
5 Computational methods for value of information analyses 

(A8) 

Expected Value of Perfect Information (EVPI) 

The formula for EVPI is: 
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where ( , )NB t θ  is the net-benefit function for intervention option t  and input parameters θ . 

EVPI is straightforward to compute given a set of simulations from the joint distribution of θ  

(see for example Welton et al. (2012)).1 

Expected Value of Partial Perfect Information (EVPPI) 

The formula for EVPPI for a subset of focal parameters ϕ , where the non-focal parameters 

are ψ  so { },θ ϕ ψ= : 
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  (A2.1) 

 
EVPPI is more complex to compute, due to the inner expectation in (A2.1). Our net benefit 
function is: 
 

( )( )k k kNB dressingcost + pSSI * SSIcost + SSIQALYloss*WTP= −  

 

To compute ( )EVPPI SSIcost , we can simply “plug-in” the means of the kpSSI to obtain the 
inner expectation (A2.1).2  
 
The SSI risk under intervention k satisfies: 
 

( ) ( )k k Slogit pSSI d dµ= + −  

 

 where µ is the log-odds of an SSI under the reference dressing (Simple, k=S), and  is the 
log-odds ratio of intervention k relative to the reference (Simple, k=S). Therefore, net-benefit 



is a non-linear function of µ  and kd . To find EVPPI( µ ) and EVPPI( kd ), we need to rely on 
a Taylor series approximation to enable us to evaluate the inner expectation (A2.1).2  
 

Expected Value of Sample Information  

The formula for EVSI is:  
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The outer expectation averages over potential new datasets y  that may be collected for given 

study design, based on our current belief of parameters, θ . The inner expectation averages 

over the posterior distribution of parameters θ  given observed data, y , to form an updated 

expected net benefit and optimal intervention given data y .  

EVSI for a trial collecting information on the relative effectiveness of different dressing types 

is computed using the following steps: 

1. Approximate the joint posterior for relative intervention effects (log-odds ratios) 
compared with the reference dressing (Simple, k=S) using a multivariate Normal 
distribution. 

2. Simulate log-odds ratios ( )k Sd d−  from multivariate normal distribution. 

3. Form covariance matrix for likelihood of a new study with sample sizes ( , , , )E S G An n n n  
on each group (E=Exposed, S=Simple, G=Glue, C=Complex). We assume a standard 
deviation for the log-odds on a given group, based on the Cochrane review Simple wound 
dressing groups only, giving an estimated standard deviation, s=3.7 (note this is 
comparable, but more conservative, than the estimate obtained by averaging the standard 
deviation of log-odds ratio’s from the Cochrane review, divided by 2 to obtain estimates 
on log-odds scale, which gave s=3.125). Taking advantage of the linearity of relative 
effects on log-odds scale, and assuming standard deviation on log-odds scale is the same 
for each intervention, it can be shown that the covariance for the likelihood is: 

 

2 2 2

22 2

22 2

( )

( )

( )

S E

S E S S

S G
lik

S S G S

S A

S S S A

s n n s s
n n n n

s n ns sV
n n n n

s n ns s
n n n n

 +
 
 
 +

=  
 
 +  
 

  

 
4. Simulate from a multivariate likelihood: 
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5. Form the posterior for parameters ( )k Sd d−  using multivariate Normal conjugacy.  
6. Find the posterior expected net-benefit given simulated data y . Because the net-benefit is 

linear in SSI costs, the mean for SSIcost  can be plugged into the inner expectation as for 
EVPPI, but the net-benefit function is non-linear in the probability of an SSI, kpSSI , and 
so a Taylor series approximation is necessary to obtain the posterior expected net-benefit 
given data y [Madan et al]2. 

7. Identify the intervention maximising posterior expected net-benefit given y , and save the 
value of expected net-benefit for the optimal intervention. 

8. Average over simulated data-sets  y to obtain: ( )
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  to obtain EVSI. 

We only considered balanced designs in our results, and only considered studies that included 

Simple dressings as one of the groups, since this represents current practice. We explored 

studies with different numbers of groups and different numbers of included interventions by 

setting the sample size of omitted groups to 0.001. Results are presented for total sample size 

which is distributed evenly across the included groups, so all designs are balanced.  
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