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Objectives: To develop methods for performing
expected value of perfect information (EVPI) analysis in
computationally expensive models and to report on the
developments on the health economics of interferon-β
and glatiramer acetate in the management of multiple
sclerosis (MS) using this methodological framework.
Data sources: Electronic databases and Internet
resources, reference lists of relevant articles.
Review methods: A methodological framework was
developed for undertaking EVPI analysis for complex
models. The framework identifies conditions whereby
EVPI may be calculated numerically, where the one-
level algorithm sufficiently approximates the two-level
algorithm, and whereby metamodelling techniques may
accurately approximate the original simulation model.
Metamodelling techniques, including linear regression,
neural networks and Gaussian processes (GP), were
systematically reviewed and critically appraised. Linear
regression metamodelling, GP metamodelling and the
one-level EVPI approximation were used to estimate
partial EVPIs using the ScHARR MS cost-effectiveness
model.
Results: The review of metamodelling approaches
suggested that in general the simpler techniques such as
linear regression may be easier to implement, as they
require little specialist expertise although may provide
only limited predictive accuracy. More complex
methods such as Gaussian process metamodelling and
neural networks tend to use less-restrictive assumptions
concerning the relationship between the model inputs
and net benefits, and therefore may permit greater
accuracy in estimating EVPIs. Assuming independent
treatment efficacy, the ‘per patient’ EVPI for all
uncertainty parameters within the ScHARR MS model is
£8855. This leads to a population EVPI of £86,208,936,
which represents the upper estimate for the overall
EVPI over 10 years. Assuming all treatment efficacies
are perfectly correlated, the overall per patient EVPI is

£4271. This leads to a population EVPI of £41,581,273,
which represents the lower estimate for the overall
EVPI over 10 years. The partial EVPI analysis,
undertaken using both the linear regression metamodel
and Gaussian process metamodel clearly, suggests 
that further research is indicated on the long-term
impact of these therapies on disease progression, the
proportion of patients dropping off therapy and the
relationship between the EDSS, quality of life and costs
of care.
Conclusions: The applied methodology points towards
using more sophisticated metamodelling approaches in
order to obtain greater accuracy in EVPI estimation.
Programming requirements, software availability and
statistical accuracy should be considered when
choosing between metamodelling techniques. Simpler,
more accessible techniques are open to greater
predictive error, whilst sophisticated methodologies
may enhance accuracy within non-linear models, but
are considerably more difficult to implement and may
require specialist expertise. These techniques have
been applied in only a limited number of cases hence
their suitability for use in EVPI analysis has not yet been
demonstrated. A number of areas requiring further
research have been highlighted. Further clinical
research is required concerning the relationship
between the EDSS, costs of care and health outcomes,
the rates at which patients drop off therapy and in
particular the impact of disease-modifying therapies on
the progression of MS. Further methodological
research is indicated concerning the inclusion of
epidemiological population parameters within the
sensitivity analysis; the development of criteria for
selecting a metamodelling approach; the application of
metamodelling techniques within health economic
models and in the specific application to EVI analyses;
and the use of metamodelling for EVSI and ENBS
analysis.
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Glossary
Architecture The way in which nodes are
organised within a neural network.

Basis function A function used to interpolate
between data points.

Bifurcation The splitting of a group of
factors into two subgroups of equal size.

Cumulative density function Denotes the
probability that a random variable (e.g. X) has
a value less than or equal to a particular value.

Design of experiments A structured,
organised method for determining the
relationship between factors affecting a process
and the output of that process.

Elasticity A measure of the change in the
value of an outcome to a change in the value of
an input parameter.

Fourier frequency The oscillation frequency
applied to each input parameter in a model.

Interpolation The estimation of a value
between two known values.

Metamodel A statistical approximation of a
simulation model.

Node A processing unit within a neural
network through which data are passed.

Response surface A function of explanatory
variables which represents the distribution of
the expected response.

Signal-to-noise ratio A performance criterion
used to determine the significance of a
parameter within a model. 

Spline A polynomial basis function, of 
which a piecewise series form a 
metamodel.

Training data Data used to build and
calibrate a neural network metamodel.

List of abbreviations
ABN Association of British Neurologists

AEC actual elasticity coefficient

AROS absolute relative overall sensitivity

CDF cumulative density function

CI confidence interval

CNS central nervous system

DMT disease-modifying therapy

DOE design of experiments

DSS disability status scale

EC elasticity coefficient

EDSS expanded disability status scale

ENB expected net benefit

ENBS expected net benefit of 
sampling

EVI expected value of information

EVPI expected value of perfect
information

EVSI expected value of sample
information

continued
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Glossary and list of abbreviations

Technical terms and abbreviations are used throughout this report. The meaning is usually clear from
the context, but a glossary is provided for the non-specialist reader. In some cases, usage differs in the

literature, but the term has a constant meaning throughout this review.



Glossary and list of abbreviations

List of abbreviations continued

FDM frequency domain methodology

GP Gaussian process

GSA generalised sensitivity analysis

HR-QoL health-related quality of life

IFN-� interferon-�

INB incremental net benefit

K–S Kolmogorov–Smirnov

LYG life years gained

MAICER maximum acceptable incremental
cost-effectiveness ratio

MARS multivariate adaptive regression
splines

MS multiple sclerosis

MSD maximum separation distance

NEST neural simulation tool

NT net benefits

NICE National Institute for Clinical
Excellence

PCC partial correlation coefficient

PCV partial contribution to variance

PPMS primary progressive multiple
sclerosis

PRCC partial rank correlation coefficient

QALY quality-adjusted life-year

RCT randomised controlled trial

RRMS relapsing/remitting multiple
sclerosis

RSS risk-sharing scheme

SB sequential bifurcation

ScHARR School of Health and Related
Research

SNR signal-to-noise ratio

SPMS secondary progressive multiple
sclerosis

VBA Visual Basic for Applications

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or 
it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case 
the abbreviation is defined in the figure legend or at the end of the table.
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Aims and objectives
The aims of the report are: (1) to develop
methods for performing expected value of perfect
information (EVPI) analysis in computationally
expensive models; these methodological advances
will be reported and applied alongside a case
study to form a clear and valuable reference
source to health economists and analysts in other
outcomes research organisations; (2) to report on
the developments on the health economics of
interferon-� (IFN-�) and glatiramer acetate in the
management of multiple sclerosis (MS) using this
methodological framework.

Background
The expected value of information (EVI) approach
uses a decision analytic framework in order to
prioritise further research through identifying
those areas in which additional data collection,
and hence the reduction of uncertainty, would be
of most value. Value of information analysis
describes the opportunity cost of uncertainty
regarding a commissioning decision in terms of
the probability that a suboptimal intervention is
selected and the associated economic disbenefit.
Further data collection is valuable if it reduces the
likelihood of making the wrong decision. Step by
step algorithms for performing EVPI analysis are
described within the main body of the report.

Overview of case study model:
the ScHARR MS model
MS is a demyelinating disease of the central
nervous system. MS is the most frequent cause of
neurological disability in young adults, and is
typically characterised by chronic relapse and
disease progression. There is no effective cure for
MS; drugs known as disease-modifying therapies
(the IFN-�s and glatiramer acetate) are aimed at
reducing the number and severity of relapses
experienced and slowing disease progression.
These therapies were appraised by The National
Institute for Clinical Excellence in 2001 and
neither IFN-� nor glatiramer acetate was
recommended for routine supply by the NHS in

England and Wales. The economic analysis
identified several areas of key uncertainty; however,
the computational expense of the ScHARR MS
model precluded the formal quantification of
undertaking further research in these areas.
Owing to the commercial-in-confidence evidence
on the relationship between the expanded
disability status scale (EDSS), costs of care and
health outcomes, we have converted the original
ScHARR MS model into a public domain model to
facilitate estimation of the value of conducting
further research on IFN-� and glatiramer acetate.

Methodological framework for
performing EVPI analysis on
computationally expensive
models
We report a methodological framework for
undertaking a comprehensive analysis of the value
of perfect information for computationally
expensive health economic models. This proposed
framework follows a sequential logic, and
identifies conditions whereby EVPI may be
calculated numerically, where a one-level sampling
algorithm may sufficiently approximate the more
computationally expensive two-level algorithm, in
addition to identifying methods for
metamodelling, that is, replacing the original
economic model with a statistical approximation.

This review has resolved methods for defining the
number of samples required to achieve stable and
unbiased EVPI estimates from the two-level EVPI
algorithm and for estimating confidence intervals
for EVPI estimates.

A review of the current literature identified several
metamodelling approaches; the following
metamodelling techniques are reviewed:

� linear regression
� neural networks
� response surface methodology (using

polynomial regression)
� multivariate adaptive regression splines
� Gaussian processes/Kriging (non-linear

regression).
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A critique of these metamodelling methods
suggests that, in general, simpler techniques such
as linear regression may be easier to implement,
as they require little specialist expertise although
they may provide limited predictive accuracy.
Conversely, more sophisticated techniques such as
Kriging/Gaussian process methodology and neural
networks tend to require greater specialist
expertise. These more complex methods, however,
tend to use less restrictive assumptions concerning
the relationship between the model inputs and net
benefits, and may therefore permit greater
accuracy in estimating EVPI.

Applied methodology
The methodological framework was applied to the
ScHARR MS model in order to estimate the value
of conducting further clinical research in this area.
This analysis used three separate models:

1. the original ScHARR MS model
2. a linear regression metamodel used to

approximate the ScHARR model
3. a Gaussian process metamodel used to

approximate the ScHARR model. 

Assuming independent treatment effects, the ‘per
patient’ EVPI for all uncertain parameters within
the case study model is £8855; this represents the
upper estimate for the overall EVPI. Assuming
that treatment efficacies are perfectly correlated,
the global per patient EVPI is £4271; this
represents a lower estimate for the overall EVPI.

Due to the computation time required, it was not
possible to perform two-level partial EVPI analysis
for parameters using the original ScHARR model.
Linear regression analysis suggested a reasonable
degree of linearity between the model inputs and
net benefits. A linear regression metamodel and
Gaussian process metamodel were constructed in
order to approximate the relationship between
model inputs and net benefits. The Gaussian
process model is likely to be more reliable as it is a
non-linear regression technique which
incorporates all possible interactions between
those variables included in the simulation model.  

Case study results
We estimated the relevant population for the
technology over a 10-year time horizon. Assuming
independent treatment effects, the global
population EVPI for all uncertain parameters

within the case study model is £86,208,936; this
represents the upper estimate for the overall
population EVPI. Assuming that treatment
efficacies are perfectly correlated, the global
population EVPI is £41,581,273; this represents a
lower estimate for the overall EVPI. The partial
EVPI analysis, calculated using both the linear
regression model and Gaussian process model,
clearly suggests that further research is indicated
on the long-term impact of these therapies on
disease progression, the proportion of patients
dropping off therapy and the relationship between
the EDSS, costs of care and health outcomes.
Although further information on costs associated
with particular EDSS states and the rates at which
patients drop off therapy may be obtained
through non-experimental designs such as
observational studies, further useful information
on the impact of disease-modifying therapies on
disease progression and associated health
outcomes would be most reliably obtained 
through a long-term randomised controlled trial
which includes a direct assessment of quality of
life.

Discussion
Linearity of the model
Regression analysis takes a central role in
undertaking EVPI analysis via metamodelling.
The main potential drawback concerns the 
degree of linearity between the model inputs and
net benefits. If the relationship between net
benefits and the parameter inputs is only weakly
linear, multiple linear regression is unlikely to be
useful in performing partial EVPI analysis.
Conversely, if the relationship is strongly linear, it
is likely that even if the expected net benefits for
each treatment strategy are predicted with
accuracy, the prediction error in the calculation of
net benefits is likely to be magnified in the
calculation of EVPI. The applied methodology
clearly points towards using more sophisticated
metamodelling approaches in order to obtain
greater accuracy in EVPI estimation.

Where a reasonably strong linear relationship
exists, the linear regression metamodel may be
used in order to obtain one-level estimates of
partial EVPI for all model parameters. This
exercise may enable the modeller to ascertain
which of the model parameters are likely 
to attain value and which are not, and potentially
suggest an order of magnitude for this
expected value. If the analyst is aware of the key

parameters, it may be possible to revert back to

Executive summary



the original cost-effectiveness model and perform
partial EVPI analysis using the correct two-level
sampling algorithm for those identified
parameters, and to ignore the remaining
parameter set. 

Although the question ‘how linear is linear
enough?’ for use in EVPI analysis cannot be
resolved using standard statistical tests, it is
possible to explore the degree of approximation
error resulting from a linear regression metamodel
through comparing the global EVPI results
calculated using the regression metamodel and the
global EVPI results calculated using the original
cost-effectiveness model. If the two global EVPI
results are similar, this should enable the analyst to
gauge the degree to which non-linearity may
distort the partial EVPI estimates. If there is a
considerable error between the global EVPI
estimates, this should forewarn against the use of
the one-level EVPI algorithm and highlight the
need for non-linear methods such as Gaussian
process metamodelling. 

Use of metamodelling for undertaking
value of information analysis 
Although metamodels allow faster analysis of a
problem, their use introduces an added element of
uncertainty to the analysis; a metamodel can only
ever approximate a system rather than fully
replace it. Although many of the techniques
appear similar in theory, the main difference
relevant to the users of health economic models
concerns the ease of use and availability of
software. Many of these techniques have been
applied in only a limited number of case studies,
hence their suitability for use within EVPI analysis
has not been demonstrated. 

The suitability of these alternative metamodelling
methods in performing EVPI analysis will
essentially be determined by the expertise of the
modeller, the time available for the project and
the degree of accuracy required in the results. It is
not unreasonable to postulate that when faced
with a computationally expensive decision model,
the general user of health economic models is
primarily concerned with selecting the easiest and
quickest metamodelling technique which provides
reasonably accurate results. Indeed, in instances
whereby the original cost-effectiveness model is
approximately linear, regression metamodelling
may be an adequate approach for identifying areas
for investment in further research. This review has
identified several classes of metamodelling
technique. Although it has been possible to
identify some of their more generic characteristics,

these are certainly insufficient to identify one
generally preferred technique or to identify a set
of criteria for selecting a specific technique given
specific case study characteristics. 

Limitations of this study
The information currently available in the public
domain on the alternative metamodelling
techniques is limited. Insufficient information was
available on the practical application of several of
the metamodelling methodologies reviewed, hence
these methods could not be confidently applied to
the case study model. Further, the complexity of
the ScHARR MS model means that it is infeasible
to generate the partial EVPI analysis using the
two-level sampling algorithm. As a result, there is
no direct means of validating fully the partial
EVPIs calculated using either the one-level
sampling algorithm, the linear regression
metamodel or the Gaussian process metamodel.
Direct tests of validity have only been possible on
the estimate of overall EVPI. This analysis
demonstrated a high degree of linearity 
between sampled parameters and net benefits
generated by the ScHARR MS model; this means
that the exploration of the impact of non-
linearities on the predictive ability of the
metamodels considered and of the impact on
parameter selection via importance analysis has
been limited. 

Further research
A number of areas requiring further research have
been highlighted.

Further research indicated by the case study
The partial EVPI estimates generated using both
the linear regression metamodel and the Gaussian
process metamodel suggest that further research
concerning the relationship between the EDSS,
costs of care and health outcomes, the rates at
which patients drop off therapy and in particular
the impact of disease-modifying therapies on the
progression of MS is required.

Inclusion of the ‘relevant population’ within the
sensitivity analysis
Previous value of information studies have
calculated the population EVPI by simply
multiplying the per patient EVPI by a fixed
number of patients over the lifetime of the
decision. However, as the population relevant to a
particular decision is itself uncertain, there
remains an unresolved methodological issue
concerning whether the uncertainty in the
epidemiological parameters should also be
accounted for within the sensitivity analysis. 

Health Technology Assessment 2004; Vol. 8: No. 27
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Development of criteria for selecting a
metamodelling approach
There exist a number of metamodelling
techniques which have not been presented in this
review. Methodological and case study work would
be of benefit in exploring the application of the
metamodelling techniques within health economic
models and in the specific application to EVI
analyses. 

The use of metamodelling for EVSI and expected
net benefit of sampling (ENBS) analysis
Due to similarities in the algorithms used, it is
reasonable to suggest that metamodelling could
have an instrumental role in performing EVSI and
ENBS analysis for computationally expensive
models.

Executive summary
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Aims and objectives
The aims of the report are:

1. To develop methods for reducing the
computation time involved in sensitivity
analysis of computationally expensive models,
including the application of the Gaussian
process (GP) methodology. These
methodological advances will be reported and
applied alongside a case study to form a clear
and valuable reference source to analysts in
HTA academic centres, and other outcomes
research organisations.

2. To report the developments on the health
economics of interferon-� (IFN-�) and
glatiramer acetate in the management of
multiple sclerosis (MS) through the application
of the methodological framework for
calculating the expected value of information
(EVI) for computationally expensive models.

Hence this report is intended to act as a catalyst
for EVI analysis to be used more commonly within
the technology assessment process in the UK, and
to provide a platform for the dissemination of the
two-level expected value of perfect information
(EVPI) approach as an accepted technique within
the economic evaluation of novel health
technologies. An explicit aim of this report is to
explain clearly the practical issues surrounding the
implementation of the EVI methodology.

Methodological overview
The EVI approach uses a decision analytic
framework in order to prioritise further research
through identifying those areas in which
additional data collection, and hence the
reduction of current uncertainty, would be of most
value. Value of information analysis describes the
costs of the existing uncertainty regarding the
provision of one intervention in terms of the
probability that an alternative intervention should
be provided and the opportunity costs resulting
from the provision of the suboptimal intervention.
Further data collection is thus valuable if it
reduces the likelihood of making the wrong
decision.

Principles of health economic
decision making
Decision analysis within health economic
evaluation concerns making decisions between two
or more treatment options under conditions of
uncertainty. A fundamental principle of decision
theory is that an individual seeks to maximise
his/her expected utility or payoff. Within the
context of economic evaluation, policy makers
acting on behalf of society are assumed to use
similar criteria; health economists have put
forward net benefit as the appropriate measure of
this payoff. The objective function to be
maximised when making healthcare
commissioning decisions is thus the incremental
net benefit (INB) for a given intervention, that is,
the additional health benefits of an intervention
after adjusting for any cost consequences.1 In
order to value the net benefit of an intervention,
health outcomes, which are typically measured in
terms of quality-adjusted life-years (QALYs), or in
terms of ‘natural’ units such as life years gained
(LYG), must be valued in monetary terms.

The net benefit of a treatment strategy is thus
calculated as:

net benefit Ti = �Q(Ti) – C(Ti)

where � represents the maximum acceptable
incremental cost-effectiveness ratio (MAICER) or
‘willingness to pay’ threshold, Q(Ti) is the health
benefit of treatment strategy Ti and C(Ti) is the
cost of treatment strategy Ti.

Alternative methods exist for quantifying the
payoff from various treatment interventions; for
example, option pricing can be used to address
the cost of switching between interventions. This
method addresses the issue of the cost associated
with the implementation of a new intervention;2

however, these costs could be incorporated into
the estimation of the net benefit, and so option
pricing is not discussed further in this 
report.

The deterministic analysis of health economic
models makes the explicit assumption that the
true values of all parameters contained within the
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model are known with absolute certainty. It
follows, then, that the assumption of certainty
within the model parameters, in turn, leads to an
assumption of certainty in the model output.
However, it is unlikely that all, or in fact any, of
the true parameter values are known, hence health
economic models are characterised by pervasive
uncertainty. Probabilistic analysis of health
economic models, on the other hand, assumes that
the true value of each parameter is not known, but
that each is described by either a parametric or
empirical probability distribution. Hence, as there
is uncertainty in the model parameters, so too is
there uncertainty in the model output. In recent
years there has been considerable emphasis on the
development of appropriate methods for handling
uncertainty in mathematical models, with a
tendency to move away from univariate sensitivity
analysis towards fuller probabilistic descriptions of
uncertainty, e.g. cost-effectiveness planes, cost-
effectiveness acceptability curves and distributions
of incremental net benefits.3

Value of information analysis for
prioritising further research
Value of information analysis is a natural extension
of decision analysis and draws directly from
existing methods for multivariate sensitivity
analysis.4 The principle aim of EVI is to quantify
existing levels of uncertainty and to estimate the
impact on the expected net benefit of alternative
decision options through obtaining perfect
information on model parameters. There has
recently been a surge of interest in applying and
developing value of information methods within
health economic decision analysis and clinical trial
design;5–13 a detailed review of these
developments was recently reported by Chilcott
and colleagues.14

EVI permits the prioritisation of research through
pursuing those research projects whereby attaining
further information is expected to yield the
greatest payoff in terms of expected net benefit
(ENB). The ubiquitous existence of uncertainty
means that there will always be a chance that we
may make the wrong decision, that our adoption
decision given current information may be wrong.
If we had perfect information on all parameters
for a given decision problem, we could be certain
that we would select the optimal decision strategy.
Information is valuable because it reduces the
chance of making the wrong decision and
therefore reduces the expected costs of uncertainty
surrounding the decision.15

The degree to which further information attains
value ultimately depends on two elements: the size
of the uncertainty surrounding the decision
problem and the opportunity costs associated with
that uncertainty. If there is currently a very small
amount of uncertainty surrounding a decision
problem, then gathering further information is
unlikely to revise our adoption decision, hence we
are unlikely to gain any additional pay-off.
However, if there is considerable uncertainty
surrounding certain elements of the decision
model, then acquiring exact knowledge that the
parameter is at, say, the lower end of the range
could lead us to choose another policy option to
obtain the greatest 
pay-off. The value of this information is derived
directly from the calculation of the opportunity
cost or the benefits foregone resulting from the
selection of the wrong decision alternative. The
‘value’ of further information is quantified in
terms of the additional payoff that is obtained
through switching adoption decisions. Hence
information only attains value if it reduces the
likelihood of making the wrong decision.

The EVPI algorithm provides an estimate of the
per patient EVPI. If, for example, the per patient
EVPI was large but the decision was relevant to only
a small number of patients, further research may
not be merited. The ‘population EVPI’ refers to the
expected value of obtaining perfect information for
the total number of patients subject to the decision,
which is also subject to uncertainty, over the lifetime
of the technology or impact of the decision.

Broadly, value of information analysis may be
categorised into two distinct methodologies:

1. EVPI analysis
2. expected value of sample information (EVSI)

and expected net benefit of sampling (ENBS).

EVPI quantifies the value of eliminating all
uncertainty in the model or, in other words, of
obtaining perfect knowledge of the value of an
individual parameter or a group of parameters.
The EVPI essentially represents a ceiling on the
amount of money to invest in further research.
The calculation of the EVPI for individual or
groups of parameters allows the identification of
specific areas whereby further information is
expected to have the greatest impact on decision
uncertainty. Further, through calculating the EVPI
associated with individual parameters, this may
also assist in determining the type and design of
further research. For example, if further research
is merited on, say, the costs associated with a set of
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health states, this information may be adequately
obtained via an observational study, thus
precluding the requirement for a complex
randomised controlled trial (RCT).

Alternatively, EVSI is concerned with predicting
the expected reduction in uncertainty resulting
from the collection of data from an additional
finite sample. EVSI therefore represents the
reduction in uncertainty that may be expected to
result from further information from studies with
predetermined sample size. ENBS incorporates
the costs of this further sampling. As the sample
size increases, the marginal value of additional
information will diminish; thus ENBS allows the
identification of the optimal sample size.

EVPI analysis may be conducted on all of the
parameters within a model simultaneously, or on
an individual or a subset of parameters.
Calculating the EVPI for all parameters
concurrently is referred to as the ‘overall’ or
‘global EVPI’. Through calculating the overall
EVPI we are essentially addressing the question
‘what is the expected impact on the net benefit of
a decision problem if we had perfect knowledge of
the true value of all of the parameters within the
model?’ Alternatively, we may be interested in
knowing the value of obtaining perfect
information on a single model parameter (for
example, the risk of an event) or a subset of
parameters (for example, health outcomes for a
group of health states); this is referred to as
‘partial EVPI’. Although some parameters may
attain little value individually, when combined they
may be important; for example, the value
associated with the cost of an individual health
state may be negligible, whereas the value of
acquiring information on the costs associated with
all health states in a model may be substantial.
Due to structural correlations and computational
interactions between model variables, in the
general case it is unlikely that a perfect direct
relationship exists between the global EVPI and
the sum of the EVPI for individual parameters.

Previous applications of expected
value of information analysis in
health economic modelling
To date, EVI analysis has been applied within a
number of health technology assessment case
studies, including:

� the management of symptoms presenting as
possible urinary tract infections16

� the use of donepezil in the management of
Alzheimer’s disease17

� liquid-based cytology for cervical cancer
screening18

� systems for the preservation of kidneys prior to
transplantation19

� screening for inborn errors of metabolism using
tandem mass spectrometry.20

It should be acknowledged, however, that these
published analyses have adopted a variety of
different mathematical algorithms to estimate the
EVPI in individual model parameters.
Furthermore, the majority of previous value of
information analyses have been conducted on
models that are less complex in structure and less
expensive in terms of the time required to
undertake a comprehensive EVPI analysis. Only
two of the above analyses have successfully
implemented the full two-level sampling
algorithm.19,20 A pilot study of the use of value of
information analysis in prioritising research and
development of health technologies is awaiting
publication;21 this study also uses the correct 
two-level sampling algorithm.

An outline of the problem: value
of information analysis for
computationally expensive
models
Although value of information analysis has been
applied with some success within health economic
evaluation, methodological work has concentrated
on the development of appropriate mathematical
EVPI and EVSI algorithms, illustrated using
relatively simple case studies. Few studies have
confronted the practical problems resulting from
the computational requirements of performing
EVPI analysis within structurally complex models.
In particular, the computational time requirements
for the calculation of partial EVPI for individual
model parameters may render such analysis
infeasible, owing to the requirement for a two-level
n � m sampling technique. However, there are a
number of alternative mathematical techniques
which may enable the general user of health
economic models to overcome such computational
problems in undertaking value of information
analysis.

This report presents a case study of the cost
effectiveness model developed as part of the
appraisal of interferon-� and glatiramer acetate to
illustrate the potential value of alternative
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methods for performing value of information
analysis. This case study is representative of the
analytical problems arising from such
computationally expensive models; a single
replication of the model takes approximately 
7 seconds to run using a Pentium 4 PC with 1 GB
RAM, under the Windows XP operating system.
The projected analysis time requirements for full
value of information analysis using the School of
Health and Related Research (ScHARR) MS
cost-effectiveness model are shown in Table 1.

These calculations highlight an important issue: the
number of samples required is assumed here to be
10,000 for both the inner and outer expectation of
the partial EVPI algorithm (see Box 2). Commonly,
the number of samples required to achieve stable
EVPI values required is assumed to be 10,000 or
1000; this assumption is rarely justified, and indeed
the methods for estimating confidence intervals
from the inner level sampling have not previously
been developed. This review has resolved the
methodological uncertainty in this area, and an
algorithm for defining the number of samples
required and for determining confidence intervals
for EVPI estimates is presented in the section ‘Can
EVPI be calculated numerically?’ (p. 17).

Comprehensive partial EVPI analysis using the
two-level sampling algorithm (assuming 10,000
iterations for both inner and outer level sampling)
for all 128 individual parameters across all
treatment strategies within the model would take
approximately 2841 years. This is clearly
infeasible, and value of information analysis would
typically be omitted from such an assessment.
Although there exist potential ‘mathematical
short-cuts’ for performing EVPI analysis when the
relationship between sampled parameter values
and net benefits is linear,1 the question remains as
to how a general user of health economic models
may perform EVPI analysis for computationally
expensive and structurally complex models. This
report therefore puts forward a comprehensive
methodological framework for undertaking EVPI
analysis. The merit of this framework is

demonstrated through its direct application to the
ScHARR cost-effectiveness model for interferon-�
and glatiramer acetate in the management of
multiple sclerosis.

Performing value of information
analysis
This section describes the preliminary steps required
for performing full value of information analysis
on an existing deterministic health economic model.

Assigning probability distributions
The basic prerequisite for performing value of
information analysis within any health economic
model is that the model must be probabilistic. All
parameters within the model should be identified
and a probability distribution should be assigned
to each parameter. These probability distributions
should describe second rather than first-order
uncertainty, that is, the current uncertainty in the
mean value of each parameter as opposed to
variation at the individual patient level. Although
there are no prescriptive rules by which to assign
distributions, and indeed such a prescription would
be misguided (since the process is somewhat
subjective), a recent study by Briggs and colleagues
offers useful guidelines as to how distributions can
be assigned to specific types of model parameter.22

Performing multivariate Monte Carlo
sensitivity analysis
Once probability distributions have been defined
for each parameter, multivariate Monte Carlo
sensitivity analysis should be conducted over a
large number of iterations (typically 10,000 runs)
allowing all parameters to vary across their
uncertain range. For each random iteration, the
costs and QALYs gained for each treatment
strategy should be recorded. If possible, the
expected net benefit for each treatment strategy
should be calculated outside this analysis so that
the impact of different ‘willingness to pay’
thresholds may be explored.
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TABLE 1 Projected computation time for full value of information analysis using existing ScHARR cost-effectiveness model

Type of analysis Estimated time

Single model run (1 iteration across all seven treatment strategies) 7 seconds
Full multivariate Monte Carlo sensitivity analysis (10,000 iterations) 19.44 hours
One-level partial EVPI analysis on all groups of parameters (10,000 iterations) 8.10 days
One-level partial EVPI analysis on all individual parameters (10,000 iterations) 103.70 days
Two-level partial EVPI analysis on all groups of parameters (10,000 � 10,000 iterations) 221.97 years
Two-level partial EVPI analysis on all individual parameters (10,000 � 10,000 iterations) 2841.20 years



Algorithms for calculating the
expected value of perfect
information
Calculating the overall EVPI across all
parameters simultaneously
The equations for calculating the global EVPI
across all parameters are shown in Box 1.

In certain circumstances, for instance where the
distribution of expected net benefit is known to be
normally distributed and available, it is possible to
calculate the expectations in the EVPI equation
analytically. The methodological background to
the analytical calculation of EVPI is well
developed,10,12 however, its use to date has been
limited to numerical case studies illustrating the
EVI methodology. Unfortunately, there is, as yet,
no analytical solution to the calculation of partial
EVPIs for individual or groups of parameters. This
means that the only possible practical use of the
analytical method is where the calculated overall
EVPI is so low that it precludes the necessity for
any further investigation. Therefore, although
practically appealing, the analytical solution of
EVPI methods is unlikely to be of use in
addressing practical decision problems.

In lay terms, the overall EVPI is calculated
numerically as follows:

� Step 1. Perform multivariate Monte Carlo
sensitivity analysis for all uncertain variables
within the model, and record the absolute costs
and QALYs for each iteration.

� Step 2. Calculate the ENB for each iteration for
each treatment strategy using the formula 
NB Tx = �Q(Tx) – C(Tx)

� Step 3. Calculate the average ENB for each
treatment strategy over all iterations.

� Step 4. For each iteration, calculate the
maximum NB across all treatment strategies.

� Step 5. Calculate the average of the maximum
ENBs over all iterations.

� Step 6. Calculate the overall EVPI by taking the
average of the maximum ENBs across all
iterations (calculated in step 5) minus the
maximum of the average ENBs across all
treatment strategies (calculated in step 3).

Table 2 illustrates the calculations required for
EVPI analysis for three hypothetical interventions
using five random iterations.

Calculating partial EVPI for individual
or groups of parameters
Although a variety of algorithms exist for the
calculation of EVPI for individual or groups of
parameters, a detailed critique of these
approaches has already been conducted and is not
necessary here.14 Partial EVPI analysis for
individual or subsets of parameters requires a 
two-level algorithm, which uses two nested levels
of Monte Carlo sampling over the plausible ranges
for both the parameters of interest, and the
remaining uncertain parameters. Box 2 presents
the equations for calculating the partial EVPI for
individual or groups of parameters in a model.

In lay terms, the steps required to calculate the
partial EVPI for parameters using the two-level
sampling algorithm are as follows:

� Step 1. Sample once from the parameter of
interest (� i) and hold that parameter constant at
its sampled value. If the analysis is for a group
of parameters, all parameters of interest (� i)
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BOX 1 Formulae for calculating the global EVPI

Overall EVPI
Let
� be the parameters for the model with defined prior
probability distributions
d be the set of possible decisions or strategies
NB(d,�) be the function of net benefit for decisions d, and
parameters �
Then:
ENB given current information = max{E� NB(d,�)}

d

ENB given full information = E�{max NB(d,�)}
d

Global EVPI = E�{max NB(d,�)} – max{E� NB(d,�)}
d d

BOX 2 Equations for calculating partial EVPI for parameters using the two-level algorithm

Partial EVPI for subsets of parameters
Let
� i be the parameters interest for partial EVPI
�~i be the other parameters
Then:
ENB given perfect information on � i = E�i

{max(E� NB(d,�)|� i)}
d

Partial EVPI obtaining data on � i only = E�i
{max(E� NB(d,�)|� i)} – max{E� NB(d,�)}

d d



Introduction

6

TABLE 2 Illustrative example of EVPI calculation for three hypothetical interventions

Monte Carlo results EVPI calculation

Iteration no. Cost T0 (£) Cost T1 (£) Cost T2 (£) QALYs T0 QALYs T1 QALYs T2 ENB T0 (£) ENB T1 (£) ENB T2 (£) Maximum ENB (£)

1 170,608.51 161,571.61 169,534.60 14.28 14.26 14.45 257,791 266,228 263,965 266,228
2 83,818.37 77,907.92 79,914.31 13.17 13.38 13.64 311,282 323,492 329,286 329,286
3 96,834.06 89,933.29 97,557.92 8.85 8.46 9.30 168,666 163,867 181,442 181,442
4 104,826.72 94,382.59 105,785.36 11.62 11.37 11.30 243,773 246,717 233,215 246,717
5 113,070.80 96,094.69 109,543.76 10.35 10.41 10.55 197,429 216,205 206,956 216,205
Mean – – – – – – 235,788 243,302 242,973 247,976
EVPI 00,4,674

MAICER = £30,000.
Note: in this instance, T1 is the optimal choice.



should be sampled once and held constant at
their sampled value.

� Step 2. Let all other model parameters not of
interest (�–i) vary according to their prior
uncertainty.

� Step 3. Run the model over n iterations (say 
n = 10,000) and record the costs and QALYs
accrued for each treatment strategy.

� Step 4. Calculate and record the EVPI as shown
in Box 2.

� Step 5. Repeat steps 1–4 for all individual or
groups of parameters of interest.

� Step 6. The partial EVPI for the parameters of
interest is simply the average of the EVPIs
recorded over m iterations.

Under certain conditions [see the section ‘Is the
model linear?’ (p. 18)], a one-level algorithm may
be used in order to reduce computation time 
(Box 3).

In lay terms, one-level partial EVPI for parameters
may be calculated using the following algorithm:

� Step 1. Let all parameters of interest (� i) vary
according to their prior uncertainty.

� Step 2. Hold all parameters not of interest (�–i)
at their mean value.

� Step 3. Run the model over n iterations (say 
n = 10,000 iterations) and record the costs and
QALYs accrued for each treatment strategy.

� Step 4. Calculate the NB for each random
iteration for all individual treatment strategies
using the equation NB Tx = �Q(Tx) – C(Tx).

� Step 5. Calculate the average ENB for each
treatment strategy.

� Step 6. For each iteration, record the maximum
NB (i.e. the greatest net benefit across all
treatment strategies for each iteration).

� Step 7. Calculate the average maximum ENB of
all treatment strategies.

� Step 8. Calculate the overall EVPI by taking the
average of the maximum ENBs across all
iterations minus the maximum of the average
ENBs across all treatment strategies.

It is noteworthy that the main differences between
the global EVPI and one-level partial EVPI
algorithms concern whether model parameters are
allowed to vary or whether the parameters are
held constant at their mean value. Therefore, it is
possible to construct a generic model structure by
which to record the NBs of each treatment strategy
for each Monte Carlo iteration, such as the basic
structure shown in Table 2. This also suggests that
a common Visual Basic for Applications (VBA)
subroutine may be used alongside EXCEL to
perform the Monte Carlo sampling.

Identifying the relevant
population for EVPI analysis
The algorithms provided above estimate the EVPI
for an individual patient. The ‘per patient’ EVPI
does not, however, provide information
concerning the total expected value of obtaining
‘perfect’ information, i.e. the expected value of
obtaining perfect information for the number of
patients subject to the decision over the lifetime of
the technology or impact of the decision. Consider
two hypothetical decision problems, denoted
‘decision a’ and ‘decision b’, with associated per
patient EVPIs of £5000 and £2000 respectively.
On the basis of the ‘per patient EVPIs’, ‘decision
problem a’ would be prioritised over ‘decision
problem b’, that is, money would be invested in
‘decision problem a.’ However, if ‘decision
problem a’ is associated with a relevant population
of 100 patients and ‘decision problem b’ is
associated with a relevant population of 1000
patients, and the effective lifetime of the decision
is 5 years for each decision problem (discounting
at 3% per annum), the population EVPIs would be

‘Decision problem a’ = £2,358,549
‘Decision problem b’ = £9,434,197

Hence there is greater value in obtaining perfect
information on ‘decision problem b’ than ‘decision
problem a’. Similar considerations would also hold

Health Technology Assessment 2004; Vol. 8: No. 27

7

© Queen’s Printer and Controller of HMSO 2004. All rights reserved.

BOX 3 Formulae for calculating partial EVPI for parameters using the one-level algorithm

Partial EVPI for subsets of parameters
Let
� i be the parameters of interest for partial EVPI
�~i be the other parameters
Then:
ENB given perfect information on � i = E�i

{max(E� NB(d,�)|� i)}
d

Partial EVPI obtaining data on � i = E�i
{max NB(d,� i|�–i = �–i)} – max{E� NB(d,�)}

d d



in comparing interventions where the lifetime of a
decision was likely to vary between technologies, for
instance in considering fast-changing technologies
or competing products coming to market. It is
therefore necessary to estimate the likely
population relevant to a decision problem over the
lifetime of the decision. This calculation essentially
requires an estimate of the number of patients
eligible for treatment with the intervention,
including estimates of incidence and prevalence
together with an estimate of the likely lifetime of
the decision.

Structure of the report
The structure of the report is as follows:

Chapter 2 Development of the
ScHARR multiple sclerosis cost-
effectiveness model
This chapter provides an overview of the
economics of IFN-� and glatiramer acetate and
outlines the development of the ScHARR cost-
effectiveness model required to undertake value of
information analysis. The chapter describes the
steps taken to convert the ScHARR cost-
effectiveness model developed as part of the
National Institute for Clinical Excellence (NICE)
appraisal process, which was held as commercial-
in-confidence, to a ‘public domain’ model.

Chapter 3 Methodological
framework for undertaking EVPI
analysis
Chapter 3 presents a methodological framework
which addresses those issues which may be
pertinent when attempting to perform value of
information analysis for computationally
expensive models. This chapter reports on the
issues surrounding the immediate feasibility of
performing EVPI analysis for complex models and
considers alternative approaches and the
circumstances under which alternative methods
may be considered appropriate and robust. We
present a review of metamodelling techniques

which may be used to replace an existing health
economic model with a statistical approximation.
The role and value of each of these methodologies
are reported together with salient issues that
should be considered during the modelling
process. As some of these approaches are
restricted in terms of the number of parameters
that can be included in the metamodel, we also
present a systematic review of alternative
approaches to ranking model parameters
according to their relative importance.

Chapter 4 Applied methodology: EVI
analysis for computationally expensive
health economic models
This chapter reports on the sequential application
of the methodological framework outlined in
Chapter 3 to the case study ScHARR MS cost-
effectiveness model. The applied methods are
described and conclusions are drawn as to their
validity, accuracy and robustness for this 
particular case study. The potential reduction in
computation time, ease of application, existence of
parametric restrictions and requirements for
specialist expertise are also presented for each
method.

Chapter 5 The expected value of
perfect information for interferon-�
and glatiramer acetate in the
management of multiple sclerosis
This chapter summarises the results and
conclusions of the EVPI analysis on IFN-� and
glatiramer acetate in the management of MS. The
overall EVPI results are presented alongside the
partial EVPI results for individual parameters
within the model.

Chapter 6 Discussion and conclusions
This chapter summarises the results and
conclusions drawn from the methodological
aspects of this study. It presents a discussion of key
issues in the application of the methodological
framework for undertaking EVI analysis and
identifies a number of areas requiring further
research.
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Introduction
This chapter provides a brief description of the
case study problem and details the history of
economic evaluations of IFN-� and glatiramer
acetate for MS. It also describes the necessary
development of the ScHARR cost-effectiveness
model into a ‘public’ model. In order to allow
transparency and clarity of the value of
information methodology, the expanded disability
status scale (EDSS) cost and utility model data
held as commercial-in-confidence within the
original ScHARR model have been replaced with
public domain estimates. Inevitably, there is a
small difference between the base-case results for
the public domain model and those originally
reported by Chilcott and colleagues.23

Background to assessments of
interferon-� and glatiramer
acetate in the management of
multiple sclerosis
Clinical background to MS
MS is a demyelinating disease of the central
nervous system (CNS). MS is the most frequent
cause of neurological disability in young adults
and is typically characterised by chronic relapse
and disease progression.24 Evidence suggests that
MS results from an autoimmune response,
resulting in inflammation, demyelination and
axonal loss.24 Three commonly used categories of
MS have been defined: relapsing/remitting MS
(RRMS); secondary progressive MS (SPMS); and
primary progressive MS (PPMS).24

MS is approximately twice as common in women
than men. The prevalence of MS in England and
Wales is conservatively estimated to be between
58,000 and 63,000 people.25 The annual
incidence of MS in England and Wales is
estimated to be around 3.8 per 100,000 people. It
is estimated that around 30% of these individuals
may be eligible for treatment with the IFN-�s and
glatiramer acetate.25

Disease progression is typically measured in terms
of impairment and disability using Kurtzke’s
EDSS,26 an ordinal scale ranging from EDSS 0
(normal neurologic examination) to EDSS 10
(death due to MS). The EDSS is presented in
Appendix 1. Up to EDSS 3.5, the scale measures
neurological impairments that are likely to have
limited if any impact upon the activities of daily
living. EDSS scores between 4.0 and 5.5 reflect
ambulatory limitations for distances up to 500 m
and the use of mobility aids. For scores over EDSS
6.0, patients will require a wheelchair. The
progression to SPMS normally takes place over the
EDSS range 2.5–4.5. Disability progression is
associated with permanent reductions in quality of
life (QoL) and increases in the cost of medical
management.27

Conventional management of MS typically consists
of drug therapy, physiotherapy, psychiatric and
social support and disability aids; these
interventions may provide symptomatic relief but
have no impact upon the underlying nature of the
disease. There is no cure for MS; however, IFN-�
and glatiramer acetate may alter the clinical
course of the disease through slowing disease
progression and reducing the number and severity
of relapses experienced. The use of these disease-
modifying therapies (DMTs) is subject to eligibility
criteria as defined by the Association of British
Neurologists (ABN). These criteria are shown in
Box 4.

Economic evaluations of disease
modifying treatments for MS
The cost-effectiveness of DMTs in the
management of MS has been the focus of
significant attention for much of the last 10 years.
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Chapter 2

Development of the ScHARR multiple sclerosis 
cost-effectiveness model

BOX 4 ABN guidelines for the use of IFN-� and glatiramer
acetate in multiple sclerosis28

1. Able to walk independently
2. At least two significant relapses in the last 2 years
3. Adult age group (18 years or older)
4. There are no contraindications

Adapted from: http://www.theabn.org.



An Executive Letter in 1994, from the NHS
Executive, informed all health authorities that
they must manage the introduction of these new
drugs with respect to local resource implications.29

The annual cost of these therapies, which is in
excess of £5000 per patient per year, combined
with the length of time for which patients might
continue to take these drugs, meant that funding
these therapies would entail extremely large
increases in expenditure. The scale of the increase
was generally considered to be beyond the capacity
of existing health authority budgets. If the scale of
the benefits could be demonstrated to be efficient
in terms of the cost per LYG or QALY gained,
then increases in total funding or the sacrifice of
other healthcare activities might be justified. Cost-
effectiveness analysis was hence required to
establish whether the funding of these new
therapies represented an efficient use of resources.

To date, there have been numerous attempts to
estimate the cost-effectiveness of DMTs for MS in
the form of both independent and company-
sponsored evaluations. Existing analyses have
produced a range of cost-effectiveness estimates
from in excess of £1 million per QALY gained to
cost saving.30–32 Significant flaws in the modelling
of natural history, efficacy, discontinuation of
therapy, mortality and the treatment of
uncertainty mean that none of these estimates can
be considered robust.33 In general, those models
which produced very high cost-effectiveness
estimates tended to have shorter time horizons
(less than 10 years) or assumed that all benefit
ceased when the patient stopped therapy. Models
that assumed long time horizons and sustained
benefit after the cessation of therapy produced
economically attractive cost-effectiveness estimates.

Having reviewed the existing evidence, NICE
commissioned a new model from a consortium of
universities to address explicitly the limitations
identified in the review of existing models. It is
this model, hereafter referred to as the ScHARR
model, which is used for the research presented in
the remainder of this report.

Current guidance on the use of
interferon-� and glatiramer acetate
for MS in England and Wales
As a result of the scientific and non-scientific
evidence made available to the Appraisal
Committee at NICE, on the basis of their clinical
and cost-effectiveness neither IFN-� nor
glatiramer acetate was recommended for the
treatment of MS in the NHS in England and
Wales.34

Following the dissemination of the NICE
guidance, the Department of Health entered into
price negotiations with Serono, Schering, Biogen
and TEVA/Aventis, the manufacturers of IFN-�s
and glatiramer acetate. The result of these
negotiations was the development of a risk-sharing
scheme (RSS), designed to monitor the cost-
effectiveness of the four DMTs in the management
of MS. The scheme involves the detailed
monitoring of a cohort of patients to collect
further data on the impact of DMTs on disease
progression and the severity and frequency of
relapses experienced. The interventions are hence
available to all patients with RRMS and those with
SPMS in which relapses are the dominant clinical
feature, given their eligibility according to the
ABN guidelines.28 The monitoring process and
associated price adjustments are expected to
continue for 10 years.

Synopsis of the existing ScHARR
MS cost-effectiveness model
A brief summary of the ScHARR cost-effectiveness
model is presented below. A more detailed
description of the model was reported by Chilcott
and colleagues23 and by Tappenden and
colleagues.35

Model structure
The ScHARR model uses the state transition
methodology to simulate the natural history of MS
over the EDSS26 across RRMS and SPMS. The
model estimates the cost-effectiveness of four
products licensed for RRMS. These are (in units
per week):

� 6 MIU IFN-�-1a (Avonex®)
� 8 MIU IFN-�-1b (Betaferon®)
� 20 mg glatiramer acetate (Copaxone®)
� 22 �g IFN-�-1a (Rebif®)
� 44 �g IFN-�-1a (Rebif®).

The model also estimates the cost-effectiveness of
8 MIU IFN-�-1b (Betaferon®) for the treatment of
SPMS. The outcome measure used to assess cost-
effectiveness is the cost per QALY gained. Patients
progress through the model according to
instantaneous hazard rates derived from a 25-year
study undertaken in London, Ontario, Canada.36

Costs and utilities are applied directly to the state
populations within each of the health states over
each model cycle. During any particular model
cycle, patients may also experience relapse,
whereby a disutility is applied. For those patients
receiving DMT therapy, a disutility is also applied

Development of the ScHARR multiple sclerosis cost-effectiveness model
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to account for the experience of treatment-related
side effects. The model uses an annual cycle
length over a 20-year time horizon. The
transitions possible during any model cycle are
shown in Figure 1. Patients who drop off therapy
remain in the same EDSS state but transit to the
conventional management quadrants of the
matrix.

Model assumptions
The assumptions made in constructing the model
favour the novel therapies within the analysis.

� Transitions within the model are assumed to be
progressive only. For example, a patient in
EDSS 4.5 in the current model cycle could not
regress back to EDSS 4.0 during a subsequent
model cycle.

� A sustained effect of treatment on both
progression and relapse beyond the trial
duration was modelled. Any patient who

discontinues therapy subsequently progresses
according to natural history rates but retains
any benefits received at no additional cost of
therapy. Thus, on the EDSS, these patients
never ‘catch up’ with those patients who only
receive conventional management.

� Due to the paucity of evidence concerning the
long-term efficacy of any of these therapies, the
effects of treatment are assumed to be fixed and
did not deteriorate or increase over time.

� The annual relative risk of ‘all-cause’ mortality
for the MS cohort is assumed to be the same as
a normal healthy population, minus the MS
death observed in the natural history cohort.

� Patients started treatment according to ABN
guidelines and are treated until they reach
EDSS 7.0 or drop off therapy.

Within the base-case scenario, patients start
treatment according to the ABN guidelines28 and
are treated until EDSS 7.0. Patients enter the

Health Technology Assessment 2004; Vol. 8: No. 27

11

© Queen’s Printer and Controller of HMSO 2004. All rights reserved.

On treatment Conventional management

EDSS ‘a’

Death Death

EDSS ‘b’ EDSS ‘b’EDSS ‘a’

Relapses
Side effects
Costs
Utilities

Relapses

Costs
Utilities

Stay

Progress
Dropout

Dropout

Dropout

Stay

Progress

EDSS ‘a’

Death Death

EDSS ‘b’ EDSS ‘b’EDSS ‘a’

Relapses
Side effects
Costs
Utilities

Relapses

Costs
Utilities

Stay

Progress

Progress Progress

Stay

Progress

1 2

3 4

FIGURE 1 Progression diagram for the ScHARR model23



model aged 30 years. Costs and health benefits are
discounted at 6 and 1.5%, respectively. Given the
base-case assumptions, the cost per QALY gained
ranges between £42,000 and £98,000, as shown in
Table 3.

Conversion to a public domain
cost-effectiveness model
Relationship between level of MS
disability, cost and QoL
The original modelling work revealed numerous
areas of considerable uncertainty concerning the
natural history of MS and, hence, the impact of
DMTs on the long-term clinical course of the
disease. Whilst the assessment was based upon the
highest quality evidence available at the time, there
was a noticeable paucity in evidence, particularly
concerning the impact of these therapies beyond
the duration of the existing clinical trials. Although
an individual with MS may live for up to 40 years,24

the existing clinical trials of disease-modifying
therapies in MS were of between 2 and 3 years in
duration.37–41 Although clinical evidence suggested
that treatment with IFN-� and glatiramer acetate
delays disability progression, the long-term effects
of treatment on disability following cessation of
therapy cannot be reliably predicted on the basis
of the short-term evidence from the clinical trials.

In Chapter 4, the EVI methodology is applied to
the ScHARR model in order to identify whether
further clinical research is merited and, if so, for
which parameters within the model data collection
would be of most value.

In order to ensure that the methods described
here remain transparent, it was necessary to
convert the existing commercial-in-confidence
model used within the NICE appraisal23,35 to a
public domain model which may be reported
freely. As a result, the cost and utility data used

within the original MS model have been replaced
with estimates derived from published studies.

There is increasing evidence of robust
relationships between an individual’s EDSS and
both the costs of managing their condition and
the QoL associated with that health state.27,42 In
the original version of the ScHARR model, a
single independent QoL weight (utility) and a cost
was specified for each EDSS state in the model.
However, the model did not recognise the
correlation between EDSS states for either utilities
or costs (i.e. as costs increase, utilities decrease in a
systematic pattern reflecting the change in the
underlying clinical condition). We replaced these
values with functions for costs and utilities to
ensure that these correlations were reflected in the
model and, potentially, improved the efficiency of
the model estimation processes.

The specification of the functions drew from data
in the literature,43–45 our own experience of
analysing cost and QoL data in MS and our
knowledge of methodological issues around cost
and QoL assessment in chronic disabling
conditions. On the last point, we paid particular
attention to issues around data collection from
severely disabled individuals, that is, patients in
EDSS states 8.0 and above.

QoL assessment
It is highly unlikely that severely disabled
individuals would be able to complete a QoL
assessment such as the EQ-5D, hence such data
are unlikely to be available. It is, however, possible
to say with confidence that individuals at EDSS 9.5
would fulfil the criteria for the worst health state
in the EQ-5D classification. Hence we can fix the
QoL for this state (one end of the EDSS utility
function) at –0.594. Further, our experience of
analysing this type of data established that the
shape of the function was consistently of the form
illustrated in Figure 2.
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TABLE 3 Base-case results for existing ScHARR model23

Per patient results Marginal results
Cost per 

Treatment strategy Costs (£) QALYs Costs (£) QALYs QALY (£)

T1 IFN-�-1-a (Avonex, Biogen) 111,954 10.20 43,500 1.03 42,041
T2 IFN-�-1-a 22 �g (Rebif, Serono) 112,982 9.89 44,529 0.73 60,963
T3 IFN-�-1-a 44 �g (Rebif, Serono) 130,949 10.03 62,496 0.87 71,732
T4 IFN-�-1-b 8 MIU: treating RR (Schering) 101,726 9.83 33,272 0.67 49,664
T5 Glatiramer acetate (Copaxone, TEVA) 101,273 9.50 32,820 0.34 97,636
T6 IFN-�-1-b 8 MIU: treating RRMS and SPMS (Schering) 107,022 10.03 38,569 0.87 44,390
T0 Conventional management 68,453 9.16



Although there is some variation in the published
QoL estimates, it is not large. In order to specify
the function, it was necessary to identify the QoL
value at the point for EDSS 6.0, where the function
commences its sharper downward trajectory. Parkin
and colleagues44 reported a value of 0.49 for this
state. As stated above, we were concerned that as
the disability increases, empirical estimates will be
affected by the ability or willingness of disabled
individuals to complete QoL questionnaires. We
therefore believe that mean values are likely to be
overestimates of the true mean value for the health
state. We therefore adjusted Parkin and colleagues’44

estimate slightly downwards to reflect this belief.
We set the QoL for EDSS 6.0 at a value of 0.47.

Cost of care
As with QoL, there is a clear relationship between
an individual’s EDSS and the cost of managing the
disease. A recent review of the published literature
by Patwardhan and colleagues42 found the
relationship between each EDSS state and its
associated cost relative to EDSS 1.0 was of the
form shown in Figure 3. This relationship was
similar between all studies identified within the
review. As with QoL, there are few data for
patients in states beyond EDSS 7.5. This reflects
the problems of collecting data on these patients.

As EDSS 9.5 is equivalent to complete
dependency, we set the annual cost for this state
equal to the cost of annual hospitalisation for a

medical ward, using the 2002 NHS reference cost
value.46 The cost of management in the initial
EDSS state was then fixed as the cost of an annual
outpatient neurology appointment; this sets the
cost of confirmation of diagnosis outside the
model. Again, this cost was taken from the NHS
reference cost database.46

As with the cost function, it was then necessary to
specify a value for EDSS 6.0 in order to allow the
function to be parameterised. Having chosen an
annual cost that was consistent with Patwardhan
and colleagues’ review of published estimates
(£1679),42 we then fitted an exponential function
between the fixed points of EDSS 0 and 9.5.

Correlation between treatment
efficacies
In supporting commissioning decision-making,
the original MS health economic model focused
primarily on generating central estimates of 
cost-effectiveness or net benefits with only a partial
analysis of uncertainty. In considering the
implications for further research requirements, a
fuller handling of uncertainty is required. One
specific area of uncertainty is the possible
existence of correlation between the efficacy of the
different treatment options. Although differences
exist being the products being considered, there
are also marked similarities, and in these
circumstances some level of correlation between
treatment efficacies must be expected.
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In order to include efficacy correlation within the
model, it would be necessary to handle the set of
six treatment efficacies as a multivariate normal
distribution and to incorporate an uncertain
covariance matrix into the model. Sampling of
this multivariate distribution would then be
facilitated by sequentially sampling a series of
standardised normal distributions and linearly
transforming these samples using the Cholesky
square root of the covariance matrix. This
situation is further complicated by the necessity
also to sample the covariance matrix in order to
capture the uncertainty in the correlations
between treatments.

In a practical context, it should also be noted that
there is a complete absence of quantitative
information on the correlations between all
treatments. The only option therefore would be to

use subjective judgement in defining distributions
for the correlation terms.

Given these practical difficulties, it was decided to
take two approaches to the analysis of EVPI for the
model:

1. Include all treatment options but assume
independence in treatment efficacy. This will
give an upper estimate to the overall EVPI.

2. Consider a single drug treatment option, that
is, that with the highest net benefit, compared
with conventional management. The results
provided by this analysis will be equivalent to
assuming a perfect correlation between
treatment efficacies since the rank ordering of
ENBs will be maintained. This analysis will
therefore provide a lower estimate for the
overall EVPI.

Development of the ScHARR multiple sclerosis cost-effectiveness model
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TABLE 4 Base-case results using revised EDSS cost and utility estimates alongside RSS drug price

Per patient results Marginal results
Cost per 

Treatment strategy Costs (£) QALYs Costs (£) QALYs QALY (£)

T1 IFN-�-1-a (Avonex, Biogen) 128,997 10.68 39,874 1.02 39,277
T2 IFN-�-1-a 22 �g (Rebif, Serono) 121,966 10.36 32,843 0.69 47,318
T3 IFN-�-1-a 44 �g (Rebif, Serono) 129,363 10.51 40,240 0.84 47,828
T4 IFN-�-1-b 8 MIU: treating RR (Schering) 120,788 10.30 31,665 0.63 49,973
T5 Glatiramer acetate (Copaxone, TEVA) 114,956 9.94 25,833 0.28 92,279
T6 IFN-�-1-b 8 MIU: treating RRSM and SPSM (Schering) 126,148 10.47 37,026 0.80 46,097
T0 Conventional management 89,123 9.66



Undertaking EVPI analysis within
the ScHARR cost-effectiveness
model
The inclusion of revised cost and utility estimates
for each EDSS health state together with the
current adjusted prices for the Department of
Health RSS gives the results for the base case
scenario shown in Table 4.

The application of EVPI analysis is, in general,
relatively straightforward, even within structurally
complex models such as the ScHARR 

cost-effectiveness model. Model parameters were
identified and probability distributions were
assigned to each parameter as part of the original
modelling work conducted as part of the NICE
assessment.14,35 A description of the model
parameters contained within each group is given
in Appendix 2. Following the incorporation of
public cost and utility estimates, revised
distributions were assigned to these parameters
using beta, log-normal and uniform distributional
forms. This model was used as the basis for
undertaking the value of information analyses
using the methods detailed in Chapter 3.
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Analytical overview
Figure 4 presents an outline flowchart for deciding
on a feasible approach to calculating the EVPI in
analysing a decision analytic health economic
model. The methodological discussion in this
report is structured around this framework. Thus
specific methodological issues underlying each
node in the framework are identified and
addressed within each respective section. This
framework is presented as a sequential approach
to methods available for undertaking EVPI
analysis; however, many unresolved
methodological issues exist, hence it should not be
considered as a prescriptive algorithm.

Can EVPI be calculated
numerically?
When using the two-level Monte Carlo algorithm to
estimate partial EVPIs, it is necessary to determine
how many samples are needed for the inner and
outer expectations. For a fixed inner sample size, it
is relatively straightforward to determine the outer

sample size; once the algorithm has been run for a
moderate sample size (say 50), confidence intervals
can be constructed for estimates using any outer
sample size. The difficulty is in determining a
suitable inner sample size without having to run
the model a very large number of times.

An inner sample size that is too small will produce
a bias in the partial EVPI estimate. The following
algorithm is used to obtain an approximate
estimate of the size of the bias for any inner
sample size. We give an outline of the algorithm in
Box 5 and full technical details are given in
Appendix 3. This method still requires a fairly
large number of model runs (~600). However,
these model runs can be sufficient to establish in
some cases that hundreds of thousands of model
runs may be insufficient.

The sample sizes of 21 outer and 30 inner
(demanding a total of 620) model runs are
intended to be the smallest sample sizes that will
give the correct order of magnitude for the bias.
Note that the same 620 runs can be used when
considering any inner sample size n.
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Is the model linear?
Under some conditions, a one-level Monte Carlo
integration can be used to evaluate the partial
EVPI for individual and groups of parameters.
The equations for calculating the EVPI for a
parameter or group of parameters �i is presented
in Box 2 and set out as follows:

Let,

�i be the parameters of interest for partial EVPI
�–i be the other parameters
d be the set of possible decisions or strategies.

Partial EVPI obtaining data on �i only = 
E�i

{max(E�–i
NB(d,�)|�i)] – max{E� NB(d,�)}

d d

The need for a two-level Monte Carlo integration
arises from the double expectation contained
within the first element of this formulation.
However, the expected value of a vector function
Fn(�–i) is equal to Fn(

—
�–i) if the function is linear

[for example, Fn(�–i) = A1 � �–i(1) + A2 � �–i(2) +
A3 � �–i(3) + … + constant], this is a sufficient but
not necessary condition. The conditional nature of
the expectations in the above expression also
imposes a further restriction in that for all possible
values of �i, the conditional expectation of Fn(�–i)
given �–i equals the unconditional expectation
Fn(

—
�–i). This therefore imposes a further condition,

which is satisfied if �i and �–i are independent, but
not generally otherwise. Where these conditions
hold the first element of the above EVPI
expression reduces to a single expectation:

E�i
{max(E�–i 

NB(d,�)|�i)} ≡ E�i
{max NB(d,�i|�–i = 

—
�–i)}

d d

This simpler expression can be evaluated using a
one-level Monte Carlo integration over the

uncertainty in �i, where the inner bracket on the
left-hand side, (E�–i

NB(d,�)|�i), is replaced with
the net benefit obtained when �–i are fixed at their
prior means on the right-hand side.

The linearity of the model can be checked using
standard statistical techniques applied to a sample
of the overall model outputs obtained from a
Monte Carlo analysis. Formally, for each
parameter or group of parameters of interest, the
linearity of the model in the parameters not of
interest should be checked; however, if applied
thoroughly the savings in sampling time aimed for
would disappear. In practice, a single check of
overall model linearity can provide a minimum
investigation, although it should be noted that it is
possible for the whole model to be non-linear,
whilst remaining linear in the parameter subsets
sufficient to satisfy the above conditions.

The method for calculating the partial EVPIs for
individual or groups of parameters, using the one-
level approximation, are the same as those for
calculating the overall EVPI, with the exception that
the random sampling in step 1 is undertaken only
for those parameters of interest; the remaining
parameters not of interest should be held constant
at their mean values. The complete description of
steps is set out in the section ‘Calculating partial
EVPI for individual or groups of parameters’ (p. 5).

Metamodelling
Review of metamodelling techniques
Introduction to metamodelling
Computer simulation models are used because of
the impracticalities involved in creating several
versions of a real system, or because of constraints
which prevent experimentation with a system.
Simulation models, despite being simplifications of

Methodological framework for undertaking EVPI analysis

18

BOX 5 Method for calculating necessary sample size for EVPI analysis

Sample size calculation
Let
�i be the parameters of interest for partial EVPI
�~i be the other parameters
Then:

1. Choose 21 evenly spaced values of �i across the parameter’s sample space for the outer samples.
2. For each of the 21 values, sample s = 30 inner values of �~i . Evaluate the mean net benefit of each treatment and the

sample variance-covariance matrix for the d net benefits. Denote the mean vector and variance covariance matrix by M
and V, respectively.

3. To estimate the bias using an inner sample size of n, generate a large sample of multivariate normal random vectors Z
from the N(M,V/n) distribution. Evaluate the average value of max{Z} – max{M}.

4. Repeat steps 2 and 3 for each of the 21 �i values. This will produce 21 biases calculated in step 3. Use numerical
integration to obtain the expected bias with respect to �i.



the real system, can be extremely complex and their
processing time for repeated simulation runs can
impose severe restrictions on the amount of model
analysis undertaken. Improvements in computer
power and speed have not provided a solution to
this problem, as practitioners seek to carry out
simulation analysis in large-dimensional problems.

For this reason, one approach to modelling the
original problem which has become more popular
over the past quarter of a century is the use of
metamodels as replacements for the original
simulation models. Metamodels are effectively
‘models of models’,47 or mathematical
approximations to the input and output functions
of a model,48 and can be seen as simplifications of
the original model. They are intended to provide
a good approximation of the model while
significantly cutting down the necessary
computing time by reducing the processing time
required, without oversimplifying the model.
Metamodels have a number of alternative uses,
including enhanced exploration and
interpretation of the model, generalisation to
models of a similar type, sensitivity analysis,
optimisation and providing the analyst with a
better understanding of the overall system.

Suppose that, for a given simulation model, the
relationship between the input parameters and the
output is given by the following (this can be
generalised to problems involving more than a
single response variable):49

z = f (x)

where x represents a vector of input parameters
and z is the output. Metamodelling attempts to
approximate the function f that relates the vector
x with the output z. This process involves defining
a separate function �, with a predicted output
�(x), where � must approximate f with sufficient
precision, i.e. f(x) � �(x).

There are three main issues to consider in
metamodelling, defined as:50

1. The choice of a suitable functional form for f
(to represent the relationship between the
inputs and the output).

2. Design of experiments [i.e. a definition of the
input space over which the metamodel must
approximate the response variable, the number
of runs to simulate and the assignment of
random number streams. See the section ‘Data
for metamodel building’ (p. 20) for a discussion
of the design of experiments].

3. Assessment of the adequacy of the model
(using, for example, hypothesis testing and lack
of fit analysis).

The first point addresses the choice of metamodel
to be used. The second is concerned with how the
metamodel is actually fitted (i.e. the range of
values at which to observe y, and which parameters
to use);47 this involves adopting an appropriate
strategy for selecting points in the design space
for fitting the metamodel. The third point reflects
on how well the metamodel approximates the
original model.

Review of metamodelling: methods
We conducted systematic searches to identify
studies relating to metamodelling techniques, in
particular those studies that presented a
comparative evaluation of alternative techniques.
Systematic searches were conducted on the
following databases: Computer and Information
Systems Abstracts, the Conference Papers Index
(via Cambridge Scientific Abstracts), International
Abstracts in Operational Research (IAOR), Social
Science Citation Index and Science Citation Index
(via the Web of Science). The search terms used
were broad, including either “metamodel” or
“metamodelling” AND (compar* OR evaluat*).
Internet search engines such as Google were also
used to identify other literature that is not yet
published in peer-reviewed journals. There were
no restrictions on the basis of language, date or
publication type. All searches were conducted
between July and August 2003.

A number of different methods are available for
the construction of metamodels; these have been
classified into two categories: parametric and non-
parametric techniques.49 Parametric techniques
approximate the functions with no prior knowledge
about the underlying data; such techniques
include polynomial models and Taguchi models.
Non-parametric techniques have an a priori set of
functions which are used to derive an approximate
function based on observed responses. There is no
single metamodelling technique that is universally
applicable to all simulation models, and numerous
factors affect the choice of a metamodelling
approach, such as accuracy, efficiency, robustness,
simplicity and model transparency.51 Kleijnen and
Sargent52 recommend the following steps in
building a simulation metamodel:

1. Determine the goal of the metamodel.
2. Identify the inputs and their characteristics.
3. Specify the domain of applicability.
4. Identify the output variable and its

characteristics.
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5. Specify the accuracy required of the
metamodel.

6. Specify the metamodel’s validity measures and
their required values.

7. Specify the metamodel and review this
specification.

8. Specify a design including tactical issues and
review the design of experiments.

9. Fit the metamodel.
10. Determine the validity of the fitted metamodel.

Data for metamodel building
In order to construct a metamodel, data must be
made available from which the relationships
between the inputs and outputs of the simulation
model can be estimated. This data collection
process is known as design of experiments (DOE),
and in a metamodelling context refers to the
selection of the input variable settings to be
sampled to build the metamodel;53 it is therefore
key to the development of a successful
metamodel.54 The use of an appropriate design is
therefore critical to the performance of a
metamodel, because the use of variable settings
which are unrepresentative of the true model
parameters will lead to the development of a
metamodel which cannot accurately predict
outcomes from new data. There are a number of
criteria which can be used to measure an
experimental design’s capability, including:53

� the number of experimental runs required (of
the simulation model)

� the symmetry of resulting distribution of
variance around the design space

� the ease with which the design can be
implemented

� the estimation of capacity of the design
� its ability to screen important factors.

There exist three key designs for fitting
metamodels: 

1. Full factorial design: this is the most commonly
used design, because of its ability to sample
from all dimensions of the design space via a
series of uniformly spaced values. Each
parameter is assigned a number of levels. As
the number of parameters in the model
increases, the number of design points required
explodes; this can be solved by using fractional
factorial designs. These designs assume that
the higher order interactions are negligible,55

enabling lower order effects to be estimated
with considerably fewer runs.

2. Latin hypercube design: this design offers
flexible sampling sizes whilst distributing points

randomly over the design space.54 Latin
hypercube sampling involves dividing the
distribution of each input parameter up into
strata of equal probability and sampling once
from each stratum to generate a set of different
parameter values. This process can be repeated
to generate multiple parameter sets. However,
because the points are selected at random, it is
possible to generate poor designs.54

3. Full factorial Latin hypercube designs: this is a
hybrid design strategy which combines the
above two strategies. The design space is
divided into pp hypercubes, with p = k – m,
where k is the number of parameters and m is
the fractionation of the design. In each
hypercube, n points are generated using Latin
hypercube sampling.54

The selection of an appropriate design of
experiments for each metamodelling technique is
discussed in the following sections.

Metamodel validation
An intrinsic objective of metamodelling is to
derive a metamodel which has the capability of
predicting the response over the design space of
interest.51 Hence, before being used as a
prediction tool in place of the simulation model, it
is important that any metamodel is validated to
ensure its adequacy in prediction. Although it
would seem convenient to assess the goodness-of-
fit of a metamodel using the data used to build
the metamodel (training data), this is considered
an insufficient validation method.51 Rather,
additional samples should be taken from the
simulation model, the results of which can be
compared with the corresponding metamodel
outputs. The availability of the original model
means that a large volume of data can be
generated to build the metamodel, which could be
expected to improve the predictive power of the
metamodel and can also be used to validate the
metamodel (see below). The fit of the metamodel
can be improved by deriving more samples from
the original model to provide input into the
metamodel, allowing it to be strengthened in areas
of weakness; this is particularly important in
ensuring that the metamodel provides a good fit
in the areas in which it is known to attain most
value. The accuracy of a metamodel can be
assessed using three statistics:51

1. r2 (a large value of which indicates an accurate
model).

2. Relative absolute error ( a small value of which
indicates an accurate metamodel – often highly
correlated with r2).

Methodological framework for undertaking EVPI analysis

20



3. Relative maximum absolute error (a small value
of which indicates an accurate metamodel –
generally not as useful as r2 or relative absolute
error).

In addition to these measures, it would be possible
to calculate a confidence interval for the ENB of
each treatment for the metamodel, which could be
compared with that from the original model.
Although this would give a rough gauge of the
precision of the metamodel, it is not clear how
these confidence intervals could be translated to
provide a confidence interval of the EVPI.

Residual analysis of the fitted metamodel would
enable the validity of the model to be assessed and
highlight any potential problems which could
affect this. An inadequate model can often be
detected by simple plots showing patterns in the
errors. For example, a plot of the predicted
outcome values from the metamodel against the
errors of these values would enable the analyst to
determine whether the errors were both
sufficiently small and random to give confidence
in the metamodel’s validity. Inadequacy of the
model determined via residual analysis can often
be addressed by the introduction of additional
variables (for example, non-linear functions of the
original variables) or by the transformation of
variables. Residual analysis is particularly useful
for the validation of regression models.

Metamodelling techniques
The review identified six metamodelling
techniques. A brief introduction to each technique
is provided and a critical assessment of their
suitability to different simulation scenarios, and
specifically their suitability for use in EVI analysis,
is presented. The metamodels discussed are: 

� linear regression
� neural networks
� multivariate adaptive regression splines (MARS)
� response surface methodology (using

polynomial regression)
� Gaussian processes/Kriging (non-linear

regression).

Simple linear regression
Simple linear regression explores the association
between a dependent variable (y) and an
independent variable (x). Regression analysis
considers how variability in one or more
independent variables causes a change in the
behaviour of a dependent variable. For simple
linear regression, where one is exploring the
relationship between a dependent variable and a

single independent variable, the relationship
between the variables is summarised by a
regression equation, which consists of a slope,  an
intercept and an error term. The slope represents
the amount by which the dependent variable
increases with unit increase in the independent
variable. For simple linear regression, the
relationship between the two variables is of the
form: 

yi = �0 + �x + �i

where �0 is the intercept and � is the regression
coefficient (slope). Therefore, over the range of
values sampled from the population, a unit
increase in x is expected to result in a change in y
of � units. A least-squares approach is used to
produce a model which minimises the prediction
error between the model and the observed values
from which the model is produced.

The strength of this relationship may be explored
generally through the interpretation of a scatter
diagram. The linearity of the relationship may be
more accurately estimated using Pearson’s product
moment correlation coefficient, which is given by

	x	y
	xy – –––––nr = –––––––––––––––––––––––––––––––––––––––––

	x2 – (	x)2 	y2 – (	y)2

–––––––––– ––––––––––√ n n

where –1 ≤ r ≤ 1.

The square of the r statistic essentially denotes the
relative predictive power of a linear model,
ranging between 0 and 1, and indicates how much
of the variability in the dependent variable can be
explained by the variability in the independent
variable. For a strong positive correlation, the
value of r will tend towards 1, whereas for a strong
negative correlation, r tends toward –1. The
adjusted r2 statistic weights r for the number of
independent variables and observations and hence
penalises an unnecessarily complex linear model.

In reality, it is unlikely that the variability in the
dependent variable will be completely described
by a single independent variable. Multiple linear
regression enables the variability in the dependent
variable to be described by more than one
independent variable. Whereas simple linear
regression considers the linear relationship
between two variables over two dimensions,
multiple linear regression considers the linear
relationship between a dependent variable and k
independent variables over k + 1 dimensions. The
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regression model is a simple extension of the
simple linear form outlined above:

yi = �0 + �1x1i + �2x2i + … + �kxki

where �0 is the intercept and x1i is the first
independent variable, x2 is the second, and so on
up to the kth independent variable.

Assumptions of linear regression
Linear regression is based on a number of
assumptions: 

� Each error component follows an approximately
normal distribution, with a mean of zero. This
can be evaluated by plotting the residuals,
which should be randomly distributed about
zero.

� Homoscedasticity of the errors – the variance of
the errors in the predicted y values should be
constant. This can also be validated by
examining the residual plots and checking that
there is no pattern in the residuals that suggests
heteroscedasticity.

� The errors are independent of each other – a
residual plot should show random scatter of the
errors, and would highlight any patterns
suggesting non-independence, such as
autocorrelation.

Use of linear regression in EVI analysis
If a strong linear relationship exists between
sample parameter inputs and the model outputs,
it may be appropriate to use multiple linear
regression to replace the existing cost-effectiveness
model with a single regression equation. For the
purposes of EVPI analysis, the dependent variable
is defined as the absolute ENB for each treatment
strategy and the independent variables are
defined as the parameter values randomly
sampled using multivariate Monte Carlo sensitivity
analysis. The equation would include the many
universal parameters common to all treatment
strategies, plus strategy-specific parameters (e.g.
treatment effect) which would be weighted
according to the strategy under consideration. It
should be noted, however, that there exists no
formal test to answer the question ‘when does
linear become too non-linear’?; whilst the adjusted
r2 statistic is useful, the point at which a model
becomes too non-linear is essentially dependent
on the subjective judgement of the analyst and the
level of accuracy required in the EVPI results. The
relationship between the EVPI results of regression
metamodelling and the original cost-effectiveness
model should be highlighted as an issue for
further research.

If the relationship between independent and
dependent variables is weak, it may be necessary
to specify a more complex model, for example,
the inclusion of first-order interactions to obtain a
better approximation. This would however
increase the complexity of the metamodel; to
specify a regression model with x independent
variables would require (x2 – x)/2 + 2x variables if
all first order interaction terms are included.
Where a large number of variables are included in
the model, this could make the metamodelling
process as complex as implementing the original
model itself. It may be possible, however, to
specify a lesser number of interactions
individually, rather than including the entire set.
For the practical implementation of EVPI,
regression analysis is likely to be most useful in
instances where a strong linear relationship exists
without having to include any interaction 
terms.

Does it save time?
Comprehensive value of information analysis may
be performed using the regression model in
considerably less time than is required for the
equivalent analysis using the original cost-
effectiveness model. The inclusion of first-order
interactions may, however, require a more complex
model.

Accuracy of results
The main drawback concerns the degree of
linearity between the model inputs and the ENB.
If the relationship between ENB and the
parameter inputs is weak, linear regression is
unlikely to be useful in performing EVPI analysis.
If the relationship is strongly linear, that is, an
adjusted r2 value of close to 1, it is likely that even
if the expected net benefits for each treatment
strategy are predicted with accuracy, the prediction
error in the calculation of net benefits is likely to
be magnified in the calculation of EVPI. Despite
this drawback, regression analysis may have an
alternative role in identifying the key parameters
within the model. Even if the predictions from the
regression model are imperfect, the regression
metamodel may be used in order to obtain 
one-level estimates of partial EVPI for all model
parameters. Although the estimates of partial
EVPI obtained through this method are unlikely to
be accurate, the exercise may enable the modeller
to ascertain which of the individual model
parameters are likely to attain value and which are
not. The fundamental benefit of this deductive
approach is that if the analyst is aware of the key
parameters, it may be possible to revert back to
the original cost-effectiveness model and 
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perform partial EVPI analysis on those identified
parameters, and to ignore the remaining
parameter set.

The appropriateness of linear regression
metamodelling is determined by the degree of
linearity between the model inputs and ENBs. The
question of ‘how linear is linear enough?’ for use in
EVPI analysis cannot be resolved using standard
statistical tests, although it is possible to explore the
degree of approximation error resulting from a
linear regression metamodel through comparing the
global EVPI results calculated using the regression
metamodel and the global EVPI results calculated
using the original cost-effectiveness model. If the
two global EVPI results are similar (and the adjusted
r2 value suggests a strong linear relationship), this
should enable the analyst to gauge the degree to
which non-linearity may distort the results of the
partial EVPI analysis. If there is a considerable error
between the global EVPI estimates, this should
forewarn against the use of the one-level EVPI
algorithm and highlight the need for non-linear
methods such as GP metamodelling.

Level of complexity/specialist expertise required
One of the key benefits of using regression
analysis in undertaking value of information
analysis is that the method is straightforward to
implement and a regression metamodel may be
constructed in only a short amount of time.

Are there any parametric restrictions?
There are no formal restrictions in terms of the
number of parameters that may be used within the
regression analysis. However, if a large number of
parameters are included within the regression
model, a greater number of data points are
required in order to cover the entire response
surface. It is generally recommended that 10 sets
of observations are required for each parameter
within the regression model, although it may be
beneficial to use a greater number of observations
to increase the accuracy of the approximation.
The inclusion of first-order interactions may be
constrained by the ability of the software to cope
with a large number of variables and observations.

Neural networks
Neural networks are a class of non-parametric
models capable of learning from data. Originally
devised in the 1960s, the idea of developing
simplified mathematical models of brain-like
systems did not become widely used until the late
1980s, but they are now used in areas such as
classification (for example, in marketing, as a
means of targeting customers by classifying them

into segments based on certain characteristics),
financial analysis and optimisation.48 A neural
network is intended to mimic the functioning of
the brain by ‘learning’ about the system being
modelled based on data fed into it. These data
often come from simulation model runs, and are
known as the ‘training’ data, which comprises
values of the input parameters and the
corresponding outputs. The network uses this
information to learn about the relationships
between the various inputs and outputs, based on
different values of the input parameters. This
knowledge about the simulation model then allows
the network to make estimates of the outcome(s)
based on new sets of input values, saving
computation time by removing the need to run
many simulations with different parameter values.
A neural network is made up of a series of nodes,
which are arranged in layers. Data on the
simulation model parameters are fed into the
network and propagated through the network via
these nodes to produce an output value.48 The
layout of a typical node is shown in Figure 5.

Each node accepts one or more inputs (e.g. x1, x2,
x3) and subsequently produces an output based on
weights (e.g. w1, w2, w3) assigned to each input to
represent the strength of the relationships between
the nodes.48 Each node combines its inputs and
adds a bias term (�) to give a net activation value.
The output of each node (y) is then a non-linear
(often logarithmic)56 function of the net activation
value. This output may form an input to another
node, or it may be the final output of the network.

There are a number of ways in which the nodes
can be arranged in a neural network (known as
architectures), the most common being the feed-
forward network, in which the nodes are arranged
in layers where the output of each node is
connected to all of the nodes in the next layer.48

Under this system, the procedure described above
continues until the output layer is reached.

In order to train a neural network, a suitable set of
data needs to be fed into it; this usually comes in
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the form of results from the original simulation
model. The training is carried out by repeatedly
giving the network examples from the training data
set.56 Each component of the training data consists
of an input vector (i.e. set of input parameter
values) along with its corresponding response
(output). Each example is fed into the network,
which calculates an estimated value of the output,
and the resulting error between this estimate and
the true answer is used to adjust the weights (wi)
between each layer in the network.56 The most
common method of learning is known as back-
propagation,56 where the errors are propagated
through the network from the output layer back to
the initial input layer. The quantity and quality of
this training data are key to the performance of
the network, and as such neural networks are
sometimes limited in their prediction capability by
finite and imperfect data sets.57 Hence, the larger
and more representative the training data is of the
true system, the more accurate the network will be
in predicting the output.

A trained neural network metamodel is a
deterministic model,57 but neural networks can
also be used to model stochastic systems. However,
this is hindered by the need to obtain each
individual training point, which can involve vast
computational expense. As a result, the training
data sets used for stochastic networks tend to be
small, and this in turn leads to a less precise
network, yielding potentially inaccurate 
predictions.

The use of neural networks in metamodelling has
a number of advantages, primarily that they can
theoretically represent any relationship to any
degree of precision because they have universal
function approximation capability,48 and at the
same time can significantly accelerate the
computer time required for large simulation
models. As a result, the error in the network can
theoretically be reduced to zero because the
likelihood of selecting an incorrect functional form
is eradicated.57 Neural networks are global
models, and so unlike in polynomial regression, a
single network can model the entire simulation
response surface.57 They do not rely on some of
the standard statistical assumptions such as
homoscedasticity (constant error variance),
absence of autocorrelation and absence of
multicollinearity between the input variables; they
can accommodate a combination of continuous
variables and discrete numeric variables.57 Since
many simulation models have multiple outputs,
the use of neural networks avoids the need to
develop a separate metamodel for each output.

As with any metamodelling technique, the network
is only valid over the specified parameter domains
included in the training data set, which
emphasises the need for a reasonably large
training set. The time taken to train the network
may be substantial and a large amount of training
data often needs to be simulated from the original
model to train the network adequately. The
determination of a suitable architecture for the
network can also be time consuming and, because
of its nature as a non-parametric approach, a
network may over-fit the random error obtained
from the simulation.48 If additional parameters are
required in the model or the distribution of any
input parameter is changed, the network is
invalidated and a new network must be created to
reflect these changes, which inevitably increases
computation time. It is ultimately the decision of
the analyst as to whether the effects of some of
these problems are offset by the speed with which
networks can compute answers, once trained.

Software is widely available for the development of
neural network models, for example neural
simulation tool (NEST),58 giving it an advantage
over other metamodelling techniques.

Use of neural networks in EVI analysis
Does it save time?
Neural networks are particularly useful in dealing
with computationally expensive models; from this
point of view, using neural networks may save time
compared with a large simulation model. However,
as the number of parameters increases, so too does
the level of training required to calibrate the
model. Problems may arise in training the network;
because of the large number of parameters in the
model, the training process may be lengthy
because of the need to offer the network training
data on all parameters at a variety of different
parameter settings. The extent to which this is
done is dependent on the level of accuracy
required in the output values from the network
compared with those from the simulation model.
Therefore, the timescale of the project would
determine the feasibility of using neural networks.

Accuracy of results
The accuracy of predictions made by a neural
network depends again on how intensive the
training process has been. If a sufficient amount of
data which is representative of the simulation
model has been fed into the network, its ability to
predict the outcome based on new data will be
improved. A rigorous training process is therefore
recommended if highly accurate approximations
are required.
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Level of complexity/specialist expertise required
The transition from a deterministic health
economic model to a neural network may not be
straightforward and specialist expertise may be
required. Although a suitable software package
may ease the process of building a neural network
metamodel, it is one of the more complex
metamodelling methods identified within this
review.

Are there any parametric restrictions?
One of the main advantages of this method is that
it can theoretically handle any number of
parameters, although this may be limited by the
capacity of the software used. Over the lifetime of
a long-term project, a neural network could
effectively replace the simulation model,56 with the
original model being used as a validation tool
against which to check the accuracy of the
network’s predictions.

Multivariate adaptive regression
splines
In many situations, the behaviour of a simulation
model cannot be adequately described by a single
equation. If the data under consideration are highly
non-linear, one approach would be to use as high-
an-order polynomial as possible to approximate
the function. However, high-order polynomials can
be inappropriate in such situations because they
rely on the cancellation of oscillations to obtain a
good fit; this property makes them non-robust.47

This problem led to the development of spline
metamodels, which address the problem of non-
linearity by fitting a set of low order polynomials,
or splines, to the data, each over a separate range.
These ranges are derived by dividing the domain
up into intervals, such as [t1, t2], [t2, t3], …, [tn–1,
tn]; the end-points of these intervals are known as
knots.47 Continuity restrictions are applied to
adjacent pieces to ensure that the pieces match
with a prescribed order of continuity.53 Each range
is then represented by a different equation. The
univariate spline metamodel can be represented as
follows:59

M
ŷ = ∑amBm(x)

m=1

where ŷ is the outcome and am is the coefficient of
the expansion (or weighting) applied to the basis
function, Bm. These basis functions typically take
one of two forms:47

� truncated power function bases
� B-spline bases.

The main issue in spline metamodelling is the
trade-off between the fit of the approximation at
known points and the smoothness of the resulting
metamodel.47 The fit is measured by the sum of
squared differences of the metamodel and the
responses of the simulation model in each
experimental run, and smoothness is represented
by integrating the square of some derivative over
the region of the metamodel’s validity. The
relative importance of these two objectives is
defined by the smoothing parameter �.47 For
example, � = 0 implies interpolation with no
constraint on smoothness. The function which
minimises this value is a spline of order k, which is
in Ck–2 [continuous derivatives up to the (k – 2)th
derivative].47 This function is a piecewise
polynomial with terms up to xk–1, and the knots
will occur at points in x corresponding to the
observed data, xj.

There are three classes of spline metamodelling
methods which are used to deal with the trade-off
outlined above:47

� smoothing splines
� spline interpolation
� regression splines.

Under the smoothing splines approach, the order
of the spline, k, is chosen by the user; knots are
not pre-specified, but they will occur at the xj
values in the optimal solution; � can be chosen
based on the generalised cross-validation (an
adjusted residual sum of squares). Spline
interpolation also requires k to be chosen by the
user; knots are not pre-specified, but they will
occur at the xj values in the optimal solution, while
� = 0. Finally, under the regression splines
methodology, k and the knots are chosen by the
user, and � = 0.47

Such univariate spline metamodels can be
extended to multivariate scenarios; the most
common approach in these situations is the use of
MARS. This method works by adaptively selecting
a set of basis functions for approximating the
response function through a forward/backward
iterative approach.51 The method is implemented
as in the following steps:

1. Start with the simplest model containing only
the constant basis function.

2. Search the space of basis functions, for each
parameter and for all knots, and add those basis
functions which maximise the goodness-of-fit.

3. Recursively apply step 2 until a specified level
of complexity is attained.
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4. Remove the basis functions which contribute the
least to the overall (least-squares) goodness-of-fit.

This method makes no assumptions about the
input–output relationship and has therefore
become increasingly popular in dealing with
complex data mining problems because it can be
used in situations where the relationship between
the inputs and outputs is non-monotonic and
hence difficult to approximate with parametric
techniques.59 In addition, step 4 makes MARS a
very powerful tool for parameter selection, as the
algorithm only picks up basis functions and
predictor variables which make a sizeable
contribution to the prediction of the outcome.59

The main advantages of MARS are its accuracy
and the reduction in computation time required to
construct the metamodel compared with other
metamodelling techniques.51 In addition, it is able
to deal with both continuous and discrete variables
(i.e. the input parameters). However, because the
method is adaptive, it offers a high degree of
flexibility, which may result in overfitting.59

Models which are unnecessarily complex often
tend to be poorly generalisable to the prediction
of new cases (i.e. perform poorly when presented
with new data).59 This problem is overcome in part
by step 4, but does not necessarily guarantee to
reduce complexity sufficiently. Spline metamodels
have also been accused of being difficult to
interpret.48

Software is available for building MARS
metamodelling, the most widely used being
Matlab because of its flexibility for creating
algorithms.53

Use of multivariate adaptive regression splines
in EVI analysis
Does it save time?
In order to determine suitable basis functions to
construct the metamodel, a sufficiently large
training data set would need to be produced via
multivariate Monte Carlo sampling in order to
reflect the varying levels of uncertainty in the input
parameters. Non-linearities may occur when the
MARS approach is used for models with a large
number of parameters, thus making parametric
metamodelling techniques inappropriate. MARS
does not make any such assumptions about the
linearity of the model and, because of its use of
multiple splines to model the data, can
incorporate varying degrees of non-linearity
within the same metamodel. Since the aim of a
metamodel is to simplify the original simulation
model, the property of removing (one by one) the

least significant basis function from the
metamodel eliminates the need for initial factor
screening, saving computation time and the need
to select an appropriate screening technique [see
the section ‘Importance analysis’ (p. 31)]. MARS
requires less computation time in constructing the
metamodel than many other techniques, hence it
may be a useful technique if time is limited.

Accuracy of results
The use of MARS is thought to yield more
accurate results than low-order polynomial
approximations, because of its use of piecewise
polynomials as opposed to a single polynomial
equation. The ability of MARS to predict
responses accurately is highly beneficial in value of
information analysis as the magnitude of errors
made in the calculation of the net benefits is
augmented in the EVPI calculation.

Level of complexity/specialist expertise required
Although the computation expense involved in
constructing MARS metamodels is generally low, it
is a relatively complex method, requiring some
statistical expertise in deriving the basis functions
from the simulated data. This complexity can lead
to overfitting, yielding an unnecessarily complex
model which is difficult to interpret.

Are there any parametric restrictions?
There exists no specific limit on the number of
parameters which can be used in a MARS
metamodel, but because of the computation
required to derive the basis functions, a low level
of dimensionality not only reduces the
computation time required, but also reduces the
possibility of overfitting the model.

Response surface methodology
Response surface methodology is described as “a
collection of statistical and mathematical
techniques useful for developing, improving, and
optimising processes. It consists of the
experimental strategy for exploring the space of
the process or of independent variables, empirical
statistical modelling to develop an appropriate
approximating relationship between the response
and the input variables.”60 It has been used as a
technique for metamodelling for over 30 years,
and works by fitting a series of polynomial
regression models to the output variable of the
simulation model and optimising the resulting
regression function.61

The metamodel takes the form:62

y(x) = f(x) + �
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where y(x) is the unknown function of interest, f(x)
is a known polynomial and � is a random error
following a normal distribution with mean 0 and
variance 
2. The polynomial function f(x) which is
used to approximate y(x) is typically a first- or
second-order polynomial (i.e. it is either linear or
quadratic). For example, a first-order polynomial
would take the form: 

k
ŷ = �0 + ∑�ixi

i=1

where �0 is the intercept term, xi is the input
parameter i and �i is the coefficient of 
parameter xi.

Metamodels based on polynomial regression tend
to be popular because they provide parameter
estimates which have advantageous properties
such as being unbiased. The parameters of 
these polynomials (�i) are determined using 
least-squares regression analysis of the sampled
data from the original simulation model as
follows:62

�i = [x�x]–1 x�y

where x = the design matrix of data points
sampled from the simulation model, x� = the
transpose of x and y = a column vector 
containing the values of the response at each
sample point.

These coefficients are used to fit the response
surface approximations to data generated from the
original simulation model, which are then used for
prediction of the outcome variable of interest.54

The process of response surface metamodelling
encompasses three steps:62

1. Screening of parameters in the simulation
model to select the most important ones (if the
model contains a large number of parameters)
– see the section ‘Importance analysis’ (p. 31)
for details of screening methods.

2. First-order (polynomial) experimentation – this
considers a linear method of approximating
the input–output relationship of the simulation
model if little curvature exists in the data.

3. Second-order (polynomial) experimentation –
this follows on from first-order experimentation
if significant curvature exists.

The use of low-order polynomials is advantageous
because they involve relatively few parameters and

offer insight into the model behaviour. However,
because most response surfaces are second-order
designs, they have limited capability in accurately
modelling non-linear functions of arbitrary
shape.62 Although higher order response surfaces
could be used to overcome this problem, this
creates more problems because it requires a larger
number of simulation runs to be carried out to
provide the data points necessary for fitting
models with a large number of variables. This can
often involve considerable computational expense.
The degree of linearity in the model would need
to be estimated in advance (for example, using the
r2 statistic) to enable an appropriate polynomial
approximation to be used.

A potential solution to this problem which has
been suggested is the use of multi-level,
partitioned response surfaces, in which parameters
and responses are divided into two groups based
on domain knowledge, that is, based on factors
which are believed to affect particular responses
directly.63 Each response is made a function of all
other factors by concurrently constructing two-part
partitioned response surfaces.63 This involves
fitting the first set of responses as a function of the
first set of factors and fitting the second group of
responses as a function of the second set of
factors. Separate experiments are then run to fit
these two sets of response surfaces. The effect of
the second group of factors on the first set of
responses is assessed by fitting the mean of these
responses as a function of the second set of factors
and vice versa, creating two-level response
surfaces.

This method is based on the assumption that the
interactions between the parameters of each
partitioned set are either negligible or non-
existent. This can be overcome in part by ensuring
that the factors and responses are partitioned
appropriately, which should minimise the
magnitude of these interaction terms.

Use of response surface methodology in EVI
analysis
Does it save time?
The ability of the response surface methodology in
reducing computation time depends on the level
of non-linearity in the simulation model being
approximated. If a low-order polynomial provides
an adequate approximation (i.e. if the model is
approximately linear), then the computation time
involved in deriving the metamodel is negligible.
If, however, the data are highly non-linear and the
use of a higher order polynomial is required, this
can increase the computation time considerably
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because of the need to simulate additional data
points to build the metamodel.

Accuracy of results
The accuracy of the results provided by a response
surface metamodel depends on the order of the
polynomial used. This decision is driven by the
level of non-linearity present in the data, and
although a low-order approximation may prove
sufficient in some cases, data with a significant
non-linear pattern may be better approximated by
a higher order approximation. As with many
metamodels, there exists a trade-off between the
accuracy required from the metamodel and the
time available in which to build it.

Level of complexity/specialist expertise required
The use of low-order polynomials in response
surface metamodelling ensures that the models
derived are relatively simple in terms of both their
construction and interpretation. Specialist
statistical knowledge may be required if higher
order polynomials are to be used.

Are there any parametric restrictions?
The use of multi-level partitioned response
surfaces may be appropriate in EVI analysis,
because of their ability to deal with a large number
of parameters. This method can be extended to
use more than two sets of factors and responses
and, given that parameters within many health
economic models can often be grouped relatively
easily (e.g. cost parameters, utility parameters,
drop-out parameters), this approach could be
beneficial. In addition, the experimentation and
model fitting expense is greatly reduced by
splitting up the responses and factors in this way.63

Gaussian processes
GP regression64 is a Bayesian non-parametric
method and has become widely used recently in
approximating deterministic simulation models.65

Operationally it is equivalent to Kriging, a
technique used in geostatistics for spatial
interpolation. The basic GP model is designed for
interpolating deterministic functions, but can be
modified to incorporate noise in simulation
models such as that arising in a patient simulation
model. GPs are particularly appropriate in cases
where the simulation model under consideration is
highly non-linear and there is uncertainty
regarding the true functional form of the model.
With sufficient data a GP can replicate any
continuous deterministic function precisely.

In GP regression, the simulation model y(x) is
thought of as an unknown function, and

uncertainty about this function is described
statistically. A priori, it is stated that

y(x) = f(x) + Z(x)

where f(x) is a known polynomial function of x
(similar to the polynomial function in a response
surface model); coefficients in the polynomial are
treated as uncertain; and Z(x) is the uncertain
functional departure from that polynomial,
represented by a Gaussian process.

Defining Z(·) to be a Gaussian process means that
for any collection of inputs {x1,…, xn}, the
corresponding values of {Z(x1),…, Z(xn)} have a
multivariate normal distribution. The implication
of this is that at any two input values xi and xj, the
functional departures Z(xi) and Z(xj) from the
polynomial f(·) will be correlated, the size of the
correlation depending on the distance between xi
and xj.

The GP will have mean 0 [a non-zero mean function
would be incorporated into f(·)] and covariance: 

Cov[Z(xi),Z(xj)] = 
2R(xi,xj)

where 
2 is the variance and describes how far y(x)
might deviate from f(x) and R(xi,xj) is the spatial
correlation function between two sampled data
points Z(xi) and Z(xj).

A variety of possible correlation functions exist,
the most frequently used of which is

R(xi,xj) = e–�|xi – xj|
p

where � > 0 (estimated by maximum likelihood)
and p ≤ 2 [ p = 2 is commonly used, and implies
that y(·) is infinitely differentiable].

Functions of this nature tend to zero as |xi – xj|
increases. This indicates that the influence of a data
point on the point to be predicted becomes weaker
as the two points become more distant from one
another, whereas the magnitude of � determines
how quickly that influence deteriorates.53 The
selection of which correlation function to use
determines how the model fits the data;53 it is
dependent upon what level of smoothing between
the sampled points is required and how quickly
the function is required to move between them.

The construction of the GP metamodel, however,
can be time consuming, owing to its complexity
relative to other methods (e.g. response surface
metamodelling). The difficulty arises in estimating

Methodological framework for undertaking EVPI analysis

28



�, as evaluating the likelihood can itself be
computationally intensive.

Use of Gaussian processes in EVI analysis
Like the MARS approach, the use of GPs would be
most beneficial in a situation where the model
being approximated was highly non-linear. GPs
have the additional advantage that the theory can
be naturally extended to efficiently approximate
integrals of functions y(x) in addition to functions
themselves. Since evaluating a partial EVPI
involves evaluating a large number of integrals
(expectations), the GP approach can be
particularly efficient.66 Difficulties are likely to be
encountered when the number of input
parameters is large (say >50). This is because the
more inputs there are, the more model runs will
be needed for the GP Z(·) to ‘learn’ how y(·)
deviates from f(·). This poses a problem in that
many health economic models are complex and
contain a large number of parameters; this can be
resolved by using importance analysis techniques
[see the section ‘Importance analysis’ (p. 31)] to
rank the parameters according to their
importance in the model.

Does it save time?
The greater the complexity of the health economic
model (and the time needed for a single model
run), the greater the time that is saved by using a
GP metamodel. Alternative metamodelling
techniques may prove simpler and more accessible
to the analyst, but will require more runs of the
economic model before they can be constructed.
This approach is not recommended for models
that can effectively be run instantaneously.

Accuracy of results
Because the GP model is a Bayesian technique, it
is possible in principle to quantify probabilistically
the uncertainty in the true value of a partial EVPI
that results from using a GP to emulate the model
based on a limited number of model runs. The
issue of uncertainty due to the use of a metamodel
has been addressed,66 but the methods have not as
yet been adapted for partial EVPIs. Partial EVPI
estimates obtained from a GP metamodel based
on 600 simulation model runs were more accurate
than Monte Carlo estimates based on 400,000
runs.66 The simulation model in this example had
23 uncertain input parameters.

Level of complexity/specialist expertise required
GP regression is the most complex of the methods
presented in this review, owing largely to the
absence of suitable software available to construct
this form of metamodel. The implication arising

from this is that analysts must rely on their own
statistical programming abilities. Until reliable
software for implementing GP regression (and
producing partial EVPI estimates) is readily
available, this technique may be unattractive to a
general user of health economic models.

Are there any parametric restrictions?
GP metamodels can be difficult to construct for
simulation models with large (e.g. >50) numbers of
parameters. Large numbers of input parameters
can be dealt with, but this is computationally
demanding and may require programming ability
in a faster language such as C. As a result,
importance analysis may be required for larger
models; this may represent an important concern,
as there is a chance that the importance analysis
may fail to identify all important model parameters.
Hence, the resulting GP metamodel may not be
based on those parameters which have the greatest
EVPI. Current GP methodology also requires the
simulation model to be a continuous function.

Comparison of metamodelling
techniques
There is very little literature which explicitly
compares metamodelling techniques against each
other. However, it has been contended that the
various techniques should be compared only on
the basis of accuracy of results.51 However, for the
general user of health economic models, other
factors should be taken into account, such as
robustness, efficiency, model transparency and
simplicity.51

Seven criteria can be used for the comparison of
metamodels:53

1. The ability to gain insight into the model (for
example, the relationships between the input
and output parameters).

2. The ability to capture the shape of arbitrary
smooth functions based on observed values
which may be perturbed by stochastic
components with general distribution.

3. The ability to characterise the accuracy of the
fit through confidence intervals.

4. The robustness of the prediction away from
observed (x, y) pairs.

5. The ease of computation of the approximant
function f.

6. The numerical stability of the computations
and consequent robustness of predictions to
small changes in the parameters defining f.

7. Whether software exists for computing the
metamodel, characterising its fit, and using it
for prediction.
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Table 5 gives the main advantages and disadvantages
of each metamodelling approach, along with brief
discussion of its applicability to EVPI analysis.

There exist a number of additional metamodelling
techniques, which are not presented here owing to
a lack of relevant literature. These methods
include:67

� accumulated approximation technique (which
accumulates the values of previously used points)

� multivariate Hermite approximation (which
requires a large number of data points)

� wavelet modelling (which uses a special form of
basis function)

� project pursuit regression (which is useful for
large models).
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TABLE 5 Advantages and disadvantages of each metamodelling technique in EVPI analysis

Metamodelling technique Advantages Disadvantages EVI application

Linear regression Simple to perform

Software widely available

Useful if the simulation model
is linear

Not useful if the model is
non-linear

Incorporating interaction
terms into the model can
make the analysis
unnecessarily complicated

Estimate of EVPI may be
distorted if the model is
imperfectly linear

Neural networks Very quick to run once
trained

Particularly useful for
deterministic applications

High accuracy can be
obtained if network is
sufficiently trained

Training process can be time
consuming

Modelling stochastic systems
can yield imprecise results

Software can limit the
number of parameters which
can be used

Insufficient training can lead
to a lack of robustness

May potentially be used to
replace simulation model

MARS Low computational expense
in building the model

More accurate than 
low-order polynomial
approximations

Flexible software available

Ability to accurately capture
shape of functions via the use
of piecewise polynomials

The high degree of flexibility
can result in overfitting

Unnecessary complexity can
make interpretation difficult

Some specialist statistical
expertise required for
deriving the basis functions

MARS removes the need for
factor screening

Response surface
methodology

Simple to derive the
metamodel

Software widely available

The use of low-order
polynomials ensures
simplicity

The adequacy of the model is
determined solely by
systematic bias in
deterministic situations

Using high-order polynomials
increases computation time
significantly

There may be a trade-off
between accuracy required
and time available

GP Extremely flexible

Well suited to deterministic
applications

Requires fewer parameters
to be fit than other methods

Limited use for models with
>50 parameters

Complex method

Lack of suitable software

Requires specialist expertise
in smoothing

EVI analysis may be
problematic due to
parameter restrictions and
complexity



Few of these methods are currently widely used
and they are the subject of ongoing research.

Conclusions
There is clearly no universally superior
metamodelling technique, rather each method
may be appropriate in different circumstances,
depending on the size of the original model and
whether the relationship between the input and
output parameters is linear. Although metamodels
allow faster analysis of a problem, their use
introduces an added element of uncertainty to the
analysis, because a metamodel can only ever
approximate a system rather than fully replace it.
By approximating net benefits in an EVI model,
the accuracy of the subsequent calculation of the
EVPI can be affected if the estimates of the net
benefits are poor. The value of the EVPI is
calculated from extreme values of the net benefit,
so the approximation of the EVPI will be poor if
the metamodel makes poor estimations at these
extremes.

Because data from the simulation model are
required to build the metamodel, the use of an
appropriate design of experiments is critical to the
success of the chosen metamodel. The use of data
which are not representative of the true system in
building the metamodel will result in bias and
hence inaccurate predictions.

The most salient problem concerning certain
forms of metamodelling (e.g. Gaussian process
modelling) is that they are able to accommodate
only a limited number of variables. The process of
deriving a metamodel which accurately
approximates the original model may therefore be
problematic, owing to the necessity 
of having to ignore some parameters. There is
hence a need to prioritise the parameters in 
some way so that the variables which most
influence the outcome measure are used in the
metamodel. There exists a variety of methods for
prioritising parameters, which are discussed in 
the following section, along with suggestions as to
how they could be applied to value of 
information analysis.

Importance analysis
Introduction
The main problem with some forms of
metamodelling is their inability to accommodate a
large number of variables. It is therefore often not
feasible to use all input parameters; indeed, this is
one of the reasons why metamodelling is used in

the first place, as a means of simplifying the
original model.

Importance analysis refers to a set of techniques
which aim to rank parameters in a complex
simulation model according to their relative
importance in the model (i.e. their impact on the
variability of the outcome), identifying the most
important parameters and separating them from
the trivial many. Such techniques provide the
analyst with information about which parameters
contribute most to the uncertainty in the outcome
measure and hence to select these variables as
inputs into metamodelling. It is therefore useful in
situations where the metamodel being employed
can handle only a limited number of variables.
Importance analysis identifies the most influential
variables for use in the metamodel, with the
anticipated result being a good approximation of
the original model.

In this respect, importance analysis is different
from traditional sensitivity analysis, where the aim
is to address the degree of uncertainty surrounding
the outcome measure. It can also be used as a
means of prioritising further research by providing
information on which variables cause uncertainty
and so should be researched in more depth.

There exist a number of importance analysis
techniques for ranking parameters, which have
been broadly classified into five categories:68

� variance/correlation-based measures
� information-based measures
� probability-based measures
� entropy-based measures
� elasticity-based measures.

Correlation- or variance-based methods tend to be
the most commonly used because of their relative
simplicity; such methods include assessing
correlation and regression coefficients. Probability-
based measures compare two cumulative density
functions for a single-point parameter and
measure the difference between them. Elasticity-
based measures consider how the value of the
outcome parameter is affected by changes in any
one input parameter. Entropy methods measure
the degree of dispersion of values for an outcome
measure,68 whereas information-based methods
include the use of EVPI to measure the reduction
in opportunity loss associated with eliminating all
uncertainty on a parameter.

This section discusses a number of importance
analysis techniques from the categories given
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above, together with an assessment of how they
may be applied to EVI analysis. The following
techniques vary in their complexity and in their
suitability for certain types of data; this is
discussed when assessing each method’s
applicability to EVI analysis: 

� generalised sensitivity analysis
� sequential bifurcation
� partial contribution to variance
� partial rank correlation coefficient
� standardised regression coefficient
� frequency domain methodology
� elasticity measures.

Generalised sensitivity analysis
Generalised sensitivity analysis (GSA) is a
probability-based measure of which there has been
relatively little discussion in the literature. This
method considers the contribution of each model
parameter to the eventual outcome measure and
then uses the Kolmogorov–Smirnov (K–S) statistic
to rank the parameters and prioritise further
research by eliminating the less influential variables.

For each parameter of interest, two cumulative
density functions (CDFs) are derived, relating to
‘good’ and ‘bad’ outcomes.68 These two CDFs are
plotted and compared by calculating the maximum
separation distance (MSD) between the two curves,
denoted by d. If there is a large separation
distance between the two CDFs, then the response
variable is sensitive to changes in that parameter.
This measure of sensitivity can be assessed using
the K–S test, which tests for a difference between
two distributions. The K–S test also provides the
probability of the MSD between the two CDFs that
could have occurred if the two distributions in fact
came from the same distribution.69 Therefore, the
lower this probability is, the more certainty there
is that the CDFs are significantly different from
each other. The K–S statistic is calculated for each
parameter in the model; the parameters can then
be ranked in descending order according to this
statistic; parameters with the highest K–S statistic
are those which cause most uncertainty in the
outcome variable.

Use of generalised sensitivity analysis in EVI
analysis
With respect to value of information analysis, this
methodology could be adopted by plotting the
CDFs of the ENB (with a positive net benefit
representing a ‘good’ outcome and a negative net
benefit a ‘bad’ outcome) for each parameter,
comparing each treatment strategy with no
treatment. By ranking the parameters based on

the MSD or K–S statistic, the most important
parameters could be determined and used to form
the inputs to an appropriate metamodel.

Sequential bifurcation70

Sequential bifurcation (SB) is a group-screening
technique which attempts to identify a set of n
important parameters from a total set of N
parameters in a simulation model. In some cases,
N may be very large, which could make the
process of identifying important parameters very
time-consuming. SB is considered to be one of the
better techniques in this instance because it
requires fewer simulation runs than many other
group-screening methods to identify the most
important parameters, i.e. it is both effective and
efficient.

The method makes a number of assumptions:70

1. The input/output behaviour of the simulation
model can be approximated with a first-order
polynomial (which looks only at the main effect
of each input parameter on the output).

2. The errors from this polynomial are negligible.
3. The direction of the influence (i.e. positive or

negative) which each parameter has on the
output is known.

4. The total number of parameters, N, is a power
of 2.

The method works by first transforming the
model parameters into standardised variables,
taking either the value 0 or 1; this enables the
model to be approximated using a first-order
polynomial. Each of these variables is assigned an
upper and lower level which generate a high and
low value for the outcome, y. These are defined as
Hj (which generates a high value of y) and Lj
(which generates a low value of y). These
definitions, in conjunction with assumption 3
above, imply that the main effects of each factor
are all non-negative. Therefore, all parameters
with a main effect of zero are considered
unimportant, whereas those which have a positive
effect are important (the level at which a
parameter is deemed important is discussed later).
Now let the symbol y( j) denote the value of y (the
simulation output) when factors 1 to j are switched
on (take their higher levels, so the corresponding
standardised variables take the value 1) and the
remaining factors (N–j) are switched off (take their
lower values, so the corresponding variables take
the value 0). The polynomial now takes the
following form:70

y( j) = �0 + �1 + �2 + … + �� for j = 0 to N
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where �j represents the main effect (coefficient) of
factor j.

Suppose that there are N = 64 parameters in the
simulation model. A comparison is now made
between y(0) and y(64), that is, setting all parameters
at their lower level [y(0)] and then all parameters
at their higher level [y(64)]. The expectation would
be that y(64) > y(0), implying that the sum of the
main effects is important; if this is not the case,
then none of the individual main effects is
important. If this is the case, the group of factors
is bifurcated (split into two groups of equal size).
In the example given above, the initial split would
separate factors 1–32 from 33–64 (if the total
number of factors, N, is not a power of 2, then the
factors are divided up by splitting them by the
highest available power of 2; for example, if there
were 100 factors, the first sub-group would contain
64 factors, with the remaining 36 in the second
subgroup).

The sum of the main effects of the first 32
variables [y(32)] would now be compared with y(0); if
these values proved to be equal, this would
indicate that none of the individual main effects of
the first 32 factors was important. It would also
compare y(64) and y(32); if these values were found
to be different, it would indicate that at least one
parameter from parameters 33–64 was important.
This process would continue, splitting parameters
33–64 up into smaller and smaller groups and
comparing the values of the resulting ys, until the
most important parameters were identified.
Because the process is sequential, the analyst need
not specify in advance a critical value which a
parameter’s main effect must exceed in order to
be considered important. Once the effect of a
subgroup of variables is considered sufficiently
small, the investigation of that subgroup can be
stopped.70

The SB process can be extended to take into
account the possibility of interactions between the
factors; this is a relatively straightforward
procedure,70 but requires twice as many simulation
runs to be made as for the individual main effects
method. It should be noted, however, that the SB
method is not appropriate when only interaction
effects are important.

Use of sequential bifurcation in EVI analysis
The process of identifying important parameters
via the use of SB is more time consuming than by
some of the other techniques discussed, but as
with these other methods, the most appropriate
approach would be to use the ENB of an

intervention as the outcome of interest. Each
parameter within the EVI simulation model would
be standardised to give a first-order polynomial
approximation of the model, which would enable
the main effect of each parameter on the ENB to
be estimated (a second-order approximation could
be used if it were suspected that interactions
between parameters may be important). The upper
and lower levels (Hj and Lj) would be determined
using the analyst’s knowledge of the model. For
example, an increase in a parameter such as the
cost of the intervention could be expected to
reduce the expected net benefit and vice versa (in
which case Lj > Hj), whereas an increase in the
intervention’s associated utility would increase the
expected net benefit (hence Hj > Lj).

Given that SB is appropriate in situations where
only a small number of parameters are important,
it would be beneficial at this stage to attempt to
group together these parameters and separate
them from the less important ones. When the
parameters are bifurcated into two equal-sized
groups, the presence of all of the important
parameters in one group would speed up the
process by eliminating the need to investigate the
parameters within the second group.

Partial contribution to variance
A number of studies in the literature suggest an
approach of considering the partial contribution
of each parameter to the variance in the outcome
variable as a means of ranking the importance of
the variables in a model.68 The method involves
calculating, for each parameter, the partial
correlation coefficient (PCC) between that
parameter and the outcome variable. The PCC
measures the correlation between variables after
adjusting for any indirect correlations with other
variables. It is a parametric method and so
assumes some linearity between the input
parameters and the outcome. It excludes the
influence of other parameters in the model by
holding them constant. For example, if two
variables, x1 and x2, are highly correlated with
each other, and also both highly correlated with a
third variable y, the PCC between x1 and y,
excluding the effect of x2, would be

rx1y – rx2yrx1x2rx1y.x2
= –––––––––––––––––

√(1 – r2
x1x2

)√(1 – r2
x2y)

where rx1y = Pearson correlation coefficient of x1

and y; rx2y = Pearson correlation coefficient of x2

and y; and rx1x2
= Pearson correlation coefficient of

x1 and x2.
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By adjusting for the effect of x1 when calculating
the correlation between x2 and y, the expected
result would be a reduced correlation coefficient
compared with the Pearson correlation coefficient.
Once the PCC has been calculated for each
parameter (excluding the effect of all other
parameters in the model), the PCC values are
squared to give the partial contribution to variance
(PCV). This is done so that all parameters take
positive values, and the magnitude of the value,
rather than the sign of it, becomes important. The
parameters are then ranked according to their
associated PCV statistic, with parameters with the
highest values being deemed the most important
in the model.

Use of partial contribution to variance in EVI
analysis
This method is potentially very useful in EVI
analysis because of the likelihood of there being
high correlations between the input variables. For
example, there could be expected to be high
correlations between various cost parameters and
between utility parameters. This method would
eliminate such correlations and therefore give an
unbiased estimate of each parameter’s
contribution to the variance of the outcome
variable (ENB). This would highlight not only the
most valuable variables in the model, but also
those which contribute very little to the variance of
the outcome variable; this would provide input
into metamodelling, and also allow further
research to focus on relevant parameters.

Partial rank correlation coefficient
(PRCC)
This method is a non-parametric equivalent of the
PCV method described above, and uses ranks
rather than actual data values in computing the
correlation coefficient. Like the PCV method, the
correlation coefficient between each input
parameter and the outcome measure is adjusted
for the effect of all other input parameters in the
model. This method is appropriate when there are
likely to be non-linear relationships between the
inputs and output of the simulation model. In
order to determine the order of importance of the
input parameters x1 – xj on their impact on the
uncertainty in the outcome variable y, a number of
steps are required: 

1. Rank the values of each input parameter and
the values of the outcome measure.

2. Compute the PRCC between each x parameter
and the outcome measure, y, adjusting for the
effects of the remaining xj–1 input parameters,
as with the PCV method.

3. Take the absolute values of the resulting
PRCCs.

4. Rank the parameters according to their
absolute PRCCs (from largest to smallest).

The parameters with the highest absolute PRCCs
are the most important in explaining the
uncertainty in y.

Use of partial rank correlation coefficients in
EVI analysis
This method would be useful in much the same
way as the PCV method in assisting EVI analysis.
Estimating the PRCC between each parameter and
the ENB would again identify the most important
parameters. This method could be expected to be
more appropriate than using the unadjusted rank
correlation coefficient, because of the likelihood of
there being non-negligible correlations between
input parameters.

Standardised regression coefficients
Regression analysis can be used as a method of
ranking variables on their importance. By
considering the magnitude of the regression
coefficient of each parameter in the model, the
parameters can be ranked according to this.
However, the absolute coefficients computed
cannot be used for this purpose because they are
relative functions of the relative magnitude of each
parameter. For this reason, the standardised
regression coefficients must be used. The
standardised coefficient, �i, is given automatically
for each parameter by many software packages
including SAS® and SPSS®, but can also be
calculated directly from the absolute regression
coefficient as follows: 


xk�k = bk –––

y

where bk = the absolute coefficient of parameter k,

xk = the standard deviation of variable k and 
y =
the standard deviation of the outcome variable y.

The absolute value of each standardised
coefficient is used so that the the coefficients of all
parameters can be directly compared against each
other. The parameters are then ranked according
to their absolute standardised coefficient, with
parameters having higher coefficients being the
most important in the model, and vice versa.

Use of standardised regression coefficients in
EVI analysis
To use this method for EVI analysis, one simply
runs a regression with ENB as the dependent
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variable and all input parameters as the
independent variables. In SPSS, this can be done
using the ‘enter’ method, which ensures that all
independent variables are entered into the model
initially. The absolute value of the standardised
coefficient of each parameter is then computed,
and the parameters are then ranked according to
the size of this statistic, in descending order, with
the parameters with the highest coefficients being
the most important in the model.

Frequency domain methodology
Frequency domain methodology (FDM) differs
from other importance analysis techniques
because it requires only two runs of the simulation
model to prioritise the parameters, irrespective of
the number of input parameters. This is because
the run length, as opposed to the number of runs,
is increased to accommodate more input
parameters.71 The method computes a signal-to-
noise ratio (SNR) for each parameter, derived
from the results of the two simulation runs. This
statistic is then compared against an F-statistic; the
result of this comparison determines whether or
not the parameter is significant in the model.

As mentioned above, two independent model runs
are required: 

� a signal run
� a noise run.

The signal run involves running the simulation
model with the input parameters being varied
cosinusoidally according to the following
equation:71

Xj(t) = Xj(0) + aj cos(jt)

where t = the observation index (usually time),
Xj(0) = the mean value of parameter j, aj = the
oscillation amplitude and j = the frequency in
radians per unit of t.

Each input factor Xj(t) is assigned a unique
frequency j, known as a driving frequency. These
driving frequencies are part of a set called the
Fourier frequencies, which are given by71

2�pj1 = ––––
N

where pj = the parameter index number and N =
the sample size.

A second simulation run (the noise run) is
required to obtain an estimate of the variance of

the error process, with the input parameters being
held fixed so that the variation in the output is
due solely to noise in the system.71 For each run,
and for each parameter, a statistic called the
periodogram ordinate, I(j), is calculated:

2
N–1

I(j) = (––)|∑Y(t)e–ijt

N t=0

where Y(t) = the outcome value for the model run.

In order to test the significance of the parameters,
an SNR is computed for each parameter by taking
the ratio of the periodograms generated from the
signal and noise runs. The purpose of deriving
this statistic is to remove an unknown nuisance
parameter associated with the error process. The
SNR is given by

SNR(�j) = Is (�j)/In (�j)

where Is = the periodogram ordinate for the
signal run and In = the periodogram ordinate for
the noise run.

The distribution of the SNR has been shown to be
well approximated by a non-central F distribution,
F2,2,�I. The test of the SNR has two hypotheses: the
null hypothesis is that the effect of the parameter
is negligible and unimportant; the alternative
hypothesis is that the effect is not negligible. The
SNR of each parameter is compared against the 
F-statistic. If the SNR for any given parameter is
greater than the value of F2,2, the null hypothesis
is rejected in favour of the alternative, that is, the
SNR for each parameter is compared against the
F-statistic; parameters with an SNR statistic
greater than F2,2 are considered to be significant
in the model. The reliability of this classification of
parameters into two categories depends on the
significance level used in the test. For example,
the use of a 5% significance level would lead to
more parameters being classed as important,
whereas a 1% level would prove more stringent.

Use of frequency domain methodology in EVI
analysis
To apply FDM to EVI analysis, a signal and a
noise run would be carried out from the
simulation model, from which an SNR could be
calculated for each parameter. Each SNR would
then be compared against the F-statistic
mentioned above to determine whether each
individual parameter was significant or not. Once
these significant parameters have been identified,
the size of their associated SNR could be used to
rank their importance.
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The issue of a suitable significant level to use in
the F-test is important here, because the use of a
more relaxed level such as 10% increases the
chance of incorrectly classifying parameters as
important when they are in fact not. The choice of
the significance level is ultimately determined by
the level of simplicity required in the metamodel
(i.e. how many parameters can be handled by the
metamodel). The best approach may be to begin
by testing at a moderate significance level (e.g.
10%), and determining how many parameters are
significant at this level. If it is considered that
there are too many significant parameters, a more
stringent significance level could be used to
remove some of the less significant parameters.

Elasticity measures
Elasticity is a measure of the change in the value of
the model outcome to a change in the value of an
input parameter.68 The elasticity, Ej, of the outcome
to a given input parameter can be shown to be

dy xiEj = ––– ––
dxi y

where xi is a given input parameter, dxi is the
change in parameter xi, y is the outcome measure
and dy is the change in the output measure.

Point elasticity (i.e. at a single value) is an
inappropriate measure because it reflects neither
the level of uncertainty around a parameter nor
the fact that elasticity will vary over the range of
values of an input parameter.68 These two types of
uncertainty must therefore be taken into account
simultaneously. Two alternative elasticity methods
have been used as importance analysis measures:

1. actual elasticity coefficients (AECs)
2. absolute relative overall sensitivity (AROS).

AEC is the product of the point elasticity
associated with an input parameter and its
coefficient of variation; however, it does not take
into account variability in elasticity over the range
of input parameter values.68 AROS estimates the
responsiveness of the outcome to values for the
input parameters by regression analysis68 and
incorporates the two types of uncertainty mentioned
above. Each regression coefficient is used to make
an estimate of the elasticity across a limited range
of that parameter. AROS, however, relies on the
assumption that the relationships between the
input and output parameters are linear.

An approach which avoids this problem is the use
of the elasticity coefficient (EC). This is estimated

by repeating the Monte Carlo simulation while
employing different fixed values for each
parameter. The EC is then calculated for each
parameter by the integration of elasticity values
over all possible values of the parameter (xp)
weighted by its probability density function, f(xp):

68

dy xpEC(xp) = 
�

�
–�

f(xp).–––.––– dxpdx y

Use of elasticity measures in EVI analysis
The application of elasticity methods to EVI
analysis could be done in one of two ways. If the
simulation model under consideration was known
to be linear, AROS could be used as an
approximation method for estimating the ENB of
each treatment. This would involve carrying out
linear regression to obtain estimates of the
coefficients for each parameter, using ENB as the
response variable. These coefficients could then be
used to approximate the elasticity of the net
benefit to each individual parameter.

If the simulation model was known to be non-
linear, then the EC method could be adopted.
Monte Carlo simulation would be used to run the
model at a variety of values for each parameter.
These different parameter values would then be
used to derive a set of elasticity values (and a
probability density function) for each parameter.
The EC for each parameter could then be
calculated via integration. The main issue in using
this method would be in determining a suitable
number of Monte Carlo simulation runs to
perform, in order to provide elasticity values over
all possible values of each parameter.

Conclusions
Importance analysis has been shown to be an
important component of the metamodelling
process, reducing and prioritising the number of
parameters and thus making the metamodel
simpler to build and interpret. Removing variables
from a simulation model will have some effect on
the accuracy of the metamodel, the magnitude of
this effect being determined by the importance of
the variables left out of the metamodel. One
problem common to all importance analysis
methods is determining how influential a
parameter has to be to be considered important –
this is ultimately subjective, and depends on the
level of accuracy required from the metamodel in
approximating the simulation model.

Correlation- and variance-based methods tend to
be the most widely used methods of importance
analysis owing their relative simplicity, but some
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other relatively straightforward techniques have
been presented here which offer alternatives to
these techniques. As with metamodelling
techniques, no single method is appropriate in all
situations. SB is the most useful when only a small
number of parameters are thought to be
important, and is flexible in exploring the effects
of different parameters,72 but is not so effective
with a larger number of important parameters.
Because of the advantages and disadvantages of
the different methods, it is recommended to use
more than one method to prioritise variables; a
comparison of the parameters selected by these
methods could then be made to see whether the
results were consistent. A similarity between the
parameters selected from these different methods

would generally give greater confidence in the
subsequent metamodel.

This chapter has identified and critically explored
the potential value of a number of alternative
metamodelling techniques that may be used to
reduce computation time in undertaking EVI
analysis. However, for several of these methods,
the body of literature is weak and incomplete,
hence the merit of these techniques and
accessibility for a general user of health economic
models can at best be only suggested. The
potential role of these methods is therefore further
explored in the following chapter through the
direct application to the case study ScHARR MS
model.

Health Technology Assessment 2004; Vol. 8: No. 27

37

© Queen’s Printer and Controller of HMSO 2004. All rights reserved.





Introduction
This chapter describes the direct application of
the methodological framework put forward in
Chapter 3 in order to perform EVPI analysis for
the case study model of IFN-� and glatiramer
acetate in the management of MS. This chapter
includes a direct comparison of the global and
partial EVPI results from three models:

� the public domain ScHARR MS cost-
effectiveness model

� a multiple linear regression metamodel to
approximate the ScHARR model

� a GP metamodel to approximate the ScHARR
model.

The EVPI analysis presented within this chapter
assumes a maximum acceptable incremental cost-
effectiveness ratio of £30,000. This chapter reports
only on ‘per patient EVPIs’; population EVPIs are
presented in Chapter 5.

Can EVI be calculated
numerically?
The method outlined in the section ‘Can EVPI be
calculated numerically’ (p. 17) was applied to the
cost H parameter within the MS model. The
method is demonstrated using this parameter as
the importance analysis suggested that considerable
uncertainty was explained by the cost H parameter
[see the section ‘Factor screening to identify
important variables in the model’ (p. 46)]. For
estimating these sample sizes, a potentially key
variable should be selected either from prior

knowledge of the model structure or through
undertaking a preliminary linear regression on the
ENBs of treatment strategies using the Monte
Carlo sample for estimating the overall EVPI. The
sample size s was increased sequentially to check for
convergence, as shown in Table 6.

Although the estimates of the mean bias have not
converged, there is a clear indication here that an
inner sample size of 1000 runs is likely to produce
a substantial bias, and obtaining a two-level Monte
Carlo estimate of the partial EVPI for cost H is
likely to require severe computational effort.

The initial set of 620 runs can also be used to
estimate an appropriate outer sample size.
Denoting the outer sample size by r, an
approximate 95% confidence interval (CI) for the
partial EVPI is given by

EVPI(�i) ± 1.96 [Var{h(�i)}/r]0.5

with h(�i) the Monte Carlo estimator of E�–i {max
NB(d, �)|�i}. We write

h(�i) = E�–i {max NB(d, �)|�i} + �

that is, h(�i) is the true value of the expectation
plus a random error resulting from Monte Carlo
sampling. The error term � will not have
expectation zero as the Monte Carlo estimator is
biased. We will then make the simplifying
assumption

Var[h(�i)] = Var [E�–i {max NB(d, �)|�i}] + Var(�)

The variance of � may depend on �i, but for the
purpose of this sample size calculation we shall
assume the variance is constant. The first term is
the variance taken with respect to �i, and can be
estimated using numerical integration; at 21
values of �i we have an estimate of E�–i {max
NB(d, �)|�i} based on 30 samples of �–i. We can
also inspect Var(�) for different values of �i by
calculating the variance of the Z values generated
when investigating the bias for inner sample sizes
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Chapter 4
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economic models

TABLE 6 Mean bias with varying sample size

n s = 30 s = 40 s = 50 s = 60

500 456 423 431 613
1,000 214 218 183 318
5,000 45 25 41 75
10,000 20 6 23 41



(we will have one sample of Z values for each of
the 21 values of �i). Note that Var(�) will decrease
as the inner sample size increases.

Returning to the example, suppose we have
decided on an inner sample size of 1000 for the
inner sample size. We then obtain the following
estimates of the two variance components:

Var [E�–i {max NB(d, �)|�i}] = 8.9528 � 108

Var(�) � (0.3943 � 104, 1.4417 � 104)

For Var(�) we have reported the minimum and
maximum variance as �i varies. The dependency
of the variance on �i does not matter here, as the
overall variance is dominated by the first term. We
can now estimate the width of a 95% CI for the
partial EVPI for various outer sample sizes, as
shown in Table 7.

Table 7 shows that the CI are fairly wide, indicating
that a large outer sample size will also be required,
certainly in excess of 1000 samples. In conclusion,
on the basis of 620 model evaluations, it has been
possible to establish that a likely minimum sample
size for an accurate two-level Monte Carlo estimate
will be of the order of 1,000,000 model runs. The
calculations shown in Table 1 suggest that 1,000,000
model runs for a single parameter would require
approximately 81 days, which is clearly infeasible.

Is the model linear?
We performed multiple linear regression and
correlation analysis using SPSS in order to test
whether a linear relationship exists between the
randomly sampled input model parameters and

the NBs calculated using the ScHARR model, and
to investigate the extent to which the variation in
the NBs is explained by the variation in the
parameter inputs. Multivariate Monte Carlo
sampling was performed over 10,000 random
iterations using a one-level sampling algorithm,
allowing all parameters to vary according to their
prior uncertainty. The absolute NB for all seven
treatment strategies were calculated for each
iteration. The sampled values for each model
variable were imported into SPSS together with
their associated expected net benefit across all
10,000 iterations.

The independent variables for the analysis were
the randomly sampled parameter values. The
dependent variable for each regression model was
NB. Multiple linear regression analysis was
performed for each treatment strategy to produce
seven separate linear models. Table 8 demonstrates
that for each of the seven linear approximations,
the adjusted r2 is high (0.93 for all models), which
suggests that there is a strong linear relationship
between the behaviour of the distributions of
parameter inputs and the resulting NBs. Although
the model is not perfectly linear, the regression
analysis indicates that ~93% of the variation in
the distribution of NBs is explained by the
parameter inputs for the model. First-order
interactions were not included in this model as the
software was unable to support the additional
independent variables for the analysis (8384). The
inclusion of first-order interactions within the
regression analysis would require programming in
a fast language, which would ultimately make the
metamodelling process unnecessarily complex.
However, even without the inclusion of these
interaction terms, the adjusted r2 statistic suggests
a reasonable model fit.

Table 9 shows that the all seven models are
significant, as demonstrated by the significance p
values.

Applied methodology: EVI analysis for computationally expensive health economic models

40

TABLE 7 Confidence interval width for partial EVPIs at various
sample sizes

Sample size r 100 1000 10,000 100,000

CI width 11,729 3709 1173 371

TABLE 8 Results of the multiple linear regression analysis

Treatment strategy r2 Adjusted r2 Standard error of the estimate

T0 (Conventional management) 0.93 0.93 27717
T1 (Avonex) 0.93 0.93 26011
T2 (Rebif 22 �g) 0.93 0.93 26585
T3 (Rebif 44 �g) 0.93 0.93 26292
T4 (Betaferon RRMS only) 0.93 0.93 26673
T5 (Copaxone) 0.93 0.93 27692
T6 (Betaferon RRMS and SPMS) 0.93 0.93 26629



Undertaking EVPI analysis using
the original case study ScHARR
model
Although it was not feasible to perform a full EVPI
analysis for individual parameters within the
ScHARR MS model using the two-level sampling
algorithm, the strong linear relationship between
the sampled parameter values and the NBs for
each treatment strategy suggests that the one-level
algorithm may provide a reasonable
approximation of the true EVPI associated with
each parameter within the decision model.

Global EVPI analysis using the original
ScHARR MS model
The global EVPI was calculated analytically using
the original ScHARR MS model, thus representing
the most realistic estimate of the value of
information across all parameters to the decision
problem. Multivariate Monte Carlo sampling was
undertaken using the ScHARR MS model in order
to estimate the uncertainty across the entire design
space, allowing all parameters within the model to
vary simultaneously. A total of 10,000 iterations
were performed to ensure stability in the EVPI
estimates. This algorithm, which is described in
Box 1 (p. 5), requires only a one-level sampling
method as the calculation involves only a single
expectation. For each iteration, the absolute costs
and QALYs for each treatment strategy were
recorded. [Note: these data are the same as those
used to test the linearity of the model, as described
in the section ‘Is the model linear?’ (p. 40)]. The
absolute NBs of each treatment strategy were then
calculated, together with the maximum NB for
each iteration (the NB of the optimal strategy).
The overall EVPI was calculated as the average of

the maximum NBs minus the maximum of the
average NBs [see Box 1 (p. 5)].

The results of the global EVPI analysis are
presented in Table 10 for each individual treatment
strategy (i.e. DMT versus conventional
management); the lower estimate for the overall
per patient EVPI is £4271. The overall EVPI
across all treatment strategies is £8855; this
represents the upper estimate of the overall EVPI.

Partial EVPI analysis using the original
ScHARR MS model
The global EVPI calculated above suggests that
there is considerable value in collecting further
information relevant to this decision problem. The
global EVPI, however, does not provide an
indication of which aspects of the decision further
information is expected to yield the greatest value.
Partial EVPI analysis for groups of parameters and
individual parameters is thus used to identify
which parameters are most important to the
decision problem.

Partial EVPI analysis was performed using the
ScHARR MS model to identify which parameters
are likely to be most influential in reducing
current decision uncertainty. Owing to the vast
computational expense involved in performing a
full two-level analysis using the ScHARR MS
model, it was only feasible to apply a one-level
sampling design for groups of parameters.

The algorithm for performing one-level EVPI
analysis is described in full in Box 3 (p. 7). Monte
Carlo sampling was undertaken using a one-level
sampling technique via the ScHARR model,
allowing those parameters of interest to vary whilst
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TABLE 9 Overall significance of the linear models

Treatment strategy Sum of squares Degrees of freedom Mean square F Significance p

T0 1.06 � 1014 103 1.03 � 1012 1343 0.000
T1 8.92 � 1013 105 8.49 � 1011 1255 0.000
T2 9.10 � 1013 105 8.66 � 1011 1226 0.000
T3 8.75 � 1013 105 8.33 � 1011 1205 0.000
T4 9.18 � 1013 105 8.74 � 1011 1228 0.000
T5 9.87 � 1013 105 9.40 � 1011 1226 0.000
T6 9.10 � 1013 107 8.51 � 1011 1200 0.000

TABLE 10 Global EVPI results for the ScHARR MS model for each individual treatment strategy

EVPI EVPI EVPI EVPI EVPI EVPI Decision 
T1 vs T0 T2 vs T0 T3 vs T0 T4 vs T0 T5 vs T0 T6 vs T0 EVPI

Per patient EVPI (£) 4271 3035 2827 2776 2444 3514 8855



all other parameters not of interest were held at
their mean values.

Table 11 shows the ENBs for each treatment
strategy and hence the resulting partial EVPI
results for groups of parameters within the model
(a description of the groups of parameters in the
ScHARR model is shown in Appendix 2). It is
clear that EDSS costs, utilities, relapse parameters
and the relative risks of treatment effect are
expected to yield the greatest value of
information.

Table 11 demonstrates that for several groups of
parameters, the collection of further information
is expected to yield no value, hence undertaking
partial EVPI analysis for the individual parameters
within these groups would similarly be expected to
result in zero value. Undertaking partial EVPI
analysis for groups of parameters prior to
undertaking partial EVPI analysis for all
individual parameters may therefore help to
identify those parameters for which further
research is expected to be valuable and those for
which further research is not expected to be
valuable, thus considerably reducing computation
time required for the analysis.

Table 12 shows the partial EVPI results for those
individual parameters for which further data
collection is expected to yield some value, as
identified from the results of the partial EVPI for
groups of parameters. It is evident that most value
is likely to be obtained through further research

on utility parameters A and C, cost parameter H,
the cost of relapse and the relative risks of disease
progression for those patients with RRMS. The
results also suggest that there is some value in
obtaining further information concerning the rate
at which patients drop off therapy. These results are
clearly consistent with the partial EVPI estimates
for groups of parameters shown in Table 11.

Practical critique of the one-level EVPI
algorithm
Does it save time?
The use of the one-level sampling algorithm in
place of the two-level approach has potential to
dramatically reduce the computation time
required to perform a comprehensive value of
information analysis. The one-level algorithm
used to calculate the partial EVPI for each
individual or group of parameters is almost
identical to the global EVPI algorithm; the only
methodological difference in undertaking partial
EVPI analysis for individual and groups of
parameters using a one-level sampling algorithm
concerns which parameters are allowed to vary
and which parameters are held at their mean
values. The actual calculation of partial EVPI is
otherwise equivalent to the calculation of global
EVPI. Hence the computation time required to
calculate the partial EVPI for all individual
parameters is simply the time required to run the
required number of random simulations
multiplied by the number of parameters within
the model. The analysis presented here assumes a
MAICER of £30,000; performing EVPI analysis
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TABLE 11 Partial EVPI for groups of parameters calculated using the ScHARR MS model one-level algorithm (all data in £)

Parameter group ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
net parameter 
benefit group

1. EDSS costs 184,453 181,637 178,748 180,964 175,980 180,645 193,270 195,301 2,030

2. EDSS utilities 187,164 184,029 181,282 183,288 177,849 183,249 194,790 195,783 993

3. Relapse – duration, 190,646 188,123 185,158 187,491 182,733 187,236 200,027 200,716 688
cost and disutility

4. EDSS duration – 191,242 188,673 185,691 188,044 183,314 187,765 200,721 200,721 0
beta sojourn times

5. Relative risks of 191,630 188,805 185,867 188,160 183,249 187,999 200,812 203,763 2,951
treatment effect

6. Side-effects 191,404 188,802 185,823 188,166 183,388 187,893 200,812 200,812 0

7. Dropouts 191,053 188,538 185,496 187,916 183,214 187,520 200,812 200,967 155

8. Relapse count 191,441 188,829 185,850 188,192 183,408 187,920 200,841 200,841 0

9. Mean sojourn times 191,169 188,588 185,602 187,955 183,192 187,671 200,621 200,621 0
in EDSS states

10. DSS to EDSS ratios 191,022 188,359 185,405 187,711 182,855 187,498 200,224 200,224 0
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TABLE 12 Partial EVPI estimates using the ScHARR MS model 1-level algorithm (all data in £)

Parameter ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
ENB individual

parameter

Utility parameter A 191,520 188,923 185,941 188,288 183,512 188,015 200,948 201,264 316

Utility parameter � 197,572 195,047 192,047 194,416 189,616 194,287 206,993 206,993 0

Utility parameter C 179,959 176,664 173,972 175,904 170,399 175,745 187,346 187,764 418

Disutility of relapse 191,436 188,830 185,850 188,194 183,414 187,919 200,855 200,855 0

Cost parameter L 191,368 188,767 185,787 188,131 183,352 187,857 200,787 200,787 0

Cost parameter H 191,390 188,788 185,808 188,152 183,372 187,879 200,806 201,687 881

Cost of relapse 192,069 189,396 186,403 188,757 183,960 188,467 201,514 202,118 603

Cost parameter R 184,660 181,860 178,960 181,191 176,233 180,846 193,564 193,564 0

T1 RRMS relative risk 191,588 188,792 185,813 188,156 183,377 187,952 200,812 201,307 495
of progression

T2 RRMS relative risk 191,394 188,758 185,813 188,156 183,377 187,952 200,812 201,334 522
of progression

T3 RRMS relative risk 191,394 188,792 185,923 188,156 183,377 187,952 200,812 200,956 144
of progression

T4 RRMS relative risk 191,394 188,792 185,813 188,173 183,377 187,952 200,812 201,301 489
of progression

T5 RRMS relative risk 191,394 188,792 185,813 188,156 183,512 187,952 200,812 201,787 975
of progression

T6 RRMS relative risk 191,394 188,792 185,813 188,156 183,377 188,072 200,812 201,271 459
of progression

T6 SPMS relative risk 191,394 188,792 185,813 188,156 183,377 187,939 200,812 200,812 0
of progression

T1 RRMS relative risk 191,407 188,792 185,813 188,156 183,377 187,952 200,812 200,812 0
of relapse

T2 RRMS relative risk 191,394 188,771 185,813 188,156 183,377 187,952 200,812 200,812 0
of relapse

T3 RRMS relative risk 191,394 188,792 185,814 188,156 183,377 187,952 200,812 200,812 0
of relapse

T4 RRMS relative risk 191,394 188,792 185,813 188,159 183,377 187,952 200,812 200,812 0
of relapse

T5 RRMS relative risk 191,394 188,792 185,813 188,156 183,385 187,952 200,812 200,812 0
of relapse

T6 RRMS relative risk 191,394 188,792 185,813 188,156 183,377 187,872 200,812 200,812 0
of relapse

Relapse duration 191,388 188,787 185,807 188,151 183,372 187,878 200,806 200,806 0

Proportion of patients 191,392 188,790 185,811 188,154 183,375 187,881 200,812 200,812 0
experiencing side effects

Side effects utility 191,383 188,781 185,801 188,145 183,366 187,871 200,812 200,812 0
adjustment

Year 1, 2 dropouts 191,295 188,715 185,719 188,083 183,325 187,785 200,812 200,941 129

Subsequent dropouts 191,191 188,644 185,627 188,017 183,285 187,652 200,812 200,819 7



over a range of different thresholds does not
involve any additional computational time, as 
the ENBs can be calculated outside of the model
itself.

For the case study model, the calculation of the
global EVPI for the case study model took ~19
hours, the calculation of partial EVPI for the 10
parameters groups took ~194 hours, whereas a
full partial EVPI analysis for all 128 individual
parameters using the one-level algorithm would
require ~2489 hours of simulation time. However,
for the case study model the EVPI analysis for
groups of parameters (see Table 11) showed that
the collection of further information for several
parameter groups is expected to yield no further
value, thus reducing the number of individual
parameters requiring analytical investigation. As a
result, partial EVPI analysis was performed for 16
parameters contained within these groups; this
required ~311 hours of computation time. Hence
undertaking partial EVPI analysis for groups of
parameters can be instrumental in the
identification of those parameters for which
further data collection is likely to yield some value
and those for which further data collection 
would not.

The potential reduction in computation of the
one-level EVPI approach should not be
understated; assuming that 10,000 samples were
required for both the inner and outer level
sampling within the case study model, the
equivalent full EVPI analysis using the two-level
algorithm would require over 2800 years over all
individual parameters. A lesser payoff in terms of
computation time saved would be achieved through
using the one-level algorithm for other health
economic models that are less computationally
expensive than the case study model.

Are there parametric restrictions for this
method?
As partial EVPI analysis for parameters is
undertaken on a parameter-by-parameter basis,
the only parametric restriction concerns the
overall time available for the project. Owing to
time constraints, it was not possible to perform
partial EVPI analysis for all 128 individual
parameters within the case study model. However,
it is a crucial point that the results of the partial
EVPI for the groups of parameters suggested that
many of these simulations would in fact be
unnecessary. It should be noted that for models of
extreme computational expense, such as the
ScHARR MS model, the Windows 98 operating
system may have insufficient memory capacity to

support full Monte Carlo sampling algorithms
over a large number of random iterations. The
Windows XP operating system, however, caches
hard memory using an alternative process, thus
resolving this problem.

Closeness of results
The global EVPI calculated using the original
model should be taken to be the comparator for
the different methodologies. With regard to the
one-level partial EVPI evaluations for parameters,
the payoff achieved in terms of reduced
computational expense may be offset by reduced
accuracy of results. The degree to which the partial
EVPI estimates are biased will be dependent on
the strength of the linear relationship between the
sampled parameter inputs and NBs. The
regression analysis presented in the section ‘Is the
model linear?’ (p. 40) suggests that a reasonably
strong linear relationship exists between the
parameter inputs and the NBs within the MS
model; however, as the EVPI calculation uses the
extreme values of the sampled data, the sampling
bias is likely to have distorted these EVPI estimates.

Ease of implementation
The calculation of the global EVPI requires a one-
level sampling algorithm via multivariate Monte
Carlo simulation, which may be easily
implemented using VBA alongside EXCEL or
using other dedicated decision analysis software.
The calculation of both global EVPI and partial
EVPI for parameters from the results of the Monte
Carlo sampling is very straightforward, as
illustrated in Table 2.

Is the method algorithmic or heuristic?
The one-level method is predominantly
algorithmic. The development of methods for
handling uncertainty in health economic models
means that probabilistic Monte Carlo simulation
has become commonplace within the field of
health economic modelling and requires little
further specialist expertise beyond some basic
knowledge of VBA programming or alternative
decision analysis software.

Undertaking EVPI analysis using
a multiple linear regression
metamodel
The use of the one-level sampling algorithm 
using the original MS model resulted in
considerable computational expense, thus making
even one-level EVPI analysis for all model
parameters infeasible. Due to the reasonable
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linear relationship between the model inputs and
the NBs for each treatment strategy, we
investigated the feasibility of replacing the original
cost-effectiveness model with a statistical
approximation, whereby each treatment strategy is
described by a regression equation [see the section
‘Simple linear regression’ (p. 21)].

The results of the regression analysis [see the
section ‘Is the model linear?’ (p. 40)] were
recorded together with the non-standardised �
coefficients for each parameter within each of the
seven regression models. These coefficients were
then applied to each of the Monte Carlo iterations
calculated previously. The primary advantage of
this form of metamodelling is that full EVPI
analysis (global EVPI, partial EVPI for groups of
parameters and partial EVPI for all individual
parameters) using the one-level sampling
algorithm could be performed in < 1 hour of
computation time. In addition, the development
of such a regression model is straightforward via
spreadsheet packages. In EXCEL, each model can
be generated using a =SUMPRODUCT(array1,
array2) function, where array 1 is the vector of

non-standardised � coefficients and array 2 is the
sampled parameter input vector for each random
iteration.

Table 13 reports the global EVPI results obtained
using the one-level algorithm via the linear
regression metamodel. It should be noted that the
approximated global EVPI is £1500 lower than the
global EVPI calculated using the actual MS cost-
effectiveness model. This lower estimate is likely to
be a result of the absence of parameter
interactions within the regression model and the
imperfect linear relationship between sampled
model inputs and net benefits.

Table 14 presents the partial EVPI results for the
10 groups of parameters using the one-level
algorithm within the linear regression metamodel.
These partial EVPI results are broadly consistent
with the partial EVPIs for the groups of
parameters calculated using the ScHARR MS
model via the one-level algorithm. It is noteworthy
that the magnitude of estimated EVPI for each
group (except the relapse parameters) is broadly
similar across the two methods. The sum of these

Health Technology Assessment 2004; Vol. 8: No. 27

45

© Queen’s Printer and Controller of HMSO 2004. All rights reserved.

TABLE 13 Global EVPI calculated using the multiple linear regression metamodel

EVPI EVPI EVPI EVPI EVPI EVPI Decision 
T1 vs T0 T2 vs T0 T3 vs T0 T4 vs T0 T5 vs T0 T6 vs T0 VPI

Per patient EVPI (£) 3740 2385 2186 2217 1919 3074 7263

TABLE 14 Partial EVPI for groups of parameters calculated using the one-level algorithm within the multiple linear regression
metamodel (all data in £)

Parameter group ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
ENB parameter 

group

1. EDSS costs 184,295 177,378 173,956 171,336 173,210 167,392 173,176 186,296 2,001

2. EDSS utilities 188,461 181,047 177,865 175,178 177,155 171,504 177,163 189,208 747

3. Relapse – duration, 185,307 178,197 174,889 172,250 174,160 168,414 174,127 185,307 0
cost and disutility

4. EDSS duration – 185,314 178,215 174,895 172,249 174,170 168,441 174,141 185,314 0
beta sojourn times

5. Relative risks of 185,287 178,376 174,709 171,949 174,307 168,569 174,244 189,748 4,461
treatment effect

6. Side-effects 185,288 178,179 174,872 172,234 174,143 168,399 174,112 185,288 0

7. Dropouts 185,286 178,235 174,918 172,286 174,187 168,437 174,151 185,599 312

8. Relapse count 185,224 178,125 174,799 172,178 174,066 168,328 174,036 185,224 0

9. Mean sojourn times 185,415 178,298 174,992 172,351 174,265 168,523 174,219 185,415 0
in EDSS states

10. DSS to EDSS ratios 185,257 178,150 174,830 172,200 174,114 168,361 174,070 185,257 0



partial EVPIs is around £7500, which is comparable
with the overall estimate of global EVPI calculated
using the same regression model; the consistency of
results is again due to the absence of interactions
between the model parameters; hence these results
are likely to underestimate the true EVPI for each
parameter group.

Table 15 shows the results of the partial EVPI
analysis for all parameters estimated via the 
one-level sampling algorithm, as calculated using
the linear regression model. Again the broad
consistency between these EVPI estimates and
those calculated via the ScHARR MS model (see
Table 12) is noteworthy.

Table 15 shows that the key areas where further
research is expected to yield the most value are
the relationship between the EDSS, costs of care
and health outcomes, the rate at which patients
drop off therapy and the impact of therapy on the
progression of the disease.

Practical critique of the linear
regression metamodel
Does it save time?
The key advantage of using regression
metamodelling to undertake value of information
analysis is the modest computation time required
to perform a comprehensive evaluation across all
individual parameters within a decision model.
For the case study ScHARR MS model, the
analysis took a total of ~1 hour to approximate
the global EVPI, the partial EVPI analysis for all
10 groups of parameters and also a complete
partial EVPI approximation for all 128 individual
model parameters. The computation time would
be reduced further for decision models containing
a smaller number of parameters.

Are there parametric restrictions for this
method?
There are no parametric restrictions for this
method. However, for health economic models
which contain a large number of parameters, a
greater number of observations are required. For
the case study model, 10,000 samples were
generated for each of the 128 parameters to the
model, which was assumed to be sufficient to cover
the entire range of uncertainty. This, however,
almost exhausted the memory capacity of the
computer on which the analysis was performed,
which suggests that larger models may potentially
encounter technical problems in generating the
required number of samples. If the original 
cost-effectiveness model contains a large number
of parameters, similar problems may arise if 

first-order interactions are specified in the
regression metamodels.

Closeness of results
As with the application of the one-level EVPI
algorithm using the original ScHARR model, the
reduced computation time may potentially carry a
cost in terms of accuracy of results. The extent to
which the EVPI results are distorted is dependent
on the degree of linearity between the model inputs
and output. If one compares the global EVPI results
calculated using the original ScHARR model with
those approximated by the regression model, it is
clear that the regression model underestimates the
true global EVPI. It is reasonable to assume that
the model also underestimates the partial EVPI
results for individual parameters. This effect is
likely to be due to the imperfect linear
relationship between sampled inputs and
associated NBs, together with the assumption of
independence of model parameters within the
regression model, hence interactions between
model variables observed within the original
ScHARR model are lost when the EVPI analysis is
undertaken using the regression metamodel.

Ease of implementation
As suggested in Chapter 3, an important
advantage of regression-based metamodelling is
that the technique is very straightforward to
implement. Within the case study, the original
ScHARR model was used to generate 10,000
random samples of input parameters. These were
imported into SPSS in order to calculate
regression coefficients for each parameter. The
Monte Carlo simulation routine was then
replicated for the metamodel using EXCEL and
VBA and combined with the regression
coefficients. This process was undertaken for all
seven treatment strategies. This process, including
the programming of VBA subroutines to estimate
partial EVPI for parameters, took ~2 days.

Is the method algorithmic or heuristic?
Multiple linear regression analysis is again a
technique commonly applied within the field of
health economics and modelling, although as with
the one-level EVPI method, some specialist
programming expertise may be required to
implement the VBA subroutines.

Factor screening to identify
important variables in the model
As identified in Chapter 3, the GP methodology is
constrained by the number of parameters that can
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TABLE 15 Partial EVPI for individual parameters calculated using the one-level algorithm within the linear regression metamodel 
(all data in £)

Parameter ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
ENB individual

parameter

Probability female 185,294 178,182 174,879 172,238 174,152 168,406 174,117 185,294 0

Cost parameter L 185,253 178,143 174,836 172,198 174,108 168,364 174,076 185,253 0

Cost parameter H 185,554 178,369 175,085 172,436 174,360 168,646 174,307 186,594 1,040

Cost parameter R 183,592 176,767 173,370 170,774 172,625 166,787 172,626 183,592 0

Cost of relapse 185,757 178,632 175,279 172,627 174,545 168,788 174,500 186,443 685

Utility parameter A 189,276 181,861 178,683 175,996 177,975 172,316 177,979 189,662 386

Utility parameter � 184,787 177,607 174,319 171,670 173,593 167,879 173,550 184,787 0

Utility parameter � 184,973 177,934 174,605 171,978 173,873 168,104 173,855 185,017 44

Disutility of relapse 185,334 178,224 174,913 172,273 174,182 168,437 174,150 185,334 0

Relapse duration 185,205 178,092 174,803 172,159 174,069 168,335 174,043 185,205 0

RR0 185,299 178,189 174,884 172,245 174,154 168,411 174,123 185,299 0

RR1 185,283 178,173 174,867 172,227 174,136 168,393 174,106 185,283 0

RR1.5 185,293 178,188 174,877 172,241 174,148 168,405 174,116 185,293 0

RR2 185,292 178,181 174,871 172,236 174,148 168,399 174,115 185,292 0

RR2.5 185,298 178,186 174,882 172,243 174,152 168,409 174,123 185,298 0

RR3 185,292 178,181 174,875 172,237 174,146 168,401 174,115 185,292 0

RR3.5 185,283 178,176 174,863 172,225 174,139 168,399 174,102 185,283 0

RR4 185,291 178,179 174,870 172,232 174,144 168,400 174,114 185,291 0

RR4.5 185,242 178,143 174,838 172,191 174,103 168,363 174,077 185,242 0

RR5 185,287 178,178 174,871 172,233 174,143 168,398 174,111 185,287 0

RR5.5 185,285 178,176 174,868 172,230 174,140 168,396 174,109 185,285 0

RR6 185,294 178,185 174,880 172,240 174,150 168,405 174,117 185,294 0

RR6.5 185,292 178,183 174,875 172,237 174,146 168,404 174,113 185,292 0

RR7 185,293 178,180 174,875 172,237 174,149 168,403 174,115 185,293 0

RR7.5 185,282 178,174 174,866 172,229 174,138 168,393 174,106 185,282 0

RR8 185,286 178,175 174,870 172,231 174,141 168,397 174,109 185,286 0

RR8.5 185,289 178,180 174,873 172,234 174,144 168,398 174,112 185,289 0

RR9 185,302 178,188 174,884 172,243 174,151 168,415 174,124 185,302 0

RR9.5 185,305 178,199 174,888 172,248 174,164 168,409 174,129 185,305 0

SE prop. of people 185,288 178,177 174,871 172,232 174,142 168,397 174,110 185,288 0

SE utility adjustment 185,287 178,179 174,873 172,234 174,144 168,399 174,113 185,287 0

Year 1, 2 dropouts 185,294 178,354 175,008 172,400 174,277 168,498 174,281 185,544 250

Subsequent dropouts 185,280 178,058 174,782 172,119 174,053 168,336 173,981 185,317 36

Relapse count RRMS0 185,282 178,171 174,866 172,227 174,138 168,393 174,106 185,282 0

Relapse count RRMS 1 185,315 178,214 174,899 172,262 174,172 168,422 174,139 185,315 0

Relapse count RRMS 1.5 185,292 178,183 174,876 172,237 174,147 168,402 174,115 185,292 0

Relapse count RRMS2 185,175 178,072 174,767 172,136 174,045 168,301 174,010 185,175 0

Relapse count RRMS2.5 185,336 178,221 174,910 172,270 174,178 168,438 174,150 185,336 0
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TABLE 15 Partial EVPI for individual parameters calculated using the one-level algorithm within the linear regression metamodel 
(all data in £) (cont’d)

Parameter ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
ENB individual

parameter

Relapse count RRMS3 185,310 178,196 174,889 172,248 174,161 168,420 174,129 185,310 0

Relapse count RRMS3.5 185,294 178,183 174,875 172,237 174,148 168,402 174,116 185,294 0

Relapse count RRMS4 185,288 178,179 174,871 172,233 174,143 168,398 174,111 185,288 0

Relapse count RRMS4.5 185,252 178,149 174,845 172,200 174,110 168,358 174,079 185,252 0

Relapse count RRMS5 185,260 178,158 174,846 172,212 174,120 168,370 174,086 185,260 0

Relapse count RRMS5.5 185,289 178,173 174,865 172,229 174,142 168,397 174,107 185,289 0

Relapse count RRMS6 185,284 178,175 174,868 172,229 174,139 168,394 174,108 185,284 0

Relapse count RRMS6.5 185,291 178,182 174,875 172,238 174,145 168,402 174,114 185,291 0

Relapse count RRMS7 185,276 178,169 174,862 172,222 174,131 168,389 174,100 185,276 0

Relapse count RRMS7.5 185,312 178,198 174,895 172,254 174,165 168,425 174,134 185,312 0

Relapse count RRMS8 185,292 178,180 174,875 172,237 174,145 168,402 174,115 185,292 0

Relapse count RRMS8.5 185,285 178,175 174,868 172,231 174,141 168,397 174,106 185,285 0

Relapse count RRMS9 185,281 178,173 174,864 172,229 174,134 168,389 174,104 185,281 0

Relapse count RRMS9.5 185,281 178,173 174,867 172,228 174,137 168,391 174,105 185,281 0

Relapse count SPMS2 185,278 178,171 174,863 172,225 174,134 168,388 174,103 185,278 0

Relapse count SPMS2.5 185,285 178,176 174,869 172,231 174,141 168,396 174,109 185,285 0

Relapse count SPMS3 185,298 178,185 174,880 172,242 174,154 168,410 174,120 185,298 0

Relapse count SPMS3.5 185,298 178,187 174,881 172,243 174,151 168,406 174,121 185,298 0

Relapse count SPMS4 185,302 178,190 174,885 172,248 174,155 168,413 174,125 185,302 0

Relapse count SPMS4.5 185,279 178,169 174,863 172,225 174,135 168,388 174,102 185,279 0

Relapse count SPMS5 185,288 178,179 174,872 172,233 174,143 168,398 174,111 185,288 0

Relapse count SPMS5.5 185,288 178,178 174,872 172,234 174,144 168,398 174,112 185,288 0

Relapse count SPMS6 185,287 178,177 174,871 172,233 174,142 168,397 174,111 185,287 0

Relapse count SPMS6.5 185,276 178,167 174,862 172,222 174,133 168,386 174,102 185,276 0

Relapse count SPMS7 185,293 178,181 174,877 172,238 174,146 168,403 174,114 185,293 0

Relapse count SPMS7.5 185,295 178,183 174,878 172,239 174,149 168,404 174,118 185,295 0

Relapse count SPMS8 185,282 178,174 174,866 172,228 174,138 168,392 174,106 185,282 0

Relapse count SPMS8.5 185,283 178,173 174,867 172,228 174,137 168,393 174,106 185,283 0

Relapse count SPMS9 185,279 178,170 174,860 172,225 174,132 168,389 174,097 185,279 0

Relapse count SPMS9.5 185,289 178,179 174,872 172,235 174,143 168,398 174,112 185,289 0

RR0 185,331 178,224 174,918 172,279 174,188 168,442 174,156 185,331 0

RR1 185,236 178,151 174,837 172,201 174,107 168,355 174,077 185,236 0

RR2 185,323 178,191 174,893 172,249 174,163 168,423 174,132 185,323 0

RR3 185,266 178,166 174,858 172,220 174,127 168,382 174,097 185,266 0

RR4 185,292 178,179 174,874 172,235 174,145 168,402 174,113 185,292 0

RR5 185,282 178,175 174,868 172,229 174,139 168,393 174,107 185,282 0

RR6 185,274 178,172 174,862 172,224 174,135 168,388 174,102 185,274 0

RR7 185,287 178,177 174,870 172,232 174,142 168,397 174,110 185,287 0
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TABLE 15 Partial EVPI for individual parameters calculated using the one-level algorithm within the linear regression metamodel 
(all data in £) (cont’d)

Parameter ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
ENB individual

parameter

RR8 185,308 178,196 174,890 172,250 174,161 168,416 174,131 185,308 0

RR9 185,318 178,200 174,897 172,257 174,169 168,429 174,139 185,318 0

SP2 185,279 178,170 174,863 172,227 174,134 168,389 174,103 185,279 0

SP3 185,329 178,218 174,910 172,271 174,180 168,435 174,143 185,329 0

SP4 185,295 178,182 174,877 172,238 174,149 168,405 174,115 185,295 0

SP5 185,286 178,176 174,870 172,232 174,141 168,396 174,110 185,286 0

SP6 185,301 178,186 174,881 172,243 174,152 168,410 174,117 185,301 0

SP7 185,314 178,197 174,892 172,255 174,166 168,422 174,127 185,314 0

SP8 185,296 178,182 174,874 172,237 174,150 168,404 174,116 185,296 0

SP9 185,284 178,175 174,869 172,231 174,140 168,395 174,109 185,284 0

RR1 185,285 178,180 174,874 172,234 174,145 168,396 174,110 185,285 0

RR2 185,308 178,190 174,886 172,248 174,158 168,416 174,125 185,308 0

RR3 185,272 178,164 174,858 172,223 174,129 168,382 174,096 185,272 0

RR4 185,287 178,178 174,870 172,231 174,143 168,397 174,110 185,287 0

RR5 185,284 178,172 174,868 172,229 174,137 168,394 174,107 185,284 0

RR6 185,291 178,181 174,874 172,236 174,147 168,401 174,115 185,291 0

RR7 185,285 178,177 174,871 172,232 174,141 168,398 174,109 185,285 0

RR8 185,265 178,158 174,851 172,216 174,130 168,382 174,093 185,265 0

RR9 185,289 178,179 174,873 172,234 174,144 168,399 174,112 185,289 0

SP2 185,298 178,187 174,883 172,241 174,151 168,407 174,120 185,298 0

SP3 185,301 178,189 174,882 172,247 174,158 168,413 174,123 185,301 0

SP4 185,291 178,180 174,873 172,235 174,145 168,397 174,110 185,291 0

SP5 185,279 178,168 174,859 172,224 174,135 168,387 174,101 185,279 0

SP6 185,263 178,159 174,844 172,207 174,113 168,367 174,081 185,263 0

SP7 185,262 178,157 174,847 172,210 174,119 168,369 174,095 185,262 0

SP8 185,301 178,189 174,881 172,243 174,155 168,413 174,120 185,301 0

SP9 185,293 178,182 174,876 172,236 174,147 168,405 174,115 185,293 0

T1 RRMS relative risk 185,287 178,294 174,871 172,233 174,143 168,398 174,111 186,276 989
of progression

T1 RRMS 185,287 178,260 174,871 172,233 174,143 168,398 174,111 185,287 0
relative risk of relapse

T2 RRMS relative risk 185,287 178,178 174,728 172,233 174,143 168,398 174,111 186,235 947
of progression

T2 RRMS 185,287 178,178 174,852 172,233 174,143 168,398 174,111 185,287 0
relative risk of relapse

T3 RRMS relative risk 185,287 178,178 174,871 171,979 174,143 168,398 174,111 185,540 252
of progression

T3 RRMS 185,287 178,178 174,871 172,203 174,143 168,398 174,111 185,287 0
relative risk of relapse

continued



be included in the model. It was necessary to
explore the relative importance of each of the
parameters in the original ScHARR MS model,
with the intention of ranking them according to
their impact on the variability of the NBs. Due to
the reasonably strong linear relationship between
the sampled model inputs and the NBs,
importance analysis was conducted using three
regression-based factor screening methods:

1. standardised regression (�) coefficient analysis
2. PCV analysis
3. PRCC analysis.

As highlighted in Chapter 3, the first two of these
techniques require the assumption of linearity
between the model inputs and outputs. The PRCC
method, however, does not assume that the
relationship between model inputs and outputs is
linear.

The three alternative methods were employed not
only to highlight the most influential parameters
within the model, but also to explore whether or
not different techniques highlighted the same
parameters as being important. The importance
analysis was undertaken using 10,000 random
samples generated from the original ScHARR MS
model [see the section ‘Is the model linear?’ 
(p. 40)], and analysed using SPSS software. The

analysis was undertaken for the linear model for
T6 (Betaseron), as this included the relative risks
of relapse and progression in secondary
progressive health states. The methods are
outlined below.

Standardised regression coefficient
The standardised regression coefficients were
obtained from the regression analysis carried out
in SPSS; the absolute values of coefficients were
used since negative coefficients are equally
influential on the ENBs as positive coefficients.
The coefficients with the highest absolute values
were considered the most important within the
model. The accuracy of these coefficients is clearly
dependent on the number of samples taken,
although a data set containing 10,000 samples was
considered sufficiently large to produce accurate
results.

Partial contribution to variance
The PCV for each parameter was calculated by
squaring the PCC of each parameter with the
expected net benefit; hence the values ranged
between 0 and 1.

Partial rank correlation coefficient
Unlike the other two methods of importance
analysis described above, the PRCC method does
not assume linearity between the model inputs

Applied methodology: EVI analysis for computationally expensive health economic models

50

TABLE 15 Partial EVPI for individual parameters calculated using the one-level algorithm within the linear regression metamodel 
(all data in £) (cont’d)

Parameter ENB T1 ENB T2 ENB T3 ENB T4 ENB T5 ENB T6 ENB T0 Maximum EVPI for 
ENB individual

parameter

T4 RRMS relative risk 185,287 178,178 174,871 172,233 174,270 168,398 174,111 186,100 813
of progression

T4 RRMS 185,287 178,178 174,871 172,233 174,180 168,398 174,111 185,287 0
relative risk of relapse

T5 RRMS relative risk 185,287 178,178 174,871 172,233 174,143 168,554 174,111 186,529 1,241
of progression

T5 RRMS 185,287 178,178 174,871 172,233 174,143 168,412 174,111 185,287 0
relative risk of relapse

T6 RRMS relative risk 185,287 178,178 174,871 172,233 174,143 168,398 174,297 186,157 870
of progression

T6 SPMS relative risk 185,287 178,178 174,871 172,233 174,143 168,398 174,148 185,287 0
of progression

T6 RRMS 185,287 178,178 174,871 172,233 174,143 168,398 174,022 185,287 0
relative risk of relapse

T6 SPMS 185,287 178,178 174,871 172,233 174,143 168,398 174,110 185,287 0
relative risk of relapse

SE, standard error.
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TABLE 16 Comparison of parameter importance using three alternative methods

Standard regression coefficient PCV method PRCC method

Rank Parameter Absolute coefficient Parameter Squared coefficient Parameter Absolute PRCC

1 Utility parameter A 0.7782 Utility parameter A 0.8953 Utility parameter A 0.9233

2 Cost of relapse 0.3737 Cost of relapse 0.6637 Utility parameter � 0.598

3 Cost parameter H 0.2140 Cost parameter H 0.3938 Cost of relapse 0.5318

4 Utility parameter � 0.2111 Utility parameter � 0.3849 Cost parameter R 0.491

5 Cost parameter R 0.1993 Cost parameter R 0.3593 Utility parameter � 0.4641

6 Utility parameter � 0.1799 Utility parameter � 0.3126 Cost parameter H 0.4523

7 RRMS relative risk of progression 0.1181 RRMS relative risk of progression 0.1653 RRMS relative risk of progression 0.3091

8 Cost parameter L 0.0430 Cost parameter L 0.0253 Year 1, 2 dropouts 0.1305

9 Year 1, 2 dropouts 0.0409 Year 1, 2 dropouts 0.0229 Cost parameter L 0.1128

10 SPMS relative risk of progression 0.0288 SPMS relative risk of progression 0.0119 Disutility of relapse 0.0865

11 Subsequent dropouts 0.0285 Subsequent dropouts 0.0116 SPMS relative risk of progression 0.0811

12 Disutility of relapse 0.0276 Disutility of relapse 0.0107 Subsequent dropouts 0.0791

13 RRMS mean sojourn state 0 0.0266 RRMS mean sojourn state 0 0.0099 RRMS mean sojourn state 0 0.0664

14 RRMS relative risk of relapse 0.0202 RRMS relative risk of relapse 0.0057 RRMS relapse count state 2 0.0651

15 RRMS relapse count state 2 0.0170 RRMS relapse count state 2 0.0040 RRMS relative risk of relapse 0.0513

16 RRMS relapse count state 1.5 0.0149 RRMS relapse count state 1.5 0.0032 RRMS relapse count state 2.5 0.0441

17 Relapse duration (days) 0.0136 RRMS relapse count state 0 0.0027 RRMS mean sojourn state 1 0.0437

18 RRMS relapse count state 0 0.0135 RRMS mean sojourn state 1 0.0025 Relapse duration (days) 0.0411

19 RRMS mean sojourn state 1 0.0133 Relapse duration (days) 0.0025 RRMS mean sojourn state 2 0.0358

20 RRMS relapse count state 2.5 0.0124 RRMS relapse count state 2.5 0.0023 RRMS relapse count state 1.5 0.0313

21 RRMS relapse count state 1 0.0111 RRMS relapse count state 1 0.0017 RRMS relapse count state 0 0.0261

22 RRMS mean sojourn state 2 0.0104 RRMS mean sojourn state 2 0.0015 RRMS mean sojourn state 9 0.0259

23 SPMS mean sojourn state 5 0.0096 SPMS mean sojourn state 5 0.0012 SPMS mean sojourn state 5 0.0253

24 RRMS mean sojourn state 4 0.0079 RRMS mean sojourn state 4 0.0009 RRMS relapse count state 9 0.0191

25 RRMS relapse count state 9 0.0074 RRMS relapse count state 9 0.0008 RRMS mean sojourn state 5 0.0144

26 SPMS mean sojourn state 7 0.0066 Side-effects utility adjustment 0.0006 SPMS relapse count state 6 0.0137

27 Side-effects utility adjustment 0.0063 SPMS mean sojourn state 7 0.0005 RRMS relapse count state 1 0.0133

28 RRMS mean sojourn state 9 0.0058 RRMS mean sojourn state 9 0.0005 Side-effects utility adjustment 0.0132

29 SPMS relapse count state 6 0.0057 SPMS relapse count state 6 0.0004 RRMS mean sojourn state 4 0.0123

30 RRMS mean sojourn state 5 0.0056 RRMS mean sojourn state 5 0.0004 SPMS mean sojourn state 7 0.0115
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and outputs.68 The PRCC of each parameter was
calculated by deriving the rank correlation
between each parameter and the NB and
adjusting it for the effects of all other parameters
in the model.

The results of the three importance analysis
techniques are shown in Table 16.

Summary of importance analysis
The importance analysis showed that the 30
parameters selected by the three methods as
inputs to the GP were identical. There were some
slight discrepancies between the methods in terms
of the order of the importance of these
parameters, but in all three cases, several common
variables were considerably more influential than
the remaining variables. Primarily, these included
the cost and utility parameters and the relative
risks of disease progression associated with
therapy; these were known to be key parameters
within the ScHARR MS model. A central question
arising from this analysis is ‘how important does a
parameter need to be for it to be considered
influential?’ There are no prescriptive rules
determining this, hence the analyst’s detailed
knowledge of the model and of the behaviour of
model parameters is key.

Undertaking EVPI analysis using
a Gaussian process metamodel
We considered the use of a GP metamodel in
obtaining estimates of the individual parameter
partial EVPIs. An immediate difficulty faced was
that the ScHARR MS model had 128 input
parameters. We do not currently have software
capable of constructing GP metamodels to high
(input) dimensional models, and so we first
selected what was believed to be the 30 most
important input variables based upon the results
of the importance analysis (see the section ‘Factor
screening to identify importance variables in the
model’ (p. 46)]. All other input variables were held
constant at their mean values, hence in effect the
GP metamodel was a 30-parameter simulation
model.

A total of 300 sets of input parameter values were
then chosen for each of the seven treatment
options, designed to cover the entire sample 
space for the 30 input parameters. The ScHARR
MS model was then run at these 2100 design
points and GP metamodels were derived for the
expected net benefits for the seven treatment
options.
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To validate the GP metamodels, an additional 700
runs of the ScHARR MS model were generated
and we then compared the true outputs for the
seven treatment options with the predicted
outputs from the seven metamodels. The results
are shown in Figure 6.

The GP emulators were noticeably better at
predicting the true outputs than the linear
regression models. Table 17 shows that the mean
absolute prediction errors for the seven treatment
strategies were approximately halved when using
GP emulators.

The mean absolute errors from the GP emulators
were between 1 and 2% of the observed ranges
(largest observation minus the smallest
observation) of the ENBs. Once the seven
metamodels had been fitted, the global and
partial EVPIs of the 30 parameters were estimated
using a combination of Simpson’s rule and
Bayesian quadrature.66

The global EVPI was estimated to be £8771 per
patient.

Table 18 clearly shows that the partial EVPI
estimates generated using the GP metamodel 
are considerably higher than those generated
using the ScHARR MS model and the 
regression metamodel via the one-level algorithm.
This is likely to be due to the inclusion of 
all possible interactions between model
parameters.

Practical critique of the Gaussian
process metamodel
Does it save time?
The technique is itself computationally intensive.
The process of fitting the GP metamodel to 
the 300 ScHARR MS model runs for each
treatment took several hours. Obtaining 
single-parameter partial EVPIs also took several
hours to ensure numerical convergence of the
estimates. Partial EVPIs for parameter groups 
were not considered here. In principle this 
could be done, at the expense of having to use

Monte Carlo rather than numerical integration 
to evaluate the outer expectation. Clearly, the
more computationally expensive the simulation
model is, the more time-saving this technique 
will be.
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TABLE 17 Mean absolute prediction errors using linear model and GP metamodel

Mean prediction errors for individual treatment strategies

Model T1 T2 T3 T4 T5 T6 T0

GP 9,569 9,351 9,428 8,781 10,079 11,073 9,186
Linear 18,852 19,421 19,984 19,445 20,204 19,589 20,259

TABLE 18 Partial EVPI results for individual parameters
estimated using the GP metamodel

Parameter Partial EVPI (£)

Utility parameter A 215.50
Cost of relapse 595.90
Cost parameter H 1024.60
Utility parameter � 518.60
Cost parameter R 0
Utility parameter � 0
Dropouts for years 1, 2 3.80
Dropouts for subsequent years 8.30
Cost parameter L 0
T6 SPMS relative risk of progression 0
Disutility relapse 0
Mean sojourn time state 0 (RR) 0
Relapse count state 1.5 (RR) 0
Relapse duration (days) 0
Mean sojourn time state 1 0
Relapse count state 0 (RR) 1.20
Relapse count state 1 (RR) 0
Relapse count state 2.5 (RR) 0
Relapse count state 2 (RR) 0
Side-effect utility adjustment 0
Beta sojourn time state 8 (RR) 2.10
Mean sojourn time state 2 (RR) 0
Mean sojourn time state 4 (RR) 0
Beta sojourn time state 3 (RR) 0
Beta sojourn time state 4.5 (RR) 0
Relapse count state 3 (RR) 0
DSS EDSS ratio state 4 (RR) 9.50
Relapse count state 6.5 (SP) 0
T1 RRMS relative risk of progression 280.60
T2 RRMS relative risk of progression 626.00
T3 RRMS relative risk of progression 20.60
T4 RRMS relative risk of progression 1446.00
T5 RRMS relative risk of progression 1363.20
T6 RRMS relative risk of progression 258.70
T1 RRMS relative risk of relapse 0
T2 RRMS relative risk of relapse 0
T3 RRMS relative risk of relapse 0
T4 RRMS relative risk of relapse 0
T5 RRMS relative risk of relapse 0
T6 RRMS relative risk of relapse 0



Are there parametric restrictions for this
method?
A significant drawback was the inability to handle
all 128 parameters; importance analysis was
required to reduce the number of parameter
inputs for the GP metamodel to 30. There is
therefore a possibility that the 30 selected
parameters were not the 30 with the highest
partial EVPIs. It may be possible to use this
method with all 128 parameters and a larger
number of model runs, although this would
require programming ability in a fast language.

Closeness of results
With sufficient model runs using the ScHARR MS
model, the GP metamodel would replicate the
original cost-effectiveness model even more
accurately and provide the correct partial EVPIs.
This, however, would require many more than the
300 runs per treatment. Methods used by Oakley
and O’Hagan73 could be extended to derive the
uncertainty in the partial EVPIs due to the use of
the metamodel, although this approach itself
involves some intensive computational effort. We
do expect these estimates to be more accurate
than those derived through the linear
approximation, as the GP metamodel outperforms
the linear model in predicting the true MS model
output.

Ease of implementation
The implementation of the GP metamodel was the
most complex of the methods considered within
this case study. Implementation involves matrix
algebra and numerical optimisation routines. Our
software was written in MATLAB. A viable
alternative to MATLAB would be the freely
available R, but we believe that the computational
requirements are beyond the capabilities of
EXCEL.

Is the method algorithmic or heuristic?
GP metamodelling requires some heuristics
application. It is commonly used to approximate
complex computer simulation models but requires
considerable specialist programming expertise.

Summary and conclusions
This chapter has used three different methods for
estimating the EVPI for the case study, the results
of which are compared below. The estimate of per
patient global EVPI calculated using the original
MS model was £8855, whereas the linear
regression metamodel gave a slightly lower
estimate of £7263. This discrepancy can be

attributed to errors in the extreme values of the
NBs using the regression model; although the
mean NBs for each treatment strategy were very
close to those generated using the original MS
model, the errors arose in the calculation of the
maximum NBs. It is likely that these biases arose
owing to the imperfect linear relationship between
the sampled model inputs and the associated net
benefits, and also the loss of interactions between
parameters within the linear regression
metamodel. The GP metamodel estimated the
global EVPI to be £8771; this was considerably
more accurate than the linear approximation. The
global EVPI estimate calculated using the original
MS model should be considered to be more
reliable than the EVPI calculating using the
regression metamodel.

Clearly, it was not possible to estimate the partial
EVPI for each parameter, or indeed groups of
parameters, using the two-level EVPI algorithm
alongside the ScHARR MS model itself owing to
vast computational expense (see Table 1). As a
result, two alternative metamodelling methods
were used to replace the original cost-effectiveness
model: linear regression metamodelling and GP
metamodelling. However, the comparison of the
global EVPIs calculated using the original MS
model and the regression metamodel suggested a
considerable degree of imprecision in the
predictive ability of the regression model, as
reflected by the lower estimate of global EVPI.
The GP metamodel, however, gave a highly
accurate estimate of the global EVPI, and the
mean prediction errors from the observed data
were considerably lower than those resulting from
the linear regression metamodel (see Table 17).
This suggests that the partial EVPIs estimated
using the GP metamodel are an accurate
approximation of the true EVPIs.

It can be seen from the regression metamodel that
the sum of the partial EVPIs is almost equal to the
global estimate calculated using the same method
(~£7500), which highlights the fact that
interactions between model parameters are not
captured by the linear regression metamodel. The
sum of the partial EVPI estimates using the GP
metamodel was ~£6300; there is potentially some
value in those parameters excluded from the GP
simulation model. We would expect the Gaussian
estimates to be more reliable owing to a better
model fit, as demonstrated by the mean absolute
prediction errors (see Table 17).

The GP metamodel is more reliable for this
particular case study, as it is a non-linear method
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that can deal with interactions between model
variables. However, there exists an intrinsic
problem here: due to the computational time
required to perform a comprehensive EVPI
analysis using the original ScHARR MS model, we
have no basis for comparison of the Gaussian
method. Whilst the GP methodology has been
validated in a simpler case study,66 this issue
should be addressed in further case study policy
problems.

The practical critique of the alternative
metamodelling methods employed within the case
study problem highlighted a number of
advantages and disadvantages of the Gaussian
methodology. In particular, the complexity of the

technique, the absence of user-friendly modelling
software and the limited number of input variables
that can be included in the analysis mean that the
method is readily accessible only to those with
specialist expertise. However, most of these
problems can be resolved through further
research, and the benefits in terms of
computational savings may be worthwhile,
particularly for non-linear models that require
considerable computational expense. Under
certain conditions, such as instances whereby 
the relationship between sampled model inputs
and NBs is reasonably linear, the linear 
regression approach may be adequate to highlight
general areas for investment in further 
research.

Health Technology Assessment 2004; Vol. 8: No. 27

55

© Queen’s Printer and Controller of HMSO 2004. All rights reserved.





Overview of case study results
This chapter summarises the results and
conclusions of the EVPI analysis undertaken for
the case study model of IFN-� and glatiramer
acetate in the management of MS. The global
EVPI estimate was calculated using the original
ScHARR MS model, whereas the partial EVPI for
individual parameters were calculated using the
GP metamodel, as the Gaussian approximation is
not biased by the imperfect linear relationship
between the parameter inputs and net benefits
[see the section ‘Is the model linear?’ 
(p. 40), or the loss of interactions between
parameters.

Defining the relevant population
for the decision
The MS population in England and Wales who
would be potentially eligible for and might take up
DMTs is itself subject to considerable uncertainty.
In order to obtain an estimate of the population
EVPI, it is necessary to scale up the previously
calculated per patient EVPI by the population for
whom the commissioning decision is relevant. The

data used in estimating the relevant population
for this decision are shown in Table 19.

EVPI results for interferon-� and
glatiramer acetate in the
management of MS
Global EVPI results
Table 20 shows the global EVPI estimates for each
treatment strategy versus conventional
management (T0), discounted over 10 years
together with the decision EVPI across all
parameters for all seven treatment strategies.
These results were calculated using the original
ScHARR MS model. As discussed in the section
‘Correlation between treatment efficacies’ (p. 13),
the overall EVPI results are presented for two
scenarios relating to different assumptions
regarding the correlation between treatment
efficacies. Assuming independent treatment effects
the per patient EVPI results shown in Table 20
suggests that the value of obtaining perfect
information for all uncertain parameters within
the case study model is £8855. This results in a
population EVPI of £86,208,936 across the
relevant MS population; this represents the upper
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Chapter 5

The expected value of perfect information for 
interferon-� and glatiramer acetate in the

management of multiple sclerosis

TABLE 19 Data used for estimating the relevant population

Variable Value Source

Prevalence 5700 Estimated using data collected from the 64 centres participating in the MS RSS 
Monitoring Study74

Incidence 3.8 per Richards et al.25

100,000 
population

% RRMS at onset 80% NICE, Multiple Sclerosis – national guidelines for NHS Management in Primary 
and Secondary Care75

Percentage of patients 40–50% Proportion of newly diagnosed RRMS who progress to DMTs (Boggild M, 
eligible for DMTs Walton Centre for Neurology and Neurosurgery: personal communication, 2003)

Annual incidence of 800 Calculated from incidence � population � %RRMS � Uptake
DMT use

Discount rate 3.5% NICE, Guide to methods of technology appraisal – Consultation document76



estimate for the overall EVPI. The global
population EVPI estimate for strategy T1 versus
T0 is £41,581,273; this represents the value of

information assuming that treatment efficacies are
perfectly correlated and hence represents a lower
estimate for the overall EVPI.
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TABLE 20 Global EVPI results for the ScHARR MS model (EVPI for individual treatment strategies and decision EVPI)

EVPI EVPI EVPI EVPI EVPI EVPI Decision 
T1 vs T0 T2 vs T0 T3 vs T0 T4 vs T0 T5 vs T0 T6 vs T0 EVPI

Per patient EVPI (£) 4,271 3,035 2,827 2,776 2,444 3,514 8,855
Population EVPI (£) 41,581,273 29,545,388 27,525,355 27,023,241 23,794,182 34,211,482 86,208,936

TABLE 21 Two-level partial EVPI for parameters calculated using the GP metamodel (all data in £)

Parameter Per patient EVPI for Population EVPI for individual 
individual parameter (£) parameter (discounted) (£)

T4 RRMS relative risk of progression 1,446.00 14,078,471.75 
T5 RRMS relative risk of progression 1,363.20 13,272,318.60 
Cost parameter H 1,024.60 9,975,658.48 
T2 RRMS relative risk of progression 626.00 6,094,829.40 
Cost of relapse 595.90 5,801,771.31 
Utility parameter β 518.60 5,049,166.98 
T1 RRMS relative risk of progression 280.60 2,731,963.47 
T6 RRMS relative risk of progression 258.70 2,518,741.80 
Utility parameter A 215.50 2,098,140.15 
T3 RRMS relative risk of progression 20.60 200,564.67 
DSS EDSS ratio state 4 (RRMS) 9.50 92,493.42 
Subsequent drop outs 8.30 80,810.004 
Year 1,2 drop outs 3.80 36,997.37 
Beta sojourn time state 8 (RRMS) 2.10 20,445.91 
Relapse count state 0 (RRMS) 1.20 11,683.38 
Side effects utility adjustment 0.70 6,815.30 
Relapse count state 1.5 (RRMS) 0.40 3,894.46 
Utility parameter α 0.10 973.61 
Cost parameter R 0.00 0.00
Cost parameter L 0.00 0.00
T6 SPMS relative risk of progression 0.00 0.00
Disutility relapse 0.00 0.00
Mean sojourn time state 0 (RRMS) 0.00 0.00
Relapse duration (days) 0.00 0.00
Mean sojourn time state 1 0.00 0.00
Relapse count state 1 (RRMS) 0.00 0.00
Relapse count state 2.5 (RRMS) 0.00 0.00
Relapse count state 2 (RRMS) 0.00 0.00
Mean sojourn time state 2 (RRMS) 0.00 0.00
Mean sojourn time state 4 (RRMS) 0.00 0.00
Beta sojourn time state 3 (RRMS) 0.00 0.00
Beta sojourn time state 4.5 (RRMS) 0.00 0.00
Relapse count state 3 (RRMS) 0.00 0.00
Relapse count state 6.5 (SPMS) 0.00 0.00
T1 RRMS relative risk of relapse 0.00 0.00
T2 RRMS relative risk of relapse 0.00 0.00
T3 RRMS relative risk of relapse 0.00 0.00
T4 RRMS relative risk of relapse 0.00 0.00
T5 RRMS relative risk of relapse 0.00 0.00
T6 RRMS relative risk of relapse 0.00 0.00



Partial EVPI results for individual
parameters calculated using the
Gaussian process metamodel
Table 21 shows the estimates of partial EVPI for
those parameters included in the GP metamodel.

Conclusions
This EVPI analysis of the MS cost-effectiveness
model clearly suggests that large uncertainties
surround many of the model parameters and 
that further research is merited on the impact of
IFN-� and glatiramer acetate. Specifically, this
research should focus on the relationship 
between the EDSS and the cost of care, the
relationship between the EDSS and QoL, the rate
at which patients drop off therapy and, in
particular, the impact of these therapies on disease
progression.

The primary focus of this analysis has been on
estimating the ‘per patient’ value of information;
however, the population scaling factors are also
highly uncertain, and especially the eligibility for
and uptake of DMTs is particularly uncertain,
being currently based upon subjective judgement.
This is an area for further research.

The large difference in the EVPIs obtained from
the completely correlated and independent model

assessments indicates that further knowledge on the
correlation between treatment efficacies would be
highly valuable in commissioning decision-making.
This is intuitively sensible as learning something
about the treatment efficacy of one of the DMTs is
likely to give information about other drugs in this
set. Furthermore, the EVPI assessment
incorporating all treatment options assumes that a
single treatment is identified as optimal and
selected for commissioning on the basis of its
maximum net benefit. Given the high degree of
uncertainty and the likely small differences in
treatment efficacy and consequential net benefit,
an exclusive commissioning recommendation
identifying one specific product is unlikely and a
broad commissioning decision covering groups of
or all products is more probable. Given this, the
lower estimate for the expected value of
information is likely to be a better representation of
the value of further research than the upper
estimate.

Although further information on costs associated
with particular EDSS states and the rates at which
patients drop off therapy may be obtained
through non-experimental designs such as
observational studies, further useful information
on the impact of DMTs on disease progression and
associated health outcomes would be most reliably
obtained through a long-term RCT which includes
a direct assessment of QoL.
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Process for undertaking EVPI
analysis
The following outlines a general framework
undertaking EVPI analysis within a decision
analytic economic model. This framework is
presented as a sequential approach to methods
available for undertaking EVPI analysis; however,
many unresolved methodological issues exist,
hence it should not be considered as a prescriptive
algorithm.

1. Estimate the global EVPI using a Monte Carlo
simulation [see the section ‘Calculating the
overall EVPI across all parameters
simultaneously’ (p. 5)]

2. Estimate the processing time required to
calculate partial EVPIs using the full two-level
Monte Carlo sampling algorithm [see the
sections ‘Can EVPI be calculated numerically?’
(p. 17) and ‘Can EVI be calculated
numerically?’ (p. 39)].

3. If it is feasible to use the two-level Monte Carlo
method to generate a full set of partial EVPIs,
then use the algorithm described in Box 2 (p. 5)

4. If it is not feasible to undertake the full two-
level Monte Carlo analysis, test the linearity of
the model. If the whole model is linear (or if
the model is linear in the required subsets of
parameters), use the one-level Monte Carlo
algorithm outlined in Box 3 (p. 7).

5. If the full analysis is not feasible and if the
model is non-linear, construct a metamodel to
approximate the underlying health economic
model, using importance analysis techniques to
identify a subset of key parameters for use in
the metamodel.

Given the current state of knowledge, it is
not possible to set down criteria to govern the
choice of metamodelling methodology.
However, in general the simpler and more
accessible methodologies are open to greater
predictive error, whereas the more complex
methods may be more accurate but
considerably more difficult to implement,
particularly in the absence of specialist
expertise and/or dedicated software support.

6. Use the metamodel to calculate the partial
EVPIs for parameters.

Methodological issues for
consideration
Linearity of the model
This report has highlighted the central role of
regression analysis in performing EVPI analysis.
The main potential drawback concerns the degree
of linearity between the model inputs and the NB.
If the relationship between NBs and the
parameter inputs is weak, linear regression
metamodelling is unlikely to be useful in
performing partial EVPI analysis. Conversely, if
the relationship is strongly linear, that is, an
adjusted r2 value which is close to 1, it is likely that
even if the ENBs for each treatment strategy are
predicted with accuracy, the prediction error in
the calculation of net benefits is likely to be
magnified in the calculation of EVPI. The applied
methodology presented in Chapter 4 clearly
points towards using more complex and
sophisticated metamodelling approaches in order
to obtain greater accuracy in EVPI estimation.

The regression metamodel may be used in order
to obtain one-level estimates of partial EVPI for all
model parameters. Although the estimates of
partial EVPI for parameters obtained using this
method are unlikely to be perfectly accurate, the
exercise may enable the modeller to ascertain
which of the individual model parameters are likely
to attain value and which are not, and potentially
suggest an order of magnitude for this expected
value. The fundamental benefit of this deductive
approach is that if the analyst is aware of the key
parameters, it may be possible to revert back to
the original cost-effectiveness model and perform
partial EVPI analysis using the correct two-level
sampling algorithm on those identified parameters
and to ignore the remaining parameter set. This
will depend, however, on the time required to run
the analysis using the two-level algorithm on a
single model parameter and on the specified
number of parameters of interest.

Although the question of ‘how linear is linear
enough?’ for use in EVPI analysis cannot be
resolved using standard statistical tests, it is
possible to explore the degree of approximation
error resulting from a linear regression metamodel
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through comparing the global EVPI results
calculated using the regression metamodel and the
global EVPI results calculated using the original
cost-effectiveness model. If the two global EVPI
results are similar (and the adjusted r2 value
suggests a strong linear relationship), this should
enable the analyst to gauge the degree to which
non-linearity may distort the results of the partial
EVPI analysis. If there is a considerable error
between the global EVPI estimates, this should
forewarn against using the one-level EVPI
algorithm, and highlight the need for more
sophisticated non-linear methods such as GP
metamodelling.

The importance analysis techniques required to
identify those parameters which have the greatest
impact upon NB are largely reliant on linear
regression analysis; it is possible that if the model
itself is highly non-linear, this process may result
in the identification of unimportant variables and
the omission of important variables. In such cases,
non-linear factor screening methods such as the
partial rank correlation technique should be used.

Summary of use of metamodelling
techniques
Chapter 3 presented some of the main
metamodelling techniques available and
attempted to describe the suitability of each
method for different scenarios. It should be noted
that although metamodels allow faster analysis of
a problem, their use introduces an added element
of uncertainty to the analysis; a metamodel can
only ever approximate a system rather than fully
replace it. Although many of the techniques
appear similar in theory (i.e. many of the
techniques are based on the principles of
regression), the main difference relevant to the
users of health economic models concerns the ease
of use and availability of software. Many of these
techniques have been applied in only a limited
number of case studies, hence their suitability for
use within EVPI analysis has not been
demonstrated.

The suitability of these alternative metamodelling
methods in performing EVPI analysis will
essentially be determined by the expertise of the
modeller, the time available for the project and
the degree of accuracy required in the results.

It is not unreasonable to postulate that when faced
with a computationally expensive decision model,
the general user of health economic models is
primarily concerned with selecting the easiest and
quickest metamodelling technique which provides

reasonably accurate results. Indeed, in instances
whereby the original cost-effectiveness model is
approximately linear, regression metamodelling
may be an adequate approach for identifying areas
for investment in further research. This review has
identified several classes of metamodelling
technique. Although it has been possible to
identify some of their more generic characteristics,
these are certainly insufficient to identify one
generally preferred technique, but also insufficient
to identify a set of criteria for selecting a specific
technique given specific case study characteristics.

Limitations of this study
This review has investigated the use of alternative
metamodelling methods using a computationally
expensive case study model.

1. The information currently available in the
public domain on the alternative
metamodelling techniques is limited. Hence
insufficient information was available
concerning the practical application of several
of the metamodelling methodologies reviewed
in Chapter 3. These methods could not be
confidently applied to the case study model.

2. The complexity of the ScHARR MS model
means that it is infeasible to generate the
partial EVPI analysis using the two-level
sampling algorithm, hence this means that
there is no direct means of validating fully the
partial EVPIs calculated using either the one-
level sampling algorithm, the linear regression
metamodel or the GP metamodel. Direct tests
of validity have only been possible on the
estimate of overall EVPI.

3. It has been demonstrated during the course of
this work that there is a high degree of linearity
between sampled parameter values and net
benefits generated by the ScHARR MS model.
This means that the exploration of the impact
of non-linearities on the predictive ability of
the metamodels considered and of the impact
on parameter selection via importance analysis
has been limited.

Further research
This review has highlighted a number of areas
requiring further research:

� Further research indicated by the case study. The
partial EVPI estimates generated using both the
linear regression metamodel and the GP
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metamodel suggest that further research
concerning the relationship between the EDSS,
costs of care and health outcomes, the rates at
which patients drop off therapy and in
particular the impact of DMTs on the
progression of MS is required.

� Inclusion of the ‘relevant population’ within the
sensitivity analysis. Previous value of information
studies have calculated the population EVPI by
simply multiplying the per patient EVPI by a
fixed number of patients over the lifetime of
the decision. However, as the population
relevant to a particular decision is itself
uncertain, there remains an unresolved
methodological issue concerning whether the
uncertainty in the epidemiological parameters
should also be accounted for within the
sensitivity analysis.

� Development of criteria for selecting a metamodelling
approach. Any health economic model could be
replaced by a metamodel. There exist a number
of other such techniques which have not been
presented in this review which are currently not
widely used and are still the subject of ongoing
research. Methodological and case study work
would be of benefit in exploring the application
of these metamodelling techniques within
health economic models and in the specific
application to EVPI analysis. Of key interest

would be to investigate whether there are any
characteristics of EVPI analyses that make
specific metamodelling techniques more
preferable; for example, a good approximation
is only required within a restricted domain of
the sample space, that is, where a
commissioning decision changes. Comparative
assessments using the different techniques
applied to common case studies would also be
beneficial in informing ease of use, the level of
expertise required and accuracy of results for
each metamodelling technique.

� The use of metamodelling for EVSI and ENBS
analysis. The role of metamodelling techniques
in EVSI and ENBS requires further research.
Due to similarities in the algorithms used, it is
reasonable to suggest that metamodelling could
have an instrumental role in performing EVSI
and ENBS analysis for computationally
expensive models.

� Use of alternative decision analytic software. The
framework has assumed that the general user 
of health economic models uses EXCEL as 
the primary decision tool. Clearly, there is 
the possibility of using other software packages
to build such models, which may increase 
their efficiency and thus, in certain cases,
obviate the need to resort to metamodelling
techniques.
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Appendix 1

The expanded disability status scale26

Status Description

0.0 Normal neurological examination

1.0 No disability, minimal symptoms

1.5 No disability, minimal signs in more than one functional system

2.0 Slightly more disability in one functional system

2.5 Slightly greater disability in two functioning systems

3.0 Moderate disability in one functional system; fully ambulatory

3.5 Fully ambulatory but with moderate disability in one functional system and more than minimal disability in several
others

4.0 Fully ambulatory without aid, self-sufficient, up and about ~ 12 hours per day despite relatively severe disability;
able to walk without aid or rest ~ 500 m

4.5 Fully ambulatory without aid, up and about much of the day, able to work a full day, may otherwise have some
limitation of full activity or require minimal assistance; characterised by relatively severe disability; able to walk
without aid or rest ~ 300 m

5.0 Ambulatory without aid or rest for ~ 200 m; disability severe enough to impair full daily activities (work a full
day without special provisions). 

5.5 Ambulatory without aid or rest for ~ 100 m; disability severe enough to preclude full daily activities

6.0 Intermittent or unilateral constant assistance (cane, crutch, brace) required to walk ~ 100 m with or without
resting

6.5 Constant bilateral assistance (canes, crutches, braces) required to walk ~ 20 m without resting

7.0 Unable to walk beyond ~ 5 m even with aid, essentially restricted to wheelchair; wheels self in standard
wheelchair and transfers alone; up and about in wheelchair ~ 12 hours per day

7.5 Unable to take more than a few steps; restricted to wheelchair; may need aid in transfer; wheels self but cannot
carry on in standard wheelchair a full day; may require motorised wheelchair

8.0 Essentially restricted to bed or chair or perambulated in wheelchair, but may be out of bed itself much of the
day; retains many self-care functions; generally has effective use of arms

8.5 Essentially restricted to bed much of day; has some effective use of arms; retains some self-care functions

9.0 Helpless bed patient; can communicate and eat

9.5 Totally helpless bed patient; unable to communicate effectively or eat/swallow

10.0 Death due to MS
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Appendix 2

Parameter group descriptions

Group no. Group name Description of parameters included in group

1 EDSS costs These parameters describe the relationship between cost of care and 
EDSS state.

2 EDSS utilities These parameters describe the relationship between utility and EDSS 
state.

3 Relapse – duration, cost and disutility These refer to the duration of relapse and its associated cost. The 
disutility refers to the decrement applied to reflect the temporary 
reduction in an individual’s QoL whilst experiencing relapse.

4 EDSS duration – beta sojourn times These refer to the expected time to progress from an RRMS EDSS 
state to the equivalent SPMS health state

5 Relative risks of treatment effect These are the treatment-specific parameters which describe the 
relative risk of progression and relapse for RRMS and SPMS

6 Side-effects These parameters describe the proportion of the cohort 
experiencing treatment-related side-effects and their associated 
utility decrement

7 Dropouts These parameters describe the proportion of the cohort who drop 
off therapy during the first 2 years of treatment and the proportion 
who drop off therapy during a subsequent model cycle

8 Relapse count These parameters relate to the average number of relapses 
experienced in each EDSS state

9 Mean sojourn times in EDSS states These parameters describe the mean duration a patient will stay in 
each EDSS state

10 DSS to EDSS ratios These parameters are used to map the DSS sojourn times to the 
EDSS scale





Suppose we have T treatment options and our economic model computes the net benefit NB(t, x) for
treatment t = 1, …, T, when provided with input parameter x. We will denote the true, uncertain

values of the input parameters by X, so that the true, uncertain net benefit of treatment t is given by 
NB(t, X). Writing X = {X1, …, Xd}, the partial EVPI for the ith parameter Xi is given by

Exi [max
t

EX|xi
{NB(t, X)|Xi}] – max

t
EX {NB(t, X)} (1)

The majority of the computational effort required to estimate the partial EVPIs of all the parameters
results from having to estimate the first of these two terms for i = 1, …, d. Monte Carlo sampling can be
used to estimated this term. The Monte Carlo estimate is derived in two stages:

1Stage 1: Ê = ÊXi [max
t

EX{NB(t, X)|Xi}] = —
N

∑
j=1

m(Xi, j) (2)
N

with Xi,1, …, Xi,N randomly sampled from the distribution of Xi and

m(Xi) = max
t

EX{NB(t, X)|Xi} (3)

It will then be necessary to estimate m(Xi, j) by m̂(Xi, j) using Monte Carlo:

1Stage 2: m̂(Xi, j) = max
t

— ∑
M

k=1

NB(t, Xk) (4)
M

with Xk randomly sampled from the distribution of {X1, …, Xd} conditional on Xi = Xi, j.

Overall, this will require a total of N � M � d model evaluation (assuming that a single model evaluation
gives the net benefit for all T treatments).

For the stage 1 approximation, if we are considering a one-dimensional variable Xi, then an alternative to
Monte Carlo estimation is to use numerical integration such as Simpson’s rule. However, it is important
to appreciate that with Simpson’s rule, if we use a small value of N (with Xi1, …, Xi, N chosen
deterministically according to the quadrature rule), we will need a large value of M. Random noise in the
second stage will not ‘cancel itself out’ in the first stage if N is small.

If Monte Carlo sampling is used, then for sufficiently large N, a 95% CI can be derived for the estimator
of the partial EVPI Ê as

{m̄(Xi) – 1.96
̂(Xi), m̄(Xi)+ 1.96
̂(Xi)} (5)

with m̄(Xi) and 
̂2(Xi) the sample mean and variance of m̂(Xi,1), … m̂(Xi, N) respectively.

For N sufficiently large (using Monte Carlo or numerical integration), Ê will converge to a single value,
but not necessarily the correct value of the partial EVPI. This will depend on the stage 2 approximation.
For this approximation, Monte Carlo will generally be the only viable option owing to the dimensionality
of X. However, if M is too small, then m̂(Xi, j) is likely to be a biased estimator of m(Xi, j). Using the
notation
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Sample size for Monte Carlo 
partial EVPI calculations



�t(Xi) = EX|xi
{NB(t, X)}Xi) (6)

1Ut(Xi) = — ∑
M

k=1

NB(t, Xk) (7)
M

(with Xk sampled from the distribution of X|Xi), the estimator Ut(Xi) is an unbiased estimator of �t(Xi),
that is,

EX|xi
{Ut(Xi)} = �t(Xi) (8)

However,

EX|xi
{m̂(Xi)} = EX|xi [max

t
{U1(Xi), …, UT(Xi)}] (9)

≥ max{�1(Xi), …, �T(Xi)} (10)

= m(Xi) (11)

and so we would expect m̂(Xi, j) to overestimate m(Xi, j) for any value of Xi. Equality only holds in 
equation (10) if the variances of the Ut(Xi) variables are sufficiently small, that is, for some s we have
P(Us(Xi) > Ut(Xi)) = 1 for t ≠ s. This can (effectively) be achieved if M is sufficiently large. Hence both
N and M must be suitably large to ensure convergence to the true value of the partial EVPI.

The size of the bias will depend on the overlap of the sampling distributions of the Ut(Xi)s. For
sufficiently large M we will have approximate normality:

1Ut(Xi) ~ N [�t(Xi), — �2(Xi)] (12)
M
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FIGURE 7 In (a), the sampling distributions of U1(Xi) and U2(Xi) are sufficiently distinct for m̂(Xi) to be an (approximately)
unbiased estimator of m(Xi). In (b), the overlap means that on average m̂(Xi) will overestimate m(Xi).



with �2(Xi) = VarX|xi
{NB(t, X)|Xi. Now consider the diagrams in Figure 7.

Suppose we just have two treatment options. In Figure 7(a), we suppose that conditional on Xi = xa, the
sampling distributions of U1(Xi) and U2(Xi) are the plotted functions. There is effectively no overlap
between these distributions, and so we will have

EX|xi
max{U1(Xi), U2(Xi) � max{�1(Xi),�2(Xi)} (13)

and the bias in the estimator m̂(Xi) will be negligible at Xi = xa. Now consider Figure 7(b). Here, at an
alternative value xb of Xi, we have substantial overlap between the sampling distributions of U1(Xi) and
U2(Xi), and we will have

EX|xi
[max{U1(Xi), U2(Xi)}| > max {�1(Xi), �2(Xi)} (14)

and the bias in the estimator m̂(Xi) will be more substantial at Xi = xb.

As we increase M, the variance of each Ut(Xi) will decrease, decreasing the size of the overlap when it does
occur. However, if the partial EVPI of Xi is non-zero, there will always exist values of Xi which produce this
overlap.

We now need to establish the minimum sample size M such that the bias in the estimator will be
sufficiently small. If we choose a sufficiently large value of N for the first stage of the Monte Carlo
sampling, then we just need to consider the expected bias, which is given by

Exi [EX|xi
{max

t
Ut(Xi)} – max

t
{�t(Xi)}] (15)

In principle, if we knew �t(Xi), �
2(Xi) and Cov{Us(Xi), Ut(Xi)} for all Xi, we could then estimate equation

(15) for any M using Monte Carlo, provided that M is sufficiently large for the normal approximation in
equation (12) to hold:

1. Generate a random value of Xi.

2. Generate a random vector {U1(Xi), … UT(Xi)} from its joint (multivariate normal) distribution. Note
that the variance–covariance matrix will be a function of M.

3. Calculate the sampled bias:

max
t

{Ut(Xi)} – max
t

{(�t(Xi)} (16)

4. Repeat steps 1–3 many times and compute the mean sampled bias.

By considering different sample sizes M, we can then find the smallest M that gives an acceptably small
mean bias. The obvious difficulty with this is that to evaluate �t(Xi), �

2(Xi) and Cov{Us(Xi), Ut(Xi)}
accurately for any Xi, we would have to run the economic model many times, enough to obtain a good
estimate of the partial EVPI in the first place. Consequently, the following approximate procedure is
suggested:

1. Choose a small number of evenly spaced design points (say 21) Xi1, …, Xi21 to cover the sample space
Xi.

2. For each Xij generate a random sample Xij1, …, Xij30 from the distribution of X|Xij.

3. Evaluate NB(t, Xij1), …, NB(t, Xij30) for each t and use the sample means and variance–covariance
matrix to estimate E{U(Xij)} and Var{U(Xij)} [with U = (Ui, …, UT)T]. Denote these estimates by �̂(Xij)
and V̂(Xij).

The sample size of 21 is suggested as the minimum number needed for reliable numerical integration in
the second stage given below. The sample size of 30 is designed to approximate estimates of the means
and variances that will be of the right orders of magnitude. A larger number can of course be used, but
the intention at this stage is to keep the number of model runs to a minimum.
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We can now obtain an approximate estimate of the expected bias for any sample size M used in the
second stage of the Monte Carlo calculation:

1. For a given M, approximate the distribution of U(Xij) by

1U(Xij) ~ N[�̂(Xij), — V̂(Xij)] (17)
M

2. Generate a large a sample Z1, …, ZK from this distribution and estimate the bias of m̂(Xij) by

1b̂(Xij) = —∑
K

k=1

[max(Zk) – max{�̂(Xij)}] (18)
K

3. Repeat steps 1 and 2 for all Xi1, …, Xi21.
4. Use numerical integration to estimate

Exi
[EX|xi

{max
t

Ut(Xi)} – max
t

{�t(Xi)}| � Exi
{b̂(Xi)} (19)
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