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Abstract
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Background: Sperm selection for intracytoplasmic sperm injection (ICSI) has traditionally relied on
standardised methods of sperm processing combined with subjective sperm selection (motility/morphology).
In 2012, live birth rates (LBRs) stood at ≈24% per cycle started (32% per cycle reaching embryo transfer).

Objective(s): The main clinical objective was to determine the benefits of a hyaluronan (HA)-based sperm
selection process for physiological intracytoplasmic sperm injection (PICSI). A parallel, mechanistic objective
evaluated sperm chromatin integrity and the potential of PICSI to compensate for poor sperm quality.

Design: A Phase III, parallel-arm, blinded randomised controlled trial (RCT) of efficacy of PICSI versus ICSI
alongside mechanistic evaluation.

Setting: The RCT ran from February 2014 to August 2016, involving NHS (n = 14) and private (n = 2) UK
hospital or satellite clinics. Mechanistic work was conducted in three university-based research laboratories
and a partnering small–medium enterprise from June 2015 to December 2017.
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Participants: Couples undergoing an ICSI procedure using freshly ejaculated sperm with female partners
aged between 18 and 43 years and male partners aged between 18 and 55 years.

Intervention: Health and Care Professions Council-registered embryologists used the Medicines and
Healthcare products Regulatory Agency-registered (HA-coated) PICSI™ dish (Origio, Måløv, Denmark) to
select a single sperm for injection. Control couples received standard care.

Main outcome measures: Clinical – the primary outcome was full-term live birth (≥ 37 weeks’ gestation).
Secondary outcome measures were confirmed clinical pregnancy (CP), miscarriage following confirmation
and preterm live birth (< 37 weeks’ gestation). Mechanistic – measurement models were designed for
deoxyribonucleic acid (DNA) fragmentation, compaction and HA binding [HA binding score (HBS)].

Results: A total of 2772 couples were randomised and 2752 couples were included in the primary analysis
(PICSI, n = 1371; and ICSI, n = 1381). Clinical – primary outcome: 379 out of 1381 (27.4% PICSI) and
346 out of 1371 (25.2% ICSI) couples who were randomised (up to 24 hours before treatment) into the
trial achieved a term live birth ≥ 37 weeks’ gestation [odds ratio (OR) 1.12, 95% confidence interval (CI)
0.94 to 1.34; p = 0.18]. Subgroup analyses did not reveal differences in treatment effects for HBS, maternal
age, previous miscarriage, follicle-stimulating hormone or anti-Müllerian hormone levels and paternal sperm
concentrations. Secondary outcomes: CP was achieved for 487 out of 1382 (35.2% PICSI) and 491 out
of 1375 (35.7%, ICSI) couples (OR 0.98, 95% CI 0.84 to 1.15; p = 0.80). Miscarriage affected 60 out of
1381 (4.3% PICSI) and 96 out of 1371 (7.0% ICSI) of couples (OR 0.61, 95% CI 0.43 to 0.84; p = 0.003).
Preterm LBRs were 46 out of 1381 (3.3% PICSI) and 45 out of 1371 (3.3% ICSI) (OR 1.02, 95% CI 0.67
to 1.55; p = 0.94). Mechanistic: in the subset of samples examined, HBS correlated with sperm motility,
concentration, fertilisation rate and DNA fragmentation. Sperm DNA compaction was weakly associated
with clinical pregnancy rates (CPRs), but neither HBS nor DNA fragmentation was predictive of any
clinical outcome.

Limitations: Embryologists were not blinded and limited data were available from poorer samples and
non-random sample selection in the mechanistic cohort. Prepared rather than raw semen was used for
tests of DNA integrity.

Conclusions: PICSI offered no clear advantage in relation to the primary outcome. PICSI led to a reduced
miscarriage risk, but had no effect on CPR or preterm LBR.

Future work: Re-evaluate PICSI focusing on CP and miscarriage rates and consider aspects of sperm
quality that PICSI favours.

Trial registration: Current Controlled Trials ISRCTN99214271.

Funding: This project was funded by the Efficacy and Mechanism Evaluation programme, a Medical
Research Council and National Institute for Health Research (NIHR) partnership. The research is also
supported by the NIHR Infrastructure at Leeds and the NIHR Clinical Research Network.
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Plain English summary

A lmost half of those seeking help to have a baby are affected by male infertility and they may be
offered a type of assisted conception called intracytoplasmic sperm injection (ICSI), in which one

sperm is chosen and injected directly into the woman’s egg.

Usually sperm are chosen by what they look like, but this research tested a new method, which chooses
the sperm that stick to a material called hyaluronan (HA) that is normally found close to the egg surface.
This method is known as HA binding and the study tested whether or not this way of choosing sperm
improved the chances of successful treatment. The study also looked at the proportion of HA-binding
sperm and also the quality of sperm’s deoxyribonucleic acid (DNA) in the men’s samples to see if they were
related to clinical outcomes.

Half of the 2772 couples taking part in the study were given normal ICSI and half had sperm selected
by HA binding using the physiological intracytoplasmic sperm injection (PICSI)™ dish (Origio, Måløv,
Denmark). The numbers of couples getting pregnant (≈35%) and having a full-term live birth (≈26%)
were similar in both groups, but there were fewer miscarriages when using PICSI (12% of all pregnant
couples) than in those using standard ICSI (19% of all pregnant couples). A few babies were born before
37 weeks’ gestation, with similar numbers for both treatments (3.3%). The overall differences were not
big enough to change the way treatment is offered.

The quality of sperm DNA from couples experiencing a miscarriage was no worse than in those who had a
baby, but it may have affected their chances of pregnancy.

The study suggests that PICSI does not offer advantages for couples undergoing fertility treatment but may
reduce the risk of miscarriage.
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Scientific summary

Introduction and background

The male contribution to human infertility is not fully understood and estimates of its prevalence vary.
However, concern over the recent decline in sperm counts at least in the developed world, alongside the
increasing age at which couples come forward for treatment, has led to calls for improvements in the care
of the male partner. Such improvements include a better understanding of the causes of male infertility and
how best to ameliorate the condition sufficiently to boost treatment success rates (hitherto focused mainly
on boosting female fertility). With the advent, rapid uptake and expansion of interventional intracytoplasmic
sperm injection (ICSI) treatment, the practitioner has only one chance per egg to pick the right sperm with
the greatest potential for live birth for injection and methods aimed at increasing the likelihood of doing so
are in development. One such method involves the selection of sperm based on their innate ability to bind
hyaluronan (HA), which occurs naturally in the cumulus–oophorous complex. Such sperm appear to have
better indicators of genomic integrity, including lower levels of deoxyribonucleic acid (DNA) fragmentation,
chromosomal aneuploidy and cytoplasmic retention and, hence, increased maturity relating to these
measures. A number of clinical trials have tested the claim that ICSI with HA-selected sperm improves
clinical outcomes, but with the exception of a reduction in miscarriage following the use of selected sperm,
results for other outcomes, including live births, have remained equivocal at best. Hyaluronic Acid Binding
sperm selection (HABSelect) was designed to detect a minimum 5% difference (per cycle started) in
full-term live birth outcomes, which was also sufficient to detect significant changes in other (secondary)
outcomes including miscarriage rates.

Hypotheses

1. By selecting sperm able to bind to HA [physiological intracytoplasmic sperm injection (PICSI)] live birth
rates (LBRs) would be increased.

2. Any observed improvement in outcomes would be attributable to sperm DNA integrity and chromatin
structure.

Objectives

The main clinical objectives of HABSelect were to determine if sperm selected for ICSI by HA binding
could increase full-term LBRs per fresh treatment cycle. Secondary objectives were to detect a reduction
in miscarriage rates and associated improvements in clinical pregnancy (CP) and preterm LBRs. The main
mechanistic objective was to relate clinical outcomes to aspects of sperm DNA integrity, including DNA
fragmentation and compaction.

Methods

HABSelect was a parallel-arm, randomised clinical trial with associated laboratory-based studies investigating
sperm DNA integrity (fragmentation and compaction). The intervention was based on sperm binding to the
HA substrate in the Conformité Européenne (CE) and UK Medicines and Healthcare products Regulatory
Agency-approved PICSI™ dish (Origio, Måløv, Denmark). This substrate binds and immobilises sperm for ICSI.
The study was as inclusive as possible with regard to both partners’ eligibility to participate. Approximately
6700 couples were assessed for eligibility and 2772 were randomised into either the selection (PICSI, n = 1387)
or the control (standard ICSI, n= 1385) arm of the trial, although six couples were excluded post randomisation
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as they were subsequently found not to have met eligibility criteria. Following post-randomisation withdrawals,
the number of couples included in the primary analysis was 2752. Following treatment, residual sperm
samples were frozen and stored for retrospective analysis of DNA integrity using a number of complementary
assays measuring variables for DNA fragmentation [acridine orange, comet and terminal deoxynucleotidyl
transferase-mediated dUTP nick end labelling (TUNEL)] and compaction [aniline blue (AB)] with halo assays
linking both variables. Participants, clinical care providers in in vitro fertilisation (IVF) licensed units, maternity
and neonatal wards, and research nurses responsible for participants’ follow-up were blinded to treatment
allocation. The only unblinded group at study sites were the embryologists who performed the PICSI/standard
ICSI procedure, HA binding scoring and randomisation. The study data manager and independent statistician,
both residing within the trials’ unit, were also unblinded and helped prepare reports for the Data Monitoring
and Ethics Committee. When it became clear part-way through that the laboratory effort would be unable to
process all samples, the mechanistic statistician was unblinded to provide a sample set enriched for miscarriage.

Results

Approximately 6700 couples were assessed for eligibility and 2772 were finally randomised into either the
selection (PICSI) or control (standard ICSI) arms of the trial. Outcome data were available for 2752 couples.
For the primary outcome, 379 out of 1381 (PICSI 27.4%) and 346 out of 1371 (ICSI 25.2%) eligible
couples randomised achieved a full-term live birth (≥ 37 weeks). This corresponds to an odds ratio for all
treatment cycles of 1.12 [95% confidence interval (CI) 0.95 to 1.34], which was not statistically significant
(p = 0.18). Of the secondary outcomes, miscarriage rates per couple treated were significantly reduced in
the PICSI arm, with 60 out of 1381 (4.3%) clinical pregnancies lost per couple treated, compared with ICSI
at 96 out of 1371 (7.0%), corresponding to an odds ratio for all treatment cycles of 0.61 (95% CI 0.43
to 0.84; p = 0.003). Clinical pregnancy rates (CPRs) per couple treated were not significantly different and
subgroup analyses of both primary and miscarriage outcomes across hyaluronan binding score (HBS),
female age, anti-Müllerian hormone or follicle stimulating hormone subgroups did not find a difference
in treatment effect. DNA fragmentation in the sperm prepared for ICSI/PICSI was not discriminatory of
clinical outcomes, although DNA compaction may have influenced establishment of CP. The mechanistic
analysis, which explored the relationship between mechanistic and clinical data for the purposes of
hypothesis generation, found statistically significant relationships between HBS, sperm motility, sperm
concentration and sperm DNA integrity. However, with the exception of establishment of CP, which was
related to sperm DNA compaction (AB staining), no other measure of sperm DNA integrity predicted
or was associated with a clinical outcome, including miscarriage. Assays of DNA integrity also correlated
poorly with each other. Classification tree and linear regression highlighted female age and male HBS
as most predictive of clinical outcome, with PICSI showing some benefit for older women. The PICSI
intervention led to a drop in fertilisation rates, although this did not affect subsequent CPRs.

Limitations

Use of processed sperm samples rather than original semen for DNA integrity assays was unavoidable but
also uninformative, and mechanistic analysis depended on the randomness of missing data.

Conclusions

The PICSI-based sperm selection showed no advantage for raising CP or LBRs in couples undergoing ICSI. The
intervention, however, afforded some protection against miscarriage. The mechanistic analysis suggested that
this effect was more related to female age than to sperm DNA integrity, although the processing and quality
of the sperm sampled for the mechanistic work might have reduced the sensitivity of our analysis, which is still
ongoing. Data from existing and future trials of PICSI should be combined with HABSelect to confirm and
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provide a more precise assessment of the efficacy of PICSI at reducing miscarriage risk and determine whether
or not reductions in the number of miscarriages can lead to a corresponding increase in LBRs.

Trial registration

This trial is registered as ISRCTN99214271.

Funding

This project was funded by the Efficacy and Mechanism Evaluation programme, a Medical Research
Council and NIHR partnership. The research is also supported by the NIHR Infrastructure at Leeds and the
NIHR Clinical Research Network.
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Chapter 1 Introduction and background

Background

Gamete quality is now recognised as an important determinant of successful pregnancy outcome as donor
eggs from younger women seem able to compensate for lower fertility in older women.1 It is probable,
however, that future advances in assisted reproduction technologies (ART) will benefit from procedures that
target selection of higher-quality sperm regardless of parental age. Sperm selection has not really advanced
since in vitro fertilisation (IVF) was introduced and, therefore, holds great promise. Although offering benefits
to the fertility field overall, this approach would also offer particular promise for older couples (notably
where the female is aged > 35 years) and whose oocytes are less efficient at repairing DNA damage in their
partners’ sperm. These couples are hitherto challenging to treat with current fertility technologies and have
the poorest live birth outcomes, but they are also the fastest-growing group requesting treatment. The
relationship between sperm selection, integrity of deoxyribonucliec acid (DNA) and pregnancy outcome is
what the Hyaluronic Acid Binding sperm selection (HABSelect) study was designed to evaluate. A successful
conclusion of the study could help in the development of a more consistent, evidence-based procedure for
intracytoplasmic sperm injection (ICSI) sperm selection that complies with and extends the National Institute
for Health and Care Excellence’s 2013 clinical guidance.2

In 2008 (2006 figures), almost 47,000 couples in the UK alone were treated with ART, comprising 62,000
treatment cycles, over half of which involved ICSI, a technique originally developed to treat male infertility.3

At that time, live birth rates (LBRs) following ICSI treatment averaged ≈24% per treatment cycle started.
The latest figures from 2014 for all IVF4 show an increase in this rate to ≈26%. Although it is estimated
that one-third of naturally conceived pregnancies end in failure, we may not have reached the limit for
improvements in LBR following ART. For all ART procedures, including ICSI, the embryologist seeks to use the
best sperm available. Selection is aided by semen ‘washing’ techniques using density gradient centrifugation
(DGC) that can enrich for sperm with high motility and good morphology.5 In contrast to standard IVF,
where the egg is the final arbiter of selection, ICSI is dependent on the relatively subjective judgement of
the embryologist to choose the ‘right’ single sperm for each egg. Various studies have shown clear inverse
relationships between the burden of DNA-damaged sperm in the ejaculate and clinical pregnancy rates (CPRs)
or LBRs in standard IVF, but this relationship is less obvious with ICSI cycles.6 Reductions in levels of sperm
DNA fragmentation following density gradient washing of semen have been reported.7 However, although
the values from washed semen were reduced, they were still over twice as high in the non-pregnant (≈50%)
as in the pregnant (≈23%) cohorts. These and other data suggest that sperm with poor DNA quality persist in
washed sperm preparations from fertile and infertile men8–13 and unlike IVF, where there is a natural selection
by the egg, ICSI could be particularly vulnerable to a poor choice of sperm. We and others have reported
that sperm DNA fragmentation is a risk factor for miscarriage in ICSI treatment14,15 and this may result from an
oocyte-mediated DNA repair process16–19 that provides adequate support from fertilisation to clinical pregnancy
(CP) (hence the lack of an association between DNA fragmentation and CP in ICSI compared with IVF), but may
be inadequate to sustain it beyond CP with resulting pregnancy loss. By eliminating abnormal sperm from the
sample preparation for ICSI, success rates could theoretically be improved. Alternatively, there may be forms
of genotoxic DNA damage in the sperm nucleus that are not detected by existing assays and do not prevent
fertilisation by either standard IVF or ICSI-based procedures but can compromise embryo development and
result in higher rates of miscarriages.
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Summary of evidence leading up to and justification for the study

Prior to 2012, several key studies suggested that DNA packaging and fragmentation anomalies
influenced by sperm DNA damage were strongly associated with CPR, LBR20–23 and pregnancy loss in IVF
procedures.24–26 For ICSI, the only clear association was with pregnancy loss,23 supporting the existence of
genotoxic damage that is hidden from conventional tests. Hence, any improvement in ICSI that allows the
selection of sperm with reduced damage is to be encouraged. Additional benefits of increasing success
rates include a reduction in the potentially harmful ovarian hyperstimulation protocols that are an integral
part of the ICSI cycle (fewer cycles) and a concomitant reduction in the associated costs of ART procedures.
Based on a cost analysis average of 1.3 cycles per patient [Human Fertilisation and Embryology Authority
(HFEA) data27 and Access Fertility Ltd28], we calculated that an 8% improvement in full-term live births per
cycle started from 24% to 32% could lead to a corresponding improvement in successful live births overall
to almost 42% in future. One effect of this could be to reduce cycles while maintaining current success
rates (losing one cycle in five overall). Hence, with > 25,000 ICSI cycles performed in the UK in 2008, this
would represent an annual NHS saving of > £17.5M (based on average costs of £3500 per ICSI cycle). In
2014, > 30,000 ICSI cycles were carried out4 and, assuming 50% of more recent IVF is ICSI, maintaining
the current cycle average could see even greater longer-term savings in relation to the knock-on effects of
pregnancy failure to NHS costs.

Work conducted in this and other laboratories suggests that the DNA in human and mouse sperm is
carefully and systematically organised in the nucleus into distinct geographical domains (Figure 1).30–32

These studies showed that some domains are enriched in histones,33 which can account for their hitherto
unexplained persistence in sperm nuclei alongside the more abundant protamines.34,35 Histone-bound sperm
chromatin domains are enriched in developmental gene sequences expressed in early embryogenesis.30,32,33

We hypothesised that damage to these domains was critically relevant for subsequent early embryonic
development and could account for the early pregnancy failure observed after both IVF and ICSI-based
procedures.36 Failure of the embryo to thrive following successful implantation may be related to the
fragmented or deranged paternal DNA resulting in sequences that are important for early embryological
function remaining bound to histones.30,32 We also had evidence that the form of paternal DNA damage
responsible for such early pregnancy failure may involve nucleotide oxidation.37 In this respect, an
association between sperm DNA damage and early pregnancy failure can be revealed after treating the
DNA with an enzyme that converts extant oxidised purines [such as 8-hydroxy-2’-deoxyguanosine (8-OHdG)]
into DNA strand breaks.38 Such damage is probably caused by reactive oxygen species (ROS) gaining access
to chromatin domains that should normally be protected by proteins but are exposed owing to anomalous
packaging defects at critically important locations.

(a) (b) (c) (d)

FIGURE 1 Ability of sperm to bind spots of hyaluronan on glass substrates. Fluorescence (a) and brightfield micrograph
(b) of adherent sperm. Fluorescence micrograph of live–dead staining of sperm in contact with hyaluronan-coated
‘spot’ (c) before and (d) after washing to remove non-adherent cells. Note that the absence of dead sperm in (a) and
the tip of the handling pipette in (b). Live–dead assay used cyber green (living) and propidium iodide (dead) staining in
combination. Reprinted from Reproductive Biomedicine Online, vol. 14, Huszar et al.,29 Fertility testing and ICSI sperm
selection by hyaluronic acid binding: clinical and genetic aspects, pp. 650–63, 2007, with permission from Elsevier.
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Is deoxyribonucleic acid damage the link connecting sperm chromatin integrity and
pregnancy failure?
It is likely that some important regions in sperm chromatin13,21,38–43 are sensitive to DNA-damaging
agents.30,32 In the most severe forms of DNA packaging defects, such as complete absence of protamine
(e.g. as in mouse knockout models), embryo lethality is the norm.21,44 Moreover, even small imbalances in
the balance of DNA packaging proteins in sperm have deleterious effects on fertility.40,44,45 Hence, there are
clear connections between stoichiometric chromatin imbalance and DNA fragmentation, suggesting that
problems with one are reflected by complementary problems in the other.46–49 During spermiogenesis,
when the paternal genome is being repackaged to fit a much smaller nucleus,50,51 any deficiencies in the
packaging process are likely to leave some DNA sequences more exposed to damaging ROS than others.
Although it may be the case that we cannot do anything about such types of DNA damage in standard IVF
procedures, it may be possible to eliminate these damaged sperm from the pool prepared for ICSI-based
procedures and by so doing, reducing pregnancy loss and correspondingly increasing LBRs.

Work leading up to the study

The potential for hyaluronan binding to discriminate and select for sperm with high
chromatin integrity
In the clinic, whenever possible, ART makes use of sperm isolated through either DGC or swim-up
processing (and occasionally both). This helps to obtain the better-quality sperm for subsequent IVF or
ICSI,5 although even selected sperm are not entirely free of DNA fragmentation (Figure 2).7,48 Hyaluronan
(HA) is the major glycosaminoglycan secretion of the cervix and the cumulus–oophorus complex.52 Sperm
reaching these surfaces can bind to HA and subsequent hyperactivation facilitates their penetration
to the zona pellucida of the egg. Work by Huszar et al.53 showed that immature sperm with excessive
cytoplasm had higher rates of aneuploidy, lowered cytoplasmic maturity and a dysfunctional ability to bind
HA.53,54 Pelleted sperm are more homogeneously normal in this critical respect. The cytoplasm-rich, poorly
HA-binding sperm of DGC interface sperm also have poorer morphology and motility and exhibit higher

FIGURE 2 Relationship between sperm DNA fragmentation and CPR in native semen and semen processed by DGC
(90% fraction). Reprinted from Fertility and Sterility, vol. 95, Simon et al.7 Sperm DNA damage measured by the
alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success, pp. 652–7,
2011, with permission from Elsevier.
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rates of DNA damage.29,48,55,56 Prinosilova et al.55 obtained an over threefold greater number of strict
Tygerberg sperm (a rigorous test for normal sperm morphology) following exposure of highly abnormal
semen samples to a HA-coated substrate. Using a similar selection system, Sati et al.56 showed that
HA-binding sperm had more compact chromatin, lower decapacitation factor receptor and less residual
cytoplasm than non-binding sperm.

Evidence of the beneficial effect of hyaluronan selection on pregnancy outcome
In many clinics, polyvinylpyrrolidone (PVP) is normally used to slow sperm down sufficiently for capture by
the clinical embryologist. Two clinically relevant studies have reported on effects following a HA selection
procedure for ICSI. Parmegiani et al.48 obtained higher numbers of grade 1 embryos for transfer following
ICSI with HA- rather than PVP-selected sperm (36% vs. 24%) and an improved LBRs (23% vs. 18%). A
more recent and larger randomised study used a fully developed HA-based sperm selection [physiological
intracytoplasmic sperm injection (PICSI)] versus PVP procedures in 802 ICSI cycles (Table 1 and Figure 3).58

Worrilow et al.57 showed a 13% increase in CPR (n = 121) using HA- versus PVP-selected sperm with a
corresponding drop in miscarriage rate (14.1% vs. 3.8%; n = 168). Closer examination of the trial data
indicated a more general 5–10% improvement in CPR if the data were stratified according to the DGC-washed
HA binding score (obtained prior to PICSI selection), with lower scores (≤ 65%) giving the best results.

This may explain why CPRs in HA versus PVP arms were balanced before stratification according to the
post-DGC washed HA binding score, while miscarriage rates fell by 6% (see Table 1). The US trial did not
report LBR, but the trial data suggested that the main benefit of HA selection was a lowering of early
pregnancy failure rates.59 The current trial sought to confirm this as well as to contribute data on LBR,
miscarriage rates and notably to understanding the basic underlying mechanistic action of HA sperm selection.

The study rationale

Mechanistic aspects
Evidence suggested that the less compact and, hence, more susceptible domains are enriched in regulatory
sequences for genes that are important in early embryonic development.30,32,33 As DNA is differentially
packaged into domains that reflect a clear organisational framework, we hypothesised that sperm DNA
fragmentation reflects alterations in the packaging of sperm chromatin that leaves some critical DNA
sequences more exposed to oxidative damage than others. The aim was to test the hypothesis that PICSI
more robustly selects for sperm with good chromatin integrity, and correspondingly low DNA damage
than manual selection normally permits. Although this suggested that PICSI (or other HA-based selection
procedures) may best be applied among semen samples that are of particularly low quality, there is no
reason why it could not be applied more widely in IVF-ICSI if the evidence from this study supported its

TABLE 1 Final output from the US clinical trial on PVP (blue)- vs. PICSI (green)-based selection

HBS
Implantation rate (%)
at 4 weeks CPR (%) at 6–8 weeks

Miscarriage rates (%) based on CP with
fetal sac (6 weeks) less fetal heartbeat
(8 weeks)

All scores 32.2/33.5 [482] 47.8/47.3 [482] 10.0/4.3 [247]

> 65% 34.8/37.9 [357] 51.1/46.2 [357] 7.8/5.9 [188]

≤ 65% 30.7/37.4 [121] 37.9/50.8 [121] 18.5/0 [59]

HBS, hyaluronan binding score.
Notes
HBS is the score (% binding) for DGC-washed sperm.
Please see text for more details.57 Numbers in square brackets indicate sample size.
Adapted from Worrilow et al.57 This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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efficacy. Although not the purpose of this study, HA-based sperm selection could potentially be extended
into standard IVF procedures if methods were developed to restore the fertilisation potential of pre-HA
bound sperm.

Interventional aspects
The 2010 World Health Organization (WHO) manual5 on semen analysis has altered the definition of a
‘normal’ fertile sample because the relationship between sperm ‘normality’ and the ability to achieve a
pregnancy following 12 months of unprotected intercourse is unclear. The emerging consensus based on
some older observations that remain just as valid today is that the morphology of sperm recovered from
the endocervix or zona pellucida is a better indicator of their functionality than morphology, based on
raw semen analysis.60–63 Hence, the emphasis now is on identifying those sperm in the ejaculate that can
progress through the female genital tract to reach the endocervical mucus and beyond to the egg. Using
the WHO guidelines, the range of percentage ‘normal’ values for both fertile and infertile men is likely to
be between 0% and 30%, with few samples exceeding a level of 25% of normal spermatozoa.64 Such low
values inevitably produce low thresholds.

For example, limits and thresholds as low as 3–5% normal forms were found in studies of in vitro fertilisation,65

intrauterine insemination66 and in vivo fertility.67 Similarly, the range of percentage motile sperm found in
even ‘pristine’ spermatozoa in the ejaculates of fathers were very wide (8–25%).68 Hence, none of the
aforementioned parameters was particularly helpful in providing a useful definition of sperm ‘normality’.
What seems to count most is the sperms’ ability to reach the egg’s zona pellucida, which supports the
contention that a prior binding to the HA matrix of the cumulus is a prerequisite. This is why sperm selection
for IVF in general, and ICSI in particular, needs improved standards that do not rely on, or at least minimise
possible adverse effects of, subjective decisions. In clinical practice, PICSI processes make use of special
chambers into which DGC or swim-up processed sperm are introduced (Figure 4c).

FIGURE 3 Shift from nucleosomal (histone)- to toroidal (protamine)-based chromatin via transition proteins during
spermatogenesis. Histones are acetylated (Ac) prior to their removal. Although it is not known whether the remaining
histones are there by design or as a residue of this shift, their presence introduces a ‘weakness’ into the overall
chromatin structure that may be more vulnerable to naturally or iatrogenically induced damage. Reproduced from
Oliva,45 in accordance with the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0) license,
which permits others to distribute, remix, adapt and build upon this work, for non-commercial use, provided the
original work is properly cited. See: https://creativecommons.org/licenses/by-nc/4.0/.
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Both the PVP and PICSI processes make use of media droplets within the ‘ICSI Dish’ into which DGC or
swim-up processed sperm are introduced (see Figure 4c). Neither process is inherently any more difficult to
perform than the other, and an embryologist used to PVP-based processing can be quickly trained to use
PICSI either to augment selection or as an alternative to PVP.

Risks and benefits

Hyaluronan is a natural polymeric secretion of the cervical mucus and cumulus–oophorus complex and so
poses no known risks to the egg or zygote. PICSI (a HA-based selection system) was CE approved for use
and the manufacturer identified no risks. However, as a precaution against possible adverse effects of
intervention, such as early pregnancy loss or preterm labour, we agreed to conduct a safety monitoring
interim analysis.

First, sperm bind to HA, effectively immobilising them. Second, HA is thought to work by selectively
binding sperm of a higher viability, allowing the embryologist to disregard non-adherent sperm before
the choice of sperm for pick-up is made. Third, although the trained embryologist can be very good at
selecting the ‘right’ sperm for injection, HA should remove any subjective operator selection and allow
consistent objective selection of the ‘right’ sperm for injection.

(a)

(b)

(c)

FIGURE 4 (a) HYDAK® (Biocoat Inc., Horsham, PA, USA) HBS slide showing one of the two main HA-coated chambers
and a magnified field of view showing sperm on the grid. (b) Stills of time-lapse movies from sperm samples with
differing HBS. Binding is indicated with yellow squares and shows the results of high (left panel) vs. low (right panel)
binding of samples at similar sperm concentrations. Note that the restricted motility of high-binding sample (fewer red
motility tracks). (c) PICSI plate showing channels into which sperm suspensions are introduced. Sperm migrate towards
the HA-coated areas at one end of each channel where they bind. (a) and (c) are courtesy of Rick Seiler, Biocoat Inc.,
Horsham, PA, USA, 2017, personal communication, and (b) is courtesy of Matt Tomlinson, Procreative Diagnostics Ltd,
Nottingham, UK, 2017, personal communication.
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The main benefits expected of including HA were a decrease in early pregnancy loss and a subsequent
increase in LBR at normal term. We considered that HA selection would be beneficial to couples for whom
semen quality is too poor for IVF and may also have a significant benefit for older women with poorer
quality eggs that have a decreased potential to repair sperm DNA damage.

Justification

l There was and remains a need to increase LBR at term for IVF and IVF-ICSI patients by reducing
fertilisation failure and miscarriage rate.

l Male fertility in the developed world is thought to be declining.69

l The number of IVF and ICSI procedures are rapidly expanding and ICSI in particular is being increasingly
used for reasons other than treating male infertility (> 50% of all cycles); hence, the selection of
high-quality sperm becomes a more urgent priority.

l Average LBRs for IVF and IVF-ICSI have remained relatively static at 24%.
l Lower rates of fertilisation and higher rates of pregnancy loss following ICSI procedures are likely to

generate higher costs as the use of ICSI widens beyond treatment for male infertility. Wider use of
ICSI without appropriate and adequate safeguards could lead to a future increase in the incidence of
deleterious gene lesions in the wider population.23

l The largest clinical trial so far, involving nine US centres, showed efficacy for PICSI in increasing CPR
(10%) and a corresponding reduction in miscarriage rate (10%).57 A smaller Italian trial reported
an encouraging 5% improvement in LBR following HA-based selection (using a non-optimised
HA-containing solution).70

l Of the two commercially available HA-based selection systems, PICSI can be introduced into the ART
procedure with minimal disruption or training and without any additional intervention.

l HA-based selection overcomes the highly subjective assessment of sperm quality used by the practising
embryologist to choose the ‘right’ sperm for injection.

Main objectives

The primary clinical objective was to determine whether or not a prior HA-binding step (PICSI) in an assisted
reproduction setting could improve full-term LBRs over that achieved by conventional ICSI procedures.
Secondary clinical objectives were to evaluate the effect of PICSI compared with ICSI on CPRs, miscarriage
and preterm LBRs.

The mechanistic objective was to explore the relationships between sperm DNA integrity and HBS in the
context of CPR, LBR and miscarriage.
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Chapter 2 Trial design, materials and methods

The following is a shortened version of the final protocol that has been updated to reflect the end of the
trial, its conduct and final outcomes, now known and being reported here in full. The full, finally approved,

protocol including details relating to data handling, management, ethics and funding is available elsewhere.71

Shorter versions are also available by Witt et al.72 and in the International Standard Randomised Controlled
Trial Number (ISRCTN) registry73 and a summary list of all protocol changes is provided in Appendix 1.

Trial design

A parallel-group, two-arm, multicentre, blinded efficacy randomised clinical trial with mechanistic
evaluation. The original Consolidated Standards of Reporting Trials (CONSORT) flow chart for HABSelect
study is shown in Figure 5.

Setting

Assisted Conception or Reproductive Medicine Units where IVF-ICSI and other clinically relevant services
are practised.

Participants and centre eligibility

Participating centres were IVF-licensed hospitals or clinics able to provide appointments in a dedicated
clinic. There were originally 10 planned participating centres, which was increased to 16 to improve
recruitment rate.

Patient public involvement
A team of patient public advisors was identified through consultation with the national charity (Fertility UK;
www.fertilityuk.org) led by Kate Brian and also locally with people who had undergone ART at Leeds
Fertility (represented by Mrs Bonnie Bermann). Collectively, these people brought the ‘lived experience’ to
the HABSelect management team meetings and ensured that a patient-centric approach was adopted. Our
patient advisors contributed to the design stage of our recruitment and ethics review strategy throughout,
helping to ensure that the trial was presented to prospective participating couples in an accurate and
considerate manner. This helped ensure that couples who may have been potentially vulnerable to
coercion at the point of their consideration of IVF treatment were adequately protected. We adopted a
patient-centric approach from the outset and during all subsequent stages of the HABSelect trial, including
the study design, enrolment and delivery. Kate Brian is an acknowledged expert in patient advocacy,
working with the UK’s leading patient support group in reproduction medicine (Fertility UK). She became
an active contributor to the Trial Steering Committee and its oversight of HABSelect trial governance.

Inclusion criteria for randomisation

l Couples able to provide informed consent.
l Couples undergoing ICSI.
l Women:

¢ with a body mass index (BMI) of 19.0–35.0 kg/m2

¢ with a follicle-stimulating hormone (FSH) level of 3.0–20.0 mIU/ml and/or with a anti-Müllerian
hormone (AMH) level of ≥ 1.5 pmol/l

¢ aged 18–43 years.
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Couple referred to ACU for male infertility or those originally referred
for male infertility and with recurrent miscarriage

The HABSelect CONSORT flow diagram
Selection of sperm for assisted reproductive treatment by prior HAB:

improving the outcomes of fertility procedures by increasing pregnancy and
reducing miscarriage rates

Is male patient selected
for standard ICSI?

Exclude

Exclude

ExcludeNo

No

No

Yes

Yes

Yes

Does the couple meet inclusion
criteria and give consent?

EXPERIMENTAL − HA-ICSI
1865 couples receive PICSI experimental

procedure for sperm selection by HA

CONTROL − ICSI
1865 couples receive ICSI standard (control)

procedure for sperm selection

Mechanistic studies
DNA fragmentation, chromatin compaction

and cytology

Clinical investigation
of intervention

group

Clinical investigation
of control group

Aim for a minimum of 3266 primary ICSI cycles analysed
(1633 each group)

42-weeks’ follow-up
Primary end point: live birth at ≥ 37 weeks’ gestation

End of trial follow-up: routine clinical follow-up resumes

Secondary and exploratory end points up to 42 weeks’ gestation:
biochemical pregnancy at 2 weeks’ gestation; clinical pregnancy at 8 weeks’

gestation; miscarriage (any time)

3730 couples randomised 1 : 1
Minimisation by: maternal age (< 35 or ≥ 35 years) and paternal age (< 35 or ≥ 35 years), number 

of previous miscarriages (0, 1 – 2 or > 2), and FSH or AMH
(FSH level of < 6.0 or ≥ 6.0 mIU/ml or AMH level of < 17.0 or ≥ 17.0 pmol/l)

Approximately 10,800 male patients screened for HABSelect study eligibility

Lost to follow-up Lost to follow-up

FIGURE 5 Original CONSORT flow chart for the HABSelect study, which combines the clinical trial and associated
mechanistic work. ACU, Assisted Conception Unit.
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l Men:

¢ aged 18–55 years
¢ who were able to produce freshly ejaculated sperm for the treatment cycle.

Exclusion criteria

l Couples not consenting prior to ICSI were ineligible.
l Couples using non-ejaculated sperm.
l Couples using donor gametes.
l Men with vasectomy reversal, cancer treatment involving any chemotherapy and/or radiotherapy in the

previous 2 years.
l Previous participation in the HABSelect trial.
l Split IVF/ICSI procedures.
l If both FSH and AMH were tested and either of them fell outside the accepted range.

Eligibility and informed consent process
The process of identifying potential participants and inviting them to the study was individualised for each
participating centre and adapted to their routine practice. Potential trial participants were identified in
several ways:

l Approached during standard IVF fertility centre visits, either during individual appointment with a
clinician or at a patient evening/meeting.

l From waiting lists, registries or review of case records. Participants identified by these means were
normally sent the personalised HABSelect invitation letter inviting them to take part. This letter included
a brief introduction to the study and also a copy of the couple information sheet and informed consent
form. Patients were invited to contact their local research clinician to find out more information and to
make an appointment to discuss the study further.

l Self-referral after accessing information from the study website, which we linked to other similarly
themed websites or from the posters displayed in each participating centre.

Couples were identified as candidates for the HABSelect study by local IVF-ICSI-licensed fertility centre
staff if they had opted for or been advised to make use of ICSI-based procedures. Normally, routine NHS
assessment of ejaculate semen quality was sufficient for men to be selected for ICSI procedures over IVF.
The clinical team checked that the couple met the inclusion and exclusion criteria (see Inclusion criteria for
randomisation and Exclusion criteria). Only couples meeting these criteria were approached to provide
consent to participate. Details were recorded on the trial screening log.

Informed consent procedures
Assessment of eligibility and the informed consent process was undertaken by the principal investigator or
other suitably qualified member of the trial team who had received appropriate training and was approved
by the principal investigator as detailed on the delegation of responsibilities log. All staff involved in taking
informed consent to the study had a thorough knowledge and experience of good clinical practice and
issues around consent and were fully conversant and trained in the study protocol. Informed, written
consent for entry into the trial was obtained prior to participant enrolment to the study.

Consent for the donation of residual semen samples for biomedical research
Patients who were eligible to take part in the trial were also eligible to have any residual semen samples
remaining after the ICSI procedure and mechanistic evaluations donated to the Human Biomaterials
Resource Centre (HBRC) Biobank, University of Birmingham. Participation within the HBRC Biobank was
discussed with couples at the same time as discussing their participation in the HABSelect trial. Verbal and
written details (the Donation of Human Tissue for Research Patient Information Sheet) were provided to
patients. Following information provision, patients were given as long as needed to consider participation
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(a minimum of 24 hours is recommended) and were given the opportunity to discuss the biobanking of
any residual semen sample after all the HABSelect procedures were completed with their family and other
healthcare professionals.

Enrolment

After written informed consent was obtained, participants were enrolled into the study by a delegated
member of staff at the trial research site. At the point of enrolment, the couple was issued a unique
identifier (ID) number and recorded on the trial enrolment log. Participants were enrolled into the trial
only by an authorised member of staff at the trial research site, as detailed on the Site Research Staff
Delegation Log. A unique ID number consisted of the trial site code (site ID) followed by the consecutive
screening number starting with 001 was also used (see appendix 2 of the protocol71).

Trial interventions

Physiological intracytoplasmic sperm injection dishes and HYDAK slides
The investigational instruments were the PICSI™ sperm selection dish (Origio, Måløv, Denmark) and the
HYDAK, HBS slides, both marketed (in the UK) by Origio (Cooper Surgical, London, UK). Both products were
CE marked and approved for clinical use. Regardless of the randomised allocation, HA binding assay scores
(henceforth referred to as HBS) were obtained from ≈66% of semen samples from both the interventional
(PICSI) and the non-interventional (ICSI) arms using the HYDAK slide. Our original goal of obtaining scores for
all samples was prevented by the manufacturer’s temporary withdrawal of the slides (see Chapter 3). Only the
interventional arm made use of the PICSI plates.

Application
The protocol made no additional demands on couples undergoing IVF-ICSI treatment. Normally, density
gradient (DGC) washed and prepared motile sperm were selected for ICSI after adding a suspension to PVP
under an inverted microscope. Sperm motility is slowed sufficiently to allow capture by the experienced
embryologist, who then immobilised the sperm by breaking its tail with the injection pipette. The sperm was
then taken up into the injection pipette and injected directly into the egg. In the interventional arm, exactly
the same procedure was carried out except that the washed and prepared motile sperm were allowed to
interact with the PICSI substrate beforehand. There were no other interventions.

Outcomes

Clinical outcomes
All clinical outcomes were defined as a proportion of all women randomised, excluding losses to
follow-up.

Primary outcome

l A live birth at ≥ 37 weeks’ gestation after PICSI or ICSI procedure with first fresh embryo transfer.

Secondary outcomes

l Clinical pregnancy based on detection of fetal heartbeat or presence of fetal sac at 6–9 weeks’
gestation.

l Miscarriage rate defined as pregnancy loss any time after confirmation of CP.
l Live birth at < 37 weeks’ gestation.

TRIAL DESIGN, MATERIALS AND METHODS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

12



Mechanistic outcomes
Relationships between clinical outcomes and tests of sperm DNA integrity were assessed by a combination
of structural equation modelling (SEM), classification tree analysis and linear regression. All analyses were
undertaken in the R (The R Foundation for Statistical Computing, Vienna, Austria) environment.74

Mechanistic outcomes are reported solely for the purpose of hypothesis generation.

Sample size

From the 2008 UK national average for ICSI success,3 the LBR at ≥ 37 weeks’ gestation in the control
group was estimated to be 24%. To detect a 5% increase (i.e. from 24% to 29%) with 90% power at
the 5% significance level required 1633 participants in the analysis for each group. We aimed to recruit
at least 3700 couples into the trial over 24 months, allowing for 10% loss to follow-up. Because of poorer
than expected recruitment at an interim assessment (albeit with loss to follow-up well below 10%), the
funder and Trial Steering Committee recommended an extension of the recruitment period to 30 months,
with a revised target for power of 80% requiring 1222 couples in the primary analysis from each group
(see Report Supplementary Material 1 for more details).

Randomisation sequence

Following screening and formal enrolment in the study, confirmation of eligibility and completion of
baseline assessments, the female participant commenced ovarian stimulation and the couple entered the
clinical care pathway. Couples were randomised into the trial on the day of the ICSI/PICSI and no more
than 24 hours beforehand. The time interval between enrolment and randomisation was centre dependent
as it followed local practice for down-regulation and egg simulation, which precedes IVF. Using a secure
web-based 24-hour automated randomisation engine developed by the Pragmatic Clinical Trials Unit
(PCTU), an authorised member of staff at the research site performed randomisation. Couples’ treatment
group allocation was known only to the person performing the randomisation (usually the embryologist
carrying out the procedure).

Couples were randomised in a 1 : 1 ratio using minimisation with a random component to the interventional
(PICSI) or the non-interventional (ICSI) arm. Minimisation was stratified by site. Minimisation variables were:

l maternal age (< 35 and ≥ 35 years)
l paternal age (< 35 and ≥ 35 years)
l number of previous miscarriages (0, 1–2 or > 2)
l hormonal indicator of ovarian reserve – FSH level (< 6.0 or ≥ 6.0 mIU/ml) or AMH level (< 17.0 or

≥ 17.0 pmol/l) when FSH was not available.

Informed consent procedures
The principal investigator or another suitably qualified member of the trial team undertook assessment of
eligibility and the informed consent process. Informed, written consent for entry into the trial was obtained
prior to participant enrolment.

Withdrawal

Couples consented to the initial baseline screening for eligibility, trial intervention, follow-up and data
collection. Couples or individual partner participants were also able to withdraw from the trial at any
time without explanation but, unless specifically requesting otherwise, data collected up to the point of
withdrawal could be included in any subsequent analysis.
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Withdrawal before randomisation
Post enrolment and prior to randomisation, couples who withdrew and did not receive the trial intervention
resumed standard treatment/care. No further data collection occurred for couples who withdrew prior to
randomisation and they were not included in the trial analysis.

Withdrawal after randomisation
Participant withdrawal post randomisation was categorised as follows:

l Withdrawal of consent but the participant was willing for clinical data to be collected on pregnancy
outcome but not for any further mechanistic assessments to be undertaken. Data collected to this
point could be used.

l Withdrawal of consent for the trial follow-up schedule but the participant was willing to have any
information already collected to be utilised.

l Withdrawal of consent for follow-up information to be used and refusal of data already collected to
be utilised.

Study personnel made every effort to obtain and record information about the reasons for discontinuation
and to follow up the women for all safety and efficacy outcomes, as appropriate. To make a clear distinction
as to exact participants’ preferences, we used a withdrawal of consent form. All communication surrounding
the withdrawal was noted in the participant’s records and no further case report forms were completed for
that participant.

Blinding

All participants, clinical care providers in IVF-licensed units and maternity and neonatal wards, research
nurses responsible for participants’ recruitment and follow-up, the trial chief investigator, trial manager
and statisticians for the clinical arm were all blinded. Unblinding occurred only after all data collection was
completed and the (clinical) statistical analysis plan was signed off. The only unblinded group were the
embryologists, who were also responsible for couple randomisation and who performed ICSI/PICSI and
HBS procedures at study sites. The sole exception to this rule was for the mechanistic statistician (RW),
who was unblinded after randomisation ended. Study data managers were also unblinded to allocations.
To monitor blinding, an independent statistician, not otherwise involved in the trial, prepared reports for
the Data Monitoring and Ethics Committee.

Mechanistic assessments

Sample selection
It proved logistically impossible to thaw out sample aliquots and undertake cytology on all or as many of
the trial samples as possible as originally intended (see Chapter 5, Limitations and Mechanistic summary).
In addition, midway through the mechanistic work, we recognised that because of serious time constraints,
we would be unable to accommodate the sample coverage we had originally anticipated. To compensate
and following PCTU and Trial Steering Committee approval, the mechanistic statistician (RW) was unblinded,
permitting a more enriched, balanced selection of samples for analysis from both arms based on miscarriage.
All sample selections based on this screening process were communicated to the HBRC central sample
repository, which then co-ordinated their delivery to the mechanistic laboratories for the assays as described
in Figure 6 and see also Table 9. To summarise, in conjunction with the mechanistic statistician, the PCTU
selected samples to be used for mechanistic analysis and communicated this information to the HBRC that
arranged shipment to the Mechanistic Laboratories. This process was reiterated until ≈1300 samples were
finally tested overall by one or more assay. With this dynamic monitoring of sample selection for analysis in
place, high-quality information for each test in each HBS stratum was expected even if only a minority of
samples were amenable to global examination by all tests. The mechanistic statistician was confident that
the information could be integrated adequately.

TRIAL DESIGN, MATERIALS AND METHODS
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Sample processing
Three (originally four) basic science laboratories performed mechanistic evaluation of the collected residual
prepared sperm samples for sperm DNA integrity as follows:

l Birmingham – terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)75 and
aniline blue (AB)76 assays.

l Belfast – alkaline and neutral comet assays.77

l Leeds – acridine orange (AO)49 and halo78 assays.
l Sheffield withdrew by agreement to permit release of additional funds for recruitment.
l Standard operating procedures for these assays are available in Report Supplementary Material 3.

Outputs of the mechanistic studies were recorded as follows:

1. Initial observations recorded in paper-based laboratory notebooks according to standard practice.
2. Digital images associated with experimental outputs held locally on portable, encrypted solid-state

hard drives.

Digital images and experimental outputs uploaded on to a secure web page shared between the three
mechanistic labs. Times of data uploads were logged automatically.

Semen sampling DDG centrifugation

ICSI

PICSI

Remaining pellet

Courier

PCTU
PCTU

Online database

PCTU

BBB
Frozen storage

(pellet)

Sample selection

2. Comet
(Belfast)

3. TNL
(Birmingham)

4. AO
(Birmingham/

Leeds)

5. Halo
(Leeds)

6. AB
(Leeds/

Birmingham)

1. HBA scoring (clinics)

< 50% > 65%50 – 65%

FIGURE 6 Schematic of the sampling for mechanisms. The reduction from four to three centres made a hierarchical
priority of testing more important, with the number of tests carried out depending on the number of available
sample aliquots after HBA scoring. The testing priority was in the numerical order shown, with neutral comet
included at a later stage. All tests could in principle be carried out across the three research centres and all samples
were stored centrally in Birmingham HBRC prior to distribution. Routine cytology, however, was abandoned when
it was recognised that the information provided did not justify the time it took to carry out. Instead, the trials unit
assisted in maximising the use of available samples by all mechanistic labs. Owing to its disruptive effect on the
priority clinical practice, collection of sperm from the differentially centrifuged interface fractions of selected
samples could not be undertaken.

DOI: 10.3310/eme06010 EFFICACY AND MECHANISM EVALUATION 2019 VOL. 6 NO. 1

© Queen’s Printer and Controller of HMSO 2019. This work was produced by Kirkman-Brown et al. under the terms of a commissioning contract issued by the Secretary of State
for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in
professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial
reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of
Southampton Science Park, Southampton SO16 7NS, UK.

15



Statistical methods

Clinical trial
Analyses of clinical effectiveness were by intention to treat. The primary analysis included only those couples
with non-missing outcomes, which was an unbiased approach if the outcome is missing at random (i.e. if
‘missingness’ for the outcome is related only to observed covariates79). In the event that > 5% of primary
outcomes were missing, our analysis plan prespecified a sensitivity analysis to explore the impact on
conclusions of deviations from the missing at random assumption. Numbers lost to follow-up or with
missing baseline assessments are summarised in Chapter 3.

Differences between trial arms for the primary and secondary clinical outcomes are presented as odds ratios
with 95% confidence intervals, obtained using mixed-effects logistic regression adjusting for the minimisation
factors (maternal age, paternal age, number of previous miscarriages and hormonal indicator of ovarian
reserve), with a random intercept to account for variation between recruitment centres. Maternal age and
paternal age were adjusted for using restricted cubic splines with three knots (knot locations based on
Harrell’s recommendations80). Number of previous miscarriages and hormonal indicator of ovarian reserve
were adjusted for as categorical variables. Number of previous miscarriages had three categories 0, 1–2 or
> 2. Hormonal indicator of ovarian reserve had two categories: FSH level of < 6.0 or ≥ 6.0 mIU/ml, or AMH
level of < 17.0 or ≥ 17.0 pmol/l when FSH is not available. Absolute risk differences with 95% confidence
intervals were also calculated from unadjusted logistic regression models using the delta method.

Prespecified subgroup analyses for the primary outcome were performed for the following factors:

l HBS [high (> 65%) vs. low (≤ 65%)]
l maternal age (< 35 vs. ≥ 35 years)
l number of previous miscarriages (0 vs. > 0)
l FSH level (< 6.0 vs. ≥ 6.0 mIU/ml) or AMH level (< 17 vs. ≥ 17 pmol/l) when FSH testing is not available
l sperm concentration (< 15 vs. ≥ 15 mml).

For each factor, the subgroup analysis investigated possible modification of the treatment effect using a
mixed-effects logistic regression model with the addition of an interaction between treatment and effect
modifier. Once the results of the prespecified clinical effectiveness analysis had been reviewed, it was
decided to repeat the subgroup analysis carried out for the primary outcome for the miscarriage following
CP outcome. These analyses were carried out using the same methods as the subgroup analysis for the
primary outcome.

Mechanisms
The flow of residual samples from the clinics to the mechanistic labs is shown in Figure 5. Changes from the
protocol included the agreed withdrawal of Sheffield, the omission of chromomycin A3 (CMA3), which was
not ready for inclusion by the time analysis began, and the omission of tests on the differentially centrifuged
45:90 (40:80) interface sperm of selected samples. The latter could not be accommodated by the clinics.

Structural equation modelling integrating DNA integrity assays remained a key step along the logical data
analysis path described herein. However, the SEM was redirected to focus on the relationship between
DNA integrity and HBS (see Figure 12). Alternative methods, including decision (classification) trees and
generalised regression models, were employed to help refine the model and integrate it with the
clinical outcomes.

TRIAL DESIGN, MATERIALS AND METHODS
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Chapter 3 Results (clinical trial)

Recruitment and participant flow (based on the CONSORT flow chart)

Figure 7 shows the flow of participants through the clinical trial during the period February 2014 to August
2016 with follow-up to July 2017. We screened 6700 couples at 16 centres (Figure 8) for trial eligibility and
randomised, 2772 (PICSI, n = 1387 and ICSI, n = 1385), but 6 (PICSI, n = 1 and ICSI, n = 5) were excluded
post-randomisation as they were subsequently found not to have met eligibility criteria. Of those excluded,
1323 screened couples did not meet the inclusion criteria, 795 declined to participate, 484 consented but
were not randomised, there was no contact from 626 couples and the remaining 700 were not included
for other reasons, such as decision to split cycle, inability to produce a fresh semen sample on the day of
treatment, decision not to transfer fresh embryo(s) and conversion to IVF treatment. The final number
available for the primary clinical analysis was 2752. Mechanistic analysis is covered in Chapter 4.

Assessed for eligibility
(n = 6700)

Excluded
(n = 3928)

• Not meeting eligibility criteria, n = 1323
• Declined to participate, n = 795
• Consented and not randomised, n = 484
• No further contact, n = 626
• Other reasons, n = 700

Randomised
(n = 2772)

Lost to follow-up
(n = 5)

Allocated to PICSI
(n = 1387)

Received allocated intervention
(n = 1346)

Did not received allocated intervention
(n = 41)

Intervention received if not allocated
intervention:
• IVF, n = 3
• Split cycle, n = 2
• Received ICSI, n = 36

Allocated to standard ICSI
(n = 1385)

Received allocated intervention
(n = 1376)

Did not received allocated intervention
(n = 9)

Intervention received if not allocated
intervention:
• IVF, n = 5
• Split cycle, n = 3
• Received ICSI, n = 1

Lost to follow-up
(n = 9)

Post-randomisation exclusions
(n = 1)

Post-randomisation exclusions
(n = 5)

Included in primary analysis
(n = 1381)

Randomised in error as do not meet
eligibility criteria (BMI n = 1)

Randomised in error as do not meet
eligibility criteria (BMI n = 3, age n = 1,

FSH n = 1)
Included in primary analysis

(n = 1371)

Allocation

Follow-up

Analysis

FIGURE 7 The CONSORT flow chart for the clinical trial, showing patient flow.
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Baseline characteristics

All participants
The baseline characteristics of all participants in the trial were well balanced between the arms for both
males and females (Table 2). Age, BMI, ethnicity, smoking status, alcohol consumption and records of
recreational drug use (all with potential effects and impacts on fertility) did not differ between the PICSI
(n = 1386) and ICSI (n = 1380) arms in male or female participants, although this was in agreement with
other data, a males reported higher levels of smoking, alcohol consumption and recreational drug use.82
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FIGURE 8 Randomisation broken down by recruitment centre. The contributing proportion per centre of the total
randomisations (n= 2766) discounting post-randomisation exclusions is shown. Reproduced with permission from
Miller et al.81 © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY
4.0 license.

TABLE 2 Baseline characteristics

Characteristic

Summary Missing data, n (%)

PICSI (N= 1386) ICSI (N= 1380) PICSI ICSI

Male partner

Average age (years) 36.1 (5.5) 35.9 (5.4)

Aged ≥ 35, n (%) 812 (58.6) 803 (58.2)

BMI (kg/m2) 27.3 (4.6) 27.0 (4.2) 816 (58.9) 831 (60.2)

Ethnicity, n (%)

White 1047 (75.5) 1078 (78.1)

Asian 193 (13.9) 166 (12.0)

Black 49 (3.5) 45 (3.3)

Other 36 (2.6) 45 (3.3)

Not stated 61 (4.4) 46 (3.3)

Current smoker, n (%) 68 (5.0) 65 (4.8) 21 (1.5) 27 (2.0)

If yes, how many cigarettes/day, n (%) 8.0 (5.5) 8.5 (5.2) 5 (0.4) 6 (0.4)

Drink alcohol, n (%) 771 (59.1) 791 (60.8) 82 (5.9) 80 (5.8)

If yes, how many units/week, n (%) 7.7 (6.3) 7.7 (6.8) 47 (3.4) 51 (3.7)

Recreational drug use, n (%) 7 (0.5) 6 (0.5) 83 (6.0) 94 (6.8)

RESULTS (CLINICAL TRIAL)
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TABLE 2 Baseline characteristics (continued )

Characteristic

Summary Missing data, n (%)

PICSI (N= 1386) ICSI (N= 1380) PICSI ICSI

Semen assessment

Sperm concentration (× 106/ml), median (IQR) 11.0 (3.5–29.5) 11.0 (3.6–31.0) 51 (3.7) 42 (3.0)

Based on semen assessment ICSI recommended,
n (%)

1268 (96.1) 1245 (95.0) 66 (4.8) 70 (5.1)

Female partner

Average age (years) 33.6 (4.4) 33.7 (4.3)

Aged ≥ 35, n (%) 618 (44.6) 617 (44.7)

BMI (kg/m2) 24.7 (3.5) 24.4 (3.5) 18 (1.3) 20 (1.4)

Ethnicity, n (%)

White 1029 (74.2) 1049 (76.0)

Asian 214 (15.4) 189 (13.7)

Black 45 (3.2) 46 (3.3)

Other 52 (3.8) 55 (4.0)

Not stated 46 (3.3) 41 (3.0)

Current smoker, n (%) 31 (2.3) 20 (1.5) 11 (0.8) 12 (0.9)

If yes, how many cigarettes/day, n (%) 6.4 (3.3) 6.3 (3.6) 3 (0.2) 0 (0.0)

Drink alcohol, n (%) 646 (48.2) 673 (50.7) 46 (3.3) 52 (3.8)

If yes, how many units/week, n (%) 5.1 (4.3) 5.1 (4.7) 32 (2.3) 39 (2.8)

Recreational drug use, n (%) 1 (0.1) 1 (0.1) 69 (5.0) 78 (5.7)

Pre-treatment hormonal assessment

FSH level (mIU/l), mean (SD) 7.1 (2.3) 7.1 (2.3) 477 (34.4) 458 (33.2)

AMH level pmol/l, mean (SD) 22.6 (18.7) 22.0 (18.5) 571 (41.2) 585 (42.4)

FSH level of < 6.0mIU/ml or AMH level of < 17.0 pmol/l,
when FSH testing is not available, n (%)

292 (21.1) 274 (19.9)

Length of menstrual cycle (days), mean (SD) 30.3 (11.0) 30.7 (12.9) 97 (7.0) 79 (5.7)

Type of menstrual cycle, n (%) 12 (0.9) 8 (0.6)

Regular 1176 (85.6) 1170 (85.3)

Irregular 187 (13.6) 189 (13.8)

Not known 11 (0.8) 13 (0.9)

Previous fertility and pregnancy history, n (%)

Previous natural pregnancy 302 (21.8) 313 (22.7)

Live birth following natural pregnancy 47 (3.4) 57 (4.2) 14 (1.0) 19 (1.4)

Previous IVF/ICSI fertility treatment cycle 411 (29.7) 401 (29.1)

Live birth following previous IVF/ICSI fertility
treatment

82 (6.0) 74 (5.4) 4 (1.0) 13 (0.9)

continued
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Female participants
Pre-treatment levels of serum FSH and AMH levels were similar in both arms (see Table 2), as were the
duration and quality of menstrual cycles (see also primary outcome subgroup analyses in Table 6). Before
moving over to using AMH as an indicator of ovarian reserve, clinical IVF services were reliant initially
on FSH levels. In total, 563 women tested overall had FSH scores of < 6.0 mIU/l and/or AMH scores of
< 17.0 pmol/l with the remaining 2189 women having FSH scores of ≥ 6.0 mIU/l and/or AMH scores of
≥ 17.0 pmol/l, a ratio of almost 1 : 4, indicating a relatively fertile female population.

Male participants
Original semen assessment was similar across both arms, with mean sperm concentrations (11.0 × 106/ml)
lying below the WHO lower reference limit (5th centile; 15 × 106/ml) in both arms, and thus consistent
with a strong clinical recommendation for ICSI treatment (see Table 2). The average pre-preparation (for
treatment) sperm concentration measured on the day of treatment (Table 3) rose slightly to just within the
lower reference limit (≈15 × 106/ml). The positive effect of sample processing for treatment, however, was
clearly obvious with the pre-preparation assessment of forward progressive motility (≈40%), rising to 69%
overall post preparation (see Table 3). Forward progressive motility, therefore, was above the 5th centile
lower reference limit (32%) to start with, but rose to within the 90th centile (69%). As the way semen

TABLE 2 Baseline characteristics (continued )

Characteristic

Summary Missing data, n (%)

PICSI (N= 1386) ICSI (N= 1380) PICSI ICSI

Previous miscarriage, n (%)

0 1190 (85.9) 1174 (85.1)

1–2 187 (13.5) 193 (14.0)

> 2 9 (0.6) 13 (0.9)

Gynaecological disorders, n (%)

Polycystic ovaries 216 (15.6) 208 (15.1)

Fibroids 60 (4.3) 80 (5.8)

Endometriosis 98 (7.1) 109 (7.9)

Other 109 (7.9) 122 (8.8)

Pelvic surgery, n (%)

Myomectomy 15 (1.1) 18 (1.3)

Endometriosis surgery 52 (3.8) 48 (3.5)

Salpingectomy 45 (3.2) 37 (2.7)

Caesarean 24 (1.7) 22 (1.6)

Other 180 (13.0) 201 (14.6)

Hormonal treatment, n (%)

Type of hormonal cycle 2 (0.1) 1 (0.1)

Long agonist 697 (50.4) 692 (50.2)

Short agonist 147 (10.6) 122 (8.8)

Antagonist 533 (38.5) 550 (39.9)

Other 7 (0.5) 15 (1.1)

IQR, interquartile range; SD, standard deviation.
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samples are processed prior to treatment could have an important effect on the outcome of the final
treatment cycle, we were reassured to note that these measures were also well balanced between arms,
with differential DGC being the most frequently used process, followed by direct centrifugation and swim-up
(see Table 3). A small proportion of samples prepared by ‘other’ methods were equally balanced between
arms, with ‘other’ typically referring to those samples with too few sperm to process through a gradient or
to swim-up. Such samples were generally centrifuged directly (no density gradient) to pellet the sperm. In
this regard, stratified HBS were obtained from sperm only following sample preparation and were balanced
between the two arms, with the highest proportion having scores > 65%, followed by the intermediate
(25% to ≤ 65%) and lowest (< 25%) scoring categories. More samples with low scores in the PICSI arm
(see Table 3) could have led to an improved outcome, according to Worrilow et al.,57 raising the possibility
of a selection bias.

There were no differences between participants in either arm with respect to female fertility and pregnancy
history (including previous pregnancy losses). Histories of gynaecological disorders and reasons for pelvic
surgery (if recorded) across the arms were well balanced. The types of down-regulation protocol also did
not differ between arms, with long agonist being the most frequently used protocol, followed by antagonist
and short agonist. All choices of down-regulation protocol were balanced between both trial arms. There
were twice as many ‘other’ protocols reported in the PICSI (n = 15; 1.1%) versus ICSI (n = 7; 0.5%) arms;
(see Table 2).

TABLE 3 Participant treatment characteristics

Characteristic

Summary Missing data, n (%)

PICSI (N= 1386) ICSI (N= 1380) PICSI ICSI

Male partner semen pre-preparation assessment

Semen volume (ml), mean (SD) 2.9 (1.4) 3.0 (1.5) 48 (3.5) 48 (3.5)

Sperm concentration (× 106/ml), median (IQR) 14.7 (4.0–35.0) 16.0 (5.0–36.4) 150 (10.8) 157 (11.4)

% of forward progressive motility, mean (SD) 39.5 (20.1) 40.8 (20.3) 170 (12.3) 182 (13.2)

Sperm concentration mean (× 106/ml), mean (SD) 23.9 24.1

Male partner semen post-preparation assessment, mean (SD)

Sample processing 43 (3.1) 43 (3.1)

Swim-up 18 (1.3) 19 (1.4)

Density gradient 1044 (77.7) 1028 (76.9)

Direct centrifugation 191 (14.2) 198 (14.8)

Other form of processing 89 (6.6) 90 (6.7)

Sample not processed 1 (0.1) 2 (0.1)

Forward motility (%) 68.6 (28.1) 69.5 (27.5) 225 (16.2) 240 (17.4)

HBS, mean (SD)

HBS 423 (30.5) 433 (31.4)

≤ 25% 86 (8.9) 74 (7.8)

> 25% and ≤ 65% 188 (19.5) 181 (19.1)

> 65% 689 (71.5) 692 (73.1)

Female partner oocytes collection, mean (SD)

Number of eggs collected (per couple) 10.9 (6.3) 10.8 (6.3) 41 (3.0) 43 (3.1)

Number of metaphase II oocytes injected with
sperm

8.7 (5.1) 8.5 (5.1) 45 (3.2) 49 (3.6)

IQR, interquartile range; SD, standard deviation.
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Primary outcome by arm allocation (physiological intracytoplasmic
sperm injection vs. intracytoplasmic sperm injection)

The analysis (Figure 9 and see Report Supplementary Material 1) showed the primary outcome (LBR at
≥ 37 weeks’ gestation) was not significantly different between the two arms of the trial [odds ratio (OR)
1.12, 95% confidence interval (CI) 0.94 to 1.34; p = 0.18] where 379 (27.4%) and 346 (25.2%) couples
who were randomised, respectively, into the PICSI and ICSI arms, successfully achieved a full-term live
birth. The absolute risk difference was 2.2% (95% CI –1.1% to 5.5%).

A sensitivity analysis of the primary outcome measure that adjusted for additional baseline covariates
(female partner BMI, female partner ethnicity, history of previous pregnancy, female partner hormonal
status and hormonal treatment) provided near-identical outputs for live birth with PICSI (379/1379, 27.4%)
and ICSI (346/1370, 25.2%) with an OR of 1.13 (95% CI 0.95 to 1.34; p = 0.17).

Subgroup analysis of the primary outcome
Subgroup analysis of the primary outcome (Table 4 and Figure 10) showed no evidence of modification of
the treatment effect by HBS, maternal age, previous miscarriage, maternal FSH or AMH levels and paternal
sperm concentrations. Fertility declines in older women and HA-based sperm selection may therefore
benefit them more if their eggs have a reduced capacity to accommodate sperm DNA fragmentation. In
this regard, compared with women < 35 years, a small improvement in LBR at > 37 weeks’ gestation for
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FIGURE 9 Summary of main clinical outcome data. (a) Plots of all clinical outcome measures showing ORs and
95% CIs; and (b) outcomes expressed as the proportion of cycles between the two trial arms. Absolute numbers are
shown above the bars. Reproduced with permission from Miller et al.81 © 2019 The Author(s). Published by Elsevier
Ltd. This is an Open Access article under the CC BY 4.0 license.
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women ≥ 35 years was noted for the PICSI group (22.8%) versus the ICSI group (18.7%), although the
difference was not significant (p-value for interaction = 0.22; see Table 4). HBS, which is thought to be a
useful indicator of male fertility when males with high scores are more fertile than those with lower scores,
did not differ across the two arms. Although because of a withdrawal of the scoring slides early on the
trial, scores were available for only 69% (n = 961) and 68% (n = 944) of men in the PICSI and ICSI
arms, respectively.

Secondary outcomes by arm allocation (physiological intracytoplasmic
sperm injection vs. intracytoplasmic sperm injection)

Clinical pregnancy rate at 6–9 weeks’ gestation
There was no difference in CPR at 6–9 weeks’ gestation (OR 0.98, 95% CI 0.84 to 1.15; p = 0.80) with
487 (35.2%) and 491 (35.7%) clinical pregnancies, respectively, in the PICSI and ICSI arms of the trial
(absolute risk difference –0.5%, 95% CI –4.0% to 3.1%) (Table 5).

TABLE 4 Subgroup analysis of primary outcome

Characteristic

Number included
in the analysis Summary, n (%)

OR (95% CI)

p-value (interaction
between treatment
and subgrouping
factor)PICSI (n) ICSI (n) PICSI ICSI

HBS

≤ 65% 273 254 80 (29.3) 72 (28.3) 1.10 (0.75 to 1.61) 0.67

> 65% 688 690 178 (25.9) 180 (26.1) 0.99 (0.78 to 1.27)

≤ 25% 85 74 23 (27.1) 24 (32.4) 0.79 (0.40 to 1.58) 0.50

> 25% and ≤ 65% 188 180 57 (30.3) 48 (26.7) 1.26 (0.80 to 2.01)

> 65% 688 690 178 (25.9) 180 (26.1) 0.99 (0.78 to 1.27)

Maternal age (years)

< 35 766 755 239 (31.2) 231 (30.6) 1.03 (0.83 to 1.29) 0.22

≥ 35 615 616 140 (22.8) 115 (18.7) 1.29 (0.98 to 1.71)

Previous miscarriage

0 1186 1165 327 (27.6) 296 (25.4) 1.13 (0.94 to 1.36) 0.86

> 0 195 206 52 (26.7) 50 (24.3) 1.08 (0.69 to 1.71)

FSH level or AMH level (when FSH not tested)

< 6.0 mIU/l
(< 17.0 pmol/l for
AMH)

291 272 78 (26.8) 68 (25.0) 1.08 (0.74 to 1.59) 0.82

≥ 6.0 mIU/l
(≥ 17.0 pmol/l for
AMH)

1090 1099 301 (27.6) 278 (25.3) 1.14 (0.94 to 1.38)

Sperm concentration

< 15 × 106/ml 777 763 225 (29.0) 196 (25.7) 1.16 (0.92 to 1.46) 0.71

≥ 15 × 106/ml 553 566 141 (25.5) 140 (24.7) 1.08 (0.82 to 1.42)
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Preterm live birth rate at ≤ 37 weeks’ gestation
There was no difference in preterm birth rate < 37 weeks’ gestation (OR 1.02, 95% CI 0.67 to 1.55;
p = 0.94), with 46 (3.3%) and 45 (3.3%) preterm births, respectively, in the PICSI and ICSI arms of the trial
(absolute risk difference 0.0%, 95% CI –1.3% to 1.4%) (Table 5).

Miscarriage following clinical pregnancy
There was a significant difference in the CP loss rate (OR 0.61, 95% CI 0.43 to 0.84; p = 0.003), with
60 (4.3%) and 96 (7.0%) CP losses, respectively, in the PICSI and ICSI arms of the trial (absolute risk
difference –2.7%, 95% CI –4.4% to –0.9%) (Table 5).
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FIGURE 10 Summary of (a) primary and (b) miscarriage outcome subgroup analysis for maternal age (p= 0.22/0.11);
FSH level (p= 0.82/0.12); HBS (p= 0.67/0.43); previous miscarriage (p= 0.86/0.42); and semen concentration
(p= 0.71/0.33). a, AMH < 17.0 pmol/l when FSH not measured; b, AMH ≥ 17.0 pmol/l when FSH not measured.
p-values are for the interaction term between the subgroup variable and the treatment variable. ORs are indicated.
Subgroup analysis for miscarriage was carried out post hoc. Reproduced with permission from Miller et al.81
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Subgroup analysis of miscarriage

Post hoc subgroup analysis showed that the statistically significant difference between miscarriage in the
PICSI and ICSI arms was not associated with HBS, maternal age, previous miscarriage, FSH or AMH levels
(when FSH was not tested) or sperm concentration (at least for the clinical analysis). These analyses were
performed in the same way as subgroup analyses for the primary outcome (Table 6 and see Figure 9) by
including a treatment subgroup interaction.

TABLE 5 Secondary outcomes

Outcome

Number included
in analysis (n) Summary, n (%)

OR (95% CI) p-valuePICSI ICSI PICSI ICSI

CP at 6–9 weeks’ gestation 1382 1375 487 (35.2) 491 (35.7) 0.98 (0.84 to 1.15) 0.80

Miscarriage following CP 1381 1371 60 (4.3) 96 (7.0) 0.61 (0.43 to 0.84) 0.003

Live birth < 37 weeks’ gestation 1381 1371 46 (3.3) 45 (3.3) 1.02 (0.67 to 1.55) 0.94

TABLE 6 Subgroup analysis of miscarriage

Characteristic

Number included
in the analysis (n) Summary, n (%)

OR (95% CI)

p-value (interaction
between treatment
and subgrouping
factor)PICSI ICSI PICSI ICSI

HBS

≤ 65% 273 254 8 (2.9) 16 (6.3) 0.44 (0.18 to 1.05) 0.43

> 65% 688 690 35 (5.1) 52 (7.5) 0.65 (0.42 to 1.01)

≤ 25% 85 74 1 (1.2) 2 (2.7) 0.42 (0.04 to 4.71) 0.75

> 25% and ≤ 65% 188 180 7 (3.7) 14 (7.8) 0.45 (0.18 to 1.15)

> 65% 688 690 35 (5.1) 52 (7.5) 0.65 (0.42 to 1.01)

Maternal age (years)

< 35 766 755 31 (4.0) 38 (5.0) 0.81 (0.50 to 1.32) 0.11

≥ 35 615 616 29 (4.7) 58 (9.4) 0.47 (0.30 to 0.75)

Previous miscarriage

0 1186 1165 55 (4.6) 83 (7.1) 0.63 (0.45 to 0.90) 0.42

> 0 195 206 5 (2.6) 13 (6.3) 0.40 (0.14 to 1.15)

FSH level or AMH level (when FSH level not tested)

< 6.0 mIU/l (< 17.0 pmol/l
for AMH)

291 272 15 (5.2) 14 (5.1) 1.04 (0.49 to 2.20) 0.12

≥ 6.0 mIU/l (≥ 17.0 pmol/l
for AMH)

1090 1099 45 (4.1) 82 (7.5) 0.53 (0.36 to 0.77)

Sperm concentration

< 15 × 106/ml 777 763 28 (3.6) 53 (6.9) 0.52 (0.32 to 0.83) 0.33

≥ 15 × 106/ml 553 566 29 (5.2) 39 (6.9) 0.73 (0.44 to 1.19)
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Missing data

Levels of missing data were extremely low for both primary and secondary outcomes, with 14 out of 2766
(0.05%) eligible couples randomised with missing data for the primary outcome, and it was not considered
necessary for sensitivity analysis to be performed for missing data. Information about baseline BMI (see Table 2)
was unavailable for over half of all males (≈59%), compared with more modest omissions for females (19%),
with information on smoking, alcohol consumption and recreational drug use unavailable from fewer
participants. Additional data for semen assessment (see Table 3) were missing from a similar small proportion
of participants in each arm. A high proportion of participants in both arms had no record for FSH (≈34%)
and/or AMH (≈42%) and information on previous fertility and pregnancy history was not available for a similar
proportion of women in both arms (≈16.5% for live birth following natural pregnancy and 13.5% for live birth
following IVF/ICSI). There were also missing original (see Table 2) and pre- and post-preparation (see Table 3)
assessment data for various aspects of semen profiles. A HBS could not be obtained for almost one-third
(≈31%) of all samples (see Table 3). This was due to a temporary and unavoidable withdrawal of Medicines
and Healthcare products Regulatory Agency (MHRA) approval for the scoring slides early on in the trial.

Other outcomes

Fertilisation (≈67.5%) and biochemical pregnancy rates (≈39%) in the two arms were similar (Table 7).
There were higher numbers of multiple clinical pregnancies in the PICSI (n = 68) versus ICSI (n = 54)
arms of the trial, although the similar frequencies in each arm (5.0% and 4.0%, respectively) led to a
correspondingly higher frequency of multiple births in the PICSI arm (3.8% vs. 2.1% in the ICSI arm).
There were slightly higher numbers of cycles with two embryo transfers in the ICSI (535, 39.5%) versus
PICSI (510, 37.4%) arms. There were slightly more biochemical pregnancies in the PICSI arm failing to
convert to clinical pregnancies (58, 4.2%) than in the ICSI arm (51, 3.7%).

TABLE 7 Other outcomes

Characteristic

Summary Missing data, n (%)

PICSI (N= 1386) ICSI (N= 1380) PICSI ICSI

Fertilisation, mean (SD)

Fertilisation rate (number of two pro-nuclei
stage eggs per injected egg), mean (SD)

0.66 (0.24) 0.69 (0.24) 64 (4.6) 68 (4.9)

Number of fresh embryos transferred, mean (SD) 21 (1.5) 24 (1.7)

0 131 (9.6) 116 (8.6)

1 712 (52.2) 691 (51.0)

2 510 (37.4) 535 (39.5)

3 12 (0.9) 14 (1.0)

Biochemical pregnancy, mean (SD)

Positive biochemical pregnancy (bHGC test),
mean (SD)

546 (39.48) 544 (39.51) 3 (0.2) 3 (0.2)

Biochemical pregnancy loss (PICSI, n= 1382;
ICSI, n= 1375), mean (SD)

58 (4.2) 51 (3.7)

Multiple clinical pregnancies 68 (5.0) 54 (4.0) 16 (1.2) 19 (1.4)

Multiple births 52 (3.8) 29 (2.1) 5 (0.4) 9 (0.7)

bHGC, beta-human chorionic gonadotropin; SD, standard deviation.
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Frozen embryos

The number of embryos frozen among women receiving one or more fresh embryo transfers were similar
(see Table 7). It should, at some future date, be possible to determine whether or not cumulative outcomes
following frozen–thawed embryo transfer will be higher in the intervention group owing to higher cryosurvival
rates relative to the control arm.

Adverse events

Serious adverse events (SAEs) related or unrelated to the study were balanced between arms, indicating no
untoward events of the intervention. The single related suspected unexpected serious adverse reactions
(SUSARs) were reported as a case of hypospadias in the PICSI and achondroplasia in the ICSI arms,
respectively (Table 8).

Conclusions

Outcomes are graphically summarised in Figures 8 and 9, with miscarriage rate being the only variable
with a significant difference between the two trial arms. The primary outcome demonstrated a 2.2%
improvement in LBR at ≥ 37 weeks’ gestation favouring PICSI, which was insufficient to show significant
efficacy overall (OR 1.12, 95% CI 0.95 to 1.34).

Miscarriage rates between the two arms and favouring PICSI were significantly different (OR 0.61; p= 0.003).
Subgroup analysis did not find evidence that this treatment effect was modified by HBS, maternal age, previous
miscarriage, FSH (or AMH when FSH was not tested) or sperm concentration (see Table 6 and Figure 10).

Baseline data suggested that the likelihood of miscarriage increased with age. Analysis of the clinical trial
outcomes can be concluded, however, by stating that PICSI offered no clear advantage with regard to LBR.
These issues are dealt with more comprehensively in Chapter 5.

TABLE 8 Serious adverse effects

SAEs

Trial arm (n)

PICSI (N= 1386) ICSI (N= 1380)

Number of SAEs 29 27

Number of related SUSAR 1 1

Number of unrelated SUSAR 28 26
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Chapter 4 Results (mechanisms)

General considerations (including changes to the original statistical
analysis plan)

The mechanistic statistical analysis plan (SAPm) (see Report Supplementary Material 2) for HABSelect was
intended as guidance only. It permitted exploration of the clinical and mechanistic data and enabled us to
consider alternative plans once the clinical analysis was completed and the trial outcomes known.

The SAPm suggested that SEM would form the backbone of the analysis and SEM remains a key step along
the logical analysis path described herein but, with fewer assays undertaken, its role was downgraded.
Results were better identified by other methods including classification trees and generalised regression
models. Although the analysis was of data from an observational study without the benefit of randomisation,
the mechanistic cohort (1247 couples) was sampled from couples participating within the randomised
controlled trial (RCT) (2766 couples). This subset constituted residual sperm samples originally selected from
storage on the basis of a balanced set of HBS (≤ 25%, > 25%, ≤ 65%, > 65%) and later stratified by known
outcome of miscarriage, which, once the trial had determined that there was no statistical significance to the
primary outcome, became the main focus. It should be stated at the outset that unlike the hypothesis testing
and analysis completion central to the clinical trial, the mechanistic analysis is hypothesis generating and is a
continuing effort.

Baseline features

The results reported herein follow the underlying biological pathway of the treatment provided to
participating couples (Figure 11). Owing to time and cost limitations, not all couples could have samples
processed. In addition, some residual samples from fertility treatment that had used most of the original
ejaculate had too few or no sperm available on which to perform any of the assays. In total, 905 comet
assays, 889 TUNEL assays, 593 AO assays, 549 AB assays and 431 halo assays were carried out, of which
131 samples were tested by all five assays (see Appendix 1). Assay values were arbitrary in relation to
DNA integrity (fragmentation and compaction) that is, we chose not to apply cut-off points in relation to
reporting subgroups within the data (above or below a certain predetermined value indicative of low or
high fragmentation for example). This was the most appropriate course of action given that there is no
consensus over what the cut-off values giving rise to an informative DNA fragmentation index should
be83–86 and assay calibration was unresolved. Instead, comparisons between means and quartiles for all
data grouped into outcomes (e.g. clinically pregnant vs. not pregnant) were used throughout to indicate
relative levels of DNA fragmentation (AO, comet and TUNEL assays) and/or compaction (AB) in our SEM.
In our analyses, higher relative values for the TUNEL, AO and comet assays, indicated higher levels of DNA
fragmentation. Larger halo areas (and higher ratios) indicated correspondingly lower DNA fragmentation.
Lower AB (alongside, halo area and ratio) values indicated higher compaction.

Being a subset of the trial cohort, mechanistic baseline data sets should have been balanced by randomisation
and, indeed, this proved to be so, with Table 9 listing these data in relation to CP. A total of 518 (41%)
couples in the mechanistic cohort successfully conceived and in terms of baseline p-values, parental age
(female and male) was the only significant difference noted between pregnant and non-pregnant, although
AMH level, sperm halo area and AB staining came close to significance. Neither HBS nor any of the assays
of sperm DNA integrity predicted CP (however, see Chapter 5, Mechanistic outcomes). A total of 426 (82%)
couples enjoyed a live birth outcome, with the remainder (18%) ending in miscarriage (Table 10). Here,
female age and PICSI were the only significant factors distinguishing between the two outcomes
(miscarriage or live birth).
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Trial clinics
(n = 16)

Randomised couples
(n = 2772)

Couples with data
(n = 2766)

Trial couples in
mechanistic cohort

(n = 1247)

Sampled for DNA
integrity
(n = 1078)

Trial couples
not sampled

(n = 1519)

Clinically pregnant
(n = 518)

Not pregnant
(n = 729)

Miscarriages
(n = 92)

Live births
(n = 426)

FIGURE 11 Flow chart for the mechanistic cohort. The sample size of 1247 was drawn from the main trial cohort
and was enriched for couples experiencing miscarriage (balanced for couples experiencing full-term live birth with
similar baseline characteristics).

TABLE 9 Mechanistic cohort characteristics

Characteristic

Pregnancy status

p-valueNot pregnant Clinically pregnant

Number 729 518

Male partner

Age (years), mean (SD) 36.42 (5.62) 35.59 (5.39) 0.010

White, n (%) 581 (79.7) 413 (79.7) 0.999

BMI (kg/m2), mean (SD) 26.80 (4.33) 27.42 (4.38) 0.214

Alcohol units, mean (SD) 7.78 (6.18) 8.06 (7.39) 0.600

Sperm concentration (× 106/ml), mean (SD) 26.91 (35.74) 25.78 (34.24) 0.579

Sperm volume (ml), mean (SD) 2.95 (1.48) 2.98 (1.54) 0.674

Motility (%), mean (SD) 41.43 (19.55) 41.48 (19.45) 0.966

Female partner

Age (years), mean (SD) 34.06 (4.36) 33.39 (4.10) 0.006

White, n (%) 564 (77.4) 407 (78.6) 0.555

BMI (kg/m2), mean (SD) 24.33 (3.53) 24.45 (3.51) 0.551

Alcohol units, mean (SD) 5.32 (4.21) 5.00 (4.29) 0.371

Previous fertility treatment, n (%) 259 (35.5) 168 (32.4) 0.283

Previous natural pregnancy, n (%) 166 (22.8) 119 (23.0) 0.988

Previous miscarriage, n (%) 126 (17.3) 72 (13.9) 0.125

FSH level (mlU/l), mean (SD) 7.14 (2.20) 6.95 (2.09) 0.216

AMH level (pmol/l), mean (SD) 20.62 (19.06) 23.32 (16.12) 0.057

RESULTS (MECHANISMS)
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TABLE 9 Mechanistic cohort characteristics (continued )

Characteristic

Pregnancy status

p-valueNot pregnant Clinically pregnant

Assays

HBS, mean (SD) 74.47 (24.29) 73.38 (24.45) 0.476

Allocated PICSI, n (%) 365 (50.1) 261 (50.4) 0.958

TUNEL, mean (SD) 12.42 (15.60) 12.18 (13.81) 0.812

AO, mean (SD) 45.30 (15.48) 45.68 (15.73) 0.773

Comet, mean (SD) 19.02 (9,38) 18.77 (9.79) 0.698

Halo area, mean (SD) 168.40 (64.09) 179.66 (61.31) 0.067

Halo ratio, mean (SD) 3.67 (1.55) 3.76 (1.66) 0.555

AB, mean (SD) 64.76 (21.54) 61.19 (23.00) 0.066

SD, standard deviation.

TABLE 10 Clinically pregnant cohort

Characteristic

Outcome

p-valueMiscarriage Live birth

Number 92 426

Male partner

Age (years), mean (SD) 36.54 (5.85) 35.39 (5.27) 0.063

White, n (%) 72 (78.3) 341 (80.0) 0.808

BMI (kg/m2), mean (SD) 26.77 (3.59) 27.57 (4.54) 0.271

Alcohol units, mean (SD) 8.12 (7.20) 8.04 (7.46) 0.942

Sperm concentration (× 106/ml), mean (SD) 25.53 (31.87) 25.83 (34.76) 0.938

Sperm volume (ml), mean (SD) 2.74 (1.76) 3.04 (1.49) 0.092

Motility (%), mean (SD) 40.62 (18.28) 41.66 (19.70) 0.655

Female partner

Age (years), mean (SD) 34.65 (4.20) 33.12 (4.03) 0.001

White, n (%) 68 (73.9) 339 (79.6) 0.289

BMI (kg/m2), mean (SD) 24.77 (3.73) 24.38 (3.46) 0.331

Alcohol units, mean (SD) 4.59 (3.32) 5.09 (4.50) 0.464

Previous fertility treatment, n (%) 32 (34.8) 136 (31.9) 0.683

Previous natural pregnancy, n (%) 20 (21.7) 99 (23.2) 0.862

Previous miscarriage, n (%) 10 (10.9) 62 (14.6) 0.447

FSH level (mlU/l), mean (SD) 7.16 (2.64) 6.91 (1.94) 0.381

AMH level (pmol/l), mean (SD) 22.67 (14.93) 23.46 (16.41) 0.753
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Inspection of baseline values
The weakness of the relationship between sperm DNA integrity and clinical outcome was unexpected and
led to examination of the relationship with HBS (Table 11). Following logistic regression, all assays were
shown to correlate with HBS, with TUNEL showing the strongest association, followed by AO, halo (area
and ratio), comet and AB (see Table 11 and Figure 10 for examples).

Correlations between the assays themselves, however, were weak (Table 12), with the strongest between
AB and AO (R = 0.26). There were some weak correlations between assays (e.g. the expected positive

TABLE 10 Clinically pregnant cohort (continued )

Characteristic

Outcome

p-valueMiscarriage Live birth

Assays

HBS, mean (SD) 75.79 (21.06) 72.89 (25.08) 0.357

Allocated PICSI, n (%) 32 (34.8) 229 (53.8) 0.001

TUNEL, mean (SD) 10.24 (10.34) 12.57 (14.39) 0.235

AO, mean (SD) 49.60 (14.12) 44.86 (15.96) 0.076

Comet, mean (SD) 20.68 (10.11) 18.36 (9.68) 0.087

Halo area, mean (SD) 178.93 (56.22) 179.80 (62.40) 0.945

Halo ratio, mean (SD) 3.41 (1.30) 3.83 (1.72) 0.220

AB, mean (SD) 63.89 (23.62) 60.55 (22.87) 0.404

SD, standard deviation.

TABLE 11 Associations between HBS and assay values

Association n t-value p-value

TUNEL 810 –6.99 < 0.001

AO 555 –3.84 < 0.001

Comet 854 –2.45 0.015

Halo area 406 6.05 < 0.001

Halo ratio 406 4.29 < 0.001

AB 514 1.98 0.049

TABLE 12 Interassay correlations

Assay

Assay

TUNEL AO Comet

Halo

ABArea Ratio

TUNEL 1

AO 0.01 1

Comet 0.05 0.01 1

Halo area –0.17 0.10 –0.03 1

Halo ratio –0.10 –0.03 0.17 0.54 1

AB 0.14 0.26 0.06 0.02 –0.13 1

RESULTS (MECHANISMS)
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correlations between the TUNEL, AO and comet assays and, correspondingly, negative correlations with the
halo area/ratio). The weakness, however, suggests that the assays were qualitatively measuring different
aspects of DNA fragmentation or compaction. Turning to the relationship between the assays and HBS,
Table 13 shows the results for the coefficients for the single regression of HBS on assay values.

Here, the TUNEL assay was the strongest predictor of HBS, although, taken together, the results summarised
in Tables 10–13 indicated that integrating data from the TUNEL, AO and comet assays had the best
potential for predicting HBS and outcomes downstream in the biological process relating to DNA integrity.

Structural equation modelling

Structural equation modelling was the primary analysis described in the SAPm and it was intended
that measurement models were built for fragmentation (as measured by the TUNEL, AO and comet assays)
and for compaction (measured by AB and halo) (Table 14). The regression modelling above supports the
work with TUNEL, AO, and comet measuring an underlying latent variable (arbitrarily named fragmentation)
with the halo and AB assays measuring compaction (again, arbitrarily named in our model). The modelling
is graphically represented in Figure 12. The package ‘lavaan’, version 0.5, was used within the statistical
environment R, version 3.3.2.

TABLE 13 Coefficients of regression of HBS on assay values

Assay Estimate Standard error t-value p-value

(Intercept) 95.240 5.681 16.77 < 0.001

Tunel –0.165 0.060 –2.75 0.007

AO –0.129 0.070 –1.84 0.068

Comet –0.160 0.091 –1.77 0.079

Halo area 0.027 0.020 1.34 0.184

AB –0.002 0.042 –0.041 0.967

Halo ratio 0.020 0.776 0.025 0.980

TABLE 14 Table of coefficients derived from the SEM (n= 131)

Coefficient Estimate Standard error z-value p-value

Fragmentation

TUNEL 1.000

AO 0.650 0.313 2.073 0.038

Comet 0.370 0.215 1.723 0.085

Compaction

AB 1.000

Halo area –0.951 0.908 –1.048 0.295

Regressions

HBS 1.000

Fragmentation –0.477 0.301 –1.586 0.113

Compaction –0.633 0.259 –2.450 0.014
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These results suggested that the set of theoretical relationships for the SEM illustrated in Figure 12 was
viable. The research question being asked from this point was whether or not useful expressions could be
derived from the assays to represent the aspects of DNA fragmentation and compaction within the sperm
samples. More directly, the latent variables of fragmentation and compaction were defined as follows:

Fragmentation = 0:495 × TUNEL + 0:322 × AO + 0:183 × comet: (1)

Compaction = 0:244 × halo area−0:256 × AB + 7:5. (2)

The arbitrary constant 7.5 and some rescaling were applied in the compaction equation to provide a scale
similar to that of fragmentation. Fragmentation now ranged from 10.2 to 66.8 and compaction from 1.4
to 67.4. As scales and centrality of the assay values were arbitrary, it was not possible to interpret the size
of the coefficients. With 131 complete observations with all assays (see Appendix 3 and Table 20), it was
also not anticipated that statistical significance of all coefficients would be seen. The significance values
provided, however, encouraged further investigation with a larger data set after the model viability
was confirmed.

With the above definitions for fragmentation and compaction the regression predicting HBS became:

HBS = 99:2−0:71 × fragmentation: (3)

Note that the compaction term was dropped here as it was not statistically significant and contributed
little. HBS, however, decreased with fragmentation, and for the remainder of the analysis the two
dimensions (fragmentation and compaction) of the information from the five assays were used to inform
sperm motility, count and concentration, predicted from the following models:

Sperm motility = 18:8 + 0:21 × HBS + 0:26 × compaction: (4)

Sperm count = 61:5−1:03 × fragmentation: (5)

Sperm concentration = 28:7−0:51 × fragmentation: (6)

Such that motility increased with compaction and HBS and sperm count and concentration decreased with
fragmentation. Terms that were not statistically significant were dropped from the models.

TUNEL

AO

Clinical
outcomes?HBS

Fragmentation

Compaction

Comet

Halo (area)

Halo (ratio)

AB

FIGURE 12 Structural equation modelling showing relationships between measured quantities (boxes) and latent
variables (ovals). Fragmentation is the latent variable for DNA fragmentation and compaction is the latent variable
for chromatin compaction. In the model, halo (area and ratio) was associated with the compaction variable.
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In the fitted models for each of the relationships in the four graphs (Figures 13), it was decided that a
linear relationship would be a reasonable approximation and that more complex non-linear relationships
be regarded as overfitting. The predictive models, therefore, were taken as satisfactory.
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FIGURE 13 Significant correlations in SEM. In the fitted models, each of the relationships was assumed to be linear.
They show (a) HBS (% binding) against sperm % motile; (b) sperm % motile against DNA compaction variable;
(c) sperm count against DNA fragmentation variable; and (d) sperm concentration against DNA fragmentation
variable. The regression lines have been plotted within the 95% CI envelope (shaded area). (continued )
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Fertilisation

It was next asked whether or not fertilisation rates were associated with the allocation to treatment,
HBS, DNA integrity or combinations thereof. From records kept of the number of eggs fertilised and the
successful development of those eggs into embryos, the number of eggs fertilised per couple varied from
1 to 35 and the number of embryos ranged from 0 to 23. A binomial regression with a log-link function
of the fertilisation rate based on successful and failed fertilisation was undertaken. As the only statistically
significant term was for HBS, the binomial regression was run without the other terms, permitting data
from 1888 couples to be included. The coefficients from that regression are given in Table 15. Conversion
of the coefficients to relative risk (RR) is shown in Table 16.
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FIGURE 13 Significant correlations in SEM. In the fitted models, each of the relationships was assumed to be linear.
They show (a) HBS (% binding) against sperm % motile; (b) sperm % motile against DNA compaction variable;
(c) sperm count against DNA fragmentation variable; and (d) sperm concentration against DNA fragmentation
variable. The regression lines have been plotted within the 95% CI envelope (shaded area).
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Clinical pregnancy

We next considered factors associated with CP, in particular whether HBS, DNA fragmentation or
compaction was associated with CPRs.

The question was approached by classification tree and logistic regression. The classification tree had
the advantage of being able to handle highly correlated covariates, such as maternal and paternal age.
Logistic regression, on the other hand, is more familiar to researchers. By taking both approaches,
a more thorough exploration of the relationship between these factors and CP was provided.

The results from fitting a classification tree, where the outcome was CP (CPR ‘yes’ or ‘no’), are shown in
Figure 14, with the elliptical nodes representing branching by the variable within and the square nodes are
terminal nodes where couples have been classified by chance of CP. Note that the classification tree first
predicted the CPR (34.1%) for women aged > 35 years, but for younger women (≤ 35 years), the CPR
was more dependent on DNA compaction with the predicted rate being 64.5% for couples with a higher
compaction (> 40 arbitrary units), reducing to 44.1% for couples with a lower compaction ≤ 40 of arbitrary
units.

For those couples for whom DNA compaction was not determined, surrogate variables were used instead.
This enabled use of data from all 1247 couples rather than just the 228 for which compaction was
measured, although confidence in this result was limited because of the high number of surrogate splits
that were performed. Fitting a logistic regression model instead of a classification tree provided the fitted
model coefficients shown in Table 17, where female ethnicity (white) and age were the strongest predictors.

TABLE 16 Relative risk (RR) of treatment, HBS and age of female partner for fertilisation of eggs 95%
confidence intervals

Coefficient RR 95% confidence interval

PICSI allocation 0.9630 0.9434 to 0.9829

HBS 1.0010 1.0006 to 1.0015

Female age 0.9971 0.9947 to 0.9995

TABLE 15 Coefficients from the binomial regression of fertilisation rate (n= 1888)

Coefficient Estimate Standard error z-value p-value

Intercept –0.327 0.044 –7.455 < 0.001

PICSI allocation –0.0378 0.011 –3.601 < 0.001

HBS 0.0010 0.0002 4.775 < 0.001

Female age –0.0029 0.0012 –2.346 0.019
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Miscarriage

As the clinical trial had determined that there was insufficient evidence for an increase in LBR following
PICSI, the focus of the mechanistic analysis turned to miscarriage, which was significantly different
between the trial arms. Single embryo transfer was not always practised in HABSelect and some patients
who had a live birth also miscarried one or more of the transferred embryos, recorded as a miscarriage.
The focus here, however, was where all of the transferred blastocysts had miscarried. That is, we
compared the outcomes where there was a live birth or not following CP. For convenience, for the work
undertaken within the mechanistic cohort, we define a miscarriage occurring when CP does not result in a
live birth (including preterm and excluding stillbirth).

TABLE 17 Coefficients for logistic regression of CP

Coefficient Estimate Standard error z-value p-value

(Intercept) 1.965 1.288 1.526 0.127

Female (white) 1.454 0.439 3.313 0.001

Compaction 0.023 0.010 2.297 0.022

Female age –0.128 0.038 –3.396 0.001

1

2

3 4

5

Female age
p = 0.044

n = 735
y = 0.442

Comp
p = 0.037

n = 61
y = 0.639

n = 451
y = 0.341

> 35≤ 35

≤ 40.151 > 40.151

FIGURE 14 Classification tree for achieving CP based on the mechanistic cohort (n= 1247). Note the primary
determinant was female age followed by sperm DNA compaction. Comp, DNA compaction.
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As shown in Table 18 and following similar trends for CP, age (male and female), the PICSI allocation and
HBS all predicted miscarriage risk. Modelling of the outcome (miscarriage or live birth) was then undertaken
first using a classification tree and then by logistic regression (Figure 15). In both cases, the clinically pregnant
subset formed the population of interest.

Note that although these are made available, the classification tree did not use all variables. In particular,
Table 9 shows that, in terms of a univariable analysis only, there was a significant difference between
the miscarriage and live birth groups according to the number of embryos transferred. Having accounted
for the age of the female partner and the allocation treatment (ICSI or PICSI), however, the number of
embryos transferred discriminated no further.

5
n = 71

y = 0.592

4
n = 76

y = 0.829

2
n = 359

y = 0.861

PICSI ICSI

≤ 35 > 35

Age_analysis_f
p = 0.009

1

Allocation
p = 0.019

3

FIGURE 15 Classification tree for live birth outcome among clinically pregnant women in the mechanistic cohort
(n= 506). Note that female age was the primary discriminator with the allocation and then by allocation in
older women.

TABLE 18 Coefficients for logistic regression of live birth/miscarriage (n = 972)

Coefficient Estimate Standard error z-value p-value

(Intercept) 7.089 1.423 4.981 < 0.001

PICSI –5.514 2.092 –2.636 0.008

Female age –0.173 0.041 –4.251 < 0.001

PICSI × age 0.185 0.061 3.019 0.003
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The classification tree shown in Figure 16 indicates that for the oldest (> 37 years) female partners, the
rate of miscarriage was 31.0% [(1 – 0.69) × 100]. More specifically, 48 out of the 155 clinical pregnancies
ended with miscarriage and 107 with a live birth. For couples for whom the age of the female partner
was ≤ 37 years and PICSI was given, 42 out of 409 miscarried, a rate of 10.3%. For those couples for
whom the female age was 35–37 years and ICSI was given, the miscarriage rate was 29 out of 108 (26.9%).
The miscarriage rate for couples for whom the female age was < 35 years was 37 out of 300 (12.3%).
The conclusion was that PICSI augmented treatment for those couples for whom the female was aged
35–37 years by reducing the miscarriage rate from 26.9% of all clinical pregnancies in the ICSI group, to
12.3% in the PICSI group.

Although 35–37 years appears a restrictive range, this accounted for almost one-quarter (23.0%) of all
couples recruited to the HABSelect trial, and 34.3% of those that achieved CP. Fitting a logistic regression
achieved similar, albeit not identical, results. There was a significant interaction between age of the female
partner and the treatment allocated.

Table 18 gives the table of coefficients for the final model in which non-significant terms were dropped.
Individually, female age followed by PICSI + female age were the strongest predictors for miscarriage and
PICSI alone was also highly predictive.

With the interaction term it is difficult to interpret the coefficients of the logistic regression specified by
Table 17. Therefore, Table 19 gives examples for couples for whom the female partner is either 30 or
37 years of age and the treatment is either ICSI or PICSI.

Note from Table 19 the clear advantage of PICSI for older women once CP had been established.
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y = 0.69
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y = 0.897
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n = 300

y = 0.877
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y = 0.731

Age_analysis_f
p < 0.001
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p = 0.038
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Age_analysis_f
p = 0.004
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≤ 34 > 34

≤ 37 > 37

PICSI ICSI

FIGURE 16 Classification tree for live birth outcome among clinically pregnant women in the HABSelect
cohort (n= 972).
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The fitted models within the mechanistic cohort for miscarriage dropped all terms relating to the assays.
As a consequence, it was possible to use the full trial data set to provide greater power for the models by
using more couples. Characteristics of the 2766 HABSelect trial participants are provided in the trial report
and are not replicated here. However, the characteristics of couples achieving CP are shown in Table 19.

A classification tree and a logistic regression were fitted as before and the final models are presented in
Figure 16 and Table 20, based on 972 clinically pregnant couples. The classification tree and the logistic

TABLE 19 Table of percentages of miscarriage for the model specified in Table 18

Trial arm

Female aged (%)

30 years 37 years

ICSI 13.0 33.5

PICSI 12.7 11.8

TABLE 20 Baseline characteristics for those couples achieving a CP

Characteristic

Outcome

p-valueMiscarriage Live birth

Number 156 816

Male partner

Age (years), mean (SD) 36.85 (5.63) 35.37 (5.18) 0.001

White, n (%) 121 (77.6) 642 (78.7) 0.839

BMI, mean (SD) 26.62 (3.41) 27.39 (4.48) 0.195

Alcohol units, mean (SD) 7.66 (6.43) 7.93 (6.74) 0.725

Sperm concentration (× 106/ml), mean (SD) 25.82 (31.71) 23.08 (32.60) 0.107

Sperm volume (ml), mean (SD) 2.86 (1.60) 2.97 (1.53) 0.416

Motility (%), mean (SD) 40.22 (18.45) 39.79 (19.98) 0.816

Female partner

Age (years), mean (SD) 34.63 (4.39) 32.88 (4.02) 0.001

White, n (%) 115 (73.7) 652 (79.9) 0.104

BMI, mean (SD) 24.43 (3.43) 24.57 (3.47) 0.641

Alcohol units, mean (SD) 4.85 (3.27) 5.08 (4.39) 0.652

Previous fertility treatment, n (%) 52 (33.3) 215 (26.3) 0.090

Previous natural pregnancy, n (%) 34 (21.8) 194 (23.8) 0.666

Previous miscarriage, n (%) 20 (12.8) 111 (13.6) 0.893

FSH level, mean (SD) 7.14 (2.73) 7.02 (2.02) 0.596

AMH level, mean (SD) 25.80 (20.82) 24.49 (17.49) 0.523

Number of blastocysts, mean (SD) 1.45 (0.51) 1.40 (0.53) 0.368

Assays

HBS, mean (SD) 78.59 (20.69) 72.58 (25.86) 0.021

Allocated PICSI, n (%) 60 (38.5) 425 (52.1) 0.002

SD, standard deviation.
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regression with the trial data reflect the findings from the mechanisic study. Among those who achieved
CP, there was a statistically significant interaction between the allocation to treatment and the age of the
female partner. The coefficients from Table 11 can be interpreted more easily by first considering the
treatments, ICSI and PICSI. With ICSI, there was a decrease in the probability of live birth with age given
by the coefficient –0.165. When PICSI was the treatment, the interaction coefficient 0.125 to the age
coefficient giving a decline with age as only –0.040.

Mechanistic conclusions

In the original design of the mechanistic work, HBS linked the assays of DNA integrity and sperm
physiology with the clinical trial outcomes using SEM. Hence, the finding that HBS was strongly associated
with several indicators of male fertility, including sperm concentration and motility, was reassuring as were
the associations between HBS and DNA fragmentation, compaction and fertilisation rate. HBS, however,
alongside all measures of DNA integrity, was uninformative with regard to miscarriage or any other clinical
outcome except CP, where compaction was a discriminator, particularly among younger women. Like the
clinical analysis, the mechanistic analysis indicated that PICSI was protective against miscarriage and that
female age was the strongest indication for PICSI efficacy in this regard. The data also showed that PICSI
had a small, but significantly negative, impact on fertilisation rates (see Chapter 5, General summary).
Although DNA compaction had an influence on CPR, the data were inconclusive in establishing the modus
operandi for the beneficial effect of PICSI. The exploratory finding in relation to female age should also be
treated with caution but could be studied further as it may have implications for service delivery in future.

RESULTS (MECHANISMS)
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Chapter 5 General discussion and conclusions

General summary

HABSelect was designed first and foremost to test whether or not a HA-based sperm selection system
embodied by the PICSI dish could improve live birth outcomes (its primary outcome measure). The study
included both clinical and mechanistic components that returned overlapping results. The trial itself
demonstrated little evidence for an increase in term LBR with PICSI. The 95% CI for the difference in the
proportions of couples with a full-term live birth between the PICSI and ICSI arms was –1.1% to 5.5%. For
secondary outcomes, the miscarriage rate was significantly reduced in the PICSI arm but no other outcome
measure was associated with the intervention.

Mechanistic analysis showed that PICSI had a negative effect on fertilisation rates, which, despite being
negated by the expediency of producing multiple embryos, warrants further attention. With regard to the
mechanistic underpinning of these outcomes and their progressive developmental context, it was found that
higher levels of DNA compaction were associated with conversion of a chemical pregnancy to a CP (regardless
of trial arm). The mechanistic analysis showed that female age was the main driver of subsequent miscarriage
risk, with PICSI affording some measure of protection. However, although the results of subgroup analysis,
carried out as part of the clinical analysis, did not rule out differences in treatment effect by female age, it did
not find conclusive evidence that the effect of PICSI on miscarriage differed by female age. Causes of the
miscarriages were undetermined but may have arisen from already understood complications of development,
including fetal aneuploidy.87,88 We could not establish a link between DNA fragmentation and pregnancy
failure. This failure may have been due to the use of processed sperm throughout the study. However, higher
sperm DNA compaction, as determined by AB staining, was weakly associated with CP and HBS was strongly
predictive of fertilisation rates.

Clinical trial outcomes

HABSelect found no evidence of differences in full-term LBRs or CPRs, but the same data paradoxically
indicated that PICSI helped avoid miscarriage. These seemingly contradictory findings are reconcilable.
Absolute risk differences between PICSI and ICSI (per couple randomised) for full-term live birth and
miscarriage were more or less equal and opposite (2.2% for full-term live birth; –2.7% for miscarriage).
Miscarriage was a relatively uncommon outcome (7.0% in the ICSI group), so the risk difference is more
precisely determined (the CI was narrower) for miscarriage than for full-term live birth, thus accounting for
its greater statistical significance. Within the limits of confidence observed in this trial, it is possible, for
example, that even with a reduction in the number of miscarriages, PICSI led to fewer clinical pregnancies
and, therefore, no improvement in LBR.

The HABSelect clinical trial should be seen in the context of its time. Success rates for combined IVF/ICSI
procedures in the UK in 2008 (the most recent data available at the time of trial planning were from 2006)
averaged 24% per treatment cycle started (all ages3). The most recent data for all UK IVF (HFEA 2014
data4) reported an increase in LBR per cycle started (fresh eggs) to 26.5%. A 22.2% LBR per embryo
transfer was also reported4 (includes IVF and IVF/ICSI). These are modest improvements since HABSelect
commenced work. The equivalent figures for LBR from HABSelect were 26.3% per couple (PICSI 27.4%,
ICSI 25.2%) and 20.3% per embryo transfer (PICSI 21.4%, ICSI 19.2%). The miscarriage rate (per CP) is
estimated at 12–15%89 and in HABSelect, the rate overall was 15.9% (PICSI 12.3%, ICSI 19.6%). With
respect to LBR, therefore, HABSelect reported similar outcomes to the current UK service as a whole.4 The
fertilisation rate (number of 2PN zygotes per injected egg) in HABSelect was 67.8%, also reflecting the UK
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service although rates overall were lower with PICSI (66.6%) than with ICSI (69.0%). See Chapter 4,
Mechanistic conclusions, for more details.

HABSelect was a study focusing on full-term LBRs. It did not restrict its recruitment strategy to just male
infertility, which, with respect to discriminating between the female and male factors in the ART context,
remains challenging. We can be reasonably confident that 20–40% of human infertility is attributable
to a male factor that is either identifiable (such as obstructive or non-obstructive azoospermia) or in an
estimated 30% of all cases, has no obvious cause (idiopathic90). Of the 74% or so of cycles started that
fail to produce a live birth outcome, a significant proportion will arise from pregnancies that are non-viable
because of a female and/or male genomic factor, such as aneuploidy, estimated from a recent review of
390 German cases in which the frequency of aneuploidy was 61%.91 Furthermore, HABSelect’s relatively
permissive inclusion criteria for females would be unlikely to rule out female factors altogether, indicating
that a female effect on trial outcomes was also possible. ICSI itself was serendipitously introduced to treat
male infertility92 and its overall success has paradoxically led to far wider adoption such that, in 2017,
many clinics located in regions of the world where regulation of the industry is less developed are reducing
IVF and expanding ICSI cycles for treatment that does not necessarily require it.93,94

Of course, ICSI bypasses natural barriers to fertilisation that might otherwise prevent a defective sperm
from fertilising the egg, placing some considerable responsibility on the embryologist charged with the
task of selecting sperm for injection. In this regard, most clinics, wherever practical, will process raw semen
samples to remove (as far as possible) immature, abnormal or damaged sperm and then subjectively use
their learned understanding of sperm viability to make the right choice. Preparation, however, often leads
to some enrichment of a viable population but may not necessarily exclude damaged sperm altogether.95,96

As indicated in Chapter 1, damaged sperm includes cells where the paternal genome may be compromised
because of poor DNA integrity arising iatrogenically during sample processing (increased fragmentation)
or because of intrinsic abnormalities with chromatin packaging that originate within the reproductive tract
(abnormal compaction97–99). Such sperm may behave normally in density gradients and appear ‘normal’ by
the usual measures of progressive motility and morphology, and so may not be disregarded by the practising
embryologist. Non-subjective sperm selection for ICSI, therefore, is of considerable interest to ART practitioners
if it can be shown to improve outcomes over and above that routinely achieved by the clinic. In this regard,
sperm selection based on HAB had garnered sufficient interest in the ART community to be introduced, and/or
experimentally tested in a number of settings including trials of efficacy that led ultimately to HABSelect.48,100–103

Two commercially developed and available products with different modalities, but both employing HA,
have been reported to date. The simpler, liquid state, process uses a highly viscous, soluble form of HA
[Sperm Catch (Nidacon, Gothenburg, Sweden) and Sperm Slow (Origio)], which slows mature, motile
sperm sufficiently for capture. These products are marketed as a viable and more physiological alternative
to PVP although Sperm Slow is not considered as simply a passive retardant of sperm motility.70 The other
product (PICSI) is a solid-state platform formed from HA bonded physically to a plastic surface. PICSI utilises
the physiological interaction and binding of motile sperm to the HA with the embryologist choosing only
interacting sperm for subsequent injection; as such, PICSI cannot currently be considered as equivalent to
or interchangeable with the viscous liquid HA methods. The binding conditions help to ensure that only
motile sperm with high vitality are used for ICSI and the available research data on the properties of
HA-binding sperm support this modus operandi.49,104–107

HABSelect had to make use of a UK- and MHRA-registered product/procedure in the clinical context, and
although solid or liquid-based products could have been used, PICSI was chosen because it was thought
to be more physiologically relevant to the natural sperm–HA solid-state interaction that takes place in
the female reproductive tract and because it was more straightforward to train operatives in its use to a
uniform standard among multiple clinics. PICSI had also been more widely reported in the context of CPR
and miscarriage.57,72,108 In any event, the effects being investigated and reported were from sperm binding
to HA (in the intervention arm). It was not a test of the product itself.
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The clinical aspects of HABSelect constituted the largest trial of a HA-based sperm selection process
conducted to date, with 2772 couples randomised equally into either the intervention (PICSI) or standard
control (ICSI) arm. Clinical practice over 16 independent participating centres, alongside the need to
make participation as straightforward as possible, led us to permit clinics to continue using their usual
(normally PVP) sperm-holding procedure for the control and intervention arms. This strategy at first sight
is at variance to the stated intention of our original objective 1 (see main protocol71), which described
PICSI as a substitute for PVP. In practice, however, embryologists routinely transfer the sperm they collect
under the microscope into ‘holding’ PVP prior to tail breakage and are more comfortable doing so. In
hindsight, although there is no good evidence for PVP toxicity, this concession eliminated a potentially
selective advantage in just one arm of excluding PVP that may have confounded interpretation of
the outcomes.

In the final analysis, PICSI registered a small but not statistically significant increase in LBR at ≥ 37 weeks’
gestation of 2.2%, from 25.2% to 27.4% of cycles (OR 1.12, 95% CI 0.95 to 1.34; p = 0.18). The only
other trial of similar size57 did not report LBR; however, in a trial of PICSI with 200 couples, Mokánszki
et al.108 reported an overall 3% improvement in LBR of 45% (PICSI) versus 42% (ICSI) cohorts, which was
similar to our outcome and also not significant. However, following stratification of couples by HBS, a wider
and statistically significant increase in LBR from 27% (ICSI) to 49% (PICSI) was reported in their ≤ 60% HBS
subgroup.108 A substantial but non-significant obverse rise in LBR from 42% (PICSI) to 58% (ICSI) was also
noted in the > 60% subgroup, suggesting that HA was beneficial to couples if the male had a poorer initial
semen profile but unhelpful or possibly even detrimental to those with a more normal semen profile
(also suggested by Worrilow et al.57).

The data presented here from this current trial on the reduction in miscarriage in relation to HBS within
the PICSI arm agree with the Worrilow et al.57 findings. The significantly raised LBR reported by Mokánszki
et al.108 was likely to have been caused by the mode of reporting as a percentage of clinical pregnancies
rather than cycles and in this regard, unlike HABSelect, the CPR rate for this study was significantly higher
in the PICSI cohort, irrespective of HBS. The studies by Worrilow et al.57 and Mokánszki et al.108 used HBS
stratification to help determine how couples were treated, with the latter including only couples with an
initial lower HBS in the PICSI arm and not randomising to treat. Both studies reported significant decreases
in miscarriage.

HABSelect neither stratified couples by HBS before randomisation nor allocated them for randomisation by
HBS. The idea was to avoid introducing a potential bias arising from preselection of couples on this basis.
HABSelect also scored prepared (processed) rather than unprepared (liquefied ejaculate) samples. Despite
processing, where better populations of sperm would be expected, samples could still be stratified by HBS
with a score of < 25% binding forming the smallest subcategory, > 65% binding, by far the largest, with
an intermediate subcategory (> 25% and ≤ 65% binding) having an intermediate number of couples.
Unlike Worrilow et al.57 and Mokánszki et al.,108 with equivalent subcategories, where benefits of PICSI
seemed to lie with couples having a lower HBS, subgroup analysis of our primary outcome found no
significant differences between PICSI and ICSI arms for any of the HBS subcategories. There was also no
statistically significant association between HBS and miscarriage rates in HABSelect, although numbers in
the intermediate and low scoring groups were too low for statistical accuracy. As with Worrilow et al.,57

a trend for PICSI favouring those with low HBS was also apparent.

A more recent study randomising 156 couples into PICSI or ICSI arms109 reported no differences in CPR or
LBR but a statistically non-significant reduction in miscarriage in the PICSI cohort was reported. The relatively
small sample size may have hindered statistical testing. HABSelect, together with the Worrilow et al.57 and
Mokánszki et al.108 studies, and the smaller studies described above,70,108–110 are therefore either unsupportive or
ambiguous with regard to a beneficial effect of PICSI on live birth outcomes, but they are in greater agreement
on the reported reduction in miscarriage, one of the most devastating outcomes for an expectant couple.
With the exception of HABSelect and Worrilow et al.,57 sample sizes were too low for good confidence and/or
randomisation was not part of the protocol. The number-needed-to-treat111 value for preventing miscarriage in
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HABSelect was 37 participants, which was low enough to consider PICSI under certain circumstances even
with the attendant reduction in fertilisation rates.

Mechanistic outcomes

Introduction
HABSelect was designed to shed light on the relationships between clinical outcomes and indicators of
sperm quality including HBS and DNA integrity, the latter measured by assays of two key variables of DNA
integrity, namely fragmentation [AO, alkaline comet (AC) and TUNEL] and compaction (halo and AB). As
with the comet assay, halo is based on decondensation of sperm chromatin78 but retains the architectural
relationship between the condensation or compaction state by reference to the halo area and the ratio of
the halo to nucleoid area. Hence, halo can be argued as overlapping and linking the two variables. We
made this assumption with our SEM (see Figure 14), which was used to integrate the associations between
our clinical and mechanistic outcomes followed by classification tree and linear regression analysis aimed at
identifying specific effects. HABSelect was unique in bringing together multiple assays in a single study and
attempting to link them with clinical outcomes in this way. We found that HBS was associated with both
variables, with physiological aspects of sperm vitality and with fertilisation rates, but only DNA compaction
showed a weak association with a clinical outcome (CPR). PICSI allocation reducing and older females
increasing the risk of miscarriage were by far the strongest outputs of the classification tree and regression
analyses. Hitherto, inferences on these relationships relied on small distinct studies and cohorts or on
their systematic review and meta-analysis.14,15,36,112 In the original SEM, HBS linked DNA integrity with
clinical outcomes and, as HBS is thought to be a useful pre-treatment screening test, it is worth further
consideration in its own right.

As indicated by the increase in forward progressive sperm motility to within WHO reference values following
sample preparation,5 HABSelect confirmed that processed samples contained a more homogeneously viable
population of sperm than would be expected in raw semen. Indeed, both HABSelect and Worrilow et al.57

reported similar proportions of HBS (≥ 65%) at 72% and 74%, respectively, in their processed samples.
These and data from elsewhere104 indicate that sample preparation by DGC enriched for a ‘better’ sperm
population that is more able to bind HA. Indeed, the anticipated correspondence between HBS and markers
of sample/sperm quality was confirmed for both original sample sperm concentration and for prepared
sample progressive forward motility. At an individual assay level, HBS correlated with some measures of sperm
DNA integrity, with TUNEL providing the highest level of correspondence, followed by AO and comet assays.
Our findings on the relationships between HBS and sperm concentration and motility agreed with those of
Mokánszki et al.108 and Worrilow et al.57 and we can reasonably assume, therefore, that, despite the limited
sample size with data for all assays (n = 131), the associations we uncovered between sperm vitality and DNA
integrity could be extended to these and other studies that examined their relationship with HBS.49,70,104,113

In the spirit of the SAPm (see Report Supplementary Material 2), which sought to explore mechanistic
outcomes in relation to clinical outcomes, results are discussed in developmental order and context.

Fertilisation
Having shown that HBS correlated (albeit weakly) with the assays of DNA integrity, their poor correlation
with each other was noteworthy. The most likely explanation is that the assays measured different forms
of DNA integrity from double-stranded DNA breaks only (TUNEL114) to both single (AO49) and single/double-
stranded breaks (comet115) and histone retention (DNA compaction, AB116). Few samples, perhaps, display
more than one predominant anomaly, hence the poor interassay correlations. Nevertheless, although HBS
predicted both DNA integrity and sperm viability, regression showed that fertilisation rates were significantly
associated with HBS (increasing), female age (decreasing) and the intervention (decreasing). Considering
that sperm were being directly injected into eggs, it is likely that the main arbiter of successful fertilisation
was gamete quality, which HBS has been shown to predict for sperm relative to their concentration and
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motility.104,106,108 There are disagreements, however, on the assay’s ability to screen for improved clinical
outcomes.117 Fertilisation rates for the trial cohort were similar to the rates reported by Majumdar and
Majumdar109 but lower than those reported by Worrilow et al.57 and by Parmegiani et al.,102 and was
significantly lower in the PICSI arm than the ICSI arm (RR 0.963; p < 0.001). This unwanted PICSI effect was
not restricted to the mechanistic subgroup as it applied to the trial cohort as a whole. There are several
potential explanations. One possibility is that the mechanical act of lifting adherent sperm from the PICSI
plate risked damaging them, perhaps compounded by a toxic effect of PVP.118 However, as sperm tails are
frequently crushed in PVP, this explanation seems unlikely. The longer time taken to complete the PICSI
intervention is also a possible cause. There is certainly no indication that HA is itself toxic to eggs although
the possibility cannot be excluded. When reported,57,108,109 fertilisation rates were not significantly different
between trial arms. It would be interesting to return to those published studies and look again at their raw
data, if available. Our data showed that PICSI selection offered no advantage so early in the developmental
process. Its small but significant inhibitory effect on fertilisation had no bearing on outcomes overall as it did
not affect the numbers of embryo transfers between the two arms.

Clinical pregnancy
HABSelect data broken down by classification tree analysis returned female age as the most significant
discriminator for CP, which was perhaps not surprising in view of the widely acknowledged adverse effect of
female age on reproductive success. Sperm DNA compaction was the second discriminator with a significant
effect on pregnancy rates in the younger age group (44% for poor vs. 64.5% for good compaction).

Human sperm DNA packaging and compaction is achieved predominantly by protamines, although a
small fraction of histones remain, which are thought to package regions of developmental importance.31,33

Several reports have linked excess histones (which AB stains) associated with poor DNA compaction to
poor ART outcomes, related possibly to abnormal relative abundances of the two main protamines found
in human sperm.40,119–121 In a study on 165 semen samples from 90 infertile patients with a high proportion
of oligozoospermia and low motility compared with 75 control donors, Hammadeh et al.122 reported
significantly poorer compaction in the infertile group. Ovári et al.76 reported higher rates of aneuploidy in
poorly compacted sperm. These and other reports have been linked to low sperm maturity in relation to
high cytoplasmic retention, a feature of sperm abnormality.46,123,124 AB was also shown to discriminate
between sperm isolated from native semen (mixed compaction) and sperm pelleted following DGC
(good compaction), similar to the processed sperm used in HABSelect125 (and see Sakkas et al.43 and Torabi
et al.104). In relation to achieving a CP, compaction defects, when relevant, seemed not to be offset by
PICSI, which offered no advantage. With age being the most important discriminator, the most prosaic
explanation for the CPR outcome is that PICSI did not discriminate sperm with packaging defects that were
picked equally between the trial arms. HABSelect is the only prospective study to date reporting on the
relationship between sperm DNA compaction and a clinical outcome in ART.

Miscarriage
Classification tree analysis revealed that female age was the primary predictor of miscarriage (31% in the
> 37 years age group). After age, the allocation was most predicative with PICSI having the lowest rate
of miscarriage (10%). Interestingly, with ICSI, female age was again predictive with a 27% miscarriage
rate in the older (34–37 years) age group compared with 12% in the younger (≤ 34 years) age group.
Regression analysis supported these results. The PICSI effect could not be explained by differences in
DNA compaction or fragmentation at this stage, as these were broadly uninformative and so excluded
from the analysis. Even a wider examination of the miscarriage subgroup within the mechanistic cohort
compared with full-term live births failed to find a significant difference with the assays used. HBS could
not discriminate unambiguously between these later clinical outcomes and measures of sperm DNA
integrity results reflected this finding.
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The failure to establish a link between the trial’s clinical outcomes and sperm DNA integrity (with the possible
exception of CP) begs explanation. HABSelect chose to assay processed, pelleted sperm from post-centrifuged
samples, rather than sperm from the original raw semen as this is one of the most common semen-processing
procedures undertaken by ART clinics worldwide and these sperm represented the population used for
ICSI/PICSI. Pelleted sperm, however, are rarely representative of the original ejaculate population, which
contains a mixed population of viable and non-viable cells including non-germ cells.5 It is not straightforward
to compare our results for DNA integrity assays with those reported by others as they differ greatly with
respect to sperm processing (often not disclosed), assay deployment and even implementation. For these
reasons, systematic reviews with data meta-analyses can be more helpful, although distinguishing clearly
between processed and unprocessed semen samples remains a problem36 and/or data from processed
ejaculates are excluded.126 The most recent and informative meta-analysis, by Cissen et al.,127 of 30 studies
that included sperm chromatin structure assay (comparable with but not equivalent to our slide-based AO
assay), TUNEL, halo and comet assays, reported a poor prediction for CP after IVF or ICSI regardless of sperm
processing and the assay used. An earlier report of Collins et al.128 drew a similar conclusion with reports using
TUNEL and sperm chromatin structure assay.

In retrospect and in relation to the differing miscarriage rates, it might have been helpful, as originally
planned, to have examined a selection of samples taken from the interface regions of post-centrifuged
samples where immature sperm and other non-germ cells accumulate.95 However, owing to time constraints
associated with the clinical imperative, which always (and correctly) came first, it proved logistically impractical
to do so. What the data suggest is that sperm processed for ART by recommended procedures5 are unlikely to
be informative with regard to male fertility by way of sperm DNA fragmentation, probably because processing
effectively removes most of the ‘informative’ sperm from the population. Quid pro quo, HABSelect’s data
appear to confirm the efficacy of semen washing by differential DGC.43,104,129 The data also inform the debate
on the utility of measuring sperm DNA fragmentation in the clinical context, in which disagreements are
common and the issue of the relative merits of different assays as well as their differing reporting criteria
are all contentious.36,83,130–132 The American Society for Reproductive Medicine’s 2013 position paper was
generally not supportive of their introduction to the clinic,133 but others argued that this recommendation
was short-sighted134 or took a softer position, indicating that further research was needed.135,136 The many
meta-analyses of efficacy, some supporting and some not supporting the use of DNA fragmentation assays,
also demonstrate the continuing disagreements and general lack of consensus.15,126,127,137

Limitations

Complete-case analysis
There is a major limitation concerning complete-case analysis.138 For the analyses within the mechanistic
study to be valid, the assumption of missing (data) completely at random needs to hold. Then the subset of
couples for which full data are available will be representative of the whole study. Judgement was required
here. The selection of samples that were sent for assay was a matter of convenience and, although they
came from a randomised cohort balanced (as far as possible) between trial arms, it might not be regarded
as completely random. There were a few samples for which the available volume was either too small or
had too few sperm, restricting the number of assays that could be carried out. In these cases, assay choice,
as far as practicable, followed the hierarchy of sampling (see Figure 5) but was somewhat haphazard and
might be regarded as non-random. There does, however, remain the issue that some bias might have been
introduced by using complete-case analysis only because it limited the sample size for the mechanistic
analysis. No attempt was made to use imputation (i.e. multiple imputation), as the proportion of missing
assay values in the mechanistic analysis was too high (see Appendix 2). When the full trial data were used
for the analysis of live birth versus miscarriage, 972 out of 978 clinical pregnancies were examined so that
the complete-case analysis would not have been influenced by the small number missing.
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Linearity
For the structural equation modelling, which defined fragmentation and compaction as latent constructs,
the linearity of the assay results was assumed. That is each of the assays was assumed to increase linearly
with fragmentation and/or with compaction. Graphical plots revealed that this assumption was justified,
and exploration with splines revealed that linear terms alone were sufficient given the marked scatter in
the relationships. Had the assays been less noisy, then inclusion of non-linear terms might have changed
how fragmentation and compaction were defined in all subsequent analyses. The regressions for
fertilisation, CP and miscarriage/live birth also assumed linearity of the terms for age, HBS, fragmentation
and compaction. The classification trees offer a way to check the validity of these assumptions. As there
was close agreement from two separate analytical approaches, the linearity assumptions were supported.

Mechanistic summary

The mechanistic analysis explored different stages of the developmental process outside a formal
hypothesis-testing framework and found potential contributions of sperm DNA compaction, HBS,
allocation and female age to clinical outcomes. There could have been bias, but, from the complete-case
analysis and from the assumptions of linearity, there were differences in the populations studied at each
developmental stage of the process (the trial itself considered only the process as a whole), and different
outcomes were used. In agreement with two earlier studies,57,108 significantly and substantially reduced
miscarriage rates were reported. One small study reported no protective effect110 and another reported
no efficacy with any clinical outcome.109 Sperm HBS has been reported to be associated with markers of
sperm viability, including concentration and motility,108 as was the case with HABSelect. Similarly, most
reports indicate that HA-selected sperm are more viable in terms of lower levels of DNA fragmentation,
higher levels of compaction and normal morphology,29,49,55,56,102,139 with one study reporting a lack of
association with morphology examined by high-powered magnification.108 HABSelect was the first
sufficiently substantial study to attempt a linkage between the clinical outcomes reported previously, with
the improved DNA integrity status reported of the sperm in several of those same studies.48,102,139 We were,
however, unable to detect a significant difference between clinical outcomes (including miscarriage) and
any aspect of sperm DNA integrity, except DNA compaction, which was weakly predictive of CP. However,
work on HABSelect sample mechanistic analysis is still ongoing and future updates can be expected.
Our compaction results accord with several studies using or reporting AB staining.116,125,140–142 In a recent
meta-analysis, which included many of the original studies reported here, Beck-Fruchter et al.112 concluded
that routine application of a HA binding step in ICSI was not warranted as it did not influence clinical
outcomes. Miscarriage, however, was not considered.

The influence of sperm DNA fragmentation on miscarriage rates in ART is controversial, with a consensus
for a deleterious effect on IVF but less so for ICSI.14,15,36,126,137 The positive effect of PICSI may have been
related to sperm DNA integrity, but the residual samples used to test this possibility were generally
uninformative, a factor that alongside the use of swim-up sperm, which also have improved measures of
DNA integrity,143 may have affected other studies reporting similar findings with ICSI.36,137 We can speculate
that if miscarriage-related DNA integrity was indeed the compromising feature reduced or removed by
PICSI selection and the processed samples were incompletely cleared of these compromised sperm, they
may have been present, but in insufficient numbers to affect the DNA integrity scoring overall. Moreover,
samples tested for mechanisms may not have included the clinically poorest, as these would have been
entirely spent by the treatment and so unavailable for subsequent analysis. Unfortunately, it is not currently
possible to test for DNA integrity the same sperm that are used for ICSI. Another consideration is that the
freezing protocol used in HABSelect was non-optimal in that the cryoprotectant (SpermFreeze, Origio)
was added to prepared rather than neat semen. Considering the wide range of values we obtained with
most assays in HABSelect, we believe that any iatrogenic damage caused by a freeze–thaw cycle had only
a minimal effect on DNA integrity.144 Nonetheless, we think future studies should consider examining
original, unprocessed ejaculates (fresh or frozen–thawed).
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HABSelect final conclusions

The HABSelect trial found little evidence for an effect of PICSI on full-term LBRs, strong evidence for reduced
miscarriage rates and no differences in either CPRs or preterm live births. The clinical analysis also included a
predefined interaction term designed to investigate differences in treatment effect according to age. There
was little evidence, however, supporting a difference in treatment effect on full-term live birth by age group.

Based on the results of HABSelect, where there was insufficient evidence to conclude an improvement in
the primary outcome, further studies are required to confirm the differences in miscarriages found in this
trial and to determine whether or not they can lead to corresponding improvements in LBRs. The mechanistic
analysis indicated that PICSI preferentially benefited older women (≥ 35 years), who are a rising demographic
in ART and made up 45% of HABSelect’s study population. In order to provide more conclusive evidence
for this effect, future work might be advised to more formally explore the interaction between age and
treatment in clinical outcomes of ART among older couples.

GENERAL DISCUSSION AND CONCLUSIONS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

50



Acknowledgements

Clinical embryology

On behalf of the HABSelect grant holders and associated coinvestigators, we would like to thank the
following for supporting the HABSelect study.

Dr Karen Thompson, for Leeds Fertility, Seacroft Hospital, Leeds Teaching Hospitals NHS Trust.

Dr David Wells for the Aberdeen Fertility Centre, The Aberdeen Maternity Hospital.

Dr Gregory Horne for the Department of Reproductive Medicine, Old St Mary’s Hospital, Central
Manchester University Hospitals NHS Foundation Trust.

Dr Bonnie Collins for the Centre for Reproductive Medicine at Barts and the London NHS Trust.

Dr Kathryn Whalley and Mrs Ellen Drew for The Assisted Conception Unit, Ninewells Hospital,
NHS Tayside, Dundee.

Dr Jane Blower, for the Leicester Fertility Centre, Leicester Royal Infirmary.

Dr Arasaratnam Srikantharajah, for the Homerton Fertility Centre, Homerton University Hospital NHS
Trust, London.

Professor Geraldine Hartshorne and Mr Ben Lavender for the Centre for Reproductive Medicine, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry.

Ms Rebecca Lunt for The Hewitt fertility Centre, Liverpool Women’s Hospital NHS Foundation Trust.

Dr Marta Jansa-Perez for the Wolfson Fertility Centre, Hammersmith Hospital, London.

Dr Karen Turner and Dr Aysha Bevan for the Oxford Fertility Unit.

Mr Kevin McEleney for the Newcastle Fertility Centre at Life.

Dr Sue Pickering for the Edinburgh Fertility and Reproductive Endocrine Centre, Edinburgh Royal Infirmary.

The Embryology team at Sheffield Hallam.

The Embryology team at Birmingham Women’s Fertility Clinic.

Virgina Bolton at the Guy’s and St Thomas’ NHS Trust.

The technical support teams: Leeds, Birmingham and Belfast

University of Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK. Riitta Partanen (halo),
Forough Torabi (AO), Alex Hargreaves (AB).

Birmingham Women’s Fertility Centre, Birmingham Women’s and Children’s NHS Foundation Trust,
Birmingham, UK. Lorraine Frew (TUNEL), Sofia Tsagdi (TUNEL).

DOI: 10.3310/eme06010 EFFICACY AND MECHANISM EVALUATION 2019 VOL. 6 NO. 1

© Queen’s Printer and Controller of HMSO 2019. This work was produced by Kirkman-Brown et al. under the terms of a commissioning contract issued by the Secretary of State
for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in
professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial
reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of
Southampton Science Park, Southampton SO16 7NS, UK.

51



Queen’s University, Belfast and Examen Ltd, Belfast, UK. Rachael Hutton (comet and AB),
Martin Lawlor (comet and AB).

Recruitment and consenting

Pauline McBeath for the Aberdeen Fertility Centre.

Alli Rossie and Lilith Loncke for the Centre for Reproductive Medicine, Barts and the London NHS Trust.

Chloe O’Hara, Paula Trinham and Fiona Beale for the Birmingham Women’s Hospital.

Debbie Bullen and Fiona Oldfield for the Coventry Centre for Reproductive Medicine.

Evelyn Barrett for Assisted Conception Unit, Ninewells Hospital, Dundee.

Sara Barnett for the IVF Unit at Hammersmith Hospital, London.

Merve Dilgil for the Homerton Fertility Centre, Homerton Hospital, London.

Julie Glanville for the Leeds Centre for Reproductive Medicine.

Catherine Clarkson and Caroline Bushby for the Leicester Fertility Centre.

Deborah Coppin (Stephenson), Cathy Bowles and Viv Sutton for the Hewitt Fertility Centre, Liverpool.

Claudette Wright, Lucy Dwyer and Stephanie Bateman for The Department of Reproductive
Medicine, Manchester.

Elizabeth Taylor, Fiona Newton, Kirstin Johnson for the Centre for Reproductive Medicine and Fertility, Sheffield.

Ginny Mounce for the Oxford Fertility Unit.

Kayleigh Lennox, Maria Nesbitt and Allison Simpson for the Newcastle Fertility Centre.

Jane Clarke for the Edinburgh Fertility and Reproductive Endocrine Centre.

The HABSelect team would also like to thank Maggie Shergill at the National Institute for Health Research
(NIHR) for her enthusiastic and ever-helpful support of our efforts while she was our project and liaison
officer with EME.

Contributions of authors

Dr Jackson Kirkman-Brown (Mechanistic Lead) was instrumental in helping to draft the original proposal
to NIHR EME, instrumental to the study design and conduct of the mechanistic work at Birmingham and to
the HABSelect trial overall and he also contributed to the final report.

Professor Sue Pavitt (Trials Support Lead) was closely involved in the trial design and helped to write the
protocol as well as bringing the HABSelect team and health service professionals together. She also
contributed to and commented on the final report.

ACKNOWLEDGEMENTS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

52



Mr Yacoub Khalaf (Clinical Lead) provided invaluable advice on all clinical aspects of the HABSelect trial
design, including continual advice and feedback as the trial progressed and during the writing up of its key
clinical outcomes, and also contributed to the protocol design and the final report.

Professor Sheena Lewis (Mechanistic Lead) was instrumental in helping to draft the original proposal to
NIHR EME, instrumental to the study design and conduct of the mechanistic work at Belfast and to the
HABSelect trial overall. She also contributed to the final report.

Dr Richard Hooper (Lead Clinical Statistician) was involved in the statistical planning and analysis for
clinical trial aspects of HABSelect and also contributed to the final report.

Professor Siladitya Bhattacharya (Clinical Lead) provided invaluable advice on all clinical aspects of the
HABSelect trial design, including continual advice and feedback as the trial progressed and during the
writing up of its key clinical outcomes, and also contributed to the protocol design and the final report.

Mr Arri Coomarasamy (Clinical Lead) provided invaluable advice on all clinical aspects of the HABSelect
trial design, including continual advice and feedback as the trial progressed and during the writing up of
its key clinical outcomes, and also contributed to the protocol design and the final report.

Mrs Vinay Sharma (Clinical Lead) assisted with the protocol development for HABSelect and commented
on the final report.

Professor Daniel Brison (Science Advisor) as a senior advisor on clinical embryology helped draft the
original proposal to NIHR EME programme and was involved in the design of the follow-up protocol and
to the final report.

Dr Gordon Forbes (Clinical Statistician) was involved in the statistical planning and analysis for clinical trial
aspects of HABSelect and also contributed to the final report.

Professor Robert West (Mechanistic Statistician) was involved in the statistical planning and analysis for
the mechanistic aspects of HABSelect and also contributed to the final report.

Professor Allan Pacey (Scientific Advisor) provided professional and media-level support to HABSelect
from the outset, including trial and protocol design, and offered critical reading of the final report.

Mrs Kate Brian (Patient Public Involvement Representative) helped with the initial trial design for the study
as both a patient participant and key interface with Infertility UK, one of the main advocates representing
patients’ interest in fertility treatment. Mrs Brian also worked closely with and fed back to the Trial
Steering Committee.

Ms Rachel Cutting (Embryology Advisor) was involved in designing key aspects of the trial protocol,
including case reports and standard operating procedures. Dr Cutting represents the main body of
embryologists working with HABSelect and without whom the study would not have been possible.

Dr Virginia Bolton (Consultant Embryologist) made a substantial contribution to the clinical research
effort with over one-quarter of all couples treated under her guidance and jurisdiction.

Dr David Miller (Chief Investigator) was responsible for the original idea behind HABSelect and for drafting
the final report and associated materials and was responsible overall for the conduct and management
of HABSelect.

DOI: 10.3310/eme06010 EFFICACY AND MECHANISM EVALUATION 2019 VOL. 6 NO. 1

© Queen’s Printer and Controller of HMSO 2019. This work was produced by Kirkman-Brown et al. under the terms of a commissioning contract issued by the Secretary of State
for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in
professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial
reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of
Southampton Science Park, Southampton SO16 7NS, UK.

53



Publications

Torabi F, Binduraihem A, Miller D. Sedimentation properties in density gradients correspond with levels of sperm
DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid. Reprod Biomed Online
2017;34:298–311.

Torabi F, Bogle OA, Estanyol JM, Olivia R, Miller D. Zona pellucida-binding protein 2 (ZPBP2) and several
proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties.
Mol Hum Reprod 2017;23:803–16.

Miller D, Pavitt S, Sharma V, Forbes G, Hooper R, Bhattacharya S, et al. Physiological, hyaluronan-selected
intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised
trial. Lancet 2019;393:416–22.

Data-sharing statement

All data requests should be submitted to the corresponding author for consideration. Access to available
anonymised data may be granted following review.

ACKNOWLEDGEMENTS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

54



References

1. Meseguer M, Santiso R, Garrido N, García-Herrero S, Remohí J, Fernandez JL. Effect of sperm DNA
fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril 2011;95:124–8.
https://doi.org/10.1016/j.fertnstert.2010.05.055

2. National Institute for Health and Care Excellence (NICE). Fertility Problems: Assessment and
Treatment. NICE; 2017. URL: www.nice.org.uk/guidance/cg156 (accessed 2017).

3. Human Fertilisation and Embryology Authority (HFEA). A Long Term Analysis of the HFEA Register
Data 1991–2006. London: HFEA; 2008.

4. Human Fertilisation and Embryology Authority (HFEA). Fertility Treatment 2014: Trends and
Figures. London: HFEA; 2016.

5. World Health Organisation, Department of Reproductive Health and Research. WHO Laboratory
Manual for the Examination and Processing of Human Semen. Geneva: WHO Press; 2010.

6. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity,
DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 2001;75:674–7.
https://doi.org/10.1016/S0015-0282(00)01796-9

7. Simon L, Lutton D, McManus J, Lewis SE. Sperm DNA damage measured by the alkaline comet
assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril
2011;95:652–7. https://doi.org/10.1016/j.fertnstert.2010.08.019

8. Gu LJ, Chen ZW, Chen ZJ, Xu JF, Li M. Sperm chromatin anomalies have an adverse effect on
the outcome of conventional in vitro fertilization: a study with strictly controlled external factors.
Fertil Steril 2009;92:1344–6. https://doi.org/10.1016/j.fertnstert.2009.03.031

9. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy.
Cell Tissue Res 2005;322:33–41. https://doi.org/10.1007/s00441-005-1097-5
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Document date
Version
number

Details of amendment
(section of the document)

Amendment number/type
(minor/substantial)

Date approved by

Date implementedREC R&D

24 June 2013 1.1 NA NA NA NA Study start

4 February 2014 2.0 Main eligibility criteria:

l FSH/AMH levels
l Female BMI

Substantial amendment/
4 February 2014

14 March 2014 21 April 2014 21 April 2014

25 March 2014 3.0 Main eligibility criterion:

l AMH level

Substantial amendment 2.0 29 April 2014 7 May 2014 2 June 2014

10 October 2014 3.1 Collection and storage of the
samples from patients with
chronic viral infections

Non-substantial amendment/
4 November 2014

4 November 2014 Accepted 5 November 2014
(no approval required)

24 November 2014

29 June 2016 4.0 Change of trial co-ordinator
details

Non-substantial amendment 8 7 July 2016 No approval required Not implemented as
superseded by version 5.0

7 September 2016 5.0 Change of PI at the Dundee
site

Non-substantial amendment 9 15 September 2016 No approval required 14 December 2016

8 June 2017 6.0 Addition of sites, change of
contact details and staff
members

Non-substantial amendment 10 29 June 2017 No approval required 8 August 2017

NA, not applicable; PI, principal investigator; REC, Research Ethics Committee; R&D, research and development.

A
PPEN

D
IX

1

N
IH
R
Journals

Library
w
w
w
.journalslibrary.nihr.ac.uk

66



Appendix 2 Mechanistic assays of
deoxyribonucleic acid integrity

Mechanistic assays of DNA integrity for latent (SEM) variable DNA fragmentation (TUNEL, comet AO)
and compaction (AB). Halo area and ratio overlap the two variables. The table indicates the

relationship between samples and the numbers of assays they were investigated with. It shows, for
example, that 131 samples reported data for all available assays and 169 samples reported no data.
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Number of
samples assayed

Assay

Number of
missing assays

Comet
(fragmentation)

TUNEL
(fragmentation) AO (fragmentation) AB (compaction)

Halo

Area
(fragmentation/
compaction)

Ratio
(fragmentation/
compaction)

131 1 1 1 1 1 1 0

76 1 1 0 1 1 1 1

12 1 0 1 1 1 1 1

74 1 1 1 0 1 1 1

137 1 1 1 1 0 0 2

9 1 0 0 1 1 1 2

62 1 1 0 0 1 1 2

26 0 1 1 0 1 1 2

10 1 0 1 0 1 1 2

109 1 1 0 1 0 0 3

3 0 1 1 1 0 0 3

22 1 0 1 1 0 0 3

16 0 1 0 0 1 1 3

113 1 1 1 0 0 0 3

9 1 0 0 0 1 1 3

3 0 0 1 0 1 1 3

14 0 1 0 1 0 0 4

23 1 0 0 1 0 0 4

1 0 0 1 1 0 0 4
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Number of
samples assayed

Assay

Number of
missing assays

Comet
(fragmentation)

TUNEL
(fragmentation) AO (fragmentation) AB (compaction)

Halo

Area
(fragmentation/
compaction)

Ratio
(fragmentation/
compaction)

43 1 1 0 0 0 0 4

22 0 1 1 0 0 0 4

3 0 0 0 0 1 1 4

29 1 0 1 0 0 0 4

12 0 0 0 1 0 0 5

63 0 1 0 0 0 0 5

46 1 0 0 0 0 0 5

10 0 0 1 0 0 0 5

169 0 0 0 0 0 0 6

Total 342 358 654 698 816 816 3684
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Appendix 3 Recruitment and randomisation chart

T rial recruitment timelines from June 2015 through to December 2016. The original recruitment end
date was 28 February 2016 but was extended to 31 December 2016.
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FIGURE 17 Projected recruitment is shown from June 2015, which was ≈12 months in to the trial and shows the
original (green), revised (dark blue) and revised projected adjusted (green dashed), based on extension from
February 2016 to December 2016. The adjustment took account of competing trials [E-Freeze (ISRCTN61225414)145

and Scratch (ISRCTN23800982)146]. HABSelect randomised 2772 couples (light blue), reaching ≈85% power at
alpha 5%.
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Appendix 4 Data Monitoring and Ethics
Committee and Trial Steering Committee composition
(independent members)

Data Monitoring and Ethics Committee

Independent chairperson: Professor Jenny Kurinczuk.

Independent statistician: Mr Paul T Seed.

Independent clinician: Dr Nigel Simpson.

Independent scientist: Darren Griffin.

Trial Steering Committee

Independent chairperson: Professor Nick S. Macklon.

Independent vice chairperson: Ying Cheong.

Independent scientist: Dr Michael Carroll.

Independent statistician: Dr Andrew Povey.

Independent statistician: Dr Stephen Roberts.

Independent embryologist: Jane Cuthbert.

Patient representative: Kate Brian.
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Appendix 5 HABSelect final extension
justification

HABSelect EME Project 11/14/3. Miller et al. – Further justification for a fully funded extension
considering the impact on the mechanistic evaluations.

Preamble

In the extension request to the NIHR EME Board, the focus was on presenting the case for achieving
90% power for the clinical outcome. It became apparent during our recent site visit that the mechanistic
components were likely at greatest risk of not achieving power if the extension was not awarded. The
Board was asked to consider this additional document.

Context

The mechanistic aspects of HABSelect are hypothesis driven and seek to deliver a paradigm shift in advancing
scientific understanding of DNA fragmentation, chromatin compaction and ICSI outcome; that collectively
will yield vital new knowledge that will impact on improving future IVF/ICSI outcomes for male infertility.
Success rate for IVF/ICSI remains at an overall average of 24%, a figure that has not increased since its wider
clinical adoption. HABSelect is the largest world-wide trial undertaken in a regulated assisted conception
setting that incorporates mechanistic evaluation. Both the clinical and scientific communities in the speciality
are aware of the scale of knowledge HABSelect will generate where theories of the impact of DNA
fragmentation will finally and unequivocally be resolved and the knowledge used to guide further innovations
for sperm selection (Figure 18).

The hypothesis under test is that paternal genome integrity (PGI), which is an integration of data on DNA
fragmentation and compaction, is closely linked to clinical outcomes by association. Unlike IVF, in which
sperm with DNA damage ultimately fail to reach or fertilise the egg, the association between PGI and ICSI
LBR outcomes is highly contentious.14,137 This is most likely because of the differing assays used to measure
PGI that vary greatly in both the forms of damage that they detect, their detection sensitivity, specificity and
the relatively small numbers of clinical samples in the studies concerned. HABSelect if fully recruited will be
sufficiently powered to allow, for the first time (to the author’s knowledge), the assessment of many
hundreds of samples using up to six independent measures (dark green shading) and is not hindered by
reliance on any one assay of PGI. HABSelect is therefore the first rigorous study ever conducted that can test

DNA
fragmentation

Chromatin
compaction

Comet

AO

AB

CMA3

Halo

HBS

SEM

Live birth

Miscarriage

Clinical pregnancy

Biochemical pregnancy

FIGURE 18 Integrating clinical with mechanistic outcomes. How HABSelect seeks to link the trial’s clinical outcomes
(blue shading) with the quality of the paternal genome (pale green shading), in relation to the levels of sperm
DNA fragmentation and the compaction of sperm chromatin.
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the hypothesis that sperm from samples with high genome integrity will have better ICSI clinical outcomes
and vice versa. The HBS provides a bridge between the clinical intervention, which uses a MHRA-approved
and CE-certified HA binding platform (PICSI) to select sperm for injection and the outcomes of both the
clinical and mechanistic investigations. The HBS is obtained regardless of intervention arm and it allows us to
make certain predictions that can be confirmed or refuted only by final data analysis.

HABSelect Mechanistic Evaluations on paternal genomic integrity remain highly pertinent to the IVF
scientific community:

1. Sperm DNA fragmentation will be lower and/or chromatin compaction will be greater in samples from
men with higher HBS (> 65% sperm binding).

2. Sperm DNA fragmentation will be lower and/or chromatin compaction will be higher among couples
with live birth at ≥ 37 weeks’ gestation (the primary clinical outcome measure) regardless of the
intervention arm.

3. Live birth at ≥ 37 weeks’ gestation (the primary clinical outcome measure) will not differ for men with
higher HBA scores regardless of intervention arm (PICSI or ICSI).

4. live birth at ≥ 37 weeks’ gestation will be higher for men with lower HBS (< 50% binding) in the PICSI
arm. This may hold true for LBR at earlier gestational ages and for men with intermediate HBS (50–65%
sperm binding).

These predictions assume that paternal genomic integrity is related to HBS.108,147,148 Men with a high HBS
have a greater proportion of sperm in their ejaculate with high genomic integrity and, conversely, men
with a low HBS will have a lower proportion of sperm with high genomic integrity. The clinical trial will
test the hypothesis that prior selection of sperm by HA binding will improve LBR outcomes because PICSI
‘selects’ for those sperm within the ejaculate that have high genomic integrity. The linkage between PGI
and ICSI outcomes should become apparent because of the high number of samples (> 900) that will be
assayed from both trial arms.

Mechanistic evaluation sample size considerations

The original sample size that we need to prove the link between genomic integrity and HBS and, hence,
reveal unequivocally why prior selection of sperm with HA will improve LBR outcomes was originally based
on a logistic regression analysis of the likely relationship between HBS and clinical outcomes and was set at
900 samples or 28% of the minimum sample size for clinical randomisation (3266 couples). The sample
size (informed by Worrilow et al.57) assumed that, at most, one-third of the samples available for analysis
overall would have a lower (≤ 65%) HBS. The Worrilow et al.57 trial stratified only into normal (> 65%) and
low (≤ 65%) sperm binding but demonstrated a statistically significant reduction in miscarriage rate among
the 59 patients in the group with the lower scores. There was no significant reduction in the group with
the higher scores. HABSelect will significantly advance scientific knowledge beyond the Worrilow et al.57

study by its scale permitting the first linking of mechanistic and clinical outcome, notably the mechanism
behind HA efficacy in improving live birth outcomes. HABSelect is powered to sufficiently generate a
n = 900 stratified 1 : 1 : 1 into samples of low (< 50%) to intermediate (50–59%) to high (≥ 60%) sperm
binding. We recognised that the lower (< 50%) HBS stratum would be the most challenging to populate
and it therefore acts as the driver for sample acquisition; this is the group with the poorest PGI and, hence,
the most likely to benefit from the PICSI intervention. HABSelect’s ≥ 900 assayed samples will be sufficient
to determine the effect of PGI on ICSI clinical outcomes (samples leading to or not leading to live birth)
with a > 95% confidence level at ≥ 85% power. It should be borne in mind, however, that, as is the case
with the clinical trial itself, the sample size and power of the mechanistic study depends entirely on the
magnitude of the differences we expect to observe. As this is currently uncertain, it had to be estimated
and the chosen sample size in our case was based on a modest difference of 7% in PGI between successful
and unsuccessful cycles (half that within the DNA fragmentation zone expected for success after multiple
rounds of IVF7). How those data relate to the 1 : 1 : 1 split between low, intermediate and high HBS remains
to be determined in the final data analysis.

APPENDIX 5
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The benefits of supporting and risks of not supporting an extension

As of September 2015, there were 1163 sperm samples in storage, of which 14% (n = 162) had a HBS of
< 50%. Based on our projected randomisation accrual, among ≈2250 samples in storage by December
2016, ≈320 of these will have a HBS of < 50%, meeting our requirements. If recruitment ceases in
February 2016 we anticipate receiving only ≈220 with a HBS of < 50%, and will fail to reach the necessary
n = 300 required in this stratum to reach power. In meeting the demands of a constantly shifting clinical
environment with regard to recruitment and sample accrual, we chose to commence some mechanistic
development at Birmingham earlier than anticipated and to extend its remit. This was because of the need
to establish and normalise the assays for rapid adoption in our other laboratories when sample availability
permitted. We recognised early in the trial that this preparedness would be necessary in the event that time
to process became limiting in view of the delay in sample accrual. We also recognised that, as many samples
would be unsuitable for comprehensive analysis, we could concentrate the effort in three rather than four
centres (Sheffield is no longer a mechanistic centre). The extension therefore covers Birmingham, Leeds and
Belfast and for 10 months each of additional technical support time. Our dynamic response will also meet
the need to obtain HBS for almost 200 samples that were stored without values when the supplier withdrew
the HYDAK slides temporarily. Only the technical support team can obtain the HBS as the samples are
already in storage. In short, if our technical support time is not extended beyond December 2016 (when it is
was originally due to end), we will be unable to process and analyse sufficient numbers of stored samples to
unequivocally link paternal genome integrity with HBS and clinical outcomes.

The appeal to extend based on wider scientific rationale

The broader link between DNA fragmentation and ICSI outcome remains controversial and unresolved,14,137,149

precisely because there has been no study to date with the power to test it unequivocally. Any study of this
nature inevitably has to compromise between power and cost, but alongside answering the clinical question
relating to the efficacy of HA sperm selection for ICSI. However, the technical effort needed to deliver the
answers that the broader scientific community seeks can be realistically achieved only if, as we have outlined
to the Board, a fully funded extension is granted. We appreciate that an extension to achieve mechanistic
outcomes is likely to be unprecedented; but the advancement to the scientific community that this work will
achieve goes well beyond its clinical impact and cannot be understated. The combined IVF and broader
scientific communities eagerly await the HABSelect results.
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Appendix 6 The HABSelect Gantt chart
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