Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction

G Mowatt, L Vale, M Brazzelli, R Hernandez, A Murray, N Scott, C Fraser, L McKenzie, H Gemmell, G Hillis and M Metcalfe

July 2004

Health Technology Assessment NHS R&D HTA Programme

How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public **and** private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is $\pounds 2$ per monograph and for the rest of the world $\pounds 3$ per monograph.

You can order HTA monographs from our Despatch Agents:

- fax (with credit card or official purchase order)
- post (with credit card or official purchase order or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you **either** to pay securely by credit card **or** to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch c/o Direct Mail Works Ltd 4 Oakwood Business Centre Downley, HAVANT PO9 2NP, UK Email: orders@hta.ac.uk Tel: 02392 492 000 Fax: 02392 478 555 Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of $\pounds 100$ for each volume (normally comprising 30–40 titles). The commercial subscription rate is $\pounds 300$ per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque

If you pay by cheque, the cheque must be in **pounds sterling**, made payable to *Direct Mail Works Ltd* and drawn on a bank with a UK address.

Paying by credit card

The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order

You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. *HTA on CD* is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.

Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction

G Mowatt,^{1*} L Vale,^{1,2} M Brazzelli,¹ R Hernandez,² A Murray,¹ N Scott,³ C Fraser,¹ L McKenzie,² H Gemmell,⁴ G Hillis⁵ and M Metcalfe⁵

- ¹ Health Services Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK
- ² Health Economics Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK
- ³ Department of Public Health, Institute of Applied Health Sciences, University of Aberdeen, UK
- ⁴ Nuclear Medicine Physics, Department of Bio-Medical Physics and Bio-Engineering, University of Aberdeen and Grampian University Hospitals NHS Trust, UK
- ⁵ Cardiology Research Group, Department of Clinical Cardiology, University of Aberdeen and Grampian University Hospitals NHS Trust, UK

* Corresponding author

Declared competing interests of authors: Howard Gemmell has a potential conflict of interest in that one of the suppliers to the Nuclear Medicine Physics Department is Amersham Health, and the Nuclear Medicine Physics Department is also negotiating with Amersham Health to fund a research project on brain receptor imaging. None of the reviewers has any pecuniary relationship with sponsors.

Published July 2004

This report should be referenced as follows:

Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N, et al. Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. *Health Technol Assess* 2004;**8**(30).

Health Technology Assessment is indexed in Index Medicus/MEDLINE and Excerpta Medica/ EMBASE.

NHS R&D HTA Programme

The research findings from the NHS R&D Health Technology Assessment (HTA) Programme directly influence key decision-making bodies such as the National Institute for Clinical Excellence (NICE) and the National Screening Committee (NSC) who rely on HTA outputs to help raise standards of care. HTA findings also help to improve the quality of the service in the NHS indirectly in that they form a key component of the 'National Knowledge Service' that is being developed to improve the evidence of clinical practice throughout the NHS.

The HTA Programme was set up in 1993. Its role is to ensure that high-quality research information on the costs, effectiveness and broader impact of health technologies is produced in the most efficient way for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined to include all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care, rather than settings of care.

The HTA programme commissions research only on topics where it has identified key gaps in the evidence needed by the NHS. Suggestions for topics are actively sought from people working in the NHS, the public, consumer groups and professional bodies such as Royal Colleges and NHS Trusts.

Research suggestions are carefully considered by panels of independent experts (including consumers) whose advice results in a ranked list of recommended research priorities. The HTA Programme then commissions the research team best suited to undertake the work, in the manner most appropriate to find the relevant answers. Some projects may take only months, others need several years to answer the research questions adequately. They may involve synthesising existing evidence or designing a trial to produce new evidence where none currently exists.

Additionally, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme is able to commission bespoke reports, principally for NICE, but also for other policy customers, such as a National Clinical Director. TARs bring together evidence on key aspects of the use of specific technologies and usually have to be completed within a limited time period.

Criteria for inclusion in the HTA monograph series

Reports are published in the HTA monograph series if (1) they have resulted from work commissioned for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this monograph was commissioned and funded by the HTA Programme on behalf of NICE as project number 02/19/01. The authors have been wholly responsible for all data collection, analysis and interpretation and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme, NICE or the Department of Health.

HTA Programme Director:	Professor Tom Walley
Series Editors:	Dr Peter Davidson, Professor John Gabbay, Dr Chris Hyde,
	Dr Ruairidh Milne, Dr Rob Riemsma and Dr Ken Stein
Managing Editors:	Sally Bailey and Caroline Ciupek

ISSN 1366-5278

© Queen's Printer and Controller of HMSO 2004

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to NCCHTA, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK.

Published by Gray Publishing, Tunbridge Wells, Kent, on behalf of NCCHTA. Printed on acid-free paper in the UK by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk.

Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction

G Mowatt,^{1*} L Vale,^{1,2} M Brazzelli,¹ R Hernandez,² A Murray,¹ N Scott,³ C Fraser,¹ L McKenzie,² H Gemmell,⁴ G Hillis⁵ and M Metcalfe⁵

¹ Health Services Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK

² Health Economics Research Unit, Institute of Applied Health Sciences, University of Aberdeen, UK

³ Department of Public Health, Institute of Applied Health Sciences, University of Aberdeen, UK

⁴ Nuclear Medicine Physics, Department of Bio-Medical Physics and Bio-Engineering, University of Aberdeen and Grampian University Hospitals NHS Trust, UK

⁵ Cardiology Research Group, Department of Clinical Cardiology, University of Aberdeen and Grampian University Hospitals NHS Trust, UK

* Corresponding author

Objectives: To assess the effectiveness and costeffectiveness of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction (MI).

Data sources: Major electronic databases. **Review methods:** Two reviewers independently extracted data and assessed study quality. A decision tree model was used to model the diagnosis decision and a Markov model was developed for the management of patients with suspected coronary artery disease. Costs for the treatments and interventions within strategies were derived from the literature and expressed in 2001–02 pounds sterling. Quality-adjusted life-year (QALY) weights for the different Markov model states were also obtained from the literature.

Results: Twenty-one diagnostic and 46 prognostic studies were included, plus two studies comparing SPECT with electrocardiography (ECG)-gated SPECT and one study comparing SPECT with attenuationcorrected SPECT. The diagnostic values of SPECT were generally higher than those of stress ECG, indicating that SPECT provided a better diagnostic performance. SPECT also provided higher positive and lower negative likelihood ratios than stress ECG but heterogeneity was evident among studies. The subgroup of studies including patients with previous MI tended to report a better diagnostic performance for SPECT than stress ECG, but there were too few studies to assess this reliably. The extent and size of the perfusion defect, and whether reversible or fixed, were important factors in predicting future cardiac events such as cardiac death or non-fatal MI. SPECT may be able to identify lower risk patients for whom coronary angiography (CA) might be avoided. Normal SPECT scans were associated with a benign prognosis and the option of medical rather than invasive management. Four studies of patients post-MI reported SPECT to be valuable in stratifying patients into at-risk groups for further cardiac events. The two studies comparing SPECT with ECG-gated SPECT, one diagnostic and the other prognostic, found in favour of gated SPECT. The study comparing SPECT with attenuation-corrected SPECT reported the latter to be more accurate. The systematic review of economic evaluations indicated that strategies involving SPECT were likely either to be dominant or to produce more QALYs at an acceptable cost. There was less agreement about which of the strategies involving SPECT was optimal. The model suggested that, for low prevalence, the incremental cost per unit of output (true positives diagnosed, accurate diagnosis, QALY) for the move from stress ECG-SPECT-CA and from stress ECG-CA to SPECT-CA might be considered worthwhile. Even after allowing for different values for sensitivity or

iv

specificity, the least costly and least effective strategy was stress ECG–SPECT–CA. The sensitivity analysis suggested that the cost-effectiveness of SPECT–CA improved if it was assumed that SPECT results allowed for the adoption of a management strategy without recourse to CA. As the time horizon reduced, the incremental cost per QALY increased (as the cost of initial diagnosis and treatment were not offset by survival and quality of life gains).

Conclusions: There was a considerable variability in terms of measurement of outcomes, management, setting and patient characteristics, however the direction of evidence tended to favour SPECT in terms of test sensitivity, although these conclusions are based on a relatively small number of diagnostic studies. SPECT, in a variety of settings and patient populations,

provided valuable independent and incremental prognostic information to that provided by stress ECG and/or CA that helped to risk-stratify patients and influence the way in which their condition was managed. However, all of the prognostic studies were observational studies and may be biased by unknown confounding factors. Although the ECG-gated and attenuation-corrected SPECT findings seem promising, it is difficult to draw conclusions from so few studies. Further research is needed on the effectiveness and cost-effectiveness, diagnostically and prognostically, of (a) gated and attenuation-corrected SPECT compared with standard SPECT, (b) standard SPECT compared with stress echocardiography and (c) the uncertainty surrounding the results presented in the cost-effectiveness analysis.

	List of abbreviations	vii
	Executive summary	ix
I	Aim of the review	1
2	Background Description of underlying health	3
	problem	3
	Current service provision	4
	Description of new intervention	6
	Expected costs	9
3	Effectiveness	11
	Methods for reviewing effectiveness	11
	Results	14
	Assessment of effectiveness	19
	Summary and conclusions of the evidence	
	for and against intervention	35
4	Systematic review of economic	
	evaluations	39
	Methods	39
	Systematic review of published economic	
	evaluations	40
	Review of economic evaluations contained	
	in the Industry submission	46
	Review of the Industry submission	
	economic evaluation	47
	Summary of findings	51
	, C	
5	Economic analysis	53
	Economic modelling	53
	Costs	55
	Probabilities	56
	Quality of life measures	58
	Discounting	59
	Results	59
	Relative cost-effectiveness in women	65
	Comparison with the Industry	
	submission	65
	Summary of results	66
6	Implications for other parties	67
	Quality of life for family and	
	carers	67
	Financial impact for patients and	
	others	67

7	Factors relevant to the NHS	69
•	NSF for CHD	69
	Training issues	69
	Equity issues	69
	Equity issues	05
8	Discussion	71
	Effectiveness	71
	Cost and cost-effectiveness	73
	Assumptions, limitations and	
	uncertainties	74
	Need for further research	76
	Need for further research	70
9	Conclusions	79
-	Implications for the NHS	79
	Implications for patients and carers	79
	Implications for research	79
	Implications for research	19
	Acknowledgements	81
	References	83
	Appendix I Literature search	
		01
	strategies	91
	Appendix 2 Data extraction form	95
	Appendix 3 QUADAS checklist for	
	diagnostic tests	103
	diagnostic tests	105
	Appendix 4 Downs and Black quality	
	assessment form	105
	assessment form	105
	Appendix 5 List of principal confounders	
	and possible adverse events studies	109
	and possible adverse events studies	109
	Appendix 6 Equations used for deriving	
	estimated numbers of true positives, false	
	positives, false negatives and true negatives	
	in diagnostic studies reporting sensitivity,	
	specificity and accuracy values	111
	Appendix 7 Characteristics of included	
	studies of effectiveness	113
	studies of effectiveness	115
	Appendix 8 Results of included studies of	
		140
	effectiveness	149
	Appendix 9 Predictors of events by	
	multivariate analysis	173
	munivariate analysis	173

V

 $\ensuremath{\mathbb{C}}$ Queen's Printer and Controller of HMSO 2004. All rights reserved.

Appendix 10 Summary of economic evaluations	175
Appendix 11 Estimation of incremental cost-effectiveness from data presented in the economic evaluation	191
Appendix 12 The models	197
Appendix 13 Life tables	199
Appendix 14 Price index	201

Appendix 15 Medical management costs	203
Appendix 16 Economic model sensitivity analysis: sensitivity and specificity variation results	205
Health Technology Assessment reports published to date	209
Health Technology Assessment Programme	219

vi

List of abbreviations

2VD	two-vessel disease	LMVD	left main vessel disease
3VD	three-vessel disease	LR	likelihood ratio
AC	attenuation-corrected	MI	myocardial infarction
ACER	average cost-effectiveness ratio	MIBI	technetium-99m sestamibi
AMI	acute myocardial infarction	MPI	myocardial perfusion imaging
BMJ	, British Medical Journal	MPS	myocardial perfusion scintigraphy
BNCS	British Nuclear Cardiology Society	MRI	magnetic resonance imaging
CA	coronary angiography	MVD	multivessel disease
CABG	coronary artery bypass graft	NICE	National Institute for Clinical
CAD	coronary artery disease		Excellence
CHD	coronary heart disease	NIDDM	non-insulin dependent diabetes mellitus
CI	confidence interval	NSF	National Service Framework
CRD	Centre for Reviews and Dissemination	OR	odds ratio
DTM	decision tree model	РЕТ	positron-emission tomography
EBCT	electron beam computed tomography	РТСА	percutaneous transluminal coronary angioplasty
ECG	electrocardiography	QALY	quality-adjusted life-year
ECHO	echocardiography	QoL	quality of life
ExECG	exercise ECG	QUADAS	quality assessment of diagnostic accuracy studies
FN	false negative	RCT	randomised controlled trial
FP	false positive	ROC	receiver operating characteristic
HCHS	Hospital and Community Health Services	RR	relative risk
HMIC	Health Management Information	SA	sensitivity analysis
	Consortium	SPECT	single photon emission computed
HR	hazard ratio	~ ~ ~~	tomography
ICER	incremental cost-effectiveness	SRS	summed rest score
	ratio	SVD	single-vessel disease
LAD	left anterior descending	TN	true negative
LBBB	left bundle branch block	ТР	true positive

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case the abbreviation is defined in the figure legend or at the end of the table.

Epidemiology and background

Coronary heart disease (CHD), secondary to coronary artery disease (CAD), is the most common cause of death in the UK, resulting in over 120,000 deaths in 2001. Prevalence, which varies across the UK, increases with age; it is estimated that around 2.65 million people in the UK have CHD. Over 378,000 people received inpatient treatment for CHD in NHS hospitals in 2000–01, representing 5% of all inpatient cases in men and 2% in women.

Methods of detecting the presence and assessing the extent of CAD have become increasingly important in informing therapies aimed at reducing mortality and morbidity. Coronary angiography (CA) is considered to be the 'gold standard' for defining the site and severity of coronary artery lesions. CA carries a small (<0.1%) risk of mortality and routine use is inadvisable. Stress (usually treadmill or bicycle exercise) electrocardiography (ECG) is widely used for non-invasive detection of CAD owing to its availability and low cost.

Myocardial perfusion scintigraphy (MPS) may be added to the diagnostic pathway to improve detection of CAD. MPS involves the injection of a radioactive tracer followed by the imaging of its distribution within the myocardium using a gamma camera. Single photon emission computed tomography (SPECT) MPS allows the creation of tomographic images. The images following stress and at rest are compared to assess whether defects are reversible (ischaemia) or fixed (infarction) and to allow the site, extent and depth of abnormalities to be determined. This review assesses the effectiveness and cost-effectiveness of SPECT MPS for the diagnosis and management of angina and myocardial infarction (MI).

Methods

Electronic searches were conducted to identify published and unpublished studies. The following databases were searched: MEDLINE (1966 to October 2002), EMBASE (1980 to week 44, 2002), PREMEDLINE (5 November 2002), BIOSIS (1985) to December 2002), Science Citation Index (1981 to December 2002), The Cochrane Library (Issue 3, 2002), Health Management Information Consortium (1979 to 2002), Health Technology Assessment Database (October 2002) and NHS Economic Evaluation Database (October 2002). Two reviewers independently extracted data and assessed study quality.

A decision tree model (DTM) was used to model the diagnosis decision and a simple Markov model was developed for the management of patients with suspected CAD. The strategies considered in the models were (a) stress ECG, followed by SPECT if stress ECG positive, followed by CA if SPECT positive; (b) stress ECG, followed by CA if stress ECG positive; (c) SPECT, followed by CA if SPECT positive; and (d) CA (invasive test as first option).

Costs for the treatments and interventions within strategies were derived from the literature and expressed in 2001–02 pounds sterling. Qualityadjusted life-year (QALY) weights for the different Markov model states were also obtained from the literature.

Number and quality of studies and direction of evidence

Twenty-one diagnostic and 46 prognostic studies were included plus two studies comparing SPECT with ECG-gated SPECT and one study comparing SPECT with attenuation-corrected SPECT. The quality of the diagnostic studies was assessed using the quality assessment of diagnostic accuracy studies (QUADAS) tool developed by the NHS Centre for Reviews and Dissemination. Most studies gave clearly described selection criteria. In 13 studies the spectrum of patients was not considered to be representative of those who would receive the test in practice. Eight studies described the index test (SPECT) and 12 described the reference standard (CA) sufficiently to permit its replication. In 14 studies the index test was interpreted without knowledge of the reference standard, whereas in nine studies the reference standard was interpreted without knowledge of the index test. It was unclear from 16 studies whether the same clinical data were

available when test results were interpreted as would be available were the test to be used in practice. The diagnostic values of SPECT were generally higher than those of stress ECG, indicating that SPECT provided a better diagnostic performance.

The prognostic studies were all observational studies and were assessed using a checklist designed to assess the methodological quality of both randomised and non-randomised studies. The overall mean score for the prognostic studies was 18.1 (out of a possible 27). The external validity of the studies was low. The evidence from the prognostic studies suggested that SPECT provided valuable independent and incremental information to that provided by stress ECG and/or CA.

Summary of benefits

Of 21 diagnostic studies, 16 included patients referred for suspected or known CAD, three evaluated patients following percutaneous transluminal coronary angioplasty (PTCA), one focused on patients suspected of asymptomatic coronary disease and one evaluated patients with left bundle branch block (LBBB). Among the largest subset of studies (those assessing patients with a suspicion or a history of CAD), sensitivity values tended to be higher for SPECT than for stress ECG whereas specificity values were similar. SPECT also provided higher positive and lower negative likelihood ratios than stress ECG but heterogeneity was evident amongst studies. The subgroup of studies including patients with previous MI tended to report a better diagnostic performance for SPECT than stress ECG, but there were too few studies to assess this reliably.

Twenty-one of the 46 prognostic studies provided general prognostic information. Important factors for predicting cardiac events included the extent and size of the perfusion defect and whether it was fixed or reversible. Normal SPECT scans were associated with a benign prognosis and the option of medical rather than invasive management. Two studies comparing different testing strategies found that a strategy incorporating SPECT with selective referral to CA resulted in lower rates of normal angiograms compared with a strategy of direct referral to CA, suggesting that SPECT was better able to identify lower risk patients for whom CA might be avoided.

The remaining prognostic studies examined the use of SPECT in different patient populations.

Studies in relation to gender reported that SPECT provided important, independent prediction of survival in both men and women. Studies performed in patients following MI, and after PTCA and CABG, found that SPECT imaging provided important information for predicting future cardiac events.

Two studies, one diagnostic and the other prognostic, comparing SPECT with ECG-gated SPECT, found in favour of gated SPECT. One study comparing SPECT with attenuation-corrected SPECT reported the latter to be more accurate. Although these findings seem promising it is difficult to draw conclusions from so few studies.

Costs

For the base-case analysis, the results for costs and QALYs for the different strategies were: strategy (a) cost of £5190 and yielding 12.473 QALYs; strategy (b) £5395, 12.481 QALYs; strategy (c) £5529, 12.497 QALYs; and strategy (d) £5929, 12.506 QALYs.

Cost/QALY

The systematic review of economic evaluations indicated that strategies involving SPECT were likely either to be dominant or to produce more QALYs at an acceptable cost. There was less agreement, however, about which of the strategies involving SPECT was optimal.

At the baseline prevalence of 10.5%, SPECT–CA was cost-effective whereas CA, although generating more QALYs, did so at a relatively high incremental cost per QALY (£42,225). At 30% prevalence rates, whereas SPECT–CA was costeffective, the CA strategy produced more QALYs at a relatively low incremental cost-effectiveness ratio (£7331). At higher prevalence rates (50 and 85%), the SPECT–CA strategy was extendedly dominated by the stress ECG–CA and CA strategies. In other words, over a defined range, if some patients received stress ECG–CA with the rest receiving CA, the costs would be lower and the QALYs higher than if SPECT–CA alone was used.

Sensitivity analyses

The model suggested that, for low prevalence, the incremental cost per unit of output (true positives diagnosed, accurate diagnosis, QALY) for the move from stress ECG–SPECT–CA and from stress

x

ECG–CA to SPECT–CA might be considered worthwhile. Even after allowing for different values for sensitivity or specificity, the least costly and least effective strategy was stress ECG–SPECT–CA. The sensitivity analysis suggested that the costeffectiveness of SPECT–CA improved if it was assumed that SPECT results allowed for the adoption of a management strategy without recourse to CA. This would be the case if the assumption of perfect information from CA (sensitivity and specificity equal to 1) were relaxed.

Limitations of the calculations (assumptions made)

Linking diagnostic performance to long-term outcomes required a number of assumptions to be made about both the structure of the model and its parameters. Some assumptions were based on non-UK study data; it is unclear whether such data are applicable to a UK setting. Another assumption concerned the length of time over which the benefits from a diagnostic strategy might accrue. In the base-case analysis, a time period of 25 years was used, although the impact of shorter time horizons was explored in sensitivity analysis. As the time horizon reduced, the incremental cost per QALY increased (as the cost of initial diagnosis and treatment were not offset by survival and quality of life gains).

Other important issues regarding implications

Relatively poor data were available with which to consider longer term costs and consequences.

The non-UK data used may not apply to a UK setting.

Notes on the generalisability of the findings

There was a considerable variability in terms of measurement of outcomes, management, setting and patient characteristics. Despite these differences the direction of evidence tended to favour SPECT in terms of test sensitivity, although these conclusions are based on a relatively small number of included studies.

All of the prognostic studies were observational studies and may be biased by unknown confounding factors. Thirty-four of the prognostic studies took place in North America and 12 were set in Europe. SPECT, in a variety of settings and patient populations, provided valuable independent and incremental information to that provided by stress ECG and/or CA. These results may not be generalisable to the UK as many studies were undertaken in countries with different healthcare systems to that of the UK.

Need for further research

Further research is needed on the effectiveness and cost-effectiveness, diagnostically and prognostically, of (a) gated and attenuationcorrected SPECT compared with standard SPECT, (b) standard SPECT compared with stress echocardiography and (c) the uncertainty surrounding the results presented in the costeffectiveness analysis.

Chapter I Aim of the review

This review aims to assess the effectiveness and cost-effectiveness of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy (MPS) for the diagnosis and management of angina and myocardial infarction (MI). Where the evidence allows, the effectiveness of SPECT in specific patient populations (women and patients following myocardial infarction) is examined.

Chapter 2 Background

Description of underlying health problem

Epidemiology

Coronary heart disease (CHD) is the most common cause of death in the UK, causing over 120,000 deaths in 2001.¹ It is also the most common cause of premature death (death before the age of 75 years) in the UK: 23% of premature deaths in men and 14% of premature deaths in women are from CHD, accounting for nearly 43,000 premature deaths in 2001. Death rates vary across the UK (*Table 1*) and between population groups. They have been falling in the UK since the late 1970s. However, despite this improvement, death rates in the UK are amongst the highest in the world.¹

Morbidity, in contrast to mortality, is rising, especially in older age groups. There has been a large increase in the number of people reported as having angina. Overall, 5% of men and 4% of women have or have had angina, giving a prevalence of just under 1.2 million people in the UK.¹ The incidence of angina is higher in men than women and increases with age. It is estimated that there are ~335,000 new cases of angina each year.¹

The number of people experiencing a heart attack has fallen. On average, the incidence of MI, or heart attack, in the UK for those aged 30–69 years is about 600 per 100,000 for men and 200 per 100,000 for women. There were an estimated 275,000 heart attacks in people of all ages in 2001. Prevalence of heart attack increases with age. Combined data from prevalence studies suggest that \sim 4% of men and 2% of women have had a heart attack, resulting in an estimated 1.2 million people living in the UK who have had a heart attack.¹

Overall, it is estimated that there are about 2.65 million people living in the UK who have CHD (either through angina or heart attack).¹ Prevalence of CHD is higher in the north than the south of the UK and is higher for lower socio-economic groups. Prevalence also varies between ethnic groups.¹

Aetiology and pathology

Coronary artery disease (CAD) is the most common cause of CHD.² Most CAD is due to the insidious deposition of fibro-lipid (atheromatous) plaques in the large and medium-sized arteries serving the heart. The major complications of CAD are angina pectoris, unstable angina, MI, heart failure and sudden cardiac death due to arrhythmia.³ Angina is the most common symptom of CAD and is caused by an inadequate supply of blood to the muscle of the heart. This is usually due to the arteries supplying the heart being gradually and progressively narrowed by atheromatous plaques.^{4,5} Significant CAD is

3

TABLE I Age-standardised death rates from CHD per 100,000 population by standard region, 20	TABLE I
---	---------

Region	Men aged 35–74 years	Women aged 35-74 years
United Kingdom	213	68
England	207	70
North	245	87
Yorkshire and Humberside	236	82
North West	254	92
East Midlands	202	71
West Midland	225	80
East Anglia	182	54
South East	180	60
South West	179	55
Wales	237	85
Scotland	261	98
Northern Ireland	228	83

 $\ensuremath{\mathbb{C}}$ Queen's Printer and Controller of HMSO 2004. All rights reserved.

usually defined angiographically as CAD with \geq 70% diameter stenosis of at least one major epicardial artery segment or \geq 50% diameter stenosis in the left main coronary artery. Lesions of less stenosis can cause angina, but they have less prognostic significance.⁴

Although the precise pathogenesis of CAD is unclear, risk is increased by tobacco use, hypertension, high blood cholesterol levels and diabetes; men and women with diabetes have a 2–5-fold greater annual risk.^{3,4,6} Increased CAD risk is also associated with diets high in fat and calories and low in phytochemicals, fibre and vitamins E and C or diets with relatively low levels of omega-3 polyunsaturated fatty acids, obesity, poor stress management and inactivity.^{1–4}

Prevention usually begins by addressing these risk factors through smoking cessation, diet modification, exercise and treating co-existing disorders such as diabetes. Cholesterol lowering with 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) has been demonstrated to save lives, prevent unstable angina and MI and decrease coronary revascularisation rates.³ It has been estimated that there will be a 28% reduction in CHD if government blood cholesterol, inactivity, blood pressure, smoking and obesity targets are met.¹ There is also good evidence that many people with CHD can have their symptoms relieved and/or their prognosis improved by revascularisation through coronary artery bypass surgery (CABG) or percutaneous transluminal coronary angioplasty (PTCA).⁴

Significance in terms of ill-health (burden of disease)

CHD makes a significant impact on every aspect of an individual's life, including their quality of life (QoL), future employment and personal relationships, and also increases their risk of dying prematurely.⁵ Furthermore, in addition to human costs, CHD has major economic consequences for the UK. A recent study into the economic burden of CHD in the UK estimated the cost of CHD to the UK healthcare system in 1999 as £1.73 billion, rising to £7.06 billion when informal care and productivity losses were included.⁷

There has been a significant increase in prescriptions for the treatment and prevention of CHD since 1999. The combined cost of lipidlowering drugs, including statins, and antihypertensive drugs in 2001 was £861 million, an increase of £171 million on the previous year. These drugs represent the first and second most costly classes of drugs in the NHS. As they are recommended in the National Service Framework (NSF), their use is likely to increase. The number of operations to treat CHD has also increased. Around 28,500 CABG operations and just under 39,000 PTCAs are now carried out each year in the UK. Overall, there were over 378,000 inpatient cases treated for CHD in NHS hospitals in 2000–01. These represent 5% of all inpatient cases in men and 2% in women.¹

Current service provision

Current service provision and variation in services

Most patients with angina are referred to their hospital cardiology outpatient clinic for further assessment. The diagnosis of angina is predominantly based on clinical history. In addition, an exercise tolerance test is usually performed, both to assist with establishing the diagnosis and for risk stratification. A normal test generally excludes significant CAD and those with a positive test are referred for angiography, and a revascularisation procedure should there be significant disease.

The NSF for CHD was announced in March 2000 and sets out 12 national service standards for the prevention, diagnosis and treatment of CHD. These standards include ensuring that people with acute MI or angina receive appropriate assessment, investigations and treatment and to increase capacity so that all who need revascularisation are investigated and treated promptly.⁴ Rapid access clinics supported by clear referral criteria and protocols for investigation should lead to more complete, more accurate and more rapid diagnosis and assessment of people with suspected angina.⁴ Nationwide roll-out of rapid access chest pain clinics has been established by the NSF as a priority for the NHS, to meet the goal of assessment of new onset chest pain by a specialist within 2 weeks of GP referral. The NSF states that exercise electrocardiography (ECG) and MPS are useful for the assessment of severity of ischaemia; however, only exercise ECG (ExECG) is considered by the NSF within the context of rapid access chest pain clinics.⁴

The use of nuclear cardiology in the UK was investigated in 1988, 1994, 1997 and 2000 by the British Nuclear Cardiology Society (BNCS). The number of MPS studies performed each year

Country	MPS pro							Rate/1000
	1998 2001		1998–2002 (%)	2001				
UK	26,802	45,797	26.7	0.8				
Germany	156,675	244,989	16.9	3.0				
, Italy	114,287	171,164	15.8	3.0				
France	141,820	166,581	5.1	2.8				
Spain	40,556	74,161	18.6	1.9				
Europe	480,140	702,692	14.2	2.4				
USA	4,088,454	5,588,733	11.0	20.3				

TABLE 2 International variation and changes over time (between 1998 and 2002) in the use of MPS in known and suspected CAD

TABLE 3 Target and actual waiting times for MPS at Royal Brompton Hospital, London

Clinical urgency	Target waiting time	Actual waiting time
Routine	6 weeks	20 weeks
Soon	3 weeks	12 weeks
Urgent	l week	2 weeks
Immediate	l day	2 days

increased over this period; the figure for 2000 was 1.2 studies/1000 population/year compared with 0.86 studies/1000/year in 1997 [Professional Groups' submission to the National Institute for Clinical Excellence (NICE), 2003].⁸ Despite nuclear cardiology activity rising, it remains below that recommended by the British Cardiac Society in 1994 as adequate to service the needs of patients with cardiac disease in the UK (2.6 nuclear studies/1000/year). It was significantly below the European average activity in 1994. Amersham Health (February 2003) also reported much lower levels of MPS within the UK than in Germany, Italy, France, Spain or the USA, as shown in *Table 2*. However, they reported levels of MPS activity lower than that reported by BNCS (Professional Groups' submission to NICE, 2003).

MPS activity is unevenly distributed between hospitals. In all but a handful of centres, MPS is performed in general nuclear medicine departments, outside the direct experience of referring cardiologists. Growth in MPS is concentrated in a small number of high-volume centres. These high-volume centres had shorter mean waiting times (17 weeks) than low-volume centres (27 weeks) in the BNCS 2000 survey. The overall mean waiting time was 20 weeks. Many centres prioritise referrals according to clinical urgency, as shown by Royal Brompton Hospital, London, the largest UK centre (*Table 3*) (Professional Groups' submission to NICE, 2003).

There are just over 250 nuclear medicine departments with about 500 gamma cameras in the UK. Over 80% of these cameras have the capability for SPECT.⁹ The use of pharmacological stress for nuclear studies is increasing; 77% of studies used pharmacological stress in 2000 compared with 56 and 41% in 1997 and 1994, respectively. Attenuation correction was used in <4% of MPS studies in 1997. This value was concordant with US data suggesting that confidence in this variant of the technology is low.⁸ ECG gating of MPS studies was used in 22% of studies in 2000 (Professional Groups' submission to NICE, 2003).

Current service costs

The current service costs may be estimated from the figures contained by Anagnostopoulos and colleagues in the Professional Groups' submission to NICE (2003). The average annual cost of the additional MPS suggested by this group was estimated to be £185 per study. In 2000, 600 studies were carried out per 500,000 population, giving the estimated cost to the NHS of MPS as £111,000 per annum per 500,000 population.

Description of new intervention

MPS uses an intravenously administered radiopharmaceutical tracer to evaluate regional coronary blood flow after stress and at rest. After delivery of the tracer, its distribution within the myocardium is imaged using a gamma camera. In SPECT imaging, the raw data are then processed to obtain tomographic images. Comparison of the distribution of tracer within the myocardium after stress and at rest can reveal the presence or absence of inducible ischaemia and/or infarction. Two tracers are approved and available commercially for use in MPS: thallium (201Tl) and two classes of technetium (^{99m}Tc); sestamibi (MIBI) and tetrofosmin.¹⁰ Technetium tracers now account for >59% of UK MPS practice (Professional Groups' submission to NICE, 2003). These tracers are avidly extracted by cardiac myocytes and hence their initial myocardial distribution reflects a combination of the distribution of myocytes and regional perfusion. Images are compared following stress and rest injections of tracer (or following redistribution for thallium) to assess myocardial viability and perfusion and allow the site, extent and depth of abnormalities to be determined (Professional Groups' submission to NICE, 2003). A problem with SPECT is that of non-uniform soft-tissue attenuation degrading SPECT image quality or creating artefacts that mimic true perfusion abnormalities. Although a variety of indirect measures have been used to reduce the impact of attenuation, the value of these techniques varies. At present, it is recommended that they are used only in experienced centres and attenuationcorrected images should be reviewed alongside non-corrected images.^{9–11} The higher energy of technetium is less subject to attenuation than thallium and generally leads to better quality images and permits ECG gating. ECG gating synchronises the image with the patient's ECG. Multiple images are taken over the cardiac cycle. These images are aggregated and displayed by a computer as a continuous cinematic loop, which resembles a beating heart and provides additional functional information. By minimising artifacts caused by cardiac motion, the images are also clearer.3,10

Exercise and/or pharmacological agents are used to induce stress. When patients can exercise to develop an appropriate level of cardiovascular stress, exercise stress testing is preferable to pharmacological stress testing. Exercise stress testing is usually done on a conventional treadmill and ECG, heart rate, blood pressure and chest pain are carefully monitored. If no contraindications arise, exercise is continued to >85% of agepredicted maximum. Pharmacological stress testing is particularly useful in patients who cannot exercise. It may also be preferred in patients taking digitalis and those with bundle branch block. Coronary vasodilators, such as adenosine or dipyridamole, increase myocardial blood flow in normal coronary arteries but not in arteries distal to a stenosis. Both dipyridamole and adenosine are safe and well tolerated despite frequent mild side-effects, which occur in 50 and 80% of patients, respectively. These side-effects include angina, arrhythmia, shortness of breath, headache, dizziness, nausea and flushing. Severe side-effects are rare, but both drugs may cause severe bronchospasm in patients with asthma or chronic obstructive lung disease; therefore, they should be used with extreme caution, if at all, in these patients. Aminophylline may reverse these sideeffects but is ordinarily not required after adenosine because of the latter's short half-life (<10 seconds).^{4,10} Another agent, dobutamine, is a positive inotrope, eliciting a secondary increase in myocardial blood flow and provoking ischaemia. Although side-effects are frequent, dobutamine also appears to be relatively safe. Side-effects include nausea, anxiety, headache, tremors, arrhythmias, atypical chest pain and angina.⁴

Exercise testing is a low-risk investigation even in patients with known CAD, but serious complications occur in 2–4 per 1000 tests. Death may occur at a rate of 1–5 per 10,000 tests.¹² Absolute contraindications to exercise testing include acute MI within 2 days, cardiac arrhythmias causing symptoms or haemodynamic compromise, symptomatic and severe aortic stenosis, symptomatic heart failure, acute pulmonary embolus or pulmonary infarction, acute myocarditis or pericarditis and acute aortic dissection.⁴

Exercise testing must be performed by a healthcare professional who is appropriately trained. If a physician does not perform the test, a physician experienced in cardiovascular stress should be available for consultation, with appropriate accessibility. The healthcare professional conducting the stress test should be current in advanced life-support techniques and appropriate emergency support should be available. Emergency equipment, medications and support personnel should also be available. Processed MPS images should be inspected immediately after acquisition by a radiographer, technician or nuclear physician to identify technical problems that might require repeat acquisition. $^{10}\,$

MPS can be used to confirm or exclude the diagnosis of coronary obstruction in patients with clinically suspected CAD or to aid the management of patients with known CAD. In the latter group it can be used to determine prognosis (risk stratification) for example, post MI or before major surgery, to help target strategies for coronary revascularisation by determining the haemodynamic significance of angiographic coronary lesions and to assess the adequacy of percutaneous and surgical revascularisation.¹⁰

Diagnosis of CAD

Methods of detecting and assessing the extent of CAD have become increasingly important in applying therapies to decrease morbidity and mortality. Coronary angiography (CA) is considered the 'gold standard' for defining the site and severity of coronary artery lesions. However, it is not a reliable indicator of the functional significance of a coronary stenosis, is insensitive in detection of a thrombus owing to the limits to the resolution and ineffective in determining which plaques are likely to lead to an acute coronary event.^{4,13} Routine use without prior non-invasive testing is not advisable, partly owing to the high cost but also because of the associated mortality and morbidity. The most serious complications of CA are death (0.1-0.2%), non-fatal MI (0.1%) and cerebrovascular accidents (0.1%). Other complications include arrhythmias, vasovagal reactions, infections and allergic dye reactions.^{3,4,9}

ExECG is widely used for non-invasive detection of CAD owing to its ready availability and relatively low cost. However, a normal exercise ECG does not exclude CAD. ExECG is also a poor diagnostic test in low-risk populations owing to its low positive predictive value in a population with a low prevalence of the disease.⁴ Imaging techniques such as SPECT are often added to improve detection and/or localisation of exercise-induced ischaemia. The number, size and location of abnormalities on SPECT images reflect the location and extent of functionally significant coronary stenosis.^{4,12,14} In addition, ECG-gated SPECT allows for simultaneous imaging of perfusion and function and minimises artefacts caused by cardiac motion.⁹

Prognosis and risk stratification

In each affected person, CAD typically cycles in and out of clinically defined phases: asymptomatic, stable angina, progressing angina and unstable angina or acute MI (AMI). The patient's risk is usually a function of various patient characteristics, including:

- functioning of the left ventricle, most commonly measured by ejection fraction
- extent of inducible ischaemia
- anatomic extent and severity of atherosclerotic involvement of the coronary tree, most commonly measured by the number of diseased vessels
- evidence of a recent coronary plaque rupture, indicating a substantially increased short-term risk for cardiac death or non-fatal MI, and
- age, general health and non-coronary comorbidity.

Risk stratification of patients by stress testing permits the identification of groups of patients with low, intermediate or high risk of subsequent cardiac events.⁴

Exercise tolerance testing has been shown to be of value in assessing the prognosis of patients with CAD. An abnormal exercise ECG identifies a patient at higher risk of suffering new cardiac events in the subsequent year.^{4,12} SPECT can also be used to estimate prognosis as it can reveal the extent of the perfusion abnormalities and extent of scarring from previous infarcts. Left ventricular ejection fraction may be measured at rest with ECG-gated SPECT perfusion imaging. Left ventricular ejection fraction may also be measured by radionuclide angiography. However, the ability of ECG-gated SPECT to assess both ventricular function and myocardial perfusion constitutes a definite advantage over radionuclide angiography.^{3,4,10,15,16}

CA is used to identify the extent and severity of CAD and left ventricular dysfunction. These are powerful clinical predictors of long-term outcomes. Several prognostic indexes have been used to relate the severity of the disease identified by CA to the risk of subsequent cardiac events. The simplest and most widely used is the classification of disease into one-vessel, two-vessel, three-vessel or left main CAD.⁴

Important patient subgroups *Women*

The exercise ECG test is less accurate for the diagnosis of CAD in women and is influenced by multiple factors including exercise capacity and hormonal status.^{4,5,15} A growing body of evidence supports the diagnostic value of stress MPS in the detection of CAD in women. Artefacts due to

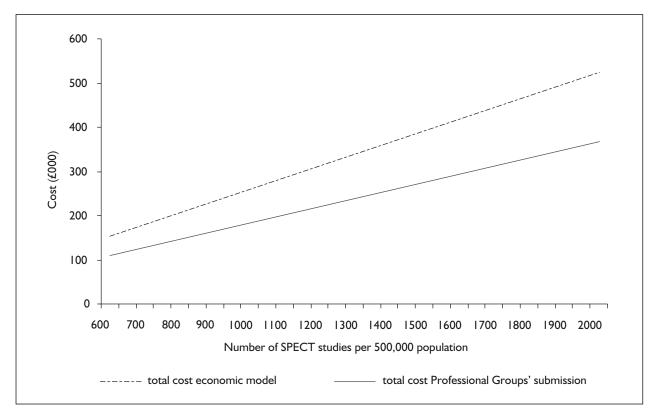


FIGURE I Cost of SPECT to the NHS per 500,000 of the population as the number of studies increases

breast attenuation, usually manifest in the anterior wall, can be an important consideration in the interpretation of women's scans, especially when thallium is used as a tracer. MIBI may be preferable to thallium scintigraphy for determining prognosis and diagnosing CAD in women with large breasts or breast implants.^{4,10,15,16} Attenuation from breast tissue is particularly difficult because of the great individual variability in the amount of breast tissue over different sections of the field of view.³ Therefore, women should be imaged with chest bands to minimise breast attenuation and to ensure reproducible positioning during later image acquisition. Chest bands can increase attenuation depending upon how they are applied. Thus, careful attention to technique must be used when breasts are strapped.¹⁰ Using ECG-gated SPECT can assist in better differentiation of attenuation artefacts from infarcts and this is considered an effective noninvasive means of evaluating women with an intermediate to high pretest likelihood of CAD.4,15,16

People with diabetes

The diagnosis of chronic stable angina in people with diabetes can be particularly difficult because ischaemic symptoms may be reduced by autonomic and sensory neuropathy.^{4,6} CAD, in this group, is typically diffuse and this has the potential to intensify ischaemia and make revascularisation more difficult.⁶ The exercise ECG is often a less reliable indicator of significant CAD in the diabetic patient and MPS should be considered instead.¹⁵

After revascularisation

ExECG has a number of limitations after coronary artery bypass surgery. Rest ECG abnormalities are frequent, and more attention must be paid to symptom status, haemodynamic response and exercise capacity. Because of these considerations and the need to document the site of ischaemia, MPS is generally preferred for evaluation of patients in this group.⁴ About 30% of patients have an abnormal ECG response on ExECG early after bypass surgery and these patients can be assessed by MPS for possible incomplete revascularisation and the extent of myocardium affected. Patients with initial negative postoperative ExECG who later become positive usually have progressive ischaemia due to graft closure or progression of the disease. MPS can be used to determine the location, extent and severity of such ischaemia. Restenosis is also a frequent problem after successful PTCA and stress SPECT

is thought to be particularly well suited for the functional evaluation of patients after PTCA and as a means of assessing the occurrence of restenosis.¹⁶

Expected costs

The submission by Anagnostopoulos and colleagues on behalf of various professional groups estimated that the current number of SPECT studies performed within the UK per 500,000 of the population is 600 per year. They suggested that the number of studies might reasonably be expected to expand to 4000 studies per million of the population per year (2000 per 500,000). Using

data on the unit cost for a SPECT presented in Chapter 5 (\pounds 262 per study) and from the submission (£185 per study), the expected increase in cost to the NHS of an increase in the use of SPECT alone is presented (in *Figure 1*). In this figure, the costs of other investigations such as stress ECG and CA and also the effect on management costs have been excluded. As an illustration of the impact of the potential increase in studies at current rates of utilisation, the cost to the NHS per year of SPECT studies is between £111,000 and £157,200 per 500,000 of the population. At 1250 studies per year per 500,000 of the population, the extra cost to the NHS is between £120,000 and £170,000 per year.

Chapter 3 Effectiveness

Methods for reviewing effectiveness

Search strategy

Initial searches were undertaken to identify relevant systematic reviews, HTA reports and other evidence-based reports. A list of databases and web pages searched is given in Appendix 1.

Electronic searches were conducted to identify published and unpublished studies on the clinical and cost-effectiveness of SPECT MPS for the diagnosis and management of angina and MI. The following databases were searched and full details of the searches are documented in Appendix 1:

1. MEDLINE, 1966–October 2002, EMBASE 1980–2002 (to week 44)

Separate search strategies were developed for each database and then combined to produce a final strategy that was run concurrently on the two databases. Duplicates were removed from the resulting set using Ovid's de-duplicating feature.

- 2. PREMEDLINE (Ovid), 5 November 2002
- 3. BIOSIS (Edina), 1985–December 2002
- 4. Science Citation Index (Web of Science), 1981–December 2002
- 5. The Cochrane Library (Issue 3, 2002) (CENTRAL)
- 6. Health Management Information Consortium (HMIC), 1979–2002
- 7. HTA Database [NHS Centre for Reviews and Dissemination (CRD)], October 2002.

References of included studies were also checked.

All titles and abstracts identified were assessed to identify potentially relevant items. For all these items, full-text papers were obtained and assessed independently for inclusion by two researchers, using a study eligibility form developed for this purpose. Any disagreements that could not be resolved through discussion were referred to an arbiter.

Inclusion and exclusion criteria Types of study

Prospective and retrospective primary studies of SPECT MPS compared with any of the interventions noted under Types of interventions below for the diagnosis, prognosis, risk assessment, stratification and management of patients with suspected or confirmed coronary heart disease were included.

The following kinds of reports were not considered: abstracts; case reports; pictorial essays; pilot, volunteer, phantom, animal or safety studies; and studies investigating technical aspects of SPECT MPS or the development of imaging acquisition or processing. Studies reported in non-English languages were noted (details available from the authors) but not included in the review.

Studies with <100 participants were excluded.

Types of participants

Adults with suspected or diagnosed CHD were included, with the exception of pregnant women. Subgroup analysis was planned on:

- patients with previous MI
- women.

The following types of patients were excluded: patients who had received heart transplants; patients with hypertrophic cardiomyopathy, mitral valve prolapse, primary aldosteronism, lupus, acromegaly, cystic fibrosis, severe obstructive sleep apnoea or beta-thalassaemia; and patients who had undergone aortic reconstruction.

The role of MPS in patients unable to exercise or with abnormal resting ECG was not specifically considered.

Types of interventions

The interventions included were:

• SPECT (including ECG-gated SPECT and attenuation-corrected SPECT) as part of the clinical care pathways. Planar imaging was

excluded. The types of radionuclides considered relevant were thallium-201, MIBI and technetium-99m tetrofosmin. The types of stress included were exercise (treadmill or bicycle), pharmacological (adenosine or dipyridamole or dobutamine) or a combination of exercise and pharmacological means.

- Stress ECG.
- CA.

For studies of diagnostic accuracy, the interventions included were SPECT versus stress ECG, with CA as the reference standard test. In situations where CA would be an inappropriate reference standard (e.g. patients with mild clinical symptoms), clinical follow-up was accepted as the reference standard.

For prognostic studies, strategies involving SPECT were compared with strategies that did not. These included:

- stress ECG-SPECT-CA versus stress ECG-CA
- stress ECG-SPECT versus stress ECG alone
- SPECT-CA versus CA alone
- stress ECG versus SPECT versus CA
- SPECT versus CA
- stress ECG versus SPECT.

Studies were also included that compared SPECT with ECG-gated SPECT or attenuation-corrected SPECT (in any combination).

Types of outcomes

For studies of diagnostic accuracy, the types of outcomes included were either the absolute numbers of true positives (TPs), false positives (FPs), false negatives (FNs) and true negatives (TNs), or the sensitivity and specificity values.

For studies of prognosis, risk assessment, stratification and patient management, the types of outcomes included were: mortality; cardiac mortality; non-fatal MI; revascularisation (PTCA/CABG); occurrence of unstable angina; length of survival free of cardiac death; preservation of left ventricular function (after surgery); postoperative complications; number of CAs performed; hospital admissions; and QoL measures.

Data extraction strategy

A data extraction form was used (Appendix 2) to record details of study design, methods, participants, interventions, testing procedures, outcomes and follow-up. Two reviewers extracted data independently. Differences that could not be resolved through discussion were referred to an arbiter. Reviewers were not blinded to the names of study authors, institutions or publications.

Quality assessment strategy

The methodological quality of the diagnostic studies was assessed using the quality assessment of diagnostic accuracy studies (QUADAS) tool developed by the NHS CRD (Appendix 3). The tool did not incorporate a quality score but was a structured list of 12 questions, covering areas such as spectrum and verification bias, with each question to be answered 'Yes', 'No' or 'Unclear'. Two reviewers independently assessed the quality of the included studies. Any differences that could not be resolved through discussion were referred to an arbiter.

The prognostic studies were assessed using the Downs and Black checklist (Appendix 4).¹⁷ The checklist assessed the quality of both randomised and non-randomised studies (including cohort studies). Question 27 (study power) was omitted as studies with <100 participants were excluded. The adapted checklist, therefore, contained 26 questions, covering the following subscales:

- reporting (10 questions)
- external validity (three questions)
- internal validity bias (seven questions)
- internal validity confounding (six questions).

An overall score and scores for each of the subscales were calculated. A list of principal confounders and possible adverse events was developed (Appendix 5) to provide supplementary information to questions 5 and 8 of the checklist. The maximum achievable scores within each subscale were reporting (11), external validity (3), internal validity – bias (7) and internal validity – confounding (6), providing an overall maximum achievable score of 27.

Synthesis of diagnostic studies

Diagnostic performance indexes [sensitivity, specificity, accuracy, predictive values and likelihood ratios (LRs)] were extracted and recalculated for each study for both tests (SPECT versus CA and stress ECG versus CA) and 2×2 contingency tables of TP, FP, FN and TN were generated. For studies with missing data (e.g. studies reporting only sensitivity and specificity values), an attempt was made to reconstruct the contingency tables from the data available in the published reports. This proved to be feasible only when the total number of participants, sensitivity, specificity and accuracy were provided or when the total number of participants, sensitivity, specificity and positive and negative LRs were known.

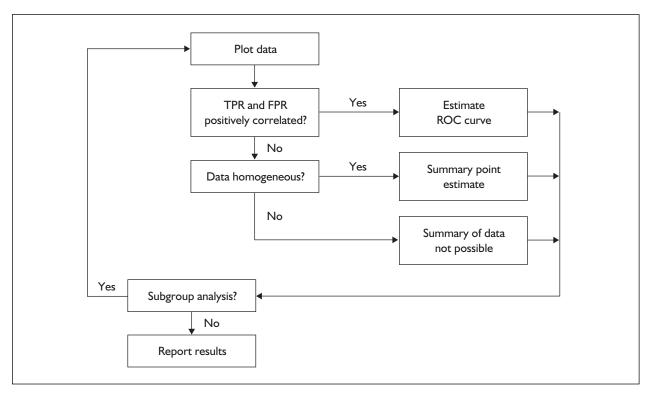


FIGURE 2 Algorithm for performing a meta-analysis of studies of diagnostic test performance¹⁹

Details of the mathematical equations applied are given in Appendix 6. Use of the equations was not always straightforward because in many cases they yielded non-integer values of TPs, FPs, FNs and TNs. This was usually because published values of sensitivity and specificity were often given to just two decimal places. In most cases it was possible to find integer values for the contingency tables that yielded the corresponding published values of sensitivity and specificity using the equations described above. There was, however, a minority of comparisons where no exact match could be found. For example, for Santana-Boado and colleagues' study¹⁸ the chosen integer values for the 2×2 table for the SPECT versus CA comparison vielded a sensitivity of 0.917 but the reported value of sensitivity was 0.91 and not 0.92. In these cases it was decided to use the data providing the closest match to the published values as the differences were not great and it is likely that the discrepancies were caused by rounding errors.

For the statistical analysis of studies of diagnostic performance, the methods suggested by Midgette and colleagues were applied (*Figure 2*).¹⁹ They first advocate plotting the TP rate (sensitivity) versus the FP rate (1 – specificity) and calculating the Spearman's rank correlation coefficient. If a large positive correlation is noted then this is an indication that calculation of a summary receiver operating characteristic (ROC) curve is desirable. In the absence of a positive correlation, heterogeneity between TP and FP rates is tested using a chi-squared test (or an extension of Fisher's exact test if the numbers are too small). If the data are homogeneous it is reasonable to conduct meta-analyses of sensitivities and specificities. Conversely, when data are heterogeneous and not positively correlated, a statistical summary is not recommended.

Summary ROC curves for SPECT versus CA and stress ECG versus CA were considered when a positive correlation between the TP and FP rates was found and when a sufficient number of studies was available for each comparison. A ROC curve for a test with high discriminatory power should yield a 'path' close to the top-left corner of the plot, indicating that it provides a high truepositive rate and a low false-positive rate. It is commonly used to describe how different test cutoff points affect the trade-off between sensitivity and specificity.^{20,21}

If appropriate, it was planned to calculate pooled estimates of sensitivity and specificity and their confidence intervals for both SPECT and stress ECG for each comparison.^{19,20} These are averages of the sensitivities and specificities weighted by the inverse of the variance of each study. Studies for

Database searched	Number of hits screened	Number selected	Included studies
Multifile search (MEDLINE, EMBASE) after de-duplication	4079	1072	62
PREMEDLINE	28	2	2
BIOSIS	1284	228	33
SCI	2295	290	51
The Cochrane Library: CENTRAL	116	14	4
HTA	63	6	0
HMIC	36	0	0

TABLE 4 Number of hits and items selected by database

which 2×2 table information could not be obtained could not be included in this analysis.

In addition, meta-analyses of positive and negative LRs were conducted where appropriate. LRs express the probability that a certain test result is expected in a patient with the target disorder, as opposed to a patient without the disorder. For instance, an LR of 10 means that a positive test result is 10 times more likely to occur in patients having the disease under investigation (i.e. CAD) than in healthy subjects. An LR of one means that the test result does not provide diagnostic information and does not change the probability of the target condition. LRs below one indicate a decrease in the probability of the target condition (the smaller the likelihood ratio, the greater the decrease). As LRs are identical in construction to risk ratios, meta-analyses of positive and negative LRs were conducted using a random effects model and treated as meta-analyses of risk ratios.²⁰

Results

Quantity and quality of research available

Titles and abstracts of >7000 reports were identified by the search strategies (*Table 4*). After de-duplication, 1198 reports were identified as possibly relevant to the appraisal. Of these, 242 were papers written in a foreign language and were noted but not included. Hence, 956 reports were selected for further assessment and full-text articles, where possible, obtained. An additional 16 articles were obtained by scanning the reference lists of these papers. Of these 970 reports, 70 met the final inclusion criteria. No studies addressing the important issue of the role of SPECT in preoperative risk assessment were identified that met our inclusion criteria.

Most of the included studies were identified in more than one database. In comparing the results of the MEDLINE, EMBASE, BIOSIS and SCI searches, 24 reports were identified in all of them and a further 21 were identified in all in which they were indexed. Only nine papers were not identified by the MEDLINE/EMBASE search, five of which were identified by SCI; one by SCI and BIOSIS; and three were not identified from any electronic searches. One of these was identified from the subsequent search for cost-effectiveness studies and the other two were identified from references. The titles and abstracts of these three articles gave no indication that exercise ECG or CA had been undertaken.

Number and type of studies included

In total, 70 studies, published in 71 reports, met the inclusion criteria for studies of effectiveness. There were 21 diagnostic studies,^{18,22–41} 46 prognostic studies,^{42–88} two studies assessing ECG-gated SPECT^{89,90} and one study assessing attenuation-corrected SPECT.⁹¹

Diagnostic studies

Overall, the quality of the diagnostic studies varied according to the methodological parameters considered (Table 5). Most studies clearly described their selection criteria. However, in the majority of studies spectrum bias was evident. In nearly all studies the index and reference tests were carried out within a period short enough to be reasonably sure that the target condition would not change in the intervening period. Eight of the studies described the SPECT test in sufficient detail to permit its replication; 12 described the reference standard test in sufficient detail to permit its replication. In the majority of studies the index test was interpreted without knowledge of the reference standard, and in just under half of the studies the reference standard was interpreted without knowledge of the index test. It was unclear from most studies whether the same clinical data were available when test results were interpreted as would be available if the test were to be used in practice.

NHS	CRD QUADAS	Yes	No	Unclear
Ι.	Was the spectrum of patients representative of the patients who will receive the test in practice?	3	13	5
2.	Were selection criteria clearly described?	17	2	2
3.	Is the reference standard likely to correctly classify the target condition?	21	0	0
4.	Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	17	I	3
5.	Did the whole sample, or a random selection of the sample, receive verification using a reference standard of diagnosis?	19	2	0
6.	Did patients receive the same reference standard regardless of the index test result?	21	0	0
7.	Was the reference standard independent of the index test (i.e. the index test did not form part of the reference standard)?	21	0	0
8a.	Was the execution of the index test described in sufficient detail to permit replication of the test?	8	13	0
8b.	Was the execution of the reference standard described in sufficient detail to permit its replication?	12	7	2
9a.	Were the index test results interpreted without knowledge of the results of the reference standard?	14	0	7
9Ь.	Were the reference standard results interpreted without knowledge of the results of the index test?	9	0	12
10.	Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	Ι	4	16
11.	Were uninterpretable/intermediate test results reported?	10	8	3
12.	Were withdrawals from the study explained?	18	3	0

TABLE 5 Summary of quality assessment of included diagnostic studies

Prognostic studies

Table 6 summarises the overall and subscale scores from the quality assessment of the 46 included prognostic studies. The overall mean score for all prognostic studies was 18.1 (out of a possible 27). The mean scores within each of the subscales were as follows: reporting, 9.2 (out of a possible 11); external validity, 0.6 (out of a possible 3); internal validity – bias, 5.1 (out of a possible 7); and internal validity – confounding, 3.2 (out of a possible 6).

The overall methodological quality of the prognostic studies was good. The quality of the studies in terms of reporting of information was very good, but the external validity was low, with the internal validity higher in terms of preventing bias than in preventing confounding of study participants. Within the reporting subscale almost all items scored highly; the exception was that only three studies gave details of adverse events related to the intervention. On the whole, patients were not representative of the population from which they were drawn. In only one study were the staff, places and facilities where the patients were treated judged to be representative of the treatment that most patients would receive; in all other studies this was either not the case or could not be determined from the information provided.

Most items scored well on the internal validity bias subscale. Given the nature of the intervention, blinding of participants was not possible; however, in just under half of the studies an attempt was made to blind those assessing test results. In nearly all studies the statistical tests used to assess the main outcomes were judged to be appropriate and the main outcomes were deemed to be valid and reliable. Many studies used survival analysis in an attempt to adjust for different lengths of patient follow-up. Most items scored well on the internal validity - confounding subscale. The majority of studies gave details of the period over which participants were recruited and reported losses to follow-up. Most studies adjusted for confounding in their analyses. The moderate overall score for the internal validity confounding subscale was mainly a reflection of the lack of randomised trials.

Characteristics of studies

Appendix 7 provides details of the characteristics of the included studies (study design, participants,

Study	Reporting (max. 11)	External validity (max. 3)	Internal validity – bias (max. 7)	Internal validity – confounding (max. 6)	Overall score (max. 27)
Amanullah, 1998 ⁴²	10	2	4	3	19
Amanullah, 1999 ⁴³	10	0	6	2	18
Ben-Gal, 200144	LI.	2	3	4	20
Berman, 1995 ⁴⁵	8	0	5	2	15
Candell-Riera, 1998 ⁴⁶	10	0	6	4	20
Chatziioannou, 1999 ⁴⁷	10	2	6	4	22
Chiamvimonvat, 2001 ⁴⁸	10	ō	6	4	20
Diaz, 2001 ⁴⁹	9	õ	6	4	19
Gibbons, 1999 ⁵⁰	8	ŏ	5	3	16
Giri, 2002 ⁵¹	10	0	6	2	18
Groutars, 2000 ⁵²	9	2	6	3	20
Hachamovitch, 1996 ⁵³	10	2	5	4	20
Hachamovitch, 1998 ⁵⁴		2	5		
	9 9	2		3 3	19
Hachamovitch, 2002 ⁵⁵			4		18
Ho, 1999 ⁵⁶	9	0	5	3	17
Iskandrian, 1993 ⁵⁷	6	0	4	l l	11
Iskandrian, 1994 ⁵⁸	9	0	4	4	17
Kamal, 1994 ⁵⁹	10	2	4	4	20
Lauer, 1996 ⁶⁰	10	0	6	3	19
Lauer, 1997 ⁶¹	10	0	6	4	20
Machecourt, 1994 ⁶²	10	0	6	4	20
Marie, 1995 ⁶³	10	0	6	4	20
Marwick, 1999 ⁶⁴	10	2	6	4	22
Miller, 1998 ⁶⁵	10	0	5	3	18
Miller, 2001 ⁶⁶	8	0	5	3	16
Mishra, 1999 ⁶⁷	8	0	5	2	15
Nallamothu, 1995 ⁶⁸	9	2	4	2	17
Nallamothu, 1997 ⁶⁹	9	0	6	3	18
O'Keefe, 1998 ⁷⁰	10	I	5	4	20
Olmos, 1998 ⁷¹	10	0	6	4	20
Pancholy, 1994 ⁷²	10	0	6	3	19
Pancholy, 1995 ⁷³	9	0	5	3	17
Parisi, 1998 ⁷⁴	5	0	5	3	13
Pattillo, 1996 ⁷⁵	9	0	5	3	17
Schinkel, 2002 ⁷⁶	II	2	6	4	23
Shaw, 1999 ⁷⁷	9	0	6	3	18
Shaw, 1999 ⁷⁸	4	ŏ	4	2	10
Stratmann, 1994 ⁸⁰	10	2	6	4	22
Travin, 1995 ⁸¹	9	0	4	3	16
Underwood, 1999 ⁸²	10	1	5	2	18
Vanzetto, 1999 ⁸³	10	0	6	4	20
Vanzetto, 1999 Vanzetto, 1999 ⁸⁴	9	0	5	4	18
Wagner, 1999	10	0	5 4	3	18
Zanco, 1995 ⁸⁶					
	8	0	4	2	14
Zellweger, 2002 ⁸⁷	10	0	4	3	17
Zerahn, 2000 ⁸⁸	10	I	5	3	19
Overall mean score	9.2	0.6	5.1	3.2	18.1

TABLE 6 Summary of quality assessment of included prognostic studies

test characteristics and outcomes) for the diagnostic and prognostic studies.

Diagnostic studies

All diagnostic studies, apart from that of Vaduganathan and colleagues,⁴¹ were observational studies comparing the diagnostic accuracy of SPECT versus stress ECG, with CA as the reference standard test. The study by Vaduganathan and colleagues⁴¹ did not include stress ECG as a comparator, as the entire patient population presented with left bundle branch block (LBBB), for which the stress ECG test is non-diagnostic. Seventeen studies were prospective in design^{18,22,24,26–33,35–38,40,41} while four were retrospective.^{23,25,34,39} Thirteen studies^{18,22–25,29–31,33,36–38,41} employed a consecutive method of recruitment.

Five studies took place in the USA,^{23,29,37,39,41} two each in Belgium,^{28,36} France,^{22,24} Japan^{27,31} and Greece^{38,40} and one each in Austria,³⁵ Canada,²⁵ Finland,³⁴ Italy,²⁶ Spain,¹⁸ Sweden,³² Taiwan³⁰ and the UK.³³ Nine studies gave details of the period during which they were carried out.^{18,22,25-27,31,34,40,41} Of these, the study duration was from a minimum of 2 years^{22,31,34} to a maximum of 9 years.²⁶

The total number of people analysed in the studies was 4453; the smallest study contained 100 patients³³ and the largest 606 patients.⁴⁰ In 14 studies the number of patients analysed was <200.^{18,22,25–30,32–36,41}

Across studies, the ages of the participant group as a whole ranged from <45 years²⁵ to a mean of 64 years. All studies apart from one³⁴ gave details of the numbers of men and women included; there was a total of 2868 men (66%) and 1468 women (34%). In two studies the participants consisted wholly of women^{23,25} and in one they consisted wholly of men.³²

Of the 4453 patients analysed, 960 (22%) had had a previous MI, 492 (11%) had previously undergone PTCA and 103 (2%) had previously undergone CABG. In the studies by Beygui and colleagues,²² Hamasaki and colleagues²⁷ and Hecht and colleagues,²⁹ all patients had previously undergone PTCA.

In 15 studies the tracer used was Tl-201,^{22–24,26,27,29–32,34,35,37–40} in five it was MIBI^{18,25,28,33,36} and in one both Tl-201 and MIBI were use.⁴¹ Fifteen studies used exercise as the means of stress, eight by treadmill^{23,29,35–40} and six by bicycle,^{22,27,28,30–32} and four studies used both exercise and pharmacological stress.^{18,26,33,41} In two studies the pharmacological stress consisted of dipyridamole,^{18,26} in one it was dobutamine or arbutamine³³ and in one⁴¹ it was adenosine or dobutamine. Two studies^{25,34} gave no information as to the type of stress used.

In 10 studies^{18,22,24,26,27,30-32,35,36} image interpretation was visual, in eight^{23,28,29,33,37-39,41} both visual and quantitative methods were used and in three 25,34,40 the method of image interpretation was not stated.

Prognostic studies

Of the 46 prognostic studies, four were comparative observational studies,67,77,78,82 but only one of these was prospective.⁷⁷ Of the 42 cohort studies, 23 were prospective, 13 retrospective and for six it was unclear. Twenty-six studies employed a consecutive method of recruitment. Thirty-four studies used Cox proportional hazards regression analysis. Across studies, the mean length of follow-up ranged from a minimum of 3 months⁶⁷ to a maximum of 6.7 years.⁴⁹ The mean length of follow-up was 2 years or longer in 28 studies. One study gave no details of the length of follow-up.⁴²

Thirty-three studies took place in the USA, four in France, two in The Netherlands, one each in Canada, Denmark, Germany, Israel, Italy and Spain and one study was a European multicentre study,⁸² involving two hospitals from each of France, Germany, Italy and the UK. Thirty-one studies gave details of the period in which they were carried out. Of these, the study duration was from a minimum of 5 months⁴⁷ to a maximum of 10 years.⁵⁰

The total number of people analysed in the studies was 83,138; the smallest study contained 106 patients⁸⁵ and the largest 11,249 patients.⁷⁷ In eight the number of patients analysed was <200. The mean age of the participant group ranged from 53 years^{63,86} to 66 years.⁷⁸ All studies apart from one⁸⁸ gave details of the numbers of men and women included; there was a total of 50,041 men (61%) and 32,559 women (39%). In two studies the participants consisted wholly of women^{73,78} and in one they consisted wholly of men.⁷⁴

Of the patients analysed, 11,535 (14%) had suffered previous MI, 4806 (6%) had previously undergone PTCA and 5997 (7%) had previously undergone CABG. In four studies all patients had experienced previous MI.48,81,85,87 In the study by Ho and colleagues⁵⁶ all patients had previously undergone PTCA and in the studies by Miller and colleagues⁶⁵ and Nallamothu and colleagues⁶⁹ all patients had previously undergone CABG.

In 23 studies the tracer used was Tl-201, in eight it was MIBI, in 12 both tracers were used, in one it was Tc-99m tetrofosmin and in two the type of tracer used was not stated. Twenty-seven studies used exercise as the means of stress. Three studies used pharmacological stress, one with dipyridamole,⁴⁸ one with adenosine⁵⁹ and one with dobutamine-arbutamine.⁷⁶ Twelve studies used both exercise and pharmacological stress; in four of these studies the pharmacological stressor

was adenosine,^{43,52,54,87} in four it was dipyridamole,^{44,62,64,83} in two studies both agents were used,^{51,69} in one study⁷⁰ adenosine or dipyridamole or dobutamine were used and one study⁷⁷ did not give details of the pharmacological stressor used.

In 23 studies image interpretation was visual, in six it was quantitative, in 12 both visual and quantitative methods were used and in five the method of image interpretation was not stated.

Tabulation of results

The results of the studies are given in Appendix 8. All p values are those reported by the authors.

Discussion of results Diagnostic studies

Twenty-one studies of variable methodological quality assessed the diagnostic accuracy of SPECT and stress ECG. Of these studies, 16 included patients referred for suspected or known CAD, three evaluated patients following PTCA, one focused on patients with asymptomatic coronary disease and one evaluated patients with LBBB.

Among the 16 studies assessing patients with a suspicion or a history of CAD, the largest subset, sensitivity values tended to be higher for SPECT than for stress ECG and the specificity values were similar. SPECT also provided higher positive LRs and lower negative LRs than stress ECG. The subgroup of studies including patients with previous MI tended to give better diagnostic performance but there were too few studies to assess the influence of other patients' characteristics on the accuracy of SPECT and stress ECG.

Comparison of SPECT and stress ECG in the other subsets of patients was also limited by the small number of included studies.

Prognostic studies

Twenty-one of the 46 prognostic studies provided general prognostic information. Sixteen of the general prognostic studies employed the Cox proportional hazards regression model. The Cox model is a regression technique that can be used to statistically adjust for baseline and other variables, such as those relating to the different tests used (for example, abnormal SPECT scan or ST-segment depression ≥ 1 mm) in order to calculate which variables in the model are predictive of the outcomes considered, over time. The variables included in the models generally appeared to be appropriate, although they differed to some extent across studies. Appendix 9 contains a list of the variables predictive of outcomes in studies employing multivariate analysis.

Four studies assessed the value of SPECT imaging in patients following MI.^{48,81,85,87}

Six studies examined different gender issues relating to the use of SPECT, including post-test gender bias in referral for CA,⁶⁰ the value of SPECT in predicting cardiac mortality in men and women,⁶⁴ a comparison of two different testing strategies in women,⁷⁸ the incremental prognostic value of SPECT over clinical and exercise data in women compared with men,⁵⁴ the independent and incremental prognostic value of SPECT in women⁷³ and the prognostic value of SPECT compared with ExECG in men.⁷⁴

Three studies assessed the value of SPECT in patients following revascularisation.^{56,65,69} The remaining studies assessed the usefulness of SPECT in a number of specific areas/patient populations, including patients with an acute coronary syndrome, patients with diabetes, patients with left main/three-vessel disease, normal SPECT scans, asymptomatic coronary disease, high ExECG tolerance, normal resting ECG, prediction of early revascularisation and effect of age on referral.

Several studies relied on the same patient population. The study by Marwick and colleagues⁶⁴ reported the same patient population as that reported by Shaw and colleagues.⁷⁹ For the purposes of this review, the former paper was considered the primary report of the study and the latter to be part of the same study. Although two other studies by Shaw and colleagues^{77,78} contain different numbers of patients, it is likely that at least some of the same patients were included in both reports. This is probably also the case with the three studies by Hachamovitch and colleagues.^{53–55} The two studies by Iskandrian and colleagues,^{57,58} although containing different numbers of patients, report substantially the same patient population, the only difference being that the group of patients with normal CA were excluded from the 1993 paper.57 Vanzetto and colleagues⁸⁴ reported a subset of the patient population reported by Machecourt and colleagues,⁶² although this was not completely a subset as patients with previous revascularisation were excluded from the former study but not from the latter.

Study	N	Stenosis (%)	Tracer	Previous MI	Sensitivity	Specificity	Accuracy
Chae, 1993 ²³	243	≥50	TI-201	Yes	0.71	0.65	_
Daou, 2002 ²⁴	338	≥50	TI-201	Yes	0.63	0.77	0.66
De, 2002 ²⁵	55	≥70	MIBI	Not stated	0.67	0.30	0.39
Gentile, 2001 ²⁶	132	≥60	TI-201	No	0.93	0.54	0.86
Hambye, 1996 ²⁸	128	≥50	MIBI	No	0.82	0.76	_
Huang, 1992 ³⁰	179	≥50	TI-201	Yes	0.87	0.80	0.86
Kajinami, 1995 ³¹	251	≥75	TI-201	Not stated	0.82	0.59	0.71
Karlsson, 1995 ³²	170	≥50	TI-201	Yes	0.68	0.65	_
Khattar, 1998 ³³	100	≥50	MIBI	Yes	0.68	0.72	0.70
Koskinen, 1987 ³⁴	100	≥50	TI-201	Not stated	0.90	0.10	0.82
Mairesse, 1994 ³⁶	129	≥50	MIBI	No	0.76	0.65	0.72
McClellan, 1996 ³⁷	303	≥50	TI-201	Yes	0.70	0.57	0.69
Michaelides, 1999 ³⁸	245	≥70	TI-201	No	0.93	0.82	0.91
Nallamothu, 1995 ³⁹	321	≥50	TI-201	Not stated	0.80	0.68	0.79
Psirropoulos, 2002 ⁴⁰	606	≥50	TI-201	Yes	0.93	0.44	0.73
Santana-Boado, 1998 ¹⁸	163	≥50	MIBI	No	0.91	0.90	0.91

TABLE 7 Sensitivity, specificity and accuracy for SPECT from the 16 included studies

TABLE 8 Sensitivity, specificity and accuracy for stress ECG from the 16 included studies

Study	N	Stenosis (%)	Previous MI	Sensitivity	Specificity	Accuracy
Chae, 1993 ²³	243	≥50	Yes	0.62	0.60	0.61
Daou, 2002 ²⁴	338	≥50	Yes	0.47	0.64	0.51
De, 2002 ²⁵	55	≥70	Not stated	0.44	0.73	0.65
Gentile, 2001 ²⁶	132	≥60	No	0.85	0.58	0.80
Hambye, 1996 ²⁸	128	≥50	No	_	_	-
Huang, 1992 ³⁰	179	≥50	Yes	0.50	0.76	0.54
Kajinami, 1995 ³¹	251	≥75	Not stated	0.74	0.75	0.74
Karlsson, 1995 ³²	170	≥50	Yes	0.65	0.65	-
Khattar, 1998 ³³	100	≥50	Yes	0.70	0.41	0.57
Koskinen, 1987 ³⁴	100	≥50	Not stated	0.63	0.80	0.65
Mairesse, 1994 ³⁶	129	≥50	No	0.42	0.83	0.57
McClellan, 1996 ³⁷	303	≥50	Yes	_	_	-
Michaelides, 1999 ³⁸	245	≥70	No	0.66	0.88	0.69
Nallamothu, 1995 ³⁹	321	≥ 50	Not stated	0.46	0.59	0.49
Psirropoulos, 2002 ⁴⁰	606	≥ 50	Yes	0.92	0.43	0.73
Santana-Boado, 1998 ¹⁸	163	≥50	No	0.67	0.71	0.69

Two studies, one diagnostic⁹⁰ and one prognostic⁸⁹ compared SPECT with gated SPECT, and one study⁹¹ compared SPECT with attenuation-corrected SPECT.

Assessment of effectiveness

Critical review and synthesis of information – diagnostic studies

Results of the comparative diagnostic performance of SPECT and stress ECG are presented separately for the following identified categories of studies: (a) patients with suspected CAD; (b) patients with previous PTCA; (c) patients with asymptomatic coronary disease; and (d) patients with LBBB.

Patients with suspected CAD

Sixteen studies assessed the diagnostic accuracy of SPECT and stress ECG for the detection of coronary artery disease. In 12 studies the angiographic definition of CAD was \geq 50% stenosis, in one study \geq 60% stenosis and in three studies \geq 70% stenosis. Two studies enrolled only women, one study only men and two studies provided results for women and men separately. The studies varied considerably with respect to size, characteristics of participants and methods.

Estimate of sensitivities and specificities

For each study the sensitivity, specificity and accuracy values for SPECT and stress ECG are shown in *Tables* 7 and 8, respectively. Only studies

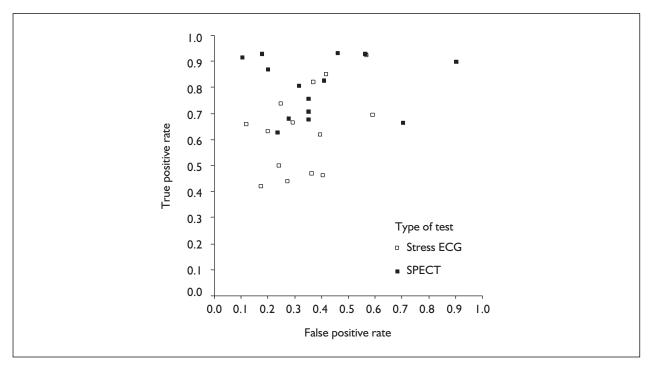


FIGURE 3 Scatter plot of TP rate against FP rate showing the performance of SPECT and stress ECG

in which patients underwent both SPECT and stress ECG, and where CA was used as the reference standard, were included in the analyses.

Owing to the significant heterogeneity among studies (chi-squared test: p < 0.001 in each case), no attempt was made to provide weighted averages of sensitivities and specificities for either SPECT or stress ECG.

Sensitivity and specificity values of both tests, SPECT and stress ECG, were available for only 14 studies. Two studies provided sensitivity and specificity for SPECT only and have been excluded from subsequent analyses. Sensitivity ranged from 0.63 to 0.93 (median 0.81) for SPECT and from 0.42 to 0.92 (median 0.65) for stress ECG. Specificity ranged from 0.10 to 0.90 (median 0.65) for SPECT and 0.41 to 0.88 (median 0.67) for stress ECG.

Figure 3 is a scatter plot showing the TP rate (sensitivity) and FP rate (1 - specificity) for SPECT and stress ECG for each of the 14 included studies. In qualitative terms, SPECT studies sat higher in the plot than stress ECG studies, suggesting a better diagnostic performance of SPECT. However, it was not possible to test this statistically.

Five of the 16 included studies clearly excluded patients with previous MI. Sensitivity and specificity values were available for both tests for only four studies (*Figure 4*). Sensitivity ranged from 0.76 to 0.93 (median 0.92) for SPECT and from 0.42 to 0.85 (median 0.66) for stress ECG and specificity ranged from 0.54 to 0.90 (median 0.72) for SPECT and from 0.58 to 0.88 (median 0.74) for stress ECG (*Table 9*). The range of sensitivity for the 10 studies that did include patients with previous MI was 0.63 to 0.93 (median 0.76) for SPECT and 0.44 to 0.92 (median 0.63) for stress ECG. Specificity for these ten studies ranged from 0.10 to 0.80 (median 0.65) for SPECT and from 0.41 to 0.80 (median 0.65) for stress ECG (*Table 10*).

Summary ROC curves for SPECT and stress ECG studies were not generated as the Spearman's rank correlation coefficient for the TP rates and FP rates in the 14 studies of SPECT was –0.02, indicating that the two values were not positively correlated. One explanation for the pattern observed is that the majority of the studies used the same cut-off for the definition of CAD (i.e. >50% stenosis). A ROC curve might have been more easily discerned if more of the studies had used different cut-off values. For stress ECG the Spearman's rank correlation coefficient was 0.46. Although a positive correlation was observed for stress ECG, it was decided not to produce summary ROC curves for either test.

It was also not possible to perform meaningful subgroup analyses to determine the differential

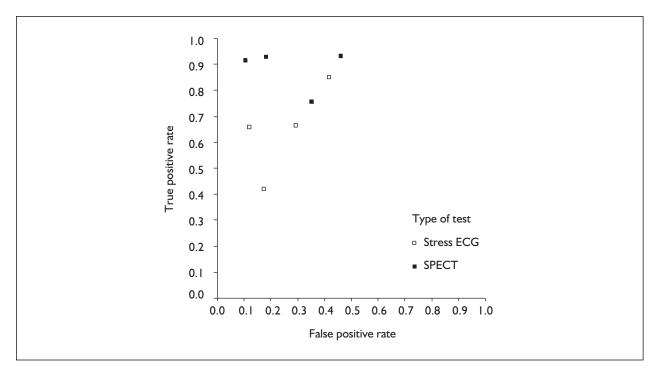


FIGURE 4 Scatter plot of TP rate against FP rate for the subgroup of studies excluding patients with previous MI

TABLE 9	Sensitivity	and specificit	ty of studies	excluding	patients with	previous /	MI
---------	-------------	----------------	---------------	-----------	---------------	------------	----

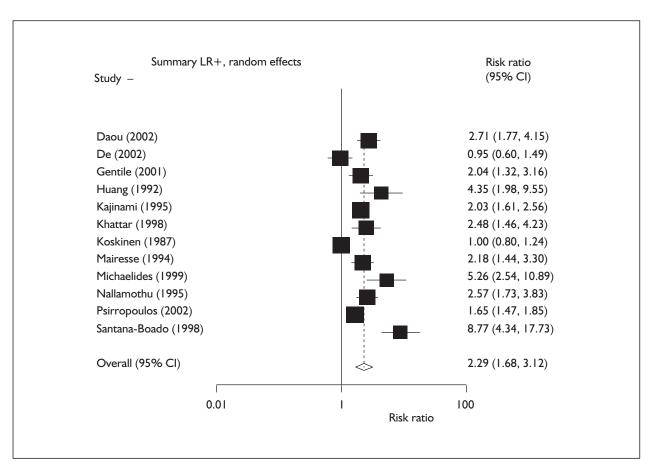
	Sensitivity: median (range)	Specificity: median (range)		
SPECT $(n = 4)$	0.92 (0.76–0.93)	0.74 (0.54–0.90)		
Stress ECG $(n = 4)$	0.66 (0.42–0.85)	0.77 (0.58–0.88)		

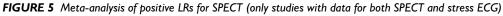
TABLE 10 Sensitivity and specificity of studies including patients with previous MI

	Sensitivity: median (range) Specificity: median (ran		
SPECT $(n = 10)$	0.76 (0.63–0.93)	0.65 (0.10–0.80)	
Stress ECG ($n = 10$)	0.63 (0.44–0.92)	0.77 (0.41–0.80)	

effect of SPECT and stress ECG in patient subgroups (e.g. gender of participants, angiographic definition of CAD, patients taking beta-blockers) owing to the relatively small number of studies within each subgroup.

Likelihood ratios


LRs for both tests could be calculated for 12 of the 16 included studies (*Table 11*). The range of positive LRs was 0.95–8.99 (median 2.33) for SPECT and 1.14–5.60 (median 2.06) for stress ECG. It is worth noting that all positive LVs were <10 in both tests. Combining positive LRs using a random effects model yielded a higher overall estimate for SPECT (2.29, 95% CI 1.68 to 3.12)


(*Figure 5*) compared with stress ECG (1.83, 95% CI 1.48 to 2.2.6) (*Figure 6*). However, for both tests there was significant heterogeneity among positive LRs (p < 0.001). Moreover, the overall estimate of 2.29 for SPECT was outside the 95% CIs of five of the 12 included studies. Similarly, the overall estimate of 1.83 for stress ECG was outside the 95% CIs of six of the 12 included studies.

Negative LRs ranged from 0.09 to 1.12 (median 0.29) for SPECT and from 0.18 to 0.91 (median 0.57) for stress ECG. Values varied considerably among studies. Two studies showed a negative LR for SPECT <0.1 (0.09) and LRs for SPECT

TABLE II LRs for SPECT and stress ECG

	Author(s)	N	Positive LR	Negative LR
SPECT	Daou, 2002 ²⁴	338	2.71	0.48
	De, 2002 ²⁵	55	0.95	1.12
	Gentile, 2001 ²⁶	132	2.04	0.12
	Huang, 1992 ³⁰	179	4.35	0.16
	Kajinami, 1995 ³¹	251	2.03	0.29
	Khattar, 1998 ³³	100	2.49	0.44
	Koskinen, 1987 ³⁴	100	1.00	1.00
	Mairesse, 1994 ³⁶	129	2.18	0.37
	Michaelides, 1999 ³⁸	245	5.26	0.09
	Nallamothu, 1995 ³⁹	321	2.57	0.28
	Psirropoulos, 2002 ⁴⁰	606	1.65	0.16
	Santana-Boado, 1998 ¹⁸	163	8.77	0.09
Stress ECG	Daou, 2002 ²⁴	338	1.29	0.83
	De, 2002 ²⁵	55	1.63	0.77
	Gentile, 2001 ²⁶	132	2.04	0.25
	Huang, 1992 ³⁰	179	2.08	0.66
	Kajinami, 1995 ³¹	251	3.00	0.35
	Khattar, 1998 ³³	100	1.18	0.74
	Koskinen, 1987 ³⁴	100	3.17	0.56
	Mairesse, 1994 ³⁶	129	2.43	0.70
	Michaelides, 1999 ³⁸	245	5.60	0.39
	Nallamothu, 1995 ³⁹	321	1.14	0.91
	Psirropoulos, 2002 ⁴⁰	606	1.63	0.18
	Santana-Boado, 1998 ¹⁸	163	2.28	0.47

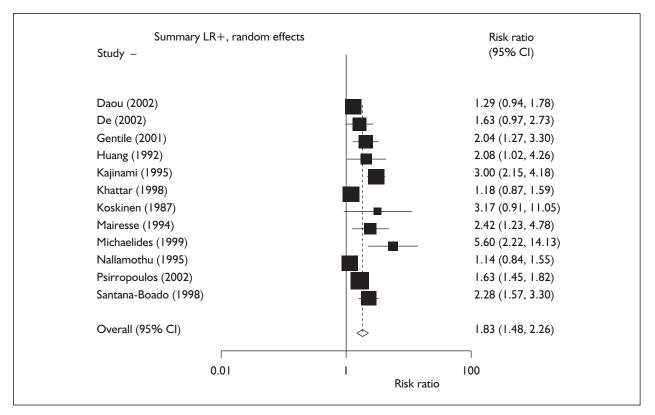


FIGURE 6 Meta-analysis of positive LRs for stress ECG (only studies with data for both SPECT and stress ECG)

tended to be smaller than those for stress ECG. The summary estimate of the negative LRs for SPECT was 0.25 (95% CI 0.17 to 0.37) (*Figure 7*) and 0.51 (95% CI 0.39 to 0.67) (*Figure 8*) for stress ECG, but again heterogeneity was evident among included studies (p < 0.001).

Patients who underwent PTCA

Three studies evaluated the diagnostic performance of SPECT and stress ECG in the detection of restenosis after PTCA.

Diagnostic data for both SPECT and stress ECG are shown in *Tables 12* and *13*. The range of sensitivities was 0.63–0.93 (median 0.79) for SPECT and 0.51–0.83 (median 0.52) for stress ECG. The range of specificities was 0.77–0.78 (median 0.77) for SPECT and 0.62–0.65 (median 0.64) for stress ECG.

Figure 9 shows the TP and FP rates for SPECT and stress ECG for the three included studies.

Two studies provided separate results for complete and partial revascularisation (*Table 14*). Sensitivity values of SPECT and stress ECG were similar whether or not revascularisation was complete. In contrast, specificity was lower for both tests for partial revascularisation. No further subgroup analyses could be performed.

Patients with asymptomatic coronary disease

One study³⁵ assessed the diagnostic performance of SPECT and stress ECG for the detection of CAD in asymptomatic patients. Patients were divided into two groups. Group I consisted of 46 asymptomatic patients with angiographically proven coronary stenosis and group II consisted of 60 asymptomatic patients with low-probability CAD. The sensitivity of SPECT for group I was 0.91 and the specificity was 0.96. The sensitivity of stress ECG in the same group was 0.43. In group II, the sensitivity of SPECT for CAD was 0.94 but its specificity was only 0.75, lower than in group I. The sensitivity of stress ECG was 0.70 and its specificity 0.56. Overall, SPECT performed better than stress ECG.

Patients with left bundle branch block

One study assessed the diagnostic value of SPECT during exercise and pharmacological stress in patients with LBBB and no diagnostic ECG for CAD.⁴¹ A total of 383 consecutive patients were enrolled in the study. SPECT was performed in conjunction with exercise in 206, adenosine in 127 and dobutamine in 50 patients. Presence of

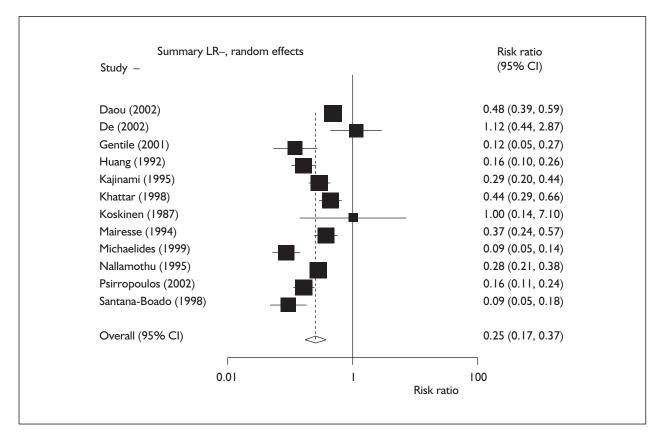
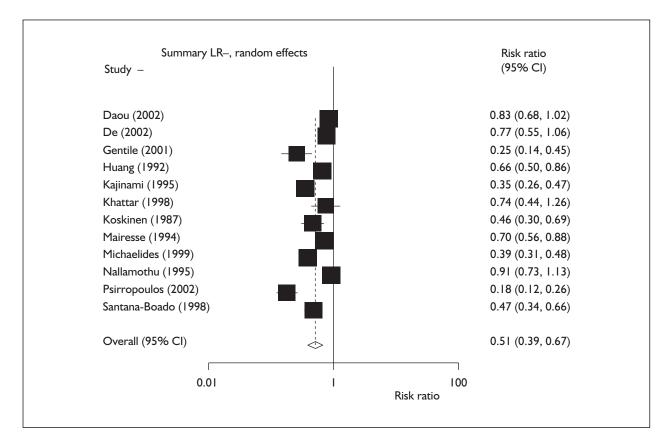



FIGURE 7 Meta-analysis of negative LRs for SPECT (only studies with data for both SPECT and stress ECG)

24

Study	N	Stenosis (%)	Tracer	Previous MI	Sensitivity	Specificity	Accuracy
Beygui, 2000 ²²	179	≥ 50	TI-201	Yes	0.63	0.77	0.71
Hamasaki, 1996 ²⁷	125	≥ 50	TI-201	No	0.79	0.78	0.78
Hecht, 1990 ²⁹	116	≥ 50	TI-201	Yes	0.93	0.77	0.86

TABLE 12 Sensitivity, specificity and accuracy for SPECT from the three studies on PTCA

TABLE 13 Sensitivity, specificity and accuracy for stress ECG from the three studies on PTCA

Study	N	Stenosis (%)	Previous MI	Sensitivity	Specificity	Accuracy
Beygui, 2000 ²²	179	≥ 50	Yes	0.51	0.62	0.58
Hamasaki, 1996 ²⁷	125	≥ 50	No	0.83	0.65	0.72
Hecht, 1990 ²⁹	116	≥ 50	Yes	0.52	0.64	0.57

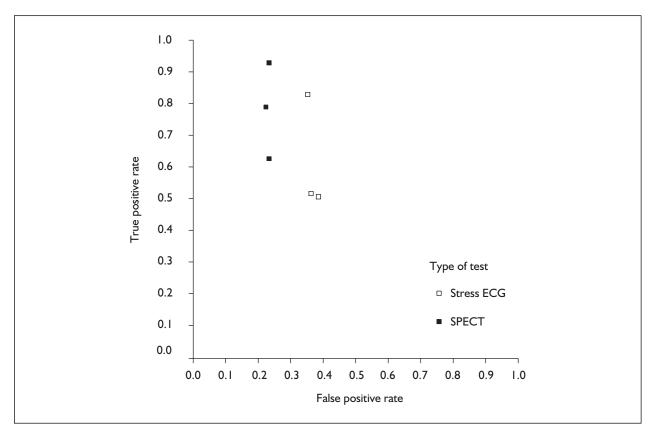


FIGURE 9 SPECT and stress ECG scatter plot for detection of restenosis after PTCA

stenosis was confirmed by CA within 1 month of SPECT. Exercise, adenosine and dobutamine SPECT had similar sensitivity for left anterior descending (LAD) coronary artery >50% stenosis (0.88, 0.79 and 1.0, respectively). The specificity and positive predictive value were 36 and 51% for exercise SPECT compared with 0.81 and 0.85 for adenosine and 0.80 and 0.90 for dobutamine. Pharmacological stress was shown to be more specific than exercise SPECT in the diagnosis of LAD coronary artery stenosis.

Critical review and synthesis of information – prognostic studies

Results of prognostic performance are presented separately for the following categories of studies: (a) general prognostic studies; (b) value of SPECT for the determination of prognosis in specific groups at risk of CAD; (c) use of SPECT in specific areas/patient populations; and (d) ECG-gated and attenuation-corrected SPECT.

	Study	Ν	Sensitivity	Specificity	Accuracy
SPECT complete revascularisation	Beygui, 2000 ²²	150	0.62	0.84	0.76
	Hecht, 1990 ²⁹	89	0.93	0.76	0.87
Stress ECG complete revascularisation	Beygui, 2000 ²²	150	0.45	0.61	0.56
·	Hecht, 1990 ²⁹	89	0.52	0.64	0.57
SPECT partial revascularisation	Beygui, 2000 ²²	58	0.67	0.58	0.60
·	Hecht, 1990 ²⁹	27	0.93	0.77	0.85
Stress ECG partial revascularisation	Beygui, 2000 ²²	58	0.71	0.51	0.59
•	Hecht, 1990 ²⁹	27	0.50	0.62	0.56

TABLE 14 Diagnostic data on complete and partial revascularisation

 TABLE 15
 Rate of revascularisation of SPECT-CA compared with CA

Study	SI	PECT-CA: n/N (%)		CA: n/N (%)	Þ
Shaw, 1999 ⁷⁷ Low ^a Intermediate ^a High ^a Mishra, 1999 ⁶⁷ Underwood, 1999 ⁸²	n/N not stated	(14) (13) (16) 123/2022 (6) 10/48 (21)	n/N not stated	(16) (27) (30) 1692/4572 (37) 33/75 (44)	0.0001 <0.001 <0.001

General prognostic studies

Comparative observational studies The three comparative observational studies^{67,77,82} had quality assessment scores of 15, 18 and 18, respectively. One study was prospective⁷⁷ and two were retrospective.^{67,82} Two compared a strategy of direct CA with a strategy of SPECT and selective use of CA.^{67,77} A third study compared four strategies: stress ECG–CA (strategy one); stress ECG–SPECT-CA (strategy two); SPECT–CA (strategy three); and CA (strategy four).⁸² The results of these studies are summarised in Appendix 8.

For the comparison of SPECT–CA with CA it was reported that the SPECT–CA strategy was associated with statistically significant lower rates of normal angiograms (33 versus $43\%^{77}$ (p value not reported) and 18 versus 33%,⁶⁷ p < 0.001). It was also reported that the rate of subsequent revascularisation was lower with the SPECT–CA strategy (*Table 15*). In the case of Shaw and colleagues, it was reported that this reduction in revascularisation rates was not accompanied by differences in rates of cardiac death or MI at 3 years.⁷⁷ Underwood and colleagues⁸² reported that there were significantly more deaths in patients in the SPECT-CA and CA strategies (10.4 and 5.3%, respectively) compared with the stress ECG-CA and stress ECG-SPECT-CA strategies (2.8 and 1.5%, respectively) (p < 0.05). They reported, however, that there were no significant differences in the total number of hard events (i.e. unstable angina, MI, death) between strategies (stress ECG–CA, n = 15; stress ECG–SPECT-CA, n = 12; SPECT-CA, n = 8; CA, n = 13). In patients with CAD, differences were evident between strategies with regard to freedom from symptoms, with stress ECG-CA having the lowest freedom from symptoms (37%) and CA the highest (64%) (p = 0.05). The prognostic power for the information available at the point of diagnosis differed between strategies (p < 0.0001), with SPECT being the single most powerful predictor of prognosis and having incremental value even when stress ECG or an angiogram had already been performed. Underwood and colleagues concluded that, although 2-year patient outcome was the same, strategies using SPECT were at least as effective as those not using SPECT.

Cohort studies

There were 12 prospective studies, ^{49,54,57,58,62,71,75,79,80,84,86,88} six of which employed consecutive recruitment. The study by Shaw and colleagues⁷⁹ was considered a subset of the study by Marwick and colleagues⁶⁴ that is considered in the section on the impact of gender on the effectiveness of SPECT-based strategies (see p. 29). There were also three retrospective studies^{63,66,68} and three which did not provide information as to whether they were prospective or retrospective, although they used a consecutive method of recruitment.^{55,59,76} The quality scores varied from between 14 to 23 out of 27. The results of these studies are detailed in Appendix 8.

Not all studies completely reported the structure of the statistical models used to assess the incremental value of SPECT. Furthermore, the variety of -independent predictors and the different outcome measures used hampered the comparison of the different studies.

The value of SPECT was compared with prognostic factors from other tests (stress ECG and angiography) and other clinical or natural history data in all cohort studies. In all except one study it was concluded that the addition of SPECT yielded incremental prognostic value. In the study by Miller and colleagues, which aimed to assess whether worsening clinical, exercise or SPECT variables could identify high-risk patients, the only prognostic variable that was predictive of cardiac death, MI or revacularisation was worsening clinical status.⁶⁶

Variables shown by the included studies to be statistically significant independent predictors of death, cardiac death, cardiac events (cardiac death and non-fatal MI) and other outcomes are shown in Tables 16–19. What these tables do not show is the relative added value of these independent predictors, so where data have been reported in the form of odds ratios (ORs) or relative risks (RRs) this has been noted. Except where otherwise noted, an OR, RR or hazard ratio (HR) >1indicates a greater risk of the outcome. The significance of these results is that if it is possible to predict who is at risk of these events, it may be possible to improve those patients' management and so avoid serious events (e.g. death or MI). For each study these data are summarised in Appendix 8.

Both Diaz and colleagues and Miller and colleagues concluded that SPECT had independent prognostic value even after accounting for treadmill variables,^{49,66} heart rate recovery and other potential confounders (*Table 16*).⁴⁹ In terms of all cause death, Diaz and colleagues reported that SPECT provided little additional prognostic information at low risk and high risk, but for patients categorised as intermediate risk (impaired functional capacity or an abnormal heart rate recovery) SPECT was useful in stratifying risk.

All eight studies that reported on prediction of cardiac death concluded that the addition of SPECT provided important independent or incremental information. The most common conclusions were that the extent of perfusion defects was the most powerful predictor of events.^{57,58,62,63,79} SPECT was reported as providing predictive information incremental to clinical and exercise data^{76,84} or angiography.⁵⁸ Furthermore, SPECT had incremental value in patients at low,^{62,76,84} intermediate⁸⁴ and high risk.⁷⁶

Five studies also reported relative effectiveness data that enabled the importance of SPECT as an independent predictor of cardiac death to be judged.^{63,71,76,84,88} In the study by Marie and colleagues,⁶³ when radionuclide left ventricular ejection fraction was excluded from the model, the SPECT total exercise defect extent was associated with a statistically significant ability to predict those most at risk of cardiac death (RR 1.06, 95% CI 1.03 to 1.08). Olmos and colleagues⁷¹ in a model comprising clinical exercise test and SPECT variables, reported the perfusion defect size on a SPECT scan to be the strongest predictor of cardiac mortality (OR 1.41, 95% CI 1.1 to 1.82). In the study by Schinkel and colleagues,⁷⁶ two models were assessed. In the first an abnormal scan provided incremental ability to predict those at highest risk of cardiac death (HR 8.2, 95% CI 3.2 to 21) and in the second both reversible defects (HR 2.1, 95% CI 1.2 to 3.5) and fixed defects (HR 2.2, 95% CI 1.2 to 4.0) were incremental predictors of cardiac death. Similarly, Vanzetto and colleagues⁸⁴ and Zerahn and colleagues⁸⁸ reported that three or more abnormal SPECT segments (OR 4.83, 95% CI 2.22 to 9.54)⁸⁴ and fixed defects on a SPECT scan (RR 2.55, 95% CI 1.43 to 4.55)⁸⁸ were independent predictors of cardiac death.

Ten studies reported data on the independent predictive power of SPECT to identify patients at risk of cardiac death or non-fatal MI (*Table 18*). In all cases the statistical models used appeared to include appropriate clinical, ExECG and SPECT variables, although they differed between studies.

Study	Independent predictors ^a
Diaz, 2001 ⁴⁹	High-risk SPECT scan; poor or fair fitness; abnormal heart rate recovery; intermediate-risk SPECT scan
Miller, 2001 ⁶⁶	Worsening category summed stress score; worsening clinical status; worsening category summed reversibility score
^a Ordered in ter	rms of strongest evidence of statistical significance.

TABLE 16 Statistically significant predictors of all cause death by multivariate analysis

 TABLE 17
 Statistically significant predictors of cardiac death by multivariate analysis

Study	Independent predictors ^a
Iskandrian, 1994 ⁵⁸	Combination of CA and SPECT data; extent of perfusion abnormality; extent of CAD by angiography ^a
Machecourt, 1994 ⁶²	Abnormal SPECT scan; male gender; previous MI ^a
Marie, 1995 ⁶³	Age; total exercise defect extent on SPECT scan
Olmos, 1998 ⁷¹	Perfusion defect size on SPECT scan
Schinkel, 2002 ⁷⁶	Abnormal SPECT scan; congestive heart failure; diabetes mellitus; smoking; age ^a
Vanzetto, 1999 ⁸⁴	\geq 3 abnormal segments; previous MI, non-diagnostic stress ECG; strongly positive ECG ^a
Shaw, 2000 ⁷⁹	Pretest clinical risk; territories with infarction; territories with ischaemia
Zerahn, 2000 ⁸⁸	dPRP <2500 mmHg/min; fixed defects on SPECT scan; LBBB; digoxin; age \geq 60 years ^a

and the difference in systolic blood pressure between rest and maximum workload.

TABLE 18 Statistically significant predictors of cardiac events (cardiac death or non-fatal MI) by multivariate analysis

Study	Independent predictors
Hachamovitch, 1998 ⁵⁴	Improved prediction on addition of SPECT scan data to prescan information
Hachamovitch, 2002 ⁵⁵	Summed stress score
lskandrian, 1993 ⁵⁷	Extent of total perfusion abnormality and extent of ischaemic abnormality and left ventricular dilation; extent of CAD and ejection fraction; gender; exercise work load ^a
Kamal, 1994 ⁵⁹	Size of perfusion abnormality
Machecourt, 1994 ⁶²	Submaximal exercise stress test; abnormal SPECT scan; previous MI; male gender ^a
Marie, 1995 ⁶³	Age; total exercise defect extent on SPECT scan ^a
Miller, 2001 ⁶⁶	Worsening clinical status
Olmos, 1998 ⁷¹	Abnormal SPECT scan
Pattillo, 1996 ⁷⁵	Size of perfusion defect on SPECT scan
Stratmann, 1994 ⁸⁰	Abnormal SPECT scan, or reversible defect when 'abnormal scan' replaced by 'fixed' and 'reversible' defect

^a Ordered in terms of strongest evidence of statistical significance.

TABLE 19 Statistically significant predictors of other outcome measures by multivariate analysis

Outcome	Study	Independent predictors
Cardiac events and revascularisation	Miller, 2001 ⁶⁶	Worsening clinical status
Non-fatal MI	Vanzetto, 1999 ⁸⁴	\geq 3 abnormal segments on SPECT scan; I–2 abnormal segments; previous MI; presence of risk factors ^a
Cardiac mortality, non-fatal MI, unstable angina	Zanco, 1995 ⁸⁶	Abnormal SPECT scan, or reversible defect on SPECT; extent of the defect (>4 out of 18 segments) when 'abnormal scan' replaced by 'reversible defect' and 'extent of defect'

^a Ordered in terms of strongest evidence of statistical significance.

All except one⁶⁶ concluded that SPECT provided additional independent or incremental information. Furthermore, in three studies it was reported that SPECT provided additional information to that provided by CA variables^{57,59,63} and in one study the addition of CA variables to a strategy already including SPECT and stress ECG was no more powerful at predicting cardiac events.⁷⁵

Three studies reported relative effectiveness data.^{63,71,80} Marie and colleagues,⁶³ in a Cox multivariate analysis including SPECT and all other baseline variables, reported that the total extent of SPECT defects (RR 1.05, 95% CI 1.02 to 1.07) and age (RR 1.07, 95% CI 1.02 to 1.13) were directly predictive of cardiac events. Olmos and colleagues⁷¹ reported that the main multivariate predictor of cardiac events from clinical, stress ECG and SPECT variables was an abnormal SPECT scan (OR 2.76, 95% CI 1.08 to 7.07). Stratmann and colleagues,⁸⁰ in a Cox multivariate analysis including clinical, exercise test and SPECT variables, reported that an abnormal SPECT scan was a statistically significant predictor of cardiac events (non-fatal MI or cardiac death) (RR 11.9, 95% CI 1.6 to 89.4). Five studies explicitly reported the comparison of a diagnostic strategy of clinical data and stress ECG compared with clinical data, stress ECG and SPECT.^{55,62,63,71,75} All reported that the addition of SPECT to this pathway improved the ability to predict cardiac events.

Three studies also considered the independent or incremental prognostic value of SPECT in terms of other outcome measures (*Table 19*).^{66,84,86} In the study by Mille and colleagues,⁶⁶ the only independent predictor of cardiac events and revascularisation from stress ECG, SPECT and clinical variables was worsening clinical status of patients.

Vanzetto and colleagues⁸⁴ reported on the incremental value of SPECT in predicting non-fatal MI. They found that the only independent predictors were SPECT and clinical variables. This study also reported that the most important predictors were three or more abnormal segments on a SPECT scan (OR 4.97, 95% CI 2.15 to 11.49), one to two abnormal SPECT segments (OR 4.20, 95% CI 1.93 to 9.14) followed by previous MI (OR 2.89, 95% CI 1.78 to 4.69) and the presence of one or more risk factors (OR 2.50, 95% CI 1.50 to 4.17).

Zanco and colleagues⁸⁶ considered two models: in model A, the abnormality of the SPECT scan was

compared with stress ECG, clinical and other parameters such as age and gender, and in model B the 'abnormality of the SPECT scan' was replaced by the variables 'the presence of a reversible defect' and 'the extent and the score of the stress defect'. With model A, only 'abnormality of the SPECT scan' (RR 17.62. 95% CI 2.3 to 13.65%) was an independent predictor of increased risk. In model B, the two SPECT variables were the only independent predictors of increased risk, with the presence of a reversible defect having the largest effect (RR 5.11, 95% CI 1.5 to 17.36) with a smaller effect for a defect in more than four segments (RR 3.27, 95% CI 1.2 to 9.22). Zanco and colleagues concluded that SPECT was useful for risk stratification of CAD patients and that the presence of a reversible perfusion defect or an extensive defect appeared to indicate a clear increase in the likelihood of subsequent cardiac events.

Value of SPECT for the determination of prognosis in specific groups at risk of CAD

A number of studies also considered the prognostic value of SPECT in specific groups who were being diagnosed for CAD. These studies are considered below.

Gender

Six studies examined gender issues relating to the use of SPECT^{53,60,64,73,74,78} and had quality assessment scores of 21, 19, 22, 17, 13 and 10, respectively. Three studies were prospective,^{60,64,78} two were retrospective^{53,73} and one⁷⁴ provided no information as to whether it was prospective or retrospective. Five studies employed a consecutive method of recruitment.^{53,60,64,73,78} Of these studies, one examined post-test gender bias in referral for CA, two compared the value of SPECT in men and women, two considered the additional prognostic value of SPECT in women and one the additional prognostic value of SPECT in men.

Lauer and colleagues⁶⁰ examined the extent of post-test gender bias in referral for CA. In their Cox multivariate analysis they reported that, as for the whole population, an abnormal thallium SPECT scan (RR 2.34, p = 0.08) was predictive of increased mortality in women. Gender was not significantly associated with cardiac death (for women, RR 0.77, 95% CI 0.31 to 1.87) after adjusting for age, referral for CA and an abnormal SPECT scan. An abnormal SPECT scan was predictive of increased risk of fatal cardiac events (adjusted RR 4.37, 95% CI 2.03 to 9.40). The most powerful predictor for referral for CA was an abnormal SPECT scan (OR 16.05, 95% CI 12.43 to 20.73); other independent predictors included anginal chest pain (OR 5.42, 95% CI 4.08 to 7.20), ventricular tachycardia (OR 4.95, 95% CI 3.01 to 13.17) and hypotensive response (OR 2.21, 95% CI 1.18 to 4.15). In logistic regression analysis with adjustment for SPECT results and age, women were as likely as men to be referred for CA (adjusted OR 1.00, 95% CI 0.75 to 1.34). Lauer and colleagues concluded that gender-related differences in referral for CA after treadmill SPECT were explained by a higher rate of abnormal tests in men. They detected no evidence of a post-test gender bias.

Marwick and colleagues⁶⁴ compared the value of SPECT for predicting cardiac mortality in men and women and sought to determine whether this information was independent from that available from clinical evaluation and exercise testing. They reported that the ST-segment response to stress predicted outcome in women but not men. They noted that independent predictors of cardiac death differed to some extent by gender. In women, clinical risk index and the number of territories with fixed defects were associated with increased risk of cardiac death, but the number of territories with stress-induced defects and exercise capacity were not. In men, clinical risk index, exercise time and the number of territories with stress-induced or fixed defects (but not STsegment response) were associated with cardiac mortality. Marwick and colleagues concluded that the results of SPECT were important, independent predictors of survival in both women and men.

Hachamovitch and colleagues⁵³ examined whether SPECT added similar incremental prognostic information over that provided by clinical and exercise data in women compared with men and whether SPECT, incorporated in a clinical strategy, could be used to effectively risk stratify both men and women. Cox multivariate analysis was undertaken to determine the incremental prognostic value in men and women of three models: (1) clinical variables; (2) clinical plus exercise variables; and (3) clinical plus exercise plus SPECT variables. Model 3 provided significantly more prognostic information than model 2 in both men and women (p < 0.0001). In order to compare directly the relative discrimination of SPECT in men versus women with respect to identifying high-risk subjects, the areas under the ROC curves were compared for predicting events using the summed stress score.

The area under the curve in women (0.84 ± 0.03) was significantly greater than that for men (0.71 \pm 0.03, p < 0.0005 versus women), demonstrating that SPECT was better able to identify women at high risk of future events than men independently of baseline event rates, diagnostic thresholds or selection bias. SPECT also risk stratified women more effectively than men (OR for an event with abnormal versus normal scan results: men 4.4, women 22.8, Mantel-Haenszel OR 6.8, 95% CI 4.7 to 9.7). This significant difference in ability to stratify patients was present between men and women in all prescan likelihood categories, demonstrating that this effectiveness was independent of underlying patient characteristics and ExECG test results. Hachamovitch and colleagues⁵³ concluded that SPECT identified low-risk women and men equally well but relatively high-risk women were identified more accurately than relatively high-risk men and SPECT was therefore able to stratify women more effectively than men.

Shaw and colleagues⁷⁸ compared two alternative testing strategies, measuring the impact on cardiac outcomes (death or MI) in subsets of women with predefined and variable pretest probabilities of CAD. The two strategies were (1) referral directly to CA (n = 4638) or (2) SPECT imaging first (n = 1263) followed by CA if at least one reversible myocardial perfusion abnormality was detected. No statistically significant differences were found in cardiac mortality or non-fatal MI between the two diagnostic strategies compared. Shaw and colleagues, in a further multivariate analysis, demonstrated the incremental value of SPECT when compared with clinical history (p < 0.0001) and ExECG (p < 0.0001).

Pancholy and colleagues⁷³ sought to determine the independent and incremental prognostic value of exercise SPECT in women. They considered five strategies: (1) clinical data alone; (2) clinical and exercise data; (3) clinical, exercise and CA data; (4) clinical, exercise, CA and SPECT data; and (5) clinical, exercise and SPECT data. There were no statistically significant differences between strategies 1 and 2. Strategy 3 had incremental prognostic power compared with strategy 2 (p < 0.01) and strategy 4 had incremental prognostic power compared with strategy 3 (p < 0.01). However, there were no statistically significant differences between models 4 and 5. The SPECT variables included in their model (such as extent of total perfusion abnormality, extent of reversible perfusion abnormality,

multivessel abnormality and large perfusion abnormality) were strongly predictive of future cardiac events. The lung thallium uptake was a significant predictor of future cardiac events but not as strong as other scintigraphic variables. Pancholy and colleagues⁷³ concluded that SPECT imaging provided independent and incremental prognostic information to clinical, exercise and angiographic data in medically treated women with CAD, and that the extent of perfusion abnormality (reversible or fixed) was the most important predictor of prognosis.

In the study by Parisi and colleagues⁷⁴ set in the USA, 328 men were enrolled, with a follow-up of 5 years. The aim of the study was to compare the prognostic ability of SPECT and ExECG in lowrisk men with CAD. In multivariate analysis, a reversible defect predicted significant risk (RR 2.23, p = 0.04; among other factors, only diabetes (RR 2.83) and current smoking (RR 2.19) had a significant relationship with subsequent mortality. A positive ExECG failed to distinguish survival from non-survival. Parisi and colleagues⁷⁴ concluded that in medically or angioplasty-treated middle-aged men with chronic stable angina and one- and two-vessel CAD, SPECT was superior to ExECG for predicting subsequent survival, although in this group of patients neither method was superior in predicting subsequent non-fatal coronary events.

Patients with diabetes

Two prospective studies,^{51,83} with quality assessment scores of 18 and 20, respectively, assessed the usefulness of SPECT imaging in patients with diabetes. One aimed to evaluate the incremental role of stress SPECT imaging in the prediction of cardiac events in patients with diabetes⁵¹ and the other prospectively evaluated the prognostic value of exercise stress testing and SPECT for the prediction of cardiac events in a homogeneous cohort of high-risk non-insulin-dependent diabetes mellitus (NIDDM) patients.⁸³

Giri and colleagues⁵¹ reported that in a Cox multivariate analysis, independent predictors of cardiac death were clinical risk (p = 0.00001), the number of ischaemic SPECT defects (p = 0.00001) and the number of fixed SPECT defects (p = 0.00001). For cardiac death or MI, independent predictors were clinical risk (p = 0.0001), the number of ischaemic SPECT defects (p = 0.00001) and the number of fixed SPECT defects (p = 0.00001). The presence of diabetes was not an independent predictor for

either outcome. Giri and colleagues concluded that the presence of an abnormal SPECT scan and extent of the defect independently predicted subsequent cardiac events, and that using SPECT in conjunction with clinical information assisted in the risk stratification of patients with diabetes.

Vanzetto and colleagues⁸³ reported that, in Cox multivariate analysis, independent predictors of major cardiac events were age >60 years (p = 0.02), personal history of CAD (p = 0.04), presence of microalbuminuria (p = 0.001), inability to perform exercise stress testing (p = 0.002), presence of an abnormal SPECT scan (p = 0.03) and more than two abnormal segments on SPECT (p = 0.002). Vanzetto and colleagues reported that an abnormal SPECT image was an independent predictor of future cardiovascular events. In particular, the presence of a large defect, involving more than two myocardial segments, accurately identified higher risk patients. Vanzetto and colleagues concluded that in clinically selected high-risk diabetic patients, ability to exercise was related to a low probability of future cardiovascular events, and SPECT had little additive value in this case. Inability to exercise, however, was associated with a high risk of events, and in these patients SPECT imaging added incremental prognostic value over clinical and biological variables, with the presence of more than two abnormal segments identifying a very high-risk subset of patients.⁸³

Left main and/or three-vessel disease

Amanullah and colleagues⁴³ (quality assessment score 18) examined the predictors of outcome of medically treated patients with left main and/or three-vessel CAD. In a Cox multivariate analysis, among clinical, stress and SPECT variables, the SPECT score was the only independent predictor of outcome (p = 0.02). Amanullah and colleagues concluded that SPECT was useful in predicting outcome in patients with left main and/or threevessel CAD.

Normal SPECT scans Four studies, ^{45,50,52,70} with quality assessment scores of 15, 16, 20 and 20, respectively, examined the value of SPECT when scan images were normal. Two studies were prospective.^{45,52} Two studies employed a consecutive method of recruitment.45,70

Groutars and colleagues⁵² evaluated the prognostic significance of normal dual-isotope (rest Tl-201, exercise Tc-99m tetrofosmin) SPECT studies in patients with suspected or known CAD. In 236 patients followed-up there were four cardiac events

and these occurred in patients with an intermediate to high pretest likelihood of CAD and negative or non-diagnostic exercise ECG results.

Berman and colleagues⁴⁵ assessed the prognostic implications of normal and equivocal exercise SPECT scans. SPECT provided incremental prognostic value in all patient subgroups analysed. For example, Berman and colleagues reported that, of the 1282 patients with interpretable ExECG responses (and a normal or abnormal scan), 548 had a low prestress ECG likelihood of CAD, of whom three (0.5%) had a hard event. Of these 548 patients, none of 441 with a normal or equivocal scan and three (2.8%) of 107 with an abnormal scan had a hard event. In patients with a low poststress ECG likelihood of CAD, those with a normal scan had a significantly lower hard event rate (0%, 0 of 167) than those with an abnormal scan (6.2%, four of 64), p = 0.007. Even greater stratification occurred in the patients with an intermediate to high poststress ECG likelihood of CAD [normal scan, 0.7% (2 of 274); abnormal scan, 7.9% (18 of 229), χ^2 18, p < 0.001]. Berman and colleagues concluded that normal or equivocal SPECT results were associated with a benign prognosis, even in patients with a high poststress ECG likelihood of CAD, and that there was incremental prognostic value for SPECT in all patient subgroups.

Gibbons and colleagues⁵⁰ evaluated the prognostic value of a normal or near-normal SPECT scan in patients with an intermediate risk by treadmill test. In a Cox multivariate analysis, they showed that variables demonstrating significant independent association with time to cardiac death were abnormal SPECT scan (OR 9.3, 95% CI 3.0 to 28.7) and cardiac enlargement (OR 4.3, 95% CI 1.5 to 12.2). Gibbons and colleagues concluded that patients with normal or near-normal exercise SPECT scans and normal cardiac size were at low risk for subsequent cardiac death and could be safely managed medically until their symptoms warranted revascularisation.

A study by O'Keefe and colleagues⁷⁰ evaluated the outcomes of patients with mild or moderate ischaemia but without high-risk features on SPECT scans in terms of whether they were managed medically or invasively. Cox multivariate analysis was performed assessing variables correlated with long-term outcome. Multivariate predictors of increased risk of referral for CA (invasive management) were angina (RR 2.71), transient ischaemic dilation (RR 2.1), angina while on the treadmill (RR 1.8) and absence of previous MI (RR 0.64). The analysis showed referral for CA (invasive management) as the only independent predictor of non-fatal MI or death during follow-up (p = 0.0001). The relative risk of infarction or death with invasive management compared with medical management was 11.6 (95% CI 4.8 to 27.9). O'Keefe and colleagues concluded that patients with non-high-risk ischaemia on SPECT imaging could be treated safely with a conservative medical management strategy.

Use of SPECT in specific areas/patient populations

SPECT imaging of patients after MI Four studies^{48,81,85,87} with quality assessment scores of 20, 16, 17 and 17, respectively, provided information on the prognostic utility of SPECT in patients after MI. Three studies were prospective.^{48,81,85} All four employed a consecutive method of recruitment.

Chiamvimonvat and colleagues⁴⁸ assessed the utility of SPECT in a selected low-risk population following MI. They reported that, in a multivariate logistic regression model including clinical, SPECT and angiographic variables, the independent predictors of increased risk of cardiac events were the presence of reversible defects (OR 5.04, 95% CI 2.01 to 12.66) and the presence of multivessel stenosis ≥70% (OR 2.64, 95% CI 1.34 to 5.21). In addition, they reported a statistically significant incremental prognostic performance when moving from a strategy of (1) clinical data alone to (2) clinical and CA data to (3) clinical and SPECT to (4) clinical, CA and SPECT (p < 0.05for all stepwise comparisons). Based on these results, they concluded that in low-risk populations after MI, the presence of reversible defects was a strong predictor of cardiac events, with greater prognostic value than angiographic data. As the extent of reversible defects correlated with subsequent cardiac events, SPECT imaging was useful for risk stratification in low-risk populations after MI.

The study by Travin and colleagues⁸¹ assessed the value of SPECT in patients undergoing exercise stress testing after recent acute MI. In Cox multivariate analysis, the number of ischaemic defects on SPECT was the only significant predictor of an event (p = 0.0317). They concluded that exercise SPECT after MI frequently revealed residual ischaemia and was better than clinical data, symptoms and stress ECG in identifying patients at risk of a subsequent cardiac event.

Wagner and colleagues⁸⁵ aimed to evaluate the predictive power of early postinfarction stress testing in survivors of uncomplicated MI treated with thrombolytics. They reported that in a multivariate analysis of clinical, exercise and SPECT variables the presence of reversible perfusion defects on SPECT was the only independent predictor of future cardiac events. No angiography variable was prognostically significant for these events. They concluded that SPECT imaging in the early postinfarction period was important in identifying patients at increased risk among clinically stable survivors of uncomplicated acute MI.

Zellweger and colleagues⁸⁷ assessed the incremental prognostic value of SPECT over clinical assessment in patients with remote prior MI who underwent SPECT imaging more than 6 months after MI. They showed that the most important independent predictors of cardiac death were non-reversible segments (RR 1.63, 95% CI 1.28 to 2.08), symptoms (RR 2.58, 95% CI 1.41 to 4.69), prior CABG (RR 0.47, 95% CI 0.27 to 0.82) (an RR of less than 1 indicates that prior CABG is associated with a lower risk of cardiac death) and age (RR 1.03, 95% CI 1.01 to 1.06). Similarly, predictors of cardiac death or non-fatal MI were symptoms (RR 3.84, 95% CI 2.28 to 6.45), prior CABG (RR 0.56, 95% CI 0.38 to 0.84), prescan likelihood of CAD (RR 2.57, 95% CI 1.43 to 4.64), summed difference score (RR 1.05, 95% CI 1.02 to 1.07) and presence of non-reversible segments (RR 1.13, 95% CI 1.07 to 1.19). When, for all patients, SPECT information was added to the prescan data, the ability to predict those most at risk of cardiac death (p < 0.0001) and all hard events (p < 0.0001) increased. Zellweger and colleagues concluded that, after adjustment for prescan information, the SPECT results (summed stress score) added incremental value to prescan and were highly predictive in the risk stratification of patients with remote prior MI.

Post-revascularisation

Three retrospective studies,^{56,65,69} with quality assessment scores of 17, 18 and 18, respectively, assessed the prognostic value of SPECT in patients following revascularisation. One study investigated the usefulness of SPECT in patients following PTCA⁵⁶ and two assessed the role of SPECT in patients following CABG.^{65,69}

Ho and colleagues⁵⁶ assessed univariate associations between ExECG and two SPECT variables. An abnormal SPECT scan, performed 1–3 years after PTCA, was found to be predictive of cardiac events. Miller and colleagues⁶⁵ evaluated the prognostic value of exercise SPECT imaging in patients who had undergone CABG within 2 years of the SPECT test whereas Nallamothu and colleagues⁶⁹ considered the same question over a mean of 41 months of follow-up. Miller and colleagues,65 in Cox multivariate analysis, reported the prognostic power of clinical, exercise and SPECT variables in predicting overall mortality. They reported that the significant independent predictors of increased mortality were increasing age (HR 1.40, 95% CI 1.00 to 1.96), shorter exercise duration (HR 1.24, 95% CI 1.09 to 1.41) and number of abnormal SPECT segments after exercise (HR 1.10, 95% CI 1.03 to 1.18). They also considered how well these variables predicted cardiac death or non-fatal MI and reported that the only independent predictors of increased risk were exercise angina score (HR 1.69, 95% CI 1.19 to 2.40) and number of abnormal SPECT segments after exercise (HR 1.12, 95% CI 1.04 to 1.20).

Both studies reported which variables were independent predictors of cardiac death, non-fatal MI or late PTCA/CABG. Miller and colleagues⁶⁵ found that the independent predictors of increased risk were chest pain class (HR 1.35, 95% CI 1.10 to 1.65) and number of abnormal SPECT segments after exercise (HR 1.10, 95% CI 1.03 to 1.18). Nallamothu and colleagues⁶⁹ reported that the extent of the perfusion abnormality, multivessel perfusion abnormality and increased lung thallium uptake were important independent predictors of events. Furthermore, they showed that SPECT added incremental prognostic information to clinical, stress ECG and angiographic variables (clinical plus stress ECG plus CA; clinical plus stress ECG plus CA plus SPECT, p = 0.01) and that neither clinical variables nor stress ECG variables provided prognostic information.

On the basis of the data presented in the studies, the authors concluded that SPECT was useful to stratify patients after CABG into low-, intermediateand high-risk groups for future cardiac events.

Acute coronary setting

One study aimed to determine the utility of SPECT for predicting outcome of hospitalised patients with chest pain and a normal or non-diagnostic ECG.⁴⁴ In univariate analysis, hypertension, abnormal stress ECG, treatment with antianginal therapy and abnormal SPECT scan were found to be predictors of adverse cardiac events, and all parameters were entered into a multivariate regression model to assess their independent predictive value. In this model, the only independent predictor of adverse cardiac events was an abnormal SPECT scan (OR 32.3, 95% CI 3.7 to 279). Ben-Gal and colleagues⁴⁴ concluded that the presence of SPECT distribution defects identified patients at higher risk for adverse cardiac events who may be referred for further invasive evaluation, whereas patients with normal scans were candidates for early hospital discharge.

Asymptomatic coronary disease

Two studies,^{46,72} with quality assessment scores of 20 and 19, respectively, examined the value of SPECT in patients with asymptomatic coronary disease. Candell-Riera and colleagues⁴⁶ assessed the prognosis of medically treated patients who fulfilled the features that defined clandestine myocardial ischaemia (perfusion defect without angina and no ST-segment depression >1 mm during exercise test) and compared them with patients with asymptomatic coronary disease and angina pectoris. Pancholy and colleagues⁷² examined the differences in the event-free survival rates between patients with CAD who had asymptomatic or symptomatic ischaemia during exercise testing.

Candell-Riera and colleagues⁴⁶ showed, in a Cox multivariate analysis, that neither ST-segment depression >1 mm during the exercise test nor multivessel disease on CA were predictive of worse prognosis. The presence of severe reversible SPECT defects was predictive of cardiac events only when the need for revascularisation was included as a complication (p < 0.01). The Cox multivariate analysis conducted by Pancholy and colleagues⁷² revealed that the size of the perfusion abnormality and history of diabetes mellitus were independent predictors of prognosis. Patients with a history of diabetes mellitus and a large perfusion abnormality ($\geq 15\%$ of the myocardium) had the worst event-free survival rate (p < 0.0001). Angina was not a reliable marker of prognosis.

Both studies concluded that SPECT perfusion imaging could help identify high-risk patients with asymptomatic coronary disease. Furthermore, Candell-Riera and colleagues⁴⁶ reported that severe reversible SPECT defects were predictive of cardiac events only when the need for revascularisation was included as a cardiac event.

High exercise ECG tolerance

Chatziioannou and colleagues⁴⁷ assessed the predictive value of SPECT versus ExECG in patients with high exercise tolerance. In Cox multivariate analysis comparing four strategies,

(a) SPECT, (b) stress ECG, (c) ECG and Duke treadmill score and (d) ECG, Duke treadmill score and SPECT, the only strategy that provided a statistically significant prediction of adverse cardiac events was SPECT alone. The presence of an abnormal SPECT scan was associated with an RR of 8 (95% CI 3 to 23) for adverse cardiac events. They concluded that, at high levels of exercise tolerance, the presence or absence of STsegment changes and the Duke treadmill score risk categories had no predictive value. However, SPECT was an excellent prognostic indicator for adverse cardiac events in patients with known or suspected CAD and high exercise tolerance.

Predicting early revascularisation

Amanullah and colleagues⁴² undertook a prospective cohort study (quality score 19) which assessed the predictors of early revascularisation. In multivariate logistic regression analysis, predictors of early revascularisation were (in order of statistical significance) reversible perfusion defects, extent of CAD by angiography and angina during exercise. They concluded that although referral for revascularisation may be conditional on the results of CA, SPECT provided enhanced information on which to base the decision to revascularise.

Age and referral for CA

Lauer and colleagues⁶¹ investigated whether there was an association between age and referral to CA. All-cause mortality and cardiac death were associated with the total number of abnormal segments on SPECT (for each two additional abnormal segments, age-adjusted RR 1.41, 95% CI 1.06 to 1.88 for all-cause mortality and RR 1.60, 95% CI 1.03 to 2.48 for cardiac death), but not with referral to CA. After adjustment for the extent of ischaemia revealed by the SPECT scan, clinical characteristics and exercise findings including functional capacity, increasing age remained associated with a lower rate of referral to CA (for 5-year increase in age, adjusted OR = 0.81, 95% CI 0.73 to 0.90). Lauer and colleagues concluded that increasing age was associated with a lower rate of referral to CA following an abnormal SPECT scan.

ECG-gated and attenuation-corrected SPECT

Two studies^{89,90} compared SPECT with ECG-gated SPECT and one compared SPECT with attenuation-corrected (AC) SPECT.⁹¹ The diagnostic study by Shirai and colleagues⁹⁰ found that ECG-gated SPECT was more sensitive, with slightly lower but acceptable specificity, compared with the assessment of perfusion data alone for

detection of multivessel CAD. The prognostic study by Sharir and colleagues⁸⁹ concluded that ECG-gated SPECT provided incremental prognostic information in patients with known or suspected CAD over that provided by perfusion data alone. The diagnostic study by Gallowitsch and colleagues⁹¹ found that SPECT was less sensitive and less specific than AC SPECT, both in patients with angina and no previous MI and also in patients with known CAD.

Summary and conclusions of the evidence for and against the intervention

Diagnostic studies

The sensitivity values of SPECT tended to be higher than those of stress ECG for the two main subsets of studies (patients suspected of CAD and patients who underwent PTCA). Specificity values of the two tests were similar for patients suspected of CAD, but higher values were reported for SPECT compared with stress ECG for patients who underwent PTCA. The sensitivity and specificity results of SPECT and stress ECG in the four studies excluding patients with previous MI were generally higher than those in the 10 studies that included patients with MI. However, this observation is based on a small number of studies with varied inclusion/exclusion criteria and patient characteristics. In addition, the 10 studies including patients with prior MI did not consist solely of patients with prior MI.

Summary ROC curves for both tests were not generated because the correlation between sensitivity and 1 – specificity for SPECT was close to zero. Although the correlation for stress ECG was higher (0.46), a summary ROC curve was not presented.

The overall estimate of positive LRs for SPECT was higher than that for stress ECG (2.29 versus 1.83) whereas the combined estimate of negative LRs for SPECT was slightly lower than that for stress ECG (0.25 versus 0.51). However, as in both instances significant heterogeneity was observed among included studies, it is questionable whether combining such results is appropriate and hence whether reliable conclusions can be drawn from them.

No firm conclusions about the overall accuracy of SPECT and stress ECG in different patient subgroups and for different angiographic definitions of CAD could be made owing to the small number of studies available in each subgroup.

Comparison of SPECT and stress ECG in the other categories was limited by the small number of included studies. Moreover, insufficient evidence was available to evaluate the incremental value of SPECT over stress ECG in the diagnosis of CAD.

Prognostic studies

There were 46 prognostic studies. Although they were all observational studies, the overall methodological quality was good. The quality of the studies in terms of reporting of information was very good, but their generalisability was fairly low, although internal validity was higher. Four studies compared different testing strategies,^{67,77,78,82} whereas the remainder were cohort studies (23 prospective, 13 retrospective, six type not stated) in which substantially the same group of patients underwent the tests under investigation. Twenty-six studies employed a consecutive method of recruitment.

Twenty-one studies provided general prognostic information. The extent^{57,58,62,63,68,79,84,86} and size^{59,71,75} of the perfusion defect, and whether reversible or fixed,^{76,80,86,88} were important factors in predicting prognosis. Other findings were that, compared with a direct CA strategy, SPECT imaging followed by selective CA resulted in lower rates of normal angiograms from those patients subsequently referred for CA.67,77 SPECT also provided independent prognostic information for predicting MI,⁸⁰ provided incremental prognostic value over clinical and exercise testing data that was maintained at longterm follow-up,^{71,75,76,84} was the single most powerful predictor of prognosis and had incremental value even when CA had already been performed. 58,63,82

Sixteen of the general prognostic studies employed the Cox proportional hazards regression model. The variables included in the models generally appeared to be appropriate, although they differed to some extent across studies. Predicting variables related to SPECT included an intermediate risk-SPECT scan,⁴⁹ a high-risk SPECT scan,⁴⁹ extent of the perfusion defect,^{57,58,63,79,84} size of the perfusion defect,^{59,75} abnormal SPECT scan,^{62,76,80} summed stress score,^{55,66} summed reversibility score,⁶⁶ reversible perfusion defects^{76,80} and fixed perfusion defects.^{76,88} The remaining prognostic studies addressed the use of SPECT in a variety of specific areas/populations. All four studies of patients post-MI^{48,81,85,87} found that SPECT imaging was valuable in stratifying patients into at-risk groups for further cardiac events. The six studies addressing different questions relating to SPECT imaging and gender found that SPECT provided important, independent prediction of survival in both men and women^{53,60,64,73,74,78} SPECT imaging performed 1–3 years after PTCA was predictive of cardiac events⁵⁶ and, in patients who had undergone CABG, SPECT was useful in stratifying patients into at-risk groups for future cardiac events.^{65,69}

Our findings are in broad agreement with other published reviews assessing the prognostic usefulness of MPS. Travin and Laraia,⁹² in a review of the prognostic value of stress myocardial perfusion imaging (MPI), concluded that it was a powerful method of risk stratification for patients with known or suspected ischaemic heart disease. Brown,⁹³ in a review of the prognostic value of Tl-201 MPI, concluded that it had been shown to have the ability to predict important cardiac events in a wide variety of clinical settings and was a powerful tool for risk stratification that could have a major impact on patient management.

In conclusion, the evidence from the included prognostic studies was consistent in suggesting that, as part of the stress ECG–SPECT–CA pathway, SPECT, in a variety of settings and patient populations, provided valuable independent and incremental information predictive of outcome that helped to risk-stratify patients and influence the way in which their condition was managed.

Although the limited evidence on ECG-gated and attenuation-corrected SPECT seems promising, it is difficult to draw conclusions from so few studies.

Clinical effect size

Of 46 prognostic studies, four were observational studies comparing different testing strategies. 67,77,78,82 In the study by Shaw and colleagues, 77 one group of patients underwent initial direct testing by CA and a second group underwent initial testing by stress SPECT, followed by selective catheterisation. For patients undergoing initial CA, the rate of subsequent revascularisation for clinically low-, intermediate-and high-risk catheterisation patients was 16, 27 and 30%, respectively, compared with 14, 13 and 16% for SPECT patients (p = 0.0001). In the study

by Mishra and colleagues,⁶⁷ one group of patients underwent initial direct testing by CA and a second group underwent initial testing by stress SPECT. In the group undergoing initial CA, coronary revascularisation was performed in 51% of those with CAD and in 38% of the SPECT group who were found to have CAD on CA (p < 0.001).

Underwood and colleagues⁸² compared four different testing strategies: (1) stress ECG–CA; (2) stress ECG–MPI–CA; (3) MPI–CA; and (4) CA. Patients in strategy 4 (CA) were found to have had significantly more revascularisations (p < 0.001). Shaw and colleagues⁷⁸ compared two different testing strategies: one group of women underwent initial direct testing by CA and a second group underwent initial testing by stress SPECT, followed by selective catheterisation. Rates of PTCA/CABG were significantly lower in the SPECT plus CA group than the CA group (p < 0.005).

The other prognostic studies were cohort studies and within each study substantially all patients received the various tests of interest. Many of these studies, using multivariate regression analysis, reported the statistical significance of SPECT and other variables in predicting outcomes and providing incremental information, and of SPECT adding statistically significant incremental information when incorporated into combinations of clinical, stress ECG and CA models. In these studies, the chi-squared or HR values favoured the SPECT variables when compared alone with other variables $^{42-44,47-51,55,57-61,63-66,69,71-76,80,81,83-86}$ or favoured the combination of variables including SPECT compared with combinations of variables excluding SPECT^{47,48,53–55,57,58,63,69,71,73,75,76,84,87} (see Appendix 8).

Adverse effects of intervention

Four studies,^{33,44,76,82} one of which was a diagnostic study,³³ gave details of adverse events resulting from the stress ECG or SPECT intervention. In the study by Khattar and colleagues,³³ angina was the most common endpoint for exercise ECG, occurring in 49 of 100 patients, with inotropic stress testing precipitating angina in 23 cases. With respect to other causes leading to termination of inotropic stress, seven patients developed extensive wall thickening abnormality; hypotension occurred in 13 cases and five patients developed ventricular arrhythmias. Miscellaneous end-points included palpitations, tremor and nausea.³³

In a prognostic study by Ben-Gal and colleagues,⁴⁴ one of 84 patients with a normal thallium SPECT

scan experienced a non-fatal MI. The patient was a 56-year-old woman with typical anginal chest pain and a non-diagnostic rest ECG at admission. During dipyridamole injection she experienced marked chest pain and the ECG showed STsegment depression. The patient responded to antianginal therapy but 2 days later suffered a small inferior wall AMI.⁴⁴

Schinkel and colleagues⁷⁶ reported that, out of 693 patients, side-effects during dobutamine–atropine stress were short ventricular tachycardia (<10 complexes) in 23 patients (3.3%), atrial fibrillation in seven patients (1.0%), severe hypotension (decrease in systolic blood pressure of >40 mmHg) in seven patients (1.0%) and severe hypertension (blood pressure of >240/130 mmHg) in five

patients (0.7%). Minor side-effects included chills in 52 patients (7.5%), headache in 46 patients (6.6%) and nausea in 38 patients (5.5%). No patient, however, experienced a MI or ventricular fibrillation.⁷⁶

In the study by Underwood and colleagues,⁸² soft events included complications of diagnostic or therapeutic procedures. The number of complications reported for each strategy was three (out of 144 patients in strategy one); one (out of 130 patients in strategy two); one (out of 48 patients in strategy three); three (out of 75 patients in strategy four). There were three cases of complications in MPI user hospitals and five cases of complications in MPI non-user hospitals.⁸²

Chapter 4

Systematic review of economic evaluations

Methods

Search strategies

Studies that reported both costs and outcomes of diagnostic strategies involving SPECT relative to strategies involving any of the other diagnostic interventions under investigation either with or without SPECT were sought from the systematic review of the literature. In addition, the Harvard database of cost–utility analyses was searched, and the Industry submissions for this Technology Assessment Review were checked. No language restrictions were imposed but the searching was limited to studies published after 1990. The following databases were searched for studies assessing cost-effectiveness.

- MEDLINE, 1990–October 2002, EMBASE 1990–2002 (to week 44)
 Separate search strategies were developed for each database and then combined to produce a final strategy that was run concurrently.
 Duplicates were removed from the resulting set using Ovid's de-duplicating feature.
- 2. PREMEDLINE (Ovid), 5 November 2002
- 3. NHS-EED (NHS CRD), October 2002

Details of the final search strategies used can be found in Appendix 1. In addition, results of the searches of the HTA database and Health Management Information Consortium (HMIC) were also screened for potentially relevant articles. Other sources of information included references in relevant articles, selected experts in the field and references of consultees' submissions.

Inclusion and exclusion criteria

To be included, studies had to compare, in terms of both costs and outcomes for CAD, diagnostic strategies involving SPECT with alternative strategies, which may or may not have involved SPECT. Studies reported in languages other than English were identified from their abstracts but were not included in the review. Studies were excluded if they made no attempt to relate cost to outcome data. One reviewer assessed all abstracts for relevance and full papers were obtained for those that appeared potentially relevant. Results are given in *Table 20*.

Reviews of relevant studies were not considered eligible for inclusion. Nevertheless, as the submission by Amersham Health (February 2003) included a review of economic studies, a brief commentary has been included in the section 'Review of economic evaluations contained in the Industry submission' (p. 46).

Data extraction strategy

The following data were extracted for each included study.

- 1. Study identification information
 - (a) author and year
 - (b) the interventions studied
 - (c) the type of economic evaluation
 - (d) the country of origin and currency reported
- 2. the intervention, study design and main outcomes
 - (a) fuller description of treatment
 - (b) numbers receiving or randomised to each intervention
- (c) outcomes studied
- 3. sources of data
 - (a) effectiveness data
 - (b) mortality and comorbidity (if measured)
 - (c) cost data
 - (c) QoL (if measured)
- 4. methods and study perspective
- 5. results
- (a) costs
 - (b) benefits

TABLE 20 Results of searching for studies on cost-effectiveness

Database	Number of hits screened	Number selected	Included studies
Multifile search (MEDLINE, EMBASE) after de-duplication	634	28	12
PREMEDLINE	28	2	2
NHS-EED	289	17	9

(c) incremental cost-effectiveness ratio (ICER)

(d) sensitivity analyses

6. additional comments.

Quality assessment strategy

Two economists independently assessed included studies using the *British Medical Journal (BMJ)* guidelines for reviewers.⁹⁴ The systematic review provided by Amersham Health was assessed using the following criteria adapted from Oxman and colleagues^{95,96} and Mulrow and Cook,⁹⁷ which was used in a recent study of the quality of systematic reviews of economic evaluations:⁹⁸

- 1. Is it unlikely that important relevant studies were missed?
- 2. Were the inclusion criteria used to select articles appropriate?
- 3. Was the assessment of studies reproducible?
- 4. Were the design and/or methods and/or topic of included studies broadly comparable?
- 5. How reproducible are the overall results?
- 6. Will the results help resource allocation in healthcare?

Each stem (1–6) was answered by one of the following: 'Impossible to judge', 'No', 'Partly', 'Yes'.

Data synthesis

No attempt was made to synthesise quantitatively the studies that were identified. Data from all included studies were instead summarised and appraised in order to identify common results, variations and weaknesses between studies. If a study only reported average cost-effectiveness ratios (ACERs) then, where possible, the data were reanalysed to provide estimates of incremental cost-effectiveness. The data were then interpreted alongside the results of the systematic review of effectiveness so that conclusions could be drawn on the relative efficiency of the different diagnostic strategies.

Systematic review of published economic evaluations

Number of studies identified

Twenty-two studies were identified. Two were not retrieved from the multifile search because they were pre-1990 papers but had been identified from the previous clinical effectiveness search. A further two studies were unpublished and were identified from reference lists.

Eleven studies were based on primary data and 11 used modelling techniques. These studies are

summarised in Appendix 10. The following subsection critiques and summarises those studies that have considered the diagnosis of coronary artery disease. The subsequent two sub-sections consider those studies that investigated the use of SPECT to diagnose coronary artery disease in those at high disease prevalence and women, respectively, the next sub-section considers the role of SPECT for those presenting with acute coronary syndromes and the final sub-section considers the role of SPECT in determining management following MI. The review provided by the Industry submission as well as the Amersham Health economic model are discussed separately in the sections 'Review of economic evaluations contained in the Industry submission' (p. 46) and 'Review of the Industry submission economic evaluation' (p. 47), respectively.

Diagnosis of coronary artery disease

Six studies^{99–103} reporting the results of decision models considered the cost-effectiveness of different imaging strategies for a range of prevalence rates of CAD (Jacklin PB, Maisey MN, West PA, Sariklis D, Beech R. Guy's, King's and St Thomas' School of Medicine, King's College, London, unpublished studies, 2002) (subsequently referred to as 'Jacklin, 2002'). Two further studies based on models focused on patient groups at intermediate risk of disease ($\sim 25-75\%$ prevalence).^{104,105} There were also five primary studies.^{55,77,82,106,107} Patients enrolled in the primary studies had either normal resting ECGs and/or cardiac symptoms and no known heart disease. Of these 13 studies, only two came from the UK or involved UK centres (Jacklin, 2002).⁸² The strategies considered in each of the studies are summarised in Tables 21 and 22.

Quality of included studies

Of the studies based on models, three (Jacklin, 2002)^{102,103} were developed from Patterson and colleagues.¹⁰¹ The remaining four were based on models developed specifically for that study.^{99,100,104,105}

The model structure built by Patterson and colleagues¹⁰¹ was well reported, although it is unclear precisely how the model's effectiveness and utility parameters were derived. The later studies using updated parameters still did not adequately describe the source of model parameters. Although the data for sensitivity and specificity of stress ECG and sensitivity of SPECT were similar to those presented in Chapter 3, they tended to assume higher specificities for SPECT. This would tend to improve the cost-effectiveness

40

Jacklin, 2002 Garber, 1999 ¹⁰⁴	 Stress ECG with CA if positive or inconclusive (or not feasible) SPECT with CA if positive or non-diagnostic Stress ECG with CA if positive or non-diagnostic. If still positive, then SPECT followed by CA if positive or non-diagnostic Stress ECG with CA if positive. SPECT if stress ECG is negative and then CA if positive CA with no prior diagnostic test
	 SPECT with CA if positive or non-diagnostic Stress ECG with CA if positive or non-diagnostic. If still positive, then SPECT followed by CA if positive or non-diagnostic Stress ECG with CA if positive. SPECT if stress ECG is negative and then CA if positive
Garber, 1999 ¹⁰⁴	 Stress ECG with CA if positive or non-diagnostic. If still positive, then SPECT followed by CA if positive or non-diagnostic Stress ECG with CA if positive. SPECT if stress ECG is negative and then CA if positive
Garber, 1999 ¹⁰⁴	positive or non-diagnostic 4. Stress ECG with CA if positive. SPECT if stress ECG is negative and then CA if positive
Garber, 1999 ¹⁰⁴	4. Stress ECG with CA if positive. SPECT if stress ECG is negative and then CA if positive
Garber, 1999 ¹⁰⁴	
Garber, 1999 ¹⁰⁴	
	I. Stress ECG
· · · · · ·	2. Planar SPECT
	3. SPECT
	4. Stress ECHO
	5. Stress PET
	6. CA
Kuntz, 1999 ⁹⁹	
Kuntz, 1999	1. No testing
	2. CA alone
	3. Stress SPECT; CA if positive
	4. Stress ECG; CA if positive
	5. Stress ECHO; CA if positive
Maddahi, 1997 ¹⁰⁰	I. Direct referral for CA
	2. PET if positive CA
	3. SPECT if positive CA
	Stress ECG, PET if stress ECG is positive and if positive CA
	Stress ECG, SPECT if ECG is positive and if positive CA
	6. Stress ECG and if positive CA
Patterson, 1984 ¹⁰¹	 Stress ECG plus CA if stress ECG positive or non-diagnostic
	2. Stress SPECT plus CA if SPECT positive or non-diagnostic
	3. Direct CA
	4. Stress ECG plus SPECT if positive non-diagnostic and CA if SPECT positive or non-diagnostic
Patterson, 1995 ¹⁰²	I. Stress ECG plus CA if stress ECG positive or non-diagnostic
,	2. Stress SPECT plus CA if SPECT positive or non-diagnostic
	3. Direct CA
	4. Stress PET followed by CA if the PET was positive or non-diagnostic
Rumberger, 1999 ¹⁰³	I. Stress ECG; CA if positive or if non-diagnostic
	2. Stress ECHO; CA if positive or if non-diagnostic
	3. SPECT; CA if positive or if non-diagnostic
	4. EBCT; CA if positive or if non-diagnostic at 3 different cut-off points for scores
	5. CA
Shaw, 2003 ¹⁰⁵	I. CA
511avv, 2005	2. Stress ECG
	3. Stress ECHO
	4. Stress SPECT
	5. Contrast-enhanced ECHO
EBCT electron beam er	omputed tomography; ECHO, echocardiography; PET, position emission tomography.

TABLE 21 Summary of diagnostic strategies used in studies using models

of SPECT. In terms of cost, the US studies focused on fees payable for tests and procedures, which may not be transferable to the UK.^{101–103} The UK study provided reasonably good descriptions of resource use and cost. In none of these studies was it clear to which year cost data related and, despite three studies having 10-year time horizons, no discounting was performed (Jacklin, 2002).^{101,102} The principal limitation of these studies is that they reported relative cost-effectiveness in terms of average cost-effectiveness ratios. Average costeffectiveness ratios provide very limited information about whether a more costly but more effective strategy might be preferred. However, in two studies using the data provided it was possible to estimate incremental cost-effectiveness ratios and these data are presented in Appendix 11 (Jacklin, 2002).¹⁰³ Three studies (Jacklin, 2002)^{101,102} provided estimates of cost per qualityadjusted life year (QALY) (although, as stated above, it was unclear how the QALY estimates were derived) and one only considered the cost per correct diagnosis.¹⁰³

Of the other four models, three based cost estimates on Medicare fees^{99,100,104} and the fourth

Study	Strategies	
Christian, 1994 ¹⁰⁶	1. Clinical data	
	2. Clinical data plus stress ECG	
	3. Clinical data plus stress ECG plus SPECT	
Hachamovitch, 2002 ⁵⁵	I. Clinical and history only	
	2. Stress ECG and clinical data and history	
	3. Stress SPECT plus strategy 2	
Mattera, 1998 ¹⁰⁷	I. Stress ECG	
	2. SPECT	
Shaw, 1999 ⁷⁷	3. SPECT, selective CA	
	4. Direct CA	
Underwood, 1999 ⁸²	I. Stress ECG followed by CA	
	2. Stress ECG plus SPECT followed by CA	
	3. SPECT followed by CA	
	4. CA alone	

TABLE 22 Summary of diagnostic strategies based on data from primary studies

devoted considerable effort to identifying costs generalisable to a large healthcare provider in the USA.¹⁰⁵ One of these studies reported costs relative to the cost of an angiogram, which makes it more difficult to consider cost-effectiveness or make judgements about their applicability to the UK.¹⁰⁰

All the studies took data on the sensitivity and specificity of tests from the literature. The most comprehensive description of how these data were assembled came from the study by Kuntz and colleagues.⁹⁹ The other studies were limited in terms of the searches performed (e.g. MEDLINE only) or because inadequate descriptions of the search strategy were provided. The rates of sensitivity and specificity of SPECT were all higher than those reported in Chapter 3 (although they were within the range provided by identified studies). The specificity of stress ECG was also higher, although sensitivity was similar.

All studies used incremental analysis and discounting as appropriate. Two studies focused on diagnostic accuracy^{100,105} and two used QALYs.^{99,104} The utility weights were taken from a previous survey of patients with stable angina. In one study utility scores were estimated using standard gamble methods⁹⁹ and in the other time trade-off values were obtained from the literature.¹⁰⁴ Two studies attempted a rigorous sensitivity analysis (SA) around all the main areas of uncertainty,^{99,104} including a probabilistic analysis in one.⁹⁹ The other two studies either had limited¹⁰⁵ or no SA.¹⁰⁰

Of the five studies based mainly on primary data, three were based on large retrospective cohorts, ^{55,77,107} one of which involved matched

cohorts for the two diagnostic strategies considered.⁷⁷ Of the other two, one was based on a moderately sized (n = 411) cohort¹⁰⁶ and one involved the retrospective analysis of cost data from 396 patients selected from eight matched hospitals in the UK, Germany, Italy and France (two from each country).⁸² This latter study based its effectiveness on data taken from the literature. The costs in three studies were based on very simplistic methods (only one or two cost events were included, costed using Medicare fees).^{55,106,107} One converted Medicare charges into costs⁷⁷ and Underwood and colleagues applied unit costs from a single UK centre to resource use from other UK and European centres.⁸² Descriptions of resource use were limited, which makes it difficult to judge how generalisable the data are to the UK. All studies adopted either an incremental analysis or a cost-minimisation approach. However, only one of the three studies where discounting should have been adopted did so⁷⁷ and only two used any form of SA, which in both cases involved the use of multivariate analysis to predict costs.77,106

Summary of results

The two studies that presented their results in terms of average cost-effectiveness ratios both showed that, for the strategies relevant to this technology assessment, a strategy of SPECT plus CA, if SPECT was positive or non-diagnostic, had the lowest average cost per QALY when the prevalence of CAD was <70%; >70% direct angiography had the lowest average cost per QALY.^{101,102} As mentioned above, both the lack of explanation about how QALY estimates were derived and the difficulty of interpreting the relevance of average cost-effectiveness ratios make

Study	Finding compared with stress ECG
Jacklin, 2002 ^a	Stress ECG more effective but more costly. Incremental cost per true positive identified o stress ECG compared with ECG, SPECT \pounds 3038
Christian, 1994 ¹⁰⁶	US\$20,550 per additional correct classification
Hachamovitch, 2002 ⁵⁵	U\$\$5417 per additional correct classification
Mattera, 1998 ¹⁰⁷	SPECT reduced costs by 38%
Jacklin, 2002 ^a	Stress ECG more effective and less costly
Hachamovitch, 2002 ⁵⁵	US\$25,134 per hard event avoided
Underwood, 1999 ⁸²	Stress ECG, SPECT less costly more effective
Maddahi, 1997 ¹⁰⁰	Stress ECG, SPECT most cost-effective
Jacklin, 2002 ^a	Stress ECG more effective but more costly. Incremental cost per QALY of stress ECG compared with ECG, SPECT £854

^b Costs in 1992 US\$.

TABLE 24 ICERs ratios for the comparison of SPECT versus stress ECG

Study	Finding compared with stress ECG
Jacklin, 2002	£2774 per additional correct diagnosis
Rumberger, 1999 ¹⁰³	US\$12,278 per additional true positive diagnosed
Jacklin, 2002	£2863 per additional true positive diagnosed
Garber, 1999 ¹⁰⁴	US\$40,316 per additional QALY
Jacklin, 2002	£1991 per additional QALY
Kuntz, 1999 ⁹⁹	US\$38,000 per additional QALY

these data difficult to interpret. Two further studies also reported average cost-effectiveness ratios but provided sufficient information for incremental cost-effectiveness to be estimated (Appendix 11) (Jacklin, 2002).¹⁰³

The comparison of the different diagnostic strategies was complicated by the multitude of strategies considered and the different ways in which outcomes were measured (not to mention differences in methodology adopted). Therefore, the results are summarised under a series of pairwise comparisons. These comparisons are made first for those at intermediate risk of disease and then, where information is available, for women and those at high risk.

Stress ECG, SPECT in positives (non-diagnostics) versus stress ECG Six studies provided information on this comparison (*Table 23*).

There is little consistency between the studies, reflecting the different parameter values used. The studies by Christian and colleagues,¹⁰⁶ Hachamovitch and colleagues⁵⁵ and Mattera and colleagues¹⁰⁷ based their costs on no more than the cost of stress ECG and SPECT, so their results

may be misleading. Underwood and colleagues showed that the cost of stress ECG, SPECT strategy is less (although no SA was reported).⁸² The study by Jacklin and colleagues, while having reasonably strong costing methodology, reported that the stress ECG strategy was either dominant or more effective but more costly. This was caused by the low cost estimated for stress ECG (£7) (Jacklin, 2002).

SPECT versus stress ECG

Five studies provided information on the comparison of SPECT with stress ECG. In one a strategy of using SPECT to select those who would receive angiography was less costly and more effective than one using stress ECG.⁸² In the other studies the SPECT strategy was more costly and more effective (*Table 24*).

The incremental cost per QALY in Jacklin and colleagues' study (Jacklin, 2002) is lower than that in the other two studies that report this outcome^{99,104} because of the specificity rates used for SPECT and the assumptions made about QALY gains. If the cost and utility data used by the two US models were applicable to the UK, it is possible that the incremental cost per QALY might be deemed affordable.

Study	Incremental cost-effectiveness of coronary angiography	
Jacklin, 2002	SPECT more costly and less effective ^a	
Rumberger, 1999 ¹⁰³	US\$4140 per additional true positive diagnosed	
Garber, 1999 ¹⁰⁴	US\$102,333 per additional QALY	
lacklin, 2002	± 1017 per additional QALY ^b	

TABLE 25 ICERs for the comparison of SPECT versus coronary angiography

Stress ECG, SPECT in positives (non-diagnostics) versus SPECT

Three studies provided information on this outcome. In two it was concluded that the use of both stress ECG and SPECT was cost-effective.^{82,100} and in one the use of SPECT alone provided more QALYs at greater cost (incremental cost per QALY was £1444 per QALY) (Jacklin, 2002).

Stress ECG, SPECT in positives (non-diagnostics) versus CA

Three studies considered this comparison and all found CA to be more costly but more effective (Jacklin, 2002).^{82,100} This is due to the assumption made that CA provided perfect diagnostic information. Only one study provided information on incremental cost-effectiveness (incremental cost per QALY of CA was £1277). It should be noted that in the study by Jacklin and colleagues, stress ECG and SPECT in positives and non-diagnostics was reported to be the least effective of the five strategies considered (Jacklin, 2002).

SPECT versus CA

All of the six studies that provided data on this comparison found that CA was the more effective but more costly (Jacklin, 2002).^{100,77,82,103,104} For one study, incremental cost-effectiveness could not be estimated¹⁰⁰ and two concluded that SPECT was more efficient.^{77,82} The results for the remaining studies are summarised in *Table 25*.

Cost-effectiveness at high disease prevalence

Six studies considered the effect on costeffectiveness of a high (> ~75%) prevalence of CAD. Four reported the results in terms of average cost-effectiveness ratios and found that CA was associated with the lowest average costeffectiveness ratio (Jacklin, 2002).^{101–103} Information on incremental cost-effectiveness was obtained from two of these studies (Jacklin, 2002)¹⁰³ and from the remaining two studies.^{99,100} In three of these studies direct CA was less costly and more effective than any of the other strategies considered except for a strategy of stress ECG to select patients for CA.^{99,100,103} In this situation, CA was more effective and more costly (incremental cost per QALY <US\$25,000,⁹⁹ incremental cost per additional true positive diagnosed US\$2363).¹⁰³ In the remaining study CA did not dominate any of the other strategies but was associated with an incremental cost per QALY of no more than £1285 (Jacklin, 2002).

Cost-effectiveness of alternative strategies amongst women at risk of coronary artery disease

Three studies reported the cost-effectiveness of alternative strategies to detect CAD in women.^{78,108,109} Two of these were based on primary studies and one was based on a modelling exercise. A further three studies considered the cost-effectiveness of alternative strategies to detect CAD in women as part of an SA.^{55,99,104} Interpretation is hampered by the differences in strategies compared and also limited reporting of results. Garber and Solomon estimated in their model that the incremental cost per QALY of using SPECT instead of stress ECG was ~US\$50,000. This increased to US\$100,000 for women aged 45 years (i.e. at lower risk) and US\$61,500 for women aged 65 years (because of their lower life expectancy).¹⁰⁴ Similarly, Hachamovitch and colleagues showed that the incremental cost of adding SPECT to a strategy already involving stress ECG would be US\$8092 per reclassification (US\$3816 if limited to those positive on stress ECG).⁵⁵ Shaw and colleagues, in a large (N = 4638), reasonably well performed evaluation reported that for the comparison of a strategy of SPECT-CA with CA, the SPECT-CA strategy was less costly and that there was no evidence of worse outcomes.⁷⁸ A similar comparison was made by Amanullah and colleagues.¹⁰⁸ They reported that in their study, of limited methodological quality, SPECT strategies were dominated by a policy of direct angiography or that direct angiography was associated with a

modest cost per incremental case of severe or extensive case of CAD diagnosed.

Very few interpretable data on the costeffectiveness of SPECT strategies were available from the studies of Kim and colleagues¹⁰⁹ and Kuntz and colleagues.⁹⁹ Nonetheless, Kuntz and colleagues reported that non-invasive strategies appeared to be associated with an incremental cost per QALY of <US\$75,000, falling to more modest levels (>US\$50,000 per QALY) as the prevalence of disease increased.⁹⁹

Acute coronary syndromes

Four studies considered the strategies involving SPECT for those presenting to the emergency room with chest pain but normal resting ECGs.^{110–113} All considered the added value of conducting a SPECT test at rest over and above the use of clinical and ECG information. Two were based on small prospective cohorts with between 9 and 12 months of follow-up^{111,112} and one was a small randomised controlled trial (RCT) (n = 46) that had a 30-day follow-up.¹¹³ The fourth used a decision model based on the results from an observational study (n = 102). The duration of time horizon was not stated but was likely to relate to the care episode.¹¹⁰

Quality of included studies

In all studies, the focus of the analysis was on costs as three showed that the addition of a rest SPECT would be at least as effective. Only in the RCT was this focus based on an explicit assumption of equal effectiveness.¹¹³ In the other studies, the effectiveness data indicated that outcomes would be the same or better.^{110–112} The small samples in all of the studies may make the results unreliable and two studies may have missed important costs and benefits owing to their short follow-up. Three studies focused on costs^{110,111,113} and in two of these costs were obtained by converting Medicare charges into costs. In two studies, resource utilisation and unit cost data were not reported. One study reported resource utilisation rates¹¹³ and the other only reported unit costs.¹¹⁰ Costs were estimated in US\$ in all studies but the price year was reported in one.¹¹⁰ In three studies no sensitivity analysis was reported^{111–113} and in the other SA was conducted on the incidence of acute events but did not consider uncertainty in the estimates of sensitivity and specificity except through the use of threshold analysis.¹¹⁰

Summary of results

In three studies the SPECT strategy was found to be less costly. Stowers and colleagues showed that patients in the SPECT arm had US\$1843 (95% CI US\$431–6171) lower median in-hospital costs and 2-day (95% CI 1–3 days) shorter hospital stay, but similar rates of in-hospital and 30-day follow-up events, compared with patients in the conventional arm.¹¹³

Radensky and colleagues using rest SPECT appeared to be on average US\$1032 (17%) less costly (median US\$453 or 10%) than a policy based on cardiac risk factors and finding of a rest ECG. Sensitivity analysis showed that the cost of the rest SPECT would have to be twice its baseline level (which was not stated) for the two strategies to have equal cost. It also showed that the specificity of the 'No SPECT' strategy would need to be 65% (baseline 37%) for the strategies to be equivalent. Cost-effectiveness was also influenced by the likelihood that chest pain would lead to an acute adverse cardiac event and only if the risk of an event was >60% would a strategy of 'No SPECT' be less costly.¹¹⁰ Similarly, Weissman and colleagues showed that SPECT resulted in a cost saving of US\$4786 per patient.¹¹²

In contrast to these results, Kosnik and colleagues found that although the use of SPECT saved treatment costs over a 12-month follow-up compared with a pretest judgement about management (US\$1674 versus US\$2626), it was more costly when the scan cost was included (US\$2626 versus US\$2096). This extra cost resulted in 27 patients receiving more appropriate management out of the 29 whose management changed as a result of the SPECT scan.¹¹¹

Management following uncomplicated MI

Two studies were identified that looked at this group, one of which was based on a model¹¹⁴ and the other on an RCT.¹¹⁵ In the RCT reported by Barnett and colleagues, a policy of SPECT followed by selective CA was compared with a strategy of CA alone.¹¹⁵ Dittus and colleagues considered seven strategies,¹¹⁴ two of which were similar to those considered by Barnett and colleagues.¹¹⁵ The seven strategies were:

- 1. medical management (use of beta-blockers, but no further diagnostic tests)
- 2. stress ECG, CABG surgical or medical treatment
- 3. stress ECG with selective SPECT and CA; aggressive CABG surgical or medical treatment
- 4. SPECT and selective CA; CABG surgical or medical treatment
- 5. SPECT and selective CA; aggressive CABG surgical or medical treatment

- 6. CA in all; CABG surgical or medical treatment
- 7. CA in all; aggressive CABG surgical or medical treatment.

Both studies were conducted in the USA and both based their costs on Medicare fees.

Quality of available evidence

Dittus and colleagues used a decision model to estimate the incremental cost per premature death avoided compared with current medical care for a 6-month follow-up period.114 Data for model parameters came from a combination of published literature and clinical opinion. No additional details of the source of data/literature review methods were reported in the paper. The results relate to a 6-month time horizon, which may not be adequate to capture all relevant costs. Costs were based on charges for diagnostic tests, the costs of surgery and hospitalisation. The RCT reported by Barnett and colleagues was clearly reported and appeared to be competently performed.¹¹⁵ It included a large number of patients (876) with clear inclusion/exclusion criteria. Although QALYs were not estimated, effectiveness was measured in terms of life-years, which aids comparability. The mean follow-up was only 23 months although results were extrapolated to a lifetime follow-up. The costing methodology, although not completely transferable to the UK, was clearly described. Costs were estimated using Medicare charges along with microcosting methods for the cost of hospital stay. Costs were discounted at 3% per year and reported in 1997 US\$. Life-years were also discounted but it is unclear whether a 3% rate was used. Detailed sensitivity analysis was conducted along with bootstrapping of estimates of incremental cost per life-year saved, which facilitates consideration of the generalisability and precision of the results.

Summary of results

Dittus and colleagues reported all results relative to a strategy of standard medical care with 'No testing'.¹¹⁴ The results showed that strategy 3 (stress ECG and selective use of MPS with positives receiving angiography and subsequent management with low treatment thresholds for the use CABG, surgical or medical treatment) was the most cost-effective. Comparisons between direct angiography and strategies that used SPECT as an initial test were not made and were not possible from the data reported. The incremental cost per death avoided compared with standard medical care was available and it was lower for direct angiography than for strategies based on the initial use of SPECT. In the study by Barnett and colleagues, ¹¹⁵ the total cost of the SPECT strategy was significantly lower (US\$39707) than that for the angiography strategy (US\$41893) (p = 0.04). The difference in survival between the two strategies was also statistically significant, with those receiving the angiography strategy having an average of 1.79 years of survival compared with 1.86 years for the SPECT strategy over a 2-year follow-up. These results were stable over the SAs reported.

The two studies appeared to consider similar patient populations but they used different outcome measures, which makes it difficult to compare them. However, as the study by Barnett and colleagues¹¹⁵ was a large, generally clearly reported, RCT whereas the study by Dittus and colleagues provided insufficient detail of how data were assembled,¹¹⁴ it is likely that the data from Barnett and colleagues are the more reliable.

Review of economic evaluations contained in the Industry submission

The Industry submission was based on a review that involved the searching of the major relevant bibliographic databases and handsearching of journals. There is insufficient documentation provided on the electronic search strategies to comment on the adequacy of the database searching. It is unclear whether the search terms were restricted to subject headings only or if text word searching was also employed. It is also not stated whether any subject heading terms that were included were exploded to include more specific terms. However, the handsearching that was undertaken was comprehensive and included the most relevant journals. The quality of this review is summarised in *Table 26*.

More studies were identified in the Industry submission than were identified in the review reported in the section Number of studies identified (p. 40). In terms of the quality assessment tools used in the Industry submission, primary studies were assessed using the *BMJ* guidelines for reviewers of economic evaluations⁹⁴ and the reviews were assessed using the CRD quality assessment instrument. It was less clear precisely how studies that fared poorly using the *BMJ* criteria were excluded and for this reason the quality assessment of studies is only partly reproducible.

TABLE 26 Quality assessment of the revie

Result
Yes
Yes
Partly
Yes
Yes
Partly

The studies included in the review used a variety of different methods, which limited their comparability. A number of studies included in the Industry review were excluded from our review as they were judged not to have attempted to combine costs and effects or to have explicitly made the assumption that effects were the same. In general, the interpretation of data by Industry is similar to that provided by this appraisal, although it is worth noting a number of key points:

- 1. The cost data used in US studies are greater than those used in UK studies especially for invasive tests. Therefore, strategies in which a large proportion of patients receive CA are less likely to be considered cost-effective.
- 2. For patients at intermediate pretest risk of coronary artery disease, CA is more costly but also more effective (although based on an assumption of perfect information). It is therefore a question for policy-makers to decide whether extra benefits are worth the extra cost.
- 3. It is unclear how applicable any of the QALY data provided are to decision-making in the UK. In all but two studies^{99,104} the reader was left with no clear idea how QALY data were derived. Even in the two stronger studies QALYs were based on condition-specific time trade-off or standard gamble questions. These sources are far from ideal for priority setting.
- 4. The data are mixed as to whether a strategy of stress ECG followed by SPECT in positives is superior to a strategy of SPECT alone for those at intermediate risk of coronary artery disease.

Review of the Industry submission economic evaluation

In this section, the Amersham Health Industry submission is described and commented on. The first part provides a summary and this is followed by a critique of their methods of data collection and analytic approach.

Summary

The economic evaluation contained within the Amersham Health submission estimated the incremental cost per accurate result and incremental cost per life-year and QALY for seven diagnostic strategies for a time horizon of up to 25 years. Each diagnostic strategy consisted of between one and three sequential diagnostic tests. The strategies considered were:

- 1. direct CA
- 2. stress ECG, CA if stress ECG is positive or nondiagnostic (ECG–CA)
- 3. SPECT (MPS), CA if SPECT is positive or nondiagnostic (SPECT–CA)
- 4. stress ECG, SPECT if stress ECG is positive or non-diagnostic, CA if SPECT is positive or nondiagnostic (ECG–SPECT–CA)
- 5. stress ECG, SPECT if stress ECG is negative or non-diagnostic, CA if SPECT is positive or nondiagnostic (ECG–NegSPECT–CA)
- 6. stress ECG, SPECT if stress ECG is nondiagnostic, CA if SPECT is positive or nondiagnostic (ECG–NDSPECT–CA)
- 7. no testing.

These strategies are similar to those from the published economic evaluations, summarised in the section 'Systematic review of published economic evaluations' (p. 40). The evaluation comprises two components: (a) a decision tree model (DTM), focusing on diagnostic performance, and (b) a Markov model, estimating payoffs by extrapolating from diagnostic performance into longer term costs and consequences. The first 'decision model' component provided estimates of incremental cost per accurate diagnosis whereas the incorporation of the 'payoff' component facilitated the estimation of incremental cost per life-year and QALY.

The sensitivity and specificity of both stress ECG and SPECT, required for the DTM, were based on published reviews of the literature. Other

47

probabilities were taken from other previously published models, notably by Kuntz and colleagues (1999).⁹⁹ The payoff model was structured so that for individuals the initial treatment was decided on the basis of the severity of their disease and the likelihood that it was diagnosed. Although not stated in the text of the submission, it was assumed that following diagnosis all those with left main vessel disease (LMD) or three-vessel disease (3VD) would receive either CABG (100% LMD, 80% 3VD) or PTCA (20% 3VD). Rates of revascularisation were assumed to be lower for single vessel disease (SVD) (30%) and two-vessel disease (2VD) (40%). Those not receiving surgery were assumed to receive medical management. Subsequent costs and events were based on the effect that initial choice of management had on MI and revascularisation rates and mortality. The choice of many of the key parameter values required by the model was informed by the earlier evaluation by Kuntz and colleagues, although some parameter values are based on assumptions (e.g. the risk reduction provided by medical management).99

All costs were reported in UK£ for 2002 and costs occurring after the first year were discounted at a 5% rate. The costs of non-invasive diagnostic tests were based on a survey of three NHS hospitals; the costs of an angiogram, revascularisation and MI were based on NHS reference costs. Medical therapy costs were based on the recent literature inflated to 2002 UK£. Utility weights were based on a standard gamble survey conducted in the USA. The model differentiated between different severities of disease and whether disease was diagnosed. The weights were attached to the survival estimates provided by the payoff model to provide QALY estimates.

In common with the studies reported in the section 'Systematic review of published economic evaluations' (p. 40), judgements about costeffectiveness were influenced by the prevalence of disease and that at high prevalences the CA strategy is more likely to be considered costeffective. At low rates of prevalence (15% disease), SPECT–CA (strategy 3) dominates the CA strategy and ECG–NegSPECT–CA (strategy 5). It is further argued that because it has the lowest incremental cost versus 'No testing' (£3271 per extra accurate diagnosis; £30,887 per life-year; £14,125 per OALY) of the other strategies that are less costly but less effective it has extended dominance over them. At a 30% prevalence rate the SPECT-CA strategy dominates or has extended dominance over all strategies except ECG–NegSPECT–CA

and CA, which are both associated with very high incremental costs per QALY. As the prevalence of coronary artery disease increases, the similarity of the incremental cost per QALY of the different strategies versus 'No testing' increases. At the 50% prevalence rate it is possible that CA would be considered cost-effective, as the incremental cost per QALY of moving from SPECT–CA to CA was £17,818. At 80% prevalence it was reported that CA dominated ECG–NegSPECT–CA and had extended dominance over the other strategies compared with 'No testing'.

SA was reported for changes in parameter values for three scenarios. Two relate to the comparison of SPECT–CA with 'No testing' at low risk (15%) and very low risk (10 and 5%) of disease. The third scenario involved the comparison of SPECT–CA and CA at a 50% prevalence level of disease. For the first and third scenarios, one-way SAs were conducted investigating (i) effect of discounting, (ii) time horizon over which costs and benefits accrue, (iii) time taken to identify and treat FNs, (iv) diagnostic performance of SPECT, (v) changes in costs of SPECT, (vi) changes in costs of an angiogram and (vii) mortality risk associated with an angiogram. The first analysis showed that adopting a 0% discount rate tended to improve the cost-effectiveness of the more costly but effective strategy as the later benefits of the more effective strategies were given more weight in the analysis. However, the overall effect of the change was small. The second analysis showed the importance of the time horizon, particularly for the comparison of SPECT-CA with CA. The rationale given for this was that the shorter time horizon of 10 years used in the sensitivity analysis reduced the time over which the benefits of a screening strategy could be accrued. In the third analysis, the time that it took false negatives to be identified was reduced from 5 to 2 years. This had the effect of reducing the penalties associated with an inaccurate diagnosis. As a result, SPECT-CA improved its cost-effectiveness compared with 'No testing', but paradoxically its cost-effectiveness reduced in comparison with CA. Reducing the sensitivity and specificity of SPECT (sensitivity changed from 89 to 88% and specificity changed from 91 to 77%) has little impact on the comparison of SPECT-CA to 'No testing'. For the comparison of CA and SPECT-CA, the CA strategy improved in cost-effectiveness. The fifth sensitivity analysis considered the effect of lowering the cost of obtaining a SPECT scan from $\pounds 275$ to $\pounds 200$. As would be expected, this improved the cost-effectiveness of strategies involving SPECT. Changing the cost of an

angiogram to £1000 from £734 led to a small increase in the incremental cost per QALY when SPECT-CA was compared with 'No testing', which in part is due to the relatively small proportion of patients with disease and the high sensitivity and specificity of SPECT. In contrast, the increase in the cost of an angiogram led to CA becoming less cost-effective. It would be expected that this effect would become less important at higher prevalence when a greater proportion of those screened using the SPECT-CA strategy would test positive and receive an angiogram. The seventh sensitivity analysis involved the increase in mortality risk of an angiogram from 0.15 to 0.5%. For comparison of SPECT-CA with 'No testing', the effect was not large as the likelihood of receiving an angiogram was not large. At a 50% prevalence rate, SPECT-CA dominated the CA strategy but it would be expected that as prevalence increased and the likelihood of receiving an angiogram with the SPECT-CA strategy increased then the difference between SPECT-CA and CA strategies would diminish.

A final sensitivity analysis showed that as the prevalence of disease fell to very low levels SPECT–CA became less cost-effective than 'No testing' with an incremental cost per QALY of nearly £29,000 being reported at a 5% prevalence.

Critique of Industry submission

The economic evaluation included in the Industry submission appeared to be comprehensive and competently performed. The main assumptions underpinning the model were highlighted and the sources of parameter values noted.

In the base-case analysis presented in the Industry submission, the sensitivity and specificity of SPECT were at the higher end of the spectrum of estimates used in previous economic analyses. The alternative values used in the sensitivity analysis still had a specificity of SPECT higher than that estimated in the review of diagnostic studies reported in Chapter 3. It is not inconceivable that the rates used in the Industry submission do represent the true sensitivity and specificity but the review presented in Chapter 3 indicated that there was strong statistical evidence of heterogeneity between diagnostic studies. Therefore, a larger variation in sensitivity and specificity values may need to be considered. If the sensitivity and specificity of SPECT were reduced, the relative cost-effectiveness of ECG- and angiography-based strategies would improve, perhaps to a level deemed acceptable.

The two comparisons that the sensitivity analysis focused upon were based on the consideration of which strategies were dominant (less costly and more effective) or had extended dominance. Extended dominance occurs when a strategy is more costly and less effective than a combination of two other strategies, one of which is less costly and less effective and the other is more costly and more effective. One of the implications of eliminating a strategy because of extended dominance is that a proportion of the treated population will receive the less effective treatment. In the Industry submission the comparison of SPECT with 'No testing' is justified because SPECT has extended dominance over the other noninvasive strategies. SPECT-CA only has extended dominance if it is accepted that a proportion of the eligible population will be screened using the SPECT-CA strategy and that the rest will receive the 'No testing' strategy. The impact of this particular implication is not considered within the Industry submission. If conclusions are not based on the use of extended dominance then the results of stepwise incremental analysis should be considered. Table 27 presents a stepwise analysis for the comparison of the different screening strategies based on data presented in the Amersham Health submission. The results of this analysis provide information about whether the extra benefits of a more costly strategy are worthwhile.

When one of the screening strategies was extendedly dominated by the SPECT–CA strategy it meant that it was less costly and less effective but had a higher incremental cost-effectiveness ratio compared with no screening. In some circumstances it is conceivable that the uncertainty surrounding the results presented would be sufficient for conclusions about extended dominance to be reversed. This uncertainty could, as the Industry submission indicated, be formally considered in the analysis but it would greatly increase the complexity of the analysis and interpretation.

One of the most striking aspects about the results presented was the difference between the incremental cost per life-year and the incremental cost per QALY. For example, at a 50% risk of disease incremental cost per life-year for the comparison of the SPECT–CA strategy with the CA strategy was £375,100 but the incremental cost per QALY was only £17,862. The utility weights used in the Industry model are probably the best available but as noted earlier, they may not be wholly appropriate for priority setting in the UK.

Prevalence	Strategy	Diagnosis model			Payoff model		St	Stepwise incremental cost per QALY			
(%)		Cost (£)	FNs	Acc.	DDs	Cost (£)	LYs	QALYs	lnc. cost (£)	Inc. QALYs	Inc. cost per QALY (£)
15	I. No testing (reference)	0	150	850	0	4833400	15516	13435			
	4. ExECG +ve MPS CA	366617	43.9	956	0.31	5534391	15538	13484	700991	48	14483
	2. ExECG CA	491203	33.6	966	0.81	5689297	15533	13482	Dominated	Dominated	Dominated
	3. MPS CA	445959	13.2	986	0.42	5710172	15544	13497	175781	14	12831
	5. ExECG -ve MPS CA	599952	6.9	992	0.65	5883108	15542	13497	Dominated	Dominated	Dominated
	6. ExECG ind. MPS CA	403988	37.6	962	0.49	5590919	15537	13484	Dominated	Dominated	Dominated
	7. CA (reference)	736429	0	999	1.5	6037856	15531	13489	Dominated	Dominated	Dominated
30	I. No testing (reference)	0	300	700	0	5384800	15183	13082			
	4. ExECG +ve MPS CA	450812	87.7	912	0.46	650505 I	15230	13181	1120251	99	11316
	6. ExECG ind. MPS CA	464770	75.I	924	0.61	6558189	15231	13185	53138	4	12960
	2. ExECG CA	525986	67.2	932	0.88	6643350	15229	13185	Dominated	Dominated	Dominated
	3. MPS CA	532563	26.5	973	0.59	6780024	15244	13209	221835	24	9092
	5. ExECG -ve MPS CA	663126	13.9	985	0.8	6949553	15244	13213	169529	3	49861
	7. CA (reference)	736429	0	999	1.5	7063706	15236	13210	Dominated	Dominated	Dominated
50	I. No testing (reference)	0	500	500	0	6120000	14739	12610			
	4. ExECG +ve MPS CA	563033	146	853	0.66	7799226	14819	12776	1679226	166	10092
	6. ExECG ind. MPS CA	545788	125	874	0.78	7847860	14823	12785	48634	9	5527
	2. ExECG CA	572355	112	887	0.98	7915412	14823	12789	67552	4	17777
	3. MPS CA	647987	44.I	955	0.83	8206446	14843	12825	291034	36	8152
	5. ExECG -ve MPS CA	747327	23.1	976	I	8371451	14845	12833	165005	8	20626
	7. CA (reference)	736429	0	999	1.5	8431506	14843	12837	60055	5	13055
85	I. No testing (reference)	0	800	200	0	7222800	14073	11903	7222800	11903	
	4. ExECG +ve MPS CA	731281	234	765	0.95	9740405	14203	12170	2517605	268	9408
	6. ExECG ind. MPS CA	667266	200	799	1.02	9782316	14210	12186	41911	16	2669
	2. ExECG CA	641893	179	820	1.12	9823490	14214	12195	41174	9	4475
	3. MPS CA	821021	70.6	928	1.18	10345977	14241	12248	522487	53	9858
	7. CA (reference)	736429	0	999	1.5	10483206	14254	12279	137229	31	4485
	5. ExECG -ve MPS CA	873565	37	962	1.3	10504233	14248	12263	Dominated	Dominated	Dominated

TABLE 27 Estimation of stepwise incremental cost per QALY at different prevalences of coronary artery disease (based on data presented in Table 22 of the Amersham Health submission)

Acc., accuracy; DDs, Diagnostic deaths; FNs, false negatives; Inc., incremental; ind., indeterminate; LYs, Life-years.

It would have been useful for the effect on the results of different utility values to be considered formally.

Summary of findings

Although prevalence of coronary artery disease has a large role to play in the determination of cost-effectiveness, the evidence is consistent that non-invasive strategies may be considered to be a better use of resources than the adoption of a strategy of direct angiography. Furthermore, the results generally indicate that strategies involving SPECT are likely to be either dominant or provide additional benefits that might be considered worth the additional cost compared with strategies involving stress ECG alone as a method of selecting patients for angiography.

There is less consistency about which of the various strategies that involve SPECT should be chosen. In part, this reflects the differing parameter values used and the different model structures. Only four studies, including the Industry submission, made the comparison between SPECT-CA and stress ECG followed by SPECT in positives and non-diagnostics (stress ECG–SPECT–CA). Of these, two concluded that stress ECG-SPECT-CA was cost-effective and two indicated that the extra benefits provided by SPECT-CA might be worth its additional cost. It is worth noting that three of these studies considered UK costs and that two studies used the same sensitivity and specificity data but came to different conclusions.

Although several studies including the Industry submission appeared to be of high quality and used data from existing reviews, the sensitivity and specificity used for SPECT varied. Higher rates were used in the Industry model than in many of the other evaluations and the extent to which these rates are appropriate is unclear. The results presented in Chapter 3 provide estimates of sensitivity and specificity that are lower than provided elsewhere but, perhaps more importantly, they indicate there is considerable uncertainty surrounding estimates of sensitivity and specificity that earlier reviews may not have fully reflected.

One of the common structural assumptions of many of the models is that the next test in a strategy is performed if the previous one is abnormal or inconclusive. The impact of this is that, depending on sensitivity and specificity data, a large proportion of patients would ultimately receive a coronary angiogram. The data reported in the section 'Critical review and synthesis of information – prognostic studies' (p. 25) suggest that SPECT has independent prognostic power over and above that provided by CA and may be useful for identifying patients with CAD for whom revascularisation is not an immediate treatment option. Allowing non-invasive strategies to identify these patients would tend to reduce the cost of the strategy with no significant impact on health, although this would depend on the accuracy of the test and consequences of misdiagnosis.

The evidence available for the use of SPECT-based strategies for the diagnosis of coronary artery disease in women is limited to a small number of studies conducted outwith the UK. These studies indicate that SPECT-based strategies may become cost-effective as the prevalence level of coronary artery disease increases. Similarly, only four studies considered the use of SPECT-based strategies for those with acute coronary syndrome. Three studies showed that the use of SPECT was likely to be less costly and at least as effective as a strategy based on clinical data and the findings of a rest ECG whereas one study showed it to be more costly but more effective.

The use of SPECT post-MI was limited but one RCT suggested that the use of SPECT would be cost saving. An earlier model-based analysis, however, reported that compared with standard care the incremental cost per death avoided was lower for a direct angiography strategy than a strategy involving SPECT.

The review identified seven studies which considered the cost-effectiveness of other diagnostic strategies for the diagnosis of CAD, such the use of positron emission tomography (PET) and stress echocardiography (ECHO). These interventions were not considered to be within the scope of this review. Of these tests, the most frequently used in diagnostic strategies was stress ECHO, and for this reason the results of comparisons between SPECT-based strategies and echocardiography-based strategies are summarised below.

Five of the seven studies were based in the USA, one in Korea and one in Australia. The number of comparator strategies differed between each study, but all studies included stress SPECT. Three of the studies used Markov modelling techniques to compare the cost-effectiveness of the alternative strategies and results were estimated in terms of incremental cost per QALY ratios.^{99,104,109} Of the other studies, Rumberger and colleagues estimated the average CEA of alternatives in terms of diagnostic accuracy.¹⁰³

The patient populations and risk groups varied across the seven studies. All except one¹¹⁶ categorised patients into risk groups according to pretest probability of CAD. Three studies included a very wide risk range (zero to one in five groups, Kuntz and colleagues;⁹⁹ zero to one in three groups, Shaw and colleagues;⁷⁸ 0.1 to one in four groups, Lee and colleagues¹¹⁷). Garber and Solomon¹⁰⁴ included only intermediate risk patients [p (CAD) = 0.25-0.75]. Kim and colleagues¹⁰⁹ based their three low- to intermediate-risk groups on three scenarios for women aged 55 years: definite angina [p (CAD) = 0.06], probable angina [p (CAD) = 0.31] and nonspecific chest pain [p (CAD) = 0.71]. Lauffer and colleagues¹¹⁶ did not describe patients in terms of pretest probability of CAD, but included a study population of patients referred for assessment of existing or suspected CAD.

Two studies based their data on the diagnostic performance of ECHO on the meta-analysis by Kuntz and colleagues^{99,105} and one used an earlier review.¹⁰³ A further two used rates from their own reviews,^{104,109} of which one assumed no difference in performance between SPECT and ECHO¹¹⁷ and one based the results on an RCT which reported no difference in sensitivity and higher specificity for ECHO.¹¹⁶ Overall, four studies assumed that ECHO was associated with lower sensitivity but higher specificity than SPECT.^{99,103–105} One study comparing SPECT and ECHO in women reported higher sensitivity and specificity for ECHO.¹⁰⁹

From their Markov model analysis, Garber and Solomon reported incremental cost per QALY results for SPECT compared with ECHO of US\$64,000 (for men aged 65 years) and US\$150,000 (for women aged 45 years).¹⁰⁴ The results from the model used by Kuntz and colleagues⁹⁹ included incremental cost per QALY

estimates for SPECT compared with ECHO for patients with typical angina (US\$62,800) and for patients with atypical angina (US\$108,900). Kuntz and colleagues⁹⁹ and Kim and colleagues¹⁰⁹ reported results in a way which was difficult to interpret numerically in terms of costeffectiveness, although they reported that exercise ECHO was more cost-effective than exercise SPECT at all levels of pretest risk of CAD. Rumberger and colleagues reported lower average cost-effectiveness for exercise ECHO than exercise SPECT at low, medium and high pretest CAD risk; despite SPECT being more costly than ECHO, SPECT was found to have better diagnostic accuracy than ECHO. When ICERs are estimated from these average CER results, the incremental cost per true positive diagnosis for SPECT compared with ECHO was >US\$16,000 at all levels of prevalence.¹⁰³ Lee and colleagues considered the cost-effectiveness of stress ECHO compared with stress SPECT in terms of the prognostic value of FN results. For patients with a pretest CAD risk of ≥ 0.3 , SPECT was found to be more cost-effective than ECHO, mainly owing to the lower rate of FNs from SPECT than from ECHO. At lower risk levels (<0.3) these results are reversed.¹¹⁷ From their RCT (n = 115), Lauffer and colleagues reported both lower costs and higher specificity for exercise ECHO than for exercise SPECT, with no significant difference in test sensitivity.¹¹⁶ Shaw and colleagues used pooled data from 210 US hospitals in a decision analytic study which included a comparison of stress ECHO and stress SPECT. Stress ECHO was reported to have the highest test sensitivity and a lower cost per patient than SPECT, but the data are presented in such a way as to preclude any accurate interpretation of ICERs.¹⁰⁵

Although the underlying sources of the data on diagnostic performance have not been critically appraised, they appear to have been competently collected. Although none of the studies were conducted within the UK, their results indicate that echocardiography may be worth further consideration and may provide an alternative method of improving the management of people with CAD.

52

Chapter 5 Economic analysis

Economic modelling

The cost-effectiveness and economic evaluation of SPECT MPS relative to stress ECG and CA for the diagnosis and management of CAD have been assessed using economic evaluation modelling techniques. A DTM was used for the diagnosis decision (Appendix 12, *Figure 11*) and a simple Markov model (Appendix 12, *Figure 12*) for the management of patients with suspected CAD (both of them developed in Data 4.0¹¹⁸). The model structure has been developed following consultation with clinicians and consideration of the existing economic evaluation literature presented in Chapter 4.

Decision tree model

The DTM is a way of displaying the proper temporal and logical sequence of a clinical decision problem.¹¹⁹ In this case, this decision tree is thought of as a static model although in actuality going from the first decision node to the final outcome may take weeks or even months.

The interventions considered in the DTM were SPECT, stress ECG and CA. Broadly, these are tests used for the diagnosis of heart disease. The results of these tests are positive or negative for stress ECG and SPECT and high, medium or low risk for CA (*Table 28*).

These diagnostic tests may be combined to produce the following strategies (thought representative of current practice):

- 1. stress ECG, followed by SPECT if stress ECG positive or indeterminate, followed by CA if SPECT positive or indeterminate
- 2. stress ECG, followed by CA if stress ECG positive or indeterminate

TABLE 28 Results from the diagnostic tests

Test	Result
Stress ECG	Positive or negative
SPECT	Positive or negative
CA	High risk, medium risk, low risk

- 3. SPECT, followed by CA if SPECT positive or indeterminate
- 4. CA (invasive test as first option).

Within the model described in Appendix 12 (Figure 11), a patient may, for example, arrive in the hospital with typical chest pain. Taking the patient's history and symptoms into account, the physician must decide between an invasive test (CA) or a non-invasive test as the first option (namely, stress ECG or SPECT) to assist in making the diagnosis. If the physician decides on an invasive test, then the patient has a risk of dying during the test. If the patient survives, then this will result in a final classification of his/her condition into one of three categories: high risk (i.e. 3VD and poor left ventricular function or LMD), medium risk (SVD or 2VD) or low risk (no significant heart disease present). This strategy is the one followed for patient A in Table 29.

In the same way, the physician could decide for patient B to adopt a non-invasive (stress ECG) test as the first option. If the result of this test is positive, another non-invasive test, SPECT, could be requested. Then, if the SPECT test result is positive, the patient could be diagnosed as high risk or a CA requested to help determine appropriate management. As a final outcome of this strategy for this particular patient, he/she will receive an LMD diagnosis and be classified as high risk. Similarly for patient C, the adoption of a non-invasive test decision first (SPECT), followed by a negative result enables the physician to classify the patient as low risk.

Each of these strategies considered by the model has associated expected costs and consequences. Depending on the probabilities of the occurrence of each event and on the accuracy of the tests, the relative efficiency of these strategies is estimated.

The importance of this model is to consider the different ways in which the SPECT intervention enters the different strategies. In strategy 1 SPECT is adopted as a method of confirming a positive result or dealing with an indeterminate result of stress ECG, whereas in strategy 3 SPECT is used as a substitute for stress ECG.

Patient	Path
А	$CA \rightarrow survive \rightarrow positive \ result \rightarrow 3VD \rightarrow classified \ as \ high \ risk$
В	Non-invasive test \rightarrow stress ECG \rightarrow positive result \rightarrow SPECT \rightarrow positive result \rightarrow CA \rightarrow positive result \rightarrow LMVD and classified as high risk
с	Non-invasive test \rightarrow SPECT \rightarrow negative result \rightarrow classified as low risk

TABLE 29 Examples of paths followed for different patients

TABLE 30 Interventions and events considered in the Markov model

Low-, medium- and high-risk states	Medical management MI
Low-, medium- and high-risk revascularisation states	Revascularisation, PTCA Revascularisation, CABG Further revascularisation Medical management MI
FN: true medium- or true high-risk states	Medical management MI Rediagnose (CA)
FP: true low-risk state	Medical management MI Rediagnose

Markov model

The Markov model can provide the estimated costs and outcomes over the lifetime period of a cohort of patients for the different management strategies adopted following diagnosis. Subject to the results of the clinical review and data availability, the model estimates of costs and outcomes were derived for women.

A Markov model of the type presented here has states in which patients stay for a period of time called a 'cycle'. The cycle must be a relevant period of time to the condition considered (e.g. 6 months, 1 year). At the end of the cycle, the individuals can remain in the state in which they started the cycle or can move to a different state. The probabilities of moving from one state to another are called transition probabilities. Finally, in these models there must be at least one absorbing state, that is, a state from which the patient will not be able to leave.

At the end of each branch of the decision tree, the patient will enter one of the following states of the Markov model: (a) low risk; (b) medium risk; (c) high risk; (d) FN (high risk); (e) FN (medium risk); (f) FP (medium risk) (an FP state has not been allowed for high risk as the model has assumed that all patients identified as high risk would receive an angiogram and therefore definitive diagnosis). Cycles last 1 year and the absorbing state is 'death', which can be reached from any of the other states. Patients who receive and survive a revascularisation move to a revascularisation state, in which they enjoy the benefits of the revascularisation (lower risk of death and MI) until they die or it is felt that the benefits of the revascularisation will no longer be obtained. The interventions and events considered in each state are shown in *Table 30*.

These states can be thought of as comprising a number of events that influence cost and outcome. For instance, when patients enter the high-risk state, they could have a revascularisation and move to the revascularisation state. Patients in the high-risk state will also receive medical management and during the cycle some patients could suffer MI and as a result a proportion will die, but others will survive and remain in the state. Patients moving to the high-risk revascularisation state will receive medical management, may experience a non-fatal MI, further revascularisation, which will be followed by medical management, or death. A similar process can be described for the other states.

In this model, there are a number of states that a patient may enter into as a result of being classified as TN or FP. The assumption within the

	Total cost (£)	Source	Total cost (used in the model) (2001–02 £)	Method for actualisation
Stress ECG	107.00	Hartwell, 2004 ¹²⁰	104.86	Assumption (2001–02 to 2002–03 2% inflation rate)
SPECT	220.00	Underwood, 1999 ⁸² (1996–97 prices)	261.91	HCHS Pay and Prices Index
CA	1100	Underwood, 1999 ⁸² (1996–97 prices)	1309.55	HCHS Pay and Prices Index

TABLE 31 Interventions considered in the DTM

TABLE 32 Interventions considered in the Markov model

	Total cost (£)	Source	Total cost (used in the model) (2001–02 £)	Method for actualisation
Medical management	317.20	See Appendix 15	311.00	Assumption (2001–02 to 2002–03 2% inflation rate)
MI	1122.00	NHS cost 2001–02	1122.00	Not applicable
РТСА	2034.00	Hartwell, 2003 ¹²⁰	1993.74	Assumption (2001–02 to 2002–03 2% inflation rate)
CABG	4397.00	NHS cost 2001–02	4397.00	Not applicable

model is that everyone is correctly diagnosed over a 10-year period either as a result of an additional scan or as a result of a non-fatal MI.

Costs

Decision tree model costs

The costs of the three interventions considered in the model are presented in *Table 31*.

The total costs for stress ECG and CA are £104.86 and £1309.55 and are based on data by Hartwell and colleagues¹²⁰ and Underwood 1999⁸²; both figures are in 2001–02 pounds sterling. The cost of stress ECG was calculated from HRG V05 category.¹²⁴ As the authors reported in Appendix 6 of their report, it is Accident and Emergency direct cost plus a share of support services (pathology and radiology) and has been calculated in a top-down approach.

The SPECT total cost was obtained from Underwood and colleagues.⁸² Their figures were derived by averaging 1996 data for UK centres and the Royal Brompton Hospital, London, which was judged to be the most meaningful by the authors. These costs were estimated using a very detailed bottom-up costing exercise where all resources were itemised and costed (Underwood SR, Imperial College of Science, Technology and Medicine, Royal Brompton Hospital, London, personal communication, 2003). The cost estimate was checked with an estimate derived using a topdown approach with data from different sources which confirm the figures from the EMPIRE study. The costs reported by Underwood and colleagues were inflated using the Hospital and Community Health Services (HCHS) Pay and Prices Index.¹²¹

Markov model costs

Table 32 shows the interventions considered for the Markov model, the cost as reported, the sources from where the figures were obtained, the cost in 2001–02 pounds sterling and the method of adjusting for inflation if applicable.

For the low-risk state, two interventions were considered: medical management and MI event

		Total for procedure (2002–03 £)	Total for procedure (2001–02 £) ^a
Staff	I imes cardiologist	46.35	45.42
	$I \times radiographer$	14.71	14.42
	$I \times technician (= MTO)$	17.75	17.40
	$2 \times nurses$	22.63	22.18
	Total	101.40	99.40
Non-staff	Stents	825.00	808.50
	Drug-eluting stent	382.00	374.36
	Balloon catheter	317.00	310.66
	Guiding catheters (3 units)	159.00	155.82
	Fem stop	100.00	98.00
	Dyes and other consumables for angiography	150.00	147.00
	Total	1933.00	1894.30
	Overall total	2034.00	1994.00

TABLE 33 Cost for angioplasty (PTCA) (assumes 60 minutes in theatre; includes angiography)

Items rounded to nearest $\pounds 0.01$, totals rounded to nearest $\pounds 0.10$, overall totals rounded to nearest $\pounds 1.00$. Note that number used in analysis was $\pounds 1993.74$.

 P_{vt}

 $C_{\rm A}$

management. Medical management for the different states was obtained from experts' opinion and checked with the literature; it was found that the final figure did not differ much from that presented by Sculpher and colleagues.¹²¹ Prices for this calculation were obtained from the *British National Formulary*.¹²² For MI event management cost, Boland and colleagues¹²³ were followed. The authors used NHS Reference Costs;¹²⁴ then, figures for 2001–02 and the same source were used in our model.

The cost for PTCA is £1993.74,¹²⁰ and the calculation assumes 60 minutes in theatre and an angiography, five professionals and non-staff items (*Table 33*). The cost for CABG was obtained from NHS Reference Costs.¹²⁴ The cost of managing an MI is the same as in the low-risk state. When appropriate, the figures were adjusted for inflation using HCHS Pay and Prices Index (see Appendix 14).

Finally, cost per year was calculated for each state in this model. The present value of these costs were calculated using the equation

$$PVC_{\rm A} = TC_{\rm A} + \sum_{t} P_{xt} P_{yt} C_{\rm A} / (1 + 0.06)^{t}$$

where:

 P_{xt}

A is the possible states in the model and t = 1, ..., n

 PVC_{A} = present value of costs of state A over the *n* years

 $TC_{\rm A}$ = total cost of diagnosis process

= probability of being alive in year t

= probability of remaining in actual state

= cost associated with state A

0.06 = discount rate for costs as stated in NICE HTA guidelines.¹²⁵

Probabilities

Decision tree model probabilities

DTM probabilities were assessed from the literature or calculated in the model. *Table 34* shows that many of these were derived from the results of the effectiveness review (see Chapter 3). The sensitivity and specificity of SPECT and stress ECG in *Table 34* were based on a simple synthesis of the mean data from each of the 16 studies reported in the section 'Critical review and synthesis of information – diagnostic studies' (p. 19), including the two studies which provided sensitivity and specificity for SPECT only and which were excluded from subsequent analysis in that section.

The prevalence of coronary heart disease was obtained from British Heart Foundation Statistics. With this, sensitivity, specificity from ER, positive and negative result rates were calculated for diagnostic strategy. Assuming sensitivity and specificity rates were independent of underlying prevalence of CAD, positive and negative result rates were calculated for diagnostic strategy at different pre-test risks of CAD.

Markov model probabilities

The time horizon for the Markov model was a maximum 25 years to enable comparisons with the

56

TABLE 34 A priori probabilities for decision tree

		Value	Range	Source
Prevalence of disease for patient cohorts	Males Females	10.5 5.5	10.5–90 5.5–90	BrHF Statistics, 2003 BrHF Statistics, 2003
Proportion of SVD		0.41		Shaw, 1999 ⁷⁷
Proportion MVD and/or LMD		0.59		Shaw, 1999 ⁷⁷
ntervention				
Stress ECG	Sensitivity	0.66	0.42-0.92	ER (pooled data)
	Specificity	0.60	0.43-0.83	ERŰ
	Indeterminacy	0.18		Patterson, 1995 ¹⁰²
	Positive result	Calculated in the model		Calculated using Bayes with ER dat
	Negative result proportion	Calculated in the model		Calculated using Bayes with ER dat
	Mortality risk	0.00005		Patterson, 1995 ¹⁰²
SPECT	Sensitivity	0.83	0.63-0.93	ER
	Specificity	0.59	0.44-0.90	ER
	Indeterminacy	0.09		Patterson, 1995 ¹⁰²
	Positive result	Calculated in the model		Calculated using Bayes with ER dat
	Negative result proportion	Calculated in the model		Calculated using Bayes with ER dat
	Mortality risk	0.00005		Patterson, 1995 ¹⁰²
CA	Sensitivity	1.00		Assumption
	Specificity	1.00		Assumption
	Mortality risk	0.0015		Patterson, 1995 ¹⁰²

Industry submission. In *Table 35* the usual transition probabilities scheme for Markov models is presented. The risk of dying from any of the states was calculated as the mortality rate for the corresponding age group with adjustments for the relative risk caused by the level of risk and beneficial effects of medical or surgical treatment. The mortality rate for men and women for England and Wales produced by the Government Actuary's Department was used to assess the mortality rate for the general population.¹²⁶

Within the Markov model, states are defined for both FNs and FPs. The model allows for an increasing proportion of misclassified patients to be allocated properly in each cycle. For the basecase the complete cohort of misclassified patients is correctly allocated within 10 years.¹²⁶

In our DTM, every patient classified as high risk had gone through CA. Given the assumption of perfect information for CA in the base-case of the model (i.e. specificity and sensitivity =1), the probability of FN results will be zero. Therefore, misclassification of patients will not occur and there is no chance that patients will be falsely diagnosed as at high risk. The implications of relaxing this assumption are discussed below. Similarly, patients at medium risk all receive CA in the base analysis and therefore FP rates are zero. The implications of relaxing this assumption are explored within the SA.

The risk of MI is considered for each state. The risk for the general population, used for the low-risk state, was obtained from Lampe and colleagues.¹²⁷ The relative risk for the other states was derived from Shaw and colleagues.⁷⁷ These proportions were split into fatal and non-fatal MI using data from Lampe and colleagues.¹²⁸

Annual revascularisation risk in medium and highrisk states and risk of second revascularisation when having PTCA or CABG were derived from Kuntz and colleagues.⁹⁹ *Table 35* shows the probability values used in the model with their sources.

Women

A subgroup analysis was conducted for women. This analysis made use of the relevant age-specific TABLE 35 Probabilities for the Markov model

	Value	Source	Observations
Mortality			
Annual rate for age X		Interim life tables	Appendix 13
Relative risk medium risk	2.3	Yusuf, 1994 ¹²⁹	
Relative risk high risk	3.6	Yusuf, 1994 ¹²⁹	
Risk of MI			
Low risk FP	2.5%	Shaw, 1999 ⁷⁷	
Medium risk and FN (medium risk)	5.0%	Shaw, 1999 ⁷⁷	
High risk and FN (high risk)	9.0%	Shaw, 1999 ⁷⁷	
Proportion fatal MI	44.84%, 51.08%	Based on Lampe, 2000 ¹²⁷ and Volmink, 1998 ¹²⁸	Males, females
Revascularisation		-	
Proportion revascularisation	5%, 50%, 100%	Assumption	Low risk, medium risk, high risk
Proportion PTCA medium risk	61%	BrHF Statistics, 2003 ¹	C
Proportion CABG medium risk	39%	BrHF Statistics, 2003 ¹	
Proportion PTCA	90%, 10%	Assumption	Low risk, high risk
Proportion CABG	10%, 90%	Assumption	Low risk, high risk
Proportion of patients with 2nd revascularisation		Kuntz, 1999 ⁹⁹	0
PTCA	3.6%		
CABG	1.8%		
Mortality risk reduction from revascularisation			
High risk	57%	Kuntz, 1999 ⁹⁹	
Medium risk	15%	Kuntz, 1999 ⁹⁹	
Risk reduction of MI		· · · · · · ·	
PTCA	17%	Kuntz, 1999 ⁹⁹	
CABG	40%	Kuntz, 1999 ⁹⁹	
Procedures mortality		· · · · · · ·	
PTCA	3.1%	Kuntz, 1999 ⁹⁹	
CABG	0.75%	Kuntz, 1999 ⁹⁹	
Time horizon	Max. 25 years	· · · · · ·	
Start age	60 years		

annual mortality obtained from Interim life tables¹²⁶ and the proportion of fatal MI (51.08%) constructed from Lampe and colleagues¹²⁷ and Volmink and colleagues.¹²⁸ Sensitivity and specificity for stress ECG and SPECT were obtained from the studies included in the effectiveness review reported in Chapter 3. The values applied were sensitivity stress ECG 0.67, specificity stress ECG 0.65, sensitivity SPECT 0.90 and specificity SPECT 0.80. Finally, prevalence for this subgroup was fixed at a lower rate (5.5%) than for the men subgroup.

Quality of life measures

One of the products of the economic evaluation is QALYs. QALYs combine estimates of survival time and the quality of that survival time. Survival is provided by the cumulative number of cycles spent in each state of the model other than death. QoL score weights time spent in each state. Estimates of QALYs were required for each of the states in the Markov model. The best data for estimation of this would be UK studies with generic health status measures such as those provided by the EQ 5D. In the absence of such data, information was sought from other sources, notably the economic evaluations summarised in Chapter 4 and values from the CEA Registry.¹³⁰ Although relatively comprehensive, the data presented in the registry were methodologically no better (and more often of lower quality) than the results of the standard gamble exercise used by Kuntz and colleagues.⁹⁹ Moreover, the use of figures from Kuntz and colleagues⁹⁹ facilitates comparisons with the Industry submission. The utility scores used in the model are described in Table 36.

It is assumed in the Markov model that patients who have an MI or are revascularised will lose part of their QALYs as a result of the event and will recover their previous level of QoL in 3 months.¹³¹

TABLE 36	Utility scores use	d in the estimation	of QALYs
----------	--------------------	---------------------	----------

State	Utility value (range)
Low risk (and FPs)	0.87 (0.77–1.00)
Untreated medium risk and FN medium risk	0.81 (0.68–1.00)
High risk and FN high risk	0.67 (0.4–0.98)
Adjustment for revascularisation or MI	0.1 (QALY loss)

The gain from revascularisation is the subsequent lower risk of death but not a higher QoL than before revascularisation.

Discounting

Guidelines of NICE¹²⁵ were followed for discounting costs and outcomes. Therefore, annual discount rates of 6 and 1.5% were used for costs and outcomes, respectively. The obvious result of this is that lower weights are given to costs and benefits that are further away in time.

Results

Base-case analyses

The parameters for costs of interventions, risks of events and QoL for the base-case analysis are summarised in *Table 37*. These parameters were entered in DTM and Markov model using the DATA software package. Payoffs for the DTM were obtained from the Markov model run for up to 25 cycles (i.e. 25 years follow-up period). The starting age for the hypothetical cohort of patients was 60 years.

Tables 38 and 39 show the results of the base-case analysis at a range of different prevalence rates. As prevalence increases, cost increases and the proportion of accurate diagnoses and QALYs decrease. At all prevalence levels the ordering of diagnostic strategies is the same. Table 39 shows the incremental cost per true positive diagnosed, per accurate diagnosis and per QALY. The first two outcomes are based on the outputs of the DTM (diagnostic costs and diagnostic performance). The last outcome is based on both diagnostic and treatment costs (obtained from the payoff model) and estimated QALYs. As a consequence, the incremental cost per OALY is driven not only by diagnostic performance but also by the costs and consequences of management strategies chosen on the basis of diagnostic information. The results indicate that at lower levels of prevalence it is possible that the

incremental costs per unit of output (TP diagnosed, accurate diagnosed, QALYs) for the move from stress ECG-SPECT-CA to stress ECG-CA and from stress ECG-CA to SPECT-CA might be considered worthwhile. Furthermore, stress ECG-CA is extendedly dominated by a combination of stress ECG-SPECT-CA and stress ECG–CA (over a defined range, allowing some patients to receive stress ECG-SPECT-CA with the rest receiving SPECT-CA would be less costly and result in more benefits overall than using stress ECG-CA alone). If stress ECG-CA is removed from the comparison then the incremental cost per unit of output at a 10.5% prevalence level for SPECT-CA versus stress ECG-SPECT-CA would be £13,715 per TP diagnosed, £13,873 per accurate diagnosis and £14,123 per QALY. These incremental cost-effectiveness ratios would decrease as prevalence increases. At high rates of prevalence (e.g. 50 or 85% risk of CAD) the stress ECG-SPECT-CA strategy is the one with lower cost. At these levels of prevalence the SPECT-CA strategy is extendedly dominated by stress ECG-CA and CA strategies for the three different types of outputs presented (TP diagnosis, accurate diagnosis and QALY) (over a defined range, allowing some patients to receive stress ECG-CA with the rest receiving CA would be less costly and result in more benefits overall than using stress SPECT–CA alone).

Sensitivity analysis

Effect of changing sensitivity and specificity *Tables 40* and *41* show the estimated incremental cost per QALY gained when the sensitivity or specificity of stress ECG or SPECT was varied. As expected, when the sensitivity or specificity of the tests is higher, the strategy that involves that test tends to perform better. For example, at a high sensitivity for stress ECG the stress ECG–CA strategy dominates SPECT–CA, whereas for low values of specificity of stress ECG the stress ECG–SPECT–CA strategy dominates stress ECG–CA. Moreover, for low values of SPECT sensitivity, stress ECG–CA dominates SPECT–CA, whereas for high values SPECT–CA dominates the CA strategy. Similarly, for high values of specificity

Costs	Total cost (2001–02 £)	Source
Stress ECG	104.86	Table 31
SPECT	261.91	Table 31
CA	1309.55	Table 31
Medical management	311.00	Table 32
MI	1122.00	Table 32
PTCA	1993.74	Table 32
CABG	4397.00	Table 32
Probabilities	Parameter value	Source
Prevalence of disease for patient cohorts	10.5	Table 34
Stress ECG	10.5	
Sensitivity	0.66	Table 34
Specificity	0.60	Table 34
Indeterminacy	0.18	Table 34
Mortality risk	0.00005	Table 34
SPECT		
Sensitivity	0.83	Table 34
Specificity	0.59	Table 34
Indeterminacy	0.09	Table 34
Mortality risk	0.00005	Table 34
CA	0.00005	Table 34
Sensitivity	1.00	Table 34
Specificity	1.00	Table 34
Mortality risk	0.0015	Table 34
Mortality	0.0015	Table 54
Annual rate for age X		Table 35
Relative risk medium risk	2.3	Table 35
Relative risk high risk	3.6	Table 55
Risk of MI	5.0	
Low risk (and FPs)	2.5%	Table 35
Untreated medium risk and FN medium risk	5.0%	Table 35
High risk and FN high risk	9.0%	Table 35
Proportion fatal MI	44.84%	Table 35
Proportion non-fatal MI	55.16%	Table 35
FN results		
Proportion to medium risk	41%	
Proportion to high risk	59%	
Revascularisation		
Proportion revascularisation low, medium, high risk	5, 50, 100%	Table 35
Proportion PTCA	90, 61, 10%	Table 35
Proportion CABG	10, 39, 90%	Table 35
Proportion of patients with 2nd revascularisation		Table 35
PTCA	3.6%	
CABG	1.8%	
Mortality risk reduction from revascularisation		
High risk	57%	Table 35
Medium risk	15%	Table 35
Risk reduction of MI		
PTCA	17%	Table 35
CABG	40%	Table 35
Procedures mortality		
PTCA	3.1%	Table 35
CABG	0.75%	Table 35
Utility	Value	Source
Low risk	0.87	Table 36
Medium risk	0.87	Table 36
High risk Adjustment for myservlavientien on MI	0.67	Table 36
Adjustment for revascularisation or MI	0.1	Table 36
Other parameters		
Age at start of model	60 years	
Time horizon	25 years	

TABLE 37 Summary of variables used in the analysis

Prevalence level (%)	Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	TPs diagnosed (%)	Accurate diagnoses (%)	QALYs
Baseline, 10.5	ECG-SPECT-CA	603	5190	6.39	95.85	12.473
	ECG-CA	799	5395	7.56	96.99	12.481
	SPECT-CA	921	5529	8.86	98.30	12.497
	CA	1310	5929	10.48	99.85	12.506
30	ECG-SPECT-CA	710	5780	18.26	88.23	11.689
	ECGCA	854	5954	21.60	91.55	11.723
	SPECT-CA	1018	6153	25.32	95.27	11.765
	CA	1310	6484	29.96	99.85	11.811
50	ECG-SPECT-CA	819	6387	30.43	80.41	10.886
	ECG-CA	910	6528	36.00	85.96	10.946
	SPECT-CA	1119	6793	42.20	92.16	11.016
	CA	1310	7053	49.93	99.85	11.097
85	ECG-SPECT-CA	1010	7448	51.74	66.73	9.480
	ECG-CA	1007	7531	61.21	76.19	9.585
	SPECT-CA	1293	7914	71.74	86.73	9.703
	CA	1310	8049	84.87	99.85	9.849

TABLE 38 Estimated costs and outcomes for each diagnostic strategy

 TABLE 39
 Stepwise incremental cost-effectiveness

Prevalence level (%)	Strategy	Incremental cost per TP diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY (£)
Baseline, 10.5	ECG-SPECT-CA			
	ECG-CA	16761	17267	23648
	SPECT-CA	9339	9295	8723
	CA	23956	24998	42225
30	ECG-SPECT-CA			
	ECG-CA	5188	5230	5098
	SPECT-CA	5345	5339	4711
	CA	7143	7225	7331
50	ECG-SPECT-CA			
	ECGCA	2526	2535	2345
	SPECT-CA	4285	4283	3807
	CA	3364	3380	3178
85	ECG-SPECT-CA			
	ECG-CA	882	882	792
	SPECT-CA	3630	3630	3242
	CA	1030	1030	927

TABLE 40 Incremental cost per QALY (£): variation of sensitivity and specificity values for stress ECG

	Sensitivity stress ECG		Specificity stre	ss ECG	Base-case	
	0.42	0.92	0.43	0.83		
ECG-SPECT-CA						
ECG-CA	53453	20214	45793	15406	23648	
SPECT-CA	5398	Stress ECG dominant	SPECT dominant	35197	8723	
CA	57214	57214	57214	57214	42225	

 $\ensuremath{\mathbb{C}}$ Queen's Printer and Controller of HMSO 2004. All rights reserved.

	Sensitivity SPECT		Spec	ificity SPECT	Base-case
	0.63	0.93	0.64	0.90	
ECG-SPECT-CA					
ECG-CA	11689.73	754167	28002	SPECT dominant	23648
SPECT-CA	Stress ECG dominant	6869	4997	6706.57	8723
CA	17426.14	SPECT dominant	52221	158694.03	42225

TABLE 41 Incremental cost per QALY (£): variation of sensitivity and specificity values for SPECT

TABLE 42 Effect of changing proportion of patients that SPECT can identify as positive but not in need of an angiogram

Strategy	Incremental cost per QALY (f)	Base-case results (£)
Stress ECG-SPECT-CA		
Stress ECG–CA	17928	23648
SPECT-CA	6495	8723
CA	16558 ^a	42225

^a This ICER strongly diminishes compared with the base-case as a result of a decrease in QALYs for the SPECT-CA strategy (base-case 12.497; this case 12.469).

of SPECT, the stress ECG–CA strategy is dominated by SPECT–CA (further results of the sensitivity analysis are presented in Appendix 16).

Effect of allowing SPECT to stratify patients into medium risk

Within Chapter 3, data were presented that suggested that SPECT may provide additional independent information to other tests in addition to being able to identify patients with CAD who would not need to progress to angiography. In this model, the effect of this was illustrated by varying the proportion of those tested positive whose condition might satisfactorily be managed medically. As this proportion increases from zero in the base-case analysis to \sim 50% then the SPECTbased strategies become more cost-effective (Table 42). Should SPECT have a higher specificity, as used in some of the economic evaluations and the Industry submission, and be able to risk stratify patients accurately, then its costeffectiveness would further improve [incremental cost per QALY of SPECT-CA versus stress ECG-SPECT-CA <£5000 and SPECT-CA less costly (by an average of £324 per patient) and more effective (average of 0.03 per patient) than stress ECG-CA]. The estimates in Table 42 are an overestimate as our model does not allow for the possibility that some high-risk patients may be misdiagnosed as positive but at lower risk (i.e. medium risk, and hence receive inappropriate

management) but nevertheless illustrates the potential impact of this factor.

Effect of changing the rates of indeterminate results

Within the model presented in this section (and the Industry model), it has been assumed that for some strategies should the results of a test be indeterminate then the patient would proceed to the next test. The level of indeterminacy assumed for a test therefore has an impact on the cost, diagnostic performance and QALYs. In this model, the data from Patterson and colleagues¹⁰² were used (Table 34). Alternative data are available from Kuntz and colleagues⁹⁹ and were used in the Industry model. These data suggest a rather higher rate of indeterminacy for stress ECG (30 versus 18%) and a lower level of indeterminacy for SPECT (2 versus 9%). Tables 43 and 44 report the impact on cost-effectiveness of using these rates, which are more favourable to SPECT.

Effect of changes in cost of the diagnostic tests

Varying the cost of the tests between £25 and £225 for stress ECG and between £895 and £1724 for an angiogram had no impact on the rank ordering of the procedures. SPECT–CA still had extended dominance over stress ECG–CA and had an incremental cost per QALY compared with stress ECG–SPECT–CA of <£21,000 even when the cost of stress ECG was only £25. The CA option, even

Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	TP diagnosed (%)	Accurate diagnoses (%)	QALY
ECG-SPECT-CA	388	4983	7.26	96.74	12.49
ECG-CA	752	5353	8.14	97.57	12.49
SPECT-CA	511	5126	9.35	98.84	12.51
CA	1310	5929	10.48	99.85	12.51

TABLE 43 Estimated costs and outcomes for each diagnostic strategy when indeterminacy stress ECG = 30% and indeterminacy SPECT = 2%

TABLE 44 Effect on cost-effectiveness when indeterminacy stress ECG = 30% and indeterminacy SPECT = 2%

Strategy	Incremental cost per TP diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY (£)	Base-case results (incremental cost per QALY) (£)
ECG-SPECT-CA				
ECG-CA	Dominated by SPECT–CA	Dominated by SPECT–CA	Dominated by SPECT–CA	23648
SPECT-CA	11419 ^a	11419 ^a	11422 ^a	8723 ^b
CA	25101	25101	41404	42225

when the low cost of an angiogram was used, was associated with an incremental cost per QALY compared with SPECT–CA of >£28,000. The cost of SPECT was varied between £128 to £340 and at the high cost of SPECT the incremental cost per QALY of SPECT–CA versus stress ECG–CA was <£16,000.

Effect of changing the time horizon of the analysis

In the base-case analysis, cumulative costs and QALYs were estimated for a 25-year period for a 60-year-old male. It may be unrealistic to assume that costs and outcomes over such a long period can be reliably estimated. For this reason, the effect of changing the time horizon was investigated. An example of the incremental cost per QALY changes as the time horizons change is shown in *Figure 10*. As the time horizon reduces the incremental cost per QALY increases (as the costs of initial diagnosis and treatment are not offset by survival and QoL gains).

Changes to the time it takes false negatives to be correctly diagnosed

One of the uncertainties within the model is the time that it takes for FNs to be correctly diagnosed. In the base-case analysis it was assumed that in the first year 10% are correctly rediagnosed and thereafter an increasing proportion are correctly rediagnosed such that all survivors are correctly diagnosed by year 10. Relaxing this assumption and allowing FNs to be rediagnosed sooner has the effect of reducing the penalty associated with making a false diagnosis (i.e. it improves the cost-effectiveness of noninvasive strategies compared with CA). Conversely, increasing the time until successful rediagnosis increases the penalty associated with misdiagnosis and reduces the cost-effectiveness of non-invasive strategies compared with CA (*Table 45*).

Summary of other sensitivity analysis

The payoff model estimates the costs and benefits associated with the consequences of diagnosis (choice of management) and the long-term effects of CAD. Changes in these parameters will affect the cost-effectiveness of the alternative strategies. *Table 45* shows, for example, the effect of changing the rate at which FNs are correctly diagnosed. Further changes could also be considered. For example, within the model it has been assumed that a coronary angiogram provides perfect diagnostic information. Should this assumption be relaxed then it might be expected that the relative cost-effectiveness of a non-invasive strategy would improve. Whether this would lead to an increased preference for SPECT-based strategies would in

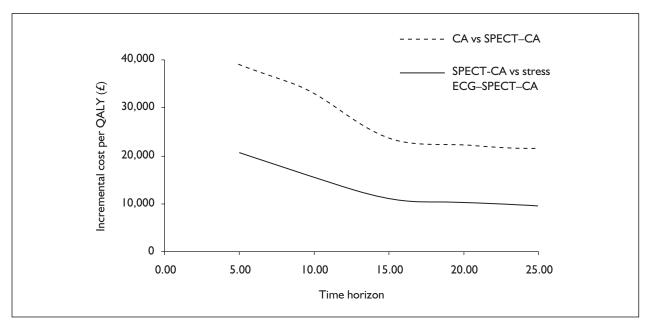


FIGURE 10 Incremental cost per QALY at different time horizons for the comparison of CA with SPECT–CA and SPECT–CA with stress ECG–SPECT–CA

Rediagnosis	Strategy	Cost (£)	QALY	Incremental cost per QALY (£)	Incremental cost per QALY (base-case) (£)
After 2 years	ECG-SPECT-CA	5415	12.312		
	ECG–CA	5587	12.320	19368	23648
	SPECT-CA	5708	12.336	7891	8723
	CA	6057	12.346	35194	42225
After 5 years	ECG-SPECT-CA	5374	12.305		
	ECG-CA	5558	12.316	16931	23648
	SPECT-CA	5692	12.333	7644	8723
	CA	6057	12.346	28868	42225
Never	ECG-SPECT-CA	5210	12.265		
	ECG-CA	5441	12.287	10442	23648
	SPECT-CA	5627	12.317	6190	8723
	CA	6057	12.346	15234	42225

TABLE 45 Effect of changing the time until false negatives are correctly rediagnosed on the incremental cost per QALY

part depend upon both the sensitivity and specificity of SPECT and also its ability to identify correctly patients with CAD who could be managed medically and may therefore not require an angiogram.

The values stated in the base-case analysis for risk of MI for all risk states in the payoff model were changed to allow for higher figures. As a result, all payoff cost values for the risk states rise, as there were more MIs to treat within the model. The payoff values for QALYs did not change widely as the fatal MIs were assumed to be included in the relative risk ratios of death of the different risk states. There was no difference in the order of the strategies selected when running the sensitivity analysis with this payoff and the ones obtained from the base-case run.

The discount rates were also changed following NICE guidelines to 0% for both cost and QALYs in first instance and 6% also for cost and QALYs in the second instance. There was only one change in the order of the strategies that differ from the sensitivity analysis done for base-case payoffs, namely, for low values of cost for SPECT and zero discount rates SPECT–CA dominates the stress ECG–CA strategy.

Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	TPs diagnosed (%)	Accurate diagnoses (%)	QALY
ECG-SPECT-CA	436	5241	3.64	98.12	14.08
ECG-CA	735	5541	4.01	98.43	14.08
SPECT-CA	664	5477	4.99	99.45	14.10
CA	1310	6121	5.49	99.85	14.09

TABLE 46 Estimated costs and outcomes for each diagnostic strategy for the women subgroup

TABLE 47 Incremental cost per outcome for the women subgroup

Strategy	Incremental cost per TP diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY
ECG-SPECT-CA			
ECG-CA	82, 33	93,988	ECG-SPECT dominant
SPECT-CA	SPECT dominant	SPECT dominant	SPECT dominant
CA	SPECT dominant	SPECT dominant	SPECT dominant

Finally, variations were made in QALY values and mortality risk reduction of MI resulting from revascularisation. No changes were observed in the order for the base-case DTM or in the subsequent SA.

Relative cost-effectiveness in women

One of the key subgroups for this analysis was the impact of the use SPECT-based strategies to diagnose CAD in women. This subgroup analysis used sensitivities and specificities for women and used a lower prevalence rate of CAD, different MI rates and mortality rates for women aged 60 years at diagnosis. The stress ECG–SPECT–CA strategy was less costly whereas stress ECG–CA and CA were dominated by the SPECT–CA strategy (less costly and slightly more effective in the second case). This is due to the higher specificity and sensitivity values for women than in the base-case analysis (*Tables 46* and 47).

Comparison with the Industry submission

The model presented in this section and the model produced as part of the Industry review had broadly similar structures and produced similar results. The results are not identical and in some respects the model presented in this section is more favourable than the Industry model to the SPECT–CA strategy. Both models are similar to

© Queen's Printer and Controller of HMSO 2004. All rights reserved.

ones previously reported in the literature (see Chapter 4). There are discrepancies, however, due to differences in the structure and parameter values. In the Industry model there are seven diagnostic strategies. The model presented here considers only the four believed to be representative of usual practice. Despite this difference, the structures of these four strategies are very similar. In both cases (our model and the Industry model), a positive or indeterminate result in a test is followed by another test (in the usual order). Hence, a positive or indeterminate stress ECG will be followed by a SPECT test, and a positive or indeterminate SPECT test will be followed by a CA test. Moreover, the payoff Markov models are also very similar as in both cases the same scarce existing literature was used.

In order to facilitate comparison, the model presented here was run with the parameter values used by the Industry model. The results of this suggest that for prevalence levels of <50%SPECT-CA is associated with an incremental cost per QALY of not more than £14,600 compared with stress ECG-SPECT-CA and it dominates or has extended dominance over stress ECG-CA. Only at a prevalence of 30% does the incremental cost per QALY of CA compared with SPECT fall below £35,000. Between 50 and 65% prevalence levels, SPECT has extended dominance over stress ECG-CA. It is also associated with an incremental cost per QALY compared with stress ECG-SPECT–CA of <£1800. However, the incremental cost per QALY of CA compared with SPECT-CA is <£6000. Above 65% CA starts to have extended

dominance over SPECT–CA (at very high prevalence rates SPECT–CA is dominated). In the situation that occurs at these higher prevalence rates, the relevant comparison is between CA and stress ECG–CA, and the incremental cost per QALY of CA compared with stress ECG–CA is typically not greater than £4000.

It should be highlighted that the model presented in this section does not allow for higher QoL after revascularisation. In other words, the benefits of revascularisation come from a higher life expectancy but not from a higher QoL. If a higher QoL were achieved after revascularisation, those strategies that accurately identify patients for revascularisation (fewer FNs) would perform better (i.e. CA). Nevertheless, the rank ordering of the non-invasive strategies should not change as the QALY gain is still driven by sensitivity/specificity. It could be expected that SPECT-CA would perform better than stress ECG-CA, but this would be strongly dependent on the indeterminate results from stress ECG as they proceed to a CA test. Finally, if the 'No testing' strategy is dropped from the Industry submission model, the results are similar to those presented in our model, as stress ECG-SPECT-CA and SPECT-CA strategies dominate or extendedly dominate other strategies for low levels of prevalence, whereas stress ECG-CA and CA extendedly dominate the SPECT–CA strategy for high levels of prevalence.

Summary of results

The model presented in this section considered some of the strategies that are potentially relevant for managing CAD patients. The effectiveness data for the diagnostic tests came from the effectiveness review. However, few data were available from the UK. As a result, data from other countries were used, much of which came from studies conducted in the USA. In these cases, RRs and rates of utilisation were extrapolated but absolute rates of utilisation of interventions were not, as it is well known that there are differences in utilisation rates between the USA and UK and it was believed that the use of relative rates would result in less bias.

The model developed suggests that for low levels of prevalence it is possible that the incremental cost per unit of output (TPs diagnosed, accurate diagnosis, QALY) for the move from stress ECG–SPECT–CA and from stress ECG–CA to SPECT–CA might be considered worthwhile. At high rates of prevalence (e.g. 85% risk of CAD) the stress ECG–SPECT–CA strategy is dominated by the stress ECG–CA strategy. Furthermore, the CA option is associated with relatively modest ICERs.

In addition to allowing for different values for sensitivity or specificity, the most cost-effective strategy was stress ECG–SPECT–CA. For low levels of sensitivity for SPECT, stress ECG–CA dominates the SPECT–CA strategy, whereas for high levels SPECT–CA dominates CA. High levels of specificity for SPECT also result in the stress ECG–CA strategy being dominated by SPECT–CA.

The SA suggests that SPECT–CA improves its costeffectiveness if it is assumed that SPECT gives information that will allow a management strategy to be decided upon without recourse to angiography. A further SA considering the extent to which non-invasive tests provide indeterminate results proved to be significant in the model. When the values used by Kuntz and colleagues⁹⁹ were applied, the results suggest that the SPECT–CA strategy dominates stress ECG–CA.

The results were not greatly sensitive to the cost of the diagnostic test but estimates of incremental cost per QALY are sensitive to the time horizon chosen. As the time horizon increases, the incremental cost per QALY declines. In the basecase model it was also assumed that those patients who were not correctly classified would be correctly diagnosed within 10 years. If this assumption was relaxed then those strategies that result in incorrect diagnoses would not be as heavily penalised.

In the model it was assumed that the specificity and sensitivity for CA equalled one. If this assumption is relaxed then it might be expected that the relative cost-effectiveness of a noninvasive strategy would improve. Whether this would lead to an increased preference for SPECTbased strategies would depend on both the sensitivity and specificity of SPECT and also its ability to identify correctly patients for whom management could be decided without the need for an angiogram.

For the subgroup analysis for women it was found that as the sensitivity and specificity for SPECT were higher than those adopted in the base-case (and the mortality and prevalence are lower), the SPECT–CA strategy dominates the stress ECG–CA and CA strategies.

Chapter 6

Implications for other parties

Quality of life for family and carers

Currently a patient with a positive stress ECG result would have to wait about 20 weeks before receiving a CA. This wait may cause a great deal of distress for patients and families. There are many causes of this distress, two of which are related to the delay in obtaining a definitive diagnosis and the nature of the testing required. Obviously, any intervention that reduces this wait would help to reduce this distress, for example movements towards achieving waiting time targets and the increased use of SPECT in rapid access chest pain clinics. Furthermore, the increased use of a noninvasive investigation such as SPECT in place of CA would also help reduce the anxiety associated with the prospect of undergoing a surgical procedure with an appreciable risk of mortality and morbidity.

Financial impact for patients and others

SPECT is not as widely available as stress ECG in the UK. As a result, patients who require SPECT may need to travel some distance. This has both time and financial costs which currently may fall on patients and their families. Should the use of SPECT increase then it might be expected that the magnitude of these costs would decline, especially if efforts were made to ensure equality of access.

Chapter 7 Factors relevant to the NHS

NSF for CHD

The NSF states that both ExECG and SPECT are useful for the assessment of severity of myocardial ischaemia. The data presented in this review suggest that SPECT-based strategies are effective and might also be considered cost-effective. It has been suggested by the relevant professional groups that as the NSF recommends a maximum 3-month gap between a decision to investigate and CA, then the waiting time target for SPECT should be 6 weeks for routine studies and 1 week for urgent studies.

Although not explicitly addressed within this review, it is likely that any increased adoption of SPECT through rapid access clinics might further facilitate the shortening of the waiting time for SPECT. Although such a service may face different costs and benefits (owing to possible changes in decision thresholds), the results of the available studies indicate that the use of SPECT in such circumstances might be cost-effective. It should be noted that although not formally evaluated in this study, ECHO, which can also be provided in openaccess clinics, may potentially be a cost-effective method of diagnosing CAD.

In 2000, the number of SPECT studies performed was 1200 per million of the population, but a tentative assessment of the number of SPECT examinations needed is 4000 per million of the population per year (Professional Groups' submission to NICE, 2003).

Training issues

Clearly, the expansion of SPECT-based services would require considerable investment in infrastructure. It has been estimated that under very conservative assumptions some 84 additional gamma cameras would be required (Professional Groups' submission to NICE, 2003). In practice, it is unlikely that expansion would be via 84 dedicated centres undertaking 2000 studies per annum. It is more likely that this would be a progressive increase via many more centres undertaking extra studies. However, the former model could occur if centrally driven. If the latter model is adopted then the impact of this upon the need for more cameras is difficult to assess as it depends upon each centre's 'rate-limiting' step, that is, what the local need is and existing services. Furthermore, it is possible that the majority of nuclear medicine departments have an underprovision of modern gamma camera time, hence the real demand for hardware could be many times the estimate. It is possible that any residual camera time would be put to other potentially beneficial uses. Although the cost of equipment and the necessary staff and consumables is large (estimated at £31.07 million per year), it is more likely that the lack of trained staff would be the greatest obstacle. Professional groups have estimated that it would take 5-10 years for sufficient staff to be trained (Professional Groups' submission to NICE, 2003). However given that expansion will be by no means an overnight phenomenon, it might be possible to increase numbers progressively by ensuring that newappointment consultant cardiologist, nuclear physician and radiology colleagues have dedicated sessions devoted to nuclear cardiology. Sufficient training for them may thereby be rapidly provided. It should also be noted that trained technologists and nurses would also be required. The timescale for this would be shorter, but would depend upon finance being available.

The limited ability to increase the use of SPECT may require the consideration of a second-best alternative, at least until sufficient trained staff are available. An alternative might be the adoption of a less SPECT-intensive option, for example only using SPECT in those tested positive at stress ECG. Such alternatives should be cost-effective in comparison with current practice but might be inferior to strategies using SPECT more intensively. Other potential options might involve the regional supervision and reporting of studies performed at the local level.

Equity issues

Growth in the use of SPECT is limited to a small number of high-using centres with the majority of centres performing relatively few studies (median number of studies per centre per annum 256). As a result, staff may have limited experience of reporting SPECT studies, which may have an impact on patient outcomes. Furthermore, patients' access to SPECT is affected by their geographical proximity to high-using centres. If a decision was taken to adopt a SPECT-based strategy then, given the limited number of trained staff available, service configuration would need to be carefully considered in order for equality of access to be maximised.

Chapter 8 Discussion

Effectiveness

Diagnostic studies

The 21 included studies assessing the diagnostic accuracy of both SPECT and stress ECG varied considerably with regard to their inclusion/exclusion criteria. Therefore, it was decided to analyse them according to the clinical characteristics of their patient populations. It was found that three studies exclusively assessed patients after PTCA, one study evaluated patients with asymptomatic coronary disease, one study focused on patients with LBBB and 16 studies assessed the diagnostic ability of SPECT and stress ECG to detect CAD in patients with a suspicion or a history of coronary disease.

The number of studies in each subset was small and their methodological quality varied considerably. In particular, they differed in terms of their definition of coronary stenosis, patients characteristics (mean age, gender, previous MI), severity of the disease (SVD versus MVD), use of beta-blocking medications, time between SPECT, stress ECG and CA, technical factors such as interpretation of test findings (visual versus quantitative reading analysis of SPECT, diagnostic versus non-diagnostic results of stress ECG), angiographic referral (the results of the SPECT and/or stress ECG determined who did or did not undergo CA) and blinding of test results.

Owing to the wide variation among primary studies in each of the two main subsets (patients with suspicion of CAD and patients who underwent PTCA), and the lack of a positive correlation between TP and FP rates, pooling of sensitivities and specificities and calculation of summary ROC curves were deemed inappropriate and as an alternative the medians and ranges were presented for both tests. For the two main subsets of studies (patients suspected of CAD and patients who underwent PTCA), the medians of sensitivity for SPECT were higher and their ranges narrower than those for stress ECG. Medians of specificity were similar between the two tests for patients suspected of CAD, with wider ranges for SPECT. Medians of specificity were higher for SPECT for patients who underwent PTCA, with wider ranges for stress ECG.

The inclusion of patients with previous MI has been reported to increase the sensitivity of SPECT significantly,¹³² as patients with MI are more easily identified than patients without previous MI. Only four studies among our cohort of 16 included studies clearly excluded patients with previous MI. The median of sensitivity for SPECT in the subset of studies, excluding patients with MI, was higher (0.92, range 0.76-0.93) than that of the subset of studies enrolling patients with MI (0.76, range 0.63–0.93). The medians of sensitivity for stress ECG for patients with (0.63, range 0.44-0.92) and without previous MI (0.66, range 0.42-0.85) were similar. Specificity values of SPECT were akin to those of stress ECG in both subsets of studies but again values were higher among studies that did not include patients with previous MI. These findings can be explained by the small number of studies in the non-MI subset (four studies) compared with the MI subset (10 studies) and the great variation in the inclusion/exclusion criteria and patients' characteristics of primary studies. In addition, the 10 studies including patients with prior MI did not consist solely of patients with prior MI; rather, this category of patients was included within the broader patient populations contained in the studies.

There is evidence in the literature that studies free from verification bias show significantly higher specificities and relatively lower sensitivities than studies where only positive cases are verified by the reference standard.²⁰ Among the studies we identified, only two showed clear evidence of verification bias (i.e. results of SPECT were allowed to influence the decision to perform CA) and consequently were not included in the analyses.

The influence of other patients' characteristics that may affect the sensitivity of SPECT, such as gender of participants (studies with high proportions of men tend to report higher sensitivities), could not be assessed reliably owing to the small number of studies reporting this information.

Prognostic studies

Forty-six observational studies, of reasonable methodological quality, were included in this review.

In the 21 studies providing general prognostic information, the rates of cardiac events (cardiac mortality or non-fatal MI) were significantly higher for patients with abnormal SPECT scans compared with normal scans. Two comparative studies found that a strategy incorporating SPECT and selective CA resulted in lower rates of normal angiograms compared with patients referred to direct CA, suggesting that SPECT identified patients at lower risk for whom CA was not necessary.^{67,77,82} Other findings were that SPECT provided independent prognostic information for predicting MI and provided incremental prognostic value over clinical and exercise testing data and even CA when it had already been performed.

Sixteen of the general prognostic studies employed the Cox proportional hazards model. The variables included in the models appeared to be appropriate, although they differed across studies, and not all studies provided comprehensive details of the variables included. SPECT variables found to be predictive of outcome included an abnormal SPECT scan, an intermediate-risk SPECT scan, a high-risk SPECT scan, the extent of the perfusion defect, the size of the perfusion defect, worsening category of summed stress score, worsening category of summed reversibility score and reversible and fixed perfusion defects.

The remaining studies addressed the use of SPECT in a variety of contexts or patient populations. The general conclusions were that, as part of the stress ECG–SPECT–CA pathway, SPECT imaging provided independent and incremental information that assisted in stratifying patients into at-risk groups and in influencing their treatment. All four studies assessing the usefulness of SPECT post-MI concluded that it was valuable for stratifying patients into at-risk groups.

SPECT appeared to provide independent prediction of survival in both men and women, although different aspects of the test results had different prognostic implications in terms of gender. In both men and women, the extent of total perfusion abnormality, extent of reversible perfusion abnormality, multivessel abnormality and large perfusion abnormality were all strongly predictive of future cardiac events.

Three studies concluded that SPECT was prognostically useful in patients following revascularisation. SPECT imaging performed 1–3 years after PTCA was found to be predictive of cardiac events, with summed stress score, summed reversibility score, and for stress ECG the Duke treadmill score, all strongly associated with PTCA/CABG within 3 months of SPECT imaging. In patients who had undergone CABG, the extent of the perfusion abnormality was an important independent predictor of events and SPECT was useful in stratifying patients into at-risk groups for future cardiac events.⁶⁹ Normal SPECT scans were associated with a benign prognosis that suggested medical rather than invasive management.

The other studies found SPECT to be prognostically useful in a variety of contexts/patient populations, including patients with normal resting ECG, asymptomatic coronary disease, high ExECG tolerance, LMD and/or 3VD and those hospitalised with chest pain who had a normal or non-diagnostic ECG.

In conclusion, the evidence from the included prognostic studies consistently suggested that, as part of the stress ECG–SPECT–CA pathway, SPECT, in a variety of settings and patient populations, provided valuable independent and incremental information in predicting outcome and helped to stratify patients into appropriate atrisk groups and influence decisions on how best their condition should be managed.

These findings are in broad agreement with other published reviews assessing the prognostic usefulness of MPS. Travin and Laraia,⁹² in a review of the prognostic value of stress MPI, concluded that it was a powerful method of risk stratifying patients with known or suspected ischaemic heart disease. Brown,⁹³ in a review of the prognostic value of Tl-201 MPI, concluded that it had been shown to have the ability to predict important cardiac events in a wide variety of clinical settings and was a powerful tool for risk stratification that could have a major impact on patient management.

A secondary objective of this review was to attempt to summarise the limited evidence on gated and AC SPECT compared with standard SPECT. Two studies, one diagnostic and the other prognostic, comparing SPECT with gated SPECT found in favour of gated SPECT, and one diagnostic study comparing SPECT with AC SPECT found AC SPECT to be more accurate. Although these findings seem promising, it is difficult to draw conclusions from so few studies.

No studies meeting the inclusion criteria were identified that evaluated SPECT in the context of

rapid access chest pain clinics, or evaluated the role of SPECT in preoperative risk assessment of patients undergoing major surgery who were potentially at risk of coronary events. It should be noted, however, that risk stratification before noncardiac surgery is listed as a class 1 indication for MPS in the guidelines for clinical use of cardiac radionuclide imaging developed by the American College of Cardiology/American Heart Association Task Force in collaboration with the American Society of Nuclear Cardiology.¹³³

Cost and cost-effectiveness

Twenty-two economic evaluations were identified that compared strategies involving SPECT with alternative strategies that may or may not have included SPECT. One further economic evaluation was available from the submission by Amersham Health. Overall, the quality of the economic evaluations was very mixed. A number used either poor economic evaluation methodology or data of suspect validity. There were, however, a number of studies that used and clearly described strong methodology. These studies compared a wide variety of strategies and used different input parameters, especially for SPECT.

The available studies concluded that direct CA was cost-effective when the prevalence of disease was high (>75%) (although CA was generally more costly but more effective). At lower levels of prevalence, non-invasive strategies may be considered to be a better use of resources than a strategy of direct CA. Furthermore, strategies involving SPECT were likely to be either dominant or provide additional benefits that might be considered worth the additional cost compared with the stress ECG–CA strategy.

No single SPECT strategy was identified as being the most likely to be cost-effective. Four studies, including the Industry submission, compared SPECT–CA and stress ECG–SPECT–CA; two concluded that stress ECG–SPECT–CA was costeffective and two reported that the extra benefits provided by SPECT–CA might be worth its additional cost.

The evidence for the use of SPECT in women is limited to non-UK studies and few data were available. The use of SPECT for acute coronary syndrome was again limited to non-UK studies, although three of the four available studies reported that SPECT was likely to dominate a strategy using clinical and rest ECG data alone. One RCT suggested that the use of SPECT would be cost saving post-MI and a poorer quality model reported that compared with standard care the incremental cost per death avoided was lower for a direct CA strategy than for a strategy involving SPECT.

The model presented in this report considered some of the strategies currently used in the UK that are potentially relevant for the management of CAD. The results are broadly in accordance with those of the Industry submission.

The effectiveness data for the diagnostic tests came from the effectiveness review (Chapter 3). The results suggest that for low levels of prevalence the incremental cost per unit of output (TPs diagnosed, accurate diagnoses, QALY) for the move from both stress ECG–SPECT–CA and stress ECG–CA to SPECT–CA might be considered worthwhile. At 30% prevalence rates, although SPECT–CA is cost-effective, the CA strategy produces more QALYs at a relatively low ICER. At higher prevalence rates (50 and 85%), SPECT–CA strategy is extendedly dominated by stress ECG–CA and CA strategies.

Despite allowing for different values for sensitivity or specificity, the least costly and least effective strategy was stress ECG–SPECT–CA. For low levels of sensitivity for SPECT, stress ECG–CA dominates the SPECT–CA strategy, whereas for high sensitivity SPECT–CA dominates CA. At high levels of specificity for SPECT, the stress ECG–CA strategy is dominated by the SPECT–CA strategy.

SPECT–CA improves its cost-effectiveness if it can identify those patients who are positive but for whom an angiogram is not required. These results are tentative, however, as it has been assumed that SPECT can correctly stratify patients. The extent to which non-invasive tests provide indeterminate results in this model is very important. This was shown by adopting the values reported in the Industry submission. The results reported suggest that with those values of indeterminacy for stress ECG and SPECT, the SPECT–CA strategy dominates stress ECG–CA.

Estimates of incremental cost per QALY are sensitive to the time horizon chosen and as the time horizon increases the incremental cost per QALY declines. The results are also sensitive to assumptions about how long it takes for an incorrectly diagnosed patient to be correctly diagnosed. In the base-case model it was assumed that those patients who were not correctly classified would be correctly allocated within 10 years. If this assumption is relaxed then those strategies that result in incorrect diagnoses improve in costeffectiveness as the penalty associated with incorrect diagnosis is reduced. One of the assumptions of the model was that the specificity and sensitivity for CA equalled one. Relaxing this assumption would be expected to lead to improvement in the relative cost-effectiveness of the non-invasive strategy relative to CA. Whether this would lead to an increased preference for SPECT-based strategies would in part depend on both the sensitivity and specificity of SPECT and also its ability to identify correctly patients with CAD who could be managed medically and may therefore not require an angiogram.

Finally, a subgroup analysis was conducted for women. This analysis found that as the sensitivity and specificity for SPECT were higher than those adopted in the base-case (and the mortality and prevalence were lower), the SPECT–CA strategy dominates the stress ECG–CA and CA strategies.

Assumptions, limitations and uncertainties

Extensive literature searches were conducted. Nevertheless, they were restricted to major electronic databases and did not, for example, cover grey literature extensively. Because of time constraints, non-English language reports were not considered.

Studies with <100 participants were not included in the review. Small studies have been reported as tending to exaggerate treatment effects and also tending to be of poorer methodological quality compared with larger studies.¹³⁴ The median values for both sensitivity and specificity for SPECT in the set of studies excluded from the review because they contained <100 patients were higher than those of the set of included studies containing ≥ 100 patients. Including studies with <100 patients would therefore have resulted in the reporting of higher median sensitivity and specificity values for SPECT.

Planar imaging was excluded from this review because in the UK it has been superseded by tomographic imaging as the standard approach, and our choice of comparators was designed to reflect current practice. Much of the original work assessing the diagnostic and prognostic effectiveness of MPI was performed when tomographic imaging was less developed and planar imaging was common. The inclusion of planar imaging studies might have added power to the comparison of SPECT with stress ECG and might have provided greater statistical significance for the findings in favour of SPECT.

Although the role of SPECT for patients unable to exercise or with abnormal resting ECG was not specifically examined, such categories of patients may have been included within the larger patient population in those studies where ECG stress was produced pharmacologically rather than by exercise, and in studies where the stress part of SPECT was produced pharmacologically (adenosine, dipyridamole, dobutamine) rather than by exercise. One of the included diagnostic studies⁴¹ was concerned with patients with LBBB, for whom stress ECG is non-diagnostic and was not included as a comparator, and where the diagnostic accuracy of SPECT was compared with CA as the reference standard.

No randomised trials were identified comparing outcomes after different diagnostic strategies with or without SPECT. For this reason, effectiveness was judged on SPECT's relative diagnostic and prognostic performance.

Effectiveness

Diagnostic studies

The number of diagnostic studies identified by the search strategy that met all the inclusion criteria was relatively small. The focus of the review was to assess the diagnostic ability of SPECT alongside existing tests (stress ECG) for the diagnosis of CAD. Several diagnostic studies assessing the performance of MPS versus CA are available in the literature, in addition to diagnostic studies based on the use of planar imaging. However, the evaluation of planar imaging studies was not within the scope of this review. In addition, studies assessing diagnostic accuracy separately for each test were also not considered for this review: in other words. included studies compared SPECT with another diagnostic procedure against the reference standard of CA. The decision to include only studies comparing SPECT with stress ECG, with CA as the reference standard, was taken in order to allow a direct comparison of the tests in the same patient populations over the same periods in the same settings. Although this decision resulted in fewer included studies than would have otherwise been the case, those studies that were included provided more useful comparative information between the tests than studies where SPECT alone or stress ECG alone was compared with CA and where indirect comparisons would then have to be made.

There are also a number of reports in the literature that compare the diagnostic performance of SPECT and exercise ECHO or assess the use of ECHO in addition to stress ECG in the diagnosis of CAD. Comparing the accuracy and relative effectiveness of SPECT and exercise ECHO was not within the remit of this review. However, it is worth mentioning the results of a recent meta-analysis evaluating the diagnostic performance of these two imaging techniques.14 The meta-analysis included 44 studies comparing exercise ECHO with exercise SPECT, published between 1990 and 1997. SPECT yielded an overall sensitivity of 0.87 (95% CI 0.86 to 0.88) and an overall specificity of 0.64 (95% CI 0.60 to 0.80) whereas exercise ECHO had an overall sensitivity of 0.85 (95% CI 0.83 to 0.87) and an overall specificity of 0.77 (95% CI 0.74 to 0.80). It was concluded that exercise ECHO and exercise SPECT had similar sensitivities for the detection of CAD, but that exercise ECHO had better specificity, and therefore a higher overall discriminatory capability.

The studies included in this review varied considerably in terms of their inclusion/exclusion criteria, characteristics of participants, definition of positive test, definition of normal versus abnormal coronary angiograms and methods. This, together with the relatively small number of identified studies, hampered the possibility of combining diagnostic data using formal metaanalysis techniques and to ascertain whether certain factors could affect the accuracy of SPECT (e.g. gender, definition of CAD, severity of the condition).

Other limitations were related to the poor reporting of test results and the blinding of their interpretation. Although most of the selected studies provided estimates of sensitivity, specificity and accuracy, few provided such measures for patient subgroups and formally assessed test reproducibility. Interpretation of SPECT and stress ECG without knowledge of the results of CA and other clinical information is critical, especially for imaging techniques, which rely on subjective judgements. It was unclear from most studies whether the same clinical data were available when test results were interpreted as would be available if the test were to be used in practice. In studies of diagnostic accuracy where the SPECT images are interpreted in the absence of clinical information, this gives a lower specificity than would be the case in normal practice where the test is interpreted with clinical information present, since it is much more difficult to tell the difference

between artefact and true perfusion abnormality if patient clinical data such as gender, breast size and build are not known.

Prognostic studies

Our findings are limited by the fact that all of the included studies were observational studies and susceptible to the biases inherent in such designs. Only four studies were comparative, in the sense that different groups had different testing strategies concurrently, usually with one group of patients allocated to a strategy of direct CA whereas a second group was managed with a strategy of SPECT, and selective CA.

The remaining studies were cohort studies in which substantially the same group of patients received all the tests of interest. Some form of multivariate regression, usually Cox proportional hazards regression analysis, was generally undertaken to calculate which variables associated with the tests were identifiable as independently and/or incrementally predicting the outcomes of interest, for example cardiac mortality or non-fatal MI. Although the direction of the evidence was consistent in favouring SPECT, the strength of the evidence from such study designs is not as strong as would be the case with RCTs.

Another limitation was that the generalisability of the included studies appeared to be low, in that study participants were not representative of the entire populations from which they were recruited, and insufficient information was provided to determine whether the staff, places and facilities where patients were treated were representative of the treatment that the majority of patients would receive.

Cost and cost-effectiveness

The review of existing economic evaluations focused solely on studies that attempted a formal cost-effectiveness/utility or cost-minimisation analysis. Cost analyses were not considered, as they provide no meaningful information about relative efficiency. Furthermore, a quantitative synthesis of the economic evaluations could not be undertaken.

Interpretation of the identified studies was complicated because so few of them were conducted in the UK and there were many different values used even for the sensitivity and specificity of SPECT. The extent to which data on longer term costs and effects are generalisable to the UK is unclear. Are rates of service utilisation used in the Amersham Health submission (and also the model presented in Chapter 5) relevant to the UK, given that they are derived from non-UKbased studies where intervention is more likely? For example, RRs and relative rates of utilisation were extrapolated but absolute rates of utilisation of interventions were not, as it is well known that there are differences in utilisation rates between the USA and UK and it was believed that the use of relative rates would result in less bias.

These uncertainties present in the model have, in part, been addressed by the extensive SA. For example, within the model very conservative estimates for the sensitivity and especially for specificity of SPECT have been used. These estimates are lower than those used in the majority of economic evaluations and within the Industry model. Despite this, the SA has shown that over a range of plausible values the overall results remain stable.

One of the key areas of uncertainty was with respect to the ability of SPECT to identify patients at risk of CAD for whom CA would not be required. This was identified as a potential advantage of SPECT based both on the advice from clinicians and on the results of the prognostic studies reported in Chapter 3. However, the extent to which SPECT would be able to achieve this was unclear. Nevertheless, tentative results suggest that should SPECT be able to identify accurately those patients at risk of CAD for whom CA would not be required, then the cost-effectiveness of SPECT based strategies would improve.

Within the model it has also been assumed that an angiogram provides perfect information. If this assumption were relaxed then it would be expected that those strategies that do not rely on angiography to the same extent would improve in cost-effectiveness.

The costs of the diagnostic tests used within the economic model are average costs and include elements for the capital and overheads of providing these services. The impact of using these costs was explored in the SA but there may be concerns that they do not adequately reflect opportunity costs. Therefore, careful consideration is required about whether these costs would apply to an increase in the use of SPECT suggested in the submission by the Professional Groups.

Linking diagnostic performance to long-term outcomes required a number of assumptions to be made about both the structure of the model and its parameters. Some of these assumptions were based on data from non-UK studies such as the proportion of positive patients with LMD and 3VD. It is unclear whether such data are applicable to the UK. Another assumption made relates to the duration of time over which the benefits from a diagnostic strategy might accrue. In the base-case analysis 25 years has been used. However, in the SA the impact of using shorter time horizons has been explored. Furthermore, other data, such as the utility values, are not based on a UK population and may not be appropriate to priority setting in the UK. The model presented in Chapter 5 (unlike that presented in the Industry submission) does not allow for higher QoL after revascularisation. Therefore, the benefits of revascularisation are solely in the form of higher life expectancy. If a higher QoL were achieved after revascularisation, those strategies that identify accurately patients for revascularisation (fewer FNs) would perform better.

A further caveat, related to the pay-off model, is the extent to which severity of disease is linked to QoL. The model presented in Chapter 5 and many of the models summarised in Chapter 4 make the assumption that there is a direct link. No utility data were identified with which to test this assumption and the impact of this assumption on relative cost-effectiveness is therefore unclear.

Need for further research

Further research is needed on the effectiveness and cost-effectiveness of SPECT compared with stress ECHO, both diagnostically and prognostically.

Ultimately, the decisions about the costeffectiveness of strategies involving SPECT rely on information not only on their diagnostic performance but also on subsequent costs and effects of treatment. Relatively robust data can be obtained on, for example, the incremental cost per accurate diagnosis. Such data are of very limited value as a basis of decisions about allocative efficiency. Relatively poor data are available with which to consider longer term costs and consequences. Both the submission from Amersham Health and the economic model presented in Chapter 5 use data from non-UK settings. Such data may not be generalisable to the UK. Higher quality economic evaluations relevant to the UK require better information, especially on rates of service utilisation and on utilities.

By providing information on both function and perfusion, gated SPECT potentially has advantages over standard SPECT. In the same way, AC SPECT could potentially provide better quality images than standard SPECT. Additional research is needed to clarify the comparative effectiveness and cost-effectiveness of gated and AC SPECT compared with standard SPECT, diagnostically and prognostically, and whether these techniques are of particular benefit to specific patient groups.

Chapter 9 Conclusions

Implications for the NHS

- SPECT is more sensitive than stress ECG for the detection of CAD.
- SPECT provides independent and incremental information in predicting cardiac events in patients over and above that provided by stress ECG and CA.
- For the diagnosis of CAD in a low- to mediumrisk population (<75% stenosis), SPECT-based strategies compared with those that rely on stress ECG are likely to be associated with additional benefits which may be considered affordable (i.e. SPECT can define the site and severity of ischaemia, providing important information that can guide patient management). It is currently unclear which of the SPECT-based strategies is likely to be most appropriate.
- At high risks of CAD, CA is associated with relatively modest estimates of incremental costeffectiveness compared with SPECT-based strategies. SPECT, however, may identify patients with CAD for whom revascularisation is not an immediate treatment option, thus reducing the need for CA.
- SPECT-based strategies for the diagnosis of CAD in women may become cost-effective as the prevalence level of CAD increases.
- The use of SPECT-based strategies for the diagnosis of acute coronary syndromes or post-MI may be cost-effective, although the evidence base is small.

• Current services could not provide significantly more SPECT tests. Additional investment in facilities and training would be required.

Implications for patients and carers

- The increased use of SPECT-based strategies may reduce the number of invasive tests required.
- Although the use of non-invasive strategies may speed the time taken to provide a diagnosis, the expansion of services is likely to be slow because of the time needed to train staff adequately.

Implications for research

- Determination of the optimal diagnostic strategy requires information on longer term outcomes, especially rates of service utilisation and on utilities. Such information could be appropriately collected with observational studies and surveys of relevant patient groups.
- Further research is needed on the effectiveness and cost-effectiveness, diagnostically and prognostically, of gated and AC SPECT compared with standard SPECT, and whether these techniques are of particular benefit to specific patient groups.
- Further research is also needed on the effectiveness and cost-effectiveness of SPECT compared with stress ECHO.

Acknowledgements

We thank members of the Steering Committee (John Cairns, Peter Fayers, Adrian Grant, Phil Hannaford, Cairns Smith and Norman Waugh) for advice and support and Laura Heatherwick and Kathleen McIntosh for secretarial support. The Health Services Research Unit and the Health Economics Research Unit are both core funded by the Chief Scientist Office of the Scottish Executive Health Department. The views expressed are those of the authors and not necessarily those of the funding bodies.

About 'Home Unit'

The Health Services Research Unit (HSRU), University of Aberdeen, has responsibility for the following general remit within Scotland:

- 1. to study or evaluate clinical activities with a view to improving effectiveness and efficiency in health care
- 2. to work for the implementation of proven changes in clinical activities

- 3. to encourage and support similar work throughout Scotland
- 4. to train NHS staff in Scotland, and others, in the principles and practice of health services research in general, and health care evaluation in particular.

Contributions of the authors

Graham Mowatt, Alison Murray, Miriam Brazzelli and Neil Scott completed the review of effectiveness. Luke Vale and Lynda McKenzie conducted the review of economic evaluations. Rodolfo Hernandez conducted the economic evaluation. Cynthia Fraser developed and ran search strategies and obtained papers. Neil Scott undertook statistical analyses. Malcolm Metcalfe, Graham Hillis and Howard Gemmell provided clinical advice and commented on drafts of the review.

- British Heart Foundation Health Promotion Research Group. *Coronary heart disease statistics*. University of Oxford, Department of Public Health; 2003.
- Julian DG, Cowan C. Cardiology. 6th ed., London: Baillière Tindall; 1992.
- Beers MH, Bercow R, editors. *The Merck manual* of diagnosis and therapy. 1999. URL: http://www.merck.com/pubs/mmanual/
- American College of Cardiology/American Heart Association Task Force on Practice Guidelines. ACC/AHA 2002 Guideline update for the management of patients with chronic stable angina. 2002. URL: http://www.acc.org/clinical/guidelines/stable/ stable.pdf
- 5. UK Department of Health. National Service Framework for coronary heart disease. 2000. URL: http://www.doh.gov.uk/nsf/coronary.htm
- 6. Timmis AD. Diabetic heart disease: clinical considerations. *Heart* 2001;**85**:463–9.
- Liu JLY, Maniadakis N, Gray A, Rayner M. The economic burden of coronary heart disease in the UK. *Heart* 2002;88:597–603.
- Prvulovich E, Metcalfe MJ. Nuclear cardiology in the UK: activity and practice 1997. *Eur J Nucl Med Mol Imaging* 2002;29:553–8.
- National Horizon Scanning Centre. Imaging in coronary heart disease. New and emerging technology briefing. 2001. URL: http://www.publichealth.bham.ac.uk/ horizon/PDF_files/Imaging.pdf
- British Nuclear Cardiology Society. BNMS draft guidelines for tomographic radionuclide myocardial perfusion imaging. 2002. URL: http://www.bncs.org.uk/resources/pdf/ BNMS MPI draft guidelines.pdf
- Hendel RC, Corbett JR, Cullom J, DePuey EG, Garcia EV, Bateman TM. The value and practice of attentuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. *J Nucl Med* 2002; 43:273–80.
- Scottish Intercollegiate Guidelines Network. Management of stable angina: a national clinical guideline. Guideline No. 51. 2001. URL: http://www.show.scot.nhs.uk/sign/guidelines/ fulltext/51/index.html

- 13. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. *Circulation* 1995;**92**:2333–42.
- Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. *JAMA* 1998;**280**:913–20.
- 15. Mieres JH, Shaw LJ, Hendel RC, Miller DD, Bonow RO, Berman DS, et al. The role of myocardial perfusion imaging in the clinical evaluation of coronary artery disease in women. Consensus statement of the American Society of Nuclear Cardiology Task Force on women and coronary artery disease. 2003. URL: http://www.asnc.org/resources/ finalconsensus91702.pdf
- 16. Ritchie JL, Bateman TM, Bonow RO, Crawford MH, Gibbons RJ, Hall RJ, et al. Guidelines for clinical use of cardiac radionuclide imaging. A report of the American Heart Association/ American College of Cardiology Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures, Committee on Radionuclide Imaging, Developed in Collaboration With the American Society of Nuclear Cardiology. 1995. URL: http://www.acc.org/clinical/guidelines/radio/ dirIndex.htm
- 17. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. *J Epidemiol Comm Health* 1998;**52**:377–84.
- Santana-Boado C, Candell-Riera J, Castell-Conesa J, Aguade-Bruix S, Garcia-Burillo A, Canela T, et al. Diagnostic accuracy of technetium-99m-MIBI myocardial SPECT in women and men. J Nucl Med 1998;39:751–5.
- Midgette AS, Stukel TA, Littenberg B. A metaanalytic method for summarizing diagnostic test performances: receiver-operating-characteristicsummary point estimates. *Med Decis Making* 1993; 13:253–7.
- 20. Deeks JJ. Systematic reviews of evaluations of diagnostic and screening tests. In Egger M, Davey Smith G, Altman DG, editors. *Systematic reviews in health care: meta-analysis in context*. London: BMJ Books; 2001.
- Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, *et al*. Guidelines for metaanalyses evaluating diagnostic tests. *Ann Intern Med* 1994;120:667–76.

- 22. Beygui F, Le Feuvre C, Maunoury C, Helft G, Antonietti T, Metzger JP, *et al.* Detection of coronary restenosis by exercise electrocardiography thallium-201 perfusion imaging and coronary angiography in asymptomatic patients after percutaneous transluminal coronary angioplasty. *Am J Cardiol* 2000;**86**:35–40.
- Chae SC, Heo J, Iskandrian AS, Wasserleben V, Cave V. Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. *J Am Coll Cardiol* 1993; 21:1305–11.
- 24. Daou D, Delahaye N, Vilain D, Lebtahi R, Faraggi M, Le Guludec D. Identification of extensive coronary artery disease: incremental value of exercise Tl-201 SPECT to clinical and stress test variables. *J Nucl Cardiol* 2002;**9**:161–8.
- De S, Searles G, Haddad H. The prevalence of cardiac risk factors in women 45 years of age or younger undergoing angiography for evaluation of undiagnosed chest pain. *Can J Cardiol* 2002; 18:945–8.
- 26. Gentile R, Vitarelli A, Schillaci O, Lagana B, Gianni C, Rossi-Fanelli F, *et al.* Diagnostic accuracy and prognostic implications of stress testing for coronary artery disease in the elderly. *Ital Heart J* 2001;**2**:539–45.
- Hamasaki S, Arima S, Tahara M, Kihara K, Shono H, Nakao S, *et al.* Increase in the delta ST/delta heart rate (HR) index: a new predictor of restenosis after successful percutaneous transluminal coronary angioplasty. *Am J Cardiol* 1996;**78**:990–5.
- Hambye AS, Vervaet A, Lieber S, Ranquin R. Diagnostic value and incremental contribution of bicycle exercise, first-pass radionuclide angiography, and 99mTc-labeled sestamibi singlephoton emission computed tomography in the identification of coronary artery disease in patients without infarction. *J Nucl Cardiol* 1996; 3(6 Pt 1):464–74.
- 29. Hecht HS, Shaw RE, Bruce TR, Ryan C, Stertzer SH, Myler RK. Usefulness of tomographic thallium-201 imaging for detection of restenosis after percutaneous transluminal coronary angioplasty. *Am J Cardiol* 1990;**66**:1314–18.
- Huang PJ, Chieng PU, Lee YT, Chiang FT, Tseng YZ, Liau CS, *et al.* Exercise thallium-201 tomographic scintigraphy in the diagnosis of coronary artery disease: emphasis on the effect of exercise level. *J Formos Med Assoc* 1992; 91:1096–101.
- Kajinami K, Seki H, Takekoshi N, Mabuchi H. Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification

using electron beam computed tomography: comparison with electrocardiographic and thallium exercise stress test results. *J Am Coll Cardiol* 1995;**26**:1209–21.

- 32. Karlsson JE, Bjorkholm A, Nylander E, Ohlsson J, Wallentin L. Additional value of thallium-201 SPECT to a conventional exercise test for the identification of severe coronary lesions after an episode of unstable coronary artery disease. *Int J Cardiovascular Imaging* 1995;11:127–37.
- Khattar RS, Senior R, Lahiri A. Assessment of myocardial perfusion and contractile function by inotropic stress Tc-99m sestamibi SPECT imaging and echocardiography for optimal detection of multivessel coronary artery disease. *Heart* 1998; 79:274–80.
- Koskinen M, Poyhonen L, Seppanen S. Thallium-201 washout in coronary artery disease using SPECT – a comparison with coronary angiography. *Eur J Nucl Med* 1987;12:609–12.
- 35. Lind P, Eber B, Binter G, Koltringer P, Brandt D, Klein W, *et al.* 201Tl myocardial SPECT and betaendorphin levels in patients with suspected silent ischemia. *Nucl Med (Stuttg)* 1990;**29**:153–7.
- 36. Mairesse GH, Marwick TH, Vanoverschelde JL, Baudhuin T, Wijns W, Melin JA, et al. How accurate is dobutamine stress electrocardiography for detection of coronary artery disease? Comparison with two-dimensional echocardiography and technetium-99m methoxyl isobutyl isonitrile (mibi) perfusion scintigraphy. J Am Coll Cardiol 1994;24:920–7.
- McClellan JR, Dugan TM, Heller GV. Patterns of use and clinical utility of exercise thallium-201 single photon emission-computed tomography in a community hospital. *Cardiology* 1996;87:134–40.
- 38. Michaelides AP, Psomadaki ZD, Dilaveris PE, Richter DJ, Andrikopoulos GK, Aggeli KD, et al. Improved detection of coronary artery disease by exercise electrocardiography with the use of right precordial leads. N Engl J Med 1999;340:340–5.
- 39. Nallamothu N, Ghods M, Heo J, Iskandrian AS. Comparison of thallium-201 single-photon emission computed tomography and electrocardiographic response during exercise in patients with normal rest electrocardiographic results. *J Am Coll Cardiol* 1995;**25**:830–6.
- 40. Psirropoulos D, Efthimiadis A, Boudonas G, Papadopoulos I, Papadopoulos G, Ekklisiarchos D, *et al.* Detection of myocardial ischemia in the elderly versus the young by stress thallium-201 scintigraphy and its relation to important coronary artery disease. *Heart Vessels* 2002;**16**:131–6.
- 41. Vaduganathan P, He ZX, Raghavan C, Mahmarian JJ, Verani MS. Detection of left anterior descending coronary artery stenosis in patients with left bundle branch block: exercise,

adenosine or dobutamine imaging? J Am Coll Cardiol 1996;28:543–50.

- Amanullah AM, Heo J, Iskandrian AE. Impact of exercise single-photon emission computed tomographic imaging on appropriateness of coronary revascularization. *Am J Cardiol* 1998; 81:1489–91.
- Amanullah AM, Heo J, Acio E, Narula J, Iskandrian AE. Predictors of outcome of medically treated patients with left main/three-vessel coronary artery disease by coronary angiography. *Am J Cardiol* 1999;83:445–8.
- 44. Ben-Gal T, Zafrir N. The utility and potential costeffectiveness of stress myocardial perfusion thallium SPECT imaging in hospitalized patients with chest pain and normal or non-diagnostic electrocardiogram. *Isr Med Assoc J* 2001;**3**:725–30.
- 45. Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, *et al.* Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. *J Am Coll Cardiol* 1995;**26**:639–47.
- Candell-Riera J, Santana-Boado C, Bermejo B, Castell-Conesa J, Aguade-Bruix S, Canela T, *et al.* Prognosis of 'clandestine' myocardial ischemia, silent myocardial ischemia, and angina pectoris in medically treated patients. *Am J Cardiol* 1998; 82:1333–8.
- Chatziioannou SN, Moore WH, Ford PV, Fisher RE, Lee VV, Alfaro-Franco C, *et al.* Prognostic value of myocardial perfusion imaging in patients with high exercise tolerance. *Circulation* 1999; 99:867–72.
- Chiamvimonvat V, Goodman SG, Langer A, Barr A, Freeman MR. Prognostic value of dipyridamole SPECT imaging in low-risk patients after myocardial infarction. *J Nucl Cardiol* 2001; 8:136–43.
- Diaz LA, Brunken RC, Blackstone EH, Snader CE, Lauer MS. Independent contribution of myocardial perfusion defects to exercise capacity and heart rate recovery for prediction of all-cause mortality in patients with known or suspected coronary heart disease. *J Am Coll Cardiol* 2001; 37:1558–64.
- Gibbons RJ, Hodge DO, Berman DS, Akinboboye OO, Heo J, Hachamovitch R, et al. Long-term outcome of patients with intermediaterisk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. *Circulation* 1999;100:2140–5.
- 51. Giri S, Shaw LJ, Murthy DR, Travin MI, Miller DD, Hachamovitch R, *et al.* Impact of diabetes on the risk stratification using stress single-photon

emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. *Circulation* 2002;**105**:32–40.

- 52. Groutars RG, Verzijlbergen JF, Muller AJ, Ascoop CA, Tiel-van Buul MM, Zwinderman AH, *et al.* Prognostic value and quality of life in patients with normal rest thallium-201/stress technetium 99m-tetrofosmin dual-isotope myocardial SPECT. *J Nucl Cardiol* 2000;**7**:333–41.
- 53. Hachamovitch R, Berman DS, Kiat H, Bairey CN, Cohen I, Cabico A, et al. Effective risk stratification using exercise myocardial perfusion SPECT in women: gender-related differences in prognostic nuclear testing. J Am Coll Cardiol 1996;28:34–44.
- 54. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, *et al.* Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. *Circulation* 1998;**97**:535–43.
- 55. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and cost-effectiveness. *Circulation* 2002;**105**:823–9.
- 56. Ho KT, Miller TD, Holmes DR, Hodge DO, Gibbons RJ. Long-term prognostic value of Duke treadmill score and exercise thallium-201 imaging performed one to three years after percutaneous transluminal coronary angioplasty. *Am J Cardiol* 1999;84:1323–7.
- 57. Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise singlephoton emission computed tomographic (SPECT) thallium imaging in coronary artery disease. *J Am Coll Cardiol* 1993;**22**:665–70.
- 58. Iskandrian AS, Johnson J, Le TT, Wasserleben V, Cave V, Heo J. Comparison of the treadmill exercise score and single-photon emission computed tomographic thallium imaging in risk assessment. *J Nucl Cardiol* 1994;1(2 Pt 1):144–9.
- 59. Kamal AM, Fattah AA, Pancholy S, Aksut S, Cave V, Heo J, *et al.* Prognostic value of adenosine single-photon emission computed tomographic thallium imaging in medically treated patients with angiographic evidence of coronary artery disease. *J Nucl Cardiol* 1994;1:254–61.
- 60. Lauer MS, Pashkow FJ, Snader CE, Harvey SA, Thomas JD, Marwick TH. Gender and referral for coronary angiography after treadmill thallium testing. *Am J Cardiol* 1996;**78**:278–83.

- 61. Lauer MS, Pashkow FJ, Snader CE, Harvey SA, Thomas JD, Marwick TH. Age and referral to coronary angiography after an abnormal treadmill thallium test. *Am Heart J* 1997;**133**:139–46.
- 62. Machecourt J, Longere P, Fagret D, Vanzetto G, Wolf JE, Polidori C, *et al.* Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1,926 patients with follow-up at 33 months. *J Am Coll Cardiol* 1994;**23**:1096–106.
- 63. Marie PY, Danchin N, Durand JF, Feldmann L, Grentzinger A, Olivier P, *et al.* Long-term prediction of major ischemic events by exercise thallium-201 single-photon emission computed tomography. Incremental prognostic value compared with clinical, exercise testing, catheterization and radionuclide angiographic data. J Am Coll Cardiol 1995;**26**:879–86.
- 64. Marwick TH, Shaw LJ, Lauer MS, Kesler K, Hachamovitch R, Heller GV, *et al.* The noninvasive prediction of cardiac mortality in men and women with known or suspected coronary artery disease. Economics of Noninvasive Diagnosis (END) Study Group. *Am J Med* 1999;**106**:172–8.
- Miller TD, Christian TF, Hodge DO, Mullan BP, Gibbons RJ. Prognostic value of exercise thallium-201 imaging performed within 2 years of coronary artery bypass graft surgery. J Am Coll Cardiol 1998; 31:848–54.
- 66. Miller TD, Chaliki HP, Christian TF, Hodge DO, Gibbons RJ. Usefulness of worsening clinical status or exercise performance in predicting future events in patients with coronary artery disease. J Am Coll Cardiol 2001;88:1294–7.
- 67. Mishra JP, Acio E, Heo J, Narula J, Iskandrian AE. Impact of stress single-photon emission computed tomography perfusion imaging on downstream resource utilization. *Am J Cardiol* 1999;**83**:1401–3.
- Nallamothu N, Pancholy SB, Lee KR, Heo J, Iskandrian AS. Impact on exercise single-photon emission computed tomographic thallium imaging on patient management and outcome. *J Nucl Cardiol* 1995;2:334–8.
- 69. Nallamothu N, Johnson JH, Bagheri B, Heo J, Iskandrian AE. Utility of stress single-photon emission computed tomography (SPECT) perfusion imaging in predicting outcome after coronary artery bypass grafting. *Am J Cardiol* 1997;**80**:1517–21.
- O'Keefe JH Jr, Bateman TM, Ligon RW, Case J, Cullom J, Barnhart C, *et al.* Outcome of medical versus invasive treatment strategies for non-highrisk ischemic heart disease. *J Nucl Cardiol* 1998; 5:28–33.
- 71. Olmos LI, Dakik H, Gordon R, Dunn JK, Verani MS, Quinones MA, *et al*. Long-term

prognostic value of exercise echocardiography compared with exercise 201Tl, ECG, and clinical variables in patients evaluated for coronary artery disease. *Circulation* 1998;**98**:2679–86.

- Pancholy SB, Schalet B, Kuhlmeier V, Cave V, Heo J, Iskandrian AS. Prognostic significance of silent ischemia. *J Nucl Cardiol* 1994; 1(5 Pt 1):434–40.
- Pancholy SB, Fattah AA, Kamal AM, Ghods M, Heo J, Iskandrian AS. Independent and incremental prognostic value of exercise thallium single-photon emission computed tomographic imaging in women. *J Nucl Cardiol* 1995; 2(2 Pt 1):110–16.
- 74. Parisi AF, Hartigan PM, Folland ED. Exercise thallium scintigraphy versus exercise electrocardiography for predicting survival in chronic stable angina. *Cardiol Rev* 1998;**15**:31–4.
- 75. Pattillo RW, Fuchs S, Johnson J, Cave V, Heo J, DePace NL, *et al.* Predictors of prognosis by quantitative assessment of coronary angiography, single photon emission computed tomography thallium imaging, and treadmill exercise testing. *Am Heart J* 1996;**131**:582–90.
- 76. Schinkel AF, Elhendy A, van Domburg RT, Bax JJ, Roelandt JR, Poldermans D. Prognostic value of dobutamine-atropine stress (99m)Tc-tetrofosmin myocardial perfusion SPECT in patients with known or suspected coronary artery disease. J Nucl Med 2002;43:767–72.
- 77. Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, *et al.* The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. *J Am Coll Cardiol* 1999; **33**:661–9.
- 78. Shaw LJ, Heller GV, Travin MI, Lauer M, Marwick T, Hachamovitch R, *et al.* Cost analysis of diagnostic testing for coronary artery disease in women with stable chest pain. Economics of Noninvasive Diagnosis (END) Study Group. *J Nucl Cardiol* 1999;**6**:559–69.
- 79. Shaw LJ, Hachamovitch R, Heller GV, Marwick TH, Travin MI, Iskandrian AE, *et al.* Noninvasive strategies for the estimation of cardiac risk in stable chest pain patients. The Economics of Noninvasive Diagnosis (END) Study Group. *Am J Cardiol* 2000;**86**:1–7.
- Stratmann HG, Williams GA, Wittry MD, Chaitman BR, Miller DD. Exercise technetium-99m sestamibi tomography for cardiac risk stratification of patients with stable chest pain. *Circulation* 1994;89:615–22.

- Travin MI, Dessouki A, Cameron T, Heller GV. Use of exercise technetium-99m sestamibi SPECT imaging to detect residual ischemia and for risk stratification after acute myocardial infarction. *Am J Cardiol* 1995;**75**:665–9.
- Underwood SR, Godman B, Salyani S, Ogle JR, Ell PJ. Economics of myocardial perfusion imaging in Europe – the EMPIRE Study. *Eur Heart J* 1999; 20:157–66.
- Vanzetto G, Halimi S, Hammoud T, Fagret D, Benhamou PY, Cordonnier D, *et al.* Prediction of cardiovascular events in clinically selected highrisk NIDDM patients. Prognostic value of exercise stress test and thallium-201 single-photon emission computed tomography. *Diabetes Care* 1999;**22**:19–26.
- 84. Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: study in 1137 patients with 6-year follow-up. *Circulation* 1999;**100**:1521–7.
- Wagner S, Schuster S, Zahn R, Sattler B, Senges J. Postinfarction stress testing and one year outcome of stable patients after myocardial infarction treated with thrombolytics. *Eur J Med Res* 1996; 1:575–81.
- Zanco P, Zampiero A, Favero A, Borsato N, Chierichetti F, Rubello D, *et al.* Myocardial technetium-99m sestamibi single-photon emission tomography as a prognostic tool in coronary artery disease: multivariate analysis in a long-term prospective study. *Eur J Nucl Med* 1995; 22:1023–8.
- Zellweger MJ, Dubois EA, Lai S, Shaw LJ, Amanullah AM, Lewin HC, *et al.* Risk stratification in patients with remote prior myocardial infarction using rest-stress myocardial perfusion SPECT: prognostic value and impact on referral to early catheterization. *J Nucl Cardiol* 2002; 9:23–32.
- Zerahn B, Jensen BV, Nielsen KD, Moller S. Increased prognostic value of combined myocardial perfusion imaging and exercise electrocardiography in patients with coronary artery disease. *J Nucl Cardiol* 2000;7:616–22.
- 89. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, *et al.* Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. *Circulation* 1999;**100**:1035–42.
- 90. Shirai N, Yamagishi H, Yoshiyama A, Teragaki M, Akioka K, Takeuchi K, *et al.* Incremental value of assessment of regional wall motion for detection of multivessel coronary artery disease in exercise

(201)Tl gated myocardial perfusion imaging. *J Nucl Med* 2002;**43**:443–50.

- 91. Gallowitsch HJ, Sykora J, Mikosch P, Kresnik E, Unterweger O, Molnar M, *et al.* Attenuationcorrected thallium-201 single-photon emission tomography using a gadolinium-153 moving line source: clinical value and the impact of attenuation correction on the extent and severity of perfusion abnormalities. *Eur J Nucl Med* 1998; 25:220–8.
- Travin MI, Laraia PJ. The prognostic value of stress radionuclide myocardial perfusion imaging. *Prim Cardiol* 1994;20(5):44–52.
- Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging. A diagnostic tool comes of age. *Circulation* 1991;83:363–81.
- Drummond MF, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. *BMJ* 1996;**313**:275–83.
- Oxman AD, Guyatt GH. Validation of an index of the quality of review articles. *J Clin Epidemiol* 1991; 44:1271–8.
- Oxman AD, Cook DJ, Guyatt GH. Users' guides to the medical literature. VI. How to use an overview. Evidence-Based Medicine Working Group. *JAMA* 1994;**272**:1367–71.
- Mulrow CD, Cook DJ. Systematic reviews: synthesis of best evidence for healthcare. Philadelphia, PA: American College of Physicians; 1998.
- 98. Jefferson T, Demicheli V, Vale L. Quality of systematic reviews of economic evaluations in health care. *JAMA* 2002;**287**(21):2809–12.
- Kuntz KM, Fleischmann KE, Hunink MG, Douglas PS. Cost-effectiveness of diagnostic strategies for patients with chest pain. *Ann Intern Med* 1999; 130:709–18.
- Maddahi J, Gambhir SS. Cost-effective selection of patients for coronary angiography. *J Nucl Cardiol* 1997;4(2 Pt 2):S141–S151.
- 101. Patterson RE, Eng C, Horowitz SF, Gorlin R, Goldstein SR. Bayesian comparison of costeffectiveness of different clinical approaches to diagnose coronary artery disease. J Am Coll Cardiol 1984;4:278–89.
- 102. Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. *Circulation* 1995;**91**:54–65.
- 103. Rumberger JA, Behrenbeck T, Breen JF, Sheedy PF. Coronary calcification by electron beam computed tomography and obstructive coronary artery disease: a model for costs and effectiveness of

diagnosis as compared with conventional cardiac testing methods. *J Am Coll Cardiol* 1999; **33**(2):453–62.

- 104. Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. *Ann Intern Med* 1999; 130:719–28.
- 105. Shaw LJ, Redberg R, Denham C. Current economic evidence using noninvasive cardiac testing. In Weintraub WS, editor. *Cardiovascular health care economics*. Totowa, NJ: Humana Press; 2003. pp. 285–302.
- 106. Christian TF, Miller TD, Bailey KR, Gibbons RJ. Exercise tomographic thallium-201 imaging in patients with severe coronary artery disease and normal electrocardiograms. *Ann Intern Med* 1994; 121:825–32.
- 107. Mattera JA, Arain SA, Sinusas AJ, Finta L, Wackers FJT. Exercise testing with myocardial perfusion imaging in patients with normal baseline electrocardiograms: cost savings with a stepwise diagnostic strategy. J Nucl Cardiol 1998;5:498–506.
- 108. Amanullah AM, Berman DS, Hachamovitch R, Kiat H, Kang X, Friedman JD. Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT. Am J Cardiol 1997;80:132–7.
- 109. Kim C, Kwok YS, Saha S, Redberg RF. Diagnosis of suspected coronary artery disease in women: a cost-effectiveness analysis. *Am Heart J* 1999; 137:1019–27.
- 110. Radensky PW, Hilton TC, Fulmer H, McLaughlin BA, Stowers SA. Potential costeffectiveness of initial myocardial perfusion imaging for assessment of emergency department patients with chest pain. *Am J Cardiol* 1997; **79**:595–9.
- 111. Kosnik J W, Zalenski R J, Grzybowski M, Huang R, Sweeny P J, Welch R D. Impact of technetium-99m sestamibi imaging on the emergency department management and costs in the evaluation of lowrisk chest pain. *Acad Emerg Med* 2001;**8**:315–23.
- 112. Weissman IA, Dickinson CZ, Dworkin HJ, O'Neill WW, Juni JE. Cost-effectiveness of myocardial perfusion imaging with SPECT in the emergency department evaluation of patients with unexplained chest pain. *Radiology* 1996;**199**:353–7.
- 113. Stowers SA, Eisenstein EL, Th Wackers FJ, Berman DS, Blackshear JL, Jones AD Jr, *et al.* An economic analysis of an aggressive diagnostic strategy with single photon emission computed tomography myocardial perfusion imaging and early exercise stress testing in emergency department patients who present with chest pain but nondiagnostic electrocardiograms: results from a randomized trial. *Ann Emerg Med* 2000;**35**:17–25.

- 114. Dittus RS, Roberts SD, Adolph RJ. Costeffectiveness analysis of patient management alternatives after uncomplicated myocardial infarction: a model. *J Am Coll Cardiol* 1987; 10:869–78.
- 115. Barnett PG, Chen S, Boden WE, Chow B, Every NR, Lavori PW, et al. Cost-effectiveness of a conservative ischemia-guided management strategy after non-Q-wave myocardial infarction. *Circulation* 2002;**105**:680–4.
- 116. Laufer E, Wahi S, Lim YL. Cost-effectiveness and accuracy of exercise stress echocardiography in the non-invasive diagnosis of coronary heart disease. *Aust N Z J Med* 2000;**30**:660–7.
- 117. Lee DS, Jang MJ, Cheon GJ, Chung JK, Lee MC. Comparison of the cost-effectiveness of stress myocardial SPECT and stress echocardiography in suspected coronary artery disease considering the prognostic value of false-negative results. *J Nucl Cardiol* 2002;**9**:515–22.
- 118. TreeAge Software. *DATA* 4.0. 2001. URL: http://www.treeage.com/products.htm
- 119. Weinstein M, Fineberg H. *Clinical decision analysis*. London: Saunders; 1980.
- 120. Hartwell D, Colquitt J, Loveman E, Brodin H, Waugh N, Clegg AJ, et al. Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction. *Health Technol Assess*. In press. 2004.
- 121. Sculpher MJ, Smith DH, Clayton T, Henderson RA, Buxton MJ, Pocock SJ, et al. Coronary angioplasty versus medical therapy for angina: health service costs based on the second Randomized Intervention Treatment of Angina (RITA-2) trial. Eur Heart J 2002;23:1291–300.
- 122. British Medical Association and Royal Pharmaceutical Society of Great Britain. *British national formulary*. 2002. URL: http://bnf.vhn.net/home/
- 123. Boland, A, Bagust, A, Hill, R, Walley, T, Dunbar, Y, Haycox, A, et al. Early thrombolysis for the treatment of acute myocardial infarction. Technology assessment review submitted to NICE. 2002. URL: http://www.nice.org.uk/Docref.asp?d=34366
- 124. Department of Health. *NHS reference costs*. 2001. URL: http://www.doh.gov.uk/nhsexec/ refcosts2001.htm
- 125. National Institute of Clinical Excellence. Guidance for manufacturers and sponsors. 2001. URL: http://www.nice.org.uk/pdf/ technicalguidanceformanufacturersandsponsors.pdf
- 126. Government Actuary's Department. Interim life tables 1999–2001. 2003.
 URL: http://www.gad.gov.uk/Life_Tables/ Interim_life_tables.htm

- 127. Lampe FC, Whincup PH, Wannamethee SG, Shaper AG, Walker M, Ebrahim S. The natural history of prevalent ischaemic heart disease in middle-aged men. *Eur Heart J* 2000;**21**:1052–62.
- 128. Volmink JA, Newton JN, Hicks NR, Sleight P, Fowler GH, Neil HA. Coronary event and case fatality rates in an English population: results of the Oxford myocardial infarction incidence study. *Heart* 1998;**80**:40–4.
- 129. Yusuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW, *et al.* Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. *Lancet* 1994;**344**:563–70.
- 130. Harvard Center for Risk Analysis, Harvard Center for Public Health. The CEA Registry: standardizing the methods and practices for costeffectiveness analysis. 2003. URL: http://www.hsph.harvard.edu/cearegistry/
- British Heart Foundation. *Heart attack recovery*. 2001. URL: http://www.bhf.org.uk/questions/ index.asp?secondlevel=370&thirdlevel=493
- 132. Detrano R, Janosi A, Lyons KP, Marcondes G, Abbassi N, Froelicher VF. Factors affecting sensitivity and specificity of a diagnostic test: the exercise thallium scintigram. *Am J Med* 1988; 84:699–710.
- 133. Ritchie JL, Bateman TM, Bonow RO, Crawford MH, Gibbons RJ, Hall RJ, *et al.* Guidelines for

clinical use of cardiac radionuclide imaging. Report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology. *J Am Coll Cardiol* 1995;**25**(2): 521–47.

- 134. Egger M, Juni P, Bartlett C, Holenstein F, Sterne J. How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. *Health Technol Assess* 2003;7(1).
- 135. Evans MA, Christian TF. Is thallium imaging for predicting severe coronary artery disease justified? *Cardiol Rev* 1996;13:19–22.
- 136. Mark DB, Hlatky MA, Harrell FE Jr, Lee KL, Califf RM, Pryor DB. Exercise treadmill score for predicting prognosis in coronary artery disease. *Ann Intern Med* 1987;**106**(6): 793–800.
- 137. Mark DB, Shaw L, Harrell FE Jr, Hlatky MA, Lee KL, Bengtson JR, *et al.* Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. *N Engl J Med* 1991;**325**:849–53.
- TIMI Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med 1985;312:932–6.

Appendix I

Literature search strategies

Sources searched for systematic reviews and other evidencebased reports

- 1. The Cochrane Library (CDSR), Issue 3, 2002
- 2. Database of Abstracts of Reviews of Effects(DARE). NHS Centre for Reviews and Dissemination, October 2002
- 3. HTA Database, NHS Centre for Reviews and Dissemination, October 2002
- Medion database of diagnostic met-analyses and reviews. University of Maastricht, October 2000. URL: http://www.hag.unimaas.nl/ Internationalisering/onderzoek/Cochrane/ database%20Frank%20Buntinx/ welcome_on_the_webpage_of_medion.htm
- 5. National Guideline Clearinghouse. URL: http://www.guideline.gov/index.asp
- Scottish Intercollegiate Guidelines Network. URL: http://www.show.scot.nhs.uk/sign/ index.html
- 7. Trip database. URL: http://www.tripdatabase.com/
- 8. Agency for Healthcare Research and Quality. URL: http://www.ahrq.gov/
- 9. American College of Cardiology. URL: http://www.acc.org/index.htm
- 10. American Society of Nuclear Cardiology. URL: http://www.asnc.org/
- 11. British Cardiac Society. URL: http://www.bcs.com/resources/links.html
- 12. British Nuclear Cardiology Society. URL: http://www.bncs.org.uk/
- Global Cardiology Network. URL: http://www.globalcardiology.org/ index.html
- 14. European Society of Cardiology. URL: http://www.escardio.org/
- 15. Royal College of Physicians. URL: http://www.rcplondon.ac.uk/

Ovid multifile search: MEDLINE (1966–October 2002), EMBASE [1980–2002 (to week 44)], PREMEDLINE (5 November 2002) (using textword terms only)

1. myocardial ischemia/

- 2. coronary disease/
- 3. exp chest pain/
- 4. myocardial infarction/
- 5. exp heart infarction/
- 6. coronary arteriosclerosis/
- 7. exp coronary stenosis/
- 8. coronary thrombosis/
- 9. coronary artery constriction/
- 10. exp angina pectoris/
- 11. heart muscle perfusion/
- 12. (myocardi\$ adj3 perfusion).tw.
- 13. coronary heart disease?.tw.
- 14. (isch?emi\$ adj3 (heart or coronary or myocardial)).tw.
- 15. angina.tw.
- 16. chest pain?.tw.
- 17. ((myocardial or coronary) adj3 (infarct\$ or thrombosis or stenosis or restenosis or arteriosclerosis)).tw.
- 18. or/1-17
- 19. Tomography, Emission-Computed, Single-Photon/
- 20. (spect or spet).tw.
- 21. single photon emission computed tomography.tw.
- 22. scintigraph\$.tw.
- 23. or/19-22
- 24. 18 and 23
- 25. 23 and (heart or coronary or myocardi\$).tw.
- 26. ((exercise or stress) adj3 test?).tw.
- 27. 18 and imag\$.tw.
- 28. thallium.rw.
- 29. technetium tc 99m.rw.
- 30. 29 and (sestamibi or tetrofosmin).tw.
- 31. (26 or 27) and (28 or 30)
- 32. methoxy isobutyl isonitrile technetium tc 99m/
- 33. tetrofosmin tc 99m/
- 34. thallium 201/
- 35. thallium chloride tl 201/
- 36. (26 or 27) and (32 or 33 or 34 or 35)
- 37. 24 or 25 or 31 or 36
- 38. electrocardiography/
- 39. electrocardiograph\$.tw.
- 40. (ecg or ekg).tw.
- 41. or/38-40
- 42. exercise test/
- 43. (exercise or stress or stressor or treadmill or bicycl\$ or cycling).tw.
- 44. dipyridamole/

- 45. adenosine/
- 46. adenosine triphosphate/
- 47. dobutamine/
- 48. or/42-47
- 49. 41 and 48
- 50. exp coronary angiography/
- 51. ((coronary or myocardi\$) adj3 (angiograph\$ or angiogram\$ or arteriograph\$)).tw.
- 52. or/50-51
- 53. "sensitivity and specificity"/
- 54. roc curve/
- 55. predictive value of tests/
- 56. false positive reactions/
- 57. false negative reactions/
- 58. diagnostic accuracy/
- 59. diagnostic error/
- 60. diagnostic value/
- 61. differential diagnosis/
- 62. early diagnosis/
- 63. prediction/
- 64. prognosis/
- 65. risk assessment/
- 66. recurrence risk/
- 67. (ri or di or du).fs.
- 68. sensitivity.tw.
- 69. specificity.tw.
- 70. roc.tw.
- 71. (predictive adj4 value\$).tw.
- 72. (prognosis or prognostic).tw.
- 73. (risk adj3 stratif\$).tw.
- 74. (false adj3 (positive\$ or negative\$)).tw.
- 75. likelihood ratio\$.tw.
- 76. (logistic adj2 (regression or model\$)).tw.
- 77. (regression adj2 analys\$).tw.
- 78. (distinguish\$ or differentiat\$).tw.
- (identif\$ or detect\$ or diagnos\$ or accura\$).tw.
- 80. reproducibility of results/
- 81. or/53-80
- 82. exp myocardial revascularization/
- 83. exp coronary artery surgery/
- 84. atherectomy, coronary/
- 85. angioplasty, balloon/
- 86. revasculari?ation.tw.
- 87. angioplasty.tw.
- 88. coronary artery bypass.tw.
- 89. clinical pathways/
- 90. clinical protocols/
- 91. "referral and consultation"/
- 92. ((clinical or critical) adj3 (path? or pathway?)).tw.
- 93. protocol?.tw.
- 94. (referral or refer or referred).tw.
- 95. ((management or diagnos\$ or investigat\$) adj3 plan).tw.
- 96. myocardial reperfusion/

- 97. reperfusion.tw.
- 98. exp morbidity/
- 99. exp mortality/
- 100. death, sudden, cardiac/
- 102. major adverse cardiac event?.tw.
- 103. "Outcome Assessment (Health Care)"/
- 104. myocardial infarction/
- 105. exp heart infarction/
- 106. exp angina, unstable/
- 107. (evaluat\$ or assess\$ or increment\$ or compara\$).tw.
- 108. or/82-107
- 109. 37 and 81
- 110. 49 and 81
- 111. 52 and 81
- 112. 109 and (110 or 111)
- 113. 37 and (49 or 52)
- 114. 108 and 113
- 115. 112 or 114
- 116. (animal/ or nonhuman/) not human/
- 117. 115 not 116
- 118. (editorial or letter).pt.
- 119. 117 not 118
- 120. limit 119 to yr=1980-2002

BIOSIS (Edina) (1985–16 December 2002)

((al:spect or al: spet or al:scintigraph*

or al:thallium or al:technetium or al:tetrofosmin or

tal:computed tomography)

AND

(al:ecg or al:electrocardiogra* or al:angiogra* or

al:stress test or al:exercise test)

AND (a):myocardial or altheart or alteoropar

(al:myocardial or al:heart or al:coronary or

al:chest pain or al:angina

or

al:ischemi* or al:ischaemi*))

AND

(al:diagnos* or al:detect* or

al:sensitivity or al:specificity or al:roc

or

al:prognosis or al: prognositic or al:predict*

or al:protocol* or al:pathway*

or

al:false positive or al:false negative or

al:incremental

al:risk stratif* or al:risk assess*)

Science Citation Index (Web of Science) and WOS Proceedings (1981–8 January 2003)

(spect or spet or scintigraph* or thallium or technetium or tetrofosmin or computed tomography) AND (ecg or electrocardiogra* or angiogra* or stress test or exercise test) AND (myocardial or heart or coronary or chest pain or angina or ischemi* or ischaemi*)) AND (diagnos* or detect* or sensitivity or specificity or roc or prognosis or prognostic or predict* or protocol* or pathway* or false positive or false negative or incremental risk stratif* or risk assess*)

HMIC (1979-2002)

(Spect or spet or scintigraph* or thallium or technetium or terofosmin or computed tomography and ecg or ekg or electrocardiogra* or angiogra* or stress test or exercise test) or (ischemi* or ischaemi* or chest pain or angina or myocardial or heart or coronary and diagnostic imaging in DE)

HTA and DARE (4 October 2002)

ECG or electrocardiograph* or angiogr* Or SPECT or scintigraphy or perfusion imag*

Or

Diagnos* and (coronary or myocardial or ischem* or ischaem*)

Medion (October 2002)

Spect; spet; scintigraph; coronary; perfusion in ti ,ab

Cochrane Library (Issue 3, 2002)

- 1. Tomography, Emission-Computed, Single-Photon (MESH)
- 2. spect or spet or scintigraph\$. or computed tomography
- 3. #1 or #2
- 4. Electrocardiography (MESH)
- 5. ECG or EKG or electrocardiograph*
- 6. Coronary Angiography (MESH)
- 7. Coronary near angio*
- 8. Coronary near arteriograph*
- 9. #4 or #5 or #6 or #7 or #8
- 10. #3 and #9

MEDLINE (1966–October 2002), EMBASE [1980–October 2002 (to week 47)], PRE-MEDLINE (5 November 2002)

- 1. myocardial ischemia/
- 2. coronary disease/
- 3. exp chest pain/
- 4. myocardial infarction/
- 5. exp heart infarction/
- 6. coronary arteriosclerosis/
- 7. exp coronary stenosis/
- 8. coronary thrombosis/
- 9. coronary artery constriction/
- 10. exp angina pectoris/
- 11. heart muscle perfusion/
- 12. (myocardi\$ adj3 perfusion).tw.
- 13. coronary heart disease?.tw.
- 14. (isch?emi\$ adj3 (heart or coronary or myocardial)).tw.
- 15. angina.tw.
- 16. chest pain?.tw.
- 17. ((myocardial or coronary) adj3 (infarct\$ or thrombosis or stenosis or restenosis or arteriosclerosis)).tw.
- 18. or/1-17
- 19. Tomography, Emission-Computed, Single-Photon/
- 20. (spect or spet).tw.
- 21. single photon emission computed tomography.tw.
- 22. scintigraph\$.tw.
- 23. or/19-22
- 24. 18 and 23
- 25. 23 and (heart or coronary or myocardi\$).tw.
- 26. ((exercise or stress) adj3 test?).tw.
- 27. 18 and imag\$.tw.
- 28. thallium.rw.
- 29. technetium tc 99m.rw.
- 30. 29 and (sestamibi or tetrofosmin).tw.

- 31. (26 or 27) and (28 or 30)
- 32. methoxy isobutyl isonitrile technetium tc 99m/
- 33. tetrofosmin tc 99m/
- 34. thallium 201/
- 35. thallium chloride tl201/
- 36. (26 or 27) and (32 or 33 or 34 or 35)
- 37. 24 or 25 or 31 or 36
- 38. *myocardial ischemia/di, du, ri use mesz
- 39. *myocardial ischemia/di
- 40. *coronary disease/di, du, ri use mesz
- 41. *coronary disease/di
- 42. exp *chest pain/di, du, ri use mesz
- 43. exp *chest pain/di
- 44. *myocardial infarction/di, du, ri use mesz
- 45. exp *heart infarction/di use emez
- 46. *coronary arteriosclerosis/di, du, ri use mesz
- 47. *coronary arteriosclerosis/di
- 48. exp *coronary stenosis/di, du, ri use mesz
- 49. exp *coronary stenosis/di
- 50. *coronary thrombosis/di, du, ri use mesz
- 51. *coronary thrombosis/di
- 52. *coronary artery constriction/di use emez
- 53. exp *angina pectoris/di, du, ri use mesz
- 54. exp *angina pectoris/di
- 55. *heart muscle perfusion/
- 56. or/38-55
- 57. economics/
- 58. exp "costs and cost analysis"/ use mesz
- 59. exp economics, hospital/ use mesz
- 60. exp models,economic/ use mesz
- 61. ec.fs. use mesz

- 62. exp economic evaluation/
- 63. exp hospital cost/
- 64. exp quality of life/
- 65. value of life/
- 66. cost of illness/
- 67. health status/
- 68. health status indicators/ use mesz
- 69. (qol or qaly?).tw.
- 70. (quality adj2 life).tw.
- 71. (health adj3 (indicator? or status or utilit\$)).tw.
- 72. (cost? adj3 (analys?s or evaluat\$ or effectiveness)).tw.
- 73. economic adj3 (analys?s or evaluat\$ or effectiveness)).tw.
- 74. or/57-73
- 75. 37 and 74
- 76. 56 and 74
- 77. 75 or 76
- 78. limit 77 to yr=1990-2002

NHS-EED (4 October 2002)

ECG or electrocardiograph*

Or

SPECT or scintigraphy or perfusion imag* Or

Diagnos* and (coronary or myocardial or ischem* or ischaem

Appendix 2

Data extraction form

Administration details		
Paper number:	Extractor initials:	Date information extracted:
Date information extracted:		
Study identifier: (Surname of first author + year of		
(Surname of first author + year of	f publication)	
Number of trials included in this	paper:	
(if more than one, complete separ	rate extraction forms	
for each, and add letters A, B, C,	etc. to the study identifier)	
Paper numbers of other trials with	n which this may link:	·
Type of study		
Diagnostic		
Prognostic:		
General		
Pre-operative risk assessn	pent	
Post-revascularisation ass		
r ost revusedarisation ass		
<u>Aim of study:</u>		
Study Design		
RCT		
Controlled Clinical Trial		
Prospective Comparative Observ	ational Study	
Retrospective Comparative Obse	ervational Study	
Other		_

Characteristics of the participants							
Inclusion criteria	Inclusion criteria:						
Exclusion criteri	Exclusion criteria:						
Did the participa	ants ł	nave suspected		or confirmed		CAD?	
Comparators/	1	SPECT		Stress ECG		CA	All
pathways (please tick)	2	Stress ECG/ SPECT		Stress ECG [
	3	SPECT/CA		CA [
	4	Stress ECG/ SPECT/CA		Stress ECG/CA			
(Other)	5			[
Number of patients enrolled in trial							
Number of patie receiving intervention	ents						
Number of patients lost to follow-up							
Age (mean, range)							
Gender		M:		M:		M:	M:
		F:		F:		F:	F:
Ethnicity							
Number of patients with previous MI							
Number of patients with previous PTCA							
Number of patients with previous CABG							

Are all these characteristics approximately balanced amongst the groups receiving different tests?

If the trial does not consist wholly of patients with previous MI, are those patients with previous MI identifiable separately from the rest of the participants throughout the trial?

Source of participants:

Method of recruitment: (Consecutive etc.)

Dates for recruitment:

Characteristics of the intervention

Location and country of trial centre(s):

Duration of trial:

Length of follow-up:

Make and model of SPECT equipment:

Sequence and time between tests:

Radionuclide used:

Thallium

Technetium sestamibi

Technetium tetrofosmin

Dual isotope (give details)

SPECT stress induced by:	
Exercise:	
Treadmill	
Bicycle	
Pharmacalogically:	
Adenosine	
Dipyridamole	
Dobutamine	
Combination of exercise/pharmacological means (give details)	
ECG stress induced by:	
Treadmill	
Bicycle	
Pharmacalogically:	
Adenosine	
Dipyridamole	
Dobutamine	
Combination of exercise/pharmacological means (give details)	
Number of tests where patients reached at least 85% of their predicted	maximal heart rate:
Stress ECG:	
SPECT:	
For diagnostic studies, was the reference test coronary angiography? (If not, give details of the reference test used)	
What was the definition of a positive test result?	
Stress ECG:	
SPECT:	
What was the authors' definition of significant CAD?	
(e.g. 50% stenosis, 70% stenosis etc.)	

Concomitant interventions (interventions given to all participants in addition to SPECT/stress ECG/CA):				
Outcomes (Diagnostic			1	
Number of patients receiving test	SPECT	Stress ECG	CA	
True positives			Notes	
False positives				
True negatives				
False negatives				
Sensitivity				
Specificity				
Positive predictive value				
Negative predictive value				
Positive likelihood ratio				
Negative likelihood ratio				
Diagnostic accuracy				
Diagnostic odds ratio				

Outcomes (Prognosti	c studies.)			
Comparators/ 1 pathways (please tick)	SPECT	Stress ECG	CA CA	All
(Other) 2				
Mortality				
Cardiac mortality				
Non fatal MI				
Revasc – PTCA				
Revasc – CABG				
Occurrence of unstable angina				
Other major cardiac events				
Survival free of cardiac death				
Preservation of left ventricular function				
Post-operative complications				
Number of CAs performed				
Hospital admissions				
Quality of Life (e.g. SF 36)				

Type of multivariate regression used:

Reference characteristic/factor:

Characteristic/factor	Odds ratio	Hazard ratio	Standard error	P value

Other comments		

Appendix 3

QUADAS checklist for diagnostic tests

Paper number: _____ Extractor initials: _____ Date study assessed: ___

Study identifier: ________(Surname of first author + year of publication)

Item	l	Yes	No	Unclear
1.	Was the spectrum of patients representative of the patients who will receive the test in practice?			
2.	Were selection criteria clearly described?			
3.	Is the reference standard likely to correctly classify the target condition?			
4.	Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?			
5.	Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?			
6.	Did patients receive the same reference standard regardless of the index test result?			
7.	Was the reference standard independent of the index test (i.e. the index test did not form part of the reference standard)?			
8a.	Was the execution of the index test described in sufficient detail to permit replication of the test?			
8b.	Was the execution of the reference standard described in sufficient detail to permit its replication?			
9a.	Were the index test results interpreted without knowledge of the results of the reference standard?			
9b.	Were the reference standard results interpreted without knowledge of the results of the index test?			
10.	Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?			
11.	Were uninterpretable/intermediate test results reported?			
12.	Were withdrawals from the study explained?			

Appendix 4

Downs and Black quality assessment form

SPECT review

Quality assessment form - prognostic studies

Paper number: _____

Study identifier:

(surname of first author + year of publication)

Assessor initials:

Date form completed: ____

Reporting

1. Is the hypothesis/aim/objective of the study clearly described?

Yes	
No	

2. Are the main outcomes to be measured clearly described in the Introduction or Methods section?If the main outcomes are first mentioned in the Results section, the question should be answered no.

Yes	
No	

3. Are the characteristics of the patients included in the study clearly described?

In cohort studies and trials, inclusion and/or exclusion criteria should be given. In case-control studies, a case-definition and the source for controls should be given.

Yes	
No	

4. Are the interventions of interest clearly described? Treatments and placebo (where relevant) that are to be compared should be clearly described.

Yes	
No	

5. Are the distributions of principal confounders in each group of subjects to be compared clearly described?A list of principal confounders is provided.

Yes	
Partially	
No	

6. Are the main findings of the study clearly described? Simple outcome data (including denominators and numerators) should be reported for all major findings so that the reader can check the major analyses and conclusions. (This question does not cover statistical tests which are considered below.)

Yes	
No	

7. Does the study provide estimates of the random variability in the data for the main outcomes?
In non-normally distributed data the inter-quartile range of results should be reported. In normally distributed data the standard error, standard deviation or confidence intervals should be reported. If the distribution of the data is not described, it must be assumed that the estimates used were appropriate and the question should be answered yes.

Yes	
No	

8. Have all important adverse events that may be a consequence of the intervention been reported?
This should be answered yes if the study demonstrates that there was a comprehensive attempt to measure adverse events. (A list of possible adverse events is provided.)

Yes	
No	

9. Have the characteristics of patients lost to follow-up been described?

This should be answered yes where there were no losses to follow-up or where losses to follow-up were so small that findings would be unaffected by their inclusion. This should be answered no where a study does not report the number of patients lost to follow-up.

Yes	
No	

10. Have actual probability values been reported (e.g. 0.035 rather than <0.05) for the main outcomes except where the probability value is less than 0.001?

Yes	
No	

External validity

All the following criteria attempt to address the representativeness of the findings of the study and whether they may be generalised to the population from which the study subjects were derived.

11. Were the subjects asked to participate in the study representative of the entire population from which they were recruited?

The study must identify the source population for patients and describe how the patients were selected. Patients would be representative if they comprised the entire source population, an unselected sample of consecutive patients, or a random sample. Random sampling is only feasible where a list of all members of the relevant population exists. Where a study does not report the proportion of the source population from which the patients are derived, the question should be answered as unable to determine.

Yes	
No	
Unable to determine	

106

12. Were those subjects who were prepared to participate representative of the entire population from which they were recruited?

The proportion of those asked who agreed should be stated. Validation that the sample was representative would include demonstrating that the distribution of the main confounding factors was the same in the study sample and the source population.

Yes	
No	
Unable to determine	

13. Were the staff, places, and facilities where the patients were treated, representative of the treatment the majority of patients received?

For the question to be answered yes the study should demonstrate that the intervention was representative of that in use in the source population. The question should be answered no if, for example, the intervention was undertaken in a specialist centre unrepresentative of the hospitals most of the source population would attend.

Yes	
No	
Unable to determine	

Internal validity - bias

14. Was an attempt made to blind study subjects to the intervention they have received?

For studies where the patients would have no way of knowing which intervention they received, this should be answered yes.

Yes	
No	
Unable to determine	

15. Was an attempt made to blind those measuring the main outcomes of the intervention?

Yes	
No	
Unable to determine	

16. If any of the results of the study were based on 'data dredging', was this made clear?

Any analyses that had not been planned at the outset of the study should be clearly indicated. If no retrospective unplanned subgroup analyses were reported, then answer yes.

Yes	
No	
Unable to determine	

17. In trials and cohort studies, do the analyses adjust for different lengths of follow-up of patients, or in case-control studies, is the time period between the intervention and outcome the same for cases and controls?

Where follow-up was the same for all study patients the answer should be yes. If different lengths of follow-up were adjusted for by, for example, survival analysis the answer should be yes. Studies where differences in follow-up are ignored should be answered no.

Yes	
No	
Unable to determine	

18. Were the statistical tests used to assess the main outcomes appropriate?

The statistical tests used must be appropriate to the data. For example non-parametric methods should be used for small sample sizes. Where little statistical analysis has been undertaken but where there is no evidence of bias, the question should be answered yes. If the distribution of the data (normal or not) is not described it must be assumed that the estimates used were appropriate and the question should be answered yes.

Yes	
No	
Unable to determine	

19. Was compliance with the intervention/s reliable? Where there was non-compliance with the allocated treatment or where there was contamination of one group, the question should be answered no. For studies where the effect of any misclassification was likely to bias any association to the null, the question should be answered yes.

Yes	
No	
Unable to determine	

20. Were the main outcome measures used accurate (valid and reliable)?

For studies where the outcome measures are clearly described, the question should be answered yes. For studies which refer to other work or that demonstrate the outcome measures are accurate, the question should be answered yes.

Yes	
No	
Unable to determine	

Internal validity - confounding (selection bias)

21. Were the patients in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited from the same population?

For example, patients for all comparison groups should be selected from the same hospital. The question should be answered unable to determine for cohort and case–control studies where there is no information concerning the source of patients included in the study.

Yes	
No	
Unable to determine	

22. Were study subjects in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited over the same period of time?

For a study which does not specify the time period over which patients were recruited, the question should be answered as unable to determine.

Yes	
No	
Unable to determine	

23. Were study subjects randomised to intervention groups?

Studies which state that subjects were randomised should be answered yes except where method of randomisation would not ensure random allocation. For example, alternate allocation would score no because it is predictable.

Yes	
No	
Unable to determine	

24. Was the randomised intervention assignment concealed from both patients and health care staff until recruitment was complete and irrevocable?

All non-randomised studies should be answered no. If assignment was concealed from patients but not from staff, it should be answered no.

Yes	
No	
Unable to determine	

25. Was there adequate adjustment for confounding in the analyses from which the main findings were drawn?

This question should be answered no for trials if: the main conclusions of the study were based on analyses of treatment rather than intention to treat; the distribution of known confounders in the different treatment groups was not described; or the distribution of known confounders differed between the treatment groups but was not taken into account in the analyses. In non-randomised studies if the effect of the main confounders was not investigated or confounding was demonstrated but no adjustment was made in the final analyses the question should be answered as no.

Yes	
No	
Unable to determine	

26. Were losses of patients to follow-up taken into account?

If the numbers of patients lost to follow-up are not reported, the question should be answered as unable to determine. If the proportion lost to follow-up was too small to determine main findings, the question should be answered yes.

Yes	
No	
Unable to determine	

108

Power

27. Did the study have sufficient power to detect a clinically important effect where the probability value for a difference being due to chance is less than 5%?

Sample sizes have been calculated to detect a difference of x% and y%.

	Size of <i>smallest</i> intervention group	
Α	<n1< td=""><td>0</td></n1<>	0
В	n ₁ -n ₂	1
С	n ₃ -n ₄	2
D	n ₅ -n ₆	3
E	n ₇ -n ₈	4
F	n ₈ +	5

Appendix 5

List of principal confounders and possible adverse events

Question 5 List of principal confounders

- age
- gender
- previous MI
- previous PTCA
- previous CABG
- heart failure (only really a problem with thallium because of high lung uptake)
- weight.

Question 8 List of possible adverse events

- Coronary angiography: mortality; non-fatal MI; cerebrovascular accident; infection (rare); allergic dye reaction (rare); local vascular injury at site of catheterisation
- Stress test:
- Dipyridamole: mortality; non-fatal MI; ventricular tachycardia; pulmonary oedema; chest pain; headache; dizziness; ECG changes
- Adenosine: complete heart block; second-degree heart block; bronchospasm; refractory angina; flushing; headache
- Dobutamine: mortality; non-fatal MI; vent dysrhythmias; ventricular tachycardia; hypotension; headache; nausea; anxiety; chest pain; severe ischaemia.

Appendix 6

Equations used for deriving estimated numbers of true positives, false positives, false negatives and true negatives in diagnostic studies reporting sensitivity, specificity and accuracy values

Sensitivity, specificity, diagnostic	Notation		
accuracy and total number known	TP = true positives		
$TN = [N(acc - sens) \times spec]/(spec - sens)$	FP = false positives		
$TP = acc \times N - TN$	FN = false negatives		
FP = (TN/spec) - TN	TN = true negatives		
FN = (TP/sens) - TP	sens = sensitivity		
	spec = specificity		
Sensitivity, specificity, positive predictive value, negative predictive value and total number known	acc = diagnostic accuracy		
	PPV = positive predictive value		
	NPV = negative predictive value		
$TP = N/\{(1/PPV) + (1/sens) - 1 + [NPV/sens \times (1-NPV)] - [NPV/(1 - NPV)]\}$	N = total number (= $TP + FP + FN + TN$)		

- FP = (TP/PPV) TP
- FN = (TP/sens) TP
- $TN = \{[(TP/sens) TP] \times NPV\}/(1 NPV)$

Appendix 7

Characteristics of included studies of effectiveness

Diagnostic studies

Study design: Prospective observational comparisonPTCA. All patients were symptomatic before DTCAEquipment: APEX SPX-4 HR (Elscint, Haifa, Israel) gamma camera CA methods: Judkins techniqueMethod of recruitment: Conscutive Dates: Jan. 1995–Dec. 1996Exclusion criteria: Patients unable to undergo ExCG (s, or those with rest ECG abnormalities receiving pharmacological stress Enrolled: 179Equipment: APEX SPX-4 HR (Elscint, Haifa, Israel) gamma camera CA methods: Judkins technique Interval between tests: ECG/SPECT 1-7 days before CA Definition of positive SPECT test: Qualitative analysis using a 0–4 scale (0 4 = severe reduction in TI-201 uptake). Exercise perfusion defect: segment ≥2. Ischaemia: minimal improvement of 1 point on a visual scale. Presence or ischaemic redistribution in the territory of individual vessels, guided by a pre angiogramMethod of recruitment: Cohservational comparisonInclusion criteria: Women who underwent SPECT within 3 months of CASPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpreta quantitative. Equipment: Large field of view gamma camera CA methods: Performed in multiple projections using standard techniques Interval between tests: ECG/SPECT test: Perfusion pattern in each vascular terri a normal or with fixed or reversible abnormalities. Multivessel abnormality. Everise for privel within 3 months of CAChae, 1993 23Inclusion criteria: History of previous CABG, recent MI, unstable angina pectoris, valvular heart disease and congenital heart disease ConsecutiveSPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpreta quantitative. Equipment: Large field of view gamma camera CA methods: Performed in multiple projections using standard techniques Interval between tests: ECG/SPEC	Study design: Prospective observational comparison Observational comparison Dates: Jan. 1995–Dec. 1996 ExCGS, SPECT and CÅ 6 ± 2 months after PTCA. All patients were symptomatic before PTCA Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Qualit ACA methods: Judkins technique Interval between tests: ECG/SPECT I-7 days before CA Dates: Jan. 1995–Dec. 1996 Exclusion criteria: Patients unable to undergo ExECG, or those with rest ECG abnormalities receiving pharmacological stress Enrolled: 179 And SPECT in asymptomatic patients and the discordance between follow-up functional tests and CA Age: 61 ± 10 years Gender: M 154, W 25 Definition of positive stress ECG test: ≥ 0.1 mV ST-segment depression with or wit chest pain. Chae, 1993 ²³ Inclusion criteria: Women who underwent SPECT within 3 months of CA consecutive SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Value, angiogram Study design: Retrospective observational comparison Method of recruitment: Consecutive Inclusion criteria: Women who underwent SPECT within 3 months of CA recent MI, unstable angina pectoris, valvular heart disease and congenital heart disease Dates: N/S SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visu quantitative: Equipment: Large field of view gamma camera Consecutive Consecutive Enrolled: 243 Age: Group 165 ± 11, Group 2.61 ± 10 years dender: M 0, W 243 Amethods: Performed in multiple projections using standard techniques interval between tests: ECG/SPECT performed within 3 months of CA Definition of positive stress ECG test: ≥	Study and methods	Participants	Test characteristics and outcome measures
Chae, 199323Inclusion criteria: Women who underwent SPECT within 3 months of CASPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpreta quantitative. Equipment: Large field of view gamma camera Observational comparisonStudy design: Retrospective observational comparisonExclusion criteria: History of previous CABG, recent MI, unstable angina pectoris, valvular heart disease and congenital heart disease Enrolled: 243SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpreta quantitative. Equipment: Large field of view gamma camera CA methods: Performed in multiple projections using standard techniques Interval between tests: ECG/SPECT performed within 3 months of CA Definition of positive SPECT test: Perfusion pattern in each vascular terri as normal or with fixed or reversible abnormalities. Multivessel abnormality: territory involved. Quantitative analysis: perfusion abnormality – pixels with or territory involved. Quantitative analysis: perfusion abnormality – pixels with or territory involved. Quantitative analysis: perfusion abnormality – pixels with or	Chae, 1993 ²³ Inclusion criteria: Women who underwent SPECT within 3 months of CA SPECT: Study design: Retrospective observational comparison Exclusion criteria: History of previous CABG, recent MI, unstable angina pectoris, valvular heart disease and congenital heart disease SPECT: Method of recruitment: disease and congenital heart disease CA methods: Performed in multiple projections using standard techniques Inclusion criteria: History of previous CABG, observational comparison recent MI, unstable angina pectoris, valvular heart CA methods: Performed in multiple projections using standard techniques Method of recruitment: disease and congenital heart disease Interval between tests: ECG/SPECT performed within 3 months of CA Dates: N/S Analysed: 243 Age: Group 1 65 ± 11, Group 2 61 ± 10 years Gender: M 0, W 243 high-risk women with LMD or 3VD History of: MI 103; PTCA N/S; CABG excluded myocardium Definition of positive stress ECG test: ≥ 1 ms T segment depression of the flat or downsloping variety in ≥ 3 consecutive beats at 8 ms after the J point or ≥ 1.5 mm upsl	Beygui, 2000 ²² Study design : Prospective observational comparison Method of recruitment : Consecutive Dates : Jan. 1995–Dec. 1996 Country : France Focus : Diagnostic values of ExECG and SPECT in asymptomatic patients and the discordance between follow-up functional tests	Inclusion criteria: Asymptomatic patients with ExECG, SPECT and CA 6 \pm 2 months after PTCA. All patients were symptomatic before PTCA Exclusion criteria: Patients unable to undergo ExECG, or those with rest ECG abnormalities receiving pharmacological stress Enrolled: 179 Analysed: 179 Age: 61 \pm 10 years Gender: M 154, W 25	 SPECT: Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Qualitative Equipment: APEX SPX-4 HR (Elscint, Haifa, Israel) gamma camera CA methods: Judkins technique Interval between tests: ECG/SPECT 1–7 days before CA Definition of positive SPECT test: Qualitative analysis using a 0–4 scale (0 = normal, 4 = severe reduction in TI-201 uptake). Exercise perfusion defect: segment with a score oc ≥ 2. Ischaemia: minimal improvement of 1 point on a visual scale. Presence of restenosis: ischaemic redistribution in the territory of individual vessels, guided by a pre-PTCA angiogram Definition of positive stress ECG test: ≥0.1 mV ST-segment depression with or without chest pain. Angiographic definition of significant CAD: Restenosis: >50% diameter stenosis
SPECT within 3 months of CATracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretaStudy design: Retrospective observational comparisonExclusion criteria: History of previous CABG, recent MI, unstable angina pectoris, valvular heart disease and congenital heart diseaseTracer: TI-201. Stress induced by: Exercise (treadmill). Image interpreta quantitative. Equipment: Large field of view gamma cameraMethod of recruitment: ConsecutiveEnrolled: 243CA methods: Performed in multiple projections using standard techniques Interval between tests: ECG/SPECT performed within 3 months of CA Definition of positive SPECT test: Perfusion pattern in each vascular terri as normal or with fixed or reversible abnormalities. Multivessel abnormality: territory involved. Quantitative analysis: perfusion abnormality – pixels with or	SPECT within 3 months of CATracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visu quantitative. Equipment: Large field of view gamma cameraStudy design: Retrospective observational comparisonExclusion criteria: History of previous CABG, recent MI, unstable angina pectoris, valvular heart disease and congenital heart diseaseTracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visu quantitative. Equipment: Large field of view gamma cameraMethod of recruitment: ConsecutiveEnrolled: 243Analysed: 243Dates: N/SAnalysed: 243Age: Group 1 65 ± 11, Group 2 61 ± 10 years Gender: M 0, W 243Age: Group 1 65 ± 11, Group 2 61 ± 10 years History of: MI 103; PTCA N/S; CABG excludedTracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visu quantitative. Equipment: Large field of view gamma cameraMethod of recruitment: Country: USAAge: Group 1 65 ± 11, Group 2 61 ± 10 years Gender: M 0, W 243Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visu quantitative. Equipment: Large field of view gamma camerahigh-risk women with LMD or 3VDAge: Group 1 65 ± 11, Group 2 61 ± 10 years Gender: M 0, W 243Age: Group 1 65 ± 11, Group 2 61 ± 10 years Gender: M 0, W 243high-risk women with LMD or 3VDHistory of: MI 103; PTCA N/S; CABG excludedmotor and normal value obtained from low-risk women; extent – per cent of tot myocardiumDefinition of positive stress ECG test: ≥ 1 mm ST segment depression of the flat or downsloping variety in ≥ 3 consecutive beats at 8 ms after the J point or ≥ 1.5 mm upsil	$C_{hac} + 1993^{23}$	Inclusion critoria: Woman who underwant	value, accuracy for restenosis
high-risk women with LMD or 3VD History of: MI 103; PTCA N/S; CABG excluded myocardium Definition of positive stress ECG test: ≥ 1 mm ST segment depression of downsloping variety in ≥ 3 consecutive beats at 8 ms after the J point or ≥ 1.	depression in the leads showing changes at baseline Angiographic definition of significant CAD: ≥50% diameter stenosis	Study design: Retrospective observational comparison Method of recruitment: Consecutive Dates: N/S Country: USA Focus: Ability of SPECT to identify	SPECT within 3 months of CA Exclusion criteria: History of previous CABG, recent MI, unstable angina pectoris, valvular heart disease and congenital heart disease Enrolled: 243 Analysed: 243 Age: Group 1 65 \pm 11, Group 2 61 \pm 10 years Gender: M 0, W 243	Tracer : TI-201. Stress induced by : Exercise (treadmill). Image interpretation : Visual, quantitative. Equipment : Large field of view gamma camera CA methods : Performed in multiple projections using standard techniques Interval between tests : ECG/SPECT performed within 3 months of CA Definition of positive SPECT test : Perfusion pattern in each vascular territory assessed as normal or with fixed or reversible abnormalities. Multivessel abnormality: > I vascular territory involved. Quantitative analysis: perfusion abnormality – pixels with counts 2.5 SD below the mean normal value obtained from low-risk women; extent – per cent of total myocardium Definition of positive stress ECG test : ≥ I mm ST segment depression of the flat or downsloping variety in ≥ 3 consecutive beats at 8 ms after the J point or ≥ 1.5 mm upslopin ST-segment depression. Patients with baseline ST abnormalities, additional 2-mm ST depression in the leads showing changes at baseline Angiographic definition of significant CAD : ≥ 50% diameter stenosis

Study and methods	Participants	Test characteristics and outcome measures
Daou, 2002 ²⁴	Inclusion criteria: Patients referred for SPECT who had CA within 3 months of SPECT	SPECT: Tracer: TI-201. Stress induced by: Exercise. Image interpretation: Visual. Equipment:
Study design: Prospective	Exclusion criteria: Valvular heart disease.	Elscint I-head gamma camera (Hackensack, NJ, USA)
observational comparison	cardiomyopathy, complete LBBB, atrial fibrillation,	CA methods: N/S
Method of recruitment:	pacemaker, severe hypertension, advanced chronic	
Consecutive	bronchopulmonary disease, prior CABG or PTCA,	Definition of positive SPECT test : Abnormalities in ≥ 2 vascular territories
Dates: N/S	dialysis or intervening acute coronary event	Definition of positive stress ECG test: Downsloping or horizontal ST-segment
Country: France	between SPECT and CA	depression of ≥ 1 mmHg or upsloping ST depression of ≥ 2 mm measured 80 ms after the
Focus: Values of SPECT, indirect	Enrolled: 338	point
scintigraphic markers of extensive	Analysed: 310 (pilot group; limited CAD 38,	Angiographic definition of significant CAD: ≥50% diameter stenosis
CAD and total MPD criteria; additive value above clinical and stress test variables, for the diagnosis of extensive CAD	extensive CAD 122, validation group; limited CAD 32, extensive CAD 118) Age: Pilot group limited CAD 57 \pm 10, pilot group extensive CAD 61 \pm 9, validation group limited CAD 59 \pm 12, validation group extensive CAD 60 \pm 10 years Gender: M 282, W 28 History of: MI 202; PTCA excluded; CABG excluded	Outcome measures : Sensitivity, specificity, accuracy, incremental value (multivariable logistic regression analysis)
De, 2002 ²⁵	Inclusion criteria : Women <45 years referred for CA because of chest pain that had not yet	SPECT: Tracer: MIBI. Stress induced by: N/S. Image interpretation: N/S. Equipment: N/S
Study design: Retrospective	been diagnosed	CA methods: N/S
observational comparison	Exclusion criteria: Known history of CAD	Interval between tests: SPECT/ECG within 6 months before CA
Method of recruitment:	Enrolled: 187	Definition of positive SPECT test: N/S
Consecutive	Analysed: 187	Definition of positive stress ECG test: N/S
Dates: Feb. 1997–Dec. 2000	Age : <45 years	Angiographic definition of significant CAD: \geq 70% diameter stenosis in \geq 1 coronary
Country : Canada	Gender : M 0, W 187	artery
Focus : Rate of CAD in women <45 years referred for chest pain; prevalence of cardiac risk factors, the role of non-invasive testing and	History of: MI N/S; PTCA N/S; CABG N/S	Outcome measures: Sensitivity, specificity
the quality of medical management		
the quarty of medical management		
MPO, myocardial perfusion defect.		
		continued

II5

Study and methods	Participants	Test characteristics and outcome measures
Gentile, 2001 ²⁶	Inclusion criteria: Patients aged >65 years	SPECT:
	hospitalised because of cardiac events	Tracer: TI-201. Stress induced by: Exercise (bicycle), pharmacologically (dipyridamole).
Study design: Prospective	Exclusion criteria : Previous MI, revascularisation,	Image interpretation: Visual. Equipment: Rotating large-field gamma camera (Starcam
observational comparison	significant valvular disease, idiopathic dilated	2000, General Electric, Milwaukee, WI, USA)
Method of recruitment: N/S	cardiomyopathy, LBBB, equivocal ECG or SPECT	CA methods: udkins technique
Dates: Jan. 1990–Dec. 1998	or borderline lesion of a single vessel	Interval between tests: CA performed within 2 weeks of ECG/SPECT
Country: Italy	Enrolled: 195	Definition of positive SPECT test: An area of decreased activity seen during the peak
Focus: Diagnostic accuracy and	Analysed: 132	stress that resolved, either partially or totally, during redistribution
prognostic significance of stress	Age : M 72.4 (range 62–76), W 68.2 (range 65–73)	Definition of positive stress ECG test: > I mm horizontal or downsloping depression
ECG and SPECT in an elderly	years	the ST segment 0.08 s after the point
population	Gender: M 90. W 42	Angiographic definition of significant CAD: Obstruction of 60% of lumen diameter.
F - F	History of: MI excluded; PTCA excluded;	Outcome measures : Sensitivity, specificity, true positives for 1-, 2- and 3-vessel disease.
	CABG excluded	Sensitivity, specificity, TPs and FPs and FNs and accuracy by gender and overall
Hamasaki, 1996 ²⁷	Inclusion criteria: Patients with SVD, no prior	SPECT:
Tarrasaki, 1770	MI, positive ExECG and SPECT, receiving	Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Visual.
Study design: Prospective	antianginal therapy, previous PTCA and consent to	Equipment: Gamma camera (ZLC-75; Shimadzu, Kyoto, Japan)
observational comparison	(1) undergo ExECG after PTCA; (2) follow-up CA;	
Method of recruitment: N/S	(3) able to perform maximal exercise; and	Interval between tests : CA performed 7.5 \pm 3.6 days after SPECT and 5.4 \pm 1.3 days
Dates : Oct. 1988–Sept. 1994	(4) ability to achieve $\geq 85\%$ of the maximum age-	after ECG
Country: Japan	predicted HR in the absence of diagnostic ECG.	Definition of positive SPECT test : Perfusion defect on stress study absent on
Focus: Clinical usefulness of the		redistribution images, or defect on stress study larger than on redistribution study
increase in the Δ ST/ Δ HR index	intraventricular block patterns on resting ECG,	Definition of positive stress ECG test : Horizontal or downsloping ST-segment
from several days after angioplasty	taking digitalis or β -blocking agents	depression of ≥ 0.10 mV and an upsloping ST-segment depression of ≥ 0.20 mV measured
to follow-up for detection of	Enrolled: 125	60 ms after the J point compared with the resting value 20.20 mV measured
restenosis after successful PTCA	Analysed: 125	Angiographic definition of significant CAD: Restenosis: increase in stenosis to >60%
resteriosis arter successiul i TCA	Analysed. 123 Age: 64 ± 9 years	diameter
	Gender : M 95, W 30	Outcome measures: Sensitivity, specificity, positive predictive value, negative predictive
		encome measures. Sensitivity, specificity, positive predictive value, negative predictive

Appendix 7

Study and methods	Participants	Test characteristics and outcome measures
Hambye, 1996 ²⁸ Study design: Prospective observational comparison Method of recruitment: N/S Dates: N/S Country: Belgium Focus: Incremental value of testing strategies for diagnosis of CAD in patients with an intermediate probability of CAD	Inclusion criteria: Patients referred for suspected or known CAD Exclusion criteria: History of MI, abnormal Q wave on the 12-lead ECG, LBBB, valvular or congenital heart disease, severe arrhythmias, or non-ischaemic cardiomyopathy Enrolled: 128 Analysed: 128 Age: 60 ± 9.2 (range 34–80) years Gender: M 90, W 38 History of: MI excluded; PTCA N/S; CABG N/S	SPECT:Tracer: MIBI. Stress induced by: Exercise (bicycle). Image interpretation: Visual,quantitative. Equipment: Single-head rotating gamma camera, 40-cm detector size(Orbiter Digitrac 7500; Siemens, Chicago, IL, USA) or a triple-head camera, 40×20 cmdetector sizeCA methods: Performed in multiple views according to standard techniquesInterval between tests: CA performed within 2 months of ECG/SPECTDefinition of positive SPECT test: Reduced tracer uptake in ≥ 2 contiguous slices on twodifferent orthogonal projections on the stress study that disappeared or improved by≥ 10% on a colour scale on the rest imageDefinition of positive stress ECG test: Presence of clinical symptoms (typical angina,atypical chest pain, non-anginal pain, or miscellaneous) and ECG findings (significantchanges, dubious results, no changes)Angiographic definition of significant CAD: ≥ 50% stenosis of ≥ 1 major epicardialcoronary arteries or main side branches; ≥ 70% stenosisOutcome measures: Sensitivity, Specificity
Hecht, 1990 ²⁹ Study design : Prospective observational comparison Method of recruitment : Consecutive Dates : N/S Country : USA Focus : Detection of restenosis after PTCA and differentiation from other sources of myocardial ischaemia	Inclusion criteria: Patients referred for possible restenosis receiving SPECT and CA Exclusion criteria: N/S Enrolled: 116 Analysed: 116 Age: 58 ± 9 years Gender: M 93, W 23 History of: MI 49; PTCA 116; CABG N/S	$\begin{array}{l} \textbf{SPECT:} \\ \textbf{Tracer: } Tl-201. \textbf{Stress induced by: } Exercise (treadmill). \textbf{Image interpretation: } Visual, \\ quantitative. \textbf{Equipment: } Siemens Orbiter large field-of-view tomographic camera \\ \textbf{CA methods: } Judkins or Sones approach \\ \textbf{Interval between tests: } ECG/SPECT week before CA \\ \textbf{Definition of positive SPECT test: } Each segment scored on a 0-4 scale. Scores of \geq 2 (mildly reduced uptake) abnormal. Myocardial ischaemia was categorised as either total or partial normalisation of a segment from exercise to redistribution imaging \\ \textbf{Definition of positive stress ECG test: } \geq 1 mm of horizontal or downsloping ST \\ depression for \geq 0.08 s after the J point compared with the resting tracing \\ \textbf{Angiographic definition of significant CAD: } Restenosis; return of previously dilated vessel to a \geq 50\% diameter reduction \\ \textbf{Outcome measures: } Sensitivity, specificity and accuracy for all, complete/partial revascularisation \\ \end{array}$

continued

Health Technology Assessment 2004; Vol. 8: No. 30

Study and methods	Participants	Test characteristics and outcome measures
Huang, 1992 ³⁰ Study design: Prospective observational comparison Method of recruitment: Consecutive Dates: N/S Country: Taiwan Focus: Accuracy of SPECT in diagnosis of CAD; the extent the evel of exercise affects the sensitivity of the test	Inclusion criteria: Patients with chest pain receiving CA and SPECT Exclusion criteria: Cardiomyopathy, valvular or congenital heart disease Enrolled: 179 Analysed: 179 Age: Group 1 58 ± 9; Group 2 57± 9; Control 56 years Gender: M 144, W 35 History of: MI 70; PTCA 0; CABG 0	SPECT:Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Visual.Equipment: Computerised dual-head imaging system (Picker International)CA methods: Judkins' techniqueInterval between tests: ECG/SPECT within 2 months of CADefinition of positive SPECT test: \geq 50% decrease of thallium uptake in \geq 2 contiguousslices and \geq 2 tomographic planesDefinition of positive stress ECG test: A horizontal or down-sloping ST-segmentdepression of \geq 1 mm or upsloping depression of \geq 1.5 mm, persisting \geq 0.08 after theJ pointAngiographic definition of significant CAD: \geq 50% stenosis in \geq 1 major coronaryarteryOutcome measures: Sensitivity, specificity, TPs, FPs, TNs, FNs. SPECT sensitivity for 1.2- and 3-vessel CAD for all patients and those without MI, SPECT sensitivity for individual coronary artery stenosis
Kajinami, 1995 ³¹ Study design: Prospective observational comparison Method of recruitment: Consecutive Dates: May 1991–May 1993 Country: Japan Focus: Usefulness of EBCT, ECG and SPECT for prediction of coronary stenosis	Inclusion criteria: Patients receiving elective CA and (1) chest pain suggesting angina pectoris or (2) possible myocardial ischaemia based on rest ECG Exclusion criteria: Patients in unstable condition, previous CABG or PTCA, abnormal Q waves in ≥ 2 ECG leads Enrolled: 251 Analysed: 251 Age: 56 ± 14 (range 16–86) years Gender: M 174, W 77 History of: MI N/S; PTCA excluded; CABG excluded	SPECT: Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Visual. Equipment: Rotating gamma-camera SNC-510R (Shimadzu, Kyoto, Japan) CA methods: Performed in multiple projections using standard techniques Interval between tests: N/S Definition of positive SPECT test: Abnormal area in the initial images demonstrating complete or partial redistribution in the delayed images Definition of positive stress ECG test: (1) ≥ 0.1 mV depression 0.08 s from the J point or (2) ≥ 0.1 mV elevation in a non-Q-wave lead in those without previous MI Angiographic definition of significant CAD: ≥75% occlusion in major coronary arter. Outcome measures: Sensitivity, specificity, positive predictive value, negative predictive value, accuracy

Study and methods	Participants	Test characteristics and outcome measures
Karlsson, 1995 ³² Study design: Prospective observational comparison Method of recruitment: N/S Dates: N/S Country: Sweden Focus: Additional value of SPECT I month after an episode of unstable CAD over conventional ExECG for the identification of severe coronary lesions at CA	Inclusion criteria: Men 40–70 years; ongoing chest or anginal pain during the last 48 hours; occurrence of earlier unknown ST-depression ≥ 0.1 mV or T wave inversion by >0.1 mV in ≥ 2 adjacent leads in rest ECG Exclusion criteria: Increased risk of bleeding; indication for thrombolysis; acute Q wave MI; Q wave in ≥ 2 adjacent precordial leads or LBBB in ECG at rest; left ventricular failure; valvular heart disease; cardiomyopathy, pacemaker; CABG; poor short-term prognosis; or logistic difficulties with investigations or follow-up Enrolled: 205 Analysed: 170 Age: 59 years Gender: M 170, W 0 History of: MI 14%; PTCA N/S; CABG excluded	SPECT:Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Qualitative.Equipment: Siemens Rotacamera (Siemens, The Netherlands) or Picker SX300 gamma- camera (Picker International, Ohio, USA)CA methods: Judkins techniqueInterval between tests: CA performed 1 day after ECG/SPECTDefinition of positive SPECT test: Left ventricular myocardium divided into 9 segments.Each segment classified as 0 = normal uptake, 1 = reduced uptake, 2 = uptake defect.SPECT score = summation of score from all segments.Definition of positive stress ECG test: ST segment depression $\ge 0.1 \text{ mV } 0.06 \text{ s after the } 1 \text{ point}$ Angiographic definition of significant CAD: $\ge 50\%$ occlusion. Severe lesions defined as left main stenosis, 3VD, or 2VD with proximal LAD stenosis before first diagonal branchOutcome measures: Sensitivity, specificity
Khattar, 1998 ³³ Study design: Prospective observational comparison Method of recruitment: Consecutive Dates: N/S Country: UK Focus: SPECT and/or ECHO for detection of MVD versus clinical and ExECG data alone	Inclusion criteria: Patients with chest pain undergoing ExECG and subsequent CA Exclusion criteria: Unstable angina, significant arrhythmias, heart failure, uncontrolled hypertension, MI within 30 days, cardiomyopathy, significant valvular disease Enrolled: 100 Analysed: 100 Age: 62.2 (8.9) years Gender: M 70, W 30 History of: MI 29; PTCA N/S; CABG N/S	SPECT: Tracer: MIBI. Stress induced by: Exercise (treadmill) for ECG, pharmacologically (dobutamine, arbutamine) for SPECT. Image interpretation: Semiquantitative. Equipment: Large field of view gamma camera CA methods: Judkins technique Interval between tests: CA performed within 3 months of SPECT/ECG Definition of positive SPECT test: Resting or stress-induced perfusion defect, MVD if abnormalities in ≥ 2 coronary artery territories at peak stress Definition of positive stress ECG test: MVD: I, ST depression ≥ 2 mm, ST depression ≥ 1 mm in ≥ 5 leads; 2, workload <6 MET; or 3, fall of systolic blood pressure >20 mmHg compared with the previous stage Angiographic definition of significant CAD: ≥ 50% stenosis, multivessel disease if ≥ 2 major coronary arteries involved Outcome measures: Sensitivity, specificity and accuracy for detecting multivessel disease in the total study group and excluding previous MI, incremental value

Health Technology Assessment 2004; Vol. 8: No. 30

continued

611

Study and methods	Participants	Test characteristics and outcome measures
Koskinen, 1987 ³⁴	Inclusion criteria: Patients receiving SPECT and CA	SPECT: Tracer: TI-201. Stress induced by: N/S. Image interpretation: N/S. Equipment: N/S
Study design: Retrospective	Exclusion criteria: CABG between CA and	CA methods: N/S
observational comparison	SPECT, patients whose imaging data had not been	Interval between tests: N/S
Method of recruitment: N/S	stored on magnetic tape, required stress level not	Definition of positive SPECT test: N/S
Dates: 1983–84	achieved	Definition of positive stress ECG test: N/S
Country: Finland	Enrolled: 117	Angiographic definition of significant CAD: Vessels with a 50% stenosis
Focus: SPECT versus CA	Analysed: 117	Outcome measures: Sensitivity and specificity
	Age: Proximal 3VD 50.1, peripheral 3VD 49.1, peripheral 2VD 49.1, peripheral SVD 47.6, CA healthy vessels 48.8, reference group 52.1, range 33–64 years Gender: N/S History of: MI N/S; PTCA N/S; CABG N/S	
Lind, 1990 ³⁵	Inclusion criteria: Patients showing vascular risk	SPECT:
	factors, pathological ergometric findings without	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual.
Study design: Prospective	angina or signs of silent MI in the resting ECG	Equipment: Elscint Apex 409 AG rotating gamma camera
observational comparison	Exclusion criteria:	CA methods: Judkins technique
Method of recruitment: N/S	Enrolled: 106	Interval between tests: Maximum of 14 days between SPECT/ECG and CA
Dates: N/S	Analysed: 106	Definition of positive SPECT test: N/S
Country: Austria	Age : Group I 55 \pm I0, Group II 60 \pm 9 years	Definition of positive stress ECG test: N/S
Focus: SPECT versus ExECG for	Gender: Group I, M 38, W 8; Group II, M 43,	Angiographic definition of significant CAD: >75% coronary stenosis
detection of silent myocardial	W 17	Outcome measures: Sensitivity, specificity plus true and false positives and negatives for
ischaemia in patients with vascular risk factors	History of: MI N/S; PTCA N/S; CABG N/S	ECG
Mairesse, 1994 ³⁶	Inclusion criteria: Patients referred for diagnostic	SPECT:
	CA	Tracer: MIBI. Stress induced by: Pharmacologically (dobutamine). Image
Study design: Prospective	Exclusion criteria: Clinical history or ECG	interpretation: Visual. Equipment: Large-field single-crystal camera
observational comparison	evidence of previous Q wave MI, unstable angina,	CA methods: Judkins technique
Method of recruitment:	malignant arrhythmias, cardiomyopathy, severe	Interval between tests: CA within 2 days of stress ECG/SPECT
Consecutive	valvular disease or severe hypertension, stress test	
Dates: N/S	interrupted prematurely, or uninterpretable ECG	Definition of positive stress ECG test: Empirical ROC based on 0.2–1.8 mm of absolu
Country: Belgium	Enrolled: 129	ST segment shift of peak stress to define CAD at 0, 20, 40, 60 and 80 ms after the J point
Focus: Optimal ECG criteria for	Analysed: 129	Angiographic definition of significant CAD: >50% stenosis of major epicardial
the diagnosis of CAD in association	Age: 56 ± 9 (range $31-78$) years	coronary segment
with dobutamine stress by use of	Gender: M 95, W 34	Outcome measures: Sensitivity, specificity, accuracy, TPs, FPs, TNs, FNs, sensitivity for
precise computer measurements and comparing their accuracy with those of stress ECHO and MPS	History of: MI (Q wave) excluded; PTCA N/S; CABG N/S	SVD and MVD

Study and methods	Participants	Test characteristics and outcome measures
McClellan, 1996 ³⁷	Inclusion criteria: Patients referred for treadmill	SPECT:
	exercise testing with SPECT. Indications for	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual,
Study design: Prospective	SPECT: diagnosis of CAD; evaluation and follow- up of patients with known CAD; and evaluation	quantitative. Equipment : Rotating large field of view camera (GE 400 AC) CA methods : N/S
observational comparison Method of recruitment:	after MI, PTCA and CABG	Interval between tests: CA performed within 3 months of SPECT/ECG
Consecutive	Exclusion criteria: N/S	Definition of positive SPECT test : Presence of exercise-induced defects and partial,
Dates: N/S	Enrolled: 501	complete or absence of redistribution on delayed images
Country: USA	Analysed: 492	Definition of positive stress ECG test : Normal resting ECG and ≥ 0.1 mV horizontal or
Focus: 1, Use of SPECT in a	Age: 58.9 (range 22–82) years	downsloping depression during exercise
community hospital; 2, accuracy	Gender: M 322, W 179	Angiographic definition of significant CAD: \geq 50% stenosis in \geq 1 coronary artery
and additive value of SPECT versus	History of: MI 170; PTCA 123; CABG 103	Outcome measures: TPs, FPs, TNs, FNs, specificity, positive predictive value, diagnostic
ExECG		accuracy
Michaelides, 1999 ³⁸	Inclusion criteria: Patients referred to hospital	SPECT:
	with symptoms resembling angina	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation:
Study design: Prospective	Exclusion criteria: RBBB or LBBB, RVH or LVH,	Qualitatively, quantitatively. Equipment: Model 400 AC/T, General Electric, Milwaukee, WI,
observational comparison	ventricular pre-excitation, history of MI or valvular	USA
Method of recruitment:	or congenital heart disease, CABG or PTCA, and	CA methods: Judkins technique
	those receiving digitalis and those refusing CA	Interval between tests: CA within 2 months after ECG/SPECT
Dates: N/S Country: Greece	Enrolled: 268 Analysed: 245	Definition of positive SPECT test : N/S Definition of positive stress ECG test : Horizontal or downsloping ST-segment
Focus: Sensitivity of exercise	Analysed. 243 Age: 52 \pm 8 (range 32–74) years	depression of ≥ 1 mm 60 ms after the J point; upsloping ST segment with a depression of
testing in the detection of CAD	Gender : M 218, W 27	\geq 1.5 mm 80 ms after the J point. In the presence of ST-segment depression at rest, an
using right precordial leads V_3 R,	History of: MI excluded; PTCA excluded;	additional 2 mm of ST-segment depression, or an ST-segment elevation of ≥ 1 mm at the
V_4 R and V_5 R and left precordial	CABG excluded	point as compared with the baseline ECG recorded at rest
leads		Angiographic definition of significant CAD: narrowing of \geq 70% of the diameter of the
		lumen in the LAD, LCX or RCA or narrowing of \geq 50% of the diameter of the lumen in the
		left main coronary artery
		Outcome measures : Overall sensitivity and specificity plus sensitivity for 1-, 2- and 3-vessel disease, any CAD and LAD, RCA and LCX for SVD

Study and methods	Participants	Test characteristics and outcome measures
Nallamothu, 1995 ³⁹ Study design : Retrospective observational comparison Method of recruitment : Identified from complete database according to inclusion criteria Dates : N/S Country : USA Focus : I, Diagnostic accuracy of SPECT and ExECG response in patients with normal baseline ECG results; 2, differences in ability of each method to identify high-risk patients with extensive CAD	Inclusion criteria: Patients with 1, SPECT and CA within 3 months of each other; 2, normal baseline ECG results (no evidence of previous MI, conducting defects, ST-T wave changes, pre- excitation or pacemaker rhythm) Exclusion criteria: Patients taking digitalis Enrolled: 321 Analysed: 321 Age: 57 ± 10 years Gender: M 241, W 80 History of: MI N/S; PTCA 0; CABG 0	SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual, quantitative. Equipment: N/S CA methods: Performed in multiple projections using standard techniques Interval between tests: Stress ECG was part of SPECT test, CA within 3 months Definition of positive SPECT test: Presence and nature (fixed or reversible) of perfusion defects, site (vascular territory) of perfusion abnormality, size of perfusion defect (by polar maps), lung thallium uptake and left ventricular dilation. Multivessel thallium abnormalities were considered present when there were perfusion defects in > I vascular territory Definition of positive stress ECG test: ≥ I mm downsloping or horizontal or ≥ 1.5 mm upsloping ST segment depression measured at 80 ms after the J point for ≥ 3 consecutive beats during or after exercise Angiographic definition of significant CAD: ≥ 50% diameter narrowing in any of the major coronary arteries or their major branches Outcome measures: Sensitivity, specificity, accuracy, positive predictive value, negative
Psirropoulos, 2002 ⁴⁰ Study design : Prospective observational comparison Method of recruitment : N/S Dates : Sept. 1995–Dec. 2000 Country : Greece Focus : 1, MI development in elderly versus younger patients undergoing treatment for known CAD through conventional treadmill testing and scintigraphy; 2, relationship between the above non-invasive tests and CA confirmed important CAD	Inclusion criteria: Patients who had undergone CA, ExECG testing using Bruce protocol, and scintigraphy Exclusion criteria: Uncontrolled arterial hypertension, hypertrophic cardiomyopathy, severe valve disease, severe chronic obstructive lung disease, sever anaemia, peripheral atherosclerosis, orthopaedic problems and Parkinson's disease Enrolled: 606 Analysed: 606 Age: Group A 70.3 \pm 5.3, Group B 54.4 \pm 9.1 years Gender: M355, W251 History of: MI 309; PTCA N/S; CABG N/S	predictive value. Sensitivity in patients with 1-, 2- and 3-vessel disease SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: N/S. Equipment: N/S CA methods: N/S Interval between tests: ECG/SPECT performed 1 week to 2 months before CA Definition of positive SPECT test: N/S Definition of positive stress ECG test: (1) ST segment depression ≥ 0.15 mV at 80 ms after J point, (2) 0.1 mV flat or down-sloping ST segment depression and (3) ST segment upward slope > 1 mV/s Angiographic definition of significant CAD: Important CAD was defined as (a) left main stem stenosis ≥ 50% with or without disease elsewhere, (b) proximal 3VD, (c) 3VD including the proximal LAD artery, (d) proximal 2VD including LAD and (e) 2VD including the proximal LAD Outcome measures: Sensitivity, specificity, positive predictive accuracy, negative predictive accuracy

Appendix 7

Study and methods	Participants	Test characteristics and outcome measures
Santana-Boado, 1998 ¹⁸	Inclusion criteria: Patients without previous MI in whom SPECT had been performed	SPECT: Tracer: MIBI. Stress induced by: Exercise (bicycle) plus pharmacologically (dipyridamole)
Study design: Prospective	Exclusion criteria: previous MI	in 72 patients who performed an insufficient exercise test. Image interpretation: Visual.
observational comparison	Enrolled: 702	Equipment: SP4 (Elscint, Haifa, Israel) scintillation camera
Method of recruitment:	Analysed: 163	CA methods: Standard Seldinger's technique
Consecutive	Age : M 60 ± 10, W 58 ± 8 years	Interval between tests: Stress ECG was part of SPECT test, CA within <3 months after
Dates: Jan. 1992–Mar. 1995	Gender: M 100, W 63	SPECT
Country: Spain	History of: MI excluded; PTCA N/S; CABG N/S	Definition of positive SPECT test : Mild, moderate or severe defect in ≥ 2 of 3 axes or
Focus: Diagnostic accuracy of		3 consecutive tomographic sections of the same axis, with reversibility at rest
SPECT between sexes and the		Definition of positive stress ECG test: N/S
influence of analysing only the		Angiographic definition of significant CAD: Stenoses >50%
patients with CA instead of all the		Outcome measures: Sensitivity, specificity, positive predictive value, negative predictive
patients who are submitted to		value, accuracy globally and for gender
study		
Vaduganathan, 1996 ⁴¹	Inclusion criteria: Patients with LBBB referred	SPECT:
-	for perfusion scintigraphy	Tracer: TI-201, MIBI. Stress induced by: Exercise (treadmill), pharmacologically
Study design: Prospective	Exclusion criteria: N/S	(adenosine or dobutamine). Image interpretation: Visual, quantitative. Equipment:
observational comparison	Enrolled: 383	Single-crystal rotating gamma camera
Method of recruitment:	Analysed: 154 with CA	CA methods: Performed in multiple views using standard techniques
Consecutive	Age : Exercise 61 \pm 12, adenosine 69 \pm 10,	Interval between tests: CA performed within I month of SPECT
Dates: Jan. 1990–Dec. 1994	dobutamine 69 ± 10 years	Definition of positive SPECT test: N/S
Country: USA	Gender : M 94, W 60	Definition of positive stress ECG test: Non-diagnostic because of underlying LBBB
Focus: Diagnostic accuracy of	History of: MI 47; PTCA N/S; CABG N/S	Angiographic definition of significant CAD: \geq 50% lumen diameter stenosis
exercise, adenosine and		Outcome measures: Overall sensitivity, specificity, positive predictive value, and negative
dobutamine imaging for the		predictive value for each type of stress. Sensitivity and specificity for LAD, RCA and LCX
detection of LAD stenosis in		for each type of stress
patients with LBBB		

Prognostic studies

Study and methods	Participants	Test characteristics and outcome measures
Amanullah, 1998 ⁴²	Inclusion criteria: Patients undergoing CA and	SPECT:
	SPECT for the evaluation of CAD	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation:
Study design: Cohort	Exclusion criteria: Patients with normal CA,	Quantitative; visual. Equipment: N/S
(prospective)	previous CABG or recent MI or unstable angina	CA: Judkins methods
Method of recruitment:	Enrolled: 860	Interval between tests: N/S
Consecutive	Lost to follow-up: 44	Definition of positive SPECT test: Reversible abnormality: perfusion abnormality in the
Dates: N/S	Analysed: 816	initial image that showed complete or partial redistribution on the delayed image involving
Follow-up: N/S	Age: 60 ± 10 years	25% of the segment. Fixed abnormality: perfusion abnormality that remained unchanged in
Country: USA	Gender : M 630, W 186	the delayed image. Multivessel abnormality: perfusion defects in $1 >$ vascular territory.
Focus: Predictors of early	History of: MI 410; PTCA N/S; CABG excluded	Definition of positive stress ECG test: N/S
revascularisation; to compare early revascularisation patients with those who had medical therapy		Angiographic definition of significant CAD: >50% stenosis of major epicardial coronary artery or one of its major branches. Multivessel CAD: presence of significant CAD in ≥ 2 of the 3 major coronary arteries or their major branches Multivariate analysis: Yes Outcome measures: PTCA or CABG within 3 months of nuclear testing
Amanullah, 1999 ⁴³ Study design : Cohort Method of recruitment : N/S Dates : Jan. 1987–Mar. 1993 Follow-up : 36 ± 26 months Country : USA Focus : Predictors of outcome of medically treated patients with LMD and/or 3VD	Inclusion criteria: Patients who had documented LMD and/or 3VD noted on CA and had undergone SPECT within 3 months Exclusion criteria: History of previous MI, recent unstable angina, or coronary revascularisation Enrolled: 186 Lost to follow-up: 0 Analysed: 186 Age: 64 ± 9 years Gender: M 136, W 50 History of: MI excluded; PTCA excluded; CABG excluded	 SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill) 127; pharmacologically (adenosine) 59. Image interpretation: Quantitative; visual. Equipment: N/S CA: Judkins methods Interval between tests: 3 months Definition of positive SPECT test: Reversible abnormality: perfusion abnormality in the initial image that showed complete or partial redistribution on the delayed image involving 25% of the segment. Fixed abnormality: perfusion abnormality that remained unchanged in the delayed image. Multivessel abnormality: perfusion defects in > I vascular territory. Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: >50% stenosis of major epicardial coronary artery or one of its major branches

Appendix 7

Study and methods	Participants	Test characteristics and outcome measures
Ben-Gal, 2001 ⁴⁴ Study design : Cohort Method of recruitment : Consecutive Dates : July 1996–Sept. 1997 Follow-up: Mean 11.7 ± 5.3 months Country : Israel Focus : Utility of SPECT for predicting outcome of hospitalised patients with chest pain and a normal or non-diagnostic ECG	Inclusion criteria: Patients admitted due to angina-like chest pain and a normal or non- diagnostic 12 lead ECG Exclusion criteria: Patients with suspected acute MI, known previous MI, PTCA or CABG Enrolled: 109 Lost to follow-up: 0 Analysed: 109 Age: 60.7 ± 13.7 years Gender: M 57, W 52 History of: MI excluded; PTCA excluded; CABG excluded	 SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill, 37 patients); pharmacologically (dipyridamole, 72 patients). Image interpretation: Visual. Equipment: Digital gamma camera (Apex SP 4-HR, Elscint) CA: Judkins technique Interval between tests: N/S Definition of positive SPECT test: Fixed defects: defects in ≥ 2 consecutive images present and unchanged in stress and rest scans. Reversible defects: defects on stress images absent or less prominent on rest images. Scans abnormal if any perfusion defect present Definition of positive stress ECG test: 1 mV of horizontal or downsloping ST-segment depression that persisted for 80 ms after the J point Angiographic definition of significant CAD: N/S Multivariate analysis: Yes Outcome measures: Cardiac mortality; non-fatal MI, PTCA, CABG
Berman, 1995 ⁴⁵ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : Jan. 1991–Jan. 1993 Follow-up : ≥ 1 year, mean 20 ± 5 months. Country : USA Focus : Prognostic implications of normal and equivocal SPECT scans	Inclusion criteria: Patients in whom SPECT was performed Exclusion criteria: Previous PTCA or CABG Enrolled: 1811 of whom 7 had a technically inadequate study for interpretation or incomplete data Lost to follow-up: 102 Analysed: 1702 Age: Normal scan results 60 ± 13; abnormal scan results 65 ± 12 years Gender: M 1037, W 665 History of: MI 182; PTCA excluded; CABG excluded	SPECT: Tracer: TI-201 rest, MIBI stress. Stress induced by: Exercise (treadmill). Image interpretation: Visual. Equipment: Scintillation camera/computer system CA: No Interval between tests: N/S Definition of positive SPECT test: Tomograms divided into 20 segments for each study and scored on a 5-point scale at rest and stress (0 = normal, 4 = absence of detectable tracer uptake). Study results normal, probably normal, equivocal, probably abnormal or definitely abnormal on the basis of number of segments with scores ≥ 2 Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: N/S Multivariate analysis: No Outcome measures: Hard events – cardiac mortality; non-fatal MI. Soft events – PTCA or CABG > 60 days after testing

nterpretation: Visual.

Appendix 7

•	•	
Candell-Riera, 1998 ⁴⁶	Inclusion criteria : Medically treated patients with confirmed CAD demonstrated by SPECT and CA	SPECT: Tracer: MIBI. Stress induced by: Exercise (bicycle). Image interpretation: Visual.
Study design: Cohort	Exclusion criteria: Previous MI; previous	Equipment: Elscint SP4 scintillation camera
(prospective)	revascularisation; another type of heart disease;	CA: Seldinger's technique
Method of recruitment: N/S	normal CA; negative SPECT; patients who	Interval between tests: Within 3 months
Dates: Nov. 1993–Nov. 1995	a 1	
	received dipyridamole simultaneously Enrolled: 112	Definition of positive SPECT test : SPECT image divided into 13 segments and scored
Follow-up : \geq 6 months, max. 5.5		from 1 to 5 (1 = normal, 5 = severe defect) according to the severity of the ischaemia
years (mean 3.6 years)	Lost to follow-up: 0	Definition of positive stress ECG test: Horizontal or descending ST-segment depressio
Country: Spain	Analysed: 112	\geq 1 mm at 0.08 s after the J point
Focus: Prognosis of medically	Age: 57 ± 10 years	Angiographic definition of significant CAD: = 50% stenoses
treated patients with clandestine	Gender: M 95, W 17	Multivariate analysis: Cox proportional hazards regression model
myocardial ischaemia compared	History of: MI excluded; PTCA excluded;	Outcome measures: Cardiac mortality; non-fatal MI; need for revascularisation
with patients with silent myocardial	CABG excluded	
ischaemia and angina pectoris		
Chatziioannou, 1999 ⁴⁷	Inclusion criteria: Patients receiving SPECT who	SPECT:
	reached at least Bruce stage IV	Tracer: MIBI. Stress induced by: Exercise (treadmill). Image interpretation: Visual.
Study design: Cohort	Exclusion criteria: N/S	Equipment: 1, PRISM 3000XP triple-headed detector camera; 2, Starcam 3000 (General
(retrospective)	Enrolled: 388	Electric) single-headed detector camera
Method of recruitment:	Lost to follow-up: 0	CA: No
Consecutive	Analysed: 388	Interval between tests: Same day protocol
Dates: Feb. 1996–June 1996	Age: 54 ± 10 years	Definition of positive SPECT test : Abnormal MPI scans had ≥ 1 reversible, fixed or
Follow-up : 18 ± 2.7 months	Gender: M 337, W 51	mixed defects
(range 15–24 months)	History of: MI 19% of 348 patients with no	Definition of positive stress ECG test: Horizontal or downsloping ST-segment
Country: USA	event; 48% of 21 patients with event; PTCA N/S;	depression of ≥ 1 mm or an upsloping ST-segment depression of ≥ 2 mm 0.08 s after the
Focus: Predictive value of SPECT	CABG 17% of 348 patients with no event; 34%	
versus ExECG in patients with high	of 21 patients with event	Angiographic definition of significant CAD: N/S
exercise tolerance		Multivariate analysis: Cox proportional hazards regression model
		Outcome measures : Hard events – cardiac mortality; non-fatal MI. Soft events – PTCA c
		CABG. Revascularisations due to SPECT or to the patients' condition at the time of SPECT
		e le contracta a la doir de le contracta de la

Test characteristics and outcome measures

not included in the analysis, and the patients involved were excluded from follow-up

Study and methods

Participants

Study and methods	Participants	Test characteristics and outcome measures
Chiamvimonvat, 2001 ⁴⁸ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : 1994–1996 Follow-up : Min. 12 months, average 15 ± 3 months Country : Canada Focus : Utility of SPECT in a low- risk population after MI	Inclusion criteria: Patients who were stable with no complications 3–21 days after MI Exclusion criteria: CABG; other significant life- threatening illnesses; found on CA to require revascularisation Enrolled: 203 Lost to follow-up: 0 Analysed: 203 Age: 56 ± 11 years Gender: M 178, W 25 History of: MI 17; PTCA 2; CABG excluded	SPECT:Tracer: TI-201 rest, MIBI stress. Stress induced: Pharmacologically (dipyridamole). Imageinterpretation: Visual; quantitative. Equipment: N/SCA: Predetermined protocolInterval between tests: Same dayDefinition of positive SPECT test: Fixed defect: no change between rest and stressimages. Reversible defect: decrease in stress score by ≥ 1 . Abnormality: uptake of ≥ 2.5 SDsbelow lower limits of normalDefinition of positive stress ECG test: N/SAngiographic definition of significant CAD: N/SMultivariate analysis: YesOutcome measures: Cardiac mortality; non-fatal MI; PTCA; CABG; occurrence of unstable angina requiring hospitalisation. Late revascularisation occurring > 1 month after study entry, CA, and SPECT included. Patients excluded after the first occurrence of any of the above end-points
Diaz, 2001 ⁴⁹ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : Sept. 1990–Dec. 1993 Follow-up : Mean 6.7 years, min. 4.5 years Country : USA Focus : Value of SPECT for prediction of all-cause mortality when considered along with functional capacity and heart rate recovery	Inclusion criteria: Adults aged ≥ 30 years referred for SPECT in conjunction with symptom- limited exercise testing Exclusion criteria: Heart failure, left ventricular dysfunction, valvular disease, pacemaker or foreign nationals Enrolled: 7163 Lost to follow-up: 0 Analysed: 7163 Age: 60 ± 10 years Gender: M 5354, W 1809 History of: MI N/S; PTCA 1196; CABG 1736	SPECT: Tracer: TI-201. Stress induced by: N/S. Image interpretation: Quantitative. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: Heart divided into 12 segments, each segment weighted according to its relative contribution to total left ventricular mass. Segments coded as normal, fixed or reversible. Normal: count variation within the segment ≤ 20% compared to segment with highest count rate. Reversible: count increased by 20% on redistribution. Fixed: count increased by <20% on redistribution. Segments abnormal if

Study and methods	Participants	Test characteristics and outcome measures
Gibbons, 1999 ⁵⁰	Inclusion criteria : Patients who underwent SPECT for evaluation of known or suspected	SPECT: Tracer: TI-201 and/or MIBI. Stress induced by: Exercise (treadmill). Image
Study design: Cohort	CAD, had a calculable Duke treadmill score and	interpretation: Visual. Equipment: N/S
(retrospective)	had an intermediate-risk treadmill score and	CA : No
Method of recruitment: N/S	normal or near-normal SPECT	Interval between tests: Stress ECG was part of SPECT test
Dates: Jan. 1985–Jan. 1995	Exclusion criteria: Previous PTCA or CABG,	Definition of positive SPECT test: Images were categorised as normal, near-normal o
Follow-up : 3 ± 2 years (min. 1 year, median 2 years)	valvular heart disease, cardiomyopathy, congenital heart disease, uninterpretable exercise test due to	abnormal. Near-normal: non-specific abnormalities judged subjectively not to represent evidence of CAD.
Country: USA	LBBB, paced rhythm or preexcitation syndrome	Definition of positive stress ECG test: N/S
Focus : The hypothesis that normal	Enrolled: 4649	Angiographic definition of significant CAD: N/S
or near-normal SPECT in a patient	Lost to follow-up: 176	Multivariate analysis: Cox proportional hazards regression model
with an intermediate-risk treadmill	Analysed: 4473	Outcome measures: Cardiac mortality; non-fatal MI; PTCA; CABG; number of CAs
test would be associated with a	Age: 61.2 ± 11.4 years	performed
very low long-term risk of	Gender: M 2046, W 2427	penomed
subsequent cardiovascular events	History of: MI 241; PTCA excluded;	
	CABG excluded	
Giri, 2002 ⁵¹	Inclusion criteria: Patients with symptoms	SPECT:
- ,	suggestive of CAD	Tracer: TI-201 and/or MIBI. Stress induced by: Exercise (treadmill), pharmacologically
Study design: Cohort	Exclusion criteria: Hospitalised for unstable	(adenosine or dipyridamole). Image interpretation: Visual. Equipment: N/S
(prospective)	angina or MI or received revascularisation within	CA: Method N/S (597 patients)
Method of recruitment: N/S	3 weeks of presentation	Interval between tests: N/S
Dates: N/S	Enrolled: 4755 [diabetic 929 (20%), non-diabetic	Definition of positive SPECT test: Stress defects: defects present at rest and remainer
Follow-up: 2.5 \pm 1.5 years	3826 (80%)]	unchanged during stress. Ischaemic: new or worsening defects (40% activity reduction)
(minimum 6 months)	Lost to follow-up: 0	after stress. Extent of perfusion defects coded as 0, 1, 2 and 3 vascular territory
Country: USA	Analysed: 4755	involvement.
Focus: Incremental role of SPECT	Age : Diabetic 65 \pm 11, non-diabetic 64 \pm 11	Definition of positive stress ECG test: N/S
in diabetic patients in the prediction		Angiographic definition of significant CAD: N/S
of cardiac events and the possibility	Gender: M 2669, W 2086 (diabetic M 478, W	Multivariate analysis: Cox proportional hazards regression model
of a sex-ischaemia interaction	451; non-diabetic M 2191, W 1635)	Outcome measures: Cardiac mortality; PTCA
	History of: MI 1414 (diabetic 329, non-diabetic	
	1085); PTCA N/S; CABG N/S	

Study and methods	Participants	Test characteristics and outcome measures
Groutars, 2000 ⁵² Study design : Cohort (prospective) Method of recruitment : N/S Dates : Apr. 1996–Dec. 1996 Follow-up : Mean 25 ± 3 months Country : The Netherlands Focus : Prognostic significance of normal SPECT studies in patients with suspected or known CAD	Inclusion criteria: Patients referred for SPECT Exclusion criteria: Unstable angina pectoris, recent MI (within 6 weeks) Enrolled: 246 Lost to follow-up: 10 Analysed: 236 Age: 61 ± 11 (range 27–85) years Gender: M 106, W 140 History of: MI (Q wave) 14; PTCA 22; CABG 9	SPECT:Tracer: TI-201 rest, MIBI stress. Stress induced by: Exercise (bicycle) 125;pharmacologically (adenosine) 121. Image interpretation: Semiquantitative visual.Equipment: Toshiba triple-detector gamma cameraCA: NoInterval between tests: Stress ECG part of SPECT testDefinition of positive SPECT test: Semiquantitative visual analysis of myocardialscintigrams with a 5-point scoring system (1 = normal, 5 = absence of tracer uptake) over20 segmentsDefinition of positive stress ECG test: Horizontal or downsloping ST-segmentdepression of ≥ 1 mm lasting >80 ms after the J point for ≥ 3 consecutive beatsAngiographic definition of significant CAD: N/SMultivariate analysis: NoOutcome measures: Primary end-points – cardiac mortality; non-fatal MI. Secondary end-points – PTCA; CABG
Hachamovitch, 1996 ⁵³ Study design : Cohort (retrospective) Method of recruitment : Consecutive Dates : Jan. 1991–Dec. 1993 Follow-up : ≥ 1 year. Mean 20 ± 5 months Country : USA Focus : Prognostic value of SPECT over clinical and exercise data in women versus men	Inclusion criteria: Patients who underwent SPECT Exclusion criteria: Valvular heart disease, primary cardiomyopathy Enrolled: 4620 of whom 16 excluded because of missing data and 270 excluded because of early revascularisation Lost to follow-up: 198 Analysed: 4136 Age: M 61.7 ± 12.2, W 64.5 ± 11.8 years Gender: M 2742, W 1394 History of: MI M 666, W 198; PTCA M 398, W 91; CABG M 466, W 86	 SPECT: Tracer: TI-201 rest, MIBI stress. Stress induced by: Exercise (treadmill). Image interpretation: Semiquantitative visual. Equipment: N/S CA: No Interval between tests: Stress ECG part of SPECT test Definition of positive SPECT test: Summed stress score obtained by adding the score of the 20 segments of the stress images. Summed rest score obtained by adding the score of the 20 segments of the rest images. Summed difference score: sum of the differences between each of the 20 segments on the stress and rest images and represents amount of ischaemia present Definition of positive stress ECG test: > I mm horizontal or downsloping ST-segment elevation or depression except in leads without significant Q waves or in lead aVR Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI. Patients receiving revascularisation within 60 days of index SPECT censored from analysis

Health Technology Assessment 2004; Vol. 8: No. 30

Study and methods	Participants	Test characteristics and outcome measures
Hachamovitch, 1998 ⁵⁴	Inclusion criteria: Patients who underwent SPECT	SPECT: Tracer: TI-201 rest, MIBI stress. Stress induced by: Exercise (treadmill) 4104;
	Exclusion criteria : Valvular heart disease; non- ischaemic cardiomyopathy; early (<60 days after SPECT) revascularisation. Enrolled : 5456 of whom 4 were excluded because of missing data Lost to follow-up : 269 Analysed : 5183 Age : Exercise 62.6 \pm 12.1; adenosine 70.4 \pm 11.3 years Gender : Exercise M 2723, W 1381; Adenosine M	pharmacologically (adenosine) 1079. Image interpretation: Semiquantitative visual. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: Summed stress score obtained by adding the score o the 20 segments of the stress images. Summed stress scores <4 normal; 4–8 mildly abnormal; 9–13 moderately abnormal; >13 severely abnormal. Summed rest score obtained by adding the scores of the 20 segments of the rest images. Summed difference score: sum of the differences between each of the 20 segments on stress and rest images Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI
Hachamovitch, 2002^{55} Study design : Cohort Method of recruitment : Consecutive Dates : Jan. 1991–Dec. 1993 Follow-up : 1.6 \pm 0.5 years Country : USA Focus : 1, Incremental prognostic value of SPECT in patients with normal resting ECG over pre- SPECT information; 2, ability to risk-stratify patients; 3, cost- effectiveness of SPECT as part of a testing strategy	Inclusion criteria: Patients who underwent SPECT Exclusion criteria: Abnormality on rest ECG other than sinus bradycardia; early (<60 days after SPECT) revascularisation Enrolled: 3224 Lost to follow-up: 166 Analysed: 3058 Age: No hard event 61 ± 12 ; hard event 64 ± 13 years Gender: No hard event M 1956, W 1032; hard event M 52, W 18 History of: MI no hard event 520; hard event 33; PTCA no hard event 347; hard event 18; CABG no hard event 299; hard event 11	 SPECT: Tracer: TI-201 rest, MIBI stress. Stress induced by: Exercise (treadmill). Image interpretation: Semiquantitative visual. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: 20 segments scored on a 5-point scale (0 = normal, 4 = absence of tracer uptake in a segment). Summed score obtained by summing scores or 20 segments. Summed stress scores <4 normal, 4–8 mildly abnormal, >8 moderately to severely abnormal Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI

Appendix 7

Study and methods	Participants	Test characteristics and outcome measures
Ho, 1999 ⁵⁶ Study design: Cohort (retrospective) Method of recruitment: N/S Dates: Jan. 1989–Dec. 1991 Follow-up: Median duration of 7.3 years in patients alive at follow-up Country: USA Focus: Prognostic value of SPECT performed 1–3 years after PTCA	Inclusion criteria: Patients who had performed an exercise tomographic TI-201 test and had undergone PTCA 1–3 years preceding the TI-201 study Exclusion criteria: Technically poor images, LBBB or paced ventricular rhythm, valvular heart disease, MI sustained between PTCA and SPECT study. CABG before PTCA Enrolled: 211 Lost to follow-up: 0 Analysed: 211 Age: 60 ± 10 years Gender: M 158, W 53 History of: MI 68; PTCA 211; CABG excluded if CABG before PTCA	SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: 14 segments graded subjectively on a 5-point scale (0 = absent uptake, 4 = normal). Redistribution: improved uptake ≥ 1 grade. Segments with mild fixed defects (scored as 3) considered normal and recoded 4 for this study. Summed stress scores obtained by adding the stress scores (normal = 56). Summed reversibility score: difference between summed stress and delayed scores Definition of positive stress ECG test: ≥ 1mm horizontal or downsloping ST-segment depression 0.08 s after the J point Angiographic definition of significant CAD: N/S Multivariate analysis: No. Cox univariate proportional hazards regression model Outcome measures: Mortality; cardiac mortality; non-fatal MI; repeat PTCA; repeat CABG; survival free of cardiac death
Iskandrian, 1993 ⁵⁷ Study design : Cohort (prospective) Method of recruitment : N/S Dates : N/S Follow-up : 28 ± 15 (range 1–60) months Country : USA Focus : Ability of SPECT to provide independent and incremental prognostic information above clinical, exercise and CA data in medically treated patients with CAD	Inclusion criteria: Patients receiving, within a 3-month period, SPECT and CA for evaluation of stable chest pain due to suspected or proven CAD Exclusion criteria: Normal angiograms, previous CABG or PTCA, recent acute MI (within 3 months) or unstable angina. Enrolled: 316 Lost to follow-up: 0 Analysed: 316 Age: 62 ± 10 years Gender: No cardiac event M 217, W 64; cardiac event M 21, W 14 History of: MI N/S; PTCA excluded; CABG excluded	 SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Quantitative. Equipment: N/S CA: Method N/S Interval between tests: Within 3 months Definition of positive SPECT test: Reversible abnormality: perfusion abnormality in the initial image showing complete or partial redistribution on the delayed image involving ≥ 25% of the segment. Fixed abnormality: perfusion abnormality that remained unchanged in the delayed image. Multivessel abnormality: perfusion defects in ≥ I vascular territory. Abnormality: data points 2.5 SD below the mean normal limit Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: ≥ 50% diameter stenosis of ≥ I major coronary artery Multivariate analysis: Cox proportional hazards regression model Outcome measures: Survival free of cardiac events. Patients receiving revascularisation (CABG or PTCA) within 3 months excluded

Study and methods	Participants	Test characteristics and outcome measures
Iskandrian, 1994 ⁵⁸ Study design : Cohort (prospective) Method of recruitment : N/S Dates : N/S Follow-up : Mean follow-up 29 months Country : USA Focus : Value of the treadmill exercise score versus SPECT in medically treated patients with CAD	Inclusion criteria: Patients receiving SPECT and CA for evaluation of chest pain caused by suspected or proven CAD Exclusion criteria: Previous revascularisation, recent acute MI, unstable angina pectoris or revascularisation within 3 months of stress test Enrolled: 437 Lost to follow-up: 0 Analysed: 437 Age: 61 ± 10 years Gender: M 310, W 127 History of: MI (Q wave) 77; PTCA excluded; CABG excluded	SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Quantitative. Equipment: N/S CA: Method N/S Interval between tests: N/S Definition of positive SPECT test: N/S Definition of positive stress ECG test: Treadmill angina index: a score of 0 for no angina, I for non-limiting angina and 2 for exercise-limiting angina Angiographic definition of significant CAD: \geq 50% diameter stenosis of \geq I vessel Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI
Kamal, 1994 ⁵⁹ Study design : Cohort Method of recruitment : Consecutive Dates : Feb. 1989–Jan. 1993 Follow-up : Average follow-up interval 22 ± 13 months Country : USA Focus : Prognostic value of adenosine SPECT in medically treated patients with CAD	Inclusion criteria: Patients receiving SPECT and CA within 3 months of each other for evaluation of chest pain Exclusion criteria: Coronary revascularisation within 3 months of SPECT, sick sinus syndrome, second-degree or greater atrioventricular block in the absence of a functioning pacemaker, or bronchospasm Enrolled: 177 Lost to follow-up: 0 Analysed: 177 Age: 64 ± 11 years Gender: M 109, W 68 History of: MI (Q wave) no cardiac event 45 of 163; cardiac event 4 of 14; PTCA N/S; CABG N/S	 SPECT: Tracer: TI-201. Stress induced: Pharmacologically (adenosine). Image interpretation: Semiquantitative. Equipment: N/S CA: Performed in multiple projections according to standard techniques Interval between tests: Within 3 months Definition of positive SPECT test: Perfusion pattern in each of vascular territories assessed as normal or showing fixed or reversible abnormalities. Multivessel thallium abnormality present when ≥ I vascular territory involved. Definition of positive stress ECG test: Horizontal or downsloping ST-segment depression ≥ I mm 80 ms after the J point Angiographic definition of significant CAD: ≥50% diameter stenosis in any major coronary arteries or their branches Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI

Appendix 7

continued

Study and methods	Participants	Test characteristics and outcome measures
Lauer, 1996 ⁶⁰	Inclusion criteria: Patients referred for SPECT Exclusion criteria: Prior invasive cardiac	SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation:
Study design: Cohort	procedures, congestive heart failure,	Quantitative. Equipment: 3-headed camera
(prospective)	cardiomyopathy, valvular disease, heart transplant	CA: Method N/S
Method of recruitment:	evaluation, or congenital heart disease	Interval between tests: Within 90 days
Consecutive	Enrolled: 3669	Definition of positive SPECT test: N/S
Dates: Sept. 1990–Dec. 1993	Lost to follow-up: 0	Definition of positive stress ECG test: ≥ 1 mm of horizontal or downsloping ST-segment
Follow-up: 1.8 years (for all-cause	Analysed: 3669	depression 80 ms after the J point
mortality)	Age : M 58 ± 12, W 59 ± 12 years	Angiographic definition of significant CAD: \geq 50% stenosis in proximal or middle
Country: USA	Gender: M 2351, W 1318	coronary vessel or major branch. Severe coronary disease: (1) \geq 50% left main stenosis,
Focus: Possible post-test gender	History of: MI M 167, W 41; PTCA excluded;	(2) 3VD (\geq 70% stenosis in each major coronary artery system) or (3) 2VD with a \geq 70%
bias for referral for CA	CABG excluded	proximal LAD artery lesion
		Multivariate analysis: Cox proportional hazards regression model
		Outcome measures: Mortality; cardiac catheterisation performed within 90 days of stress
		testing
Lauer, 1997 ⁶¹	Inclusion criteria : Adults, \geq 30 years old, under	SPECT:
	the care of cardiologists, with abnormal symptom-	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual.
Study design: Cohort	limited SPECT	Equipment: N/S
(prospective)	Exclusion criteria: Prior cardiac procedures	CA: Method N/S
Method of recruitment:	(including CA), congestive heart failure, or valvular	
Consecutive	congenital heart disease	Definition of positive SPECT test : Ischaemia: presence of >20% reversibility. Scarring:
Dates: Sept. 1990–Dec. 1993	Enrolled: 416	presence of counts <80% of maximum (<70% for the posterior wall). 12-segment system
Follow-up: ~2 years	Lost to follow-up: 0	 each segment coded as normal ischaemic or scarred
Country: USA	Analysed: 416	Definition of positive stress ECG test: ≥ 1 mm horizontal or downsloping ST-segment
Focus: Associations between age	Age : 30–49 years group, 43 ± 5 ; 50–64 years	depression occurring 80 ms after the J point, or if ≥ 1 mm of additional ST-segment
and referral to CA among adults	group, 58 ± 4; 65–74 years group, 69 ± 3; \geq 75	elevation occurred in leads without pathological Q waves
undergoing noninvasive evaluation	years group, 78 ± 3	Angiographic definition of significant CAD: ≥50% stenosis in any proximal or middle
of known or suspected coronary	Gender: M 354, W 62	coronary vessel or major branch. Severe coronary disease: \geq 50% left main artery stenosis,
disease	History of: prior coronary events 155; PTCA excluded; CABG excluded	3VD (\geq 70% stenosis in each major coronary artery system) or 2VD with a \geq 70% proxima
		LAD artery lesion Multivariate analysis: Cox proportional hazards regression model
		Outcome measures: Mortality; cardiac mortality; CA performed within 90 days of SPECT
		eaction incusaries. Fiortancy, cardiac mortancy, experiormed within 70 days of 51 ECT

Health Technology Assessment 2004; Vol. 8: No. 30

Study and methods	Participants	Test characteristics and outcome measures
Machecourt, 1994 ⁶²	Inclusion criteria: Patients with suspected stable	SPECT:
	CAD	Tracer: TI-201. Stress induced by: Exercise (bicycle) 1121 (58%), pharmacologically
Study design: Cohort	Exclusion criteria: Prior CABG or PTCA;	(dipyridamole) 805 (42%). Image interpretation: Visual. Equipment: Rotating gamma
(prospective)	revascularisation performed <2 months after	camera.
Method of recruitment:	SPECT; MI < I month; age >76 years; SPECT at	CA: No
Consecutive	rest; planar scintigraphy; missing administrative	Interval between tests: Stress ECG was part of SPECT test
Dates: Jan. 1987–Dec. 1989	data	Definition of positive SPECT test: Left ventricle divided into 6 segments, each segment
Follow-up: Mean 33 ± 10 months	Enrolled: 2013	classified as normal or abnormal
Country: France	Lost to follow-up: 87	Definition of positive stress ECG test: Horizontal or downsloping ST-segment
Focus : Prognostic value of SPECT	Analysed: 1926	depression > 1 mm
in patients with suspected stable	Age: 56.8 ± 9 years	Angiographic definition of significant CAD: N/S
CAD	Gender: M 1303, W 623	Multivariate analysis: Cox proportional hazards regression model
Note : A subset of these patients is	History of: MI 357; PTCA excluded;	Outcome measures: Main criteria – mortality; cardiac mortality. Ancillary criteria – non-
reported on in Vanzetto, 1999 ⁸⁴	CABG excluded	fatal MI; PTCA or CABG beyond the second month following the SPECT test
Marie, 1995 ⁶³ Study design : Cohort (retrospective) Method of recruitment : N/S Dates : 1982–1987 Follow-up : 70 ± 19 months Country : France Focus : Long-term prognostic value of SPECT in patients with known or suspected CAD compared with clinical history, exercise testing, CA and radionuclide ventricular angiography	Inclusion criteria: 1, Presence of known or suspected CAD and SPECT, CA and rest radionuclide angiographic results over a <1.5-month period; 2, subsequent medical therapy Exclusion criteria: Previous cardiac surgery or PTCA; congenital or valvular heart disease; hypertrophic or idiopathic dilated cardiomyopathy; decision to revascularise at hospital discharge; or revascularisation within 3 months Enrolled: 221 Lost to follow-up: 4 Analysed: 217 Age: 53 ± 9 (range 25–72) years Gender: M 188, W 29 History of: MI 143; PTCA excluded; CABG excluded	SPECT:Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual.Equipment: N/SCA: Method N/SInterval between tests: Within 1.5 monthsDefinition of positive SPECT test: TI-201 uptake scored using a 4-point scale on a 20-segment division of the left ventricle (0 = normal, 3 = severely reduced). Extent ofexercise defects: percent of segments with an uptake score ≥ 2 after exercise. Extent ofreversible defects: percent of segments with exercise defects with a ≥ 1 point decrease inthe uptake score at redistributionDefinition of positive stress ECG test: ≥ 1 mm horizontal or downsloping depressionoccurring 0.08 s after the J point compared with baseline valuesAngiographic definition of significant CAD: Number of diseased coronary segmentsand vessels calculated using $\geq 70\%$ and $\geq 50\%$ diameter reductionMultivariate analysis: Cox proportional hazards regression modelOutcome measures: Major ischaemic events (cardiac death or MI; other major cardiacevents)

continued

Study and methods	Participants	Test characteristics and outcome measures
Marwick, 1999 ⁶⁴ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : 1990–1995 Follow-up : Mean 2.4 \pm 1.5 years Country : USA Focus : Value of SPECT for prediction of cardiac mortality in men and women and whether this is independent of clinical evaluation and exercise testing Note : Shaw, 2000 ⁷⁹ reports on the same patient population and is considered as part of Marwick, 1999 ⁶⁴	Inclusion criteria: Patients with cardiac symptoms of known or suspected CAD Exclusion criteria: Recent hospitalisation for unstable angina, MI and coronary revascularisation Enrolled: 8411 Lost to follow-up: 0 Analysed: 8411 Age: M 60.3 ± 12, W 62.9 ± 12 years Gender: M 5009, W 3402 History of: MI 1428 (M 952, W 476); PTCA 571 (M 401, W 170); CABG 671 (M 501, W 170)	 SPECT: Tracer: TI-201 (17% of patients), MIBI (83% of patients). Stress induced by: Exercise (treadmill 7486 patients), pharmacologically (dipyridamole 925 patients). Image interpretation: Visual. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: Fixed defects: similar defects on both stress and redistribution images. Stress-induced defects: defects present in the stress image and absent in the redistribution image, or defects greater following stress than at redistribution. Fixed and stress-induced defects in each of the vascular territories of the 3 major coronary arteries coded 1, 2 or 3 Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Mortality; cardiac mortality
Miller, 1998 ⁶⁵ Study design: Cohort (retrospective) Method of recruitment: N/S Dates: Dec. 1985–Dec. 1993 Follow-up: Median duration of follow-up 5.8 years Country: USA Focus: Prognostic value of SPECT performed relatively early after CABG	Inclusion criteria: Patients receiving SPECT and undergone CABG within the 2 years preceding SPECT Exclusion criteria: Technically poor images, LBBB or paced ventricular rhythm on the rest ECG, valvular heart disease or PTCA before CABG Enrolled: 411 Lost to follow-up: 0 Analysed: 411 Age: 62 ± 9 years Gender: M 329, W 82 History of: MI 189; PTCA excluded; CABG 411	 SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: 14 short-axis segments. Redistribution: improved uptake of ≥ 1 grade. Mild fixed defects (score of 3 on stress and delayed images) considered normal. Ischaemia proximal to bypass graft insertion defined as redistribution confined to a basal segment or segments without redistribution in the apical or mid-segments of a coronary artery distribution. Definition of positive stress ECG test: ≥ 1 mm horizontal or downsloping ST-segment depression 0.08 s after the J point Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; PTCA/repeat CABG early (≤ 3 months following the SPECT test); PTCA/repeat CABG late (>3 months following the SPECT test)

Appendix 7

Study and methods	Participants	Test characteristics and outcome measures
Miller, 2001 ⁶⁶	Inclusion criteria: Symptomatic patients receiving	SPECT:
	SPECT and a second SPECT ≥ 6 months later	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual.
Study design: Cohort	without revascularisation or MI during this period	Equipment: N/S
(retrospective)	Exclusion criteria: Congenital, cardiomyopathic	CA: No
Method of recruitment: N/S	or valvular heart disease; prior PTCA or CABG;	Interval between tests: Stress ECG was part of SPECT test
Dates: Jan. 1989–Dec. 1991	LBBB, pacemaker, LVH or ventricular pre-	Definition of positive SPECT test: TI-201 uptake in 24 segments for resting and exercise
Follow-up: Median follow-up 4.9	excitation; technically poor SPECT images; or	SPECT graded on a 5-point scale ($0 = absent uptake$, $4 = normal uptake$). Summed stress
years	refusal of research authorisation	and resting scores calculated by adding the grades in each of the 14 short-axis segments.
Country: USA	Enrolled: 375 patients of whom 47 were	Summed reversibility score calculated as the difference between the summed resting and
Focus: Identification of high-risk	excluded because magnitude of ST-segment	stress scores
patients by worsening clinical,	depression was not retrievable	Definition of positive stress ECG test : ≥ 1 mm horizontal or downsloping ST-segment
exercise or SPECT variables	Lost to follow-up: 0	depression 0.08 s after the J point
	Analysed: 328	Angiographic definition of significant CAD: N/S
	Age: 62 ± 10 years	Multivariate analysis: Cox proportional hazards regression model
	Gender: M 262, W 113	Outcome measures : Mortality; non-fatal MI; early PTCA \leq 3 months of SPECT test; late
	History of: MI 65; PTCA excluded;	PTCA >3 months of SPECT test; early CABG \leq 3 months of SPECT test; late CABG
	CABG excluded	>3 months of SPECT test
Mishra, 1999 ⁶⁷	Inclusion criteria: Patients being evaluated for	SPECT:
· ····································	chest pain suspected of being due to CAD	Tracer: N/S. Stress induced by: N/S. Image interpretation: N/S. Equipment: N/S
Study design: Retrospective	Exclusion criteria : Previous revascularisation.	CA: Using standard techniques
comparative observational	cardiomyopathy or valvular heart disease	Interval between tests: CA within 3 months of SPECT (Group 2)
Method of recruitment: N/S	Enrolled: Group I (CA) 4572; group 2 (SPECT)	Definition of positive SPECT test: Presence, extent, site(s) and nature of abnormality
Dates: N/S	2022	(fixed or reversible)
Follow-up: 3 months for CA,	Lost to follow-up: N/S	Definition of positive stress ECG test: N/S
2 weeks for revascularisation	Analysed: Group I 4572; Group 2 2022	Angiographic definition of significant CAD: \geq 50% diameter stenosis in \geq 1 of the major vessels
Country : USA Focus : Downstream utilisation rate	Age : Group 59 ± 11; Group 2 57 ± 12 years Gender : Group M 62%, W 38%; Group 2 M	
in cohorts of patients with	Gender: Group 1 14 62%, W 38%; Group 2 14 55%, W 45%	Multivariate analysis: No
intermediate pretest probability of	History of: MI N/S; PTCA excluded;	Outcome measures : Coronary revascularisation (Group I); CA and coronary revascularisation (Group 2)
CAD, receiving either CA or	CABG excluded	(0) oup z)
SPECT for initial screening		

Inclusion criteria: Patients with suspected CAD	SPECT:
receiving SPECT	Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: N/S.
Exclusion criteria: N/S	Equipment: N/S
Enrolled: 2700	CA: Method N/S
Lost to follow-up: 0	Interval between tests: N/S
Analysed: 2700	Definition of positive SPECT test: N/S
Age: 59 \pm 13 years	Definition of positive stress ECG test: N/S
Gender: M 1510, W 1190	Angiographic definition of significant CAD: N/S
History of: MI 0; PTCA 0; CABG 0	Multivariate analysis: No
	Outcome measures: Mortality; non-fatal MI; PTCA; CABG; need for subsequent CA
	(following SPECT study)
Inclusion criteria: Prior CABG for angina	SPECT:
pectoris, SPECT and CA within 3 months of each	Tracer: TI-201. Stress induced by: Exercise (treadmill) 134 (53%), pharmacologically
other after CABG, and no repeat CABG within 3 months of SPECT	(adenosine 100 (39%), dipyridamole 21 (8%)). Image interpretation: N/S. Equipment: N/S
Exclusion criteria: Patients not receiving repeat	CA: Multiple projections using standard techniques
CA	Interval between tests: Within 3 months
Enrolled: 255	Definition of positive SPECT test: N/S
Lost to follow-up: 0	Definition of positive stress ECG test: N/S
Analysed: 255	Angiographic definition of significant CAD: \geq 50% diameter stenosis in any one of the
Age: 64 \pm 9 years	non-grafted coronary arteries, grafted vessels distal to the graft anastomoses, or in the
Gender: M 206, W 49	grafts
History of: MI (Q-wave) 64; PTCA N/S;	Multivariate analysis: Cox proportional hazards regression model
CABG 255	Outcome measures : Cardiac mortality; non-fatal MIPTCA or CABG >3 months after stress testing
	eceiving SPECT Exclusion criteria: N/S Enrolled: 2700 ost to follow-up: 0 Analysed: 2700 Age: 59 ± 13 years Gender: M 1510, W 1190 History of: MI 0; PTCA 0; CABG 0 Analysed: 250 Analysed: 255 Age: 64 ± 9 years Gender: M 206, W 49 History of: MI (Q-wave) 64; PTCA N/S;

Study and methods	Participants	Test characteristics and outcome measures
O'Keefe, 1998 ⁷⁰ Study design : Cohort (retrospective) Method of recruitment : Consecutive Dates : June 1991–Aug. 1993 Follow-up : Mean 19 ± 10 months Country : USA Focus : Outcomes of patients with mild or moderate ischaemia but without high-risk features on SPECT as a function of whether they were managed medically or invasively	Inclusion criteria: Patients with non-high-risk classification from SPECT Exclusion criteria: CA <90 days before SPECT Enrolled: 1352 (medically managed 1236, invasively managed 116) Lost to follow-up: 28 Analysed: 1324 Age: Medically managed 64.4 ± 10.2, invasively managed 61.8 ± 10.5 years Gender: M 1078, W 274 (medically managed M 974, W 262, invasively managed M 104, W 12) History of: MI 615 (medically managed 577, invasively managed 38); PTCA 743 (medically managed 679, invasively managed 64); CABG 375 (medically managed 347, invasively managed 28)	 SPECT: Tracer: TI-201 (97% of patients), MIBI (3% of patients). Stress induced by: Exercise (type N/S), pharmacologically (adenosine or dipyridamole or dobutamine). Image interpretation: Visual, quantitative. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: Perfusion defects scored: severe = 3, moderate = 2, mild/equivocal = 1, normal = 0. lschaemia: change in segmental score between stress and rest of 3–0, 3–1, 2–0 and 2–1. Non-reversible: scores of 3–3, 3–2 and 2–2. Scans categorised into 3 classifications: 1, high risk – two or three of multivessel ischaemia, ischaemia in the LAD coronary territory or abnormal lung uptake of thallium on the stress anterior view; 2, non-high risk – ischaemic but not meeting criteria for high risk; 3, normal/non-ischaemic Definition of positive stress ECG test: N/S Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI; PTCA or CABG excluding procedures performed within first 30 days in invasively managed group
Olmos, 1998 ⁷¹ Study design : Cohort (prospective) Method of recruitment : N/S Dates : 1986–1993 Follow-up : Up to 8 years, mean 3.7 \pm 2 years Country : USA Focus : Incremental prognostic value of exercise echocardiography and SPECT with clinical variables and ExECG in patients with suspected or known CAD	Inclusion criteria: Patients evaluated for suspected or known CAD Exclusion criteria: Recent MI (<2 months), valvular heart disease, dilated or hypertrophic cardiomyopathy or previous cardiac transplantation Enrolled: 248 Lost to follow-up: 23 Analysed: 225 Age: 56.3 ± 12 years Gender: M 189, W 59 History of: MI 86; PTCA/CABG 57	 SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Visual. Equipment: ADAC, ARC 3000-3300 large field-of-view, single-crystal, rotating gamma camera CA: Method N/S Interval between tests: Within 3 months (84 patients had CA) Definition of positive SPECT test: TI-201 uptake was scored: I = normal, 2 = mildly reduced, 3 = moderately reduced, 4 = severely reduced. Perfusion defects analysed for complete redistribution (ischaemia), no redistribution (fixed defect), or partial redistribution (mixed defect) Definition of positive stress ECG test: ≥ 1 mm horizontal or downsloping ST-segment depression 0.08 s after the J point Angiographic definition of significant CAD: N/S Multivariate analysis: Yes Outcome measures: Mortality; cardiac mortality; non-fatal MI; PTCA; CABG; unstable angina requiring hospitalisation; congestive heart failure; cardiac transplantation

Study and methods	Participants	Test characteristics and outcome measures
Parisi, 1998 ⁷⁴ Study design: Cohort Method of recruitment: N/S Dates: N/S Follow-up: 5 years Country: USA Focus: Prognostic ability of SPECT and ExECG after commonly accepted treatments in low-risk men with CAD	Inclusion criteria: Men with chronic stable angina referred for CA found to have SVD or 2VD and no prior revascularisation. Positive baseline test with stress ECG or SPECT required for study entry Exclusion criteria: N/S Enrolled: 328 of whom 3, with uninterpretable ECGs, were excluded Lost to follow-up: 3 Analysed: 297 Age: 60 years Gender: M 297 History of: MI N/S; PTCA excluded; CABG excluded	SPECT: Tracer: TI-201. Stress induced by: N/S. Image interpretation: Visual. Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: ≥ I regional perfusion deficit apparent in the exercise images Definition of positive stress ECG test: ≥ I mm exercise-induced ST-segment depression 0.08 s after the J point persisting for ≥ 15 s and reverting to baseline thereafter Angiographic definition of significant CAD: N/S Multivariate analysis: Yes Outcome measures: Mortality; MI; PTCA; CABG; occurrence of unstable angina
Pattillo, 1996 ⁷⁵ Study design : Cohort (prospective) Method of recruitment : N/S Dates : N/S Follow-up : 41 ± 22 months Country : USA Focus : Relative independent and incremental prognostic value of clinical evaluation, exercise testing, CA and SPECT with quantitative assessment	Inclusion criteria: Patients receiving SPECT, during symptom-limited exercise testing, and CA within 3 months of each other because of chest pain Exclusion criteria: Previous CABG, PTCA, acute MI within 3 months, unstable angina pectoris, or revascularisation within 3 months of exercise testing Enrolled: 732 Lost to follow-up: 0 Analysed: 732 Age: 59 ± 11 years Gender: M 519, W 213 History of: MI 343; PTCA excluded; CABG excluded	 SPECT: Tracer: TI-201. Stress induced by: Exercise (treadmill). Image interpretation: Quantitative. Equipment: N/S CA: Performed with standard techniques Interval between tests: Within 3 months Definition of positive SPECT test: Interpreted as normal or showing fixed or reversible abnormality, multivessel abnormality, left ventricular dilation and increased lung thallium uptake. Size of the perfusion abnormality determined from polar map plots, by sum of number of segments with abnormal perfusion pattern and sum of number of segments with reversible defects Definition of positive stress ECG test: Treadmill exercise score calculated according to the method of Mark and colleagues.^{136,137} A score of <-10 was considered high risk, -10 to 4 moderate risk and ≥5 low risk Angiographic definition of significant CAD: Number of vessels with ≥50% diameter stenosis and by the Gensini score. Gensini score based on the number, degree and sites of stenoses and collateral vessels. Score of <10 mild disease; 10–34 moderate disease and ≥35 severe disease Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI

Study and methods	Participants	Test characteristics and outcome measures
Schinkel, 2002 ⁷⁶ Study design : Cohort Method of recruitment : Consecutive Dates : 1994–2000 Follow-up : 37 ± 17 months Country : The Netherlands Focus : Prognostic value of dobutamine–atropine SPECT in patients with known or suspected CAD	Inclusion criteria: Patients with limited exercise capacity Exclusion criteria: 28 patients who underwent coronary revascularisation within 3 months of SPECT were excluded from the analysis Enrolled: 721 Lost to follow-up: 2 Analysed: 693 Age: 60 ± 10 years Gender: M 419, W 274 History of: MI 194; PTCA 111; CABG 100	SPECT:Tracer: Tc-99m tetrofosmin. Stress induced: Pharmacologically (dobutamine-atropine).Image interpretation: Semiquantitative. Equipment: PRISM 3000 XP (PickerInternational) triple-headed gamma camera systemCA: NoInterval between tests: Stress ECG was part of SPECT testDefinition of positive SPECT test: Reversible perfusion defect: perfusion defect on stressimages that partially or completely resolved at rest in ≥ 2 contiguous segments or slices inthe 47-segment model. Fixed perfusion defect: perfusion defect on stress images in the 47-segment model.Abnormal study: presence of a fixed or reversible perfusion defect (or both)Definition of positive stress ECG test: N/SAngiographic definition of significant CAD: N/SMultivariate analysis: Cox proportional hazards regression modelOutcome measures: Mortality; cardiac mortality; non-fatal MI; PTCA/CABG later than3 months following the SPECT test
Shaw, 1999 ⁷⁷ Study design: Prospective comparative observational Method of recruitment: N/S Dates: N/S Follow-up: Mean 2.5 ± 1.5 years Country: USA Focus: Observational differences in costs of care by the coronary disease diagnostic test modality	Inclusion criteria: Patients with typical cardiac symptoms enrolled into a registry of stable angina pectoris patients including patients receiving initial direct diagnostic CA and those receiving SPECT Exclusion criteria: Patients undergoing a predischarge evaluation or recently hospitalised for unstable angina, MI or revascularisation Enrolled: Group I (CA) 5423; Group 2 (MPI) 5826 Lost to follow-up: N/S Analysed: Group I 5423; Group 2 5826 Age: Group I 62 ± 12; Group 2 64 ± 12 years Gender: Group I M 62%, W 38%; Group 2 M 64%, W 36% History of: MI N/S; PTCA N/S; CABG N/S	SPECT: Tracer: TI-201 (17%), MIBI (83%). Stress induced by: Exercise (treadmill 4901); pharmacologically 925 (agent N/S). Image interpretation: Visual. Equipment: N/S CA: Method N/S Interval between tests: N/S Definition of positive SPECT test: Fixed defects: defects at rest and remained unchanged during stress. Reversible defects: new or worsening defects after stress. Perfusion defect extent coded as 0, 1, 2 or 3 vascular territory involvement Definition of positive stress ECG test: ≥ 1 mm of horizontal or downsloping ST-segment depression Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI; death or MI; revascularisation

continued

Study and methods	Participants	Test characteristics and outcome measures
Shaw, 1999 ⁷⁸ Study design : Prospective comparative observational Method of recruitment : Consecutive Dates : N/S Follow-up : 2.5 \pm 1.5 years and a minimum of 6 months after initial testing for each patient Country : USA Focus : Medical costs and clinical outcomes of women referred for CA or non-invasive stress myocardial imaging to evaluate chest pain, incremental costs of diagnostic testing and subsequent medical care of 2 testing strategies,	Inclusion criteria: Women referred for testing to evaluate known or suspected CAD based on stable chest pain consistent with angina pectoris Exclusion criteria: Women undergoing predischarge risk stratification after recent (<3 weeks) MI, prior coronary revascularisation, recent valvular disease, or cardiac catheterisation Enrolled: 4638 Lost to follow-up: 0 Analysed: 4638. Strategy 1. 3375, Strategy 2. 1263 Age: 66 ± 11 years Gender: W 4638 History of: MI N/S; PTCA excluded; CABG excluded	SPECT: Tracer: MIBI. Stress induced by: Exercise (type N/S), pharmacologically (dipyridamole) 525. Image interpretation: N/S. Equipment: N/S CA: Method N/S Interval between tests: N/S Definition of positive SPECT test: ≥ 1 reversible myocardial perfusion defect Definition of positive stress ECG test: ≥ 1 mm electrocardiographically detected ST-segment depression beyond baseline Angiographic definition of significant CAD: stenosis of >70% luminal diameter reduction Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI; revascularisation
and impact on cardiac outcomes Shaw, 2000 ⁷⁹ Study design : Cohort (prospective) Method of recruitment : N/S Dates : 1991–1996 Follow-up : Mean 2.5 \pm 1.5 years Country : USA Focus : Value of non-invasive risk stratification relative to clinical assessment in a stable chest pain population Note : this study reports on the same patient population as Marwick, 1999, ⁶⁴ which is considered as the primary report	Inclusion criteria: Patients with typical cardiac symptoms referred for SPECT Exclusion criteria: Undergoing a predischarge evaluation, or recently hospitalised for acute coronary syndromes or coronary revascularisation Enrolled: 8411 Lost to follow-up: N/S Analysed: 8411 Age: 69 ± 11 years Gender: M 5009, W 3402 History of: MI 1414; PTCA 4458; CABG 5467	 SPECT: Tracer: TI-201 (17% of patients); MIBI (83% of patients). Stress induced by: Exercise (treadmill); pharmacologically (adenosine or dipyridamole). Image interpretation: Visua Equipment: N/S CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: Fixed defects: defects at rest and unchanged during stress. Ischaemic: new or worsening defects after stress. Perfusion defect extent coded a 0, 1, 2 or 3 vascular territory abnormalities Definition of positive stress ECG test: ≥ 1 mm horizontal or downsloping ST-segment depression at 80 ms after the J point Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; MI; coronary revascularisation

Appendix 7

Study and methods	Participants	Test characteristics and outcome measures
Stratmann, 1994 ⁸⁰ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : Mar. 1991–Sept. 1992 Follow-up : 13 ± 5 months (range 1–24 months), ≥ 6 months for patients without cardiac events Country : USA Focus : Relative prognostic value of exercise stress with SPECT and clinical risk variables in patients presenting for evaluation of stable chest pain consistent with angina pectoris	 Inclusion criteria: Patients with stable chest pain consistent with angina pectoris referred for exercise testing and SPECT Exclusion criteria: Unstable angina, acute MI ≤ 3 months before testing, or early (<6 months after SPECT) revascularisation Enrolled: 531 Lost to follow-up: 10 Analysed: 521 Age: No cardiac event 59 ± 11; cardiac event 62 ± 8 years Gender: No cardiac event M 487, W 10; cardiac event M 24 History of: MI No cardiac event 172; cardiac event 12; PTCA N/S; CABG N/S 	SPECT:Tracer: MIBI. Stress induced by: Exercise (treadmill). Image interpretation: Visual.Equipment: Siemens Orbiter-75 single-headed SPECT gamma cameraCA: NoInterval between tests: Stress ECG was part of SPECT testDefinition of positive SPECT test: Presence of perfusion defect. Fixed defect: defectpresent and unchanged on both stress and rest images. Reversible defect: defect on stressimages absent or less prominent on rest imagesDefinition of positive stress ECG test: Horizontal or downsloping ST-segmentdepression $\geq 1 mm$ Angiographic definition of significant CAD: \geq 50% stenosis (as determined in ≥ 2 angiographic views)Multivariate analysis: Cox proportional hazards regression modelOutcome measures: Cardiac mortality; non-fatal MI; PTCA/CABG performed ≥ 6 monthsafter exercise testing; survival free of cardiac events at 1 year
Travin, 1995 ⁸¹ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : N/S Follow-up : 15 ± 10 months (range < 1–37 months) Country : USA Focus : Clinical utility of SPECT in patients undergoing exercise stress testing after recent acute MI	Inclusion criteria: Patients who had an acute MI within 14 days and were referred for SPECT Exclusion criteria: N/S Enrolled: 134 of whom 33 underwent coronary revascularisation Lost to follow-up: 14 Analysed: 87 Age: 60.5 ± 11.9 years Gender: M 90, W 44 History of: MI 17 although all patients in the study had recent MI; PTCA N/S; CABG N/S	 SPECT: Tracer: MIBI. Stress induced by: Exercise (treadmill). Image interpretation: Visual. Equipment: ADAC ARC 4000 or Cirrhus camera. CA: No Interval between tests: Stress ECG was part of SPECT test Definition of positive SPECT test: Left ventricular myocardium divided into 5 segments. Each segment classified as normal, ischaemic (perfusion defect on stress images that improved ≥ 30% visually on rest images) or fixed Definition of positive stress ECG test: ≥ 3 consecutive beats showing ≥ 0.1 mV of horizontal or downsloping ST-segment depression beyond baseline that persisted for ≥ 80 ms after the J point Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality; non-fatal MI; hospital admissions for unstable angina

Study and methods	Participants	Test characteristics and outcome measures
Underwood, 1999 ⁸²	Inclusion criteria : Patients newly presenting with symptoms suggestive of CAD	SPECT: Tracer: N/S. Stress induced by: N/S. Image interpretation: N/S. Equipment: N/S
Study design: Retrospective	Exclusion criteria: Presenting with MI or	CA: Yes
observational comparison Method of recruitment:	unstable angina; those in whom coronary disease	Interval between tests: N/S
Consecutive within each centre	had been previously confirmed or excluded Enrolled : Strategy 1, 146; strategy 2, 131;	Definition of positive SPECT test : Taken as recorded in the notes Definition of positive stress ECG test : N/S
Dates : Presenting after 1 July 1993	strategy 3, 48; strategy 4, 76	Angiographic definition of significant CAD: N/S
Follow-up: 2 years	Lost to follow-up: Strategy 1, 2; strategy 2, 1;	Multivariate analysis: No
Country : France, Germany, Italy,	strategy 3, 0; strategy 4, 1	Outcome measures: Hard events – mortality; MI; occurrence of unstable angina. Soft
UK Focus: Cost-effectiveness of 4	Analysed: Strategy 1, 144; strategy 2, 130; strategy 3, 48; strategy 4, 75	events – PTCA; CABG; worsening of angina; complications; other
diagnostic strategies in patients	Age (mean): Strategy 1, 55; strategy 2, 53;	
newly presenting with possible	strategy 3, 61; strategy 4, 61 years	
CAD, and to compare cost-	Gender: Strategy 1, M 85, W 61; strategy 2,	
effectiveness in centres that	M 85, W 46; strategy 3, M 31, W 17; strategy 4,	
routinely use MPI with those that do not	M 48, W 28 History of: MI excluded; PTCA excluded;	
	CABG excluded	
Vanzetto, 1999 ⁸³	Inclusion criteria: NIDDM patients presenting	SPECT:
	with ≥ 2 of the following risk factors: age	Tracer : TI-201. Stress induced by : Exercise (bicycle, $n = 78$); pharmacologically
Study design : Cohort (prospective)	≥65 years; active smoker; high blood pressure, hypercholesterolaemia or LDL cholesterol	(dipyridamole, $n = 80$). Image interpretation: Visual. Equipment: N/S CA : No
Method of recruitment: N/S	>3.10 mmol/l; history of CAD; PVD; abnormal	Interval between tests: Stress ECG was part of SPECT test
Dates: 1989–1994	rest ECG; microalbuminuria	Definition of positive SPECT test: Left ventricle divided into 9 segments. Each segment
	Exclusion criteria: Myocardial revascularisation	classified as normal or abnormal, and if abnormal as reversible (partial or total normalisation
3–78 months) Country : France	<3 months; episode of unstable angina <3 months; acute MI <3 months; severe angina	after reinjection) or fixed (persistent defect after reinjection) Definition of positive stress ECG test : Horizontal or downsloping ST-segment
Focus: Prognostic value of exercise		depression >1 mm measured 0.08 s after the point. In patients with ST segment
stress testing and SPECT for the	Enrolled: 158	abnormalities on rest ECG, stress ECG positive when ST depression >2 mm during
prediction of cardiac events in a	Lost to follow-up: 0	exercise
homogeneous cohort of high-risk	Analysed: 158	Angiographic definition of significant CAD: N/S
NIDDM patients	Age: 63 ± 9 years Gender: M 105, W 53	Multivariate analysis : Cox proportional hazards regression model Outcome measures : Cardiac mortality; non-fatal MI; need for revascularisation;
	History of: MI 20; PTCA N/S; CABG N/S	occurrence of unstable angina; acute congestive heart failure
	-	

PVD, peripheral vascular disease.

continued

Study and methods	Participants	Test characteristics and outcome measures
Vanzetto, 1999 ⁸⁴ Study design : Cohort (prospective) Method of recruitment : N/S Dates : 1987–1989 Follow-up : 72 ± 18 months (11 days to 8 years) Country : France Focus : Prognostic value of SPECT in patients with low to intermediate likelihood of future cardiac events at long-term follow-up; incremental prognostic value of SPECT over clinical and ETT data Note : This study focuses on a subset of the patient population reported on by Machecourt, 1994 ⁶²		SPECT:Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Visual.Equipment: N/SCA: NoInterval between tests: N/S whether stress ECG was within SPECT testDefinition of positive SPECT test: Left ventricle divided into 6 segments. Segmentsscored as abnormal in the event of decreased tracer uptake in a surface large enough to beconsidered significant. Abnormal segments defined as reversible (partial or totalnormalisation on redistribution images) or fixedDefinition of positive stress ECG test: Positive: horizontal or downsloping ST-segmentdepression of 1–2 mm measured 0.08 s after the J point, occurring for a workload >75 W,with or without chest pain. Strongly positive: ST-segment depression >2 mm at anyworkload or >1 mm for a workload ≤75 W or ST depression postexercise duration >6minutesAngiographic definition of significant CAD: N/SMultivariate analysis: Cox proportional hazards regression modelOutcome measures: Mortality; cardiac mortality; non-fatal MI; PTCA/CABG >3 monthsafter SPECT
Wagner, 1996 ⁸⁵ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : Feb. 1992–Dec. 1994 Follow-up : Mean 13.5 months Country : Germany Focus : Relative predictive power of 3 types of stress tests without knowledge of contributory risk factors I year after transmural MI and subsequent to treatment with thrombolytics	Inclusion criteria: Patients hospitalised with acute transmural MI, treated with thrombolytic therapy, clinically stable in the post-MI course and able to exercise Exclusion criteria: Death, unstable angina, >75 years, severe concomitant disease, or refusal Enrolled: 106 Lost to follow-up: 4 Analysed: 102	SPECT: Tracer: MIBI. Stress induced by: Exercise (bicycle). Image interpretation: Visual. Equipment: APEX 409 AG system CA: Judkins technique Interval between tests: Within 18 days Definition of positive SPECT test: Persistent defects: defects at stress and at rest. Reversible defects (ischaemia): difference from rest ≥ 10% Definition of positive stress ECG test: Horizontal or downsloping ST-segment depression ≥ 1 mm in any lead measured 80 ms after the J point. Occurrence of angina pectoris an additional parameter for stress-induced ischaemia Angiographic definition of significant CAD: Stenoses of ≥ 50% of the arterial intraluminal diameter Multivariate analysis: Yes Outcome measures: Mortality; PTCA; CABG; occurrence of unstable angina; occurrence of reinfarction

continued

Study and methods	Participants	Test characteristics and outcome measures
Zanco, 1995 ⁸⁶ Study design : Cohort (prospective) Method of recruitment : Consecutive Dates : Jan. 1988–Dec. 1990 Follow-up : ≥ 36 months; mean 43 months (range 36–60 months) Country : Italy Focus : Incremental prognostic value of SPECT in CAD patients	Inclusion criteria: Patients who underwent SPECT for diagnosis or evaluation of CAD Exclusion criteria: Previous revascularisation Enrolled: 176 Lost to follow-up: 29 Analysed: 147 Age: 53 ± 9 (range 27–68) years Gender: M121, W 26 History of: MI 61; PTCA excluded; CABG excluded	SPECT:Tracer: MIBI. Stress induced by: Exercise (bicycle). Image interpretation: Visual.Equipment: Single-head large field-of-view rotating gamma camera.CA: NoInterval between tests: Stress ECG was part of SPECT testDefinition of positive SPECT test: 18 segments per study. Each segment scored on a 4-point scale, in comparison with a linear colour scale (0 = activity >80% of the maximum, $l = 80-50\%$, $2 = 50-20\%$, $3 = <20\%$). Parameters evaluated: (1) presence of abnormal scan (fixed or reversible defect); (2) presence of reversible defect (increase ≥ 2 in total score of stress images compared with rest images); (3) extent of stress perfusion defect (number of segments with score ≥ 1); (4) score of all segments in stress images)Definition of positive stress ECG test: N/SAngiographic definition of significant CAD: N/SMultivariate analysis: YesOutcome measures: Cardiac mortality; non-fatal MI; occurrence of unstable angina
Zellweger, 2002 ⁸⁷ Study design : Cohort (retrospective) Method of recruitment : Consecutive Dates : N/S Follow-up : Mean 667 ± 185 days; min. I year Country : USA Focus : I, Incremental prognostic value of SPECT over clinical assessment; 2, potential usefulness and cost-effectiveness in clinical risk stratification; 3, impact of SPECT on the subsequent referral to early CA	Inclusion criteria: Patients with remote prior MI receiving their first SPECT study >6 months after MI Exclusion criteria: Early (<60 days after SPECT) revascularisation Enrolled: 1663 Lost to follow-up: 59 Analysed: 1413 Age: Exercise 66.8 ± 10.5, adenosine 71.9 ± 10.5 years Gender: M 1068, W 345 History of: MI 1413; PTCA 383; CABG 571	Tracer : TI-201 or MIBI. Stress induced by : Exercise [treadmill 899 (64%), pharmacologically, adenosine 514 (36%)]. Image interpretation : Semiquantitative.

Health Technology Assessment 2004; Vol. 8: No. 30

continued

Study and methods	Participants	Test characteristics and outcome measures
Zerahn, 2000 ⁸⁸	Inclusion criteria: Patients referred for SPECT	SPECT:
	Exclusion criteria: N/S	Tracer: MIBI. Stress induced by: Exercise (bicycle). Image interpretation: Visual.
Study design: Cohort	Enrolled: 697	Equipment: N/S
(prospective)	Lost to follow-up: N/S	CA: No
Method of recruitment:	Analysed: N/S	Interval between tests: Stress ECG was part of SPECT test
Consecutive	Age : 56.9 \pm 9.6 years	Definition of positive SPECT test: Reversible or irreversible perfusion defect present
Dates : Jan. 1991–Aug. 1997	Gender: N/S	Definition of positive stress ECG test: Horizontal or downsloping ST-segment
Follow-up: Mean 59.1 months ±	History of: MI 356; PTCA 6; CABG 30	depression 80 ms after the J point of \geq 1 mm compared with the rest ECG
22.1. Follow-up until death or end	•	Angiographic definition of significant CAD: N/S
Dec. 1998		Multivariate analysis: Cox proportional hazards regression model
Country: Denmark		Outcome measures: Cardiac mortality
Focus: Prognostic power of SPECT		,
in combination with ExECG		

ECG-gated SPECT

Study and methods	Participants	Test characteristics and outcome measures
Sharir, 1999 ⁸⁹	Inclusion criteria : Patients receiving separate acquisition gated SPECT	SPECT: Tracer: TI-201 (rest), MIBI (stress). Stress induced by: Exercise (treadmill, 1029);
Study design: Cohort Method of recruitment: Consecutive Dates: N/S Follow-up: Minimum of I year. Mean follow-up interval 569 ± 106 days (range 365–968 days) Country: USA Focus: Incremental prognostic value of poststress ejection fraction and left ventricular volume, measured by gated SPECT, over clinical, exercise and perfusion data in predicting cardiac death in patients referred for SPECT	Exclusion criteria: Non-ischaemic cardiomyopathy or revascularised <60 days after SPECT Enrolled: 1924 Lost to follow-up:	pharmacological (adenosine, 651). Image interpretation: Quantitative, visual. Equipment: 2-detector (Vertex, ADAC), 3-detector (PRISM, Picker) or 1-detector (Orbiter, Siemens) camera CA: No Interval between tests: N/S Definition of positive SPECT test: Perfusion images scored on 20-segment, 5-point model for LV (0 = normal uptake, 4 = no uptake). SSS and SRS calculated by adding the scores of segments in stress and rest images, respectively. SDS derived as the difference between stress and rest scores. SSS <4 normal, 4–13 mildly/moderately abnormal, >13 severely abnormal Definition of positive stress ECG test: Horizontal or downsloping ST-segment depression ≥ 1 mm or upsloping ≥ 1.5 mm at 80 ms after the J point was considered positive. Failure to achieve 85% of maximal predicted heart rate or ischaemic ECG response during exercise was followed by conversion to an adenosine stress test Angiographic definition of significant CAD: N/S Multivariate analysis: Cox proportional hazards regression model Outcome measures: Cardiac mortality, non-fatal MI, PTCA later than 60 days following SPECT, CABG later than 60 days following SPECT
Shirai, 2002 ⁹⁰ Study design: Prospective observational comparison Method of recruitment: Consecutive Dates: Jan. 1999–Oct. 2000 Country: Japan Focus: Incremental diagnostic value of worsening of regional wall motion, assessed by an automated algorithm in ECG-gated SPECT, over perfusion data for detection of multivessel CAD	Inclusion criteria: Patients with normal sinus rhythm and known or suspected CAD who received SPECT and CA Exclusion criteria: Previous CABG Enrolled: 201 Analysed: 201 Age: 63 ± 10 years Gender: M 153, W 48 History of: MI 63; PTCA 97; CABG Excluded	SPECT: Tracer: TI-201. Stress induced by: Exercise (bicycle). Image interpretation: Visual (perfusion defects and LV regional wall motion). Quantitative (LV ejection fraction). Equipment: 2-detector gamma camera (Vertex, ADAC). CA: Yes. Method N/S Interval between tests: Within 10 weeks Definition of positive SPECT test: LV divided into 9 segments. TI-201 uptake of each segment assessed with a 4-point scoring system (3 = normal, 0 = severely reduced or absent). Reversible perfusion defect: ≥ 1 grade improvement in any segment on the delayed images or reinjection images compared with the initial images. Regional wall motion: Regional wall motion graded as 3 = normal or hyperkinetic, 2 = mildly hypokinetic, 1 = severely hypokinetic, 0 = akinetic or dyskinetic. Worsening of wall motion: ≥ 1 grade worsening in any segment on initial images compared with rest images. Individual segments assigned to 3 coronary territories Angiographic definition of significant CAD: ≥ 70% narrowing of the internal diameter of the LAD, the LCX, the RCA or their major branches and ≥ 50% narrowing of the left main coronary artery. Multivessel disease: significant LMD or 3VD or 2VD Outcome measures: TPs, FPs, TNs, FNs, sensitivity, specificity, diagnostic accuracy

Attenuation-corrected SPECT

Study and methods	Participants	Test characteristics and outcome measures
Gallowitsch, 1998 ⁹¹	Inclusion criteria: Patients in whom CA was	SPECT:
	planned because of suspected CAD	Tracer: TI-201. Stress induced by: Exercise (treadmill, 69); pharmacological
Study design: Prospective	Exclusion criteria: LBBB	(dipyridamole, 39). Image interpretation: Visual, quantitative. Equipment: Biplane high-
observational comparison	Enrolled: All: 107	resolution gamma camera (APEX SP-X , Cardia-L, Elscint).
Method of recruitment:	Analysed: 107	CA: Seldinger technique
Consecutive	Age : All: 63.8 ± 9.5 (range 33–77) years	Interval between tests: 1–14 days
Dates: N/S	Gender: All: M 69, W 38	Definition of positive SPECT test: Positivity and reversibility on the redistribution
Country: Austria	History of: MI 42; PTCA 22; CABG 8	images. Semiquantitative analysis using polar maps for non-corrected and AC images.
Focus: Sensitivity and specificity of		Segmental perfusion defects classified as moderate (50–75% of maximal counts), severe
AC SPECT, impact on the extent		(25–50%) or complete (0–25%). Extent of ischaemia determined by number of segments
and severity of perfusion		affected out of 31 segments. Segments assigned to vascular territories
abnormalities and comparison with		Angiographic definition of significant CAD: \geq 70% narrowing of lumen diameter
CA		Outcome measures: TPs, FPs, TNs, FNs, false negatives, sensitivity, specificity

LCX, left circumflex; LV, left ventricular; LVH, left ventricular hypertrophy; M, men; MET, metabolic equivalents; N/S, not stated; RBBB, right bundle branch block; RCA, right coronary artery; RVH, right ventricular hypertrophy; SD, standard deviation; SDS, summed difference score; SRS, summed rest score; SSS, summed stress score; W, women.

Appendix 8

Results of included studies of effectiveness

Diagnostic studies

Study	Definition of CAD (% stenosis)	Test	No. of patients	Sensitivity	Specificity	Accuracy	True positives	False positives	False negatives	True negatives
Beygui, 2000 ²²	≥ 50	SPECT Stress ECG	79 79	0.63 0.51	0.77 0.62	0.70 0.58	48 33	24 43	28 32	79 71
Chae, 1993 ²³	≥ 50	SPECT Stress ECG	243 243	0.71 0.25	0.65 0.38	0.29	44	42	131	26
Daou, 2002 ²⁴	≥ 50	SPECT Stress ECG	338 338	0.63 0.47	0.77 0.64	0.66 0.51	167 121	17 29	98 137	56 51
De, 2002 ²⁵	≥ 70	SPECT Stress ECG	55 55	0.67 0.44	0.30 0.73	0.39 0.65	8 15	26 23	4 19	 62
Gentile, 2001 ²⁶	≥ 60	SPECT Stress ECG	32 32	0.93 0.85	0.54 0.58	0.86 0.80	101 92	 0	7 16	3 4
Hamasaki, 1996 ²⁷	≥ 60	SPECT Stress ECG	125 125	0.78 0.83	0.78 0.65	0.78 0.72	37 39	17 27	10 8	61 51
Hambye, 1996 ²⁸	≥ 50	SPECT Stress ECG	128 128	0.82	0.76					
	≥ 70	SPECT Stress ECG	28 28							
Hecht, 1990 ²⁹	≥ 50	All patients: SPECT Stress ECG With complete revascularisation:	6 6	0.92 0.51	0.76 0.65	0.85 0.57	61 35	12 17	5 33	39 31
		SPECT Stress ECG With incomplete revascularisation:	89 89	0.93 0.52	0.77 0.65	0.88 0.57	54 27	7 13	4 25	24 24
		SPECT Stress ECG	27 27	0.93 0.5	0.77 0.61	0.85 0.56	3 7	3 5	l 7	10 8
Huang, 1992 ³⁰	≥ 50	SPECT Stress ECG	79 79	0.87 0.5	0.8 0.76	0.86 0.54	34 77	5 6	20 77	20 19
Kajinami, 1995 ³¹	≥ 75	SPECT Stress ECG	25 I 25 I	0.82 0.74	0.59 0.75	0.71 0.74	110 98	48 29	23 35	70 89
Karlsson, 1995 ³²	≥ 50	SPECT Stress ECG	70 70	0.68 0.82	0.65 0.63					
										continue

Study	Definition of CAD (% stenosis)	Test	No. of patients	Sensitivity	Specificity	Accuracy	True positives	False positives	False negatives	True negatives
Khattar, 1998 ³³	≥ 50	SPECT Stress ECG	100 100	0.68 0.7	0.72 0.41	0.7 0.57	41 39	 26	19 17	29 18
Koskinen, 1987 ³⁴	≥ 50	SPECT Stress ECG	100 100	0.9 0.63	0.1 0.8	0.82 0.65	81 57	9 2	9 33	l 8
Lind, 1990 ³⁵	>50	SPECT Stress ECG	157 46	0.91 0.43	0.96	0.94 0.43	72 20	3 0	7 26	75 0
Mairesse, 1994 ³⁶	>50	SPECT Stress ECG	29 29	0.76 0.42	0.65 0.83	0.72 0.57	63 35	16 8	20 48	30 38
McClellan, 1996 ³⁷	≥ 50	SPECT Stress ECG	303	0.7	0.57	0.69	193	12	82	16
Michaelides, 1999 ³⁸	\geq 70 (\geq 50 for LMD)	SPECT Stress ECG	245 245	0.93 0.66	0.82 0.88	0.91 0.69	96 39	6 4	15 72	28 30
Nallamothu, 1995 ³⁹	≥ 50	SPECT Stress ECG	321 321	0.8 0.46	0.68 0.59	0.79 0.49	216 114	17 30	51 133	37 44
Psirropoulos, 2002 ⁴⁰	\geq 50 LMD	SPECT Stress ECG	606 606	0.93 0.92	0.44 0.43	0.73 0.73	338 335	36 38	26 28	106 105
Santana-Boado, 1998 ¹⁸	>50	All patients: SPECT Stress ECG Men: SPECT Stress ECG	163 163 100 100	0.91 0.67 0.93 0.69	0.9 0.71 0.88 0.8	0.91 0.69 0.92 0.71	88 54 70 55	7 24 3 4	8 27 5 25	60 58 22 16
		Women: SPECT Stress ECG	63 63	0.86 0.61	0.9 0.67	0.89 0.65	8 	4	3 7	38 30
Vaduganathan, 1996 ⁴¹	≥ 50	SPECT Overall performance with:	9							
(LBBB – no stress ECG performed)		Exercise Adenosine Dobutamine LAD:		0.91 0.89 0.92	0.2 0.67 0.5	0.64 0.84 0.89	43 34 23	24 4 I	4 4 2	6 8 1
		LAD: Exercise Adenosine		0.88 0.79	0.36 0.81	0.58 0.8	29 23	28 4	4 6	6 7

Prognostic studies

Study	Results					
Amanullah, 1998 ⁴²	Multivariate analysis:Independent predictors of early revascularisationVariable χ^2 Reversible perfusion defects43Extent of CAD by angiography23Angina during exercise10	ר:				
	Rate of early revascularisation: 48% in patients v exercise-induced angina or reversible defects (p		sion defects, angina d	uring exercise and	MVD; 12% in patie	nts with SVD and no
Amanullah, 1999 ⁴³	Cox multivariate analysisIndependent predictors of outcomeSPECT score6 ($p = 0.0$	02)				
	Cardiac event rate at 30 months: 30% in the hig 2–4); 7% in the low-risk group (SPECT score 0-				ermediate risk grou	o (SPECT score
Ben-Gal, 2001 ⁴⁴	Multivariate analysis : Logistic regression models were fitted to the da independent predictor of adverse cardiac events				allium SPECT scan io	lentified as the only
Berman, 1995 ⁴⁵	Multivariate analysis : No SPECT provided incremental prognostic value in likelihood of CAD, those with a normal scan had greater stratification occurred in the patients wit uninterpretable ExECG responses an abnormal s $(\chi^2 = 7, p = 0.01)$. A normal or equivocal scan p < 0.001	d a significantly lower th an intermediate to scan and a low pre-E	hard event rate than high post-ETT likelih TT likelihood of CAE	those with an abr nood of CAD (χ^2) significantly strat	formal scan ($\chi^2 = 7$ = 18, $p < 0.001$). In fied patients with re	p = 0.007). Even patients with espect to total events
Candell-Riera, 1998 ⁴⁶	Cox multivariate analysis : Neither ST-segment depression > 1 mm during defects predictive of cardiac events only when t					e reversible SPECT
Chatziioannou, 1999 ⁴⁷	Cox multivariate analysis Indicator of risk of adverse cardiac events Abnormal SPECT ExECG ExECG + Duke treadmill score ExECG + Duke treadmill score + SPECT	Global χ ² 13.2 0.05 0.17 13.5	\ U	95% Cl 3 to 23 0.4 to 3 provement over Ex provement over Sf	,	
						continued

Study	Results					
	Patients with known CAD:	Global χ^2	RR	95% CI	Þ	
	Abnormal SPECT	5	4	l to l4	0.02	
	ExECG	0.2	0.8	0.2 to 2.3	0.6	
	ExECG + Duke treadmill score	0.8	(no significant i	mprovement over l	ExECG alone)	
	ExECG + Duke treadmill score + SPECT	5.4	(U	mprovement over S	,	
Chiamvimonvat, 2001 ⁴⁸	Multivariate analysis:					
	Prediction of cardiac events with a multivariate				bles	
		OR	95% CI	þ		
	Presence of scintigraphic reversibility	5.04	2.01 to 12.66	0.0006		
	Presence of multivessel stenoses $=$ 70%	2.64	1.34 to 5.21	0.003		
	Incremental prognostic power (depicted by glo			clinical model in pr	edicting all cardiac even	ts after MI:
		χ^2	Þ			
	1. Clinical variable	3.3				
	2. Clinical + CA variables	14.5	<0.05 compare			
	3. Clinical + SPECT variables	20.5	< 0.05 compare			
	4. Clinical + CA + SPECT variables	29.4	< 0.05 compare	ed with 3		
Diaz, 2001 ⁴⁹	Cox multivariate analysis:					
	Nuclear and exercise predictors of risk of deat	h after adjustment f	or potential confound	lers including ECG	findings of Q waves:	
	Variable	Adjusted HR	95% CI	Þ		
	Intermediate-risk nuclear scan	1.50	1.28 to 1.76	<0.0001		
	High-risk nuclear scan	2.13	1.76 to 2.56	<0.0001		
	Poor or fair fitness	2.34	2.00 to 2.76	< 0.000 I		
	Abnormal heart rate recovery	1.60	1.37 to 1.87	<0.0001		
Gibbons, 1999 ⁵⁰	Cox multivariate analysis:					
	Variables demonstrating significant ($p < 0.01$)	independent associa	tion with time to card	diac death:		
	Variable	χ^2	Þ	OR	95% CI	
	Near normal SPECT scan	14.9	0.0001	9.3	3.0 to 28.7	
	Cardiac enlargement	7.3	0.007	4.3	1.5 to 12.2	
	No association existed between treadmill scor	e and cardiac morta	lity			
Giri, 2002 ^{5⊺}	Cox multivariate analysis:					
	Predicting variables	Cardia	ic death	Cardiac d	eath or MI	
		χ^2	þ	χ^2	Þ	
	Diabetes	0.37	0.55	2.4	0.13	
	Clinical risk	52.2	0.00001	16.1	0.0001	
	Number of ischaemic SPECT defects	39.2	0.00001	40.9	0.00001	
	Number of fixed SPECT defects	54.6	0.00001	30.8	0.00001	
		51.0	0.00001	55.0	0.00001	
						co

exercisMultivHachamovitch, 199653Cox m ResultsClinical Clini	e ECG results ariate analysis: No ultivariate analysis: No ultivariate analysis: of determination of incremental variables + exercise variables + exercise + SPECT variables eas under the ROC curves were vas significantly greater than that a thigh risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% CI 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % CI 1.9 to 6.9 for high (>0.85) ultivariate analysis: ox proportional hazards model w	prognostic value in men and χ^2 Men 56 75 90* * $p < 0.0001$ cor compared for predicting even for men (0.71 ± 0.03, $p < 0.000$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^2 = 109$, $p < 0.0001$), as independent of underlying p likelihood of CAD; OR 8.0, 95 p prescan likelihood of CAD]	women for the 3 models Women 48 75 120* mpared with clinical + ex nts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal v . This significant difference patient characteristics and	xercise ress score. The area under the curve in wom emonstrating that SPECT is better able to ide	en (0.84 entify n 22.8, gories, 5.1, 95% CAD; O
Hachamovitch, 1996 S3Cox m ResultsClinical Clinical Clinical Clinical Clinical Clinical Clinical Clinical The arc 0.03) w womerThe arc 0.03) w womerSPECT Mantel demon Cl 2.2 - 3.6, 95Hachamovitch, 1998 S4Cox m The Co contain χ^2 (p consideHachamovitch, 2002 S5Cox m	variables + exercise variables + exercise variables + exercise variables + exercise + SPECT variables eas under the ROC curves were vas significantly greater than that a thigh risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% CI 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % CI 1.9 to 6.9 for high (>0.85) wittivariate analysis: bx proportional hazards model w	χ^{2} Men 56 75 90* * $p < 0.0001$ cor compared for predicting even for men (0.71 ± 0.03, $p < 0.0$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^{2} = 109, p < 0.0001$). as independent of underlying p likelihood of CAD; OR 8.0, 95 prescan likelihood of CAD]	2 Women 48 75 120* mpared with clinical + ex nts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal v . This significant difference patient characteristics and	xercise ress score. The area under the curve in wom emonstrating that SPECT is better able to id ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; C
ResultsClinical Clinical Clinical Clinical Clinical Clinical Clinical The arc 0.03) w womerSPECT Mantel demon Cl 2.2 · 3.6, 95Hachamovitch, 1998 StateHachamovitch, 1998 StateCox m The Co contain χ^2 (p consideHachamovitch, 2002 StateCox m Cox m Conside	of determination of incremental variables + exercise variables + exercise + SPECT variables eas under the ROC curves were vas significantly greater than that a high risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% CI 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % CI 1.9 to 6.9 for high (>0.85) wiltivariate analysis: ox proportional hazards model w	χ^{2} Men 56 75 90* * $p < 0.0001$ cor compared for predicting even for men (0.71 ± 0.03, $p < 0.0$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^{2} = 109, p < 0.0001$). as independent of underlying p likelihood of CAD; OR 8.0, 95 prescan likelihood of CAD]	2 Women 48 75 120* mpared with clinical + ex nts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal v . This significant difference patient characteristics and	xercise ress score. The area under the curve in wom emonstrating that SPECT is better able to id ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; C
Clinical Clinical Clinical The arc 0.03) w womer SPECT Mantel demon Cl 2.2 3.6, 95 Hachamovitch, 1998 ⁵⁴ Cox m The Co contain χ^2 ($p < conside$ Hachamovitch, 2002 ⁵⁵ Cox m	+ exercise variables + exercise + SPECT variables eas under the ROC curves were vas significantly greater than that a thigh risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% Cl 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % Cl 1.9 to 6.9 for high (>0.85) ultivariate analysis : ox proportional hazards model w	56 75 90* * $p < 0.0001$ cor compared for predicting even for men (0.71 ± 0.03, $p < 0.0$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^2 = 109$, $p < 0.0001$), as independent of underlying p likelihood of CAD; OR 8.0, 95 p prescan likelihood of CAD]	48 75 120* mpared with clinical + ex ts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal . This significant difference patient characteristics and	ress score. The area under the curve in wom emonstrating that SPECT is better able to ide ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; C
Clinical Clinical The are 0.03) w womer SPECT Mantel demon Cl 2.2 3.6, 95 Hachamovitch, 1998 ⁵⁴ Cox m The Co contain χ^2 ($p < conside$ Hachamovitch, 2002 ⁵⁵ Cox m	+ exercise variables + exercise + SPECT variables eas under the ROC curves were vas significantly greater than that a thigh risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% Cl 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % Cl 1.9 to 6.9 for high (>0.85) ultivariate analysis : ox proportional hazards model w	75 90* * $p < 0.0001$ cor compared for predicting even for men (0.71 ± 0.03, $p < 0.0$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^2 = 109$, $p < 0.0001$), as independent of underlying p likelihood of CAD; OR 8.0, 95 p prescan likelihood of CAD]	75 120* mpared with clinical + ex nts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal . This significant difference patient characteristics and	ress score. The area under the curve in wom emonstrating that SPECT is better able to ide ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; C
Clinical The are 0.03) w womer SPECT Mantel demon Cl 2.2 3.6, 95 Hachamovitch, 1998 ⁵⁴ Cox m The Co contain χ^2 ($p < conside$ Hachamovitch, 2002 ⁵⁵ Cox m	+ exercise + SPECT variables eas under the ROC curves were vas significantly greater than that a thigh risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% CI 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % CI 1.9 to 6.9 for high (>0.85) ultivariate analysis : ox proportional hazards model w	90* * $p < 0.0001$ cor compared for predicting even for men (0.71 ± 0.03, $p < 0.1$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^2 = 109$, $p < 0.0001$). as independent of underlying p likelihood of CAD; OR 8.0, 95 p prescan likelihood of CAD]	120* mpared with clinical + ex nts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal . This significant difference patient characteristics and	ress score. The area under the curve in wom emonstrating that SPECT is better able to ide ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; C
The are 0.03) w womerSPECT Mantel demon CI 2.2 \cdot 3.6, 95Hachamovitch, 1998 ⁵⁴ Cox m The Co contain χ^2 (p consideHachamovitch, 2002 ⁵⁵ Cox m	eas under the ROC curves were vas significantly greater than that a thigh risk of future events tha also risk stratified women more -Haenszel OR 6.8, 95% CI 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % CI 1.9 to 6.9 for high (>0.85) wiltivariate analysis : ox proportional hazards model w	* $p < 0.0001$ corrections are compared for predicting even for men (0.71 ± 0.03, $p < 0.0$ n men independently of baselit effectively than men (OR for o 9.7, $\chi^2 = 109$, $p < 0.0001$), as independent of underlying p likelihood of CAD; OR 8.0, 95 prescan likelihood of CAD]	mpared with clinical + ex nts using the summed stre .0005 versus women), de ine event rates, diagnostic an event with abnormal . This significant difference patient characteristics and	ress score. The area under the curve in wom emonstrating that SPECT is better able to ide ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; O
Hachamovitch, 2002 ⁵⁵ Cox m	vas significantly greater than that in at high risk of future events that also risk stratified women more –Haenszel OR 6.8, 95% Cl 4.7 t strating that this effectiveness wat to 11.9 for low (<0.15) prescan % Cl 1.9 to 6.9 for high (>0.85) ultivariate analysis : ox proportional hazards model w	compared for predicting even for men (0.71 ± 0.03, $p < 0.0$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^2 = 109$, $p < 0.0001$). as independent of underlying p likelihood of CAD; OR 8.0, 95 prescan likelihood of CAD]	nts using the summed stre 0005 versus women), de ine event rates, diagnostic an event with abnormal . This significant difference patient characteristics and	ress score. The area under the curve in wom emonstrating that SPECT is better able to ide ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; O
Hachamovitch, 2002 ⁵⁵ Cox m	vas significantly greater than that in at high risk of future events that also risk stratified women more –Haenszel OR 6.8, 95% Cl 4.7 t strating that this effectiveness wat to 11.9 for low (<0.15) prescan % Cl 1.9 to 6.9 for high (>0.85) ultivariate analysis : ox proportional hazards model w	for men $(0.71 \pm 0.03, p < 0.01)$ n men independently of baseli effectively than men (OR for o 9.7, $\chi^2 = 109, p < 0.0001$). as independent of underlying p likelihood of CAD; OR 8.0, 95 p prescan likelihood of CAD]	.0005 versus women), de ine event rates, diagnostio an event with abnormal . This significant difference patient characteristics and	emonstrating that SPECT is better able to ide ic thresholds or selection bias versus normal scan results: men 4.4, women ce was present in all prescan likelihood categ d ExECG test results [Mantel–Haenszel OR	entify n 22.8, gories, 5.1, 95% CAD; C
Hachamovitch, 1998 ⁵⁴ Hachamovitch, 2002 ⁵⁵ Mantel demon CI 2.2 3.6, 95 Cox m The Co contain χ^2 ($p < considerCox m$	-Haenszel OR 6.8, 95% CI 4.7 t strating that this effectiveness wa to 11.9 for low (<0.15) prescan % CI 1.9 to 6.9 for high (>0.85) ultivariate analysis : ox proportional hazards model w	o 9.7, $\chi^2 = 109$, $p < 0.0001$). as independent of underlying p likelihood of CAD; OR 8.0, 95 prescan likelihood of CAD]	. This significant difference patient characteristics and	ce was present in all prescan likelihood cates d ExECG test results [Mantel–Haenszel OR	gories, 5.1, 95% CAD; C
Hachamovitch, 2002 ⁵⁵ The Contain χ^2 ($p < consider the constant of the c$	ox proportional hazards model w	vas applied to 3 models with c			
The Co contain χ^2 (p < consider Hachamovitch, 2002 ⁵⁵ Cox m	ox proportional hazards model w	vas applied to 3 models with c			
	< 0.00001) occurred after adjust	al, historical and exercise data ment for the SPECT data for p	a and the model containin prescan information, inclu	eparate end-points. Significant information w ng SPECT variables alone. Significant increase uding the type of stress performed. Therefo Ilue toward the prediction of MI and cardiac	es in glo re, after
	ultivariate analysis: tically significant increase in the g	global χ^2 of the model after th	ne addition of nuclear vari	riables defined incremental prognostic value.	
Predic	tion of hard events:		χ^2		
Variable	8	Model using pre-SPECT d	lata Model with add	dition of SPECT data	
Men	-	16		47*	
Wome	า	20		45*	
Prior h	istory of CAD	7		20*	
	or history of CAD	20		76*	
·			* p < 0.001		

Study	Results	
	global $\chi^2 = 52$, $p < 0.001$), the addition of the most predic ($p < 0.001$). Even after adjusting for pre-SPECT data, SSS without history of prior CAD. Risk-adjusted survival curves	r clinical and historical information (post-ExECG likelihood of CAD, history of prior MI; tive nuclear variable, summed stress score, additionally increased the global χ^2 to 85 vas a significant predictor of adverse events in men, women, and patients with and generated from the initial model demonstrated that even after adjusting for pre-SPECT espect to event-free survival between the normal SPECT patients and the patients with
Ho, 1999 ⁵⁶	Multivariate analysis: No	
	SSS demonstrated a significant association ($p = 0.047$) with	all mortality. Both SSS ($p = 0.106$) and SRS ($p = 0.078$) showed insignificant trends. the end-point cardiac death or MI. The Duke score was predictive of the combination ariables were also analysed and found to be strongly associated with early PTCA/CABG
Iskandrian, 1993 ⁵⁷	Cox multivariate analysis:Predictors of events:Variable χ^2 Gender5.Exercise work load3.Extent of CAD and ejection fraction14.3Extent of total perfusion abnormality, extent ofischaemic abnormality and LV dilation22.1	
	Independent and incremental prognostic power of diagnost χ^2	c procedures:
	Gender + exercise work load7.Gender + exercise + CA25Gender + exercise + SPECT33.Gender + exercise + SPECT + CA33.	p < 0.01 compared with gender + exercise p < 0.01 compared with gender + exercise + CA
Iskandrian, 1994 ⁵⁸	The extent of CAD by CA was also prognostically importa	was the single most important predictor of prognosis by multivariate analysis ($\chi^2 = 29$ t ($\chi^2 = 27$, <i>p</i> : NS compared with SPECT). The combination of CA and SPECT data cremental prognostic value to the CA or SPECT data. Therefore, SPECT provided hat provided by CA
Kamal, 1994 ⁵⁹	Cox multivariate analysis : The size of the perfusion abnormality was the strongest propatients with a defect size of $< 15\%$; cardiac events were of	dictor of events ($\chi^2 = 9$). There were 93 patients with a defect size of $\ge 15\%$ and 84 bserved in 13 patients in the former group
		rfusion abnormality <15% had better event-free survival than patients with perfusion extent of CAD and ST-segment depression during the adenosine infusion did not
		continue

	Results					
Lauer, 1996 ⁶⁰	Cox multivariate analysis:					
,	Independent predictors of referral for CA:					
		OR	95% CI	χ^2	Þ	
	Entire population:					
	Abnormal SPECT	16.05	12.43 to 20.73	452	<0.0001	
	Anginal chest pain	5.42	4.08 to 7.20	137	<0.0001	
	Ventricular tachycardia	4.95	3.01 to 13.17	10	0.001	
	Hypotensive response	2.21	1.18 to 4.15	6	0.01	
	Patients with interpretable ECG ST-segment (n = 2696):				
	Abnormal SPECT	17.93	12.94 to 24.83	301	<0.0001	
	Ischaemic ST-segments	4.75	3.46 to 6.52	93	<0.0001	
	Anginal chest pain	4.98	3.48 to 7.14	76	<0.0001	
	Failure to reach target heart rate	2.00	1.37 to 2.94	13	0.0004	
	Age (10 years)	0.86	0.75 to 0.98	5	0.03	
	Ventricular tachycardia	5.36	1.13 to 25.47	4	0.03	
	Gender was not independently predictive of re	eferral for CA				
	adjusting for age, referral for CA and abnorma CI 2.03 to 9.40, $p = 0.0002$)	i SPECT. Abnormai S	SPECT was predictive	of fatal cardiac ev	ents (adjusted RR = 4.37, 9)	5%
Lauer, 1997 ⁶¹				of fatal cardiac ev	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$)	Adjusted OR	95% CI	Þ	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis:	Adjusted OR 4.66	95% Cl 2.93 to 7.41	¢ <0.000 ا	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis: Predictors for referral to CA:	Adjusted OR	95% CI	Þ	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT	Adjusted OR 4.66 4.62	95% Cl 2.93 to 7.41 2.65 to 8.07	¢ <0.0001 <0.0001	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years	Adjusted OR 4.66 4.62 6.61	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70	¢ <0.0001 <0.0001 <0.001	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years	Adjusted OR 4.66 4.62	95% Cl 2.93 to 7.41 2.65 to 8.07	¢ <0.0001 <0.0001	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years Anginal chest pain on treadmill:	Adjusted OR 4.66 4.62 6.61 3.46	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70 1.83 to 8.55	¢ <0.0001 <0.0001 <0.001 0.0007	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years Anginal chest pain on treadmill: 50–64 years	Adjusted OR 4.66 4.62 6.61 3.46 4.96	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70 1.83 to 8.55 1.85 to 13.10	¢ <0.0001 <0.0001 <0.001 0.0007 0.001	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years Anginal chest pain on treadmill: 50–64 years 65–74 years	Adjusted OR 4.66 4.62 6.61 3.46	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70 1.83 to 8.55	¢ <0.0001 <0.0001 <0.001 0.0007	rents (adjusted KK = 4.37, 9	5%
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years Anginal chest pain on treadmill: 50–64 years 65–74 years Patients aged >74 years:	Adjusted OR 4.66 4.62 6.61 3.46 4.96 3.96	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70 1.83 to 8.55 1.85 to 13.10 1.69 to 7.06	<i>þ</i> <0.0001 <0.0001 <0.001 0.0007 0.001 0.0005	rents (adjusted KK = 4.37, 9	5%
_auer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years Anginal chest pain on treadmill: 50–64 years 65–74 years Patients aged >74 years: Anginal chest pain on treadmill	Adjusted OR 4.66 4.62 6.61 3.46 4.96 3.96 7.26	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70 1.83 to 8.55 1.85 to 13.10 1.69 to 7.06 0.88 to 59.79	¢ <0.0001 <0.0001 <0.001 0.0007 0.001 0.0005 0.07		
Lauer, 1997 ⁶¹	Cl 2.03 to 9.40, $p = 0.0002$) Cox multivariate analysis : Predictors for referral to CA: Presence of ischaemia revealed by SPECT Anginal chest pain on treadmill Presence of ischaemia revealed by SPECT: 50–64 years 65–74 years Anginal chest pain on treadmill: 50–64 years 65–74 years Patients aged >74 years:	Adjusted OR 4.66 4.62 6.61 3.46 4.96 3.96 7.26 evealed by SPECT, cl	95% Cl 2.93 to 7.41 2.65 to 8.07 2.96 to 14.70 1.83 to 8.55 1.85 to 13.10 1.69 to 7.06 0.88 to 59.79 linical characteristics an	¢ <0.0001 <0.0001 <0.001 0.0007 0.001 0.0005 0.07 nd exercise findin	gs including functional capaci	ity, incre

continued

Study	Results				
Machecourt, 1994 ⁶²	Cox multivariate analysis:				
					s, clinical variables, ExECG and SPECT data (significant
Note: a subset of these	variable $F > 4$). The following were pr	edictive of f	uture cardiovascular	death:	
patients are reported on by	Variable	F			
Vanzetto, 1999 ⁸⁴	Male gender	7			
	Previous MI	6.9			
	Abnormal SPECT result	9.6			
	Comparison with ExECG stress testing	g – variables	predictive of future	cardiovascular death:	
	Variable				
	Previous MI	4.2			
	Submaximal exercise stress test	8.6			
	Abnormal SPECT image	6.5			
	Variables predictive of major cardiovas		:		
	Male gender	4.1			
	Previous MI	7.2			
	Submaximal exercise stress test	10.5			
	Abnormal SPECT image	8.3			
Marie, 1995 ⁶³	Cox multivariate analysis:				
	Prediction of cardiac death:	RR	95% CI	Þ	
	Model – all variables used				
	Radionuclide LV EF (%)	0.93	0.90 to 0.97	0.00006	
	Age (years)	1.07	1.01 to 1.14	0.032	
	Model – radionuclide LV EF excluded				
	SPECT TDE (% of LV)	1.06	1.03 to 1.08	0.0001	
	Age (years)	1.07	1.01 to 1.14	0.026	
	Prediction of major ischaemic events (cardiac deatl	h or MI):		
	Model – all variables used				
	SPECT TDE (% of LV)	1.05	1.02 to 1.07	0.00005	
	Age (years)	1.07	1.02 to 1.13	0.008	
	Model – radionuclide LV EF excluded				
	SPECT TDE (% of LV)	1.05	1.02 to 1.07	0.00005	
	Age (years)	1.07	1.02 to 1.13	0.008	
					with regard to clinical and exercise testing variables.
					I cardiac death (both $p < 0.001$). When clinical, exercise
				tent of SPECT defects	s also provided additional prognostic information, for
	both major events and cardiac death (l	both $p < 0.0$)2)		

Study	Results							
Marwick, 1999 ⁶⁴	Cox multivariate analysis:							
	Models for total and cardiac mortality		Men			Women		p for
Note: This is considered to be		RR	95% CI	Þ	RR	95% CI		interaction
the primary report for this	Total mortality model:							
study, which is also reported	Pretest clinical risk index	1.02	1.00 to 1.95	0.08	1.04	0.99 to 1.09	0.13	0.73
on by Shaw, 2000 ⁷⁹	Extent of stress-induced defects	1.06	1.02 to 1.10	0.003	1.15	1.09 to 1.21	0.0001	0.15
	Extent of fixed defects	0.98	0.94 to 1.01	0.40	0.98	0.91 to 1.06	0.73	0.71
	ST-segment depression $> 0.1 \text{ mV}$	1.02	0.95 to 1.09	0.59	0.90	0.83 to 0.99	0.03	0.0002
	Exercise time	0.84	0.83 to 0.85	0.0001	0.80	0.78 to 0.81	<0.0001	0.006
	Cardiac mortality model:							
	Pretest clinical risk index	2.6	1.9 to 3.4	<0.0001	1.9	1.3 to 2.8	0.001	0.20
	Extent of stress-induced defects	1.7	1.4 to 2.1	<0.0001	1.2	0.8 to 1.7	0.38	0.04
	Extent of fixed defects	1.7	1.4 to 2.0	<0.0001	2.8	2.0 to 3.8	<0.001	0.01
	ST-segment depression $> 0.1 \text{ mV}$	0.9	0.5 to 1.4	0.54	0.3	0.06 to 1.1	0.07	0.41
	Exercise time	0.84	0.83 to 0.85	0.0001	0.80	0.78 to 0.81	<0.001	0.0001
	RR = relative risk (95% CI) expressed exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death	pression was some	>0.1 mV			·		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis :	was some n differed	>0.1 mV ewhat greater ir by gender			·		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death	was some n differed and SPEC	>0.1 mV ewhat greater ir by gender	n men than in won	nen (RR =	= 1.07, 95% CI		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a	was some n differed	>0.1 mV ewhat greater in by gender T:			= 1.07, 95% CI		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis :	was some n differed and SPEC	>0.1 mV ewhat greater in by gender T:	n men than in won	nen (RR =	= 1.07, 95% CI		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality:	epression was some differed and SPEC χ^2	>0.1 mV ewhat greater in by gender T: HR	n men than in won 95% Cl	nen (RR = Þ	= 1.07, 95% CI		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis: Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT	epression was some differed and SPEC χ^2	>0.1 mV ewhat greater in by gender T: HR	n men than in won 95% Cl	nen (RR = Þ	= 1.07, 95% CI		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise	was some n differed and SPEC χ^2 10.7	>0.1 mV ewhat greater in by gender T: HR 1.24	n men than in won 95% Cl 1.09 to 1.41	nen (RR = Þ 0.00	= 1.07, 95% CI 01		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis: Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age	epression was some and spec χ^2 10.7 7.3	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10	n men than in won 95% Cl 1.09 to 1.41 1.03 to 1.18	nen (RR = <i>P</i> 0.00 0.00	= 1.07, 95% CI 01		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise	epression was some and spec χ^2 10.7 7.3	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10	n men than in won 95% Cl 1.09 to 1.41 1.03 to 1.18	nen (RR = <i>P</i> 0.00 0.00	= 1.07, 95% CI 01 07 19		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI:	epression was some and SPEC χ^2 10.7 7.3 3.9	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40	95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96	nen (RR = <i>P</i> 0.00 0.04	= 1.07, 95% CI 01 07 19		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI: Exercise angina score	epression was some and SPEC χ^2 10.7 7.3 3.9	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40	95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96	nen (RR = <i>P</i> 0.00 0.04	= 1.07, 95% CI 01 07 19 03		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI: Exercise angina score Number of abnormal TI-201	epression was some and SPEC χ^2 10.7 7.3 3.9 8.7	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40 1.69	95% Cl 95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96 1.19 to 2.40	nen (RR = P 0.00 0.04 0.00	= 1.07, 95% CI 01 07 19 03		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI: Exercise angina score Number of abnormal TI-201 segments after exercise	epression was some and SPEC χ^2 10.7 7.3 3.9 8.7	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40 1.69	95% Cl 95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96 1.19 to 2.40	nen (RR = P 0.00 0.04 0.00	= 1.07, 95% CI 01 07 19 03		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI: Exercise angina score Number of abnormal TI-201 segments after exercise Initial cardiac death, non-fatal MI or late PTCA/CABG: Chest pain class	epression was some and SPEC χ^2 10.7 7.3 3.9 8.7	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40 1.69	95% Cl 95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96 1.19 to 2.40	nen (RR = P 0.00 0.04 0.00	= 1.07, 95% CI 01 07 1 9 03 04		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI: Exercise angina score Number of abnormal TI-201 segments after exercise Initial cardiac death, non-fatal MI or late PTCA/CABG:	epression was some and SPEC χ^2 10.7 7.3 3.9 8.7 8.1	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40 1.69 1.12	95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96 1.19 to 2.40 1.04 to 1.20	nen (RR = p 0.00 0.04 0.00 0.00 0.00	= 1.07, 95% CI 01 07 1 9 03 04		
Miller, 1998 ⁶⁵	exercise time, or the presence of ST de In multivariable models, total mortality independent predictors of cardiac death Cox multivariate analysis : Associations between clinical, exercise a Total mortality: Shorter exercise duration Number of abnormal SPECT segments after exercise Increasing age Initial cardiac death or non-fatal MI: Exercise angina score Number of abnormal TI-201 segments after exercise Initial cardiac death, non-fatal MI or late PTCA/CABG: Chest pain class	epression was some and SPEC χ^2 10.7 7.3 3.9 8.7 8.1	>0.1 mV ewhat greater in by gender T: HR 1.24 1.10 1.40 1.69 1.12	95% Cl 1.09 to 1.41 1.03 to 1.18 1.00 to 1.96 1.19 to 2.40 1.04 to 1.20	nen (RR = p 0.00 0.04 0.00 0.00 0.00	= 1.07, 95% CI 01 07 49 03 04		

continued

udy	Results						
	Post hoc analysis: Associations betwe	en global stre	ss and reversi	bility scores and	outcome		
	Total mortality:	-					
	·	χ^2	HR	95% CI	Þ		
	SSS	13.2	1.05	1.01 to 1.10	< 0.00	I	
	Shorter exercise duration	6.3	1.23	1.05 to 1.44	0.01		
	Increasing age	5.2	1.64	1.07 to 2.51	0.02		
	Cardiac death/MI:						
	Exercise angina score	9.7	1.82	1.25 to 2.65	0.002	2	
	SSS	4.9	1.04	1.01 to 1.07	0.03		
	Cardiac death/MI/late PTCA/CABG:						
	Chest pain class	9.3	1.42	1.13 to 1.79	0.002		
	SSS	6.2	1.04	1.01 to 1.07	0.01		
	segment). For <i>post hoc</i> analysis the H The single variable independently pro					normal SPEC	CT segments
iller, 2001 ⁶⁶		edictive of all serial changes	3 outcome en	dpoints was the	number of ab	Cardiac de	ath or MI or
200 ⁶⁶	The single variable independently pro	edictive of all serial changes Overall	3 outcome en in clinical and mortality	dpoints was the SPECT variables Cardiac death	number of ab	Cardiac de late revas	ath or MI or cularisation
200 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s	edictive of all serial changes	3 outcome en in clinical and	dpoints was the SPECT variables	number of ab	Cardiac de	ath or MI or
2001 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s Overall mortality:	edictive of all serial changes Overall χ^2	3 outcome en in clinical and mortality p	dpoints was the SPECT variables Cardiac death χ^2	number of ab n or MI 	Cardiac de late revas χ^2	ath or MI or cularisation Þ
; 2001 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s Overall mortality: Worsening clinical status	edictive of all serial changes Overall χ^2 8.5	3 outcome en in clinical and mortality p 0.004	dpoints was the SPECT variables Cardiac death $\frac{\chi^2}{7.0}$	number of ab n or MI 	Cardiac de late revas χ^2 7.5	ath or MI or cularisation P 0.006
2001 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s Overall mortality: Worsening clinical status Lower Duke score by ≥ 4 points	edictive of all serial changes Overall $\frac{\chi^2}{8.5}$ <	3 outcome en in clinical and mortality <i>p</i> 0.004 NS	dpoints was the SPECT variables Cardiac death $\frac{\chi^2}{7.0}$ < 1	number of ab n or MI p 0.008 NS	Cardiac de late revas χ^{2} 7.5 < I	ath or MI or cularisation p 0.006 NS
∍r, 2001 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s Overall mortality: Worsening clinical status Lower Duke score by ≥ 4 points Worsening category Duke score	edictive of all serial changes Overall $\frac{\chi^2}{8.5}$ < 1 < 1	3 outcome en in clinical and mortality	dpoints was the SPECT variables Cardiac death χ^2 7.0 < 1 < 1	number of ab n or MI p 0.008 NS NS	Cardiac de late revas χ^2 7.5 < 1 < 1	ath or MI or cularisation p 0.006 NS NS
∍r, 2001 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s Overall mortality: Worsening clinical status Lower Duke score by ≥ 4 points	edictive of all serial changes Overall $\frac{\chi^2}{8.5}$ <	3 outcome en in clinical and mortality <i>p</i> 0.004 NS	dpoints was the SPECT variables Cardiac death $\frac{\chi^2}{7.0}$ < 1	number of ab n or MI p 0.008 NS	Cardiac de late revas χ^{2} 7.5 < I	ath or MI or cularisation p 0.006 NS
r, 2001 ⁶⁶	The single variable independently pro Cox multivariate analysis : Associations between outcome and s Overall mortality: Worsening clinical status Lower Duke score by ≥ 4 points Worsening category Duke score	edictive of all serial changes Overall $\frac{\chi^2}{8.5}$ < 1 < 1	3 outcome en in clinical and mortality	dpoints was the SPECT variables Cardiac death χ^2 7.0 < 1 < 1	number of ab n or MI p 0.008 NS NS	Cardiac de late revas χ^2 7.5 < 1 < 1	ath or MI or cularisation p 0.006 NS NS

Health Technology Assessment 2004; Vol. 8: No. 30

Study	Results
Mishra, 1999 ⁶⁷	Multivariate analysis: No
	Coronary revascularisation was performed in 1692 of 4572 patients (37%) in group 1 (CA) and in 123 of 2022 patients (6%) in group 2 (SPECT as the initial screening test), $p < 0.001$.
	In patients with intermediate pretest probability of CAD, selective CA after stress SPECT resulted in lower rates of normal angiograms (18 versus 33%), and a lower rate of coronary revascularisation (38% versus 51%). However, the pretest probability of CAD was higher in group 1 than group 2 (76 \pm 27% versus 44 \pm 30%, $p = 0.001$)
Nallamothu, 1995 ⁶⁸	Multivariate analysis: No
	In group 1 (normal SPECT), 3% of patients subsequently underwent CA compared with 36% in group 2 (abnormal SPECT) ($p = 0.0001$). CA showed MVD in 13% of patients in group 1 and 55% of patients in group 2 ($p < 0.001$). The need for coronary revascularisation was significantly higher (30 versus 2%, $p < 0.0001$) and the event rate in medically treated patients was significantly higher (10 versus 0%, $p = 0.02$) in patients wit abnormal than normal SPECT
Nallamothu, 1997 ⁶⁹	Cox multivariate analysis:VariablesGlobal χ^2 p VariablesGlobal χ^2 p I. Clinical32. Clinical + stress5NS between I and 23. Clinical + stress + CA6NS between 2 and 34. Clinical + stress + CA + SPECT140.01 between 3 and 4
	Multivariate Cox survival analysis of clinical factors, stress, angiographic variables and SPECT variables showed that the extent of the perfusion abnormality, multivessel perfusion abnormality and increased lung thallium uptake were important independent predictors of events. SPECT added incremental prognostic information to clinical, stress and angiographic variables. Clinical variables did not provide prognostic information and stress variables were also not useful in predicting outcome
O'Keefe, 1998 ⁷⁰	Cox multivariate analysis : Multivariable predictors of referral for invasive management angiography were angina (RR 2.71), transient ischaemic dilation (RR 2.1), angina while on the treadmill (RR 1.8) and absence of previous MI (RR 0.64)
	The analysis showed referral for CA (invasive management) as the only independent predictor of non-fatal MI or death during follow-up ($p = 0.0001$). RR of infarction or death with invasive management compared with medical management was 11.6 (95% CI 4.8 to 27.9)
	continue

Study	Results							
Dimos, 1998 ⁷¹	Multivariate analysis:							
	Clinical models and multivariate predi	ictors of all ca	rdiac event	s:				
	· · · · · · · · · · · · · · · · · · ·	OR		5% CI	Þ			
	Clinical + ExECG:				1			
	Normal ExECG	0.39	0.2	l to 0.75	0.004			
	Smoking	2.16		5 to 4.05	0.016			
	Max. exercise heart rate (bpm)	0.89	0.79	9 to 1.00	0.056			
	Clinical + ExECG + SPECT:							
	Ischaemia by SPECT	4.93	1.72	2 to 14.08	0.003			
	Normal ExECG	0.47	0.24	4 to 0.93	0.030			
	Incremental value of multivariate mod		tion of care		2			
		AUC		SE	χ^2	Þ		
	All cardiac events:							
	Clinical + ExECG	0.68		0.04	18.04	0.0004		
	Clinical + ExECG + SPECT	0.78		0.039	41.20	<0.0001		
	Ischaemic events and cardiac death:							
	Clinical + ExECG + SPECT	0.70		0.06	8.86	0.03		
	Cardiac death:				10 54			
	Clinical + ExECG + SPECT	0.81		0.10	12.56	0.02		
	Clinical models and multivariate predi	ictors of ischa	emic event	s and/or cardiac	death:			
		Ischaemic e	events and	cardiac death		Cardiac deat	h	
	Significant models and predictors:	OR	Þ	95% CI	OR	Þ	95% CI	
	Clinical + ExECG + SPECT:	ÖN	Ρ		ÖN	P	<i>y y y y y y y y y y</i>	
	Abnormal SPECT	2.76	0.03	1.08 to 7.07				
	Perfusion defect size by SPECT	2.70	0.00	1.00 10 7.07	1.41	0.007	. to .82	
	Ischaemia by SPECT was the main mu					ision defect size	successfully sep	arated the
	population into low and high risk and	was the sole	multivariate	e predictor of ca	diac death			
1 1 100 472								
ancholy, 1994 ⁷²	Cox multivariate analysis:	11.1.1	C 11 1 .	II.		c i	1 d	
	The size of the perfusion abnormality							
	history of diabetes mellitus and a large	e perfusion ab	normality	$(\geq 15\%$ of the m	ocardium) had	the worst even	t-free survival ra	te (Mantei
	statistic = 21, $p < 0.0001$)							
ancholy, 1995 ⁷³	Cox multivariate analysis:							
ancholy, 1775		liac overte:	χ^2					
	Independent predictors of future carc Large perfusion abnormality	liac events:	χ 16					
	Large pertusion abnormality Age		3					
	Age		3					

Study	Results							
	Incremental prognostic value of clinical, e	exercise,			ariables:			
			Global χ^2	2	Þ			
	I. Clinical		4					
	2. Clinical + exercise		5					
	3. Clinical + exercise + catheterisation		10		0.01 between 2 and	-		
	4. Clinical + exercise + catheterisation	+ SPEC			0.01 between 3 and	14		
	5. Clinical + exercise + SPECT		19	NS	between 4 and 5			
	Actuarial survival analysis revealed a signi myocardium) than in patients with a large					or a small	perfusion abnormali	ty (<15% of
Parisi, 1998 ⁷⁴	Multivariate analysis:							
	In a multivariate model, a reversible defe $(RR = 2.83)$ and current smoking $(RR = 1.83)$.04); among other fa	actors, only diab
	A positive exercise ECG failed to distingu	iish survi	ival from non-surviv	al in the p	atient cohort			
Pattillo, 1996 ⁷⁵	Cox multivariate analysis:							
			χ^2		Þ			
	I. Clinical		I					
	2. TES		l		between I and 2			
	 Gensini SPECT 		5		15 between 2 and 3 101 between 3 and			
			15	0.0	of between 5 and	4		
	5. Clinical + TES		I					
	6. Clinical + TES + Gensini		5		5 between 5 and 6			
	7. Clinical + TES + Gensini + SPECT		16		01 between 6 and	/		
	8. Clinical + TES + SPECT		15	IN2	between 7 and 8			
	SPECT thallium imaging variables were si abnormal images, more reversible defect							had more
Schinkel, 2002 ⁷⁶	Cox multivariate analysis:					·		
····	Predictors of cardiac death:							
		Clini	ical data	M	odel I	M	odel 2	
		HR	95% CI	HR	95% CI	HR	95% CI	
	Clinical characteristics:							
	Age (per year)	1.05	1.02 to 1.08	1.05	1.02 to 1.08	1.04	1.01 to 1.07	
	Diabetes mellitus	2.00	1.1 to 3.4	1.9	1.1 to 3.2	NS		
	Smoking	2.1	1.2 to 3.6	1.9	1.1 to 3.2	1.8	1.0 to 3.0	
	Congestive heart failure	4.2	2.5 to 7.0	3.9	2.3 to 6.6	3.7	2.2 to 6.2	

Study	Results							
		Clinical d	lata	Mo	del I	Mo	odel 2	
		HR	95% CI	HR	95% CI	HR	95% CI	
	Stress test results:							
	Typical angina			NS		NS		
	ST-segment changes			NS		NS		
	Scan parameters:							
	Abnormal scan			8.2	3.2 to 21	Variable e		
	Reversible defect			/ariable e		2.1	1.2 to 3.5	
	Fixed defect			/ariable e		2.2	1.2 to 4.0	
	Model 1: presence of an abnormal s or reversible perfusion defect addec		clinical characteri	stics, stre	ess ECG data, a	nd haemodyna	amic data. Model	2: presence of a fix
_	An abnormal scan was the strongest prognostic value over clinical, stress prognostic information compared w	ECG and haemoo ith the clinical, str	lynamic data (log ess ECG and hae	-likelihoo	d, –324 to –30	5, $p < 0.0001$). Model 2 also o	ffered incremental
Shaw, 1999 ⁷⁷	Cardiac mortality: group 1 3.3%, gr							
	Non-fatal MI: group 1 3.0%, group		,					
	Patient clinical risk	Group I (%)	Group 2 (%)					
	Death or MI:	2.5	2.1					
	Low	2.5	2.1					
	Intermediate	5 9	4.7 8.3					
	High Revascularisation:	9	8.3					
	Low	16	14					
	Intermediate	27	13					
	High	30	15					
	Number of CAs performed: group 2	•••	10					
Shaw, 1999 ⁷⁸	Cox multivariate analysis:							
	•	χ^2	Þ	Info	rmation (%)	Change in	þ value	
	Multivariate predictors of catheteris		•		. ,	-	-	
	Global model	293.98	<0.00001					
	Probability of coronary disease	41.25	<0.00001					
			0.01					
	ST-segment depression	5.76	0.01					
		5.76 196.45	<0.0001					
	ST-segment depression Reversible defect Incremental value of stress MPI:							
	ST-segment depression Reversible defect Incremental value of stress MPI: Clinical history	196.45 89.20	<0.00001 <0.00001		30.3			
	ST-segment depression Reversible defect Incremental value of stress MPI:	196.45	<0.00001		30.3 4.4 65.3	0.02 0.0000		

Study	Results					
	Group I patients underwent initial direct diagnostic CA. Gr	oup 2 pat	ients underwent	SPECT		
	Primary end-point: occurrence of cardiac death. Secondary (e.g. Mls)	events: o	ccurrence of cord	onary revascula	risation procedures and ca	rdiac hospitalisation
	Cox multivariate analysis : Cox proportional hazard regression analysis, including asses determined by the varying testing strategies) in standard, ris				e evidence of ischaemic he	art disease (as
Shaw, 2000 ⁷⁹	Cox multivariate analysis:					
	Risk-adjusted Cox proportional hazards model predicting ca	rdiac dea	ith:			
Note: This study reports on		χ^2	Þ			
the same population as	Clinical history risk-adjusted model:					
Marwick, 1999, ⁶⁴ and is	Number of vascular territories with ischaemia	38.6	<0.0001			
considered to be part of	Number of vascular territories with infarction	61.5	0.00001			
that study	Pretest clinical risk	65.3	< 0.0001			
,	Age risk–adjusted model:					
	Number of vascular territories with ischaemia	45.4	<0.0001			
	Number of vascular territories with infarction	92.9	0.00001			
	Age (years)	40.5	<0.0001			
		RR	95% CI	Þ	Death rate (%)	
	Relative risk of cardiac death for clinically high-risk					
	patients compared with low-intermediate risk patients:	2.3	1.7 to 3.0	<0.00001	8	
	Ischaemic defects. Patients with:					
	I-vessel involvement	2.3	1.5 to 3.4		2.8	
	2-vessel involvement	2.8	1.8 to 4.5		3.1	
	3-vessel involvement	5.2	2.9 to 9.5	<0.00001	5.6	
	Infarction. Patients with:					
	I-vessel involvement	3.8	2.4 to 5.9		2.8	
	2- to 3-vessel involvement	5.3	3.1 to 5.9	<0.00001	6.9	
	Subset of patients who underwent exercise testing:					
	Shorter exercise duration	0.83	0.75 to 0.95	0.0005		

(p < 0.0001). The percentages of new prognostic information varied by pretest clinical risk patient subsets. The percentages of new prognostic information contributed by the imaging data were 24% (p < 0.0001), 48% (p < 0.0001) and 21% (p < 0.001) in clinically low-, intermediate- and high-risk patients, respectively

continued

atmann, 1994 ⁸⁰ Cox multiva	ariate analysis:						
	of clinical, exercise testing and MIB	I variables for car	diac events:	:			
		Model I			Mo	del 2	
	RR	95% CI	Þ	R	R 95	%Cl	þ
Abnormal sca		1.6 to 89.4	<0.05				r
Reversible de	efect			2.	9 1.2	to 7.0	<0.05
Fixed defect				١.	4 0.6	to 3.3	
Ischaemic ST	depression 2.2	0.9 to 5.0		2.	0 0.8	to 4.6	
History of co	ongestive heart failure 1.6	0.6 to 4.2		١.	9 0.7	to 5.2	
History of old	d MI 1.2	0.5 to 2.8		١.	3 0.6	to 3.2	
History of dia	abetes mellitus I.5	0.6 to 4.1		١.	6 0.6	to 4.2	
Model L'scir	ntigraphic variables included 'abnorm	nal scan'					
	ntigraphic variables included 'reversit		xed defect';	ʻabnorma	l scan' exclu	ded	
, 1995 ⁸¹ Cox multiva	ariate analysis:						
	of ischaemic defects on SPECT was	the only significa	nt predictor	of a cardi	iac event (v	$^{2}462 h =$	0.0317) Prev
	nt multivariate correlate of an event					1.02, p =	0.0317). 1100
wood, 1999 ⁸² Outcomes							
Hard events	Patients	Unstable	angina	MI	Death	Any ever	nt
Stress ECG/C				10	4	15	
Stress ECG/N		i		9	2	12	
MPI/CA	48	0		3	5*	8	
CA	75	0		9	4*	13	
MPI users	190	1		18	8	27	
MPI non-user	rs 207	1		13	7	21	
*Statistically s	significant difference ($p < 0.05$)						
	Complication	ons Worse a	ingina	CABG	PTCA	Other	Any even
Soft events		-		11	8	1	25
Stress ECG/C		2				-	
		2 		2	10	2	16
Stress ECG/C		2 0		2 4	6	2 	16 12
Stress ECG/C Stress ECG/N		I		2		 2	
Stress ECG/C Stress ECG/N MPI/CA	MPI/CA I	I		2 4	6 9** 27	 2 2	12
Stress ECG/C Stress ECG/N MPI/CA CA MPI users MPI non-user	MPI/CA I I 3 rs 3	 0 		2 4 I 4**	6 19**	 2	12 39**
Stress ECG/C Stress ECG/N MPI/CA CA MPI users MPI non-user	MPI/CA I I 3 3	 0 	0.001)	2 4 4** 	6 9** 27	 2 2	12 39** 44
Stress ECG/C Stress ECG/N MPI/CA CA MPI users MPI non-user	MPI/CA I I 3 rs 3	 0 	0.001)	2 4 4** 	6 9** 27	 2 2	12 39** 44
Stress ECG/C Stress ECG/N MPI/CA CA MPI users MPI non-user	MPI/CA I I 3 rs 3	 0).001)	2 4 4** 	6 19** 27	 2 2	12 39** 44

Study	Results			
	Prognostic power (mean global χ^2) for th	e information av	ailable at the point of d	iagnosis. This differed between strategies and type of hospital, w
	the scintigraphic strategies and hospitals h			
		obal $\chi^2 \pm SD$	р р	
		0 ± 4.5	r	
	Stress ECG/MPI/CA 2	5 ± 7.6		
		5 ± 0.2		
	•	9 ± 0.2	<0.0001	
	User hospitals 2	2 ± 8.0		
	•	8 ± 6.8	<0.0001	
	MPI is the single most powerful predictor	of prognosis and	d it has incremental val	ue even when stress ECG or CA have already been performed
Vanzetto, 1999 ⁸³				fory of CAD ($p = 0.04$); presence of microalbuminuria ($p = 0.00$ 0.03); more than 2 abnormal segments on SPECT ($p = 0.002$)
	myocardial segments, accurately identified	d higher risk pati	ents. SPECT has an inc	pecially the presence of a large defect, involving more than 2 remental prognostic value over clinical and biological variables, th being independent predictors of outcome
Vanzetto, 1999 ⁶⁴	Cox multivariate analysis:			
Vanzetto, 1999° ⁴	Cox multivariate analysis : Multivariate predictors of cardiac death a	nd non-fatal MI:		
	Cox multivariate analysis: Multivariate predictors of cardiac death a	nd non-fatal MI: OR	95% CI	þ
Note: this study reports on	Multivariate predictors of cardiac death a		95% CI	Þ
Note: this study reports on a subset of the patient	Multivariate predictors of cardiac death a Cardiac deaths:	OR		
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years	OR 1.78	1.02 to 3.11	0.05
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths:	OR		
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG	OR 1.78 3.50	1.02 to 3.11 2.06 to 5.96	0.05 0.006
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG	OR 1.78 3.50 0.83	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80	0.05 0.006 NS
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG	OR 1.78 3.50 0.83 2.66	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76	0.05 0.006 NS 0.02
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG	OR 1.78 3.50 0.83 2.66 2.48	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69	0.05 0.006 NS 0.02 0.006
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT	OR 1.78 3.50 0.83 2.66 2.48 2.20	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98	0.05 0.006 NS 0.02 0.006 0.08
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT	OR 1.78 3.50 0.83 2.66 2.48 2.20	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98	0.05 0.006 NS 0.02 0.006 0.08
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI:	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54	0.05 0.006 NS 0.02 0.006 0.08 0.001
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI: Presence of ≥ 1 risk factor	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83 2.50	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54 1.50 to 4.17	0.05 0.006 NS 0.02 0.006 0.08 0.001
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI: Presence of ≥ 1 risk factor Previous MI	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83 2.50 2.89	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54 1.50 to 4.17 1.78 to 4.69	0.05 0.006 NS 0.02 0.006 0.08 0.001 0.03 0.01 NS NS
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI: Presence of ≥ I risk factor Previous MI Positive ExECG	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83 2.50 2.89 1.14	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54 1.50 to 4.17 1.78 to 4.69 0.60 to 2.18	0.05 0.006 NS 0.02 0.006 0.08 0.001 0.03 0.01 NS
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI: Presence of ≥ I risk factor Previous MI Positive ExECG Strongly positive ExECG	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83 2.50 2.89 1.14 0.89	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54 1.50 to 4.17 1.78 to 4.69 0.60 to 2.18 0.43 to 1.85	0.05 0.006 NS 0.02 0.006 0.08 0.001 0.03 0.01 NS NS
Note: this study reports on a subset of the patient population reported on by	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI: Presence of ≥ 1 risk factor Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83 2.50 2.89 1.14 0.89 0.93	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54 1.50 to 4.17 1.78 to 4.69 0.60 to 2.18 0.43 to 1.85 1.54 to 1.60	0.05 0.006 NS 0.02 0.006 0.08 0.001 0.03 0.01 NS NS NS
Vanzetto, 1999 ⁸⁴ Note: this study reports on a subset of the patient population reported on by Machecourt, 1994 ⁶²	Multivariate predictors of cardiac death a Cardiac deaths: Age >60 years Previous MI Positive ExECG Strongly positive ExECG I or 2 abnormal segments on SPECT ≥ 3 abnormal segments on SPECT MI: Presence of ≥ 1 risk factor Previous MI Positive ExECG Strongly positive ExECG Non-diagnostic ExECG Non-diagnostic ExECG Maximum ST-segment depression ≥ 2	OR 1.78 3.50 0.83 2.66 2.48 2.20 4.83 2.50 2.89 1.14 0.89 0.93 1.34	1.02 to 3.11 2.06 to 5.96 0.25 to 2.80 1.23 to 5.76 1.31 to 4.69 0.97 to 4.98 2.22 to 9.54 1.50 to 4.17 1.78 to 4.69 0.60 to 2.18 0.43 to 1.85 1.54 to 1.60 0.76 to 2.37	0.05 0.006 NS 0.02 0.006 0.08 0.001 0.03 0.01 NS NS NS NS

Study	Results							
	In patients who survived the first 3 years of follow-up, the for SPECT ($p = 0.01$) but not for ExECG	relationship	s between	the results of the tests and the occurrence of death was maintaine				
		predictive o	f future MI,	redictors of overall mortality. SPECT and ExECG were , whereas ExECG was not. The incremental prognostic value of intained at long-term follow-up in patients with low to intermediate				
	Additive prognostic value of SPECT over ExECG for predic Negative ExECG: abnormal SPECT compared with normal Strongly positive ExECG: abnormal SPECT compared with Non-diagnostic ExECG : abnormal SPECT compared with	SPECT, OF normal SPI	r = 2.58, þ Ect, or =	p = 0.02 4.24, $p = 0.053$				
	When performed after ExECG, SPECT accurately identified	d higher and	d lower risk	c patients, whatever the results of ExECG				
Wagner, 1996 ⁸⁵	Multivariate analysis:							
0	Relative risk of various parameters for cardiac events:							
		χ^2	OR	95% CI				
	Baseline data:							
	Age >60 years	NS	2.1	0.9 to 5.1				
	Gender, male	NS	1.4	0.4 to 5.7				
	Location of infarction, anterior MI	NS	1.5	0.6 to 3.5				
	Vessel disease, 2VD + 3VD	NS	1.6	0.7 to 3.8				
	LV ejection fraction, \leq 45%	NS	1.6	0.2 to 2.1				
	TIMI classification, ¹³⁸ 0–2	NS	1.3	0.3 to 2.0				
	Residual stenosis of infarct-related artery, >75%	NS	3.8	0.9 to 16.5				
	Bicycle ergometry:							
	Maximal exercise stage, ≤75 W	NS	3.9	0.7 to 22.2				
	Systolic BP increase during exercise,							
	≤30 mmHg	NS	1.4	0.6 to 3.4				
	Downsloping ST-segment, ≥ 1 mm	NS	1.4	0.5 to 3.5				
	Angina pectoris	NS	0.9	0.3 to 2.7				
	Duration of exercise, ≤4 min	NS	0.4	0.2 to 1.0				
	Downsloping ST-segment ≥ 1 mm and angina pectoris	NS	2.3	1.0 to 5.4				
	Perfusion scintigraphy:							
	Reversible defects	0.006	4.2	1.5 to 11.8				
	Fixed defects NS 3.1 0.4 to 24.3							

Health Technology Assessment 2004; Vol. 8: No. 30

continued

		Model A				Model B					
		RR	95%	95% CI		RR	95% CI	Þ			
	Abnormal stress SPECT scan	17.62		5 36.5	р 0.006	Variable excluded		Ρ			
	Reversible defect with SPECT scan	Variable excluded		130.5	0.000	5.11	1.5 to 17.36	0.008			
	Extent of the defect (>4)	Variable excluded				3.27	1.2 to 9.22	0.025			
	Typical angina	2.45	I.0 to	o 6.0	0.051	5.27	1.2 to 7.22	NS			
						wiele featan (aliniaal a	n lahanatami) anasi				
	Other parameters not statistically sign stress double product, stress ECG do				7), age, genue	er, risk lactor (clinical of	r laboratory), previ	ious r'ii,			
Zanco, 1995 ⁸⁶	Model A: scintigraphic variables included abnormal SPECT. Model B: scintigraphic variables included reversible defect with SPECT, extension of the defect (>4) and extension severity score (>7); abnormal SPECT excluded. In model B, continuous variables evaluated in a dichotomous manner										
	RR calculated as the OR										
Zellweger, 2002 ⁸⁷	Cox multivariate analysis:										
			Þ	RR	95% CI						
	Predictors of cardiac death:										
	Age		0.017	1.03	1.01 to 1.06						
	Symptoms		0.002	2.58	1.41 to 4.69						
	Prior CABG		0.008	0.47	0.27 to 0.82						
	Non-reversible segments		0.0001	1.63	1.28 to 2.08						
	Predictors of cardiac death or non-fatal MI:										
	Symptoms		0.0001	3.84	2.28 to 6.45						
	Prior CABG		0.005	0.56	0.38 to 0.84						
	Prescan likelihood of CAD		0.002	2.57	1.43 to 4.64						
	Summed difference score		0.0008	1.05	1.02 to 1.07						
	Non-reversible segments		0.0001	1.13	1.07 to 1.19						
	Incremental χ^2 values with respect to prescan and nuclear information: All patients:										
	All patients.	χ^2 prescan	χ^2 prescan	+ nuclear		Þ					
	Cardiac death	50.7	76			0001					
	Hard events	55.4	75			0001					
	Patients who underwent exercise stre	es tosting:									
	Tatients who under went exercise stre	χ^2 Duke	χ^2 Duke	⊥ nuclear		b					
	Cardiac death	/ L				р).05					
	Hard events	14.2 19.3 15.7 16.5				105 15					
					-						
	After adjustment for prescan informat	tion, the SPECT resu	lts (SSS) add	ed incremen	tal informatio	n with regard to cardia	c death and hard e	vents			

Study	Results				
Zerahn, 2000 ⁸⁸	Cox multivariate analysis:				
	Relative risk of cardiac death:				
		RR	95% CI	Þ	
	SPECT variables:			·	
	Fixed defects	2.55	1.43 to 4.55	0.0008	
	Exercise test variables:				
	dPRP <2500 mmHg/minute	3.26	1.74 to 6.08	0.0001	
	Clinical variables:				
	Age \geq 60 years	1.69	1.04 to 3.76	0.034	
	Ex-smokers and smokers	1.72	0.96 to 3.07	0.068	
	LBBB	1.88	1.07 to 3.46	0.041	
	Pharmacological variables:				
	Digoxin	1.79	1.04 to 3.10	0.036	
	The major prognostic information o to exercise test and fixed perfusion			patients with a definitely low risk. Patients with impaired circulatory res	ponse
	T I		f	ich was ansihle defects substantion continues and using the second suith	

There was a trend towards lower mortality in the group of patients with reversible defects who underwent revascularisation compared with those with reversible defects who did not (p = 0.09), whereas the impact of dPRP and fixed defects on survival was independent of revascularisation

ECG-gated SPECT

Study	Results			
Sharir, 1999 ⁸⁹	Cox multivariate analysis			
,	Multivariate models for the prediction	of cardiac events.		
	· · · · · · · · · · · · · · · · · · ·	Wald χ^2	Þ	
	Cardiac death:	$\lambda = \lambda$	r	
	Type of stress	8.29	0.004	
	EF	9.0	0.004	
	ESV	5.11	0.024	
	Cardiac death or MI:			
	EF	11.97	0.0005	
	ESV	4.6	0.03	
	Cardiac death, MI or late revascularisat	ion:		
	History of MI	8.76	0.003	
	Likelihood of CAD	11.36	0.0007	
	Type of stress	4.04	0.044	
	SSS	18.23	0.00002	
	SRS	11.97	0.0005	
	ESV	15.52	0.00008	
			lata resulted in a significant improvement in the global χ^2 in the prediction of data only ($\chi^2 = 72.13$ versus 31.1, respectively; $p < 0.0001$)	of

Study	Definition of CAD (% stenosis)	Test	No. of patients	Sensitivity	Specificity	Accuracy	True positives	False positives	False negatives	True negatives
Shirai, 2002 ⁹⁰	≥70 (≥50% for LMD)	Overall:								
		SPECT	603	0.46	0.96	0.77	110	14	127	352
		Gated SPECT	603	0.45	0.96	0.76	106	13	131	353
		Both	603	0.61	0.93	0.81	145	24	92	342
		LAD:								
		SPECT	201	0.55	0.93	0.74	55	7	45	94
		Gated SPECT	201	0.53	0.95	0.74	53	5	47	96
		Both	201	0.68	0.9	0.79	68	10	32	91
		RCA:								
		SPECT	201	0.51	0.96	0.81	34	6	32	129
		Gated SPECT	201	0.54	0.97	0.83	36	4	30	131
		Both	201	0.71	0.93	0.86	47	9	19	126
		LCX:								
		SPECT	201	0.3	0.99	0.75	21	I	50	129
		Gated SPECT	201	0.24	0.97	0.71	17	4	54	126
		Both	201	0.42	0.96	0.77	30	5	41	125

Attenuation-corrected SPECT

Study	Definition of CAD (% stenosis)	Test	No. of patients	Sensitivity	Specificity	Accuracy	True positives	False positives	False negatives	True negatives
Gallowitsch,	≥70%	All:								
1998 ⁹¹		SPECT – NC	107	0.79	0.94		42	11	11	43
		SPECT – AC	107	0.8	0.91		50	5	3	49
		Men:								
		SPECT – NC	69	0.86	0.76		31	25	5	8
		SPECT – AC	69	0.94	0.91		34	30	2	3
		Women:								
		SPECT – NC	38	0.65	0.86		11	18	6	3
		SPECT – AC	38	0.94	0.9		16	19	I	2

AUC, area under the curve; EF, ejection fraction; ESV, end systolic volume; ETT, exercise treadmill test; NC, non-corrected; NS, not significant; SE, standard error; SRS, summed rest score; SSS, summed stress score; TDE, total exercise defect extent; TES, treadmill exercises score.

Appendix 9

Predictors of events by multivariate analysis

Study	Outcome	Independent predictors
Amanullah, 1998 ⁴²	Early revascularisation	Reversible perfusion defects on SPECT scan; extent of CAE by angiography; angina during exercise
Amanullah, 1999 ⁴³	Cardiac death or non-fatal MI	SPECT score
Ben-Gal, 2001 ⁴⁴	Adverse cardiac events	Abnormal SPECT scan
Chatziioannou, 1999 ⁴⁷	Cardiac death, non-fatal MI, revascularisation	Abnormal SPECT scan
Chiamvimonvat, 2001 ⁴⁸	Cardiac death, non-fatal MI, unstable angina, revascularisation	Presence of scintigraphic reversibility on SPECT scan; presence of multivessel stenoses
Diaz, 2001 ⁴⁹	All-cause mortality	Intermediate-risk SPECT scan; high-risk SPECT scan; poor or fair fitness; abnormal heart rate recovery
Gibbons, 1999 ⁵⁰	Time to cardiac death	Near-normal SPECT scan; cardiac enlargement
Giri, 2002 ⁵¹	Death or MI; cardiac death	LV EF; ischaemic defects on SPECT scan; fixed defects on SPECT scan
Hachamovitch, 2002 ⁵⁵	Cardiac events	SSS from SPECT scan
Iskandrian, 1993 ⁵⁷	Cardiac events	Extent of total perfusion abnormality, extent of ischaemic abnormality and LV dilation on SPECT scan; gender; exercise work load; extent of CAD and EF
Iskandrian, 1994 ⁵⁸	Cardiac death	Extent of perfusion abnormality on SPECT scan; extent of CAD by angiography
Kamal, 1994 ⁵⁹	Cardiac events	Size of perfusion abnormality on SPECT scan
Lauer, 1996 ⁶⁰	Referral for CA	Abnormal SPECT scan; anginal chest pain; ventricular tachycardia; hypotensive response
Lauer, 1997 ⁶¹	Referral for CA	Presence of any ischaemia revealed by SPECT; anginal chest pain on the treadmill
Machecourt, 1994 ⁶²	Cardiac death or non-fatal MI	Abnormal SPECT scan; male gender; previous MI; submaximal ExECS
Marie, 1995 ⁶³	Cardiac death or non-fatal MI	Total exercise defect extent on SPECT scan; age
Marwick, 1999 ⁶⁴	Total mortality	Exercise capacity; number of territories with reversible defects on SPECT scan
Miller, 1998 ⁶⁵	All-cause mortality	Shorter exercise duration; number of abnormal SPECT segments after exercise; increasing age
Miller, 2001 ⁶⁶	All-cause mortality	Worsening clinical status; worsening category SSS; worsening category SRS from SPECT scan
Nallamothu, 1997 ⁶⁹	Cardiac death or non-fatal MI	Extent of perfusion abnormality; multivessel perfusion abnormality on SPECT scan; increased lung thallium uptake on SPECT scan
O'Keefe, 1998 ⁷⁰	Cardiac death or non-fatal MI	Referral for CA
Olmos, 1998 ⁷¹	Cardiac death or non-fatal MI	Abnormal SPECT scan

Study	Outcome	Independent predictors
Pancholy, 1994 ⁷²	Survival	History of diabetes mellitus; size of perfusion abnormality on SPECT scan
Pancholy, 1995 ⁷³	Cardiac death or non-fatal MI	Large perfusion abnormality on SPECT scan; age
Parisi, 1998 ⁷⁴	Survival	Reversible defect on SPECT scan; diabetes; current smokin
Pattillo, 1996 ⁷⁵	Cardiac death or non-fatal MI	Size of perfusion defect on SPECT scan
Schinkel, 2002 ⁷⁶	Cardiac death	Abnormal SPECT scan; age; diabetes mellitus; smoking; congestive heart failure
Shaw, 1999 ⁷⁸	Catheterisation	Probability of CAD; ST-segment depression; reversible defect on SPECT scan
Shaw, 2000 ⁷⁹	Cardiac death	Number of ischaemic myocardial perfusion territories on SPECT scan; number of infarcted myocardial perfusion territories on SPECT scan; pretest clinical risk
Stratmann, 1994 ⁸⁰	Cardiac death or non-fatal MI	Abnormal SPECT scan;
Travin, 1995 ⁸¹	Cardiac death or non-fatal MI or hospitalisation for unstable angina	Number of SPECT ischaemic defects
Vanzetto, 1999 ⁸³	Cardiac death or non-fatal MI	Age >60 years; personal history of CAD; presence of microalbuminaria; inability to perform exercise stress test; abnormal SPECT scan; >2 abnormal segments on SPECT scan
Vanzetto, 1999 ⁸⁴	Overall mortality	Age; exercise ECG; abnormal SPECT scan
Vanzetto, 1999 ⁸⁴	Cardiac death	\geq 3 abnormal segments on SPECT scan; previous MI; non-diagnostic EXECG; strongly positive ECG
Wagner, 1996 ⁸⁵	Death, unstable angina, reinfarction, revascularisation	Reversible perfusion defects on SPECT scan
Zanco, 1995 ⁸⁶	Cardiac death, non-fatal MI, unstable angina	Abnormal SPECT scan; typical angina
Zellweger, 2002 ⁸⁷	Cardiac death or non-fatal MI	Symptoms; prior CABG; prescan likelihood of CAD; summed difference score from SPECT scan; non-reversible segments on SPECT scan
Zerahn, 2000 ⁸⁸	Cardiac death	Fixed defects on SPECT scan; dPRP <2500 mmHg/minute; age \geq 60 years; LBBB; digoxin

Appendix 10

Summary of economic evaluations

Summary of included economic evaluations: patient-level analyses

anullah, 17 ¹⁰⁸ A Prospective cohort study or known valvular a 1. CA Severe or extensive CAD on CA Two scenarios hastory of revascularisation or known valvular 3. SPECT. CA if extensive CAD on CA 2. SPECT summed stress score ≥8 Severe or extensive cAD on CAD

Study and sample	Type of study	Eligibility/ patient group	Comparators	Outcome measures	Follow-up	Unit costs/ resource use	Results/authors' conclusions	Comments
Barnet, 2002 ¹¹⁵ USA N = 876 - a substudy of the VANQUISH trial	Incremental cost- effectiveness analysis based on an RCT SA Discount rate (5%) Veterans administration unit cost Estimation of lifetime survival and costs	Diagnosed AMI Mean age 61 years Men 98% Previous MI 43% Diabetes 25%	I. CA 2. SPECT, CA if myocardial ischaemia	Survival Life-years discounted, rate not stated Costs discounted at 3%	Mean 23 months	Unit costs: Microcosting Hospital stay from Medicare 1997 \$US Resource use data on cost drivers provided	Higher initial costs for CA (14733:19,256, p < 0.001); total for initial stay and follow-up care for CA = 41,893; SPECT = 39,707 ($p = 0.037$) Survival with SPECT strategy significantly higher than invasive strategy at 1 year. 1.86 life-years (conservative): 1.79 invasive at 2 years Bootstrapping results: 76.5% of bootstrap iterations had better outcomes and lower costs for SPECT strategy In 96% of replication SPECT preferred at a CE threshold of \$50,000 per life year saved	Cost differences compared using non-parametric Wilcoxon rank sun test. Bootstrapping to assess uncertainty surrounding incremental cost per life-year gained
								continued

Study and sample	Type of study	Eligibility/ patient group	Comparators	Outcome measures	Follow-up	Unit costs/ resource use	Results/authors' conclusions	Comments
Christian, 1994 ¹⁰⁶ (also Evans, 1996 ¹³⁵) USA N = 411	CEA Prospective cohort study Data analysed using effectiveness were assessed using an MV analysis SA using a cross- validation MV comparing predictions based on 9 deciles with data from the tenth	Normal resting ECG, no previous MI	 Clinical data Clinical data plus ExECG Clinical data plus ExECG plus SPECT for detection of 3VD or LMD 	Disease reclassified based on findings of angiography Telephone follow-up for details of cardiac events	2.8 ± I year	ExECG \$89 ExSPECT \$700	ExECG vs clinical data: ExECG led to an additional 24 correct classifications. Cost per additional correct reclassification \$1524 SPECT vs ExECG: SPECT led to cost per additional correct reclassification \$20,550 Cross-validation exercise greatly increased the incremental cost per correct classification, £14,3880 Conclusion: SPECT not cost-effective	Although the analysis of effectiveness was sophisticated, the estimation of cost- effectiveness was simple and only two costs were included. Limited nature of costs and benefits included mean important costs and benefits may have been missed. Effect of this on CEA is uncertain
Hachamovitch, 2002 ⁵⁵ USA N = 3058	CEA based on a retrospective observational study MV analysis to assess differences between strategies but simple patient-level analysis to assess cost-effectiveness	Patients with abnormalities on resting ECG; those undergoing early revascularisation or who were lost to follow-up were excluded. 3058 patients with normal resting ECGs were identified from 4572 consecutive patients who had undergone exercise SPECT between January 1991 and December 1993	 Clinical and history only ExECG and clinical data and history ExSPECT plus strategy 2 above 	Correct classification Hard event rate: I. Cardiac death 2. Non-fatal MI 3. Incremental cost per correct classification 4. Incremental cost per hard event	Telephone interview 1.6 ± 0.5 years		Cost-effective except for low-risk patients. For intermediate to high post-ExECG risk \$5417 per reclassification overall; \$3816 per reclassification for women subgroup. Incremental cost per hard event rate: SPECT for patients \$44,288* SPECT vs clinical for those at low risk of CAD \$211,470 SPECT vs clinical for those at high risk \$31,904 SPECT vs ExECG \$25,134 * Reviewers' estimate	Appropriateness of CEA calculations inferred from the results of the MV analysis. Limited incremental analysis due to choice of outcome measures and exclusion of other costs notably the cost of ExECG. Data on incremental cost per hard event rate can be used to illustrate a number of scenarios

Study and sample	Type of study	Eligibility/ patient group	Comparators	Outcome measures	Follow-up	Unit costs/ resource use	Results/authors' conclusions	Comments
Kosnik, 2001 ¹¹¹ USA N = 69	CMA Prospective cohort study No sensitivity analysis reported in the paper	Adults (mean age 56 years; 43% men) with abnormalities on resting ECG, suspected AMI and without cardiac complications (heart failure, arrhythmias, shock)	 SPECT Clinical data 	Acute coronary events Change in management strategy from pre- and post-test assessment of risk	12 months	and indirect (overhead) costs US\$; year to	Clinical judgement alone mean treatment scenario cost was \$2096. Clinical judgement and SPECT mean treatment scenario cost was \$1674. Adding the scan cost increases the cost to \$2626 Inclusion of SPECT led to 29 changes to management, 27 of which were optimal	
Mattera, 1998 ¹⁰⁷ USA N = 313	CMA based on a retrospective observational study Three subgroups based on pretest risk of CAD: ≤ 20%, 21–70%, ≥ 71%	Patients included if they had normal resting ECG regardless of known history of CAD/MI. Univariate analysis used to test for the association between test results and outcomes	 Stress ECG SPECT 	Diagnostic accuracy re hard cardiac events (cardiac death, non-fatal MI)	397 days (±151 days)	Connecticut Medicare fees in 1996 US\$ Exercise ECG \$120 SPECT \$745	Stepwise approach reduced costs by 38% in patients with normal resting ECGs. Both ECG and SPECT associated with prediction of cardiac events	Both SPECT and planar imaging occurred. No distinction drawn between the two. Only costs include were SPECT and ExECG Effects not directly related to costs within the analysis
								continu

USAcohorts of patients who had received either direct CA or SPECTtypical cardiac symptomsselective CA 2. Direct CAsurvival MIyears+ follow-up costs (including cardiac hospitalisationsappear to differdiffer between th two cohorts. Effer between the twoN = 11372N = 11372referred for invasive or non- invasive or non- cCMA chosen as risk profiles were similarinvasive testing. Patients were excluded if testsDirect CA N = 11372pressonRates of vere more peop polirect costs from microcostwere more peop microcostSA: changes in costs by 50%for a predischarge evaluation, recent hospitalisation for unstable angina,seecent seecentseecent seecent seecentseecent seecent seecentseecent seecent seecent seecent direct CAseecent s	Study and sample	Type of study	Eligibility/ patient group	Comparators	Outcome measures	Follow-up	Unit costs/ resource use	Results/authors' conclusions	Comments
	USA	cohorts of patients who had received either direct CA or SPECT CMA chosen as risk profiles were similar SA: changes in costs by 50% Comparison of patient level analysis with a multivariate linear regression to estimate	Patients with typical cardiac symptoms referred for invasive or non- invasive testing. Patients were excluded if tests for a predischarge evaluation, recent hospitalisation for unstable angina, MI or coronary	selective CA	survival MI Admission for	years	+ follow-up costs (including cardiac hospitalisations over 3 years Direct costs from microcost accounting system; Medicare hospital charges; hospital specific Medicare charges Costs in 1995 US\$ Costs discounted at a 3% discount	appear to differ between the two strategies Rates of revascularisation were higher for direct CA strategy Costs increased as pretest risk of CAD increased for both strategies Initial use of non- invasive stress imaging decreased overall cost of care over 3 years Use of SPECT was 30–40% less costly than direct CA Results of an SA were	disease in the direct CA group – this would magnify cost savings. There were fewer with MVD in the direct CA group, which

Study and sample	Type of study	Eligibility/ patient group	Comparators	Outcome measures	Follow-up	Unit costs/ resource use	Results/authors' conclusions	Comments
Shaw, 1999 ⁷⁸ USA N = 4638	CMA based on matched cohorts of women who received either direct CA or SPECT CMA as no evidence of a statistically significant difference in cardiac deaths	Patients with typical cardiac symptoms referred for invasive or non- invasive testing. Patients were excluded if tests for a predischarge evaluation, recent hospitalisation for unstable angina, MI or coronary revasculisation	I. Ex SPECT, selective CA 2. Direct CA	Cardiac survival Revascular- isation	3 years	Diagnostic costs + follow-up costs (including cardiac hospitalisations) over 3 years Medicare hospital charges converted to costs using the hospitals cost to charge ratio; hospital costs in 1995 US\$ Not reported if discounting performed	No evidence of a statistically significant difference in cardiac deaths Rates of revascularisation were higher for direct CA strategy Low risk: CA \$2490 SPECT \$1587 Medium risk: CA \$2740 SPECT \$1693 High risk: CA \$3687 SPECT \$2585 All differences statistically significant at the 5% level	
Stowers, 2000 ¹¹³ USA N = 46	RCT with all patients receiving SPECT but clinicians blinded to results in conventional treatment arm Random block randomisation; unclear how performed CMA as no difference in outcome was assumed Differences in cost tested using Wilcoxon rank sum test	Patients presenting to emergency departments with chest pain < 12 h and normal ECG, chest pain score > 10, age > 50 years and 3 high- risk factors Excluded pregnant women, prior MI, use of investigatory drugs < 30 days	clinical data,	In-hospital events	30 days	Clinical and in- hospital costs from bills/patient charges converted to costs using institutions cost/charge ratio Date to which costs relate is unclear	Patients in SPECT arm had median hospital cost \$1843 (95% CI \$431 to 6171) lower than conventional arm Mean costs were \$4620 for SPECT and \$9054 for conventional arm	Focus of cost analysis was on medians rather than means differences No SA reported

Underwood, 1999 Multicentre (UK, France, Germany, Italy), EMPIRE study ⁸ Patients presenting for CAD diagnois Patients presenting for CAD diagnois 1. ExECG tollowed by CA Secondary Hard and soft 2 years Cost of diagnosis Reports mean cost of diagnosis by strategy and centre. School the cost of No SA, no discounting. The the cost of No SA, no With the cost of SPECT SPECT No SA No No No No No SA, no CMA using retrospective data SPECT SPECT No SA, no SPECT CMA using retrospective data SPECT No No SA No SA No SA

Study and sample	Type of study	Eligibility/ patient group	Comparators	Outcome measures	Follow-up	Unit costs/ resource use	Results/authors' conclusions	Comments
Weissman, 1996 ¹¹² USA N = 50	CMA based on a prospective cohort study	Unexplained chest pain, non- diagnostic ECG, history, cardiac enzyme levels (when available) and non- diagnostic history and physical examination	 Rest or stress SPECT and clinical data Clinical data alone 	Physician diagnostic confidence on a 1–5 scale Cardiac events	9–12 months	Comparison of pre-SPECT costs based on previous 6 months' patient data and costs following introduction of SPECT Year and currency not specified	No patients diagnosed as normal had an adverse event; I patient with an adverse event who would have been discharged without SPECT identified. SPECT imaging resulted in a cost saving of \$786 per patient. Initially extra time in emergency room but earlier discharge	

Summary of included economic evaluations: models

Study and setting	Target population	Strategies	Type of study	Outcome measures	Source of data	Follow-up/ time horizon	Unit costs	Results/authors' conclusions	Comment
Garber, 1999 ¹⁰⁴ USA	Population with pretest risk of coronary artery disease of between 25% and 75% (intermediate risk)	 ExECG ExPlanar SPECT ExSPECT ExECHO ExPET CA 	CEA based on a Markov model SA on population age and sex, prevalence of disease, cost of PET, risk and strategy following a non- diagnostic test, complications of angiography	Life-years	Data on effectiveness: Sensitivity and specificity based on a systematic review based around a MEDLINE search Utilities: Previous literature reporting results of TTO survey Unit costs: Medicare payment schedules reported in 1996 US\$ Resource use: not explicitly stated	30 years 1996 \$US 3% discount rate used for costs, life-years and QALYs	SPECT \$475 ExECG \$110 CA \$1810 CABG for single and 2-vessel \$32,390 CABG for 3-vessel and left main vessel \$32,824 MI admission \$7415 PTCA \$11,685 Utility values not stated	Men: CA vs SPECT	ICERs estimated using a stepwise approach. More costly, less effective alternative excluded
									continued

of CAD UK Cohort with pretest prevalece of CAD 10, 50 and 90% SECT in positives or inf cAD 10, 50 and 90% SECT in positives or non- diagnostic, CA in positives SECT in positives or non- diagnostic, CA in positives or in negatives or non-diagnostic, CA in positives S. CA SECG 427 SECG 427 SECC 42 SECC 42	Study and setting	Target population	Strategies	Type of study	Outcome measures	Source of data	Follow-up/ time horizon	Unit costs	Results/authors' conclusions	Comment
CAD in2. SPECTMarkov model.effectiveness: sensitivity and sensitivity and sensitivity and sensitivity and socunted atExECG \$282 CA \$1672not reported CA dominatesspecificity sensitivity and short considered:SPECT at high and intermediate risksspecificity sensitivity and short considered:CA dominatesspecificity and specificity basedSPECT at high and short considered:SPECT at high and intermediate risksCA dominatesS5-year-old womenChanges to time horizonon a systematic described in the paperInclear if costs paperPTCA \$4333 MedicalSPECT vs ECG not presented1. with definite angina angina	-	of CAD Cohort with pretest prevalence of CAD 10, 50	positives or if non-diagnostic 2. SPECT; CA in positives or if non-diagnostic 3. ExECG, SPECT in positives or non- diagnostics; CA in positives 4. ExECG, CA in positives; SPECT in negatives or non-diagnostic, CA in positives	CEA/QALY Decision model with QALY estimates attached as payoffs One-way SA range of parameter values in model. MV analysis parameter affecting CA at high risk of	diagnosis of disease	effectiveness: same data as used in Patterson, 1995 ¹⁰² Utilities: unclear how assessed Unit costs: single UK centre, descriptions reasonably comprehensive Date of costs not stated Resource use: not	, Discounting not	ExECG £7 (£7–55) CA £375 (£375–459) CABG £4732 PTCA £1140 Drug tx £1500 Weighted tx average (based on Tx data from Patterson 1995 ¹⁰²) £3200 (£1500–7000) Complications £1500	10%, lowest av. cost per QALY was for strategy 3 Pretest CAD risk 50%, lowest av. cost per QALY was for strategy 1 Pretest CAD risk 10%, lowest av. cost per QALY was for	average cost- effectiveness ratio ICERs can be estimated from the data provided (Appendix 13). Stepwise ICERs show the gain from adopting more effective but costly
explicitly stated		CAD in women. 3 scenarios considered: 55-year-old women 1. with definite angina 2. probable angina 3. non- specific chest	 2. SPECT 3. Stress ECHO 4. CA 	Markov model. One way SA on all variables. Changes to time	QALYs	effectiveness: sensitivity and specificity based on a systematic review not described in the paper Utilities: previous literature reporting TTO results Unit costs: bottom-up costs from two organisations reported in 1996 US\$ Resource use: not	QALYs discounted at 5% rate Unclear if costs	ExECG \$282 CA \$1672 ECHO \$435 PTCA \$4333 CABG \$21,131 Medical management \$863 AMI \$7797 AMI follow-up treatment \$863 QALYs Angiogram 0.0027 AMI 0.0190 PTCA 0.00822	not reported CA dominates SPECT at high and intermediate risks Comparisons of SPECT vs ECG not	Sensitivity and specificity

1999 ⁹⁹ chest pain and no MI history no MI history as appropriatemedical therapy as appropriatestrategies assessed using a decision modellifetime: QALYseffectiveness: sensitivities/and QALYs(77–143) Echo \$262aged 50–59 year with mild chest painusing a stepwise approachfor2. CA alone decision modeldecision model decision modelCosts Costsspecificities taken meta-analyses.Utilities(183–341)More costly, lessapproach More costly, lessthree age 40–49, 50–593. ExSPECT; CA if positiveLifetime costs and QALYscost per QALYmeta-analyses.0.87 (0.77–1) Other risks and 0.81 (0.68–1)GA \$4741ECG = \$38,000; SPECT: no testing =effective alternativ excluded, as were options with highe IcERs than prognoses fromSPEcTSPECT: no testing =ICERs than preceding options	Study and setting	Target population	Strategies	Type of study	Outcome measures	Source of data	Follow-up/ time horizon	Unit costs	Results/authors' conclusions	Comment
	Kuntz, 1999 ⁹⁹	chest pain and no MI history for three age cohorts, 40–49, 50–59 and 60–69 years, presenting	medical therapy as appropriate 2. CA alone 3. ExSPECT; CA if positive 4. ExECG; CA if positive 5. ExECHO; CA if positive Criterion for further work-up further split into strongly positive	strategies assessed using a decision model Lifetime costs and QALYs estimated using a Markov model One- and two- way analysis on all variables Monte Carlo simulation incorporating parameter uncertainty Subgroup	lifetime: QALYs Costs Incremental cost per	effectiveness: sensitivities/ specificities taken from recent meta-analyses. Other risks and long-term prognoses from the literature but method of assembly not reported Utilities based on a SG exercise of 211 patients Unit costs: Medicare allowable charges Costs in 1996 US\$. Methods for any price adjustment reported Resources: not	and QALYs Utilities No chest pain 0.87 (0.77–1) Mild chest pain 0.81 (0.68–1) Severe 0.67 (0.4–0.98) 3% discount rate for costs	(77–143) Echo \$262 (183–341) SPECT \$574 (402–746) CA \$4741 (3319–6163) PTCA \$12,476 (8733–16,219) CABG \$33,088 (23,162–43,014) MI \$14,168 (9918–12,983) Annual medical management 160–3500 depending on	aged 50–59 year with mild chest pain (a) Typical angina: SPECT: exercise ECG = \$38,000; SPECT: no testing = \$27,600. (b) Atypical angina: SPECT: ECG = \$54,900; SPECT: no testing = \$33,300 Higher ICERs for women and younger men (lower risk of	using a stepwise approach More costly, less effective alternative excluded, as were options with higher ICERs than preceding options (defined as weakly

Study and setting	Target population	Strategies	Type of study	Outcome measures	Source of data	Follow-up/ time horizon	Unit costs	Results/authors' conclusions	Comment
Maddahi, 1997 ¹⁰⁰ USA	Those at risk of CAD at various pretest prevalence rates	 Angiography, PET, CA if positive SPECT, if positive ECG, PET if positive; if PET positive) ECG, SPECT if positive, CA if SPECT positive ECG, CA if positive 	Decision analysis. Costs and effects not formally combined based on review/meta- analysis No SA	% correctly diagnosed Relative costs compared with angiography	Data on effectiveness: review of studies published between 1967 and 1996. Methods of the review are not well documented Unit costs: relative prices only. Price year and currency not stated Resource use: not reported	Unclear but likely to be short	Relative rates compared with CA only reported	For all risk categories the authors conclude that strategies (4) and (5) are the most cost-effective	
Patterson, 1984 ¹⁰¹ USA	Those at risk of CAD Prevalence of CAD varied between 0 and 100%	 ExECG; CA in positives or if non-diagnostic SPECT; CA in positives or if non-diagnostic CA ExECG, SPECT in positives; CA in positives 	Average CEA/QALY Decision model with QALY estimates attached as pay- offs SA on risk of CA, risk following FNs; changes in QALYs, low cost CA or SPECT	Accurate diagnosis of CAD QALYs	Data on effectiveness: data from a single centre, existing literature. Unclear how data chosen Utilities: unclear Unit costs: Medicaid– Medicare for New York City in 1981 US\$ Resource use: not provided	10 years Discounting not performed	SPECT \$385 ExECG \$175 CA \$2825 Post-CAD diagnosis change in QALYs (over 10 years) = 2	The lowest average cost per QALY was for strategy 4 for a prevalence of CAD up to 80%. Thereafter, direct CA had the lowest cost per QALY. Results most sensitive to QALY estimates	Unclear from the data provided whether the results relate to planar imaging. ICERs are not readily estimable. Unclear if cost of diagnostic complications included productivity costs
									continued

Study and setting	Target population	Strategies	Type of study	Outcome measures	Source of data	Follow-up/ time horizon	Unit costs	Results/authors' conclusion	Comment
Patterson 1995 ¹⁰² USA	Those at risk of CAD Prevalence of CAD varied between 0 and 100% and presented for specific scenarios	 ExECG; CA in positives or if non-diagnostic SPECT; CA in positives or if non-diagnostic PET; CA in positives or if non-diagnostic CA 	Average CEA per QALY Decision model with QALY estimates attached as payoffs SA low fees for tests, lower accuracy of PET, SPECT and ExECG, low risk of FNs, low benefit from treatment	QALYs	Data on effectiveness: unclear Utilities: unclear how obtained Unit costs: fee for tests Currency: US\$, year is unclear. Resource use: not provided	10 years Discounting not performed	SPECT \$1200 ExECG \$330 PET \$1800 CA \$4800	For pretest CAD risk <0.7; stress PET had lowest average cost per QALY, followed by SPECT, ExECG and CA >70 Lowest average cost per QALY was CA	
Radensky, 1997 ¹¹⁰	Those presenting to emergency rooms with normal or non-diagnostic ECG	 Rest SPECT (scan) Stratification on the basis of clinical and ECG variables (no scan) 	Decision analysis SA on cost of SPECT Threshold of the specificity of no scan strategy; probabilistic analysis on cost distributions	Model set- up with data that show that the scan	Data on effectiveness: taken from a single study performed by the authors. Unit costs: Medicare fees converted into costs. Methods for adjusting for inflation reported Currency: 1994 US\$ Resource use: not provided	Hospital stay	Not stated	Medicare mean costs: scan cost \$1032 (17%) less than no scan. Median costs: scan 453 (10%) less costly SA showed specificity of no scan would need to be 65% for the two strategies to be equivalent. No scan should be less costly if >60% patients had an adverse event	Short-term follow up and crude estimates of effectiveness limit applicability

Study and setting	Target population	Strategies	Type of study	Outcome measures	Source of data	Follow-up/ time horizon	Unit costs	Results/authors' conclusions	Comment
Rumberger, 1999 ¹⁰³ USA	Those at risk of CAD presenting with normal resting ECG Prevalence of CAD varied between 0 and 100%	 ExECG; CA in positives or if non-diagnostic ExECHO; CA in positives or if non-diagnostic SPECT; CA in positives or if non-diagnostic EBCT; CA in positives or if non-diagnostic CA alone 	Average CEA	Correct diagnosis with CAD	Data on effectiveness: existing literature. Unclear how data chosen Unit costs: Medicare fees, Currency US\$, year not stated Resource use: not provided	Follow-up not stated. Likely to be short		Lowest ACERs Low (10%) pretest risk of CAD: EBCT score 180 Medium (50%): EBCT score 37 High (100%): CA Of the interventions of interest (strategies 1, 3, 5) rank ordering of ACERs were: Low (10%), strategy 1, 3, 5, Medium (50%), strategy 1, 5, 3, High (100%), strategy 5, 1, 3	Results presented as a series of average cost- effectiveness ratios ICERs can be estimated from the data provided (Appendix 13). Stepwise ICERs show the gain from adopting more effective but costly strategies. Incremental cost per true positive o strategy 3 above strategy 2 was always >\$16,000
Shaw, 2003 ¹⁰⁵ USA	Hypothetical cohort of 1000 patients with suspected CAD 30% low risk (15% risk of CAD), 10% high risk (>80% risk of CAD), 60% intermediate risk	 CA Stress ECG Stress ECHO Stress SPECT Contrast- enhanced ECHO Pathways validated by survey of those hospitals which had care pathways in a large group purchasing organisation in the USA 	CEA based on a decision analysis SA: changes by I SD in the diagnostic accuracy of tests	accuracy Incremental cost per additional accurate	Data on effectiveness: from a literature review described as systematic but with no details provided Unit costs: procedural cost database of the purchasing organisation adjusted by number of procedures per hospital. Currency: 1998 US\$ Resource use: not stated	2 years Costs discounted at 5%	ExECHO = \$188 SPECT = \$330 CA = \$851 ExECG = \$122	Low risk: not reported in detail Intermediate risk: ACER reported as \$267–355 for contrast-enhanced ECHO and stress SPECT, \$1320 for ExECG High risk: not reported in detail SPECT and contrast- enhanced ECHO are dominant	From the data presented it is not possible to replicate any of the ACERs or ICERs reported, suggesting that the model is not sufficiently transparent. This limits applicability of the model

Appendix II

Estimation of incremental cost-effectiveness from data presented in the economic evaluation

Incremental cost per true positive (Jacklin, 2002)

Risk (%)			Ste	epwise incre	emental analy	vsis			Pair	wise compari	isons	
		True +ves	Cost (£)	Av CER	Incr +ves	Incr £	ICER	ECG, +ves SPECT	Ex ECG	SPECT	ECG, –ves SPECT	CA
10	ECG, +ves SPECT	619	1488000	2404	619	1488000		NA				
	ExECG	724	1807000	2496	105	319000	3038	3038	NA			
	SPECT	836	3045000	3642	112	1238000	11054	7175	11054	NA		
	ECG, -ves SPECT	914	3248000	3554	78	203000	2603	5966	7584	2603	NA	
	CA	979	4050000	4137	65	802000	12338	7117	8796	7028	12338	NA
		True +ves	Cost (£)	Av CER	Incr +ves	Incr £	ICER	Ex ECG	ECG, +ves SPECT	ECG, –ves SPECT	CA	SPECT
50	ExECG	3622	2630000	726	3622	2630000		NA				
	ECG, +ves SPECT	3093	2944000	952	-529	314000	Dominated	Dominated	NA			
	ECG, -ves SPECT	4569	3966000	868	947	1336000	1411	1411	Not est	NA		
	CA	4893	4050000	828	324	84000	259	1117	Not est	259	NA	
	SPECT	4178	4222000	1011	-715	172000	Dominated	2863	Not est	352	298	NA
		True +ves	Cost (£)	Av CER	Incr +ves	Incr £	ICER	Ex ECG	CA	ECG, +ves SPECT	ECG, –ves SPECT	SPECT
90	ExECG	6520	3453000	530	6520	3453000		NA				
	CA	8807	4050000	460	2287	597000	261	261	NA			
	ECG, +ves SPECT	5568	4499000	808	-3239	449000	Dominated	Dominated	Dominated	NA		
	ECG, -ves SPECT	8224	4684000	570	-583	634000	Dominated	722	Dominated	70	NA	
	SPECT	7520	5399000	718	-1287	1349000	Dominated	1946	Dominated	461	Dominated	NA

Risk (%)			Ste	pwise incre	emental analy	vsis			Pair	wise compari	isons	
		True diag	Cost (£)	Av CER	Incr diag	Incr £	ICER	ECG, +ves SPECT	Ex ECG	SPECT	ECG, -ves SPECT	CA
10	ECG, +ves SPECT	9597	1488000	155	9597	1488000		NA				
	ExECG	9647	1807000	187	50	319000	6380	6380	NA			
	SPECT	9790	3045000	311	143	1238000	8657	8067	8657	NA		
	ECG, -ves SPECT	9836	3248000	330	46	203000	4413	7364	7624	4413	NA	
	CA	9785	4050000	414	-5 I	802000	Dominated	13628	16254	Dominated	Dominated	NA
		True diag	Cost (£)	Av CER	Incr diag	Incr £	ICER	Ex ECG	ECG, +ves SPECT	ECG, -ves SPECT	CA	SPECT
50	ExECG	8579	2630000	307	8579	2630000		NA				
	ECG, +ves SPECT	8081	2944000	364	-498	314000	Dominated	Dominated	NA			
	ECG, -ves SPECT	9526	3966000	416	947	1336000	1411	4	Not est	NA		
	CA	9785	4050000	414	259	84000	324	1177	Not est	324	NA	
	SPECT	9153	4222000	461	-632	172000	Dominated	2774	Not est	Dominated	Dominated	NA
		True +ves	Cost (£)	Av CER	Incr +ves	Incr £	ICER	Ex ECG	CA	ECG, +ves SPECT	ECG, -ves SPECT	SPECT
90	ExECG	7512	3453000	460	6520	3453000		NA				
	CA	9785	4050000	414	2273	597000	263	183	NA			
	ECG, +ves SPECT	6565	4499000	685	-3220	449000	Dominated	Dominated	Not est	NA		
	ECG, -ves SPECT	9216	4684000	508	-569	634000	Dominated	457	Not est	Not est	NA	
	SPECT	8515	5399000	634	-1270	1349000	Dominated	975	Not est	Not est	Not est	NA

Incremental cost correct diagnosis (Jacklin, 2002)

Incremental cost per QALY (Jacklin, 2002)

Risk (%))		Ste	pwise incr	emental analy	sis			Pairwise	incrementa	l analysis	
	-	QALYs	Cost (£)	Av CER	Incr QALYs	Incr £	ICER	ECG, +ves SPECT	Ex ECG	SPECT	ECG, –ves SPECT	CA
10	ECG, +ves SPECT	1867	3531000	1891	1867	3531000		NA				
	ExECG	2147	4188000	1951	280	657000	2346	2346	NA			
	SPECT	2513	5789000	2304	366	1601000	4374	3495	4374	NA		
	ECG, -ves SPECT	2727	6260000	2296	214	471000	2201	3173	3572	2201	NA	
	CA	2834	7245000	2556	107	985000	9206	3841	4450	4536	9206	NA
	-	QALYs	Cost (£)	Av CER	Incr QALYs	Incr £	ICER	ECG, +ves SPECT	Ex ECG	SPECT	ECG, –ves SPECT	СА
50	ECG, +ves SPECT	9444	13119000	1389	9444	13119000		NA				
	ExECG	11030	14474000	1312	1586	1355000	854	854	NA			
	SPECT	12741	17880000	1403	1711	3406000	1991	1444	1991	NA		
	ECG, -ves SPECT	13923	18911000	1358	1182	1031000	872	1293	1534	872	NA	
	CA	14852	20026000	1348	929	1115000	1200	1277	1453	1017	1200	NA
	-	QALYs	Cost (£)	Av CER	Incr QALYs	Incr £	ICER	ECG, +ves SPECT	Ex ECG	SPECT	ECG, –ves SPECT	СА
90	ECG, +ves SPECT	17016	22708000	1335	17016	3453000		NA				
	ExECG	18911	24760000	1309	1895	2052000	1083	1083	NA			
	SPECT	22966	29971000	1305	4055	5211000	1285	1221	1285	NA		
	ECG, -ves SPECT	25118	31563000	1257	2152	1592000	740	1093	1096	740	NA	
	CA	26869	32807000	1221	1751	1244000	710	1025	1011	727	710	NA

			Step	wise increm	iental analysi	5				Pai	rwise incre	mental ana	lysis		
		True +ves (%)	Cost (£)	Av CER	Incr +ves (%)	lncr £	ICER	EBCT 168	EBCT 80	EBCT 37	ECG	ECHO	SPECT	EBCT 0	C
10	EBCT 168	70	1051	15014	70	1051		NA							
	EBCT 80	80	1264	15800	10	213	21300	21300	NA						
	EBCT 37	90	1512	16800	10	1299	24800	23050	24800	NA					
	ECG	70	1660	23714	Dominated	Dominated	Dominated	Dominated	Dominated	Dominated	NA				
	ECHO	90	1913	21256	Dominated	Dominated	Dominated	43100	64900	Dominated	12650	NA			
	SPECT	90	2411	26789	Dominated	Dominated	Dominated	68000	114700	Dominated	37550	Dominated	NA		
	EBCT 0	100	2470	24700	10	958	95800	47300	60300	95800	27000	55700	5900	NA	
	CA	100	3540	35400	Dominated	Dominated	Dominated	82967	113800	202800	62667	162700	112900	Dominated	N
		True +ves (%)	Cost (£)	Av CER	Incr +ves (%)	lncr £	ICER	EBCT 168	EBCT 80	EBCT 37	ECG	ECHO	EBCT 0	SPECT	C
20	EBCT 168	70	1264	9029	70	1264		NA							
	EBCT 80	85	1512	8894	15	248	8267	8267	NA						
	EBCT 37	90	1725	9583	5	1477	21300	11525	21300	NA					
	ECG	75	1802	12013	Dominated	Dominated	Dominated	53800		Dominated	NA				
	ECHO	85	2161	12712	Dominated	Dominated	Dominated	29900		Dominated	17950	NA			
	EBCT 0	95	2612	13747	5	887	88700	26960	55000	88700	20250	22550	NA		
	SPECT	90	2659	14772	Dominated	Dominated	Dominated	34875	114700	Dominated	28567	49800	Dominated	NA	
	CA	100	3540	17700	5	881	92800	37933	67600	90750	34760	45967	92800	44050	Ν
		True +ves (%)	Cost (£)	Av CER	Incr +ves (%)	Incr £	ICER	EBCT 168	EBCT 80	ECG	EBCT 37	ECHO	EBCT 0	SPECT	C
50	EBCT 168	72	1867	5186	72	1867		NA							
	EBCT 80	84	2222	5290	12	355	5917	5917	NA						
	ECG	72	2228	6189	Dominated	Dominated	Dominated	Dominated	Dominated	NA					
	EBCT 37	90	2435	5411	6	213	7100	6311	7100	2300	NA				
	ECHO	86	2835	6593	Dominated	Dominated	Dominated	13829	61300	8671	Dominated	NA			
	EBCT 0	96	3038	6329	6	603	20100	9758	13600	6750	20100	4060	NA		
		90	3333	7407	Dominated	Dominated	Dominated	16289	37033	12278	Dominated	24900	Dominated	NA	
	SPECT							11950	16475	9371		10071			

Incremental cost per true positive (Rumberger and colleagues)¹⁰³

Risk (%)			Step	wise increm	nental analysis	5				Pa	irwise increr	mental ana	ysis		
		True +ves (%)	Cost (£)	Av CER	Incr +ves (%)	Incr £	ICER	EBCT 168	ECG	EBCT 80	EBCT 37	ECHO	EBCT 0	CA	SPEC
70	EBCT 168	71	2293	4614	71	2293		NA							
	ECG	73	2476	4845	2	183	13071	13071	NA						
	EBCT 80	84	2683	4563	11	207	2688	4286	2688	NA					
	EBCT 37	90	2896	4597	6	213	5071	4534	3529	5071	NA				
	ECHO	86	3297	5477	Dominated	Dominated	Dominated	9562	9022	43857	Dominated	NA			
	EBCT 0	96	3321	4942	6	425	10119	5874	5248	7595	10119	343	NA		
	CA	100	3540	5057	4	219	7821	6143	5630	7652	9200	2480	7821	NA	
	SPECT	90	3759	5967	Dominated	Dominated	Dominated	11023	10782	25619	Dominated	16500	Dominated	Dominated	NA
		True +ves	Cost (£)	Av CER	Incr +ves (%)	lncr £	ICER	ECG	EBCT 168	EBCT 80	CA	EBCT 37	EBCT 0	ECHO	SPEC
100	ECG	0.73	2902	3975	73	2902		NA							
	EBCT 168	0.72	2931	407 I	Dominated	Dominated	Dominated	Dominated	NA						
	EBCT 80	0.84	3357	3996	11	455	4136	4136	3550	NA					
	CA	I	3540	3540	16	609	1144	2363	2175	1144	NA				
	EBCT 37	0.9	3570	3967	Dominated	Dominated	Dominated	3929	3550	3550	Dominated	NA			
	EBCT 0	0.95	3748	3945	Dominated	Dominated	Dominated	3845	3552	3555	Dominated	3560	NA		
	ECHO	0.85	3971	4672	Dominated	Dominated	Dominated	8908	8000	61400	Dominated	Dominated	Dominated	NA	
	SPECT	0.91	4469	4911	Dominated	Dominated	Dominated	8706	8095	15886	Dominated	89900	Dominated	8300	NA

Appendix 12

The models

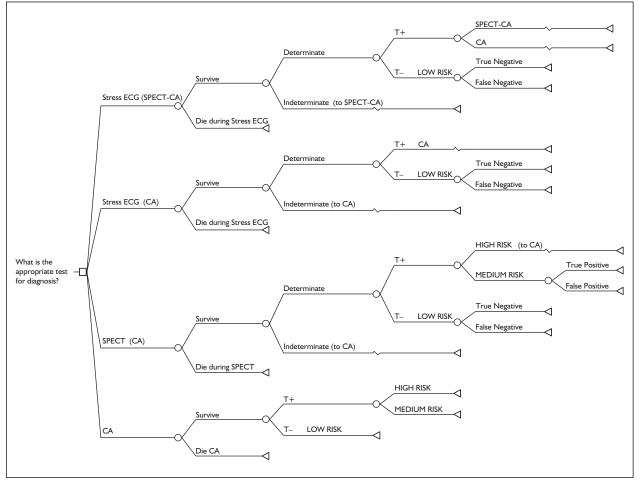


FIGURE 11 Decision tree model (short-term diagnosis model)

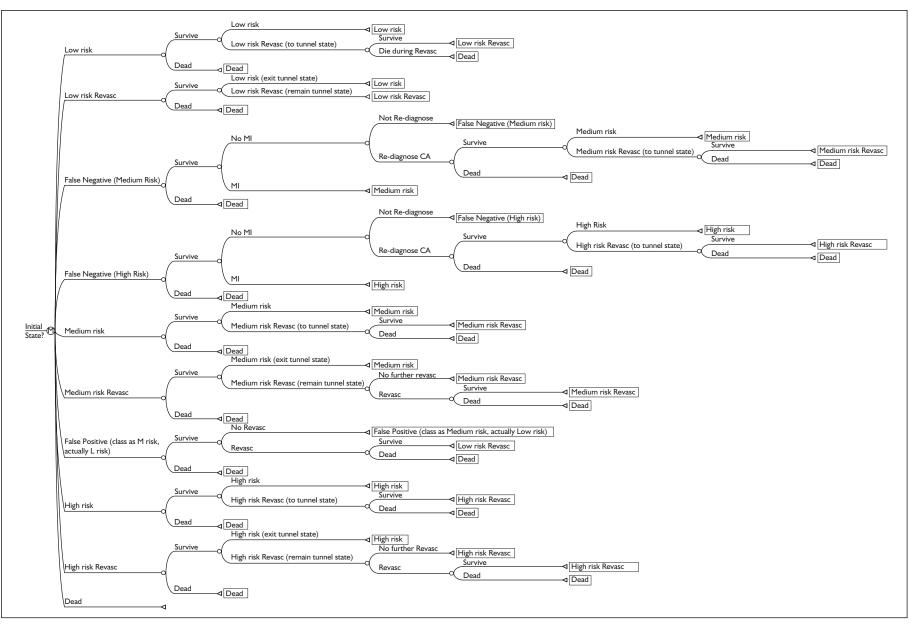


FIGURE 12 Simple Markov model for prognosis and management of CAD

Appendix 13 Life tables

Mortality general population $(q_x)^a$

Age _x (years)	Males	Females	Age _x (years)	Males	Females
0	0.006159	0.005020	51	0.004260	0.002805
1	0.000468	0.000349	52	0.004626	0.003120
2	0.000284	0.000215	53	0.005160	0.003292
3	0.000185	0.000189	54	0.005655	0.003821
4	0.000156	0.000132	55	0.006306	0.004094
5	0.000113	0.000121	56	0.007209	0.004509
6	0.000145	0.000105	57	0.008034	0.005003
7	0.000127	0.000092	58	0.008703	0.005363
8	0.000112	0.000114	59	0.009744	0.006052
9	0.000104	0.000090	60	0.010872	0.006729
0	0.000128	0.000105	61	0.012025	0.007349
1	0.000128				
		0.000121	62	0.013157	0.007877
2	0.000163	0.000105	63	0.014426	0.008762
3	0.000170	0.000108	64	0.015749	0.009735
4	0.000222	0.000135	65	0.017873	0.010716
5	0.000237	0.000161	66	0.019823	0.011768
6	0.000371	0.000218	67	0.022256	0.013184
7	0.000587	0.000257	68	0.024278	0.014480
8	0.000774	0.000305	69	0.027316	0.016281
9	0.000785	0.000285	70	0.030222	0.018326
20	0.000779	0.000285	71	0.033944	0.020606
21	0.000809	0.000303	72	0.037650	0.022932
22	0.000805	0.000317	73	0.041882	0.025704
23	0.000833	0.000309	74	0.046243	0.028836
24	0.000902	0.000304	75	0.051249	0.031856
25	0.000866	0.000302	76	0.055974	0.035567
26	0.000854	0.000359	77	0.061938	0.039250
27	0.000952	0.000340	78	0.068115	0.043221
28	0.000914	0.000376	79	0.074030	0.047603
29	0.001029	0.000374	80	0.079333	0.052758
0	0.000979	0.000414	81	0.086789	0.059054
	0.001049	0.000462	82	0.096967	0.066227
32	0.001077	0.000484	83	0.109904	0.075432
3	0.001121	0.000533	84	0.120204	0.084005
34	0.001121	0.000584	85	0.132078	0.094072
5	0.001200	0.000686	86	0.141829	0.102922
6	0.001200	0.000724	87	0.153119	0.114779
57 57	0.001319	0.000724	88	0.170537	0.126904
			89		
8	0.001382	0.000809		0.183982	0.141894
39	0.001528	0.000880	90	0.195068	0.156488
10	0.001650	0.000990	91	0.206710	0.173781
H .	0.001768	0.001123	92	0.227749	0.189181
2	0.001867	0.001239	93	0.243303	0.208578
13	0.001973	0.001431	94	0.262304	0.223075
4	0.002183	0.001474	95	0.281455	0.242673
15	0.002435	0.001629	96	0.295060	0.263861
6	0.002776	0.001830	97	0.330229	0.282011
17	0.003054	0.001988	98	0.342677	0.304412
18	0.003242	0.002169	99	0.353111	0.315921
19	0.003732	0.002412	100	0.373571	0.344946
50	0.004067	0.002742			

^{*a*} Defined as: is the mortality rate between age x and (x + 1), that is the probability that a person aged x exactly will die before reaching age (x + 1). Source: Interim Life Tables. Government Actuary's Department. England and Wales, based on data for years 1999–2001.

Appendix 14

Price index

Hospital and community health services pay and prices index

Year	Hospital and Community Health Services						
	Pay and prices index (1987–88 = 100)	Annual increase (%)					
1993–94	155.5	3.40					
1994–95	159.6	2.64					
1995–96	166.0	4.01					
1996–97	170.6	2.77					
1997–98	173.5	1.70					
1998–99	180.4	3.98					
1999–00	188.5	4.49					
2000–01	196.4	4.19					
2001–02	203.1	3.41					

Appendix 15 Medical management costs

TABLE 48 Patients' characteristics from EMPIRE study for Aberdeen and Leicester (Underwood, 1999⁸²)

	Aberdeen	Leicester	Average
Angina (%)	50.0	97.0	73.5
Smoking (%)	62.0	59.0	60.5
Cholesterol (%)	25.0	44.0	34.5
Hypertension (%)	14.0	28.0	21.0
Presenting probability of CAD (%)	43.0	56.0	49.5
Actual CAD (%)	29.0	47.0	38.0

TABLE 49 Medical management

T reatment ^a		mg/day	ng/day Prices ^b		Costs		
			I	2	3	Average per unit	Daily
Basic (for all):							
Aspirin		75					0.01
Beta-blockers (atenolol)		200	0.98	3.83	8.12	0.15	0.31
If hypertension:							
ACE inhibitors (enalapril)		10	5.2	10.53		0.28	0.28
If high cholesterol:							
Statins		40	29.69	29.69		1.06	1.06
lf with angina chest pain:							
Long-acting nitrates		2.6–3	19.56	5.12		0.25	0.25
• · ·							
^a Alternative trademarks:							
Beta-blockers	I		proprietary				
	2		enidone				
	3	Tenor	etic				
Enaprapil	I	Non-	proprietary				
	2	Innov	ace				
	3	Innoz	ide				
Statins	1	Lipito	r				
	2	Lipos	tat				
	I	Susca	rd				
	2	Susta	r				

TABLE 50 Medical management cost (2001–02£)

	Daily	Annual	% Patients applied to	Annual cost for typical cohort
Basic treatment	0.32	116.02	100	116.00
Angina	0.25	92.16	50	46.10
Cholesterol	1.06	387.03	35	133.50
Hypertension	0.28	102.53	21	21.50
Total annual cost for typical cohort of patients	317.20			

Appendix 16

Economic model sensitivity analysis: sensitivity and specificity variation results

Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	True positives diagnosed (%)	Accurate diagnoses (%)	QALY
ECG sensitivity $= 0.42$:					
ExECG (SPECT-CA)	575	5146	4.65	94.10	12.46
ExECG (CA)	772	5349	5.5	94.92	12.47
SPECT (CA)	921	5529	8.86	98.29	12.50
CA	1310	5929	10.48	99.85	12.51
ECG sensitivity $= 0.92$:					
ExECG (SPECT-CA)	634	5238	8.28	97.74	12.50
ExECG (CA)	829	5445	9.8	99.22	12.51
SPECT (CA)	921	5529	8.86	98.29	12.50
CA	1310	5929	10.48	99.85	12.51

 TABLE 51
 Estimated costs and outcomes when sensitivity of ECG varies

TABLE 52 Stepwise cost-effectiveness when sensitivity of ECG varies

Strategy	Incremental cost per true positive diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY (£)
ECG sensitivity $= 0.42$:			
ExECG (SPECT–CA)			
ExECG (CA)	23930	24941	53453
SPECT (CA)	5334	5324	5398
CA	24689	25763	57214
ECG sensitivity $= 0.92$:			
ExECG (SPECT-CA)			
ExECG (CA)	13663	13981	20214
SPECT (CA)	-8981	-9041	Dominated
CA	24689	25763	57214

TABLE 53 Estimated costs and outcomes when specificity of ECG varies

Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	True positives diagnosed (%)	Accurate diagnoses (%)	QALY
ECG specificity $= 0.43$:					
ExECG (SPECT-CA)	712	5298	6.39	95.84	12.48
ExECG (CA)	963	5558	7.56	96.97	12.48
SPECT (CA)	921	5529	8.86	98.30	12.50
CA	1310	5929	10.48	99.85	12.51
ECG specificity $= 0.83$:					
ExECG (SPECT-CA)	457	5044	6.39	95.87	12.48
ExECG (CA)	578	5175	7.56	97.01	12.49
SPECT (CA)	921	5529	8.86	98.29	12.50
CA	1310	5929.18	10.48	99.85	12.51

Strategy	Incremental cost per true positive diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY (£)
ECG specificity = 0.43 :			
ExECG (SPECT–CA) ExECG (CA)	22217	23081	45793
SPECT (CA)	-2227	-2186	-1842
CA	24689	25763	57214
ECG specificity $= 0.83$:			
ExECG (SPECT-CA)			
ExECG (CA)	11228	11438	15406
SPECT (CA)	27176	27583	35197
CA	24689	25763	57214

 TABLE 54
 Stepwise cost-effectiveness when specificity of ECG varies

TABLE 55 Estimated costs and outcomes when sensitivity of SPECT varies

Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	True positives diagnosed (%)	Accurate diagnoses (%)	QALY
SPECT sensitivity $= 0.63$:					
ExECG (SPECT-CA)	585	5159	5.01	94.47	12.47
ExECG (CA)	799	5395	7.56	96.99	12.49
SPECT (CA)	896	5486	6.95	96.39	12.48
CA	1310	5929	10.48	99.85	12.51
SPECT sensitivity $= 0.93$					
ExECG (SPECT-CA)	612	5205	7.08	96.54	12.49
ExECG (CA)	799	5395	7.56	96.99	12.49
SPECT (CA)	933	5550	9.82	99.25	12.51
CA	1310	5929	10.48	99.85	12.51

TABLE 56 Stepwise cost-effectiveness when sensitivity of SPECT varies

Strategy	Incremental cost per true positive diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY (£)
SPECT sensitivity = 0.63			
ExECG (SPECT-CA)			
ExECG (CA)	11689.73	9392.14	11689.73
SPECT (CA)	- I 7889.45	-15175.37	-17889.45
CA	17426.14	12791.97	17426.14
SPECT sensitivity $= 0.93$			
ExECG (SPECT–CA)			
ExECG (CA)	39422	42461	754167
SPECT (CA)	6865	6846	6869
CA	56764	63151	-171397

Strategy	Diagnostic cost (£)	Diagnostic and treatment cost (£)	True positives diagnosed (%)	Accurate diagnoses (%)	QALY
SPECT specificity $= 0.64$:					
ExECG (SPECT-CA)	576	5163	6.39	95.86	12.47
ExECG (CA)	799	5395	7.56	96.99	12.48
SPECT (CA)	868	5476	8.86	98.30	12.50
CA	1310	5929	10.48	99.85	12.51
SPECT specificity $= 0.90$:					
ExECG (SPECT-CA)	435.34	5022.62	6.39	95.87	12.48
ExECG (CA)	799.39	5395.03	7.56	96.99	12.48
SPECT (CA)	590.26	5199.64	8.86	98.33	12.50
CA	1309.55	5929.18	10.48	99.85	12.51

TABLE 57 Estimated costs and outcomes when specificity of SPECT varies

TABLE 58 Stepwise cost-effectiveness when specificity of SPECT varies

Strategy	Incremental cost per true positive diagnosed (£)	Incremental cost per accurate diagnosis (£)	Incremental cost per QALY (£)
SPECT specificity $= 0.64$:			
ExECG (SPECT–CA)			
ExECG(CA)	19851	20506	28002
SPECT (CA)	6191	6133	4997
CA	27960	29290	52221
SPECT specificity $= 0.90$:			
ExECG-SPECT_CA			
ExECG-CA	Dominated	Dominated	Dominated
SPECT-CA	7164.19	7192.14	6706.57
CA	44966.53	48093.94	158694.03

Prioritisation Strategy Group

Members

Chair, Professor Tom Walley, Director, NHS HTA Programme, Department of Pharmacology & Therapeutics,

University of Liverpool

Professor Bruce Campbell, Consultant Vascular & General Surgeon, Royal Devon & Exeter Hospital

Professor Shah Ebrahim, Professor in Epidemiology of Ageing, University of Bristol Dr John Reynolds, Clinical Director, Acute General Medicine SDU, Radcliffe Hospital, Oxford

Dr Ron Zimmern, Director, Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

HTA Commissioning Board

Members

Programme Director,

Professor Tom Walley, Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool

Chair,

Professor Shah Ebrahim, Professor in Epidemiology of Ageing, Department of Social Medicine, University of Bristol

Deputy Chair,

Professor Jenny Hewison, Professor of Health Care Psychology, Academic Unit of Psychiatry and Behavioural Sciences, University of Leeds School of Medicine

Dr Jeffrey Aronson Reader in Clinical Pharmacology, Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford

Professor Ann Bowling, Professor of Health Services Research, Primary Care and Population Studies, University College London

Professor Andrew Bradbury, Professor of Vascular Surgery, Department of Vascular Surgery, Birmingham Heartlands Hospital Professor John Brazier, Director of Health Economics, Sheffield Health Economics Group, School of Health & Related Research, University of Sheffield

Dr Andrew Briggs, Public Health Career Scientist, Health Economics Research Centre, University of Oxford

Professor Nicky Cullum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York

Dr Andrew Farmer, Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford

Professor Fiona J Gilbert, Professor of Radiology, Department of Radiology, University of Aberdeen

Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen

Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham Professor Peter Jones, Head of Department, University Department of Psychiatry, University of Cambridge

Professor Sallie Lamb, Research Professor in Physiotherapy/Co-Director, Interdisciplinary Research Centre in Health, Coventry University

Professor Julian Little, Professor of Epidemiology, Department of Medicine and Therapeutics, University of Aberdeen

Professor Stuart Logan, Director of Health & Social Care Research, The Peninsula Medical School, Universities of Exeter & Plymouth

Professor Tim Peters, Professor of Primary Care Health Services Research, Division of Primary Health Care, University of Bristol

Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine

Professor Peter Sandercock, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York

Professor Martin Severs, Professor in Elderly Health Care, Portsmouth Institute of Medicine

Dr Jonathan Shapiro, Senior Fellow, Health Services Management Centre, Birmingham

Ms Kate Thomas, Deputy Director, Medical Care Research Unit, University of Sheffield

Professor Simon G Thompson, Director, MRC Biostatistics Unit, Institute of Public Health, Cambridge

Ms Sue Ziebland, Senior Research Fellow, Cancer Research UK, University of Oxford

© Queen's Printer and Controller of HMSO 2004. All rights reserved.

Diagnostic Technologies & Screening Panel

Members

Chair, Dr Ron Zimmern, Director of the Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

Ms Norma Armston, Freelance Consumer Advocate, Bolton

Professor Max Bachmann Professor Health Care Interfaces, Department of Health Policy and Practice, University of East Anglia

Professor Rudy Bilous Professor of Clinical Medicine & Consultant Physician, The Academic Centre, South Tees Hospitals NHS Trust

Dr Paul Cockcroft, Consultant Medical Microbiologist/Laboratory Director, Public Health Laboratory, St Mary's Hospital, Portsmouth Professor Adrian K Dixon, Professor of Radiology, Addenbrooke's Hospital, Cambridge

Dr David Elliman, Consultant in Community Child Health, London

Professor Glyn Elwyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales Swansea

Dr John Fielding, Consultant Radiologist, Radiology Department, Royal Shrewsbury Hospital

Dr Karen N Foster, Clinical Lecturer, Dept of General Practice & Primary Care, University of Aberdeen

Professor Antony J Franks, Deputy Medical Director, The Leeds Teaching Hospitals NHS Trust Mr Tam Fry, Honorary Chairman, Child Growth Foundation, London

Dr Edmund Jessop, Medical Adviser, National Specialist Commissioning Advisory Group (NSCAG), Department of Health, London

Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford

Dr Susanne M Ludgate, Medical Director, Medical Devices Agency, London

Dr William Rosenberg, Senior Lecturer and Consultant in Medicine, University of Southampton

Dr Susan Schonfield, CPHM Specialised Services Commissioning, Croydon Primary Care Trust Dr Margaret Somerville, Director of Public Health, Teignbridge Primary Care Trust

Professor Lindsay Wilson Turnbull, Scientific Director, Centre for MR Investigations & YCR Professor of Radiology, University of Hull

Professor Martin J Whittle, Head of Division of Reproductive & Child Health, University of Birmingham

Dr Dennis Wright, Consultant Biochemist & Clinical Director, Pathology & The Kennedy Galton Centre, Northwick Park & St Mark's Hospitals, Harrow

Pharmaceuticals Panel

Members

Chair, Dr John Reynolds, Clinical Director, Acute General Medicine SDU, Oxford Radcliffe Hospital

Professor Tony Avery, Professor of Primary Health Care, University of Nottingham

Professor Stirling Bryan, Professor of Health Economics, Health Services Management Centre, University of Birmingham

Mr Peter Cardy, Chief Executive, Macmillan Cancer Relief, London Dr Christopher Cates, GP and Cochrane Editor, Bushey Health Centre

Professor Imti Choonara, Professor in Child Health, University of Nottingham, Derbyshire Children's Hospital

Mr Charles Dobson, Special Projects Adviser, Department of Health

Dr Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Dr Karen A Fitzgerald, Pharmaceutical Adviser, Bro Taf Health Authority, Cardiff Mrs Sharon Hart, Managing Editor, Drug & Therapeutics Bulletin, London

Dr Christine Hine, Consultant in Public Health Medicine, Bristol South & West Primary Care Trust

Professor Stan Kaye, Professor of Medical Oncology, Consultant in Medical Oncology/Drug Development, The Royal Marsden Hospital

Ms Barbara Meredith, Project Manager Clinical Guidelines, Patient Involvement Unit, NICE

Dr Frances Rotblat, CPMP Delegate, Medicines Control Agency, London Professor Jan Scott, Professor of Psychological Treatments, Institute of Psychiatry, University of London

Mrs Katrina Simister, New Products Manager, National Prescribing Centre, Liverpool

Dr Richard Tiner, Medical Director, Association of the British Pharmaceutical Industry

Dr Helen Williams, Consultant Microbiologist, Norfolk & Norwich University Hospital NHS Trust

Therapeutic Procedures Panel

Members

Chair, Professor Bruce Campbell, Consultant Vascular and General Surgeon, Royal Devon & Exeter Hospital

Dr Mahmood Adil, Head of Clinical Support & Health Protection, Directorate of Health and Social Care (North), Department of Health, Manchester

Dr Aileen Clarke, Reader in Health Services Research, Public Health & Policy Research Unit, Barts & the London School of Medicine & Dentistry, Institute of Community Health Sciences, Queen Mary, University of London Mr Matthew William Cooke, Senior Clinical Lecturer and Honorary Consultant, Emergency Department, University of Warwick, Coventry & Warwickshire NHS Trust, Division of Health in the Community, Centre for Primary Health Care Studies, Coventry

Dr Carl E Counsell, Senior Lecturer in Neurology, University of Aberdeen

Dr Keith Dodd, Consultant Paediatrician, Derbyshire Children's Hospital

Professor Gene Feder, Professor of Primary Care R&D, Barts & the London, Queen Mary's School of Medicine and Dentistry, University of London

Professor Paul Gregg, Professor of Orthopaedic Surgical Science, Department of Orthopaedic Surgery, South Tees Hospital NHS Trust Ms Bec Hanley, Freelance Consumer Advocate, Hurstpierpoint

Ms Maryann L. Hardy, Lecturer, Division of Radiography, University of Bradford

Professor Alan Horwich, Director of Clinical R&D, The Institute of Cancer Research, London

Dr Phillip Leech, Principal Medical Officer for Primary Care, Department of Health, London

Dr Simon de Lusignan, Senior Lecturer, Primary Care Informatics, Department of Community Health Sciences, St George's Hospital Medical School, London

Dr Mike McGovern, Senior Medical Officer, Heart Team, Department of Health, London Professor James Neilson, Professor of Obstetrics and Gynaecology, Dept of Obstetrics and Gynaecology, University of Liverpool, Liverpool Women's Hospital

Dr John C Pounsford, Consultant Physician, North Bristol NHS Trust

Dr Vimal Sharma, Consultant Psychiatrist & Hon Snr Lecturer, Mental Health Resource Centre, Victoria Central Hospital, Wirrall

Dr L David Smith, Consultant Cardiologist, Royal Devon & Exeter Hospital

Professor Norman Waugh, Professor of Public Health, University of Aberdeen

Members

Professor Douglas Altman, Director of CSM & Cancer Research UK Med Stat Gp, Centre for Statistics in Medicine, University of Oxford, Institute of Health Sciences, Headington, Oxford

Professor John Bond, Director, Centre for Health Services Research, University of Newcastle upon Tyne, School of Population & Health Sciences, Newcastle upon Tyne

Mr Shaun Brogan, Chief Executive, Ridgeway Primary Care Group, Aylesbury

Mrs Stella Burnside OBE, Chief Executive, Office of the Chief Executive. Trust Headquarters, Altnagelvin Hospitals Health & Social Services Trust, Altnagelvin Area Hospital, Londonderry

Ms Tracy Bury, Project Manager, World Confederation for Physical Therapy, London

Mr John A Cairns, Professor of Health Economics, Health Economics Research Unit, University of Aberdeen

Professor Iain T Cameron, Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton

Dr Christine Clark, Medical Writer & Consultant Pharmacist, Rossendale

Professor Collette Mary Clifford, Professor of Nursing & Head of Research, School of Health Sciences, University of Birmingham, Edgbaston, Birmingham

Professor Barry Cookson, Director, Laboratory of Healthcare Associated Infection, Health Protection Agency, London

Professor Howard Stephen Cuckle, Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds Professor Nicky Cullum, Director of Centre for Evidence Based Nursing, University of York

Dr Katherine Darton, Information Unit, MIND – The Mental Health Charity, London

Professor Carol Dezateux, Professor of Paediatric Epidemiology, London

Mr John Dunning, Consultant Cardiothoracic Surgeon, Cardiothoracic Surgical Unit, Papworth Hospital NHS Trust, Cambridge

Mr Jonothan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester

Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne

Professor Pam Enderby, Professor of Community Rehabilitation, Institute of General Practice and Primary Care, University of Sheffield

Mr Leonard R Fenwick, Chief Executive, Newcastle upon Tyne Hospitals NHS Trust

Professor David Field, Professor of Neonatal Medicine, Child Health, The Leicester Royal Infirmary NHS Trust

Mrs Gillian Fletcher, Antenatal Teacher & Tutor and President, National Childbirth Trust, Henfield

Professor Jayne Franklyn, Professor of Medicine, Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham

Ms Grace Gibbs, Deputy Chief Executive, Director for Nursing, Midwifery & Clinical Support Servs, West Middlesex University Hospital, Isleworth

Dr Neville Goodman, Consultant Anaesthetist, Southmead Hospital, Bristol

Professor Alastair Gray, Professor of Health Economics, Department of Public Health, University of Oxford Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester

Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham

Professor Allen Hutchinson, Director of Public Health & Deputy Dean of ScHARR, Department of Public Health, University of Sheffield

Dr Duncan Keeley, General Practitioner (Dr Burch & Ptnrs), The Health Centre, Thame

Dr Donna Lamping, Research Degrees Programme Director & Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London

Mr George Levvy, Chief Executive, Motor Neurone Disease Association, Northampton

Professor James Lindesay, Professor of Psychiatry for the Elderly, University of Leicester, Leicester General Hospital

Professor Rajan Madhok, Medical Director & Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York

Professor David Mant, Professor of General Practice, Department of Primary Care, University of Oxford

Professor Alexander Markham, Director, Molecular Medicine Unit, St James's University Hospital, Leeds

Dr Chris McCall, General Practitioner, The Hadleigh Practice, Castle Mullen

Professor Alistair McGuire, Professor of Health Economics, London School of Economics

Dr Peter Moore, Freelance Science Writer, Ashtead Dr Andrew Mortimore, Consultant in Public Health Medicine, Southampton City Primary Care Trust

Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton

Professor Jon Nicholl, Director of Medical Care Research Unit, School of Health and Related Research, University of Sheffield

Mrs Julietta Patnick, National Co-ordinator, NHS Cancer Screening Programmes, Sheffield

Professor Robert Peveler, Professor of Liaison Psychiatry, University Mental Health Group, Royal South Hants Hospital, Southampton

Professor Chris Price, Visiting Chair – Oxford, Clinical Research, Bayer Diagnostics Europe, Cirencester

Ms Marianne Rigge, Director, College of Health, London

Dr Eamonn Sheridan, Consultant in Clinical Genetics, Genetics Department, St James's University Hospital, Leeds

Dr Ken Stein, Senior Clinical Lecturer in Public Health, Director, Peninsula Technology Assessment Group, University of Exeter

Professor Sarah Stewart-Brown, Director HSRU/Honorary Consultant in PH Medicine, Department of Public Health, University of Oxford

Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick

Dr Ross Taylor, Senior Lecturer, Department of General Practice and Primary Care, University of Aberdeen

Mrs Joan Webster, Consumer member, HTA – Expert Advisory Network

Feedback

The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.ncchta.org) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.

The National Coordinating Centre for Health Technology Assessment, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK. Fax: +44 (0) 23 8059 5639 Email: hta@soton.ac.uk http://www.ncchta.org