followed up, where
they had not previously been identified.

Despite extensive searching of the literature there
is no extant checklist that can be readily applied to
the methodological or case study articles retrieved
for this study. In fact, the process of evaluating
articles for this review has led towards the
development of such criteria. 

Criteria for assessing a methodology
The criteria used for assessing the value of a
methodology have been developed during the
course of this review. They are partly based on the
review of the literature on good practice and
critical appraisal in health economic modelling. In
addition, the review team has examined previous
health technology assessment methodology
reviews to examine the criteria applied in judging
other health technology assessment-related
methodologies. Finally, in reviewing the particular
literature on the use of modelling in planning and
prioritising clinical trials, several authors point out
pros and cons of their different approaches. These
statements of judgement on aspects of
methodology have been reviewed systematically to
add further criteria, specific to this field.

However, in the absence of an independently
validated appraisal checklist, quality assessment
could be seen as a source of bias. The reviewers
have, therefore, concentrated on matter-of-fact
descriptions of the studies together with a
qualitative assessment of the place of each study
within the corpus of the modelling literature.

The criteria for the assessment of the value of a
methodology fall into two broad categories of
theoretical soundness and practicality, which
comprise the following subsections. 
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TABLE 5 Results of literature search

M: Methodology C: Case studies

M1: Discussion paper clearly about the use of
modelling in prioritising research

31 C1: Modelling concerning prioritisation of
research (pretrial)

14

M2: Paper clearly about the use of modelling in
the design of research

8 C2: Modelling concerning the design of a trial
(pretrial)

18

M3: General discussion paper on modelling but
not clearly about prioritisation or design

222 C3: Modelling in relation to economic evaluation
in HTA (post-trial)

420

M4: General discussion of research prioritisation
but with no explicit modelling

M5: General discussion of trial design (not
included in review)

M6: General economic evaluation discussion but
with no explicit modelling

110 O: Other

O (UN): Unconnected to review topic

O (NK): Not known. Holding category,
reclassified following receipt of the article

101



Time and cost
Clearly, methods to plan and prioritise research
studies will take time in terms of person resources
to undertake the modelling work. This will involve
costs. Who should undertake the work and bear
the costs is also an issue. 

Delays in research
Timescales are a major issue in getting research
off the ground. Investigators complain about the
length of time it takes to go through the outline
and full proposals process. The implications of a
modelling approach for introducing further delays
need to be considered.

Data availability
Some methods may attempt to use a very limited
amount of data in order to keep the process
manageable and time limited. Others can consider
the development of extensive models particular to
each different research topic. In either case, the
availability of the data to populate the model is a
crucial factor in the practical feasibility of an
approach.

Timing of the use of the method
It may be possible to use some modelling
approaches very early in the research priorities
decision-making process: for example, to select
broad topics. Other approaches may require
detailed description of the intended health
technology assessment before they can evaluate its
likely value and priority.

Evidence of successful use
Clearly, where published evidence of the successful
use of a methodology is in existence, this is an
important factor in the recommendations.

Feasibility of achieving economies of scale by
applying a generic method or model
It may be feasible to produce a generic model or
method that can be used on a large set of research
studies that require prioritisation. Alternatively, a
separate model may be required for each
individual topic.

Acceptability to health technology assessment
commissioners
This category considers whether the organisations
involved in designing and prioritising health
technology assessments would find the processes
and methods acceptable given their current
modus operandi, resources and timescales. 

Acceptability to HTA researchers
This dimension aims to establish whether research
investigators would be willing to subject their

proposals to this type of modelled review and
assessment. Clearly, the modelling could be seen
as an extra hurdle when bidding for research
funds. However, it could also have benefits in
helping investigators to decide on optimal design
and anticipate the likely priority of their research
through some early modelling themselves. 

Theoretical validity
This dimension attempts to consider whether the
underlying theory involved in the method of
modelling is valid for the task at hand.

Reliability
The acid test of reliability would involve applying
the modelling procedure to the same study or set
of studies and producing the same results in terms
of recommendations for design or assessment of
priorities. One important practical method of
testing reliability of a broad approach is to see
whether different modellers given the same
potential problem would produce results of the
same order.

Empirical validity
This dimension considers whether the predictions
produced by a model as to the likely outcomes of
research and its potential value actually come to
fruition. For example, in the payback approach,
retrospective analyses of the value of research
involve comparing what happened as a
consequence of research done with what might
have happened without the research. There are
difficulties involved in testing the empirical
validity of such modelled predictions.

Value added, improved decisions
The essential test is whether a modelling approach
can improve planning and prioritisation of
research studies. In a scientific approach, one
should compare the decisions without a modelling
approach with those when a modelling approach
is incorporated.

Presentation of results
A major finding from the analysis of the initial
literature was that the literature around planning
trials is quite different from that around
prioritisation of trials. This was independently
confirmed initial advice provided by members of
the Project Advisory Group. As a result of this
observation this report will be presented with
separate sections for planning and for
prioritisation. Within each section the literature is
further divided into methodology and case

Literature search and review methods

16



studies. It was intended that the final report would
contain both qualitative textual data and tabular
presentation of results. Examination of the
products of the data extraction process revealed
great heterogeneity between articles, and
opportunities for tabular presentation were very
limited. The report has, however, remained true to
its original intentions in indicating the
epidemiology of modelling studies and assessing
the quality of items found.

Conclusions and
recommendations from the
systematic review process

Given the prematurity of techniques in the
conduct of systematic reviews of methodology
topics, this review has provided a valuable
opportunity to build on previous experience of
such reviews and to demonstrate important issues
that continue to require further exploration.

1. Methodological reviews require an iterative
approach that is informed by the extent and
success of retrieval from each round of the
literature searching process. To this extent they
contrast with the optimal techniques required for
a more classic effectiveness review where the
scope is determined a priori by the review
protocol and where modifications to the
searching process will necessarily be confined to
fine-tuning and refinement. The methodological
review process is more akin to a Delphi technique
where each successive round increases consensus
and certainty with the panel of experts, in this
case, being the published literature. It is
important, however, to guard against ‘scope-
creep’ and the introduction of systematic biases
by recording a clear and focused question at the
beginning of the process and then documenting
any stages whereby an enhanced understanding
leads to additional avenues for investigation. 

2. The poor yield of materials from subject
searching of bibliographic databases (no more
than 1–2% in most instances) questions the
cost–benefit of such techniques in methodology
reviews and emphasises the importance of
supportive techniques such as citation
searching and follow-up of references. In this
review the pearl-growing technique was much
more productive than systematic subject
searching. Nevertheless, this finding needs to
be set against the recognition that pearl
growing can be a source of systematic citation
bias and so subject searching can perhaps be

seen as a means of constructing an independent
frame of reference against which the findings
of the pearl growing can be evaluated. 

3. The level of informativeness of abstracts as a
basis for making initial judgements of relevance
was very poor, requiring that a large number of
potentially relevant articles had to be obtained
with little eventual yield. Structured abstracts,
now widely regarded as essential in biomedical
journals, are still fairly rare in the methodological
literature. The only database that has a field for
the specific concept of modelling is the Office of
Health Economic Evaluations’ HEED database. 

4. A related point to that in 3 above is that subject
terms for modelling [in controlled vocabularies
such as MEDLINE’s Medical Subject Headings
(MeSH)] are infrequent, inconsistent and
poorly defined. The application of some
acknowledged classification scheme to the
subject content of modelling articles where
specific techniques can be identified easily and
consistently is therefore a priority.

5. Outside the subject searching and citation
searching mentioned above, the subsidiary
techniques such as searching the grey literature,
World Wide Web searching and the survey of
health technology assessment organisations
yielded very little. Nevertheless, it is probable
that such techniques are an important method
for the independent verification of techniques
such as citation searching that are prone to
citation or database coverage biases.

6. Despite tremendous advances in review
methodology, none of the methodological
reviews so far commissioned by the NHS
Health Technology Assessment Programme has
been able to handle qualitative statements from
source papers in a suitably rigorous and
systematic manner. For example, they
discriminate poorly between isolated
statements from an individual that may be
given undue prominence and views that are
held in common across a large number of
researchers. Techniques such as ‘vote-counting’
from the literature on a topic are clearly crude
and unsuitable for a systematic and unbiased
approach, while bibliometric techniques may
merely serve to perpetuate existing biases. In
this review the investigators began to explore
use of the technique from the social sciences
known as meta-ethnography. However,
systematic application of these principles was
constrained by the resources available and the
requirement for the investigators to learn such
experimental techniques. Nevertheless, it is
possible that meta-ethnography may be able to
assume an importance in methodological
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reviews that becomes comparable to that of
meta-analysis in effectiveness reviews. This
certainly requires further investigation.

Conclusions regarding systematic
review methodology
Study identification
The study identification strategy was iterative and
multifaceted. Twelve electronic databases were
searched using intersects of four key concepts
(modelling, health technology assessment, clinical
trials, priorities and prioritisation). The strategy
also used citation pearl growing, which is
appropriate for identifying a corpus of knowledge
where there are known deficiencies in indexing or
terminology. Contact was made with experts in 258
international and UK health technology assessment
agencies. In addition, handsearching of eight
specified target journals was conducted and 12
separate Internet engines were used. This search
generated a database of over 8000 references.

Study selection
There was a very low yield of useful articles from
the abstracts obtained from the search of
electronic databases. Following repeated kappa
tests and refinement of study selection rules,
selection was done by one of two independent
reviewers. A very forgiving standard was used for
identification of ‘candidate’ articles (if in doubt, a
copy of the item was obtained). Tighter imposition
of inclusion criteria was applied at the review of
copies of articles themselves. In total, 601 articles
were obtained, read and classified by the
reviewers. 

Data extraction and appraisal of
studies
The data extraction form for case studies recorded
the place of the model in the R&D cycle, its
setting, the nature of the intervention and of the
management decision, study objectives and the
objectives of the modelling process. A detailed
taxonomy was used for modelling methods
including model structure and the outcomes
modelled. The data extraction also recorded the
implications for further research identified by the
study. Use of the data extraction form for the
methodology studies was less structured, with
provision for more extensive qualitative extracts
from each article.

Synthesis of results to form
conclusions and recommendations
The analyses of individual items, methodological

papers and case studies were summarised. Specific
themes were identified and explored. The
modelling expertise and experience of the
researchers further informed conclusions and
recommendations based on this systematic
analysis. Papers on good practice guidelines for
modelling have been reviewed and guidance more
specific to pretrial modelling is presented.

Results
Results: systematic search issues
� Methodological reviews require an iterative

approach that is informed by the extent and
success of retrieval from each round of the
literature searching process.

� A comprehensive subject search of electronic
databases is likely to yield about one-third of all
relevant articles, but between 97 and 99% of
references initially reviewed will prove
irrelevant. The poor yield of materials from
subject searching of bibliographic databases (no
more than 1–2% in most instances) calls into
question the cost–benefit of such techniques in
methodology reviews.

� Subject terms for ‘modelling’ (in controlled
vocabularies such as MEDLINE’s MeSH) are
infrequent, inconsistent and poorly defined.
The application of an acknowledged
classification scheme to the subject content of
modelling articles, so that specific techniques
can be identified easily and consistently, is
therefore a priority.

� Citation searching is likely to yield the highest
proportion of relevant articles, with references
usually being placed in context within the citing
article. 

� Handsearching proved less significant, because
of both the success of citation searching and the
diffusion of case studies across a wide range of
general medical journals. 

� Contact with experts yielded little further
material of direct relevance, but had the benefit
of giving the review a higher profile among the
international health technology assessment
community.

� Internet searching yielded a low proportion of
material of great relevance or high quality. 

� In this review the investigators began to explore
the use of the technique from the social sciences
known as meta-ethnography. Meta-ethnography
may be able to assume an importance in
methodological reviews that becomes
comparable to that of meta-analysis in
effectiveness reviews. This certainly requires
further investigation.
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This chapter provides a brief introduction to
three of the most important modelling

techniques used in health technology assessment.
This should help the reader with the more
advanced concepts and discussions that occur later
in the report. This discussion is drawn from a
review of methodological literature on modelling
in health technology assessment and on a review
of modelling case studies that claim value in
informing research design. This case study review
is included in Appendix 1. For readers interested
in health technology assessment but new to
modelling, useful background reading and a wide
set of general case studies are provided.

Introduction to the three
important modelling methods
The three main forms of modelling used in the
evaluation of healthcare interventions are:

� decision analysis: used to determine optimal
strategies when a decision-maker encounters
several decision alternatives under conditions of
uncertainty

� state transition modelling: takes the form of
Markov chains or Markov process models, and
is used to model the natural history of a disease
and the effects of a technology. These models
use a finite number of discrete health states to
model the disease and estimate the flow of
people through these states over the full time
horizon of an evaluation

� discrete event simulation (DES): patient-level
simulation commonly using Monte Carlo
analysis to model specific events experienced by
individual patients. 

These methodologies are used for different
elements of the disease modelling and analysis
process and are not mutually exclusive; for
example, DES and Monte Carlo simulation
techniques may be used in conjunction with the
two other modelling approaches. 

Decision analysis
Decision trees are the simplest of the commonly

used decision modelling techniques. As a tool for
modelling relatively uncomplicated scenarios,
decision trees provide a means of structuring a
problem, and an effective method for combining
data from various sources. 

The underlying principle is the use of a decision
tree to represent the available options (or decision
nodes), possible probabilistic events (chance
nodes) and outcomes (terminal nodes). Figure 2
presents a simple example demonstrating the key
decision tree features based on the choice between
two possible interventions faced by a decision-
maker. The payoffs may represent the possible
costs, health benefits or health economic measures
associated with the possible outcomes following
from the two choices. A chance node represents
any uncertain occurrence, described
probabilistically, that may occur following the
treatment decisions. Events may include being
cured by the treatment, not responding to
treatment and possibly death or the occurrence of
side-effects. When deciding between the two
treatments one takes into account the probability
of the events occurring and the costs and benefits
of the event. This decision tree approach provides
a formal method for quantitatively combining
these probabilities and outcomes.

Decision trees are most appropriate for modelling
programmes in which the relevant events occur
over a short period, or evaluations that use an
intermediate outcome measure. Decision trees are
especially convenient for capturing a range of
unidimensional outcomes. Costs and effects are
typically incorporated into a decision tree in
different ways. The outcome measures of interest
are generally attached to the end-points of a tree,
and the proportions of patients completing the
tree at the respective end-points are summed to
give a measure of effect. Costs, however, may be
attached to events within the tree, as well as to
end-points. To calculate total costs for each
intervention, the costs associated with each unique
pathway in the relevant section of the tree are
summed. At each chance node, probabilities,
conditional on the previous event, determine the
proportion of patients progressing along each
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unique pathway in the tree. The process of
calculating the payoffs of each possible treatment
strategy, along with their associated costs and
health benefits is known as folding back.

Decision analysis has a long, if not prominent,
history of use within the health field, with a
specific focus on aiding clinical decision-making.
Clinical decision modelling focuses on identifying
the key determinants of clinical effectiveness and
choosing or supporting the choice between
available treatment options based on clinical
outcome. While the objective function, that is, the
criterion for evaluating model outcomes, concerns
clinical effectiveness as opposed to cost-
effectiveness, the modelling methodologies used
are the same as those used within modelling to
support health technology assessment. Key texts
describing the underlying methodology have been
available for some years.5,32 Other authors provide
useful reviews of the use of such models in health-
related studies.33–36

State transition modelling, including
Markov models
State transition models are suited to estimating
the long-term outcomes or payoffs associated with
different treatment options. Within state transition
models, events are modelled as transitions from
one health state to another. The underlying
principle of state transition models is that at any

point in time, a patient must exist within one of a
finite number of predefined health states. The
time horizon covered by the model is divided into
cycles of equal length. At the end of each cycle a
patient may move to a consequent health state, or
remain in the same state. This process of moving
between states continues until a patient enters an
absorbing state, such as a ‘death’ or ‘mortality’
state, where they remain until the time horizon is
reached. Transitions between certain health states
may be restricted, and only one transition is
allowed per patient per model cycle. Figure 3
demonstrates the movements between health states.

The use of mathematical modelling in health technology assessment
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The parameters required for developing a state
transition model are the probabilities of being in
various states at the start of the model, and the
probabilities of moving between states. Most
commonly, these probabilities are grouped in
matrices known as transition matrices. Utility
values can be attached to each health state
modelled, reflecting the severity of the state.
Similarly, costs are assigned to individual health
states to reflect the cost of remaining in a
particular health state for the length of one cycle.
The outputs of a state transition model are
estimated by multiplying the respective costs and
utility values by the time spent in each health
state, and then summing across all possible 
states.

It is a common mistake for authors of economic
modelling studies to describe models as Markov
when, in fact, they are describing a state transition
model (otherwise known as a Markov process).
The distinction between these concepts is a
relatively simple one: Markov models, more
correctly termed Markov chains, have constant
probabilities of transiting between states, whereas
in the case of state transition models or Markov
processes, transition probabilities may be allowed
to vary according to another model variable, for
example, increasing the probability of transiting to
a death state as time increases. In the spirit of
ensuring clarity within this review, Markov
modelling exists within the broader category of
state transition modelling. Although it is not
inappropriate to refer to state transition models as
Markov processes, state transition modelling does
not use the equilibrium results that the Markov
assumption enables.37

An often-cited drawback of Markov models is their
lack of memory, which means that the probability
of moving from a particular state is not influenced
by the route taken to arrive in the state (the
Markovian assumption). Technically, the
Markovian assumption may be overcome by
splitting health states so as to describe the path
taken to reach the present state, for example, state
C could become ‘state C after state A’ and ‘state C
after state B’.

Using a simple Markov model to predict long-
term survival from a non-start state, one is
implicitly assuming a constant risk which relates to
an exponentially distributed survival function. In
contrast, many diseases will be characterised by
either an increasing risk, in the case of a
progressive disease, or a decreasing risk, in the
case of an acute disease. Furthermore, the hazard

for an underlying healthy population is known not
to be constant over all ages. While it is possible to
include time-dependent transition probabilities, in
which case the model should more correctly be
termed a state transition model rather than a
Markov model, this option is seldom highlighted
and this aspect of the Markov model is seldom
justified.

The most common approach to evaluate Markov
models in the economic evaluation of healthcare
technologies is the cohort method, which is an
analytic approach that follows a cohort of patients
through the model. At the end of each cycle the
proportion of patients remaining in a state is
multiplied by the relevant transition probabilities
to determine how many patients move to each
consequent state during the following cycle. It
should be noted that the choice of evaluative
method does not affect the characteristics of the
modelling technique.

State transition models are often used within a
decision-analytic framework when cost-
effectiveness analysis is the aim. Further complete
descriptions of state transition methods and their
application within the health environment can be
found in several useful references.38–40

Discrete event simulation
Both DES models and Markov processes are forms
of simulation, although DES allows more
complicated representations of the system being
modelled. DES is event orientated, whereby the
model asks what and when is the next event for
every patient at each event, rather than a Markov
model, which asks what events are occurring at
regular intervals. DES involves entities with
attributes undergoing processes, which take time
and resources. For example, patients (entities) with
certain age and gender and disease severity
characteristics (attributes) may undergo treatments
(processes) and clinical consequences (events),
which take time to achieve and require physician
time, drugs, etc. (resources).

DES has two main advantages over Markov
models, namely increased flexibility over data
requirements and an ability to overcome the
restrictions of the Markovian assumption. Two
potential disadvantages include the dangers of
overspecifying models and the need for increased
analytical input (because DES models can be
analysed stochastically using first-order Monte
Carlo simulation). The specification of modelling
approach should be justified with relation to the
decision problem being modelled.

Health Technology Assessment 2003; Vol. 7: No. 23

21

© Queen’s Printer and Controller of HMSO 2003. All rights reserved.



There are dozens of excellent textbooks on
general simulation approaches. The authors
recommend Computer Simulation in Management
Science by Pidd.41

The roles of modelling in health
technology assessment
There is a general consensus in the
methodological literature on the role of
mathematical models in structuring a decision
problem, in marshalling the available evidence
and in providing a structure for linking the
available evidence to the decision problem under
concern. There is good agreement that
mathematical modelling is superior to mental
modelling (where an individual thinks about the
pertinent information and mentally estimates the
consequences of using the technology in the
circumstances of interest), the only identified
alternative in this context. Modelling may also
support communication between those involved in
policy-making, through the need to reach explicit
agreement on issues such as the specified
objectives, relevant interventions, model structure
and the input parameter values.1,42

Concerns about the conduct and reporting of
modelling studies have been expressed,43–46

particularly with respect to the black-box nature of
the working of models and the scope for
manipulation. However, the fact that there have
been weaknesses in published analyses is not a
methodological problem with modelling, but
rather a practical problem concerning the
implementation, reporting and peer reviewing of
such studies. These issues are very important, are
strongly related to the validation and critical
appraisal of models, and are discussed more
thoroughly in Chapter 4.

Modelling in health technology assessment can
operate in three areas (Figure 4):

� to assist in the actual assessment or economic
evaluation of a technology

� to aid in the planning of future trials/
assessments of a technology

� to assist in the prioritising of the different
health technology assessments.

These three areas are not mutually exclusive and
modelling can be used in an iterative sequence to
inform decision-making. Models to assess the cost-
effectiveness of a technology can also be used to

plan and analyse the value of specific research
projects such as clinical trials. Similarly, the trial
results, once available, can be put into a revised
version of the model to give a more up-to-date
technology assessment. 

The use of mathematical models to inform
treatment allocation decisions in the present is the
area of the most frequent application of modelling
in healthcare. While the primary subject of the
current review is the use of models to plan and
prioritise future research, the iterative nature of
the modelling process requires an understanding
of the general issues around the modelling of
healthcare interventions. These issues can be
broadly categorised as relating either to the
decision to model:

� in areas where a health technology has not been
assessed directly in primary research

� where the results of experimental studies are
not sufficiently generalisable to the patient
population of interest to the decision-maker

or to methods used within a modelling study to
improve the validity of the analysis:

� extrapolating trial results from surrogate to
final outcomes

� extrapolating trial results beyond the duration
of the trial.

The remainder of this section describes these
issues, and methods used to address them based
on the methodological literature identified as part
of the systematic review and case studies included
in Appendix 1.
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Modelling technologies that have not
been studied directly
The use of models to evaluate decision problems
that have not been addressed directly has been
advocated widely,45–49 and may arise from a variety
of scenarios:

� early assessment problems before full-scale
experimental investigation

� assessment problems not practically amenable
to experimental analysis

� assessment problems where further experimental
investigation is ethically unjustified.

Mathematical models can integrate data from
different studies addressing alternative aspects of
the disease and treatment process, and so estimate
outcomes that have not been observed in any
study. A great number of medical technologies
present assessment problems of this type and have
been successfully addressed using modelling
techniques. One such example is the case of
evaluating screening for cervical cancer, where the
duration and reversibility of carcinoma in situ of
the cervix are important determinants of the
effectiveness of screening. While neither the
duration nor reversibility can be directly observed,
a mathematical model can estimate parameters for
these variables from observable data.1

Extending the generalisability of trial
results to the relevant patient
population
The major strength of RCTs in assessing clinical
differences between treatments – high internal
consistency – means that RCT results have a low
generalisability to typical practice populations. In
situations where experimental investigations have
been undertaken, it is highly unlikely that these
investigations would include all the factors
relevant to a particular resource allocation
decision. This leads to a number of biases in the
trial population that may give rise to a biased
estimate of cost-effectiveness in practice.48,50

In such cases, some method for generalising the
information obtained from experimental
investigation is still required. Models can help to
integrate the results of experimental and
epidemiological studies to estimate the impact of
applying a technology in a particular setting.
Drummond and co-workers51 compared the
impact of variation in management strategies and
health delivery systems in different countries on
the health economics of misoprostol therapy. In
this case study modelling was used to estimate the

implications of economic assessments of this drug
in the USA for the economics of treatment in a
sample of European countries. The modelling
yielded markedly different results concerning the
potential value for money of this therapy,
indicating that simply extrapolating from the
original US-based study directly to the other
healthcare settings, without modelling, would give
very misleading economic results for this drug.

While a range of examples exist where
adjustments to clinical trial results have been
undertaken through modelling (Hillman and
Bloom52 and Rittenhouse53) the only complete
theoretical handling has been by Eddy,54 who
classifies the potential biases as either additive or
intensity based.

� Additive bias relates to patient selection bias or
confounding factors, not to the effectiveness of
the intervention.

� Intensity bias does affect the effectiveness of the
intervention, for example, through the chosen
dose of a drug, frequency of an examination,
skill of a provider, type of equipment or
susceptibility of a patient to a treatment.

Eddy54 proposes a quantified approach to
synthesising available evidence regarding health
outcomes from a technology of interest, which he
calls the confidence profile method.55–57 In
principle, the approach is to define a chain of
evidence that links the available data to the
outcome of interest. This chain can be defined in
terms of an influence diagram and may be used to
link evidence together in series (e.g. linking
surrogate to final outcome measures) or in parallel
(e.g. constructing a meta-analysis of data from
varied sources on a single outcome measure). The
available evidence is then drawn together using a
Bayesian updating algorithm that allows the
additive and multiplicative biases to be
incorporated.

The mathematical modelling of internal trial
biases provides an explicit framework for the
quantification of the impact of a bias. However,
information on the magnitude and even direction
of potential biases is unlikely to be available and
there is particular need for transparency in the
definition of the bias adjustments.

In summary, while there are strong cautions within
the literature about avoiding potential hidden bias
within model-based studies, there appears to be a
consensus in the literature, ranging from strong
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advocacy to an acceptance of its necessity,
regarding the role of modelling in this area.

Extrapolating results from surrogate
to final outcomes
In areas where the patients have a relatively long
life expectancy, it is common for clinical trials to
assess effectiveness in terms of an intermediate
end-point,45 such as reductions in cholesterol
level.58 Surrogate outcomes may be difficult to
assess in terms of their value (the maximum value
a decision-maker would be willing to pay to gain
an additional unit of the outcome). Moreover, such
data will not be sufficient to inform resource
allocation decisions that cover a budget broader
than a single disease area, where generic measure
of outcome, such as the quality-adjusted life year
(QALY), will be required. In addition, the relative
long-term costs of the alternative interventions
may significantly affect the cost-effectiveness
results. For example, the outcome measure
proportion surviving an episode of septic shock is
likely to be an inadequate measure as the further
prognosis of patients is likely to have a significant
impact on the cost-effectiveness of an expensive
therapy for the treatment of septic shock.59,60

A range of other case studies exist, including
studies in coronary heart disease61 and
osteoporosis,62 which examine the potential effect
of a technology on final outcomes through
modelling from surrogate outcomes. Eddy’s
confidence profile method54 involves the
construction of a chain that links the technology
to the short-term outcome, and the short-term
outcome to the long-term outcome. The chain is
populated using data from previous research
relating the short-term outcome to the long-term
outcome. 

Particular caution is required in cases where the
surrogate end-point has not been validated and
does not predict the final outcomes with accuracy.46

If the assumed relationship is critical to the marginal
cost-effectiveness of a treatment then this may be
examined and highlighted through modelling.

An alternative form of extrapolating non-ideal
outcomes measures involves cases where the trial
duration describes life expectancy, but has
collected only disease-specific outcomes measures,
which can be converted to a utility-based outcome
measure in the form of QALYs. The Wessex
Development and Evaluation Committee (DEC)
report on donepezil63 undertakes this type of
modelling within the context of a health
technology assessment exercise.

Extrapolating results beyond the trial
duration
The extrapolation of short-term outcomes has
much in common with the previous discussion on
estimating the impact of surrogate outcomes on
final outcomes, although in linking surrogate
outcomes to final outcomes, while there may be an
element of extrapolation over time, the focus is on
transforming the unit of measurement of benefit.
The extrapolation of results beyond the trial
duration refers to cases in which an appropriate
outcome measure can be derived from the trial
(quality-adjusted or unadjusted life years gained),
but the length of the trial precludes the direct
estimation of lifetime survival.

The inadequacy of much empirical RCT evidence
in terms of its short duration in relation to the
potential impact of interventions on health and
economic outcomes is a common theme across the
literature. Unless it is reasonable to assume that an
intervention will not have long-term effects, it is
necessary to extrapolate beyond the period
observed in the trial.45

Many different modelling methods have been
used in extrapolating long-term impacts and no
exhaustive review has been presented within the
literature. A brief discussion of three methods
identified within this review is presented. 

Long-term benefits associated with treatment of
acute diseases have been predicted either using
published life tables obtained from national
statistics64 or through estimations using the
declining exponential approximation of life
expectancy (DEALE).65

This approach has been further extended to
estimate potential long-term effects on mortality
by including additive or multiplicative adjustments
to annual risks associated with treatment. An
example case study of this type of modelling is
presented in an assessment of the cost-
effectiveness of 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase inhibitor
(statin) treatment.66

State transition modelling
A closely related method for implementing such
long-term assessments is state transition
modelling, including Markov modelling. As
described earlier in this chapter, such models use
a matrix representation to describe the
probabilities of transiting between a set of health
states within defined time cycles. By tracking the
flow of a group of patients through these health
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states, estimates of the long-term health outcomes,
resource usage and costs associated with different
treatment strategies can be made.37,38,40

Survival analysis
The Markov methods are particularly useful where
a large number of health states have to be
considered, in the simpler two- or three-state
scenario, for example where patients are either
alive or dead, extensions to traditional survival
analysis have been used in extrapolating the long-
term implications of short-term outcomes. Two
papers have been identified that propose closely
related methodologies for extrapolating long-term
survival from restricted survival data. These are
‘Parametric extrapolation of survival estimates with
applications to quality-of-life evaluation of
treatments’67 and ‘Survival curve fitting using the
Gompertz function: a methodology for conducting
cost-effectiveness analyses on mortality data’.68 In
brief, the methodology consists of fitting a
parametric survival model to the tail of the
survival distribution using the formal survival
analysis techniques for fitting parametric models.
The parametric model thus obtained is then used
to project forwards beyond the limits of the
available data.

Two key issues should be at the forefront of
modelling in this area. First, in the absence of
long-term empirical data, expert clinical
judgement should be involved in defining
assumptions regarding long-term risk patterns.
For example, expectations concerning constant,
increasing and decreasing risks should be 
matched to the characteristics of the specific
model being used. Secondly, limitations on the
analysis imposed by the assumption that long-
term risks will follow the pattern suggested by the
short-term data cannot be circumvented by more
detailed and more complex analysis. This
limitation should be borne in mind when
interpreting the results of any analysis using this
modelling approach.

Use of standard cost-
effectiveness modelling and
sensitivity analysis to inform the
design of clinical research 
Appendix 1 describes a review of health economic
modelling case studies that specifically claim to
inform the design of proposed research. The
studies concentrate on the application of standard
cost-effectiveness modelling and sensitivity analysis
as an input to the research design process. 

What aspects of trial design can
modelling feasibly inform?
The review of case studies concludes that standard
cost-effectiveness modelling and sensitivity analysis
can inform four aspects of research design in
particular.

� Identifying key parameters for further
investigation: once a cost-effectiveness model
has been developed, one-way sensitivity analysis
and scenario sensitivity analyses indicate the
importance of input parameters by examining
the stability of the model results when the value
of the parameter is varied across its plausible
range. Although such analyses do not estimate
the value of additional information on
alternative parameters, they can usefully inform
changes in trial design that do not impact greatly
on the research costs. One note of caution is
required, however, as a recent comparative
study of alternative approaches to sensitivity
analysis69 found that these approaches tended
to overestimate the sensitivity of model results
and can give misleading rankings for key
parameters.

� Specifying the minimum clinical difference
required for sample size calculations for a
proposed trial: a cost-effectiveness model can
help to inform the minimum significant clinical
difference for a trial. The analyst asks the
question, ‘what value would the clinical
effectiveness of the new intervention have to
achieve for the new intervention to be proven
cost-effective versus current interventions?’ The
model is used to determine a threshold clinical
difference and then traditional statistical
methods are used to calculate the implied study
sample size. For new interventions where cost is
an order of magnitude greater than current care
this issue can be fundamentally important
because proof of clinical effectiveness alone is
likely to require a lower sample size than proof
of cost-effectiveness. 

� Deciding on the required duration of a
proposed trial: the estimation of the threshold
clinical difference can also influence the
duration of a trial because it has implications
for the period required to observe the necessary
differences in the number of events between
interventions. A further use of modelling to
determine trial duration is when a validated
model enables the confident extrapolation of
surrogate end-points. In this case only the
surrogate end-points may be required, which
reduces the duration of a trial.

� Defining the population characteristics for a
proposed trial: models can also be used to
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explore potential differential effects of a new
technology across different population
subgroups and thus to define target population
groups for a trial. This is particularly useful in
considering treatments with potentially small
effects. A common mistake in these situations is
to increase the recruitment and sample size by
relaxing the entry criteria, when this may
simply dilute the treatment effect. The model
can also be used to examine the threshold
clinical difference required for subgroups.

The case studies presented in Appendix 1
demonstrate the feasibility of cost-effectiveness
models across a broad spectrum of disease areas,
and across a broad range of intervention types.
Again, there are certain forms of health technology
for which modelling may offer greater benefits as
an evaluative tool, including screening, diagnostics
and other areas where the impact of the
technology occurs over a long duration. The case
studies presented also demonstrate that standard
cost-effectiveness modelling and sensitivity analysis
do not, however, enable the relative valuation of
alternative research designs. Further methods are
needed to address this problem.

Conclusions and
recommendations
Disease treatment pathway modelling has been
defined as the use of a mathematical model to
describe the natural history of a medical condition
and how the natural history is affected by different
health technologies. Such models can be used to
support comparative health economic evaluation
of alternative healthcare technologies.

There is general agreement within the literature
that modelling provides a formal structure for
addressing a decision problem and bringing
together available information from varied sources.
This enables assumptions to be made explicit.
Modelling therefore has a strong advantage over
the alternative of implicit mental comparisons.

The following roles of modelling have been
identified in the literature reviewed:

� structuring the decision problem
� studying assessment problems that have not

previously been addressed or are not amenable
to empirical evaluation 

� synthesising head-to-head comparisons
� extending the generalisability of trial results to

the relevant patient population 
� extrapolating results from surrogate to final

end-points
� extrapolating results beyond the duration of a

trial.

There is a clear consensus that these roles are
valid and useful in terms of performing health
technology assessments, provided that guidance
on good practice is followed.

Case studies of general health economic models
incorporating standard one-way and multiway
sensitivity analyses have been identified that claim
value in informing the design of proposed
research. Specifically:

� identifying key parameters for further
investigation

� specifying the minimum clinical difference
required for sample size calculations for a
proposed trial

� deciding on the required duration of a
proposed trial

� defining the population characteristics for a
proposed trial.

The methods used, however, do not enable the
relative valuation of uncertainty and can give
misleading rankings for key parameters. 
Further methods are needed to address these
problems.

The recognition of the potential for bias within
models, for the manipulation of models, and 
for the need to handle uncertainty in a 
thorough manner has led to the development
of critical appraisal guidelines for the

undertaking and reporting of model-
based preliminary evaluations.1,36,70 For instance,
in using evidence from small case series as 
opposed to large RCTs, the results of modelling
may be prone to bias. Similarly, where the 
link between surrogate and final endpoints is
unvalidated, uncertainty concerning this link 
must be incorporated within the model. In 
the same way, where subjective judgements 
are used within a model, the representation 
of uncertainty around such judgements needs 
to account for potential bias in subjective
estimation.71

The use of mathematical modelling in health technology assessment

26



Health Technology Assessment 2003; Vol. 7: No. 23

27

© Queen’s Printer and Controller of HMSO 2003. All rights reserved.

Introduction
A key issue in the use of modelling to inform the
design and prioritisation of clinical research is the
reliance that can be placed on results of modelling
studies. If the modelling framework used to
prioritise a trial is reliable and the model
successfully captures the relevant factors of a
decision problem, then modelling is more likely to
be accepted; if not, then the modelling approach
will be undermined. The ability to distinguish
‘good’ modelling from ‘bad’ is crucial to all of the
research questions under the scope of this review.

One of the major criticisms of modelling studies
has been the lack of transparency in many peer-
reviewed publications reporting modelling studies.
This, together with the potential for bias, intended
or accidental, in the model development process
has led to much debate over the value of
modelling studies. There is a need, therefore, for
guidelines or standards in the critical appraisal of
modelling studies.

Various studies have addressed alternative aspects
of the modelling process. Weinstein and Fineberg’s
guidance for clinical decision analysis is a seminal
publication,32 although earlier papers had applied
the techniques of decision analysis to clinical
research. In particular, Kassirer published an
introduction to decision analysis in a clinical
context in 1976.72 The main limitation of both
these sources was that they concentrated on the
principles of decision analysis using decision tree
methodologies, only providing a brief summary of
other aspects of the process, such as the derivation
and assignment of probabilities. Indeed, the
majority of the identified texts covering the use of
decision models within the evaluation of
healthcare technologies focus on the principles of
the use of specific modelling techniques rather
than other aspects of the modelling process.37,38,73

The most useful publications relating to the
process of modelling projects in healthcare were
those that did not focus solely on the principles of

the modelling techniques, but rather on a
framework for modelling studies. Two such studies
aimed at improving the general process of
undertaking and reporting medical decision-
analytic models,1,36 while another paper aimed to
increase standardisation with regard to modelling
practices.70 Each study produced good practice
recommendations; synopses of these frameworks
are presented in Appendix 2.

In 1999, a consensus conference on Guidelines on
Economic Modelling was held at the University of
Sheffield, from which a signed consensus
statement was generated.74 Papers presented at
the conference were published in
Pharmacoeconomics in May 2000, including a
suggested framework for assessing the quality of
modelling studies,75 and a review of the existing
literature on quality assessment in modelling.76

There is also a more specific literature on
guidelines for undertaking decision-analysis
modelling in the health services domain; this
details good and bad practice in the development
of models and application of this specific
modelling methodology. Key references in this
literature are briefly discussed during this chapter. 

Buxton and colleagues present five
recommendations for good practice in modelling
which provide a broad description of the main
issues surrounding the use of modelling.45

� The model should be kept as simple as possible
to aid understanding by decision-makers.

� The presentation of results should be as
transparent as possible (including submission of
model and data for thorough scrutiny by
reviewers).

� The quality of all the data used in the model
should be made explicit.

� Uncertainty within the model should be
explored thoroughly using sensitivity analysis,
not compensated for.

� The model should be validated against the
results of other models and/or the results of
intervention studies.

Chapter 4

Good practice and critical appraisal of modelling 
studies in health technology assessment



Review of good modelling
practice
The following sections describe suggested
approaches to good modelling practice,
differentiating between three broad areas: model
structure and modelling technique, populating the
model, and model analysis.

Model structure and modelling
technique
The decision problem should be clearly stated,
including the condition(s), interventions, specific
study populations and study perspective, as this
information will form the basis for the
development of the model.70

The primary act in the development of a model is
to develop a model structure, which forms a
framework for the rest of the modelling process.
The structure may change as the disease pathways
become better understood, or if there are
inadequate quantitative data to populate the
model in its initial form, although the extent to
which model structure should be based on the
available data is debatable. Sonnenberg and co-
workers36 define the practical model as “the most
detailed model that can be constructed given the
limitations of available data”, reflecting that
changes to the structure of a model are “necessary
and useful compromises”. Sculpher and co-
workers75 warn that structuring models on the
basis of the quality of data available could cause
the loss of important clinical events. In their view,
expert opinion is always a valid means of
estimating parameter values because the sensitivity
of the results to changes in the parameter values
can be assessed.

A general rule might state that subtle
modifications to the structure of the model may be
enacted that rearrange the relationships relating
to the underpopulated parameters to reconcile the
format of any available data. If such modifications
fail to accommodate the available data then expert
opinion may be sought to fill the void.

The choice of modelling technique has been
identified as a potential area of divergence
between alternative modellers, owing to the
different types of models that are available. The
choice of modelling technique will depend on
whether a model is discrete or continuous,
deterministic or probabilistic, or static or dynamic,
as well as other characteristics such as the
appropriate number of dimensions or
distributional assumptions.1

Sonnenberg and co-workers36 restricted their
definition of alternative modelling techniques to
simple decision trees, Markov models and
simulation methods. They state that decision trees
are appropriate in circumstances where events
occur only once and at some prespecified time.
State transition models are recommended in most
cases where the time horizon of a model is too
long to be comfortably handled by a decision tree.
The recommendation for the use of simulation
methods as an alternative to state transition
models is restricted to evaluations that cover
complex model interactions, such as areas where
patients interact or where resource availability is a
relevant issue.

Although simulation models (specifically, discrete
event simulation) generally enable a more flexible
interpretation of disease pathways, which could
provide advantages over Markov models in a
number of disease areas,77 no evidence of any
important differences between the two techniques
(when applied to the same evaluation) has been
reported.78

There is general agreement that the simplest
modelling approach that adequately captures the
necessary characteristics of the evaluation should
be used.45,75 However, the degree to which the
characteristics of an evaluation should be precisely
described is not always clear, which is where the
judgements of the modeller and the art of
mathematical modelling may differ between
analysts.1

The scope for alternative interpretation of an
appropriate modelling approach has been
highlighted as a potential for the introduction of
bias in model development.45,46 It is also
important for modelling studies to justify the
approaches adopted in areas in which subjective
judgement has been used, for example, the
estimation of uncertain parameters and their
impact on final outcomes and recommendations.

Populating the model
Much of the criticism concerning the use of
modelling in technology assessment has focused
on the presence of bias in the data used to
populate the model and its effect on the reliability
of the outcomes obtained from modelling.45,46 In
this respect, it is important to differentiate
between cases in which data sources are
manipulated to influence the results of the
modelling process, and instances in which the data
quality is simply poor. The former scenario is to
be condemned, but the lack of good-quality data
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to populate a model is not a criticism of the
model.75

Eddy1 requires transparency and explicitness in
the reporting of data sources for modelling
studies, including a description of the data sources
and a discussion of the strengths and weaknesses
of each source. The parameter values, including
base case, ranges or distributions for each
parameter, should be reported. In reporting the
results, the direction and potential magnitude of
bias in the underlying data should be discussed,
together with its impact on outcomes.

Halpern and co-workers70 also require that the
quality of the data used to populate a model
should be explicitly assessed, including the
following factors: 

� availability of data (e.g. whether they have been
published in a peer-reviewed journal)

� sample size
� duration and frequency of data collection
� degree of patient follow-up [i.e. all

patients/intention to-treat (ITT) versus only a
subset of patients]

� patient population characteristics (e.g.
inclusion/exclusion criteria)

� methods of data collection (e.g. physician case-
report forms, patient self-administered survey,
structured interview and information from
proxy)

� analysis of data (e.g. the use of ITT versus on-
therapy results).

In addition, Nuijten79 calls for information
regarding the cost of access to database and data
abstraction to be reported, as well as the
justification for the final ‘yes’ or ‘no’ decision to
use a data source, based on the advantages and
disadvantages of the specific source. Nuijten79 also
makes a number of recommendations for good
practice for the population of models that
operationalise the concept of transparency
identified by many other authors.

� Sources of study data should be recommended
and explained in sufficient detail.

� A general rule should be used whereby clinical
outcomes data are assumed not to be country
specific. For each study this assumption has to
be controlled.

� Economic data and therapeutic choices should
be assumed to be country specific, requiring
separate data collection.

� For each location in the model (e.g. a Markov
state), the patient subpopulation has to

correspond as much as possible with the
population in the data sources(s) being used.

If no primary data can be identified, and expert
opinion is required to populate parts of the
model, the methods used to elicit expert opinion
should be fully detailed.75

Model analysis 
Model analysis consists of two main issues: the
need to validate the model, and the analysis of the
sensitivity of the evaluation results to the
modelling process adopted.

Sensitivity analysis
The appropriate form of sensitivity analysis is
dependent on the characteristics of the model and
the purposes of the model. Halpern and co-
workers70 identify four of the simpler approaches
to sensitivity analysis: unidimensional (or one-
way), multidimensional, best/worst case and
threshold analysis. Felli and Hazen69 believe that
the role of sensitivity analysis has expanded
beyond describing the possible impact of
variations from the baseline value of an input
parameter, to predicting the likelihood and effect
of the uncertain outcomes.

Felli and Hazen69 compare four more complex
methodologies for assessing uncertainty in
decision-making. The threshold proximity method
(which plots how close baseline input parameter
values are to the threshold for a decision, i.e. by
how much would one parameter need to change
to affect the decision made) and entropy-based
measures (which describes the expected
information that an input parameter yields about
the whole of the model through the estimation of
the mutual information between the parameter
and the model) have not been applied widely, and
become unwieldy when multiple parameters are
tested simultaneously.

Multiway Monte Carlo (probabilistic) sensitivity
analysis is assessed, where all inputs are described
by parametric distributions that generate a
probability distribution of the model’s outputs.
Individual parameter sensitivity is assessed by
estimating the probability of decision change
(from the baseline allocation decision) on the basis
of varying a single parameter during the Monte
Carlo analysis. The fourth approach is labelled an
information-value-based measure, which uses the
expected value of perfect information (EVPI) (for
the full model and individual parameters) as a
measure of uncertainty. The EVPI approach is
described in detail in Chapter 7.
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The application of the alternative methods to
three case study evaluations found that the results
of probabilistic and the EVPI sensitivity analyses
were broadly similar, although the former tended
to overestimate sensitivity relative to the EVPI
approach. Felli and Hazen69 believe that the EVPI
approach is a natural extension to probabilistic
sensitivity analysis, which provides additional
benefits owing to the simultaneous assessment of
the probability of making the optimal decision,
and the change in payoff allied to an alternative
decision.

In addition to analysing the impact of parameter
uncertainty within a specified model structure,
there is a need to assess the sensitivity of the
allocation decision to possible variation in the
structure of the model. 

Model validation
Validation is a key element of the modelling
process, as it is the chance for the modeller to
satisfy the audience that the model is suitable for
use within its defined experimental framework.
Unfortunately, validation is often the most difficult
phase of a modelling project. Eddy1 describes four
sequential orders of validation, which are detailed
below.

Expert concurrence
The first test for a model is that the model
approach is acceptable to people with a good
knowledge of the area being modelled. The model
structure should include factors they consider to
be important, the relationships described in the
model should be recognisable and data sources
should seem reasonable. 

Internal validity
Internal validity is also referred to as
verification.70,80 This second validation level tests
the technical accuracy of the model and should
identify errors in model syntax, data entry errors
and logical inconsistencies in the model
specification. Mandelblatt and colleagues80

recommend that the performance of the model is
tested under hypothetical conditions, such as
100% and 0% efficacy, which should produce easily
predictable results.

Estimates made by the model should also be
compared with actual observations, such as a
comparison of intermediate outputs from the
model with the data entered into the model to
check consistency. It is reasonable to define a
second-order validation hurdle: any model should
be able to match the data used to estimate

parameters. Failure to pass this test strongly
suggests that the structure of the model is faulty.

However, it may be possible to vary some model
parameters drastically and still have the model
generate results that are always close to some
observations. A close fit in such instances can be
meaningless, and the weight to be placed on a
first- or second-order validation will depend not
only on the number of observations that the
model can predict and the accuracy of the
predictions, but also on the sensitivity of
predictions to the model parameters about which
there is the greatest uncertainty.

Predictions agree with non-source data
In theory, a model can be constructed using one
set of existing data and tested against a different
set of existing data (e.g. Schwartz81). A third-order
validation compares the predictions of a model
with observations that were not used to populate
the model.

To avoid the trade-off between increasing the
accuracy of a model by using all the available data,
and using only part of the data to populate the
model and enabling this form of validation, the
whole data set can be used in the model when the
validation assessment is completed.

Predict–experiment–compare
A fourth-order validation could be defined by
comparing the outcomes predicted by a model for
a new and previously unobserved research
programme with the actual outcomes of that
programme when it eventually is conducted. This
highest level of validation is a useful approach
where it is possible to undertake the experiment.
One problem is that the actual conditions being
experimented upon can be different from those
assumed within the model. However, if the model
is well structured then the important experimental
conditions should be key parameters within the
model. Changes in the technology itself; the age,
risk and behaviour of the patient; the institutional
setting; and many other factors can make such
comparisons difficult. Beyond this, the random
component to the outcomes of any clinical trial
can prevent the predicted and observed outcomes
from matching, even if a model is perfect.

To summarise, there is no simple and universally
applicable procedure for validating a model. Each
case must be considered by itself. In many cases
only a first-order validation will be possible, and
only in very rare cases will a fourth-order
validation be possible. The decision to use a
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model should be based on a comparison with the
validity of the other techniques that may be used
to assess the technology.

In some areas it may also be possible to compare
the structure, inputs and results of a model to
existing models in similar disease and/or
intervention areas. Any observed differences
between alternative models should be capable of
being explained and justified. Such validation is
more likely to be applicable for disease areas or
technologies that have been subject to significant
economic evaluation effort and hence where the
modelling work may be considered relatively
mature.

Consensus on principles
The broad set of principles formulated during the
1999 consensus conference for Guidelines on
Economic Modelling, agreed in the form of a
consensus statement, is reproduced in Box 1.74

The principles reflect previous modelling advice

(e.g. Eddy1 and Halpern and co-workers70) and
the views of a group of researchers with
considerable experience in the use of decision-
analytic modelling in healthcare.

Conclusions
� There is considerable consistency between all

the identified studies that published guidelines
for critically appraising modelling studies in
technology assessment. This is especially
noteworthy considering the time lapse of 15
years between the early Eddy study1 and the
consensus conference.74

� All of the guidelines recognise the problems of
generalisability when considering critical
appraisal of modelling studies. They refrain
from setting down detailed prescriptive
checklists such as might be found in checklists
for reporting statistical meta-analyses or
reporting clinical trials. Their approach is to
identify a set of principles of good practice in
undertaking and reporting modelling studies. 
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A good decision-analytic model for the economic evaluation
of health technologies is one that:

� is tailored to the purposes for which it is to be used
� is useful for informing the decisions at which it is aimed
� is readily communicated.

A good decision-analytic model must, therefore, have certain
characteristics which are summarised here.

Transparency
Transparency enables a user to examine the structure of a
decision-analytic model and any incorporated data without
obstacle. The analyst must make the sources of these
elements (i.e. the structure and the data) clear, including any
underlying theory and assumptions, and justify the choices
that are made.

Internal consistency
A good decision-analytic model must be mathematically well
defined for all combinations of parameter values specified as
feasible. No such values should result in inconsistency in the
mathematical logic of the model.

Reproducibility
Reproducibility, i.e. being able to be replicable by an
independent competent analyst, thereby leading to the same
result subject only to expected random variations, is an
important characteristic of a good decision-analytic model.

Interpretability
A good decision-analytic model, and its results, must be clear
and interpretable for the decision that it is being used to
inform.

Exploration of uncertainty
The implications of all forms of uncertainty, including
methodological, structural and parameter uncertainty, must
be explored appropriately.

Other characteristics of good decision-
analytic models
Statement of scope
The scope of a decision-analytic model should be clearly
specified, including the health technologies involved, the
populations addressed and the time-frame to which it
relates.

External consistency
The structures used within the model, and data used to
populate the model, should be consistent with the most
appropriate information. The outputs of the model 
should be assessed in comparison with the best available
relevant empirical evidence or evidence from other 
models.

Parsimony
A good decision-analytic model should avoid unnecessary
complexity and introduce only such variables and structural
components as are important to the scope of the 
evaluation.

Inferential soundness
The causal relationships included in the model should be
explained and substantiated by the best available 
evidence.

BOX 1 Properties of good decision-analytic models74
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� A wide range of modelling methodologies may
be appropriate under different circumstances to
address different problems. It is not feasible to
construct a prescriptive all-purpose toolkit that
strictly defines appropriate methodologies for
use in any given circumstances, although
Sonnenberg and co-workers36 have defined
general conditions where decision trees, Markov
models and simulation models may be
appropriate. 

� In the area of sensitivity analysis, much
methodological development has been
undertaken, and the use of stochastic
(probabilistic) sensitivity analysis is gaining
popularity. However, no consensus on a
prescriptive approach to sensitivity analysis has
been reached. The recent health technology
assessment review presents an excellent starting
guide,82 although it is not comprehensive. 

� Eddy’s four levels of validation1 provide the
benchmark for validation of modelling studies.
The four levels are: 
– expert concurrence
– internal validity
– predictions agree with non-source data
– predict–experiment–compare.
Again, however, the precise implementation of
these validation levels is not defined owing to
differences in the context, policy question and
data availability for alternative models. 

� The focus of the critical appraisal guidelines is

towards transparency and explicitness in
reporting of modelling studies. There are
specific domains where this transparency is
essential, in particular:
– the modelling methodology used
– the structure of the model
– the sources of data, including subjective

judgement, used to populate the model
– validation of the model
– analysis of uncertainty or sensitivity analysis

of key outcomes. 
� The need for transparency and explicitness may

be compromised by the space limitations of
published articles. There are often too few
words, tables and figures to present a
sufficiently complete picture of a typical
modelling study. It is recommended that
sufficient information to support peer review
should be made available to reviewers. If
necessary, this should be included in a
supplementary report or technical 
appendix. 

� In reviewing a modelling study it is necessary to
review both the technical application of the
modelling methods used and how well the
underlying structure of the model reflects or
incorporates known disease- or technology-
specific factors. For this reason it is necessary to
have both clinical and modelling input into the
peer-review process and advisable for this to be
coordinated.



Introduction
This chapter provides an introduction to the issue
of research prioritisation within the healthcare
field through analyses of previous work that has
assessed alternative approaches to the
prioritisation of research. The aim of the chapter
is to describe a range of criteria that should be
accounted for in a research prioritisation process,
and to establish the arguments that have
previously been made for and against alternative
prioritisation processes.

Two main studies that assessed alternative research
prioritisation from a European perspective3 and a
US perspective83 are reviewed to establish the
criteria that should be accounted for in the
prioritisation process, which are followed by a
general representation of currently applied
approaches to setting research priorities.

General assessments of modelling approaches are
then reviewed, followed by the various
recommended approaches to prioritisation.

Criteria for prioritisation
A European Union funded research project
(EURASSESS), aimed at informing the research
prioritisation process, identified seven
prioritisation criteria:3

� uncertainty around the impact of the
technology (the plausible range of possible
answers and the difference between the best
and worst health impact)

� uncertainty around the financial impact of the
technology

� number of potential target recipients
� timing of the impact
� trend in the technologies used during the

assessment time
� improvement in equity or other ethical

dimensions
� general relevance to health policy.

The authors point out that the approach taken to
each of these elements depends crucially on the
context in which priorities are being set. This

includes the goals of the programme, the types of
assessment and technologies it covers, the nature
of the organisations’ funding and the allocation of
responsibilities between different organisations’
involved. They also point out that the general
approach to priority setting currently varies across
Europe and indeed the world.

A similar project commissioned in the USA reports
a similar set of criteria:83

� prevalence of the specific condition
� unit cost of the technologies commonly used to

manage the condition (or the unit cost of a
technology and its alternative)

� variation in the rate of use of a technology for
managing the condition (or variations in the
rates of use of the technology and its
alternatives)

� burden of illness imposed by the clinical
condition

� potential of the results of the assessment to
change health outcomes

� potential of the results of the assessment to
change costs

� potential of the results of the assessment to
inform ethical, legal or social issues.

Current approaches
Figure 5 presents a schema of the steps in the
prioritisation process, which has gained
acceptance across Europe3 and the USA.83
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Chapter 5

Background to the research prioritisation process

Identifying problems of concern or relevance to 
decision-makers

Identifying possible assessments that could help
decision-makers achieve their goals

Judging the potential benefits and costs of these
assessments to set priorities between them

FIGURE 5 Schema of the research prioritisation process
(adapted from Henshall et al.3)
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As an example, Figure 6 describes the well-defined
process used by the NCCHTA in the UK to move
from a broad range of possible topics to a decision
on which assessments should be funded.

At present, explicit criteria for the allocation of
research funds are applied only qualitatively. This
general approach consists of listing a range of
factors that are relevant to the prioritisation
process, and then assessing the relative costs and
benefits of alternative research proposals, with
respect to the defined factors, through discussion
among a panel of decision-makers (as described in
Figure 6).

At the time of the EURASSESS review it is clear
that the application of modelling in the formal
prioritisation of health technology assessment is
almost non-existent across Europe.3 Sculpher and
co-workers84 believe that, at best, research
decisions take some account of the clinical and
economic burden of a condition, but despite the
development of various analytical frameworks
there are few instances in which economic analysis
of new interventions have been used to inform the
development process. 

Critique of general modelling
approach
Henshall and co-workers3 discuss the role of
modelling in assessment, noting that there is a
complementary relationship between primary
research (which can provide evidence for the input
parameters of the evaluation) and the model itself
(which can inform on the importance of the
various parameters for future research). However,
in the absence of further research into
methodologies for prioritising research, the
EURASSESS team is sceptical about the value of a
modelling-based approach owing to the difficulties
involved in quantifying the potential benefits of an
intervention. A particular concern is raised over
quantitative estimates based on predictions
regarding the evolution of a technology and the
wider implications it may have for healthcare
provision. The explicit estimation of the costs of
possible assessments is also thought to be subject
to too much uncertainty, and so should be
incorporated pragmatically as a separate criterion
within the decision-making process.

They also believe that the implementation of an
explicit and systematic prioritisation process would
divert too many resources away from primary
research, and that such a process may disengage
decision-makers, especially if the process required
additional time inputs from these people.

The US review of prioritisation approaches
recognises the benefits of modelling, for example,
data synthesis and explicitness, as well as
weaknesses, for example, the use of data and
ratings, even though subjectively derived, can
appear more precise and authoritative than is
warranted, and models can be perceived as
mechanistic and insensitive to human concerns. In
particular, they also raised concerns over the
complexity and cost of modelling to inform the
prioritisation process.83

Both Donaldson and Sox83 and Lilford and
Royston86 are explicit in their view that the results
of any modelling evaluation should only be used
to inform the prioritisation process, rather than
encompass the final product of the process itself.
Lilford and Royston86 stress the interpretation of
decision analysis as being part of the assessment
process that informs the appraisal process,
whereby the utility-based research priorities are
modified according to their moral and political
implications. However, they believe that the
systematic nature of decision analysis provides a

Potential topics

Six expert panels (Acute sector, Primary & community,
Diagnostic & imaging, Screening, Pharmaceuticals,

Methodology)

100 shortlisted topics (100 vignettes/expert papers
summarising topic and research questions)

2nd round of expert panels

60–70 for consideration by the Standard Group for Health
Technology Assessment

40 selected topics

NCCHTA Commissioning Process

Vignette

Outline proposals submitted

Short-listed for full proposal (usually 3 or 4 bids per topic)

Final selection

FIGURE 6 NCCHTA topic prioritisation process (adapted from
Davies et al.85)
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defensible approach to prioritisation, citing a
model of antenatal tests for foetal well-being that
shows further research in this area is unlikely to
detect any health benefits. Harper and co-
workers87 accept the relevance of factors other than
cost-effectiveness in the prioritisation process (such
as equity implications), but they are not clear as to
how these factors can be included in the process.

Recommended prioritisation
approaches
In their assessment of various theoretical models
and practical systems that have been developed for
setting priorities in health technology assessment,
Henshall and colleagues3 found that few had been
formally evaluated. Their recommended
prioritisation approach involves the identification
of priorities by decision-makers who are informed
by data from various sources, including analyses of
health and healthcare statistics, and the opinions of
other experts to identify particular areas where
health technology assessment may be of value.
Preliminary reviews of existing data, to inform
decision-makers regarding the existing knowledge,
and the extent of uncertainty around a particular
intervention, are also recommended.

Donaldson and Sox83 describe their own proposed
priority scoring system that combines objective
and subjective criteria. Three objective criteria are
defined:

� prevalence of the relevant condition
� the cost of the alternative technologies
� variation in the rates of use of the technology

and its alternatives (measured by the coefficient
of variation; a high coefficient of variation
frequently implies a low level of consensus
about clinical management).

Four criteria are subjectively defined:

� burden of illness imposed by the clinical
condition (estimated as the QALY difference
between those with and without the disease)

� potential of the results of the assessment to
change health outcomes

� potential of the results of the assessment to
change costs

� potential of the results of the assessment to
inform ethical, legal or social issues.

The mechanism for synthesising these seven
criteria calculates a single priority score (PS) based

on a weighted summation of each criterion score
using the formula:

PS = W1lnS1 + W2lnS2 + … + W7lnS7

where W is the criterion weight and lnS is the
natural logarithm of the criterion score. It is
recommended that a panel with a broad spectrum
of healthcare interests should set the criterion
weights, although a subpanel with expertise in
clinical epidemiology and statistics determines the
objective criterion scores.

Buxton and Hanney88 raised concerns regarding
the conceptual validity of the proposed priority
ranking process, while Harper and co-workers87

regard the process as a positive step towards the
quantification of the prioritisation process, but
guard against the level of subjectivity required for
the process.

Sculpher and co-workers84 argue for the role of
economic data in informing decisions over future
research, primarily using decision-analytic
modelling at different phases of health technology
assessment to ensure that research adequately
informs the cost-effectiveness of the interventions
under comparison. The defined ‘early
development stage’ describes the use of systematic
reviews of the treatment area and informed clinical
opinion to assess the potential economic impact of
the proposed intervention, which identifies
whether a technology is, or is not, a promising
area for further research and development.

At subsequent stages, Sculpher and colleagues84

concentrate on the use of modelling to inform
trial design, although the process encompasses the
decision to discontinue research if further research
is unlikely to prove an intervention’s cost-
effectiveness. Lilford and Royston86 implicitly raise
the issue of the combination of the research design
and prioritisation processes through their
description of a decision analysis that shows that a
trial investigating the mortality effects of screening
for prostate cancer would be unlikely to be cost-
effective because of the disutility effects of
treatment for presymptomatic disease.

Henshall and co-workers3 realise that it is difficult
to value a health technology assessment topic
without some idea of the assessment design, and
describe the development of a potential assessment
as requiring input from decision-makers, technical
experts and potential assessors in order to develop
a feasible and sound methodology.
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Conclusions
This chapter provides several benchmarks against
which the identified modelling approaches to
research prioritisation (as described in the
following chapters) can be judged. First, a general
consensus around the criteria that should be
considered within the research prioritisation
process was described, which can be reduced to
three broad questions:

� How big is the problem?
� How likely is the assessment to make a

difference? 
� Are there any pertinent ethical, legal and social

issues?

Ideally, therefore, any modelling-based
prioritisation approach should provide answers to
each of these questions. However, it is also noted
that some authors believe that decision-analytic
models can only inform the prioritisation process,
and any ethical, legal and social issues could only
be assessed separately from clinical and economic
components.

Modelling-based approaches may also be
compared to applied approaches to prioritisation
which, as described in this chapter, are based on
the informed views of expert panels of decision-
makers. Direct comparisons between this
principally qualitative approach and a quantitative
modelling approach are difficult: therefore, an
alternative approach would be to address stated
objections to an analytical prioritisation process.
Such objections include difficulties in obtaining
reliable data to populate a model and, in
particular, the quantification of the evolution of a
technology. Other major concerns relate to the
cost and complexity of modelling all alternative
options for research funding.

The final conclusion derived from this chapter
relates to the proposed advantages of the
combination of the research design and
prioritisation processes, which emphasises that
competing areas of research should be represented
by proposed research that is designed to answer
most fully the relevant policy question(s).
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Introduction
The focus of the chapter is on the evaluation of
methods for the direct assessment of the
cost–benefit or ‘payback’ of research, through the
review of relevant methodological papers and case
studies. The literature on methods for the direct
assessment of the cost-effectiveness or likely
payback of a research study addresses the
question:

“Given a particular proposal for research, what are its
likely estimated costs and benefits?”

The approach is analogous to that for assessing
the economies of a technology itself, where the
decision is whether or not to commission the
research, rather than whether or not to
commission the technology. This formulation has
an intuitive appeal, and is exactly the question
facing funding bodies as they examine each
potential research bid. The questions include,
“how would a certain research result change the
use of the technology?” and “what would be the
economic impact to the healthcare system or
society (or the impact on profits to a commercial
organisation)?”

The following section reviews a series of case
studies that present adaptations of the basic
approach to the direct assessment of the
economics of proposed research projects. The final
section discusses the advantages and
disadvantages of payback approach. 

Review of case studies
In this section, the basic payback approach, as
developed in the Technology Assessment Priority
Scoring System (TAPSS)4 is described, followed by
alternative applications of the general approach.

As discussed in the methods chapter (see Chapter
2), the yield of useful papers per abstract
examined was very low indeed. Following the
detailed review of all of the papers obtained, the
research team agreed that just seven papers
addressed the direct assessment of the economics
of proposed research projects. Three of these were
retrospective analyses of the payback of particular
research projects, but raised significant
methodological issues, which contribute to the
debate. Table 6 sets out the seven papers, which
are reviewed in chronological order of publication.

Chapter 6

The direct assessment of the cost-effectiveness
or ‘payback’ of research

TABLE 6 Papers reviewed relating to the direct assessment of the cost-effectiveness of research

Reference Prospective/retrospective Summary

Eddy4 Prospective Sets out the theoretical approach of the TAPSS

Eddy4 Prospective Eddy case study: maple syrup urine disease (MSUD)

Detsky89 Both Assessment of seven large RCTs and discussion of the
relationship between sample size and the cost-effectiveness of
the research

Drummond et al.90 Retrospective Case study: a post-trial analysis of the value of a diabetic
retinopathy study

Buxton et al.91 Retrospective Discussion paper and a series of examples assessing the
payback of previous research

Townsend and Buxton22 Prospective Case study: evaluation of a proposed trial of hormone
replacement therapy (HRT)

Davies et al.85 Prospective Discussion paper on a pilot project to prioritise 25 health
technology assessment pharmaceutical topics using the
cost–benefit approach



The TAPSS approach 
The TAPSS approach, developed in the late
1980s,4 traces the pathway from technology
assessment to the impact of the research results on
the relevant patient population.

Figure 7 illustrates the approach. The first
important component of the payback approach is
the set of delta results. A delta result is a potential
outcome from a proposed health technology
assessment. Eddy4 states that the set of delta
results should have four properties. They should:

� be meaningful to practitioners
� inform all health outcomes of interest
� be mutually exclusive
� be exhaustive, that is, cover all possibilities.

The second component of the approach is a
framework to analyse the economic consequences
of each delta result. This involves the concept of
‘change in practice’ or uptake of the new
technology; that is, the extent to which policy-
makers and clinicians will respond to different
published results in terms of adopting the
technology. The effect of the research will apply to
a number of potential candidates for receiving the
new technology and for a number of years before
another technology may emerge as a policy
option. 

The final component of the approach is to make a
prior estimate of the likelihood of each delta
result. These probabilities, combined with the
costs and benefits of each different delta result, are
used to calculate the expected benefit of the
research. Eddy4 is clear that these probabilities
should be estimated using the existing knowledge
base in whatever form. Factors to be considered
include results of previous assessments, existing
data and potentially subjective judgements about
the true effect of the technology or biases inherent
in available quantified evidence.

The level of change in use of a technology
following the assessment is also a fundamental
driver on the costs and benefits of each delta result.
Eddy4 identifies a set of driving forces that impact
on the scale of change in use. These include:

� results of other assessments, which are
dependent on various factors, such as the
credibility of the research organisations, how
widely their assessments are disseminated,
whether they draw the same or differing
conclusions, and whether the studies are
competent and unbiased; 

� other policies, such as the potential inability or
refusal of policy makers to fund technologies
that one may rationally assume should be
funded; 

� subgroup analyses that may conclude that a
technology is useful only for people with a
specific indication; 

� variations in current practice across regions, or
different initial beliefs or policies relating to the
technology concerned; 

� the timing of uptake; for example, an
assessment may expect to have little effect for
the first 2 years after publication, a moderate
effect in years 3, 4 and 5, and diminishing
effect in years 6 and 7, with no further effect
after year 7; 

� lifetime of the assessment, which is affected by
changes in the technology itself, development
of new competing technologies, changes in the
frequency or severity of the disease, and
changes in the cost of the technology or its
competitors.

Each of these driving forces has an impact on the
likely implementation consequences of the
research. The TAPSS framework is intuitively
appealing in this regard because research
commissioners naturally consider these driving
forces as part of their conceptual list of criteria in
the absence of any formal modelling. 
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FIGURE 7 Schema representing the TAPSS approach to prioritisation



The TAPSS case study: maple syrup
urine disease4

Eddy’s original paper4 includes a case study to
illustrate the method. The study attempts to
calculate the potential impact of a technology
assessment of screening for MSUD, a very rare
condition that affects approximately 1 in 200,000
births and can cause death or severe mental
retardation in children.

The illustrative example considers the situation in
the USA, whereby one set of states had a policy to
screen and another set had a policy of no
screening. It considers two delta results for the
research: (1) screening is cost-effective, and 
(2) screening is not cost-effective. If the outcome
were a delta result of cost-effective, then
organisations would shift to a policy of screening.
This change in use of the technology would bring
health benefits, which are calculated in terms of
the number of severe retardations avoided. If the
alternative delta result (not cost-effective) were to
occur, then states would shift to a policy of no
screening. Finally, the example calculates the
expected impact of the assessment by assuming
that there is a 50:50 chance of each delta result.
The summary suggests that the assessment is
expected to prevent severe retardation in
approximately one additional child every 6 years
(0.17 per year).

Despite Eddy’s discussion paper4 being very clear
that a range of different factors will affect these
probabilities, the illustrative example opts for a
very simple formulation of the problem, assuming
equipoise between the two delta results. With the
assumption of 50:50 probabilities for the delta
results, the expected number of children with
severe retardation avoided per year equals 0.17.
However, if the probabilities were defined
differently, then a different expected outcome
would be calculated. For example, setting the
probabilities to 38.5% (screening cost-effective)
and 61.5% (screening not cost-effective), the
expected impact would be zero severe retardations
per annum; that is, the study would be expected to
provide no additional health benefit.

The interpretation of the results is not explicitly
addressed. The implication is that the expected
impact of the assessment (i.e. 0.17 severe
retardations avoided per annum) should be
weighed against the costs of the policy change 
and the costs of the trial. Clearly, this implies 
that the value of further research is critically
associated with the prior probabilities of the delta
results.

The Detsky formulation: the impact of
sample size on the cost-effectiveness
of clinical trials89

Detsky published an important development of
the TAPSS approach in 1990 which considered
sample size and design of trials.89 In particular,
the paper focuses on the choice of the minimum
clinically significant difference (δ) between two
comparators in an RCT, which has a direct
consequence for the sample size required (sample
size is inversely related to the square of δ). Detsky
set out to examine the costs and benefits of trials,
and extended this to consider the relationship
between marginal changes in δ and the associated
costs and benefits of research.

The paper examined seven trials, each involving
treatments that could decrease the relative risk
(RR) of death, measuring the cost per life year
saved as a consequence of conducting each trial.
The Detsky study89 therefore covers both trial
design issues (how might changing δ and the
sample size influence the cost–benefit of the trial?)
and prioritisation issues (what is the potential
value of undertaking a specified trial?). 

The estimation of the costs of the trial assumes
that trial costs are directly proportional to the
sample size required; however, the proportionality
assumption is recognised as a limitation of the
applied approach. There is no discussion of the
other cost consequences of the trial results, for
example, savings from reductions in adverse
events, or cost increases due to the use of a more
expensive technology.

However, the methods for assessing benefits of the
trial of a given sample size are more sophisticated.
The first key difference is that the expected
difference in efficacy between the experimental
treatment and the control is considered as an
uncertain variable, and hence a frequency
distribution of all possible risk reductions is required
[denoted P(RR)]. This is equivalent to defining
exhaustive and mutually exclusive delta results and
their likelihood. It is important to note that
Detsky,89 like Eddy,4 considers the use of prior
knowledge in making these estimates to be essential.

Secondly, the power of the trial to detect the size
of the risk reduction is considered. The power of
the trial is the probability that it will detect as
statistically significant a real difference of a given
magnitude, that is:

Power = p(test shows up as significant|a real
difference of a given size) 39
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The smaller the expected risk reduction, the lower
the probability that the trial of a given size will
detect it as significant.

The third step involves calculating a particular
trial’s overall expected risk reduction, estimated
using the formula:

100

E(RR) = ∫power(RR) p(RR)RR dRR

0

the integral over all the possible risk reductions,
accounting not only for their prior probabilities
p(RR), but also for the probability that the trial
will detect the risk reduction as significant; that is,
power(RR).

Beyond these direct links between the size of the
delta result and the sample size/power of the trial,
the formulation used by Detsky89 to assess the
health benefit consequences of the trial parallels
that used by Eddy.4 Detsky89 estimates the life
years gained as a consequence of the trial using
the baseline risk, the expected risk reduction
(equation above) and a life-tables method. He
considers an implementation factor, equivalent to
Eddy’s ‘change in use’ idea.4 However, in the
actual calculations he assumes that
implementation will be complete. Harper and co-
workers87 strongly criticise this assumption as it
may be a critical variable and could usefully be
informed by expert opinion and sensitivity
analysis.

Finally, Detsky89 estimates the likely target
population of new recipients per year, but unlike
Eddy,4 he declines to predict the length of time
for which the interventions would be used, owing
to a lack of credible evidence.

The Detsky results89 show that each of the trials
was very cost-effective when set against the context
of treatment interventions. The highest cost trial
had a cost-effectiveness ratio of US$685 per life
year saved and some had a cost per life year saved
of less than US$10. However, these results
underestimate the cost consequences of a trial
significantly in that they include only the direct
trial costs and not the costs of ongoing service
delivery. To a large extent, therefore, Detsky’s89

discussion of the relative cost-effectiveness of the
trials versus delivery is flawed. The Detsky
sensitivity analyses of cost-effectiveness to changes
in the minimum clinically significant difference
show interesting results. For six of the seven trials
the impact of having a larger trial (i.e. a smaller

minimal clinically important difference) was to
increase the cost per life year gained. In addition,
for five of the trials, if they were made smaller, the
cost per life year gained would also increase. This
suggests that the actual sample size and minimal
clinically important difference chosen for five of
the trials were close to the optimal point in terms
of trial cost-effectiveness.

Detsky89 recognises that the approach has
significant data requirements, and a large number
of assumptions, but believes most of the data are
already contained in most trial planning
documents.

In summary, the Detsky methodology89 makes a
formal link between the direct assessment of the
cost-effectiveness of a trial and its sample size. The
main development beyond the TAPSS approach is
the focus on the relationship between the power
and sample size of the study and the likelihood of
changing practice.

The impact of this study has been surprisingly
small. A search on the Science Citation Index
found just eight papers citing Detsky89 as a
reference. Only one was a case study, the others
being fairly unrelated broader modelling
discussions. This combination of classical statistics
in trial design and health economics has clearly
not had significant uptake. However, the ideas
expressed, while not covering all potential aspects
of the approach fully, nevertheless represent the
direct assessment approach very well and provide
a credible approach to the use of modelling in
planning and prioritising clinical trials.

Retrospective cost–benefit of diabetic
retinopathy trial90

This study on photocoagulation for diabetic
retinopathy provides a retrospective cost–benefit
analysis of a US$10.5 million clinical trial. The
trial had a complex result; a beneficial effect was
seen for patients with ‘proliferative’ disease and
high-risk characteristics, but the results were
inconclusive for non-proliferative disease and
those without high-risk characteristics.

The methodology used is almost identical to that
described by Eddy,4 examining the net impact of
the trial on health outcomes and costs over a
lifespan for the new treatment. The paper sets up
the clinical pathways in the form of a decision
tree, showing the probabilities of the various
events (type of disease, treatment, vision loss, etc.).
In addition to the methodology, Drummond and
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colleagues90 analyse the trial from four different
perspectives: the government, the healthcare
sector, the patient and the community at large.

The study is useful in providing more of an insight
into the feasibility and difficulties of the
operational use of the Eddy4 framework. Even in
this retrospective case study, the analysts found
that examination of the scale of change in practice
was difficult. No hard data were available on
practice before and after the trial, and so expert
opinion, the trial data and data from an
epidemiological study were used to estimate
change in use for patients with proliferative
disease (20–46%).

Drummond and co-workers90 stress the
importance of a rigorous sensitivity analysis. The
central estimate showed substantial positive health
gain (279,000 vision years over 22 years), net
societal savings (US$2800 million at 1982 prices)
and a direct cost in terms of healthcare investment
(US$772 million). The sensitivity analysis shows
that assumptions on change in use and the
inclusion/exclusion of production costs were
particularly important. (A pessimistic scenario
gave just 24,000 vision years, net societal cost
US$382 million and a cost per QALY of
US$53,000 excluding lost production.)

It is important to note that the retrospective
analysis of the trial’s costs and benefits is not
necessarily a guide to its prospective value. In this
example, a significant positive benefit was found
for a large patient subgroup within the trial. On a
prospective basis, it is likely that some delta results
might show little or no net benefit. In such a case,
the prospective costs per QALY would be much
higher than the retrospective result.

Drummond and co-workers90 discuss the
implementation of the methodology on a
prospective basis, suggesting that some of the
necessary data are relatively easy to obtain:

� the population likely to benefit from
implementation of therapies (i.e. the number of
candidates)

� the costs of the existing treatment
� the economic consequences of the untreated

disease
� the likely increase in effectiveness from the new

intervention, which should be evident from the
clinically significant difference being sought in
the trial

� the impact of the trial on treatment practice:
clinical practitioners could be asked whether

they would change their practice as a result of
different outcomes from the trial

� the likely time-span of the benefits: this will
relate most strongly to the development of
competing technologies and a reasonable guess
can be made together with upper and lower
bounds

� the costs of the new therapy in practice: it is
usually the case that the treatment is being
undertaken in a few centres on an experimental
basis and that this should give a guide to the
costs in the future.

Although the case study does not explicitly analyse
the probabilities of prospective delta results, the
authors’ experience led them to believe that using
the approach prospectively is possible. They
explicitly recommend its prospective use for
setting research funding priorities (alongside
criteria on scientific merit and investigators’
capability) and suggest that the costs of this
preliminary modelling would be small in relation
to clinical trial costs. The authors also comment
that its prospective application to more basic
scientific research is much more difficult, given its
potential relevance to a wide range of practical
applications. However, they do suggest that the
methodology could be used to quantify the
potential payoff from investing in promoting the
dissemination and adoption of new cost-effective
clinical practices.

This case study is useful in highlighting the
complexities of a single analysis of one delta
result. It further serves to identify the great
importance of attempting to define and analyse
the prior probabilities of alternative delta results if
the method is to be used prospectively.

Early research on payback in 
the UK88,91

A retrospective assessment of the costs and
benefits of cardiac transplantation research
undertaken during the late 1970s and early 1980s
is presented, and is another example of the
approach developed by Eddy.4

The authors assume a slow growth in transplant
surgery over a 10 year period, estimating 1056
extra heart transplants providing 4400 QALYs at a
service cost of £29.3 million and a research cost of
£200,000 (incremental cost per QALY £6700).
There is no assessment of uncertainty; instead,
there is simply a calculation of the post hoc change
in health benefit that might have occurred as a
result of the research. The main problem cited was
the estimation of the counterfactual state of heart 41
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transplant activity in the UK without the study,
which required a series of subjective judgements
that were assisted only slightly by the retrospective
nature of the analysis.

Buxton and Hanney88 state that the counterfactual
transplant policy, level of activity and cost per
transplant are fundamental variables to the
estimation of the payback of the evaluation.
Furthermore, they believe that attempts to
quantify such variables prospectively are “probably
near impossible and so contentious as to be
potentially counter productive, particularly if the
answer is to be used in a quantitative way to
compare with other proposed research”. 

However, they do recommend the use of such
retrospective analysis “to ask questions [on how]
the likely impact of a proposed piece of research
might be maximised … and … to indicate possible
ways of improving the research and dissemination
plans”.88

Prospective analysis of hormone
replacement therapy trial22

This paper examines a proposed UK trial of
hormone replacement therapy (HRT). HRT
provides relief of menopausal symptoms, with
possible long-term protection against osteoporosis
and cardiovascular disease, balanced against
possible increased risk of breast and endometrial
cancer. It is estimated that a UK trial, powered to
identify a 25% reduction in cardiovascular events
over 10 years (power 80%, significance 5%), will
cost £21 million, while an international trial
powered to detect differences in osteoporosis and
cancer risks would cost £47 million.

The cost-effectiveness (CE) of the assessment for a
particular exemplar outcome is defined as:

CE = (CT + CPC – CNPC) / (EPC – ENPC)

where CT is the discounted cost of the trial, CPC is
the discounted cost of the policy change, CNPC is
the discounted cost given no policy change, EPC

are the benefits from the policy change, and ENPC

are the benefits given no policy change.

While the TAPSS approach requires an exhaustive
set of possible delta results,4 Townsend and
Buxton22 select three likely exemplar outcomes,
each of which is assessed in turn. These exemplar
outcomes are ‘positive outcomes’ (benefits in
cardiovascular events and fractures outweigh
increased risk in breast cancer), ‘inconclusive’
(short-term benefits exist but no clear evidence of

long-term benefit is found) and ‘negative long-
term’ (benefits in cardiovascular events and
fractures are outweighed by increased risk in
breast cancer). The existing literature was used to
quantify each of these possible outcomes in terms
of expected risk reductions, events and QALYs
gained or lost.

In terms of change in use for each exemplar
outcome, the authors assume alternative scenarios.
For a positive outcome the policy might be 50% of
women aged 50–64 years using HRT long term.
The inconclusive outcome may give HRT usage
continuing along present trends rising to 30% of
women (the same as one might expect without
undertaking the proposed trial). The negative
outcome would probably mean HRT used only for
short-term symptom relief.

The analysis built on existing economic studies of
HRT to examine the cost-effectiveness of the HRT
trial. The results for a positive outcome show
increased health service costs (£598 million), net
health gain (350,000 discounted QALYs) and a
cost-effective outcome (net cost per QALY of
£1709). For the inconclusive outcome, there would
be no changes in policy or service cost and no
health improvements, but there would be a trial
cost of £47 million (hence an infinite cost per
QALY). For the negative outcome there would be
net savings, from reduced use of HRT, alongside
net health benefits since the long-term risks of
HRT would be avoided.

Alternative sets of probabilities of the exemplar
outcomes are tested using a scenario approach:
one-third probability for each outcome (£772 per
QALY); 0.5 probability for positive and 0.25 for
the others (£1153); 0.5 probability for long-term
negative and 0.25 for the others (£261). It is
concluded that the trial is cost-effective since the
costs per QALY for these three probability
scenarios are lower than many common
treatments. The authors also comment on the
additional useful knowledge, such as profiles of
health states and health service use through
middle and into old age for a sizeable cohort of
women taking HRT compared with those not
taking HRT.

The authors suggest that this methodology could
be applied elsewhere, although less evidence may
often be available for forecasting potential costs
and benefits. It is interesting to note Buxton’s91

development in confidence concerning the
application of this method. As noted above,
Buxton and co-workers91 thought that the
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prediction of the uptake of an intervention was
virtually impossible, although by the time of this
1997 paper, Townsend and Buxton22 conclude
that this methodology could be a good response to
the growing demands on the research community
to show that there is a good return on the
investment in health services research.

A potential criticism of the approach used here
concerns the simplicity of the exemplar outcomes.
There is no separate analysis of different patient
groups (e.g. women with/without a hysterectomy),
for whom the delta results may be different. Even
though the overall cost-effectiveness results appear
wholly conclusive, further detailed work might
have brought an additional understanding. 

Perhaps the most important criticism concerns the
limited sensitivity analysis on the probabilities of
these three exemplar outcomes. The ‘most
realistic’ scenario gives higher weight to the
positive outcomes and results in £1153 per QALY.
However, the inconclusive outcome is risky from a
health service perspective. The present
investigators undertook a simple threshold-style
sensitivity analysis, which shows that even with 
an 80% probability of ‘inconclusive’, the trial
would have an expected cost per QALY of £140.
Indeed, the probability of achieving an
inconclusive result would have to be over 98% for
the cost per QALY of the proposed trial to rise
above £10,000.

In summary, the approach of Townsend and
Buxton22 is fairly intensive. It builds successfully
on previous health economic evaluations of HRT
to examine the potential cost–benefit of a trial and
concludes that the proposed trial would be
worthwhile.

UK pilot study on prioritising research
topics85

This recent UK paper presents the methodology
and results of a pilot study conducted to assess the
feasibility of estimating broad cost and outcome
data to inform the first round of the prioritisation
process; for example, the NCCHTA’s attempts to
reduce a shortlist of 100 research topics to around
40 priorities. The objectives of the study were to
analyse comparative information on the value for
money of health technology assessment
questions/topics, provide useable information for
decision-making, and identify critical factors that
determine the value for money of specific
assessments. The pilot work was undertaken on the
pharmaceutical panel topics for 1997 and 1998, a
total of 25 topics.

The following variables were included: 

� the probability that new intervention will be
proven effective or ineffective by the health
technology assessment

� the likely utilisation of new technology in future
� the probability of other competing new

technologies emerging and their rates of
utilisation

� the maximum lifetime for the new technology
� the transition costs of adopting the new

intervention
� the costs of the health technology assessment

research itself
� the intervention costs for 1 year incidence or

prevalence cohorts
� the benefits of the intervention.

The methodology used in this pilot study has
several defining features; in particular, the delta
results were divided into just two possibilities: 
(1) the technology is proven effective, or (2) the
technology is proven ineffective. Most importantly,
the probability of each technology being proven
effective was assumed to be the same, at 67%. This
value of 67% came from a study examining the
rate of new pharmaceutical compounds that were
successful in Phase III clinical trials during the
1980s.92

The change in use or level of adoption for each
technology was related to whether the health
technology assessment was exploratory, whether
coherent implementation was planned, and the
likely scale of transitional costs of implementing
the particular technology. To inform the
counterfactual, in the absence of data describing
current utilisation, low rates of existing utilisation
were assumed for new technologies (3–5%). If
proven effective, the rate of utilisation was
assumed to increase by 16% per annum. If proven
ineffective, the annual rate of utilisation was
assumed to reduce to 2% per annum.93–96

Transition costs of adopting the new intervention
were assumed to be zero unless significant
infrastructure investment was required in staff,
equipment or facilities. Data describing the health
benefits of the different interventions could not
inform a consistent measure of patient benefit,
and so different measures were used, including
cases/deaths averted, life years gained, and people
with improved symptom control.

The results of implementing the method on 25
topics are shown in Table 7. In terms of feasibility,
the method was operationalised for the majority of
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TABLE 7 Expected costs and benefits of health technology assessment (HTA): results of payback analyses, pharmaceutical panel, 1997–8 (from Davies et al.85)

Topic Net expected cost (range) Net expected benefit of HTA ICER (£ per unit Critical determinants of cost/benefits of HTA
no. (£ million) (improved symptom control) of outcome)

Cost/benefit of Effectiveness Utilisation of 
interventions of interventions interventions

98-A +307 (–695, +1678) 0.6 m People with ISC 494–3020 Y Y
98-B +434 (–88, +956) 5800 People with ISC 2917–16,457 Y Y
98-C –315 (–823, +844) 0 NA Y Y
98-D +2 (–45, +50) 0 Years with ISC 0–746 Y Y Y
98-E +104 (–118, +339) 2518 Cases averted 41,000–224,133 Y Y Y
98-F –9 (–409, +652) 7030 People with ISC 0–92,745 Y Y
98-G +1122 (+357, +1887) 13,432 People with ISC 26,600–140,500 Y Y
98-H +136 (–775, +600) 1819 People with ISC 74,876–0.3 m Y Y Y
98-I +27,309 (+10,769, +43,849) 290,484 People with ISC 37,072–150,954 Y Y
98-J –59 (–28, –117) 0 NA Y Y Y
98-K +364 (–549, +15,079) 4378 Cases averted 83,082–3.4 m Y Y
98-L –860 (–239, –1238) 0 0
98-M +181 (–647, +1005) 5781 Cases averted 27,568–173,804 Y Y Y
97-A –1005 (–1947, +223) 0 NA Y Y Y
97-B +42 (+11, +50) 1160 Life years gained 9353–53,323 Y Y Y
97-C +55 (–41, +84) 448 Deaths averted 0–187,500 Y Y Y
97-D +182 (+2, +337) 13,019 Deaths averted 1313–25,892 Y Y Y
97-E –167 (–167, +118) 0 NA Y
97-F +333 (+318, 358) 3414 Deaths averted 48,990–104,730 Y Y
97-G +9 (+8, +10) 81 Deaths averted 94,174–117,949 Y Y
97-H –0.2 (–2, +3.8) 0 Cases averted 0–4445 Y Y Y
97-I +68 (–51, +70) 1252 Life years gained 0–55,910 Y Y
97-J +1924 (–75, +1924) 3380 Life years gained 0–569,183 Y Y
97-K +200 (+19, +259) 8740 Life years gained 0–29,558
97-L +15 (–203, +15) 0 NA Y Y

ISC: improved symptom control; ICER: incremental cost-effectiveness ratio; NA: not applicable.
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topics studied (approximately 70% of the topics
considered). Some analyses were not possible owing
to uncertainties about the proposed research, which
could mean that that the topic description
(vignette) was not clear enough to specify particular
interventions and research questions.

Because of time constraints, several parameters had
to take default values, for example annual
utilisation rates and probabilities of effectiveness,
which were based on a limited number of published
sources. The authors concluded that it is feasible to
conduct ex ante assessments of the cost-effectiveness
of health technology assessment for some topic
areas, and they called for further research into the
value of providing decision-makers with quantitative
estimates of payback of health technology
assessments, versus softer qualitative approaches for
the prioritisation of research portfolios.

The most important issue arising from this pilot
study is how to incorporate uncertainty into the
decision-making process, as sensitivity analyses
found that variations in the assumed values of
variables such as intervention costs, likely levels of
utilisation, and the probability that the technology
would be found effective, had large effects on the
observed results.

Davies and co-workers85 suggest that projects with
net costs and negative benefits, or projects with
excessive cost per QALY would not be priorities.
For remaining projects, they propose categorising
projects as, for example, those always net saving
with positive benefits, those with costs per QALY
within a defined range, and those with results
sensitive to changes in input parameters. Here,
the authors are heading towards a categorisation
of the potential research on the basis of
uncertainty, which is based on the recognition that
uncertainty determines the need for health
technology assessment and that accounting for
uncertainty should also underpin methods for
prioritising health technology assessment.

Methodological debates
This section reviews the case study material in the
payback literature to compare systematically the
methods used and examine the level of consensus.

Perspective of the analysis
All of the case studies took the view that health and
social services costs and measures of health benefit
should be included. Two studies took a wider
perspective. Drummond and colleagues90

examined cost and benefits of the research to the
government, the healthcare sector, the patient and
the community at large, and sensitivity analysis
including lost work time. Buxton and Hanney88

present an even broader conceptual model of the
forms of payback from health services research.
These include knowledge, benefits to future
research (targeting future research, developing
skills, etc.), political benefits (improved information
or decision-making), health sector benefits and
broader economic benefits (including commercial
exploitation of innovation and economic benefits
from a healthy workforce). The research
prioritisation literature does not discuss perspective
in any depth and the debate is equivalent to that
for broader health technology assessment.
However, almost all of the case studies focus
exclusively on health sector benefits and costs,
ignoring both production losses and indirect costs.

Identifying the possible outcomes of a
trial: ‘delta results’
There is some disagreement within the literature
regarding the specification of the delta results.
Eddy4 states that delta results should be
meaningful to practitioners, carry information on
the actual effect of the technology on the
outcomes of interest, be mutually exclusive; and
cover all possible outcomes. The latter
requirement, for delta results to cover all possible
outcomes, is the most contentious. A simpler
alternative is to include only two delta results,
namely, the technology is proven cost-effective or
not cost-effective. Indeed, Eddy’s MSUD case
study4 was of this limited form. Some studies
incorporate the very important possibility of
inconclusive research results. Townsend and
Buxton22 use three “exemplar outcomes” (positive,
negative and inconclusive).

Three of the case studies were retrospective, and
these only consider the actual trial because the trial
was already complete at the time of the analysis of
the payback from research.88–90 These retrospective
analyses show the importance of covering all
possibilities, for example, the diabetic retinopathy
study90 has a relatively complex result, where the
technology is effective for one patient subgroup but
results are inconclusive for two other subgroups.
The Detsky formulation,89 undertaken on seven
different trials, is the most sophisticated in its
assessment of delta results as it allows for different
sizes of delta result (in this case mortality risk
reduction) rather than just positive or negative.

In contrast, the largest attempt at a prospective
analysis has also used the simplest formulation of
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delta results.85 The UK pilot study on 25 topics
simply used two options: technology is proven
effective or not effective. It is clear that there is a
tension between the sophistication of approach
and the time available to undertake the study.
However, the loss of a coherent logic, if too many
simplifications are made, is a serious risk, and may
well invalidate any results.

Identifying the probability of each
delta result
Identifying the probability of each delta result is
often the most arbitrary component of the existing
case studies. Eddy4 assumed a 50:50 chance of
each delta result (ignoring the possibility of
inconclusive research). Townsend and Buxton22

specified three equally likely alternative sets of
probabilities for positive, inconclusive and
negative outcomes, and undertook some scenario
analysis on different likelihoods. In the UK pilot
study on 25 pharmaceutical topics,85 the
probability of proving each technology effective
was assumed the same at 67%, based on a study of
success rates for new pharmaceutical compounds
in Phase III clinical trials.92 Only Detsky89

considered the difference in efficacy between the
experimental treatment and the control as an
uncertain variable, and specified a probability
distribution to describe the range of possible delta
results. However, even here the sources of evidence
for these probabilities were not discussed in detail.

None of the case studies based their prospective
estimation of the trial results on data specific to
the trial being assessed. However, most well-
designed RCTs are informed by prior research and
it is recommended that where knowledge exists
regarding the most likely outcome of a prospective
trial, this should be used. Arbitrary allocation of
these probabilities within the cost–benefit
framework is a major issue for the validity and
robustness of this approach. In fact, identifying
the probability of each delta result is a connecting
point between the direct assessment of cost-
effectiveness approach and the value of
information approach. This is discussed in more
detail in Chapter 7.

Change in health outcomes for each
delta result
There is a clear consensus in the case studies that
the health outcomes associated with each possible
delta result and indication (i.e. patient subgroup)
should be described. The depth of the analysis
varies substantially and the prime determinant 
of this variation appears to be availability of 
data.

The method of estimation is sometimes made
easier by the way in which the delta results are
defined. For example, the HRT delta results are
defined as exemplar outcomes with a certain scale
of effect in cardiovascular events, fractures, risk of
breast cancer, etc.22 For the retrospective analyses,
the methods are based on the clinical trial’s actual
results. Thus, in the early payback work,88 it was
possible to estimate the QALYs gained for each
cardiac transplant.

Each particular topic presents different challenges
to a modeller. Detsky89 estimated life years gained
using the baseline mortality risk, the expected risk
reduction and a life-tables method. For the diabetic
retinopathy trial, the health benefits were estimated
using a decision tree approach.90 The sensitivity
analysis in the diabetic retinopathy trial showed
that the value of the trial was significantly affected
by its assumed effectiveness in subgroups where
inconclusive results had been discovered. Even in
this retrospective analysis, a significant factor in the
calculation of the trial’s value (i.e. the ‘true
underlying effectiveness’ in the ‘inconclusive’ 
study groups) is still an unknown following the
research. 

The approaches and methods (discussed in
Chapters 3 and 4) for the use of modelling in
health technology assessment in general are the
tools of the trade for estimating the health
outcome consequences for each delta result. In
each case, a well-informed estimate of the benefits
will increase the validity and robustness of the
final result concerning the potential cost-
effectiveness of the research.

Which measure of health benefit to
use?
Townsend and Buxton23 examined QALYs as the
measure of health outcome for each of their three
delta results on the HRT trial. Of the 25
pharmaceutical topics examined by Davies and co-
workers,85 they found that the available data were
not sufficient to generate the same measure of
benefit for all topics. However, in order to
prioritise research across different disease areas,
the measure of health benefit needs to be generic
rather than disease specific. It is recommended
that health outcomes should be described
generically wherever possible, using informed
opinion if necessary.

Change in use: uptake following
technology assessment
Eddy4 suggests that change in use (uptake) can
depend on the following: results of previous
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assessments, policies and policy-makers’
perceptions, patient types, geographical regions
and time periods. The MSUD case study4 presents
assumptions for the likely quantified impact of
each of these issues. Townsend and Buxton22 used
broadly the same approach, designing a likely
scenario of implementation for each delta result.
Detsky89 used an even simpler approach, assuming
100% implementation of trial results in practice.
Davies and co-workers85 assumed the change in
use to be the same for each technology, which was
based on a generic estimate of the uptake of trial
results.

Retrospective studies of research payback also have
to estimate technology uptake. Drummond and
colleagues90 formally sought expert opinion to
estimate the difference in practice with or without
the trial, owing to a lack of hard data. Sensitivity
analysis showed these assumptions to be very
important. Buxton and Hannay’s retrospective
study88 also found change in use (in cardiac
transplantation) to be their main problem. Clearly,
this is a concern for the validity and robustness of
the payback approach (and also for the value of
information approach). 

Sensitivity analysis and uncertainty
Each component of the payback approach may be
subject to uncertainty and sensitivity analysis could
be useful in:

� identifying the possible outcomes of a trial
(delta results)

� identifying the probability of each delta result
� change in health outcomes for each delta 

result
� change in use: uptake following technology

assessment.

Some of the case studies consciously avoid
considering uncertainty, for example, Eddy4 does
not describe the effects of uncertainty at all.
Others undertake limited sensitivity analyses on
certain components, the most common being the
probability of each delta result. Townsend and
Buxton22 undertook a partial sensitivity analysis
concerning differing values for the probabilities of
their exemplar outcomes, but did not consider any
uncertainty analysis in the change in health
outcomes or the change in use. Detsky89

undertook a probabilistic sensitivity analysis
around the likelihood of each outcome, but did
not examine any uncertainty in change in use.
Some authors use sensitivity analysis across the
range of components in the method; for example,
the Drummond study90 undertook a more

rigorous analysis of uncertainty, including one-way
sensitivity analyses on the uptake of treatment, the
costs of treatment, rehabilitation and societal costs.
In addition, multiway sensitivity analysis was
undertaken, making conservative assumptions
about several variables at the same time.

How to do the sensitivity analysis is a problem, but
even more pressing is the interpretation of the
results. All of the authors struggle when
interpreting uncertain results in terms of the trial’s
cost-effectiveness. What if the estimated cost per
QALY of the trial ranges from say £2000 to 
£2 million? Should the trial be funded?
Fundamental decision theory states that the action
that gives the maximum expected benefit should
be chosen. However, the methodological
inadequacy of ignoring both the uncertainty
around the expected benefit and the opportunity
loss of making the wrong policy decisions remains. 

Suggested approaches for categorising projects
(e.g. those always resulting in a net saving with
positive benefits, those with costs per QALY within
a predefined range, those with results sensitive to
changes in input parameters) do not resolve this
issue of interpretation. 

What really matters is that the trial itself provides
extra information that can help researchers to
avoid making wrong decisions into the future. It is
the impact on changed future decisions, combined
with the probabilities of making the wrong
decision given current information, that is the key
to the value of a trial. This is not addressed at all
through this approach to the direct assessment of
the cost-effectiveness of the trial. It is the subject
of the value of information approach covered in
detail in Chapter 7.

Uncertainty in the potential value of
the payback approach
Eddy,4 Drummond and co-workers90 and
Townsend and Buxton22 all found the same
problem, which can be expressed as follows:

“How do we interpret estimates of the expected costs
and benefits of health technology assessments? and
what do we do if they are uncertain?”

However, this is often exactly the situation in
which research is needed. If it were possible to
estimate the consequence of the health technology
assessment with narrow confidence intervals then
it would be likely that further research should be
unnecessary. It is the uncertainty that determines
the need for further health technology 
assessment.
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Many of the practical difficulties raised by the case
studies presented in this chapter centre on the
difficulty of characterising prior uncertainty in the
key variables. At the initial topic screening phase,
resources for this process are limited in terms of
both time and money. At the later stage it would
be possible to insert a pretrial modelling phase
into the R&D commissioning process where
resources are put into the critical assessment. The
value of doing this pretrial modelling would arise
from changes to the trials and trial designs
commissioned.

Evaluation against criteria 
The criteria used for assessing the value of a
methodology have been developed during the
course of this review and were discussed in
Chapter 2. They fall into two broad categories:
theoretical soundness and practicality. 

Time and cost
Undertaking modelling work to plan and
prioritise research studies will involve significant
resources, and this is one of the main factors that
has been used to argue against the implementation
of a systematic and explicit prioritisation process.3

At present, however, the evidence for the scale of
resource required does not exist.

In the case of direct assessment of the cost-
effectiveness of a trial, the question of who 
should undertake the work and bear the costs 
is also an issue.

One option is for the research commissioning
body to undertake or commission specific pretrial
modelling work; the Davies study85 represents a
pilot study of such a mechanism. Alternatively, 
the investigators submitting the proposed 
research could follow some template method to
estimate the cost-effectiveness of the proposed
study. Given the rare implementation of the
approach in practice so far, this is unlikely to
happen initially.

Delays in research
Time-scales are a major issue in getting research
off the ground. The implications of the payback
approach for delays are unclear and no evidence
on this is presented in the literature. 

Data availability
Some case studies have attempted to use a very
limited amount of data in order to keep the
process manageable and time limited. Others have

considered the development of extensive models
particular to each different research topic. In
either case, the availability of the data to 
populate the model is cited by the authors as a
crucial factor in the practical feasibility of
approach.

The main criticisms of the payback approach cited
in the EURASSESS report3 relate to the
availability of data, including the lack of
agreement on the range of likely outcomes and
implications of most technologies, and the
difficulty in predicting the evolution in the use of
a technology and the associated implications.

However, the payback approach fundamentally
requires a health economic model for the
technology of interest versus its comparators, and
the growth in health technology appraisals across
the world in the past 5 years clearly shows that, in
most cases, model construction is possible. Most
issues of data availability can be overcome by the
use of subjective expert opinion and by
appropriate and wide estimates of uncertainty.
Although the use of expert opinion to populate
decision-analytic models has been criticised
generally, the three alternative approaches have
severe limitations:

� Exclude elements of the model for which no
data exist. This is completely unacceptable and
exceedingly dangerous since potentially key
structural effects may be excluded from the
evaluation.

� Operate a two-level prioritisation process, where
decision problems for which complete and
good-quality evidence are available are
evaluated explicitly, while decisions for which
observed data are even partially unavailable are
evaluated implicitly. This again is dangerous
since it may result in modelling only being
applied where there is relatively little
uncertainty, which would obviate the key benefit
of modelling work.

� Solve all decision problems without the use of
modelling techniques, relying on the implicit
judgements of the decision-makers.

The incorporation of expert opinion as a data
source for modelling evaluations exposes the key
uncertainties to debate, allows the impact of
alternative assumptions to be assessed, and
indicates where more evidence is required.97

Timing of the use of the method
Henshall and co-workers3 point out that it is
difficult to value a health technology assessment
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topic without some idea of the assessment design.
They are clear that prioritisation using this formal
method can only be done once a clear description
of the intended assessment exists. It is impossible
to judge the costs of the trial needed at the stage
of identifying problems of concern. The payback
method clearly requires a description of the
intended trial as its starting point.

Evidence of successful use
There is no conclusive evidence of the success of
the payback approach to prioritising health
technology assessments, as the technique has not
been applied to the decision-making process.
However, there is evidence of partial success in the
production of coherent estimates of the cost-
effectiveness of clinical trials.

Feasibility of achieving economies of
scale by applying a generic method or
model
It may be feasible to produce a generic method,
which can be used on a large set of research
studies that require prioritisation. Alternatively, a
separate model may be required for each
individual topic.

Acceptability to health technology
assessment commissioners
Various authors have raised concerns over the
presentation of subjectively derived data in a form
that implies a greater degree of scientific
authority, which could have an adverse impact on
decision-makers,88 as well as being perceived as
mechanistic.83

Acceptability to health technology
assessment researchers
Modelling could be seen as an extra hurdle when
bidding for research funds. However, it could also
have benefits in helping investigators to decide on
optimal design and anticipate the likely priority of
their research through conducting some early
modelling themselves. 

Theoretical validity
The strength of the cost–benefit approach lies in
the formulation of the impact of further research
within a decision-analytic framework that
estimates the expected net benefits of research.
The theoretical validity of this framework is well
established in the annals of welfare economics.

There is, however, a fundamental issue regarding
the theoretical validity of the applied payback
approaches, which separate the prioritisation
process from the planning (trial design) process.

The starting point for the cost–benefit approach
follows the specification of a proposed research
project, a position that implicitly assumes the
proposed research has been optimally designed.
However, the optimality of a research design can
only be proven following the comparison of the
costs and benefits associated with, ideally, the full
range of alternative trial designs.

The optimality of purely clinical trials, aimed at
establishing a narrow definition of clinical
effectiveness, may be approximated without
recourse to direct assessments of their cost-
effectiveness. However, if the ultimate purpose of
health technology assessment is to inform
commissioning based on the economics of
alternative technologies, then optimal research
design is significantly more complex. Cost–benefit
analyses will be required for alternative
combinations of sample size, length of follow-up
and the range of variables to be assessed. In this
latter case, if the objective of the prioritisation
process is to optimise the allocation of research
funds, it may be less likely that trials designed
outside the prioritisation process will approximate
an optimal design aimed at addressing all
uncertainties.

In addition, a number of theoretical issues relating
to the identified application of the payback
approach can be questioned, including the
assumptions made with respect to the uptake of a
new technology and the methods used to handle
uncertainty. The two main issues, however, are the
implementation of a clinical effectiveness decision
rule that drives the impact of the trial results, and
the use of arbitrary probabilities to define the
likelihood of the defined set of delta results.

The majority of the papers reviewed in this
chapter4,51,85,89 assume that research priorities can
be set on the basis of cost-effectiveness, but that
the decisions that the trials aim to inform will be
made on the basis of proven effectiveness alone.
This assumption may be related to the age of the
analyses, but in recent years the impact of health
economics on the allocation of healthcare
resources has increased substantially; Canada,
Australia and the UK have founded institutions
that include cost-effectiveness as a significant
factor in the guidance issued. More significantly,
the guidance issued in each of these countries is
now mandatory. Indeed, the current status of
economic evaluation appears to be greater 
with respect to informing clinical decisions 
than it does with respect to informing research
decisions.
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The use of arbitrary probabilities, such as Eddy’s
assignment of a 50:50 chance,4 to represent the
likelihood of each of the specified delta results
occurring within the trial also undermines the
theoretical validity of the payback approach. The
only circumstance in which the use of arbitrary
probabilities can be justified is to demonstrate that
the choice of probabilities has no impact on the
cost-effectiveness of a proposed trial, which may
apply in a limited number of cases. Otherwise, if
the cost-effectiveness of a trial is sensitive to the
probability of success, the use of arbitrary
probabilities will invalidate the outcome of the
payback analysis.

However, it should rarely be the case that analysts
are completely uninformed about the likely
outcome of a trial, as data are usually available
from pretrial research phases, and a well-designed
(frequentist or Bayesian) trial should be informed
by sample size calculations that include estimates
of the anticipated effectiveness of new
technologies. Such data should always be used to
inform the relevant parameter values within the
payback approach.

Reliability
The acid test of reliability would involve applying
the modelling procedure to the same study or set
of studies and producing the same results in terms
of recommendations for design or assessment of
priorities. One important practical test of
reliability is to see whether different modellers
given the same potential problem would produce
results of the same order. No evidence of this sort
is available for the payback approach. However,
differences in economic assessments undertaken
by different authors have been well documented,
and the key issues in good practice in undertaking
and reporting economic modelling exercises are
discussed in Chapter 4.

Empirical validity
No analysis of the empirical validity of any of the
applied cost–benefit approaches was identified.
Empirical validity can be established if the value of
research predicted before the research is similar to
the value implied by the actual outcomes of the
research. This comparison is difficult in the
context of the cost–benefit approach because the
decision-analytic framework for both the pre- and
postresearch estimation of the value of research
changes from that represented in Figure 8a to that
in Figure 8b. Namely, the preresearch analysis
predicts the probability of alternative research
outcomes, whereas the actual research only has
one outcome. 

Although the preresearch cost–benefit analysis is
unlikely to be accurately validated, it is possible to
compare a preresearch decision to implement
research (made on the basis of positive expected
incremental net benefits) with the estimated
incremental net benefits associated with the
conduct of the research. However, the decision-
analytic framework for estimating the postresearch
value of research also requires the prediction of
the course of events in the absence of research, a
task that has been found to be particularly difficult
in the retrospectively applied analyses of the value
of research (payback studies).

It should be noted that in so far as a model is an
accurate reflection of current knowledge, if a trial
results in an actual observation close to the model
predicted outcome, then although this may
empirically validate the model, the implied
information content of the additional trial will be
small. That is, it simply confirms what was already
known. In contrast, a strongly divergent trial result
should lead to a re-evaluation of current
knowledge and would imply a greater information
content of the trial.

The issue of empirical validation therefore is 
not a good indication of the value of a model. 
The key issue, once again, is that the model
accurately reflects current understanding, as
discussed in Chapter 4. Modelling is one of the
few activities in life where it is good to be proved
right, but potentially more useful to be proved
wrong.

Value added, improved decisions
There is substantial discussion within the literature
concerning the benefits to decision-making that a
modelling approach could bring, such as
structuring thinking and improving
transparency,83,84 but these benefits are not
specific to the direct assessment of the cost-
effectiveness of a trial approach. 

To date, there is no evidence that the cost–benefit
analyses described in this chapter have been used
to inform the research prioritisation process,
which precludes the estimation of the impact of
the approach on the decision-making process.

Retrospective applications of the payback
approach, which estimate the likely parameter
values that would have been specified before the
commencement of the trial, in combination with
estimates of the likely course of uptake in the
absence of a trial, could give some indication of
the potential value of the approach.
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Conclusions and
recommendations
A range of applied studies have been identified
that present estimates of the payback, or costs and
benefits of a specific trial. There is broad
agreement on the basic approach, which involves
listing the possible results of a particular
technology assessment (i.e. the delta results) and
then describing clearly the benefit and cost
consequences of each of these results. By also
making a prior estimate of the likelihood of each
delta result, the expected value of a technology
assessment, in terms of its net benefits, can be
calculated.

In the literature concerning the cost–benefit
approach there is no consensus on the appropriate
methods for defining the possible outcomes of a
trial, with suggested approaches including the two
outcomes (effective/cost-effective or not), a range
of discrete scenarios, or the specification of a
probability distribution of clinical effectiveness
results. There is also uncertainty regarding
appropriate methods for identifying the
probability of each delta result occurring, which is

often the most arbitrary component of the existing
case studies.

The explicit definition of possible research
outcomes, and their likelihood of occurrence, is a
necessary component to any modelling approach
to prioritisation. The specification of probability
distributions around clinical effectiveness parameters
moves towards the simultaneous description of the
possible research outcomes and their likelihood of
occurrence. An extension to this approach is to
base the cost–benefit approach around a stochastic
decision-analytic model with full parametric
characterisation of all uncertainty in random
values. In this way, the total uncertainty around the
resource allocation decision could be accounted for.

A major shortcoming of the applied cost–benefit
approach is the evaluation of a single specified
research proposal, which implicitly assumes that
the specified research is optimally designed. More
informative applications of the cost–benefit
approach should compare the expected net
benefits of alternative research designs and sample
sizes, thus integrating the research design and
prioritisation processes.

Research proposal

Research proposal

Undertake
research

Do not undertake
research

Undertake
research

Do not undertake
research

Research results positive

Research results negative

p

1 − p

Provide new technology

Do not provide new technology
z

1 − z

Provide new technology

Research results

Do not provide new technology
z

1 − z

Provide new technology

Do not provide new technology

Provide new technology

Do not provide new technology

x

1 − x

Provide new technology

Do not provide new technology

x

1 − x

y

1 − y

(a)

(b)

FIGURE 8 (a) Preresearch and (b) postresearch representation of research valuation framework
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The cost–benefit approach to research
prioritisation applies a well-founded methodology
(cost–benefit analysis) to the issue of research
prioritisation. To date, the approach has mainly
been applied using inadequate modelling
methodologies, though the potential to
incorporate improved sensitivity analysis
techniques does exist. The benefits of such a state-
of-the-art application of the cost–benefit approach
would include the following.

� It is a natural extension of early economic
evaluation and takes proper account of
uncertain parameters.

� It is focused on the decision of the particular
healthcare system (e.g. between two
technologies in the NHS).

� It follows the same decision-making framework
used in general modelling assessments of health
technology assessments.

� It informs the optimal choice of research design
required through the comparison of alternative
forms of research.

As noted above, state-of-the-art modelling
techniques have not been used within the
cost–benefit framework. The primary requirement
for further research into payback methods is the
implementation of stochastic sensitivity analysis
methods within exemplar case studies.
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Introduction
The expected value of information (EVI) approach
uses a decision-analytic framework to prioritise
research by analysing the impact of existing
uncertainty in parameters on the net benefit of
alternative interventions.

Broadly, the EVI approach describes the costs of
the current uncertainty regarding the provision of
one intervention in terms of the probability that
an alternative intervention should be provided,
and the benefits that are foregone as a result of
providing the ‘wrong’ intervention. The 
approach then estimates the impact of collecting
more primary data to inform the resource
allocation decision, and re-estimates the costs of
uncertainty given the predicted sample data. The
difference between the estimated costs of
uncertainty is then compared with the relevant
costs of collecting the stated amount of sample
data in order to calculate the net benefits of
prospective research.

The following sections in this chapter introduce
the basic concepts and steps in the EVI approach
in more detail, assess the approach against the
criteria developed in Chapter 2, and report the
conclusions and recommendations. Chapter 8
reviews case studies to demonstrate the key
methodological issues and debates.

The concepts involved
This section provides a summary of the concepts
underlying the value of information approach to
sensitivity analysis, including:

� the decision variable: incremental net benefit
(INB)

� uncertainty in the decision
� consequences of a wrong decision =

opportunity cost
� the value of perfect information
� the value of sample information
� the expected net benefits of sampling.

The decision variable: incremental net
benefit
The starting point of the analysis is the need to
allocate resources between alternative health
technologies. The approach can actually be used
to compare any number of competing
technologies but an illustration using two
technologies is presented for simplicity. The
decision between two technologies is based on the
costs and health benefits of each.

Health benefits are measured using, for example,
QALYs, but in order to value the net benefit of an
intervention the health benefits need to be valued
in monetary terms. The INB of treatment 1 versus
treatment 0 is:

INB = λ (B1 – B0) – (C1 – C0)

where λ is the (societal) willingness to pay for a
unit of health benefit (e.g. a QALY), Bi are the
health benefits associated with each intervention,
and Ci are the respective costs.

The following example is used to demonstrate the
concepts presented in this section: if the societal
value of a QALY is £30,000, then a treatment
providing an additional 2 QALYs at an additional
cost of £15,000 has incremental net benefit:

INB = (£30,000 × 2) – £15,000 = £45,000

The adoption decision rule, that is, the rule by
which we decide whether to adopt a technology
into practice, is to fund a technology if it has a
positive INB. It is important to note that the
decision rule is based on the expected value of the
INB, which indicates that a technology should be
adopted regardless of the uncertainty around the
INB as long as the expected or mean INB is
greater than zero. That is, the baseline decision
concerns the choice of technology given current
available data.

Uncertainty in the decision
The data available to calculate the costs and
benefits of alternative technologies will be

Chapter 7
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uncertain, and the uncertainty in parameter values
may affect the adoption decision rule, that is, the
INB may shift from positive to negative over the
range of feasible values for one or more
parameters, tested in isolation or combination.
With this uncertainty comes the possibility that the
baseline decision could be wrong. That is, if the
true value of all parameters were known, the true
INB would shift from being positive to negative or
vice versa. 

In the case of the example study, the expected
additional QALYs provided by treatment 1 is 2.
However, this may have a confidence interval of
say 0.2 to 3.8 QALYs. If the true health benefits
were just 0.2 QALYs, then the true INB would 
be:

INB = (£30,000 × 0.2) – £15,000 = –£9000

and the baseline decision would be incorrect.

It is important to emphasise that the uncertainty
being considered here is the uncertainty in mean
parameter values. It is not the individual patient
level variance that matters for the policy decision,
it is the expected net benefit received by the
relevant patient population.

Consequences of a wrong decision =
opportunity cost
Investing resources in an intervention that does
not maximise expected INBs means that potential
health benefits have been foregone, and the value
of that loss, namely, the number of units of health
benefits multiplied by the willingness to pay for
such benefits, is the opportunity cost of making
the wrong decision.

The effect on the baseline decision (e.g. a shift in
the INB from positive to negative) can be
calculated for any possible combination of
parameter values, alternative to the baseline set of
parameter values. The opportunity cost of making
a wrong baseline decision (i.e. the loss in INBs)
can also be calculated. In the circumstances where
the baseline decision is correct, there is no
opportunity cost.

In the example study, if the true value of the
QALYs gained by treatment 1 was only 0.2 QALYs,
and the INB was negative, the baseline decision
should have been treatment 0. The opportunity
cost of not choosing treatment 0 is:

Opportunity cost = (£30,000 × –0.2) – (–£15,000)
= £9000

The expected opportunity cost combines the
likelihood of making the wrong baseline decision,
that is the probability of each set of parameter
values that indicate a shift in the baseline decision,
with the associated opportunity costs of each
erroneous baseline decision. In mathematical
terms, this is the integral of the loss function over
the possible outcomes.

The value of perfect information
Further data collection (research) is valuable,
therefore, if it reduces the uncertainty in the
baseline decision, and therefore reduces the
likelihood of making the wrong decision and
reduces the expected opportunity loss. The
potential value of further research can be
quantified by the associated reduction in the
expected opportunity cost. Perfect information
about all parameters in the decision problem
would eliminate uncertainty altogether and reduce
the expected opportunity cost to zero.

The per person expected value of perfect
information (EVPI) is equal to the expected
opportunity cost. The population expected value
of perfect information (PEVPI) is estimated by
multiplying the per person EVPI by the number of
people who will receive the chosen intervention
over the assumed time horizon for the
intervention (i.e. the period over which the
intervention will be offered to patients).

The EVPI for single parameters or sets of
parameters within the decision problem is called a
partial EVPI; for example, the EVPI can be
estimated for further research on treatment effect,
or utility weights for a set of health states, or the
costs of a particular side-effect. It should be noted
that the EVPI for a set of parameters is not
additive, as there are likely to be joint effects
within the model.97

The value of sample information
The collection of perfect information, and the
elimination of uncertainty, is an impossible target.
The expected value of sample information (EVSI)
predicts, and values, the reduction in uncertainty
due to the collection of additional data from a
sample of the relevant population:

EVSI = EVPIcurrent data – 
EVPIcurrent data + predicted sample data

The expected net benefits of sampling
Collecting further information takes time and
money, and the value of sample information must
be balanced against the costs of sampling.

The expected value of information approach
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Moreover, as sample size increases, the marginal
value of additional information diminishes; for
example, the reduction in uncertainty from the
first 300 cases in a trial is greater than the value
gained from moving from a sample size of 10,000
to 10,300. Assuming constant marginal costs of
collecting sample information, the expected net
benefits of sampling (ENBS)

ENBS = EVSI – Cost of sampling

will reach a maximum at some finite sample size.
This is the optimal sample size for data collection
on the parameter(s) concerned. The EVSI and the
ENBS can be estimated for the overall decision
problem or partially, for different parameter sets. 

Summary of concepts
� Uncertainty: there is always uncertainty about

the health and cost consequences of
interventions; for example, the confidence
interval for the risk reduction effect of a new
drug for angina.

� Adoption decision rule based on cost-
effectiveness: if the INB of a new technology
versus current care is positive then it should be
funded.

� Incremental net benefit = λ * (QALY difference)
– cost difference, where λ = maximum
acceptable incremental cost-effectiveness ratio
(ICER).

� Baseline decision: the choice of treatment
made when current data are used to estimate
cost-effectiveness.

� Opportunity cost: the cost of making the wrong
baseline decision: function of incremental net
benefits foregone and the probability of making
a wrong decision.

� Value of (further) information: further data
collection (research) has value in reducing the
uncertainty around the baseline decision, which
is quantified using the reduction in opportunity
cost.

� Expected value of perfect information (EVPI):
the value of eliminating uncertainty around a
parameter(s) or in the whole decision 
problem.

� Expected value of sample information (EVSI):
the value of reducing uncertainty around a
parameter(s) or in the whole decision problem
through the collection of data from an
additional finite sample.

� Expected net benefit of sampling (ENBS):
EVSI minus the cost of sampling. For a health
economic perspective the optimal sample site
for further research is obtained when the ENBS
is maximised.

Steps in the EVI method
The first step towards the estimation of the ENBS
is to estimate the EVPI. The EVPI can be
estimated for individual parameters, sets of
parameters or the model as a whole, where the
benefits associated with eliminating uncertainty
around a parameter, a set of parameters or all the
parameters within the model, respectively, are
estimated.

The objective in estimating the EVPI for
alternative sets of model parameters (including
the full set) is to identify circumstances in which it
may be more efficient to concentrate research
efforts on the collection of a limited set of
variables, rather than attempting to inform all
possible variables.

Where the costs of further research will clearly
exceed a low overall EVPI this would indicate that
no further research is merited.

Decisions over the extent of the research required
should only be made when the EVSI and the
research costs associated with alternative sampling
strategies have been incorporated. The
specification of the alternative sampling strategies
should be based on an informed assessment of the
possible research studies that could be undertaken.
Table 8 describes possible sets of parameters and
possible types of research study that could inform
their values.

Building on details provided in the literature, the
following sections describe full step-by-step
processes for estimating the EVPI for the full set
of model parameters, as well as methods of the
estimation of the partial EVPI for individual or
sets of parameters. Three alternative processes for
the estimation of the partial EVPI are presented,
along with a discussion regarding the correct
method.

Method to calculate overall EVPI
1. Select the maximum acceptable ICER (λ) to be

used or range to be analysed.
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TABLE 8 Possible parameter sets for partial EVPI analyses

Parameters Possible research vehicle

Full set Complex RCT
Clinical effectiveness Simple RCT
Natural history Observational study
Costs Observational study
Utility values Benefit valuation study



2. Identify all of the parameters within the model
and assign probability distributions to each
parameter. As discussed above, these
distributions should capture the existing
uncertainty in the mean value of each
parameter, not the patient level variation. 

3. Undertake a Monte Carlo simulation of the
model sampling, for example, 10,000 sets of
parameter values in the model.

4. Calculate the mean net benefits for each
technology across all iterations, and identify the
decision-maker’s preferred baseline decision,
that is, the strategy with the highest mean net
benefits. 

5. Record the optimal strategy, and calculate the
opportunity cost, for each iteration as follows: 

Opportunity cost = (Net benefits for the optimal
strategy) – (Net benefit for
the baseline decision)

Note that when the baseline decision is the
optimal strategy for an individual iteration, the
opportunity cost is zero.

6. Calculate the mean value of the opportunity
loss over all the iterations. This is equivalent to
the expected cost of uncertainty and provides
an estimate of the per patient EVPI.

7. The PEVPI for current and future patient
populations is based on the incidence of
presenting patients over the effective lifetime of
the technology, including discounting.

Some authors express the above process
analytically without using the Monte Carlo

method, instead using integration over the
possible uncertain values of parameters. However,
all agree on the underlying approach to the
calculation of the EVPI, which is based on the
original formulation of decision analysis.

Special case: estimation of EVPI if net
benefits are normally distributed
The early health economics literature describing
the estimation of EVPI concentrates on the special
case when the uncertainty in the prior estimate of
INBs is normally distributed.69,98 If the
uncertainty in the INBs is normally distributed,
then there is a simple mathematical formula for
the overall expected value of information.

Claxton and Posnett98 presented a hypothetical
application to demonstrate the technique that
defined net benefit in a QALY currency (i.e. QALY
difference – Cost difference/λ). An analogous
example is used to illustrate the concepts and the
formulae, but it is presented in the more common
form of monetary net benefits. It is assumed that
the prior estimate of INBs is normally distributed
with a mean δ0 of £1500 and a standard deviation
σ0 of £1000 (see Figure 9). The allocation decision
will affect 100,000 patients over the relevant period.

The mean net benefit is positive and the baseline
decision should be to adopt the technology in
question. As shown in Figure 9, there is a chance
that the true INB of the technology is below zero.
If the INB was truly negative then the baseline
decision would be wrong, and there would be

The expected value of information approach
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FIGURE 9 Representation of the distribution of INBs and the associated loss function



opportunity losses equal to the distance between
the true INB and the break-even value (zero). This
is illustrated in Figure 9 with the line known as the
loss function showing the scale of the opportunity
loss for each possible value of the INB.

The expected opportunity loss is given by
multiplying the value of the loss at each possible
INB by the probability of that INB occurring. In
mathematical terms, this is the integral of the loss
function multiplied by the probability distribution
for INB. Fortunately, a version of the integral of
the loss function was tabulated over 50 years ago
(just like log tables), which requires only the mean
and standard deviation of the INBs in order to
calculate the opportunity loss via a simple formula.

In general decision theory, just as the payoffs can
be measured in non-monetary terms, so the break-
even point in deciding between alternative
strategies does not have to be zero. In the general
case there can be a break-even value for the payoff
that is denoted by δb in the formula. To utilise the
tables for the integral of the normal loss function,
we first have to calculate the standardised distance
between the prior mean value (δ0) and the break-
even value of the incremental net benefit. This is
defined as:

D0 = |δ0 – δb|/σ0

In the general case, the formula for the expected
opportunity loss (EVPI) is:

EVPI = |slope| * σ0 * L(D0)

where |slope| is the monetary value of the unit of
payoff (= 1 when payoff is defined in monetary

terms), σ0 is the standard deviation of the prior
distribution of the INBs, and L(D0) is the unit
normal loss integral for the standardised 
distance D0. In the example, the slope is 1, the
break-even value is 0 and σ0 is 1000. D0 is 
(1500 – 0)/1000 = 1.5, and L(1.5) equals 0.02931,
as defined in the unit normal loss integral 
tables. The per person EVPI for the illustrative
example is:

EVPI = |slope| * σ0 * L(D0)
= 1 * 1000 * 0.02931
= £29.31

The population EVPI for 100,000 relevant
patients is therefore £2.9 million. This represents
a ceiling for the investment in further research. If
it is possible to improve the certainty around the
INB of the technologies concerned for less than
£2.9 million, then such research may be
worthwhile.

To illustrate the power of the formula, three
further examples are shown in the Figure 10. The
first has the same mean but wider uncertainty 
(δ0 = 1500, σ0 = 2000). The second has a mean
closer to the break-even point (δ0 = 500, 
σ0 = 1000) and the third has a mean much farther
away (δ0 = 2500, σ0 = 1000).

The results show the key principles of the
estimation of the EVPI. First, if the uncertainty is
wider (curve 1 compared with the original
example), then the value of further research is
likely to be greater, EVPI is £262.40 per person
compared with £29.31 in the original example.
Secondly, if the prior mean INB is closer to the
break-even point (curve 2 compared with curve 3),
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then the value of further research is likely to be
greater, EVPI is £197.80 per person for curve 2,
and £2.00 for curve 3.

Methods to calculate partial EVPI 
Three alternative approaches to estimating the
partial EVPI have been defined, which are
described below.

Method 1: fix parameter values of interest at
prior mean
The EVPI for a set of parameters less than the full
set is estimated as:99

Partial EVPI = Overall EVPI – Opportunity cost
with perfect information about
the specified parameter set

The opportunity cost associated with uncertainty
existing only around the parameter values outside
the specified set is estimated by repeating the
process for estimating the overall EVPI, but
holding the value(s) of the specified parameter set
constant (at their prior mean) during the Monte
Carlo simulations.

Specifically, the steps involved are as follows.

1. Calculate the overall EVPI as described in the
previous section.

2. Repeat steps 1–7 (from the overall EVPI
process), but hold the values of the specified
parameter set at their prior mean value during
the simulations.

3. The EVPI for the parameter set is the
difference between the values estimated in
steps 1 and 2 (Partial EVPI = Overall EVPI –
Opportunity cost with perfect information
about the specified parameter set).

Method 2: fix all other parameter values at
prior mean
Felli and Hazen69 describe a similar but inverted
procedure for calculating the EVPI for parameters,
whereby the values for the ‘non-specified’
parameter set are fixed at their prior mean values
while allowing the specified parameter set to vary.
Exactly the same steps as described for method 1
are then followed to estimate the partial EVPI.

Method 3: two-level sampling (the correct
method)
The algebraic representation of the EVPI process
provided by Felli and Hazen69 implies two-level
sampling, although the process is not described
clearly in the narrative. The only identified studies
describing the practical application of method 3

are in the case studies evaluating screening for
cervical cancer,100 kidney preservation systems101

and screening for inborn errors of metabolism.102

Method 3 accounts for the fact that, in advance of
further ‘perfect’ research, the true values of the
specified parameter set are not known. The true
value of the parameter could be discovered at any
point within the current uncertain range, and
finding the true parameters value at different
points in the uncertain range affects the
probability and scale of the opportunity cost. For
instance, finding the true parameter value at an
extreme point may make the baseline decision
certain (no matter what the values of the other
parameters in the model), or finding the true
parameter value at a particular break-even point
may mean that the baseline decision would
become more uncertain and the opportunity cost
may even increase.

In the general case, the procedure should estimate
EVPI using the full range of potential values for
the specified parameter set. This requires a two-
level Monte Carlo simulation, where the steps set
out above in method 1 are repeated for a
sequence of different sampled set values for the
parameter of interest.

1. Calculate the overall EVPI as described in the
previous section.

2. Repeat steps 1–7 but this time hold the
parameter (set) of interest constant during 
the simulations; revise the baseline decision 
if required and calculate the opportunity 
loss.

3. Sample a single value for each of the specified
parameter set, then repeat steps 1–7 (from the
overall EVPI process), holding the specified
parameter set constant at their sampled values
during the simulations.

4. Repeat step 2 for samples of the specified
parameter set (the issue of the number of
samples of the parameter of interest is
discussed in the section on method debates
later).

5. Calculate the mean opportunity cost across all
the step 4 iterations.

6. The EVPI for the parameter set is the
difference between the values estimated in
steps 1 and 5 (Partial EVPI = Overall EVPI –
Opportunity cost with perfect information
about the specified parameter set).

Parameter EVPI in the normal case
The investigators could find no literature or
textbook examples where partial EVPIs for subsets
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of parameters had been established via an
equivalent simple formula.

Comparison of methods for the
estimation of partial EVPI
The key difference between methods 1 and 2 is
that method 1 answers the question “how valuable
would it be to know about the parameter of
interest with certainty?”, while method 2 answers a
slightly different question, “If we knew all of the
other parameters were at their mean value, then
how important would it be that we do not know
about the parameter of interest?” These
distinctions may appear semantic and researchers
may expect the different methods to give the same
answers. There is no published comparison, but
investigations conducted during the course of this
review show that the two methods result in
different answers.

However, there is a conceptual problem with both
of these simpler methods, as they both fix the
values of the specified parameter set at their prior
mean value, and the opportunity cost can vary
according to the assumed true value of a
parameter. The correct approach, therefore, is to
take all the possible true values of the parameter,
calculating the resulting remaining opportunity
cost for each, and then calculating the mean
opportunity cost across all possible true parameter
values (i.e. method 3).

The two-level Monte Carlo simulation method is
the correct generalised approach but the simpler
one-level approaches provide much quicker
calculation. There remains a need for case studies
to resolve which of the two simpler methods
produces a better approximation to the two-level
approach. At this stage it can be hypothesised that
when there is a linear relationship between input
parameters and the INB, and potentially when the
probability distributions representing the specified
parameter set are not skewed, and when the prior
mean value is close to the break-even value for the
decision problem, then method 2 may provide a
reasonable approximation. 

Expected value of sample information
In the absence of an infinite sample, perfect
information will be impossible to obtain. The
value of sample information predicts, and values,
the reduction in uncertainty from the collection of
a specified sample of additional information.

The basis for the estimation of the EVSI is that the
original probability distributions around the input
parameters can be updated, reducing the variation

described by the prior distribution to reflect
improved precision due to the collection of more
data. The key assumptions in updating the
probability distributions relate to the choice of
data used to update the prior distributions. This
aspect of the EVI process is a key element in
ongoing research.

There are no step-by-step descriptions of processes
to calculate the EVSI within the literature. Indeed,
only three studies were identified that discussed
the mathematics in relation to actual case
studies.97,98,103 Thompson103 uses an approach
that is similar to the cost–benefit of a trial
approach examined in Chapter 6, where the
probabilities of different sizes of trials giving type
I and type II errors are estimated. The case study
characterises current uncertainty in ‘lives saved
per electronic foetal monitor used’ with a uniform
distribution, and incorporates a threshold value
(in this case $240,000 for a foetal life saved). A
formula is developed to estimate the expected net
benefit gained from the trial, which uses
(unspecified) numerical methods to perform the
integration.

The Claxton studies97.98 estimate EVSI under the
assumption that the INBs are normally
distributed. In addition to the requirement that
the uncertainty in the INBs is normally distributed
with a known standard deviation (σ0), the
estimation of the EVSI requires that the INBs at
individual patient level are normally distributed
with a known standard deviation (σI). The
algebraic expression for the relationship between
EVSI and n is taken from Raiffa’s5 seminal work
on decision analysis, where: 

EVSI (n) = |slope| * √
––
Vn * σ0 * L(Dn)

where √
––
Vn = √

––––––––––––––––––––
σ0

2/(σ0
2 + σI

2/n), σI = the standard
deviation of the prior distribution of the INB at the
individual patient level and Dn = |δ0 – δb|/(σ0√

––
Vn).

It can be seen from the formula that Vn is always
less than 1, and that as n increases Vn approaches
1. As Vn is always less than 1, then Dn is always
greater than D0, and L(Dn) is always less than
L(D0), and hence EVSI(n) is always less than EVPI.

The Vn term requires an estimate of the patient-
level variance in the INB. Patient-level uncertainty
in treatment effect can be estimated from any
existing early trial or case series data. In order to
estimate the associated uncertainty around INBs,
the uncertainty in patient-level costs and outcomes
will also need to be factored in. This presents a 59
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practical difficulty that is not discussed in the
identified literature.

Claxton and co-workers97 apply the method
described by Claxton and Posnett98 to an
evaluation of donepezil, a drug for Alzheimer’s
disease. Most of the study relates to the estimation
of the EVPI and, in particular, the EVPI for
various model parameters. 

The necessary assumption for the applied analyses
of the EVSI, that the net benefits of research are
normally distributed, has been shown to be
flawed.104 Monte Carlo methods for EVPI may be
able to be adopted for sample information,
although the key to implementing such an idea
will be the methods used to estimate the expected
posterior variance in the parameters of interest
following additional sample information.
Methodological work in this area is ongoing,
focusing on the use of specialised software, such as
WinBUGS, and the use of Bayesian distribution
theory and the properties of conjugate families of
probability distributions.

Expected net benefits of sampling
The ENBS is equal to the EVSI minus the trial
costs. Claxton and Posnett98 characterise the cost
of a prospective trial of two treatments as the sum
of a fixed cost plus a marginal cost per patient. As
the sample increases from zero, additional value
will be gained from the trial information. Beyond
a certain trial size, however, the information
derived from the trial will be subject to diminishing
returns, while the marginal costs of research will
continue to rise and so the ENBS will fall. The
sample size at which the ENBS peaks is the
optimal sample size.

Issues around the application of
the EVI approach
A limited number of case studies were identified
that applied various elements of the EVI
approach. These case studies were examined in
detail on their methodological approaches as well
as for issues of the feasibility and the value of the
EVI approach in practice. A detailed review of
each individual case study is presented in 
Chapter 8. The content of the identified studies is
presented in the context of the following issues
around the implementation of the EVI approach:

� populating the EVI model
� estimating the size of the relevant patient

population

� determining the number of simulations
required

� selecting a decision threshold.

Populating the EVI model
A fundamental issue for the EVI approach
concerns the collection of data to populate the
model. The central estimate of the mean
(population) values, and their plausible range (in
the form of a prior probability distribution) for
each model parameter are central to the
calculation of the EVI. A wider range for a
particular parameter signifies that there is more
uncertainty and will usually produce a greater EVI,
and hence a greater priority for the research to
reduce the uncertainty.

The issues around the appropriateness of
alternative data sources to inform the prior
distributions are similar to those faced during the
conduct of a standard modelling economic
evaluation, where data describing the feasible
range of parameters values should be collected to
inform sensitivity analyses. Hence, both Phelps
and Mushlin105 and Fenwick and colleagues99

describe the use of expert judgement and the
available clinical literature to describe plausible
ranges for each parameter.

The use of subjective expert opinion to populate
decision-analytic models is also relevant to the
payback approach and was discussed in Chapter 6. 

More specific to the implementation of the EVI
approach is the need to describe uncertainty in
the form of a prior distribution, and the choice of
different mathematical forms for the probability
density function. Various forms of probability
distribution have been used. The earliest work in
this area, by Thompson,103 used uniform
distributions to describe uncertain clinical
parameters (costs and utility values were not
assessed). More recent applications of the full
economic models have used simple triangular
distributions to describe most parameters,100 or
specified alternative forms of distribution for
different categories of model parameters. For
example, Fenwick and co-workers99 assigned log-
normal distributions to unit costs, utility and event
time parameters (as they are all bounded by zero
and tend to have skewed distributions), and
triangular distributions to probability parameters.

Other studies have provided more detailed
descriptions of the rationales behind the choice of
distributional form for different types of model
inputs, which are summarised in Table 9.
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Clearly each model is different, but the rationales
underpinning the choice of prior distributions
provided by the above case studies provide a focus
for discussion.

Estimating the relevant patient
population 
Both the payback approach and the EVI approach
require the estimation of the relevant patient
population that will be affected by the allocation
decision (to be informed by the prospective
research). There is a need to define the numbers
of people per period (e.g. per year) who will be
affected and the likely period before the
intervention is superseded. Thompson103

estimated the population to benefit from foetal
monitoring research, assuming 3.5 million births
per year, that the research would be applicable for
a minimum of 4 years, with a discount rate of 7%,

and calculated that the study would affect 9.5
million low risk-births. This is exactly the same
series of assumptions used in the TAPSS payback
framework.4 Both Fenwick and co-workers99 and
Claxton and co-workers79 defined the expected
time horizon for the specified interventions
without providing a reason for their choices.

In general, the identified EVI literature does not
add any methodological rigour to the process of
estimating the relevant patient population.

How many simulations?
Adopting the two-level simulation approach to the
estimation of partial EVPI and EVSI involves
simulating the data that might be obtained from
further research and, for each of these
possibilities, also simulating the possible values of
remaining uncertain parameters. 61
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TABLE 9 Rationales for choices of probability distributions presented in the literature

Variable Distributional form Rationale

Fenwick et al.99

Unit costs, utility Log normal Bounded by zero and tend to have skewed distributions
values, event times

Probabilities Triangular –

Claxton et al.97

Baseline transition Beta Beta distribution takes values between 0 and 1, and the distribution 
probabilities parameters (alpha, beta) represent the number of ‘successes’ and

‘failures’, directly available from longitudinal database

Mean utility for each Normal Standard deviations based on the standard errors from cross-
health state sectional study: assumption of normality is not unreasonable to use

sample size ranges from 55 to 191

Direct and indirect Log normal Standard deviations based on standard errors from observational 
costs for each health cost data: cannot be negative and is positively skewed
state

Relative risk ratios Log normal Mean and confidence intervals based on Cox proportional hazards
regression

Dropout or Log normal Mean and standard deviations based on trial data and an open-label 
discontinuation rates follow-up study

Additional utilisation Constant Difference in utilisation and price across decision-makers/settings 
and prices represents variability rather than second order uncertainty

Duration of drug effect Log normal Based on a survey of clinical experts about the expected efficacy
duration

Karnon and Brown106

Proportions Beta Beta is bounded by 0 and 1, and provides the most realistic
representation of proportions

Survival times Gamma Gamma is bounded by zero and approximates the normal distribution
at large samples

Costs Gamma Same reasons as for survival times

Utility values Beta Utility values portray similar properties to a proportion (if not bounded
by 0 and 1 a scale parameter can be fitted to the beta distribution)



There is no detailed discussion in the EVI
literature concerning the number of simulations
required for convergence to stable results. Fenwick
et al.99 and Payne et al.100 used 1000 iterations,
while Claxton et al.97 used 10,000 iterations to
establish the probability distribution for the
incremental net benefit of treatment. There is a
substantial literature on convergence in simulation
modelling outside the health economic context.
This has not been the subject of this review. In
general the approach is to examine alternative
numbers of simulations and compare the results,
though there are many variations on this theme.

Within healthcare modelling, there are some
individual patient level simulation models, which
have examined the relationship between numbers
of simulations and convergence. Karnon107

assesses alternative simulation sizes in a model
evaluating adjuvant therapies for early breast
cancer. Holding input parameter values constant
at their mean values, repeated replications of the
model were undertaken using different random
number seeds for replications 100, 1000 and
10,000 simulations. The cost-effectiveness plane
results showed wide dispersion using 100 patients,
but much tighter concentration with 10,000
simulations. While this is a different context to the
simulation of second-order uncertainty in EVI
calculations, an analogous approach would be of
benefit.

In summary, measurement of the scale of result
changes when more or fewer simulations are used
is good simulation modelling practice. It would be
useful if EVI studies showed some analysis of the
convergence of the simulation results for different
numbers of iterations, in order to establish
evidence for the robustness and stability of the
results.

Selecting a decision threshold
The QALY is the most common measure of health
benefit against which a monetary threshold [the
maximum amount that the decision-maker is
willing to pay in order to gain an additional unit
of the defined benefit – the maximum acceptable
incremental cost-effective ratio (MAICER)] has
been set to determine the EVI. A higher decision
threshold values health benefits at a higher rate,
but the relationship between the threshold and the
EVI is not simple or linear because the threshold
level also affects the choice of intervention given
current information.

Two theoretical options are available for the
specification of the appropriate threshold:

� Establish the societal willingness to pay for
health benefits.

� Estimate the ICER of the least efficient
intervention to be funded within a healthcare
system with a fixed budget (excluding those
interventions funded for reasons other than
efficiency). 

At present, there is no explicit consensus or policy
defining the relevant MAICER for the NHS. The
identified case studies have generally tested the
impact of alternative levels for the threshold.
Fenwick and co-workers99 used three values:
£5000, £10,000 and £20,000, while Claxton and
colleagues97 used a central estimate of US$50,000
and conducted sensitivity analysis on values
ranging from $1000 to $100,000.

The National Institute for Clinical Excellence
(NICE) is beginning to produce more clarity on
the acceptable level of cost per QALY for NHS
funding, and some commentators have speculated
that decisions made by NICE imply a decision
threshold of £30,000 per QALY. As further
evidence from the NICE decision-making process
emerges, more clarity as to an appropriate
threshold may emerge. It is important to realise in
this respect that the purpose of this type of
analysis is to support rather than replace
commissioning decision-making. Thus, outcomes
should be presented over a range of possible
thresholds in order to allow other subjective
factors, for instance equity, legal issues and
perceived but unquantified biases in the evidence
base, to be evaluated together with these
quantified economic outcomes.

Evaluation against criteria
The criteria used for assessing the value of a
methodology have been developed during the
course of this review and were discussed in
Chapter 2 on methods. They fall into two broad
categories, theoretical soundness and practicality.
The EVI approach is first reviewed in relation to
issues of practicality; this is followed by an
assessment of the approach’s theoretical
soundness.

Time and cost
As with the payback approach, the EVI approach to
the prioritisation of research is more complex and
requires more time and resources than an implicit
process.83 However, there is almost no discussion in
the literature of the length of time needed to build,
run and evaluate the results of an EVI model or
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the approximate costs. The basis for the
assessment of time and cost requirements for the
EVI process is based, therefore, on the experience
of the present authors’ work on EVI and informal
discussions with researchers in this area.

The development of a new disease treatment
pathway model and analysis of uncertainties
require anything from a week to several months,
depending on the depth of evidence. The time
taken to adapt a well-developed model to an EVI
analysis is significantly lower than when starting
from scratch, as the architecture to run the EVI
simulations and record results is relatively generic
and can be transformed from one model to the
next. Within the authors’ university department
this has been implemented within Microsoft
Excel® and VBA® (Visual Basic for Applications).
Developing this took 3 or 4 weeks, but its
adaptation to a new model takes 2 or 3 days.
Updating an existing EVI model, as new evidence
emerges from clinical trials or other forms of
research, simply requires the updating of the prior
probability distributions. The time required to run
the model and evaluate the results is mainly
determined by the number of parameter sets for
which the EVI is to be estimated and the time
required to generate a single estimate. In the
authors’ experience, even in relatively simple
models this can range from 1 day to 2–3 weeks.

In the case of EVI methods, just as for payback
methods, the question of who should undertake
the work and bear the costs is also an issue. It is
possible that the primary research commissioning
body will do the work, since they will want to
ensure that a fair comparison is made between
potential research studies. The alternative is for
investigators submitting proposed research to
follow some template method to examine the
EVPI (and even EVSI) of the proposed study. 

Delays in research
While there are many case studies of secondary
systematic reviews being commissioned that
specifically request modelling work, there are only
three that have been undertaken in a rapid time-
frame and include EVI analyses. These are the
review of liquid cytology screening for cervical
cancer undertaken for NICE,100 secondly, included
as a pilot analysis, the review of screening for
inborn errors of metabolism,102 and finally an
evaluation of kidney preservation systems.101 This
last is of specific interest here as the rapid review
was initiated at the start of the NCCHTA process
for commissioning primary research. Thus, the
rapid review with EVI analysis was delivered in

time to be used to support the review of detailed
proposals for primary research.

Data availability
The EVI approach requires very similar data to
those required for the payback approach (i.e.
costs, outcomes and effectiveness data, plus
information to inform the estimation of the
relevant patient population), so the previous
discussion regarding data availability for payback
(Chapter 6) is also relevant to the EVI approach.
Namely, a wide range of health economic models,
covering a broad spectrum of disease areas, have
been populated and evaluated, and the
alternatives to the use of weak data with
appropriate high levels of uncertainty to populate
decision models have severe limitations.

Timing of the use of the method
Unlike the direct assessment of the cost-effectiveness
of a trial method, which clearly requires a
description of the intended trial as its starting
point, the EVI approach can be used without a
definite trial design in mind as long as the relevant
patient population and choice of comparators are
clear. The EVPI and EVSI can be estimated
without a particular research design in mind,
although the estimation of the ENBS requires the
specification of potential research vehicles.

Evidence of successful use
There is case study evidence of success in the use
of EVI approaches. At this time, no research
funding body has undertaken a comparative
assessment of the use of the EVI approach as
opposed to existing methods of prioritisation
across a range of research projects and examined
its potential impact on R&D decision-making.

Feasibility of achieving economies of
scale by applying a generic method or
model
The EVI approach is based on the development of
a health economic model specific to the disease
and treatments involved. A separate model is
needed for each topic area. Such a model (e.g. for
treatments of Alzheimer’s disease or rheumatoid
arthritis or lowering cholesterol) can certainly be
used over and over again for different treatment
options, as new evidence emerges, and for
different proposed trials or research studies. The
analytical model architecture to undertake the
EVPI and EVSI analysis is relatively generic and it
would be feasible to develop generic analytical
enquiries for use with a limited number of
modelling platforms. These could be bolted on to
new treatment areas relatively easily. 63
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Acceptability to health technology
assessment commissioners
As noted with respect to the payback approach,
the use of analytical methods can be perceived as
mechanistic, while the use of imprecise data may
be of concern.83 There is likely to be some
scepticism about the potential for modelling in
prioritising research. A process of pilot evaluations
of the utility of modelling rather than wholesale
adoption is most likely.

Acceptability to health technology
assessment researchers
Again, as with the payback approach, the need to
estimate the EVI of a research proposal could be
seen as an extra hurdle when bidding for research
funds. However, it could also have benefits in
helping investigators to decide on optimal 
design and anticipate the likely priority of their
research. 

Theoretical validity
The estimation of the EVI is grounded in Bayesian
statistical decision theory, and has strong
theoretical foundations.

The EVI approach to assessing the importance of
current uncertainty (i.e. as a form of sensitivity
analysis) has been commended owing to the
combined assessment of the likelihood of
alternative outcomes and their effects on the
health benefits experienced by the relevant
population. The presentation of remaining
uncertainty in terms of the marginal value of
perfect information is thought to provide a more
intuitive approach than other forms of sensitivity
analysis.69

An important aspect of the application of the EVI
approach to the full prioritisation process is that
the explicit starting point is the decision problem,
not a specified piece of research. On the basis of a
complete analysis, that is, estimating an adequate
set of partial EVIs, the approach leads the analyst
to the optimum research design, including the
optimal sample size.

There are two broad approaches to the EVI
process. The approach that requires an
assumption of normally distributed net benefits
enables the analytical solution of the EVI,
although no definitive approach to estimating the
individual patient level variance (σ2

I ) in the INBs
has been proposed. Moreover, the assumption that
the net benefits of research are normally
distributed has been shown to be potentially
flawed.104

The application of the EVI approach based on the
use of stochastic decision-analytic models provides
a theoretically sound representation of existing
uncertainty around the decision problem. The
applied analyses are based on an assumed
adoption rule that states that the technology
shown to generate the highest expected net
benefits will be provided to the full population
(given both current information and following
further research). Such an adoption rule may be
deemed unrealistic, although alternative objective
functions (to the maximisation of health benefits)
and different uptake rates (to the instantaneous
uptake rate) could be incorporated into the EVI
approach. The applied EVI studies do not,
therefore, contribute to methods for establishing
the uptake rate for technologies.

The principal area of methodological uncertainty
around the application of the stochastic EVI
approach concerns the estimation of the EVSI; in
particular, the assignment of updated probability
distributions to represent the data obtained
through further research. No definitive approach
to updating probability distributions, in the
context of the EVI process, has been specified,
although approaches based on Bayesian statistical
methodology have been proposed. These
approaches have the potential to provide a sound
theoretical basis and standardised approach to
solving the most difficult practical aspect of any
prioritisation process.

Reliability
The acid test of reliability would involve applying
a modelling process to the same study or set of
studies and producing the same results in terms of
recommendations for design or assessment of
priorities. One important practical method 
of testing the reliability of a broad approach 
is to see whether different modellers given the
same potential problem would produce results 
of the same order. No such approaches have yet
been published in the literature. This again,
however, refers to the reliability of the underlying
disease model rather than the EVI analysis 
which, if implemented correctly, would be
reproducible.

Empirical validity
No analysis of the empirical validity of any of the
applied cost–benefit approaches was identified. An
accurate analysis of the empirical validity of the
EVI approach would compare the value of
research predicted before the research with the
value implied by the actual outcomes of the
research. This comparison is facilitated by the EVI
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approach (but is not possible using the
cost–benefit approach), because the decision-
analytic framework remains the same for both the
pre- and postresearch estimation of the value of
research; that is, the predicted reduction in the
costs of uncertainty can be directly compared with
the actual reduction in the costs of uncertainty.

However, it should be noted that the EVI
approach is based on estimates of the current level
of uncertainty around the allocation decision
(including the estimation of the EVSI), and that
additional research will not validate the estimated
value of uncertainty at the time of the decision to
undertake the research.

Value added using EVI 
One of the main advantages of the EVPI approach
is that it quantifies the maximum potential value
of research on the subject concerned. This is done
without the need for a specific design for the
research. The EVPI simply quantifies the value of
eliminating uncertainty from the decision-making
process, which sets an upper limit on the value of
research. If the research costs more than the EVPI
then any further analysis is not required.

Conclusions and
recommendations 
The EVI approach is based on the economic
evaluation of costs and benefits of health
technologies in the form of a cost-effectiveness
model. It requires the development of an
economic model comparing the intervention of
interest with its relevant comparators. The
variables within the model must be assigned
probability distributions to describe their
uncertainty. This is followed by an analysis of the
expected incremental net benefit of the
interventions [λ * (QALY difference) – cost
difference], and selection of the best to make a
baseline decision. However, because there is
uncertainty in the variables, the method also
analyses the probability that the intervention not
selected (given current information) could actually
be the best. The benefits lost by not selecting the
true best intervention given current uncertainties
are calculated and known as the expected
opportunity loss. Given expected numbers of
people in the system and the likely life span of the
interventions, the monetary value of perfect
information is calculated. This is measured by
reduction in expected opportunity loss if we had
absolute certainty about the value(s) of the
parameter(s) concerned. The method can estimate

the value of further research overall and on
individual parameters.

A further extension is the calculation of the EVSI.
There are fewer descriptions of the steps involved
in calculating the EVSI within the literature and
there is no consensus on the methods for
implementation. The value of a trial of a specific
size can be compared against its costs and a trade-
off between sample size and increasing costs of
research can be optimised. The estimation of the
expected net benefit of sampling (ENBS = EVSI –
Cost of sampling) leads to the specification of an
optimal sample size for an optimally designed
research project. 

The EVI approach to research design and
prioritisation is a systematic and well-founded
methodology based on longstanding decision
theory. The benefits of the EVI approach 
include:

� It is a natural extension of early economic
evaluation and takes proper account of
uncertain parameters.

� It is focused on the decision of the particular
healthcare system (e.g. between two
technologies in the NHS).

� It quantifies the value of perfect knowledge
concerning the decision overall and thus
provides an upper ceiling estimate of the value
of research. If any proposed research would cost
more than the overall expected value of perfect
information (EVPI) then it cannot be deemed
cost-effective. In particular, this allows
comparison across disease areas.

� It quantifies the value of seeking information
on specific parameters. It allows uncertain
variables to be ranked as to the importance of
their effect on the decision about the
technology and quantifies the maximum
potential value of research on the parameters
concerned.

� It supports decisions on the form of research
design required. EVI confirms the need for
RCTs where the clinical efficacy of proposed
new technologies is the key uncertainty, and
suggests other forms of study where quality of
life, utility, cost consequences, and so on, are
most important in influencing the decision.

However, significant areas of uncertainty remain
around the application of the EVI approach. The
following sections describe recommendations for
further research relating to different aspects of the
EVI approach to research design and
prioritisation. 65
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General methods and assumptions
The basic steps in the process of calculating the
overall expected value of perfect information are
agreed upon by all the identified studies. Some
express it analytically without using the Monte
Carlo method (using integration over the possible
uncertain values of parameters). However, all
agree on the essence of calculating the overall
EVPI, which itself is based on the original
formulation of decision analysis.

There are some methodological differences in
approach in the literature, concerning the precise
implementation of the EVPI calculations. There
are two simple versions of the method. The first
calculates the EVPI for a parameter by holding the
value of the parameter of interest constant (at its
prior mean) during the simulations. The second
suggests a similar but inverted procedure, which
leaves all of the other parameters set at their prior
mean values while allowing the parameter of
interest to vary. There are conceptual problems
with both of these simple methods. 

This review has led to the development of
recommended methods for the calculation of
EVPI. This involves estimating the EVPI using the
full range of potential values for the parameter of
interest, using a two-level Monte Carlo simulation.
This two-level method samples from the prior
distribution for the mean of the parameter of
interest, then holds that sampled value constant
during a second level for a set of iterations where
the other uncertain parameters are varied. The
average opportunity loss over the two levels of
simulations is calculated and the EVPI for the
single parameter is then calculated as the overall
EVPI minus the opportunity loss for the
parameter of interest.

None of the papers has examined the differences
in the resulting answers between the simplified
methods and the more complete (and correct)
approach in a case study.

A potential drawback of the methodologically
correct procedure is the practical issue of
computer processing time required, since this
expands exponentially with the number of
parameters. In complex models that require
significant time to produce a single sample 
result, the final processing time can be 
prohibitive. Further research is required in the
development of approximation methods, for
instance meta-modelling, or efficient sampling
algorithms to enable general application of EVI
methods.

If the uncertainty in the INB is normally
distributed, then the overall EVI can be calculated
using a simple mathematical formula, which
obviates the need for the Monte Carlo simulation
approach. This is of some use but it is limited
because there is no equivalent formula for the
EVPI for specific parameters. There remains a
question as to how often the uncertainty in real
case studies can be adequately represented by a
normal distribution, and this should be the subject
of some further research.

There are no step-by-step descriptions within the
literature concerning the process to calculate the
EVSI. There are discussions of the analytical
formula to calculate an overall EVSI in the case
where the incremental net benefit has a normal
distribution. The formula also requires the
assumption that the patient-level uncertainty in
INB can be represented by a normal distribution
with a known variance. Again, this is of value in
giving an insight into the potential value of a trial
of a specific size. However, crucially there is no
equivalent analytical formula for calculating the
EVSI for specific parameters.

It should be possible to adapt the two-level
simulation approach suggested for parameter
EVPI to parameter EVSI. No work of this kind has
yet been published and it should be a priority for
methodological development.

Populating the model
This issue is not specific to the EVI methodology;
it is an important concern in the validity of
general disease treatment pathway models, but is
of particular importance for the application of EVI
analyses. The parameter estimates, both the
central estimate and the plausible range, are the
fundamental drivers for the calculation of the EVI.
A wider range for a particular parameter signifies
more uncertainty and potentially a greater
expected value of information. One of the main
issues therefore is the question “how should you
estimate the plausible range for a specific
parameter?” or, in Bayesian parlance, “How
should you estimate the prior distribution for a
parameter of interest?” Recent case studies discuss
the process in depth and a body of evidence is
emerging.

Different forms of probability distributions are
commonly used for different types of variables
within the model, for example, beta distributions
for probabilities of events and log-normal
distributions for costs. This is an emerging
science, however, and further work to develop
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methods in this area is likely as more analysts
undertake the EVI approach.

In some models it will be necessary to obtain
subjective judgements on the values of parameters
and the uncertainty around them. The methods
for obtaining subjective prior probability
distributions are not generally discussed in the
literature reviewed in this report. However, there is
a body of literature on this general topic. Among
others, the HTA report by Spiegelhalter and
colleagues108 covers some of these issues in detail.
There is a need for researchers to examine the
learning from other application areas.

Estimating the population to benefit
from research results
An important point at which the EVI approach
meets the payback approach is in calculating the
population that will benefit from the research.
There is a need to understand both the numbers
of people who will benefit and the likely lifetime
before the intervention is superseded. In the EVI
approach, this is used to convert the per person
expected value of research to a population EVPI.
The EVI literature examined does not bring any
additional methodological rigour to
understanding these issues beyond the discussions
from the payback work.

The objective function and selecting 
a decision threshold
The developments of this methodology to date
have used the INB between alternative treatments
as the objective function for decision-making.
Furthermore, case studies have all focused purely
on health service costs and benefits. Research is
required on defining an objective function,
including its scope and perspective, that reflects

decision-makers’ concerns and is acceptable to key
stakeholders. 

Approaches to selecting a decision threshold vary,
but most authors have used a generic value such
as a cost per QALY as the currency. The decision
threshold can be disease specific and the EVI
approach will then allow uncertainties within that
disease area to be ranked and key parameters to
be identified. Given no explicit consensus
regarding the decision-makers’ threshold, the
analysis is often undertaken for a range of distinct
threshold values. It should be noted that as λ
increases then the weight given to the uncertainty
in the health benefit differences also increases.
However, the relationship between λ and the EVPI
is not simple or linear because the value of λ also
affects which decision is taken given current
information.

An area of opportunity
The methodologies and theory to utilise the value
of information approach have existed for many
years. There has been exponential growth in
health economic analysis alongside the emergence
of health economics as a key criterion in NHS
funding policy. Recent years have seen an increase
in computing power, health economic and
modelling expertise, and the development of a
body of case study material. Thus, there is a
substantial number of existing economic
evaluations for a wide range of disease areas that
could be extended to incorporate new
interventions and to support research
prioritisation. In general, almost all economic
evaluations can utilise the EVI approach. All of
these factors together provide the context for a
new and more systematic approach to research
design and prioritisation.





Introduction
This chapter describes and analyses the identified
studies that applied or discussed some aspect of
the EVI process. This work is intended to provide
a background to the EVI process, and issues
around that process, that were described in the
preceding chapter. The studies are presented in an
order that represents the methodological
development of the EVI process in the healthcare
field, which follows a broadly chronological order.

Decision-analytic determination
of study size: the case of
electronic foetal monitoring103

Methods
This paper describes the use of decision analysis
to determine study size for an RCT of electronic
foetal monitoring (EFM), combining elements of
the EVPI and payback approaches. Thompson103

reports that there is considerable disparity among
experts concerning the advisability of EFM. Four
RCTs have been undertaken, covering a total of
2027 mothers, but only 500 mothers were in the
low-risk group. The primary outcome measure for
decision-makers is perinatal mortality, although
brain damage is also an important outcome.

In relation to sample size calculations, Thompson
dismisses haphazard (or pragmatic) methods,
where sample sizes are based on factors such as
resources remaining, or the number of potential

patients accessible by a possible principal
investigator over the duration of the experiment.
He cites an application of the classical
methodology for setting sample size based on
statistical significance, which estimated the
appropriate sample size would be 63,000 low-risk
mothers assigned to each of the two experimental
groups.

Thompson103 criticises the arbitrariness of the
classical approach in specifying a minimum
clinical significant difference, and the appropriate
levels of statistical significance and power for the
experiment, as well as the lack of account of the
costs of the study. Instead, he recommends the use
of decision analysis to compare the net expected
benefits of different sized RCTs with the expected
results if no trial takes place.

In line with the payback approach, two delta
results for a potential trial are identified. The first
is the case where EFM produces positive net
benefits, and hence more births would be
monitored in the future and improvements in
perinatal mortality will ensue. Alternatively, EFM
produces negative net benefits leading to reduced
monitoring and costs. The net expected gain is
calculated by combining the possible gains and
losses with their probabilities of occurring, as well
as accounting for the probability of the trial
providing a false result. In essence, Thompson103

formulates a decision tree that compares the
options ‘undertake a trial’ and ‘do not undertake a
trial’, as represented in Figure 11.
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Chapter 8

Expected value of information case studies

Decision

Undertake trial
(sample size X)

Do not undertake trial
(sample size X)

EFM positive net benefits

EFM negative net benefits

EFM negative net benefits

EFM positive net benefits

Trial result true positive

Trial result false positive

Trial result true positive

Trial result false positive

FIGURE 11 Representation of decision problem specified by Thompson103



The most important assumptions in the model
relate to the current estimates of life saved and
mortality, and their possible range. Interviews with
obstetricians showed that there was a range of prior
estimate of the efficacy of monitoring from 0 to 
1 in 2000 lives saved. There is also some uncertainty
in the expected mortality in unmonitored low-risk
births, ranging from 1 in 1300 to 1 in 700.
Thompson characterises both of these uncertain
variables as a uniform distribution from the
minimum to the maximum. The possible mortality
rate among the monitored births is the difference
between these two and could be positive or negative.

Thompson103 sets out the population that stands
to benefit from the study as 3.5 million births per
year, assuming with the development of
technology that the results of this study would be
applicable for a minimum of 4 years. Using a
discount rate of 7% it is estimated that the study
has the power to affect 9.5 million low-risk births.
He also assumes that current practice monitors
around half of these births.

In order to balance the potential benefits of the
trial with the costs of the trial size it is necessary to
define a threshold level for the decision. This is
the equivalent of g.98 Thompson uses some data
on the present value of average future earnings for
a new-born baby and sets out a threshold level of
US$240,000 per perinatal life saved, which was
estimated to equate to a break-even point for EFM
as being one life saved per 4000 births monitored.
The model also assumes fixed and variable (i.e.
depending on patient numbers) study costs.

The optimal study size is that which yields the
maximal positive net EVI. If the net EVI is
negative, then society should not mount the study.

Results
Owing to the relative simplicity of the underlying
decision model, Thompson103 calculates the EVI
analytically (in the appendix to his paper) rather
than requiring a more general algorithm. 

The EVPI would be US$142.5 million, which
provides a basic threshold that the study must be
cheaper than US$142.5 million in order for it to
have any chance of producing net benefits. The
analysis of sample information estimated the net
benefits associated with alternative sample sizes,
which indicated that the optimal study size is
roughly 180,000 births in each of the EFM and
control groups; a total of 360,000 births. While
this study would cost US$22 million, its net benefit
would be US$95 million.

However, the analysis shows that the estimated net
benefits are not very sensitive to different sample
sizes, as a sample of 100,000 per group would
generate expected net benefits of US$90.7 million,
which is 95% of the maximal net EVI of 
US$95.8 million.

Thompson103 also undertook sensitivity analyses
on a series of important variables within the
decision tree, including study acceptance and take-
up rate by obstetricians, costs of the study, value
per life saved and the variance in the range of
uncertainty. The results show that the optimum
sample size varies from around 110,000 to
270,000 depending on the assumptions used (still
orders of magnitude higher than 504). The net
EVI calculation remains positive under all
scenarios examined. The variable with the most
effect on net EVI is the value of a saved life to
society. If this is altered by ±25% then the net EVI
varies from US$61.9 million to US$9.1 million.

The EVI is also calculated for an initial trial with a
smaller sample size (100,000 per group), with the
option of extending the trial (including an
additional 80,000 per group) if the initial results
are not statistically significant at a 95% confidence
level. The expected additional gain in net 
benefits from following this strategy is roughly
US$1 million.

Arguments for the adoption of two or more
stopping points include the possible savings 
(US$8 million if the trial is not extended), as well
as the ethical imperative of stopping the study as
soon as it is clear that one form of treatment is
significantly more beneficial than the other.
Alternatively, there are practical difficulties in
arranging for multiple stopping points. This work
on stopping rules also relates to the work by
Senn109 and Grabowski110 in the commercial
setting.

Thompson103 also wonders whether net benefit is
an appropriate decision criterion, or whether
there should be a higher ratio; that is, research
undertaken should have a much higher benefit-to-
cost ratio.

Discussion
Thompson’s paper103 represents a synthesis of
both EVI and the cost–benefit school. The model
is concerned with optimal sample size once it has
been decided that research on a specific variable is
needed. In this case, the variable is the net
mortality difference between low-risk babies who
are monitored by EFM and those who are
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unmonitored. The decision (that this variable is
important) is made by calculating its EVPI,
assuming all other variables are known. The EVI
of further research on this variable is estimated for
different possible sample sizes. Because the
assumptions about the uncertainty in the
parameters are simple (uniform distributions) the
EVSI can be calculated analytically.

Although over 20 years old, this paper represents
a simple case study illustration of almost all
aspects of modelling for prioritising research,
defining the process of prioritising research as a
step-by-step process:

1. Model the disease and the possible intervention
options using uncertainty analysis and expected
value of perfect information.

2. This helps to define both the overall value of
uncertainty in this area to society and the key
uncertain parameters (given their value of
information).

3. Consider designs for addressing the uncertainty
in terms of primary research.

4. In order to do this, make assumptions about the
delta results, the probabilities of those delta
results, the uptake rate and the length of
application of the study’s results to practice.

5. Model the key aspects of study design as
variables in a decision-analytic model,
calculating out the EVI for different study
designs.

Focusing technology assessment
using medical decision theory105

Methods
Phelps and Mushlin105 compare the provision of a
diagnostic test with two fallback positions:

� diagnostic test
� treat without testing
� do not treat without testing.

A decision-analytic framework incorporating data
describing the sensitivity and specificity of the
diagnostic technology, and costs and utility values
associated with treatment and no treatment in
both the sick and healthy population,
demonstrates that patients with either a very low
or very high prior probability of disease may not
need the diagnostic test.

The estimation of the expected value of clinical
information (EVCI), the EVPI and the expected
value of imperfect information (EVImpI) are all

illustrated using a theoretical example. The EVCI
is the net benefits associated with using the
diagnostic test compared with allocating treatment
on the basis of a patient’s prior probability of the
disease.

The expected value of a perfect diagnostic test,
assuming perfect sensitivity and specificity for the
test, is estimated for the full range of the prior
probability of disease. Phelps and Mushlin105 refer
to the EVPI representing the first hurdle for the
use of a diagnostic test, which is overcome if the
EVPI is greater than the costs of the test (the costs
of research are not mentioned).

The EVImpI estimates the EVCI, over the full
range of prior probabilities of disease, for a variety
of combinations of sensitivity and specificity of the
test. The possible diagnostic capabilities of the test
can be specified on the basis of a receiver
operating characteristics (ROC) curve. If the
anticipated combination of sensitivity and
specificity results in an EVCI that is lower than the
test costs, then the proposed test fails the second
hurdle.

Phelps and Mushlin105 then discuss the evaluation
of a new diagnostic technology compared with an
existing test. Assuming that a sufficiently precise
ROC curve can be derived for the existing
technology, and that the costs of the old and new
technology are established, then a challenge
region for the new technology can be created. The
challenge region accounts for the differential cost
of the two tests and describes the necessary
performance of the new test for it to be considered
cost-effective.

Results
A diagrammatic representation shows that the
value of the EVPI peaks at the point at which
uncertainty regarding the appropriate fallback
positioning the absence of the test is greatest. The
representation of the EVCI for a particular
combination of sensitivity and specificity shows the
EVCI peaking at the same prior probability of
disease as the EVPI. It is stated that the EVPI can
never be negative, although it is possible for the
EVCI to be negative.

The theoretical derivation of the challenge region
is described, and a diagrammatic representation is
presented.

Discussion
In discussing potential forms of primary research,
Phelps and Mushlin105 recognise that RCTs 71
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eliminate biased estimates of a medical
technology’s effects, but state that with most
diagnostic interventions contamination is not a
problem as each patient can receive all diagnostic
interventions. While some invasive diagnostic
interventions could contaminate findings, most
technology comparisons involve only non-invasive
methods.

To incorporate more meaningful measures of
benefit than diagnostic accuracy, an RCT that
follows patients beyond treatment (as indicated by
a test) may be implemented. However, the
emergence of new therapies will invalidate the
results of such trials, while the decision-analytic
approach can adjust to therapeutic changes, as
well as alterations in service provision or even
therapeutic misadventures.

Phelps and Mushlin105 compare cost-effectiveness
analysis with other possible methods of assessing
diagnostic technologies, such as ROC curves,
RCTs, group judgement or Delphi techniques,
meta-analysis and case studies, and conclude that
a decision-analytic framework extends the scope of
analysis considerably because it incorporates
patient outcomes and their values, and should
systematically incorporate costs of therapy and
testing. They further point out that undertaking
the wider modelling of health gain, utility and cost
will enable an understanding of crucial
information that influences the allocation decision.

This paper acts as a forerunner of the later work
(see following papers), providing a definition of
the EVI in a healthcare context, and describing
the use of decision analysis to support decisions
regarding the use of a technology and whether
further research on uncertain variables is
potentially worthwhile.

However, the EVPI is not analogous to the EVSI
(e.g. Claxton and Posnett98), which estimates the
value of further research on the basis of the
predicted outcomes of that research. The EVImpI
describes the cost-effectiveness of alternative
combinations of sensitivity and specificity, as a
function of the prior probability of disease. The
challenge region describes combinations of
sensitivity and specificity for which a new
technology would be sufficiently cost-effective to
improve upon the old technology, at least for
some groups of eligible patients.

The value of identifying this challenge region is in
the elimination of unnecessary research; for
example, if the challenge region lies beyond the

projected capabilities of a new technology further
research may be deemed unnecessary. However,
Phelps and Mushlin do not incorporate estimates
of the likely outcomes of potential research and,
hence, do not estimate the expected value of
further research.

In March 2000 a citation search on Phelps and
Mushlin105 identified 42 references including both
methodological and case study papers. In
particular, the identified papers focused on
magnetic resonance imaging and diagnostic
technologies for heart disease.

Meta-analysis by the 
confidence profile method55

Methods
The confidence profile method (CPM) is
introduced primarily as a “new set of meta-analytic
methods” for multiparameter evidence synthesis,
which specifies a chain of evidence structure (the
general model) to estimate the relevant outcome
parameter. The general application of the CPM
can be used to estimate the effect of an
intervention on health outcomes, given data
estimates.

Eddy55 also discusses the use of the CPM to
incorporate the possible results of further research
to inform the value of such research. Two
alternative approaches to estimating the effects of
new research on the posterior distribution of the
parameter of interest are presented. First, the
predicted results of further research can be added
to the general model, which is re-estimated to
calculate the new posterior distribution. Secondly,
the posterior distribution for the parameter of
interest estimated from the existing evidence is
treated as a prior distribution, which is revised on
the basis of the expected research results.

The chapter then discusses the expected value of
research, which is described as the additional
utility derived from the treatment decision
informed by the additional research. The
estimation of the value of infinite research (perfect
information) is defined as the difference between
making a treatment decision based on the true
value of the parameter of interest over the existing
posterior distribution for the parameter, and
making the treatment decision based on the
current mean estimate of the parameter of interest.

The value of finite research is described in the
context of the postresearch valuation of the
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additional data; that is, how to value the research
once the results of the research are known. No
discussion regarding the prediction of possible
research outcomes is provided.

Results
Mathematical expositions of the estimation of the
expected value of infinite (perfect) and finite
(sample) information are provided. Use of the
confidence profile method to assess the probability
of a statistically significant result is presented,
which covers the probability of a particular result
and the effect on the posterior distribution.
Eddy55 also discusses the expected value of
research and gives a simple mathematical and
diagrammatic description of opportunity loss and
probability of success.

Discussion
The potential use of the estimated value of infinite
research as an upper bound on the value of
research is noted. The main contribution of the
CPM to the EVI approach, however, is in
providing a method for combining data to
describe the values of model input parameters.

An economic approach to clinical
trial design and research priority
setting98

Methods
Claxton and Posnett98 outline the basic principle
of the EVI approach to clinical trial design, and in
particular sample size definition, using a
hypothetical example of a simple treatment
decision between a conventional treatment (T0)
and an experimental treatment (T1). The
approach assumes that the INBs are normally
distributed, and the methods used to estimate the
EVPI, the EVSI and the ENBS have been
described in Chapter 7.

Results
The results of the hypothetical EVI analysis show
that if the MAICER is less than around £6500
then the baseline decision will be T0, otherwise T1

would be provided on the basis of current
information.

The analysis shows that for a MAICER under
£3000, further research would be unlikely to be
cost-effective because even if T1 were better than
T0, the value of the utility gained would be very
small. The cost of a trial (of treatments T1 versus
T0) is made up of a fixed cost plus a marginal cost

per patient included within the trial. A simple
numerical example shows a curve of expected net
benefit of trial, that is, the expected value of
sample information minus the costs of the trial,
which peaks at a sample size of 33. 

Discussion
Claxton and Posnett98 describe the arbitrary
nature both in philosophical terms and in
practice, of the power and significance parameters
of the traditional sample size calculation. The
marginal costs of obtaining sample information
are rarely included, which implies an infinite value
on the benefit of sample information. They also
point out that this traditional approach to trial
design does not directly relate to the problem
facing clinicians, that is, it does not directly refer
to the net benefit of taking one decision choice
over another.

In terms of the application of the EVI process,
they recognise that the EVPI is determined by
three factors: the slope of the loss function (2/g),
the distance of the prior mean of the incremental
net benefit from zero (δ0 – δb), and the spread of
the prior distribution σ0. The relationship between
the MAICER and the EVPI is not simple or linear
because the MAICER itself affects which decision
is taken given current information.

The paper suggests that the EVPI and EVSI
approaches can be used to construct two hurdles
that proposed research must pass before being
considered cost-effective:

� EVPI is greater than the fixed cost of the
research, as the EVPI represents the
opportunity cost of rejecting cost-effective
proposals.

� EVSI is greater than the costs of the research,
which ensures that the research design is
technically efficient and conducted at the
optimal scale.

In general, Claxton and Posnett98 conclude that
research resources should be concentrated in areas
of clinical research where the marginal net benefit
of research is high. They also state that the
transfer of funding from service provision to
research should continue while the net benefit of
the marginal research proposal is positive, as such
funding will increase the overall health benefits
provided by the healthcare budget.

Harper and co-workers87 question the
practicability of the EVI approach described by
Claxton and Posnett,98 expressing doubt as to 73
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whether a health technology assessment funding
organisation could implement this approach
effectively. In addition to the estimation of the
MAICER, they question whether a sufficient
degree of confidence and precision in the
estimation of the EVPI and EVSI could be
achieved that would enable their use as methods
for assessing research proposals.

This appears to be the major issue for the EVI
approach. The case studies have now begun to
accrue over time and the practicality of the
approach is becoming clearer. However, the
position of the EVI approach within health
technology assessment prioritisation mechanisms
still requires consideration and discussion. 

Designing a cost-effective 
clinical trial111

Methods
This paper presents three methods for estimating
the optimal sample size for a trial, and the
accompanying expected cost of the trial. The
estimation of the expected costs for all three
methods is based on the expected loss of adopting
the wrong treatment (i.e. the treatment with negative
net benefits) plus the cost of the trial itself.

The Bayesian method is similar to that described
by Claxton and Posnett,98 whereby a Bayes risk
function is specified, although Hornberger and co-
workers111 assume that only the clinical
effectiveness parameters are uncertain. The risk
function is based on prior beliefs about the
distribution of the effectiveness parameters for the
two interventions, P1 and P2, expressed as a joint
density function, g(P1, P2). The Bayes decision rule
is to use the treatment that minimises the
expected loss, and the optimal sample size is that
which minimises the expected cost of the trial. 

The other two methods, the Neyman–Pearson I
and II approaches, calculate the sample size
required to identify a significant increase in the 
2-year survival rate in the experimental treatment
(T2) relative to the informed survival rate of the
traditional treatment (T1). The specified minimal
clinical difference is determined by a cost function
that subtracts the monetary value of the difference
in treatment effects (Q2 – Q1) from the difference
in the costs of treatment (C2 – C1) to estimate the
net benefits of treatment.

The Neyman–Pearson I approach assumes that in
the case of equal net benefits between the two

treatment options, clinicians will continue to use
T1, so a threshold minimum clinical difference is
estimated on the basis of T2 achieving a value of
positive net benefits (NB*) sufficiently large to
compel clinicians to switch to T2. The interval
between equal net benefits and the threshold value
of positive net benefits for T2 represents the
clinician’s indifference to the choice of alternative
treatments.

On the basis of the defined critical effect size, and a
specified one-tailed type I risk (α) and power 
(1 – β), the necessary sample size is estimated using
standard sample size calculation methods. The
expected costs associated with the assumed decision
rule (i.e. that T2 will only be used if a certain level
of positive net benefits is identified) is estimated
by solving the Bayes risk function using the assumed
decision rule and the estimated sample size.

Alternatively, the Neyman–Pearson II approach
assumes that if net benefits are similar between the
two treatment options, clinicians are indifferent
between the alternative interventions, and require
either a sufficiently large value of positive net
benefits for T1 (NB**) to compel them to keep
using T1, or a value of positive net benefits for T2

(NB*) sufficiently large to compel them to switch
to T2. The Neyman–Pearson II approach assumes
that the interval of indifference extends from some
value of positive net benefits for T1 (NB**) to a
value of positive net benefits for T2 (NB*). Thus,
the critical effect size for the Neyman–Pearson II
will always be at least as big as the estimated effect
size for the Neyman–Pearson I.

The necessary sample size is estimated as in the
Neyman–Pearson I approach, and the associated
expected costs are estimated by the Bayes risk
function. However, for the Neyman–Pearson II
approach, a further assumption about the point of
indifference between the upper and lower estimates
of clinical effectiveness that relate to positive net
benefits for T2 and T1, respectively, is required. The
point of indifference is the point at which clinicians
are indifferent between T1 and T2, which informs
the decision rule within the Bayes risk function.

Hornberger and co-workers111 apply the three
methods to a case study to estimate the optimal
sample size for a trial comparing different levels
of fractional urea clearance in haemodialysis. It is
assumed that two million people could benefit
from the trial, that the average cost per trial
subject is $8000, and that the MAICER for a
QALY is $50,000. The prior density function for
the two clinical effectiveness parameters assumes
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equal effectiveness, but the respective standard
errors are specified such that the difference in the
95th percentiles is equal to the difference in
clinical effects that produces equal net benefits
between the treatment options.

For the Neyman–Pearson II approach, the point of
indifference was assumed to be halfway along the
interval of indifference.

Results
The results from the Neyman–Pearson I approach
showed that as the value of positive net benefits
required to compel clinicians to switch to T2

increases, the minimum clinical effect increases
and the required sample size decreases.

In the Neyman–Pearson II approach, the interval
of indifference will always be at least as large as for
the Neyman–Pearson I approach, so the critical
effect size will be larger and a smaller sample size
will be required.

The baseline results (if NB* and NB** equal
US$5000) from the three methods indicate
optimal sample sizes of 16,046 (expected cost
US$204 million), 3890 (US$237 million), and
6200 (US$111 million) for the Neyman–Pearson I
and II and the Bayesian approach, respectively.

Discussion
The Neyman–Pearson approaches are hybrids of
the EVI approach and the use of decision models
to inform traditional sample size calculations. A
novel aspect of their application is the
incorporation of assumptions regarding the level
of cost-effectiveness required to compel clinicians
to provide the more efficient treatment, although
such assumptions could also be applied to the
standard EVI approach. The drawbacks of the
Neyman–Pearson approaches include the fact that
the sample sizes calculations only accommodate
uncertainty around the clinical effectiveness of the
new intervention, and that the estimated sample
size for each interval of indifference (i.e. each
specified decision rule) does not necessarily
minimise expected costs.

Unfortunately, Hornberger and co-workers111 do
not discuss the merits of the three methods
presented, preferring to concentrate on the
general advantages of the explicit calculation of
the costs and benefits of potential trials, and
consider a series of important issues in this regard:

� The choice of any proposed prior distribution
and loss function needs to be justified, for

example, summarising results of a literature
review using standardised techniques, such as
meta-analysis or decision analysis.

� The parameters of the prior distribution can be
altered to test the sensitivity of the results to the
choice of distribution.

� External users may define different prior
probability distributions to learn how their
beliefs affect the calculation of the sample size.

� The need to specify values for variables for
which there may be little information does not
discredit the approach, as many clinical
decisions require the analyst to include variables
for which there is little information.

� Experts may be surveyed about certain
parameters to assess the effect on the sample
size of changes in this variable.

In relation to the costs of undertaking a modelling
approach to the design of clinical trials,
Hornberger and colleagues111 cite the example of
the Diabetes Control and Complications Trial
(DCCT) in patients with type 1 diabetes, which
cost more than $100 million. They state that less
than 1% of the trial budget would be required to
perform the steps proposed, which could have
avoided collection of excessive data (and hence
reduced research costs).

In general, they recommend that cost–benefit
assessment of potential research will enable
important design and priority setting tasks to be
undertaken, and will also facilitate a revised
analysis of cost-effectiveness once the primary
research is completed. In addition, working in this
way will enable the research community to
understand much better how research has reduced
the uncertainty in the decision-making process.

It is recognised that substantial analytical efforts
are required, but Hornberger and co-workers111

suggest that these may well be worthwhile in the
design of large-scale trials. One could go further
and suggest that the early attempts at economic
evaluation are very likely to provide useful input to
both the priority setting and design of trials. They
are not necessarily an additional cost but simply a
rescheduling of the cost of economic evaluation to
a time before the trial takes place.

The cost–benefit of a randomised
trial to a healthcare organisation112

Methods
A simple decision tree analysis is presented
comparing standard therapy with an experimental 75
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treatment, about which there is uncertainty
concerning its probability of success or failure. A
Bayesian approach is suggested using a pretrial
joint distribution for the probability of success on
both the standard and experimental treatment.
On the basis of this prior distribution, the
difference in expected loss between the two
treatments, and the probability of success for the
experimental treatment leading to indifference
between the experimental and standard
treatments, can be estimated.

Hornberger and colleagues112 then provide
equations for the expected loss after the trial,
which incorporate the probability of success of the
standard and experimental treatments, given new
evidence about the mean expected values of
success. Given n patients in each arm of the trial
and a total of N patients available for treatment
after the conclusion of the trial, the total expected
net benefit of the trial can be estimated.

A case study is presented that evaluates dapsone, a
potential therapy for people suffering from
multiorgan system failure in intensive care
settings, the mortality for which is as high as
80–90%. The analysis only includes one clinical
parameter, specifying prior probability
distributions for the success of standard treatment
(50% success with standard deviation of 4%) and
for the experimental treatment (50% success with
standard deviation ±10%). A correlation factor of
0.4 between the likelihood of success between the
two trial treatment arms is also specified.

Resource costs include the costs of treatment and
expected lengths of inpatient stay given success
(30 days) or failure (20 days) of treatment. They
also estimate the expected QALYs lost if a patient
dies at 17.3 years and the quality of life per day of
hospitalisation. The estimation of the relevant
patient population is based on an assumed impact
of dapsone over 10 years. The value of an
additional QALY is assumed to be US$50,000.

Results
The expected loss is minimised with a trial where
the number of subjects in each arm is 61. The
sample size requirements for different levels of
policy threshold and different parameters for the
prior distribution are also estimated, and it is
shown that negative net benefits would be expected
from any trial if the prior expected rate of success
with dapsone is less than 35% or higher than 65%.

It is also shown that if the uncertainty regarding
the effectiveness of dapsone increases, then the

optimum sample size decreases; for example,
specifying a probability distribution where the 95%
intervals are between 5% and 55% the sample size
per group declines to 31.

Discussion
Hornberger and Eghtesady112 outline the benefits
of classical hypothesis testing; namely, that it is
widely used, based on valid statistical theory for
drawing cause or influences from trial data, and
has well-established criteria to limit the risks of
making the wrong inference. However, limitations
of the classical method include the facts that it
does not enable consideration of the costs of the
trial or the alternative treatments, or the effect of
the choice of the wrong intervention on the
patient’s length and quality of life in the case of
either a type I or a type II error.

They suggest the following advantages of using
their method.

� It directly includes the costs and long-term
outcomes associated with the trial and the
alternative interventions in the estimation of
sample sizes. 

� The assumptions underlying the analyses are
explicit and available for critical appraisal.

� A single measure of the maximum acceptable
costs for prolonging life by 1 QALY could be
applied across all projects contemplated, which
enables a comparative assessment of different
proposals.

� Sensitivity analyses highlight the areas of
uncertainty that may improve trial design.

Responding to anticipated criticism of the use of
subjectively defined prior probability distributions,
Hornberger and Eghtesady112 cite the subjectivity
involved in defining the critical effect size in
traditional sample size calculations as well as the
use of the conventional values of type I and II
errors.

The methodology described by Hornberger and
Eghtesady112 is essentially an assessment of the
expected value of perfect information for a single
parameter. Choosing a particular value of the
sample size allows an assessment of the expected
value of sample information under exactly the
same methodology and algebraic approach as that
expressed by Claxton and Posnett.98

A unique aspect of the methodology adopted in
this study is the specification of a correlation
between the pretrial expectations of the success of
the alternative interventions.
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The irrelevance of inference: 
a decision-making approach to
the stochastic evaluation of
healthcare technologies113

This paper is split into two broad sections. The
central argument of the first part of this paper is
that if the MAICER can be defined, the
acceptance of the “null hypothesis when a new
treatment has a positive but statistically
insignificant mean incremental net benefit
imposes unnecessary cost which can be valued in
either monitory or effectiveness terms.”113 The
stated correct alternative is to base decisions solely
on mean cost-effectiveness. A hypothetical
example illustrates the increased expected net
benefits derived over a prolonged period (10 years
in the example) from the provision of an
intervention with a statistically insignificant
effectiveness advantage over the existing treatment.

Claxton113 recognises that establishing the
MAICER may be problematic and may vary
according to the time and location of the decision
problem, the perspective of the decision-maker
and the measure of health outcome adopted. He
describes similar options to those suggested by
Fenwick and colleagues99 as either the estimation
of the marginal societal willingness to pay for a
unit of health benefit, or the use of the ICER
associated with the least cost-effective intervention
currently provided. To calculate the marginal
ICER, the use of a linear programming approach
with the objective of maximising health gain
subject to the budget constraint is cited.114

Claxton113 argues that through the specification of
the MAICER, it is not possible to allocate
resources on the basis of cost-effectiveness without
determining the price per effectiveness unit.

The first part of the paper then refutes some of
the arguments that have been made against the
net benefit decision criteria. In relation to the
need to incorporate concerns about equity in the
provision of healthcare (however defined),
Claxton113 argues that explicit adjustments to the
measure of outcome can be made to represent
equity issues. Adjustments to the measure of
outcome can also be implemented to address
other similar concerns, such as a preference for
the prevention or cure of rare but catastrophic
events (and attitudes to risk generally), or a
particular concern not to do harm.

The second part of the paper extends the
application of the EVI approach described by

Claxton and Posnett98 to more specific areas of
trial design; in particular, noting that where
expected costs differ between interventions a
strategy of uniform sample distribution between
the treatment arms will be suboptimal. The
approach proposed by Claxton113 requires the
estimation of the ENBS for every feasible
allocation of each sample size between the relevant
interventions. The optimal sample size, and
allocation of that sample, is where the ENBS
reaches a maximum.

Previous attempts to inform trial design using a
decision-theoretical framework, which led to very
large or unbounded predicted sample sizes, are
discussed. Claxton113 argues that this is not
surprising because these approaches excluded
resource costs, which effectively assumes the
marginal cost of sample information is zero. In
relation to the impact of the results of the research
on the decisions of clinical practitioners,
Claxton113 argues philosophically that it is better
first to identify the right treatments and then to
devise methods to persuade clinicians to
implement cost-effective interventions. On this last
point, one could argue that it is possible to
incorporate the uptake of research findings,
including uncertainty around uptake, into a
modelling approach.

Case study: EVI of research on
diagnosis of urinary tract
infections99

Methods
Fenwick and co-workers99 use a decision tree
framework to assess the EVI of alternative
approaches to managing symptoms presenting as
possible urinary tract infections (UTIs). Following
discussion with clinicians and a review of the
literature, seven simple management strategies are
identified:

� no treatment
� empirical treatment
� empirical treatment plus laboratory tests
� dipstick test followed by treatment
� dipstick test followed by treatment plus

laboratory test
� laboratory test and wait for preliminary results
� laboratory test and wait for full results.

The model is intended to determine the cost and
QALYs associated with each patient management
strategy. Data to populate the model are obtained 77
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from a review of the clinical literature and
subjective expert opinion. 

A separate analysis to estimate the EVPI for each
individual strategy is undertaken on the basis of a
defined maximum acceptable value of QALY
(MAICER). As no explicit value of a QALY (to
NHS decision-makers) is identified, the EVPI is
estimated on the basis of three potential values:
£5000, £10,000 and £20,000.

Probability distributions are assigned to every
parameter within the model: log-normal
distributions for unit costs; utility values and event
time parameters (as they are all bounded by zero
and tend to have skewed distributions), and
triangular distributions to probability parameters.

Each simulation involved 1000 iterations, from
which the probability of the optimality of each
strategy is estimated. Those strategies that are
never optimal can be confidently excluded from
further data acquisition requirements. Choosing
the expected optimal strategy on the basis of the
mean INBs over the 1000 iterations, the EVPI for
the full set of model parameters was estimated
using the procedure described in Chapter 7.

To estimate the partial EVPI the values of the
specified parameters were fixed at their mean
values and the estimated EVPI was subtracted
from the full EVPI. As noted in Chapter 7, such an
approach may not fully account for the current
(prior) level of information about the specified
parameters. This issue constitutes one of the
methodological differences between this study and
other papers in the area.

Finally, the societal (as opposed to per patient)
value of perfect information is estimated by
applying the per person opportunity loss to the
expected number of patients presenting to UK
general practice in a year, multiplied by the 5
years for which the research is assumed to remain
relevant (no specific reason is given for the
assumed length of research relevance).

Results
The base case analysis suggests that empirical
treatment is the optimal strategy with a cost of
£264 per additional QALY. One-way sensitivity
analysis suggests that the decision-maker can be
reasonably confident that the cost-effectiveness for
empirical treatment lies below £500 per QALY.
However, there is less confidence associated with
the dipstick strategy, which fluctuates from £220
per QALY up to £33,900 per QALY on the

variation of one parameter. Using a MAICER of
£5000 per QALY, stochastic analysis suggests a
37% chance that dipstick treatment is optimal,
while at £10,000 and £20,000 the dipstick strategy
is optimal, with a 38% and 41% chance,
respectively. The EVPI suggests that there is
considerable value associated with further data
acquisition concerning model parameters as a
whole (£4.2 million; £8.6 million and 
£17.6 million for the three alternative MAICERs,
respectively).

The analysis for groups of parameters suggests
that further research on the relevant utility 
values provides the most value (£2.7 million, 
£5.7 million, £12.4 million), followed by event times
(£1 million, £2 million, £4.1 million, respectively).
The parameters of effectiveness of treatment are
less important. The value of information for
antibiotic effectiveness is £0.7 million, £1.3 million
and £2.7 million. Dipstick accuracy (£0.7 million,
£1.3 million and £2.8 million) and laboratory test
accuracy (£0.6 million, £1.1 million, £2.2 million)
are all much less uncertain and much less valuable
in terms of further research.

The results indicate that further primary research
would be justified. Moreover, the parameters for
which the EVPI is greatest (i.e. utility values and
probabilities of UTI given symptoms) would not
require measurements within expensive RCTs.
Further data could probably be generated using
observational data collection methods. Non-
experimental designs could also be appropriate to
provide further data on dipstick and laboratory
test accuracy and the probability of resolution of
UTI without intervention.

The conclusion drawn from this early stage
modelling is that a trial is not the most urgent
research design in this area. 

Discussion
Fenwick and co-workers99 argue that the EVI
approach is useful in unifying decision-making
about the most efficient services to provide, the
explicit value of additional information from
primary and secondary research, and the most
efficient means of acquiring that information.
They further argue that modelling provides an
iterative framework for evaluation, which should
be instigated when a potential healthcare
technology first emerges, and should continue to
be used throughout a technology’s life cycle to
assist decision-making regarding routine service
use and the value of additional information
gathering.
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The main benefits of the EVPI methodology that
are cited include:

� the estimation of an explicit upper limit on the
value of information

� the identification of parameters for which the
collection of further data is unlikely to be cost-
effective

� as an aid to the selection of appropriate
research designs, such as when a key parameter
is identified that is not vulnerable to selection
bias (e.g. the incidence of a particular disease),
then an experimental study design is unlikely to
be required.

Fenwick and co-workers99 also suggest that the EVI
approach may usefully inform the design of
secondary data acquisition exercises, in the form of
systematic reviews. They argue that full systematic
reviews should not be undertaken before the
development of the initial model, as the efficiency
of the search strategy could be improved, for
example, by applying the following approach.

1. Describe a probability distribution for each
parameter on the basis of the first five papers
identified by a preliminary literature search.

2. Incorporate the system into the decision model.
3. Estimate the likely volume of published studies

as yet unidentified.
4. Estimate the value of information offered by

extending the literature search exercise.
5. Compare the value of information with the

expected cost of further literature searching.

This is an exact analogy to the value of
information collection from primary research. It
does, however, presuppose the existence of reliable
methods of meta-analysis and, perhaps more
importantly, runs the risk of ignoring study
selection bias within small samples of papers.
Some of the formal requirements of a meta-
analysis may therefore preclude such an approach. 

Sensitivity analysis and the
EVPI69

Methods
This paper describes and compares four
methodologies for assessing uncertainty in
decision-making (as described in Chapter 4),
including the EVPI approach. Felli and Hazen69

describe the EVPI process and its general
application to decision-making. Their description
of the process for estimating the partial EVPI
follows method 2 (see Chapter 7), where only the

parameters of interest are allowed to vary (and the
opportunity loss is estimated assuming perfect
information about the remaining parameters). As
suggested in Chapter 7, a more systematic
approach to estimating the EVPI involves a two-
level simulation, where a series of sampled values
for the parameter(s) of interest are held constant
for a set of iterations and all other uncertain
parameters are varied. However, the mathematical
description of the EVPI process described by Felli
and Hazen69 describes the two-level simulation
approach. The only difference is the order in which
it is suggested that the simulation (or integration
over the prior conditional probability distributions)
is done, but the order should not affect the final
answer since this depends only on the average
opportunity loss over all the iterations.

Three case studies of decision analysis in the
healthcare sector are used to compare the
alternative approaches to sensitivity analysis:
herpes simplex, deep vein thrombosis and a
symptomatic bacteriuria.

Results
The EVPI approach is shown to describe the scale
of importance of gaining further information and
the parameters about which information is most
important to collect.

Discussion
Felli and Hazen69 believe that the EVPI approach
is a natural extension to probabilistic sensitivity
analysis, which provides additional benefits owing
to the simultaneous assessment of the probability
of making the optimal decision, and the change in
payoff allied to an alternative decision. That is,
the EVPI approach is consistent with the
maximisation of expected value and the economic
concept of marginal reasoning.

This paper is useful in clearly setting out the
advantages of the EVPI approach to
understanding decision uncertainty compared with
other forms of uncertainty analysis, and
contributes to the consensus view that EVPI is the
most methodologically and philosophically
consistent approach to measuring the priority of
obtaining further information.

Bayesian approach to sensitivity
analysis115

Methods
This paper compares two approaches to handling
uncertainty – EVI and threshold sensitivity analysis 79
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– in a case study evaluation of alternative
treatments for pyriform sinus cancer.116 A decision
tree describes the probabilities of survival and
morbid events, leading to five alternative outcomes
(disease-free survival, early relapse, delayed
relapse, late relapse and death) for four treatment
options (radiotherapy, surgery, radiotherapy then
surgery, and surgery then radiotherapy).

The original analysis undertaken by Plante and
colleagues116 included one-way threshold analyses
of the probability of survival following surgery,
quality-of-life parameters and the increased
probability of survival due to irradiation following
surgery. Seven combinations of parameters were
also analysed using two-way sensitivity analyses.

Felli and Hazen115 undertook a full EVPI analysis,
as well as a series of partial EVPI analyses for sets
of two parameters (using method 2, see Chapter 7).

Results
The results of the EVPI analysis showed that the
total parameter EVPI equalled 5.62% of the
expected health benefits derived from the baseline
decision (108 quality-adjusted weeks of survival).
The partial EVPI results show that the probability
of survival following radiation, combined with
quality-of-life adjustment for radiation or mortality
for surgery, provides the highest EVPI for
parameter sets (3.29% and 2.95% of the baseline
health benefits). All remaining parameter sets
have EVPIs less than 2.7%.

Most importantly, the parameters identified as
sensitive by the threshold analysis were clearly
inconsistent with the EVPI results. The single
parameter with the highest EVPI (disease-free
survival following radiation) was not deemed
sensitive by the threshold analysis. Furthermore,
five of the parameters that were deemed sensitive
had information values less than 1.2% of the
optimal 108 quality-adjusted weeks.

Discussion
Felli and Hazen115 note that the differences
between the conventional form of sensitivity
analysis and EVPI is consistent with their general
findings that conventional sensitivity analyses tend
to overstate the sensitivity of model outputs to
variation in input parameters. They conclude that
traditional forms of sensitivity analysis address the
question “how much do parameters affect
results?”, rather than the more revealing question
of “how likely and with what effect do parameters
affect the results?”, which is better answered by the
EVPI approach.

Bayesian value-of-information
analysis: an application to a
policy model of Alzheimer’s
disease97

Methods
This paper uses a pre-existing cost-effectiveness
model of donepezil in the treatment of
Alzheimer’s disease establishing probability
distributions to describe uncertainty in the input
parameters and undertaking an EVI analysis in
the context of the US Alzheimer’s disease
population. The model builds upon a placebo-
controlled, double-blind clinical trial of donepezil
with a follow-up period of just 24 weeks. The
benefits of the drug were extrapolated using a
state transition model (Markov process) to
examine the progression through different disease
states (mild, moderate and severe) and care
settings (community and nursing home). The
model was populated using trial data, longitudinal
databases on disease progression and health state
utilities for the seven states from observational
data. Direct medical, non-medical and indirect
costs were based on previous published analyses.

In this study, 10,000 Monte Carlo simulations are
undertaken to establish the probability distribution
for the INBs of treatment, which is done for
different time horizons ranging from 24 to 210
weeks. The EVPI for partial sets of parameters is
estimated by reanalysing the model holding the
parameter of interests constant at their expected
value (method 1, see Chapter 7). The EVI
approach takes a societal perspective using a
central estimate for the willingness to pay
US$50,000 per QALY and conducting analysis on
values ranging from US$1000 to US$100,000.

One of the most significant aspects of this paper is
the detailed discussion of the methodologies for
selecting prior distributions for the uncertain
parameters, which were described in Chapter 7.

Results
The analysis shows that the new treatment
becomes cost-effective when cost and outcomes are
considered beyond 54 weeks, although the
uncertainty around the results increases as the
time horizon of the analysis increases. For the
modelled period of 210 weeks (4 years) the results
are presented as a cost-effectiveness acceptability
curve. For a MAICER of US$50,000, the
probability that donepezil is cost-effective is
0.6796, meaning that the error probability that
the new treatment is not cost-effective is 0.3204,
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which is greater than the conventional
benchmarks of 0.05 or 0.025 used in both
Bayesian inference and traditional frequentist
statistics. 

Claxton and co-workers97 then estimate the
expected costs of not adopting donepezil on the
basis of statistically insignificant estimates of cost-
effectiveness, which are US$1220 or 0.0244
QALYs foregone for each individual patient. 
When calculated in terms of the US population 
for the next 4 years, the expected loss would be
US$164 million or 21,279 QALYs foregone. 

The results of the EVPI per patient at different
time periods show that the value of information
over a short time horizon (24 weeks) is very small,
but rises as the uncertainty about the extrapolated
effect of donepezil increases across the time
horizon considered. Assuming a MAICER of
US$50,000 and a time horizon of 210 weeks, the
EVPI is US$339 million.

The partial EVPI results show that the highest
benefits from further research are most likely to
come from data describing efficacy duration
(US$270 million), RR ratio beyond 24 weeks
(US$93 million), efficacy within the existing trial
period (US$84 million), and the dropout rate
(US$39 million). The authors stress that the
partial EVPI is not additive across the individual
EVPIs for each parameter because there are joint
effects within the model.

Discussion
Claxton and colleagues97 claim that the EVI
approach answers nine different questions
surrounding research priority and design:

� Is additional research in Alzheimer’s disease
potentially cost-effective?

� Are the estimates of the model inputs adequate?
� For which model inputs would more precise

estimates be most valuable?
� Is experimental design required for subsequent

research?
� If so, which end-point should be included in

any future clinical trial?
� What is the optimal follow-up period?
� What is the optimal sample size?
� How should trial entrance be allocated between

the arms of the trial?
� What is the value of this proposed research?

Discussing the results of the EVI analysis, the
authors note that all of the important variables
identified by the partial EVPI analysis are liable to

selection bias, so an RCT would be required to
collect such data. Additional research on other
parameters, such as baseline transition
probabilities, direct costs or utility values, may be
more efficient because an experimental trial
design is not required and the associated data
collection costs may be lower.

More specific to the design of an RCT, it is noted
the exclusion of any end-points will always reduce
the benefits derived from further research, but
those losses may be balanced by an accompanying
reduction in the fixed and marginal reporting
costs of sampling. Claxton and co-workers97 also
point out that EVI methodology provides an
empirical solution to the debate regarding large
clinical trials versus trials with economic content,
identifying circumstances where large and simple
clinical trials may well be efficient, as well as cases
where trials with economic end-points will be
required. It is also suggested that the EVI
approach is useful in identifying relevant
alternatives in patient management, as the
optimal sample allocation is based on the
marginal benefit and the marginal costs of
allocating patients to potential interventions. If a
particular intervention is shown to be inefficient,
then that alternative can be excluded from the
research process.

Claxton and co-workers97 conclude that, given the
requirements of the US Food and Drug
Administration for health economic claims to be
“sufficiently substantiated” through the use of
“competent and reliable scientific evidence”, the
EVI approach aids the design and conduct of
research, as well as the setting of research
priorities and the regulation of new technologies.

EVPI in liquid cytology for
cervical screening100

Methods 
This paper was undertaken to help NICE to
establish the likely cost-effectiveness of the new
liquid cytology techniques for cervical screening.
The report describes a central estimated value for
every parameter within the model, together with
maximum and minimum values for 32 key
parameters. A mix of published literature evidence
and personal communications was used to identify
the central estimates and plausible range for each
parameter. 

Both full and partial EVPIs are presented. The
relevant population is assumed to include 100,000 81
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new women joining the screening programme at
the age of 18 years each year for the next 5 years.

The two-level sampling approach (method 3, see
Chapter 7) to the estimation of partial EVPI is
used, whereby the value of the parameter of
interest is sampled from its plausible range. A
simulation is then run allowing all other
parameters to vary, and the EVPI is estimated. A
second value for the parameter of interest is then
sampled and again the simulation is run allowing
all the other parameters to vary. This process is
repeated for 1000 samples of the parameter of
interest, and the mean partial EVPI is obtained
from the distribution of EVPIs.

Three different scenarios were examined for
discounting costs and benefits, respectively; these
were (6%, 1.5%) (3%, 3%) and (6%, 6%).

Results
The results show that the EVPI is sensitive to the
discount rate, to the extent that, at a value of a life
year of £20,000, the overall EVPI is around
£200,000 at discount rates of 6% for costs and
1.5% for benefits, while the EVPI would approach
£2.8 million if a discount rate of 6% were adopted
for costs and benefits.

The EVPI for each parameter using (6%, 6%)
discount rates and a threshold cost-effectiveness of
£20,000 per life year gained show that the most
important parameter is the marginal cost for a
liquid cytology sample (this was assumed to be
£3.50 with a plausible range of £0 to £7). The
estimated partial EVPI was 2.4 million. The
second most important parameter is the
proportion of inadequate samples, which has an
EVPI of around £900,000. All of the parameters
had an EVI below around £600,000.

Discussion
The EVI analysis is used primarily as a technique
for sensitivity analysis. The methodology clearly
shows the prime causes of uncertainty in the model.

The clinical-effectiveness and
cost-effectiveness of machine
perfusion versus cold storage of
kidneys for heart-beating and
non-heart-beating donors101

Methods
This review was commissioned by the HTA R&D
Programme to explore the clinical and cost-

effectiveness of machine perfusion (MP) versus
cold storage (CS) in kidney preservation. This
work was commissioned as a systematic and rapid
review at the same time as the longer process for
commissioning primary research in the same field
was initiated. The study reports an analysis of the
expected value of further information, undertaken
with the intention of informing the design of a
prospective clinical trial.

Multivariate sensitivity analysis was conducted for
random variables within the model. Prior
distributions of model parameters were estimated
using a combination of published information and
expert clinical guidance. Where a log-normal or
normal distribution was assumed, the standard
errors were chosen to allow for wide uncertainty in
the model. Uniform distributions were assumed
for those model parameters where little prior
knowledge was available.

A systematic review was undertaken to identify the
impact of MP and CS on delayed graft function
(DGF) and graft survival in patients receiving
kidneys from heart-beating and non-heart-beating
donors. In addition, a Cox proportional hazards
model, based on the literature, was used to
estimate the impact of DGF on long-term graft
survival. The assumed population of interest used
within the model comprises both heart-beating
and non-heart-beating kidney transplant
recipients in England and Wales. Cost-
effectiveness planes were constructed to explore
the range of uncertainty surrounding the model
parameters. The overall EVPI was reported
alongside the partial EVPIs for each parameter
within the model, assuming a maximum cost per
QALY threshold of £20,000. 

A two-level Monte Carlo approach was used to
calculate the EVPI for parameters. The value of
each parameter of interest was sampled from its
plausible range, and a simulation was then run
allowing all other parameters to vary, thus
estimating the EVPI. This process was repeated for
1000 samples of the parameter of interest and the
mean partial EVPI was obtained. The EVPI for
heart-beating donors and non-heart-beating
donors was analysed separately. 

Results
The baseline results from the analysis suggest that
MP dominates over CS, which is cheaper and
more effective than CS, for both heart-beating
donor and non-heart-beating donor recipients;
however, key uncertainties in the assessment mean
that MP may also be dominated by CS. Wight and

Expected value of information case studies
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co-workers101 present cost-effectiveness
acceptability curves (CEACs). The probability that
this is the case is estimated at around 80% for
non-heart-beating donor recipients and 50–60%
for heart-beating donor recipients. The
population EVPI was estimated to be £28,750 for
heart-beating donors and £1,368,000 for non-
heart-beating donors. Partial EVI analysis
suggested that the percentage of patients with
DGF receiving CS kidneys, the risk factor for graft
loss, and in particular, the relative risk of DGF for
MP were the most important parameters for which
further information would yield the most value.

Discussion
This EVI study suggests substantial value in
further research on the clinical benefit of MP over
CS of kidneys for transplantation. Specifically,
studies should focus on establishing the effect on
long-term graft survival. Owing to the small
predicted effect size on graft survival, long-term
trials on this end-point may be infeasibly large.
Thus, a more practical approach may be to
undertake a short RCT focusing on the impact of
MP on delayed graft function; this, however,
should be supported by further work on validating
the link between DGF and graft loss.

EVPI in screening for inborn
errors of metabolism using
tandem mass spectrometry102

Methods
This review of the clinical and cost-effectiveness of
tandem mass spectrometry (MS/MS)-based
neonatal screening for inborn errors of
metabolism was commissioned by the NHS HTA
R&D Programme. Two previous systematic reviews
had been undertaken, but were not entirely
consistent in their conclusions. In particular,
controversy existed about the requirement for and
value of further research in this field. Economic
modelling was conducted to indicate the likely
effects of introducing MS/MS in the current UK
screening programme for medium-chain acyl-
coenzyme A dehydrogenase deficiency (MCADD)
and for phenylketonuria and the ability of this new

technology to screen simultaneously for other
conditions.

Probabilistic analysis was undertaken by assigning
prior distributions to represent the uncertainty
surrounding model inputs. A Bayesian approach
to analysing uncertainty was adopted. Full and
partial EVPIS were calculated, using two-level
Monte Carlo simulation, in order to estimate the
value of future research. 

Results
CEACs were constructed across a range of
thresholds. This analysis suggested that, given the
available evidence used in the model, there is a
high probability that using MS/MS for
phenylketonuria and MCADD screening combined
would be cost-effective even at relatively low
threshold values. Simulations were also run to
produce simple ‘cost-per life years gained’ and
‘incremental net benefit’ estimates for each of the
other main conditions. These ranged from £703
per life year gained for long-chain fatty acid
defects to £10,902 for tyrosinaemia.

The population EVPI was calculated for all model
parameters across a range of thresholds. Even at a
threshold of £30,000 per life year gained, the
population EVPI was estimated to be only £2,119.
These results showed that the most significant
parameters to affect overall cost-effectiveness are
the frequency or incidence of the condition and
the future health and social care costs related to
disabilities caused by a failure to recognise the
disease early. The EVPI analysis reported by
Pandor and co-workers102 also shows that another
major driver of the cost-effectiveness of screening
for metabolic conditions is the extent to which
specific disorders lead to significant avoidable
disabilities and the future resource costs that these
problems impose on the health and social care
sectors.

Discussion
The EVI analysis indicates that on the current
evidence base there is little economic justification
for further research into the potential effectiveness
of MS/MS in identifying MCAD deficiency and
phenylketonuria.





Overview
This chapter briefly summarises literature that is
of some importance to the topic but does not fit
neatly into the other chapter categories. It
includes three classes of literature:

� papers on R&D priority setting in commercial
(particularly pharmaceutical company) settings

� the mathematical modelling of biological
processes and its iterative use in trial design

� the role of direct simulation of clinical trials.

Commercial investment appraisal
approaches
There is a very small published literature on
modelling to inform commercial R&D, although a
high volume of unpublished modelling work
focusing on decisions about the R&D of pharma-
ceuticals has been undertaken. Three published
papers are reviewed in this section.109,110,117 The
review describes the methodologies and compares
them with the methods reviewed in earlier
chapters, as well as discussing the feasibility of
translating these commercial approaches to a
governmental or societal perspective.

An investment appraisal approach to
clinical trial design117

Methods
From the commercial perspective, Backhouse117

identifies the role of clinical trials as providing
access to a new drug’s intended market or
producing evidence of sufficient strength or
relevance to secure or enhance the use of a
product. Three main decision rules for the
adoption of a proposed trial are suggested.

� A trial of given design is worth conducting if it
yields a positive expected net present value
(NPV).

� The optimal choice of trial design, in terms of
factors such as sample size and primary end-
points is that which maximises the (positive)
expected NPV.

� When allocating funds to different studies
competing for a limited trial budget, the funds
should be allocated across potential trial designs

so as to maximise the expected NPV of the
overall investment.

The NPV of a proposed trial is defined as the
expected revenue minus the expected costs, which
is estimated on the basis of the following equations:

� the discounted cost of the trial (which is a
function of n = sample size and Q, the drug
volume used in the trial).

� three different demand functions.
– the desired demand function (a function of

drug price and other factors including, in
particular, the strength of available evidence)

– actual demand (a function of desired demand
and a diffusion or uptake factor over time)

– expected demand (a function of the expected
effect sizes for the product attributes, which is
in turn a function of sample size, significance
and power of the trial)

� revenue to the pharmaceutical company, which
is a function of the mean expected demand (the
aggregation of the expected demand of
different effect sizes of possible trials and their
probabilities of occurring), the price and the
period of sales.

The estimation of the expected demand, as a
function of the probability of alternative trial
results, requires a decision-analytic approach. The
company needs to estimate the expected outcomes
with respect to potential trial end-points and their
probability of occurrence. This method also
requires an estimate of the useful life of the
information provided by a trial.

The approach is illustrated with a simple example
of a proposed Phase IV trial comparing new drug
A versus existing drug B. There are two potential
trial end-points: X1 and X2. The performance of
the existing drug B has been well studied and it is
25% successful on end-point X1 and 75%
successful on end-point X2. Classical sample size
calculations are undertaken on the assumption
that the trial should only investigate endpoint X1

(to detect an absolute difference of 30%, with 90%
power and a 5% level of significance).

The investment appraisal approach considers the
NPV of conducting different size clinical trials 85
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comparing drug A with drug B with alternative
end-points (X1, X2, or X1 and X2). Prior
distributions are postulated for the improvement
of drug A on end-point X1 (mean 15%, range
+11% to 20%) and on end-point X2 (mean 5%,
range +1% to 10%). The desired demand function
assumes that proven success in meeting endpoint
X2 has a greater impact on demand than in
meeting endpoint X1, while success in meeting
both end-points is assumed to yield a 100%
market share for drug A.

Results
A larger sample size enables a more accurate
assessment of the true performance of drug A,
which creates a higher power for the detecting of a
significant difference correctly. Following this logic
and some algebra, the paper shows that as N (the
sample size) increases then the expected value of
the detected superiority of drug A over drug B on
dimension X1 rises to a threshold level (15.59%).
This, in turn, affects the desired demand function
and, hence, given parameters about discounting
and market adoption, the discounted revenue. As
N rises the discounted revenue rises to approach a
ceiling value. The trial costs, however, are linear
with sample size. The NPV of the trial therefore
reaches a peak and then begins to drop as no
extra-expected revenue is created from an even
larger sample size.

Given the parameters outlined, the maximum
NPV for a trial considering only endpoint X1 is
achieved at sample size N = 225 (maximum NPV
around £1 million). The traditional sample size
calculations required a trial of 125 patients per
treatment arm, which shows that although the
classically powered trial is worth undertaking it is
suboptimal in terms of the strength of evidence
produced and therefore the expected revenue.

If X2 alone is the clinical end-point of the trial
then the maximum NPV is £1.25 million and the
sample size required would be 400. However, if
both X1 and X2 clinical end-points are measured
within the trial then, because of the additional
strength of evidence, the expected revenue is
maximised at £4.1 million (four times higher than
the revenue with a trial on one of the single
clinical end-point dimensions) and the
maximising sample size is 425 per arm.

Discussion
Three main areas for further research are
identified. First, practical issues around the
description of the proposed RCT need to be
addressed, such as choice of time horizon, the

determination of the trial’s opportunity cost of
capital, and how to assign capital, production,
distribution, marketing and sales costs to
individual trials.

Secondly, difficulties in accurately estimating the
demand functions are raised. Specifically,
Backhouse117 comments on defining the role of
clinicians versus other decision-makers in the
product adoption process, the relative importance
of different types of product differentiation data to
different decision-makers, the nature of the
relationship between differences in product
characteristics and prescriber take-up, and factors
influencing product diffusion that are within the
control of the company. The likelihood that such
factors may be context specific forms a further
problem.

Backhouse117 suggests that there is considerable
benefit in an early analysis of the desired demand
function or the key parameters that affect
adoption and diffusion. This may well influence
the design and also the priority of trials with
different clinical end-point measures.

Finally, the ascertainment of prior distributions for
the expected end-point outcomes is cited as a
problem. One research-intensive solution is to
develop a ‘community of priors’, based on
alternative approaches to specifying prior
distributions, and to test the sensitivity of the
appraisal results to the choice of distribution.

Backhouse117 describes alternative applications of
the approach, such as the choice of trial design
parameters (e.g. the choice of comparators or the
duration of patient follow-up), to optimise the
design of late phase development strategies, or to
maximise the NPV of a company’s Phase III and
IV trial portfolio. Backhouse117 is, however,
pessimistic about the prospects for pharmaceutical
companies adopting the investment appraisal
approach, as the existing industry objective (for
clinical trials) is perceived to be securing
marketing approval, rather than boosting market
adoption.

Possible links to a societal perspective
This investment appraisal approach is similar to
the payback literature in that it calculates the
expected profit from undertaking the trial on the
basis of the probability of alternative trial
outcomes. It also uses some of the probabilistic
architecture associated with EVI approaches; for
example, prior probability distributions for the
effectiveness of the interventions.

Other related literature
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This approach does not directly consider the
potential cost-effectiveness of the proposed new
intervention. Indeed, the discussion of the analysis
suggests that the demand is a function of the
clinical difference discovered between the new and
existing therapy, rather than the cost of the new
drug. However, Backhouse117 suggests that the
approach might be used to evaluate the
incremental costs and benefits of including
economic data capture within proposed trials.

The comparison of private investment appraisal
approaches with those that adopt a societal
perspective (citing Detsky89 and Claxton and
Posnett98) is suggested, in order to identify
conditions under which societal and industry
objectives reach similar conclusions. Backhouse117

recognises that the degree of concurrence will
depend on the relative importance of cost-
effectiveness considerations in drug-prescribing
decision-making. In the UK, the increasing role of
NICE and cost-effectiveness in informing resource
allocation decisions suggest that societal and
industry objectives will draw ever closer together.

Some statistical issues in project
prioritisation in the pharmaceutical
industry109

Method
This paper focuses on commercial issues of R&D
prioritisation and considers that an NPV
approach, which accounts for the probability of
(R&D) success, the expected rewards if successful,
and R&D costs, should inform portfolio
management. The Pearson index (expected profit
divided by cost of development) is used to
optimise an R&D process that has a sequence of
stages. 

Senn109 notes the scale of research investment in
the pharmaceutical industry (annual expenditure
on R&D in 13 leading countries rose from
US$5 billion to US$22 billion between 1981 and
1991) and the importance of investing wisely (the
number of chemical entities declined from 66 to
40 between 1981 and 1993). He also notes the
increasing importance of the evaluation of the
cost-effectiveness of new drugs.

The central idea is that there may be projects with
the same overall probability of success and the
same overall reward if successful, but if projects
have different probabilities of failure at stage 1, 2
or 3 then the expected net value of the projects
will differ. A worked example concerning four
projects with the same expected reward but
different cost architecture is provided.

Results
The results of the hypothetical example are
presented in Table 10, which shows that, ceteris
paribus, projects with costs loaded further down
the R&D process, and with higher thresholds for
success earlier in the process, have a higher
expected value.

Senn109 develops a simple mathematical
description of projects that have N stages of equal
cost and equal probability of success, and proves
that a one-stage project is always less valuable than
the N-stage project. He extends this to assume a
cost of delay due to checking at each of the N
stages, and describes the trade-off between the
advantages of the “cost–probability architecture”
of the N-stage approach and the reduction in the
costs of delay from an all-in-one design. The
mathematics to find the optimum number of
stages for the project to increase the expected
value is shown.

Discussion
Faster drug development is not always deemed to
be better from a pharmaceutical company’s 87
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TABLE 10 Illustration of the Pearson index using four
hypothetical projects109

Project

Costs A B C D

Stage 1 3 3 1 1

Stage 2 2 2 2 2

Stage 3 1 1 3 3

Total cost 6 6 6 6

Probability success

Stage 1 0.8 0.4 0.8 0.4

Stage 2 0.6 0.6 0.6 0.6

Stage 3 0.4 0.8 0.4 0.8

Overall probability of 
success 0.192 0.192 0.192 0.192

Reward if successful 28 28 28 28

Expected development 
costs 5.08 4.04 4.04 2.52

Expected reward 5.376 5.376 5.376 5.376

Expected value 
(expected reward – 
costs) 0.296 1.336 1.336 2.856

Pearson index 
(expected reward/
costs) 0.058 0.331 0.331 1.133



perspective. Moreover, if regulations slow down
the R&D process they may encourage more
optimal use of information structures.

Senn’s109 discussion of the weaknesses of the
Pearson index relate to the commercial
environment, which may not be fully reflected in
the proposed approach. External factors may lead
to the abandonment of a project; for example, a
medical commission may decide that the
appropriateness of a class of products can never be
justified for a particular patient subgroup
(although the probability of such factors could be
incorporated into the prior estimates of the
probability of success).

In general, Senn109 presents an adaptation of the
payback approach from a commercial perspective,
although he clearly demonstrates the value of
multistage projects as opposed to a single-stage
project. This latter issue certainly has an
application in the field of governmental health
technology assessment, which has not been well
addressed in any of the existing literature.

The effect of pharmacoeconomics on
company research and development
decisions110

Methods
The purpose of this paper was to review the
rationale for integrating pharmacoeconomics into
R&D project selection and termination decisions
in the pharmaceutical industry.

Grabowski110 reviews “the new competitive
dynamics”, which includes increased assessment of
cost-effectiveness by funders of healthcare services,
and price discounting that can be necessary when
there are other cost-effective products already in
use. He describes seven sequential stages in the
R&D process at which decision-making under
uncertain conditions is required:

1. discovery programme in a particular disease
area

2. preclinical development of a promising
compound

3. first human testing
4. first efficacy testing in patients
5. large-scale clinical testing
6. regulatory submission
7. marketing launch.

Grabowski110 suggests an analysis of the current
treatment options to produce benchmark values
for the cost-effectiveness of existing therapies, as
well as to identify the key parameters that

influence cost-effectiveness. The cost-effectiveness
of the new drug can then be modelled,
incorporating different assumptions about the
efficacy, tolerability, pricing and formulation of the
new therapy. Such analyses inform the targeted
collection of data on this issue, and may indicate
that a product candidate is potentially highly cost-
effective. They could also lead to a re-estimation
of the projected market size and/or price for the
product and cause the company to assign a higher
priority status to the development project within
its overall R&D programme.

Results
A brief overview of this modelling approach in the
area of anti-neoplastic therapy for non-small-cell
lung cancer and cardiac transplantation is
provided, as well as two further short examples
where pharmacoeconomics have helped to shape
the R&D portfolio of the pharmaceutical company.
In the first case, a product was judged to have
equal efficacy to an existing market competitor, so
the R&D process was terminated because the price
of entry to the market was too low to make the
drug profitable. In the second case, although a
product was able to show a significant incremental
gain in efficacy over existing products, the gain
was not large enough to demonstrate cost-
effectiveness at the price level that would be
profitable on rate-of-return grounds.

Discussion
Grabowski110 recommends the use of decision-
analytic modelling to inform the continuation of
the R&D process at a much earlier stage than
immediately before Phase III trials. He also
suggests that cost-effectiveness modelling should
be used in conjunction with more traditional
economic modelling concerning returnable
investment analyses that incorporate cost, demand
and other relative competitive considerations.

To company scientists, R&D directors and
executives, the use of pharmacoeconomic analysis
as an integral part of the go/no-go decision may
be controversial because there is too much
uncertainty about the cost-effectiveness of a
product to make a decision using available data.
Grabowski’s response is that, at a minimum, the
early integration of economic analysis into the
strategic decision-making process will improve the
targeted collection of data in Phase III clinical
trials. In addition, the relative cost of such
modelling is likely to be small.

Grabowski’s recommendation that, in the
commercial sector, early cost-effectiveness
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modelling should be done alongside traditional
return on investment analysis110 is exactly
analogous to the idea that early modelling should
be undertaken on government-sponsored health
technology assessment in conjunction with
assessment of the costs and benefits of the
potential outcomes from the research. 

Summary
The identified commercial literature indicates 
that the private sector has addressed the issue of
the efficiency of conducting further research, and
it is likely that significantly more work in this area
has been undertaken, but is not in the public
domain. 

The general approaches described within the
identified studies are all variations on the
cost–benefit approach to the evaluation of
potential trials, which raise similar practical issues
to those described in Chapter 5. The main
contribution to this area is provided by Senn,109

through his explicit recognition and assessment 
of the value of splitting the research process 
into separate stages (although he does not
describe how the probability of success for 
the sequential trials could be estimated).
Thompson103 estimated the value of splitting 
a single trial into separate periods, while 
Senn109 proposes the implementation of the
cost–benefit approach at the start of the 
R&D process and defining separate 
probabilities of success at each distinct
development stage.

Mathematical modelling of
underlying biological processes
A systematic examination of the use of
mathematical modelling in the context of basic
science research is explicitly excluded from this
systematic review. However, in the course of the
review, an example of the potential power of
modelling in this area is illustrated through a case
study, and the links between this approach and
decision analytic modelling are considered.

For many years, mathematical modelling has 
been used to aid understanding of many 
disease processes and biological responses. 
Such modelling is often undertaken in the 
development of new pharmacotherapies, with
complex mathematical models of
pharmacokinetics and pharmacodynamics
becoming a more common feature of the drug
development process. 

There is a distinct body of literature dealing with
applications and methodological developments in
this field, and the interested reader is directed to
journals such as Mathematical Biosciences and
Journal of Mathematics in Biology. 

Illustration of the role of biological
processes modelling: case studies in
wound healing
There have been several mathematical studies in
the area of wound healing, an area that illustrates
some key features of the value of the approach
(although wound healing is not unique in this
regard). 

Gaffney118 reviews the role of mathematical
modelling in the development of quantitative
understanding of the wound-healing response and
the impact of the modelling work on trial
priorities and design. Gaffney discusses earlier
modelling studies covering wound healing in
general, and corneal epithelial wound healing in
particular.

Simplified models of the cell kinetics and
dynamics of a wound and the wound-healing
process are developed using observational data
from experimental wound-healing studies in the
sequence of papers above. The core of these
models is a mathematical description of factors
affecting the progress of wound healing,
including:

� cell density, which varies across the wound and
throughout the time of wound healing

� cell migration and attrition rates
� concentration of growth factors
� mitosis rates (the rate of cell division which

depends on both the cell density and the
concentration of chemical stimulants for mitosis
or growth factors).

The progress of these factors over the wound-
healing period is inter-related and, when
described mathematically, gives a system of
coupled, non-linear partial differential equations
that describe the wound-healing process. The
equations can be solved (either analytically or
numerically) to give predictions concerning
observable outcomes. 

The model predictions can be validated against
observed phenomena. The results of this
validation process inform future research
direction. Validation confirming the model
generates confidence in its continued use. Where
discrepancies are found, they can be used as the 89
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starting point for refining the model, either
incrementally or through reviewing the basic
assumptions of the model.

The following provides an illustration of the power
of this iterative validation approach to inform
future research. Dale and co-workers119 produced
a model of wound healing and were able to
validate the predicted speed of healing under
normal conditions. This model was then used to
make predictions of healing rates under different
concentrations of topically applied growth factor.
This acted as a basis for designing further trials to
test the impact of topically applied growth factor
and gave a rationale for defining experimental
dosage rates. Later, Gaffney and colleagues118

reviewed the Dale model,119 particularly the
relationship between the mitotic rate and the
distance from the centre of the cornea. They
found the predicted increase in the mitotic rate
towards the centre of the cornea to be counter to
newly observed data. This triggered a review of
basic assumptions in the model structure,
producing a series of refinements to reflect this
increased understanding.

Sensitivity analysis has also been used to identify
those parameters to which the healing
effectiveness is sensitive. For example, in the model
of collagen fibre formation during dermal wound
healing, a one-way sensitivity analysis identified
two sets of variables as the key parameters.120 (These
were the natural decay rates of latent transforming
growth factor-β, and the rates of activation of
procollagen I and III to produce collagen I and
III.) The paper found that there were few
experimental data for these parameter values and
their determination thus became an important
experimental goal. The construction of the
mathematical model thereby serves to enlighten
the understanding of the healing processes,
targets the continuing research process and
identifies key parameters for further investigation.

Summary
For many years, mathematical modelling has been
used in aiding the understanding of many disease
processes and biological responses. A systematic
examination of the use of mathematical modelling
in the context of basic science research is explicitly
excluded from this systematic review. However,
one example of this approach has been considered
to show the potential power of modelling in this
area. In these examples, the modelling approach
provides a clear mathematical description and
understanding of the factors and processes
involved in wound healing.

The models described above provide examples of
the iterative use of models as new data become
available, such that the validation process enables
an assessment and refinement of earlier models.
The applications also show the value of sensitivity
analysis in providing a detailed understanding of
the impact of uncertain variables. In these basic
science examples, modelling is an integral part of
the R&D process, helping to identify important
variables and hypotheses for experimentation and
providing the tool to synthesise new research
results with existing knowledge.

Mathematical models should not be viewed as a
direct alternative to economic decision modelling,
as the former can generally be used only to
describe the relatively short-term efficacy of
interventions. Such models are unlikely to provide
the scope for assessing the full economic impact of
interventions. The use of data produced by
models that incorporate knowledge about the
biological mechanisms of a disease or condition
can usefully inform model parameters for which
limited direct data exist.

Pretrial simulation of clinical
trials
Hale and co-workers121 describe the potential
impact of pretrial simulations in improving the
efficiency of the drug development process,
specifically through enabling a better
understanding of the way in which alternative
study designs and assumptions affect study
outcomes. The proposed use of simulation to
inform trial design is analogous to the application
of simulation in other technology-based industries
(e.g. electronics and aerospace), whereby the
robustness of a specified trial design can be
evaluated under a series of ‘what if?’ scenarios.
The models can incorporate data describing the
relationships between pharmacokinetic population
parameters, pharmacodynamic end-points,
enrolment and dropout rates, compliance rates,
target population characteristics, etc. Hale and
colleagues121 also state that the output from the
simulations can be analysed to provide an
understanding of the statistical properties of the
proposed study.

Krall and co-workers122 present work in progress
relating to the development of a central nervous
system (CNS) drug, with the aim of understanding
the application of simulation to the drug
development process. The first step requires an
understanding of dose–concentration relationship
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over time, and its link with an appropriate clinical
outcome (which can in turn be extrapolated to an
economic outcome). They analyse data from a
Phase I and II trial to estimate a population
pharmakokinetic and pharmacodynamic model of
the drug. The ‘aptness’ of the resulting
pharmacokinetic/pharmacodynamic model is
tested against Bayesian estimates of drug
concentrations and scores on the Brief Psychiatric
Rating Scale (the measure of clinical effect).

The second step incorporates the
pharmacokinetic/pharmacodynamic model into
the structure of a proposed trial design. In the
CNS drug example, a Phase III trial has already
been implemented, and it is intended to simulate
this trial and compare the results of the simulation
with the actual trial. The final step in the
simulation process involves the repeated analysis
of the model, from which the simulated data can
be analysed as if from a real trial. Such analyses
can inform power calculations, as well as test the
robustness of the baseline assumptions.

Various examples of the use of simulation to test
different options for the design of clinical trials
are cited, such as alternative dose-ranging designs,
concentration-controlled designs and effect-
controlled designs.121 At present, however, the
value of clinical trial simulation is unproven. At a
minimum, Krall and colleagues122 believe that the
simulation process proves the value of being
explicit about the assumptions made regarding
trial design. A key area in the acceptance of
simulation as a trial design tool is the
development of a rigorous validation framework,
which would build confidence in simulation
predictions. As for any proposed tool for
informing trial design, it may be possible to
evaluate the prospective use of simulation in cases

where simulation models are developed before the
start of a trial, but where the trial is not informed
by the simulation. The simulation-informed trial
design could then be evaluated in the light of any
deficiencies noted in the applied trial design.

Summary
Simulation models described in the clinical trial
simulation literature synthesise mathematical
models of underlying biological processes with
assumptions regarding the use of potential drugs
in a clinical trial setting (e.g. the target population
and compliance rates). The same models could be
adapted to accommodate economic outcomes by
extrapolating from the specified clinical end-
points, and hence to inform either the
cost–benefit or the EVI approach to trial design
and prioritisation.

The simulation models replicate patient-level data
from the simulated trial, which enables the
estimation of confidence intervals around every
possible trial result. The usefulness of such
detailed predictions in estimating the economic
impact of a trial is dependent on the assumed
decision rule regarding the uptake of interventions
based on the trial results. If the assumed decision
rule is to allocate the intervention with highest
expected net benefits (as in the applied EVI case
studies), then the additional information does not
add to the analysis.

If the decision rule is dependent on the new
intervention achieving a minimum clinical
difference at a certain level of significance (as has
been assumed in some applications of the
cost–benefit framework), then the use of patient-
level simulation models may provide a more
accurate assessment of the impact of a proposed
trial.





Objectives
The aim of this review has been to clarify the
potential role of modelling in planning and
prioritising trials and other forms of primary
research studies to support the process of health
technology assessment. Health technology
assessments generally examine both the clinical
and cost-effectiveness of alternative interventions
and are aimed at answering not whether an
intervention works at all, but rather whether it
should be used in practice. Funds for the
evaluation of healthcare technologies are limited
and programmes of research should be developed
on the basis of the relative value of alternative
evaluations. The original call for proposals
identified five questions:

� In what ways can modelling extend the validity
of trials (e.g. through adding to their
generalisability)?

� What characteristics of the trial/technology
affect the success of modelling?

� What aspects of trial design can modelling
feasibly inform?

� How feasible, costly and beneficial might
modelling be as part of the prioritisation
process?

� How far can modelling substitute for low-
priority trials?

This chapter brings together the discussion of the
issues raised throughout the report and each of
the above questions is addressed.

What do we mean by ‘modelling’?
This review has focused on mathematical modelling
in health technology assessment and specifically on
decision-analytic modelling; that is, modelling the
choice between alternative health technologies. 

Most decision-analytic models in health
technology assessment describe pathways through
health states and events that the population of
interest can experience. Thus, mathematical
models are used to describe the natural history of
a disease and how that natural history is affected
by the technologies under assessment. The models

are used to estimate health outcomes, resource
usage and costs. Thus, models can be used to
compare the clinical and economic effectiveness of
the competing technologies.

Decision analysis is used in analysing such disease
models. Decision analysis can be used in
addressing commissioning decisions, such as which
of two competing technologies should be used in
practice. Furthermore, decision analysis techniques
can be used to investigate the uncertainty
underlying such a decision.

Many mathematical techniques are available and
used in modelling for health technology
assessment. The three most common are: decision
analysis, state transition or Markov models
(Markov chains and Markov processes) and DES.
These techniques are not mutually exclusive;
indeed, within one technology assessment it is
possible to use decision analysis to evaluate a
Markov disease model implemented with a DES.
The appropriate technique depends on the
characteristics of the treatment under evaluation. 

Obtaining the relevant literature
The search strategy for the review included 12
electronic databases, citation pearl growing,
handsearching of relevant journals, and direct
contact with experts in 258 international and UK
health technology assessment agencies. Although
601 full papers were reviewed, only 71 of these
were directly relevant (either methodological
studies or case studies) to the topic of modelling
to inform the planning and prioritisation of
clinical research.

The review also provided a valuable opportunity
to inform the conduct of systematic reviews of
methodology topics. The principal conclusions
were as follows.

� Methodological reviews should undertake an
iterative, systematic approach to literature
searching, in particular incorporating citation
pearl growing, rather than relying on
traditional indexing methods of medical
literature searching. 93
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� Structured abstracts in methodology papers are
currently rare but should be encouraged.
Indexing for modelling methods should be
improved.

� Research into structured methods for
methodological reviews should be explored,
potentially drawing from meta-ethnographic
methods developed in the social sciences.

For more detail the interested reader should refer
to Chapter 2.

The role of modelling in health
technology assessment
Chapter 3 examines literature reviewing the use of
modelling within the health technology
assessment process in general. The conclusions
and recommendations drawn from this chapter as
they relate to the specific research questions are
discussed below. 

General benefits of modelling in health
technology assessment
The review has systematically examined the
discussion of the pros and cons of modelling. The
conclusions are summarised in that models
provide:

� a formal structure for addressing a decision
problem

� a method for synthesis of evidence from a wide
range of sources

� a framework enabling assumptions and data
sources to be made explicit, transparent and
thus open to debate

� the ability to explore the sensitivity of the
results and recommendations to underlying
uncertainty and to variations in assumptions.

In what ways can modelling extend the
validity of trials (e.g. through adding to
their generalisability)?
The conclusions show that modelling enables
generalisability in several ways and the following
roles were found to be commonplace:

� generalisation from specific trial populations to
the full target group for an intervention and
vice versa

� generalisation to other settings and countries
� extrapolation of trial outcomes to the longer

term
� extension of intermediate end-points, such as

reductions in cholesterol levels, to final
outcomes, such as coronary events and mortality

� extension of the analysis to the relevant
comparators, by incorporating data from
external sources so that the evaluation analyses
the full lifetime effects of both the intervention
of interest and its comparators in practice

� extrapolation to extend survival curves beyond
the time horizon of experimental or
observational research

� adjusting for prognostic factors in trials
� synthesis of primary research results; for

example, by combining trials (including meta-
analysis), observational studies and routine
resource use data.

What characteristics of the
trial/technology affect the success of
modelling?
The conclusions from the review do not suggest
that there are any particular characteristics of a
trial/technology that affect the success of
modelling. Modelling is applied successfully to the
full range of health technologies. Given the
necessary level of analytical expertise, there are no
theoretical distinctions between alternative disease
areas. However, there are three related questions.

What characteristics of the trial/technology
generate a greater need for modelling?
The review clearly identifies certain forms of health
technology for which modelling may offer greater
benefits as an evaluative tool. These include
screening and diagnostics and other areas where
typically the impact of the technology occurs over a
particularly long duration or where key
disease/technology characteristics (e.g. precancerous
growth rates) are not directly observable. Long lead
times for assessments can mean that a technology
may become obsolete before the completion of
long-term research and modelling the long-term
impact of the technology is a necessity. Similarly,
modelling is also of particular benefit for rapidly
changing technologies.

What characteristics of the trial/technology
generate a need for more complex modelling?
More complex models may be required for
technologies with complex patient pathways, large
numbers of different associated health events,
many comparators and a large but disparate
evidence base for the effectiveness of existing
technologies and their cost in practice.

What characteristics of the evidence base for a
technology affect the success of modelling?
If a new technology has only an emerging
evidence base, such as a small case series or even
subjective judgements (as opposed to large RCTs),
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then a model-based preliminary evaluation is less
likely to be considered as a valid method to inform
adoption of the technology in practice. This issue
has a different impact when the modelling is used
to inform the design of further primary data
collection; that is, future research. Quantifying the
uncertainty in the evidence base is then crucially
important in deciding whether and what further
research is needed.

Similarly, if for a class of technologies there is
significant uncertainty in linking surrogate and
final end-points, this may well lead to differential
uptake rates of modelling analyses by decision-
makers considering adoption of the technology in
practice. Again, this example has a different kind
of importance when the modelling is used to
inform the design of further research. The
modelling may well identify further research on
the relationship between intermediate and final
end-points as crucial, rather than further short-
term comparative trials measuring only the
intermediate end-point.

The principal conclusion is that a limited evidence
base will reduce the success of modelling, if the
criterion for success is the usefulness of the model
in deciding on the adoption of the technology in
practice. However, if, as is the case in the context
of this review, the criterion for the model’s success
is its usefulness in helping to decide on further
research, then a limited evidence base is a fact of
life and provides the key source material to
describe the current uncertainty.

What aspects of trial design can
modelling feasibly inform?
The review concludes that standard cost-
effectiveness modelling and sensitivity analysis can
inform four aspects of research design in
particular:

� Identifying key parameters for further
investigation: once a cost-effectiveness model
has been developed, one-way sensitivity analysis
and scenario sensitivity analyses indicate the
importance of input parameters by examining
the stability of the model results when the value
of the parameter is varied across its plausible
range. These approaches, however, can
overestimate the sensitivity of model results and
give misleading rankings for key parameters.

� Specifying the minimum clinical difference
required for sample size calculations for a
proposed trial: threshold analysis can be used
determine the minimum clinical difference for a
technology to be economically acceptable and

then traditional statistical methods can be used
to calculate the implied study sample size. 

� Deciding on the required duration of a
proposed trial: the estimation of the threshold
clinical difference can also influence the
duration of a trial because it has implications
for the period required to observe the necessary
differences. Alternatively, if a validated model
enables the confident extrapolation of surrogate
end-points to final end-points then the duration
of a trial may be reduced.

� Defining the population characteristics for a
proposed trial: models can also be used to
explore potential differential effects of a new
technology across different population
subgroups and thus to define target population
groups for a trial.

Modelling in health technology
assessment: indications of a role in the
planning and prioritisation of trials
There exist many applications of health economic
modelling within the technology assessment
literature. A subset of these explicitly claims value in
informing research design and prioritisation, and
this role is supported within the methodological
literature. The majority of these case studies use
one-way, multiway or threshold analysis towards this
aim. However, a comparative methodological study
has identified crucial weaknesses in these methods
when applied for these purposes. Further analytical
methods specifically focusing on trial design and
prioritisation are therefore required. These
methods are the subject of Chapters 6 and 7, and
conclusions and recommendations are detailed
below.

Good practice guidelines and
critical appraisal of modelling in
health technology assessment
One of the major criticisms of modelling studies
has been the lack of transparency in many peer-
reviewed publications concerning models. This,
together with the potential for bias, intended or
accidental, in the model development process, has
led to much debate over the value of modelling
studies. The ability to be able to distinguish ‘good’
modelling from ‘bad’ is crucial to all of the
research questions under the scope of this review.
In particular, however, the importance of robust
and valid modelling techniques is fundamental to
the last two questions: “how far can modelling
substitute for low-priority trials?” and “in what ways
can modelling extend the validity of trials?” In terms
of the question “how far can modelling substitute 95
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for low-priority trials?”, from a decision modelling
perspective one can define a low-priority trial as
one for which the research results would have a
low likelihood of affecting the specific decision
problem. Similarly, the question “in what ways can
modelling extend the validity of trials” explicitly
asks how far modelling can be valid in extending
and generalising trial results. The reliance that
can be placed on the results from modelling studies
is clearly a fundamental issue in its acceptability as
a basis for decision-making in these areas.

� There is considerable consistency between all the
identified studies that have published guidelines
for critically appraising modelling studies in
technology assessment. This is especially
noteworthy considering the time lapse of 15 years
between the early Eddy study1 and the consensus
statement formulated during the Consensus
Conference on Guidelines on Economic
Modelling in Health Technology Assessment.74

� All of the guidelines recognise the problems of
generalisability when considering critical
appraisal of modelling studies. They refrain
from setting down detailed prescriptive
checklists such as may be found in checklists for
reporting statistical meta-analyses or clinical
trials. Their approach is to identify a set of
principles of good practice in undertaking and
reporting modelling studies. 

� A wide range of modelling methodologies may
be appropriate under different circumstances to
address different problems. It is not feasible to
construct a prescriptive all-purpose toolkit that
strictly defines appropriate methodologies for
use in any given circumstances, although
Sonnenberg and co-workers36 have defined
general conditions where decision trees, Markov
models and simulation models may be
appropriate.

� In the area of sensitivity analysis, much
methodological development has been
undertaken and the use of stochastic
(probabilistic) sensitivity analysis is gaining
popularity. However, no consensus on a
prescriptive approach to sensitivity analysis has
yet been reached. The recent HTA review
presents an excellent starting guide,82 although
it is not comprehensive.

� Eddy’s four levels of validation provide the
benchmark for validation of modelling studies.1

The four levels are: 
– expert concurrence
– internal validity
– predictions agree with non-source data
– predict–experiment–compare.
Again, however, the precise implementation of

these validation levels is not defined because of
differences in the context, policy question and
data availability for alternative models. 

� The focus of the critical appraisal guidelines is
towards transparency and explicitness in
reporting of modelling studies. There are
specific domains where this transparency is
essential, in particular:
– the modelling methodology used
– the structure of the model
– the sources of data, including subjective

judgement, used to populate the model
– validation of the model
– analysis of uncertainty or sensitivity analysis

of key outcomes.
� The need for transparency and explicitness may

be compromised by the space limitations of
published articles. There are often too few
words, tables and figures to present a
sufficiently complete picture of a typical
modelling study. It is recommended that
sufficient information to support peer review
should be made available to reviewers. If
necessary, this should be included in a
supplementary report or technical appendix. 

� In reviewing a modelling study it is necessary to
review both the technical application of the
modelling methods used and how well the
underlying structure of the model reflects or
incorporates known disease- or technology-
specific factors. For this reason it is necessary to
have both clinical and modelling input into the
peer-review process and advisable for this to be
coordinated. 

The current place of modelling in
research prioritisation 
Chapter 5 reviews the literature on approaches to
research prioritisation, with a specific focus on the
use of quantitative modelling. The review,
reinforced by a survey of health technology
assessment organisations, suggests that there is
little use of formal modelling in current health
technology assessment prioritisation processes.
There has also been very little applied research
examining the feasibility and value of
implementing mathematical modelling within a
health technology assessment prioritisation 
process.

There have been several attempts to produce
quantified scoring systems for weighting sets of
subjective and quantitative criteria to assess the
priority of research studies. These scoring systems
would not come under the definition of models
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considered by this review and are essentially
subjective or arbitrary in the weights attached to
the criteria involved. In general, prioritisation is
based on the informed views of expert panels of
decision-makers.

There is, however, general agreement on the
criteria for prioritising research projects. These
criteria can be reduced to three broad questions:

� How big is the problem? 
� How likely is the assessment to make a difference? 
� Are there any ethical, legal and social issues? 

Modelling approaches would generally lay claim
to informing the first two questions; the third is
more likely to be considered separately from
clinical and economic components.

Pilot studies have been undertaken to investigate
the feasibility and impact of using health
economic models in the prioritisation process. The
main reasons cited for not using modelling
currently are: the resources required to analyse
many research projects, difficulties in obtaining
reliable data to populate a model, the potential
for spurious results given that assumptions will
need to be made and, finally, difficulties
quantifying the likely evolution of a technology.
Potential benefits for a modelling approach are
cited in terms of explicitness of the prioritisation
process and improved decision-making. 

Modelling the likely consequences
of proposed research: the
cost–benefit or ‘payback’
approach
A summary of the payback
methodology
Chapter 6 reviews methodological and case
studies, which attempt to analyse the payback or
costs and benefits of a specific trial. Some of these
studies are prospective, in that the trial has not yet
been done, whereas others are retrospective, where
the actual impact of the real trial results is being
evaluated to assess its payback.

The review concludes that proponents of this
approach are in general agreement on the
framework required.

This framework requires the comparison of the
costs and benefits of undertaking a predesigned
research project with the costs and benefit of not

undertaking further research. There is broad
agreement on the general approach to estimating
the likely consequences of research:

1. List the possible results of the proposed
technology assessment.

2. Attach a prior estimate of the likelihood of each
possible research result.

3. For each possible research result estimate the
uptake of the intervention of interest and of the
competing interventions; that is, the pattern of
resource allocation between the interventions.

4. Quantify the health benefits and cost
consequences of each of these resource
allocation patterns.

The estimation of the consequences of no further
research involves only steps 3 and 4; that is,
predict the future resource allocation between the
competing interventions in the event of no further
research, and then describe the benefit and cost
consequences of each such resource allocation
pattern.

The approach is decision analytic in the sense 
that it considers the choice between: (a) do 
this specified research and (b) do no further
research.

The costs of conducting the research itself are
clearly included. Also important are the costs of
the intervention allocation decisions made in the
absence and presence of the proposed research.
The benefits of research are defined as the
improvements in the health of the relevant patient
population owing to better informed resource
allocation decisions. In the case studies, these
health benefits are generally converted to a
monetary value on the basis of the maximum
valuation of the unit of health benefit (e.g. a
QALY), which enables the estimation of the net
benefits (benefits minus costs) of the research.

Advantages and limitations of the
payback methodology
The review concludes that the advantages of the
approach include the following.

� It is an intuitive approach; it answers the
question one would expect to ask regarding the
value of further research: do the expected
benefits of the research outweigh the expected
costs?

� It is also intuitive in its application, in that the
results of the research are estimated, followed
by analyses of the implications of the alternative
research results. 97
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� The approach also has the advantage that it has
been piloted in a series of case studies and in
particular in a real research prioritisation
context, which found that the approach could
be operationalised for approximately 70% of 25
topics considered.

However, the review also identifies both practical
and theoretical problems with the application of
the approach.

� First, there are debates concerning the
specification of possible outcomes of a trial. The
simplest case studies, including the pilot
discussed above, specify just two possible results:
the new intervention is either proved (cost-)
effective or not. Other studies allow for the
possibility of an inconclusive result, while it is
also an option to consider alternative results in
different subgroups. Different specifications can
and do give different results for the value of the
trial.

� Secondly, there are practical concerns with
specifying the probability of each possible
research result occurring. In the identified case
studies, the sources for such estimates ranged
from the use of arbitrary probabilities (e.g. 50%
success, 50% failure), through published
probabilities of success across a sample of
clinical trials, to non-specified sources. None of
the case studies identified based their
estimation of the prospective trial results on
data specific to the trial being assessed. This
aspect of current practice in implementing the
approach is the most likely to invalidate the
outcome of the analysis. It should rarely be the
case that analysts are completely uninformed
about the likely outcome of a trial, as data are
usually available from pretrial research phases,
and a well-designed (frequentist or Bayesian)
trial should be informed by sample size
calculations that include estimates of the
anticipated effectiveness of new technologies.
Such data should always be used to inform the
relevant parameter values within the
cost–benefit approach.

� Thirdly, methods vary significantly for
quantifying the uptake of the alternative
technologies. In the case studies, methods
range from over-simple (e.g. assuming 100%
uptake of trial results), through describing
uptake scenarios or undertaking surveys of
practitioners on changes in practice as a result
of different outcomes from the trial, to much
more complex economic models (e.g. specifying
demand functions for a drug as a function of

alternative treatment characteristics including
trial end-points, costs and a diffusion rate
towards a stable demand level). 

� Fourthly, the expected lifetime of the
technology is difficult to predict. Indeed, only a
couple of the applied studies attempted to
define this variable, and no details of the
assumed time horizon were provided.

� Finally, there is a more fundamental problem, in
that this approach estimates the net benefits of
a predesigned research project; a position that
implicitly assumes that the proposed research
has been optimally designed. The optimality of
a research design can only be proven in this
framework following the comparison of the
costs and benefits associated with a
comprehensive set of alternative research
designs.

The payback methodology is discussed in relation
to the specific research questions below.

What aspects of trial design can modelling
feasibly inform?
As noted above, the payback method presupposes
a specific trial design; this methodology therefore
does not explicitly address this issue. Specific
applications, however, have focused on its role in
informing the sample size of trials.

How feasible, costly and beneficial might this
payback modelling approach be as part of the
prioritisation process?
The approach has been attempted on occasions
and although it has not achieved a proven track
record of success in implementation, it does have
potential feasibility. There are no published results
concerning the cost of implementing the
approach. The benefits are unproven but are
conceived by many commentators as increased
explicitness of the prioritisation process and
improved decision-making.

The issue of whether sensitivity analysis should be
applied to this prospective evaluation of a
proposed technology assessment is important.
Incorporating sensitivity analysis begins to move
towards an approach that analyses the uncertainty
in the expected benefit and tends towards the 
EVI approach, which is discussed in the next
section.

The primary requirement for further research into
payback methods is the implementation of
stochastic sensitivity analyses methods within
exemplar case studies.



99

© Queen’s Printer and Controller of HMSO 2003. All rights reserved.

The EVI approach: informing
both the design and prioritising
of research studies 
Summary of EVI methods
Chapter 7 describes the methods for the EVI
approach, while Chapter 8 charts the evolution
and development of the approach by reviewing
relevant methodological papers and case studies.

The review concludes that the rationale for the
EVI approach is coherent and that the framework
for undertaking an EVI analysis is agreed upon by
all authors. 

The EVI approach requires the development of an
economic model comparing the intervention of
interest with its relevant comparators. The
variables within the model must be assigned
probability distributions to describe their
uncertainty. This is followed by an analysis of the
expected INB of the interventions [λ * (QALY
difference) – cost difference] and selection of the
best to make a baseline decision. However, because
there is uncertainty in the variables, the method
also analyses the probability that the intervention
not selected (given current information) could
actually be the best. The benefits lost by not
selecting the true best intervention given current
uncertainties are calculated and known as the
expected opportunity loss. Given the expected
numbers of people in the system and the likely life
span of the interventions, the monetary value of
perfect information is calculated. This is measured
by the reduction in expected opportunity loss if
one had absolute certainty about the value(s) of
the parameter(s) concerned. The method can
estimate the value of further research overall and
on individual parameters.

EVI analyses usually proceed in a sequence as
follows.

1. Overall EVPI: this answers the question “how
valuable would we expect it to be if we could
obtain perfectly accurate information on the
true value of all of the current uncertain
random variables in the decision model?” This
is the overall expected value of perfect
information.

2. EVPI for particular parameters or partial
EVPI: this answers the question “how valuable
would we expect it to be if we could obtain
perfectly accurate information on the exact true
value of a specific chosen parameter or set of
parameters in the decision model?” This is the

expected value of perfect information for
particular parameters.

3. EVSI for particular parameters: this answers
the question “how valuable would we expect it
to be if we could obtain further sample data of
a particular size on a specific chosen parameter
or set of parameters in the decision model?”
This is the expected value of sample
information for particular parameters.

4. ENBS for particular parameters: this answers
the question “what would be the net value of
further sample data on a specific chosen
parameter?” It is the EVSI for the parameters
minus the costs of the data collection. This is
the expected net benefit of sample information
for particular parameters.

There have been debates on the methods for
calculating EVPI for parameters, but these have
largely been resolved. Analytical solutions have
been formulised for instances where the INB is
normally distributed. In the general case, the
overall EVPI can be calculated numerically using a
one-level Monte Carlo simulation. This requires
only a small step from the generation of the CEAC
representation of uncertainty and constitutes a
minimum recommendation for the presentation of
uncertainty in future modelling assessments for
health technology assessment prioritisation.

Numerical approaches for estimating the partial
EVPI for parameters have been defined and can
be implemented in relatively simple economic
models. Further research is required in the
development of approximation methods, for
instance meta-modelling, or efficient sampling
algorithms to enable the general application of
EVI methods.

Methods for calculating EVSI for parameters are
more complicated because they require the
revision of prior probability distributions to reflect
the likely impact of further data collection of a
specified sample size. Existing case studies have
made assumptions that the uncertainty in net
benefit is normally distributed and that all of the
parameters would be measured in the sample data
collection. In this restricted case there is an
analytical formula to calculate the total EVSI.

In the more general case a two-level Monte Carlo
simulation similar to that for EVPI for parameters
will be required. The key to revising the prior
probability distributions is in estimating the
expected posterior variance in the parameters of
interest following additional sample information.
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This is possible for certain types of distribution.
Further methodological research in this area is
required.

Case studies using more general methods to
calculate EVSI should be a priority for the
analytical community.

Advantages and limitations of the EVI
methods
In reviewing the literature there is a consensus on
the advantages of the EVI approach. It is
concluded that the main advantages are as follows.

� It is logical and coherent. The value of
undertaking further research is directly related
to its impact on technology commissioning
decisions and the consequential health and
economic benefits.

� Quantifying the value of research overall: the
EVI approach quantifies the maximum
potential value of research on the parameters
concerned. In particular, this allows comparison
across disease areas.

� It helps one to decide which specific uncertainties
are important and quantifies the uncertainties
in absolute rather than relative terms.

� The estimation of the full and partial EVPI has
advantages over traditional forms of sensitivity
analysis. This is because it answers the question
“how likely and with what impact do parameters
affect the conclusions of an assessment?”, rather
than the simpler question “how much do
parameters affect results?” Empirical
comparisons find that conventional sensitivity
analyses tend to overstate the sensitivity of model
outputs to variation in input parameters and can
lead to misleading rankings of uncertainties. 

� The EVI approach does not require explicit
decisions relating to the definition of possible
research outcomes, or the prediction of the
long-term costs and benefits associated with the
defined patterns of uptake of technologies. This
is because the underlying tool – a stochastic
decision-analytic model that describes the costs
and benefits of competing technologies –
already incorporates both the possible research
results (within the description of probability
distributions for uncertain parameters) and the
long-term costs and benefits (because they are a
part of the cost-effectiveness model on which
the EVI analysis is undertaken).

� Selecting research design: the most important
advantage of EVI over the payback approach is
that it does not start from a prespecified
research design, but rather uses an iterative
approach examining the decision problem,

identifying key parameters, exploring possible
research designs and producing a valuation for
each proposed data collection. This enables the
research prioritising body to start from the
question “what research is most important in
this topic area?” rather than “what is the value
of this particular randomised clinical trial
design?” For example, an RCT is necessary to
establish efficacy but may not be necessary to
establish the utility associated with different
health states.

It is also concluded that various practical issues
and problems surround the application of the EVI
approach. They include the following.

� The problem of defining how many people will
face the choice of strategies modelled is exactly
equivalent in the EVI and payback frameworks.
The issue of prevalence of the disease area and
likely lifetime of the technologies concerned
before other options supersede them is an
important area. Applied EVI studies often make
simple assumptions on these issues. 

� Applied EVI approaches commonly use an
important and debated assumption with respect
to the uptake of the alternative technologies.
That assumption is the ‘adoption rule’, which
assumes that the intervention with the highest
level of expected net benefits will be provided
to the whole patient population. Critics say that
this is unrealistic and that diffusion of
technologies will be dependent on a variety of
factors. EVI proponents suggest either that this
criticism should be ignored (e.g. just because
healthcare organisations may not instantly
implement fully rational decisions does not
mean that research funding bodies should also
be irrational) or that the uptake issues are able
to be modelled explicitly within the EVI
framework, provided valid relationships or
assumptions on uptake can be constructed.

� The value of the EVI methodology hinges on
the acceptability of the objective function used
for decision-making in health technology
assessment. Existing methods and case studies
have used a simple INB function incorporating
direct healthcare costs and benefits measured
with generic quality-of-life instruments. Further
research is required on the definition of an
objective function that captures adequately the
issues of importance to decision-makers in
health technology assessment planning and
prioritisation, includes the aspects that can be
adequately quantified, and can be incorporated
into a process that supports the arbitration of
subjective judgement.
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What aspects of trial design can
modelling feasibly inform?
EVI analysis of economics models can be used in
the following areas.

Identifying key parameters for further
investigation
Partial EVPI analyses can identify key parameters
or subsets of parameters that impact on a
commissioning decision and can determine an
upper limit for research expenditure in these
fields. The partial EVSI analyses determine the
potential value of further finite sample data on
individual or sets of parameters. The ENBS
analysis takes into account the costs of research
and potential value of future research to
determine the technical efficiency of research in
different parameter subsets.

It should be noted that the results of these
different levels of EVI analyses may give differing
results; thus, the ranking of uncertainties from the
partial EVPI analysis is likely to be different from
the ranking achieved from the ENBS analysis. For
example, an EVPI analysis may indicate that
perfect information on the comparative efficacy of
two interventions had a greater potential value
than further information on resource usage, but
the high cost of undertaking an RCT to address
the efficacy issue compared with a relatively low
cost of undertaking further cost analysis may
mean that the costing research was more
technically efficient. 

Establishing an optimal sample size for proposed
research
ENBS analysis directly addresses the problem of
determining an optimal research sample size
based on economic criteria. It is intuitive that
increases in sample size have diminishing returns
in terms of additional information as the sample
size increases; however, the cost of a trial will
increase linearly with the size of the trial. The
ENBS analysis formalises this intuitive trade-off to
establish the economically optimal sample size. 

Influencing the required duration of a proposed
trial
The focus on undertaking research to identify
economically significant differences rather than
‘clinically significant’ differences is likely to 
impact on the proposed durations of many 
clinical trials.

In case studies where surrogate end-points are
available that are related to required final end-
points, an EVI analysis can determine the relative

value of potentially expensive long-term research,
focusing directly on final end-points, in contrast to
a coordinated programme of research focusing on
identifying the impact of a technology on
surrogate end-points together with research on
validating the link between surrogates and final
end-points. This impacts on the duration of
research. 

How feasible, costly and beneficial might
modelling be as part of the prioritisation process?
The EVI approach to the prioritisation of research
is more complex and requires more time and
resources than an implicit process. However, the
feasibility of undertaking such analyses has been
demonstrated within the NHS R&D Programme.
The review of liquid cytology screening for cervical
cancer undertaken on behalf of NICE,100 the
review of screening for inborn errors of
metabolism102 and an evaluation of kidney
preservation systems101 have all demonstrated the
feasibility of undertaking this type of analysis
within the typical time and resource constraints of
an R&D programme. This last case study is of
specific interest here, as the rapid review was
commissioned at the start of the NCCHTA process
for commissioning primary research. Thus, the
rapid review with EVI analysis was delivered in
time to be used to support the review of detailed
proposals for primary research.

The potential benefits of this type of analysis have
already been identified. Further research is
required to assess their benefits in practice.

How far can modelling substitute for low-priority
trials?
Modelling is by no means a substitute for data
collection. However, by identifying the absolute
and relative value of further research on specific
parameters and sets of parameters, EVI analysis
directly identifies trial designs of low priority 
in informing technology commissioning 
decisions. 

The place and feasibility of modelling
within health technology assessment
prioritisation processes
The following discussion further examines the
place and feasibility of modelling within the health
technology assessment prioritisation processes.

Shortlisting from hundreds of submitted topics is a
significant task and evidence is limited in relation
to the value of quantitative prioritisation scoring
mechanisms for screening large numbers of
potential research projects. It is clear, by common 101
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sense alone, that there is not the capacity to
subject literally hundreds of topics to a detailed
early economic evaluation incorporating an EVI
analysis.

There is a role for the EVI approach within
systematic reviews. One important criticism of
existing systematic reviews is the lack of rigour
and consistency in the sensitivity analysis. The
evidence from the review leads to a strong
recommendation that systematic reviews should,
where possible, incorporate economic evaluation
that includes an EVI analysis to assess the
importance and sensitivity of different parameters.
It is exactly this analysis that can enable the
systematic review to form conclusions on future
research priorities.

There may also be potential for health technology
assessment organisations to utilise modelling at
the point of calls for proposals. Topics with a
potentially large primary research expenditure are
most likely to gain benefit. By commissioning an
initial economic evaluation of the intervention
concerned, including sensitivity analysis based on
the EVI methods, a health technology assessment
organisation can establish which are the key
uncertain variables and what is the value of
information for specific subsets, before investing
heavily in primary data collection that may leave
some important uncertain variables
uninvestigated.

There may also be a possibility to use EVI analyses
before the call for proposals, to support the
identification of priority research areas. The
calculated value of the research can also be
compared with its expected costs to show value for
money, both internally, and externally to the wider
group of NHS, governmental and other
stakeholders in society.

Such work would also enable health technology
assessment organisations to issue more substantial
guidance to researchers on the minimum
requirements of research before they submit
outline bids. 

Recommendations for further
R&D in modelling methodology in
planning and prioritising trials
Further R&D is required in a number of areas.

� The issues of good practice in the undertaking
and reporting of economic modelling studies
require further dissemination and support.
Areas for development are the handling of
stochastic sensitivity analyses, and specifically
the CEAC presentation of uncertainty, model
validation and the explicit reporting of
assumption. The guidelines identified in this
report should be recommended to journals that
publish economic evaluations to provide a
structure for peer review.

� While the potential feasibility of the payback
approach to prioritisation of future research is
apparent, exemplar case studies using stochastic
sensitivity analyses should be developed. 

� The calculation of the overall EVPI for a
decision problem requires only a very small
extension over the generation of a CEAC. This
presentation of the overall EVPI should be
actively encouraged as a minimum requirement
in modelling studies seeking to inform
prioritisation and planning of health
technology assessment.

� The potential benefits of the EVI analysis have
been identified. Further research is required to
assess whether these benefits can be realised in
the R&D prioritisation and planning process in
practice.

� Further research is required on the definition of
an objective function that captures adequately
the issues of importance to decision-makers in
health technology assessment planning and
prioritisation, and includes the aspects that can
be adequately quantified and can be
incorporated into a process that supports the
arbitration of subjective judgement.

� Further research is required into the
development of approximation methods, for
instance meta-modelling or efficient sampling
methods, to allow the general application of
EVI methods. 

� In order to develop a general method for the
estimation of the expected value and expected
net benefit of sample information, further
methodological research is required concerning
the updating of prior probability distributions.
This should be developed alongside the explicit
demonstration of these methods within case
study examples.
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Introduction
Table 11 summarises the case studies referenced in
Chapter 3 that explicitly address the role of
modelling in trial planning and design. The main
characteristics of the case studies that are
described include:

� evaluation characteristics and modelling
methodologies used

� examples of the roles of modelling applied
� trial design issues addressed.

The remainder of the appendix reviews the case
studies in more detail.

Respiratory distress 
syndrome: the economics of
treatment for infants 
with respiratory 
distress syndrome132

This paper describes the development of a 
disease treatment pathway model for infants with
respiratory distress syndrome in the USA. 
Clinical and resource use data were obtained from
a panel of expert clinicians, using a modified
Delphi technique. The primary role of the
simulation model is the estimation of the costs
associated with this disease; as such, this
represents a burden of disease model. It is
recognised, however, that the model supports
preliminary evaluations of new technologies in this
disease area, whereby the relevant parameters
affected by any new technology may be altered to
estimate their impact on the burden of the
disease. The model allows the key components of
care to be identified and thus allows effort to be
concentrated on determining the cost associated
with these elements rather than undertaking an
exhaustive cost search. The methods for doing 
this are not expanded upon within the paper,
although a series of scenario analyses is
undertaken.

New oral cephalosporins
Defining criteria for the
pharmacoeconomic evaluation of new
oral cephalosporins129

This paper discusses a series of economic issues
related to clinical choices in the use of third-
generation cephalosporins, focusing on antibiotic
therapy as a whole rather than on any specific
disease area. The use of economic evaluations in
informing trial design is discussed in relation to the
choice between oral and intravenously administered
therapy, where the additional cost of intravenous
therapy can only be justified by increased efficacy.

The key parameter for the use of the
cephalosporins is assumed to be their relative
efficacy compared with intravenous delivery; this
assumption is justified.

The cephalosporins model combines an estimate
of the maximum willingness to pay to avoid a
treatment failure (e.g. US$1000) with the
additional costs of the intravenous treatment
option (e.g. $100) to calculate the level of
increased efficacy (of the intravenous option) that
must be excluded for the oral therapy to be
considered cost-effective, which is 10%:

Implied marginal value (US$1000) = Incremental
cost (US$100)/Incremental efficacy (0.1 or 10%)

The value of avoiding a treatment failure and the
incremental cost of treatment define the minimum
clinically important difference in efficacy, and
hence the classically defined trial sample size.

Total hip replacement 
Evaluation of new technologies for
total hip replacement: economic
modelling and clinical trials127

This study undertakes a preliminary evaluation of
new hip prostheses in comparison to conventional
hip prostheses. It is noted that many new hip
prosthesis designs have been introduced with little

Appendix 1

Review of case studies addressing the planning 
and design of future research
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TABLE 11 Summary table of case studies

Reference Neil Sculpher Sculpher130 Davey and Laheii Gillespie Briggs Cantor Howard Parsonnet
et al.132 et al.131 Malek129 et al.128 et al.127 et al.126 et al.125 et al.124 et al.123

Intervention type

Pharmaceutical � � �

Screening � �

Diagnostic

Surgical � � �

Service delivery & organisation (SDO) � �

New technologies � � � �

Place in R&D cycle Post-trial Pretrial Pretrial Pretrial Pretrial Pretrial Pretrial Pretrial

Modelling technique

Decision analytical � � � � � � �

Markov � � � �

Simulation �

Analytical modelling � � � �

Outcomes

Clinical � � � � � � � � �

Cost � � � � � � � � �

Health economic � � � � � � � �

Roles of modelling

Studying assessment problems that have 
not been previously addressed � � � � � � � � � �

Synthesising head-to-head comparisons 
between competing treatments � � �

Generalising between trial and actual 
treatment populations A

Generalising between different 
geographical/temporal populations  

Continued
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TABLE 11 Summary table of case studies (cont’d)

Reference Neil Sculpher Sculpher130 Davey and Laheii Gillespie Briggs Cantor Howard Parsonnet
et al.132 et al.131 Malek129 et al.128 et al.127 et al.126 et al.125 et al.124 et al.123

Extrapolating from surrogate to final 
outcome measures � � �

Extrapolating the duration of treatment effects � �

What trial design issues identified

Key parameters for study � � � � � � � �

Minimum clinical difference (delta) � � � � � �

Duration of study � � �

Sample size � � � �

Study population age/gender � � � �

Incremental cost of new technology � � �

Further research worthwhile Yes Yes N/A Yes Yes Yes Yes Yes

Type of research Cohort study RCT Clinical Not RCT RCT RCT
trials specified

A: explicit assumptions made; NA: not applicable.



or no evidence regarding clinical effectiveness in
terms of long-term prosthesis survival.

An NPV model of lifetime costs for patients with
hip replacement is developed.

n li,mpi,c,m(Cc + Rc + H)
PVc = Cc + H + ∑ –––––––––––––––––––––

i = n (1 + r)(i – 1)

where PVc = present value, Cc = purchase cost of
prosthesis type C, H = hospital costs associated
with fitting the prosthesis, Rc = recuperation costs
in addition to H (for prosthesis type C), 
li,m = probability of survival to year i, 
pi,c,m = probability of prosthesis failure in year i.

Cost-effectiveness is dependent solely on the
difference between the expected lifetime costs, as
morbidity associated with failure of hip prosthesis
is not included.

The model aids the design of clinical trials of new
prostheses through the prediction of cost or
survival limits within defined patient groups
outside which a component system will not prove
cost-effective. For example:

“A claim for a 20% reduction in prosthetic failure rate
at 15 years for a new prosthesis priced at twice the
conventional cost would not justify an RCT or
licensing of the prosthesis. The same projected
reduction in failure rate with a cost of 1.2 times the
conventional cost, however, would lead to a trial
being considered in men under 65 and women under
55 years of age.”

These limits in the potential improvements in
effectiveness define the smallest relevant
improvement in outcome that is worth detecting,
which can then be used to determine the sample
size of trials of new prostheses through the
application of standard statistical techniques.

Appropriate age and gender entry criteria are also
informed by the preliminary evaluation. The
analysis also identifies a minimum duration of a
proposed trial of 15 years, since at that point
conventional survival is still in the order of 80%.
The practical difficulties of running a trial over
such a prolonged period led to an assessment of
alternative study designs, for example:

� A study could include intermediate study
analysis of prosthesis survival, and once again
the necessary smallest relevant improvements at
these interim points can be used in defining
stopping criteria.

� A multicentre design would be indicated in
order to achieve rapid recruitment of the large
patient numbers implied by the analysis.

� The study identifies the potential usefulness of
short-term outcome measures, for example,
femoral loosening or acetabular wear, 
although the validity of these surrogate
measures as predictors of long-term survival
would need to be established through long-term
monitoring. 

Costs and benefits of primary total hip
replacement: how likely are new
prostheses to be cost-effective?126

The scope of the study detailed in this paper is
similar to that of the previous study,127 although it
uses a different methodological approach in two
aspects.

� Morbidity and mortality associated with hip
prosthesis failure is accounted for by the
inclusion of health-related quality-of-life
measures associated with prosthesis failure.

� A Markov state transition model is used to track
lifetime costs and health-related quality-of-life
of hip replacement patients.

The paper similarly investigates the potential cost-
effectiveness of new hip replacement technologies
in different age/gender populations over their full
lifetime.

Elasticities, representing the percentage change in
the cost-effectiveness of new prostheses in
response to a percentage change in the value of a
parameter, are estimated for the individual
parameters within the model. These analyses show
that the two most important parameters in the
model are the cost and effectiveness of the
prosthesis relative to the standard prosthesis. The
majority of the other parameters have low
elasticities, indicating that they are unlikely to be
key parameters in terms of determining cost-
effectiveness.

The required reduction in revision rates for
alternative forms of cementless prostheses to be
considered cost-effective was also estimated from
the sensitivity analyses of the effectiveness
parameter. These analyses showed that a trial
comparing some of the newer prostheses with the
established prostheses may be cost-effective, since
reductions in revision risk of around 17% are
required to show cost-effectiveness. Such estimates
are analogous to the minimum clinically
significant difference that can be used to inform
sample size calculations.
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Medical laser technology
assessment
Final report: Phase II medical laser
technology assessment133

An iterative framework for technology assessment,
equivalent to the four phases typically used in
clinical drug development, is described (Table 12).

The report summarises three assessments of
medical laser technologies that have been
characterised as Phase II preliminary economic
evaluations. These are:

� a preliminary economic evaluation of the diode
laser in ophthalmology

� an economic evaluation of the Nd:YAG laser in
gastroenterology

� the role of the laser in percutaneous artery
revascularisation.

Two of these studies have given rise to peer-
reviewed published articles. The role of modelling
in these studies is discussed below. 

A preliminary economic evaluation of
the diode laser in ophthalmology130

The newer diode laser is compared with the
existing argon laser used in a range of conditions
within ophthalmology. An assumption of equal
effectiveness is supported by the substantive
equivalence between the two technologies and
their role in treatment. However, the authors
recognise that small studies have reported 
greater levels of pain in patients treated with the
diode laser than in patients treated with the argon
laser.

A simple cost model (details of which are not
provided) is used to calculate the expected cost
per patient treated for the argon and the diode
laser under five different purchasing scenarios.

� routine replacement of an argon laser
� early replacement of an existing argon laser
� establishment of a new ophthalmology facility
� purchasing of a diode laser for specific

conditions
� reorganisation of the delivery of ophthalmic care.

The model is used to highlight the determinants
of differential cost and investigate the potential
scope for decreased costs with the introduction of
the diode laser in each scenario. The analyses
identify contexts where the diode laser is
potentially cost-minimising, the implication being
that further trials examining those contexts where
there is no potential for the technology to be cost-
minimising are of little value. 

The cost modelling does not inform specific trial
design issues between these technologies because
the impact of the uncertainty regarding the
relative clinical effectiveness of the two lasers is
not explored within the model.

Key parameters are identified as the relative
clinical effectiveness of novel and conventional
technologies in terms of patient-based rather than
technical outcomes, in order to validate the
assumption of equivalent effectiveness between the
technologies. The importance of the number of
treatment sessions required when using the diode
laser is also identified as a key parameter through
one-way sensitivity analyses.
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TABLE 12 Stages of economic evaluation of medical technologies

Stage of study Extent of diffusion Level of clinical evaluation Level of economic evaluation

Phase I One or two pioneering Case studies Indicative economic evaluation to identify 
centres scope for technology to be cost-effective

Phase II Key clinical centres Series Using sample from series and literature
data and modelling methods

Phase III Main centres Comparative trials Alongside trials or using trial (and other)
data in models

Phase IV Poised to diffuse Comparative trials Synthesis of data within models to assess 
widely generalisability of Phase III results

Source: Sculpher.133
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A cost–utility analysis of laser-
assisted angioplasty for
peripheral arterial occlusions131

This paper details a cost–utility analysis of the use
of laser technology as a secondary adjunct to
angioplasty to treat peripheral arterial occlusions.
The cost–utility model combines a decision tree
framework to assess the options available at the
time of angioplasty with a Markov model to
extrapolate the short-term outcomes of different
angioplasty techniques. Three short-term
outcomes from angioplasty are specified:
asymptomatic, claudicant, and rest
pain/ulceration. Long-term outcomes are defined
in terms of QALYs gained.

The probabilities of the different clinical outcomes
within the short-term model are obtained from an
RCT (which is assumed to be representative of the
general population), while some of the transition
probabilities within the long-term model are based
on expert judgements.

Analysis of the uncertainty within the model is
undertaken through a series of one-way sensitivity
analyses together with threshold analyses. Three
categories of uncertainty are identified within the
model:

� generalisability: proportion of patients who after
successful recanalisation become asymptomatic

� analytical methods: methods for valuing health
states, discount rates

� data variability: proportion of symptomatic
patients whose symptom status moves to
claudication.

These key determinants are identified through
their impact on the key outcome measures when
each parameter is varied within its defined range
(informed by published data sources and expert
judgements).

The minimum clinical difference, in terms of the
secondary recanalisation rate necessary to achieve
a variety of cost–utility thresholds, is estimated
from the model using a series of threshold analyses.
The sample size and study populations could also
be informed by use of the minimum clinical
difference as estimated by the model, although
this is not explicitly expanded upon in the paper.

Threshold analysis is also used to determine the
equipment utilisation rates, which impact on the
incremental cost, under which the novel

technologies dominate, that is, are cheaper and
more effective than the conventional techniques. 

To investigate the long-term costs and consequences
of the novel laser-based technologies through
empirical trials, these would require large sample
sizes and an extensive follow-up period. The model,
by formalising the link between the short-term
and long-term outcomes, provides an alternative
strategy, whereby short-term empirical studies can
be targeted at the key uncertainties in the model-
based assessment. The modelling thereby
determines the duration of the subsequent trials. 

Dyspepsia
Management in general practice of
patients with persistent dyspepsia: 
a decision analysis128

The objective of this paper is to examine the
potential for an empirical drug treatment strategy
within general practice to increase the appropriate
referral and use of endoscopy in treating patients
with persistent dyspepsia. The outcomes from the
model are the percentage of patients undergoing
endoscopy, percentage of patients with symptom
relief and mean cost per patient.

The structure and parameterisation of a decision
tree are informed by reviews of published
literature, which identified baseline and ranges of
values for model parameters, although details of
search methods are not given. The study claims
that the empirical treatment strategy dominates
the conventional treatment strategy in all
scenarios considered, that is it is both cheaper and
more clinically effective. The key parameter
influencing the outcome measures is identified as
the prevalence of the different dyspeptic disorders
in the patient population, although it is not clear
what type of sensitivity analysis, for example, one-
way, multiway or parametric, is undertaken.

Although the authors recommended the need for
further research, the relevant health technology
assessment agency concluded that the preliminary
modelling answered the main questions and
refrained from funding further primary research
in this area.

Prostate cancer
Prostate cancer screening: a decision
analysis125

A dearth of RCT evidence is identified for the
screening of men for prostate cancer. This,



together with the lack of evidence regarding
whether early treatment leads to improvements in
either length of survival or quality of life, makes
this intervention controversial.

A Markov model is used to assess the likely health
impact of such a screening policy in terms of
QALYs (costs are not included in this analysis).
The structure and parameterisation of the model
are derived from published literature (details of
the search strategies are not given). Quality-of-life
adjustments reflecting the utilities of potential
health outcomes and adverse events of treatment
were obtained from a time trade-off study of a
small subgroup of individuals with no diagnosis of
prostate cancer. This study was undertaken by the
same study group and is reported fully elsewhere.

The baseline result shows that fewer QALYs are
gained by any of the screening options than by the
no-screening option. One-way sensitivity analysis is
undertaken on all parameters, supported by
further two-way analyses for key outcomes of
treatment. The baseline result was found to be
insensitive to most parameters within the model
except for (1) changes in the underlying
prevalence of asymptomatic clinically significant
prostate cancers and (2) patients’ preferences
regarding adverse effects of treatment. Both
factors are subjected to threshold analyses to
determine the critical values that these parameters
must attain for screening to be effective. This
information would be of use in determining the
sizes of any further experimental investigations,
although this is not elaborated upon in this paper. 

This study identifies the low potential of prostate
cancer screening to be an effective treatment in
terms of quality-of-life outcomes. It also notes that
screening would be likely to increase overall
healthcare costs, indicating that no screening
would be a dominant policy if health economics
were considered. Thus, the collection of further
RCT-based evidence in this field should be treated
as a low priority.

Neonatal care
A cost-effectiveness analysis of
neonatal ECMO using existing
evidence124

This paper describes the development of a
preliminary economic evaluation prepared in
support of a planned RCT. This trial investigates
the clinical and economic effectiveness of
extracorporeal membrane oxygenation (ECMO) in

giving temporary support to patients with severe
respiratory failure. The specific aim of this study is
to assess the quality of existing evidence on cost
and effectiveness, as an aid to identifying what
information was required for the economic
evaluation in the trial.

The structure of a decision tree describing the
alternative paths of cure is derived from the
protocol of the proposed trial. Parameterisation of
the model used evidence from published sources
and routine health-service data. Systematic
literature searches were used to identify existing
clinical and economic evidence.

The reported sensitivity analysis consists of simple
worst and best case scenario analyses, with
parameters set to extreme values, although the
nature of these extremes is not defined. The
results indicate that this new technology is likely to
increase the costs of care in both the best and
worst case scenarios, but could be either more or
less effective. The study concludes that restricting
the availability of ECMO pending completion of
the prioritised trial is justified.

The sensitivity analysis identifies a wide range of
uncertainty in the cost-effectiveness of this
treatment, but fails to identify which parameters
have the greatest impact, and hence does not
allow targeting of further experimental
investigation.

Gastric cancer
Modelling the cost-effectiveness of
Helicobacter pylori screening to
prevent gastric cancer: a mandate for
clinical trials123

This study reports a preliminary economic
evaluation of screening, leading to the eradication
of Helicobacter pylori infection with a focus on the
prevention of gastric cancer. Early evidence
suggesting a link between H. pylori infection and
gastric cancer is identified, which supports this 
as a potentially effective treatment strategy.
However, inadequate experimental data
demonstrating that H. pylori eradication 
modifies cancer risk means that further
experimental investigation would be required
before widespread introduction of this
intervention. This study aims to investigate clinical
and economic effectiveness, with the objective of
assessing the value of further research, as well as
to suggest interim treatment strategies while
awaiting the results of these trials. 117
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A decision tree is used to compare two potential
screening/treatment strategies to a baseline
strategy of no screening or eradication. A Markov
model is used to assess long-term costs and
outcomes associated with the different strategies.
The model structure and probabilities were
obtained with reference to published literature,
although it is unclear whether or not this was
obtained through a systematic search. Healthcare
costs were obtained from databases of US fees and
charges.

The baseline results indicate that the screening
and treatment policy would increase healthcare
costs but would result in the prevention of cancer
incidence and related deaths, with a cost per life
year saved of US$25,000. One-way sensitivity
analysis is undertaken for each parameter within
the model across its plausible range; this analysis
is supported by a best and worst case scenario
analysis.

The potential cost-effectiveness of this
intervention supports further experimental
investigation. This study assumes that the
appropriate way forward is the undertaking of a
large economic trial to estimate the cost-
effectiveness of treatment directly, rather than
undertaking smaller substudies aimed at
increasing knowledge concerning some of the
individual factors in the analysis. The model does
not explicitly target key parameters for further
investigation.

A role for the model in defining population
characteristics for further investigation is claimed
within the paper, based on its use in investigating
the cost-effectiveness of screening in different risk
groups. The study also indicates that the model
could assist the sample size calculations of a
prospective trial, citing the use of the
methodology proposed by Hornberger and co-
workers111 (see Chapter 7) in this respect.



This appendix presents three sets of published
guidelines (Tables 13–16) describing good practice
for the use, and critical appraisal of decision-
analytic modelling as a tool for the assessment of
health technologies.
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Summary of identified modelling guidelines

TABLE 13 Content analysis of modelling guidelines1

1. A statement of the problem

2. A description of the relevant factors and outcomes

3. A description of the model

4. A description of data sources (including subjective
estimates), with a description of the strengths and
weaknesses of each source

5. A list of assumptions pertaining to
(a) the structure of the model (e.g. factors included,

relationships and distributions) and 
(b) the data

6. A list of parameter values that will be used for a base
case analysis, and a list of the ranges in those values
that represent appropriate confidence limits and that
will be used in a sensitivity analysis

7. The results derived from applying the model for the
base case

8. The results of the sensitivity analyses

9. A discussion of how the modelling assumptions may
affect the results, indicating both the direction of the
bias and the approximate magnitude of the effect

10. A description of the validation method and results

11. A description of the settings to which the results of
the analysis can be applied and a list of factors that
could limit the applicability of the results

12. A description of research in progress that could yield
new data that could alter the results of the analysis

If the analysis recommends a policy, the report should
also contain:

13. A list of the outcomes that required value
judgements

14. A description of the values assessed for those
outcomes

15. A description of the sources of those values

16. The policy recommendation

17. A description of the sensitivity of the
recommendation to variations in the values

18. A description of the settings to which the
recommendations apply

TABLE 14 Content analysis of modelling guidelines70

Model approach

1. Study question specified

2. Need for modelling versus alternative methodologies
discussed

3. Type of model identified

4. Reason for use of this model type discussed

5. Model scope specified:
time-frame
perspective
comparator(s)
setting/country/region

6. Basis of scope discussed

Model specifics
7. Source and strength of model data specified

8. Model assumptions discussed

9. Model parameters available in technical appendix

10. Values and sources for model parameters specified:
event probabilities
rates of resource utilisation
costs
health utilities

11. Criteria for evaluating quality of data specified

12. Relevant treatment strategies included

13. Relevant treatment outcomes included

14. Biases discussed and explored

Model analysis
15. Base case results presented and described

16. Sensitivity analyses performed:
unidimensional 
multidimensional
best/worst case
threshold

17. Key cost drivers identified

18. Verification performed

19. Validation performed
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TABLE 15 Content analysis of modelling guidelines36

Principles
The type of model should reflect the nature of the
clinical problems, e.g. if the clinical problem persists over
a long period, a Markov model is likely to be the most
appropriate type of model

All reasonable treatment options, including extremes
such as watchful waiting, should be included in the model

The key characteristics of the disease should be included
in the model

The key clinical outcomes should be included in the model

The utility structure should incorporate all relevant
attributes

Errors
Model syntax

Conditioning of action on unobservable states

Violations of symmetry in modelling prognosis

Failure to link variables that are inherently related

Inconsistent bias in assumptions

Modelling results of diagnostic tests

Modelling of treatment
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DATA METHODOLOGY: DEVELOPMENT PHASE I
EXTRACTION
SHEET 1

PUBLICATION
DETAILS

Author Lead author
Title Full title
Publ. Date Year
Type e.g. Monograph/Journal article
Source Journal name
Ref ID Reference manager index
Classification M1/M2/M3

ISSUE HEADING DISCUSSION AND QUOTES PAGE EXTERNAL
REF

NOTES Free text discussion and interpretation of specific issues Page no. Referring
regarding the context of the report and key features information

to other key
articles

POTENTIAL ROLES OF MODELS IN PRIORITISING AND PLANNING TRIALS
Free text key Free text detailed discussion of key issue Page no. Referencing
issue title information

to other key
articles

KEY ISSUES IN GOOD AND BAD PRACTICE
Free text key Free text detailed discussion of key issue Page no. Referencing
issue title information

to other key
articles

Appendix 3

Data extraction sheet for identifying the 
key roles of modelling
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Reference ID (Author, Year)

Notes

Generalising between populations (across time Direct quotations and commentary from the
and space) article giving page numbers and external 

reference

Linking information from diverse sources

Studying assessment problems that have never 
been the subject of comprehensive experimental 
studies (e.g. screening/clinical modelling early 
studies)

Synthesising head-to-head comparisons

Extrapolating results beyond the trial duration

Extrapolating results from surrogate to final 
end-points

Analysis of disease dynamics

Description, testing/validation of hypotheses
about the natural history of a disease

Value of collecting additional information 
through research priority setting

Communication/bookkeeping tool

Appendix 4

Data extraction sheet for discussion on the
roles of modelling
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Ref ID Reference manager index

Classification of case study C1/C2

Disease area Free text description

Intervention type

Pharmaceutical Tick Box

Screening Tick Box

Diagnostic Tick Box

Surgical Tick Box

Service delivery & organisation (SDO) Tick Box

New technologies Tick Box

Place in R&D cycle Pretrial/Post trial

Modelling undertaken Yes/No

Decision analytic Tick Box

Markov Tick Box

Simulation Tick Box

Cost modelling Tick Box

Risk modelling Tick Box

Bayesian analysis Tick Box

Delphi Tick Box

Other Free text description

Outcomes

Clinical Tick Box

Cost Tick Box

Health economic Tick Box

Identification of key uncertainties Tick Box

Further research worthwhile Yes/No

Type of research Free text description

Appendix 5

Data extraction sheet for case studies on the 
role of modelling
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