Health Technology Assessment 2004; Vol. 8: No. 12

Go to main text

Clinical effectiveness and costeffectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review

A Pandor, J Eastham, C Beverley, J Chilcott and S Paisley

March 2004

Health Technology Assessment NHS R&D HTA Programme

How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public **and** private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is $\pounds 2$ per monograph and for the rest of the world $\pounds 3$ per monograph.

You can order HTA monographs from our Despatch Agents:

- fax (with credit card or official purchase order)
- post (with credit card or official purchase order or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you **either** to pay securely by credit card **or** to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch c/o Direct Mail Works Ltd 4 Oakwood Business Centre Downley, HAVANT PO9 2NP, UK Email: orders@hta.ac.uk Tel: 02392 492 000 Fax: 02392 478 555 Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of $\pounds 100$ for each volume (normally comprising 30–40 titles). The commercial subscription rate is $\pounds 300$ per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque

If you pay by cheque, the cheque must be in **pounds sterling**, made payable to *Direct Mail Works Ltd* and drawn on a bank with a UK address.

Paying by credit card

The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order

You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. *HTA on CD* is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.

Appendix I

Electronic bibliographic databases searched

- 1. Biological Abstracts
- 2. CINAHL
- 3. Cochrane Controlled Trials Register (CCTR)
- 4. Cochrane Database of Systematic Reviews (CDSR)
- 5. Database of Abstracts of Reviews of Effectiveness (DARE)
- 6. EBM Reviews

- 7. EMBASE
- 8. Health Management Information Consortium (HMIC)

- 9. HTA Database
- 10. MEDLINE
- 11. PreMEDLINE
- 12. Science Citation Index

Other sources consulted

- 1. Bandolier
- 2. Canadian Co-ordinating Centre for Health Technology Assessment (CCOHTA)
- 3. Current Controlled Trials (CCT)
- 4. Current Research in Britain (CRiB)
- 5. Department of Health
- 6. eGuidelines
- 7. INAHTA (International Network of Agencies for Health Technology Assessment) Clearinghouse
- 8. MRC (Medical Research Council) Funded Projects Database
- 9. National Guideline Clearinghouse (NGC)
- 10. National Research Register (NRR)

- 11. NCCHTA (National Coordinating Centre for Health Technology Assessment)
- 12. Research Findings Register (ReFeR)
- 13. ScHARR Library Catalogue
- 14. Scottish InterCollegiate Guideline Network (SIGN)
- 15. Trent Working Group on Acute Purchasing
- 16. Turning Research into Practice (TRIP) Database
- 17. Wessex DEC (Development and Evaluation Committee) Reports

125

 West Midlands DES (Development and Evaluation Services) Reports

Search strategies used in the major electronic bibliographic databases

Biological Abstracts

1985–2001 SilverPlatter WebSPIRS Search undertaken November 2001

- #1 (neonat* or newborn*) and screen*
- #2 (inborn error*) and metabolism
- #3 (mass or ms or tandem) and spect*
- #4 #1 and #2 and #3

CDSR and **CCTR**

2001 (Issue 4) The Cochrane Library, Update Software (CD-ROM version) Search undertaken November 2001

- #1 NEONATAL SCREENING*:ME
- #2 (NEONAT* NEAR SCREEN*)
- #3 (NEWBORN* NEAR SCREEN*)
- #4 (#1 OR #2 OR #3)
- #5 MASS-SCREENING*:ME
- #6 INFANT-NEWBORN*:ME
- #7 (#5 AND #6)
- #8 (#4 OR #7)
- #9 METABOLISM-INBORN-ERRORS*:ME
- #10 ((INBORN NEAR ERROR*) NEAR METABOLISM)
- #11 (#9 OR #10)
- #12 (#8 AND #11)

CINAHL

1982–2001 Ovid Biomed Search undertaken November 2001

- 1 exp health screening/
- 2 exp infant, newborn/
- 3 1 and 2
- 4 (neonat\$ adj2 screen\$).tw
- 5 (newborn\$ adj2 screen\$).tw
- 6 or/3-5
- 7 exp metabolism, inborn errors/

- 8 (inborn adj2 error\$).tw
- 9 or/7-8
- 10 6 and 9
- 11 spectrum analysis/
- 12 (mass adj2 spect\$).tw
- 13 (ms adj2 spect\$).tw
- 14 (tandem adj2 mass).tw
- 15 or/11-14
- 16 10 and 15

CRD Databases (NHS DARE, EED, HTA)

CRD website – complete databases Search undertaken November 2001

(neonat and screen) or (newborn and screen)/All fields AND (mass and spect) or (ms and spect) or (tandem and spect)/All fields

EMBASE

1980–2001 SilverPlatter WebSPIRS Search undertaken November 2001

- #1 'newborn-screening' / all subheadings
- #2 neonat* near2 screen*
- #3 newborn* near2 screen*
- #4 'mass-screening' / all subheadings
- #5 'newborn-' / all subheadings
- #6 #4 and #5
- #7 #1 or #2 or #3 or #6
- #8 explode 'inborn-error-of-metabolism' / all subheadings

- #9 inborn near2 error* near2 metabolism
- #10 #8 or #9
- #11 #7 and #10
- #12 explode 'mass-spectrometry' / all
 subheadings
- #13 mass near2 spect*
- #14 ms near2 spect*
- #15 tandem near2 mass
- #16 #12 or #13 or #14 or #15
- #17 #11 and #16

MEDLINE

1966–2001 Ovid Biomed Search undertaken November 2001

- 1 neonatal screening/
- 2 (neonat\$ adj2 screen\$).tw
- 3 (newborn\$ adj2 screen\$).tw
- 4 mass screening/
- 5 exp infant, newborn/
- 6 4 and 5
- 7 or/1-3, 6
- 8 exp metabolism, inborn errors/
- 9 (inborn adj2 error\$).tw
- 10 or/8-9

128

- 11 7 and 10
- 12 exp spectrum analysis, mass/

- 13 (mass adj2 spect\$).tw
- 14 (ms adj2 spect\$).tw
- 15 (tandem adj2 mass).tw
- 16 or/12-15
- 17 11 and 16

Science Citation Index

1981–2001 Web of Science Search undertaken November 2001

Title=(neonat* or newborn*) and screen* and (inborn error*) and metabolism and (mass or ms or tandem) and spect*; DocType=All document types; Languages=All languages; Databases=SCI-EXPANDED; Timespan=All Years

Search terms used in Ovid MEDLINE (1995–January 2002) for each of the individual inborn errors of metabolism

3-Methylcrotonyl-CoA carboxylase deficiency

- 1 (methylcrotonyl adj2 carboxylase adj2 deficien\$).tw
- 2 methylcrotonylglycinuria.tw
- 3 methyl crotonyl glycinuria.tw
- 4 methylcrotonyl glycinuria.tw
- 5 mcc\$ deficien\$.tw
- 6 (methyl crotonyl adj2 carboxylase adj2 deficien\$).tw
- 7 carbon-carbon ligases/df
- 8 or/1-7

3-Hydroxy-3-methylglutaryl-CoA lyase deficiency

- 1 3 hydroxy 3 methylglutaryl coa lyase deficien\$.tw
- 2 (hmg adj2 lyase deficien\$).tw
- 3 hydroxymethylglutaricaciduria.tw
- 4 (hydroxy adj2 methyl adj2 glutaric adj2 aciduria).tw
- 5 hydroxymethylglutaryl-coa synthase/df
- 6 3 hydroxy 3 methylglutaryl coenzyme lyase deficien\$.tw
- 7 (hmg adj2 coenzyme adj2 deficien\$).tw
- 8 (hmg adj2 coa adj2 deficien\$).tw
- 9 oxo-acid-lyases/df
- 10 or/1-9

Arginase deficiency

- 1 argininaemia.tw
- 2 argininemia.tw
- 3 ((arginase or arg1) adj2 deficien\$).tw
- 4 hyperargininemia.tw
- 5 hyperargininaemia.tw
- 6 hyperargininemia/
- 7 or/1-6

Argininosuccinic aciduria

1 argininosuccinic aciduria.tw

- 2 argininosuccinicaciduria.tw
- 3 (argininosuccinase or argininosuccinate or asl or asal) adj3 deficien\$).tw
- 4 or/1-3

Carnitine translocase deficiency

- 1 exp carnitine acyltransferases/df
- 2 carnitine acylcarnitine translocase deficien\$.tw
- 3 cac deficien\$.tw
- 4 cact deficien\$.tw
- 5 or/1-4

Citrullinaemia

- 1 citrullinaemia.tw
- 2 citrullinuria.tw
- 3 (argininosuccinate adj2 (synthase or synthetase) adj2 deficien\$).tw
- 4 aas deficien\$.tw
- 5 citrullinemia.tw
- 6 citrullinemia/
- 7 or/1-5

СРТІ

- 1 carnitine o-palmitoyltransferase/df
- 2 carnitine palmitoyltransferase deficien\$.tw
- 3 cpt deficien\$.tw
- 4 or/1-3

CPTII

- 1 carnitine o-palmitoyltransferase/df
- 2 carnitine palmitoyltransferase deficien\$.tw

129

- 3 cpt deficien\$.tw
- 4 or/1-3

GAI

- 1 glutaryl coa.af
- 2 glutaricaciduria.af

- 3 gcdh.af
- 4 ga 1.af
- 5 glutaric aciduria.af
- 6 glutaric acidemia.af
- 7 glutaric acidaemia.af
- 8 or/1-7

GAII

- 1 glutaryl coa.af
- 2 glutaricaciduria.af
- 3 gcdh.af
- 4 ga 1.af
- 5 glutaric aciduria.af
- 6 glutaric acidemia.af
- 7 glutaric acidaemia.af
- 8 or/1-7

Homocystinuria

- 1 homocystinuria/
- 2 homocystinuria.tw
- 3 hypermethioninaemia.tw
- 4 hypermethioninemia.tw
- 5 ((cystathionine or cbs) adj2 deficien\$).tw
- 6 or/1-5

Hyperornithinaemia

- 1 hyperornithinemia.tw
- 2 hyperornithinaemia.tw
- 3 (ornithine adj2 aminotransferase deficien\$).tw
- 4 ((oat or okt) adj2 deficien\$).tw
- 5 hoga.tw
- 6 or/1-5

Isovaleric acidaemia

- 1 isovaleric acidaemia.tw
- 2 isovaleric acidemia.tw
- 3 isovaleric aciduria.tw
- 4 ivd deficien\$.tw
- 5 (isovaleric acid adj2 dehydrogenase deficien\$).tw
- 6 (isovaleryl adj2 dehyrogenase deficien\$).tw
- 7 isovalericacidemia.tw
- 8 isovalericacidaemia.tw
- 9 or/1-8

LCHAD

1 trifunctional protein deficien\$.tw

- 2 exp 3-hydroxyacyl coa dehdrogenase/df
- 3 multienzyme complexes/df
- 4 (long chain adj4 dehydrogenase deficien\$).tw
- 5 lchad.tw
- 6 hadh deficien\$.tw
- 7 (hydroxyacyl adj3 dehydrogenase).tw
- 8 long chain.tw
- 9 7 and 8
- 10 hydroxydicarboxlicaciduria.tw
- 11 hydroxydicarboxlic aciduria.tw
- 12 or/1-6, 9, 10-11

Long-chain hydroxyacyl-CoA dehydrogenase deficiency

- 1 trifunctional protein deficien\$.tw
- 2 exp 3-hydroxyacyl coa dehdrogenase/df
- 3 multienzyme complexes/df
- 4 (long chain adj4 dehydrogenase deficien\$).tw
- 5 lchad.tw
- 6 hadh deficien\$.tw
- 7 (hydroxyacyl adj3 dehydrogenase).tw
- 8 long chain.tw
- 9 7 and 8
- 10 hydroxydicarboxlicaciduria.tw
- 11 hydroxydicarboxlic aciduria.tw
- 12 or/1-6, 9, 10-11

Maple syrup urine disease

- 1 maple syrup urine disease/
- 2 maple syrup urine disease.tw
- 3 msud.tw
- 4 branched chain ketoaciduria.tw
- 5 keto acid decarboxylase deficien\$.tw
- 6 or/1-5

MCAD

- 1 mcad.af
- 2 acadm.af
- 3 mcadh.af
- 4 medium chain acyl coa.af
- 5 or/1-4

Methylmalonic acidaemia

- 1 methylmalonic acidemia.tw
- 2 methylmalonic acidaemia.tw
- 3 methylmalonic aciduria.tw
- 4 methylmalonicaciduria.tw
- 5 mcm deficien\$.tw
- 6 or/1-5

Ornithine carbamoyltransferase deficiency

- 1 ornithine carbamoyltransferase deficiency disease/
- 2 ((ornithine carbamoylase or ornithine carbamoyltransferase or OCT or ornithine transcarbamylase) adj2 deficien\$).tw
- 3 or/1-2

Phenylketonuria

- 1 exp phenylketonurias/
- 2 phenylketonuria\$.tw
- 3 or/1-2

Propionic acidaemia

- 1 propionic acidemia.tw
- 2 propionic acidaemia.tw

- 3 propionic aciduria.tw
- 4 propionyl coa carboxylase deficien\$.tw
- 5 pa deficien\$.tw
- 6 or/1-5

Tyrosinaemia type I

- 1 tyrosinemias/
- 2 tyrosinemi\$.tw
- 3 tyrosinaemi\$.tw
- 4 ((fumarylacetoacetase or fah) adj2 deficien\$).tw
- 5 or/1-4

VLCAD

- 1 vlcad.tw
- 2 (very long chain adj3 dehydrogenase deficien\$).tw

131

3 or/1-2

Search filters used in Ovid MEDLINE for the individual inborn errors of metabolism

Epidemiology

- 1 epidemiology/
- 2 exp morbidity/
- 3 exp mortality/
- 4 exp survival analysis/
- 5 exp disease susceptibility/
- 6 disease progression/
- 7 natural history.tw
- 8 epidemiolog\$.tw
- 9 or/1-8

Diagnosis

- 1 exp "sensitivity and specificity"/
- 2 di.xs

3 du.fs

- 4 specificity.tw
- 5 or/1-4

Treatment

1 randomized controlled trial.pt

133

- 2 dt.fs
- 3 tu.fs
- 4 random\$.tw
- 5 or/1-4

Screening

1 exp mass screening/

Reference list of excluded studies: tandem mass spectrometry

Abdenur JE, Chamoles NA, Guinle AE, Schenone AB, Fuertes AN. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening programme. *J Inherit Metab Dis* 1998;**21**:624–30.

Abdenur JE, Chamoles NA, Schenone AB, Guinle A, Fusta M, Gaggioli D. Supplemental newborn screening of aminoacids (AA) and acylcarnitines (AC) by electrospray tandem mass spectrometry (ESI-MS/MS): experience in Argentina. *J Inherit Metab Dis* 2000; **23** (Suppl 1): 13.

Albers S, Waisbren SE, Finkelson LA, Korson MS, Bailey IV, Levy HL. A model for medical evaluation of expanded screening with MS-MS. *J Inherit Metab Dis* 2000;**23** (Suppl. 1): 6.

Albers S, Marsden D, Quackenbush E, Stark AR, Levy HL, Irons M. Detection of neonatal carnitine palmitoyltransferase II deficiency by expanded newborn screening with tandem mass spectrometry. *Pediatrics* 2001;**107**:E103.

Bartlett K, Pourfarzam M. Tandem mass spectrometry – the potential. *J Inherit Metab Dis* 1999;**22**:568–71.

Biberoglu G, Hasanoglu A, Tumer L, Ezgu FS, Genc B. Screening inborn errors of metabolism from dried blood spotting using electrospray tandem mass spectrometry. *J Inherit Metab Dis* 2001;**24** (Suppl 1): 4.

Carpenter KH, Wilcken B. Neonatal diagnosis of longchain 3-hydroxyacyl-CoA dehydrogenase deficiency and implications for newborn screening by tandem mass spectrometry. *J Inherit Metab Dis* 1999;**22**:840–1.

Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001;**50**(RR-3):1–36.

Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. *Clin Chem* 2001;**47**:1166–82.

Charrow J, Goodman SI, McCabe ERG, Rinaldo P. Tandem mass spectrometry in newborn screening. *Genet Med* 2000;**2**:267–9.

Clayton PT, Doig M, Ghafari S, Meaney C, Taylor C, Leonard JV, *et al.* Screening for medium chain acyl-CoA dehydrogenase deficiency using electrospray ionisation tandem mass spectrometry. *Arch Dis Child* 1998; **79**:109–15. Goyens P, Van Thi HV, Herremans N, De Meirleir L, Gerlo E, De Laet C, *et al.* Diagnosis of methylmalonic aciduria (MMA) by neonatal screening using tandem mass spectrometry. *J Inherit Metab Dis* 2001;**24** (Suppl 1):7.

Ito T, van Kuilenburg ABP, Bootsma A, Haasnoot AJ, van Cruchten A, Wada Y, *et al.* Rapid screening of high risk patients for disorders of purine and pyrimidine metabolism using HPLC–electrospray tandem mass spectrometry of liquid urine or urine soaked filter paper strips. *Clin Chem* 2000;**46**:445–52.

Jensen UG, Brandt NJ, Christensen E, Skovby F, Norgaard-Pedersen B, Simonsen H. Neonatal screening for galactosemia by quantitative analysis of hexose monophosphates using tandem mass spectrometry: a retrospective study. *Clin Chem* 2001;**47**:1364–72.

Johnson DW. A rapid screening procedure for the diagnosis of peroxisomal disorders: Quantification of very long-chain fatty acids, as dimethylaminoethyl esters, in plasma and blood spots, by electrospray tandem mass spectrometry. *J Inherit Metab Dis* 2000; **23**:475–86.

Kwon C, Farrell PM. The magnitude and challenge of false-positive newborn screening test results. *Arch Pediatr Adolesc Med* 2000;**154**:714–18.

Leonard JV, Dezateux C. Screening for inherited metabolic diseases in newborn infants using tandem mass spectrometry. *BMJ* 2002;**324**:4–5.

Liebl B, Fingerhut R, Roschinger W, Muntau A, Knerr I, Olgemoller B, *et al.* [Model project for updating neonatal screening in Bavaria: concept and initial results]. *Gesundheitswesen* 2000;**62**:189–95.

Liebl B, Nennstiel-Ratzel U, Fingerhut R, Olgemoller B, Roscher A. Audit of MS-MS based newborn screening model program in Bavaria. Interim report. *J Inherit Metab Dis* 2000; **23** (Suppl 1): 5.

Meyburg J, Schulze A, Kohlmuller D, Hoffmann GF, Linderkamp O, Mayatepek E. Differences in acylcarnitine profile between term and preterm infants. *J Inherit Metab Dis* 2000; **23** (Suppl 1), 12.

Mills KA, Mushtaq I, Johnson AW, Whitfield PD, Clayton PT. A method for the quantitation of conjugated bile acids in dried blood spots using electrospray ionization-mass spectrometry. *Pediatr Res* 1998;**43**:361–8.

Mushtaq I, Logan S, Morris M, Johnson AW, Wade AM, Kelly D, *et al.* Screening of newborn infants for cholestatic hepatobiliary disease with tandem mass spectrometry. *BMJ* 1999;**319**:471–7.

135

Naughten ER, Yap S, Mayne PD. Newborn screening for homocystinuria: Irish and world experience. *Eur J Pediatr* 1998;**157** (Suppl 2):S84–7.

Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. *J Child Neurol* 1999;**14** (Suppl 1):S4–8.

Poplawski NK, Ranieri E, Harrison JR, Fletcher JM. Multiple acyl-coenzyme A dehydrogenase deficiency: diagnosis by acyl-carnitine analysis of a 12-year-old newborn screening card. *J Pediatr* 1999;**134**:764–6.

Presto-Elgstoen KB, Zhao JY, Anacleto JF, Jellum E. Potential of capillary electrophoresis, tandem mass spectrometry and coupled capillary electrophoresistandem mass spectrometry as diagnostic tools. *J Chromat A* 2001;**914**:265–75.

Rashed MS, Rahbeeni Z, Ozand PT. Screening blood spots for argininosuccinase deficiency by electrospray tandem mass spectrometry. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):170–3.

Roe CR, Wiltse HE, Sweetman L, Alvarado LL. Death caused by perioperative fasting and sedation in a child with unrecognized very long chain acyl-coenzyme A dehydrogenase deficiency. *J Pediatr* 2000;**136**:397–9.

Sander J, Janzen N. Optimized laboratory technics for neonatal screening for phenylketonuria and other hyperphenylalaninemias. *Monatsschrift Kinderheilkunde* 1999;**147**:480–5.

Sander J, Janzen N, Sander S, Melchiors U, Steuerwald U. Neonatal screening for inborn errors of metabolism using tandem mass spectrometry. *Monatsschrift Kinderheilkunde* 2000;**148**:771–7.

Sansom C. Tandem mass spectrometry: the tool of choice for diagnosing inborn errors of metabolism. *Mol Med Today* 1999;**5**:95.

Schulze A, Kohlmueller D, Mayatepek E. Sensitivity of electrospray–tandem mass spectrometry using the phenylalanine/tyrosine-ratio for differential diagnosis of hyperphenylalaninemia in neonates. *Clin Chim Acta* 1999;**283**:15–20.

Shigematsu Y, Hata I, Kikawa Y, Mayumi M, Tanaka Y, Sudo M, *et al.* Modifications in electrospray tandem mass spectrometry for a neonatal-screening pilot study in Japan. *J Chromat B* 1999;**731**:97–103.

Shigematsu Y, Fujisawa K, Hata I, Mayumi M, Tanaka Y, Sudo M. Newborn screening by tandem mass spectrometry; results of pilot study and retrospective analysis in Japan. *J Inherit Metab Dis* 2000;**23** (Suppl 1):6.

Smith WE, Millington DS, Koeberl DD, Lesser PS. Glutaric acidemia, type I, missed by newborn screening in an infant with dystonia following promethazine administration. *Pediatrics* 2001;**107**:1184–7.

Sweetman L. Newborn screening by tandem mass spectrometry: gaining experience. *Clin Chem* 2001;**47**:1937–8.

Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, *et al.* A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism. *J Public Health Med* 1998;**20**:331–43.

Wilcken B, Wiley V, Keow GS, Carpenter K. Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry. *J Pediatr* 2001;**138**:581–4.

Wood JC, Magera MJ, Rinaldo P, Seashore MR, Strauss AW, Friedman A. Diagnosis of very long chain acyldehydrogenase deficiency from an infant's newborn screening card. *Pediatrics* 2001;**108**:E19.

Effectiveness of neonatal screening using tandem mass spectrometry: amino acids and acylcarnitines

Authors,	Study type	Screening	Sample type	Target	Threshold	d for		Results		Comments
year	Period Country	lest	Age at sampling Ethnicity	conditions	identifica	tion	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
Hoffman et al., 2001 ⁹	Screening	Screening	Screening	Screening	Screening		Screening	Screening	Screening	Screening
(Abstract)	Study type NR	Tandem MS	Sample type NR	Acylcarnitine profile (confirmatory	Acylcarniti for majorit at mean +	nes: cut-off ty maintained 4 SD;	Total Approx. 50,000	True positives 5	Sensitivity Could not be calculated with	The authors screened approx. 50,000 specimens using tandem
	Period NR		Age at sampling NR	test method not reported)	however, s acylcarnitin to mean ≥	some nes adjusted 5 SD. In		False negatives NR	certainty	MS and identified 5 confirmed cases of inborn errors of
	Country USA		Ethnicity NR		addition to levels, use concentrat	o acylcarnitine d multiple tion ratio-		False positives 8	Specificity 99.984%	metabolism (4 MCAD and 1 SCAD deficiency)
	(Wisconsin Newborn Screening Program)				based crite abnormal certain dis	eria to the profiles for orders		True negatives 49,987	PPV 38.462%	
Lin et al., 2001 ¹⁹	Screening	Screening	Screening	Screening	Screening		Screening	Screening	Screening	Screening
	Study type NR	ESI/tandem MS	Sample type Dried blood	Amino acid profile PKU/HPA, Tvr.	The cut-of each comp was set as	ff level for bound or ratio the mean	Total 2100	True positives 2	Sensitivity Could not be calculated with	Based on the upper cut- off levels for each compound or ratio
	Period NR		Age at	MSUD, Hcys, ASD, ALD	+4SD (she	own below)		False negatives NR	certainty	(mean +4 SD) 29 infants were suspected to have
	Country Taiwan		sampling NR Ethnicity	Acylcarnitine profile PPA/MMA	Disorder	Ref. conc. (μM) Mean (SD) 49.9 (10.36)		False positives 27	Specificity 98.713%	disorders. Further evaluations showed that only 2 infants (1
			NR	MCD, IVA, GAI, GAII, MCAD,	Tyr MSUD	85.5 (35.72) 144.5 (33.82)		True negatives 2071	PPV 6.897%	identified as HPA and one with IVA) actually had inborn errors of
				LCAD/ VLCAD, HMG	Hcys ASD ALD PPA/MMA	24.2 (8.68) 14.1 (9.15) 14.1 (9.15) 2.25 (1.22)				metabolism (true incidence 0.09%, with false-positive rate of 1.29%)
										continued

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
					SCAD/EMA 0.22 (0.121) MCD 0.138 (0.06) IVA 0.01 (0.007) HMG 0.13 (0.079) GAI 0.016 (0.025 GAII 0.146 (0.09) MCAD 0.185 (0.125 LCAD/VLCAD 0.028 (0.044 (Confirmation based or GC/MS analysis of urine				The authors reported that the majority of false positives using tandem MS occurred in ALD and GAI categories. These were attributed to the use of only one indicator in screening these disorders. In addition, determination of the upper cut-off level of citrulline level for ALD screening is difficult; however, this can be accurately diagnosed by measuring elevations of ASA and its anhydrides in urine If the cut-off levels were lowered to mean +3 SD, 67 false positives would have been identified (specificity: 97%; PPV: 3%) The authors also compared the results from the tandem MS screening with those for traditional screening methods (only for PKU and Met) and found no false negatives in the 2100 studied samples using the current cut-off value
				Appendix	7 cont'd Effectiveness of	of neonatal scre	eening using tandem mas	ss spectrometry: am	ino acids and acylcarnitines

Authors,	Study type	Screening	Sample type	Target	Threshold	for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identificat	ion	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	-
Muenzer et al., 2001 ⁸	Screening	Screening	Screening	Screening	Screening		Screening	Screening	Screening	Metabolic disorders were confirmed for 31
(Abstract)	Pilot study	Pilot study	Pilot study	Pilot study	Pilot study		Pilot study	Pilot study	Pilot study	infants. Disorders included MCAD
(Study type NR Period August 1997 to March	Tandem MS	Sample type NR Age at sampling NR	Selected amino acid, organic acid and fatty acid oxidation disorders	NR		Total 194,384	True positives 31 False negatives NR	Sensitivity NA	deficiency ($n = 14$), long-chain fatty acid oxidation disorder ($n = 1$), HPA ($n = 6$), hypermethioninaemia ($n = 1$) citrullinaemia
	1999		Ethnicity					False positives 228	Specificity 99.883%	(n = 1), citi dimacrina (n = 3), argininosuccinic aciduria $(n = 1)$ and
	Country USA		NR					True negatives	PPV .969%	5 organic acidurias
	(NeoGen Screening Inc., Pennsylvania)									

Authors, year	Study type	Screening test	Sample type	Target conditions	Threshold disease	l for		Results		Comments
yeur	Period	test	Age at sampling	contactions	identificat	ion	Total screened	True positives (n) False negatives (n)	Sensitivity (%) Specificity (%)	
	Country		Ethnicity				(1)	True negatives (n)	FFV	
	Screening þrogramme	Screening programme	Screening þrogramme	Screening þrogramme	Screening p	rogramme	Screening programme	Screening programme	Screening þrogramme	Metabolic disorders were confirmed for 27 infants.
	Study type NR	Tandem MS	Sample type NR	Amino acids and			Total 3 ,776	27	Sensitivity 90.000%	MCAD deficiency (n = 10), SCAD
	Period August 1999		Age at sampling	acylcarnitines				Palse negatives 3		($n = 9$) and 7 organic acidurias
	to June 2000 Country		NR Ethnicity					False positives NR (authors reported	Specificity NA	Initial cut-offs resulted in false-positive detection
	USA (North		NR					false-positive rate as <0.85%)	PPV NA	rates of > 1.9%, but revised cut-offs resulted in $2 < 0.85\%$ false
	Carolina Newborn							True negatives NR		positive rate
	Screening Program)									Since tandem MS screening began in North Carolina, disorders among 3 infants (1 with late-onset methylmalonic aciduria and 2 with GAI) were missed by tandem MS screening, but the disorders were diagnosed clinically before the age of 1 year for all 3 infants
				Appendix	7 cont'd E	ffectiveness of	neonatal scree	ening using tandem mas	s spectrometry: am	ino acids and acylcarnitines

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	disease identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
Rashed et al., 1999 ¹⁷	Screening Study type Prospective cohort study Period June 1995 to June 1998 Country Saudi Arabia	Screening Automated ESI/tandem MS (using a CAMPA for automated processing and flagging of abnormal profiles)	Ethnicity Screening Sample type Dried blood spots (from newborn infants with minimum birth weight of 2 kg) Age at sampling Mean: 24.87 ± 16.4 hours Ethnicity NR	Screening Amino acids, acylcarnitines with argininosuccini c acid screen added in March 1996 [positive results: repeat analysis of second blood spot and analysis of urine for organic acids (in some cases) by GC/MS]	Screening Parameters used by algorithm were selected by comparing metabolic profiles from known cases of organic acidaemia and amino acid disorders with profiles from control samples Large set of data files (n = 1100) from newborn population was chosen for establishing control cut-off values. Sample criteria included newborn infants with minimum birth weight of 2.01 kg and sample analysis in <72 hours from time of collection	Screening Total 27,624	True negatives (n) True negatives (n) Screening True positives 20 False negatives 0 (due to early time of sample collection, authors cannot ascertain that no cases were missed) False positives 67 True negatives 27,537	Screening Sensitivity 100.000% Specificity 99.757% PPV 22.989%	The authors screened 27,624 blood spots and identified 20 cases of inherited metabolic disorders: PKU (HPA) (n = 3), MSUD $(n = 2)$, ALD $(n = 2)$, ASD (n = 1), non-ketotic hyperglycaemia $(n = 1)$, glutaric CoA dehydrogenase deficiency (n = 2), MMA $(n = 4)$, PPA $(n = 1)$, IVA $(n = 2)$, MCAD $(n = 2)$. In addition, 26 cases were lost to follow-up. The frequency of amino acid and acylcarnitine disorders in this population was 1:1381 (20:27,624) No false-negative results were identified; however, due to the early times of sample collection (mean = 24.87 ± 16.4 hours),
					based on the percentile method with the 99.5 percentile as the upper cut-off limit and 0.5 percentile as the lower cut-off limit (used for some key metabolites) ²⁵				establish whether any cases were missed Some false-positive results were eliminated on repeat analysis of a second blood spot using tandem MS and by GC/MS analysis of urine for organic acids in some cases

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
Roscher et al., 2000 ¹⁸	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening
(Abstract)	Study type Prospective, cohort study Period NR; however, 3-year study (Bavaria Newborn Screening Programme)	Tandem MS (using newly developed multi-analyte pattern recognition analysis)	Sample type NR Age at sampling Day 3 (participation rate > 98%) Ethnicity NR	7 disorders routinely screened using tandem MS, disease range expanded under pilot criteria	NR	Total 166,000 (repeat samples using tandem MS was 0.3%, n = 498)	True positives 49 False negatives 0 (so far) False positives 449 True negatives 165,502	Sensitivity 100.000% Specificity 99.729% PPV 9.839%	The authors screened 166,000 newborns using tandem MS and identified 49 confirmed cases of inborn errors of metabolism (1:3390) that required treatment and/or counselling. The detection frequency of treatable fatty acid oxidation disorders was 1:9000. Besides 13 MCAD deficiencies, the first cases of LCHAD deficiency, carnitine uptake defect and CPTI were detected in prospective newborn screening. MCC deficiency (3 isolated cases and 2 asymptomatic mothers) appeared to be the most frequent organic acid disorder. Other defects included severe variants of VLCAD deficiency and MAD deficiency [2 newborns were identified in newborn screening, but died (day 3) before diagnosis]
				Appendix	cont'd Effectiveness of	neonatal scree	ening using tandem mas	s spectrometry: am	ino acids and acylcarnitines

Authors,	Study type	Screening	Sample type	Target	Threshold for	r		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	disease identification		Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
Wiley, et al., 1999 ¹⁶ (includes additional information and results reported in two abstracts by Wilcken et al., 2000 ⁵ and Wilcken and Wiley, 2001 ⁴)	Screening Study type Prospective cohort study Period Not clear; however, results from 1998 Country Australia [New South Wales Newborn Screening Programme: screens all babies born (approx. 95,000 per year) in New South Wales and Australian Capital Territory]	Screening Micromass Quattro II electrospray tandem MS (automated sampler and computer- assisted software for automated processing and flagging)	Ethnicity Screening Sample type Dried blood spots Age at sampling >48 hours (usually day 3) Ethnicity NR	Screening Amino acids and acylcarnitines (positive results: retested original sample in-house and as required using capillary electro- phoresis, thin- layer chromatogra- phy or DNA mutational analysis. If marginally abnormal repeat analysis of dried blood spot, urine for a metabolic screen of organic acids and amino acids and plasma amino	Screening Analytes Analytes Analytes Analytes Analytes Analytes Analytes Analytes Alanine Citrulline Glycine Leucine/isoleud Methionine Phenylalanine Tyrosine Acetyl carnitine Acetyl carnitine Carnitine Acetyl carnitine Butyryl carnitin Isovaleryl carnit Sovaleryl carnit Sovaleryl carnit Decanoylcarnit Decanoylcarnit Decanoylcarnit Decanoylcarnit Tetradecenoylcarnit	Cut-off for repeat sample (μmol/l) 900 75 1000 cine 500 80 150 500 s 5–125 e 8–160 itine 9 ne 1.6 itine 1.4 nitine 1.0 tine 0.8 cine 1.5 cine 0.8 ne 1.5 carnitine	Screening Total 196,000 (consec- utive samples)	True negatives (n) Screening True positives 46 False negatives 3 (known false- negative cases: tyrosinaemia type I, non-ketotic hyperglycinaemia and cobalamin C defect) False positives 164 True negatives 195,790	Screening Sensitivity 93.878% Specificity 99.916% PPV 21.905%	The authors screened 196,000 blood spots and identified 46 cases of inherited metabolic disorders with a repeat sampling rate of 0.1% (210/196,000). The detection rate with tandem MS was approximately the expected rate, based on 20 years' previous experience in New South Wales or known mutation frequencies. The authors found 28 cases of PKU (21 expected), 2 biopterin defects, 6 MCAD deficiencies (6 expected), 2 with other defects of fatty acid oxidation [SCAD ($n = 1$), β -ketothiolase deficiency ($n = 1$)], 3 with organic acid defects [vitamin B ₁₂ - deficient babies of vegan mothers ($n = 2$), glutaric CoA dehydrogenase deficiency ($n = 1$)] and 5 with other amino
				acids and/or acylcarnitines)	Palmitoylcarnit	tine 8.5				acidopathies [MSUD ($n = 1$), tyrosinaemia type II ($n = 1$), HPA ($n = 3$)]. Overall, this
				Appendix	7 cont'd Effec	tiveness of	neonatal scre	ening using tandem mas	s spectrometry: am	nino acids and acylcarnitines

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
				Abbandiy	[Cut-off values based on population data and retrospective samples with proven disorders. The database can provide individual cut- off levels (sample outside 99.5 percentile) as well as ratios of analytes]			s shertometur am	yielded a frequency of approximately 1 in 4261 (46:196,000) The authors concluded that some disorders can be detected with confidence (PKU, many organic acidaemias, classic MSUD) and some always (MCAD deficiency, glutaric acidaemia) using tandem MS. Disorders that could not be reliably detected included mild MSUD, homocystinuria, tyrosinaemia type I and probably most fatty acid defects. Furthermore, this method coupled with the ability of the database to provide ratios of various analytes increased the sensitivity and specificity for the detection of inborn errors of metabolism
				Appendix	Conta Effectiveness of I	neonatai scree	sing using condern mas	s specifornelly. and	no acias ana acyicarmunes

Authors,	Study type	Screening test	Sample type	Target	ns	Threshol disease	d for	•			Re	esults			Comments
ycai	Period		Age at sampling	conditio		identifica	tion		Tot scr	al eene	True po ed False n False n	ositives legatives	(n) Sen s (n) Spe	sitivity (%) cificity (%)	
	Country		Ethnicity						('')		True n	egatives	(n) FFV (n)		
Zytkovicz et al., 2001 ⁷	Screening	Screening	Screening	Screening											Screening
	Study type Prospective cohort study	Micromass Quattro LC triple	Sample type Dried blood spots	Marker and ratios	Flag limit	Total F	lagge	ed TN	FN	FP	TP	PPV (%)	Sensitivity (%)	Specificity (%)	The authors screened > 160,000 blood spots using tandem MS and
	Period Not clear,	quadrupole tandem MS	Age at sampling	Amino a Phe	i cid d i 139ª	isorders 257,000	92	256,908	NR	74	18 (7 PKU) 11 HPA)	, 19.565	NA	99.971	with amino acid disorders [PKU $(n = 7)$,
	data from I February	(automated sampler and	I–3 days	Phe/Tyr	1.5	257,000	64	256,936	NR	46	18 (7 PKU) 11 HPA)	, 28.125	NA	99.982	HPA $(n = 11)$, MSUD $(n = 1)$,
	1999 (reported 2-year summary)	computer- assisted software for automated	Ethnicity NR	Leu Leu/Phe Met Met/Phe	373 ^a 5 67 ^a	257,000 257,000 257,000 257,000	19 8 71 32	256,981 256,992 256,929 256,929	NR NR NR	18 7 70 31	I MSUD I MSUD I HMet I HMet	5.263 12.500 1.408 3.125	NA NA NA	99.993 99.997 99.973 99.988	hypermethioninaemia ($n = 1$), argininosuccinase lyase deficiency ($n = 1$) and
	Country USA	processing and flagging)		Tyr Tyr/Phe Orn	442 ^a 6 300 ^a	164,000 164,000 164,000	42 38 10	163,958 163,962 163,990	NR NR NR	42 38 10	0 0 0	- - -	NA NA NA	99.974 99.977 99.994	argininaemia $(n = 1)$] and 20 infants with fatty and organic disorders
	(New England Newborn Screening Program:	1		Orn/Cit Cit Cit/Arg Arg	10 100 ^a 2 132 ^a	164,000 164,000 164,000 164,000	5 20 3 6	163,995 163,980 163,997 163,994	NR NR NR	5 19 2 5	0 ASL ASL Arg	_ 5.000 33.333 16.667	NA NA NA	99.997 99.988 99.999 99.997	[MCAD deficiency ($n = 10; 4$ homozygous for 985A \rightarrow G mutation), SCAD deficiency (accountation $n = 5$)
	specimens from Massachusetts Maine, New Hampshire, Vermont, Rhode Island)	,		Arg/Orn ^a μmol/l. [Phe]: ma [Tyr]: ma deficiency Note: ret according C8 conce analysis.	I rker fo y; [Arg tested g to st entrati	for PKU and or Tyr; [Orr g]: marker f original sar andard met ons > 0.5 μ	3 d HP/ i]: ma or Ar nples abolic umol	163,997 A; [Leu]: n arker for H g. of positiv c procedu /l prompte	NR narke HHH e res; in ed and	2 synd ults; n adc alysis	I Arg MSUD; Mer Irome; [Cit]: confirmation dition, MCAI for 985A →	33.333 t: marker marker f of the d deficier G muta	NA for Hcys f for ASS and isorders w hcy blood s tion using	99.999 and HMet; d ASL ras spots with DNA	(presumptive $n = 3$), PPA ($n = 2$), carnitine palmitoyltransferase II deficiency ($n = 1$), 3-methylcrotonyl-CoA carboxylase deficiency ($n = 1$), and VLCAD deficiency (presumptive n = 1)]

Appendix 7 cont'd Effectiveness of neonatal screening using tandem mass spectrometry: amino acids and acylcarnitines

Authors,	Study type	Screening	Sample type	Target	Threshold for	•			Re	sults			Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	disease identification		Total scree (n)	l ened	True po False ne False po True ne	ositives (n) egatives (n ositives (n) egatives (n	Sen 1) Spe 1) PPV 1)	sitivity (%) cificity (%) /	-
				Marker Flag and limit ratios (μ mo Acylcarnitine C3 8 ^a C3-2M-DC 0.8 C5 1.2 C5OH 0.8 C5:1 0.0 C5-3M-DC 0.1 C5-DC 0.2 C4 1.9 C8 0.5 C14:1 0.9 C16 12 ^c C16OH 0.1 ^b Presumptive of [C3]: primary r deficiency; [C8 good secondar); primary market acylcarnitine tra Note: Retested according to sta C8 concentration analysis.	Total Flagge $ / ^{a}\rangle$ disorders 164,000 36 164,000 35 164,000 24 8 164,000 21 1 164,000 32 1 64,000 32 1 164,000 32 1 64,000 4 3 184,000 52 1 64,000 4 3 164,000 2 1 64,000 4 3 164,000 5 cases. marker for PPA, OH] or isomers: MCD, additional ary marker for C ylcarnine: primaa , C6 and C10:1]: y markers; C10 ar for VLCAD defanslocase deficie original samples andard metabolic ons > 0.5 µmol/	d TN 163,964 163,994 163,965 163,976 163,993 163,979 163,968 163,997 163,968 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,998 163,997 163,968 163,979 163,978 170,978 170,978 170,978 170,978 170,978 170,978 170,978 170,97	FN I NR NR NR NR NR NR NR NR NR NR NR NR NR	FP TI 34 2 6 0 35 0 23 1 7 0 21 0 32 0 28 5 42 10 3 1 1 1 5 0 [C5]: indary triglyk y mark CAD ar cker for good pu rimary rimary lts; con additio ysis for	P PPA MCC SCAD ^b 0 MCAD 0 MCAD VLCAD ^b CPTII primary m markers for carnitine a ker for GA nd isobuty r MCAD of rimary marker for marker for firmation on, MCAD of 985A →	PPV Se (%) (% 5.556 - - 4.167 - - 15.152 19.231 25.000 50.000 - marker for I or BKT, HN and 3-meth sufficiency, v rkers for C or CPTII ar or LCHAD of the disc deficiency G mutation	NA NA NA NA NA NA NA NA NA NA NA NA NA N	 Specificity (%) 99.979 99.996 99.979 99.986 99.987 99.983 99.987 99.980 99.987 99.980 99.987 99.980 99.987 99.980 99.987 99.980 99.987 99.980 99.983 99.997 99.980 99.983 99.997 99.983 99.997 99.998 99.999 99.997 2-MBCD MCC ylcarnitine; enase and C10:1 14:1]: tine-ncy. yas spots with DNA 	Approximately 0.3% of all newborns screened were flagged for either amino acid or acylcarnitine markers. The sensitivity of the tandem MS method could not be calculated with certainty due to a lack of information regarding false negatives; however, the cumulative specificity was 100%. The PPV for all amino acid and acylcarnitine disorders was 8% (22 of 260) and 9% (20 of 233), respectively. If flagged amino acids and there flagged ratios are used, the PPV increases to 14% (22 of 153)
ALD, arginos CPTI, carnitin HMet, hypern methylbutyry aciduria; PPV, coenzyme A	uccinase deficie ne palmitoyltrar methioninaemia I-coenzyme del positive predic dehydrogenase	ency; Arg, argin nsferase type I; a; HMG, 3-hyd hydrogenase; N ctive value; SC/	aemia; ASD, argi CPTII, carnitine roxy-3-methylglu 1CC, 3-methylcr AD, short-chain a	nosuccinic acid sy palmitoyltransfer taric aciduria; IV/ otonyl-coenzyme cyl-coenzyme A	ynthetase deficie ase type II; EMA A, isovaleric acidi A carboxylase; dehydrogenase;	ncy; ASL, , ethylmal uria; MAD MCD, mu TN, true	arginos onic ac , multip ltiple ca negativ	succina cidaemi ple acy arboxy re; TP, 1	ate lyase; A ia; FN, fals I-coenzym ylase defici true positi	ASS, argino se negative ne A dehyd iency; MM/ ive; Tyr, tyr	succinat ; FP, fals rogenas A, meth onsinae	e synthetase e positive; H se; 2-MBCD ylmalonic aci mia; VLCAD	e; BKT, β-ketothiolase; Icys, homocystinuria; , 2-MBCD, 2- iduria; PPA, propionic 9, very long-chain acyl-

Effectiveness of neonatal screening using tandem mass spectrometry: medium-chain acyl-coenzyme A dehydrogenase deficiency only

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	-
Andresen et al., 2001 ²³	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening
et al., 2001 ²³	Study type Prospective cohort study Period I December 1992 to 31 January 2001 Country USA (Pennsylvania, Ohio, New Jersey, Illinois, Florida, North Carolina)	VG Quattro quadropole tandem MS with laboratory- based data system (Micromass) ²² (operated in static liquid secondary ionisation mode)	Sample type Dried blood spots Age at sampling < 72 hours Ethnicity NR	MCAD deficiency (verified in at least two separate analyses of blood spot and in most cases repeat blood-spot specimen) (samples having acylcarnitine profiles indicative of MCAD deficiency were also assayed for the 985A \rightarrow G mutation using DNA analysis and 199T \rightarrow C mutation using a mutation specific assay validated by DNA analysis)	Detection of 'diagnostic' acylcarnitine profiles, i.e. elevated C6, C8, C10 and C10:1 (mild profile: octanoylcarnitine concentration $0.5-2.0 \mu$ mol/l and octanoylcarnitine ratio 2-4; severe profile: octanoylcarnitine concentration > 2.0 μ mol/l and octanoylcarnitine: decanoylcarnitine ratio of > 4)	Total 930,078 (includes 80,371 blood spots reported in study by Ziadeh <i>et al.</i> , 1995 ⁶⁷)	True positives 62 False negatives NR False positives 0 True negatives 930,016	Sensitivity Could not be calculated with certainty Specificity 100.000% PPV 100.000%	An MCAD deficiency frequency of 1:15,001 (62:930,078) was observed. From the 930,078 screened samples, the authors expected to find 36 to 38 985A \rightarrow G homozygotes. The results showed that of the 62 acylcarnitine- positive blood spots 63% (39) were homozygous for the 985A \rightarrow G mutation (1:23,848), indicating that tandem MS-based screening methods detect the expected number of 985A \rightarrow G homozygous newborns; however, the frequency of the 985A \rightarrow G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients (80%) Note that screening for MCAD deficiency was
									solely based on continued

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	LESL	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
									diagnostic acylcarnitine profiles
									A new mutation, $199T \rightarrow C$, was identified and was present in a large proportion of the acylcarnitine-positive samples. Overexpression experiments showed that $199T \rightarrow C$ was a mild folding mutation that exhibited decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1 in 500 in the general population makes the $199T \rightarrow C$ mutation one of the three most prevalent mutations in the enzymes of fatty acid oxidation
					Appendix 8 cont'd	Effectiveness of neo	natal screening using ta	ndem mass spectro	metry: MAD deficiency only

Year Period Age at sampling conditions disease identification Total screening True positives (n) Sensitivity (%) Country Ethnicity Ethnicity Screening	Authors,	Study type	Screening	reening Sample type st Age at sampling Ethnicity	Target Three conditions disea ident	Threshold for		Results	Comments	
Carpenter et al., 2001 ²⁰ Screening <	year	Period Country	test			disease identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
Study type Prospective cohort study cohort study co	Carpenter et al., 2001 ²⁰	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening
and suberglycine in for the 985A \rightarrow G	et al., 2001 ²⁰	Study type Prospective cohort study Period April 1998 to March 2001 Country Australia [New South Wales Newborn Screening Programme: screens all babies born (>99%) in New South Wales and Australian Capital Territory]	Micromass Quattro II electrospray tandem MS	Sample type Dried blood spots Age at sampling Median 3 days, and over 99% sampled before day 6 Ethnicity NR	MCAD deficiency (samples having acylcarnitine profiles indicative of MCAD deficiency were also assayed for the 985A \rightarrow G mutation, analysis of plasma, repeat blood-spot acylcarnitines and urinary organic acids and fibroblast fatty acid oxidation)	Octanoylcarnitine concentration $\geq 1 \ \mu \text{mol/l}$ [threshold value based on a retrospective analysis of newborn screening samples from 13 patients born between January 1981 and June 1997 – dried blood-spot samples were obtained between 4 and 6 days ($n = 12$) and one at day 10 – later diagnosed clinically with MCAD deficiency (11 homozygous for the common MCAD mutations 985A \rightarrow G, and 2 heterozygous), and prospective analysis of newborn screening samples from 24,000 newborns] Patients diagnosed with MCAD deficiency if one or more of the following criteria were met: homozygous for 985A \rightarrow G mutation, raised hexanoylglycine	Total 275,653 (consecutive neonates undergoing routine newborn screening)	True positives 12 (including I probable mild case) False negatives NR False positives 11 True negatives 275,630	Sensitivity Could not be calculated with certainty Specificity 99.996% PPV 52.174%	11 babies were diagnosed with MCAD deficiency and 1 additional patient was considered to be a carrier at low risk of developing symptoms. Of the remaining 11 babies who screened positive but did not meet the diagnostic criteria for MCAD deficiency, four infants died in the neonatal period from a variety of causes before a second sample could be taken. Absence of MCAD deficiency was confirmed by enzyme analysis in cultured skin fibroblasts in one patient, and further information from clinicians and post- mortem findings eliminated MCAD deficiency from the other patients who died before analysis Authors reported 1:68,913 (4:275,653) newborns homozygous
Abbendix 8 cont'd Effectiveness of neonatal screening using tandem mass shectrometry: MAD deficient						and suberglycine in	iveness of neo	natal screening using to	indem mass spectru	for the 985A $\rightarrow G$

Authors,	Study type	Screening	Sample type	Target	Threshold for			Results		Comments
year	Period Country	Period Country	Age at sampling Ethnicity	conditions	identification		Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	-
					urine, increased hexanoylcarnitine, octanoylcarnitine o decenoylcarnitine i plasma, etc.	or in				mutation, which is considerably lower than the predicted birth prevalence from Australian figures (1:29,500, 95% CI 1:11,500 to 1:8700), but within the 95% CI Newborn screening using tandem MS can detect almost all patients with MCAD deficiency who would later have developed symptoms
					Appendix 8 cont'd	Effecti	veness of neo	natal screening using ta	ndem mass spectro	metry: MAD deficiency only

Authors,	Study type	Screening	Sample type	Target	Threshold for	Results			Comments
year	Period Country	test	Age at sampling Ethnicity	conditions disease To identification To sci (n)	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	-	
Chace et al., 1997 ²²	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening	The combined experience of
	Study type Prospective cohort study Period September 1992 to January 1997 Area USA (Neo Gen Screening, Pennsylvania, and North Carolina Newborn Screening Program)	VG Quattro quadrupole tandem MS with laboratory- based data system (Micromass) (operated in static liquid secondary ionisation mode)	Sample type Dried blood spots Age at sampling < 72 hours Ethnicity NR	MCAD deficiency (verified by DNA mutation analysis)	Octanoylcarnitine concentration $\geq 0.3 \ \mu mol/l$ [maximum levels of octanoyl-, hexanoyl- and decanoylcarnitines from 113 normal neonatal blood spots, aged < 72 hours, were below 0.3 μ mol/l. Maximum levels of octanoyl-, hexanoyl- and decanoylcarnitines from 16 MCAD-deficient patients, aged < 72 hours, were well above 0.3 μ mol/l; also above upper values of normal controls (>2.5 μ mol/l), whereas maximum levels of octanoyl- hexanoyl-, decenoyl and decanoylcarnitines from 16 MCAD-deficient patients aged between 8 days and 11 years were above upper values of normal controls (>0.5 μ mol/l) but to a lesser degree than the neonatal period ($p < 0.0001$, Mann-Whitney L Letest)	Total 283,803 (Neo Gen Screening, <i>n</i> = 267,303; and North Carolina Newborn Screening Program, <i>n</i> = 16,500)	True positives 16 False negatives 0 (known false- negative results) False positives 0 True negatives 283,787	Sensitivity 100.000% Specificity 100.000% PPV 100.000%	experience of prospective newborn screening in Pennsylvania and North Carolina showed an MCAD frequency of 1:17,706 (16:283,303). Nine of these 16 MCAD- deficient patients were homozygous for the 985A \rightarrow G mutation and 7 were compound heterozygotes The authors also found that the diagnostic acylcarnitines (octanoyl-, hexanoyl-, decenoyl and decanoylcarnitines) were higher in the newborn period (<72 hours) than those observed in older patients (between 8 days and 11 years). The octanoylcarnitine was still > 0.3 µmol/l, but the diagnostic distinction was more difficult
					Appendix 8 cont'd Effect	iveness of neo	onatal screening using to	andem mass spectro	metry: MAD deficiency only

Authors, year	Study type	Screening	Sample type	Target	Threshold for disease identification		Results	Comments	
	Period Country	test	Age at sampling Ethnicity	conditions		Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
Pourfarzam	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening	Screening
et al., 2001 ²¹	Study type Retrospective cohort study Period I January 1991 to 20 July 1993 Country UK (Northern region of the NHS)	ESI tandem MS	Sample type Dried blood spots Age at sampling NR Ethnicity NR	MCAD deficiency	Octanoylcarnitine concentration > 0.3 μmol/l with high octanoylcarnitine: hexanoylcarnitine ratio: > 4.0 (criteria based on 18 neonates with MCAD deficiency)	Total 100,600	True positives 8 False negatives 0 False positives 0 True negatives 100,592	Sensitivity 100.000% Specificity 100.000% PPV 100.000%	The authors analysed the concentrations of acylcarnitines in stored neonatal blood spots (up to 5 years) and reviewed patients with high octanoylcarnitine concentrations at the age of 7–9 years Of the 8 MCAD-deficient patients 7 were homozygous with detectable suberglycine, phenylpropionylglycine and hexanoylglycine in urine specimens (features not detected in patients with low octanoylcarnitine/ hexanoylcarnitine ratio) and I was heterozygous (confirmed by study of fibroblast fatty acid oxidation) for the 985A \rightarrow G mutation. Of these, I patient died of gastroenteritis at the age of 17 months, before diagnosis, 4 others had life-threatening illnesses (I had neonatal apnoea related to MCAD
					Appendix 8 cont'd Effect	iveness of neo	natal screening using ta	ndem mass spectro	metry: MAD deficiency only

Authors,	Study type	Screening	Sample type	Target	Threshold for ns disease		Results	Comments	
year	Period Country	lest	Age at sampling Ethnicity	conditions		Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
			Ethnicity				True negatives (n)		deficiency and 3 had severe or recurrent episodes of encephalopathy), 1 had mild symptoms of MCAD deficiency and 2 had no symptoms The incidence of MCAD deficiency in this population was 1:12,600, with the 985A \rightarrow G transition accounting for 94% of mutant alleles. These findings were consistent with earlier studies of clinically detected cases in the UK The authors did not identify any false-negative results after examination of the regional registers for metabolic diseases and deaths. The specificity of screening was 100%; however, the sensitivity of the test was difficult to ascertain, because many occurrences of MCAD deficiency not diagnosed
									on clinical grounds
Effectiveness of tandem mass spectrometry: laboratory-based studies

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	-
Chace et al., 1998 ²⁴	Study type Retrospective analytical study Period 1992 to 1994 Country USA (samples from California Newborn Screening Program)	Fluorometry vs isotope dilution liquid secondary ion tandem MS	Sample type Dried blood spots Age at sampling < 24 hours Ethnicity NR	PKU	Fluorometry Phenylalanine concentration ≥ 258 μmol/I (4.3 mg/dl) (metabolic specialist made final diagnoses of cases of classical PKU or variant PKU)	Fluorometry Total 203 (initially 208 specimens, but 5 serial samples from 1 infant with PKU)	Fluorometry True positives 19 (12 confirmed classical PKU; 7 confirmed variant PKU) False negatives NR, assumed zero False positives 91 True negatives 93	Fluorometry Sensitivity 100.000% Specificity 50.543% PPV 17.273%	Comparison of results obtained by fluorometry with those obtained by tandem MS reveals a strong correlation (Pearson correlation coefficient: 0.817) Phenylalanine measurement by tandem MS, with a cut-off of 180 μ mol/l (3.0 mg/dl) or by fluorometry, with a cut- off of $\geq 258 \mu$ mol/l (4.3 mg/dl), detected all variant and classical cases of PKU. Tandem MS greatly reduced the number of false-positive results from 91 to 3 and is a more accurate method for measuring phenylalanine concentration
									continued

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
					Tandem MS Phenylalanine concentration: ≥ 180 µmol/l (3.0 mg/dl) Primary HPA: phenylalanine/tyrosine molar ratio ≥ 2.5 Variant PKU: mean phenylalanine concentration of 430 µmol/l (7.1 mg/dl) Classical PKU: mean phenylalanine concentration of 1188 mmol/l (19.6 mg/dl) in second specimen	Tandem MS Total 203 (initially 208 specimens, but 5 serial samples from 1 infant with PKU)	Tandem MS True positives 19 (12 confirmed classical PKU; 7 confirmed variant PKU) False negatives NR, assumed zero False positives 3 True negatives 181	Tandem MS Sensitivity 100.000% Specificity 98.370% PPV 86.364%	Simultaneous quantification of phenylalanine and tyrosine by tandem MS further reduced the number of false positives to 1 using a cut-off of phenylalanine/tyrosine molar ratio ≥ 2.5
							Appendix 9 cont'o	Effectiveness of	f tandem mass spectrometry

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	disease identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	-
Rashed et al., 1997 ²⁵	Study type Retrospective, analytical study Period NR Country Saudi Arabia	Automated ESI-tandem MS (using a CAMPA for automated processing and flagging of abnormal profiles)	Sample type Dried blood spots Age at sampling NR Ethnicity NR	Amino acids, acylcarnitines (PKU, Tyr, MSUD, Hcys, NKG, ASD, ALD, PYG/PIP, PRO, MCAD, SCAD/EMA, LCAD/VLCAD, GAII, HMG, BKT, PPA/MMA, MCD, IVA, GA	CAMPA Parameters used by algorithm were selected by comparing metabolic profiles from known cases of organic acidaemia and amino acid disorders with profiles from control samples Large set of data files (<i>n</i> = 1100) from newborn population was chosen for establishing control cut- off values. Sample criteria included newborn infants with minimum birth weight of 2.01 kg and sample analysis in < 72 hours from time of collection Cut-off values were based on the percentile method with the 99.5 percentile as the upper cut-off limit (used for some key metabolites)	CAMPA Total 559 (449 normal; 119 abnormal tandem MS data files)	CAMPA True positives 119 False negatives 0 False positives 91 True negatives 349	CAMPA Sensitivity 100% Specificity 79% PPV 57%	The sensitivity of CAMPA for flagging cases with known metabolic disorders was 100% and the weighted average cumulative specificity for the two tests was 83%. The difference between the sensitivity and specificity was <17% The authors reported that the variability in the acylcarnitine values was responsible for >85% of 'false flagging', [in particular, propionylcarnitine and butyryl (or isobutyryl) carnitine ratios just above the cut-off values were responsible for approximately 25% of the falsely flagged samples], <5% was due to borderline increase of one or more of the key amino acids [methionine, leucine (+isoleucine), alanine, glycine and phenylalanine] and the remaining 10% were a result of borderline low values for one or more of these amino acids
1							Appendix 9 cont'	d Effectiveness of	tandem mass spectrometry

Authors,	Study type	Screening	Sample type	Target	Threshold for		Results		Comments
year	Period Country	test	Age at sampling Ethnicity	conditions	disease identification	Total screened (n)	True positives (n) False negatives (n) False positives (n) True negatives (n)	Sensitivity (%) Specificity (%) PPV	
									In most falsely flagged data files, a single parameter was the reason the flag was set up, whereas for most truly abnormal data files, multiple flags were set; thus, values obtained for concentrations or ratios were noticeably higher than the cut-off values
						CAMPA	CAMPA	CAMPA	The authors concluded that the CAMPA method
						Total	True positives	Sensitivity 100%	demonstrated a high sensitivity (100%) in flagging abnormal profiles
						normal new	Palse negatives 0		and a high cumulative specificity (83.1%). This method also gives a high
						batch), 147 abnormal	False positives	Specificity 85%	throughput capacity (96-well microplate batch process), allowing
						(including 119 abnormal)	True negatives 851	PPV 49%	analysis of hundreds of samples (500–1000 samples per instrument)
						data files from			per day
						screening samples]			
NKG, non-ke	totic hyperglyci	inaemia; PYG/F	PIP, pyroglutamic/	pipecolic acidae	mia.				

Reference list of excluded studies: phenylketonuria

Ades AE, Walker J, Jones R, Smith I. Coverage of neonatal screening: failure of coverage or failure of information system. *Arch Dis Child* 2001;**84**:476–9.

Ades AE, Walker J, Jones R, Thompson S, Leonard JV, Smith I. Obstacles to timely neonatal screening in North Thames. *J Med Screen* 1998;**5**:183–6.

Allen KR, Degg TJ, Rushworth PA, Smith M, Henderson MJ. Measurement of phenylalanine and tyrosine in plasma by high-performance liquid chromatography using the inherent fluorescence of aromatic amino acids. *Ann Clin Biochem* 1999; **36** (Pt 2):207–11.

Applegarth DA, Toone JR, Lowry RB. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. *Pediatrics* 2000;**105**:e10.

Azen C, Koch R, Friedman E, Wenz E, Fishler K. Summary of findings from the United States Collaborative Study of children treated for phenylketonuria. *Eur J Pediatr* 1996;**155** (Suppl 1):S29–32.

Baumeister AA, Baumeister AA. Dietary treatment of destructive behavior associated with hyperphenylalaninemia. *Clin Neuropharmacol* 1998; **21**:18–27.

Berenbaum SA. Neuropsychological follow-up in neonatal screening: issues, methods and findings. *Acta Paediatr* 1999;**88** (Suppl 432):83–7.

Blau N, Thony B, Spada M, Ponzone A. Tetrahydrobiopterin and inherited hyperphenylalaninemia. *Turk J Pediatr* 1996;**38**:19–35.

Boulat O, McLaren DG, Arriaga EA, Chen DD. Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence: potential for emergency diagnosis of inborn errors of metabolism. *J Chromatogr B Biomed Sci Appl* 2001;**754**:217–28.

Bowman JE. To screen or not to screen: when should screening be offered? *Community Genet* 1998;1:145–7.

Burgard P, Bremer HJ, Buhrdel P, Clemens PC, Monch E, Przyrembel H, *et al.* Rationale for the German recommendations for phenylalanine level control in phenylketonuria 1997. *Eur J Pediatr* 1999;**158**:46–54.

Burlina AB, Bonafe L, Ferrari V, Suppiej A, Zacchello F, Burlina AP. Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. *J Inherit Metab Dis* 2000;**23**:313–16.

Cabalska MB, Nowaczewska I, Sendecka E, Zorska K. Longitudinal study on early diagnosis and treatment of

phenylketonuria in Poland. *Eur J Pediatr* 1996; **155** (Suppl 1):S53–5.

Chace DH, Sherwin JE, Hillman SL, Lorey F, Cunningham GC. Use of phenylalanine-to-tyrosine ratio determined by tandem mass spectrometry to improve newborn screening for phenylketonuria of early discharge specimens collected in the first 24 hours. *Clin Chem* 1998;**44**:2405–9.

Ciske JB, Hoffman G, Hanson K, Annable KM, Wolff J, Litsheim T, *et al.* Newborn screening in Wisconsin: program overview and test addition. *Wisconsin Medical Journal* 2000;**99**:38–42.

Cleary MA, Walter JH, Wraith JE, White F, Tyler K, Jenkins JP. Magnetic resonance imaging in phenylketonuria: reversal of cerebral white matter change. *J Pediatr* 1995;**127**:251–5.

Coelho JC, Wajner M, Burin MG, Vargas CR, Giugliani R. Selective screening of 10,000 high-risk Brazilian patients for the detection of inborn errors of metabolism. *Eur J Pediatr* 1997;**156**:650–4.

Corsello G, Bosco P, Cali F, Greco D, Cammarata M, Ciaccio M, *et al.* Maternal phenylketonuria in two Sicilian families identified by maternal blood phenylalanine level screening and identification of a new phenylalanine hydroxylase gene mutation (P407L). *Eur J Pediatr* 1999;**158**:83–4.

da Silva LC, Carvalho TS, da Silva FB, Pires RF, Giugliani R, Pereira ML. Aspartame loading test in PKU heterozygous individuals bearing severe and moderate mutations. *Clin Genet* 2000;**58**:86–8.

de Freitas O, Izumi C, Lara MG, Greene LJ. New approaches to the treatment of phenylketonuria. *Nutr Rev* 1999;**57**:65–70.

Desviat LR, Perez B, Gamez A, Sanchez A, Garcia MJ, Martinez-Pardo M, *et al*. Genetic and phenotypic aspects of phenylalanine hydroxylase deficiency in Spain: molecular survey by regions. *Eur J Hum Genet* 1999; **7**:386–92.

Dezateux C. Evaluating newborn screening programmes based on dried blood spots: future challenges. *Br Med Bull* 1998;**54**:877–90.

Dhondt JL, Paux E, Farriaux JP. Need for a standardized procedure in the preparation of phenylalanine calibrators. *Early Hum Dev* 1996;**45**:277–85.

Dhondt JL, Loeber J, Elvers LH, Paux E. Preparation of the first European working standard for phenylalanine determination in dried blood spots. *J Med Screen* 1998; **5**:63–6.

Dotremont H, Francois B, Diels M, Gillis P. Nutritional value of essential amino acids in the treatment of adults with phenylketonuria. *J Inherit Metab Dis* 1995;**18**:127–30.

Eastman JW, Sherwin JE, Wong R, Liao CL, Currier RJ, Lorey F, *et al.* Use of the phenylalanine:tyrosine ratio to test newborns for phenylketonuria in a large public health screening programme. *J Med Screen* 2000;**7**:131–5.

Eiken HG, Knappskog PM, Boman H, Thune KS, Kaada G, Motzfeldt K, *et al.* Relative frequency, heterogeneity and geographic clustering of PKU mutations in Norway. *Eur J Hum Genet* 1996;**4**:205–13.

Eisensmith RC, Martinez DR, Kuzmin AI, Goltsov AA, Brown A, Singh R, *et al.* Molecular basis of phenylketonuria and a correlation between genotype and phenotype in a heterogeneous southeastern US population. *Pediatrics* 1996;**97**:512–16.

Enns GM, Martinez DR, Kuzmin AI, Koch R, Wakeem CK, Woo SL, *et al.* Molecular correlations in phenylketonuria: mutation patterns and corresponding biochemical and clinical phenotypes in a heterogeneous California population. *Pediatr Res* 1999;**46**:594–602.

Fan GX, Qing LX, Jun Y, Mei Z. Molecular studies and prenatal diagnosis of phenylketonuria in Chinese patients. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):63–5.

Fan GX, Jun Y, Rui-guan C. Neonatal screening of phenylketonuria and congenital hypothyroidism in China. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):17–19.

Green A. Neonatal screening: current trends and quality control in the United Kingdom. *Rinsho Byori* 1998; **46**:211–16.

Greeves LG, Patterson CC, Carson DJ, Thom R, Wolfenden MC, Zschocke J, *et al.* Effect of genotype on changes in intelligence quotient after dietary relaxation in phenylketonuria and hyperphenylalaninaemia. *Arch Dis Child* 2000;**82**(3):216–21.

Griffiths P, Tarrini M, Robinson P. Executive function and psychosocial adjustment in children with early treated phenylketonuria: correlation with historical and concurrent phenylalanine levels. *J Intellect Disabil Res* 1997;**41** (Pt 4):317–23.

Griffiths P, Ward N, Harvie A, Cockburn F. Neuropsychological outcome of experimental manipulation of phenylalanine intake in treated phenylketonuria. *J Inherit Metab Dis* 1998;**21**:29–38.

Griffiths P, Smith C, Harvie A. Transitory hyperphenylalaninaemia in children with continuously treated phenylketonuria. *Am J Ment Retard* 1997; **102**:27–36.

Gu XF, Chen RG. Current status of neonatal screening in China. J Med Screen 1999;6:186–7.

Guldberg P, Levy HL, Hanley WB, Koch R, Matalon R, Rouse BM, *et al.* Phenylalanine hydroxylase gene mutations in the United States: report from the Maternal PKU Collaborative Study. *Am J Hum Genet* 1996;**59**:84–94.

Guldberg P, Zschocke J, Dagbjartsson A, Henriksen KF, Guttler F. A molecular survey of phenylketonuria in Iceland: identification of a founding mutation and evidence of predominant Norse settlement. *Eur J Hum Genet* 1997;5:376–81.

Guldberg P, Rey F, Zschocke J, Romano V, Francois B, Michiels L, *et al.* A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. *Am J Hum Genet* 1998;**63**:71–9.

Guthrie R. The introduction of newborn screening for phenylketonuria. A personal history. *Eur J Pediatr* 1996;**155** (Suppl 1):S4–5.

Hanley WB, Platt LD, Bachman RP, Buist N, Geraghty MT, Isaacs J, *et al.* Undiagnosed maternal phenylketonuria: the need for prenatal selective screening or case finding. *Am J Obstet Gynecol* 1999; **180**:986–94.

Hellekson KL, National Institutes of Health. NIH consensus statement on phenylketonuria. *Am Fam Phys* 2001;**63**:1430–2.

Hitzeroth HW, Niehaus CE, Brill DC. Phenylketonuria in South Africa. A report on the status quo. *S Afr Med J* 1995;**85**:33–6.

Hutchesson AC, Hall SK, Preece MA, Green A. Screening for tyrosinaemia type I. *Arch Dis Child Fetal Neonatal Ed* 1996;**74**:F191–4.

Huttenlocher PR. The neuropathology of phenylketonuria: human and animal studies. *Eur J Pediatr* 2000;**159** (Suppl 2):S102–6.

Infante JP, Huszagh VA. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. *Mol Genet Metab* 2001;**72**:185–98.

Kalsner LR, Rohr FJ, Strauss KA, Korson MS, Levy HL. Tyrosine supplementation in phenylketonuria: diurnal blood tyrosine levels and presumptive brain influx of tyrosine and other large neutral amino acids. *J Pediatr* 2001;**139**:421–7.

Kimura T, Ikeda H, Akaba K, Guldberg P, Guttler F, Maki K, *et al*. Mutation analysis of phenylketonuria in Yamagata prefecture, Japan. *Pediatr Int* 2001;**43**:1–3.

Koch R, Moseley K, Ning J, Romstad A, Guldberg P, Guttler F. Long-term beneficial effects of the phenylalanine-restricted diet in late-diagnosed individuals with phenylketonuria. *Mol Genet Metab* 1999;**67**:148–55.

Leandro P, Rivera I, Ribeiro V, de Almeida IT, da Silveira C, Lechner MC. Mutation analysis of phenylketonuria in south and central Portugal: prevalence of V388M mutation. *Hum Mutat* 1995;**6**:192–4.

Leuzzi V, Fois D, Carducci C, Antonozzi I, Trasimeni G. Neuropsychological and neuroradiological (MRI) variations during phenylalanine load: protective effect of valine, leucine, and isoleucine supplementation. *J Child Neurol* 1997;**12**:338–40.

Levy HL, Lobbregt D, Platt LD, Benacerraf BR. Fetal ultrasonography in maternal PKU. *Prenat Diagn* 1996;**16**:599–604.

Levy HL, Lobbregt D, Barnes PD, Poussaint TY. Maternal phenylketonuria: magnetic resonance imaging of the brain in offspring. *J Pediatr* 1996;**128**:770–5.

Levy PA, Miller JB, Shapira E. The advantage of phenylalanine to tyrosine ratio for the early detection of phenylketonuria. *Clin Chim Acta* 1998;**270**:177–81.

Lillevali H, Ounap K, Metspalu A. Phenylalanine hydroxylase gene mutation R408W is present on 84% of Estonian phenylketonuria chromosomes. *Eur J Hum Genet* 1996;**4**:296–300.

Lin WD, Wu JY, Lai CC, Tsai FJ, Tsai CH, Lin SP, *et al.* A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. *Acta Paediatr Taiwan* 2001;**42**:224–30.

Lines D, Magarey A, Raymond J, Robertson E. Tyrosine supplementation in phenylketonuria. *J Paediatr Child Health* 1997;**33**:177.

Lugovska R, Vevere P, Andrusaite R, Kornejeva A. Newborn screening for PKU and congenital hypothyroidism in Latvia. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):52–3.

Merrick J, Schwarz G, Sela BA. Incidence of phenylketonuria in Israel. *Isr Med Assoc J* 2000;**2**:801–2.

Mowat DR, Hayden MC, Thompson SM, Wilcken B. Maternal phenylketonuria: a continuing problem. *Med J Aust* 1999;**170**:592–5.

Muenzer J, Frazier DM, McCandless SE. Incidence and follow-up evaluation of metabolic disorders detected by newborn screening in North Carolina using tandem mass spectrometry. In Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001;**50** (RR-3): 28–9.

Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. *J Child Neurol* 1999;**14** (Suppl 1):S4–8.

O'Donnell KA, Tighe O, O'Neill C, Naughten E, Mayne PD, McCarthy TV, *et al.* Rapid detection of the R408W and I65T mutations in phenylketonuria by glycosylase mediated polymorphism detection. *Hum Mutat* 2001;**17**:432.

Okano Y, Isshiki G. Newborn mass screening and molecular genetics of phenylketonuria in east Asia. *Southeast Asian J Trop Med Public Health* 1995; **26** (Suppl 1):123–9. Ounap K, Lillevali H, Klaassen T, Metspalu A, Sitska M. The incidence and characterization of phenylketonuric patients in Estonia. *J Inherit Metab Dis* 1996;**19**:381–2.

Ounap K, Lillevali H, Metspalu A, Lipping-Sitska M. Development of the phenylketonuria screening programme in Estonia. *J Med Screen* 1998;5:22–3.

Ozalp I, Coskun T, Tokatli A, Kalkanoglu HS, Dursun A, Tokol S, *et al.* Newborn PKU screening in Turkey: at present and organization for future. *Turk J Pediatr* 2001;**43**:97–101.

Perez B, Desviat LR, De Lucca M, Schmidt B, Loghin-Grosso N, Giugliani R, *et al.* Mutation analysis of phenylketonuria in south Brazil. *Hum Mutat* 1996; **8**:262–4.

Pietz J, Landwehr R, Kutscha A, Schmidt H, de Sonneville L, Trefz FK. Effect of high-dose tyrosine supplementation on brain function in adults with phenylketonuria. *J Pediatr* 1995;**127**:936–43.

Ponzone A, Spada M, Ferrero GB, Ponzone R, Ferraris S. Newborn feeding and screening for phenylketonuria. *Acta Paediatr* 1999;**88**:347–8.

Prince AP, McMurray MP, Buist NR. Treatment products and approaches for phenylketonuria: improved palatability and flexibility demonstrate safety, efficacy and acceptance in US clinical trials. *J Inherit Metab Dis* 1997;**20**:486–98.

Randell EW, Lehotay DC. An automated enzymatic method on the Roche COBAS MIRA S for monitoring phenylalanine in dried blood spots of patients with phenylketonuria. *Clin Biochem* 1996;**29**:133–8.

Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. *Semin Perinatol* 1999;**23**:183–93.

Ratrisawadi V, Horpaopan S, Chotigeat U, Sangtawesin V, Kanjanapattanakul W, Ningsanond V, *et al.* Neonatal screening program in Rajavithi Hospital, Thailand. *Southeast Asian J Trop Med Public Health* 1999; **30** (Suppl 2):28–32.

Reilly AA, Bellisario R, Pass KA. Multivariate discrimination for phenylketonuria (PKU) and non-PKU hyperphenylalaninemia after analysis of newborns' dried blood-spot specimens for six amino acids by ion-exchange chromatography. *Clin Chem* 1998;**44**:317–26.

Rivero A, Allue JA, Grijalba A, Palacios M, Merlo SG. Comparison of two different methods for measurement of phenylalanine in dried blood spots. *Clin Chem Lab Med* 2000;**38**:773–6.

Rohr FJ, Lobbregt D, Levy HL. Tyrosine supplementation in the treatment of maternal phenylketonuria. *Am J Clin Nutr* 1998;**67**:473–6.

Rouse B, Azen C, Koch R, Matalon R, Hanley W, de la Cruz F, *et al.* Maternal Phenylketonuria Collaborative Study (MPKUCS) offspring: facial anomalies, malformations, and early neurological sequelae. *Am J Med Genet* 1997;**69**:89–95.

Rouse B, Matalon R, Koch R, Azen C, Levy H, Hanley W, *et al.* Maternal phenylketonuria syndrome: congenital heart defects, microcephaly, and developmental outcomes. *J Pediatr* 2000;**136**:57–61.

Schulze A, Kohlmueller D, Mayatepek E. Sensitivity of electrospray–tandem mass spectrometry using the phenylalanine/tyrosine-ratio for differential diagnosis of hyperphenylalaninemia in neonates. *Clin Chim Acta* 1999;**283**:15–20.

Scriver CC. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants, by Robert Guthrie and Ada Susi, *Pediatrics*, 1963;**32**:318–343. *Pediatrics* 1998;**102**:236–7.

Scriver CR, Byck S, Prevost L, Hoang L. The phenylalanine hydroxylase locus: a marker for the history of phenylketonuria and human genetic diversity. PAH Mutation Analysis Consortium. *Ciba Foundation Symposium* 1996;**197**:73–90.

Sinai LN, Kim SC, Casey R, Pinto-Martin JA. Phenylketonuria screening: effect of early newborn discharge. *Pediatrics* 1995;**96**:605–8.

Smith ML, Hanley WB, Clarke JT, Klim P, Schoonheyt W, Austin V *et al.* Randomised controlled trial of tyrosine supplementation on neuropsychological performance in phenylketonuria. *Arch Dis Child* 1998; **78**:116–21.

Start K. Treating phenylketonuria by a phenylalaninefree diet. *Professional Care of Mother and Child* 1998; **8**:109–10.

Streetly A. The national newborn screening programme: an audit of phenylketonuria and congenital hypothyroidism screening in England and Wales. London: Department of Public Health Medicine, UMDS Guy's and St Thomas's Medical Schools; 1998.

Streetly A, Grant C, Pollitt RJ, Addison GM. Survey of scope of neonatal screening in the United Kingdom. *BMJ* 1995;**311**:726.

Sueoka H, Moshinetsky A, Nagao M, Chiba S. Mutation screening of phenylketonuria in the Far East of Russia. *J Hum Genet* 1999;**44**:368–71.

Sueoka H, Nagao M, Chiba S. Rapid mutation screening of phenylketonuria by polymerase chain reaction-linked restriction enzyme assay and direct sequence of the phenylalanine hydroxylase gene: clinical application in northern Japan and northern China. *Genet Test* 2000;**4**:249–56.

Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, *et al.* A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism. *J Public Health Med* 1998;**20**:331–43.

Trefz FK, Aulela-Scholz C, Blau N. Successful treatment of phenylketonuria with tetrahydrobiopterin. *Euro J Pediatr* 2001;**160**:315.

van Spronsen FJ, Smit PG, Koch R. Phenylketonuria:

tyrosine beyond the phenylalanine-restricted diet. *J Inherit Metab Dis* 2001;**24**:1–4.

Verma IC. Burden of genetic disorders in India. Indian J Pediatr 2000;67:893-8.

Wang ST, Pizzolato S, Demshar HP. Receiver operating characteristic plots to evaluate Guthrie, Wallac, and Isolab phenylalanine kit performance for newborn phenylketonuria screening. *Clin Chem* 1997;**43**:1838–42.

Wasant P, Naylor EW, Liammongkolkul S. Detection of inherited metabolic disorders via tandem mass spectrometry in Thai infants. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):154–9.

Wasant P, Svasti J, Srisomsap C, Liammongkolkul S, Naylor EW, Matsumoto I. Inherited metabolic disorders in Thailand – Siriraj experience. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):124–37.

Wasant P, Liammongkolkul S, Srisawat C. Neonatal screening for congenital hypothyroidism and phenylketonuria at Siriraj Hospital, Mahidol University, Bangkok, Thailand – a pilot study. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):33–7.

Wilcken B, Wiley V. Tandem mass spectrometry in the New South Wales newborn screening program. In Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001;**50** (N RR-3): 33.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatr* 1999; **88** (Suppl 432):48–51.

Wyatt D. PKU treatment in 1950. *Am J Nurs* 2001; **101**:13.

Yanling Y, Qiang G, Zhixiang Z, Chunlan M, Lide W, Xiru W. A clinical investigation of 228 patients with phenylketonuria in mainland China. *Southeast Asian J Trop Med Public Health* 1999; **30** (Suppl 2):58–60.

Yannicelli S, Ryan A. Improvements in behaviour and physical manifestations in previously untreated adults with phenylketonuria using a phenylalanine-restricted diet: a national survey. *J Inherit Metab Dis* 1995; **18**:131–4.

Zschocke J, Graham CA. A fluorescent multiplex ARMS method for rapid mutation analysis. *Mol Cell Probes* 1995;**9**:447–51.

Zschocke J, Graham CA, Carson DJ, Nevin NC. Phenylketonuria mutation analysis in Northern Ireland: a rapid stepwise approach. *Am J Hum Genet* 1995; **57**:1311–17.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001; **47**:1945–55.

Appendix II

UK studies of birth incidence: phenylketonuria

Authors, vear	Study design	Patient type	Outcomes	Results (cumulat data. etc.)	tive incidence,	orevalence,	morbidity/mortality	Comments
/ • …	Duration of study	Age at sampling	Diagnostic test	,,				
	Country Total screened	(years) Gender (M/F)	Threshold for disease identification					
	lotal science	Ethnicity	Confirmation of disease					
Hutchesson et al., 1998 ³⁰	Study design Retrospective cohort study	Patient type All neonatal infants born in the West Midlands NHS	Outcomes Frequencies of inborn errors of metabolism (major disorders of	Births and frequ the major disord metabolism and 1981 and 1991	encies of inbor ders of amino a storage disord	n errors of r cid, organic ers in the W	netabolism affecting acid, carbohydrate /est Midlands between	Authors reported that they were unable to identify those who died before collection
	22 April 1981 to 21 April 1991 Country	region (covering counties of West Midlands, Hereford, Worcester,	amino acio, organic acio, carbohydrate metabolism and storage disorders) in different ethnic groups and		No. of births ^a (%)	Autosomal No. of diagnoses (%)	recessive inborn errors Cumulative Incidence (95% CI)	children with inborn errors of metabolism may have died without recognition of the
	Neonatal Screening Shropshire, underlying gene Service Programme, Staffordshire and frequencies West Midlands, Warwickshire). Diagnostic test England Data derived from Diagnostic test Total screened Neonatal Service programme for 707,720 Screening Birmingham used Programme, heparinised plasma an	underlying gene frequencies Diagnostic test The Neonatal Screening	Total North-west European Pakistani	707,720 605,331 (85.5) 28,903 (4.1) 21,062 (4.4)	263 160 (60.8) 91 (34.6)	1:2691 (1:2475, 1:3037) 1:3783 (1:3240, 1:4445) 1:318 (1:259, 1:394) 1:6212 (1:2662	underlying diagnosis, particularly with tyrosinaemia type I and MCAD deficiency, which can present	
		ed Neonatal Screening Programme, regional register for patients with inborn errors of	Neoret i indiandoThe recondual concentingNeonatalService programme forScreeningBirmingham usedProgramme,heparinised plasma andregional registertested for PKU byfor patients withamino acidinborn errors ofchromatography (asoppolationspots and the Guthriefrequencies frommicrobiological assay for	Afro-Caribbean	16,887 (2.4)	I (0.4)	1:19,133) 1:16,887 (1:3031, 1:667 470)	with neonatal death, and some may have failed as yet to present
				Other ethnic groups and mixed race	25,537 (3.6)	6 (2.3)	1:4256 (1:1955, 1:11,598)	clinically, particularly MCAD deficiency, which is frequently
		metabolism and population frequencies from		^a Number of neor screening at 6–1	underdiagnosed			
		national census Age at sampling	phenylalanine, used for the rest of the region)	The overall incide times higher amor	of metabolism was ten dren (1:318 vs 1:3760). In 2) and L Afro-Caribbean			
		6–10 days of age Gender (M/F)	Threshold for disease identification NR	child were identifi inborn errors				

continued

Authors,	Study design	Patient type	Outcomes	Results (cumulati	ve incide	nce, prevalence, mor	bidity/mortality	Comments
year	Duration of study	Age at sampling	Diagnostic test	data, etc.)				
	Country	(years) Gender (M/F)	Threshold for disease identification					
	lotal screened	Ethnicity	Confirmation of disease					
		Ethnicity North-west European, Pakistani, Indian,	Confirmation of disease Confirmation of inborn errors of metabolism.	Selected compar recessive inborn between 1981 an	ative dise errors of d 1991	eases of the most com metabolism in the W	imon autosomal est Midlands region	The authors concluded that the results illustrate the interplay between
		Afro-Caribbean, other ethnic	for children born in the region during the		Cases (families)	North-west European (95% CI))	Pakistani (95% Cl)	gene frequency and parental consanguinity
		groups and mixed	assessment period, was	Disease frequency	, ,	,,		in determining disease
		race	derived from laboratory records	PKU	52 (50)	1:12,611 (1:9512, 1:17,104)	1:14,452 (1:4001, 1: 119,337)	frequencies in different populations,
				Tyr	13 (10)	1:302,655 (1:83,786, 1: 2.5 × 10 ⁶)	1:2628 (1:1468, 1:5263) ^a	and indicate predictable disease
				MCAD deficiency	9 (9)	l:67,259 (l:35,430, l:147,089)	0 (<1:9350)	frequencies in the absence of
				Gene frequency		,		consanguineous
				PKU	52 (50)	1:112 (1:98, 1:131)	1:713 (1:210, 1: 5750) ^b	marriage
				Tyr	13 (10)	1:550 (1:289, 1:1581)	l:144 (1:87, l:271) ^c	
				MCAD deficiency	9 (9)	1:259 (1:188, 1:384)	0 (<1:395) ^c	
				^a p < 0.001 vs freq frequency in north- west Europeans. The incidence of P (1:12,611 vs 1:14,4 lower (1:112 vs 1:7 Two cases of PKU	uency in r west Euro KU was sii (52); howe (13, $p < 0$ were iden	north-west Europeans; ^b opeans; ^c $p < 0.05$ vs from milar in Pakistani and wh ever, the gene frequency 0.01). tified in mixed race chile	 p < 0.01 vs equency in north- nite children was significantly dren (1 mixed 	
				Jordanian/Europear PKU were observe	n and I of d among I	Afro-Caribbean/Arabic ndians	origin). No cases of	
				The incidence of ty population (1:2628 European subjects.	rosinaemia vs 1:302,6 Similar fino	a type 1 was significantly 55; $p < 0.001$) than in the dings were observed with	higher in the Pakistani ne north-west h gene frequency	
						Арр	endix I I cont'd UK	studies of birth incidence

-

Appendix 11
_

Authors, year	Study design Duration of study	Patient type Age at sampling	Outcomes Diagnostic test	Results (cumulative incidence, prevalence, morbidity/mortality data, etc.)	Comments
	Country Total screened	(years) Gender (M/F)	Threshold for disease identification		
		Ethnicity	Confirmation of disease		
				(1:144 vs 1:550, respectively, $p < 0.05$). This is because of the effect of consanguinity, which increases both anticipated disease and gene frequency rates	
				The gene frequency for MCAD deficiency was significantly lower in the Pakistani population than in north-west European children. This illustrates that the diagnosis for MCAD deficiency is rare outside those of north- west European ethnicity	
M: male; F: fe	male.				

Effectiveness of treatments for phenylketonuria: dietary interventions

Authors,	Search dates	Type of studies	Statistical	Results (odds	ratio	s, relative	e risks	, confide	nce interva	lls, etc.)	Comments
year	Databases searched	Type of participants	techniques								
	Inclusion/exclusion criteria	Sample no. Age Gender (M/F)	Tests of heterogeneity								
	Assessment of validity and quality	Ethnicity	Outcome measures								
Poustie and	Search dates	Type of studies	Statistical	Patient and st	udy (character	istics	of include	ed studies		Majority of studies
Rutherford 2002 ³¹	1966 to 25 January 2001	RCTs or pseudo- randomised studies	techniques Pooled estimate of treatment	Study		Clarke, 1987 ¹¹⁰	Gri 199	iffiths, 98 ^{111,112}	Holtzman, 1975 ¹¹³	US/PKU collaborative	involved only small number of subjects. Several included
(Cochrane systematic review, updated 13	Databases searched MEDLINE, EMBASE, handsearching journals and abstracts of conformers	Type of participants Individuals of any age with PKU and other forms of phenylalanine	effect for each outcome across studies and calculated weighted mean	Sample no. Gender (M/F) Mean age Ethnicity Duration		9 3/6 14.4 years NR 10 weeks	16 10/ 12. NR 6 n	/6 .6 years R nonths	10 6/4 NR NR 2 years	216 NR NR NR 12 years	studies failed to provide details on allocation concealment and method of randomisation
1107 2001)	reference lists, Cystic Fibrosis and Genetic Disorders trials register and	diagnosed by the Guthrie test or other recognised, validated screening method in	difference Tests of heterogeneity	Results Comparison : vs discontinuati	PKU on or	patients sta relaxation	arted o later	on diet at in life	diagnosis: di	et continuation	sequence. Only 2 of the 4 included studies used intention-to-treat analysis
	low or phenylalanine-	intervention was	standard χ^2 test	Period	Treat (n)	tment Co (n)	ontrol	Overall effect	Weighted r (fixed)	mean difference) (95% CI)	More than 30 different assessments of
	supplements	Sample no. 251 (see results)	Outcome	Outcome: Blood pl 0–3 months ^a	henyla 29	lanine level (30	(µmol/l)) p = 0.00	-6	72.203	neuropsychological performance were evaluated in the 4
	Inclusion/exclusion criteria	Age See results	measures Blood	3–6 months ^b	5	5		p = 0.00	(813.795 8 (1261.54	2 to -480.858)	included studies. Of these different
	Randomised or pseudo-randomised	Gender (M/F) See results	phenylalanine and tyrosine	6–12 months ^b	5	5		p = 0.00	-9 (-1370.42	13.500 6 to -456.574)	assessments, only 3 were used in more
	trials comparing phenylalanine restricted diet to	Ethnicity See results	concentrations, weight gain/body mass index/	After I year ^c	42	48		р = 0.00	–7 (–883.412	51.540 2 to –619.667)	than I study; however, final data from these assessments were not
	either relaxation or termination of dietary	Type of interventions Phenylalanine-	Z scores/centiles/ other indices of	Outcome: Weight 0–3 months ^b	44	44		p = 0.15	((_0 07	0.200 2 to 0 472)	available. In addition, the following outcome
	restrictions in patients with PKU (any age)	restricted diet with phenylalanine-free or	nutritional status or growth,	3–6 months ^b	44	44		p = 0.30	(_0.15 (_0.15	0.200 6 to 0.556)	measures were not measured in any of the
		very low phenylalanine	neuropsychological	6–12 months ^b	44	44		p = 0.70	(0.100	studies. Diood tyrosille

amino acid supplement, performance,

. intelligence,

energy and

started early in life and

either continued,

172

Appendix 12

continued

concentration, eating

behaviour, quality of

life and mortality

(-0.381 to 0.581)

Authors, year	Search dates Databases searched Inclusion/exclusion criteria Assessment of validity and quality	Type of studies Type of participants Sample no. Age Gender (M/F) Ethnicity Type of interventions	Statistical techniques Tests of heterogeneity Outcome measures	Results (odds	ratios, relat	ive risks,	, confiden	ce intervals, etc.)	Comments
	Assessment of validity and quality Yes, two reviewers	discontinued or relaxed at any point during life of patient	nutrient intake, eating behaviour, quality of life and	Period Outcome: IQ	Treatment (n)	Control (n)	Overall effect	Weighted mean difference (fixed) (95% CI)	As would be expected, blood phenylalanine concentrations
	selected trials and assessed methodological		death	>12 months ^b	53	62	p = 0.03	–5.000 (–9.595 to –0.405)	(assessed in all the trials) were significantly lower in
	quality which included method of			0–3 months ^b	44	44	p = 0.80	1.000 (-9.064 to 11.064]	subjects with PKU following a
	randomisation, generation of randomisation			3–6 months ^b	44	44 44	p = 0.40 p = 0.07	3.000 (-4.116 to 10.116) 6.000	phenylalanine- restricted diet than in those on a less
	sequence, blinding level and patients loss			Outcome: Protein	ntake (ø/kø)			(-0.507 to 12.507)	restricted or relaxed diet. IQ was
	to follow-up or excluded from the			0–3 months ^b	44	44	p = 0.00	0.000 (-0.398 to 0.398)	significantly higher in subjects who continued on the
	study			3–6 months ^b 6–12 months ^b	44 44	44 44	p = 0.40 p = 0.30	0.100 (-0.131 to 0.331) 0.100	phenylalanine- restricted diet than in
				Test for heteroger $^{c} p > 0.05$.	neity: ^a p < 0.0	05, ^b NA (c	data from 1 s	(-0.109 to 0.309) study only),	those who terminated the diet; however, these findings are based on only I study
									Based on the results of the this review, the authors reported that no firm conclusions could be made about the effectiveness of specific dietary interventions in PKU owing to a lack of good-quality RCTs
						Арреп	dix 12 con	t'd Effectiveness of treatn	nents for phenylketonuria

 	lype of interventions						
		Comparison:	PKU patient	s started c	on strict die	t since diagnosis: diet	
		continuation v	s discontinua	tion or rel	axation late	er in life	
		Period	Treatment (n)	Control (n)	Overall effect	Weighted mean difference (fixed) (95% CI)	
		Outcome: Blood	phenylalanine le	evel (µmol/l)		-
		0-3 months ^a	20	21	p = 0.00	-698.667 (-869.444 to -527.889)	
		3–6 months ^b	5	5	р = 0.00	-871.200 (-1261.542 to -480.858)	
		6–12 months ^b	5	5	р = 0.00	–913.500 (–1370.426 to –456.574)	
		> 12 months ^c	42	48	р = 0.00	-751.632 (-883.505 to -619.759)	
		Test for heterog $^{c} p > 0.05$.	geneity: ^a p < 0	0.05, ^b NA (data from 1 :	study only),	
		Comparison : relaxed diet: d	PKU patient: liet reestablis	s started o hment vs o	n strict die continuatio	t since diagnosis, later n	-
		Period	Treatment	Control	Overall	Weighted mean difference	
		Outcome: Pland	(II)				-
		$0-3 \text{ months}^{b}$	9	9	p' = 0.00	-614.000	
			·	-	r 0.00	(-867.271 to -360.729)	
		3–6 months ^b	0	0	NA	NA	
		6–12 months ^b	0	0	NA	NA	
		>12 months ^D	0	0	NA	NA	_

Appendix 12 cont'd Effectiveness of treatments for phenylketonuria

Authors, year	Search dates Databases searched Inclusion/exclusion criteria Assessment of validity and quality	Type of studies Type of participants Sample no. Age Gender (M/F) Ethnicity Type of interventions	Statistical techniques Tests of heterogeneity Outcome measures	Results (odds	ratios, rela	tive risks	, confider	ice intervals, etc.)	Comments
				Comparison: F	KU patient	s at diagno	osis: low ph	enylalanine diet vs	
				moderate phen	ylalanine die	et			
				Period	Treatment	Control	Overall	Weighted mean difference	
					(n)	(n)	effect	(fixed) (95% CI)	
				Outcome: Blood pl	nenylalanine l	evel (µmol/l)	127 100	
				U–3 months	66	66	p = 0.00	-127.100 (-185.045 to -69.155)	
				3–6 months ^b	0	0	NA	ŇA	
				6–12 months ^b	66	66	р = 0.00	-157.300 (-217.179 to -97.421)	
				At 2 years ^b	66	66	p = 0.02	-84.700 (-158.018 to -11.382)	
				At 3 years ^b	63	65	р = 0.20	-48.400	
				At 4 years ^b	64	63	þ = 0.11	-78.700 (-174.402 to 17.002)	
				At 5 years ^b	62	65	p = 0.11	(-174.492 to 17.092) -72.600	
				At 6 years ^b	0	0	NA	(–162.352 to 17.152] NA	
				Outcome: Weight					
				0–3 months ^b	44	44	p = 0.15	0.200 (-0.072 to 0.472)	
				3–6 months ^b	44	44	p = 0.30	0.200	
				6–12 months ^b	44	44	p = 0.70	(-0.156 to 0.556) 0.100 (-0.381 to 0.581)	

Appendix 12 cont'd Effectiveness of treatments for phenylketonuria

Authors, year	Search dates Databases searched Inclusion/exclusion criteria Assessment of validity and quality	Type of studies Type of participants Sample no. Age Gender (M/F) Ethnicity Type of interventions	Statistical techniques Tests of heterogeneity Outcome measures	Results (odds	Comments				
				Period	Treatment (n)	Control (n)	Overall effect	Weighted mean difference (fixed) (95% CI)	
				<i>Outcome: IQ</i> At 4 years ^b	58	53	p = 0.30	-3.000 (-8.768 to 2.768)	
				At 6 years ^b	66	66	p = 0.50	-2.000 (-7.408 to 3.408)	
				Outcome: Calorie	e intake (kcal/k	g)			
				0–3 months ^b	44	44	p = 0.80	1.000 (-9.064 to 11.064)	
				3–6 months ^b	44	44	р = 0.40	3.000 (-4.116 to 10.116)	
				6–12 months ^b	44	44	p = 0.07	6.000 (-0.507 to 12.507)	
				Outcome [.] Proteir	n intake (ø/kø)				
				0–3 months ^b	44	44	<i>p</i> = 0.00	0.000 (–0.398 to 0.398)	
				3–6 months ^b	44	44	р = 0.40	0.100 (-0.131 to 0.331)	
				6–12 months ^b	44	44	p = 0.30	0.100 (-0.109 to 0.309)	

Study design Cross-sectional mixed design with matched pairs, ndependent samples and non- repeated	Inclusion/exclusion criteria NR Power calculation NA	Type of interventions Phenylalanine- restricted diet vs diet termination	Median age T1: 7.53 years (range 5.58–9.75	Mean ± SD Tests	scores for neur	opsychological	test		Authors concluded
nixed design with matched pairs, ndependent samples and non- repeated	NR Power calculation NA	Phenylalanine- restricted diet vs diet termination	(range 5.58–9.75	Tests	Yo	นทฐ	-		that the results
with matched pairs, ndependent camples and non- repeated	Power calculation NA	restricted diet vs diet termination	5.58–9.75			B	0	ld	from the
pairs, ndependent samples and non- repeated	Power calculation NA	diet termination	voars)		TI	T3	T2	T4	neuropsychological
amples and non- epeated			T2: 20.59	Reaction time (s)	3.31 ± 0.89	2.95 ± 0.52	2.37 ± 0.77	2.20 ± 0.47	test failed to provide compelling
opoulou	Baselineoutcomes $13.58-28.42$ transfer (s)procomparabilityOutcomeyears)figures	Dosage/ outcomes	years (range 13 58–28 42	Peg transfer (s)	88.50 ± 19.56	72.70 ± 12.80	51.50 ± 5.42	46.90 ± 4.75	evidence that
measures	comparability	Outcome	years)	Matching figures	4.90 ± 1.52	4.80 ± 1.55	7.20 ± 1.40	8.80 ± 1.23	exposure to
Randomisation	blood phenylalanine	included a	(range	Letter cancellation	3.33 ± 0.77	3.51 ± 1.46	7.36 ± 3.52	9.76 ± 5.06	phenylalanine
metnodlevel beforeNot applicable;treatment for T1however, tests $(1977 \pm 500$ were randomised μ mol/l) vs. T2and first to last $(1912 \pm 1077$ sequence μ mol/l), $p = NS;$	psychological	years)	Verbal fluency	18.80 ± 8.95	19.00 ± 9.63	33.80 ± 9.43	38.90 ± 8.63	and early	
	(1977 ± 500 μmol/l) vs. T2	tests Patient types PKU patients (from West of Scotland register)	14: 20.54 years (range es 13.58–27.92 years)	Design fluency	11.90 ± 2.56	12.20 ± 2.35	18.20 ± 3.43	24.50 ± 3.41	adulthood is harmful to
	$(1912 \pm 1077 \ \mu mol/l), p = NS;$			Rey verbal learning	42.40 ± 10.09	43.00 ± 7.65	46.70 ± 8.08	55.10 ± 7.40	cognitive and motor functioning
counterbalanced	initiation of treatment for T1 vs		Gender	Rey labyrinth	Rey labyrinth 10.50 ± 4.74 13.10 ± 4.98 14.50 ± 3.95 17.60 ± 1.08	17.60 ±1.08	and do not necessarily support		
Duration of study	T2, $p = NS$; mean phenylalanine level	consisted of younger children	(M/F) TI: 7/3	Data are per except for R	items, are scored in	a diet-for-life policy			
Period of study NR	when tested for T1 (348 \pm 167 μ mol/l) vs T2 (1014 \pm 216	who were still on diet and older adolescents and	T2: 7/3 T3: NR T4: NR	seconds (the	lower the valu	e the better th	e performanc	e).	Delaying dietary termination until 10 years of age is
Setting/location	μ mol/l), $p < 0.001$. Average ages of	adults who discontinued	Ethnicity						sufficient to prevent a
ink, scotland, UK Aver mate and did r signi thos	matched younger and older controls did not differ significantly from those of PKU	dietary treatment at median age of 10.17 years (range	NR						substantial reduction in cognitive and motor ability; however, there
	andomisation athod lot applicable; owever, tests are randomised ad first to last equence ounterbalanced ariad of study reriod of study R etting/location IR, Scotland, UK	measurescomparability Mean neonatalandomisation nethodblood phenylalanine level beforelot applicable; owever, teststreatment for T1 (1977 \pm 500 μ mol/l) vs. T2 (1912 \pm 1077 μ mol/l), $p = NS$; initiation of treatment for T1 vs T2, $p = NS$; mean phenylalanine level when tested for T1 (348 \pm 167 μ mol/l) vs T2 (1014 \pm 216 μ mol/l), $p < 0.001$.RScotland, UKR, Scotland, UKAverage ages of matched younger and older controls did not differ significantly from those of PKU	measurescomparability Mean neonatalOutcome measuresandomisation nethodblood phenylalanine level beforeincluded a battery of neuro- psychologicallot applicable; owever, teststreatment for T1 (1977 \pm 500 mmol/l) vs. T2psychological testsand first to last equence ounterbalanced(1912 \pm 1077 mmol/l), $p = NS;$ initiation of treatment for T1 vs treatment for T1 vs Scotland register)Patient types PKU patients consisted of younger children who were still on diet and older vs T2 (1014 \pm 216 adolescents and adults who discontinued matched younger and older controls did not differ significantly from those of PKUOutcome measures	neasurescomparability Mean neonatalOutcome measuresyears) measuresandomisation nethodblood phenylalanine level beforeincluded a battery of neuro- psychological(range 5.66–9.75 years)ot applicable; owever, teststreatment for T1 (1977 \pm 500 measurespsychological testsyears)out applicable; owever, tests(1977 \pm 500 (1977 \pm 500 measurestestsT4: 20.54 years (rangeand first to last equence(1912 \pm 1077 µmol/l), $p =$ NS; initiation of treatment for T1 vs treatment for T1 vs scotland register)Patient types years)13.58–27.92 years)vuration of studyT2, $p =$ NS; mean phenylalanine level when tested for T1 who were stillGender T1: 7/3 mol/l), $p < 0.001$.R etting/location R, Scotland, UKAverage ages of matched younger and older controls did not differ significantly from those of PKUon diet and older treatment at median age of illo.17 years (range	neasurescomparability Mean neonatalOutcome measuresyears) measuresnatching figuresandomisation nethodblood phenylalanine level beforeincluded a battery of neuro- psychologicalrange (rangecancellation Verbalandomisation nethodlevel before treatment for T1 psychologicalbattery of neuro- psychological5.66–9.75 years)fluency Verbalblood phenylalanine level beforetreatment for T1 psychologicalpsychological years (rangefluency Designblood phenylalanine level before(1977 \pm 500 treatment for T1 psychologicalT4: 20.54 years (rangeDesign fluencydiffist to last equence pounterbalanced(1912 \pm 1077 	leasurescomparability Mean neonatalOutcome measuresyears) T3: 7.59 years (rangeIndusting figuresandomisation neethod lood phenylalanine level beforeblood phenylalanine level beforeincluded a battery of neuro- psychologicalT3: 7.59 years (rangeItaching figuresoot applicable; toreatment for T1 powever, teststreatment for T1 psychologicalpsychological years)veras)Itaching figuresoot applicable; toreatment for T1 equencetreatment for T1 µmol/l) vs. T2psychological years)veras)Itaching figuresadd first to last equence(1977 ± 500 µmol/l), $p = NS$; pounterbalancedPatient types initiation of treatment for T1 vs scotland register)T4: 20.54 years)Design filuencyouterbalanced eriod of study(1912 ± 1077 µmenylalanine level phenylalanine level younger children vounger children vou when tested for T1 who were stillPatient types younger children T1: 7/3T3: NR taching Rey labyrinthData are performance score except for Reaction time an seconds (the lower the valueR variable(348 ± 167 µmol/l) wonger and older controls did not differ significantly from those of PKUNRR variableAverage ages of significantly from those of PKUdiacontinued rageEthnicity rageR variableOuter controls did not differ significantly from those of PKUItaching rageNRR variableOuter controls did not differ significantly from those of PKU <td>leasurescomparability Mean neonatalOutcome measuresyears) T3: 7.59 years (rangeHading figures Letter1.02 \pm 1.02 \pm 1.02 \pm 1.03 \pm 1.04 \pm 1.04 \pm 1.04 \pm 1.04 \pm 1.04 \pm 1.05 \pm 1.07 \pm 1.01 \pm 1.05 \pm 1.04 \pm 1.05 \pm 1.07 \pm 1.01 \pm 1.05 \pm 1.02 \pm 1.05 \pm 1.05 \pm 1.02 \pm 2.05 \pm 1.02 \pm 1.02</td> <td>leasurescomparability Mean neonatal measuresOutcome measuresyears)function figurestacting figurestacting tota 102tota 102tota 102tota 103$7.20 \pm 11.0$andomisation hethod lot applicable;blood phenylalanine level before level beforeincluded a battery of neuro- psychologicalT3: 7.59 years (range years)figures Letter$3.3 \pm 0.77$$3.51 \pm 1.46$$7.36 \pm 3.52$ cancellationlot applicable; overver, testtreatment for T1 (1912 ± 1077psychological years)years)fluency pars (range fluency$11.90 \pm 2.56$$12.20 \pm 2.35$$18.20 \pm 3.43$ (1912 ± 1077pare randomised equence squence pumol/1), $p = NS$; muration of rtad met for T1 vs reatment for T1 vs read for troom for T2, $p = NS$; mean on sited of read metsed for T1 who were stillGender T1: 7/3 T2: 7/3Rey verbal ($10.50 \pm 4.74$$13.10 \pm 4.98$$14.50 \pm 3.95$acting penylalanine level who were still roid of study R ($348 \pm 167 \ \mumol/1$), $p < 0.001$. Average ages of discontinued did not differ matched younger and older controls did not differ matched younger and older controls did not differ median age of significantly from those of PKU$12.0 \pm 10.0 \pm 1.33$$12.0 \pm 1.46$$7.16 \pm 1.16$$13.52 \pm 7.79$ years (range$11.90 \pm 2.56$$12.20 \pm 2.35$$18.20 \pm 3.43$$13.52 \pm 7.79$ years$13.58 \pm 7.79$$2.40 \pm 10.09 \pm 3.00 \pm 7.65 \pm 46.70 \pm 8.06$$13.52 \pm 7.79$ vears$13.51 \pm 7.79$$2.40 \pm 7.65 \pm 46.70 \pm 8.06$<</td> <td>reasures comparability Mean neonatal measures T3: 7.59 years) figures Letter 3.33 ± 0.77 3.51 ± 1.46 7.36 ± 1.52 7.60 ± 1.52 7.60 ± 1.52 7.60 ± 1.52 7.60 ± 1.53 7.60 ± 1.63 1.60 ± 1.67 1.00 ± 1.75 7.60 ± 1.63 1.60 ± 1.67 1.00 ± 1.75 7.60 ± 1.63 1.60 ± 1.67 $1.60 \pm$</td>	leasurescomparability Mean neonatalOutcome measuresyears) T3: 7.59 years (rangeHading figures Letter1.02 \pm 1.02 \pm 1.02 \pm 1.03 \pm 1.04 \pm 1.04 \pm 1.04 \pm 1.04 \pm 1.04 \pm 1.05 \pm 1.07 \pm 1.01 \pm 1.05 \pm 1.04 \pm 1.05 \pm 1.07 \pm 1.01 \pm 1.05 \pm 1.02 \pm 1.05 \pm 1.05 \pm 1.02 \pm 2.05 \pm 1.02	leasurescomparability Mean neonatal measuresOutcome measuresyears)function figurestacting figurestacting tota 102tota 102tota 102tota 103 7.20 ± 11.0 andomisation hethod lot applicable;blood phenylalanine level before level beforeincluded a battery of neuro- psychologicalT3: 7.59 years (range years)figures Letter 3.3 ± 0.77 3.51 ± 1.46 7.36 ± 3.52 cancellationlot applicable; overver, testtreatment for T1 (1912 ± 1077psychological years)years)fluency pars (range fluency 11.90 ± 2.56 12.20 ± 2.35 18.20 ± 3.43 (1912 ± 1077 pare randomised equence squence pumol/1), $p = NS$; muration of rtad met for T1 vs reatment for T1 vs read for troom for T2, $p = NS$; mean on sited of read metsed for T1 who were stillGender T1: 7/3 T2: 7/3Rey verbal (10.50 ± 4.74 13.10 ± 4.98 14.50 ± 3.95 acting penylalanine level who were still roid of study R ($348 \pm 167 \ \mumol/1$), $p < 0.001$. Average ages of discontinued did not differ matched younger and older controls did not differ matched younger and older controls did not differ median age of significantly from those of PKU $12.0 \pm 10.0 \pm 1.33$ 12.0 ± 1.46 7.16 ± 1.16 13.52 ± 7.79 years (range 11.90 ± 2.56 12.20 ± 2.35 18.20 ± 3.43 13.52 ± 7.79 years 13.58 ± 7.79 $2.40 \pm 10.09 \pm 3.00 \pm 7.65 \pm 46.70 \pm 8.06$ 13.52 ± 7.79 vears 13.51 ± 7.79 $2.40 \pm 7.65 \pm 46.70 \pm 8.06$ <	reasures comparability Mean neonatal measures T3: 7.59 years) figures Letter 3.33 ± 0.77 3.51 ± 1.46 7.36 ± 1.52 7.60 ± 1.52 7.60 ± 1.52 7.60 ± 1.52 7.60 ± 1.53 7.60 ± 1.63 1.60 ± 1.67 1.00 ± 1.75 7.60 ± 1.63 1.60 ± 1.67 1.00 ± 1.75 7.60 ± 1.63 1.60 ± 1.67 $1.60 \pm $

Study design	Inclusion/exclusion criteria	Type of interventions	

Authors,

Age (years) Results

Comments

Appendix 12

samples (T1 vs T3, $p = NS;$ T2 vs T4, $p = NS)$ 9.50–11.42 years). All diagnosed with classical PKU and treated within 3F-ratios from two-factor ANOVAwere indi- termination control at Age/dietsamples (T1 vs T3, $p = NS;$ T2 vs T4, termination termination9.50–11.42 years). All diagnosed with termination TestsF-ratios from two-factor ANOVAwere indi- termination termination									Gender (M/F) Ethnicity	Dosage/ outcomes Patients Type Numbers Loss to follow-up	Power calculation Baseline comparability Intention-to-treat analysis	Randomisation method Duration of study Setting/location	year
Intention-to-treat analysismonths of birth, with treatment starting at median age of 15 days (range 12-20 days) F P F P	e indications that nination of dietary rol at the age of ears appeared to ssociated with cits in frontal cutive functioning. hermore, rences to wider J populations and be made with ion owing to small ple sizes and ed functions test	P nteraction T 0.19 NS 2.28 NS 3.53 NS 1.05 NS 0.71 NS 10.17 0.01 2.17 NS 0.04 NS 0.05 NS 0.04 NS 0.04 NS 0.04 NS 0.04 NS 0.05 NS 0.04 NS 0.04 NS 0.05 NS 0.04 NS 0.05 NS 0.04 NS 0.04 NS 0.04 NS 0.05 NS 0.04 NS 0.04 NS 0.04 NS 0.05 NS 0.	Ir F S S S S S S CU child this/adul ubjects Ider pat was ob trols or st, irres the onl sis and t ifferent < 0.001	Factor iagnosis P 1.50 Ni 7.22 0.1 2.75 Ni 2.75 Ni 2.31 0.1 2.89 Ni 5.07 0.1 -diet PK Jolescer J PKU si buring of neasure rated th han com rinth tes icy was doing d effé, p <	VA F OI OI OI OI OI OI OI OI OI OI	diet P 0.00 0.0	factor A Age/c F 15.20 63.35 48.47 26.50 36.23 97.73 9.59 11.28 ers to yo der, off-d s factor r all contr mental fa ge effect agnosis f tly poor- teractior ff-diet P on-diet g	F-ratios from two Tests Reaction time (s) Peg transfer (s) Matching figures Letter cancellation Verbal fluency Design fluency Rey verbal learning Rey labyrinth Age/diet factor re controls versus ol controls. Diagnosi on and off diet) vs Owing to develop highly significant a Findings for the di PKU had significar transfer, Design flu age or treatment show significant in status, the older, of than the younger		9.50–11.42 years). All diagnosed with classical PKU and treated within 3 months of birth, with treatment starting at median age of 15 days (range 12–20 days) for younger group and 31 days for (range 8–75 days) for older group (p = NS). All controls free from major developmental disorders Patient numbers Patients with PKU: T1: 10 (young, on diet) T2: 10 (old, off diet) Matched non-clinical control on basis of age, gender and approximate socio- economic status: T3: 10 (young) T4: 10 (old) Loss to follow-up NR	samples (TI vs T3, p = NS; T2 vs T4, p = NS) Intention-to-treat analysis NR		

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Robinson et al., 2000 ³⁶	Study design Prospective cohort study with historical controls Randomisation method NA Duration of study Period of study NR Setting/location Willink Biochemical Genetics Unit, Manchester, England, UK	Inclusion/exclusion criteria NR Power calculation NA Baseline comparability Mean haemoglobin values and mean cell volumes in each subgroup were not significantly different from normal Intention to treat analysis NR	Type of interventions Effect of different degrees of dietary interventions on vitamin B ₁₂ and folate levels Dosage/outcomes Vitamin B ₁₂ and folate status Patient types Adolescents and adults with classical PKU Patient numbers T1: strict diet (strict low-phenylalanine diet with amino acid, mineral and vitamin supplements, n = 22) T2: relaxed diet (total protein intake of approx. I g/kg per day with approx 50% from natural protein and 50% from amino acid,	Median age (range 11–38 years) T1: 24 years T2: 21 years T3: 22 years T4:NR Gender (M/F) NR Ethnicity NR	Blood phenylalanine, blood vitamin B12 and erythrocyte folate values in patients with and without classical PKUInterventionT1T2T3T4Mean blood phenylalanine levels (µmol/l) 500 11001220NR $n = 22$ $n = 30$ $n = 31$ NRMean vitamin B12 values (ng/l) 468.7 ± 199.7 322.8 ± 128 275.3 ± 95 411.9 ± 148.75 $p = 0.077$ $p = 0.077$ $p = 0.0034$ $p = 0.0001$ $n = 22$ $n = 30$ $n = 1676$ Mean erythrocyte folate values (µg/l) 476 ± 258 471 ± 190.5 350 ± 166.1 201 ± 92.8 $p < 0.0001$ $n = 21$ $n = 30$ $n = 1502$ p : probability value for t-test of difference in means between PKU and normal population (statistically significant, $p < 0.05$).Vitamin B12 levels were significantly lower in the PKU groups on relaxed or unrestricted diets than in the normal population. Folate levels were significantly elevated in all PKU groups; however, some patient samples were insufficient for the assay of erythrocyte folate	Authors concluded that adolescents and adult patients with PKU who have stopped or relaxed their diet might be at risk from vitamin B ₁₂ deficiency. These authors recommend continued medical and dietetic supervision and having the vitamin B ₁₂ status monitored
					Appendix 12 cont'd Effectiveness of treatn	nents for phenylketonuria

8	
ö	/
T.	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			mineral and vitamin supplements, n = 30) T3: unrestricted diet (no formal protein restriction and not taking amino acid supplements, n = 31) T4: normal population (data from the Dietary and Nutritional Survey of British Adults published in 1990, $n = 1676$) Loss to follow-up NR			
ANOVA: ana	lysis of variance; NS:	not significant				

Effectiveness of treatments for phenylketonuria: tyrosine supplementation

Authors, year	Search dates Databases searched Inclusion/exclusion criteria Assessment of validity and quality	Type of studies Type of participants Sample no. Age Gender (M/F) Ethnicity Type of interventions	Statistical techniques Tests of heterogeneity Outcome measures	Results (odd	ls ratios,	relative ı	isks, con	fidence inter	vals, etc.)	Comments
Poustie and Rutherford	Search dates	Type of studies RCTs or pseudo-	Statistical techniques	Patient and	study ch	naracteris	tics of ind	cluded studie	es	Authors reported that the 3 included studies
2002 ³²	Databases searched	randomised studies	Pooled estimate of treatment	Study		Mazzocco, 1992	Pi I 1	ietz, 995	Smith, 1998	were double blind and placebo controlled
(Cochrane systematic review, updated 29 Aug 2001)	MEDLINE, EMBASE, handsearching journals and abstracts of conferences, reference lists, Cystic Fibrosis and Genetic Disorders trials register and	Type of participants Individuals of any age with PKU and other forms of phenylalanine hydroxylase deficiency diagnosed by the Guthrie test or other recognized validated	effect for each outcome across studies and calculated weighted mean difference	Sample no. Gender (M/F) Mean age (yea Age range (yea Ethnicity Duration Tyrosine interv (supplement d	r) r) ention osage)	9 4/5 10.25 6.5–13.25 NR NR 2500 mg/da	24 	4 1/13 0.08 6–25 IR 4 weeks 00 mg/kg/day	23 11/12 11.3 6-28 NR 12 to 16 weeks 100 mg/kg/day	with adequate allocation concealment. In all 3 studies, only small numbers of subjects were involved and the duration of the treatment and control
	manufacturers of dietary products used	screening method in which dietary	heterogeneity Yes, using	Comparisor	: All patie	ents with P	KU			arms was brief. Two studies failed to
	in the treatment of PKU	intervention was initiated early in life	standard χ^2 test or ANOVA	Period	Treatmer (n)	nt Control (<i>n</i>)	Overall effect	Weighted mea (9	an difference (fixed) 5% CI)	provide details of the method of
	Inclusion/exclusion criteria Randomised or pseudo-randomised trials comparing the use of tyrosine supplementation versus placebo in patients with PKU in addition to or instead	clusion/exclusion56 (see Results)OutcometeriaAgemeasuresndomised orSee ResultsBloodeudo-randomisedGender (M/F)phenylalaninals comparing theSee Resultstyrosinee of tyrosineEthnicityconcentrationpplementationSee Resultsweight gainrsus placebo inType of interventionsof nutritionstients with PKU inType of interventionsstatus or gr	Outcome measures Blood phenylalanine and tyrosine concentrations, weight gain and any other indices of nutritional status or growth,	Outcome: Blood O-3 months ^c 3-6 months 6-12 months Outcome: Blood O-3 months ^a 3-6 months 6-12 months Outcome: Neur O-3 months ^c	l phenylalai 51 NA NA 1 tyrosine c 51 NA NA opsycholog 42	nine concent 51 NA NA oncentration 51 NA NA ical performac 42	ration (μ mi p = 0.60 NA NA (μ mol/l) p = 0.00 NA NA NA magnetic p = 0.50	24.478 (-72 22.996 (12 -9.363 (-3	2.790 to 121.747) NA NA 2.895 to 33.097) NA NA 4.859 to 16.133)	sequence and only I of the 3 included studies used intention- to-treat analysis IQ could not be assessed because the results of all the patients were combined and
	of, a phenylalanine- restricted diet. Patients treated for maternal PKU were excluded	supplementation of tyrosine (in patients with PKU, who have been treated with a low-phenylalanine diet from diagnosis and who	neuropsychological performance, intelligence, quality of life and death	3–6 months 6–12 months Test for hetero	NA NA geneity: "	NA NA Ø < 0.05, ° į	$\frac{NA}{NA}$		NA NA	compared with a non- PKU group. In addition, the following outcome measures were not measured in any of the studies:

Authors, year

Appendix 13

continued

Authors,	Search dates	Type of studies	Statistical	Results (odd	ls ratios, r	elative r	risks, con	fidence intervals, etc.)	Comments
year	Databases searched	Type of participants	techniques						
	Inclusion/exclusion criteria	Sample no. Age	Tests of heterogeneity						
	Assessment of validity	Gender (M/F) Ethnicity	Outcome measures						
	valuely and quality	Type of interventions							
	Assessment of validity and quality	continued or discontinued their diet		Comparison	: Patients v	vith PKU	continued	d on diet since diagnosis	weight gain, other measures of nutritional
	Yes, two reviewers independently	later in life) compared with no tyrosine		Period	Treatment (n)	Control (n)	Overall effect	Weighted mean difference (fixed) (95% Cl)	status, quality of life and death
	selected trials and	supplementation or		Outcome: Blood	l phenylalanir	ne concent	ration (µmo	ol/l)	
	assessed	placebo		0–3 months ^c	30	30	p = 0.70	19.250 (-98.040 to 136.540)	As would be
	methodological			3–6 months	NA	NA	NA	NA	expected, the blood
	quality which included			6–12 months	NA	NA	NA	NA	tyrosine
	method of			Outcomes Pland	l tumonimo com	contration	(concentrations were
	randomisation,			Outcome: Blood	tyrosine con	centration	(μ <i>moi/i)</i>	13 674 (3 042 to 24 306)	significantly higher in
	generation of			3-6 months	NA	NΔ	p = 0.01	NA	subjects receiving
	randomisation			6–12 months	NA	NA	NA	NA	tyrosine supplements
	sequence and patients								than those in the
	loss to follow-up or			Outcome: Neuro	opsychologica	al performa	ince		placebo group. No
	excluded from the			0–3 months ^b	21	21	p = 0.90	4.500 (-73.957 to 82.957)	other significant
	study			3–6 months	NA	NA	NA	NA	differences were
	-			6–12 months	NA	NA	NA	NA	found in any of the
				Test for heterog	other outcomes				
				Comparison follow the die	: Patients v et	vith PKU	on diet fr	om diagnosis who no longer	Based on the data currently available, the
				Period	Treatment (n)	Control (n)	Overall effect	Weighted mean difference (fixed) (95% Cl)	there was not enough evidence to show the
				Outcome: Blood	phenylalanir	ne concent	ration (µmo	ol/l)	effect of tyrosine
				0–3 months ^b	21	21	p = 0.70	36.000 (-138.064 to 210.064)	supplementation to
				3–6 months	NA	NA	NA	NA	the diet of people with
				6–12 months	NA	NA	NA	NA	PKU
				Outcome: Blood	tyrosine con	centration	(µmol/l)		
				0–3 months ^b	21	21	p = 0.00	109.000 (76.618 to 141.382)	
				3–6 months	NA	NA	NA	NA	
				6–12 months	NA	NA	NA	NA	
						A¢	pendix 13	3 cont'd Effectiveness of treatn	nents for phenylketonuria

Authors, year	Search dates Databases searche	Type of studies d Type of participants	Statistical techniques	Results (od	ds ratios, 1	relative	risks, con	fidence intervals, etc.)	Comments
	Inclusion/exclusion criteria	Sample no. Age	Tests of heterogeneity						
	Assessment of validity and quality	Ethnicity Type of interventions	Outcome measures						
				Period	Treatment (n)	Control (n)	Overall effect	Weighted mean difference (fixed) (95% CI)	-
				Outcome: Neu	ropsychologic	al perform	ance		-
				0–3 months ^b	21	21	p = 0.40	-11.000 (-37.959 to 15.959)	
				3–6 months	NA	NA	NA	NA	
				6–12 months	NA	NA	NA	NA	
				Test for heter	ogeneity: ^b N	A (data fr	om I study	only), $^{c} p > 0.05$.	-

Effectiveness of treatments for phenylketonuria: fatty acid supplementation

Authors, yearStudy design Randomisation methodInclusion/exclusion riteriaType of interventions Dosage/ outcomesAge (r Gende EthniceDuration of studyBaseline comparabilityDatients TypePatients TypeSetting/locationIntention-to-treat analysisNumbers Loss to follow-upAge (r Gende	ge (years) Results Comme ender (M/F) :hnicity	ents Frse s t during
Agostoni Study design Inclusion/exclusion Type of Age (ge (years) Significant decrease from baseline observed for triglycerides in TI No adve inge 5–10 group (data shown below); in contrast, no significant changes from baseline were found for total cholesterol, HDL cholesterol and LDL reported ander cholesterol in the T2 group reported reported	erse s
Action of the conditional statistical et al., 199533Single-blind, RCTInterventionsTige currentRandomisation methodNRT1: fish oil containing LCPUFAGende (M/F)Time-balanced randomisation tablePower calculation NRT2: blackcurrant seed oil containing comparability Yes, no differences between PKU groups for bleeding time, lipid values 	IndexChoise for in the 12 groupStudy per1/F)Significant increases in total polyunsaturated fatty acids observed in fatty acid composition of plasma total lipids in both PKU groups. Significant increases from baseline for n-3 LCPUFA in T1 group (data shown below). These values were also significantly higher than T3 group. Only plasma dihomo- γ -linolenic acid (20:3n-6) significantly increased in T2 groupPKU, fish supplement significant triglyceri significantRincreased in T2 grouptriglyceri significant contrast, but triglyceri significantLCPUFA total triglyceri significant contrast, but triglyceri significantly different compared with T3 (data not shown, but provided in original paper)LCPUFA total paper)Authors conclude a more conclude a more concludeAuthors conclude a more conclude to the triglyceri significant	en with h oil entation ntly ed ides and ntly d <i>n</i> -3 A. In t, the rrant oil d no nt in the offile seline, for n-6 c acid ed that e n-6

continued

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results Co	omments
			Patient types Treated children		Plasma lipid (mmol/l) and fatty acid composition (weight %)andof plasma total lipids before and after supplementationshe	id n-3 series ould be
			with PKU monitored for clinical symptoms		Lipid or TI T2 T3 inv fatty acid Baseline >6 months Baseline >6 months Control fur	pplied and vestigated rther for
			and nutritional follow-up		Plasma lipid die Triglycerides sup 1.17 ± 0.14 0.68 ± 0.16^{ab} 123 ± 0.45 1.09 ± 0.47 1.03 ± 0.25 of	etary pplementation PKU patients
			Patient numbers T1: 10 (with PKU) T2: 11 (with PKU) T3: 12 (healthy children)		Fatty acid Total 32.3 ± 5.4 28.3 ± 3.9^a 32.5 ± 5.8 30.8 ± 4.9 28.1 ± 4.0 monounsaturated $20:3n-6$ 1.60 ± 0.48 1.21 ± 0.32^{ab} 1.48 ± 0.36 2.09 ± 0.36^{ab} 1.69 ± 0.45 $20:5n-3$ 0.24 ± 0.05 1.96 ± 0.79^{ab} 0.26 ± 0.06 0.27 ± 0.06^{b} 0.61 ± 0.27 $22:5n-3$ 0.42 ± 0.18 1.20 ± 0.15^{ab} 0.38 ± 0.14 0.32 ± 0.09 0.41 ± 0.13	
			Loss to follow-up T1: 0/10 T2: 0/11		22:6n-3 0.65 ± 0.10 2.94 ± 0.88^{ab} 0.66 ± 0.12 0.73 ± 0.08^{b} 1.78 ± 0.52 Total 39.1 ± 4.6 41.9 ± 3.6^{a} 38.3 ± 6.0 41.3 ± 5.7 39.9 ± 3.6	
			T3: 0/12		^{<i>a</i>} significantly different from baseline, $p < 0.05$; ^{<i>b</i>} significantly different from control, $p < 0.05$.	

Appendix 14 cont'd Effectiveness of treatments for phenylketonuria: fatty acid supplementation

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Agostoni et al., 2001 ³⁴	Study design Double-blind, randomised, placebo- controlled trial Randomisation method NR Duration of study 12 months Setting/location NR, Italy	Inclusion/exclusion criteria NR Power calculation Yes, require 9 per group at 90% power Baseline comparability Yes, no significant differences between groups for basal blood phenylalanine and mean blood phenylalanine during supplementation Intention-to-treat analysis No	Type of interventions T1: long-chain PUFA T2: placebo (olive oil) T3: reference dietary and biochemical data from healthy subjects Dosage/outcomes Gelatine capsules (500 mg oil per capsule) supplying either 26% fatty acid as LCPUFA (including 4.6% γ-linolenic acid, 7.4% arachidonic acid, 5.5% eicosapentaenoic acid and 8% docosahexaenoic acid or placebo (olive oil). Daily dosage of supplement provided 0.3–0.5% of individual daily	Mean age (years) T1: 10 ± 7 T2: 10 ± 5 T3: NR Gender (M/F) T1: 5/5 T2: 6/4 T3: NR Ethnicity NR	At baseline, HPA children (TI and T2) had significantly lower levels of saturated fatty acid, docosahexaenoic acid (22:6n-3), non- significantly lower eicosapentaenoic acid (20:5n-3), and significantly higher levels of monounsaturated fatty acid, 20C polyunsaturated derivative (20:3n-9) and a trend towards higher linolenic acid levels than the reference (T3) group (similar observations were observed in erythrocyte lipids; data not shown) At the end of the 12-month period, supplemented HPA (T1) children with long-chain PUFA showed an increase by around 100% in the baseline docosahexaenoic acid levels in plasma phospholipids and were significantly different from the unsupplemented group (T2). Similar findings in erythrocytes, but percentage changes in docosahexaenoic acid were not significantly higher than those in the unsupplemented group. Arachidonic acid levels were quite similar between groups (T1, T2 and T3) in plasma phospholipids and erythrocyte lipids. Therefore, supplementation resulted in higher n-3 PUFA levels without modifications in the n-6 series Blood lipid levels (total cholesterol, HDL cholesterol and LDL cholesterol) did not significantly change at the end of treatment (data not shown)	The authors concluded that a balanced supplementation with LCPUFA in treated HPA children may improve the docosahexaenoi c acid status without adversely affecting the arachidonic acid status

Appendix 14 cont'd Effectiveness of treatments for phenylketonuria: fatty acid supplementation

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results						Comments
			energy requirements as		LCPUFA	IFA (weight %) in plasma phospholipids (mean ± SD)				D)	
			LCPUFA or placebo				Baseline		End of t	reatment	
			equivalent			T3 (Reference)	Т2	ТΙ	Т2	ТΙ	
			Patient types Children treated from first month of life were detected by newborn screening and diagnosed as having type I HPA according to predefined protocols Patient numbers T1: 12 T2: 12 T3: 18		Saturated Mono- saturated 18:2n-6 20:4n-6 n-6 series 18:3n-3 20:5n-3 22:6n-3 n-3 series Poly unsaturate 20:3 n-9 ^a Significantl end of treat	$\begin{array}{l} 49.2 \pm 2.5 \\ 12.9 \pm 1.1 \\ 21.3 \pm 2.5 \\ 9.0 \pm 1.4 \\ 34.0 \pm 2.4 \\ 0.10 \pm 0.03 \\ 0.32 \pm 0.10 \\ 2.6 \pm 0.5 \\ 3.6 \pm 0.5 \\ 37.8 \pm 2.3 \\ d \\ 0.09 \pm 0.05 \\ \end{array}$	44.9 ± 3.0^{a} 18.1 ± 3.9^{a} 20.1 ± 2.8 8.6 ± 1.3 33.9 ± 3.5 0.17 ± 0.09^{a} 0.29 ± 0.13 1.8 ± 0.5^{a} 2.8 ± 0.7^{a} 37.0 ± 3.1 0.24 ± 0.10^{a} The reference, $p <$ The reference, $p <$ The reference is the reference in the reference is the reference in the reference is the reference in the reference in the reference is the reference in the reference in the reference is the reference in the reference in the reference is the reference in the reference in the reference is the reference in the reference in the reference is the reference in	$\begin{array}{l} 43.9 \pm 1.9^{ab} \\ 18.3 \pm 3.8^{ab} \\ 20.8 \pm 4.1 \\ 9.5 \pm 1.7 \\ 34.9 \pm 3.8 \\ 0.13 \pm 0.03 \\ 0.26 \pm 0.16 \\ 1.6 \pm 0.3^{ab} \\ 2.5 \pm 0.4^{ab} \\ 37.8 \pm 3.6 \\ 0.34 \pm 0.17^{ab} \\ 0.05; {}^{b} \text{ significa} \\ 0.002. \end{array}$	$45.8 \pm 2.9 \\ 16.3 \pm 3.3 \\ 21.4 \pm 2.1 \\ 8.3 \pm 2.0 \\ 35.2 \pm 2.4 \\ 0.17 \pm 0.11 \\ 0.21 \pm 0.13 \\ 1.6 \pm 0.4 \\ 2.5 \pm 0.6 \\ 37.9 \pm 2.6 \\ 0.14 \pm 0.06 \\ \text{nt difference a} $	$\begin{array}{c} 44.5 \pm 2.0 \\ 16.8 \pm 2.9 \\ 21.7 \pm 3.6 \\ 9.0 \pm 1.7 \\ 34.5 \pm 2.3 \\ 0.15 \pm 0.05 \\ 0.32 \pm 0.20 \\ 3.1 \pm 1.6^{b} \\ 4.1 \pm 1.8^{b} \\ 38.7 \pm 2.2 \\ 0.12 \pm 0.08 \\ t \text{ baseline or} \end{array}$	
			Loss to follow-up T1: 2/12 T2: 2/12 T3: NR								

Appendix 14 cont'd Effectiveness of treatments for phenylketonuria: fatty acid supplementation

Effectiveness of treatments for phenylketonuria: treatment during pregnancy

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments				
Waisbren et al., 2000 ³⁷	Study design Longitudinal, prospective cohort study (Maternal PKU Collaborative Study) Randomisation method NA Duration of study Ongoing, started in 1984 Setting/location 78 metabolic clinics and obstetric offices, Canada, Germany and the USA	Inclusion/exclusion criteria Offspring (who reached their 4th birthday) of all pregnant women with PKU or MHP were included Power calculation NR Baseline comparability NR Intention-to-treat analysis NR	Type of interventions Women with PKU offered low- phenylalanine diet before or during pregnancy with aim of maintaining metabolic control (plasma phenylalanine $\leq 605 \ \mu$ mol/l). Women with MHP had plasma phenylalanine $< 605 \ \mu$ mol/l on normal diet and were not treated Dosage/outcomes Outcomes measures include children's scores on cognitive and behavioural assessments compared by maternal metabolic status at 0–10	Age (year) Not reported, however outcome assessed at 4 years of age: Gender (M/F) Not reported Ethnicity Not reported Ethnicity Not reported Other Statistical power calculated at more than 80% for each subgroup comparison with non HPA group if differences of 10 points found on standardised	Maternal cha The majority of after 10 gestar women and th higher Maternal cha evaluation Study group TI T2 T3 T4 T5 T6 ^a Number of su Data are shown Cognitive eff Scores on the metabolic con with PKU who mean ±SD sc 71 ± 19 for m weeks. A linear	aracteristic of women w tional weeks heir assigned aracteristic No. of cases 17 26 47 59 33 71 bjects 229. n as mean ±S McCarthy (otrol increase of had metabore of 99 ± naternal metabore of 99 ±	is with PKU attain S. Maternal IQ d plasma pheny is of children Maternal full-scale IQ ^a 91 \pm 11 83 \pm 10 83 \pm 11 80 \pm 10 95 \pm 13 101 \pm 13 D. Spring GCI decreased ed. For example polic control be 13, in contras tabolic control be	ed metabolic control was lower in these dalanine level was receiving preschool Maternal assigned plasma phenylalanine level (mg/dl) 22.5 ± 5.6 23.0 ± 7.3 24.3 ± 7.1 26.4 ± 6.7 6.3 ± 1.7 NR as weeks to le, offspring of women efore pregnancy had a t to a score of achieved after > 20 mber of weeks of	No details on rates of follow-up, treatment compliance or adherence to study protocol were reported Authors concluded that delayed development in offspring of women with PKU is associated with lack of maternal metabolic control before or early in pregnancy. Treatment at any time during pregnancy may reduce severity of delay	
		v v v	weeks, 10–20 weeks and after 20 weeks of gestation	tests, but not large enough to detect	gestation until maternal metabolic control and the McCarthy GCI score suggested a dose–response association ($r = -0.58$; $p < 0.001$).					
Author, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results					Comments
-----------------	---	---	---	---	--	---	---	---	---	--------------------------
			Patient types 253 children of women with PKU (n = 149), with untreated MHP (n = 33) or without known metabolic problems (comparison group	differences of 5 or fewer points in untreated MHP prior to pregnancy groups	The percenta (≤ 72) below decreased. For not have met score 2 SD be having metab McCarthy so	ge of child the mean or example abolic con elow the r olic contro cales of cl	Iren attaining sco increased as me e, 47% of offspr trol by 20 week iorm, in contras ol before pregna hildren's abiliti	ores I (≤ 8 etabolic cor ring whose is gestation it to 6% for ancy ies	6) and 2 SD htrol mothers did had a GCI r those	
			(comparison group, n = 71) were followed up to 4 years of age		Study group	No. of cases	GCI score	% of sul GCI sco ≤ 86	bjects with re ≤ 72	
			4 years of age		TI	17	99 ± 13	24	6	
			Patient numbers		Т2	26	89 ± 17	42	12	
			253 (149 children of		Т3	47	84 ± 18	51	32	
			women with PKU		T4	59	71 ± 19	78	47	
			categorised into 4		15 T4	33	99 ± 14	21	0	
			treatment groups relating to timing of maternal metabolic control):		Data are shown Behavioural Overall 30%	n as mean = effects ir of children	ESD. • offspring • born to mothe	ers with PK	U had social	
			pregnancy $(n = 17)$ T2: > 0 up to 10 weeks $(n = 26)$ T3: > 10 up to 20		and behaviou problems inde Few children or delinquenc	ral proble ex of the / were rate y	ns according to Achenbach Child d as having som	the total b d Behaviour natic proble	ehaviour ⁻ Checklist. ms, anxiety	
			weeks $(n = 47)$ T4: > 20 weeks or never in control (n = 59)		Results from Scores obtain McCarthy sca the infant dev (Bayley scales	n 2 year v ned when t ales, were velopment s, mean ±	s 4 year assess the children wer significantly low test (Bayley sca SD: mental inde	sments re 4 years c rer than the iles) at 2 ye ex 96 ± 23	old, using the scores on ars of age vs	
				Аррепо	dix 15 cont'd	Effectiver	ess of treatment	ts for phenyl	vs Iketonuria: tre	eatment during pregnancy

	~	5
ì	z	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			T5: untreated MHP (n = 33) T6: non-HPA control $(n = 71)$ Loss to follow-up NR		McCarthy scales: GCI, 85 \pm 21; $p < 0.01$; and Bayley scales: motor index 98 \pm 19 vs McCarthy scales: motor scale, 91 \pm 17, $p = 0.002$). For children in the non-HPA comparison group, the differences were not significant	
MHP: mild hy	rperphenysalaninaem	iia; GCI: General Cogn	itive Index.			

Reference list of excluded studies: tyrosinaemia type l

Anonymous. Evaluating newborn screening program data systems – Georgia, 1998. *MMWR Morb Mortal Wkly Rep* 1999;**48**:1101–4.

Blau N, Beck M, Matern D. Tetrahydrobiopterin induced neonatal tyrosinaemia. *Eur J Pediatr* 1996;**155**:832.

Boulat O, McLaren DG, Arriaga EA, Chen DD. Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence: potential for emergency diagnosis of inborn errors of metabolism. *J Chromatogr B Biomed Sci Appl* 2001;**754**:217–28.

Depetris-Boldini C, Galetto R, Videla MP, de Kremer DR. Increased excretion of coproporphyrin I in a patient with hereditary tyrosinaemia type I: relevant changes with NTBC treatment. *J Inherit Metab Dis* 1999; **22**:227–30.

Hitzeroth HW, Niehaus CE, Brill DC. Phenylketonuria in South Africa. A report on the status quo. *S Afr Med J* 1995;**85**:33–6.

Holme E, Lindstedt S. Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethyl benzoyl)-1,3- cyclohexanedione). *J Inherit Metab Dis* 1998;**21**:507–17.

Neto EC, Schulte J, Anele E, Becker D, Rubim R, Lewis E, *et al.* Persistent tyrosinemia detected by thinlayer chromatography. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):151.

Pronicka E, Rowinska E, Bentkowski Z, Zawadzki J, Holme E, Lindstedt S. Treatment of two children with hereditary tyrosinaemia type I and long-standing renal disease with a 4-hydroxyphenylpyruvate dioxygenase inhibitor (NTBC). *J Inherit Metab Dis* 1996;**19**:234–8.

Ros J, Vilaseca MA, Lambruschini N, Mas A, Lindstedt S, Holme E. NTBC as palliative treatment in chronic tyrosinaemia type I. *J Inherit Metab Dis* 1999;**22**:665–6.

Schulze A, Frommhold D, Hoffmann GF, Mayatepek E. Spectrophotometric microassay for deltaaminolevulinate dehydratase in dried-blood spots as confirmation for hereditary tyrosinemia type I. *Clin Chem* 2001;**47**:1424–9.

Subramanyam SB. Saudi aminoacidemias: a six-year study. *Indian J Pediatr* 1996;**63**:641–4.

van Spronsen FJ, Smit GP, Wijburg FA, Thomasse Y, Visser G, Heymans HS. Tyrosinaemia type I: Considerations of treatment strategy and experiences with risk assessment, diet and transplantation. *J Inherit Metab Dis* 1995;**18**:111–14.

Verma IC. Burden of genetic disorders in India. *Indian J Pediatr* 2000;**67**:893–8.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatr* 1999;**432** (Suppl 88):48–51.

Wilson CJ, Van Wyk KG, Leonard JV, Clayton PT. Phenylalanine supplementation improves the phenylalanine profile in tyrosinaemia. *J Inherit Metab Dis* 2000;**23**:677–83.

Effectiveness of treatments for tyrosinaemia type I: orthotopic liver transplantation

Authors, Str year Ra ma Du stı	tudy design andomisation ethod uration of udy	Inclusion/exclusion criteria Power calculation Baseline comparability	Type of interventions Dosage/ outcomes Patients	Age (years) Gender (M/F) Ethnicity	Results		Comments
Se	etting/location	Intention-to-treat analysis	Iype Numbers Loss to follow-up				
Mohan et al., St 1999 ⁴⁰ Re an:	t udy design etrospective nalysis of clinical	Inclusion/exclusion criteria NR	Type of interventions Liver transplantation	Median age 64 months at OLT (range	Clinical features at diagnosis of TT1 patients between I and 1997 ($n = 17$)	989	The authors concluded that liver transplantation was an effective treatment for
and dat Ra Ma N/A Du Stu Be and Se Liv Bir Ch Hc Uh	andomisation nethod A uration of udy etween 1989 ad 1997 etting/location ver Unit, rmingham hildren's ospital, England, K	Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	Dosage/outcomes Outcomes included hepatic dysplasia, hepatocellular carcinoma, renal function, tubular function and quality of life of post- transplant Patient types Patients with TT1. Diagnosis in each case was established by increased plasma tyrosine concentration and detection of increased urinary SA and was confirmed by fumarylacetoacetase deficiency in skin fibroblasts. All patients were managed with dietary therapy,	Gender (M/F) 5:3 Ethnicity NR Other Median weight 24 kg (range 6–25 kg)	Hepatomegaly Coagulopathy Failure to thrive Developmental delay Rickets (renal) Hypoglycaemia Cardiomyopathy Neurological crises Age at presentation < 2 months 2–6 months > 6 months = 7 Four were detected by neonatal screening. All patients had biochemical and/or radiological evidence of live dysfunction and raised α -fetoprotein levels (range 56–119,000 Treatment Before introduction of NTBC, 7 patients presented witt TT I between 1989 and 1992. Of these 7 patients, 6 underwent OLT. Liver transplantation was contraindicated I patient Between 1992 and 1997 10 patients were diagnosed we TT I, who started NTBC treatment [mean starting dose 0.6 mg/kg (range 0.55–1 mg/kg) and mean current dose 0.74 mg/kg (range 0.5–2.5 mg/kg)] in addition to dietary therapy. Two of these 10 patients went on to have an C The indications were non-response to NTBC in 1 child	vo. II III III III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	enective treatment for TT1, resulting in clinical and biochemical improvements and good quality of life. With the development of NTBC therapy, the indications for OLT in TT1 are non-response to NTBC, risk of malignancy and poor quality of life related to dietary restriction and frequency of blood sampling

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			 NTBC and/or OLT and followed up clinically and biochemically Patient numbers 8 (initially, 7 patients presented with TT1 between 1989 and 1992 before introduction of NTBC and 10 diagnosed with TT1 who started on NTBC treatment in addition to dietary therapy between 1992 and 1997. Eight of these 17 patients went on to have OLT) Loss to follow-up 2/8 (1 from primary non-function and 1 from chronic rejection) 		development of hepatic dysplasia associated with poor quality of life in the second patient. In total, 8 patients were transplanted [median age at OLT 64 months (range 5–127 months), with a median weight of 24 kg (range 6–25 kg); M/F ratio 5/3)]. Of the 8 children transplanted, 4 received a whole liver graft; 3 received reduction hepatectomy and 1 had a split liver Outcomes following transplantation Biochemical assessment Plasma tyrosine and raised α -fetoprotein levels returned to normal in all cases. Urinary SA was reduced but persisted in small amounts (median 7.7 µmol/mmol creatinine) Renal function Before transplantation the glomerular filtration rate (using height:creatinine ratio) was normal in 5 out of 6 survivors. 3/6 survivors developed renal dysfunction, with a fall in the glomerular filtration rate (using height:creatinine ratio). This stabilised following a reduction of cyclosporin A or a change to mycophenolate mofetil, suggesting that the main cause of renal dysfunction was nephrotoxicity due to cyclosporin A. Hence the authors recommended regular monitoring of renal function post-OLT and a reduction in immunosuppressive therapy Clinical outcome Hypertrophic cardiomyopathy was resolved within 1 year in patients in which it occurred ($n = 3$). Hypoglycaemia not responding to diet therapy or NTBC was present in	nts for turosinaemia tubo l
					Appendix 17 cont'd Effectiveness of treatment	nts for tyrosinaemia type l

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
					I patient before transplantation and was resolved following transplantation. Complications and quality of life There were 2 deaths, I from primary non-function and I from chronic rejection. Late complications in survivors (<i>n</i> = 6) included post-transplant lymphoproliferative disease of the iris, which resolved and renal dysfunction in 3 of the 6 survivors (fall in glomerular filtration rate). This was attributed to cyclosporin toxicity and a change in the immunosuppressive regimen. The I-year actuarial survival rate was 88%, while the 5-year actuarial rate was 73%. The median follow-up post-OLT was 6.7 years (range 1–7 years) The quality of life after OLT in survivors was good. All survivors were in mainstream schools and had a reduction in hospital visits (median 2/year), venepuncture (median 5 blood samples/year), medication (median 4/year), frequent venepuncture (median 35 blood samples/year), extra medication (median 5/day) and a restricted diet	

TTI: tyrosinaemia type I; SA: succinylacetone.

Reference list of excluded studies: homocystinuria due to cystathionine β -synthase deficiency

Accinni R, Bartesaghi S, De Leo G, Cursano CF, Achilli G, Loaldi A, *et al.* Screening of homocysteine from newborn blood spots by high-performance liquid chromatography with coulometric array detection. *J Chromat* 2000;**896**:183–9.

Andersson HC, Shapira E. Biochemical and clinical response to hydroxocobalamin versus cyanocobalamin treatment in patients with methylmalonic acidemia and homocystinuria (cblC). *J Pediatr* 1998;**132**:121–4.

Andersson HC, Marble M, Shapira E. Long-term outcome in treated combined methylmalonic acidemia and homocystinemia. *Genet Med* 1999;**1**:146–50.

Anonymous. Evaluating newborn screening program data systems – Georgia, 1998. *MMWR Morb Mortal Wkly Rep* 1999;**48**:1101–4.

Cruysberg JR, Boers GH, Trijbels JM, Deutman AF. Delay in diagnosis of homocystinuria: retrospective study of consecutive patients. *BMJ* 1996;**313**:1037–40.

Dawson PA, Cox AJ, Emmerson BT, Dudman NP, Kraus JP, Gordon RB. Characterisation of five missense mutations in the cystathionine beta-synthase gene from three patients with B6-nonresponsive homocystinuria. *Eur J Hum Genet* 1997;**5**:15–21.

Dudman NP, Guo XW, Gordon RB, Dawson PA, Wilcken DE. Human homocysteine catabolism: three major pathways and their relevance to development of arterial occlusive disease. *J Nutr* 1996;**126** (4 Suppl): 1295S–300S.

Gat-Yablonski G, Mandel H, Fowler B, Taleb O, Sela BA. Homocystinuria in the Arab population of Israel: identification of two novel mutations using DGGE analysis. *Hum Mutat* 2000;**16**:372.

Gaustadnes M, Kluijtmans LA, Jensen OK, Rasmussen K, Heil SG, Kraus JP, *et al.* Detection of a novel deletion in the cystathionine beta-synthase (CBS) gene using an improved genomic DNA based method. *FEBS Lett* 1998;**431**:175–9.

Guttormsen AB, Ueland PM, Nesthus I, Nygard O, Schneede J, Vollset SE, *et al.* Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (≥ 40 micromol/liter). The Hordaland Homocysteine Study. *J Clin Invest* 1996;**98**:2174–83.

Harrison DA, Mullaney PB, Mesfer SA, Awad AH, Dhindsa H. Management of ophthalmic complications of homocystinuria. *Ophthalmology* 1998;**105**:1886–90.

Kaur M, Kabra M, Das GP, Suri M, Verma IC. Clinical

and biochemical studies in homocystinuria. *Indian Pediatr* 1995;**32**:1067–75.

Kim CE, Gallagher PM, Guttormsen AB, Refsum H, Ueland PM, Ose L, *et al.* Functional modeling of vitamin responsiveness in yeast: a common pyridoxineresponsive cystathionine beta-synthase mutation in homocystinuria. *Hum Mol Genet* 1997;**6**:2213–21.

Kuhara T, Ohse M, Ohdoi C, Ishida S. Differential diagnosis of homocystinuria by urease treatment, isotope dilution and gas chromatography-mass spectrometry. *J Chromatogr B Biomed Sci Appl* 2000; **742**:59–70.

Moat SJ, Bonham JR, Tanner MS, Allen JC, Powers HJ. Recommended approaches for the laboratory measurement of homocysteine in the diagnosis and monitoring of patients with hyperhomocysteinaemia. *Ann Clin Biochem* 1999; **36**(Pt 3):372–9.

Naughten ER, Yap S, Mayne PD. Newborn screening for homocystinuria: Irish and world experience. *Eur J Pediatr* 1998;**157** (Suppl 2):S84–7.

Peterschmitt MJ, Simmons JR, Levy HL. Reduction of false negative results in screening of newborns for homocystinuria. *N Engl J Med* 1999;**341**:1572–6.

Ray M, Kumar L, Prasad R. Homocystinuria with early thromboembolic episodes and rapid response to high dose pyridoxine. *Indian Pediatr* 1997;**34**:67–9.

Reilly AA, Bellisario R, Pass KA. Multivariate discrimination for phenylketonuria (PKU) and non-PKU hyperphenylalaninemia after analysis of newborns' dried blood-spot specimens for six amino acids by ion-exchange chromatography. *Clin Chem* 1998;**44**:317–26.

Sakura N, Ono H, Nomura S, Ueda H, Fujita N. Betaine dose and treatment intervals in therapy for homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency. *J Inherit Metab Dis* 1998;**21**:84–5.

Sebastio G, Sperandeo MP, Panico M, de Franchis R, Kraus JP, Andria G. The molecular basis of homocystinuria due to cystathionine beta-synthase deficiency in Italian families, and report of four novel mutations. *Am J Hum Genet* 1995;**56**:1324–33.

Smith KL, Bradley L, Levy HL, Korson MS. Inadequate laboratory technique for amino acid analysis resulting in missed diagnoses of homocystinuria. *Clin Chem* 1998;**44**:897–8.

201

Snyderman SE, Sansaricq C. Newborn screening for homocystinuria. *Early Hum Dev* 1997;**48**:203–7.

Subramanyam SB. Saudi aminoacidemias: a six-year study. *Indian J Pediatr* 1996;**63**:641–4.

Taylor RH, Burke J, O'Keefe M, Beighi B, Naughton E. Ophthalmic abnormalities in homocystinuria: the value of screening. *Eye* 1998;**12**(Pt 3a):427–30.

Verma IC. Burden of genetic disorders in India. Indian J Pediatr 2000;67(12):893-8.

Walter JH, Wraith JE, White FJ, Bridge C, Till J. Strategies for the treatment of cystathionine betasynthase deficiency: the experience of the Willink Biochemical Genetics Unit over the past 30 years. *Eur J Pediatr* 1998;**157** (Suppl 2):S71–6.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

Effectiveness of treatments for homocystinuria (cystathionine β -synthase deficiency): dietary supplementation

Authors, year	Study design Randomisation method	Inclusion/exclusion criteria Power calculation	Type of interventions Dosage/ outcomes	Age (years) Gender (M/F) Ethnicity	Results						Comments
	Duration of study	Baseline comparability	Patients Type								
	Setting/location	Intention-to-treat analysis	Numbers Loss to follow-up								
Franken et al., 1996 ⁴⁶	Study design Before and after intervention	Inclusion/exclusion criteria Criteria for inclusion included: regularly	Type of interventions Thiamin administration	Mean age 24.4 ± 6.2 years (range 14–34 years)	Fasting methio metabo before	blood on ine, the blites in and after	concentr iamin (v cystathi er 6 wee	ations o itamin E onine sy ks of th	of total B _I) and onthase iamin to	homocysteine, transamine •deficient patients reatment	The authors concluded that thiamin (vitamin B_1) supplementation could
	method NA	good compliance to homocysteine-	Dosage/outcomes 2 or 3 daily doses of 25 mg thiamin analy	Gender (M/F)	Subject	Homocy (µmol/l) Before	After	Methion (μmol/l) Before	ine After	Therapy	additional homocysteine-
	Duration of study 6 weeks of treatment Setting/location NR; however, University Hospital Nijmegen, The Netherlands	treatments, prolonged elevated fasting homocysteine levels in blood despite homocysteine- lowering treatment for at least 2 years, and at least 14 years of age Power calculation NA Baseline	(mean \pm SD mg thiamin dosage for the subjects was 0.9 \pm 0.25 mg thiamin supplementation/kg body weight; range 0.48–1.43) Patient types All subjects were homozygotes for homocystinuria due to cystathionine synthase deficiency. None of the	Ethnicity NR Other Mean weight 72.3 ± 10.6 kg (range 52.5–88.0 kg) Mean duration of homocysteine lowering treatment	 2 3 4 5 6 7 8 9 9 Mean ± SD Normal	$ \begin{array}{c} 143 \\ 46 \\ 81 \\ 82 \\ 58 \\ 113 \\ 82 \\ 85 \\ 128 \\ 91 \pm 25 \\ 5-18 \\ \end{array} $	48 49 82 79 56 101 120 103 109 83 ± 22	98 43 291 94 161 222 139 57 643 194±12 16-47	30 42 123 54 58 93 188 72 490 7 128 ± 1	750 B ₆ , B ₁₂ 400 B ₆ , FA, B ₁₂ 750 B ₆ , FA, betaine 750 B ₆ , FA, betaine 500 B ₆ , FA, betaine 500 B ₆ , FA, betaine 750 B ₆ , FA, B ₁₂ , betaine 250 B ₆ , FA, betaine MPR 94	vitamin B_6 , vitamin B_{12} , FA and betaine in most homozygotes for homocystinuria
		comparability NA Intention-to-treat analysis NA	patients was on a regimen of methionine restriction, except for I (subject 9). In addition to conventional homocysteine-	9.0 ± 2.4 years (range 5–17 years)							

continued

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results						Comments
			lowering therapy,		Subject	Thiamin	e	Transam	ination	Therapy	
			6 patients received			(µmol/l)		(µmol/l)			
			bydrochloride for 6			Before	After	Before	After		
			weeks three times		1	98	170	0.3	0.3	750 B ₆ , B ₁₂	
			daily and three		2	96	130	0.3	0.3	400 B ₆ , FA, B ₁₂ 750 B FA bataina	
			patients twice daily		3	110	210	U.6 BD	0.3 BD	750 B ₆ , FA, betaine 750 B ₇ , FA betaine	
			(subjects 2, 6 and		5	100	210	0.3	0.3	750 B ₄ , FA, betaine	
			7). These three		6	NP	NP	0.4	0.2	500 B_6 , FA, betaine	
			patents received		7	NP	210	BD	BD	500 B ₆ , FA, betaine	
			only in total 50 mg		8	110	NP	0.3	0.3	750 B ₆ , FA, B ₁₂ ,	
			thiamin bydrochloride		9	230	330	1.0	0.7	$250 B_6$, FA, betaine	
			conforming with their conventional		Mean ±	123 ± 3	0 207 ±	38		MPR	
			homocysteine-		Normal	47–142		BD to I	.2		
			lowering treatment, which was also twice daily		B ₆ ; vitam was give daily dos	in B ₆ ; FA n in a 2 m e of 6 g.	was giver onthly do	n in a daily ose of 1 mg	dose of 5 g i.m.; beta	mg; B ₁₂ , vitamin B ₁₂ aine was given in a	
			Patient numbers 9		The vita homocy	ımin B _I p stinuria i	olasma co increase	oncentrat d from 12 7 + 38 (n	tion in the 23 ± 30 r	e homozygotes for nmol ($n = 7$) before	
			Loss to follow-up NR		treatme decreas 128 ± 9	nt. The f ed signifi 4 μmol/	fasting b cantly fr 1 after th	lood metl om 194 : niamin tre	hionine c ± 127 μr atment (oncentration mol/l to (n = 9; p < 0.06)	
					The me differ sig (91 ± 2 transam	an fasting gnificantly 5 to 83 : ination n	g plasma y before ±22 μm netabolit	homocys and after ol/I, resp ces in all p	steine co r thiamin ectively) patients	ncentrations did not treatment as did serum	
				Appendix 19 c	ont'd E	ffectiven	ess of tre	atments	for homod	cystinuria (cystathioni	ne β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Wilcken, I 997 ⁴⁷	Study design Retrospective analysis of clinical and biochemical data Randomisation method NR Duration of study Not clear however, duration of treatment: T1: mean 16.6 years T2: mean 11 years Setting/location NR; however, New South Wales (NSW), Australia	Inclusion/exclusion Incriteria NR Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	Type of interventions Effect of pyridoxine (vitamin B_6), FA and hydroxocobalamin treatment Dosage/outcomes All patients received pyridoxine 100–200 mg/day and FA 5 mg/day, and most had intermittent hydroxocobalamin by injection according to serum B_{12} status, measured twice yearly. Pyridoxine-non-responsive patients all received in addition 6-9 g/day oral trimethylglycine (betaine) given in two divided doses. Diet was not closely monitored, but general advice was given to reduce intake of foods with a high methionine content. During last 4 years, vitamin B_{12} therapy (1 mg by intramuscular injection every I-3 months) has been given to pyridoxine-non-responsive patients irrespective of their serum B_{12} levels Outcomes included vascular disease	Mean age 30 years (range 9–66 years) Gender (M/F) NR Ethnicity NR	Pyridoxine-responsive group (T1) The 17 patients who were pyridoxine responsive all maintained plasma total free homocyst(e)ine levels <20 μ mol/l over an average treatment period of 16.6 years. In this group, there were 2 vascular deaths, I fatal pulmonary embolus and 1 myocardial infarction, whereas without treatment 21 deaths (data derived from untreated patients with C β S deficiency, which was reviewed by Mudd <i>et al.</i> , 1985 ¹¹⁴) would have been expected, $\chi^2 = 14.22$, $p = 0.0001$, RR 0.09 (95% CI 0.02 to 0.38) Non-responsive to pyridoxine group (T2) The 15 patients who were non-responsive to pyridoxine additionally received 6–9 g of betaine daily, which resulted in a substantial decline (mean 74 ± 14%) in plasma total free homocyst(e)ine levels, persisting during an average (postbetaine) treatment period of 11 years (mean ± SD levels: 33 ± 17 μ mol/l; $n = 15$). In this group, there were no events during 258 patient-years of treatment ($p < 0.005$ vs expected untreated). 19 subjects had a total of 19 major and 15 minor operations requiring anaesthetic and there were 3 successful pregnancies, 1 in a patient receiving betaine. There were no thromboembolic complications Other information Authors reported that during 539 patient-years of treatment in all 32 patients, there were	Authors concluded that effective treatment of $C\beta$ S deficiency (both pyridoxine responsive) markedly reduces the increased cardiovascular risk associated with homocystinuria and that the additional effect of betaine therapy in pyridoxine- non-responsive patients is substantial and produces sustained reduction of elevated plasma homocyst(e)ine, thereby contributing to reducing cardiovascular risk

Appendix 19 cont'd Effectiveness of treatments for homocystinuria (cystathionine β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			Patient types Patients with homocystinuria due to $C\beta$ S deficiency diagnosed in the state of NSW, Australia. Diagnosis on basis of characteristic clinical features plus elevated levels of plasma methionine and free homocyst(e)ine with low free cyst(e)ine. All patients had increased urinary homocysteine Patients were categorised as being either pyridoxine responsive [plasma homocyst(e)ine <20 μ mol/l] or pyridoxine-non-responsive Patient numbers T1: pyridoxine responsive ($n = 17$) during 281 patient-years of treatment T2: pyridoxine non-responsive ($n = 15$) during 258 years of treatment Loss to follow-up I0 patients died at 2–30 years of age. Of these, 8 were definite vascular deaths, I was presumed vascular death and the other was due to an accident, unrelated to homocystinuria	9 cont'd Effec	2 vascular deaths, whereas, if untreated, 21 events would have been expected. Therefore, the treatment markedly reduced the RR to 0.09 (95% Cl 0.02 to 0.38, $\chi^2 = 14.22$, $p = 0.0001$)	ine β-synthase deficiency)
			"PP Choix i			

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results					Comments
Yap and Naughten 1998 ⁴⁸	Study design Retrospective analysis of clinical and biochemical data Randomisation method NA Duration of study	Inclusion/exclusion criteria Methionine and free homocysteine levels during initial period of stabilisation, pyridoxine challenge and subsequent periods of proven illness were excluded from the calculations for	Type of intervention Effect of pyridoxine or restriction of dietary methionine Dosage/outcomes All patients received oral pyridoxine 50 mg 3 times daily. In pyridoxine-non- responsive patients, dietary management	Mean age range 2.5 to 23.4 years Gender (M/F) 12:13 Ethnicity NR	Patient demogr Over a 25-year p were diagnosed, were pyridoxine Four other cases breast-fed and 1 Complications a	aphic eriod 21 of v non-re were was py among Total no.	s up to 1996, 25 whom were ide seponsive and 5 detected clinic vridoxine respo g patients wite Detec Without complications	cases of hom entified on scr 5 cases were t ally, 3 of whor onsive h homocystin ted by screenin With complications	ocystinuria eening. All oreast-fed. n were nuria g Missed on screening	Despite the small number of patients and varying lengths of follow-up, the authors concluded that homocystinuria due to $C\beta$ S deficiency was a potentially treatable disorder. Newborn screening, early treatment, good dietary compliance
	1971 to 1996 Setting/location National Centre for Inherited Metabolic Disorders, Dublin, Ireland	lifetime medians and ranges Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	responsive patients, dietary management was begun by restricting dietary methionine and using a methionine- free, cystine- supplemented synthetic mixture. Two-thirds of total protein intake was derived from synthetic methionine-free, cystine- supplemented mixture and remaining third from natural methionine- containing food. Patients with deficient plasma B ₁₂	Appendix 19 c	Total detected Ectopia lentis Osteoporosis (radiological) Mental disability Thromboembolism ^a All dietary treated ^b All subjects non-co- history and poor to ^c Presented with co- d One died at 8 year Clinical and bio Treatments were groups I and 2, w presentation and groups I and 2 w patients in group years (range 11.7	25 6 2 4 0 cases. omplian biocher omplica rs of ag chemi begur vherea diagno vas 14. 3 the -18.8 ss of tu	(group 1) ^a 18 ^d 0 0 0 0 0 0 0 0 0 0 0 0 0	(group 2) ^b 3 2 1 2 0 d diet (indicated s of age. accident. ks of age for p ip 3 started up period of follo 2.5–23.4 year f follow-up wa	(group 3) ^c 4 4 1 2 0 d by diet botients in bon bw-up for s). For as 14.7 (cystathionir	and the maintenance of a lifetime median plasma free homocysteine < 11 µmol/l appear to protect, at least up to 23.4 years, against the overt recognised complications of untreated homocystinuria

Appendix 19

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			and folate were given supplements Patient types All patients with homocystinuria due to $C\beta$ S deficiency detected in Ireland between 1971 and 1996, either by the national newborn screening programme ($n = 21$ with blood methionine concentrations > 100 μ mol/I) or by clinical presentation. All patients were started on treatment upon diagnosis. 24 of the 25 were patients were non- responsive to pyridoxine. Diagnosis was based on clinical presentation and elevated levels of blood methionine and free homocysteine with	Abbendix 19 c	Of the 25 patients with 365.7 patient-years of treatment, no homocystinuria-related complications were found in 18 dietary-treated cases. In these 18 subjects (group 1), 3 developed increasing myopia and all had higher lifetime median free homocysteine levels (range 18–48 μ mol/l) compared with the remaining 15 patients who had lifetime median free homocysteine levels < 11 μ mol/l Among the 3-screened non-dietary compliant cases (group 2), 2 presented with ectopia lentis, 1 had osteoporosis and 2 had mental disabilities. In this group, poor dietary compliance (reflected by diet history and higher plasma free homocysteine levels) for between 2 and 8 years significantly increased the risk of developing complications. In group 3, where 4 cases were missed by screening, 3 presented with ectopia lentis after the age of 2 years All 25 patients had lifetime median methionine levels ranging from 47 to 134 μ mol/l and no patients developed any thromboembolic events (age range 2.5–23.4 years). Four patients had mental disability, whereas the remaining 21 patients achieved age-appropriate education standards	ne β-synthase deficiency)

Ν	
_	
0	Ζ

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) R Gender (M/F) Ethnicity	lesults	Comments
			low cystine. Upon discharge from hospital, patients initially attended an outpatient clinic fortnightly and thereafter at 4–6 weekly intervals. They were reviewed at least 4 times per year			
			Outcomes measures included growth parameters, biochemical control of methionine, free homocysteine and cystine, annual ophthalmological examination, clinical cardiovascular, IQ and dietary assessments			
			Patient numbers 25			
			Loss to follow-up 1/25			
			(1 patient died due to a drowning accident)			
				Appendix 19 con	t'd Effectiveness of treatments for homocystinuria (cystath	ionine β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Yap et al., 2001 ⁴⁹	Study design Observational study with concurrent controls Randomisation method NA Duration of study Not clear; however, all patients with homocystinuria due to $C\beta$ S deficiency detected in Ireland from 1971 either by the national newborn screening programme or by clinical presentation ⁴⁸ Setting/location National Centre for Inherited Metabolic Disorders, The Children's Hospital, Ireland	Inclusion/exclusion criteria 2 patients detected through newborn screening were excluded from this study: 1 died from drowning, and psychometric data from 1 patient (postgraduate psychology student) may not be valid due to her knowledge, training and refusal to be assessed Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	Type of interventions Evaluation of intellectual abilities of early treated individuals with $C\beta$ S deficiency using standardised age- appropriate psychometric tests for full-scale IQ, verbal IQ and performance IQ Dosage/outcomes All patients diagnosed with $C\beta$ S deficiency were started on oral pyridoxine while on a normal diet to ascertain their clinical responsiveness to pyridoxine. After confirmation of pyridoxine non- responsiveness (indicated by a persistently high or rising plasma methionine and free homocystine),	Mean age 16.5 years (range 4.4–24.9 years) at assessment Gender (M/F) NR Ethnicity NR	Characteristics of patients with CβS deficiencyGroupnMean (range) age (years) At assessmentLifetime free homocystine median (µmol/l)11314.4 (4.4–24.9)0.05 (0.02–0.1)13 (4.0–11)2619.9 (13.8–25.5)0.07 (0.02–0.12)27 (11–49)3d218.9/18.82.4/2.94.5/8.54d222.4/11.7-51019.5 (7.8–32.9)-dData presented for each of the 2 patients in this group.Group 1: newborn screened (compliant); group 2: newborn screened (poorly compliant); group 3: late detected; group 4: untreated; group 5: unaffected siblings (controls).Intellectual abilities of early treated individuals with CβS deficiencyThere were no statistically significant differences between the newborn-screened compliant group and the unaffected control group in the psychometric parameters assessed, except for a higher full-scale IQ in the patient group ($p = 0.0397$)The newborn-screened, good compliance group ($n = 13$) with a total of 187.7 patient-years of treatment had a mean full-scale IQ of 105.8 (range 84–120), verbal IQ of 110.3 (range 88–117) and performance IQ of 98.6 (range 78–118). These patients did not have any other recognised homocystinuria-related complications and had lifetime free homocystine medians < 11 µmol/l. In contrast, the control group ($n = 10$) had a mean full-scale IQ of 102 (range	The authors concluded that despite the relatively small numbers, the data suggest that early treatment with good biochemical control (lifetime free plasma homocystine median $< 11 \ \mu$ mol/l) appeared to prevent mental retardation in pyridoxine-non- responsive, C β S deficient patients

Appendix 19 cont'd Effectiveness of treatments for homocystinuria (cystathionine β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results				Comments
			subjects started on dietary management of methionine restriction and a methionine-free, cystine- supplemented synthetic amino acid mixture Patients deficient in plasma B ₁₂ and folate were given supplements. Betaine was used as an adjunct to treatment only in those patients (late adolescent/young adults) who became poorly compliant to treatment (since 1996). In the late detected pyridoxine-non- responsive patients, betaine was started with cofactor (pyridoxine, B ₁₂ and folate) supplementation Outcome measures included		76–116), ver IQ of 96.6 (r Patients in th ($n = 6$) had verbal IQ of (range 46–8) medians wer in this group treatment The 2 late-d verbal IQ of lifetime free 2 untreated of 58 and 61 starting treat $\overline{\text{Group} \ n}$ $\overline{1 \ 13}$ $2 \ 6$ $3^{a} \ 2$ $4^{a} \ 2$ $5 \ 10$ a^{a} Data present Group 1: new (poorly compl group 5: unaff	bal IQ of 107 (ra ange 76–115) he newborn-scree a mean full-scale 87.3 (range 46–1 7). Corresponding re inversely relate received a total etected patients I 75 and 107, perf homocystine me patients had full-s , and performand truent Full-scale IQ 105.8 (84–120) 80.8 (40–103) 80/102 52/53 102 (76–116) ted for each of the born screened (con iant); group 3: late ected siblings (cont	nge 81–123) and ened, poorly com IQ of 80.8 years 13) and perform gly, the lifetime fi ed to full-scale IQ of 118.9 patient- had full-scale IQ of 9 dians of 4.5 and 8 scale IQ of 52 and 5 e IQ of 52 and 5 Mean (range) Verbal IQ 110.3 (88–117) 87.3 (46–113) 75/107 58/61 107 (81–123) 2 patients in this gr mpliant); group 2: r detected; group 4: rols).	performance apliant group (range 40–103), ance IQ of 75.2 ree homocystine 2. The patients years of of 80 and 102, 2 and 94, and 8.5 µ.mol/I. The d 53, verbal IQ 2, before Performance IQ 98.6 (78–118) 75.2 (46–87) 92/94 52/52 96.6 (76–115) roup. newborn screened untreated;	
				Appendix 19 c	:ont'd Effect	iveness of treatme	ents for homocysti	nuria (cystathioni	ne β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	5	Comments
			biochemical monitoring, control and IQ tests				
			Patient types Pyridoxine-non- responsive patients with $C\beta$ S deficiency from 18 families attending the National Centre for Inherited Metabolic Disorders, Ireland. Patients were divided into three groups depending on the time of starting treatment. Newborn-screened patients were further divided into two groups depending on their compliance as defined by their biochemical control. Criterion for good compliance was defined as a treatment lifetime plasma free homocystine median < 11 μ mol/I				
				Appendix 19 co	ont'd E	Effectiveness of treatments for homocystinuria (cystathion	ine β -synthase deficiency)

Health Technology Assessment 2004; Vol. 8: No. 12

N	
4	
T	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments	
			19 patients were detected through newborn screening. Of these, 13 were compliant to treatment (group 1) with no complications, and the remaining 6 developed complications due to poor compliance (group 2). Two were detected late (group 3) and 2 were untreated (group 4). All newborn-screened patients had started on a methionine- restricted, cystine- supplemented diet within 6 weeks of birth, whereas 2 late-detected patients began treatment at 2.4 and 2.9 years. The control group (group 5) consisted of 10 unaffected siblings. The mode of diagnosis, age at	Appendix 19 c	ont'd Effectivenes	ress of treatments for homocystinuria (cystathionine β-synthase defi	ìciency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			which treatment started, treatment regimen and lifetime biochemical control, including educational achievements for 22 of the 23 patients, were included in a previous article ⁴⁸ included in this review Patient numbers 23 Loss to follow-up NR	Abbendix 19 c	ont'd Effectiveness of treatments for homocustinum	ia (cvstathionine β-synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results		Comments
Yap et <i>a</i> l., 2001 ⁵⁰	Study design Multicentre observational	Inclusion/exclusion criteria NR	sion Type of M intervention Se Effect of	Mean age See results	Characteristics of patients with C β S deficients in Sydney, Nijmegen, Dublin, Manchester and	ncy treated Id London	The authors concluded that treatment regimens
	study with historical controls Randomisation method NR Duration of study Not clear; however, authors reported that newborn screening for homocystinuria in Manchester started in 1969 and Dublin in 1971. The study period was until the end of 1998 Setting/location Five centres in Ireland (Dublin), Australia (Sydney), The Netherlands	Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	homocysteine- lowering therapy in reducing vascular events Dosage/outcomes Three main treatment regimens were used by all centres with minor modifications (see treatment regimen table). Initially, therapeutic doses of pyridoxine (B ₆) were given in combination with folate. If response to B ₆ was inadequate (pyridoxine- responsive patients were those whose total free plasma homocysteine was reduced to < 20 μ mol/l with pyridoxine treatment), dietary	Gender (M/F) NR Ethnicity NR	Total no. of Cβ-S patients ^{<i>a</i>} Deaths before treatment Deaths during treatment ^{<i>b</i>} Vascular events before/off treatment Total no. followed up with treatment ^{<i>c</i>} B ₆ responders B ₆ non-responders Mean period of treatment (years) B ₆ responders Mean age (range) at start of treatment (years) Current (1998) mean age (years) Range of ages (<i>n</i>) < 10 years old < 30 years old > 50 years old Overall data are reported here; however, data from ear also available in the original publication. ^{<i>a</i>} Sydney, <i>n</i> = 40; Nijmegen, <i>n</i> = 30; Dublin, <i>n</i> = 28; M <i>n</i> = 31; London, <i>n</i> = 40. ^{<i>b</i>} Of the 7 deaths that occurred during treatment, each Australian and Irish groups have 1 death unrelated to homocystinuria. The remaining 5 deaths were vascula (pulmonary embolism, <i>n</i> = 3; myocardial infarction, <i>n</i> sinus thrombosis, <i>n</i> = 1). ^{<i>c</i>} Sydney, <i>n</i> = 32; Nijmegen, <i>n</i> = 28; Dublin, <i>n</i> = 27; M <i>n</i> = 30; London, <i>n</i> = 41.	Overall data 170 7 33 158 70 88 17.8 17.9 11 (0–57) 29.4 4.5–70 5 (3%) 57 (36%) 10 (6.3%) ch centre are fanchester, of the r deaths = 1; sagittal fanchester,	designed to lower plasma homocysteine significantly reduce cardiovascular risk in $C\beta$ S deficient patients despite imperfect biochemical control; however, the authors of this study also acknowledged that it was not clear whether this results entirely from lowering the extremely high pretreatment levels of homocysteine or from some other aspect of the treatment

Appendix 19 cont'd Effectiveness of treatments for homocystinuria (cystathionine β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results			Comments
	(Nijmegen) and the UK (Manchester		methionine restriction was		Treatment regimens in each respatients with $C\beta S$ deficiency	pective cent	re treating	
	London)		However, B₄-non-			Cent	re	
			responsive			Sydney	Nijmegen	
			pyridoxine was continued to be given to many of the		Treatment regimens used Dietary methionine restriction (mg/day) Pyridoxine (mg/day)	General advice	600	
			reports of its beneficial effects.		Adult Child Folate (mø/dav)	100–200 5	750 200–500 5	
			The third		Vitamin B_{12} (intramuscular or oral)	Routine to all	lf deficient	
			therapeutic option		Betaine (g/day)	6–9	6	
			betaine mainly in		Frequency of biochemical	1-4	1–2	
			patients non-		Criteria for B_6 responsiveness (μ mol/l)	tfHcy <20	tfHcy <20	
			responsive to B ₆			tHcy <50	or	
						Dublin	Manchester	
			All vascular events were diagnosed by appropriate contemporary		Treatment regimens used Dietary methionine restriction (mg/day) Pvridoxine (mg/day)	200–625	160–900	
			diagnostic methods		Adult	100-800	50–500	
			used by the		Child	150 (neonate)	150	
			respective teaching		Folate (mg/day)	5 If deficient	5	
			hospitals at the time		VITAMIN B_{12} (Intramuscular or oral) Betaine (g/day)	ii deficient 3-6	4 5-15	
			of the events. The total number of		Frequency of biochemical monitoring/year	≥ 8–10	I_4	
			expected vascular events, if the study population had		Criteria for B_6 responsiveness (μ mol/l)	Hcy-Hcy <5 <10	Hcy-Hcy	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results		Comments
			remained untreated was derived from the data of Mudd et al., 1985 ¹¹⁰ Data were analysed for each individual centre (data not presented) with final calculation from the pooled data (data presented) Patient types Patient swith $C\beta$ S deficiency who had been treated chronically (B ₆ responders, $n = 70$; B ₆ non-responders, n = 88) Patient numbers 158 (initially there were 170 patients, but only 158 were followed up with treatment)		Treatment regimens used Dietary methionine restriction (mg/day) Pyridoxine (mg/day) Adult Child Folate (mg/day) Vitamin B ₁₂ (intramuscular or oral) Betaine (g/day) Frequency of biochemical monitoring/year Criteria for B ₆ responsiveness (μmol/l) B ₆ responsiveness is determined by seri in relation to B ₆ administration, and the responsive when the homocysteine leve each respective centre.	Centre London 400–1375 20–500 5–10 50 µg orally 2–6 2–4 Hcy-Hcy < 10 al homocysteine assessments patient is classified as els meet the criteria set by	
				Appendix 19 c	ont'd Effectiveness of treatments fo	r homocystinuria (cystathioni	ne β -synthase deficiency)

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results		Comments
			Loss to follow-up NR		Overall data of patient years of treat and actual number of vascular events control of patients with $C\beta S$ deficien	ment, predicted a and biochemical cy	
						Overall data	
					Total patient-years of treatment B ₆ responders B ₆ non-responders Actual vascular events while on treatment (<i>n</i>) Type of events (<i>n</i>)	2821.6 1243.8 1577.8 17 (Pulmonary embolism, $n = 3$; myocardial infarction, n = 2; abdominal aortic aneurysm, n = 2; transient ischaemic attack, n = 1; sagittal sinus thrombosis, $n = 1$; deep vein thrombosis, $n = 5$; cerebrovascular accident, $n = 3$)	
					Predicted vascular events with untreated ^a	112	
					95% CI	0.036 to 0.228)	
					Þ	< 0.0001	
					Overall data are reported here; however, data also available in the original publication ^a Derived from the data of Mudd <i>et al</i> . ¹¹⁰	from each centre are	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
					Without treatment, 112 vascular events would have been expected (1 vascular event per 25 years was expected in 2821.6 patient-years of treatment). Instead, only 17 vascular events occurred in 12 patients who were undergoing treatment (RR, 0.09, 95% CI 0.036 to 0.228, $p < 0.0001$). Of the 17 vascular events, 12 occurred in eight B ₆ responders at a mean age of 51.6 years (range 25–67 years) and 5 vascular events occurred in 4 B ₆ non-responders at a younger mean age of 20.6 years (range 18–24 years). There were 5 vascular deaths during the treatment period, 2 in the B ₆ responders (pulmonary embolism, myocardial infarction) and three among B ₆ non-responders (pulmonary embolism, sagittal sinus thrombosis). In the total of 825 patient-years of betaine treatment (the longest period of betaine treatment was 17 years) there were no reports of significant side-effects. Plasma homocysteine levels were markedly reduced from pretreatment levels, but were several times higher than the mean for the respective normal population of each centre, despite the aim of achieving normal levels	

FA: folic acid; MPR: methionine-poor regimen; NP: not performed; BD: below detection limit; tf Hcy: total free homocysteine; Hcy-Hcy: free homocysteine (the disulphide).

Reference list of excluded studies: maple syrup urine disease

Anonymous. Evaluating newborn screening program data systems – Georgia, 1998. *MMWR Morb Mortal Wkly Rep* 1999;**48**:1101–4.

Boulat O, McLaren DG, Arriaga EA, Chen DD. Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence: potential for emergency diagnosis of inborn errors of metabolism. *J Chromatogr B Biomed Sci Appl* 2001;**754**:217–28.

Burgos C, Civallero GE, de Kremer RD, Gerez de Burgos NM, Blanco A. Enzymatic method for branched chain alpha-ketoacid determination: application to rapid analysis of urine and plasma samples from maple syrup urine disease patients. *Acta Physiol Pharmacol The Latinoam* 1999;**49**:109–17.

Chace DH, Hillman SL, Millington DS, Kahler SG, Roe CR, Naylor EW. Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry. *Clin Chem* 1995;**41**:62–8.

Chuang JL, Chuang DT. Diagnosis and mutational analysis of maple syrup urine disease using cell cultures. *Methods Enzymol* 2000;**324**:413–23.

Edelmann L, Wasserstein MP, Kornreich R, Sansaricq C, Snyderman SE, Diaz GA. Maple syrup urine disease: identification and carrier-frequency determination of a novel founder mutation in the Ashkenazi Jewish population. *Am J Hum Genet* 2001;**69**:863–8.

Johnson AW, Mills K, Clayton PT. The use of automated electrospray ionization tandem MS for the diagnosis of inborn errors of metabolism from dried blood spots. *Biochem Soc Trans* 1996;**24**:932–8.

Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. *J Child Neurol* 1999;**14** (Suppl 1):S4–8.

Nellis MM, Danner DJ. Gene preference in maple syrup urine disease. *Am J Hum Genet* 2001;**68**:232–7.

Nyhan WL, Rice-Kelts M, Klein J, Barshop BA. Treatment of the acute crisis in maple syrup urine disease. *Arch Pediatr Adolesc Med* 1998;**152**:593–8.

Pang CP, Law LK, Mak YT, Shek CC, Cheung KL, Mak TW, *et al.* Biochemical investigation of young hospitalized Chinese children: results over a 7-year period. *Am J Med Genet* 1997;**72**:417–21.

Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. *Semin Perinatol* 1999;**23**:183–93.

Reilly AA, Bellisario R, Pass KA. Multivariate discrimination for phenylketonuria (PKU) and non-PKU hyperphenylalaninemia after analysis of newborns' dried blood-spot specimens for six amino acids by ion-exchange chromatography. *Clin Chem* 1998;**44**:317–26.

Schadewaldt P, Bodner-Leidecker A, Hammen HW, Wendel U. Significance of L-alloisoleucine in plasma for diagnosis of maple syrup urine disease. *Clin Chem* 1999;**45**:1734–40.

Subramanyam SB. Saudi aminoacidemias: a six-year study. *Indian J Pediatr* 1996;**63**:641–4.

Verma IC. Burden of genetic disorders in India. *Indian J Pediatr* 2000;**67**:893–8.

Wasant P, Naylor EW, Liammongkolkul S. Detection of inherited metabolic disorders via tandem mass spectrometry in Thai infants. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):154–9.

Wasant P, Svasti J, Srisomsap C, Liammongkolkul S, Naylor EW, Matsumoto I. Inherited metabolic disorders in Thailand – Siriraj experience. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):124–37.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatr* 1999;**88** (Suppl 432):48–51.

Yahya NA, Ismail Z, Embong KH, Mohamad SA. High performance liquid chromatography (HPLC) method for confirming thin layer chromatography (TLC) findings in inborn errors of metabolism children in Malaysia. *Southeast Asian J Trop Med Public Health* 1995; **26** (Suppl 1):130–3.

Zakiah I, Ashikin YN, Aisiah SM, Ismail HI. Inborn errors of metabolic diseases in Malaysia: a preliminary report of maple syrup urine diseases for 1993. *Southeast Asian J Trop Med Public Health* 1995;**26** (Suppl 1):134–6.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

Reference list of excluded studies: urea cycle disorders

Carpenter KH, Potter M, Hammond JW, Wilcken B. Benign persistent orotic aciduria and the possibility of misdiagnosis of ornithine carbamoyltransferase deficiency. J Inherit Metab Dis 1997;**20**:354–8.

Genet S, Cranston T, Middleton-Price HR. Mutation detection in 65 families with a possible diagnosis of ornithine carbamoyltransferase deficiency including 14 novel mutations. *J Inherit Metab Dis* 2000;**23**:669–76.

Kasahara M, Kiuchi T, Uryuhara K, Ogura Y, Takakura K, Egawa H, *et al.* Treatment of ornithine transcarbamylase deficiency in girls by auxiliary liver transplantation: conceptual changes in a living-donor program. *J Pediatr Surg* 1998;**33**:1753–6.

Kuhara T, Shinka T, Inoue Y, Ohse M, Zhen-wei X, Yoshida I, *et al.* Pilot study of gas chromatographic-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. *J Chromatogr B Biomed Sci Appl* 1999;**731**:141–7.

Leao M. Valproate as a cause of hyperammonemia in heterozygotes with ornithine-transcarbamylase deficiency. *Neurology* 1995;**45**:593–4.

Linnebank M, Homberger A, Rapp B, Winter C, Marquardt T, Harms E, *et al.* Two novel mutations (E86A, R113W) in argininosuccinate lyase deficiency and evidence for highly variable splicing of the human argininosuccinate lyase gene. *J Inherit Metab Dis* 2000;**23**:308–12.

Maestri NE, Clissold D, Brusilow SW. Neonatal onset ornithine transcarbamylase deficiency: a retrospective analysis. *J Pediatr* 1999;**134**:268–72.

Muenzer J, Frazier DM, McCandless SE. Incidence and follow-up evaluation of metabolic disorders detected by newborn screening in North Carolina using tandem mass spectrometry. In: Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001; **50**(RR-3):28–9.

Oppliger Leibundgut EO, Wermuth B, Colombo JP, Liechti-Gallati S. Ornithine transcarbamylase deficiency: characterization of gene mutations and polymorphisms. *Hum Mutat* 1996;**8**:333–9.

Oppliger LE, Wermuth B, Colombo JP, Liechti-Gallati S. Identification of four novel splice site mutations in the

ornithine transcarbamylase gene. *Hum Genet* 1996; **97**:209–13.

Peltola K, Heinonen OJ, Nanto-Salonen K, Pulkki K, Simell O. Oral lysine feeding in gyrate atrophy with hyperornithinaemia – a pilot study. *J Inherit Metab Dis* 2000;**23**:305–7.

Potter M, Hammond JW, Sim KG, Green AK, Wilcken B. Ornithine carbamoyltransferase deficiency: improved sensitivity of testing for protein tolerance in the diagnosis of heterozygotes. *J Inherit Metab Dis* 2001;**24**:5–14.

Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. *Semin Perinatol* 1999;**23**:183–93.

Rashed MS, Rahbeeni Z, Ozand PT. Screening blood spots for argininosuccinase deficiency by electrospray tandem mass spectrometry. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):170–73.

Riudor E, Arranz JA, Rodes M, Rubio V, Sentis M, Burlina AB. Influence of dose and age on the response of the allopurinol test for ornithine carbamoyltransferase deficiency in control infants. *J Inherit Metab Dis* 2000;**23**:662–8.

Tokatli A, Coskun T, Ozalp I. Citrullinemia. Clinical experience with 23 cases. *Turk J Pediatr* 1998;**40**:185–93.

Tuchman M, Morizono H, Rajagopal BS, Plante RJ, Allewell NM. Identification of 'private' mutations in patients with ornithine transcarbamylase deficiency. *J Inherit Metab Dis* 1997;**20**:525–7.

Uchino T, Endo F, Matsuda I. Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan. *J Inherit Metab Dis* 1998;**21** (Suppl 1):151–9.

Valik D, Miner PT, Jones JD. First U.S. case of adenylosuccinate lyase deficiency with severe hypotonia. *Pediatr Neurol* 1997;**16**:252–5.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

Effectiveness of treatments for ornithine transcarbamylase deficiency: dietary and pharmacological therapy

Authors, year	Study design Randomisation method Duration of study	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
	Setting/location					
Burlina et al., 2001 ⁵⁶	Study design Retrospective analysis of clinical and biochemical data from three different European Paediatric Centres Randomisation method NA Duration of study Median 26 months (range 17 to 42 months) Setting/location NR; however, first author from Italy	Inclusion/exclusion criteria NR Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	Type of intervention Effect of sodium phenylbutyrate Dosage/outcomes Sodium phenylbutyrate was given in 3-4 divided doses (median 352 mg/kg per day, range 125-484) at 8.9 and 4.9 years of age (median) in males and females, respectively Outcome measures included clinical and biological evaluations, including growth parameters and nutritional status Patient types Patients with ornithine	Mean age Range 2–16 years at starting sodium phenylbutyrate treatment Gender (M/F) 4/5 Ethnicity NR	Overall, sodium phenylbutyrate was well tolerated, no adverse effects were detected during the treatment period and there were no hyperammonaemic episodes requiring hospitalisation Authors reported that in this retrospective study, it was not possible to obtain accurate data because patients were referred from different centres having distinct nutritional protocols and the treatment regimen was not sufficient for the increase in protein intake allowed. Despite these limitations, the authors observed that total protein intake increased from 0.84 g/kg per day (range $0.43-1.63$) before starting treatment with phenylbutyrate to 0.95 g/kg per day (range $0.66-1.46$) after 18 months of treatment. Total protein intake correlated significantly with increases in the dose of phenylbutyrate ($p < 0.001$), suggesting that an increase in the phenylbutyrate dose allowed an increase of 1 g in protein intake. In contrast to the decline in plasma ammonia levels, plasma glutamine levels did not show any significant variation during the treatment period Plasma concentrations of essential amino acids, including alanine, asparagines, leucine and isoleucine, remained normal. In addition, other routine haematological and biochemical measurements (liver and renal function tests) remained normal during the treatment period, suggesting a lack of toxicity effect No cognitive evaluation was performed during the treatment,	Authors concluded that treatment with sodium phenylbutyrate was safe and facilitated the clinical management of patients with ornithine transcarbamylase deficiency and enhanced their quality of life by achieving a better metabolic control despite a higher intake of natural protein; however, these authors encouraged further prospective research to define the optimal dosage of sodium phenylbutyrate and establish the requirements of a protein diet at different ages
			transcarbamylase deficiency, aged 6 days to 14 years		but the authors presumed that the metabolic stability may have prevented neurological deterioration over the period of treatment	

continued

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			at diagnosis. Diagnosis based on liver enzyme assay and or DNA mutation analysis. All patients were treated for at least 8 months (median 17 months; range 8–28 months) with a low protein diet (median 0.84 g/kg per day), arginine (5 patients) or citrulline (4 patients) supplementation and oral sodium benzoate (median 248 mg/kg per day, range 106–275). Sodium benzoate was replaced when phenylbutyrate became available Patient numbers 9 Loss to follow-up NR			
Effectiveness of treatments for citrullinaemia: dietary and pharmacological therapy

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Maestri et al., 1995 ⁵⁷	Study design Analysis of clinical and biochemical data from 18 medical institutions throughout the USA and Canada Randomisation method NA Duration of study Not clear; however, 15-year period of study Setting/location Department of Pediatrics, Johns Hopkins University, USA	Inclusion/exclusion criteria NA Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	Type of interventions Long-term therapeutic protocols: dietary management (limitation of dietary nitrogen) and oral administration of arginine freebase and sodium benzoate (and/or) sodium phenyl acetate or sodium phenylbutyrate Dosage/outcomes Treatment protocols were modified during the 15 year period of study due to availability of new drugs Protocol I included administration of sodium benzoate and arginine (subjects born before 1984 maintained on this protocol] I included sodium phenyl acetate	Mean age Not reported Gender (M/F) Not reported Ethnicity White (n = 15), Hispanic (n = 2), Black $(n = 1)$, unknown or mixed racial background (n = 5) and not reported (n = 1)	Long-term therapeutic protocols for study patientsProtocol I (1980)°Protocol II (1984)°Protocol III (1987)°Diet (/kg per day) Natural protein (g) $0.5-0.7$ $0.5-0.7$ $0.5-0.7$ $0.5-0.7$ $0.5-0.7$ $0.5-0.7$ $0.5-0.7$ Calories (kcal)As required As required As required Medications (mg/kg per day) Arginine freebase $500-700$ $500-700$ $400-700$ Sodium benzoate 250 250 Sodium phenylacetate † 250 250 Asonad phenylacetate † a Introduction of treatment protocol.Start of therapy and survival In 24 patients with neonatal onset of citrullinaemia born before 1990, who had been treated since birth with various therapeutic protocols designed to limit dietary nitrogen and to provide vehicles other than urea to excrete waste nitrogen, the cumulative survival rate was 87.5% at 5 years and approximately 72% at 10 years of ageOverall, 15 patients survived (3 died during treatment protocol IIa, 4 died on protocol III regimen and 2 withdrew from therapy) during treatment with high doses of sodium phenylbutyrateDevelopmental progress Among the 15 surviving patients, 11 were classified as severely to profoundly mentally retarded (IQ < 55). The remaining 4 patients had IQ measurements in the low borderline to mentally retarded range (IQ 50-70)	 The number of patients treated in each protocol regimen is not explicitly clear Authors concluded that these drugs, sodium benzoate, sodium phenyl acetate and sodium phenylbutyrate, were safe and that the current protocol (protocol IIIb) improved survival rates. However, survival was accompanied by mental retardation, growth retardation, risk of hyperammonaemic episodes and the need for lifetime adherence to strict medication and dietary management Note: participation in this study was voluntary and transfer to a newer protocol was neither strictly

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			(protocol IIa), first used in 1984, or sodium phenylbutyrate (protocol IIb), first used in 1985. Protocol III included high doses of sodium phenylacetate (protocol IIIa) or phenylbutyrate (protocol IIIb) and excluded sodium benzoate; patients were transferred to this protocol as it became available in 1987 Outcomes included metabolic, clinical and development data and an assessment of patient compliance with protocol Patient types Infants born between I January 1979 and I September 1989, in whom citrullinaemia was diagnosed		 Hyperammonaemic episodes All patients had intercurrent hyperammonaemic episodes, the frequency of which decreased with the implementation of the current protocol. There was wide variation in the number and frequency of episodes in individual patients, but different treatment histories make strict comparisons among protocols difficult. On average, the 15 surviving patients had 1 episode per year (range 2–30 episodes) during 5.4–15.5 years of treatment Anthropometric and other measurements Overall, patients were growth retarded, had height-for-weight Z scores within 2 SD of the mean, and laboratory studies of plasma amino acids and of haematopoietic, renal and hepatic function were within normal limits, with the exception of slightly elevated serum aminotransferase values 	enforced nor strongly recommended until evidence accumulated that a newer therapy was effective, and different treatment histories make strict comparisons among protocols difficult
					Appendix 23 cont'd Effectiveness of tree	atments for citrullinaemia

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			within the first month of life. Diagnosis based on elevated plasma ammonium levels (ranging from 266 to 2000 μ mol/l), increased plasma citrulline levels (>1000 μ mol/l) and no detectable plasma arginosuccinate. Patients were referred to the Department of Pediatrics, Johns Hopkins University School of Medicine, USA, for enrolment in ongoing clinical studies of sodium benzoate, sodium phenylacetate and sodium phenylbutyrate Patient numbers 24 Loss to follow-up 9 (7 died and 2 withdrew from therapy)			

Reference list of excluded studies: methylmalonic, propionic and isovaleric acidaemias

Abdenur JE, Chamoles NA, Guinle AE, Schenone AB, Fuertes AN. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening programme. *J Inherit Metab Dis* 1998;**21**:624–30.

Andersson HC, Shapira E. Biochemical and clinical response to hydroxocobalamin versus cyanocobalamin treatment in patients with methylmalonic acidemia and homocystinuria (cblC). *J Pediatr* 1998;**132**:121–4.

Andersson HC, Marble M, Shapira E. Long-term outcome in treated combined methylmalonic acidemia and homocystinemia. *Genet Med* 1999;**1**:146–50.

Berger I, Shaag A, Anikster Y, Baumgartner ER, Bar-Meir M, Joseph A, *et al.* Mutation analysis of the MCM gene in Israeli patients with mut(0) disease. *Mol Genet Metab* 2001;**73**:107–10.

Bonafe L, Troxler H, Kuster T, Heizmann CW, Chamoles NA, Burlina AB, *et al.* Evaluation of urinary acylglycines by electrospray tandem mass spectrometry in mitochondrial energy metabolism defects and organic acidurias. *Mol Genet Metab* 2000;**69**:302–11.

Bonham Carter SM, Watson DG, Midgley JM, Logan RW. Synthesis and characterisation of acyl glycines. Their measurement in single blood spots by gas chromatography–mass spectrometry to diagnose inborn errors of metabolism. *J Chromatogr B Biomed Appl* 1996; **677**:29–35.

Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. *Clin Chem* 2001; **47**:1166–82.

Chemelli AP, Schocke M, Sperl W, Trieb T, Aichner F, Felber S. Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. *J Magn Reson Imaging* 2000;**11**:596–600.

Fries MH, Rinaldo P, Schmidt-Sommerfeld E, Jurecki E, Packman S. Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, L-carnitine, and combined glycine-carnitine therapy. *J Pediatr* 1996;**129**:449–52.

Itoh T, Ito T, Ohba S, Sugiyama N, Mizuguchi K, Yamaguchi S, *et al.* Effect of carnitine administration on glycine metabolism in patients with isovaleric acidemia: significance of acetylcarnitine determination to estimate the proper carnitine dose. *Tohoku J Exp Med* 1996; **179**:101–9. Jellum E, Dollekamp H, Blessum C. Capillary electrophoresis for clinical problem solving: analysis of urinary diagnostic metabolites and serum proteins. *J Chromatogr B Biomed Sci Appl* 1996;**683**:55–65.

Kuhara T, Shinka T, Inoue Y, Ohse M, Zhen-wei X, Yoshida I, *et al.* Pilot study of gas chromatographic–mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. *J Chromatogra B Biomed Sci Appl* **731**:141–7.

Lin WD, Wu JY, Lai CC, Tsai FJ, Tsai CH, Lin SP, *et al.* A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. *Acta Paediatr Taiwan* 2001;**42**:224–30.

Marwah A, Ramji S. Propionic acidemia in the newborn. *Indian Pediatr* 1997;**34**:639–41.

Matern D, Seydewitz HH, Lehnert W, Niederhoff H, Leititis JU, Brandis M. Primary treatment of propionic acidemia complicated by acute thiamine deficiency. *J Pediatr* 1996;**129**:758–60.

Muenzer J, Frazier DM, McCandless SE. Incidence and follow-up evaluation of metabolic disorders detected by newborn screening in North Carolina using tandem mass spectrometry. In Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001; **50**(No. RR-3),2001:28–9.

Nyhan WL, Bay C, Beyer EW, Mazi M. Neurologic nonmetabolic presentation of propionic acidemia. *Arch Neurol* 1999;**56**:1143–7.

Pang CP, Law LK, Mak YT, Shek CC, Cheung KL, Mak TW, *et al.* Biochemical investigation of young hospitalized Chinese children: results over a 7-year period. *Am J Med Genet* 1997;**72**:417–21.

Presto-Elgstoen KB, Zhao JY, Anacleto JF, Jellum E. Potential of capillary electrophoresis, tandem mass spectrometry and coupled capillary electrophoresis–tandem mass spectrometry as diagnostic tools. *J Chromatogra A* 2001;**914**:265–75.

Rashed MS, Ozand PT, Bucknall MP, Little D. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. *Pediatr Res* 1995;**38**:324–31.

233

Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. *Semin Perinatol* 1999;**23**:183–93.

Ravn K, Chloupkova M, Christensen E, Brandt NJ, Simonsen H, Kraus JP, *et al.* High incidence of propionic acidemia in greenland is due to a prevalent mutation, 1540insCCC, in the gene for the beta-subunit of propionyl CoA carboxylase. *Am J Hum Genet* 2000; **67**:203–6.

Rosenblatt DS, Aspler AL, Shevell MI, Pletcher BA, Fenton WA, Seashore MR. Clinical heterogeneity and prognosis in combined methylmalonic aciduria and homocystinuria (cblC). *J Inherit Metab Dis* 1997; **20**:528–38.

Rossi A, Cerone R, Biancheri R, Gatti R, Schiaffino MC, Fonda C, *et al.* Early-onset combined methylmalonic aciduria and homocystinuria: neuroradiologic findings. *AJNR Am J Neuroradiol* 2001;**22**:554–63.

Saudubray JM, Touati G, Delonlay P, Jouvet P, Schlenzig J, Narcy C, *et al.* Liver transplantation in propionic acidaemia. *Eur J Pediatr* 1999;**158** (Suppl 2):S65–9.

Shigematsu Y, Hata I, Kikawa Y, Mayumi M, Tanaka Y, Sudo M, *et al.* Modifications in electrospray tandem mass spectrometry for a neonatal-screening pilot study in Japan. *J Chromatogr B* 1999;**731**:97–103.

Sniderman LC, Lambert M, Giguere R, Auray-Blais C, Lemieux B, Laframboise R, *et al.* Outcome of individuals with low–moderate methylmalonic aciduria detected through a neonatal screening program. *J Pediatr* 1999;**134**:675–80.

Tokatli A, Coskun T, Ozalp I. Isovaleric acidemia. Clinical presentation of 6 cases. *Turk J Pediatr* 1998; **40**:111–19.

234

van der Westhuizen BM, Terblanche SE, Minnie LJ. Benzoylserine and benzoylthreonine in propionic acidaemia treated with sodium benzoate. *S Afr Med J* 1999;**89**:1273–4.

van't Hoff W, McKiernan PJ, Surtees RA, Leonard JV. Liver transplantation for methylmalonic acidaemia. *Eur J Pediatr* 1999;**158** (Suppl 2):S70–4.

Vockley J, Rogan PK, Anderson BD, Willard J, Seelan RS, Smith DI, *et al.* Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. *Am J Hum Genet* 2000;**66**:356–7.

Wasant P, Matsumoto I, Liammongkolkul S. Detection of inborn errors of metabolism in Thai infants via gas chromatography and mass spectrometry. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):160–5.

Wasant P, Naylor EW, Liammongkolkul S. Detection of inherited metabolic disorders via tandem mass spectrometry in Thai infants. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):154–9.

Wasant P, Svasti J, Srisomsap C, Liammongkolkul S, Naylor EW, Matsumoto I. Inherited metabolic disorders in Thailand – Siriraj experience. *Asian J Trop Med Public Health* 1999;**30** (Suppl 2):124–37.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

Effectiveness of treatments for methylmalonic acidaemia: cobalamin-responsive versus cobalamin-non-responsive patients

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat	Type of interventions Dosage/ outcomes Patients Type Numbers	Age (years) Gender (M/F) Ethnicity	Results				Comments
		analysis Loss to follow-up	Loss to follow-up						
Nicolaides et al., 1998 ⁵⁸	Study design Cross-sectional study	Inclusion/exclusion criteria NR	on Type of Mean age Su interventions Not reported; me Cobalamin- bowever all	Summary of the neurological outcome of patients with methylmalonic acidaemia				Authors concluded that the overall	
	,		responsive and non-	living patients		Cobalamin	Cobalamin n	on-responsive	with methylmalonic
	Randomisation	Power calculation	responsive and,	under 16		responsive	Early onset	Late onset	acidaemia, particularly
	method NA Duration of study NR Setting/location Great Ormond Street Hospital for Children, London, UK	ethodNAearly (Afirst mBaselineand laturation ofcomparability(preseudyNAfirst mRIntention-to-treatDosageetting/locationanalysisCobalareat OrmondNAresporreet Hospitalproteinr Children,injectionondon, UK(I mg5 days5 days	early (presented in presented in presented in presented in presented in presented in presented after (in presented after first month) groups Gender (presented after first month) groups Cobalamin presponsive: B Dosage/outcomes Not reported Cobalamin presponsive: Protein diet and/or intramuscular 12/17 P	Illness severityHyperammonaemia at presentation $I/6$ $9/20$ $I/6$ $9/20$ Severity score, median ($\geq 95\%$ Cl°) I (1–2) 6 (5–7) I (1–2) 6 (5–7) I (1–2) 6 (5–7) I (1–6)Neurological outcome I $2/6$ $I/18$ $3/9$ Full-scale IQ, median ($\geq 95\%$ Cl) $I00$ (77–102)75 (65–84) $I01$ (83–125)	the early-onset group, remains unchanged, disappointing and unsatisfactory. Cobalamin-responsive patients had a better long-term outcome than non-cobalamin- responsive patients. All cobalamin-non-				
				intramuscular 12/17 injections with cyanocobalamin or Ethnicity hydroxycobalamin NR (1 mg daily for 5 days, $n = 6$)	Abnormal neurologic Abnormal neuroimag	cal signs 2/6 ging	7/18	6/9	responsive patients were at risk of
			cyanocobalamin or hydroxycobalamin (1 mg daily for 5 days, <i>n</i> = 6)		^a ≥ 95% confidence ^b Younger than 2 yea	interval for the m	9/13 edian.	2/6	developing a progressive neurological disease, particularly the early-
			Non-responsive $(n = 29)$: low-protein diet (some were treated with		There were significant differences between cobalamin- responsive and non-responsive groups in the severity, surviv and incidence of neurological sequelae				onset group. In view of the poor prognosis and to prevent further illness, alternative treatments need to be
		carnitine, <i>n</i> = 13) Patient types Patients with methylmalonic		There was a signif responsive and no illness. In general, greater median dif	icant difference n-responsive pa the cobalamin-r ference severity	between cob tients in the s non-responsiv score of 3.6	alamin- everity of the e group had a (95% Cl 2.0	considered for the early-onset patients, such as liver transplantation; however, this	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			acidaemia who were seen and treated at the Great Ormond Street Hospital for Children, London, UK, between 1970 and 1996. Diagnosis based on increases in urinary methylmalonate and methylcitrate, raised methylmalonate and blood with normal plasma vitamin B ₁₂ levels and no detectable plasma homocystine In most patients diagnosis confirmed by enzyme studies on cultured skin fibroblasts. After diagnosis all patients treated with low- protein diet and intramuscular injections of cyanocobalamin or hydroxycobalamin		to 5.2, $p < 0.001$) and more encephalopathic episodes (median difference 1.4, 95% CI 2.4 to 6.3, $p < 0.001$) All 6 cobalamin-responsive patients had mild disease and its severity was not dependent on age at presentation, their neurological complications were less severe and they were all alive. In contrast, the cobalamin-non-responsive group consisted of 19 early- (13 females) and 9 late-onset patients (4 females). The early-onset group had more severe disease presentation with episodes of severe acidosis, hyperammonaemia (up to 1800 μ M), and 6 collapsed requiring intensive care and ventilatory support. 14 patients in the early-onset cobalamin-non-responsive group had died (median survival 6.4 years, 95% CI 3.6 to 9.1 years), whereas all of the patients in the late-onset group were alive. Six patients in the early-onset cobalamin-non-responsive group died in the first year of life and 8 died between 15 months and 7 years of age Most late-onset patients presented in first year with either an episode of metabolic decompensation and subsequent development delay, or feeding difficulties with failure to thrive. Anorexia and feeding difficulties were seen in 25 of the 27 of cobalamin-non-responsive patients There were no significant differences between the groups with respect to protein intake, which varied between 1.0 and 1.8 g/kg per day. One-third of cobalamin-non-responsive patients had poor growth with height and weight below the third centile	procedure is not without risk
					Appendix 25 cont'd Effectiveness of treatments for	methylmalonic acidaemia

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			(1 mg daily for 5 days). Response assessed by urinary methylmalonate measurements, and in responsive patients cobalamin injections were continued Patient numbers 35 [patients divided into cobalamin- responsive, $n = 6$, and non-responsive, n = 29, and early (presented in first month of life) and late-onset (presented after first month) groups] Loss to follow-up Not clear; however, 14 patients in the early-onset, cobalamin-non- responsive group died		Neurological outcome There were no significant differences between the early- and late-onset groups in abnormal neurological signs (7 of 18 and 6 of 9, respectively, $p = 0.13$), although early-onset patients had significantly reduced full-scale IQ (median difference 26, $p = 0.03$) and poor neurological and cognitive outcome. In both groups abnormal neurological signs continued to increase with age. In all patients, new neurological symptoms and signs developed following episodes of acute metabolic decompensation	
					Appendix 25 cont'd Effectiveness of treatments for	methylmalonic acidaemia

Effectiveness of treatments for propionic acidaemia: dietary protein restriction in early-onset versus late-onset patients

≻
Þ
e G
ä
Ĕ
26

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results			Comments
van der Meer et al., 1996 ⁵⁹	Study design Retrospective analysis of clinical	Inclusion/exclusion criteria NR	Type of interventions Dietary	Mean age See Results	Clinical and treatment data of patients with propionic acidaemia			Authors concluded that the prognosis for patients with
	data Randomisation method NA Duration of study NR Setting/location Hospital Necker Enfants Malades, Paris, France	Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	management with low protein intake, with or without supplemental protein mixtures Dosage/outcomes Basis of therapy involved dietary management with low protein intake (natural) with or without supplemental protein mixtures In the 1970s dietary treatments for propionic acidaemia were based on restriction of natural protein. After 1980, treatment principles changed. Home tube feeding became routine daily treatment, with the addition of	Gender (M/F) NR Ethnicity Early-onset patients: 5 of the 12 were non-European immigrants Late-onset patients: all originated from France	No. of patients Age at diagnosis Total time in hospital No. deceased Age at death Present age Patients treated with Tube feeding Carnitine Metronidazole Five (42%) of the er patients died. The d survival time of 0.4 died at the ages of 2 study, the median age 5.2 years (1–9.3 year 4, 7 and 23 years of All patients were treat the addition of carni metronidazole (20 r per day remained fa in the early-onset pa protein intake remat values > 13 g/day. Thigher in early-onset	Early onset 12 9.3 days (3–19) 4.1 months (2–12) 5 3, 3.6, 5, 6 months and 9.5 years 5.6 years (1–9.3) 9 11 6 early-onset and 2 (40° deceased early-onset years, whereas the la 2.8 years and 4 years ge of the living early- ars), whereas the late f age eated with natural pr itine (100 mg/kg per mg/kg per day). The atients. After the 6th ined fairly constant a The supplemental pro- t patients, and shown d off from the age of	Late onset 5 16.3 months (3.5–36) 2.9 months (1–7) 2 2.8 and 4 years 11.4 years (4–23) 1 3 2 %) of the late-onset patients had a median ate-onset patients . At the time of the onset patients was be-onset patients were rotein restriction with day) and later with natural protein intake first 3–4 years of life year of life, total and seldom reached otein intake was ed a steady but strong 6 years	propionic acidaemia appeared to be satisfactory in terms of survival, neurological and mental development; however, new developments in medical techniques such as liver transplantation or somatic gene therapy might improve the quality of life for these patients in the future

continued

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			carnitine (100 mg/kg per day) and later metronidazole (20 mg/kg per day). Changes in regimen were kept under strict surveillance and noted Outcome measures included disability, neuromotor, mental, psychological, visceral, sensory, social and nutritional outcomes Patient types Patients with propionic acidaemia (diagnosed since 1970) with early- (n = 12) or late- onset type $(n = 5)$. In most patients, diagnosis confirmed with enzymic assay of propionyl CoA carboxylase. Biotin response was assessed in all		The natural protein intake of late-onset patients was higher and rose more rapidly to an almost normal protein intake after 3–4 years of life. The differences between the mean natural protein intake of early- and late-onset patients were significant in all age groups ($p < 0.0001$, t -test) Late-onset patients suffered more frequently from minor to intermediate neurometor, mental and psychological disabilities than the early-onset patients; this may be due to the delay in diagnosis. The authors also observed less frequent metabolic decompensations and hospitalisations with the introduction of nasogastric tube feeding Many patients showed a failure to thrive, particularly for height. This was attributed to the strong protein restriction during the first years of life	
					Appendix 26 cont'd Effectiveness of treatmen	ts for propionic acidaemia

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			patients, but none responded either clinically or biochemically. 12 patients presented within 3 weeks (mean 9.3 days, range 3–19 days) after birth (early- onset group), whereas 5 patients were diagnosed later (mean 16.3 months, range 3.5 months to 3 years of age) in life (late- onset group) Patient numbers 17 Loss to follow-up Not clear; however, 7 patients died (5 in the early-onset and 2 in the late-onset group)			

Reference list of excluded studies: other defects of branched-chain acyl-coenzyme A metabolism

Bonafe L, Troxler H, Kuster T, Heizmann CW, Chamoles NA, Burlina AB, *et al.* Evaluation of urinary acylglycines by electrospray tandem mass spectrometry in mitochondrial energy metabolism defects and organic acidurias. *Mol Genet Metab* 2000;**69**:302–11.

Gallardo ME, Desviat LR, Rodriguez JM, Esparza-Gordillo J, Perez-Cerda C, Perez B, *et al*. The molecular basis of 3-methylcrotonylglycinuria, a disorder of leucine catabolism. *Am J Hum Genet* 2001;**68**:334–46.

Holzinger A, Roschinger W, Lagler F, Mayerhofer PU, Lichtner P, Kattenfeld T, *et al.* Cloning of the human MCCA and MCCB genes and mutations therein reveal the molecular cause of 3-methylcrotonyl-CoA: carboxylase deficiency. *Hum Mol Genet* 2001; **10**:1299–306.

Mitchell GA, Ozand PT, Robert MF, Ashmarina L, Roberts J, Gibson KM, *et al.* HMG CoA lyase deficiency: identification of five causal point mutations in codons 41 and 42, including a frequent Saudi Arabian mutation, R41Q. *Am J Hum Genet* 1998;**62**:295–300.

Muro S, Rodriguez-Pombo P, Perez B, Perez-Cerda C, Desviat LR, Sperl W, *et al*. Identification of novel

mutations in the PCCB gene in European propionic acidemia patients. Mutation in brief no. 253. Online. *Hum Mutat* 1999;**14**:89–90.

Muroi J, Yorifuji T, Uematsu A, Shigematsu Y, Onigata K, Maruyama H, *et al.* Molecular and clinical analysis of Japanese patients with 3-hydroxy-3-methylglutaryl CoA lyase (HL) deficiency. *Hum Genet* 2000;**107**:320–6.

Pearson MA, Aleck KA, Heidenreich RA. Benign clinical presentation of 3-methylcrotonylglycinuria. *J Inherit Metab Dis* 1995;**18**:640–1.

Shotelersuk V, Srivuthana S, Wacharasindhu S, Dhamcharee V, Jaruratanasirikul S, Pangkanon S, *et al.* Establishing gas chromatography-mass spectrometry to diagnose organic acidemias in Thailand. *Southeast Asian J Trop Med Public Health* 2000;**31**:566–70.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

Reference list of excluded studies: medium-chain acyl-coenzyme A dehydrogenase deficiency

Abdenur JE, Chamoles NA, Specola N, Schenone AB, Jorge L, Guinle A, *et al.* MCAD deficiency. Acylcarnitines (AC) by tandem mass spectrometry (MS–MS) are useful to monitor dietary treatment. *Ad Exp Med Biol* 1999;**466**:353–63.

Andresen BS, Bross P, Jensen TG, Knudsen I, Winter V, Kolvraa S, *et al.* Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency. *Scand J Clin Lab Invest* 1995; **220** (Suppl):9–25.

Andresen BS, Dobrowolski SF, O'Reilly L, Muenzer J, McCandless SE, Frazier DM *et al.* Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. *Am J Hum Genet* 2001;**68**:1408–18.

Bonafe L, Troxler H, Kuster T, Heizmann CW, Chamoles NA, Burlina AB, *et al.* Evaluation of urinary acylglycines by electrospray tandem mass spectrometry in mitochondrial energy metabolism defects and organic acidurias. *Mol Genet Metab* 2000;**69**:302–11.

Bonham Carter SM, Watson DG, Midgley JM, Logan RW. Synthesis and characterisation of acyl glycines. Their measurement in single blood spots by gas chromatography-mass spectrometry to diagnose inborn errors of metabolism. *J Chromatogra B Biomed Sci Appl* 1996;**677**:29–35.

Brivet M, Slama A, Saudubray JM, Legrand A, Lemonnier A. Rapid diagnosis of long chain and medium chain fatty acid oxidation disorders using lymphocytes. *Ann Clin Biochem* 1995;**32**:154–9.

Carpenter K, Wiley V, Sim KG, Heath D, Wilcken B. Evaluation of newborn screening for medium chain acyl-CoA dehydrogenase deficiency in 275 000 babies. *Arch Dis Child Fetal Neonatal Ed* 2001;**85**:F105–9.

Chace DH, Hillman SL, Vanhove JLK, Naylor EW. Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. *Clin Chem* 1997;**43**:2106–13.

Charrow J, Goodman SI, McCabe ERG, Rinaldo P. Tandem mass spectrometry in newborn screening. *Genet Med* 2000;**2**:267–9.

Clayton PT, Doig M, Ghafari S, Meaney C, Taylor C, Leonard JV, *et al.* Screening for medium chain acyl-CoA dehydrogenase deficiency using electrospray ionisation tandem mass spectrometry. *Arch Dis Child* 1998; **79**:109–15. Costa CG, Struys EA, Bootsma A, Ten Brink HJ, Dorland L, Tavares dA I, *et al.* Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. *J Lipid Res* 1997;**38**:173–82.

Costa CG, Dorland L, Holwerda U, de Almeida IT, Poll-The BT, Jakobs C, *et al.* Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders. *Clin Chem* 1998; **44**:463–71.

Costa CG, Guerand WS, Struys EA, Holwerda U, Ten Brink HJ, Tavares dA I, *et al.* Quantitative analysis of urinary acylglycines for the diagnosis of betaoxidation defects using GC-NCI-MS. *J Pharm Biomed Anal* 2000;**21**:1215–24.

de Vries HG, Niezen-Koning K, Kliphuis JW, Smit GP, Scheffer H, ten Kate LP. Prevalence of carriers of the most common medium-chain acyl-CoA dehydrogenase (MCAD) deficiency mutation (G985A) in The Netherlands. *Hum Genet* 1996;**98**:1–2.

Flath B, Rolinski B, Roscher AA. Simple highperformance liquid chromatographic method for the detection of phenylpropionylglycine in urine as a diagnostic tool in inherited medium-chain acylcoenzyme A dehydrogenase deficiency. *J Chromatogr B Biomed Sci Appl* 1997;**694**:227–32.

Grosse S. Screening for medium chain acyl-CoA dehydrogenase deficiency is being evaluated. *BMJ* 2001;**322**:1062.

Hoffman G, Litsheim T, Laessig R. Implementation of tandem mass spectrometry in Wisconsin's newborn screening program. In Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001; 50 (RR-3),26–7.

Ioulianos A, Wells D, Harper JC, Delhanty JD. A successful strategy for preimplantation diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. *Prenat Diagn* 2000;**20**:593–8.

Johansson A, Guthenberg C, Ahlman H, Von Dobeln U, Hagenfeldt L. Prevalence of the $985A \rightarrow G$ mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene in Sweden. *Scand J Clin Lab Invest* 1999;**59**:289–91.

Kozak L, Hrabincova E, Rudolfoa J, Vrabelova S, Freibelger T. Screening of the most common mediumchain acyl CoA dehydrogenase (MCAD) deficiency mutation (K329E) in the Czech newborn population. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):49–50.

245

Lecoq I, Mallet E, Bonte JB, Travert G. The A985 to G mutation of the medium-chain acyl-CoA dehydrogenase gene and sudden infant death syndrome in Normandy. *Acta Paediatr* 1996;**85**:145–7.

Matsubara Y, Fujii K, Rinaldo P, Narisawa K. A fluorogenic allele-specific amplification method for DNA-based screening for inherited metabolic disorders. *Acta Paediatr* 1999;**88** (Suppl 432):65–8.

Muenzer J, Frazier DM, McCandless SE. Incidence and follow-up evaluation of metabolic disorders detected by newborn screening in North Carolina using tandem mass spectrometry. In Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001; **50** (RR-3):28–9.

Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. *J Child Neurol* 1999;**14** (Suppl 1):S4–8.

Njolstad PR, Skjeldal OH, Agsteribbe E, Huckriede A, Wannag E, Sovik O, *et al*. Medium chain acyl-CoA dehydrogenase deficiency and fatal valproate toxicity. *Pediatr Neurol* 1997;**16**:160–2.

Pang CP, Law LK, Mak YT, Shek CC, Cheung KL, Mak TW, *et al.* Biochemical investigation of young hospitalized Chinese children: results over a 7-year period. *Am J Med Genet* 1997;**72**:417–21.

Patel JS, Leonard JV. Ketonuria and medium-chain acyl-CoA dehydrogenase deficiency. *J Inherit Metab Dis* 1995;**18**:98–9.

Rashed MS, Ozand PT, Bucknall MP, Little D. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. *Pediatr Res* 1995;**38**:324–31.

Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. *Semin Perinatol* 1999;**23**:183–93.

Romppanen EL. Oligonucleotide ligation assay: applications to molecular diagnosis of inherited disorders. *Scand J Clin Lab Invest* 2001;**61**:123–9.

Romppanen EL, Mononen T, Mononen I. Molecular diagnosis of medium-chain acyl-CoA dehydrogenase deficiency by oligonucleotide ligation assay. *Clin Chem* 1998;**44**:68–71.

Roscher A, Liebl B, Fingerhut R, Olgemoller B. Prospective study of MS-MS newborn screening in Bavaria, Germany. Interim results. *J Inherit Metab Dis* 2000;**23** (Suppl. 1):4.

Sander S, Janzen N, Janetzky B, Scholl S, Steuerwald U, Schafer J, *et al.* Neonatal screening for medium chain acyl-CoA deficiency: high incidence in Lower Saxony (northern Germany). *Eur J Pediatr* 2001;**160**:318–9.

Saudubray JM, Martin D, de Lonlay P, Touati G, Poggi-Travert F, Bonnet D, *et al.* Recognition and management of fatty acid oxidation defects: a series of 107 patients. *J Inherit Metab Dis* 1999;**22**:488–502. Seddon HR, Gray G, Pollitt RJ, Iitia A, Green A. Population screening for the common G985 mutation causing medium-chain acyl-CoA dehydrogenase deficiency with Eu-labeled oligonucleotides and the DELFIA system. *Clin Chem* 1997;**43**:436–42.

Szalai C, Czinner A, Revai K. The frequency of mediumchain acyl-CoA dehydrogenase G985 mutation in the Hungarian population. *Eur J Pediatr* 1996;**155**:256.

Tanaka K, Gregersen N, Ribes A, Kim J, Kolvraa S, Winter V, *et al.* A survey of the newborn populations in Belgium, Germany, Poland, Czech Republic, Hungary, Bulgaria, Spain, Turkey, and Japan for the G985 variant allele with haplotype analysis at the medium chain Acyl-CoA dehydrogenase gene locus: clinical and evolutionary consideration. *Pediatr Res* 1997;**41**:201–9.

Tanner S, Sharrard M, Cleary M, Walter J, Wraith E, Lee P, *et al.* Screening for medium chain acyl-CoA dehydrogenase deficiency has still not been evaluated. *BMJ* 2001;**322**:112.

Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, *et al.* A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism. *J Public Health Med* 1998;**20**:331–43.

Thorpe C, Kim JJ. Structure and mechanism of action of the acyl-CoA dehydrogenases. *FASEB J* 1995; **9**:718–25.

Wang SS, Fernhoff PM, Hannon WH, Khoury MJ. Medium chain acyl-CoA dehydrogenase deficiency human genome epidemiology review. *Genet Med* 1999; 1:332–9.

Wasant P, Matsumoto I, Liammongkolkul S. Detection of inborn errors of metabolism in Thai infants via gas chromatography and mass spectrometry. *Southeast Asian J Trop Med Pub Health* 1999;**30** (Suppl 2):160–5.

Wilcken B, Wiley V. Tandem mass spectrometry in the New South Wales newborn screening program. In Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001;**50** (RR-3):33.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatr* 1999;**88** (Suppl 432):48–51.

Wilson CJ, Champion MP, Collins JE, Clayton PT, Leonard JV. Outcome of medium chain acyl-CoA dehydrogenase deficiency after diagnosis. *Arch Dis Child* 1999;**80**:459–62.

Ziadeh R, Hoffman EP, Finegold DN, Hoop RC, Brackett JC, Strauss AW, *et al.* Medium chain acyl-CoA dehydrogenase deficiency in Pennsylvania: neonatal screening shows high incidence and unexpected mutation frequencies. *Pediatr Res* 1995;**37**:675–8.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

UK studies of birth incidence: medium-chain acyl-coenzyme A dehydrogenase deficiency

Authors,	Study design	Patient type	Outcomes	Results (cumulative incidence, prevalence, morbidity/mortality	Comments
year	Duration of	Age at sampling	Diagnostic test	data, etc.)	
	study Country	(year) Gender (M/F)	Threshold for disease identification		
	Total screened	Ethnicity	Confirmation of disease		
Pollitt and Leonard, 1998 ⁶⁵	Total screened Study design Prospective surveillance study Duration of study March 1994 to March 1996 Country British Paediatric Surveillance Unit, UK Total screened NR	Ethnicity Patient type NR Age at sampling NR Gender (M/F) NR Ethnicity NR	Confirmation of disease Diagnosis and outcome of MCAD deficiency in the UK Diagnostic test NR Threshold for disease identification NR Confirmation of disease NR; however, British Paediatric Surveillance Unit sent out orange cards on a monthly basis to all consultant paediatricians in the UK and the Republic of Ireland, accompanied by short case definitions of the disorders under surveillance (average return rate 94.4% in 1995). All notifications followed up by questionnaire requesting patient details, presentation, family history and diagnostic criteria. Supplemented by information from UK	 103 initial notifications were received through the Surveillance Unit. Follow-up led to the identification of 55 patients. Many of the discrepancies between the number of returns and the number of patients were due to multiple reporting, illustrating the tendency for MCAD deficiency patients to be referred to specialist centres either before or after diagnosis. The laboratories identified an additional 7 cases Incidence Of the 62 affected individuals with MCAD deficiency, 57 were from England, giving an incidence of 4.5 cases per 100,000 births. Similar figures were found in Scotland, with 4.0 cases per 100,000 births (5 patients with MCAD deficiency were from Scotland). No reports were received from Wales, Northern Ireland or the Irish Republic Diagnosis and outcome In the 46 cases who presented with acute illness, 39 were diagnosed after a single episode, all but 4 within 30 days. Six patients were diagnosed after a second acute episode, between 39 and 369 days after the initial illness, and 1 patient was diagnosed after a third acute episode at the age of 12 years 11% had more than one episode before diagnosis and more than 50% of patients who presented with an acute episode were diagnosed within 30 days. 10 of the 62 cases died during the initial attack. Three of the 36 patients surviving one or more attacks showed signs of neurological damage in the immediate postrecovery period and 3 others had developmental delay or learning difficulties. However, a longer follow-up period would be necessary to reveal the milder neurodevelopmental deficits 	Authors reported the following limitations of the study: (1) study based on diagnosed cases only, estimating minimum incidence but giving no firm data on the proportion of cases who remain undiagnosed or asymptomatic; (2) short follow-up probably led to an underestimate of long- term sequelae; (3) some data were incomplete and there may be systematic underreporting of symptoms in the newborn period
			laboratories that were likely to have diagnosed and confirmed MCAD deficiency	Diagnosed patients ($n = 62$) came from 54 families. These families contained another 6 confirmed cases of MCAD deficiency diagnosed before the study, and 5 other children had died in infancy, all of whom probably had MCAD deficiency	

Author, year	Study design Duration of study Country Total screened	Patient type Age at sampling (year) Gender (M/F) Ethnicity	Outcomes Diagnostic test Threshold for disease identification Confirmation of disease	Results (cumulative incidence, prevalence, mo data, etc.)	rbidity/mortality	Comments
				Clinical presentation All, but 2 of the clinically affected cases presented of symptoms of MCAD deficiency. The age at the first from 2 days to 4.39 years, with a median at 1.1 year episodes were significantly underreported because systematic review of neonatal records Reasons for diagnostic investigation for MCAE	with typical cepisode ranged urs. Neonatal there was no D deficiency	Authors concluded that the frequency of MCAD deficiency in Scotland and England is high enough to justify the inclusion of the UK neonatal screening programme. Mortality from MCAD
				Indication	Patient numbers	deficiency remains
				Previous family history Siblings known to have MCAD deficiency Sibling suspected to have died of MCAD deficience Siblings of newly diagnosed case Presentation with an acute illness Survived Diagnosed post-mortem Others ^d Total ^a Including I prenatal diagnosis. ^b One with a previously diagnosed sibling, but wron unaffected. ^c One neonatal death with a previously diagnosed s ^d One case identified at 2 years of age; I reclassifier glutaric aciduria type 2 made some years previous because of an apparently unrelated congenital abr	6 ^a 1 6 36 ^b 10 ^c 3 62 mgly believed to be ibling. d from a diagnosis of sly; 1 investigated normality.	unchanged and morbidity is still considerable. Although a few are diagnosed in the neonatal period, most patients have their first detected attack after the age of 3 months and would benefit from early diagnosis. Although there is some degree of underdiagnosis in the UK, the authors found that a greater number of MCAD- deficient patients were being identified and
				Outcome Pa	tient numbers (%)	geographical variation in MCAD deficiency in
				Asymptomatic Full recovery from attack	15 (24) 30 (48)	the British Isles
				Арро	e ndix 29 cont'd UK	studies of birth incidence

Author,	Study design	Patient type	Outcomes	Results (cumulative incidence, prevalence, mo	Comments			
year	Duration of Age at sampling		Diagnostic test	data, etc.)				
	study	(year)	Threshold for					
	Country	Gender (M/F)						
	Total screened	Ethnicity	Confirmation of disease					
				Neurological impairment/developmental delay Death No information Total Other DNA analysis for the common G985A \rightarrow G mutatic performed in 45 families. In 36, the affected childre for G985A \rightarrow G mutation, whereas 9 were heteroz of mutant alleles were G985 and the gender ratio in was 1.0	6 (10) 10 (16) 1 (2) 62 (100) on had been en were homozygous zygous. Thus, 90% n confirmed cases			
Data extract see Appendi	ion/evidence tables o x 8.	of other UK studies ha	we been included and reporte	d in other sections: Hutchesson <i>et al</i> . (1998) ³⁰ , see A	vppendix 11; Pourfarza	am et al. (2001) ²¹ ,		

Reference list of excluded studies: defects of long-chain fatty acid catabolism

al Aqeel AI, Rashed MS, Wanders RJ. Carnitineacylcarnitine translocase deficiency is a treatable disease. *J Inheri Metab Dis* 1999;**22**:271–5.

Andresen BS, Olpin S, Poorthuis BJ, Scholte HR, Vianey-Saban C, Wanders R, *et al.* Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. *Am J Human Genet* 1999;**64**:479–94.

Brown-Harrison MC, Nada MA, Sprecher H, Vianey-Saban C, Farquhar J Jr, Gilladoga AC, *et al.* Very long chain acyl-CoA dehydrogenase deficiency: successful treatment of acute cardiomyopathy. *Biochem Mol Med* 1996;**58**:59–65.

Carpenter KH, Wilcken B. Neonatal diagnosis of longchain 3-hydroxyacyl-CoA dehydrogenase deficiency and implications for newborn screening by tandem mass spectrometry. *J Inherit Metab Dis* 1999;**22**:840–1.

Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. *Clin Chem* 2001;**47**:1166–82.

Costa CG, de Almeida IT, Jakobs C, Duran M, Poll-The BT. Medium-chain triglyceride loading has no diagnostic power in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. *J Inherit Metab Dis* 1996; **19**:376–7.

Costa CG, Struys EA, Bootsma A, Ten Brink HJ, Dorland L, Tavares dAI, *et al.* Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. *J Lipid Res* 1997;**38**:173–82.

den Boer ME, IJlst L, Wijburg FA, Oostheim W, van Werkhoven MA, van Pampus MG, *et al.* Heterozygosity for the common LCHAD mutation (1528g>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. *Pediatr Res* 2000;**48**:151–4.

Divry P, Vianey-Saban C, Mathieu M. Determination of total fatty acids in plasma: cis-5-tetradecenoic acid (C14:1 omega-9) in the diagnosis of long-chain fatty acid oxidation defects. *J Inherit Metab Dis* 1999; **22**:286–8.

Gillingham M, Van Calcar S, Ney D, Wolff J, Harding C. Dietary management of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). A case report and survey. *J Inherit Metab Dis* 1999;**22**:123–31.

He G, Yang BZ, Roe DS, Teramoto R, Aleck K, Grebe TA, *et al.* Identification of two novel mutations in the hypoglycemic phenotype of very long chain acyl-CoA dehydrogenase deficiency. *Biochem Biophys Res Commun* 1999;**264**:483–7.

Ijlst L, Uskikubo S, Kamijo T, Hashimoto T, Ruiter JP, de Klerk JB, *et al.* Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: high frequency of the G1528C mutation with no apparent correlation with the clinical phenotype. *J Inherit Metab Dis* 1995;**18**:241–4.

Matern D, Strauss AW, Hillman SL, Mayatepek E, Millington DS, Trefz FK. Diagnosis of mitochondrial trifunctional protein deficiency in a blood spot from the newborn screening card by tandem mass spectrometry and DNA analysis. *Pediatr Res* 1999;**46**:45–9.

Mathur A, Sims HF, Gopalakrishnan D, Gibson B, Rinaldo P, Vockley J, *et al.* Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. *Circulation* 1999;**99**:1337–43.

Muenzer J, Frazier DM, McCandless SE. Incidence and follow-up evaluation of metabolic disorders detected by newborn screening in North Carolina using tandem mass spectrometry. In: Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. *MMWR Morb Mortal Wkly Rep* 2001; **50**(RR-3):28–9.

Pande SV. Carnitine-acylcarnitine translocase deficiency. *Am J Med Sci* 1999;**318**:22–7.

Pollitt RJ. Disorders of mitochondrial long-chain fatty acid oxidation. *J Inherit Metab Dis* 1995;**18**:473–90.

Saudubray JM, Martin D, de Lonlay P, Touati G, Poggi-Travert F, Bonnet D, *et al.* Recognition and management of fatty acid oxidation defects: a series of 107 patients. *J Inherit Metab Dis* 1999;**22**:488–502.

Souri M, Aoyama T, Orii K, Yamaguchi S, Hashimoto T. Mutation analysis of very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency: identification and characterization of mutant VLCAD cDNAs from four patients. *Am J Hum Genet* 1996;**58**:97–106.

Spiekerkotter U, Schwahn B, Korall H, Trefz FK, Andresen BS, Wendel U. Very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency: monitoring of treatment by carnitine/acylcarnitine analysis in blood spots. *Acta Paediatr* 2000;**89**:492–5.

25 I

Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, *et al*. A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism. *J Public Health Med* 1998;**20**:331–43.

Tyni T, Palotie A, Viinikka L, Valanne L, Salo MK, Von Dobeln U, *et al.* Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency with the G1528C mutation: clinical presentation of thirteen patients. *J Pediatr* 1997; **130**:67–6.

Van Hove JL, Kahler SG, Feezor MD, Ramakrishna JP, Hart P, Treem WR, *et al.* Acylcarnitines in plasma and blood spots of patients with long-chain 3-hydroxyacylcoenzyme A dehydrogenase deficiency. *J Inherit Metab Dis* 2000;**23**:571–82.

Vianey-Saban C, Divry P, Brivet M, Nada M, Zabot MT, Mathieu M, *et al.* Mitochondrial very-long-chain acylcoenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. *Clin Chim Acta* 1998;**269**:43–62.

Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH. Rapid diagnosis of organic acidemias and fatty-acid oxidation defects by quantitative electrospray tandem-MS acyl-carnitine analysis in plasma. *Ad Exp Biol* 1999;**466**:327–37. Wasant P, Naylor EW, Liammongkolkul S. Detection of inherited metabolic disorders via tandem mass spectrometry in Thai infants. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):154–9.

Wasant P, Matsumoto I, Liammongkolkul S. Detection of inborn errors of metabolism in Thai infants via gas chromatography and mass spectrometry. *Southeast Asian J Trop Med Public Health* 1999;**30** (Suppl 2):160–5.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatr* 1999; **88** (Suppl 432):48–51.

Wood JC, Magera MJ, Rinaldo P, Seashore MR, Strauss AW, Friedman A. Diagnosis of very long chain acyldehydrogenase deficiency from an infant's newborn screening card. *Pediatrics* 2001;**108**:E19.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, *et al.* Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. *Clin Chem* 2001;**47**:1945–55.

Reference list of excluded studies: glutaryl-coenzyme A dehydrogenase deficiency

Awaad Y, Shamato H, Chugani H. Hemidystonia improved by baclofen and PET scan findings in a patient with glutaric aciduria type I. *J Child Neurol* 1996;**11**:167–9.

Baric I, Zschocke J, Christensen E, Duran M, Goodman SI, Leonard JV, *et al.* Diagnosis and management of glutaric aciduria type I. *J Inherit Metab Dis* 1998; **21**:326–40.

Baric I, Wagner L, Feyh P, Liesert M, Buckel W, Hoffmann GF. Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. *J Inherit Metab Dis* 1999;**22**:867–81.

Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. *Clin Chem* 2001; **47**:1166–82.

Drigo P, Piovan S, Battistella PA, Della PA, Burlina AB. Macrocephaly, subarachnoid fluid collection, and glutaric aciduria type I. *J Child Neurol* 1996; **11**:414–7.

Forstner R, Hoffmann GF, Gassner I, Heideman P, de Klerk JB, Lawrenz-Wolf B, *et al.* Glutaric aciduria type I: ultrasonographic demonstration of early signs. *Pediatr Radiol* 1999;**29**:138–43.

Hauser SE, Peters H. Glutaric aciduria type 1: an underdiagnosed cause of encephalopathy and dystoniadyskinesia syndrome in children. *J Paediatr Child Health* 1998;**34**:302–4.

Hoffmann GF, Zschocke J. Glutaric aciduria type I: from clinical, biochemical and molecular diversity to successful therapy. *J Inherit Metab Dis* 1999;**22**: 381–91.

Hoffmann GF, Bohles HJ, Burlina A, Duran M, Herwig J, Lehnert W, *et al.* Early signs and course of disease of glutaryl-CoA dehydrogenase deficiency. *J Inherit Metab Dis* 1995;**18**:173–6.

Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M, de Klerk JB, Lehnert W, *et al.* Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. *Neuropediatrics* 1996;**27**:115–23.

Kolker S, Ramaekers VT, Zschocke J, Hoffmann GF. Acute encephalopathy despite early therapy in a patient with homozygosity for E365K in the glutaryl-coenzyme A dehydrogenase gene. *J Pediatr* 2001;**138**:277–9.

Pang CP, Law LK, Mak YT, Shek CC, Cheung KL, Mak TW, *et al.* Biochemical investigation of young hospitalized Chinese children: results over a 7-year period. *Am J Med Genet* 1997;**72**:417–21.

Pfluger T, Weil S, Muntau A, Willemsen UF, Hahn K. Glutaric aciduria type I: a serious pitfall if diagnosed too late. *Eur Radiol* 1997;**7**:1264–6.

Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. *Sem Perinatol* 1999;**23**:183–93.

Smith WE, Millington DS, Koeberl DD, Lesser PS. Glutaric acidemia, type I, missed by newborn screening in an infant with dystonia following promethazine administration. *Pediatrics* 2001;**107**:1184–7.

Superti-Furga A, Hoffmann GF. Glutaric aciduria type 1 (glutaryl-CoA-dehydrogenase deficiency): advances and unanswered questions. Report from an international meeting. *Eur J Pediatr* 1997;**156**:821–8.

Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, *et al*. A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism. *J Pub Health Med* 1998;**20**:331–43.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatr* 1999;**88** (Suppl 432):48–51.

Zschocke J, Quak E, Guldberg P, Hoffmann GF. Mutation analysis in glutaric aciduria type I. *J Med Genet* 2000;**37**:177–81.

Appendix 32

Effectiveness of treatments for glutaryl-coenzyme A dehydrogenase deficiency: dietary management

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Bjugstad et al., 2000 ⁷¹	Study design Retrospective analysis of archival data from published research Randomisation method NA Duration of study NR Setting/location NR; however, authors from Denver, USA	Inclusion/exclusion criteria NR Power calculation NA Baseline comparability NA Intention-to-treat analysis NA	Type of intervention Dietary Dosage/outcomes Most patients were started on a protein (lysine/tryptophan)- restricted diet supplemented with carnitine and/or riboflavin after the onset of symptoms. Of the 103 patients, 15.5% had no treatment and 84.5% were treated. Treatment consisted of diet only (5.8%), carnitine or riboflavin supplement (32.0%) and carnitine and riboflavin supplement (46.6%) Outcome measures included age at symptom onset, motor deficits,	Mean age NR Gender (M/F) NR; however, no gender differences were found in patients with GAI Ethnicity NR	More than 50% of patients had an onset of symptoms before 8 months of age, and nearly all children in whom symptoms developed had the symptoms within the first 3 years of life. Only 8.7% of patients were reported as being asymptomatic, approximately 20% eventually improved to lead a normal life with normal or no residual consequences of GAI, and 21.6% of patients died A forward stepwise, multiple linear regression analysis showed that the age at symptom onset contributed significantly to the variability in motor deficits and overall clinical outcome. Patients with symptom onset between 6 and 9 months had a much higher probability of a poor outcome, disease progression and death. In patients with gradually progressive symptoms (no precipitating illness), later onset of symptoms predicted better clinical outcome ($r = 51$, $p > 0.0004$). For patients who had a precipitating illness such as respiratory infection, vomiting or diarrhoea, no correlation was seen between the age at symptom onset and clinical outcome ($r = 0.003$, $p = 0.98$) Postsymptomatic treatment had no significant effect on the severity of motor deficits or the overall clinical outcome. Authors reported that there was a lack of data to analyse the statistical benefit of treatment when it was given before symptoms occurred. Only 6 patients started treatment before any motor symptoms were present, and all 6 have had a relatively normal development	Authors concluded that the age of onset can significantly predict the severity of motor deficits and overall clinical outcome; therefore, it is important to identify patients with GAI as early as possible. Dietary treatment given after the onset of GAI symptoms was not associated with a better prognosis

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			cortical atrophy, basal ganglia atrophy, enlargement of cerebrospinal fluid spaces, changes in white matter, treatment (postsymptomatic treatment: only 6 patients with enough biographical information were found to have been treated for GAI before the onset of symptoms; no statistical analysis could be done to evaluate the benefits of presymptomatic treatment) and clinical outcome (changes in motor behaviour) Patient types Articles (<i>n</i> = 42) presenting 115 individuals with GAI were analysed. No			
				Append	ix 32 cont'd	Effectiveness of treatments for glutaryl-coenzyme A dehydrogenase deficiency

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments	
			patients were double counted, i.e. when one patient was a subject in 2 articles, the data were combined				
			Patient numbers 103 (initially 115 patients, but treatment data were available for only 103 subjects)				
			Loss to follow-up NR				
				Append	ix 32 cont'd	Effectiveness of treatments for glutaryl-coenzyme A dehydrogenase	deficiency

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
Monavari and Naughten, 2000 ⁶⁹	Study design Retrospective analysis of clinical data Randomisation method NA Duration of study NR Setting/location National Centre for Inherited Metabolic Disorders, The Children's Hospital, Dublin, Ireland	Inclusion/exclusion criteria NR Power calculation NA Baseline comparability NR Intention-to-treat analysis NA	Type of intervention Dietary Dosage/outcomes Management of disorder based on dietary management. Basic diet consisted of a synthetic protein drink (deficient in the amino acids lysine, hydroxylysine and tryptophan), natural protein restriction (ordinary food), but sufficient for growth, sufficient energy for growth, oral or intravenous supplementation with L-carnitine (100–200 mg/kg per day) and to avoid catabolic state. Total protein intake ranged from 1.5 to 3 g/kg body weight per day (range of natural protein,	Mean age NR Gender (M/F) NR Ethnicity NR	Symptomatic patients The age of presentation in 6 symptomatic patients ranged from 3 to 9 months, but the diagnosis was delayed (6–24 months) due to delay in organic acid results (1–16 months) or lack of awareness of the condition. All of the 6 late-diagnosed symptomatic patients suffered from dyskinetic cerebral palsy and 5 patients died Patients detected as result of family screening Six patients were diagnosed as a result of family screening, which was carried out because older siblings had been diagnosed previously. Four of the 6 patients were developing normally, 1 died and 1 had mild mental disability. The 5 remaining patients were aged between 3 and 9 years, and were diagnosed with the disorder between 1 and 6 weeks. In these presymptomatic patients, supplementation with L-carnitine and intensive dietary treatment with aggressive emergency management resulted in a favourable outcome. Overall, the data showed that early diagnosis and aggressive treatment lead to favourable outcomes with the prevention of major neurological sequelae	Authors concluded that dietary interventions were not effective in reversing the neurological damage in symptomatic patients; however, these interventions offer some hope to presymptomatic patients in that early intensive management can alter the natural history of GAI. The threat of disability or death remains, and emergency management needs to be initiated with illness at all ages
				Appendi	x 32 cont'd Effectiveness of treatments for glutaryl-coenzyme A	dehydrogenase deficiency

N	
6	
õ	

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			0.5–2 g/kg per day; synthetic protein, 0.5–2 g/kg per day; tryptophan, 5–21 mg/kg per day). Patients also received riboflavin; however, all were non-responsive			
			During periods of acute illness or subtle metabolic decompensation, patients reduced natural protein (even stopped it for a short period of 24–48 hours, then reintroduced it gradually as tolerated clinically and biochemically), continued synthetic protein, and			
			increased energy intake by 20–50% by using oral and intravenous glucose and lipids; and L-carnitine intake	Appendi	ix 32 cont'd	Effectiveness of treatments for glutaryl-coenzyme A dehydrogenase deficiency

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			was doubled to 200 mg/kg per day Patient types Patients were diagnosed with GAI at the Children's Hospital, Ireland. Six patients were diagnosed as a result of family screening and 6 were diagnosed late after symptomatic presentation. Diagnoses were based on abnormal organic acids in urine by capillary GC/MS and clinical suspicion. The disorder was confirmed by enzyme assay of glutaryl-CoA dehydrogenase activity in cultured skin fibroblasts			
				Append	ix 32 cont'd	Effectiveness of treatments for glutaryl-coenzyme A dehydrogenase deficiency

Authors, year	Study design Randomisation method Duration of study Setting/location	Inclusion/exclusion criteria Power calculation Baseline comparability Intention-to-treat analysis	Type of interventions Dosage/ outcomes Patients Type Numbers Loss to follow-up	Age (years) Gender (M/F) Ethnicity	Results	Comments
			Patient numbers 12 Loss to follow-up 6 (5 in symptomatic group and 1 in the group detected by screening)			

Reference list of excluded studies: multiple acyl-coenzyme A dehydrogenase deficiency

Pang CP, Law LK, Mak YT, Shek CC, Cheung KL, Mak TW, *et al.* Biochemical investigation of young hospitalized Chinese children: results over a 7-year period. *Am J Med Genet* 1997;**72**:417–21.

Thomason MJ, Lord J, Bain MD, Chalmers RA, Littlejohns P, Addison GM, *et al*. A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism. *J Pub Health Med* 1998;**20**:331–43. Wasant P, Matsumoto I, Liammongkolkul S. Detection of inborn errors of metabolism in Thai infants via gas chromatography and mass spectrometry. *Southeast Asian J Trop Med Pub Health* 1999;**30** Suppl 2:160–5.

Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. *Acta Paediatrica* 1999; **88** (Suppl 432):48–51.
Appendix 34

Base-case treatment strategies for inborn metabolic disorders

Condition	Cost of early treatment	Cost of treatment for additional lives saved
Tyrosinaemia type I	0.4 years of NTBC and total elemental diet	2 years (minus 0.4 years for early Tx) of NTBC and total elemental diet followed by liver transplant and 28 years of subsequent treatment
Homocystinuria (pyridoxine responsive)	5 years of low-protein diet plus supplements	60 years (minus 5 years for early Tx) of low-protein diet plus supplements
Homocystinuria (pyridoxine non-responsive)	2.5 years of total elemental diet	8 years (minus 5 years for early Tx) of low-protein diet plus supplements, followed by 32 years on general dietetic advice/co-factor treatment
MSUD	0.1 years of total elemental diet	40 years (minus 0. I years for early Tx) of total elemental diet
Urea cycle disorders (moderate)	0.5 years of low-protein diet plus supplements	40 years (minus 0.5 years for early Tx) of low-protein diet plus supplements
Urea cycle disorders (severe)	0.1 years of low-protein diet plus supplements	10 years (minus 0. I years for early Tx) of low-protein diet plus supplements
Methylmalonic acidaemia (neonatal)	0.1 years of low-protein diet plus supplements	30 years (minus I year for early Tx) of low-protein diet plus supplements
Propionic acidaemia (neonatal)	0.1 years of low-protein diet plus supplements	40 years (minus I year for early Tx) of low-protein diet plus supplements
lsovaleric acidaemia	0.5 years of general dietetic advice/co-factor treatment	50 years (minus 0.5 years for early Tx) of general dietetic advice/co-factor treatment
Branched-chain acyl-CoA metabolism	0.2 years of no diet/emergency regimen	5 years (minus 0.2 years for early Tx) of no diet/emergency regimen
MCAD deficiency	I year of no diet/emergency regimen	5 years (minus I year for early Tx) of no diet/emergency regimen
Long-chain defects	0.5 years of general dietetic advice/co-factor treatment	5 years (minus 0.5 years for early Tx) of general dietetic advice/co-factor treatment followed by 45 years of general dietetic advice/co-factor treatment at a reduced cost of \pounds 250
GAI	I year of general dietetic advice/co-factor treatment	Cost of treatment of additional lives saved: 50 years (minus I year for early Tx) of general dietetic advice/co-factor treatment
GAII	0.3 years of general dietetic advice/co-factor treatment	50 years (minus 0.3 years for early Tx) of general dietetic advice/co-factor treatment
Source: Pollitt et al. (1997). ¹ Tx, treatment.		

Appendix 35

Base-case assumptions for current cost of each treatment category

N	
5	
<u>~</u>	
ω.	

	Base values for model	Cost (£): 2001		
	Treatment categories	0–1 year	I-2 years	
1	Total elemental diet	2883	5481	
2	Low-protein diet + supplements	1536	2287	
3	No diet/emergency regimen	74	74	
4	General dietetic advice/co-factor treatment (e.g. riboflavin, pyridoxine, carmitine, biotin)	529	529	
(5) Tyrosinaemia: NTBC treatment and diet; liver transplantation by 2 years £13,454 in year 1, then £16,052 in year 2 until transpl (£52,750); then £5286 per year following transplant				
Sourc Figure	e: Pollitt et al. (1997). ¹ es are based on 1996 costs up-rated for inflation using Health Service Cost Index.			

Appendix 36

Base-case assumptions for treatment categories and average period between presymptomatic and symptomatic diagnosis

Condition	Treatment category	Additional treatment years
Amino acid disorders		
PKU	-	_
Tyrosinaemia type l	(5)	0.40
Homocystinuria (pyridoxine responsive)	4	5.00
Homocystinuria (pyridoxine non-responsive)	I	2.50
MSUD	I	0.10
Acylcarnitines		
Methylmalonic acidaemia	2	0.10
Propionic acidaemia	2	0.10
Isovaleric acidaemia	4	0.50
Branched-chain acyl-CoA metabolism	3	0.30
MCAD deficiency	3	1.00
Defect of long-chain fatty acid	4	0.50
GAI	4	1.00
GAII	4	1.00
Urea cycle disorders		
Lirea cycle disorders (moderate)	2	0.50
Lirea cycle disorders (model ale)	2	0.10
	-	5.10

Source: Pollitt et al. (1997).¹ Additional treatment period is the period between symptomatic and asymptomatic diagnosis. Where disorders only require treatment in the short term, the treatment period is assumed to be 5 years.

Cost-effectiveness searches

HEED

CD-ROM version Search undertaken November 2001

Search terms

neonat* AND screen* AND inborn error* AND spect*

Fields searched

- Abstract
- All data
- Article title

- Book title
- Keywords
- Technology assessed

NHS EED

CRD website – complete database Search undertaken November 2001

(neonat and screen) or (newborn and screen)/All fields AND (mass and spect) or (ms and spect) or (tandem and spect)/All fields

27

Economic evaluations and quality-of-life search filters used in Ovid MEDLINE

Economic evaluations

- 1 economics/
- 2 exp "costs and cost analysis"/
- 3 economic value of life/
- 4 exp economics, hospital/
- 5 exp economics, medical/
- 6 economics, nursing/
- 7 economics, pharmaceutical/
- 8 exp models, economic/
- 9 exp "fees and charges"/
- 10 exp budgets/
- 11 ec.fs
- 12 (cost or costs or costed or costly or costing\$).tw
- 13 (economic^{\$} or pharmacoeconomic^{\$} or price^{\$} or pricing).tw
- 14 or/1-13

Quality of life

- 1 exp quality of life/
- 2 quality of life.tw
- 3 life quality.tw
- 4 hql.tw
- 5 (sf 36 or sf36 or sf thirtysix or sf thirty six or short form 36 or short form thirty six or short form thirtysix or shortform 36).tw
- 6 qol.tw
- 7 (euroqol or eq5d or eq 5d).tw
- 8 qaly\$.tw
- 9 quality adjusted life year\$.tw
- 10 hye\$.tw
- 11 health\$ year\$ equivalent\$.tw
- 12 health utilit\$.tw
- 13 hui.tw
- 14 quality of wellbeing\$.tw
- 15 quality of well being.tw
- 16 qwb.tw
- 17 (qald\$ or qale\$ or qtime\$).tw

Model parameters and distribution assumptions for phenylketonuria screening

Parameters: PKU neonatal screening programme using existing technology and tandem MS			
Variable	Base value	Model distribution	Source
Incidence of PKU	9 per 100,000	Poisson distribution	Literature review and Lord et al., 1999 ⁹⁰
False-positive rate (existing technology)	0.050%	Triangular: (0.0%, 0.05%, 1.7%)	Pollitt et al., 1997 ¹
False-negative rate (existing technology)	0.020%	Fixed: insufficient data to calculate a range	Pollitt et al., 1997 ¹
False-positive rate (tandem MS)	0.029%	Triangular: (0.022%, 0.029%, 0.035%) Lower and upper bounds based on 95% Cls for PKU diagnostic study	Zytkovicz et al., 2001 ⁷
False-negative rate (tandem MS)	0.020%	Fixed. Assume same false-negative rates for both technologies	Literature review
Sample collection costs	Assumed identica	al for both technologies. These costs excluded from the comparison	
Laboratory cost per sample (existing technology)	£0.92 per sample	Normal: N(0.92, 0.12) Probabalistic estimate based on a simulation of the distribution of costs per sample by 3 types of existing technology used: Guthrie, fluorometry and chromatography. Weighted distribution of costs based on median values reported in Pollit et al., 1997 ¹	Pollitt <i>et al.</i> , 1997 ¹ Prices updated to 2001 for inflation using Health Services Cost Index See Table 11
Laboratory cost per sample (tandem MS)	£1.48 per sample	Normal: N(1.48, 0.1). Other probabilistic estimates based on different workload volumes for a single tandem MS system.	See Appendix 46 and Table 12
Repeat sampling rate (for inadequate sampling)	This refers to repeat sampling required due to poor-quality samples, etc., and is not due to additional sampling related to false positives and confirmation protocols. Assumed identical (1%) for both technologies		
Cost of obtaining a repeat specimen	£20.15	Log-normal distribution. Costs per home visit; based on two-third and one-third split between visits made by midwives and health visitors for repeat specimens; plus $\pounds1.15$ for consumables	Unit Costs of Health and Social Care: 2001 (Personal Social Services Research Unit ⁹³
Confirmation cost per positive case	£60	Log-normal distribution. Includes estimate of laboratory test costs, referral and advice	Current laboratory prices for tests performed
Treatment costs	With false negatives assumed equal, treatment costs should be the same; these costs excluded		
Future healthcare and social care costs	With false negatives assumed equal, future health and social care costs should be the same; excluded		
Mortality/morbidity	With false negatives assumed equal, health outcomes should be the same; excluded		

Model parameters and distribution assumptions for extension of phenylketonuria screening to include medium-chain acyl-coenzyme A dehydrogenase deficiency

Parameters: PKU neonatal screening using tandem MS with and without additional screening for MCAD deficiency				
Variable	Base value	Model distribution	Source	
Incidence of MCAD deficiency	8 per 100,000	Poisson distribution	Pollitt et al., 1997 ¹	
False-positive rate for MCAD deficiency screening	0.023%	Triangular: (0.0159%, 0.0230%, 0.0297%) Lower and upper bounds are 95% CIs for MCAD deficiency	Literature reviewed	
False negative rate (MCAD deficiency screening)	0.0001%	Normal: N(0.0001%, 0.00001%)	Assumption	
Mean age of symptomatic presentation/ diagnosis	I	Fixed	Pollitt et al., 1997 ¹	
Proportion of cases who remain asymptomatic	0.30	Uniform: U(0.25, 0.35)	Pollitt et al., 1997 ¹	
Incremental cost of tandem MS for PKU	£54,900	Normal: N(£54,900, £15,899) for range 50,000–60,000 Other estimates based on different workload volumes	Derived from phase i model See results in Table 13.	
Additional laboratory staffing costs for condition	£3500	Normal: N(3500, 350). Estimated cost for additional staff time (0.1 WTE, clinical scientist) for reporting and advice, etc. Fixed for volume ranges evaluated in model	Pollitt R: personal communication	
Laboratory consumables per sample for MCAD deficiency	£0.10 per sample	Normal: N(0.10, 0.01)	Incremental consumables cost, per sample, for MCAD deficiency screen	
Additional specimen collection costs for MCAD deficiency screening	£0.30 per sample	Log-normal distribution	Based on estimated additional time and materials (consultation with midwife)	
Repeat sampling rate (for inadequate sampling)	This refers to re positives and co	This refers to repeat sampling required due to poor-quality samples, etc., and is not due to additional sampling related to false positives and confirmation protocols. These costs were included in the phase i model and are not included again here		
Cost of obtaining a repeat sample	£20.15	Log-normal distribution. Costs per home visit; based on two-third and one-third split between visits made by midwives and health visitors for repeat specimens, plus £1.15 for consumables	Unit Costs of Health and Social Care: 2001 (Personal Social Services Research Unit) ⁹³	
Confirmation cost per positive case of MCAD deficiency	£130 (screened) £150 (unscreened)	Log-normal distributions	Pollitt et al., 1997 ¹ ; personal communication and current laboratory prices for tests	
Cost of a paediatric referral	£64	Log-normal distribution	Unit Costs of Health and Social Care: 2001) Personal Social Services Research Unit) ⁹³	
Acute 'presentation' episode cost	£1043	Log-normal: mean £1043 (range: £119–6712)	NHS Reference Costs, 2001 ⁹⁴	
Treatment cost: presymptomatic diagnosis Treatment cost: symptomatic diagnosis	£330 £256	Uniform: (330, 1320) Uniform: (256, 1024)	For base values, see Appendices 34–36	

continued

Parameters: PKU neonatal screening using tandem MS with and without additional screening for MCAD Deficiency			
Variable	Base value	Model distribution	Source
Proportion of screened cases who develop significant disability/impairments	0.00	Assumed zero. Evidence indicates no appreciable cognitive impairmen effectiveness of early treatment; see Wilson et al., (1999) ⁶³ and Clayto	ts or neurological damage due to n et <i>a</i> l., (1998) ²⁸
Proportion of symptomatic cases who develop significant disability/impairments	0.12	Uniform: U(0.10, 0.15). Note that these proportions only apply to symptomatic cases (i.e. incident cases minus the expected numbers who would remain asymptomatic in the absence of screening)	lafolla et <i>al.</i> , 1994 ⁶⁰ ; Pollitt et <i>al.</i> , 1997 ¹ ; Tanner et <i>al.</i> , 2001 ⁹²
Future healthcare and social care costs for moderate to severe disabilities and impairments	£88,000	Uniform: (£88,000, £290,000)	Based on Beecham et al., 2001, ⁹⁵ and Lord et al., 1999 ⁹⁰ . See text
Life expectancy (with significant disability)	55 years	Triangular: (35, 55, 65)	Literature reviewed. See text
Life expectancy (for asymptomatic and those without significant disability)	75 years	Uniform: (75, 80). Figures taken from GAD Life Tables for 2001; 75 for males and 80 for females	Assumed normal life expectancy for those detected and treated before significant impairments develop, or for those who remain asymptomatic
Mortality proportion in screened cases	0.00	Assumed zero. Evidence indicates no subsequent deaths of diagnosed effectiveness of early treatment; see Andresen et al. (2001) ²³ , Carpent and Clayton et al (1998) ²⁸	cases in recent years based on er et al. (2001) ²⁰ , Wilson et al. (1999) ⁶³
Mortality proportion in unscreened cases	0.20	Uniform: U(0.15, 0.25)	Pollitt et al., 1997 ¹ and literature reviewed
Discount rates All future costs dis	counted at 6%; be	enefits (life-years gained) at 1.5%	
GAD: Government Actuaries Department.			

Appendix 41

Model parameters and distribution assumptions for glutaric aciduria type I

Parameters: GAI			
Variable	Base value	Model distribution	Source
Incidence of GAI	2 per 100,000	Poisson distribution	Pollitt et al., 1997 ¹
False-positive rate	0.023%	Triangular: (0.0159%, 0.023%, 0.0297%) Lower and upper bounds based on 95% Cls	Literature reviewed
False-negative rate	0.000%	Fixed	Zytkovicz et al., 2001 ⁷
Mean age of symptomatic presentation/diagnosis	: I	Fixed	Pollitt et al., 1997 ¹
Proportion of cases who remain asymptomatic	0.20	Uniform: U(0.15, 0.25)	Pollitt et al., 1997 ¹
Incremental cost of using tandem MS for PKU and MCAD deficiency screening	-£23,060	Triangular: (–142,498, –23060, 62,350). Based on 5th, 50th and 95th percentiles	Derived from PKU + MCAD deficiency model
Additional laboratory staffing costs	0	Assumed that for small number of additional cases detected, 'advice and referral' input from laboratory staff can be accommodated within additional staffing provided for MCAD deficiency (see Appendix 40)	
Additional laboratory costs per sample	£0.10 per sample	Normal: N(0.10, 0.01)	Incremental consumables cost, per sample, for GAI screen
Repeat sampling rate (for inadequate sampling)	This refers to rep positives and con	This refers to repeat sampling required due to poor-quality samples, etc., and is not due to additional sampling related to false positives and confirmation protocols. These costs were included in the phase i model and are not included again here	
Cost of obtaining a repeat sample	£20.15	Log-normal distribution. Costs per home visit; based on two-third and one-third split between visits made by midwives and health visitors for repeat specimens, plus £1.15 for consumables	Unit Costs of Health and Social Care: 2001 (Personal Social Services Research Unit) ⁹³
Confirmation cost per positive case (<i>nb</i> . advice and referral included elsewhere)	£130 (screened) £150 (unscreened)	Log-normal distributions.	Personal communication and laboratory prices for tests performed
Cost of a paediatric referral	£64	Log-normal distribution	Unit Costs of Health and Social Care: 2001 (Personal Social Services Research Unit) ⁹³
Acute 'presentation' episode cost	£1043	Log-normal: mean £1043 (range £119–6712)	NHS Reference Costs, 2001 ⁹⁴
Treatment cost: presymptomatic diagnosis Treatment cost: symptomatic diagnosis	£8831 £8302	Uniform: U(8831, 17,662), and U(8302, 16,604) Represents future treatment costs based on defined strategy for GAI.	Discounted at 6%
Proportion of screened cases (who survive) with significant disability/impairments	0.20	Normal: N(0.20, 0.01)	Monavari and Naughten, 2000 ⁶⁹
Proportion of symptomatic unscreened cases (who survive) with significant disability/ impairments	0.90	Uniform: U(0.90, 1.0)	Hoffman and Zschocke, 1999 ⁶⁸ ; Monavari and Naughten, 2000 ⁶⁹

continued

Parameters: GAI			
Variable	Base value	Model distribution	Source
Future healthcare and social care costs	£83,000	Uniform: U(£88,000, £290,000)	Based on Beecham <i>et al.</i> , 2001 ⁹⁵ and Lord <i>et al.</i> , 1999. ⁹⁰ See MCAD deficiency model.
Life expectancy (those with significant disability)	55 years	Triangular: (35, 55, 65)	Assumption same as for MCAD deficiency model
Life expectancy (survivors without significant disability)	65 years	Normal: N(65, 3.25)	Assume near normal life expectancy
Mortality proportion in screened cases	0.16	Normal: N(0.16, 0.08)	Monavari and Naughten, 2000 ⁶⁹
Mortality proportion in symptomatic unscreened cases	0.83	Uniform: U(0.60, 0.83)	Pollitt et al., 1997 ¹ , Monavari and Naughten, 2000 ⁶⁹
Discount rates	All future costs d	iscounted at 6%; benefits (life-years gained) at 1.5%	

Model parameters and distribution assumptions for homocystinuria (cystathionine β -synthase deficiency)

Parameters: homocystinuria

Variable	Base value	Model distribution	Source
Incidence of homocystinuria	1.5 per 100,000	Poisson distribution	Pollitt et al., 1997 ¹
False-positive rate	0.0272%	Triangular: (0.0209%, 0.0272%, 0.0336%) Lower and upper bounds based on 95% Cls	Zytkovicz et al., 2001 ⁷
False-negative rate	0.000%	Fixed	Assumption
Mean age of symptomatic presentation/ diagnosis	3.75	Poisson	Pollitt et al., 1997 ¹
Proportion of cases who remain asymptomatic	0.0		Pollitt et al., 1997 ¹
Incremental cost of using tandem MS for PKU and MCADD screening	-£23,060	Triangular: (–142,498, –23,060, 62,350). Based on 5th, 50th and 95th percentiles	Derived from PKU + MCAD deficiency model
Additional laboratory staffing costs	0	Assumed that for small number of additional cases detected, 'advice a be accommodated within additional staffing provided for MCAD defic	nd referral' input from laboratory staff can iency (see Appendix 40)
Additional laboratory costs per sample	£0.10 per sample	Normal: N(0.10, 0.01)	Incremental consumables cost, per sample, for homocystinuria screen
Repeat sampling rate (for inadequate sampling)	This refers to reppositives and cor	epeat sampling required due to poor-quality samples, etc., and is not due to additional sampling related to false onfirmation protocols. These costs were included in the phase i model and are not included again here	
Cost of obtaining a repeat sample	£20.15	Log-normal distribution. Costs per home visit; based on two-third and one-third split between visits made by midwives and health visitors for repeat specimens; plus £1.15 for consumables	Unit Costs of Health and Social Care: 2001 (Personal Social Services Research Unit) ⁹³
Confirmation cost per positive case (NB. advice and referral included elsewhere)	£160 (screened) £160 (unscreened)	Log-normal distributions	Personal communication and laboratory prices for tests performed
Cost of a paediatric referral	£64	Log-normal distribution	Unit Costs of Health and Social Care: 2001 (Personal Social Services Research Unit) ⁹³
Acute 'presentation' episode cost	£1043	Log-normal: mean £1043 (range £119–6712)	NHS Reference Costs, 2001 ⁹⁴
Treatment cost: presymptomatic diagnosis Treatment cost: symptomatic diagnosis	£30507 £20531	Uniform: U(30,507, 61,014); U(20,531, 41,062) Represents future treatment costs based on defined strategy for hom-	ocystinuria. Discounted at 6%
Proportion of screened cases (who survive) with significant disability/impairments	0.16	Normal: N(0.16, 0.16)	Yap and Naughten, 1998 ⁴⁸
Proportion of symptomatic unscreened cases (who survive) with significant disability/ impairments	0.60	Normal: U(0.60, 1.0)	Estimate from Mudd, Levy and Kraus, in Scriver et <i>al.</i> , 2001 ⁴⁵

continued

Parameters: homocystinuria			
Variable	Base value	Model distribution	Source
Future healthcare and social care costs	£83,000	Uniform: U(£88,000, £290,000)	Based on Beecham et al, 2001, ⁹⁵ and Lord et al., 1999 ⁹⁰ . See MCAD deficiency model
Life expectancy (those with significant disability)	55 years	Triangular: (35, 55, 65)	Assumption same as for MCAD deficiency model
Life expectancy (survivors without significant disability)	65 years	Normal: N(65, 3.25)	Assume near normal life expectancy
Mortality proportion in screened cases	0.0		Assumption
Mortality proportion in symptomatic unscreened cases	0.225	Normal: U(0.225, 0.0225)	Wilcken and Wilcken, 1997 ⁴⁷
Mean age at death for mortality events in symptomatic unscreened cases	13 years	Normal: N(13, 2.6)	Wilcken and Wilcken, 1997 ⁴⁷
Discount rates	All future costs o	liscounted at 6%; benefits (life-years gained) at 1.5%	

Appendix 43

Base-case assumptions for incidence and proportion of cases affected for other inborn metabolic conditions

Condition	Incidence rate (per 100,000)	Proportion of cases affected
Amino acid disorders		
Tyrosinaemia type l	I	100%
MSUD	0.5	> 99%
Acylcarnitines		
Methylmalonic acidaemia	1.5	100%
Propionic acidaemia	0.8	100%
Isovaleric acidaemia	0.7	100%
Branched-chain acyl-CoA metabolism	1.0	80%
Defects of long-chain fatty acids	3	> 95%
GAII	2	> 95%
Urea cycle disorders		
Urea cycle disorders	2.5	> 95%
Source: Pollitt et al. (1997). ¹		

Appendix 44

Base-case assumptions for mortality avoided and life expectancy for other inborn metabolic conditions

Condition	Mortality rate (%) in symptomatic cases	Life expectancy of presymptomatic and symptomatic survivors		
		Minimum	Most probable	Maximum
Amino acid disorders				
Tyrosinaemia type I	15	20	30	40
MSUD	20	30	40	50
Acylcarnitines				
Methylmalonic acidaemia	25	20	30	40
Propionic acidaemia	25	30	40	50
Isovaleric acidaemia	20	40	50	60
Branched-chain acyl-CoA metabolism	25	40	50	60
Defects of long-chain fatty acids	50	40	50	60
GAII	20	40	50	60
Urea cycle disorders				
Urea cycle disorders	35	10	25	40
Source: Pollitt et al. (1997). ¹				

Model construction and formulae

TABLE 18 Model for PKU screening using tandem MS

Α	В	С	E	D
Inputs	Option T ₀	Existing PKU technologies	Option T ₁	Tandem MS
Parameters	Base values		Base values	
Cohort	100,000		100,000	= B3
Frequency	9.00		9.00	= B4
False-positive rate	0.050%		0.107%	
False-negative rate	0.00%		0.00%	
No. false positives	50	= B5*B3	17	= E5*E3
No. false negatives	0.000	= B6*B3	0.000	= E6*E3
No. detected presymptomatically	9.00	= B4 – B8	9.00	= E4 – E8
Repeat sampling for technical failure	1.00%		1.00%	= B10
Cost per new specimen	20.15		20.15	= BII
Cost per resample	21.07	= BII + BI5	21.68	=EII + EI5
Number of resamples required	1,050.00	= (B3*B10) + B7	1,017.00	= (E3*E10) + E7
Resampling total cost	22,123.50	= BI3*BI2	22,048.56	= EI3*EI2
Laboratory costs per screening per sample	0.920	 sample values from probabilistic distribution 	1.53	 sample values from probabilistic distribution
Laboratory costs for cohort	114,123.50	= (B15*B3) + B14	175,048.56	= (E15*E3) + E14
Confirmation cost per initial positive case (average)	0.00	[Included in sample cost estimates]	60.00	['Advice and referral' for MS/MS option included in sample cost estimates]
Confirmation costs for cohort	0.00	[Included in sample cost estimates]	1,560.00	= (E7 + E9)*E17
Total cost (discounted)	£114,123.50	= B18 + B16	£176,608.56	= EI8 + EI6
Incremental cost	£62,485	= E19 - B19		

TABLE 19 Model for (PKU+) MCAD screening using tandem MS

Α	В	c	E	D
Inputs	Option T ₀	Screening	Option T ₁	No screening
Cohort	100,000		100,000	= B3
Frequency	8		8	= B4
False-positive rate	0.0230%		0	
False-negative rate	0.0000%		0	
No. false positives	23	= B5*B3	0	
No. false negatives	0	= B6*B3	0	
Age at presymptomatic screen (years)	0		0	= B9
Detected presymptomatically	8	= B4*(I - B6)	0	
Average age at symptomatic presentation (years)	I		I	= BII
Proportion that remain asymptomatic	30.00%		30.00%	= B12
Number detected symptomatically	0	$= (B4 - B10)^{*}(1 - B12)$	5.60	$= (E4 - E10)^{*}(1 - E12)$
Additional screening cost using MS/MS for PKU	57,363	= mean and distribution obtained from PKU model	0	
Additional laboratory costs for disorder screening	0.1		0	
Additional cost for an initial blood sample	0.3		0	
Additional laboratory and sample collection costs	40.000	= (B 6*B3) + (B 5*B3)	0	
Confirmation cost per initial positive case (average)	130		150	
Additional 'advice and referral' for all positive cases	3,500		0	
Confirmation costs for cohort	9.090	= ((B7 + B 0)*B 8) + (B 0* .5**B 8) + B 9	1.260	= (((E7 + E13))*E18)*1.5) + E19
Cost of acute episode (average) for 'symptomatic	1,043		1,043.00	= B21
No. of acute episodes	1.00		1.00	= B22
Acute care 'symptomatic presentation' costs	0	= B22*B21*B13	5.840.8	= E22*E21*E13
Costs of a paediatric referral for positive cases	64		64	= B24
Total costs of paediatric referral	512	= B24*B10	358.4	= E24*E13
Treatment costs per case (discounted)	330		256	
Treatment costs (discounted)	2,640	= B26*(BI0 - B36)	1,146.88	= E26*(E13 – E35)
Proportion of symptomatic cases with significant disability	12.00%		12.00%	= B28
Life expectancy of those with disabilities	55		55	= B29
Number of cases with significant disabilities	0	= B28*(BI3 - B35)	0.54	= E28*(E13 - E35)
Life-years of those with disabilities (discounted)	0	$= B30^{(-PV(1.5\%, B29, 1, 0))}$	20.04	= E30*(-PV(1.5%, E29, 1,0))
Future health and social care costs of disability per case (discounted)	88,000		88,000	= B32
Future health and social care costs of disability (discounted)	0	= B32*B30	47,308.8	= B32*E30
				continued

TABLE 19 Model for (PKU+) MCAD screening using tandem MS (cont'd)

Α	В	С	E	D
Inputs	Option T ₀	Screeing	Option T ₁	No screening
Mortality rate of symptomatic cases	20.00%		20.00%	= B34
Neonatal/early infant mortality (events)	0	= BI3*B34	1.12	= E34*E13
Life expectancy of survivors without disabilities	60.00		60.00	= B36
Discounted value of life expectancy gain (@ 1.5%)	39.38	= -PV(1.5%, B36, 1,,0)	39.38	= B37
Life-years of survivors without disabilities (discounted)	315.04	= B37*(B4 - 30 - B35)	249.77	= E37*(E4 – E30 – E35)
Total cost (discounted)	109,605.00	= B14 + B17 + B20 + B23 + B25 + B27 + B33	55,914.88	= E14 + E17 + E20 + E23 + E25 + E27 + E33
Total life-years gained (discounted)	315.04	= B38 + B31	269.80	= E38 + E31
Incremental cost	53,690	= B39 - E39		
Incremental benefit	45	= B40 – E40		

Appendix 46

Estimated costs for a single tandem mass spectrometry screening service

Using tandem MS in a laboratory for neonatal screening

Labour inputs	Grade	WTE	Annual cost
Preparation and loading of microtitre plates, etc.	MLSO grade I	1.00	£17,538
Reading and reporting results obtained	Clinical scientist	0.15	£ 5,175
			£22,713
Advice and referral	Clinical scientist	0.2	£6,900
Salary cost values	Salary	Plus on-cost (@15%)	
MLSO ^a grade I	£15,250	£17,548	
Clinical scientist	£30,000	£34,500	

^a In the UK, a Medical Laboratory Scientific Officer (MLSO) is a biomedical scientist working in heathcare laboratories performing tests on human samples.

Appendix 47

Estimated current costs of tandem mass spectrometry

	Distribution							
-	Base case	Minimum	Most probable	Maximum				
Initial capital outlay	£175,000	£165,000	£175,000	£180,000				
Asset life (years)	7	5	7	10				
Rate of interest or discount (%)	6	6	Fixed					
Scrap value at end of asset life (% capital outlay)	0		Fixed					
Annual equivalent cost	£31,349							
Other annual expenses:								
Facility overheads (for accommodation of tandem MS system)	£2,000		Normal					
Maintenance (per annum)	£14,000		Normal					
Internal standards (per annum)	£2,000		Normal					
Basic solvents (per sample)	£0.03		Uniform (0.0	3, 0.05)				
Microtitre plates (each)	£1.00		Normal					
Expected annual number of samples analysed for typical neonatal laboratory	50,000		Varied to refl	ected scale				
Capital and related consumables costs per sample	£1.03							
Labour								
Labour cost for preparation, analysis and reporting	£22,700		Normal					
Labour costs for 'advice and referral'	£7,000		Normal					
Total cost per sample	£1.61 Probabilistic estimate (10,000 iterations)							

Source: Information on instrument and consumable costs obtained from two suppliers of tandem MS technology in the UK. Labour cost estimates in consultation with the Neonatal Screening Laboratory, Sheffield Children's Hospital (see Appendix 45)

Feedback

The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.ncchta.org) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.

The National Coordinating Centre for Health Technology Assessment, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK. Fax: +44 (0) 23 8059 5639 Email: hta@soton.ac.uk http://www.ncchta.org