Is hydrotherapy cost-effective?
A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis

H Epps, L Ginneley, M Utley, T Southwood, S Gallivan, M Sculpher and P Woo

October 2005
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch

c/o Direct Mail Works Ltd

4 Oakwood Business Centre

Downley, HAVANT PO9 2NP, UK

Email: orders@hta.ac.uk

Tel: 02392 492 000

Fax: 02392 478 555

Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque

If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card

The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order

You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Is hydrotherapy cost-effective?
A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis

H Epps,1* L Ginnelly,2 M Utley,3 T Southwood,4 S Gallivan,3 M Sculpher2 and P Woo5

1 The Children’s Trust, Tadworth Court, UK
2 Centre for Health Economics, University of York, UK
3 Clinical Operational Research Unit, University College London, UK
4 Birmingham Children’s Hospital and Institute of Child Health, University of Birmingham, UK
5 Centre for Paediatric and Adolescent Rheumatology,
 The Windeyer Institute of Medical Sciences, London, UK

* Corresponding author

Declared competing interests of authors: none

Published October 2005

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE and Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The research findings from the NHS R&D Health Technology Assessment (HTA) Programme directly influence key decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC) who rely on HTA outputs to help raise standards of care. HTA findings also help to improve the quality of the service in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’ that is being developed to improve the evidence of clinical practice throughout the NHS.

The HTA Programme was set up in 1993. Its role is to ensure that high-quality research information on the costs, effectiveness and broader impact of health technologies is produced in the most efficient way for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined to include all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care, rather than settings of care.

The HTA Programme commissions research only on topics where it has identified key gaps in the evidence needed by the NHS. Suggestions for topics are actively sought from people working in the NHS, the public, service-users groups and professional bodies such as Royal Colleges and NHS Trusts. Research suggestions are carefully considered by panels of independent experts (including service users) whose advice results in a ranked list of recommended research priorities. The HTA Programme then commissions the research team best suited to undertake the work, in the manner most appropriate to find the relevant answers. Some projects may take only months, others need several years to answer the research questions adequately. They may involve synthesising existing evidence or conducting a trial to produce new evidence where none currently exists.

Additionally, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme is able to commission bespoke reports, principally for NICE, but also for other policy customers, such as a National Clinical Director. TARs bring together evidence on key aspects of the use of specific technologies and usually have to be completed within a short time period.

Criteria for inclusion in the HTA monograph series

Reports are published in the HTA monograph series if (1) they have resulted from work commissioned for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors.

Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

The research reported in this monograph was commissioned by the HTA Programme as project number 96/32/08. The contractual start date was in September 1999. The draft report began editorial review in September 2002 and was accepted for publication in March 2005. As the funder, by devising a commissioning brief, the HTA Programme specified the research question and study design. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the referees for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

The views expressed in this publication are those of the authors and not necessarily those of the HTA Programme or the Department of Health.

Editor-in-Chief: Professor Tom Walley
Series Editors: Dr Peter Davidson, Dr Chris Hyde, Dr Ruairidh Milne, Dr Rob Riemsma and Dr Ken Stein
Managing Editors: Sally Bailey and Sarah Llewellyn Lloyd

ISSN 1366-5278

© Queen’s Printer and Controller of HMSO 2005

This monograph may be freely reproduced for the purposes of private research and study and may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.

Applications for commercial reproduction should be addressed to NCCHTA, Mailpoint 728, Boldrewood, University of Southampton, Southampton, SO16 7PX, UK.

Published by Gray Publishing, Tunbridge Wells, Kent, on behalf of NCCHTA.
Printed on acid-free paper in the UK by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk.
Objectives: To compare the effects of combined hydrotherapy and land-based physiotherapy (combined) with land-based physiotherapy only (land) on cost, health-related quality of life (HRQoL) and outcome of disease in children with juvenile idiopathic arthritis (JIA). Also to determine the cost-effectiveness of combined hydrotherapy and land-based physiotherapy in JIA.

Design: A multicentre randomised controlled, partially blinded trial was designed with 100 patients in a control arm receiving land-based physiotherapy only (land group) and 100 patients in an intervention arm receiving a combination of hydrotherapy and land-based physiotherapy (combined group).

Setting: Three tertiary centres in the UK.

Participants: Patients aged 4–19 years diagnosed more than 3 months with idiopathic arthritis, onset before their 16th birthday, stable on medication with at least one active joint.

Interventions: Patients in the combined and land groups received 16 1-hour treatment sessions over 2 weeks followed by local physiotherapy attendances for 2 months.

Main outcome measures: Disease improvement defined as a decrease of ≥30% in any three of six core set variables without there being a 30% increase in more than one of the remaining three variables was used as the primary outcome measure and assessed at 2 months following completion of intervention. Health services resource use (in- and outpatient care, GP visits, drugs, interventions, and investigations) and productivity costs (parents’ time away from paid work) were collected at 6 months follow-up. HRQoL was measured at baseline and 2 and 6 months following intervention using the EQ-5D, and quality-adjusted life-years (QALYs) were calculated. Secondary outcome measures at 2 and 6 months included cardiovascular fitness, pain, isometric muscle strength and patient satisfaction.

Results: Seventy-eight patients were recruited into the trial and received treatment. Two months after intervention 47% patients in the combined group and 61% patients in the land group had improved disease with 11 and 5% with worsened disease, respectively. The analysis showed no significant differences in mean costs and QALYs between the two groups. The combined group had slightly lower mean costs (–£6.91) and lower mean QALYs (–0.0478, 95% confidence interval –0.11294 to 0.0163 based on 1000 bootstrap replications). All secondary measures demonstrated a mean improvement in both groups, with the combined group showing greater improvements in physical aspects of HRQoL and cardiovascular fitness.

Conclusions: JIA is a disease in which a cure is not available. This research demonstrates a beneficial effect from both combined hydrotherapy and land-based physiotherapy treatment and land-based physiotherapy treatment alone in JIA without any exacerbation of disease, indicating that treatments are safe. The caveat to the results of the cost-effectiveness and clinical efficacy analysis is that the restricted sample size could have prevented a true difference being detected.
between the groups. Nevertheless, there appears to be no evidence to justify the costs of building pools or initiating new services specifically for use in this disease. However, this conclusion may not apply to patients with unremitting active disease who could not be entered into the trial because of specified exclusion criteria. For this group, hydrotherapy or combined treatment may still be the only physiotherapy option. Further research is suggested into: the investigation and development of appropriate and sensitive outcome measures for use in future hydrotherapy and physiotherapy trials of JIA; preliminary studies of methodologies in complex interventions such as physiotherapy and hydrotherapy to improve recruitment and ensure protocol is acceptable to patients and carers; hydrotherapy in the most common paediatric user group, children with neurological dysfunction, ensuring appropriate outcome measures are available and methodologies previously tried; patient satisfaction and compliance in land-based physiotherapy and hydrotherapy and European studies of hydrotherapy in rare disorders such as JIA.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Background</td>
<td></td>
</tr>
<tr>
<td>Consequences of pathophysiology of JIA</td>
<td>1</td>
</tr>
<tr>
<td>Evidence to date</td>
<td>1</td>
</tr>
<tr>
<td>Rationale for undertaking a cost-effectiveness study in hydrotherapy in JIA</td>
<td>3</td>
</tr>
<tr>
<td>2 Methods</td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>Patients</td>
<td>5</td>
</tr>
<tr>
<td>Sample size calculation</td>
<td>5</td>
</tr>
<tr>
<td>Procedure</td>
<td>6</td>
</tr>
<tr>
<td>Primary outcome measures</td>
<td>9</td>
</tr>
<tr>
<td>Secondary outcome measures</td>
<td>9</td>
</tr>
<tr>
<td>Outcomes for economic analysis</td>
<td>10</td>
</tr>
<tr>
<td>Standardisation of outcome measures</td>
<td>11</td>
</tr>
<tr>
<td>Data quality</td>
<td>11</td>
</tr>
<tr>
<td>Data analysis</td>
<td>12</td>
</tr>
<tr>
<td>Primary analysis</td>
<td>12</td>
</tr>
<tr>
<td>Cost-effectiveness analysis</td>
<td>12</td>
</tr>
<tr>
<td>Secondary analysis</td>
<td>13</td>
</tr>
<tr>
<td>Study conduct</td>
<td>13</td>
</tr>
<tr>
<td>Patient/parent informed assent and consent</td>
<td>13</td>
</tr>
<tr>
<td>Ethical approval</td>
<td>14</td>
</tr>
<tr>
<td>Patient confidentiality</td>
<td>14</td>
</tr>
<tr>
<td>3 Results</td>
<td></td>
</tr>
<tr>
<td>Recruitment and flow of patients through the trial</td>
<td>15</td>
</tr>
<tr>
<td>Protocol violations</td>
<td>15</td>
</tr>
<tr>
<td>Clinical outcome</td>
<td>16</td>
</tr>
<tr>
<td>Patient satisfaction</td>
<td>19</td>
</tr>
<tr>
<td>Economic outcome</td>
<td>19</td>
</tr>
<tr>
<td>4 Discussion</td>
<td></td>
</tr>
<tr>
<td>Clinical and cost-effectiveness</td>
<td>25</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td>26</td>
</tr>
<tr>
<td>Methods</td>
<td>26</td>
</tr>
<tr>
<td>Clinical relevance of the trial</td>
<td>27</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td></td>
</tr>
<tr>
<td>Recommendations for further study</td>
<td>29</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>33</td>
</tr>
<tr>
<td>Appendix 1 Stable on medication</td>
<td>37</td>
</tr>
<tr>
<td>Appendix 2 Standard land exercises</td>
<td>39</td>
</tr>
<tr>
<td>Appendix 3 Standard hydrotherapy exercises</td>
<td>49</td>
</tr>
<tr>
<td>Appendix 4 Protocol violations</td>
<td>57</td>
</tr>
<tr>
<td>Appendix 5 Steps taken to boost recruitment</td>
<td>59</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td>61</td>
</tr>
<tr>
<td>Health Technology Assessment Programme</td>
<td>73</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH</td>
<td>Birmingham Children’s Hospitals</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area</td>
</tr>
<tr>
<td>CHAQ</td>
<td>Childhood Health Assessment Questionnaire</td>
</tr>
<tr>
<td>CHQ</td>
<td>Child Health Questionnaire</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>DMARD</td>
<td>disease-modifying antirheumatic drug</td>
</tr>
<tr>
<td>DMEC</td>
<td>Data Monitoring and Ethics Committee</td>
</tr>
<tr>
<td>ESR</td>
<td>erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>GOSH</td>
<td>Great Ormond Street Children’s Hospital</td>
</tr>
<tr>
<td>HRQoL</td>
<td>health-related quality of life</td>
</tr>
<tr>
<td>JIA</td>
<td>juvenile idiopathic arthritis</td>
</tr>
<tr>
<td>MAU</td>
<td>Middlesex Adolescent Unit</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>PSSRU</td>
<td>Personal Social Services Research Unit</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>QoL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>ROM</td>
<td>range of motion</td>
</tr>
<tr>
<td>SD</td>
<td>standardised difference</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SIG</td>
<td>special interest group</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>TMC</td>
<td>Trial Management Committee</td>
</tr>
<tr>
<td>TSC</td>
<td>Trial Steering Committee</td>
</tr>
<tr>
<td>UCL</td>
<td>University College London</td>
</tr>
<tr>
<td>UCLH</td>
<td>University College London Hospital</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case the abbreviation is defined in the figure legend or at the end of the table.
Objectives
The objectives of this study were to compare the effects of combined hydrotherapy and land-based physiotherapy (combined) with land-based physiotherapy only (land) on cost, health-related quality of life (HRQoL) and outcome of disease in children with juvenile idiopathic arthritis (JIA). Also to determine the cost-effectiveness of combined hydrotherapy and land-based physiotherapy in JIA.

Design
A multicentre randomised controlled, partially blinded trial was designed with 100 patients in a control arm receiving land-based physiotherapy only (land group) and 100 patients in an intervention arm receiving a combination of hydrotherapy and land-based physiotherapy (combined group).

Participants
Patients aged 4–19 years diagnosed more than 3 months with idiopathic arthritides, onset before their 16th birthday, stable on medication with at least one active joint were recruited from three tertiary centres in the UK.

Intervention
Patients in the combined and land groups received 16 1-hour sessions of treatment at one of the three centres over 2 weeks followed by local physiotherapy attendances for 2 months.

Main outcome measures
Disease improvement defined as a decrease of ≥30% in any three of six core set variables without there being a 30% increase in more than one of the remaining three variables was used as the primary outcome measure and assessed at 2 months following completion of intervention. Health services resource use (in- and outpatient care, GP visits, drugs, interventions, and investigations) and productivity costs (parents’ time away from paid work) were collected at 6 months follow-up. HRQoL was measured at baseline and 2 and 6 months following intervention using the EQ-5D, and quality-adjusted life-years (QALYS) were calculated. Secondary outcome measures at 2 and 6 months included cardiovascular fitness, pain, isometric muscle strength and patient satisfaction.

Results
Seventy-eight patients were recruited into the trial and received treatment. Two months after intervention 47% patients in the combined group and 61% patients in the land group had improved disease with 11 and 5% with worsened disease, respectively. The analysis showed no significant differences in mean costs and QALYs between the two groups. The combined group had slightly lower mean costs (~£6.91) and lower mean QALYs (~ 0.0478, 95% confidence interval –0.11294 to 0.0163 based on 1000 bootstrap replications). All secondary measures demonstrated a mean improvement in both groups, with the combined group showing greater improvements in physical aspects of HRQoL and cardiovascular fitness.

Conclusions
Implications for healthcare
JIA is a disease in which a cure is not available. This research demonstrates a beneficial effect from both combined hydrotherapy and land-based physiotherapy treatment and land-based physiotherapy treatment alone in JIA without any exacerbation of disease, indicating that treatments are safe.

The caveat to the results of the cost-effectiveness and clinical efficacy analysis is that the restricted sample size could have prevented a true difference being detected between the groups. Nevertheless, there appears to be no evidence to justify the costs of building pools or initiating new services specifically for use in this disease. However, this conclusion may not apply to patients with
unremitting active disease who could not be entered into the trial because of specified exclusion criteria. For this group, hydrotherapy or combined treatment may still be the only physiotherapy option.

Recommendations for research
- The following areas are suggested for further research: investigation and development of appropriate and sensitive outcome measures for use in future hydrotherapy and physiotherapy trials of JIA.
- Preliminary studies of methodologies in complex interventions such as physiotherapy and hydrotherapy to improve recruitment and ensure protocol is acceptable to patients and carers.
- Investigation of hydrotherapy in the most common paediatric user group, children with neurological dysfunction, ensuring appropriate outcome measures are available and methodologies previously tried.
- Comparison of patient satisfaction and compliance between land-based physiotherapy and hydrotherapy.
- European studies of hydrotherapy in rare disorders such as JIA.
Juvenile idiopathic arthritis (JIA) is defined as a disease of childhood onset characterised primarily by arthritis persisting for at least 6 weeks, and currently having no known cause. Approximately one in every 1000 children and adolescents in the UK suffer from JIA, around 30% of patients have active disease after 10 years and many have disability continuing into adulthood. No curative treatment is available, but the anatomical, physiological and emotional abnormalities that occur as a direct result of disease can be reduced or prevented in many cases. One treatment which may reduce the pathophysiological consequences of JIA is hydrotherapy. The term hydrotherapy is derived from the Greek words ‘hydro’ meaning water and ‘therapeia’ meaning healing. Hydrotherapy is a form of exercising in warm water for therapeutic purposes and has been used since the Roman era for the treatment of patients.

Consequences of pathophysiology of JIA

Anatomical, biomechanical and physiological changes can occur as a direct result of increases in intra-articular pressure and subsequent neural responses during the inflammatory stages of JIA. Intra-articular pressure is highest when joints are fully extended. Therefore, children with active JIA tend to adopt flexed postures, which can lead to contractures and soft tissue shortening. In addition, pain from increased intra-articular pressure can cause muscle inhibition and weakness. Once joint inflammation subsides, the main limitation to repair of synovial tissue is the early establishment of fibrous adhesions with resultant connective tissue shortening and soft tissue contractures, which further accentuate pain and muscle inhibition reducing joint mobility.

These pathophysiological changes often lead to poor posture, body alignment and growth disturbance with reduced weight bearing, bone demineralisation and adapted gait patterns. In addition, individual factors such as growth and development, opportunity to exercise and behaviour may be affected. As the child develops and grows, they may be excluded from learning new skills, such as hopping, running, jumping, climbing and skipping or joint movements may be adapted so that function and independence are impaired. Children with JIA may be less fit and active than healthy children, and functional limitations and pain may affect their ability to perform some physical or social activities as more energy and effort are required.

Evidence to date

Hydrotherapy and land-based physiotherapy treatments are designed to increase range of motion, muscle strength, physical fitness, quality of life (QoL) and function, in addition to reducing pain. Both modalities of treatment are advocated in the management of JIA as they may have a direct effect on the pathophysiological consequences of this incurable disease.

Hydrotherapy has been reported as the treatment of choice by physiotherapists, parents and children in preference to land-based physiotherapy alone. Water is a useful unencumbered environment in which to mobilise joints. Movement may be facilitated by utilising water buoyancy and the elimination of gravity. The application of physical principles such as leverage, streamlining, force production with floats and positioning body parts from the water’s surface can further facilitate movement. Multiple joint activity is possible, reducing treatment time, and a number of techniques employ the use of momentum, turbulence and ‘drag’ to increase passive movement without increasing pain in affected joints. Furthermore, exercise may be adapted to suit the individual to allow participation of and interaction with more able-bodied peers, which is of great psychological importance in young children. For those more severely disabled, buoyancy and gravity may be used to permit simulated functional movements. Importantly, children usually perceive activity in water as fun and enjoyable. Compliance with treatment is often improved and the treatment is not associated with other medical, painful or potentially frightening experiences that can occur in the hospital setting. Water may be the only medium whereby some patients feel on an equal
footing with their peers and exercise programmes can become a family activity.

Although hydrotherapy is commonly used in JIA, little scientific evidence exists to support the use of this modality of treatment. Verhagen and colleagues published a systematic review assessing the effects of hydrotherapy (balneotherapy) for rheumatoid arthritis and osteoarthritis. Although heterogeneous outcome measures and methodologies make comparisons of studies and pooling of results difficult, most studies of hydrotherapy report positive findings including improved flexibility, muscle strength, function and QoL. Scott reviewed the evidence for hydrotherapy in JIA and concluded that there is little research to support its use.

There are only three small studies evaluating the effects of hydrotherapy in JIA. In one study, a cross-over design was used with six subjects in each group receiving hydrotherapy and home-based exercise. Although the aim of the study was to evaluate the effects of hydrotherapy on a number of variables, it is not possible to draw any conclusions from the results because of serious flaws in the methodology. Another study reported improvements in range of motion and fitness following hydrotherapy in JIA, but the results may be misleading as the small sample size led to clinically unimportant changes reaching statistical significance. More recently, QoL improvements were described in an uncontrolled pilot study involving 10 children with JIA who undertook weekly hydrotherapy treatments for 15 weeks. Again, the sample size is too small for the results to be conclusive, the improvements were not statistically significant and the study used repeated measures and multiple outcomes.

However, benefits of hydrotherapy have been reported from both immersion and exercise in heated water. Immersion to the neck in heated water results in a number of physiological responses triggered by an increase in hydrostatic pressure. An increase in distal venous pressure leads to central hypovolaemia, with subsequent cardiovascular responses resulting in increases in cardiac output and stroke volume, which lead to inhibition of the sympathetic nervous system, which in turn reduces vagal vasomotor tone, inducing muscle relaxation and central sensitisation to pain. Furthermore, superficial heating of the skin and underlying structures leads to a reduction in striated muscle tone, cutaneous vasodilatation and a reduction in peripheral vascular resistance. This results in increased blood flow that carries away metabolites and toxins that stimulate pain by increasing aerobic metabolic activity leading to analgesia. It has been suggested that these processes lead to anti-inflammatory activity. Passive stretches and active movements might therefore be performed more easily and comfortably in heated water, which is particularly beneficial if a child is anxious or in pain.

A number of benefits have been attributed to hydrotherapy treatments in adult populations, which may be of value to children with JIA. These include improved physical health, reduced pain and improved function and QoL. Reduction in pain following hydrotherapy has been demonstrated in adults with arthritis. However, in one study there was no separation of hydrotherapist from hydrotherapy effect, and both studies had small sample sizes. Reduction in back pain has also been demonstrated prospectively in adults, but the results may have been biased as the researcher also administered the hydrotherapy treatment. Furthermore, the reliability and validity of outcome measures were not ascertained, and statistical analyses were inappropriate for study design. In contrast, two studies reported no significant reduction in pain following hydrotherapy in adults with arthritis. Other studies suggest no additional reduction in pain with hydrotherapy than with immersion to the neck in heated water. Nonetheless, these results have clinical relevance, and increased joint pain has been reported as the main reason for patients with rheumatoid arthritis stopping land-based exercises. Hydrotherapy may be the only means of exercising without pain for some patients with arthritis, and can be of particular benefit to children with low thresholds to pain or during an acute exacerbation of symptoms.

High-impact aerobic activity may not be possible in JIA owing to the compressive forces that occur through articulating surfaces leading to pain and further joint damage, thus preventing maximum intensity exercise. It has been suggested that the reduced loading on lower limb joints during immersion in water may enable strenuous activity during hydrotherapy. Hydrotherapy may therefore be one of the few modalities of treatment whereby high levels of energy can be expended. Furthermore, water may be a suitable medium for exercise in JIA as patients often have low initial working capacities owing to reduced physical activity and opportunities to exercise. Improved fitness and levels of physical activity in rheumatoid arthritis and an enhanced cardiorespiratory response in healthy adults have been demonstrated following exercise in water.

Background
There is only one small study investigating the effects of hydrotherapy on muscle strength in JIA. Oberg and colleagues reported increases in quadriceps strength and improved electromyographic responses to fatigue following a 3-month hydrotherapy programme in 10 children with JIA. The effects of buoyancy and Archimedes principle permit the activation of muscle in positions not possible on land owing to gravity, and reduce the mechanical stress through joints and soft tissue structures while undertaking muscle strengthening activities.

Improvements in QoL and psychological well-being have been recognised following hydrotherapy interventions, but only two randomised controlled studies in arthritis show significant increases in function following hydrotherapy.

None of the studies mentioned have conclusively determined the efficacy of hydrotherapy in either adult or paediatric arthritis. It would appear that little scientific evidence exists to support the use of this modality of treatment in conjunction with, or in preference to, other forms of physical rehabilitation. Only two randomised controlled trials (RCTs) have compared hydrotherapy with land-based physiotherapy treatment in rheumatoid arthritis; although additional benefits were demonstrated in the hydrotherapy group, neither study demonstrated significant differences in outcome at follow-up between the two groups. In addition, the balance between the potential benefits of hydrotherapy and cost incurred in initiating and maintaining a hydrotherapy service has only been explored in one RCT in osteoarthritis. Hydrotherapy was not found to be cost-effective compared with ‘usual’ treatment when using population preference-weighted QoL measures to estimate the quality of life-years gained, although patient weighted and disease-specific QoL and functional outcomes showed statistically significant improvements. The trial was of high methodological quality, however the outcome measures were taken immediately after the intervention finished which did not allow any analysis of longer term effects.

Rationale for undertaking a cost-effectiveness study in hydrotherapy in JIA

JIA is a potentially disabling disease in children, with no known cure. Hydrotherapy is a recognised form of treatment administered in conjunction with land-based physiotherapy. It is widely accepted by patients and advocated by medical and allied health professionals in the management of this condition. However, initial capital and running costs are high, and rapid developments in drug management may prevent or reduce the pathophysiological consequences of the disease, reducing the need for this expensive treatment. However, if hydrotherapy improves the QoL, function and level of independence of these children, then their lives will be less disrupted and school and future employment difficulties reduced. This investigation will determine whether hydrotherapy combined with land-based physiotherapy provides measurable improvements as a method of treatment, thereby facilitating objective decisions to be made by the NHS with regard to the provision of physiotherapy for patients with JIA. If combined physiotherapy is found to be cost-effective, then it increases the range of options for the treatment of a condition, where options are limited. Owing to the chronicity of the disease, any alternative to pharmaceutical interventions that may prevent or reduce deformity and disability with no recognised side-effects should be investigated. Although the costs of hydrotherapy are higher than those of land-based physiotherapy treatment, costs may be offset against efficiency gains if less staff time is required with individual patients and fewer drugs and resources are needed to support the development and functioning of the child. Furthermore, additional benefits to the family may include less distress to the parent and child, improved compliance with treatment and in the medium to long term improved physical health and QoL.

The hypothesis is that combined hydrotherapy and land-based physiotherapy will be more clinically and cost-effective than land-based physiotherapy alone in the treatment of JIA.
Chapter 2

Methods

This study is a clinical and economic evaluation of combined hydrotherapy and land-based physiotherapy treatment for children with JIA. It was designed as a multicentre randomised controlled, partially blinded trial with 100 patients in a control arm receiving land-based physiotherapy only and 100 patients in an intervention arm receiving combined land-based physiotherapy and hydrotherapy. The principal investigator, health economist and independent statisticians were blinded to the intervention group. However, the treating physiotherapist, physician, patient and parent could not be blinded, as they were involved in treatment.

Objectives

The trial had the following two objectives:

1. To compare the effects of combined hydrotherapy and land-based physiotherapy (combined) with land-based physiotherapy only (land) on cost, health-related quality of life (HRQoL) and outcome of disease in children with JIA.
2. To determine the cost-effectiveness of combined hydrotherapy and land-based physiotherapy in JIA.

Patients

Inclusion criteria

Inclusion criteria for trial patients were:

- Diagnosed with idiopathic arthritis of childhood with onset before their 16th birthday for more than 3 months.
- Aged 4–19 years inclusive.
- Stable on medication (Appendix 1).
- At least one active joint, core set criteria 1.56
- At least two out of any five of the remaining core set criteria below.57
- The physician global assessment of disease activity >10 mm on a 100-mm visual analogue scale (VAS).
- The parent global assessment of well-being >10 mm on a 100-mm VAS.
- Childhood Health Assessment Questionnaire scores >0.
- More than one joint with limited range of motion (joint motion reduced by at least 5° from normative range for age58).
- An elevated erythrocyte sedimentation rate (ESR) (>5 mmHg in children and >10 mmHg in adolescents).

Exclusion criteria

Patients were excluded from the trial if they:

- Suffered from severe systemic disease or any other condition that is unstable.
- Suffered from quotidian fevers (daily recurrent fever for at least 2 weeks to >39°C between spikes).
- Were unable to give informed consent or complete questionnaires owing to language barriers.
- Had musculoskeletal surgery within the previous 6 months.
- Had a neuromuscular condition which increases muscle tone.
- Had received intensive physiotherapy defined as more than 1 week of daily treatment within the previous 6 months.
- Had no access to outpatient physiotherapy or hydrotherapy.
- Met general hydrotherapy exclusion criteria, such as chlorine allergy.59

Sample size calculation

As there was no firm evidence as to the proportion of patients with JIA likely to improve in the control arm of the study, it was not possible to carry out a sample size calculation relating to the exact context of this trial. Instead, sample size was calculated using data from an observational study of adult rheumatoid arthritis.60 Steinbrocker functional grades II and above were taken as a surrogate measure of poor outcome or non-improvement, and a reduction of 25% in the proportion of subjects in these functional grades was taken to be clinically significant.
Let \(p_1 \) be estimated proportion that will not improve in the land (control) group; this was estimated as 0.6 using adult data. Let \(p_2 \) be estimated proportion that will not improve in the combined (intervention) group if there is to be a clinically significant difference between the two groups; this was estimated as 0.45. Then,

Standardised difference (SD) = \(\frac{p_1 - p_2}{\sqrt{\bar{p}(1 - \bar{p})}} \)

where \(\bar{p} = (p_1 + p_2)/2 \) and

\[
SD = \frac{0.6 - 0.45}{\sqrt{0.525(0.475)}} = 0.15 = 0.3
\]

This gave an estimated power of 0.57 for a trial of the proposed size.

Procedure

Recruitment into the trial

Physiotherapists known to have treated children with JIA were identified from physiotherapy and medical notes at the three largest paediatric centres for JIA in the UK, Middlesex Adolescent Unit (MAU), Great Ormond Street Children’s Hospital (GOSH) and Birmingham Children’s Hospitals (BCH). A questionnaire was sent to physiotherapists to determine hydrotherapy availability and requesting support for the trial. The British Paediatric Rheumatology group, Chartered Society of Physiotherapy, Frontline, and Hydrotherapy and Paediatric Physiotherapy SIGs (special interest groups) published letters requesting support from physiotherapists treating JIA, including provision of outpatient treatment and informing patients of the trial.

Physiotherapists and heads of department were contacted by telephone and given trial details. Information sheets were sent to physiotherapists to distribute to patients, and letters were sent to the Chronic Children’s Arthritis Association and Young Arthritis Care asking parents and children interested in the trial to contact one of the centres. Posters and information sheets were posted in clinics at the three centres, and teaching sessions were held for multidisciplinary teams to explain the trial.

Patients were recruited from outpatient clinics at the three centres. The principal investigator examined case notes of all patients attending JIA clinics and entered eligibility forms in notes where patients could be eligible (unless local physiotherapists had not agreed to participate in the trial or hydrotherapy was not available). The examining physician determined if a patient met eligibility criteria and would be suitable for recruitment. Patients admitted on to an eight-bedded unit at GOSH were identified as potential recruits by the treating physician and local rheumatology consultants were contacted to further help with recruitment. Trial involvement was discussed with any eligible patients and their family and a patient information sheet was provided. Local physiotherapists were contacted to ensure that outpatient treatment was still accessible to the patient (as staffing levels changed over the recruitment period). Verbal consent was gained from the family or guardian prior to intervention and written consent or assent obtained when the patient attended for assessment.

Randomisation

An independent statistician conducted three separate block randomisations allocating patients to the land or combined group, hence ensuring a balance between groups at each treatment centre. The block sizes were chosen to match envisaged recruitment (50, 76 and 76 for BCH, MAU and GOSH, respectively). This reduced the effects that general differences between centres might have on treatment outcome and reduced the predictability of allocations.

Each patient was allocated a unique identification number at recruitment by the principal investigator, starting at 1 for BCH, 201 for GOSH and 401 for MAU. The treatment group allocated to each of these numbers was stored in sealed envelopes by an independent research assistant based at the Rheumatology Research Centre for University College London. Prior to intervention, treating physiotherapists contacted this research assistant to obtain the treatment allocated to their patient (based on identification numbers assigned by the principal investigator). To ensure accuracy of treatment allocation, the treating physiotherapist faxed identification numbers and treatment allocations to the independent statistician every 3 months.

Protocol

The chairperson of the Hydrotherapy Association of Chartered Physiotherapists and six senior chartered physiotherapists, all with extensive experience and expertise in JIA, developed protocols for both groups. All active and passive joint movements and the main muscle groups affected by disease were identified. The
physiotherapists demonstrated how they would perform hydrotherapy or land-based techniques at each joint. The various techniques, including starting positions, physiotherapist hand positions and stabilisation of the patient, were discussed and tried by each physiotherapist. A consensus opinion was gained by considering safety, ease of movement, ability for the patient to undertake the technique independently and comfort of both therapist and patient.

Once the protocol had been agreed, it was incorporated into the pretrial physiotherapy treatment of patients not entering the trial at the three centres. The protocol was then adapted until physiotherapists agreed that it achieved treatment aims, could be used as part of group treatment and was suitable for outpatient physiotherapists with limited experience in JIA.

Intervention

Trial patients were admitted on to a ward, stayed in hotel accommodation or travelled daily from home for 2 weeks of intensive physiotherapy treatment.

Patients in the land group undertook 16 hourly sessions of land physiotherapy (Appendix 2) at one of the trial centres over 2 weeks. Following this block of intensive treatment, they received land physiotherapy once per week or fortnight for 2 months on an outpatient basis. Community physiotherapists then used their clinical judgement to decide whether a patient’s treatment should continue or stop (Figure 1), but were asked to exclude hydrotherapy until a 6-month follow-up assessment had been completed. Swimming was not excluded from patient’s usual activities at any time during the trial.

Patients in the combined group undertook eight hourly sessions of hydrotherapy (Appendix 3) and eight hourly sessions of land physiotherapy at one of the trial centres over 2 weeks. Following this block of intensive treatment, they received hydrotherapy only, once per week or fortnight for 2 months on an outpatient basis. Community physiotherapists then used their clinical judgement to decide whether a patient’s treatment should continue or stop (Figure 1).

Land-based exercises were designed to increase range of motion (ROM), muscle strength, function, independence and fitness. They included passive stretches and hold-relax techniques, which were performed in each restricted anatomical direction of movement at any of the child’s joints affected by the disease process. A muscle-strengthening programme incorporated the use of repetitive movement, and ankle weights were used if the child’s joints were considered to be inactive by the treating physiotherapist (Appendix 2).

Hydrotherapy exercises were designed to have the same effects as land exercises. They incorporated the use of hydrodynamic and hydrostatic principles, hold-relax techniques, passive stretches, simulated function and aerobic activity. The position of the patient when performing the exercises was varied so that buoyancy could be used to assist or resist movements. The muscle force needed to generate movement was also varied by the use of flexing or extending the limb (leverage), altering the speed of movement performed (creating water turbulence), altering the streamlining of a limb (using flippers or bats) and using partially and fully inflated floats (Appendix 3).

The frequency and duration of specific land-based and hydrotherapy exercises were dependent on the child’s ability and speed of progress. Functional activity was dependent on the joints affected by disease and the child’s level of independence. Aerobic and functional activities were performed in both groups and function was facilitated in hydrotherapy by using the combined effects of buoyancy and gravity. The protocol was designed to enable children to perform a large proportion of the exercises independently under supervision and most of the exercises could be performed as part of a group session. This enabled a patient to be treated with other children, preventing isolation and reducing the time commitment needed by staff.

Home exercise programme

A home exercise programme was adapted to suit each individual patient dependent on the stage of intervention reached when they finished the intensive block of treatment. Each patient had his or her own programme. They were asked to carry out this programme every day except when attending for outpatient physiotherapy.

Standardisation of intervention

During the trial, an independent clinical expert observed physiotherapists treating patients at the three centres, ensuring that intervention followed protocol. The principal investigator provided training sessions at local physiotherapy centres where groups of children with JIA were being treated. However, in some centres the staff changed regularly and staffing constraints...
prevented a large number of physiotherapists from attending these sessions. All outpatient physiotherapists were therefore sent the trial protocol with guidelines, contacted by the trial physiotherapist to discuss patients’ main complaints and treatment priorities and offered an observational day at one of the trial centres.

Termination of intervention

Patient interventions were terminated or modified if any of the following occurred during the intervention period:

- An increase in physiotherapy above the level determined by study protocol.
- Onset of medical complications as determined by the treating physician.
- Surgery during the intervention period.
- Disease flare.
- Unstable disease (current medication increased by >10% of dosage within 1 month, yet symptoms remain).

Withdrawal criteria

Patients were only withdrawn from the study if the child, their parents or guardian withdrew consent.

Blinding

The principal investigator, health economist and independent statisticians were blinded to the intervention group. However, the treating physiotherapist, physician, patient and parent could not be blinded, as they were involved in treatment.
Primary outcome measures

The primary outcome was improvement in disease status at 2 months after the main intervention was completed. This was defined according to international guidelines, and calculated from six core outcome measures: Childhood Health Assessment Questionnaire (CHAQ), physicians’ global assessment of disease activity, parents’ global assessment of overall well-being, number of joints with limited ROM, number of active joints and erythrocyte sedimentation rate.

Disease improvement was defined as a decrease of ≥30% in any three of these six measures without there being a 30% increase in more than one of the remaining three measures, and is termed the preliminary definition of improvement in JIA. This definition and the six core outcome variables have been extensively psychometrically tested in JIA.

The Childhood Health Assessment Questionnaire

The CHAQ assesses function in eight areas: dressing and grooming, arising, eating, walking, hygiene, reach, grip and activities, and has been validated in the UK. Two to five items are evaluated in each area with a total of 30 questions. Three components are evaluated for each area: difficulty in performing daily functions, use of special aids and assistance from another person. Patients or parents are directed to note only those difficulties that are caused by their child’s arthritis. The responses relate to the previous week.

Secondary outcome measures

Child Health Questionnaire

The Child Health Questionnaire, parent-completed 50-item (CHQ-PF50) measure of QoL, is a generic questionnaire specifically for use in children. It is designed to measure 14 health concepts: physical functioning, bodily pain, role/social limitations – physical, general health perceptions, change in health, role/social limitations – emotional and behavioural, mental health, general behaviour, self-esteem, emotional impact on the parent, impact on the parent’s personal time, limitations in family activities and family cohesion.

Profiles for each of the 14 health concepts can be aggregated to derive summary component scores for physical and psychological health. Responses are related to the 4 weeks prior to the assessment.

Muscle testing

Peak isometric muscle strength of the knee extensors, hip and shoulder abductors was tested using a Penny and Giles (Dorset, UK) hand-held dynamometer. Standardised antigravity limb positions and placement of the myometer head were used to test each muscle group. Three maximal contractions were performed for each muscle group and the highest strength measurement was recorded for analysis.

Physical fitness

The procedure for the assessment of physical fitness was adapted from the bicycle ergometer protocol developed by Giannini and Protas. This protocol determines the starting workload by the child’s body surface area (BSA) and pedalling rate is to be maintained at 60 per minute. However, the patients in this trial had at least one joint with disease activity and loss of ROM, which affected their ability to cycle. In addition, only those children with very mild disease activity were able to maintain a pedalling rate of 60 per minute. The protocol was therefore adapted and the patient started pedalling on a Kettler (Germany) ergometer at a rate and resistance (25 or 50 W) that felt comfortable. Each patient established a pedalling rate before starting the exercise test and the seat of the bicycle was adjusted so that their knee was flexed to ~15° when the pedal was in the down position. The workload was increased by 25-W increments every 2 minutes until the child reached exhaustion or could no longer pedal against resistance (up to a maximum of 10 minutes). They then pedalled slowly at the lower resistance of 25 W for 2 minutes. The time and maximal and submaximal heart rates were recorded manually using the radial pulse. Peak heart rate was determined for the final minute of exercise at the highest work load. Submaximal heart rate was determined during the second minute of the period of gentle cycling. If the patient experienced any pain during the test it was terminated and documented.

Pain

Pain was determined by the use of a 100-mm VAS. Responses were related to the week prior to assessment.

Patient satisfaction

Fifty-five patients and parents were asked by a physiotherapy assistant not involved in study treatment, ‘If you could choose either gym exercises or exercises in the pool, which would you like better and why?’ To prevent questionnaire fatigue, this question was asked after their 6-month follow-up appointment. Answers were transcribed verbatim.
Outcomes for economic analysis

Costs per quality-adjusted life-year (QALY) gained at 6 months following the main intervention were calculated using a societal framework to reflect costs to society. This included calculating the hours of paid or unpaid work lost as a consequence of the patient’s illness. For example, a carer or their partner may have to stay at home to look after a child who has a disease flare, or take them to hospital or physiotherapy appointments. QALYs were derived from health states measured using an HRQoL questionnaire, the EQ-5D. The measurement and calculation of costs and QALYs are described below.

Resource utilisation data

Resource utilisation data to calculate costs were collected by the principal investigator using questionnaires, telephone and face-to-face interviews, with GPs, physiotherapists, community nurses, hospital staff, patients and carers. These data related to carer time lost from paid and unpaid work, medication (drug name, dose and duration), investigations (e.g. blood tests), interventions (e.g. joint injections), inpatient days and outpatient and GP visits. In addition, data were collected on study intervention, time spent in hydrotherapy or land-based sessions, physiotherapy staff grade, patient-to-staff ratio and number of individual or group treatments.

Costs

Unit costs were taken from a variety of sources. The cost of each land-based physiotherapy or hydrotherapy treatment was made up of two elements. First, the variable cost of the physiotherapists’ time was based on staff present and the average length of a treatment session, using average wage rates for the relevant physiotherapy grade. Second, overhead costs (i.e. heating, lighting and administration) were calculated using a top-down method based on mean costs and throughput from the Staffordshire Hospital for land-based physiotherapy (no hospitals within the trial could provide this information) and fixed costs (maintenance, running costs, heating, lighting) from GOSH, Royal Liverpool Children’s Hospital and University College London Hospital for hydrotherapy. Table 1 shows the unit costs used in the economic analysis and their sources. Where possible, specific paediatric costs were used and this is noted as such in Table 1.

ESA-5D

Medications were assigned an acquisition cost from the BNF. Costs for other resource use, interventions, inpatient days in hospital and outpatient and GP visits, were taken from estimates from a sample of NHS hospitals and other published sources, and carers’ lost time from paid work (owing to their child’s illness) was taken from average daily wage rates from Government statistics (Table 2).

EQ-5D

The EQ-5D is a generic measure of HRQoL which consists of two parts, a VAS (EQ-5D_{vas}) and a descriptive profile (EQ-5D_{utility}) using five dimensions to define health. The EQ-5D_{utility} was used to calculate HRQoL for the economic analysis.

In the trial, parents were asked to consider their child’s health state today and indicate whether their child had no problems, some problems or was unable to perform in three dimensions of health, mobility, usual activities and self-care. They were then asked the degree of anxiety/depression.

Table 1: Key unit costs used to value physiotherapy resource use during the trial (1999–2000 prices, UK £)

<table>
<thead>
<tr>
<th>Physiotherapy staff grade</th>
<th>Unit</th>
<th>Unit cost (£)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior I</td>
<td>Per minute</td>
<td>0.47</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Senior II</td>
<td>Per minute</td>
<td>0.43</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Per minute</td>
<td>0.54</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Junior</td>
<td>Per minute</td>
<td>0.40</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Physio assistant</td>
<td>Per minute</td>
<td>0.31</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Teacher</td>
<td>Per minute</td>
<td>0.52</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Assistant teacher</td>
<td>Per minute</td>
<td>0.31</td>
<td>PSSRU, 2000 + (73)</td>
</tr>
<tr>
<td>Fixed costs</td>
<td>Hydrotherapy</td>
<td>17.19</td>
<td>RLCH, GOSH and UCLH</td>
</tr>
<tr>
<td></td>
<td>Land-based physiotherapy</td>
<td>0.29</td>
<td>Staffordshire Hospital</td>
</tr>
</tbody>
</table>

GOSH, Great Ormond Street Children’s Hospital; RLCH, Royal Liverpool Children’s Hospital; UCLH, University College London Hospital.
and pain/discomfort, from none to very severe. The responses place each patient into one of 245 mutually exclusive health states. These health states are then scored using a set of preferences estimated from interviews with 3395 adult members of the UK public.83,84

Standardisation of outcome measures

The same physician performed the baseline and 2-month follow-up global assessment of disease activity. If at all possible, the same physician also performed the 6-month follow-up assessment for secondary analysis, but difficulties arose when clinics were reduced or priority bookings were made. All physicians were experienced in the assessment of JIA and of at least consultant status. The principal investigator performed all other aspects of the assessment at baseline and 2- and 6-month follow-up. The majority of assessments were performed in the morning (after 9.30 a.m. owing to morning stiffness). The same apparatus was used throughout the trial and calibrated according to the manufacturer’s instructions. An independent clinical expert, a professor of paediatric rheumatology and several physiotherapists, observed the assessments performed by the principal investigator to ensure that standards were maintained throughout the trial.

Data quality

Patient data were collected on paper forms during assessments and copied on to an ACCESS database by the principal investigator. An independent statistician checked the ACCESS databases against the original paper forms on completion of all assessments and data collection. A physiotherapy assistant checked patients’ medical notes against the original paper forms to ensure that resource utilisation data had been recorded accurately. These checks showed data entry to be accurate with
the exception of two typing errors and an incorrect entry of medication dosage; these were corrected prior to data analysis. Data were then exported to an SPSS data file for analysis. The SPSS file was checked against the ACCESS database for accuracy. It was concluded that the transport of data could be performed with neither loss nor corruption. Data were unblinded and the statistician retained a ‘read only’ copy of the SPSS file.

Data analysis

The main focus of the analysis was how the land and combined groups compared at 2 months follow-up, using the primary and secondary outcome measures of disease improvement, QALYs gained and costs per QALY at 6 months. A large number of secondary outcomes were also measured and descriptive analyses were performed to meet the broader aim of the trial to inform future studies of hydrotherapy and physiotherapy in JIA.

Intention-to-treat analysis

Over the 2-week course of hospital-based treatment, the trial physiotherapists recorded treatment allocations and protocol violations, which were kept in sealed envelopes for study integrity checks prior to data unblinding. All patients were assessed as ‘intention-to-treat’ even if their intervention was terminated or modified. Every attempt was made to follow up all patients who had a baseline assessment, unless they were deemed ineligible for study entry during this assessment.

Primary analysis

The primary analysis consisted of a comparison of the proportion of patients in each group that showed improvement at their 2-month follow-up compared with baseline assessment.

\[p_1 = A/(A + B) \]

where \(A \) is the proportion improved and \(B \) the proportion not improved in the land group;

\[p_2 = C/(C + D) \]

where \(C \) is the proportion improved and \(D \) the proportion not improved in the combined group.

The results presented are the difference between the proportions in the land and combined groups with 95% confidence intervals (CIs):

\[\text{difference} = p_1 - p_2 \]

The 95% CIs are calculated using the standard error on the difference, \(SE_{\text{diff}} \) given by

\[SE_{\text{diff}} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}} \]

where \(n_1 = A + B \) and \(n_2 = C + D \).

The 95% CI is given as

\[p_1 - p_2 - (1.96 \times SE_{\text{diff}}) \text{ to } p_1 - p_2 + (1.96 \times SE_{\text{diff}}) \]

This calculation is performed using the continuity correction described by Armitage and Berry.85 Reported along with this result is the proportion of patients in each arm of the trial falling into the five mutually exclusive groups: consent withdrawn, lost to follow-up, drug treatment changed beyond the protocol, intervention altered beyond the protocol and none of the above protocol violations.

In addition, as the ‘2-month assessments’ did not occur exactly 2 months after completion of intensive treatment in all cases, the median and inter-quartile range of the time between completion of inpatient intervention and 2-month assessment are reported.

Cost-effectiveness analysis

The cost-effectiveness analysis used patients’ EQ-5D scores to calculate mean health state values (plus a measure of variance) of patients in the combined and land groups at 2 and 6 months follow-up. These scores were converted to QALYs gained over the 6-month period using area under the curve analysis.84 Intervention treatment sessions were recorded so that only the treatment patients’ actually received was costed, irrespective of allocation or intended number of treatments. Owing to differential follow-up (resulting from gradual recruitment and a fixed final point of follow-up and difficulties in booking patients into a clinic for their 6-month assessments), 32% of patients did not receive a 6-month assessment, having received a 2-month assessment. Estimates of mean costs and QALYs gained, over 6 months of follow-up, were, therefore, calculated using Lin and colleagues’ method to adjust for censored data.86 Given that the time horizon of the analysis was <1 year, total costs and QALYs remain undiscounted, and QALYs were undiscounted. Statistical analysis was undertaken using STATA 7.0.87
Approximately 5% of patient resource-use questionnaires had some missing data, either on medication, GP visits, utilities or hospital data. As the extent of missing data was relatively minor, mean imputation was used to account for those missing data points. It is recognised that this method may result in underestimates of variance, but sensitivity analysis was used to explore whether the use of this method affected the conclusions of the analysis.

Given the skewed nature of the data, standard errors for costs and QALYs gained were simulated using the non-parametric, bias-corrected bootstrap method. The 95% CIs were calculated from the 2.5 and 97.5 centiles of mean costs and QALY distributions.

Incremental cost-effectiveness ratios were calculated to relate differential mean cost to differential mean QALYs gained associated with each group. To account for uncertainty due to sampling variation, a cost-effectiveness acceptability curve was plotted to illustrate the probability of combined hydrotherapy and land-based physiotherapy being more cost-effective than land-based physiotherapy only given a range of values that society could attach to an additional QALY. Threshold willingness to pay values ranging from £0 to £200,000 per additional QALY were used (a Bayesian approach to the presentation of cost-effectiveness data).

Secondary analysis

Sensitivity analysis
Sensitivity analysis was performed to investigate whether treating patients who were lost to follow-up, withdrew or had their protocol violated as ‘improved’ or ‘not improved’ changed the conclusions drawn from the results of this trial. During sensitivity analysis, primary analyses were repeated treating losses to follow-up, withdrawal and protocol violations as treatment failures or successes. The cost-effectiveness analysis was repeated excluding the data for patients without 6-month assessments. Additional analytical repetition used a fixed cost of £0.84 per minute for land-based physiotherapy, as original estimates were taken from one hospital not included in the trial.

Analysis of secondary outcomes
The mean difference and standard deviation of that difference between core outcome variables, CHQ and EQ-5D (HRQoL), pain, muscle strength and fitness scores at baseline and 2 and 6 months were calculated for each patient in the two arms of the trial.

In addition, the proportion of patients who showed clinical improvement between baseline and 6-month assessments was calculated for each arm of the trial.

Study conduct

A Trial Steering Committee (TSC) was set up to monitor and supervise the progress of the trial towards its interim and overall objectives. It reviewed relevant information from the funding body and any meetings relating to the management and organisation of the trial. It considered recommendations from the Data Monitoring and Ethics Committee not to extend the trial beyond the original timescale despite a lower than expected recruitment rate. The TSC met prior to commencement of the trial and at 6-monthly intervals throughout the trial. The Chairperson of the TSC (employed by the Medical Research Council) and one other member [manager of therapies, University College London Hospital (UCLH)] were independent of the trial.

A Data Monitoring and Ethics Committee (DMEC) was set up to determine if analysis was needed in addition to the interim reports. They considered control data unblinded, to recalculate the power of the sample when it was clear that 200 patients could no longer be recruited within the timescale of the trial. There were no safety issues of concern during the trial. The TSC reported to the DMEC after each meeting.

A Trial Management Committee (TMC) was set up to monitor the day-to-day running of the trial. It consisted of therapists involved in administering treatment at each centre and an independent clinical expert in the field. It met during the initial phases of planning and then at 6-monthly intervals.

Patient/parent informed assent and consent

The purpose of the study was explained to each patient in the presence of a physician or physiotherapist. Each patient (or parent) enrolled received an approved information sheet containing information about the study, and an
approved informed consent form with a statement that he or she would permit study case record forms to be examined by a third party. Each enrolled adolescent was also provided with an information sheet and signed an informed assent form. Consent and assent forms were stored with patient data and an additional copy was kept with the patients’ medical records.

Ethical approval

Ethical approval was obtained from

- South Birmingham Local Research Ethics Committee on 22 June 1999
- joint University College London (UCL)/UCLH Committees on the Ethics of Human Research on 1 April 1999
- Great Ormond Street Children’s Hospital NHS Trust/Institute of Child Health Research Ethics Committee on 18 June 1999.

Patient confidentiality

All information pertaining to each patient was held on a confidential basis and this confidentiality was maintained throughout the data integrity checking process. The results of the trial are reported in a manner that does not identify individual patients.
Chapter 3

Results

Recruitment and flow of patients through the trial

The recruitment and flow of patients through the trial is shown in Figure 2.

A total of 152 patients were eligible for entry into the study during the recruitment period. Informed consent was not given in 51 cases; 25 patients were unable to commit to attending for treatment (owing to young children at home or family problems preventing them from being in London for 2 weeks), 12 did not want to be in the land group (because they would not receive hydrotherapy), 11 did not want to miss school, one worked full time and two gave no reason.

Furthermore, 87/217 physiotherapy services had no access to hydrotherapy facilities or were unable to commit to providing outpatient treatment for patients in the trial. Patients who relied on these services for physiotherapy or hydrotherapy treatment were therefore not considered for eligibility into the trial.

Therefore, of the 152 potentially eligible patients, only 101 were recruited into the trial. However, 23 of these patients lost eligibility or withdrew consent before intervention (13 combined group and 10 land group allocations), two developed mental health problems, three improved, seven became too unwell and needed other treatments, seven were no longer able to participate owing to family commitments, two changed schools and two underwent baseline assessment but were deemed ineligible owing to lack of disease activity and a medical complaint that could affect exercise tolerance. Nine of these patients were randomised (six combined group and three land group allocations) but lost eligibility before starting treatment. These patients were therefore included in sensitivity analysis.

In total, 78 patients undertook the intervention, 39 were allocated combined treatment and 39 land treatment, 15 at BCH (8 combined group, 7 land group), 47 at GOSH (23 combined group, 24 land group) and 16 at MAU (eight combined group, eight land group).

Protocol violations

In total, 13 and 11 patients had their trial protocol violated (including not receiving allocated treatment) in the combined and land groups (Appendix 4). One patient crossed over from land to combined treatment (because a consultant considered hydrotherapy necessary for that particular patient), the same patient then withdrew consent; four crossed over from combined to land treatment (because the hydrotherapy pool closed under health and safety and infection control policies); one had drug management changed; three had drug management and intervention changed; and 13 had intervention changed beyond trial protocol.

Four patients did not complete a 2-month assessment, two withdrew and two were lost to follow-up. Erythrocyte sedimentation rate was not available for a number of patients owing to insufficient blood samples or non-attendance at clinic. Two patients could not be entered into the primary analysis because the Preliminary Definition of Disease Improvement was inconclusive without this measurement. Therefore, of 78 potential data sets, 72 were available for primary analysis.

Two-month assessments did not occur exactly 2 months after completion of the intensive intervention period. The median time from 2 months to actual date of assessment was 5 and 0 days in the land and combined arms of the trial. However, although both groups were assessed 7 days before exact assessment date at the lower interquartile range, there was large variation between the groups at the higher interquartile range, with land group assessments performed 20 days after assessment date compared with combined group assessments performed 8 days after assessment date.

Patient characteristics

There were no differences between the groups in anthropometry, disease type or duration; however there was a higher proportion of females in the land than the combined group (Table 3).
Patient clinical characteristics

The clinical characteristics of patients are shown later in Table 6. The only clinical imbalance between the two groups at baseline assessment that was significant ($p < 0.05$, not corrected for multiple testing) was a higher inflammatory index (ESR) in the combined group.

Clinical outcome

Primary outcome

Two months after intervention, 47% of patients allocated combined and 61% allocated land-based treatment had improved disease activity with 11 and 5% worsened, respectively (a ‘disease flare’ is
defined as a worsening of ≥30% in three or more of the six core outcome variables and a minimum of two active joints (62) (Table 4).

The difference between the proportions of patients who improved in the two arms of the study was –0.14. The difference in proportions of patients who improved in the two arms of the study with continuity correction for observed differences was –0.11 (95% CI –0.34 to 0.12).

Sensitivity analysis of 2-month primary outcome data
The difference between the proportions of patients who improved in each arm of the study ranged from –0.07 to –0.16, well within the 95% CI of the primary result.

Six-month outcome data
Using the original definition of disease improvement 6 months after intervention, 48% of patients allocated combined and 68% of patients allocated land-based treatment had improved disease (Table 5). The difference in the proportions of patients who improved in the two arms of the study with continuity correction for observed differences was –0.16 (95% CI –0.43 to 0.11).

Core outcome measures
At the 2- and 6-month assessments, all core outcome measures improved in both groups, demonstrated by a reduction in mean scores (Table 6).
Results

Secondary outcome measures: muscle strength, physical fitness and endurance

Mean change in muscle strength, physical fitness and endurance improved at both the 2- and 6-month follow-ups in both groups. However, the standard deviations were wide in all assessments (Table 7).

There was little difference between the two intervention groups in shoulder abductor muscle strength, whereas the mean improvement in hip abductor strength was only maintained in the combined group at 6 months and knee extensor strength, fitness and endurance were greater in the combined than the land group at both time points.
Secondary outcome measures – pain and HRQoL

Change in pain was negligible in both arms of the trial at the 2- and 6-month assessments. The CHQ was incomplete in ~20% of cases, because parents did not understand or were uncomfortable answering questions. CHQ scores improved at 2 months, with further improvement at 6 months in the combined group. The land group showed an initial worsening of the psychological profile, which improved at 6 months, and an improvement in physical profile, not maintained at 6 months (Table 8).

Mean HRQoL scores measured using the EQ-5D were worse for the land group (health state utility = 0.54) than the combined group (health state utility = 0.63) at baseline. These values are on a scale from 0 (dead) to 1 (good health). The land group showed an improvement between baseline and 6-month assessment, but there was no significant difference between the groups, \(p < 0.5 \) (Table 9).

Patient satisfaction

About 88% (23/26) of patients and their parents preferred hydrotherapy to land-based exercises in the land group. The three patients who preferred land treatment stated that they ‘didn’t like chlorine, found the hydrotherapy pool inconvenient to travel to and didn’t feel that it worked’. About 90% (26/29) patients and their parents preferred hydrotherapy to land-based exercises in the combined group. The three patients who preferred land treatment gave their reasons as ‘didn’t have to get changed, were bored and the pool kept breaking down’. In total, 89% (49/55) preferred hydrotherapy; the three key themes that emerged as reasons for liking hydrotherapy better than land-based exercise were adherence with exercise, easier and less painful to exercise and fun and enjoyment.

Economic outcome

Some 68% of patients received a 6-month assessment, with mean follow-up 162 days (range 60–272 days) in the combined group and 175 days (range 54–294 days) in the land group. Twenty-five patients received complete baseline and 2- and 6-month assessments in each group. Data from the 74 patients who presented for 2-month assessment were used in the economic analysis (Figure 2) (the two patients with insufficient data for clinical analysis were not excluded).

TABLE 8 Difference between baseline and 2-month and baseline and 6-month pain and CHQ scores by study group: data presented as mean (standard deviation)

<table>
<thead>
<tr>
<th>Group</th>
<th>Pain (0–100 mm)</th>
<th>CHQ physical (0–100)</th>
<th>CHQ psychological (0–100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change from baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Baseline value</td>
<td>n</td>
</tr>
<tr>
<td>Land</td>
<td>39</td>
<td>36.9 (28)</td>
<td>36</td>
</tr>
<tr>
<td>Combined</td>
<td>39</td>
<td>33.3 (30)</td>
<td>39</td>
</tr>
<tr>
<td>Land</td>
<td>31</td>
<td>27.8 (15)</td>
<td>28</td>
</tr>
<tr>
<td>Combined</td>
<td>33</td>
<td>24.2 (16)</td>
<td>33</td>
</tr>
<tr>
<td>Land</td>
<td>31</td>
<td>44.8 (10)</td>
<td>28</td>
</tr>
<tr>
<td>Combined</td>
<td>33</td>
<td>44.3 (11)</td>
<td>30</td>
</tr>
</tbody>
</table>

*a A decrease in mean value signifies an improvement.

TABLE 9 Difference between baseline and 2-month and baseline and 6-month EQ-5D scores by study group: data presented as mean (standard deviation)

<table>
<thead>
<tr>
<th>Group</th>
<th>Combined group</th>
<th>Land group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Health state value</td>
<td>Health state value</td>
</tr>
<tr>
<td>Baseline</td>
<td>38</td>
<td>0.63 (0.24)</td>
</tr>
<tr>
<td>2 months</td>
<td>38</td>
<td>0.68 (0.24)</td>
</tr>
<tr>
<td>6 months</td>
<td>25</td>
<td>0.62 (0.38)</td>
</tr>
</tbody>
</table>
Resource use

The main areas of resource use are summarised in Table 10. The combined group had a smaller mean number of days as inpatients (0.48 versus 0.80 days) during the follow-up period, and required fewer outpatient referrals, investigations and GP visits. Mean days lost from work by parents because of their child’s illness were higher in the land than the combined group (mean of 9.57 versus 6.17 days).

The proportion of patients taking disease-modifying medication was 69% in both groups between intervention and 2 months. Between 2 and 6 months, the proportions were 82% and 66% in the combined and land groups, respectively. One patient in the combined group took anti-TNF (tumour necrosis factor) therapy (cost £8000 per annum). Non-steroidal anti-inflammatory drugs (NSAIDS) were taken by 92% of patients in the combined and 91% of patients in the land group between intervention and 2 months, and 82% of patients in the combined and 77% of patients in the land group between the 2- and 6-month follow-ups. Steroidal medication was similar in both groups. The use of other medication, which included antibiotics and mild pain-killers, was more common in patients in the combined group between intervention and 2 months (23 versus 17%), but similar between 2 and 6 months (11%). The use of complementary medication, which included cod liver oil and aromatherapy, was relatively uncommon in both groups, being used by only one patient in the combined and two patients in the land group (Table 11).

Patients received a similar number of outpatient physiotherapy sessions in each group between intervention and the 6-month follow-up. Patients in the land group had more individual sessions than those in the combined group (123 versus 39), but fewer group sessions (238 versus 324). A superintendent physiotherapist was present during 20 (5.5%) of the hydrotherapy sessions and 13 (3.6%) of the land-based sessions. Hydrotherapy sessions required less staff time (29 versus 34 minutes). A larger number of staff were involved in the hydrotherapy sessions, with 51 (14.1%) sessions having more than two members of staff compared with 46 (12.6%) sessions in the land-based therapy group (Table 12).

Table 10 Individual patient resource use during follow-up: data presented by study group as mean (standard deviation)

<table>
<thead>
<tr>
<th></th>
<th>Combined group (n = 38)</th>
<th>Land group (n = 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>0.08 (0.36)</td>
<td>0.36 (1.29)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>0.4 (1.44)</td>
<td>0.44 (2.00)</td>
</tr>
<tr>
<td>Outpatient referrals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>0</td>
<td>0.19 (0.58)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>0.2 (0.5)</td>
<td>0.47 (0.22)</td>
</tr>
<tr>
<td>Diagnostic tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>1.10 (1.46)</td>
<td>1.22 (1.85)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>0.48 (0.91)</td>
<td>1.08 (0.70)</td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>0.52 (1.17)</td>
<td>1.61 (3.78)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>1.44 (5.00)</td>
<td>0.72 (2.05)</td>
</tr>
<tr>
<td>GP visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>1.16 (1.92)</td>
<td>1.08 (2.25)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>1.48 (2.02)</td>
<td>2.04 (3.59)</td>
</tr>
<tr>
<td>Physiotherapy sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>4.57 (4.73)</td>
<td>5.11 (4.40)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>3.4 (4.93)</td>
<td>3.24 (8.25)</td>
</tr>
<tr>
<td>Parents’ days off work due to child’s health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>2.97 (6.86)</td>
<td>4.16 (8.93)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>3.2 (6.41)</td>
<td>5.41 (12.16)</td>
</tr>
</tbody>
</table>

During this follow-up period, patients randomised to the combined group received hydrotherapy only and those randomised to the land group received land-based treatment only. These were both on an outpatient basis.
Costs

Mean costs per patient during the trial and follow-up were based on resource use and unit costs (Tables 1 and 2). Mean costs per patient are summarised in Table 13. Total mean physiotherapy costs were lower in the land than the combined group owing to higher costs of hydrotherapy facilities. For some resource use items, patients in the combined group had lower mean costs than those in the land group. The mean cost of parents’ time away from work between intervention and 2 months was £98.77 in the combined group compared with £150.86 in the land group, and £114.42 versus £200.48 between 2- and 6-month follow-up. Mean inpatient stay costs were also lower for the combined group patients, £139.54 compared with £256.35 for land group patients over 6 months. The mean cost of land group outpatient referrals was more than double that of the combined group between intervention and 2 months at £17.92 compared with £6.41, but costs between 2 and 6 months were similar, £16.18 for the land group and £15.98 for the combined group. Investigations were also more common in the land group. The mean total cost of investigations was £3.78 for patients in the combined group; this was lower than for the land group at £116.89. The cost of interventions was lower in the combined group between intervention and 2 months, £10.89 versus £45.07. However during 2- and 6-month follow-ups, the mean cost of interventions in the combined group was £172.13 compared with £78.75 in the land group.

Although total mean physiotherapy staff costs during the follow-up period were higher for patients in the land group (£182.43 compared
with £149.32, reflecting the lower proportion of physiotherapist’s time per patient during group sessions, the facilities cost of hydrotherapy (e.g. the pool and its maintenance) were higher than for land-based treatments (£142.52 compared with £11.22). A similar difference in physiotherapy staff and facilities costs was seen during the 2-week hospital-based intervention. Mean drug costs were higher in the combined group at £740.96 for the 6-month follow-up compared with £629.97 in the land group.

Total mean costs during the 6-month follow-up period were slightly lower in the land group by £20.90 per patient (95% CI –870.50 to 750.93). This difference is not statistically significant.

Health outcomes

Patients in the combined group had lower mean QALYs gained (0.01734) than those in the land group (0.06516) over 6 months of follow-up. The difference between QALYs gained in each of the groups was 0.0478 (95% CI –0.11294 to 0.0163 based on 1000 bootstrap replications).

Cost-effectiveness

Patients in the combined group had slightly higher mean costs (£20.90) and lower mean QALYs (–0.0478). Figure 3 shows the uncertainty in mean differences in costs and QALYs gained between the two groups (that is, it shows mean costs and QALY differences based on the 1000 bootstrap replicates).

Figure 4 represents this uncertainty in the form of a cost-effectiveness acceptability curve, which shows the probability that combined treatment is more cost-effective than land-based treatment for a range of maximum values that decision-makers may place on generating an additional QALY.

TABLE 13 Comparison of costs per patient between combined and land groups (1999–2000 prices, UK £): data presented as mean (standard deviation)

<table>
<thead>
<tr>
<th></th>
<th>Combined group<sup>a</sup></th>
<th>Land group<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>398.58 (494.43)</td>
<td>394.53 (390.04)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>342.38 (457.44)</td>
<td>235.44 (337.82)</td>
</tr>
<tr>
<td>Inpatient stay costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>25.26 (114.81)</td>
<td>115.55 (413.01)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>128.00 (461.88)</td>
<td>140.80 (640.53)</td>
</tr>
<tr>
<td>Outpatient referral costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>6.41 (32.15)</td>
<td>17.92 (57.49)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>15.98 (56.03)</td>
<td>16.18 (56.22)</td>
</tr>
<tr>
<td>Interventions costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>10.89 (29.77)</td>
<td>45.07 (96.31)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>40.87 (88.57)</td>
<td>88.31 (193.24)</td>
</tr>
<tr>
<td>GP visits costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>29.60 (47.52)</td>
<td>27.08 (56.49)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>37.00 (50.57)</td>
<td>49.00 (86.75)</td>
</tr>
<tr>
<td>Time costs to parents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention to 2 months</td>
<td>98.77 (228.93)</td>
<td>150.86 (319.87)</td>
</tr>
<tr>
<td>2 to 6 months</td>
<td>114.42 (222.69)</td>
<td>200.48 (511.26)</td>
</tr>
<tr>
<td>Outpatient physiotherapy costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>53.14 (79.69)</td>
<td>64.33 (167.26)</td>
</tr>
<tr>
<td>Facilities</td>
<td>36.39 (63.51)</td>
<td>6.45 (28.40)</td>
</tr>
<tr>
<td>Total cost</td>
<td>2065.07</td>
<td></td>
</tr>
<tr>
<td>Differential mean cost<sup>b</sup> (95% CI<sup>c</sup>)</td>
<td>20.9 (–870.50 to 750.93)</td>
<td></td>
</tr>
</tbody>
</table>

^a Data were available from 39 patients in each group between intervention and 2 months and 25 patients in each group between 2 and 6 months.

^b Combined minus land.

^c 95% non-parametric CI based on 1000 bootstrap replications.
lower probability of being cost-effective than land-based treatment. As the willingness to pay for a QALY gained increases, land treatment has a higher probability of being cost-effective. If society is willing to pay £29,000, the probability of land-based therapy being the more cost-effective form of management reaches 90%.

Sensitivity analysis

Using only complete case results (excluding those without 6-month data) made no difference to QALY results (mean QALY differential –0.054, 95% CI –0.13 to 0.02) but increased the cost differential between combined and land-based interventions (mean cost differential £58.80, 95% CI £77.54 to 39.97).
95% CI –£32 to £14). The uncertainty in the differences in costs and QALYs is represented in a cost-effectiveness acceptability curve (Figure 5). This analysis did not affect conclusions drawn from primary analysis.

Similarly using PSSRU fixed costs for land-based sessions, £0.0841 per minute (instead of costs from Staffordshire, the only hospital with any cost data) did not influence the outcome of this trial, as cost per patient in the combined group was increased to £2042.38 and cost per patient in the land group was increased to £2092.88, mean cost differential £50.50. Relating this difference in total costs to the incremental gain in QALYs gained associated with land-based treatment gave an incremental cost per additional QALY gained of £1052.

FIGURE 5 Cost-effectiveness acceptability curve with only complete follow-up data at 6 months
Hydrotherapy is an expensive modality of treatment often prescribed in JIA to reduce pain and improve physical function, fitness and HRQoL, and might improve the long-term health outcome of this population. However only three studies have examined the effectiveness of hydrotherapy in JIA, and there are no published studies of the costs or cost-effectiveness of hydrotherapy in this population.

This trial was designed to compare combined hydrotherapy and land-based physiotherapy with land-only physiotherapy. As the interventions lasted the same time (1 hour in each group), it was hypothesised that differences in outcome between the groups would reflect the effects of hydrotherapy, and that resource and societal costs would be greater in the combined group owing to the fixed costs of hydrotherapy pools.

Clinical and cost-effectiveness

Greater improvements were expected in disease outcome following combined treatment. Advantageous hydrodynamic and physiological effects of immersion and exercise in water allow greater freedom of movement and more effective rehabilitation. Improvement in disease would presumably lead to improved HRQoL and increased QALYs gained, which would offset high fixed costs. However, the gains in disease improvement during intervention were insufficient to affect HRQoL meaningfully (based on results from the EQ-5D) and have QALYs gained in either group, and although more patients improved in the land than the combined group, the difference was neither clinically or statistically significant. These results are similar to previous studies with no difference between land-based therapy and hydrotherapy in patients with arthritis.

That no differences were apparent may be a consequence of the small sample size giving an underpowered trial, or the additional effects of exercise in water do not improve disease outcome any more than land exercise only. Nevertheless, disease improved in both groups and, most important, there was little evidence of exacerbated disease activity during intervention, indicating that the treatments are safe.

Unfortunately, there are no studies available for comparison to help resolve some of the contradictory findings of this trial. A reduction in many of the resource use items implies improved health, which would be expected to be reflected in increased HRQoL, yet HRQoL did not change. It may be that the use of the EQ-5D was inappropriate because it was not designed to measure children’s health status, uses adult population preferences and may not be responsive to real change in this population.

Furthermore, outliers could have affected costs and outcomes, which is a very real concern given the small sample size (as was demonstrated by one patient taking Enbrel, a new and very expensive drug, given as twice-weekly injections at 0.4 mg/kg; this drug costs £95.46 per injection). In addition, estimates of mean QALYs gained may have been affected by the difference in mean EQ-5D scores at baseline, which was greater in the combined group (0.63) than the land group (0.54). The mean additional QALYs gained in the land group might have been overestimated because HRQoL was worse and therefore improvement could be greater when compared with the combined group (the most a score could increase was 0.37 in the combined group but 0.46 in the land group).

Furthermore, fixed costs for land-based physiotherapy were based on just one hospital, which was not actually involved in the study (Staffordshire), and there were no data on capital costs. A sensitivity analysis was undertaken to explore the impact of using alternative fixed costs for land-based physiotherapy which resulted in lower mean costs in the combined group (~£50.5); however, this did not change the primary outcome.

In cost-effectiveness analysis, it is now widely agreed that uncertainty in differences in mean costs and QALYs should be presented in terms of cost-effectiveness acceptability curves. A cost-effectiveness acceptability curve is shown in Figure 4 for the base-case analysis. It shows the probability that combined treatment will be more
cost-effective than land-based treatment at different maximum values that society might be willing to pay for an additional QALY. Based on the results of this analysis, there seems to be little case for replacing standard land-based physiotherapy with combined land-based physiotherapy and hydrotherapy for patients with JIA who are stable. This conclusion may not apply to patients with unremitting active disease who could not be entered into the trial because of the exclusion criteria specified. For this group, physiotherapy incorporating hydrotherapy may still be the only option. Until further research is undertaken, both in this population and other diseases, it is not possible to determine whether the initiation and costs of building new hydrotherapy pools is justifiable or cost-effective in the long term.

Nonetheless, this is the first economic evaluation of combined land-based physiotherapy and hydrotherapy ever conducted for this or any other paediatric population, and as such represents an important advance from both economic and methodological perspectives.

Secondary outcomes

Although the analysis of secondary outcome data was exploratory, both groups demonstrated an improvement in all outcomes except pain following intervention, which supports the findings of studies in JIA whereby strength, endurance and contraction of the knee extensors, fitness and HRQoL improved following physiotherapy interventions. Physical HRQoL improved more in the combined group using the CHQ, but more in the land group using the EQ-5D. Although only exploratory secondary outcomes, the results from the CHQ-PF50 (which asks 50 questions) are given more credence in this trial than the EQ-5D (which asks five questions) as, unlike the EQ-5D, the CHQ has been validated in JIA and was developed for paediatric populations. Therefore, comparing groups, greater improvement was found in both endurance, fitness and the physical aspects of HRQoL in the combined than the land group, in line with findings of smaller hydrotherapy studies in paediatric and adult rheumatological populations. These improvements might be explained by the reduced weightbearing through joints in water, which allows patients to exercise strenuously without pain, risk of injury or stress on articular and soft tissue structures. Furthermore, deep water running requires less aerobic metabolism and shorter stride length (less strain on joints, especially if articular movement is restricted) than running in shallow water or on land.

This information will provide baseline data for future trials. The results of this study show a potentially beneficial effect from both land-based physiotherapy and hydrotherapy that should be explored further in a chronic disease with few non-pharmaceutical treatment options.

Methods

Sample size calculation

The original sample size estimate was 100 patients in each arm to detect a statistically significant difference between land-only physiotherapy and a combination of hydrotherapy and land-based physiotherapy at the 5% level with a power of 57% within the trial. A 40% improvement in the land group was estimated using data from adult studies because no information was available for JIA. However, 61% patients improved in the land group and, even if 200 patients had been recruited into the trial, the power would be reduced to 31% (excluding any effects of deviation from randomised allocation). It is estimated that 400–450 patients were needed to reach the original power of 57%.

Recruitment and selection

One of the problems when recruiting patients for non-medical trials from tertiary centres is that new drugs are being researched all the time. The patients most eligible for physiotherapy research are also those most eligible for drugs trials, they have ongoing disease and benefit from further medical and therapeutic interventions. Furthermore, patients at the severe end of the disease spectrum tend to be excluded as their management is not stable, yet these are the patients who probably gain most benefit from physiotherapy and hydrotherapy interventions. In addition, many community physiotherapists could not provide any treatment, or were not prepared to offer land-based physiotherapy as an alternative to hydrotherapy. Several children and their parents would not consent to being in the land group as they enjoyed hydrotherapy when in hospital. Other families were satisfied with outpatient hydrotherapy and would not commit to 2 weeks of intensive treatment because it would be too disruptive to family life, other children would need to be cared for and they could not afford to take time off work. Additionally, adolescents who
had spent much of their earlier years attending hospitals were reluctant to miss school at a crucial time in their education. All these factors in combination with rapidly changing medical advances led to a lower than expected recruitment level and a study population not necessarily most representative of the most common JIA users of hydrotherapy.

Retention
Further difficulties were encountered owing to the practicalities of this type of study. The centres involved in the trial care for patients throughout the UK, and patients need to stay in hospital for intensive physiotherapy if daily commuting is not practical. At the time of designing the trial, this practice was commonplace, but as patient care has become more community-, school- and home-based, hospital wards tend to be occupied by those children who are very ill or have complex disorders. Although children are still admitted to hospital wards for intensive physiotherapy, it is often combined with other medical or healthcare interventions that would exclude them from the trial. Some patients lost eligibility owing to the need for other interventions, or improvement or deterioration of their disease when time lapsed between recruitment and intervention. Furthermore, emergency admissions to wards or the need for a child to stay longer in hospital than expected often led to trial patients being cancelled.

Protocol, standardisation and primary end-point
Protocol violations are inevitable in any clinical trial of this nature because it is unethical to withhold treatments from patients if their condition deteriorates. In addition, hydrotherapy availability cannot be guaranteed because pool equipment and maintenance (such as chlorine pumps and temperature regulators) can fail, leading to pool closures. For these reasons, there were more protocol violations in the combined group (10/39) than the land group (4/39), which could have affected the results of the trial because patients in the combined group received land-based physiotherapy and fewer (by 50% in some cases) treatments.

The study was originally designed so that patients would receive outpatient physiotherapy or hydrotherapy once per week from the end of the intervention period until the 6-month follow-up, the primary end-point. However, questionnaires sent to local physiotherapists prior to the start of this trial revealed that staffing levels, waiting lists or funding might prevent them from providing weekly treatment and that it was not ethically acceptable to parents or physiotherapists to withhold hydrotherapy from patients in the control arm of the study for more than 2 months. The minimum amount of outpatient treatment required for the study was therefore reduced to four or five alternate week sessions and the primary end-point was reduced to 2 months. Nevertheless, the amount of treatment was variable owing to patients not attending, inconvenient treatment times, increased waiting lists and staff absences. Furthermore, although physiotherapists were requested to continue with the patient’s randomised allocations, the principal investigator was aware of deviations occurring on at least three occasions. It is therefore not known if the amount of physiotherapy treatment or potential allocation deviation during the follow-up period could have influenced results.

Follow-up assessments could not be performed exactly 2 months after intervention owing to patient, clinic and consultant availability. Patients in the land group were poorer attendees than those in the combined group, which led to appointments being rearranged and delays in assessment.

Clinical relevance of the trial
Rapid advances in pharmaceutical treatments occurred during the course of this trial, which may have led to the inclusion of patients who no longer required intensive land-based physiotherapy or hydrotherapy treatment. Nonetheless, disease improved in both groups with no exacerbation of symptoms, indicating that physiotherapy treatments are both beneficial and safe. Furthermore, most secondary measures showed mean improvement, which continued at the 6-month follow-up.

However, these results are not generalisable to the whole JIA population owing to selection criteria (patients with unremitting active disease were excluded) and sample size. Until further research is undertaken, in both this population and other diseases, it is not possible to determine whether the additional capital and running costs of hydrotherapy are cost-effective and hence justifiable in the long term.

However, JIA is a disease in which the pathogenesis is unknown and a cure is not available, therefore any treatment that has a
beneficial effect on disease and outcome should be continued. In addition, parents and children reported a preference and greater compliance with hydrotherapy treatment and they perceived treatment as fun and enjoyable. It would therefore be inappropriate to withdraw hydrotherapy from physiotherapy treatments because there was no difference between the two arms of this trial.
Chapter 5

Conclusion

The combination of problems with recruitment, retention and sample size means that recruiting enough patients to be confident that a trial of this design could detect a statistically significant difference between combined hydrotherapy and land-based physiotherapy and land-based physiotherapy only would not be feasible in the UK alone. Furthermore, the trial was only possible for patients who are in a stable condition.

However, the results of this study have determined the proportion of children with JIA who will improve at 2 and 6 months following hydrotherapy and land-based physiotherapy treatments, the standard deviation of that treatment effect, and that adult surrogate measures are not appropriate in paediatric sample size calculations.

In the present study, there was no statistical difference in primary outcome between either group, and both treatments have the potential to be beneficial to the child with JIA. Exploratory analysis of secondary outcome data suggests that HRQoL (measured using the CHQ), fitness and endurance may be more appropriate outcomes for future studies of different modalities of physiotherapy treatment, and until further research is undertaken it is not possible to determine if the initiation and costs of building new hydrotherapy pools is justifiable or cost-effective in the long term.

Recommendations for further study

Based on the results of this study, any similarly sized RCT would be seriously underpowered and inappropriate. It is therefore recommended that a larger study be conducted with less restrictive inclusion and exclusion criteria or that a European study be considered. It is not ethically acceptable to offer ‘no treatment’ as a substitute for hydrotherapy, and pragmatic studies may be the only logical alternative to a larger study. Although these methodologies are not considered as scientifically robust as well-designed controlled trials, they do reflect current practice, which would improve recruitment and retention, and facilitate the implementation of results. Studies of methodologies in complex interventions such as physiotherapy and hydrotherapy should be considered to improve recruitment and ensure protocol is acceptable to patients and carers in JIA and other diseases.

Future studies should explore the outcomes that physiotherapy aims to improve, such as impairment, physical function, fitness and HRQoL. Comparative studies of hydrotherapy and land-based physiotherapy could use the outcomes that improved more in the combined than the land group, such as HRQoL and fitness. However, there are currently no measures of impairment, physical function and fitness that have been rigorously tested for reliability, validity and responsiveness to meaningful change in JIA. It is therefore recommended that studies of outcome measurement precede any future trials measuring the effectiveness of any physiotherapy intervention in JIA.

Further research considering the effectiveness of hydrotherapy to the general paediatric population should focus on larger groups that use hydrotherapy more frequently than those with musculoskeletal disease, such as children with neurological dysfunction.

© Queen’s Printer and Controller of HMSO 2005. All rights reserved.
We are grateful to all the patients, parents and staff from Great Ormond Street and Birmingham Children’s Hospitals, and the Middlesex Adolescent unit, University College London Hospitals, whose collaboration made this research possible. We wish to thank the HTA for their financial support. We also wish to thank the members of the Trial Management Committee, S Maillard, J Scott, S Philips, and Y Rogers; the Data Monitoring and Ethics Committee, B Ansell, B Newman and P Hollingworth; the Trial Steering Committee external members, A Nunn and M Tottman; and also M Hurley, physiotherapy research fellow, for advice and support. In addition, we thank J Granger for recruitment concealment and allocation, C Lucas, I Gerschwitz and N Eagling for their assistance in coordinating the trial, K Murray, C Pilkington, N Hassan, C Ryder and J Gardner Medwyn for their assistance in assessment and recruitment and S Sawhney, K Davies and E Crawley for their assistance in recruitment. We also thank the R & D Department at University College London Hospitals and Rheumatology Department at University College London.

We thank all physiotherapists at participating centres and outpatient departments as listed below for providing physiotherapy treatment for patients in the study. Ysguol Crug Glas Croft Childrens Centre; Bury St Edmonds; Queens, Burton on Trent; Brierley Health Centre, Wordsley; Northwick Park, Middlesex; Ipswich; Horsham, Sussex; Rivers, Herts; West Middlesex; Southend; Hillingdon, Middlesex; Royal Alexander, Brighton; Wordsley, Dudley; Ashford, Isleworth; Princess Royal, Haywards Heath; St Georges, Essex; Bedford; Queen Elizabeth, Herts; Dartford and Livingstone; Queen Marys, Sidcup; Luton and Dunstable; Basildon; Royal Gwent; St Heliers, Surrey; Conquest, Sussex; Chelmsford; Richard Clousley School, London; Queen Mary, Surrey; Finchley Memorial, London; Mile End, London; Tadworth Court, Surrey; Darent Valley, Kent; Maple Down School, Criklewood; Sheldon Centre, London; Frimley, Guildford; Chase Farm, London; Dover Health Centre; St Leonards on Sea.

Contribution of authors
Heather Epps (Specialist Paediatric Physiotherapist and Consultant in Hydrotherapy) was the principal investigator, responsible for designing, organising, coordinating and managing the trial, designing treatment protocol, training therapists, recruitment, assessment, data collection, data input, reporting, administration and writing all sections in the final report except the cost-effectiveness analysis. Laura Ginnelly (Research Fellow) was responsible for the cost-effectiveness analysis and wrote the economics sections in the final report. Martin Utley (Deputy Director) was the trial statistician, liaised with DMEC, and assisted in drafting the final report. Taunton Southwood (Professor of Paediatric Rheumatology) was coapplicant on the NHS grant, a member of the steering committee, responsible for the recruitment of patients at Birmingham Children’s Hospital, assisted in drafting the interim and final reports, and provided strategic and clinical support for Dr Epps. Steve Gallivan (Professor of Operational Research) was coapplicant on the NHS grant, provided statistical advice and assisted in drafting the final report. Mark Sculpher (Professor of Health Economics) provided overall supervision for the cost-effectiveness analysis and wrote the economics sections in the final report. Patricia Woo (Professor of Paediatric Rheumatology) was the coapplicant on the NHS grant, a member of the steering committee, was involved in the recruitment of patients, assisted in drafting the interim and final reports and publications, and provided strategic and clinical support for Dr Epps.
References

18. Longmuir PE, Bar-Or O. Factors influencing the physical activity levels of youths with physical and sensory disabilities. Adapted Phys Activity Q 2000;17:40–53.

References

27. Scott J. To investigate the effectiveness of hydrotherapy on patients with juvenile chronic arthritis. London: Association of Paediatric Chartered Physiotherapists (APCP) 1997;March:28–34.

Appendix I

Stable on medication

Medication inclusion criteria for trial patients:

1. No patient may enter the study within 1 month of intravenous or intra-articular steroids.
2. No patient may enter the study within 2 months of starting disease-modifying antirheumatic drugs.
3. No more than 20% variability in the dose of disease-modifying antirheumatic drugs is acceptable during the intervention period.
4. A change from oral to subcutaneous disease-modifying antirheumatic drugs is acceptable only if there is no additional increase in dosage. A change to subcutaneous represents an effective 20% increase in bioavailability of methotrexate.
5. No more than 25% variability in the dose of steroids is acceptable during the intervention period.
6. To remain eligible for the study, there can be no more than one change in non-steroidal anti-inflammatory drugs.
Appendix 2

Standard land exercises

Hold relax and stretches

All stretches except for the neck whereby the patient assists the movement incorporate the use of slight traction. The stretches are performed three times each at each joint with limited movement in every restricted anatomical direction.

Upper limbs

Shoulder stretches

Abduction

Patient position
Supine on a plinth with the shoulder abducted and elbow flexed.

Therapist position
Standing at the side of the patient, hands on the anterior proximal aspect of the upper arm and the shoulder girdle. Forearm supporting the patient’s forearm.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the shoulder into abduction or flexion until limited by discomfort or anatomical restriction occurs.

Flexion (>90°)

Patient position
Supine on a plinth with the shoulder abducted and elbow flexed.

Therapist position
Standing at the head of the plinth, hands on the posterolateral proximal aspect of the upper arm and the scapula. Forearm supporting the patient’s forearm.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the shoulder into flexion while mobilising the scapula to assist scapulothoracic motion until limited by discomfort or anatomical restriction occurs.

Flexion (<90°)

As above but the therapist faces the patient, standing at the side of the plinth. During passive movement the therapist uses the other hand to prevent shoulder girdle elevation rather than mobilising the scapula.

Extension

Patient position
Supine with the arm over the end of the plinth in extension with the elbow flexed.

Therapist position
Facing the patient, standing at the side of the plinth. Hands on the anterolateral proximal aspect of the upper arm and the shoulder girdle. Forearm supporting the patient’s forearm.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the shoulder into extension until limited by discomfort or anatomical restriction occurs.

Internal rotation

Patient position
Supine on a plinth with the elbow flexed to approximately 90° and the arm away from the body as close to 90° abduction as possible.

Therapist position
Facing the patient, standing at the side of the plinth supporting the posterior distal aspects of the forearm with one hand. The shoulder girdle and upper arm supported by the therapist’s other upper arm over the shaft of the humerus.
Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the shoulder into internal rotation until limited by discomfort or anatomical restriction occurs.

External rotation
Patient position
Supine on a plinth with the elbow flexed to approximately 90° and the arm away from the body as close to 90° abduction as possible.

Therapist position
Facing the head of the plinth, standing at the side of the patient supporting the anterior distal aspects of the forearm with one hand. The shoulder girdle and upper arm supported by the therapist’s other upper arm over the shaft of the humerus.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the shoulder into internal rotation until limited by discomfort or anatomical restriction occurs.

Elbow stretches
Flexion
Patient position
Supine on a plinth with the arm by the trunk.

Therapist position
Facing the patient, standing to the side with hands on the posterior distal aspects of the arm and forearm.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the elbow into flexion until limited by discomfort or anatomical restriction occurs.

Extension
Patient position
Supine on a plinth with the arm by the trunk.

Therapist position
Facing the patient, standing to the side with hands on the anterior distal aspect of the forearm. The shoulder girdle and upper arm supported by the therapist’s other upper arm over the shaft of the humerus.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The arm is relaxed and the physiotherapist moves the elbow into extension until limited by discomfort or anatomical restriction occurs.

Radio-ulna stretches
Supination
Patient position
Supine on a plinth with elbow flexed to approximately 90°, the arm by the trunk and the forearm in supination.

Therapist position
Facing the patient, standing to the side. One hand on the distal anterior upper arm and the palm of the other hand over the anterolateral aspect of the wrist and carpus.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The forearm is relaxed and the physiotherapist moves the forearm into supination until limited by discomfort or anatomical restriction occurs.

Pronation
Patient position
Supine on a plinth with elbow flexed to approximately 90°, the arm by the trunk and the forearm in pronation.

Therapist position
Facing the patient, standing at their side. One hand on the distal anterior upper arm and the palm of the other hand over the posterolateral aspect of the wrist and carpus.

Action
The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The forearm is relaxed and the physiotherapist moves the forearm into pronation until limited by discomfort or anatomical restriction occurs.
Wrist stretches

Flexion

Patient position: Sitting at a table with the elbow flexed to approximately 90° with the forearm supinated.

Therapist position: Facing the patient, with one hand supporting the posterior and lateral surfaces of the distal forearm and the thumb of the other hand over the anterior carpus to correct any subluxation.

Action: The wrist is flexed.

Extension

Patient position: Sitting at a table with the elbow flexed to approximately 90° with the forearm supinated.

Therapist position: Facing the patient, with one hand supporting the posterior and lateral surfaces of the distal forearm and the thumb of the other hand over the anterior carpus to correct any subluxation.

Action: The wrist is extended.

Thumb and finger stretches

Note: if flexor tendons are involved the holds may be adapted to either side of the joint.

MCP I movements

Patient position: Sitting at a table with the elbow flexed to approximately 90° with the forearm midway between supination and pronation.

Therapist position: Sitting facing the patient. Stabilise the first metacarpal with the thumb and index finger of one hand while moving the first proximal phalanx with the thumb and index finger of the other hand.

Action: The joint is moved into flexion, extension, abduction, adduction and circumduction.

PIP I–V. Flexion and extension

Patient position: Sitting at a table with the elbow flexed to approximately 90° with the forearm midway between supination and pronation.

Therapist position: Sitting facing the patient. Stabilise the proximal phalanxes with the thumb and index finger of one hand while moving the middle phalanxes with the thumb and index finger of the other hand.

Action: The joints are moved into flexion and extension.

DIP II–V

Patient position: Sitting at a table with the elbow flexed to approximately 90° with the forearm midway between supination and pronation.

Therapist position: Sitting facing the patient. Stabilise the middle phalanxes with the thumb and index finger of one hand while moving the distal phalanxes with the thumb and index finger of the other hand.

Action: The joints are moved into flexion and extension.

Lower limbs

Hip stretches

Abduction

Patient position: Supine on a plinth with the knees extended and the hip abducted. The opposite lower leg is placed over the end of the plinth with a stool supporting the foot to stabilise the pelvis.

Therapist position: Facing the patient, standing to the side, hands on the medial distal aspect of the upper leg and the opposite iliac crest. The patient then pushes against the therapist’s distal hand.

Action: This position is held for a count of 5. The leg is relaxed and the physiotherapist moves the hip into abduction until limited by discomfort or anatomical restriction occurs.
Extension
Patient position Lying on the side on a plinth with knees flexed and the hip to be stretched extended. The opposite hip is flexed.
Therapist position Standing behind the patient with one hand on the anterior distal aspect of the upper leg supporting the lower leg on the trunk (iliac crest) and using the other hand to stabilise the trunk. The thigh may be used to stabilise the trunk.
Action The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The leg is relaxed and the physiotherapist moves the hip into extension until limited by discomfort or anatomical restriction occurs.

Flexion
Patient position Supine on a plinth with the knee and hip flexed. The opposite hip and knee extended. A seatbelt or sandbag may be placed over the opposite proximal upper leg.
Therapist position Standing facing the patient with one hand on the posterior distal aspect of the upper leg supporting the lower leg on their trunk (iliac crest) and the other hand on the iliac crest.
Action Using an assistant, sandbag or seatbelt to prevent the opposite hip from lifting off the plinth. The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The leg is relaxed and the physiotherapist moves the hip into flexion until limited by discomfort or anatomical restriction occurs.

Internal rotation
Patient position Prone with the knee flexed to as close to 90° as possible.
Therapist position Standing facing the patient with one hand on the medial distal aspect of the lower leg and the other hand keeping the pelvis in contact with the plinth.
Action The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The leg is relaxed and the physiotherapist moves the hip into internal rotation until limited by discomfort or anatomical restriction occurs.

External rotation
Patient position Supine or sitting on a plinth with the knee and hip flexed.
Therapist position Standing facing the patient with hands on the medial distal aspects of the upper legs.
Action The patient pushes against the therapist’s hands. This position is held for a count of 5. The legs are relaxed and the physiotherapist moves the hip into external rotation until limited by discomfort or anatomical restriction occurs.

Knee stretches
Flexion
Patient position Prone on a plinth with the knee flexed (the stretch may be performed sitting).
Therapist position Standing facing the head of the plinth, hands on the anterior aspect distal aspects of the upper and lower leg.
Action The patient pushes against the therapist’s distal hand. This position is held for a count of 5. The leg is relaxed and the physiotherapist moves the knee into flexion until limited by discomfort or anatomical restriction occurs.

Extension
Patient position Prone on a plinth with the knee extended and a small towel folded under the thigh.
Therapist position Standing facing the patient, hands on the posterior distal aspects of the upper and lower leg.
Action The patient then pushes against the therapist’s distal hand. This position is held for a count of 5. The leg is relaxed and the physiotherapist moves the knee into extension until limited by discomfort or anatomical restriction occurs.
Patello-femoral

Medial transverse

Patient position: Supine on a plinth or in half lying with the knee slightly flexed on a folded towel.

Therapist position: Standing at the side of the knee with the pads of the thumbs against the lateral borders of the patella.

Action

Displace the patella medially.

Lateral transverse

Patient position: Supine on a plinth or in half lying with the knee slightly flexed on a folded towel.

Therapist position: Standing at the side of the knee with the pads of the thumbs against the medial borders of the patella.

Action

Displace the patella laterally.

Cephalad and caudad

Patient position: Supine on a plinth or in half lying with the knee slightly flexed on a folded towel.

Therapist position: Standing at the side of the knee with the heel of one hand against the superior margin of the patella. The other hand points proximally over the patella (taking care not to apply any compressive forces) with the fingers and thumb passing over the heel of the proximal hand.

Action

Displace the patella in a caudad and/or cephalad direction.

Ankle and foot stretches

Dorsiflexion

Patient position: Supine on a plinth or in half lying with the knee slightly flexed on a folded towel.

Therapist position: Standing beyond the foot, facing the patient with one hand on the distal posterior aspect of the lower leg and the other hand under the heel with the forearm along the plantar surface of the foot.

Action

The therapist dorsiflexes the ankle foot until limited by discomfort or anatomical restriction occurs.

Plantarflexion

Patient position: Supine on a plinth or in half lying with the knee slightly flexed on a folded towel.

Therapist position: Standing beyond the foot, facing the patient with one hand on the distal posterior aspect of the lower leg and the web between the thumb and index finger of the distal hand over the neck of the talus adjacent to the ankle.

Action

The therapist plantarflexes the ankle until limited by discomfort or anatomical restriction occurs.

Intertarsal movements

Patient position: Supine or in half lying with the hip and knee slightly flexed on a plinth.

Therapist position: Standing beyond the foot, facing it, the therapist stabilises the transverse tarsal joint by placing the hand beneath the calcaneus and talus.

Action

The therapist adducts, internally and externally rotates the forefoot from the navicular and cuboid.

Subtalar movements

Patient position: Supine or in half lying with the hip and knee slightly flexed on a plinth.

Therapist position: Standing beyond the foot, facing it with the heel of one hand under the patient’s heel. The therapist then stabilises the ankle and talus by placing the other hand posteriorly around the talus and malleoli.

Action

The calcaneus is then moved into adduction and abduction.
MTP and toes
Patient position Supine or in half lying with the hip and knee slightly flexed on a plinth.
Therapist position Standing beyond the foot, facing it with the thumb and index finger of one hand proximal to the joint while moving the joint with the thumb and index finger of the other hand.
Action The joint is moved into flexion and extension.

Trunk and neck
Neck auto-assisted movement
Flexion and extension
Patient position Supine on a plinth with arms by the side and head over the end of the plinth.
Therapist position Supporting the head in the hands.
Action The head is moved into flexion or extension by the patient supported by the therapist.

Rotation
Patient position Sitting with arms by the side and one hand in front of the ear with the palm flat.
Therapist position Prevents rotation of the trunk.
Action The patient rotates the neck and applies own overpressure to the movement.

Side flexion
Patient position Sitting with arms by the side and one hand in front of the ear with the palm flat.
Therapist position Prevents elevation of the shoulder girdle.
Action The patient side flexes the neck and applies own overpressure to the movement.

Trunk stretches
Flexion and extension
Patient position Sitting with the side resting on the elevated portion of a plinth.
Therapist position Standing at the side of the patient with one arm around the patient’s thoracic cage and the other hand on the near iliac crest.
Action The therapist flexes and extends the patient’s trunk.

Rotation
Positions used will be determined by the lower and upper limb joints that are restricted and or tender.

Patient position Sitting on the end of a plinth.
Therapist position Standing on the same side as the rotation at the end of the plinth with legs at a right angle to, and against, the patient’s thighs. One hand is placed on the posterior aspect of one shoulder and the other hand on the anterior aspect of the opposite shoulder away from the joint surfaces.
Action The therapist rotates the patient’s trunk.

Side flexion
Patient position Sitting on the end of a plinth.
Therapist position Standing on the opposite side to the side flexion at the end of the plinth with legs at a right angle to and against the patient’s thighs. One hand is placed on the thoracic cage and the other hand on the iliac crest.
Action The therapist side flexes the trunk.
Active movements and strengthening – stage 1

Active movements will be performed between 10 and 30 times as the patient’s strength and mobility improves.

Upper limbs

Shoulder movements

Abduction/adduction and elevation
The patient lifts arms out to the side in standing or supine. Then elevates them above the head aiming for both hands to touch with elbows extended. The patient then returns arms to the side and crosses them over in front of the body.

The patient lies prone and lifts the arm above the head.

Internal rotation and extension
In standing, the patient reaches up behind the back as far as possible.

External rotation
In sitting, the patient reaches up to behind the neck and then takes the hands as far down the back as is possible.

Elbow movements

Flexion and extension
In supine, the patient stretches arms out as straight as possible and then tries to bend them up to touch the shoulders with the hands.

Radio-ulna movements

Supination and pronation
The patient sits with forearm resting on a table and elbow bent and at the side. Then turns the hand over so that it is as flat as possible on the table with the palm facing upwards. Then turns the hand in the other direction so that it is facing the table.

Wrist and fingers

Flexion and extension wrist
The patient sits with forearm resting on a table and elbow bent and at the side. The patient puts hands together with palms facing and tries to lift the elbows up without the hands losing contact (as if praying). Then repeats the exercise but with the backs of the hands in contact and the fingers pointing towards the floor.

The patient then holds the forearm distally and bends the wrist forwards and backwards.

Flexion and extension fingers
The patient sits with forearm resting on a table and elbow bent and at the side. Patient then makes a fist as tight as possible (with the thumb on the outside) and then stretches fingers out as straight as possible.

Thumb movements
The patient sits with forearm resting on a table and elbow bent and at the side. The forearm is positioned with the palm facing upwards. Patient then moves thumb across palm aiming to touch the base of the fifth finger. The patient then moves the thumb out as far away from the palm as possible.

Lower limbs

Hip movements

Abduction
The patient starts this movement in supine progressing to side lying. Then lifts the leg about 6 inches above the plinth keeping the body straight and the head in line with the body and leg. The underneath leg is flexed for comfort.
Flexion
The patient lies supine and lifts the knee up towards the chest keeping the other leg straight on the plinth if possible.

The patient then lifts the leg just above the plinth keeping the knee as straight as possible.

Extension
The patient lies on the side and then progresses to prone. Then lifts the leg towards the ceiling keeping the knee straight and the pelvis in contact with the plinth.

External rotation
The patient sits on a plinth and lifts the foot up to touch the opposite knee. Patient then lies supine and lets the legs fall outwards keeping the hips and knees bent and the feet as close together as possible.

Knee movements
Flexion
The patient lies prone and bends the knee and tries to touch the buttocks with the foot.

Extension
The patient lies supine and tries to push the knee straight so that it touches the plinth.

The patient then sits on a plinth with the knee flexed and lifts the foot until the knee is straight.

Foot and ankle
Dorsiflexion and plantarflexion
The patient sits with knees slightly flexed and pulls toes up towards the ceiling. Patient then pushes toes down towards the plinth.

Inversion and eversion
The patient sits with knees slightly flexed and turns the foot in towards the other foot and then out away from the other foot. Younger children will circle their ankles.

Neck and trunk
Neck movements
Flexion and extension
The patient sits and bends head forwards trying to touch chest with the chin and then backwards to look at the ceiling until a stretch is felt at the back and then the front of the neck.

Rotation
The patient turns head to look over one shoulder and then the other.

Side flexion
The patient tries to touch shoulder with ear without lifting the shoulder. Then repeat this to the other side.

Trunk movements
Flexion
The patient lies supine with hips and knees bent. Patient then lifts pelvis off the plinth.

The patient lies supine with hips and knees bent. Then flattens the back onto the plinth (pelvic tilt).

The patient lifts head off the plinth and reaches forwards with the hands if possible (sit up).

The patient lies supine with hips and knees bent and lifts bottom off the plinth (bridging).
Extension
The patient lies prone and lifts head (and feet if possible) off the plinth.

Rotation
The patient lies supine with hips and knees bent. Then lets knees fall to one side of the body and then the other.

Active movements and strengthening – stage 2
Weights will only be used if the joints are assessed to be inactive by the treating physiotherapist.
All exercises are then reduced to 10 times each and a 1-pound weight is attached to the wrist or ankle. The exercises are then increased up to 30 times each.

Active movements and strengthening – stage 3
All exercises are then reduced to 10 times each and a 2-pound weight is attached to the wrist or ankle. The exercises are then increased up to 30 times each.

Active movements and strengthening – stage 4
All exercises are then reduced to 10 times each and a 3-pound weight is attached to the wrist or ankle. The exercises are then increased up to 30 times each.

Functional activity
- Sit to stand and vice versa.
- Up and down on tip toes.
- Step ups.
- Marching on the spot.
- Getting up and down off the floor.

Aerobic activity
The time will gradually be increased from 5 min up to a maximum of 20 min within the session depending on the patient’s level of fitness.
- Static bike.
- Step machine.
- Side steps.
- Walking forwards and backwards.
- Skipping.
- Hopping.
- Bunny jumps.
- Cycling legs in the air with concurrent arm punches into the air.
Appendix 3

Standard hydrotherapy exercises

Stretches

Stretches may be performed with floats if the patient’s joints are inactive. The same stretches will be performed without floats if the patient has active or unstable joints or if specific ligament laxity or joint deformity is present, for example stretching into hip abduction with a valgoid knee. Stretches will be performed three times in each restricted anatomical movement. If the wrist is involved then floats will be placed above the wrist rather than held in the hand for upper limb stretches.

Upper limbs

Shoulder stretches

Abduction flexion up to 90°

Patient position Standing with the water at shoulder level and the arm abducted or flexed as high as possible with the elbow extended and holding a float in the hand.

Therapist position Behind the patient stabilising the shoulder girdle.

Action Push the float down into the water. The position is held for a count of 5. The arm is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Any range

Patient position In supine float with the body supported with the relevant flotation with the arm elevated and abducted.

Therapist position At the side of the patient with one hand on the distal anteromedial aspect of the upper or lower arm depending on comfort and the other stabilising the trunk.

Action The patient pushes against the therapist’s distal hand. The position is held for a count of 5. The arm is then relaxed and the therapist moves the limb into elevation or abduction until discomfort or anatomical restriction occurs.

Patient position Prone on a half plinth with the shoulder elevated and the elbow extended with a float in the hand.

Therapist position Standing at the side of the patient, stabilising the pelvis.

Action Push the float down into the water. The position is held for a count of 5. The arm is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Patient position In prone float with the body supported with the relevant flotation and the shoulder flexed.

Therapist position In front of the patient with one hand on the distal anterior aspect of the upper or lower arm. The other hand is placed on the shoulder girdle.

Action The patient pushes against the therapist’s distal hand. The position is held for a count of 5. The arm is then relaxed and the therapist moves the limb into flexion until discomfort or anatomical restriction occurs.

End-of-range elevation

Patient position Side lying with a large ring around the neck and underneath the arm with a float in the hand.

Therapist position Supporting the patient’s pelvis on the hip.

Internal and external rotation

Patient position In prone on a plinth with the elbow flexed to about 90° and the shoulder abducted as much as possible holding a float in the hand.
Therapist position
Standing at the side of the patient with one hand fixing the trunk and the other on the distal upper arm maintaining the degree of abduction achieved.

Action
Move the shoulder into internal or external rotation. Push the float down into the water. The position is held for a count of 5. The arm is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Elbow stretches

Flexion/extension

Patient position
Inclined standing or sitting with the arm by the side for flexion and the shoulder abducted for extension with a float in the hand.

Therapist position
Standing behind the patient stabilising the position of the upper arm.

Action
Flex or extend the elbow and then push the float down into the water. The position is held for a count of 5. The arm is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Elbow stretches

Flexion/extension

Patient position
Standing behind the patient stabilising the position of the upper arm.

Therapist position
Standing at the side of the patient with one hand fixing the trunk and the other on the distal upper arm maintaining the degree of abduction achieved.

Action
Move the shoulder into internal or external rotation. Push the float down into the water. The position is held for a count of 5. The arm is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Wrist stretches

Flexion and extension

Patient position
Standing holding a small float.

Therapist position
Stabilises the distal forearm.

Action
Flex the wrist with the forearm supinated and under the water. Extend the wrist with the forearm pronated and under the water.

Thumb and finger stretches

Note: if flexor tendons are involved the holds may be adapted to either side of the joint.

MCP I movements

Patient position
Sitting on a plinth or step or stands with the elbow flexed to approximately 90° with the forearm midway between supination and pronation.

Therapist position
Facing the patient. Stabilise the first metacarpal with the thumb and index finger of one hand while moving the first proximal phalanx with the thumb and index finger of the other hand.

Action
The joint is moved into flexion, extension, abduction, adduction and circumduction.

PIP I–V. Flexion and extension

Patient position
Sitting on a plinth or step or standing with the elbow flexed to approximately 90° with the forearm midway between supination and pronation.

Therapist position
Facing the patient. Stabilise the proximal phalanxes with the thumb and index finger of one hand while moving the middle phalanxes with the thumb and index finger of the other hand.

Action
The joints are moved into flexion and extension.

DIP II–V

Patient position
Sitting on a plinth or step or standing with the elbow flexed to approximately 90° with the forearm midway between supination and pronation.

Therapist position
Facing the patient. Stabilise the middle phalanxes with the thumb and index finger of one hand while moving the distal phalanxes with the thumb and index finger of the other hand.

Action
The joints are moved into flexion and extension.

Lower limbs

Hip stretches

Abduction

Patient position
Standing facing the wall with a float around the knee and the hip in abduction.
Therapist position: Stand behind the patient and stabilise the pelvis and trunk.

Action
Push the float down into the water. The position is held for a count of 5. The leg is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Extension
Patient position: Standing facing the wall holding the rail, the patient flexes one knee against the wall to stabilise the pelvis. A float is placed on the other knee.

Therapist position: Stand behind the patient and stabilise the pelvis and trunk.

Action
Push the float down into the water. The position is held for a count of 5. The leg is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Flexion up to 50°
Patient position: Supine float.

Therapist position: Facing the patient with the patient’s knees over the shoulder.

Action
Therapist moves the patient in a caudal/cephalad direction.

Flexion beyond 50°
Patient position: Standing (inclined standing for the last 20°) facing the rail with a float around the knee.

Action
Push the float down into the water. The position is held for a count of 5. The leg is then relaxed allowing it to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Rotation
Patient position: Standing facing the rail with the hip and knee flexed to 90° and a float around the ankle.

Action
Push the float down into the water. The position is held for a count of 5. The leg is then relaxed allowing internal or external rotation to occur until limited by discomfort or anatomical restriction occurs.

Knee stretches
Flexion
Patient position: Standing facing the wall holding the rail with a float placed above the ankle with the hip extended and knee flexed. The hip is slightly flexed for the last 20° of movement.

Action
Push the float down into the water. The position is held for a count of 5. The leg is then relaxed allowing flexion to occur until limited by discomfort or anatomical restriction occurs.

Extension
Patient position: Sitting on a step, plinth or submerged stool with the knee extended and stabilising the thigh with the hand. A float is placed on the ankle.

Therapist position: The therapist may need to stabilise the thigh.

Action
Push the float down into the water. The position is held for a count of 5. The leg is then relaxed allowing extension to occur until limited by discomfort or anatomical restriction occurs.

Patient position: Squatting with the back against the wall and one leg extended out in front. A float on the knee.

Action
Raise the leg as far as possible without flexing the knee. The position is held for a count of 5 and the patient then attempts to raise the leg further until limited by discomfort or anatomical restriction occurs.
Ankle and foot stretches

Dorsiflexion
- **Patient position**: Sitting on a plinth, step or submersed stool with the knee slightly flexed.
- **Therapist position**: Facing the patient. Hand under the heel and forearm along the plantar aspect of the foot.
- **Action**: Stretch the ankle and foot into dorsiflexion.

Plantarflexion
- **Patient position**: Sitting on a plinth, step or submersed stool with the knee slightly flexed.
- **Therapist position**: Facing the patient. Hand under the heel and web space between thumb and index finger of other hand over the neck of the talus.
- **Action**: Stretch the ankle and foot into dorsiflexion.

Inversion and eversion
- **Patient position**: Sitting on a plinth, step or submersed stool with the knee slightly flexed.
- **Therapist position**: Facing the patient. One hand beneath the calcaneus and talus and the other along the cuboid and navicular.
- **Action**: Therapist adducts, internally and externally rotates the forefoot from the navicular and cuboid.

Subtalar movements
- **Therapist position**: Standing beyond the foot, facing it with the heel of one hand under the patient’s heel. The therapist then stabilises the ankle and talus by placing the other hand posteriorly around the talus and malleoli.
- **Action**: The calcaneus is then moved into adduction and abduction.

MTP and toes
- **Patient position**: Supine or in half lying with the hip and knee slightly flexed on a plinth.
- **Therapist position**: Standing beyond the foot, facing it with the thumb and index finger of one hand proximal to the joint while moving the joint with the thumb and index finger of the other hand.
- **Action**: The joint is moved into flexion and extension.

Trunk and neck

Neck stretches

Rotation
- **Patient position**: In supine float.
- **Therapist position**: Supporting the head with the arm.
- **Action**: The therapist lifts or pushes the shoulder down to rotate the body on the head.

Side flexion
- **Patient position**: In supine float.
- **Therapist position**: Supporting the head with the arm.
- **Action**: The therapist pushes down on the shoulder girdle to move the body away from the head.

Extension and flexion
- **Patient position**: In supine float.
- **Therapist position**: Supporting the head with the arm.
- **Action**: The therapist flexes and extends the neck by moving the head.

Trunk stretches

Flexion and extension
- **Patient position**: Standing facing the wall.
- **Action**: Walks feet up the wall allowing the hips and knees to bend until a stretch is felt on the back. Push the legs away from the wall allowing the patient to lift up towards the surface of the water.
Flexion
Patient position
Side float.

Therapist position
Stand behind the patient and support the pelvis.

Action
Flex the trunk by the therapist moving the patient into extension and the ‘drag’ and momentum of the movement enabling a stretch into flexion.

Thoracic extension
Patient position
Facing the wall, holding the rail with the feet enough paces away from the wall to allow the shoulders to be in the water.

Action
The patient lifts alternative legs up in the water for a count of 5. The patient then pushes the body away from the wall keeping the pelvis down in the water until a stretch is felt. Then hold the position for a count of 5.

Rotation
Patient position
Supine float with the body and the patient holding the rail. A float is placed above both ankles and the knees are flexed to approximately 90°.

Therapist position
May need to stabilise the upper trunk.

Action
The patient allows the float to move towards the surface of the water into either right or left rotation. Then pushes the float down into the water. The position is held for a count of 5. The legs are then relaxed allowing them to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Side flexion
Patient position
Facing the wall holding the rail. A float is placed around the knees. The knees are then either flexed or extended depending on the depth of the pool.

Therapist position
Stabilising the upper trunk.

Action
The patient allows the legs to move up in the water. Then pushes the float down into the water. The position is held for a count of 5. The legs are then relaxed allowing them to move up in the water producing a stretch until limited by discomfort or anatomical restriction occurs.

Seaweeding may be used for very young children.

Strengthening – stage one
Starting positions are adapted so that buoyancy is counterbalanced. Each exercise is performed up to 30 times each for the movements that are anatomically restricted or where muscle weakness has been identified.

Upper limbs

Shoulder

Abduction
In supine float with the body supported with the relevant flotation (with a float above the wrist) and the feet under the rail or lying supine on a plinth.

Flexion and extension
Floating on the side with support from the physiotherapist and a float around the wrist.

Rotation
In standing with the arm by the side and elbow flexed to 90°.

Elbow

Flexion and extension
In supine float with the body supported with the relevant flotation (with a float above the wrist) and the feet under the rail or lying supine on a plinth.
Wrist and fingers
All movements
In standing or sitting on a plinth, step or submersed stool.

Lower limbs
Hip
Flexion and extension
Floating on the side with support from the physiotherapist or holding the rail with a float around the ankle.

Abduction
In supine float holding the rail with the body supported with the relevant flotation with a float around the ankle.

Rotation
In standing facing the wall holding the rail. The knee is flexed to about 90° and the hip in neutral.

Knee
Flexion and extension
Floating on the side holding the rail with a float around the ankle. The physiotherapist stabilises the hip.

Ankle and foot
All movements
Incorporated into the knee movements.

Trunk
Flexion and extension
Floating on the side with support from the physiotherapist or holding the rail with a float around the ankle and pelvis.

Rotation
The patient faces the wall holding the rail. The knees are then flexed to approximately 90°.

Side flexion
In supine float holding the rail with the body supported with the relevant flotation with a float around the ankle. The physiotherapist stabilises the upper body if necessary.

Strengthening – stage two
Starting positions are adapted so that buoyancy is resisted, speed of the movement is increased and/or bats/flippers are used. The exercises are increased up to 30 times. The upper limb exercises do not need to be incorporated if there is no upper limb involvement.

Upper limbs
Shoulder
Abduction
Use buoyancy counterbalanced position or standing and increase speed, then add a bat if wrist is unaffected.

Flexion and extension
Use standing position and increase speed, then add a bat if wrist is unaffected. Can also be performed in prone float.

Elbow
Flexion and extension
Use standing position and increase speed, then add a bat if wrist is unaffected.
Wrist and fingers

All movements

In standing or sitting on a plinth, step or submersed stool. Keep the arm by the side with the elbow flexed to about 90°. Increase speed of movements or use a bat.

Lower limbs

Hip

Flexion

In prone float or on a plinth. Standing increase speed and use flippers if ankles are unaffected.

Extension

In supine float (preventing the trunk from extending). Standing increase speed and use flippers if ankles are unaffected.

Abduction

Floating on the side with support from the physiotherapist or holding the rail. Standing, increase speed and use an armband at the knee.

Knee

Flexion

In supine float up to 90° and prone float beyond 90°. Use speed sitting on a submersed stool or step. Alternatively incorporate into the hip flexion and extension exercise in standing.

Extension

In prone float or on a plinth with the hip stabilised. Alternatively incorporate into the hip flexion and extension exercise in standing.

Ankle and foot

All movements

Incorporate into the hip flexion and extension exercise in standing. Increase speed and use a flipper.

Trunk

Flexion

In prone float. Alternatively use the buoyancy counterbalanced position on the side and increase the speed of movement/deflate the float around the ankle.

Extension

Supine float holding the rail. Alternatively use the buoyancy counterbalanced position on the side and increase the speed of movement/deflate the float around the ankle.

Rotation

In supine float with the knees flexed to approximately 90°. Increase the speed of movement/deflate the float around the ankle.

Side flexion

Floating on the side with support from the physiotherapist. Alternatively in supine float holding the rail with a float around the ankle, increase the speed of movement/deflate the float around the ankle.

Strengthening – stage three

Add floats to all positions whereby speed can be increased as above. The amount of inflation will depend on the size of the child and their muscle strength. All exercises will be increased up to 30 times each. The upper limb exercises do not need to be incorporated if there is no upper limb involvement.
General aerobic

Time will gradually be increased from 5 min up to a maximum of 20 min within the session depending on the patient’s level of fitness.

Include general games for young children. Younger children will perform the same movements with a ring around their trunk so that they are free floating. The programme will depend on the child’s level of exercise tolerance and joint involvement.

Leg movements:
- Jogging on the spot.
- High knee raises.
- Scissor kicks.
- Star jumps.
- Various forms of bobbing and jumping.

Concurrent arm movements below the water:
- Punching.
- Flexion/extension at the elbows.
- Flexion/extension at the shoulders.
- Abduction/adduction at the shoulders.
- Clapping.

Simulated or real functional activity

Only if the child is unable to perform them on land:
- Supine to sitting and vice versa.
- Supine to prone and vice versa.
- Sitting to standing and vice versa.

If the depth of the water allows or on a step if necessary:
- Two-point kneeling and one-point kneeling to standing and vice versa.
- Running, jumping, skipping, hopping, steps and walking.
Appendix 4

Protocol violations

<table>
<thead>
<tr>
<th>Allocated treatment</th>
<th>Treatment changed beyond protocol</th>
<th>Number of treatments</th>
<th>Drugs changed beyond protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combined 6 hydrotherapy and 6 land</td>
<td>12</td>
<td>IAS joint injection</td>
</tr>
<tr>
<td>2</td>
<td>Combined 5 hydrotherapy and 10 land</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Combined All hydrotherapy in same week</td>
<td>16</td>
<td>Intravenous steroids and DMARDs</td>
</tr>
<tr>
<td>4</td>
<td>Combined 4 hydrotherapy and 12 land</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Combined 7 hydrotherapy and 9 land</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Combined 7 hydrotherapy and 8 land</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Combined 6 hydrotherapy and 9 land</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Combined 6 hydrotherapy and 9 land</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Combined 8 land (cross over)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Combined 4 hydrotherapy and 4 land</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Combined 16 land (cross over)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Combined 16 land (cross over)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Combined 8 land (cross over)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Land 15 land</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Land 13 land</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Land 15 land</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Land 14 land</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Land 13 land</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Land 26 land</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Land 14 land</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Land 26 land</td>
<td>26</td>
<td>Intravenous steroids</td>
</tr>
<tr>
<td>22</td>
<td>Land 8 land (withdrew consent)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Land 8 hydrotherapy and 8 land (withdrew consent /cross over)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Land IAS joint injection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IAS, intra-articular steroidal.
Appendix 5

Steps taken to boost recruitment

The following steps were taken:

1. A questionnaire was sent to physiotherapists to determine hydrotherapy availability and requesting support for the trial.
2. The British Paediatric Rheumatology group, Chartered Society of Physiotherapy, Frontline, and Hydrotherapy and Paediatric Physiotherapy SIGs (special interest groups) published letters requesting support from physiotherapists treating children with JIA.

3. Physiotherapists and heads of department were contacted by telephone and given trial details.
4. Information sheets were sent to physiotherapists to distribute to patients.
5. Letters were sent to the Chronic Children’s Arthritis Association and Young Arthritis Care asking parents and children interested in the trial to contact one of the centres. Posters and information sheets were posted in clinics.
6. Local rheumatology consultants were contacted to help with recruitment.
Health Technology Assessment Programme

Prioritisation Strategy Group

<table>
<thead>
<tr>
<th>Chair, Professor Tom Walley, Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Bruce Campbell, Consultant Vascular & General Surgeon, Royal Devon & Exeter Hospital</td>
</tr>
<tr>
<td>Dr Edmund Jessop, Medical Advisor, National Specialist, Commissioning Advisory Group (NSCAG), Department of Health, London</td>
</tr>
<tr>
<td>Professor Jon Nicholl, Director, Medical Care Research Unit, University of Sheffield, School of Health and Related Research</td>
</tr>
<tr>
<td>Dr John Reynolds, Clinical Director, Acute General Medicine SDU, Radcliffe Hospital, Oxford</td>
</tr>
<tr>
<td>Dr Ron Zimmern, Director, Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge</td>
</tr>
</tbody>
</table>

HTA Commissioning Board

<table>
<thead>
<tr>
<th>Programme Director, Professor Tom Walley, Director, NHS HTA Programme, Department of Pharmacology & Therapeutics, University of Liverpool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Ann Bowling, Professor of Health Services Research, Primary Care and Population Studies, University College London</td>
</tr>
<tr>
<td>Dr Andrew Briggs, Public Health Career Scientist, Health Economics Research Centre, University of Oxford</td>
</tr>
<tr>
<td>Professor John Cairns, Professor of Health Economics, Public Health Policy, London School of Hygiene and Tropical Medicine, London</td>
</tr>
<tr>
<td>Professor Nicky Cullum, Director of Centre for Evidence Based Nursing, Department of Health Sciences, University of York</td>
</tr>
<tr>
<td>Mr Jonathan Deeks, Senior Medical Statistician, Centre for Statistics in Medicine, University of Oxford</td>
</tr>
<tr>
<td>Dr Andrew Farmer, Senior Lecturer in General Practice, Department of Primary Health Care, University of Oxford</td>
</tr>
<tr>
<td>Professor Fiona J Gilbert, Professor of Radiology, Department of Radiology, University of Aberdeen</td>
</tr>
<tr>
<td>Professor Adrian Grant, Director, Health Services Research Unit, University of Aberdeen</td>
</tr>
<tr>
<td>Professor F D Richard Hobbs, Professor of Primary Care & General Practice, Department of Primary Care & General Practice, University of Birmingham</td>
</tr>
<tr>
<td>Professor Peter Jones, Head of Department, University of York</td>
</tr>
<tr>
<td>Professor Sallie Lamb, Professor of Rehabilitation, Centre for Primary Health Care, University of Warwick</td>
</tr>
<tr>
<td>Professor Stuart Logan, Director of Health & Social Care Research, The Peninsular Medical School, Universities of Exeter & Plymouth</td>
</tr>
<tr>
<td>Dr Linda Patterson, Consultant Physician, Department of Medicine, Burnley General Hospital</td>
</tr>
<tr>
<td>Professor Ian Roberts, Professor of Epidemiology & Public Health, Intervention Research Unit, London School of Hygiene and Tropical Medicine</td>
</tr>
<tr>
<td>Professor Mark Sculpher, Professor of Health Economics, Centre for Health Economics, Institute for Research in the Social Services, University of York</td>
</tr>
<tr>
<td>Dr Jonathan Shapiro, Senior Fellow, Health Services Management Centre, Birmingham</td>
</tr>
<tr>
<td>Ms Kate Thomas, Deputy Director, Medical Care Research Unit, University of Sheffield</td>
</tr>
<tr>
<td>Ms Sue Ziebland, Research Director, DIPEx, Department of Primary Health Care, University of Oxford, Institute of Health Sciences</td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.ncchta.org)

© Queen’s Printer and Controller of HMSO 2005. All rights reserved.
Diagnostic Technologies & Screening Panel

<table>
<thead>
<tr>
<th>Members</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair,</td>
<td>Dr Ron Zimmern, Director of the Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge</td>
<td>Professor Adrian K Dixon, Professor of Radiology, University Department of Radiology, University of Cambridge Clinical School</td>
</tr>
<tr>
<td>Ms Norma Armston, Lay Member, Bolton</td>
<td></td>
<td>Dr David Elliman, Consultant Paediatrician/ Hon. Senior Lecturer, Population Health Unit, Great Ormond St. Hospital, London</td>
</tr>
<tr>
<td>Professor Max Bachmann Professor of Health Care Interfaces, Department of Health Policy and Practice, University of East Anglia</td>
<td>Professor Glyn Ebyn, Primary Medical Care Research Group, Swansea Clinical School, University of Wales Swansea</td>
<td>Mr Tom Fry, Honorary Chairman, Child Growth Foundation, London</td>
</tr>
<tr>
<td>Professor Rudy Bilous Professor of Clinical Medicine & Consultant Physician, The Academic Centre, South Tees Hospitals NHS Trust</td>
<td>Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford</td>
<td>Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford</td>
</tr>
<tr>
<td>Dr Paul Cockcroft, Consultant Medical Microbiologist and Clinical Director of Pathology, Department of Clinical Microbiology, St Mary’s Hospital, Portsmouth</td>
<td></td>
<td>Mr Tom Fry, Honorary Chairman, Child Growth Foundation, London</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceuticals Panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair,</td>
<td>Dr John Reynolds, Chair Division A, The John Radcliffe Hospital, Oxford Radcliffe Hospitals NHS Trust</td>
<td>Mr Peter Cardy, Chief Executive, Macmillan Cancer Relief, London</td>
</tr>
<tr>
<td>Professor Tony Avery, Head of Division of Primary Care, School of Community Health Services, Division of General Practice, University of Nottingham</td>
<td>Professor Imti Choonara, Professor in Child Health, Academic Division of Child Health, University of Nottingham</td>
<td>Professor Imti Choonara, Professor in Child Health, Academic Division of Child Health, University of Nottingham</td>
</tr>
<tr>
<td>Ms Anne Baileff, Consultant Nurse in First Contact Care, Southampton City Primary Care Trust, University of Southampton</td>
<td>Dr Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham</td>
<td>Dr Karen A Fitzgerald, Consultant in Pharmaceutical Public Health, National Public Health Service for Wales, Cardiff</td>
</tr>
<tr>
<td>Professor Stirling Bryan, Professor of Health Economics, Health Services Management Centre, University of Birmingham</td>
<td>Dr Karen A Fitzgerald, Consultant in Pharmaceutical Public Health, National Public Health Service for Wales, Cardiff</td>
<td>Mrs Sharon Hart, Head of DTB Publications, Drug & Therapeutics Bulletin, London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Christine Hine, Consultant in Public Health Medicine, South Gloucestershire Primary Care Trust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Section of Medicine, The Royal Marsden Hospital, Sutton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ms Barbara Meredith, Lay Member, Epsom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Karen A Fitzgerald, Consultant in Pharmaceutical Public Health, National Public Health Service for Wales, Cardiff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mrs Sharon Hart, Head of DTB Publications, Drug & Therapeutics Bulletin, London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Christine Hine, Consultant in Public Health Medicine, South Gloucestershire Primary Care Trust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Section of Medicine, The Royal Marsden Hospital, Sutton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ms Barbara Meredith, Lay Member, Epsom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Frances Roblat, CPMP Delegate, Medicines & Healthcare Products Regulatory Agency, London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Lindsay Wilson Turnbull, Scientific Director, Centre for MR Investigations & YCR Professor of Radiology, University of Hull</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Martin J Whittle, Associate Dean for Education, Head of Department of Obstetrics and Gynaecology, University of Birmingham</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Dennis Wright, Consultant Biochemist & Clinical Director, Pathology & The Kennedy Galton Centre, Northwick Park & St Mark’s Hospitals, Harrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Jan Scott, Professor of Psychological Treatments, Institute of Psychiatry, University of London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mrs Katrina Simister, Assistant Director New Medicines, National Prescribing Centre, Liverpool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Richard Tiner, Medical Director, Medical Department, Association of the British Pharmaceutical Industry, London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr Helen Williams, Consultant Microbiologist, Norfolk & Norwich University Hospital NHS Trust</td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.ncchta.org)
Therapeutic Procedures Panel

Chair,
Professor Bruce Campbell,
Consultant Vascular and
General Surgeon, Department of Surgery, Royal Devon &
Exeter Hospital

Dr Aileen Clarke,
Reader in Health Services Research, Public Health & Policy Research Unit, Barts &
the London School of Medicine & Dentistry, London

Dr Matthew Cooke, Reader in A&E/Department of Health
Advisor in A&E, Warwick Emergency Care and
Rehabilitation, University of Warwick

Dr Carl E Counsell, Clinical Senior Lecturer in Neurology, Department of Medicine and Therapeutics, University of Aberdeen

Ms Amelia Curwen, Executive Director of Policy, Services and Research, Asthma UK, London

Professor Gene Feder, Professor of Primary Care R&D, Department of General Practice and Primary Care, Barts & the London, Queen Mary’s School of Medicine and Dentistry, London

Professor Paul Gregg, Professor of Orthopaedic Surgical Science, Department of General Practice and Primary Care, South Tees Hospital NHS Trust, Middlesbrough

Ms Bec Hanley, Co-Director, TwoCan Associates, Hurstpierpoint

Ms Maryann L Hardy, Lecturer, Division of Radiography, University of Bradford

Professor Alan Horwich, Director of Clinical R&D, Academic Department of Radiology, The Institute of Cancer Research, London

Dr Simon de Lusignan, Senior Lecturer, Primary Care Informatics, Department of Community Health Sciences, St George’s Hospital Medical School, London

Professor Neil McIntosh, \textit{Edward Clark Professor of Child Life & Health}, Department of Child Life & Health, University of Edinburgh

Professor James Neilson, \textit{Professor of Obstetrics and Gynaecology}, Department of Obstetrics and Gynaecology, University of Liverpool

Dr John C Pounsford, Consultant Physician, Directorate of Medical Services, North Bristol NHS Trust

Karen Roberts, Nurse Consultant, Queen Elizabeth Hospital, Gateshead

Dr Vimal Sharma, Consultant Psychiatrist/Hon. Senior Lecturer, Mental Health Resource Centre, Cheshire and Wirral Partnership NHS Trust, Wallasey

Dr L David Smith, Consultant Cardiologist, Royal Devon & Exeter Hospital

Professor Norman Waugh, \textit{Professor of Public Health}, Department of Public Health, University of Aberdeen

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.ncchta.org)
Expert Advisory Network

<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Douglas Altman, Director of CSM & Cancer Research UK Med Stat Gp, Centre for Statistics in Medicine, University of Oxford, Institute of Health Sciences, Headington, Oxford</td>
</tr>
<tr>
<td>Professor John Bond, Director, Centre for Health Services Research, University of Newcastle upon Tyne, School of Population & Health Sciences, Newcastle upon Tyne</td>
</tr>
<tr>
<td>Ms Tracy Burry, Project Manager, World Confederation for Physical Therapy, London</td>
</tr>
<tr>
<td>Professor Iain T Cameron, Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton</td>
</tr>
<tr>
<td>Dr Christine Clark, Medical Writer & Consultant Pharmacist, Rossendale</td>
</tr>
<tr>
<td>Professor Collette Clifford, Professor of Nursing & Head of Research, School of Health Sciences, University of Birmingham, Edgbaston, Birmingham</td>
</tr>
<tr>
<td>Professor Barry Cookson, Director, Laboratory of Healthcare Associated Infection, Health Protection Agency, London</td>
</tr>
<tr>
<td>Professor Howard Cuckle, Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds</td>
</tr>
<tr>
<td>Dr Katherine Darton, Information Unit, MIND – The Mental Health Charity, London</td>
</tr>
<tr>
<td>Professor Carol Deateaux, Professor of Paediatric Epidemiology, London</td>
</tr>
<tr>
<td>Mr John Dunning, Consultant Cardiothoracic Surgeon, Cardiothoracic Surgical Unit, Papworth Hospital NHS Trust, Cambridge</td>
</tr>
<tr>
<td>Mr Jonathan Earnshaw, Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester</td>
</tr>
<tr>
<td>Professor Martin Eccles, Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne</td>
</tr>
<tr>
<td>Professor Pam Enderby, Professor of Community Rehabilitation, Institute of General Practice and Primary Care, University of Sheffield</td>
</tr>
<tr>
<td>Mr Leonard R Fernwick, Chief Executive, Newcastle upon Tyne Hospitals NHS Trust</td>
</tr>
<tr>
<td>Professor David Field, Professor of Neonatal Medicine, Child Health, The Leicester Royal Infirmary NHS Trust</td>
</tr>
<tr>
<td>Mrs Gillian Fletcher, Antenatal Teacher & Tutor and President, National Childbirth Trust, Henfield</td>
</tr>
<tr>
<td>Professor Jayne Franklyn, Professor of Medicine, Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham</td>
</tr>
<tr>
<td>Ms Grace Gibbs, Deputy Chief Executive, Director for Nursing, Midwifery & Clinical Support Services, West Midlands University Hospital, Isleworth</td>
</tr>
<tr>
<td>Dr Neville Goodman, Consultant Anaesthetist, Southend Hospital, Bristol</td>
</tr>
<tr>
<td>Professor Alastair Gray, Professor of Health Economics, Department of Public Health, University of Oxford</td>
</tr>
<tr>
<td>Professor Robert E Hawkins, CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester</td>
</tr>
<tr>
<td>Professor Allen Hutchinson, Director of Public Health & Deputy Dean of ScHARR, Department of Public Health, University of Sheffield</td>
</tr>
<tr>
<td>Dr Duncan Keeley, General Practitioner (Dr Burch & Ptnrs), The Health Centre, Thame</td>
</tr>
<tr>
<td>Dr Donna Lamping, Research Degrees Programme Director & Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London</td>
</tr>
<tr>
<td>Mr George Levy, Chief Executive, Motor Neurone Disease Association, Northampton</td>
</tr>
<tr>
<td>Professor James Lindesay, Professor of Psychiatry for the Elderly, University of Leicester, Leicester General Hospital</td>
</tr>
<tr>
<td>Professor Julian Little, Professor of Human Genome Epidemiology, Department of Epidemiology & Community Medicine, University of Ottawa</td>
</tr>
<tr>
<td>Professor Rajan Madhok, Medical Director & Director of Public Health, Directorate of Clinical Strategy & Public Health, North & East Yorkshire & Northern Lincolnshire Health Authority, York</td>
</tr>
<tr>
<td>Professor David Mant, Professor of General Practice, Department of Primary Care, University of Oxford</td>
</tr>
<tr>
<td>Professor Alexander Markham, Director, Molecular Medicine Unit, St James’s University Hospital, Leeds</td>
</tr>
<tr>
<td>Dr Chris McCall, General Practitioner, The Hadleigh Practice, Castle Mullen</td>
</tr>
<tr>
<td>Professor Alistair McGurie, Professor of Health Economics, London School of Economics</td>
</tr>
<tr>
<td>Dr Peter Moore, Freelance Science Writer, Ashtead</td>
</tr>
<tr>
<td>Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton</td>
</tr>
<tr>
<td>Mrs Julietta Patnick, Director, NHS Cancer Screening Programmes, Sheffield</td>
</tr>
<tr>
<td>Professor Tim Peters, Professor of Primary Care Health Services Research, Academic Unit of Primary Health Care, University of Bristol</td>
</tr>
<tr>
<td>Professor Chris Price, Visiting Chair – Oxford, Clinical Research, Bayer Diagnostics Europe, Cirencester</td>
</tr>
<tr>
<td>Professor Peter Sanderson, Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh</td>
</tr>
<tr>
<td>Dr Emmon Sheridan, Consultant in Clinical Genetics, Genetics Department, St James’s University Hospital, Leeds</td>
</tr>
<tr>
<td>Dr Ken Stein, Senior Clinical Lecturer in Public Health, Director, Peninsula Technology Assessment Group, University of Exeter</td>
</tr>
<tr>
<td>Professor Sarah Stewart-Brown, Professor of Public Health, University of Warwick, Division of Health in the Community Warwick Medical School, IWM, Coventry</td>
</tr>
<tr>
<td>Professor Ala Szczepura, Professor of Health Service Research, Centre for Health Services Studies, University of Warwick</td>
</tr>
<tr>
<td>Dr Ross Taylor, Senior Lecturer, Department of General Practice and Primary Care, University of Aberdeen</td>
</tr>
<tr>
<td>Mrs Joan Webster, Consumer member, HTA – Expert Advisory Network</td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.nchta.org)
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.ncchta.org). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents, York Publishing Services.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £1 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents, York Publishing Services by:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

York Publishing Services
PO Box 642
YORK YO31 7WX
UK

Email: ncchta@yps-publishing.co.uk
Tel: 0870 1616662
Fax: 0870 1616663

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please contact York Publishing Services at the address above. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to York Publishing Distribution and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.ncchta.org/htacd.htm). Or contact York Publishing Services (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
Is hydrotherapy cost-effective?
A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis

H Epps, L Ginnelly, M Utley, T Southwood, S Gallivan, M Sculpher and P Woo

October 2005