Oral anticoagulants for primary prevention, treatment and secondary prevention of venous thromboembolic disease, and for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis and cost-effectiveness analysis

Jonathan AC Sterne,^{1*} Pritesh N Bodalia,^{2,3} Peter A Bryden,¹ Philippa A Davies,¹ Jose A López-López,¹ George N Okoli,¹ Howard HZ Thom,¹ Deborah M Caldwell,¹ Sofia Dias,¹ Diane Eaton,⁴ Julian PT Higgins,¹ Will Hollingworth,¹ Chris Salisbury,¹ Jelena Savović,¹ Reecha Sofat,^{5,6} Annya Stephens-Boal,⁷ Nicky J Welton¹ and Aroon D Hingorani^{5,6}

¹School of Social and Community Medicine, University of Bristol, Bristol, UK ²University College London Hospitals, NHS, London, UK ³Royal National Orthopaedic Hospital, NHS, London, UK ⁴AntiCoagulation Europe, Bromley, UK ⁵University College London, London, UK ⁶London School of Hygiene and Tropical Medicine, London, UK ⁷Thrombosis UK, Llanwrda, UK

*Corresponding author

Declared competing interests of authors: Jonathan AC Sterne was a National Institute for Health Research (NIHR) Health Technology Assessment Clinical Trial Board member from 2010 to 2014 and is a NIHR Senior Investigator (award NF-SI-0611-10168). Chris Salisbury is a NIHR Health Services and Delivery Research Board member, and also reports receipt of a research grant from NIHR. Howard HZ Thom reports personal fees for consultancy work from Novartis Pharma, Eli Lilly and company, and ICON Plc, all outside this work. Sofia Dias reports grants from NIHR, Novartis and Pfizer, all outside this work. Diane Eaton reports other from Boehringer Ingelheim, Pfizer, Bayer, Leo Pharmaceuticals and Bristol-Myers Squib, outside the submitted work, and AntiCoagulation Europe (ACE), a registered charity, the aims of which include raising awareness of the risk and prevention of thrombosis, and providing information, education and support to people who are on anticoagulation therapy for any duration, including long term for those with chronic conditions. Diane Eaton works with ACE in an associate consultant capacity in the role of Project Development Manager. She has over 40 years of personal experience of anticoagulation therapy and represents ACE as a patient expert at the National Institute for Health and Care Excellence (NICE). On behalf of the charity, she has provided the patient perspective for the submissions for the technology appraisals for the novel oral anticoagulants (NOACs) and Diagnostic Guidance for Coagulometers over a 4-year period. Please note that the financial information has been prepared by Eve Knight, Chief Executive of AntiCoagulation Europe, for the purpose of inclusion in this document.

Published March 2017 DOI: 10.3310/hta21090

Scientific summary

Oral anticoagulants for venous thromboembolic disease and stroke

Health Technology Assessment 2017; Vol. 21: No. 9 DOI: 10.3310/hta21090

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Scientific summary

Background

Warfarin is an effective oral anticoagulant for stroke prevention in atrial fibrillation (AF), but anticoagulation is underused in clinical care. The risk of venous thromboembolic disease during hospitalisation can be reduced by low-molecular-weight heparin (LMWH): warfarin is the most frequently prescribed anticoagulant for treatment and secondary prevention of venous thromboembolism (VTE). Warfarin-related bleeding is a major reason for hospitalisation for adverse drug effects. The cost of warfarin is low, but therapeutic monitoring increases treatment costs. Novel oral anticoagulants (NOACs) have a more rapid onset and offset of action than warfarin, and more predictable dosing requirements.

Objectives

To identify the most effective, safe and cost-effective anticoagulant for stroke prevention in AF, and for primary prevention, treatment and secondary prevention of VTE.

Methods

We conducted four systematic reviews, with network meta-analyses (NMAs), of randomised controlled trials addressing (1) stroke prevention in AF (for which the search was run on 12 March 2014 and updated on 15 September 2014, and covered the period 2010 to September 2014), (2) primary prevention of VTE, (3) acute treatment of VTE and (4) secondary prevention of VTE (for all three of which the search was run on 19 March 2014, updated on 15 September 2014, and covered the period 2008 to September 2014). We extracted data on clinically relevant efficacy outcomes [stroke, symptomatic VTE, symptomatic deep-vein thrombosis (DVT) and symptomatic pulmonary embolism] and safety outcomes [major bleeding, clinically relevant bleeding (CRB) and intracranial haemorrhage], as well as myocardial infarction (MI) and all-cause mortality. We searched MEDLINE and PREMEDLINE In-Process & Other Non-Indexed Citations, EMBASE and The Cochrane Library, reference lists of published NMAs and trial registries. Two reviewers screened search results, extracted and checked data, and assessed risk of bias. For each outcome we analysed each direct pairwise comparison and performed NMAs to compare all interventions simultaneously.

We constructed discrete-time Markov models to evaluate cost-effectiveness of the different interventions included in the four networks. These synthesised evidence on a number of parameters (e.g. incidence of VTE and ischaemic stroke, relative treatment efficacy, adverse events, costs) to estimate the relative cost-effectiveness of treatment options. Model inputs were based on a variety of evidence sources, including routine data on drug costs and observational studies of long-term costs of, and quality of life with, AF and VTE. Model inputs on relative treatment efficacy and safety of anticoagulants were derived from the results of the NMAs.

Results

For stroke prevention in AF, apixaban (Eliquis[®], Bristol-Myers Squibb, USA; Pfizer, USA) [5 mg twice daily (bd)] was ranked as being among the best interventions for a wide range of the outcomes evaluated, including stroke or systemic embolism (SE), MI, major bleeding, and all-cause mortality. Edoxaban (Lixiana[®], Daiichi Sankyo, Japan) [60 mg od (once daily)] was ranked second for major bleeding and all-cause mortality. Except for all-cause mortality, outcomes for rivaroxaban (Xarelto[®], Bayer HealthCare, Germany) (20 mg od) were ranked less highly than several other NOACs. The non-NOAC interventions {warfarin [international normalised]

[©] Queen's Printer and Controller of HMSO 2017. This work was produced by Sterne *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

ratio (INR) 2–3] and antiplatelet therapy [aspirin/clopidogrel (Plavix[®], Sanofi, USA) \geq 150 mg od]} were ranked worst for stroke or SE, and were not among the best three interventions for any of the outcomes.

At a willingness-to-pay threshold of £20,000 per quality-adjusted life-year (QALY), all NOACs had positive expected incremental net benefit (INB) compared with warfarin (INR 2–3), suggesting that their use in AF may be a cost-effective use of UK NHS resources. Apixaban (5 mg bd) had the highest expected INB (£7533), followed by rivaroxaban (20 mg od) (£6365), edoxaban (£5279) and dabigatran (Pradaxa®, Prazaxa®, Pradax®, Boehringer Ingelheim GmbH, Germany) (£5279). Apixaban (5 mg bd) was the only NOAC for which the 95% confidence interval around INB was positive, suggesting that it is cost-effective compared with warfarin.

For primary prevention of VTE, we found little evidence that risk of symptomatic VTE, symptomatic DVT or symptomatic PE were lower for NOACs than for LMWH. We also found little evidence that risk of major bleeding or CRB is lower for NOACs than for LMWH. Warfarin was ranked with high probability as the best intervention for major bleeding events and LMWH [postoperative (post-op), standard dose] was ranked with high probability as best, or second-best, intervention for CRB. Neither the clinical effectiveness analysis nor the cost-effectiveness analysis (CEA) provided strong evidence that NOACs should replace post-op LMWH in primary prevention of VTE in patients undergoing hip or knee surgery.

For acute treatment of VTE, we found little evidence that NOACs reduced risk of symptomatic VTE, symptomatic DVT or symptomatic PE compared with warfarin or that the risk of any of these outcomes differed between licensed doses of NOACs. However, there was evidence that risk of major bleeding and CRB was lower with apixaban (5 mg bd) and rivaroxaban (15 mg bd then 20 mg od) than with warfarin (INR 2–3). There was a high probability that warfarin (INR 2–3) was ranked worst for major bleeding and CRB. There was a high probability that apixaban 5 mg bd was ranked best for major bleeding and CRB, and this intervention also had a high probability of being ranked best, or second best, for symptomatic DVT, symptomatic VTE and all-cause mortality. For a willingness-to-pay threshold of > £5000, apixaban 5 mg bd was the most cost-effective alternative to warfarin.

For secondary prevention of VTE, risk of symptomatic VTE and risk of symptomatic DVT were lower for all NOACS (at the doses included in the network) than placebo and aspirin. However, there was no clear evidence that risk of these outcomes differed between the NOAC interventions and warfarin. Risk of major bleeding and CRB was higher with warfarin and some NOAC interventions than placebo, but there was evidence that risk of these outcomes is lower with apixaban (2.5 mg or 5 mg bd) and dabigatran (150 mg bd) than warfarin. Aspirin had the highest expected net benefit for secondary prevention of VTE at willingness-to-pay thresholds of £20,000 and £30,000 per QALY. By contrast, all NOAC interventions had negative expected INBs at the £20,000 and £30,000 thresholds, indicating that they are not cost-effective compared with no pharmacotherapy.

Conclusions

Novel oral anticoagulants have advantages over warfarin in patients with AF. Of the available NOACs, apixaban 5 mg bd offers the best balance between efficacy and safety, and has the highest probability of being most cost-effective. NOACs offer no efficacy advantage over warfarin in the acute treatment of VTE, but have a lower rate of bleeding complications albeit at a higher cost. For a willingness-to-pay threshold of > £5000, apixaban 5 mg bd emerges as the most cost-effective alternative to warfarin. Neither the clinical effectiveness analysis nor the CEA provided strong evidence that NOACs should replace post-op LMWH in primary prevention of VTE in patients who are undergoing hip or knee surgery. If secondary prevention after 3–6 months of anticoagulation for a first episode of VTE is to be considered (this is not currently established practice), NOACs provide no advantage over aspirin 100 mg od.

The research needs identified by this review are for (1) calculations of the expected value of sample information, in order to clarify whether or not it would be justifiable to fund one more trial making direct comparisons between the most promising NOACs and NOAC doses, in situations typical of NHS clinical practice; (2) information on long-term rates of the main efficacy and safety outcomes among patients receiving anticoagulants for AF, for example from registries or health record data; (3) information on the role (if any) of therapeutic monitoring to enhance the safety and efficacy of NOACs; and (4) information on long-term adherence rates in patients receiving NOACs for AF.

Study registration

This study is registered as PROSPERO CRD42013005324, CRD42013005331 and CRD42013005330.

Funding

Funding for this study was provided by the Health Technology Assessment programme of the National Institute for Health Research.

© Queen's Printer and Controller of HMSO 2017. This work was produced by Sterne *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Health Technology Assessment

ISSN 1366-5278 (Print)

ISSN 2046-4924 (Online)

Impact factor: 4.058

Health Technology Assessment is indexed in MEDLINE, CINAHL, EMBASE, The Cochrane Library and the ISI Science Citation Index.

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (www.publicationethics.org/).

Editorial contact: journals.library@nihr.ac.uk

The full HTA archive is freely available to view online at www.journalslibrary.nihr.ac.uk/hta. Print-on-demand copies can be purchased from the report pages of the NIHR Journals Library website: www.journalslibrary.nihr.ac.uk

Criteria for inclusion in the Health Technology Assessment journal

Reports are published in *Health Technology Assessment* (HTA) if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

The HTA programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The journal is indexed in NHS Evidence via its abstracts included in MEDLINE and its Technology Assessment Reports inform National Institute for Health and Care Excellence (NICE) guidance. HTA research is also an important source of evidence for National Screening Committee (NSC) policy decisions.

For more information about the HTA programme please visit the website: http://www.nets.nihr.ac.uk/programmes/hta

This report

The research reported in this issue of the journal was funded by the HTA programme as project number 11/92/17. The contractual start date was in October 2013. The draft report began editorial review in May 2015 and was accepted for publication in December 2015. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

This report presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health.

© Queen's Printer and Controller of HMSO 2017. This work was produced by Sterne *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Published by the NIHR Journals Library (www.journalslibrary.nihr.ac.uk), produced by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk).

Health Technology Assessment Editor-in-Chief

Professor Hywel Williams Director, HTA Programme, UK and Foundation Professor and Co-Director of the Centre of Evidence-Based Dermatology, University of Nottingham, UK

NIHR Journals Library Editor-in-Chief

Professor Tom Walley Director, NIHR Evaluation, Trials and Studies and Director of the EME Programme, UK

NIHR Journals Library Editors

Professor Ken Stein Chair of HTA Editorial Board and Professor of Public Health, University of Exeter Medical School, UK

Professor Andree Le May Chair of NIHR Journals Library Editorial Group (EME, HS&DR, PGfAR, PHR journals)

Dr Martin Ashton-Key Consultant in Public Health Medicine/Consultant Advisor, NETSCC, UK

Professor Matthias Beck Chair in Public Sector Management and Subject Leader (Management Group), Queen's University Management School, Queen's University Belfast, UK

Dr Tessa Crilly Director, Crystal Blue Consulting Ltd, UK

Dr Eugenia Cronin Senior Scientific Advisor, Wessex Institute, UK

Ms Tara Lamont Scientific Advisor, NETSCC, UK

Dr Catriona McDaid Senior Research Fellow, York Trials Unit, Department of Health Sciences, University of York, UK

Professor William McGuire Professor of Child Health, Hull York Medical School, University of York, UK

Professor Geoffrey Meads Professor of Health Sciences Research, Health and Wellbeing Research Group, University of Winchester, UK

Professor John Norrie Chair in Medical Statistics, University of Edinburgh, UK

Professor John Powell Consultant Clinical Adviser, National Institute for Health and Care Excellence (NICE), UK

Professor James Raftery Professor of Health Technology Assessment, Wessex Institute, Faculty of Medicine, University of Southampton, UK

Dr Rob Riemsma Reviews Manager, Kleijnen Systematic Reviews Ltd, UK

Professor Helen Roberts Professor of Child Health Research, UCL Institute of Child Health, UK

Professor Jonathan Ross Professor of Sexual Health and HIV, University Hospital Birmingham, UK

Professor Helen Snooks Professor of Health Services Research, Institute of Life Science, College of Medicine, Swansea University, UK

Professor Jim Thornton Professor of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Nottingham, UK

Professor Martin Underwood Director, Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, UK

Please visit the website for a list of members of the NIHR Journals Library Board: www.journalslibrary.nihr.ac.uk/about/editors

Editorial contact: journals.library@nihr.ac.uk