Appendix 1: Supplementary results

Figure S1. Percent bias difference between treatment and control groups, before and after propensity score matching. This illustrates the imbalance in the observed covariates before and after matching.

Figure S2. Kernel density estimation of groups' propensity scores before and after matching

Treatment groups' propensity score distributions before matching

Treatment groups' propensity score distributions after matching

Figure S3. Bias terms of linear regression \square and instrumental variable methods Δ : Binary and continuous covariates. These plots provide an indication of the bias caused by omitting a single observed covariate from an analysis.

Figure S4. Point prevalence quit rates by instrumental variable condition at 3,6 and 9 -months and 1,2 and 4 -years after exposure, $\mathrm{N}=216,022^{*}$

*4114 patients were excluded from the instrumental variable analysis as they were the first individuals to consult with each GP, thus for these individuals we do not have data about the GP previous prescribing behaviour to enable generation of the instrument.

Table S1. Propensity score matched models: Odds-ratios and 95% confidence intervals for the association between prescription of varenicline versus NRT and smoking cessation at 3, 6 and 9 -months and 1, 2 and 4-years after exposure, $\mathrm{N}=141,218 *$

Odds-ratio (95\% confidence interval) \ddagger

3-months	6-months	9-months	1-year	2-years	
1.42	1.45	1.40	1.35	1.27	4-years
$(1.37$ to 1.48$)$	$(1.40$ to 1.51$)$	$(1.35$ to 1.45$)$	$(1.30$ to 1.39$)$	$(1.23$ to 1.30$)$	

\ddagger Model adjusted for propensity score. *Missing BMI and IMD values were imputed using multiple imputation (16).

Table S2. Conventional and instrumental variable linear regression models: Risk difference per 100 patients treated and 95% confidence intervals for the association between varenicline versus NRT and smoking cessation at 3,6 and 9 -months and 1, 2 and 4 -years after exposure, $\mathrm{N}=216,022$

Model	3-months	6-months	9-months	1-year	2-years	4-years
			difference (95\%	fidence int		
Linear regression model \ddagger	$\begin{gathered} 5.09 \\ (4.61 \text { to } 5.58) \end{gathered}$	$\begin{gathered} 6.41 \\ (5.91 \text { to } 6.91) \end{gathered}$	$\begin{gathered} 6.15 \\ (5.65 \text { to } 6.64) \end{gathered}$	$\begin{gathered} 6.15 \\ (5.65 \text { to } \\ 6.64) \end{gathered}$	$\begin{gathered} 5.03 \\ (4.57 \text { to } 5.50) \end{gathered}$	$\begin{gathered} 4.33 \\ (3.86 \text { to } 4.80) \end{gathered}$
Instrumental variable linear regression model $\ddagger \ddagger$	$\begin{gathered} 4.13 \\ (2.24 \text { to } 6.01) \end{gathered}$	$\begin{gathered} 6.51 \\ (4.52 \text { to } 8.500) \end{gathered}$	$\begin{gathered} 6.42 \\ (4.40 \text { to } 8.43) \end{gathered}$	$\begin{gathered} 5.97 \\ \text { (3.94 to } \\ 8.00) \end{gathered}$	$\begin{gathered} 4.76 \\ (2.77 \text { to } 6.74) \end{gathered}$	$\begin{gathered} 4.06 \\ (2.09 \text { to } 6.03) \end{gathered}$
Partial F-statistic*	12466.37	12466.37	12466.37	12466.37	12466.37	12466.37
Hausman test	$\begin{gathered} 0.46 \\ \mathrm{P}=0.50 \end{gathered}$	$\begin{gathered} 0.52 \\ \mathrm{P}=0.47 \end{gathered}$	$\begin{gathered} 0.86 \\ \mathrm{P}=0.35 \end{gathered}$	$\begin{gathered} 0.93 \\ \mathrm{P}=0.33 \end{gathered}$	$\begin{gathered} 0.12 \\ \mathrm{P}=0.73 \end{gathered}$	$\begin{gathered} 0.11 \\ \mathrm{P}=0.74 \end{gathered}$

\ddagger Conventional linear regression model adjusted for age, sex and year of $1^{\text {st }}$ prescription. $\ddagger \ddagger$ Instrumental variable linear regression model adjusted only for year of $1^{\text {st }}$ prescription. *This table presents partial F statistics (i.e. the test of the association of the instrument and the prescription) and the Hausman test of endogenous the exposure. 4114 patients were excluded from the instrumental variable analysis as they were the first individuals to consult with each GP, thus for these individuals we do not have data about the GP previous prescribing behavior to enable generation of the instrument.

Effectiveness of varenicline stratified by neighbourhood deprivation

Table S3. Effectiveness of varenicline at 3, 6 and 9-months, and 1, 2 and 4 -years after first prescription in the least deprived areas (IMD scores 1 to 10). Effect estimates and 95% confidence intervals presented for each analytic technique.

Analysis technique	3-months	6-months	9-months	1-year	2-years	4-years
	Effect estimate (95\% confidence interval)					
Logistic regression model 1	$\begin{gathered} 1.45(1.37 \text { to } 1.54) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.50 \text { (1.42 to } 1.57) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.46 \text { (1.39 to } 1.54) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.38 \text { (1.31 to } 1.45) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.29 \text { (1.23 to } 1.35) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.19 \text { (1.14 to } 1.24) \\ \mathrm{p}<0.0001 \end{gathered}$
Propensity score matched logistic regression model 2	$\begin{gathered} 1.41 \text { (1.33 to } 1.50) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.43 \text { (1.35 to } 1.51) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.23 \text { (1.17 to } 1.30) \\ \mathrm{p}<0.0001 \end{gathered}$	$\begin{gathered} 1.18 \text { (1.08 to } 1.28) \\ p=0.0003 \end{gathered}$	$\begin{gathered} 1.07(0.99 \text { to } 1.16) \\ p=0.1063 \end{gathered}$	$\begin{gathered} 1.00(0.92 \text { to } 1.08) \\ p=0.9841 \end{gathered}$
Instrumental variable analysis ${ }^{3}$	$\begin{gathered} 1.49(-2.05 \text { to } 5.04) \\ p=0.4097 \end{gathered}$	$\begin{gathered} 3.84 \text { (0.05 to 7.64) } \\ p=0.0473 \end{gathered}$	$\begin{gathered} 4.46 \text { (0.64 to 8.28) } \\ p=0.0222 \end{gathered}$	$\begin{gathered} 4.13 \text { (0.32 to } 7.93 \text {) } \\ \mathrm{p}=0.0334 \end{gathered}$	$\begin{gathered} 2.79(-1.07 \text { to } 6.65) \\ p=0.1567 \end{gathered}$	$\begin{gathered} 0.59(-3.30 \text { to } 4.48) \\ p=0.7661 \end{gathered}$

$1 \mathrm{~N}=52,534$; data reported are partial adjusted odds-ratios, models were adjusted for age, sex and year of prescription. $2 \mathrm{~N}=31,407$; data reported are oddsratios, models were adjusted for propensity score. $3 \mathrm{~N}=51,436$; data reported are risk difference per 100 patients treated; models were adjusted for year of prescription. \ddagger Missing IMD values were not imputed, and patients with missing IMD data were excluded from analyses to ensure comparability of results across samples.

Table S4. Effectiveness of varenicline at 3, 6 and 9-months, and 1, 2 and 4-years after first prescription in the most deprived areas (IMD scores 11 to 20). Effect estimates and 95% confidence intervals presented for each analytic technique. \ddagger

| Analysis | 3-months | 6-months | 9-months | 1-year | 2-years |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | technique

Logistic
regression
model 1

Propensity score
matched logistic
regression
model 2
Instrumental
variable
analysis ${ }^{3}$
1.38 (1.31 to 1.46)
$\mathrm{p}<0.0001$
$1.32(1.23$ to 1.41$)$
$\mathrm{p}<0.0001$
$\begin{array}{cc}0.66(-2.44 \text { to } 3.75) & 3.09(-0.11 \text { to } 6.30) \\ \mathrm{p}=0.6785 & \mathrm{p}=0.0584\end{array}$
1.43 (1.36 to 1.50)
1.37 (1.31 to 1.44) p<0.0001
1.33 (1.27 to 1.3)
$\mathrm{p}<0.0001$
1.28 (1.23 to 1.34) p<0.0001
1.22 (1.17 to 1.26) p<0.0001

Effect estimate (95\% confidence interval)

[^0]Table S5. Number (N) and percent (\%) of patients missing outcome data by treatment at all follow-ups

	3-months	6-months	9-months	1-year	2-years	4-years
NRT	69.4%	56.0%	45.9%	37.2%	19.8%	10.8%
	$\mathrm{~N}=103,743 /$	$\mathrm{N}=83,803 /$	$\mathrm{N}=68,665 /$	$\mathrm{N}=55,696 /$	$\mathrm{N}=29,608 /$	$\mathrm{N}=16,151 /$
	149,526	149,526	149,526	149,526	149,526	149,526
Varenicline	65.6%	53.6%	44.9%	37.4%	21.4%	12.7%
	$46,312 /$	$37,819 /$	$31,732 /$	$26,400 /$	$15,129 /$	$8,984 /$
	70,610	70,610	70,610	70,610	70,610	70,610

Table S6. Comparison of baseline characteristics between the whole sample and patients missing 2year outcome data

NRT

	NRT		Varenicline	
	$\begin{array}{c}\text { Patients with } \\ \text { missing } \\ \text { (Ntcome data } \\ \text { (N=29,608) }\end{array}$		$\begin{array}{c}\text { Whole sample } \\ \text { (N= 149,526) }\end{array}$	$\begin{array}{c}\text { Patients with } \\ \text { missing outcome } \\ \text { data }\end{array}$
Characteristic	$\begin{array}{c}\text { Whole sample } \\ \text { (N= 70,610) }\end{array}$			
			(N= 15,129)	

*Missing data: BMI data was missing for 14.2% (N= 31,169); IMD data was missing for 43.3% (N= 95,355). Missing BMI and IMD values were imputed using multiple imputation (16). 1 Data presented are mean and standard deviation. 2 Data presented are median.

Table S7. Multivariable logistic regression models: Comparison of estimates derived from the main analysis and the sensitivity analysis. Fully adjusted oddsratios and 95\% confidence intervals for the association between varenicline versus NRT and smoking cessation at 3, 6 and 9 -months and 1, 2 and 4 -years after exposure, $\mathrm{N}=220,136$

3-months 6-months 9-months 1-year 2-years 4-years

Odds-ratios (95% confidence interval) $\ddagger \ddagger$

Main analysis (missing outcome data=smoking) (19)	1.42	1.46	1.40	1.34	1.26	1.19
	$(1.38$ to 1.47$)$	$(1.42$ to 1.50$)$	$(1.36$ to 1.44$)$	$(1.31$ to 1.38$)$	$(1.23$ to 1.29$)$	$(1.16$ to 1.21$)$
Sensitivity (missing outcome data=multiply imputed)	1.37	1.40	1.34	1.29	1.23	

$\ddagger \ddagger$ Data reported are odds-ratios and models were fully adjusted for all baseline covariates. Missing BMI and IMD values were imputed using multiple imputation (16).

Table S8. Estimated linear regression and instrumental variable bias components

| | | Difference per 100 patients treated (95\% Confidence intervals)
 (9nstrumental variables | |
| :--- | :---: | :---: | :---: | :---: |
| Covariate | N | Ordinary least squares | heterogeneity |

Notes: Bias components estimated via GMM. The null hypothesis of the heterogeneity test is that there is no difference between the linear regression and the linear regression bias terms.

1 Table S9. Adjusted relative outcome rate among patients treated with varenicline or nicotine replacement 2 therapy using propensity score methods. Follow-up at 3, 6, 9, 12, 24, 48 months.

Primary care diagnosis of:

		Number of events	Number of patients	Odds-ratio (95\% Confidence interval)
Myocardial infarction	3	70	78786	$0.40(0.24$ to 0.68$)$
	6	110	75660	$0.67(0.45$ to 0.98$)$
	9	146	72335	$0.70(0.50$ to 0.97$)$
	12	177	68706	$0.81(0.60$ to 1.09$)$
Chronic obstructive	24	280	54118	$0.91(0.72$ to 1.16$)$
pulmonary disease	48	317	26134	$1.03(0.82$ to 1.30$)$
	3	674	75336	$0.67(0.57$ to 0.79$)$
	6	868	72390	$0.71(0.62$ to 0.82$)$
	9	1070	69269	$0.77(0.68$ to 0.88$)$
	12	1237	65816	$0.80(0.71$ to 0.90$)$
	24	1682	51966	$0.88(0.80$ to 0.97$)$
	48	1652	25266	$0.98(0.89$ to 1.09$)$

4 Table S10. Adjusted Relative Outcome Frequency Among Patients Treated With Varenicline or Nicotine Replacement Therapy Using Propensity 5 score Methods. Follow-up at 3, 6, 9, 12, 24, 48 Months. Non-imputed data. Reproduced without changes from Davies et al. 2018. ${ }^{21}$ 6 https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14146

Outcome	Follow-up length	Number of patients N	Percentage difference (95\% confidence intervals) Fully adjusted
Number of GP visits	3	80,185	$11.10(6.63$ to 15.76$)$
	6	77,005	$2.86(-0.74$ to 6.59$)$
	9	73,617	$-0.18(-3.35$ to 3.08$)$
	12	69,909	$-1.37(-4.29$ to 1.63$)$
	24	55,032	$-1.98(-4.53$ to 0.63$)$
Number of	48	26,462	$-1.15(-4.04$ to 1.82$)$
hospitalizations	3	81,840	$-7.20(-8.23$ to -6.17$)$
	6	80,493	$-11.05(-12.36$ to -9.73$)$
	9	78,935	$-13.52(-14.99$ to -12.03$)$
	12	76,990	$-12.89(-14.49$ to -11.26$)$
Number of	24	67,202	$-9.97(-11.97$ to -7.93$)$
hospitalizations	48	39,405	$-5.30(-8.21$ to -2.29$)$
for respiratory disease	3	80,421	$-1.83(-2.36$ to -1.30$)$
	6	77,498	$-2.88(-3.59$ to -2.17$)$
	9	74,393	$-3.32(-4.15$ to -2.49$)$
Number of	12	70,983	$-3.62(-4.57$ to -2.66$)$
hospitalizations	24	57,038	$-2.93(-4.38$ to -1.46$)$
for cardiovascular	48	29,058	$-1.11(-3.98$ to 1.84$)$
disease	3	80,375	$-2.27(-2.82$ to -1.71$)$
	6	77,417	$-3.13(-3.84$ to -2.43$)$
	9	74,280	$-3.40(-4.22$ to -2.56$)$

Table S11. Means and bias of baseline covariates before and after propensity score matching. Reproduced without changes from Davies et al. 2018. ${ }^{21}$ https://onlinelibrary.wiley.com/doi/abs/10.1111/add. 14146

	Mean				\% Bias reduction
	Marenicline	NRT	\%bias	Vatched	0.14
0.14	-0.2	98.7			
Antidepressants	Unmatched	0.43	0.50	-14.2	
Statins	Matched	0.43	0.44	-1.6	88.5
	Unmatched	0.15	0.19	-12.1	
Antihypertensives	Matched	0.15	0.15	-1.2	90.3
	Unmatched	0.17	0.21	-10.3	
Diabetic medications	Matched	0.17	0.17	-0.2	97.9
Previously diagnosed with:	Unmatched	0.06	0.09	-10	
Self-harm	Matched	0.06	0.07	-0.7	92.5
	Unmatched	0.09	0.10	-6	
Myocardial infarction	Matched	0.09	0.09	-0.7	88
	Unmatched	0.02	0.03	-9.1	
Chronic obstructive pulmonary	Matched	0.02	0.02	-0.4	96
disease	Unmatched	0.06	0.08	-7.9	
Chronic disease (Charlson index)	Matched	0.06	0.06	-0.6	92
	Unmatched	0.32	0.38	-13.6	

[^0]: $1 \mathrm{~N}=72,247$; data reported are partial adjusted odds-ratios, models were adjusted for age, sex and year of prescription. $2 \mathrm{~N}=40,243$; data reported are oddsratios, models were adjusted for propensity score. $3 \mathrm{~N}=71,041$; data reported are risk difference per 100 patients treated; models were adjusted for year of prescription. \ddagger Missing IMD values were not imputed, and patients with missing IMD data were excluded from analyses to ensure comparability of results across samples.

