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List of abbreviations 

BCT: Behaviour change technique 

DMac: diabetic maculopathy 

DR: diabetic retinopathy 

DRS: diabetic retinopathy screening 

EPOC: Effective Practice and Organisation of Care 

HbA1c: Glycated haemoglobin 

HCP: Health care professional 

HES: Hospital Eye Services 

ONS: Office of National Statistics 

OR: Odds ratio 

QALY: Quality-adjusted life year 

QI: Quality improvement 

RR: Relative risk 

STDR: sight-threatening diabetic retinopathy 

SVA: Snellen visual acuity 
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1.1. Economic model. 

It was not necessary to perfectly reproduce the analysis reported in Scanlon and colleagues1 as our 

objective was to evaluate the cost-effectiveness of interventions to improve DRS attendance. 

However, the essential features of the model are the same as are key assumptions and the interested 

reader is referred back to that report for a detailed description of these. For the same reason, we have 

not reviewed all the assumptions that underpin the Scanlon model. We rely on sensitivity analyses to 

explore the significance of substantial changes to the model. The model compares the different BCT 

and QI components and used evidence from a meta-analyses (and associated estimates of imprecision) 

to estimate their relative effectiveness and costs. The Scanlon model modelled a cohort of people with 

diabetes based on a Gloucestershire Diabetic Eye Screening Service cohort of patients. The cohort 

represented all people within the screening programme. For simplicity, this analysis modelled a cohort 

of patients with the median values of the cohort modelled in the Scanlon model; the median age was 

64. While it is acknowledged that a lot of people will be eligible for a diabetic retinopathy screening 

programme at much earlier ages, a simple approach is required given the objectives and scope of this 

study, which is to identify the QIs and BCTs most likely to be cost-effective. As this age was not 

reflective of people offered DRS it was varied in sensitivity analysis. Diabetic retinopathy disease is 

considered to consist of different stages affecting one or both eyes, and people with diabetic 

retinopathy may progress or regress between them.  

A pictorial representation of the front-end of the model is presented in Figure 1. If an individual 

attends DRS there will be the opportunity to receive treatment, which will result in different costs and 

quality of life than for the individual who did not attend DRS but would have required treatment. An 

intervention to increase DRS attendance increases the probability that an individual will attend 

screening and hence change the health service costs and quality of life. Within the model the health 

outcomes of attending DRS were measured in quality-adjusted life years (QALYs), as this is the 

standard metric for informing the allocation of resources in the NHS in the UK. 

 

 

FIGURE 1. Pictorial representation of the initial stages of the economic model. 
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Model structure and population 

People with DM are assumed to transition between DR states over time. The stages of DR are 

presented in Table 1. Each stage of DR may occur in one eye only or in both eyes. Seven DR states 

are included in the model. These are presented in Table 2 along with their abbreviations. A state 

transition cohort (Markov) model modelled the transition of the cohort between the model states every 

cycle. The cycle length was 6 months. The probabilities of making the transition from one state to 

another every 6 months are presented in Table 3. In the model these probabilities are adjusted to 

account for a probability of dying every 6 months. Individuals who have pre-proliferative or 

proliferative DR in both eyes or diabetic maculopathy in both eyes are assumed to stay in those states 

unless they die. The dead state is an absorbing state as there is no movement from that state.  

The baseline state probabilities and population characteristics are reported in Table 4. The Scanlon 

model modelled a cohort of people with diabetes based on a Gloucestershire Diabetic Eye Screening 

Service cohort of patients. The cohort represented all people within the screening programme. For 

simplicity, this analysis modelled a cohort of patients with then median values of the cohort modelled 

in the Scanlon model; the median was 64. This was varied in sensitivity analysis. While it is 

acknowledged that a lot of people will be eligible for a diabetic retinopathy screening programme at 

much earlier ages, a simple approach is required given the objectives and scope of this study, which is 

to identify the QIs and BCTs most likely to be cost-effective. Parameters linked to diabetes control 

and cardiovascular risk (HbA1c and serum cholesterol) are assumed to remain constant throughout 

our model. 

TABLE 1. The stages of diabetic retinopathy and maculopathy disease and their abbreviations. 

Diabetic retinopathy stage and maculopathy Abbreviation 

No DR R0 

Background DR (mild non-proliferative DR) R1 

Pre-proliferative retinopathy (moderate to severe non-proliferative DR) R2 

Proliferative retinopathy R3 

Any retinopathy stage Rx 

No diabetic maculopathy M0 

Diabetic maculopathy M1 

DR=Diabetic retinopathy 
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TABLE 2. The diabetic retinopathy and maculopathy model states and their abbreviations. 

State Abbreviation 

No background DR in either eye R0M0 R0M0 

Background DR in one eye R1M0 R0M0 

Background DR in both eyes R1M0 R1M0 

Pre-proliferative or proliferative retinopathy in one eye R2/3M0 R0/1M0 

Pre-proliferative or proliferative retinopathy in both eyes R2/3M0 R2/3M0 

Diabetic maculopathy in one eye RxM1 RxM0 

Diabetic maculopathy in both eyes RxM1 RxM1 

DR=Diabetic retinopathy 

 

TABLE 3. Transition probabilities from one state to another. 

From To       

States R0M0 R0M0 R1M0 

R0M0 

R1M0 

R1M0 

R2/3M0 

R0/1M0 

R2/3M0 

R2/3M0 

RxM1 

RxM0 

RxM1 

RxM1 

R0M0 

R0M0 
0.8895 0.11 - - - 0.0005 - 

R1M0 

R0M0 
0.12 0.7656 0.11 0.0001 - 0.004 0.0003 

R1M0 

R1M0 
0.01 0.12 0.82 0.01 0.01 0.03 - 

R2/3M0 

R0/1M0 
- - - 0.92 0.08 - - 

R2/3M0 

R2/3M0 
- - - - 1 - - 

RxM1 

RxM0 
- - - - - 0.96 0.04 

RxM1 

RxM1 
- - - - - - 1 
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TABLE 4. Baseline state probabilities and population characteristics. 

State Probability 

R0M0 R0M0 0.64 

R1M0 R0M0 0.188 

R1M0 R1M0 0.129 

R2–3M0 R0–1M0 0.011 

R2–3M0 R2–3M0 0.009 

M1 M0 0.04 

M1 M1 0.018 

Characteristic Value 

Age 64 

HbA1c (mmol/mol) 51 

Serum cholesterol (mmol/l) 2.4 

HbA1c=Glycated haemoglobin 

DR screening occurs at regular intervals; currently in the UK, annual screening is recommended. The 

results of the Scanlon cost-utility analysis identified DRS every three years as the most cost-effective 

frequency for patients with diabetes and no pre-proliferative DR or PDR or maculopathy. However, 

the UK National Screening Committee has recommended that the screening for DR should change 

from one year to two year screening intervals for those at low risk (based on two screening episodes 

with no detected DR).2 One year intervals are recommended for those having any DR in either of two 

previous screening episodes. The base case model in our analysis assumes annual DRS screening and 

two-yearly and three-yearly DRS screening as sensitivity analyses.  

A positive screening episode is classified as screening positive for pre-proliferative DR, proliferative 

DR or diabetic maculopathy. 

The outcomes of attending DRS and non-attendance are presented in Figure 2. Once an individual 

attends DRS they receive a positive or negative test result. Individuals with a negative test result from 

the initial screen and individuals not attending any of their appointments in a given screening period 

are all invited again a year later. Individuals with a positive test result are referred to the Hospital Eye 

Services (HES) where appropriate ophthalmic assessment takes place. The HES tests are assumed to 
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have perfect sensitivity and specificity in the model. Once referred to HES, patients might or might 

not attend. 

 

FIGURE 2. Screening pathway for diabetic patients offered diabetic retinopathy screening 

(reproduced from Figure 15 Scanlon et al.). 

The clinical pathway following diagnosis of pre-proliferative or proliferative DR and diabetic 

maculopathy is presented in Figure 3. An individual who attends the HES and is diagnosed with pre-

proliferative DR, proliferative DR or diabetic maculopathy may or may not be offered treatment. An 

individual who is offered treatment then re-enters the DRS programme and has the opportunity to be 

screened at the next screening interval. An individual who does not receive treatment is either 

monitored every 6 months in the HES or re-enters the DRS programme and has the opportunity to be 

screened at the next screening interval.  

 

FIGURE 3. Clinical pathways of confirmed cases from HES of pre-proliferative, proliferative 

retinopathy or diabetic maculopathy (reproduced from Figure 16 in Scanlon et al.). 
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Screening and treatment 

Individuals who receive treatment are assumed to stay with the same stage of DR for the remaining 

time in the model. It is also assumed that there is a permanent incremental improvement in visual 

acuity. The improvements in visual acuity for pre-proliferative or proliferative DR (sight-threatening 

diabetic retinopathy (STDR)) and diabetic maculopathy (DMac) states are reported in Table 5.  

TABLE 5. Improvements in visual acuity by treatment combination and state. 

Treatment STDR DMac 

Antiangiogenic -0.125 -0.146 

Antiangiogenic + laser -0.125 -0.146 

Laser -0.03 -0.016 

 

Individuals are assumed to receive treatment only if they receive a positive diagnosis of pre-

proliferative DR, proliferative DR, or diabetic maculopathy in one eye or both eyes after attending the 

HES referral. Referral to HES can only happen following a positive diagnosis at DRS.  

True and false positives are referred to HES. The specificity and sensitivity values used in the model 

are reported in Table 6. 

TABLE 6. The specificity and sensitivity of screening the retinopathy states. 

Specificity 

 

Sensitivity of screening relative to 

true state 

R0M0 R0M0 0.997 R2–3M0 R0–1M0 0.75 

R1M0 R0M0 0.978 R2–3M0 R2–3M0 0.96 

R1M0 R1M0 0.906 RxM1 RxM0 0.822 

  

RxM1 RxM1 0.982 

Data derived from Scanlon et al. Confidence intervals excluded. 

  

The probability of attendance of a HES referral and of treatment following attendance of HES 

depends on the DR stage. The model coefficients used directly in the model are reported in Table 7.  
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TABLE 7. The results of the logit model for the probability of Hospital Eye Services referral 

attendance and for the multinomial logit model for the probability of treatment after Hospital 

Eye Services referral. 

Probability of HES referral attendance (logit 

model) Probability of treatment after HES referral (multinomial logit model) 

Variable Coefficient Variable Coefficient 

Age -0.01 Antiangiogenic therapy* 

 DR grade observed at screening 

 

R2–3M0 R0–1M0 Reference case 

 RxM1 RxM0 Reference case 

 

RxM1 RxM1 -0.228 

RxM1 RxM1 1.22 R2–3M0 R2–3M0 -3.142 

R2–3M0 R0–1M0 0.11 RxM1 RxM0 -1.174 

R2–3M0 R2–3M0 0.67 Constant 0.693 

Sex: female -0.19 Both antiangiogenic therapy and laser photocoagulation* 

Constant 1.23 True DR grade diagnosed at HES 

 

  

R2–3M0 R0–1M0 Reference case 

 

  

RxM1 RxM1 0.288 

  

R2–3M0 R2–3M0 -3.008 

  

RxM1 RxM0 -0.606 

    Constant -0.693 

Data derived from Scanlon et al. Confidence intervals excluded. 

*The third dependent variable category is laser photocoagulation 

 

Individuals who do not receive treatment at the HES following a positive diagnosis at DRS attendance 

are either monitored every 6 months or returned to the screening programme. In the base case 

analysis, it is assumed that 78% of these individuals are monitored. Scanlon and colleagues stated that 

this was based on expert opinion. This is reduced to 40% in a sensitivity analysis. Those who are 

monitored are assumed to incur the cost associated with HES assessment. The effect of HES 

assessment on cost is reported in Table 8 on the log-scale.  
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As the transition probability between DR states depends on treatment and the probability of treatment 

depends on monitoring, three model states were defined for each DR state: (1) had never had 

treatment and are not being monitored, (2) have never had treatment and are being monitored, and (3) 

have had treatment and are not being monitored. With background DR in one eye, background DR in 

two eyes, no DR and dead states, there were 16 states in the state transition model. See Tables 1 and 2 

for a description of these states. As stated above, all individuals who are not being monitored are 

invited for DRS during a DRS interval. The probability of mortality was derived from life tables from 

the Office of National Statistics (ONS)3, and this was adjusted using estimates of the relative risk of 

mortality for people with diabetes compared to the general population.  

Costs and utilities of model states 

The costs and utilities of the model states are based on the regression coefficients reported in Table 

28. The utility regression coefficients come from Lloyd and colleagues.4 Both the cost and utility are 

conditional on logMAR visual acuity. The visual acuity (logMAR) regression coefficients for the 

model states and baseline characteristics are also reported in Table 28. Utility also depends on 

responses to the Vision specific patient reported questionnaire, the VFQ-25. LogMAR is mapped to 

the Snellen visual acuity scale and then the Snellen visual acuity scale is mapped to VFQ-25 at each 

six month time interval. The data mapping LogMAR to the Snellen visual acuity scale are reported in 

Table 9. The relationship between logMAR and the Snellen visual acuity scale comes from standard 

visual acuity tables.5 The Snellen visual acuity scale is mapped to VFQ-25 using data from Lloyd and 

colleagues.4 All of the Snellen visual acuity scale (SVA) values in the model cohort are between 6 and 

18. SVA scores between 6 and 9 are mapped to 86.3 on VFQ-25, and SVA scores between 12 and 18 

are mapped to 61.5 on VFQ-25. 

The probability of nursing/residential care admission in the Scanlon model was based on the degree of 

vision loss. The probability of the level of vision loss was based on an ordered logistic regression. The 

annual cost of a care home was assumed to be £39,000, which was calculated in Scanlon and 

colleagues.6 In the base case model in our study, the cost of social care was excluded for simplicity. In 

terms of disease progression, the benefit of screening and treatment is a reduction in progression to 

pre-proliferative or proliferative DR in both eyes and to diabetic maculopathy in both eyes. Since 

maculopathy in both eyes had significantly the greatest effect on the probability of vision loss, in 

sensitivity analysis it was assumed that 10% of people with maculopathy in both eyes were in social 

care. This was based on the coefficient of maculopathy in both eyes in the ordered logistic regression 

of impaired vision reported in Table 41 in Scanlon and colleagues.1 
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TABLE 8. The results of the ordinary least squares (OLS) model for visual acuity, for the log link model for cost, and the OLS model for the EQ-5D. 

Visual acuity (OLS) Cost (log link) EQ-5D (OLS) 

Variable Coefficient Variable Coefficient Variable Coefficient 

Age 0.004 R0M0 R0M0 Reference case 

 

Intercept 0.114 

Observed DR grade at screening 

 

R1M0 R0M0 0.105 Gender -0.043 

R0M0 R0M0 Reference case 

 

R1M0 R1M0 0.269 Age -0.003 

R1M0 R0M0 -0.006 R2–3M0 R0–1M0 0.487 VFQ-25 0.01 

R1M0 R1M0 -0.005 R2–3M0 R2–3M0 0.625 (LogMAR) -0.158 

R2–3M0 R0–1M0 0.03 RxM1 RxM0 0.444 

  R2–3M0 R2–3M0 0.039 RxM1 RxM1 0.423 

  M1 M0 0.053 Assessment at HES 0.119 

  M1 M1 0.125 Treatment with 

   HbA1c 0.001 Photocoagulation 0.271 

  Cholesterol 0.002 Antiangiogenic therapy 0.337 

  Constant -0.202 LogMAR (best eye) 1.057 
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HbA1c 0.003 

  

  

Cholesterol -0.044 

  

  

Constant  5.87     

Data for visual acuity and cost derived from Scanlon et al. Confidence intervals excluded. 

Data for EQ-5D derived from Lloyd and colleagues. 
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TABLE 9. The relationship between logMAR and Snellen visual acuity, and between Snellen visual 

acuity and VFQ-25. 

 

 

 

 

 

 

 

 

 

Intervention effect estimates 

The effectiveness results reported in the included clinical studies are the effect estimates for the 

complex interventions studied. This economic analysis investigated the cost-effectiveness of 

individual components of these complex interventions, and therefore required estimating effect 

estimates for individual QI components (as defined by the modified EPOC taxonomy) and BCTs by 

adjusting for other components.7 This is in contrast to the analysis in Chapter 3 which sought to 

estimate mean effects for interventions that included a specific component (versus interventions that 

did not include it). 

The studies varied in their populations and other characteristics. Most studies were conducted outside 

of the UK. Furthermore, there were insufficient data to model interaction effects between the BCTs 

and between the QIs. Consequently, the effect estimates were not precise estimates for a specific UK 

population. The purpose was to provide the parameter estimates for the cost-effectiveness model 

which evaluates the probability that each QI/BCT is cost-effective accounting for each QI/BCT 

simultaneously. This can help prioritise further research by identifying the most promising 

intervention components, and developing interventions utilising them. 

A meta-regression analysis, with multiple explanatory variables indicating the different QIs, was 

conducted for the effects of the QIs on the log-odds ratio of screening attendance. A separate analysis 

was conducted for the BCTs. Both the patient and HCP-targeted techniques were included in the same 

regression analyses for both the resource use and effect analyses. While this is a large number of 

Log MAR SVA* 

-0.3 3 

-0.2 3.8 

-0.1 4.8 

0 6 

0.1 7.5 

0.2 9.5 

0.3 12 

*SVA: Snellen visual acuity 
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explanatory variables, there is a pre-defined set of competing interventions, and there is no reason to 

exclude one over the other. In addition, no statistical tests are conducted as part of this analysis. The 

purpose is to provide the parameter estimates for the cost-effectiveness model which evaluates the 

probability that each QI/BCT is cost-effective accounting for each QI/BCT simultaneously. These 

results should be interpreted as additive, whereas the results in Chapter 3 are not additive.  

BCTs or QIs were excluded from the analysis if there were insufficient data to estimate a coefficient, 

if there were collinearity (overlap of studies between indicator variables), or if there were perfect 

predictions. As with the meta-analyses reported in Chapter 3, only BCTs and QIs that occurred in at 

least 10 studies were included in the economic model, and only these results are reported here. These 

were considered to be less prone to a spurious result. It is likely there is variation in interventions that 

are coded as a QI or BCT. The greater the number of studies with a particular QI or BCT, the more 

likely that different approaches to implementing a QI or BCT intervention are present.  Random-effect 

meta-regressions were performed in Stata 15 (StataCorp, Texas).8 The dependent variable was the 

log-odds ratio. There were insufficient data to model interaction effects between the BCTs and 

between the QIs. Fifty-six studies with a usual care comparator were included in the analyses.  

The full set of regression results are presented in Appendix 2.1. The results transformed into relative 

risks with their 95% confidence intervals for the QIs that occur in at least 10 studies are reported in 

Table 10. The results transformed into RRs with their 95% confidence intervals for the BCTs that 

occur in at least 10 studies are reported in1Table 11. The ordered resource ranking analysis that 

appears in Tables 10 and 11 is explained in the resource use and cost estimates section below.  
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TABLE 10. The EPOC QI component resource use (ordered logit) and effectiveness (meta-

regression) results obtained from analyses including all the QIs as explanatory variables. 

  

EPOC QI components 

Ordered resource 

ranking; proportional 

relative risk [95% CI] 

Effect Meta-regression; 

relative risk [95% CI] 

Audit and feedback  1.22 [0.79,1.38] 0.99 [0.78,1.16] 

Case management  1.40 [1.28,1.42] 0.87 [0.67,1.05] 

Team changes  1.26 [0.97,1.38] 1.14 [1.00,1.24] 

Electronic patient registry  0.69 [0.17,1.23] 1.01 [0.74,1.21] 

Clinician education  0.89 [0.42,1.24] 1.06 [0.89,1.19] 

Clinician reminders  1.26 [0.73,1.40] 1.08 [0.83,1.25] 

Patient education  0.80 [0.38,1.18] 1.09 [0.92,1.22] 

Promotion of self-management 1.28 [0.85,1.40] 1.12 [0.93,1.26] 

Patient reminders  0.64 [0.24,1.09] 1.02 [0.84,1.16] 
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TABLE 11. The BCT component resource use (ordered logit) and effectiveness (meta-

regression) results obtained from analyses including all the BCTs as explanatory variables. 

  

BCT components 

Likert resource ranking; 

proportional RR [95% CI] 

Effect Meta-regression; 

RR [95% CI] 

Patient-targeted BCTs   

Problem solving 1.37 [1.03,1.42] 0.95 [0.73,1.13] 

Goal Setting (Outcome) 1.27 [0.57,1.41] 1.24 [1.10,1.32] 

Feedback on outcomes of behaviour/Biofeedback 0.59 [0.13,1.19] 1.17 [1.02,1.27] 

Social Support (unspecified) 0.15 [0.01,0.81] 1.07 [0.87,1.22] 

Social Support (practical) 1.29 [0.75,1.41] 0.95 [0.76,1.11] 

Instruction on how to perform behaviour 1.38 [1.09,1.42] 0.89 [0.70,1.06] 

Information about health consequences 0.17 [0.02,0.76] 1.15 [1.00,1.25] 

Prompts/Cues 0.17 [0.02,0.81] 0.91 [0.73,1.07] 

Credible source 0.38 [0.01,1.33] 0.85 [0.56,1.10] 

Restructuring the social environment 0.80 [0.05,1.40] 0.82 [0.58,1.03] 

Healthcare professional-targeted BCTs   

Feedback on outcomes of behaviour/Biofeedback 0.51 [0.12,1.11] 0.85 [0.68,1.01] 

Social Support (practical) 1.42 [1.30,1.43] 1.27 [1.10,1.35] 

Instruction on how to perform behaviour 0.90 [0.28,1.32] 0.81 [0.61,0.99] 

Prompts/Cues 1.34 [0.67,1.42] 0.96 [0.67,1.18] 

Credible source 0.89 [0.22,1.34] 0.95 [0.73,1.13] 

Restructuring the social environment 1.42 [1.33,1.43] 1.13 [0.94,1.25] 

Adding objects to the environment 0.19 [0.02,0.93] 0.98 [0.76,1.15] 

 

In the model, the baseline probability of DRS attendance was based on a minimum standard set by the 

UK National Screening Committee, not on the probabilities of the usual care arms in the RCTs.9 

Furthermore, the probability of DRS attendance is varied in sensitivity analysis. Uncertainty in the 

effect estimate is accounted for in the analysis through probabilistic analysis where values are 
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sampled from a probability distribution. The probability of DRS attendance following the intervention 

cannot be greater than one. The following method was followed in the model to ensure this.  In the 

model, a normal distribution is specified for the log-odds ratio using the mean and standard error of 

the BCT/QI coefficient and the constant of the meta-regression. Values are sampled from this 

distribution. The exponent is taken of these samples, and converted to a relative risk (RR) as follows 

𝑅𝑅 =
𝑂𝑅

1 − 𝐴𝐶𝑅 × (1 − 𝑂𝑅)
 

where ACR is the baseline risk of DRS attendance.  

The relative risk converges to 1 as the baseline risk increases towards 1. An assumption is made that 

the odds ratio is constant across baseline risk values. This approach recognises that there is greater 

scope to improve screening uptake when the baseline probability of DRS attendance is lower. 

Resource use and cost estimates 

The level of the cost of resource use in each included study was of interest for two purposes in this 

study. Firstly, in the economic analysis, we are interested in estimating the cost of the individual 

components of the complex interventions included in each study rather than the cost of the complex 

interventions. This requires a form of multivariable regression with the QI and BCT components as 

explanatory variables as used in the intervention effectiveness analysis. Secondly, in Chapter 3 the 

association between resource use and intervention effectiveness was investigated. In Chapter 3 the 

average effectiveness was calculated at different levels of resource use, and resource use was added as 

a covariate in a meta-regression. 

A measure of the cost of the resource use was needed for each study. As there were 56 studies, an 

efficient method was required to derive this measure. The approach taken was to design a data 

abstraction method of recording pre-defined key categories of resource use and the levels of each 

category. The process of determining the resource categories and levels involved agreement between 

reviewers on an ordered ranking of resource use for each study. The cost of each level of each 

resource category was then estimated through random sampling at least three studies with each 

category and level, costing the resource use associated with the intervention description using national 

cost estimates, and calculating the average. The total cost of a complex intervention in each study is 

the product of the resource categories and estimated costs for each category. The cost variable was 

therefore categorical, and the applicable regression method to estimate the incremental cost of each 

QI/BCT component was an ordinal logistic regression with the ordered resource use cost ranking as 

the dependent variable. 
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The cost analysis for the economic model differs from the work conducted in the review of economic 

outcomes reported in Chapter 3 in that the economic model utilises unit cost estimates for England 

and Wales to value the described interventions rather than converting the costs reported in the studies 

from one currency to another.  Arguably, such data would be more transferable as the resources 

required to provide an intervention may not vary between settings. 

It was assumed that all people with DM would be eligible for DRS and that BCT/QI intervention 

components would target all eligible people. It is noted that some of the evidence on effectiveness of 

BCT/QI interventions came from studies targeting those most likely not to attend DRS. The meta-

regression data has not been able to control for this factor and we have assumed a constant effect. 

However, we have explored the impact of different baseline uptake rates of DRS to illustrate relative 

impact of BCT/QI when the baseline uptake was lower. 

 

The ordered ranking score 

Different levels of resource use for the main BCT or QI intervention used in each study included in 

the systematic review were estimated on an ordered scale. This was operationalised by developing 

categories of resource use with different levels of resource intensity. Two reviewers selected the level 

of each resource category for each study independently, and disagreements were discussed. As 

described below, weights were applied to each level of resource use which was used to derive a rank 

order of resource use for each BCT and QI.  

There were two steps in deriving the original ordered ranking score. Firstly, ten studies were selected 

and two reviewers independently gave a score from 1 to 5 for each main intervention in each study. 

Notes were recorded for the reasons for the scores. The differences in scores and the reasons for 

giving the scores were then discussed, and an agreement was reached on the score. The ordered 

ranking scores given to the 10 studies by the reviewers and the agreed scores are presented in Table 

12. The objective was to achieve 9 out of 10 studies scored within 1 point of each other.  
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TABLE 12. Ordered ranking scores of cost burden of the main intervention in each study 

(indicated by first author) by each reviewer*. 

Author Reviewer 

1 

Reviewer 

2 

Agreed Algorithm Reviewe

r 3 

Reviewe

r 4 

Reviewe

r 5 

Reviewer 

6 

Zwarenstein 201412 1 1 1 1 1 1 1 1 

Gabbay 200613 4 3 4 4 4 5 5 5 

Frijing 200214 4 3 3 3 3 5 3 3 

Clancy 200715 3 2 3 3 4 5 5 3 

Glasgow 200516 2 5 4 4 3 4 4 4 

Halbert 199917 1 2 1 1 1 2 1 1 

McDermot 200118 4 4 4 4 2 3 3 2 

Pizzi 201519 2 2 2 2 3 5 2 2 

Steyn 201320 1 2 1 2 2 5 1 2 

Zangalli 201621 2 3 2 2 2 3 2 2 

* A total of six individuals contributed to this, five of these are noted in the acknowledgements, with sixth being 

SR 

 

The second step involved developing and testing the algorithm and determining the weights 

applied to the category levels. This approach was chosen over broad descriptions of Likert 

scores in order to increase consistency. Weights were chosen based on the discussions of the 

scores. The algorithm was tested twice, first on reviewers 3 and 4, and secondly on reviewers 

5 and 6. The descriptions of the resource categories and levels were edited in-between. The 

results for the other reviewers are also presented in Table 12.  The resource categories and 

levels with their weights are reported in brackets in Table 13. The weights were subsequently 

revised following a costing exercise (see below). 
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TABLE 13. The five domains with response options. The weight associated with each 

response indicated in brackets. 

Face to face or care 

planning minutes/ 

patient/ 6 months 

Phone calls 

to patients 

Additional outreach 

visits to patients 

(travel time) 

Use of materials/ 

letters/ software 

Training of health 

professionals other 

than reading material 

None (0) No (0) No (0) None (0) None (0) 

Low 1-40mins (1) Yes (1) Yes (2) Printed materials (1) Low (1) 

Moderate 40-100 (2) 

  

Software (2) High (2) 

High > 100 (3) 

     
 

Cost estimates 

A few of the included RCTs were selected at random and cost estimates were derived for each of the 

resource categories until at least three estimates were available for each estimate. While a more 

precise estimate could be obtained from sampling more studies, this approach was appropriate given 

the objectives and scope of this study, which is to identify the QIs and BCTs most likely to be cost-

effective. This approach is considered sufficient to distinguish between the different levels of resource 

use identified in the resource categories. The cost analyses for the resource categories are presented in 

Appendix 2.2. The cost estimates for each resource category for the individual studies are reported in 

Table 14. This analysis differs from the work conducted in the review of economic outcomes reported 

in Chapter 3 in that (1) these cost estimates are based on the intervention descriptions in the articles’ 

method’s section rather than outcomes, and (2) it utilises unit cost estimates for England and Wales 

rather than converting costs from one currency to another.  

It was assumed that all people with DM would be eligible for DRS and that BCT/QI intervention 

components would target all eligible people. It is noted that some of the evidence on effectiveness of 

BCT/QI interventions came from studies targeting those most likely not to attend DRS. The meta-

regression data has not been able to control for this factor and we have assumed a constant effect. 

However, we have explored the impact of different baseline uptake rates of DRS to illustrate relative 

impact of BCT/QI when the baseline uptake was lower (see section of sensitivity analysis below). 

Resources incurred have different units: per patient, per GP, per practice and per country. It was 

assumed that all software development and design of educational pamphlets would be financed at a 

higher organisational level than say a general practice, for simplicity taken as the national level. It 

assumes that a country takes advantage of economies of scale. The total number of people with DM 

(2,913,538),10 GP practices (8,151), and GPs (40,265)11 in England were used to derive a cost per 
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patient for each intervention. The price year was 2016. Salaries were obtained from the Personal 

Social Services and Resource Unit (PSSRU).22 The cost of a non-mydriatic retinal camera was 

obtained from BiB Ophthalmology Instruments.23 The cost of the design of a leaflet was obtained 

from University Hospitals Birmingham.24 The cost of leaflet production was identified from 

Birmingham Women’s and Children’s Services.25 The cost of software development was assumed to 

require one year full time equivalent of a senior programmer (£60,000), four years full time equivalent 

of junior programmers (£45,000), and 112 hours of GP time. The cost of delivering letters and leaflets 

was obtained from Royal Mail.26 Fixed costs were annuitized, and the useful life of all fixed costs 

including equipment, software, educational material design, and health care professional training was 

assumed to be five years. An annual discount rate of 3.5% was applied. 

 

TABLE 14. Cost estimates for the different resource categories. 

Resource category Average 

cost (£) 

Cost estimates for individual clinical 

studies (£) 

Printed materials 3.30 3.4 4.0 4.0 3.2 5.0 

Software 9.53 7.6 7.6 11.4 11.4 

 Low face to face 26.25 22.5 22.5 40.0 20.0 

 Medium face to face 76.20 78.8 45.0 104.9 

  Low training of health professionals 2.58 2.6 2.6 2.7 

  High training of health professionals 8.07 9.4 7.2 7.5 

  Phone calls 9.41 6.7 6.7 14.9 

   

These cost estimates were used to reweight the levels of each resource category. The initial weights 

did not appear to provide a ranking of interventions that was consistent with the anticipated cost of 

resources. The main consideration was that insufficient weight was given to patient management and 

contact time.  Therefore, revised weights were produced to better take into account these elements. 

The revised weights are reported in Table 15 in brackets. A scatter plot of the resource rank score 

against cost for each study is presented in Figure 4.  This shows that the expected cost per patient 

increases with every unit increase in rank score. 

 

TABLE 15. The five domains with response options with revised weights associated with 
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each response indicated in brackets. 

Face to face or care 

planning minutes/ 

patient/ 6 months 

Phone calls 

to patients 

Additional outreach 

visits to patients 

(travel time) 

Use of materials/ 

letters/ software 

Training of health 

professionals other 

than reading material 

None (0) No (0) No (0) None (0) None (0) 

Low 1-40mins (4) Yes (2) Yes (2) Printed materials (1) Low (1) 

Moderate 40-100 (10) 

  

Software (2) High (2) 

High > 100 (16) 

     

 

 

FIGURE 4: Scatterplot of study resource rank scores and cost estimates. 

 

As no study was allocated a rank of 4 or 17, all ranks above these were reduced in order that there be 

a continuous list of ranks. Cost estimates for each BCT and QI component were then derived by 

conducting a multiple ordered logit regression. There were insufficient data to model interaction 

effects between the BCTs and between the QIs. The full analysis results are reported in Appendix 2.1. 

The transformed coefficients are reported in Table 10 and 11 for all BCTs and QIs which are recorded 

in at least 10 studies. A transformed coefficient is a proportional odds ratio; the odds ratio that the 

rank is greater than k for studies including the BCT/QI compared to those that do not, holding all 

other BCTs/QIs constant. The proportional odds ratio is assumed to true for all k. The coefficients 

were used in the model to calculate the expected probabilities of each rank, then the expected rank, 
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and finally the expected rank was assigned a cost estimate according to one of three linear regression 

models used to describe the relationship between the rank score and cost presented in Figure 4. The 

coefficients of the three linear regressions are reported in Table 16. 

 

TABLE 16. The effect of resource rank on cost (mean and standard error) for different rank 

groupings. 

  Rank grouping 

 1-3 4-8 9-15 

  Mean SE Mean SE Mean SE 

Rank 4.38 0.25 4.35 0.29 4.38 0.11 

Constant -1.14 

 

9.52 

 

36.38 
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Appendix 2.1. 

Full set of regression results 

Regression model results for the ordered logit model for the Likert resource ranking analysis, 

and the meta-regression for the treatment effect estimates. The results of the ordered logit 

analysis are the proportional log-odds ratios. As the cumulative probability of being at least 

rank k is modelled, the cut points represent the cumulative log-odds that distinguish rank ki 

from ki-1. Since there are 15 ranks, there are 15 cut points. 

For the meta-regression, the constant represents the log-odds ratio without any of the listed 

explanatory variables indicated in a clinical study, and the intervention coefficients represent 

the difference in log-odds ratio for studies with the intervention compared to studies that do 

not. The log-odds ratio for an intervention is the sum of the constant and the intervention 

coefficient. 

The EPOC QI component resource use (ordered logit) and effectiveness (meta-

regression) results 

  

EPOC QI 

components 

Likert resource ranking 

(ordered logit) 
Effect Meta-regression 

Mean SE Mean SE 

Audit and feedback  0.90 0.79 -0.02 0.33 

Case management  2.96 0.85 -0.39 0.29 

Team changes  1.19 0.65 0.51 0.27 

Electronic patient 

registry  

-0.92 0.98 0.04 0.42 

Clinician education  -0.36 0.70 0.21 0.29 

Clinician reminders  1.13 0.99 0.28 0.41 

Facilitated relay -0.95 1.02 0.56 0.46 

Patient education  -0.60 0.65 0.33 0.30 

Promotion of self-

management 

1.29 0.90 0.45 0.35 

Patient reminders  -1.07 0.71 0.06 0.28 

Continuous quality 

improvement 

-0.10 1.37 0.63 0.56 

Financial incentives 0.74 1.20 0.24 0.52 

Constant 

  

0.12 0.29 

/cut1 -2.16 0.83 

  /cut2 -0.90 0.73 

  /cut3 0.92 0.71 

  /cut4 1.06 0.72 

  /cut5 1.37 0.74 
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/cut6 1.84 0.77 

  /cut7 1.98 0.77 

  /cut8 2.12 0.77 

  /cut9 2.56 0.79 

  /cut10 2.91 0.81 

  /cut11 4.28 0.93 

  /cut12 4.69 0.96 

  /cut13 5.88 1.12 

  /cut14 6.41 1.23 

  /cut15 7.18 1.44 

 

  

 

The BCT component resource use (ordered logit) and effectiveness (meta-regression) 

results 

  

BCT components 

Ordered resource 

ranking (ordered 

logit) Effect Meta-regression 

Mean SE Mean SE 

Patient-targeted BCTs     

Problem Solving 2.23 1.08 -0.16 0.31 

Goal Setting (Outcome) 1.22 1.27 1.00 0.32 

Action Planning -9.77 3.04 0.63 0.59 

Review Behaviour Goals 5.45 3.06 0.18 0.44 

Review outcome goals 6.44 3.73 -1.70 0.50 

Monitoring of behaviour without feedback 1.64 2.06 -1.15 0.62 

Feedback on behaviour 0.14 2.46 0.23 0.57 

Self-monitoring of outcomes of behaviour 2.86 2.11 -0.54 0.38 

Monitoring of outcomes without feedback 2.53 1.39 0.63 0.28 

Feedback on outcomes of behaviour/Biofeedback -1.20 0.99 0.24 0.33 

Social Support (unspecified) -3.03 1.25 -0.14 0.28 

Social Support (practical) 1.36 1.07 -0.34 0.27 

Instruction on how to perform behaviour 2.45 1.09 0.54 0.27 

Information about health consequences -2.85 1.09 -0.27 0.26 

Prompts/Cues -2.83 1.15 -0.46 0.39 

Credible source -1.87 1.84 -1.11 0.70 

Material incentive (behaviour) -0.68 2.63 -0.54 0.33 

Restructuring the social environment -0.59 1.80 0.48 0.38 

Adding objects to the environment -0.47 1.36 0.02 0.38 

Healthcare professional-targeted BCTs     

Problem Solving 0.75 1.34 0.59 0.40 

Goal Setting (Outcome) -3.28 1.67 -1.06 0.49 

Review Behaviour Goals 3.86 2.17 1.57 0.34 

Feedback on behaviour -0.24 1.21 -0.44 0.25 

Feedback on outcomes of behaviour/Biofeedback     

Social Support (unspecified)     

Social Support (practical)     

Instruction on how to perform behaviour     
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Social comparison     

Prompts/Cues     

Behavioural practice/rehearsal     

Credible source     

Restructuring the social environment     

Adding objects to the environment     

Constant 

  

0.79 0.26 

/cut1 -4.04 1.31 

  /cut2 -2.01 1.14 

  /cut3 1.03 1.09 

  /cut4 1.27 1.11 

  /cut5 1.71 1.16 

  /cut6 2.40 1.22 

  /cut7 2.64 1.24 

  /cut8 2.89 1.26 

  /cut9 3.78 1.35 

  /cut10 4.69 1.48 

  /cut11 7.09 1.68 

  /cut12 7.92 1.78 

  /cut13 10.08 2.06 

  /cut14 10.81 2.17 

  /cut15 12.01 2.41 
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Appendix 2.2. 

The cost estimates for the resource use categories 

The cost estimates for the resource use categories used to record the resource use of the main 

intervention in the included clinical studies. The total number of people with diabetes 

(2,913,538), GP practices (8,151), and GPs (40,265) in England were used to derive a cost 

per patient for each intervention. 

The objective was to roughly estimate the cost of interventions based on the intervention 

descriptions, with assumptions made about the number of patients, GPs and GP practices 

associated with each cost. This differs from the review of economic-related outcomes 

reported in the clinical studies which costed the economic outcome data. Different 

assumptions were made in the different exercises. 

Cost per person with diabetes estimates for four studies for the production of education 

leaflets/pamphlets 

Education Printing Source Lafata27 Pizzi19 Prela28 Weiss29 

Fixed 
 

    GP Hourly salary designing leaflets 

(General GP working hours) £ 
PSSRU 147 147 147 147 

GP Hours of production Clinical study 14 14 3 21 

Leaflet design specialist hourly cost £ 
University hospitals 

Birmingham 
45 45 45 45 

Hours of production Clinical study 140 140 7 210 

Total fixed £  8,358 8,358 756 12,537 

Total annuitized £  2,249 2,249 200 3,413 

      

Variable  
    

Printing cost £  0.6 0.6 0.3 5 

HCP time producing feedback hours Clinical study 0.05 0.05 0.05 
 

Nurse salary Band 5 including 

qualifications per hour £ 
PSSRU 45 45 45 

 

Delivery cost £ Royal Mail 1.2 1.2 1.2 
 

Times per year Clinical study 1.00 1.00 1.00 1.00 

Total per person with diabetes £  3.95 3.95 3.20 5.00 
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Cost per person with diabetes estimates for one study for providing clinician feedback 

Clinician feedback Source Hermans30 

Variable  
 

HCP time producing feedback hours Clinical study 0.2 

Nurse salary Band 5 including qualifications per hour £ PSSRU 45 

Printing cost £ Birmingham Women’s and Children’s Hospital 0.6 

Up to 100 gram delivery cost £ Royal Mail 0.55 

Times per year Clinical study 3 

Total variable/clinician £  29.25 

Total variable/person with diabetes £  0.40 

 

Cost per person with diabetes estimates for four studies for the production of patient 

management software or use of ophthalmic equipment 

Software or equipment cost Source Peterson31 Guldberg32 Davis 200333 Conlin34 

Fixed  
    

HCP hours Assumption 112 112 
  

HCP hourly cost £ PSSRU 147 147 
  

Senior programmer cost £ Assumption 60,000 60,000 
  

Years equivalent Assumption 1 1 
  

Junior programmer cost £ Assumption 45,000 45,000 
  

Years equivalent Assumption 4 4 
  

Subtotal £  255,680 255,680 
  

Installation/GP practice £ Assumption 10,000 10,000 
  

Cost of equipment/GP practice £ 
BiB Ophthalmic 

Instruments   
15,000 15,000 

Total cost/All GP practices £  81,760,000 81,760,000 122,265,000 122,265,000 

Annuitised £  22,259,253 22,259,253 33,286,786 33,286,786 

      

Variable  
    

Maintenance/GP practice £ Assumption 500 500 
  

Total cost/person with diabetes £  7.6 7.6 11.42 11.42 
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Cost per person with diabetes estimates for seven studies for face-to-face or person-

specific administration time 

Diabetes person face 

to face clinic contact 

Source Wagner35 Weiss29 Peterson31 Piette36 Davis 33 Conlin34 Gabbay 37 

Variable  
       

Nurse time (hours) Clinical study 1.21 0.5 0.5 1 
  

2.33 

Nurse salary £ PSSRU 45 45 45 45 
  

45 

Hours of clinician time Clinical study 0.165 
   

0.5 0.25 
 

Clinician salary £ PSSRU 147 
   

80 80 
 

Total cost per year £  78.75 22.5 22.5 45 40 20 104.85 

 

Cost per person with diabetes estimates for four studies for training health 

professionals 

Training of health 

professionals 

Source Perria38 Bush39 Peterson31 Guldberg32 Conlin34 Gabbay 37 

Fixed  
      

Health trainer (Band 8a 

professional staff) hours 

Clinical 

study 
4.2 

   
724,770 38847.17333 

Health trainer hourly 

salary £ 
PSSRU 64 

   
45 45 

Health professional 

hours 

Clinical 

study 
16 

   
724,770 1748122.8 

Health professional 

salary £ 
PSSRU 147 

   
62 45 

Total cost/GP £  2,621 
   

77,550,390 80,413,649 

Annuitised cost/GP £  683 
   

21,113,182 21,892,708 

Per patient group  
      

Health trainer (Band 5 

nurse) hours 

Clinical 

study  
14 14 40,265 

  

Health trainer hourly 

salary £ 
PSSRU 

 
45 45 45 

  

Health professional 

(Band 5 nurse) hours 

Clinical 

study  
42 42 40,265 

  

Health professional 

salary £ 
PSSRU 

 
45 45 147 

  

Total cost £  
 

2,520 2,520 7,730,880 
  

Number of people with 

diabetes 

Clinical 

study  
988 988 2,913,538 

  

Total cost per year £  9.44 2.55 2.55 2.65 7.25 7.51 
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Cost per person with diabetes estimates for four studies for phone calls to people with 

diabetes 

Phone calls Source Bush39 Peterson31 Piette36 

Variable  
   

Average phone call £ PSSRU 6.69 6.69 
 

Hours on phone/person with diabetes Clinical study  
 

0.33 

Hourly wage (Band 5 nurse) £ PSSRU 
  

45 

Total cost/person with diabetes £  6.69 6.69 14.85 
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Appendix 2.3. 

R model 

 

tab.dat<-read.csv("wedata.csv",header=TRUE) 

tab.datMR<-read.csv("wemort.csv",header=TRUE) 

 

# Model function ---------------------------------------------------------- 

 

############################################################################ 

############################################################################ 

#DEFINE FUNCTIONS AND PARAMETERS 

############################################################################ 

############################################################################ 

 

#Dataframe structure......... 

#From 1: Baseline data 

#From 101: effect data 

#From 201: cost data 

#From 601: utility data 

#From 301: Initial population distribution then holding population distribution 

#From 501: Intermediate clinical data used to populate transition matrix 

#From 1001: Transition matrix 

#From 2001: Mid-way transition matrix calculation states 

#From 3001: Holding states 

#From 4001: Trace matrix population 

#From 6001: Trace matrix QALYs 

#From 8001: Trace matrix costs 

#From 10001: Summary results 

 

mod<-function(nSims,det,cpp){ 

 

  mStates <- c("A", "IS",  "ISR",  "M", "MR", "B1", "B2", "B3", "B4", "B5", "B6", "BS", "C",

 "CR", "CCS",  

               "E", "ER", "ELCS", "EMCS", "EHCS", "ERCS", "TF", "D"); 

   

   

  qcStates <- c("Q1", "Q2", "Q3", "Q4", "Q5", "Q6", "Q7", "Q8", "Q9", "Q10", "Q11", "Q12", "Q13", "Q14", "Q15", 

                "Q16", "Q17", "Q18", 

                "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9", "C10", "C11", "C12", "C13", "C14", "C15", 

                "C16", "C17", "C18"); 

   

nTX <- 18 

 

nStates <- 16;  

 

cohort <- 1000 

 

nCycles  <- 74; 

 

mcmcdf <- function (pnStates, n){ 

   

  emcmc <- matrix(data=rep(0, (n*(length(pnStates)+1))), nrow=n, ncol=(length(pnStates)+1));  ##SR: creates a matrix of zero values 

  ## where the number of rows is the cohort, and the number of columns is the number of states + 1 (not sure yet why there 

  ## needs to be a column of 1 to n) 

  colnames(emcmc) <- c("ID", pnStates);  
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  emcmc[,1] <-seq(1,n); 

  (data.frame(emcmc));   

} 

 

rmdf <- function (pnStates, n){ 

   

  rmd <- matrix(data=rep(0, (n*(length(pnStates)+1))), nrow=n, ncol=(length(pnStates)+1));  ##SR: creates a matrix of zero values 

  ## where the number of rows is the cohort, and the number of columns is the number of states + 1 (not sure yet why there 

  ## needs to be a column of 1 to n) 

  colnames(rmd) <- c("ID", pnStates);  

  rmd[,1] <-seq(1,n); 

  (rmd);   

} 

 

 

df <- function (c, r){ 

   

  pm <- matrix(data=rep(0, r*c), nrow=r, ncol=c);  ##SR: creates a matrix of zero values 

  ## where the number of rows is the cohort, and the number of columns is the number of states + 1 (not sure yet why there 

  ## needs to be a column of 1 to n) 

  #colnames(pm) <- c(pnStates);  

   

  (pm); 

} 

################################################################ 

################################################################ 

dft<-df(10500,nSims) 

#dft<-MMcreateMatrix2(df, 5389, 10) 

df1<-df(10500,nSims) 

dfe<-df(10500,nSims) 

rmd<-rmdf(qcStates, nSims) 

mcmc <- mcmcdf(qcStates, nSims) 

#trans<-tab.datTnames(mStates) 

 

#mModel <- MMcreateMatrix(trans, nStates, mStates) 

 

################################################################ 

############################## 

############################## 

#clinical effectiveness 

############################## 

############################## 

 

Comparator_screen <- cpp   ##probability of attending screen for comparator 

dft[,1]<-Comparator_screen 

 

 

############################## 

############################## 

#Baseline population characteristics 

############################## 

############################## 

HbA1c <- 51 

dft[,2] <- HbA1c 

 

Serum_cholesterol <- 4.3 

dft[,3] <- Serum_cholesterol 
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Percent_female <- 0.432 

dft[,4] <- Percent_female 

 

############################## 

#Diagnostic accuracy 

############################## 

############################## 

#Specificity 

BDR1 <- 0.997 

dft[,5] <- BDR1 

 

BDR2 <- 0.998 

dft[,6] <- BDR2 

 

BDR3 <- 0.906 

dft[,7] <- BDR3 

 

#Sensitivity 

STDR1 <- 0.75 

dft[,8] <- STDR1 

 

STDR2 <- 0.96 

dft[,9] <- STDR2 

 

DM1 <- 0.822 

dft[,10] <- DM1 

 

DM2 <- 0.982 

dft[,11] <- DM2 

 

################################### 

#Transition variables 

################################### 

#prob of treatment following referral to HES 

#R2-3M0 R0-1M0 

dft[,12]<-0.142460802 

 

#R2-3M0 R2-3M0 

dft[,13]<-0.139433873 

 

#RxM1 RxM0 

dft[,14]<-0.507499438 

 

#RxM1 RxM1 

dft[,15]<-0.69635493 

 

#Prob of monitoring given no treatment following referral to HES 

#dft[,16]<-0.78 

 

 

#basic transition probabilities 

preDR1_preDR2<-0.11 

dft[,16]<-preDR1_preDR2 

 

preDR1_preDR3<-0 

dft[,17]<-preDR1_preDR3 

 

preDR1_DR1<-0 
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dft[,18]<-preDR1_DR1 

 

preDR1_DR2<-0 

dft[,19]<-preDR1_DR2 

 

preDR1_DM1<-0.0005 

dft[,20]<-preDR1_DM1 

 

preDR1_DM2<-0 

dft[,21]<-preDR1_DM2 

 

######### 

preDR2_preDR1<-0.12 

dft[,22]<-preDR2_preDR1 

 

preDR2_preDR3<-0.11 

dft[,23]<-preDR2_preDR3 

 

preDR2_DR1<-0.0001 

dft[,24]<-preDR2_DR1 

 

preDR2_DR2<-0 

dft[,25]<-preDR2_DR2 

 

preDR2_DM1<-0.004 

dft[,26]<-preDR2_DM1 

 

preDR2_DM2<-0.0003 

dft[,27]<-preDR2_DM2 

 

######### 

preDR3_preDR1<-0.001 

dft[,28]<-preDR3_preDR1 

 

preDR3_preDR2<-0.12 

dft[,29]<-preDR3_preDR2 

 

preDR3_DR1<-0.01 

dft[,30]<-preDR3_DR1 

 

preDR3_DR2<-0.001 

dft[,31]<-preDR3_DR2 

 

preDR3_DM1<-0.03 

dft[,32]<-preDR3_DM1 

 

preDR3_DM2<-0 

dft[,33]<-preDR3_DM2 

 

######### 

DR1_preDR1<-0 

dft[,34]<-DR1_preDR1 

 

DR1_preDR2<-0 

dft[,35]<-DR1_preDR2 

 

DR1_preDR3<-0 

dft[,36]<-DR1_preDR3 
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DR1_DR2<-0.08 

dft[,37]<-DR1_DR2 

 

DR1_DM1<-0 

dft[,38]<-DR1_DM1 

 

DR1_DM2<-0 

dft[,39]<-DR1_DM2 

 

######### 

DR2_preDR1<-0 

dft[,40]<-DR2_preDR1 

 

DR2_preDR2<-0 

dft[,41]<-DR2_preDR2 

 

DR2_preDR3<-0 

dft[,42]<-DR2_preDR3 

 

DR2_DR1<-0 

dft[,43]<-DR2_DR1 

 

DR2_DM1<-0 

dft[,44]<-DR2_DM1 

 

DR2_DM2<-0 

dft[,45]<-DR2_DM2 

 

######### 

DM1_preDR1<-0 

dft[,46]<-DM1_preDR1 

 

DM1_preDR2<-0 

dft[,47]<-DM1_preDR2 

 

DM1_preDR3<-0 

dft[,48]<-DM1_preDR3 

 

DM1_DR1<-0 

dft[,49]<-DM1_DR1 

 

DM1_DR2<-0 

dft[,50]<-DM1_DR2 

 

DM1_DM2<-0.04 

dft[,51]<-DM1_DM2 

 

######### 

DM2_preDR1<-0 

dft[,52]<-DM2_preDR1 

 

DM2_preDR2<-0 

dft[,53]<-DM2_preDR2 

 

DM2_preDR3<-0 

dft[,54]<-DM2_preDR3 
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DM2_DR1<-0 

dft[,55]<-DM2_DR1 

 

DM2_DR2<-0 

dft[,56]<-DM2_DR2 

 

DM2_DM1<-0 

dft[,57]<-DM2_DM1 

 

################################### 

#Treatment probabilities 

################################### 

#DR1_ang 

dft[,61]<-0.571380511 

#DR1_anglaser 

dft[,62]<-0.142887182 

#DR1_laser 

dft[,63]<-0.285732307 

#DR2_ang 

dft[,64]<-0.077744196 

#DR2_anglaser 

dft[,65]<-0.022229581 

#DR2_laser 

dft[,66]<-0.900026223 

#DM1_ang 

dft[,67]<-0.326903716 

#DM1_anglaser 

dft[,68]<-0.14426699 

#DM1_laser 

dft[,69]<-0.528829293 

#DM2_ang 

dft[,70]<-0.488499106 

#DM2_anglaser 

dft[,71]<-0.204657457 

#DM2_laser 

dft[,72]<-0.306843437 

 

#DR1_angtot 

dft[,81]<-dft[,61]+dft[,62] 

#DR1_lasertot 

dft[,82]<-dft[,62]+dft[,63] 

#DR2_angtot 

dft[,83]<-dft[,64]+dft[,65] 

#DR2_lasertot 

dft[,84]<-dft[,65]+dft[,66] 

#DM1_angtot 

dft[,85]<-dft[,67]+dft[,68] 

#DM1_lasertot 

dft[,86]<-dft[,68]+dft[,69] 

#DM2_angtot 

dft[,87]<-dft[,70]+dft[,71] 

#DM2_lasertot 

dft[,88]<-dft[,71]+dft[,72] 

 

##probability of treatment 

#DR1_pT 

dft[,91]<- 0.142460802 

#DR2_pT 
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dft[,92]<- 0.139433873 

#DM1_pT 

dft[,93]<- 0.507499438 

#DM2_pT 

dft[,94]<- 0.69635493 

 

 

################################### 

#Effect estimates 

################################### 

#constant 

dft[,98]<-rnorm(nSims,0.785611,0.2625392) 

 

#blnOR 

dft[,101]<- rnorm(nSims,0,1) 

#<- blnOR 

 

#bOR 

dft[,102]<-exp(0.3123145*dft[,101]-0.158592+dft[,98]) 

#<- bOR 

 

#bRR  

dft[,150]<- dft[,102]/(1-dft[,1]*(1-dft[,102])) 

#<- bRR 

#b_screen  

dft[,170]<- dft[,150]*dft[,1] 

#<- b_screen 

## 

 

#clnOR 

dft[,103]<- rnorm(nSims,0,1) 

#<- clnOR 

 

#cOR 

dft[,104]<-exp(0.3236347*dft[,103]+1.004057+dft[,98]) 

#<- cOR 

 

#cRR  

dft[,151]<- dft[,104]/(1-dft[,1]*(1-dft[,104])) 

#<- cRR 

#c_screen  

dft[,171]<- dft[,151]*dft[,1] 

#<- c_screen 

## 

 

#olnOR 

dft[,105]<- rnorm(nSims,0,1) 

#<- olnOR 

 

#oOR 

dft[,106]<-exp(0.2847324*dft[,105]+0.6341538+dft[,98]) 

#<- oOR 

 

#oRR  

dft[,152]<- dft[,106]/(1-dft[,1]*(1-dft[,106])) 

#<- oRR 

#o_screen  

dft[,172]<- dft[,152]*dft[,1] 
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#<- o_screen 

## 

 

#plnOR 

dft[,107]<- rnorm(nSims,0,1) 

#<- plnOR 

 

#pOR 

dft[,108]<-exp(0.3272442*dft[,107]+0.240764+dft[,98]) 

#<- pOR 

 

#pRR  

dft[,153]<- dft[,108]/(1-dft[,1]*(1-dft[,108])) 

#<- pRR 

#p_screen  

dft[,173]<- dft[,153]*dft[,1] 

#<- p_screen 

## 

 

#qlnOR 

dft[,109]<- rnorm(nSims,0,1) 

#<- qlnOR 

 

#qOR 

dft[,110]<-exp(0.2782508*dft[,109]-0.1377803+dft[,98]) 

#<- qOR 

 

#qRR  

dft[,154]<- dft[,110]/(1-dft[,1]*(1-dft[,110])) 

#<- qRR 

#q_screen  

dft[,174]<- dft[,154]*dft[,1] 

#<- q_screen 

## 

 

#slnOR 

dft[,111]<- rnorm(nSims,0,1) 

#<- slnOR 

 

#sOR 

dft[,112]<-exp(0.2659836*dft[,111]-0.3386256+dft[,98]) 

#<- sOR 

 

#sRR  

dft[,155]<- dft[,112]/(1-dft[,1]*(1-dft[,112])) 

#<- sRR 

#s_screen  

dft[,175]<- dft[,155]*dft[,1] 

#<- s_screen 

## 

 

#tlnOR 

dft[,113]<- rnorm(nSims,0,1) 

#<- tlnOR 

 

#tOR 

dft[,114]<-exp(0.2714084*dft[,113]+0.5380853+dft[,98]) 

#<- tOR 
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#tRR  

dft[,156]<- dft[,114]/(1-dft[,1]*(1-dft[,114])) 

#<- tRR 

 

#t_screen  

dft[,176]<- dft[,156]*dft[,1] 

#<- t_screen 

## 

 

#aalnOR 

dft[,115]<- rnorm(nSims,0,1) 

#<- aalnOR 

 

#aaOR 

dft[,116]<-exp(0.2606318*dft[,115]-0.2692529+dft[,98]) 

#<- aaOR 

 

#aaRR  

dft[,157]<- dft[,116]/(1-dft[,1]*(1-dft[,116])) 

#<- aaRR 

 

#aa_screen  

dft[,177]<- dft[,157]*dft[,1] 

#<- aa_screen 

## 

 

#aelnOR 

dft[,117]<- rnorm(nSims,0,1) 

#<- aelnOR 

 

#aeOR 

dft[,118]<-exp(0.392789*dft[,117]-0.4560603+dft[,98]) 

#<- aeOR 

 

#aeRR  

dft[,158]<- dft[,118]/(1-dft[,1]*(1-dft[,118])) 

#<- aeRR 

 

#ae_screen  

dft[,178]<- dft[,158]*dft[,1] 

#<- ae_screen 

## 

 

#ajlnOR 

dft[,119]<- rnorm(nSims,0,1) 

#<- ajlnOR 

 

#ajOR 

dft[,120]<-exp(0.3271919*dft[,119]-0.537091+dft[,98]) 

#<- ajOR 

 

#ajRR  

dft[,159]<- dft[,120]/(1-dft[,1]*(1-dft[,120])) 

#<- ajRR 

 

#aj_screen  

dft[,179]<- dft[,159]*dft[,1] 
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#<- aj_screen 

## 

 

#balnOR 

dft[,121]<- rnorm(nSims,0,1) 

#<- balnOR 

 

#baOR 

dft[,122]<-exp(0.2469097*dft[,121]-0.4383294+dft[,98]) 

#<- baOR 

 

#baRR  

dft[,160]<- dft[,122]/(1-dft[,1]*(1-dft[,122])) 

#<- baRR 

 

#ba_screen  

dft[,180]<- dft[,160]*dft[,1] 

#<- ba_screen 

## 

 

#bclnOR 

dft[,123]<- rnorm(nSims,0,1) 

#<- bclnOR 

 

#bcOR 

dft[,124]<-exp(0.4249868*dft[,123]+1.194787+dft[,98]) 

#<- bcOR 

 

#bcRR  

dft[,161]<- dft[,124]/(1-dft[,1]*(1-dft[,124])) 

#<- bcRR 

 

#bc_screen  

dft[,181]<- dft[,161]*dft[,1] 

#<- bc_screen 

## 

 

#bdlnOR 

dft[,125]<- rnorm(nSims,0,1) 

#<- bdlnOR 

 

#bdOR 

dft[,126]<-exp(0.2708582*dft[,125]-0.5724014+dft[,98]) 

#<- bdOR 

 

#bdRR  

dft[,162]<- dft[,126]/(1-dft[,1]*(1-dft[,126])) 

#<- bdRR 

 

#bd_screen  

dft[,182]<- dft[,162]*dft[,1] 

#<- bd_screen 

## 

 

#bilnOR 

dft[,127]<- rnorm(nSims,0,1) 

#<- bilnOR 
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#biOR 

dft[,128]<-exp(0.4167135*dft[,127]-0.1361259+dft[,98]) 

#<- biOR 

 

#biRR  

dft[,163]<- dft[,128]/(1-dft[,1]*(1-dft[,128])) 

#<- biRR 

 

#bi_screen  

dft[,183]<- dft[,163]*dft[,1] 

#<- bi_screen 

## 

 

#bllnOR 

dft[,129]<- rnorm(nSims,0,1) 

#<- bllnOR 

 

#blOR 

dft[,130]<-exp(0.2898359*dft[,129]-0.1609926+dft[,98]) 

#<- blOR 

 

#blRR  

dft[,164]<- dft[,130]/(1-dft[,1]*(1-dft[,130])) 

#<- blRR 

 

#bl_screen  

dft[,184]<- dft[,164]*dft[,1] 

#<- bl_screen 

## 

 

#bolnOR 

dft[,131]<- rnorm(nSims,0,1) 

#<- bolnOR 

 

#boOR 

dft[,132]<-exp(0.3171594*dft[,131]+0.4532762+dft[,98]) 

#<- boOR 

 

#boRR  

dft[,165]<- dft[,132]/(1-dft[,1]*(1-dft[,132])) 

#<- boRR 

 

#bo_screen  

dft[,185]<- dft[,165]*dft[,1] 

#<- bo_screen 

## 

 

#bplnOR 

dft[,133]<- rnorm(nSims,0,1) 

#<- bplnOR 

 

#bpOR 

dft[,134]<-exp(0.3109008*dft[,133]-0.062245+dft[,98]) 

#<- bpOR 

 

#bpRR  

dft[,166]<- dft[,134]/(1-dft[,1]*(1-dft[,134])) 

#<- bpRR 
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#bp_screen  

dft[,186]<- dft[,166]*dft[,1] 

#<- bp_screen 

## 

 

#Probability of monitoring 

dft[,99]<-0.78 

 

 

 

################################## 

################################## 

#Costs 

################################## 

################################## 

 

#cost of one screen 

dft[,201] <- 33 

 

#Likert standard errors of interventions on log-odds scale 

 

#enter the 15 ologit cut results 

 

dft[,202] <- rnorm(nSims,-4.036502,1.305078) 

dft[,203] <- rnorm(nSims,-2.007494,1.135725) 

dft[,204] <- rnorm(nSims,1.031078,1.089946) 

dft[,205] <- rnorm(nSims,1.26614,1.110955) 

dft[,206] <- rnorm(nSims,1.707262,1.155676) 

dft[,207] <- rnorm(nSims,2.39646,1.222959) 

dft[,208] <- rnorm(nSims,2.636701,1.24124) 

dft[,209] <- rnorm(nSims,2.887425,1.259529) 

dft[,210] <- rnorm(nSims,3.779752,1.34606) 

dft[,211] <- rnorm(nSims,4.686412,1.478103) 

dft[,212] <- rnorm(nSims,7.085127,1.675654) 

dft[,213] <- rnorm(nSims,7.921756,1.781087) 

dft[,214] <- rnorm(nSims,10.07898,2.056043) 

dft[,215] <- rnorm(nSims,10.80505,2.171375) 

dft[,216] <- rnorm(nSims,12.00981,2.412503) 

 

#enter intervention means 

 

#b 

dft[,221] <- 2.227674 

#c 

dft[,222] <- 1.220926 

#o 

dft[,223] <- -1.203427 

#p 

dft[,224] <- -3.025819 

#q 

dft[,225] <- 1.356444 

#s 

dft[,226] <- 2.452334 

#t 

dft[,227] <- -2.845207 

#aa 

dft[,228] <- -2.831569 
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#ae 

dft[,229] <- -1.86509 

#aj 

dft[,230] <- -0.5928834 

#ba 

dft[,231] <- -1.438731 

#bc 

dft[,232] <- 4.310422 

#bd 

dft[,233] <- -0.3034361 

#bi 

dft[,234] <- 1.864839 

#bl 

dft[,235] <- -0.3444515 

#bo 

dft[,236] <- 4.937853 

#bp 

dft[,237] <- -2.741852 

 

#enter intervention standard errors 

 

#b 

dft[,241] <- 1.081678 

#c 

dft[,242] <- 1.266392 

#o 

dft[,243] <- 0.9919163 

#p 

dft[,244] <- 1.254638 

#q 

dft[,245] <- 1.071337 

#s 

dft[,246] <- 1.093049 

#t 

dft[,247] <- 1.089955 

#aa 

dft[,248] <- 1.146388 

#ae 

dft[,249] <- 1.836242 

#aj 

dft[,250] <- 1.799308 

#ba 

dft[,251] <- 0.9316532 

#bc 

dft[,252] <- 1.431745 

#bd 

dft[,253] <- 1.001166 

#bi 

dft[,254] <- 1.443432 

#bl 

dft[,255] <- 1.125722 

#bo 

dft[,256] <- 1.623801 

#bp 

dft[,257] <- 1.288694 

 

 

#1-3 rank order Costs 
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#cons 

dft[,261] <- -1.1271 

#mean 

dft[,262] <- 4.3750 

#standard error 

dft[,263] <- 0.2263 

 

#4-8 rank order Costs 

#cons 

dft[,264] <- 9.5174 

#mean 

dft[,265] <- 4.3475 

#standard error 

dft[,266] <- 0.2927 

 

#9-15 rank order Costs 

#cons 

dft[,267] <- 36.3808 

#mean 

dft[,268] <- 4.3830 

#standard error 

dft[,269] <- 0.1125 

 

 

mr <- tab.datMR 

rtrisk<-mr 

  #as.numeric(mr) 

 

 

 

for (b in 1:18){ 

 

########################################### 

#Start new dataframe 'dfe' for this inner loop so that the original dataframe 'dft' is preserved for the next loop iteration 

########################################### 

 

  dfe<-dft 

   

########################################### 

#Set treatment conditional parameters 

########################################### 

if (b==1){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,1] 

 

  } else if (b==2){ 

  #intevention screening uptake probability   

dfe[,502]<-dfe[,170] 

#Likert result 

dfe[,503]<-rnorm(nSims,0,1) 

 

dfe[,511]<- -dfe[,202]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,512]<- -dfe[,203]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,513]<- -dfe[,204]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,514]<- -dfe[,205]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,515]<- -dfe[,206]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,516]<- -dfe[,207]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,517]<- -dfe[,208]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 
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dfe[,518]<- -dfe[,209]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,519]<- -dfe[,210]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,520]<- -dfe[,211]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,521]<- -dfe[,212]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,522]<- -dfe[,213]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,523]<- -dfe[,214]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,524]<- -dfe[,215]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

dfe[,525]<- -dfe[,216]+dfe[,221]+dfe[,503]*dfe[,241]*(sqrt(1-(0.095^2)))+0.095*dfe[,101]*dfe[,241] 

 

} else if (b==3){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,171]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,512]<- -dfe[,203]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,513]<- -dfe[,204]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,514]<- -dfe[,205]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,515]<- -dfe[,206]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,516]<- -dfe[,207]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,517]<- -dfe[,208]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,518]<- -dfe[,209]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,519]<- -dfe[,210]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,520]<- -dfe[,211]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,521]<- -dfe[,212]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,522]<- -dfe[,213]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,523]<- -dfe[,214]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,524]<- -dfe[,215]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

  dfe[,525]<- -dfe[,216]+dfe[,222]+dfe[,503]*dfe[,242]*(sqrt(1-(0.095^2)))+0.095*dfe[,103]*dfe[,242] 

   

} else if (b==4){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,172]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,512]<- -dfe[,203]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,513]<- -dfe[,204]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,514]<- -dfe[,205]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,515]<- -dfe[,206]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,516]<- -dfe[,207]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,517]<- -dfe[,208]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,518]<- -dfe[,209]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,519]<- -dfe[,210]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,520]<- -dfe[,211]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,521]<- -dfe[,212]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,522]<- -dfe[,213]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,523]<- -dfe[,214]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,524]<- -dfe[,215]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

  dfe[,525]<- -dfe[,216]+dfe[,223]+dfe[,503]*dfe[,243]*(sqrt(1-(0.095^2)))+0.095*dfe[,105]*dfe[,243] 

   

} else if (b==5){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,173]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 
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  dfe[,511]<- -dfe[,202]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,512]<- -dfe[,203]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,513]<- -dfe[,204]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,514]<- -dfe[,205]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,515]<- -dfe[,206]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,516]<- -dfe[,207]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,517]<- -dfe[,208]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,518]<- -dfe[,209]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,519]<- -dfe[,210]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,520]<- -dfe[,211]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,521]<- -dfe[,212]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,522]<- -dfe[,213]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,523]<- -dfe[,214]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,524]<- -dfe[,215]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

  dfe[,525]<- -dfe[,216]+dfe[,224]+dfe[,503]*dfe[,244]*(sqrt(1-(0.095^2)))+0.095*dfe[,107]*dfe[,244] 

   

} else if (b==6){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,174]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,512]<- -dfe[,203]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,513]<- -dfe[,204]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,514]<- -dfe[,205]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,515]<- -dfe[,206]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,516]<- -dfe[,207]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,517]<- -dfe[,208]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,518]<- -dfe[,209]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,519]<- -dfe[,210]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,520]<- -dfe[,211]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,521]<- -dfe[,212]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,522]<- -dfe[,213]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,523]<- -dfe[,214]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,524]<- -dfe[,215]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

  dfe[,525]<- -dfe[,216]+dfe[,225]+dfe[,503]*dfe[,245]*(sqrt(1-(0.095^2)))+0.095*dfe[,109]*dfe[,245] 

   

} else if (b==7){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,175]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,512]<- -dfe[,203]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,513]<- -dfe[,204]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,514]<- -dfe[,205]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,515]<- -dfe[,206]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,516]<- -dfe[,207]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,517]<- -dfe[,208]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,518]<- -dfe[,209]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,519]<- -dfe[,210]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,520]<- -dfe[,211]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,521]<- -dfe[,212]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,522]<- -dfe[,213]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,523]<- -dfe[,214]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 



49 
 

  dfe[,524]<- -dfe[,215]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

  dfe[,525]<- -dfe[,216]+dfe[,226]+dfe[,503]*dfe[,246]*(sqrt(1-(0.095^2)))+0.095*dfe[,111]*dfe[,246] 

   

} else if (b==8){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,176]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,512]<- -dfe[,203]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,513]<- -dfe[,204]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,514]<- -dfe[,205]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,515]<- -dfe[,206]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,516]<- -dfe[,207]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,517]<- -dfe[,208]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,518]<- -dfe[,209]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,519]<- -dfe[,210]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,520]<- -dfe[,211]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,521]<- -dfe[,212]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,522]<- -dfe[,213]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,523]<- -dfe[,214]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,524]<- -dfe[,215]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

  dfe[,525]<- -dfe[,216]+dfe[,227]+dfe[,503]*dfe[,247]*(sqrt(1-(0.095^2)))+0.095*dfe[,113]*dfe[,247] 

   

} else if (b==9){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,177]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,512]<- -dfe[,203]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,513]<- -dfe[,204]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,514]<- -dfe[,205]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,515]<- -dfe[,206]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,516]<- -dfe[,207]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,517]<- -dfe[,208]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,518]<- -dfe[,209]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,519]<- -dfe[,210]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,520]<- -dfe[,211]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,521]<- -dfe[,212]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,522]<- -dfe[,213]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,523]<- -dfe[,214]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,524]<- -dfe[,215]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

  dfe[,525]<- -dfe[,216]+dfe[,228]+dfe[,503]*dfe[,248]*(sqrt(1-(0.095^2)))+0.095*dfe[,115]*dfe[,248] 

   

} else if (b==10){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,178]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,512]<- -dfe[,203]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,513]<- -dfe[,204]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,514]<- -dfe[,205]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,515]<- -dfe[,206]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 
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  dfe[,516]<- -dfe[,207]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,517]<- -dfe[,208]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,518]<- -dfe[,209]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,519]<- -dfe[,210]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,520]<- -dfe[,211]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,521]<- -dfe[,212]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,522]<- -dfe[,213]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,523]<- -dfe[,214]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,524]<- -dfe[,215]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

  dfe[,525]<- -dfe[,216]+dfe[,229]+dfe[,503]*dfe[,249]*(sqrt(1-(0.095^2)))+0.095*dfe[,117]*dfe[,249] 

   

} else if (b==11){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,179]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,512]<- -dfe[,203]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,513]<- -dfe[,204]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,514]<- -dfe[,205]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,515]<- -dfe[,206]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,516]<- -dfe[,207]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,517]<- -dfe[,208]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,518]<- -dfe[,209]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,519]<- -dfe[,210]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,520]<- -dfe[,211]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,521]<- -dfe[,212]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,522]<- -dfe[,213]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,523]<- -dfe[,214]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,524]<- -dfe[,215]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

  dfe[,525]<- -dfe[,216]+dfe[,230]+dfe[,503]*dfe[,250]*(sqrt(1-(0.095^2)))+0.095*dfe[,119]*dfe[,250] 

   

} else if (b==12){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,180]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,512]<- -dfe[,203]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,513]<- -dfe[,204]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,514]<- -dfe[,205]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,515]<- -dfe[,206]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,516]<- -dfe[,207]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,517]<- -dfe[,208]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,518]<- -dfe[,209]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,519]<- -dfe[,210]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,520]<- -dfe[,211]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,521]<- -dfe[,212]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,522]<- -dfe[,213]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,523]<- -dfe[,214]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,524]<- -dfe[,215]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

  dfe[,525]<- -dfe[,216]+dfe[,231]+dfe[,503]*dfe[,251]*(sqrt(1-(0.095^2)))+0.095*dfe[,121]*dfe[,251] 

   

} else if (b==13){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,181]   
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  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,512]<- -dfe[,203]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,513]<- -dfe[,204]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,514]<- -dfe[,205]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,515]<- -dfe[,206]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,516]<- -dfe[,207]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,517]<- -dfe[,208]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,518]<- -dfe[,209]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,519]<- -dfe[,210]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,520]<- -dfe[,211]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,521]<- -dfe[,212]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,522]<- -dfe[,213]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,523]<- -dfe[,214]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,524]<- -dfe[,215]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

  dfe[,525]<- -dfe[,216]+dfe[,232]+dfe[,503]*dfe[,252]*(sqrt(1-(0.095^2)))+0.095*dfe[,123]*dfe[,252] 

   

} else if (b==14){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,182]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,512]<- -dfe[,203]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,513]<- -dfe[,204]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,514]<- -dfe[,205]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,515]<- -dfe[,206]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,516]<- -dfe[,207]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,517]<- -dfe[,208]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,518]<- -dfe[,209]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,519]<- -dfe[,210]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,520]<- -dfe[,211]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,521]<- -dfe[,212]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,522]<- -dfe[,213]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,523]<- -dfe[,214]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,524]<- -dfe[,215]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

  dfe[,525]<- -dfe[,216]+dfe[,233]+dfe[,503]*dfe[,253]*(sqrt(1-(0.095^2)))+0.095*dfe[,125]*dfe[,253] 

   

} else if (b==15){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,183]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,512]<- -dfe[,203]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,513]<- -dfe[,204]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,514]<- -dfe[,205]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,515]<- -dfe[,206]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,516]<- -dfe[,207]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,517]<- -dfe[,208]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,518]<- -dfe[,209]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,519]<- -dfe[,210]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,520]<- -dfe[,211]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,521]<- -dfe[,212]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 



52 
 

  dfe[,522]<- -dfe[,213]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,523]<- -dfe[,214]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,524]<- -dfe[,215]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

  dfe[,525]<- -dfe[,216]+dfe[,234]+dfe[,503]*dfe[,254]*(sqrt(1-(0.095^2)))+0.095*dfe[,127]*dfe[,254] 

   

} else if (b==16){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,184]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,512]<- -dfe[,203]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,513]<- -dfe[,204]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,514]<- -dfe[,205]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,515]<- -dfe[,206]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,516]<- -dfe[,207]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,517]<- -dfe[,208]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,518]<- -dfe[,209]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,519]<- -dfe[,210]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,520]<- -dfe[,211]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,521]<- -dfe[,212]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,522]<- -dfe[,213]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,523]<- -dfe[,214]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,524]<- -dfe[,215]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

  dfe[,525]<- -dfe[,216]+dfe[,235]+dfe[,503]*dfe[,255]*(sqrt(1-(0.095^2)))+0.095*dfe[,129]*dfe[,255] 

   

} else if (b==17){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,185]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,512]<- -dfe[,203]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,513]<- -dfe[,204]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,514]<- -dfe[,205]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,515]<- -dfe[,206]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,516]<- -dfe[,207]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,517]<- -dfe[,208]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,518]<- -dfe[,209]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,519]<- -dfe[,210]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,520]<- -dfe[,211]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,521]<- -dfe[,212]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,522]<- -dfe[,213]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,523]<- -dfe[,214]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,524]<- -dfe[,215]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

  dfe[,525]<- -dfe[,216]+dfe[,236]+dfe[,503]*dfe[,256]*(sqrt(1-(0.095^2)))+0.095*dfe[,131]*dfe[,256] 

   

} else if (b==18){ 

  #intevention screening uptake probability   

  dfe[,502]<-dfe[,186]   

  #Likert result 

  dfe[,503]<-rnorm(nSims,0,1) 

   

  dfe[,511]<- -dfe[,202]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,512]<- -dfe[,203]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,513]<- -dfe[,204]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 
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  dfe[,514]<- -dfe[,205]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,515]<- -dfe[,206]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,516]<- -dfe[,207]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,517]<- -dfe[,208]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,518]<- -dfe[,209]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,519]<- -dfe[,210]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,520]<- -dfe[,211]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,521]<- -dfe[,212]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,522]<- -dfe[,213]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,523]<- -dfe[,214]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,524]<- -dfe[,215]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

  dfe[,525]<- -dfe[,216]+dfe[,237]+dfe[,503]*dfe[,257]*(sqrt(1-(0.095^2)))+0.095*dfe[,133]*dfe[,257] 

   

} 

 

 

#cumulative probabilities 

dfe[,531]<-1/(1+exp(dfe[,511])) 

dfe[,532]<-1/(1+exp(dfe[,512])) 

dfe[,533]<-1/(1+exp(dfe[,513])) 

dfe[,534]<-1/(1+exp(dfe[,514])) 

dfe[,535]<-1/(1+exp(dfe[,515])) 

dfe[,536]<-1/(1+exp(dfe[,516])) 

dfe[,537]<-1/(1+exp(dfe[,517])) 

dfe[,538]<-1/(1+exp(dfe[,518])) 

dfe[,539]<-1/(1+exp(dfe[,519])) 

dfe[,540]<-1/(1+exp(dfe[,520])) 

dfe[,541]<-1/(1+exp(dfe[,521])) 

dfe[,542]<-1/(1+exp(dfe[,522])) 

dfe[,543]<-1/(1+exp(dfe[,523])) 

dfe[,544]<-1/(1+exp(dfe[,524])) 

dfe[,545]<-1/(1+exp(dfe[,525])) 

dfe[,546]<-1 

 

#expected probabilities 

dfe[,551]<-dfe[,531] 

dfe[,552]<-dfe[,532]-dfe[,531] 

dfe[,553]<-dfe[,533]-dfe[,532] 

dfe[,554]<-dfe[,534]-dfe[,533] 

dfe[,555]<-dfe[,535]-dfe[,534] 

dfe[,556]<-dfe[,536]-dfe[,535] 

dfe[,557]<-dfe[,537]-dfe[,536] 

dfe[,558]<-dfe[,538]-dfe[,537] 

dfe[,559]<-dfe[,539]-dfe[,538] 

dfe[,560]<-dfe[,540]-dfe[,539] 

dfe[,561]<-dfe[,541]-dfe[,540] 

dfe[,562]<-dfe[,542]-dfe[,541] 

dfe[,563]<-dfe[,543]-dfe[,542] 

dfe[,564]<-dfe[,544]-dfe[,543] 

dfe[,565]<-dfe[,545]-dfe[,544] 

dfe[,566]<-dfe[,546]-dfe[,545] 

 

#expected ordered ranking 

dfe[,571]<-dfe[,551]*1 + dfe[,552]*2 + dfe[,553]*3 + dfe[,554]*4 + dfe[,555]*5 + dfe[,556]*6 + dfe[,557]*7 + dfe[,558]*8 + dfe[,559]*9 + 

  dfe[,560]*10 + dfe[,561]*11 + dfe[,562]*12 + dfe[,563]*13 + dfe[,564]*14 + dfe[,565]*15 + dfe[,566]*16 

 

dfe[,596]<-rnorm(nSims,0,dfe[,263]) 

dfe[,597]<-rnorm(nSims,0,dfe[,266]) 
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dfe[,598]<-rnorm(nSims,0,dfe[,269]) 

 

 

 

#expected cost 

if (b==1){ 

  dfe[,572]<-0 

} else { 

   

  dfe[,572]<-

ifelse(dfe[,571]<4,(dfe[,261]+dfe[,262]*dfe[,571]+dfe[,596]),ifelse(dfe[,571]<9,(dfe[,264]+dfe[,265]*dfe[,571]+dfe[,597]),(dfe[,267]+dfe[,

268]*dfe[,571]+dfe[,598]))) 

   

} 

 

#probability of referral to HES 

dfe[,581]<-dfe[,502]*(1-dfe[,5]) 

dfe[,582]<-dfe[,502]*(1-dfe[,6]) 

dfe[,583]<-dfe[,502]*(1-dfe[,7]) 

dfe[,584]<-dfe[,502]*dfe[,8] 

dfe[,585]<-dfe[,502]*dfe[,9] 

dfe[,586]<-dfe[,502]*dfe[,10] 

dfe[,587]<-dfe[,502]*dfe[,11] 

dfe[,588]<-dfe[,502]*dfe[,8] 

dfe[,589]<-dfe[,502]*dfe[,9] 

dfe[,590]<-dfe[,502]*dfe[,10] 

dfe[,591]<-dfe[,502]*dfe[,11] 

dfe[,592]<-dfe[,502]*dfe[,8] 

dfe[,593]<-dfe[,502]*dfe[,9] 

dfe[,594]<-dfe[,502]*dfe[,10] 

dfe[,595]<-dfe[,502]*dfe[,11] 

 

   

   

   

  #initial population sequence (cols: 87 to 109) 

   

#preDR1 

dfe[,301]<-0.604 

#preDR2 

dfe[,302]<-0.188 

#preDR3 

dfe[,303]<-0.129 

#DR1 

dfe[,304]<-0.011 

#DR2 

dfe[,305]<-0.009 

#DM1 

dfe[,306]<-0.04 

#DM2 

dfe[,307]<-0.018 

#MDR1 

dfe[,308]<-0 

#MDR2 

dfe[,309]<-0 

#MDM1 

dfe[,310]<-0 

#MDM2 
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dfe[,311]<-0 

#TDR1 

dfe[,312]<-0 

#TDR2 

dfe[,313]<-0 

#TDM1 

dfe[,314]<-0 

#TDM2 

dfe[,315]<-0 

#Dead 

dfe[,316]<-0 

 

 

  dfe[,4001:4016]<-dfe[,301:316] 

   

   

 # write.csv(df1, file = "df1.csv") 

   

##utilities 

dfe[,601]<- tab.dat[1,"Utility_preDR"]/2 

dfe[,602]<- tab.dat[1,"Utility_preDR"]/2 

dfe[,603]<- tab.dat[1,"Utility_preDR"]/2 

dfe[,604]<- tab.dat[1,"Utility_nTx_DR1"]/2 

dfe[,605]<- tab.dat[1,"Utility_nTx_DR2"]/2 

dfe[,606]<- tab.dat[1,"Utility_nTx_DM1"]/2 

dfe[,607]<- tab.dat[1,"Utility_nTx_DM2"]/2 

dfe[,608]<- tab.dat[1,"Utility_nTx_DR1"]/2 

dfe[,609]<- tab.dat[1,"Utility_nTx_DR2"]/2 

dfe[,610]<- tab.dat[1,"Utility_nTx_DM1"]/2 

dfe[,611]<- tab.dat[1,"Utility_nTx_DM2"]/2 

dfe[,612]<- tab.dat[1,"Utility_Tx_DR1"]/2 

dfe[,613]<- tab.dat[1,"Utility_Tx_DR2"]/2 

dfe[,614]<- tab.dat[1,"Utility_Tx_DM1"]/2 

dfe[,615]<- tab.dat[1,"Utility_Tx_DM2"]/2 

dfe[,616]<- 0 

 

##probability of HES assessment 

dfe[,621]<- tab.dat[1,"Attend_preDR"]*dfe[,581] 

dfe[,622]<- tab.dat[1,"Attend_preDR"]*dfe[,582] 

dfe[,623]<- tab.dat[1,"Attend_preDR"]*dfe[,583] 

dfe[,624]<- tab.dat[1,"Attend_DR1"]*dfe[,584] 

dfe[,625]<- tab.dat[1,"Attend_DR2"]*dfe[,585] 

dfe[,626]<- tab.dat[1,"Attend_DM1"]*dfe[,586] 

dfe[,627]<- tab.dat[1,"Attend_DM2"]*dfe[,587] 

 

dfe[,628]<- 1 

dfe[,629]<- 1 

dfe[,630]<- 1 

dfe[,631]<- 1 

 

dfe[,632]<- tab.dat[1,"Attend_DR1"]*dfe[,588] 

dfe[,633]<- tab.dat[1,"Attend_DR2"]*dfe[,589] 

dfe[,634]<- tab.dat[1,"Attend_DM1"]*dfe[,590] 

dfe[,635]<- tab.dat[1,"Attend_DM2"]*dfe[,591] 

 

 

 

##log costs 
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dfe[,751]<- 0.119*dfe[,621]+1.057*tab.dat[1,"Va_preDR"]+0.153+-0.1892+5.87 

dfe[,752]<- 0.119*dfe[,622]+1.057*tab.dat[1,"Va_preDR"]+0.153+-0.1892+5.87+0.105 

dfe[,753]<- 0.119*dfe[,623]+1.057*tab.dat[1,"Va_preDR"]+0.153+-0.1892+5.87+0.269 

dfe[,754]<- 0.119*dfe[,624]+1.057*tab.dat[1,"Va_nTx_DR1"]+0.153+-0.1892+5.87+0.487 

dfe[,755]<- 0.119*dfe[,625]+1.057*tab.dat[1,"Va_nTx_DR2"]+0.153+-0.1892+5.87+0.625 

dfe[,756]<- 0.119*dfe[,626]+1.057*tab.dat[1,"Va_nTx_DM1"]+0.153+-0.1892+5.87+0.444 

dfe[,757]<- 0.119*dfe[,627]+1.057*tab.dat[1,"Va_nTx_DM2"]+0.153+-0.1892+5.87+0.423 

dfe[,758]<- 0.119*dfe[,628]+1.057*tab.dat[1,"Va_nTx_DR1"]+0.153+-0.1892+5.87+0.487 

dfe[,759]<- 0.119*dfe[,629]+1.057*tab.dat[1,"Va_nTx_DR2"]+0.153+-0.1892+5.87+0.625 

dfe[,760]<- 0.119*dfe[,630]+1.057*tab.dat[1,"Va_nTx_DM1"]+0.153+-0.1892+5.87+0.444 

dfe[,761]<- 0.119*dfe[,631]+1.057*tab.dat[1,"Va_nTx_DM2"]+0.153+-0.1892+5.87+0.423 

dfe[,762]<- 

0.119*dfe[,628]+1.057*tab.dat[1,"Va_Tx_DR1"]+0.271*dfe[,81]*dfe[,91]*dfe[,628]+0.337*dfe[,82]*dfe[,91]*dfe[,628]+0.153+-

0.1892+5.87+0.487 

dfe[,763]<- 

0.119*dfe[,629]+1.057*tab.dat[1,"Va_Tx_DR2"]+0.271*dfe[,83]*dfe[,92]*dfe[,629]+0.337*dfe[,84]*dfe[,92]*dfe[,629]+0.153+-

0.1892+5.87+0.625 

dfe[,764]<- 

0.119*dfe[,630]+1.057*tab.dat[1,"Va_Tx_DM1"]+0.271*dfe[,85]*dfe[,93]*dfe[,630]+0.337*dfe[,86]*dfe[,93]*dfe[,630]+0.153+-

0.1892+5.87+0.444 

dfe[,765]<- 

0.119*dfe[,631]+1.057*tab.dat[1,"Va_Tx_DM2"]+0.271*dfe[,87]*dfe[,94]*dfe[,631]+0.337*dfe[,88]*dfe[,94]*dfe[,631]+0.153+-

0.1892+5.87+0.423 

 

##state specific costs 

dfe[,771]<-exp(dfe[,751])   

dfe[,772]<-exp(dfe[,752])   

dfe[,773]<-exp(dfe[,753])   

dfe[,774]<-exp(dfe[,754])   

dfe[,775]<-exp(dfe[,755])   

dfe[,776]<-exp(dfe[,756])   

dfe[,777]<-exp(dfe[,757])   

dfe[,778]<-exp(dfe[,758])   

dfe[,779]<-exp(dfe[,759])   

dfe[,780]<-exp(dfe[,760])   

dfe[,781]<-exp(dfe[,761])   

dfe[,782]<-exp(dfe[,758])   

dfe[,783]<-exp(dfe[,759])   

dfe[,784]<-exp(dfe[,760])   

dfe[,785]<-exp(dfe[,761])   

 

 

 

##total costs 

dfe[,701]<-dfe[,771]/2+dfe[,502]*(1-dfe[,5])*33 

dfe[,702]<-dfe[,772]/2+dfe[,502]*(1-dfe[,6])*33 

dfe[,703]<-dfe[,773]/2+dfe[,502]*(1-dfe[,7])*33 

dfe[,704]<-dfe[,774]/2+dfe[,502]*dfe[,8]*33 

dfe[,705]<-dfe[,775]/2+dfe[,502]*dfe[,9]*33 

dfe[,706]<-dfe[,776]/2+dfe[,502]*dfe[,10]*33 

dfe[,707]<-dfe[,777]/2+dfe[,502]*dfe[,11]*33 

dfe[,708]<-dfe[,778]/2 

dfe[,709]<-dfe[,779]/2 

dfe[,710]<-dfe[,780]/2 

dfe[,711]<-dfe[,781]/2 

dfe[,712]<-dfe[,782]/2+dfe[,502]*dfe[,8]*33 

dfe[,713]<-dfe[,783]/2+dfe[,502]*dfe[,9]*33 

dfe[,714]<-dfe[,784]/2+dfe[,502]*dfe[,10]*33 
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dfe[,715]<-dfe[,785]/2+dfe[,502]*dfe[,11]*33 

dfe[,716]<-0 

 

   

  ##Define new initial population- first row of trace matrix 

  dfe[,6001:6016]<-dfe[,4001:4016]*dfe[,601:616] #QALYs 

  dfe[,8001:8016]<-dfe[,4001:4016]*dfe[,701:716] #Costs 

 

  #Sum the QALYs across the states for each cycle 

  dfe[,10001]<-rowSums(dfe[,6001:6016])   

   

  #Sum the costs across the states for each iteration 

  dfe[,10101]<-rowSums(dfe[,8001:8016]) 

   

 #write.csv(df1, file = "df1.csv") 

  

 #i<-3 

  df1<-dfe 

   

for (i in 2:74){ 

 

   

  ##utilities 

  df1[,601]<- tab.dat[i,"Utility_preDR"]/2 

  df1[,602]<- tab.dat[i,"Utility_preDR"]/2 

  df1[,603]<- tab.dat[i,"Utility_preDR"]/2 

  df1[,604]<- tab.dat[i,"Utility_nTx_DR1"]/2 

  df1[,605]<- tab.dat[i,"Utility_nTx_DR2"]/2 

  df1[,606]<- tab.dat[i,"Utility_nTx_DM1"]/2 

  df1[,607]<- tab.dat[i,"Utility_nTx_DM2"]/2 

  df1[,608]<- tab.dat[i,"Utility_nTx_DR1"]/2 

  df1[,609]<- tab.dat[i,"Utility_nTx_DR2"]/2 

  df1[,610]<- tab.dat[i,"Utility_nTx_DM1"]/2 

  df1[,611]<- tab.dat[i,"Utility_nTx_DM2"]/2 

  df1[,612]<- tab.dat[i,"Utility_Tx_DR1"]/2 

  df1[,613]<- tab.dat[i,"Utility_Tx_DR2"]/2 

  df1[,614]<- tab.dat[i,"Utility_Tx_DM1"]/2 

  df1[,615]<- tab.dat[i,"Utility_Tx_DM2"]/2 

  df1[,616]<- 0 

   

  ##probability of HES assessment 

  df1[,621]<- tab.dat[i,"Attend_preDR"]*df1[,581] 

  df1[,622]<- tab.dat[i,"Attend_preDR"]*df1[,582] 

  df1[,623]<- tab.dat[i,"Attend_preDR"]*df1[,583] 

  df1[,624]<- tab.dat[i,"Attend_DR1"]*df1[,584] 

  df1[,625]<- tab.dat[i,"Attend_DR2"]*df1[,585] 

  df1[,626]<- tab.dat[i,"Attend_DM1"]*df1[,586] 

  df1[,627]<- tab.dat[i,"Attend_DM2"]*df1[,587] 

   

  df1[,628]<- 1 

  df1[,629]<- 1 

  df1[,630]<- 1 

  df1[,631]<- 1 

   

  df1[,632]<- tab.dat[i,"Attend_DR1"]*df1[,588] 

  df1[,633]<- tab.dat[i,"Attend_DR2"]*df1[,589] 

  df1[,634]<- tab.dat[i,"Attend_DM1"]*df1[,590] 

  df1[,635]<- tab.dat[i,"Attend_DM2"]*df1[,591] 
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  ##log costs 

  df1[,751]<- 0.119*df1[,621]+1.057*tab.dat[i,"Va_preDR"]+0.153+-0.1892+5.87 

  df1[,752]<- 0.119*df1[,622]+1.057*tab.dat[i,"Va_preDR"]+0.153+-0.1892+5.87+0.105 

  df1[,753]<- 0.119*df1[,623]+1.057*tab.dat[i,"Va_preDR"]+0.153+-0.1892+5.87+0.269 

  df1[,754]<- 0.119*df1[,624]+1.057*tab.dat[i,"Va_nTx_DR1"]+0.153+-0.1892+5.87+0.487 

  df1[,755]<- 0.119*df1[,625]+1.057*tab.dat[i,"Va_nTx_DR2"]+0.153+-0.1892+5.87+0.625 

  df1[,756]<- 0.119*df1[,626]+1.057*tab.dat[i,"Va_nTx_DM1"]+0.153+-0.1892+5.87+0.444 

  df1[,757]<- 0.119*df1[,627]+1.057*tab.dat[i,"Va_nTx_DM2"]+0.153+-0.1892+5.87+0.423 

  df1[,758]<- 0.119*df1[,628]+1.057*tab.dat[i,"Va_nTx_DR1"]+0.153+-0.1892+5.87+0.487 

  df1[,759]<- 0.119*df1[,629]+1.057*tab.dat[i,"Va_nTx_DR2"]+0.153+-0.1892+5.87+0.625 

  df1[,760]<- 0.119*df1[,630]+1.057*tab.dat[i,"Va_nTx_DM1"]+0.153+-0.1892+5.87+0.444 

  df1[,761]<- 0.119*df1[,631]+1.057*tab.dat[i,"Va_nTx_DM2"]+0.153+-0.1892+5.87+0.423 

  df1[,762]<- 

0.119*df1[,628]+1.057*tab.dat[i,"Va_Tx_DR1"]+0.271*df1[,81]*df1[,91]*df1[,628]+0.337*df1[,82]*df1[,91]*df1[,628]+0.153+-

0.1892+5.87+0.487 

  df1[,763]<- 

0.119*df1[,629]+1.057*tab.dat[i,"Va_Tx_DR2"]+0.271*df1[,83]*df1[,92]*df1[,629]+0.337*df1[,84]*df1[,92]*df1[,629]+0.153+-

0.1892+5.87+0.625 

  df1[,764]<- 

0.119*df1[,630]+1.057*tab.dat[i,"Va_Tx_DM1"]+0.271*df1[,85]*df1[,93]*df1[,630]+0.337*df1[,86]*df1[,93]*df1[,630]+0.153+-

0.1892+5.87+0.444 

  df1[,765]<- 

0.119*df1[,631]+1.057*tab.dat[i,"Va_Tx_DM2"]+0.271*df1[,87]*df1[,94]*df1[,631]+0.337*df1[,88]*df1[,94]*df1[,631]+0.153+-

0.1892+5.87+0.423 

   

  ##state specific costs 

  df1[,771]<-exp(df1[,751])   

  df1[,772]<-exp(df1[,752])   

  df1[,773]<-exp(df1[,753])   

  df1[,774]<-exp(df1[,754])   

  df1[,775]<-exp(df1[,755])   

  df1[,776]<-exp(df1[,756])   

  df1[,777]<-exp(df1[,757])   

  df1[,778]<-exp(df1[,758])   

  df1[,779]<-exp(df1[,759])   

  df1[,780]<-exp(df1[,760])   

  df1[,781]<-exp(df1[,761])   

  df1[,782]<-exp(df1[,758])   

  df1[,783]<-exp(df1[,759])   

  df1[,784]<-exp(df1[,760])   

  df1[,785]<-exp(df1[,761])   

   

 

  ##total costs 

   

  #screening state 

   

  if (i==3 | i==5 | i==7 | i==9 | i==11 | i==13 | i==15 | i==17 | i==19 | i==21 | i==23 | i==25 | i==27 | i==29 | i==31 | i==33 | i==35 | 

      i==37 | i==39 | i==41 | i==43 | i==45 | i==47 | i==49 | i==51 | i==53 | i==55 | i==57 | i==59 | i==61 | i==63 | i==65 | i==67 | 

      i==69 | i==71 | i==73){ 

     

    df1[,701]<-df1[,771]/2+df1[,502]*(1-df1[,5])*33+df1[,572] 

    df1[,702]<-df1[,772]/2+df1[,502]*(1-df1[,6])*33+df1[,572] 

    df1[,703]<-df1[,773]/2+df1[,502]*(1-df1[,7])*33+df1[,572] 

    df1[,704]<-df1[,774]/2+df1[,502]*df1[,8]*33+df1[,572] 
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    df1[,705]<-df1[,775]/2+df1[,502]*df1[,9]*33+df1[,572] 

    df1[,706]<-df1[,776]/2+df1[,502]*df1[,10]*33+df1[,572] 

    df1[,707]<-df1[,777]/2+df1[,502]*df1[,11]*33+df1[,572] 

    df1[,708]<-df1[,778]/2 

    df1[,709]<-df1[,779]/2 

    df1[,710]<-df1[,780]/2 

    df1[,711]<-df1[,781]/2 

    df1[,712]<-df1[,782]/2+df1[,502]*df1[,8]*33+df1[,572] 

    df1[,713]<-df1[,783]/2+df1[,502]*df1[,9]*33+df1[,572] 

    df1[,714]<-df1[,784]/2+df1[,502]*df1[,10]*33+df1[,572] 

    df1[,715]<-df1[,785]/2+df1[,502]*df1[,11]*33+df1[,572] 

    df1[,716]<-0 

     

    } else { 

   

  df1[,701]<-df1[,771]/2+df1[,502]*(1-df1[,5]) 

  df1[,702]<-df1[,772]/2+df1[,502]*(1-df1[,6]) 

  df1[,703]<-df1[,773]/2+df1[,502]*(1-df1[,7]) 

  df1[,704]<-df1[,774]/2+df1[,502]*df1[,8] 

  df1[,705]<-df1[,775]/2+df1[,502]*df1[,9] 

  df1[,706]<-df1[,776]/2+df1[,502]*df1[,10] 

  df1[,707]<-df1[,777]/2+df1[,502]*df1[,11] 

  df1[,708]<-df1[,774]/2 

  df1[,709]<-df1[,775]/2 

  df1[,710]<-df1[,776]/2 

  df1[,711]<-df1[,777]/2 

  df1[,712]<-df1[,778]/2+df1[,502]*df1[,8] 

  df1[,713]<-df1[,779]/2+df1[,502]*df1[,9] 

  df1[,714]<-df1[,780]/2+df1[,502]*df1[,10] 

  df1[,715]<-df1[,781]/2+df1[,502]*df1[,11] 

  df1[,716]<-0 

    } 

 

     

  MORT <- rtrisk[i,"mort"] 

  df1[,801]<-MORT 

 

  df1[,(1000+15*16+1):(1000+15*16+15)]<-df1[,801] 

   

  #ALIVE <- 1-MORT 

  df1[,802] <- 1-df1[,801]   

   

  ##Transition probabilities grouped by original state, excluding transition to the next treatment and mortality 

   

  #Dead to dead 

  df1[,(1000+15*16+16)]<-1 

   

  ################################### 

  #Transition variables 

  ################################### 

  #basic transition probabilities 

  #preDR1_preDR2<-0.11 

  df1[,(1000+1*16+1)]<-df1[,16]*df1[,802] 

     

  #preDR1_preDR3<-0 

  df1[,(1000+2*16+1)]<-df1[,17]*df1[,802] 

   

  #preDR1_DM1<-0.0005 
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  df1[,(1000+5*16+1)]<-df1[,20]*df1[,802] 

   

  #preDR1_preDR1<- 

  df1[,(1000+0*16+1)]<-1-df1[,(1000+1*16+1)]-df1[,(1000+2*16+1)]-df1[,(1000+5*16+1)]-df1[,801] 

   

     

  ######### 

  #preDR2_preDR1<-0.12 

  df1[,(1000+0*16+2)]<-df1[,22]*df1[,802] 

   

  #preDR2_preDR3<-0.11 

  df1[,(1000+2*16+2)]<-df1[,23]*df1[,802] 

   

  #preDR2_DR1<-0.0001 

  df1[,(1000+3*16+2)]<-df1[,24]*df1[,802] 

     

  #preDR2_DM1<-0.004 

  df1[,(1000+5*16+2)]<-df1[,26]*df1[,802] 

   

  #preDR2_DM2<-0.0003 

  df1[,(1000+6*16+2)]<-df1[,27]*df1[,802] 

 

  #preDR2_preDR2<- 

  df1[,(1000+1*16+2)]<-1-df1[,(1000+0*16+2)]-df1[,(1000+2*16+2)]-df1[,(1000+3*16+2)]-df1[,(1000+5*16+2)]-df1[,(1000+6*16+2)]-

df1[,801] 

   

   

  ######### 

  #preDR3_preDR1<-0.001 

  df1[,(1000+0*16+3)]<-df1[,28]*df1[,802] 

   

  #preDR3_preDR2<-0.12 

  df1[,(1000+1*16+3)]<-df1[,29]*df1[,802] 

   

  #preDR3_DR1<-0.01 

  df1[,(1000+3*16+3)]<-df1[,30]*df1[,802] 

   

  #preDR3_DR2<-0.001 

  df1[,(1000+4*16+3)]<-df1[,31]*df1[,802] 

   

  #preDR3_DM1<-0.03 

  df1[,(1000+5*16+3)]<-df1[,32]*df1[,802] 

   

  #preDR3_preDR3<- 

  df1[,(1000+2*16+3)]<-1-df1[,(1000+0*16+3)]-df1[,(1000+1*16+3)]-df1[,(1000+3*16+3)]-df1[,(1000+4*16+3)]-df1[,(1000+5*16+3)]-

df1[,801] 

   

  if (i==3 | i==5 | i==7 | i==9 | i==11 | i==13 | i==15 | i==17 | i==19 | i==21 | i==23 | i==25 | i==27 | i==29 | i==31 | i==33 | i==35 | 

      i==37 | i==39 | i==41 | i==43 | i==45 | i==47 | i==49 | i==51 | i==53 | i==55 | i==57 | i==59 | i==61 | i==63 | i==65 | i==67 | 

      i==69 | i==71 | i==73){ 

     

  #########   

  #DR1_DR2<-0.08 

  df1[,(1000+4*16+4)]<-df1[,37]*(1-df1[,624])*df1[,802]+df1[,37]*df1[,624]*df1[,802]*(1-df1[,12])*(1-df1[,99]) 

 

  #DR1_MDR2<-0.08 

  df1[,(1000+8*16+4)]<-df1[,37]*df1[,624]*(1-df1[,12])*df1[,99]*df1[,802] 
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  #DR1_TDR2<-0.08 

  df1[,(1000+12*16+4)]<-df1[,37]*df1[,624]*df1[,12]*df1[,802] 

 

  #DR1_MDR1<- 

  df1[,(1000+7*16+4)]<-(1-df1[,37])*df1[,624]*(1-df1[,12])*df1[,99]*df1[,802] 

   

  #DR1_TDR1<-0.08 

  df1[,(1000+11*16+4)]<-(1-df1[,37])*df1[,624]*df1[,12]*df1[,802] 

   

  #DR1_DR1<- 

  df1[,(1000+3*16+4)]<- (1-df1[,(1000+4*16+4)]-df1[,(1000+8*16+4)]-df1[,(1000+12*16+4)]-df1[,(1000+7*16+4)]-

df1[,(1000+11*16+4)]-df1[,801]) 

     

  ######### 

  #DM1_DM2<-0.04 

  df1[,(1000+6*16+6)]<-df1[,51]*(1-df1[,626])*df1[,802]+df1[,37]*df1[,626]*df1[,802]*(1-df1[,14])*(1-df1[,99]) 

 

  #DM1_MDM2<-0.04 

  df1[,(1000+10*16+6)]<-df1[,51]*df1[,626]*(1-df1[,14])*df1[,99]*df1[,802] 

   

  #DM1_TDM2<- 

  df1[,(1000+14*16+6)]<-df1[,51]*df1[,626]*df1[,14]*df1[,802] 

   

  #DM1_MDM1<- 

  df1[,(1000+9*16+6)]<-(1-df1[,51])*df1[,626]*(1-df1[,14])*df1[,99]*df1[,802] 

   

  #DM1_TDM1<- 

  df1[,(1000+13*16+6)]<- (1-df1[,51])*df1[,626]*df1[,14]*df1[,802] 

 

  #DM1_DM1<- 

  df1[,(1000+5*16+6)]<- (1-df1[,(1000+6*16+6)]-df1[,(1000+10*16+6)]-df1[,(1000+14*16+6)]-df1[,(1000+9*16+6)]-

df1[,(1000+13*16+6)]-df1[,801]) 

   

  ########### 

  #DR2_TDR2 

  df1[,(1000+12*16+5)]<-df1[,625]*df1[,13]*df1[,802] 

   

  #DR2_MDR2 

  df1[,(1000+8*16+5)]<-df1[,625]*(1-df1[,13])*df1[,99]*df1[,802] 

   

  #DR2_DR2 

  df1[,(1000+4*16+5)]<-(1-df1[,(1000+12*16+5)]-df1[,(1000+8*16+5)]-df1[,801]) 

     

   

   

  #DM2_TDM2 

  df1[,(1000+14*16+7)]<-df1[,627]*df1[,15]*df1[,802] 

   

  #DM2_MDM2 

  df1[,(1000+10*16+7)]<-df1[,627]*(1-df1[,15])*df1[,99]*df1[,802] 

   

  #DM2_DM2 

  df1[,(1000+6*16+7)]<-1-df1[,(1000+14*16+7)]-df1[,(1000+10*16+7)]-df1[,801] 

   

   

  } else { 

 

    #########   
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    #DR1_MDR2<-0.08 

    df1[,(1000+8*16+4)]<-0 

     

    #DR1_TDR2<-0.08 

    df1[,(1000+12*16+4)]<-0 

     

    #DR1_MDR1<- 

    df1[,(1000+7*16+4)]<-0 

     

    #DR1_TDR1<-0.08 

    df1[,(1000+11*16+4)]<-0 

     

    #DR1_DR2<-0.08 

    df1[,(1000+4*16+4)]<-df1[,37]*df1[,802] 

     

    #DR1_DR1<- 

    df1[,(1000+3*16+4)]<-(1-df1[,(1000+4*16+4)]-df1[,801]) 

     

    ######### 

   

    #DM1_MDM2<-0.04 

    df1[,(1000+10*16+6)]<-0 

     

    #DM1_TDM2<- 

    df1[,(1000+14*16+6)]<-0 

     

    #DM1_MDM1<- 

    df1[,(1000+9*16+6)]<-0 

     

    #DM1_TDM1<- 

    df1[,(1000+13*16+6)]<-0 

     

     

    #DM1_DM2<-0.04 

    df1[,(1000+6*16+6)]<-df1[,51]*df1[,802] 

     

    #DM1_DM1<- 

    df1[,(1000+5*16+6)]<-(1-df1[,(1000+6*16+6)]-df1[,801]) 

 

     

    ########### 

    #DR2_TDR2 

    df1[,(1000+12*16+5)]<-0 

     

 

    #DR2_MDR2 

    df1[,(1000+8*16+5)]<-0 

     

     

        #DR2_DR2 

    df1[,(1000+4*16+5)]<-1-df1[,801] 

 

     

    #DM2_TDM2 

    df1[,(1000+14*16+7)]<-0 

     

    #DM2_MDM2 
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    df1[,(1000+10*16+7)]<-0 

     

     

    #DM2_DM2 

    df1[,(1000+6*16+7)]<-1-df1[,801] 

         

      } 

  ######### 

 

   

  #TDR1_TDR1 

  df1[,(1000+11*16+12)]<-1-df1[,801] 

   

  #TDR2_TDR2 

  df1[,(1000+12*16+13)]<-1-df1[,801] 

   

  #TDM1_TDM1 

  df1[,(1000+13*16+14)]<-1-df1[,801] 

   

  #TDM2_TDM2 

  df1[,(1000+14*16+15)]<-1-df1[,801] 

   

  ######### 

  #MDR1_MDR2<-0.08 

  df1[,(1000+8*16+8)]<-df1[,37]*(1-df1[,12])*df1[,802] 

   

  #MDR1_TDR2<-0.08 

  df1[,(1000+12*16+8)]<-df1[,37]*df1[,12]*df1[,802] 

   

  #MDR1_TDR1<-0.08 

  df1[,(1000+11*16+8)]<-(1-df1[,37])*df1[,12]*df1[,802] 

 

  #MDR1_MDR1<-0.08 

  df1[,(1000+7*16+8)]<-1-df1[,(1000+8*16+8)]-df1[,(1000+12*16+8)]-df1[,(1000+11*16+8)]-df1[,801] 

   

  ######### 

  #MDR2_TDR2<-0.08 

  df1[,(1000+12*16+9)]<-df1[,13]*df1[,802] 

   

  #MDR2_MDR2<-0.08 

  df1[,(1000+8*16+9)]<-1-df1[,(1000+12*16+9)]-df1[,801] 

   

  ######### 

  #MDM1_MDM2<-0.08 

  df1[,(1000+10*16+10)]<-df1[,51]*(1-df1[,14])*df1[,802] 

   

  #MDM1_TDM2<-0.08 

  df1[,(1000+14*16+10)]<-df1[,51]*df1[,14]*df1[,802] 

   

  #MDM1_TDM1<-0.08 

  df1[,(1000+13*16+10)]<-(1-df1[,51])*df1[,14]*df1[,802] 

   

  #MDM1_MDM1<-0.08 

  df1[,(1000+9*16+10)]<-1-df1[,(1000+10*16+10)]-df1[,(1000+14*16+10)]-df1[,(1000+13*16+10)]- df1[,801] 

   

  ######### 

  #MDM2_TDM2<-0.08 

  df1[,(1000+14*16+11)]<-df1[,15]*df1[,802] 
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  #MDM2_MDM2<-0.08 

  df1[,(1000+10*16+11)]<-1-df1[,(1000+14*16+11)]-df1[,801] 

   

   

##initial population cols: 87 to 109 

for (j in 1:16){ 

   

  ##define holding intermediate states: 1001:763 transition matrix; 789:1413 for intermediate states 

  df1[,(3001+(j-1)*16):(3016+(j-1)*16)]<-df1[,301:316]*df1[,(1001+(j-1)*16):(1001+15+(j-1)*16)]#A 

   

} 

 

for (j in 1:16){ 

   

  ##cols 89 to 113 becomes the holding vector for the initial population 

  df1[,(301+(j-1))]<-rowSums(df1[,(3001+(j-1)*16):(3016+(j-1)*16)]) 

     

} 

 

##derive the population distirbutions from the second cycle onwards 

df1[,(4001+(i-1)*16):(4016+(i-1)*16)]<-df1[,301:316] 

 

##derive the QALYs from the second cycle onwards 

df1[,(6001+(i-1)*16):(6016+(i-1)*16)]<-df1[,(4001+(i-1)*16):(4016+(i-1)*16)]*df1[,601:616]/(1+0.017655865)^(i-0.5); 

 

##derive the Costs from the second cycle onwards 

df1[,(8001+(i-1)*16):(8016+(i-1)*16)]<-df1[,(4001+(i-1)*16):(4016+(i-1)*16)]*df1[,701:716]/(1+0.017655865)^(i-0.5); 

 

#Sum the QALYs across the states for each cycle 

df1[,(10001+(i-1))]<-rowSums(df1[,(6001+(i-1)*16):(6016+(i-1)*16)])   

 

#Sum the costs across the states for each iteration 

df1[,(10101+(i-1))]<-rowSums(df1[,(8001+(i-1)*16):(8016+(i-1)*16)]) 

 

} #END OF i in 2:12 loop 

 

 

#write.csv(df1, file = "df1.csv") 

 

 

#Sum the QALYs across the cycles 

df1[,10201]<-rowSums(df1[,10001:10074]) 

 

#Sum the Costs across the cycles 

df1[,10202]<-rowSums(df1[,10101:10174]) 

 

rmd[,(1+b)]<-df1[,10201] 

rmd[,(19+b)]<-df1[,10202] 

 

 

}#end intervention loop 

 

mcmc<-rmd 

 

(mcmc); 

} 
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