Health Technology Assessment 2010; Vol. 15: No. 27 ISSN 1366-5278

Appendices

Go to main text

Diagnostic management strategies for adults and children with minor head injury: a systematic review and an economic evaluation

A Pandor, S Goodacre, S Harnan, M Holmes, A Pickering, P Fitzgerald, A Rees and M Stevenson

≡

August 2011 10.3310/hta15270

Health Technology Assessment NIHR HTA programme www.hta.ac.uk

How to obtain copies of this and other HTA programme reports

An electronic version of this title, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable DVD is also available (see below).

Printed copies of HTA journal series issues cost £20 each (post and packing free in the UK) to both public **and** private sector purchasers from our despatch agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per issue and for the rest of the world £3 per issue.

How to order:

- fax (with credit card details)
- post (with credit card details or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you to either print out your order or download a blank order form.

Contact details are as follows:

Synergie UK (HTA Department)	Email: orders@hta.ac.uk
Digital House, The Loddon Centre Wade Road Basingstoke	Tel: 0845 812 4000 – ask for 'HTA Payment Services' (out-of-hours answer-phone service)
Hants RG24 8QW	Fax: 0845 812 4001 - put 'HTA Order' on the fax header

Payment methods

Paying by cheque

If you pay by cheque, the cheque must be in **pounds sterling**, made payable to *University of Southampton* and drawn on a bank with a UK address.

Paying by credit card

You can order using your credit card by phone, fax or post.

Subscriptions

NHS libraries can subscribe free of charge. Public libraries can subscribe at a reduced cost of £100 for each volume (normally comprising 40–50 titles). The commercial subscription rate is £400 per volume (addresses within the UK) and £600 per volume (addresses outside the UK). Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.

How do I get a copy of HTA on DVD?

Please use the form on the HTA website (www.hta.ac.uk/htacd/index.shtml). *HTA on DVD* is currently free of charge worldwide.

The website also provides information about the HTA programme and lists the membership of the various committees.

Diagnostic accuracy and management strategies for minor head injury review: literature search strategies – a MEDLINE example

Database searched: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R)

Platform or provider used: OvidSP

Date of coverage: 1950 to March 2010

Search undertaken: initial search 20 April 2009

Updated search: 11 March 2010

- 1. *Craniocerebral Trauma/
- 2. head injur\$.tw.
- 3. 1 or 2
- 4. prognosis.sh.
- 5. diagnosed.tw.
- 6. cohort:.mp.
- 7. predictor:.tw.
- 8. death.tw.
- 9. exp models, statistical/
- 10. (clinical assess* or decision rule* or prediction rule*).tw.
- 11. 4 or 5 or 6 or 7 or 8 or 9 or 10
- 12. exp "Sensitivity and Specificity"/
- 13. sensitivity.tw.
- 14. specificity.tw.
- 15. ((pre-test or pretest) adj probability).tw.
- 16. post-test probability.tw.
- 17. predictive value\$.tw.
- 18. likelihood ratio\$.tw.
- 19. 12 or 13 or 14 or 15 or 16 or 17 or 18
- 20. 3 and (11 or 19)

The modified QUADAS tool for the methodological assessment of diagnostic studies

	QUADAS ^a criterion	Criteria met	Criteria defined
1	Was the spectrum of patients representative of the patients who will receive the test in practice?	Yes	Unselected, prospective patients (children or adults) with early head injury (GCS 13–15, within 48 hours of presentation)
		No	All other patient spectra including retrospectively selected patient spectra, and spectra including only those who had CT
		Unclear	If insufficient details were provided to make a judgement as to whether the patient spectrum would be scored as 'yes'
2	Were selection criteria clearly described?	Yes	Enough details are provided of how patients were selected so that the selection process could be replicated
		No	Insufficient details are presented
		Unclear	NA
За	Criteria modified Is the reference standard likely to correctly classify ICI?	Yes	ICI: All of cohort have CT or MRI within 24 hours of admission
	(Where ICI is not an outcome, this item may be classed as	No	All other reference standards
	not applicable)	Unclear	If details of the reference standard are not reported
3b	Criteria modified Is the reference standard likely to correctly classify need	Yes	Neurosurgery: all of the cohort have follow-up 30 days or more after the injury
	for neurosurgery? (Where need for neurosurgery is not an	No	All other reference standards
	outcome, this item may be classed as not applicable)	Unclear	If details of the reference standard are not reported
4	Not used: not relevant to this review ^b	Yes	
	Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	No Unclear	
5a	Criteria modified	Yes	If the whole sample or random selection of the sample received a reference standard
	selection of the sample, receive verification using a reference	No	If only a selected sample received a reference standard
	standard of diagnosis for ICI?	Unclear	If it was not clear whether or not all the patients received a reference standard
5b	Criteria modified	Yes	If the whole sample or random selection of the sample
	Partial verification bias. Did the whole sample or a random		received a reference standard
	selection of the sample, receive verification using a reference	No	If only a selected sample received a reference standard
	standard of diagnosis for neurosurgery?	Unclear	If it was not clear whether or not all the patients received a reference standard
6a	Criteria modified Differential verification bias. Did all patients receive the same	Yes	If patients received a reference standard regardless of the index test result
	reference standard for ICI regardless of the index test result?	No	If patients received a reference standard based on part or all of the index test result
		Unclear	If it was not clear whether or not the index test result influenced which reference standard was used, including where physician discretion may incorporate part or all of the index test

continued

	QUADAS ^a criterion	Criteria met	Criteria defined
6b	Criteria modified	Yes	If patients received a reference standard regardless of the
	Differential verification bias. Did all patients receive the same reference standard for neurosurgery regardless of the index	No	index test result If patients received a reference standard based on part or
	test result?		all of the index test result
		Unclear	If it was not clear whether the index test result influenced which reference standard was used, including where physician discretion may incorporate part or all of the index test
7	Not used: not relevant to this review ^c	Yes	
	Was the reference standard independent of the index	No	
	standard)?	Unclear	
8	Was the execution of the index test described in sufficient detail to permit replication of the test?	Yes	If sufficient details of test standard execution were reported so that the test/reference standard could reasonably be replicated
		No	If sufficient details are not reported
		Unclear	NA
9	Was the execution of the reference standard described in sufficient detail to permit its replication?	Yes	If sufficient details of reference standard execution were reported so that the test/reference standard could reasonably be replicated
		No	If sufficient details are not reported
		Unclear	NA
10	Test review bias. Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	If the index test was interpreted without knowledge (blinding) of the results of the reference standard and vice versa
			If one test was clearly interpreted before the results of the other test were available then this should be scored as 'yes'
		No	If the person interpreting the index test was aware of the results of the reference standard or vice versa
		Unclear	If no information is provided regarding whether tests were interpreted blindly
11	Diagnostic review bias. Were the reference standard results interpreted without knowledge of the results of the index test?	Yes	If the index test was interpreted without knowledge (blinding) of the results of the reference standard and vice versa
			If one test was clearly interpreted before the results of the other test were available then this should be scored as 'yes'
		No	If the person interpreting the index test was aware of the results of the reference standard or vice versa
		Unclear	If no information is provided regarding whether tests were interpreted blindly
12	Clinical review bias. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	Yes	If the article states the following information was available: description of symptoms, site of injury, patient characteristics, e.g. clinician may be blinded to data that are normally available to them
		No	If not as above
		Unclear	If details on the availability of clinical data were not reported
13	Were uninterpretable/intermediate test results reported?	Yes	If details are provided on uninterpretable/intermediate test results
		No	If there appear to be some on uninterpretable/intermediate but the results of those are not reported
		Unclear	If it is not clear whether there were any uninterpretable/ intermediate test results

	QUADAS ^a criterion	Criteria met	Criteria defined
14	Were withdrawals from the study explained?	Yes	If all patients who entered into the study were accounted for
		No	If it appears that some of the participants who entered the study did not complete the study, i.e. did not receive both the index test and reference standard, and these patients were not accounted for
		Unclear	If it is not clear whether all patients who entered the study were accounted for

NA, not applicable.

a The QUADAS tool used was Whiting et al.47

b Disease progression bias was not relevant because the time element was addressed by criteria 3a and 3b.
c Incorporation bias was not relevant because the reference standard was always independent of the index test.

Diagnostic accuracy review – PRISMA (adapted) flow chart

Diagnostic accuracy review – table of excluded studies with rationale

Author, year	Reason for exclusion
Adams <i>et al.</i> 2001 ¹⁹²	No useable diagnostic data
Andronikou et al. 2003 ¹⁹³	No useable diagnostic data
Anglin <i>et al.</i> 1998 ¹⁹⁴	Not all or predominantly MHI: gunshot wounds
Anonymous 1994 ¹⁹⁵	No useable diagnostic data
Anonymous 2007 ¹⁹⁶	Review
Ariel <i>et al.</i> 2006 ¹⁹⁷	Foreign language
Atif and Qureshi 2001 ¹⁹⁸	Wrong outcome – predicting skull fracture
Baglaj <i>et al.</i> 2005 ¹⁹⁹	Unable to obtain
Balla and Elstein 1984200	Review
Bamvita et al. 2006201	Foreign language
Bazarian <i>et al.</i> 2006 ²⁰²	No useable diagnostic data
Beaudin et al. 2007 ²⁰³	No useable diagnostic data
Benito Fernández et al. 1998 ²⁰⁴	No useable diagnostic data
Berger <i>et al.</i> 2002 ²⁰⁵	Not cohort study (case control); no useable diagnostic data
Bernard <i>et al.</i> 1983 ²⁰⁶	Foreign language
Biberthaler et al. 2001 ²⁰⁷	No useable diagnostic data
Biberthaler et al. 2004 ²⁰⁸	Foreign language
Block 2001 ²⁰⁹	Review
Boran <i>et al.</i> 2005 ²¹⁰	Foreign language
Bouvier <i>et al.</i> 2009 ²¹¹	Foreign language
Brown <i>et al.</i> 1994 ¹⁵²	No useable diagnostic data
Browning et al. 2005 ¹⁵⁴	No useable diagnostic data
Chan <i>et al.</i> 1990 ²¹²	Patients selected on the basis of outcome
Chan <i>et al.</i> 2005 ²¹³	No useable diagnostic data
Clement 2006 ²¹⁴	No new data
Cummins 1992 ²¹⁵	Review
Dahl-Grove et al. 1995 ²¹⁶	Patients selected on the basis of outcome: negative CT scan
de Andrade <i>et al.</i> 2006 ²¹⁷	No useable diagnostic data
de Boussard <i>et al.</i> 2005 ²¹⁸	Wrong outcome – symptoms and signs of cognitive impairment
de Boussard <i>et al.</i> 2006 ²¹⁹	Not cohort study
Dunning <i>et al.</i> 2004 ²²⁰	No useable diagnostic data
Duus <i>et al.</i> 1993 ²²¹	No useable diagnostic data
Edna 1983 ²²²	Patients selected on the basis of outcome
Edna 1983 ²²³	Patients selected on the basis of outcome
Edna and Cappelen 1984 ²²⁴	Patients selected on the basis of outcome
Espersen and Petersen 1982 ²²⁵	No useable diagnostic data
Fabbri <i>et al.</i> 2004 ²²⁶	No new data
Fabbri <i>et al.</i> 2004 ¹⁵³	No useable diagnostic data
Fong <i>et al.</i> 2008 ¹⁵⁵	No useable diagnostic data
Af Geijerstam <i>et al.</i> 200637	Wrong outcome – GOS

continued

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

Author, year	Reason for exclusion
Geyer <i>et al.</i> 2009 ²²⁷	No useable diagnostic data
Gonzalez et al. 2007 ²²⁸	Foreign language
Gorelick et al. 2008 ²²⁹	No useable diagnostic data
Greenes and Schutzman 1998 ²³⁰	Patients selected on the basis of outcome
Gruskin <i>et al.</i> 1999 ²³¹	Patients selected on the basis of outcome
Gupta <i>et al.</i> 2005 ²³²	No useable diagnostic data
Gutman <i>et al.</i> 1992 ²³³	No useable diagnostic data
Harris <i>et al.</i> 2008 ²³⁴	No useable diagnostic data
Hassan <i>et al.</i> 2005 ²²	No useable diagnostic data
Hoffmann <i>et al.</i> 2001 ²³⁵	Not all or predominantly MHI: includes spontaneous injury
Hollingworth et al. 2007 ²³⁶	Not all or predominantly MHI: progressive injury
Holsti <i>et al.</i> 2005 ²³⁷	Patients selected on the basis of outcome
Benito Fernández 1998 ²³⁸	Foreign language
Jones <i>et al.</i> 2008 ²³⁹	No useable diagnostic data
Kahraman <i>et al.</i> 2006 ²⁴⁰	Patients selected on the basis of outcome
Kakarieka <i>et al.</i> 1994 ²⁴¹	Patients selected on the basis of outcome
Kavalci <i>et al.</i> 2007 ²⁴²	No useable diagnostic data
Kelly <i>et al.</i> 1988 ³³	Patients selected on the basis of outcome
Kerr <i>et al.</i> 2005 ¹⁵⁶	No useable diagnostic data
King and Haddock 2009 ²⁴³	No useable diagnostic data
Knuckey <i>et al.</i> 1989 ²⁴⁴	Patients selected on the basis of outcome
Kuhne <i>et al.</i> 2003 ²⁴⁵	Foreign language
Kuppermann <i>et al.</i> 2007 ²⁴⁶	No useable diagnostic data. Protocol only, full study being prepared for publication
Lehmann <i>et al.</i> 1997 ²⁴⁷	Foreign language
Levi <i>et al.</i> 1991 ²⁴⁸	No useable diagnostic data
Livingston et al. 1991249	No useable diagnostic data
Lloyd <i>et al.</i> 1997 ²⁵⁰	Not all or predominantly MHI (assumed)
Loroni <i>et al.</i> 1996 ¹⁵⁷	No useable diagnostic data
Lucchi <i>et al.</i> 1995 ²⁵¹	Foreign language
Mahmood 2000252	Unable to obtain
Mandera et al. 1999 ²⁵³	Patients selected on the basis of outcome
Markle <i>et al.</i> 1992 ²⁵⁴	No useable diagnostic data
Marshall et al. 1998 ²⁵⁵	No useable diagnostic data
Marti-Fabregas <i>et al.</i> 2003 ²⁵⁶	Patients selected on the basis of outcome
Martinot <i>et al.</i> 2008 ²⁵⁷	Foreign language
Massaro <i>et al.</i> 1996 ²⁵⁸	Patients selected on the basis of outcome
Masters 1980 ²⁵⁹	Inadequate reference standard
Matsumoto <i>et al.</i> 1988 ²⁶⁰	Foreign language
Mattox <i>et al.</i> 1989 ²⁶¹	No useable diagnostic data
Meier 1983 ²⁶²	Review
Memon <i>et al.</i> 1995 ²⁶³	No useable diagnostic data
Mendelow et al. 2003 ²⁶⁴	Review
Mendelow et al. 2008 ²⁶⁵	Review
Menon and Harrison 2008 ²⁶⁶	Review
Meyer <i>et al.</i> 2006 ²⁶⁷	Foreign language
Mikhail <i>et al.</i> 1992 ²⁶⁸	No useable diagnostic data
Miller <i>et al.</i> 1990 ²⁶⁹	Patients selected on the basis of outcome
Mohanty <i>et al.</i> 1991270	No useable diagnostic data
Murgio <i>et al.</i> 2003 ²⁷¹	Unable to obtain
Mussack <i>et al.</i> 2000 ²⁷²	No useable diagnostic data

Author, year	Reason for exclusion
Muszynski <i>et al.</i> 1999 ²⁷³	Patients selected on the basis of outcome
Muthukumar et al. 1993 ²⁷⁴	Not all or predominantly MHI
Naeimi <i>et al.</i> 2006 ²⁷⁵	Not all or predominantly MHI
Nagy <i>et al.</i> 1999 ²⁷⁶	No useable diagnostic data
Oertel <i>et al.</i> 2002 ²⁷⁷	Not all or predominantly MHI: progressive injury
Oh <i>et al.</i> 2007 ²⁷⁸	Not all or predominantly MHI: includes chronic injury
Orrison <i>et al.</i> 1994 ²⁷⁹	No useable diagnostic data
Ortiz <i>et al.</i> 2006 ²⁸⁰	Foreign language
Ortiz and Paneque 2006 ²⁸¹	Foreign language
Owings <i>et al.</i> 1998 ²⁸²	No useable diagnostic data
Palchak <i>et al.</i> 2009 ²⁸³	No new data
Pasman <i>et al.</i> 1995 ²⁸⁴	No useable diagnostic data
Pretto <i>et al.</i> 2000 ²⁸⁵	No useable diagnostic data
Rathlev et al. 2006 ²⁸⁶	No new data
Reinus <i>et al.</i> 1994 ²⁸⁷	Not all or predominantly MHI: includes chronic or spontaneous head injury
Richless et al. 1993 ²⁸	No useable diagnostic data
Rivas <i>et al.</i> 1988 ²⁸⁸	Patients selected on the basis of outcome
Sainsbury and Sibert 1984289	Patients selected on the basis of outcome
Sanus <i>et al.</i> 2004 ²⁹⁰	Patients selected on the basis of outcome
Savastio et al. 1991291	Foreign language
Schultke et al. 2009 ¹⁸⁹	No useable diagnostic data
Servadei et al. 1989292	Patients selected on the basis of outcome
Shane and Fuchs 1997 ²⁹³	Patients selected on the basis of prior imaging or outcome
Shravat <i>et al.</i> 2006 ¹⁵⁸	No useable diagnostic data
Sifri <i>et al.</i> 2006 ²⁹⁴	Patients selected on the basis of prior imaging or outcome
Smits <i>et al.</i> 2007 ²⁹⁵	No new data
Stein <i>et al.</i> 1993 ²⁹⁶	No useable diagnostic data
Sultan <i>et al.</i> 2004 ²¹	No useable diagnostic data
Taheri <i>et al.</i> 1993 ²⁹⁷	No useable diagnostic data
Teasdale <i>et al.</i> 1990 ²⁹⁸	No useable diagnostic data
Thompson <i>et al.</i> 2005 ¹⁵⁹	No useable diagnostic data
Turedi <i>et al.</i> 2008 ²⁹⁹	Not cohort study (patients selected on basis of age)
Velmahos et al. 2006 ³⁰⁰	Patients selected on the basis of outcome
Vogelbaum et al. 1998301	No useable diagnostic data
Voss <i>et al.</i> 1995 ³⁰²	No useable diagnostic data
Willis <i>et al.</i> 2008 ³⁰³	No useable diagnostic data
Yamamoto and Ogata 1981 ³⁰⁴	Foreign language
Yanagawa <i>et al.</i> 2000 ³⁰⁵	Patients selected on the basis of outcome (survived for 1 week)
Zimmerman <i>et al.</i> 1986306	Cohort of < 20

Individual clinical characteristics in adults – data for meta-analysis

Intracranial injury in adults

Intoxication (intracranial injury – adults)

	Observed estimates			Posterior median estimates ^a								
Study	n	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Schynoll 1993 ¹¹⁸	264	18.8	87.9	18.5	9.8 to 30.2	87.8	83.4 to 91.4	0.930	0.797 to 1.033	1.51	0.79 to 2.64	
Borczuk 1995 ⁵⁵	1448	25.2	68.5	26.4	19.5 to 34.3	68.8	66.3 to 71.2	1.070	0.950 to 1.180	0.85	0.62 to 1.11	
Haydel 2000 ²⁷	520	61.1	67.4	51.6	36.2 to 67.2	67.3	63.1 to 71.4	0.720	0.486 to 0.953	1.58	1.09 to 2.12	
Stiell 2001 ²⁶	3121	18.1	88.2	18.0	13.9 to 22.8	88.2	87.0 to 89.4	0.929	0.875 to 0.977	1.53	1.17 to 1.97	
Mack 2003 ¹¹⁰	133	15.8	94.7	13.6	5.5 to 26.9	93.2	88.3 to 96.7	0.929	0.790 to 1.015	1.98	0.83 to 4.71	
lbanez and Arikan 2004 ⁶⁰	1101	6.0	94.0	8.2	3.9 to 14.4	94.0	92.4 to 95.3	0.977	0.911 to 1.026	1.36	0.63 to 2.46	
Fabbri 2005 ⁵⁷	7955	26.9	91.6	26.2	22.6 to 30.0	91.6	90.9 to 92.2	0.806	0.764 to 0.846	3.10	2.63 to 3.63	
Mower 2005 ⁶²	13,728	19.0	75.6	19.3	16.8 to 21.9	75.7	74.9 to 76.4	1.067	1.031 to 1.101	0.79	0.69 to 0.90	
Stiell 2005 ⁴⁶	1822	13.4	84.4	15.4	9.6 to 22.4	84.5	82.8 to 86.2	1.002	0.918 to 1.074	0.99	0.61 to 1.46	
Ono 2007 ⁶³	1064	36.0	72.7	34.1	23.5 to 46.5	72.8	70.0 to 75.5	0.905	0.736 to 1.055	1.25	0.86 to 1.7	
		Heterogeneit <i>p</i> -value ^c	ty test	Pooled estir	nates							
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
	10	< 0.001	< 0.001	21.4	13.5 to 31.4	84.6	76.7 to 90.3	0.931	0.844 to 1.007	1.38	0.97 to 1.99	

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Fall – any	(intracranial i	njur	y – adults)	
	•			

		Observed es	timates	Posterior me	edian estim	atesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Harad 1992 ¹⁰⁴	302	16.4	81.4	19.3	12.7 to 26.3	81.6	77.1 to 85.6	0.990	0.921 to 1.060	1.05	0.74 to 1.4
Jeret 1993 ¹⁰⁷	712	6.0	90.9	8.6	4.3 to 14.7	90.7	88.3 to 92.7	1.008	0.943 to 1.058	0.92	0.47 to 1.59
Schynoll 1993 ¹¹⁸	264	56.3	44.8	61.3	49.7 to 72.6	47.0	40.8 to 53.1	0.822	0.597 to 1.077	1.16	0.94 to 1.4
Cook 1994 ¹⁰⁰	107	22.2	71.6	30.7	19.8 to 42.5	72.4	64.1 to 79.8	0.956	0.867 to 1.051	1.12	0.86 to 1.32
Tsai 1994 ¹²⁵	186	22.5	75.3	26.0	17.9 to 34.4	76.1	70.1 to 81.6	0.971	0.902 to 1.053	1.09	0.83 to 1.3
Borczuk 1995 ⁵⁵	1448	36.1	70.0	34.5	29.3 to 40.0	69.8	67.5 to 72.2	0.938	0.866 to 1.008	1.14	0.98 to 1.31
Miller 1996111	1382	25.0	73.0	29.3	23.0 to 34.6	73.4	71.0 to 75.6	0.964	0.899 to 1.048	1.10	0.87 to 1.3
Stiell 2001 ²⁶	3121	42.1	70.1	36.5	31.9 to 42.3	69.6	67.9 to 71.2	0.914	0.827 to 0.978	1.20	1.05 to 1.40
Mack 2003 ¹¹⁰	133	42.1	58.8	45.1	34.4 to 57.3	60.8	52.6 to 68.3	0.902	0.759 to 1.039	1.16	0.94 to 1.36
Ono 2007 ⁶³	1064	32.0	63.2	40.8	32.8 to 48.0	63.9	61.0 to 66.7	0.927	0.824 to 1.052	1.13	0.91 to 1.31

Heterogeneity test *p*-value^c

Pooled estimates

No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
10	< 0.001	< 0.001	31.3	20.3 to 44.3	72.0	62.2 to 80.2	0.953	0.871 to 1.024	1.12	0.93 to 1.29

a Of posterior distribution for Bayesian meta-analyses.b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Fall from a height (intracranial injury – adults)

	Observed estimates		Fixed effects estimates ^a								
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Ono 2007 ⁶³	28.0	87.8	28.0	17.3 to 41.9	87.8	85.6 to 89.6	0.820	0.689 to 0.977	2.29	1.43 to 3.68	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Dizziness (intracranial injury – adults)

		Observed es	timates	Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Cook 1994 ¹⁰⁰	107	12.5	73.2	18.7	11.7 to 27.3	73.7	69.4 to 78.1	1.103	0.969 to 1.227	0.71	0.43 to 1.10
Mack 2003 ¹¹⁰	133	10.5	79.8	18.9	11.8 to 27.6	74.3	70.5 to 80.2	1.091	0.946 to 1.208	0.74	0.45 to 1.19
lbanez and Arikan 2004 ⁶⁰	1101	21.7	72.7	18.6	12.1 to 26.8	73.3	70.7 to 75.8	1.109	0.995 to 1.210	0.70	0.45 to 1.02
		Heterogenei <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	3	0.482	0.267	18.7	11.9 to 27.3	73.8	70.2 to 78.1	1.101	0.970 to 1.217	0.72	0.44 to 1.09

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Coagulopathy (intracranial injury – adults)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Borczuk 1995 ⁵⁵	1448	6.7	96.8	7.2	4.0 to 11.7	96.9	95.9 to 96.9	0.958	0.913 to 0.992	2.29	1.22 to 3.88
Arienta 1997 ⁵⁴	10,000	0.6	100.0	0.2	0.0 to 1.3	100.0	99.9 to 100.0	0.998	0.988 to 1.000	5.41	0.42 to 40.81
Haydel 2000 ²⁷	520	0.0	99.8	0.7	0.0 to 3.5	99.8	99.2 to 99.8	0.995	0.970 to 1.001	3.53	0.50 to 21.92
Mack 2003 ¹¹⁰	133	15.8	86.8	20.1	8.9 to 36.0	88.4	81.9 to 88.4	0.904	0.734 to 1.044	1.75	0.73 to 3.36
lbanez and Arikan 2004 ⁶⁰	1101	32.5	90.3	29.2	20.6 to 39.3	90.2	88.2 to 90.2	0.786	0.673 to 0.882	2.96	2.02 to 4.22
Fabbri 2005 ⁵⁷	7955	12.4	97.3	11.7	9.2 to 14.6	97.3	96.9 to 97.3	0.908	0.878 to 0.934	4.33	3.28 to 5.62
Mower 2005 ⁶²	13,728	5.0	96.1	5.4	4.1 to 7.1	96.1	95.8 to 96.1	0.984	0.967 to 0.999	1.39	1.03 to 1.85
Saboori 2007 ⁶⁷	682	0.0	99.8	0.6	0.0 to 2.9	99.9	99.4 to 99.9	0.996	0.974 to 1.001	3.64	0.46 to 23.50
		Heterogenei <i>p</i> -value ^c	ty test	Pooled esti	nates						

No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
8	< 0.001	< 0.001	4.9	0.6 to 16.0	98.2	93.3 to 99.8	0.968	0.897 to 0.999	3.27	1.21 to 7.52

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

		Observed es	timates	Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Arienta 1997 ⁵⁴	10,000	0.6	100.0	0.4	0.0 to 2.1	100.0	99.9 to 100.0	0.996	0.979 to 1.000	9.52	0.95 to 62.07
Stiell 2001 ²⁶	3121	17.3	89.7	14.0	11.2 to 17.4	89.5	88.4 to 90.6	0.961	0.923 to 0.993	1.34	1.06 to 1.68
lbanez and Arikan 2004 ⁶⁰	1101	2.4	95.8	7.4	4.2 to 10.8	96.1	94.8 to 97.1	0.964	0.931 to 0.996	1.86	1.11 to 2.82
Stiell 2005 ⁴⁶	2707	15.2	85.1	16.9	13.3 to 21.0	85.2	83.8 to 86.6	0.975	0.926 to 1.019	1.15	0.89 to 1.4
		Heterogenei n-value ^c	ty test	Pooled estir	nates						

Chronic alcohol (intracranial injury – adults)

	<i>p</i> -value ^c		Pooled estimates							
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
4	< 0.001	< 0.001	5.9	0.7 to 40.8	97.6	49.5 to 99.8	0.973	0.933 to 1.186	2.00	0.79 to 9.03

a Of posterior distribution for Bayesian meta-analyses..

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Assault (intracranial injury – adults)

		Observed estimates		Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Harad 1992 ¹⁰⁴	302	27.3	83.4	19.4	14.1 to 26.1	81.6	77.1 to 85.8	0.987	0.928 to 1.036	1.06	0.85 to 1.32
Jeret 1993 ¹⁰⁷	712	37.3	70.1	10.5	7.6 to 13.9	89.3	88.1 to 90.4	1.002	0.964 to 1.036	0.98	0.71 to 1.31
Schynoll 1993 ¹¹⁸	264	3.1	88.8	9.9	5.4 to 15.4	89.8	85.9 to 93.1	1.003	0.962 to 1.039	0.97	0.64 to 1.35
Cook 1994 ¹⁰⁰	107	66.7	37.8	66.8	48.6 to 82.9	39.1	30.1 to 48.4	0.847	0.469 to 1.315	1.10	0.81 to 1.36
Tsai 1994 ¹²⁵	186	5.0	96.6	3.7	1.3 to 7.9	95.9	92.4 to 98.1	1.005	0.974 to 1.028	0.89	0.43 to 1.72
Borczuk 1995⁵⁵	1448	22.7	74.9	26.0	20.9 to 31.8	75.4	73.1 to 77.6	0.982	0.907 to 1.051	1.06	0.85 to 1.29
Stiell 2001 ²⁶	3121	10.2	89.3	1.2	0.1 to 4.7	98.5	95.5 to 99.8	1.002	0.983 to 1.017	0.79	0.22 to 2.26
Mack 2003 ¹¹⁰	133	0.0	99.1	33.1	25.9 to 41.7	69.7	66.3 to 73.0	0.960	0.843 to 1.062	1.09	0.86 to 1.37
		Heterogenei	ty test	Pooled estiv	nates						

	<i>p</i> -value ^s									
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
8	< 0.001	< 0.001	14.1	3.9 to 36.0	86.2	67.4 to 95.4	0.997	0.924 to 1.038	1.02	0.68 to 1.33

a Of posterior distribution for Bayesian meta-analyses..

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

70.7 to 1.033 0.940 to 0.39

1.199

0.00 to

2.49

Age > 60 years (intracranial injury – adults)

		Observed estimates		Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Jeret 1993 ¹⁰⁷	712	19.4	94.7	15.7	10.4 to 23.1	94.3	92.4 to 95.9	0.895	0.815 to 0.948	2.73	1.80 to 4.42
Haydel 2000 ²⁷	520	16.7	92.6	17.4	11.2 to 25.5	92.5	90.0 to 92.5	0.894	0.810 to 0.957	2.29	1.51 to 3.50
lbanez and Arikan 2004 ⁶⁰	1101	45.8	71.9	42.5	33.4 to 52.6	71.9	69.1 to 71.9	0.799	0.661 to 0.928	1.52	1.18 to 1.90
Mower 2005 ⁶²	13,728	19.0	86.4	20.2	17.5 to 23.2	86.4	85.8 to 86.4	0.924	0.888 to 0.956	1.49	1.28 to 1.73
Stiell 2005 ⁴⁶	2707	27.3	90.7	24.2	18.7 to 30.3	90.5	89.3 to 90.5	0.838	0.770 to 0.901	2.55	1.90 to 3.30
Ono 2007 ⁶³	1064	48.0	67.6	45.2	34.6 to 57.1	67.7	64.8 to 67.7	0.810	0.635 to 0.969	1.40	1.06 to 1.78
Saboori 2007 ⁶⁷	682	10.9	94.5	13.6	8.1 to 20.5	94.5	92.6 to 94.5	0.915	0.844 to 0.971	2.45	1.48 to 3.85
		Heterogenei	ty test	Pooled estiv	matac						

	No. of studies	<i>p</i> -value ^c		Pooled estimates							
		Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	7	< 0.001	< 0.001	23.9	14.5 to 36.5	88.0	78.1 to 93.8	0.868	0.785 to 0.925	1.97	1.48 to 2.81

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Vision (intracranial injury – adults)

		Observed es	timates	Posterior median estimates ^a								
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Schynoll 1993 ¹¹⁸	226	13.0	82.8	8.0	1.2 to 24.4	83.1	77.8 to 88.0	1.104	0.905 to 1.223	0.48	0.07 to 1.51	
Cook 1994 ¹⁰⁰	107	0.0	92.9	2.5	0.0 to 9.9	93.2	87.8 to 97.0	1.042	0.970 to 1.106	0.37	0.00 to 1.55	
Falimirski 2003 ⁵⁸	331	0.0	98.6	0.6	0.0 to 7.2	98.4	96.4 to 99.5	1.008	0.946 to 1.030	0.39	0.00 to 5.20	
		Heterogenei <i>p</i> -value ^c	ty test	Pooled estir	nates							
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	

0.0 to

21.4

94.2

99.3

a Of posterior distribution for Bayesian meta-analyses.

0.265

b Sensitivity and specificity estimates calculated from the observed data.

< 0.001

2.4

c Based on Q-statistic.

3

219

		Observed es	timates	Posterior m	edian est	imates ^a					
Study	n	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Arienta 1997 ⁵⁴	10,000	0.6	100.0	0.9	0.1 to 3.1	99.99	100.0 to 100.0	0.991	0.969 to 0.999	69.80	7.66 to 918.60
lbanez and Arikan 2004 ⁶⁰	1101	2.4	99.7	2.0	0.8 to 3.5	99.7	99.3 to 99.9	0.983	0.968 to 0.994	7.13	2.64 to 27.08
Fabbri 2005 ⁵⁷	7955	3.5	98.0	3.4	2.1 to 5.1	98.0	97.6 to 98.3	0.986	0.968 to 1.000	1.67	1.01 to 2.60
		Heterogenei <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	3	0.231	< 0.001	1.9	0.3 to	99.8	92.3 to	0.985	0.969 to	8.67	0.62 to

5.1

100.0

0.985 0.969 to 8.67

1.030

0.62 to

308.90

Prior neurosurgery (intracranial injury – adults)

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Motor vehicle collision – pedestrian (intracranial injury – adults)

		Observed es	timates	Posterior m	edian estii	stimates ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Jeret 1993 ¹⁰⁷	712	26.9	87.3	22.9	13.4 to 33.5	87.8	85.1 to 90.2	0.878	0.759 to 0.987	1.88	1.09 to 2.84
Schynoll 1993 ¹¹⁸	264	15.6	96.6	14.9	9.6 to 19.8	96.3	93.8 to 98.1	0.886	0.837 to 0.930	3.88	2.58 to 7.26
Cook 1994 ¹⁰⁰	107	0.0	98.6	12.6	4.5 to 19.8	97.7	94.6 to 99.5	0.898	0.826 to 0.965	5.05	2.78 to 17.29
Borczuk 1995 ⁵⁵	1448	14.3	93.8	17.3	13.7 to 21.4	94.0	92.7 to 95.2	0.880	0.838 to 0.919	2.90	2.17 to 3.74
Stiell 2001 ²⁶	3121	16.9	96.0	15.3	12.0 to 19.1	95.9	95.2 to 96.6	0.883	0.843 to 0.918	3.77	2.84 to 5.03
Ono 2007 ⁶³	1064	10.0	96.6	14.2	9.5 to 19.0	96.6	95.5 to 97.6	0.889	0.839 to 0.933	4.15	2.89 to 6.3
		Heterogeneity test									

<i>p</i> -value ^c	Pooled estimates

No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
6	0.182	< 0.001	15.9	10.9 to 21.3	95.4	91.9 to 97.8	0.882	0.836 to 0.923	3.43	2.27 to 6.45

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

		Observed es	timates	Posterior m	edian estimates	S ^a					
Study	n	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Harad 1992 ¹⁰⁴	302	27.3	53.8	32.2	26.0 to 39.5	55.3	49.4 to 61.0	1.223	1.112 to 1.360	0.72	0.60 to 0.86
Jeret 1993 ¹⁰⁷	712	22.4	60.5	27.4	22.4 to 33.0	61.1	57.4 to 64.7	1.187	1.106 to 1.277	0.71	0.59 to 0.83
Schynoll 1993 ¹¹⁸	264	25.0	78.9	15.5	10.7 to 21.1	77.6	72.2 to 82.5	1.089	1.022 to 1.149	0.69	0.52 to 0.91
Cook 1994 ¹⁰⁰	107	33.3	85.3	11.4	6.0 to 18.2	83.5	75.7 to 89.6	1.063	0.998 to 1.124	0.68	0.46 to 1.01
Tsai 1994 ¹²⁵	186	60.0	37.7	50.7	39.4 to 63.0	36.4	29.5 to 43.7	1.353	1.031 to 1.727	0.80	0.63 to 1.0
Borczuk 1995 ⁵⁵	1448	19.3	65.3	23.7	19.4 to 28.0	65.7	63.2 to 68.2	1.161	1.098 to 1.229	0.69	0.57 to 0.81
Miller 1996111	1382	39.3	59.0	30.4	25.4 to 37.3	58.5	55.9 to 61.2	1.188	1.076 to 1.275	0.73	0.62 to 0.89
Stiell 2001 ²⁶	3121	16.1	73.4	18.0	14.6 to 21.6	73.5	71.9 to 75.1	1.117	1.065 to 1.165	0.68	0.55 to 0.82
Mack 2003 ¹¹⁰	133	5.3	95.6	4.0	1.3 to 8.9	94.3	89.3 to 97.5	1.018	0.978 to 1.057	0.68	0.30 to 1.47
Ono 2007 ⁶³	1064	4.0	94.7	3.7	1.6 to 7.6	94.5	93.1 to 95.8	1.018	0.978 to 1.044	0.68	0.30 to 1.39

Motor vehicle collision - in car (intracranial injury - adults)

Pooled estimates

	<i>p</i> -value ^c	-	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
10	< 0.001	< 0.001	17.7	8.7 to 31.0	74.4	57.7 to 86.0	1.108	1.031 to 1.218	0.69	0.53 to 0.86

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

Heterogeneity test

c Based on Q-statistic.

Motor vehicle collision with bicycle (intracranial injury - adults)

		Observed es	timates	Fixed-effect	ts estimat	tes ^a					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Borczuk 1995 ⁵⁵	1448	5.0	98.4	5.0	2.3 to 10.8	98.4	97.6 to 99.0	0.965	0.442 to 2.104	3.19	1.31 to 7.75
Ono 2007 ⁶³	1064	18.0	85.3	18.0	9.6 to 31.1	85.3	83.0 to 87.4	0.961	0.532 to 1.738	1.22	0.67 to 2.25
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.011	< 0.001	10.6	6.4 to 16.9	89.0	87.3 to 90.5	0.963	0.601 to 1.543	1.67	1.01 to 2.75

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor et al. under the terms of a commissioning contract issued by the Secretary of State for Health.

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Arienta 1997 ⁵⁴	10,000	3.9	99.9	3.3	1.2 to 7.0	99.9	99.8 to 100.0	0.968	0.931 to 0.989	35.77	11.13 to 104.50
Stiell 2001 ²⁶	3121	30.3	92.2	29.9	24.7 to 35.7	92.2	91.2 to 93.1	0.760	0.698 to 0.817	3.83	3.06 to 4.76
Stiell 200546	2707	45.9	86.7	44.9	38.5 to 51.3	86.7	85.3 to 88.0	0.636	0.561 to 0.710	3.37	2.82 to 3.99
Mower 2005 ⁶²	13,728	10.0	94.3	10.4	8.5 to 12.6	94.3	93.9 to 94.7	0.950	0.927 to 0.970	1.83	1.48 to 2.24

Persistent vomiting (intracranial injury – adults)

Heterogeneity test

	<i>p</i> -value ^c	.,	Pooled estir	nates							
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
 4	< 0.001	< 0.001	16.1	3.0 to 50.7	97.2	69.3 to 99.9	0.871	0.659 to 0.983	5.53	1.33 to 30.12	

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Glasgow Coma Scale < 15 (intracranial injury – adults)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Feuerman 1988 ¹⁰²	129	62.3	51.3	26.3	21.6 to 31.4	89.9	88.0 to 91.6	0.820	0.761 to 0.876	2.60	2.01 to 3.4
Stein 1990 ¹²²	658	49.1	72.9	25.8	16.3 to 37.3	84.5	79.7 to 88.6	0.878	0.738 to 1.004	1.66	0.98 to 2.7
Livingston 1991 ¹⁰⁹	111	40.0	85.4	37.6	25.9 to 50.2	86.8	84.7 to 88.8	0.719	0.573 to 0.855	2.85	1.91 to 4.0
Livingston 1991 ¹⁰⁹	60	72.7	71.4	52.9	46.8 to 58.8	82.7	81.3 to 84.1	0.570	0.498 to 0.645	3.05	2.64 to 3.5
Harad 1992 ¹⁰⁴	302	21.8	84.2	22.8	15.1 to 32.0	96.6	95.4 to 97.6	0.799	0.704 to 0.879	6.72	4.06 to 10.9
Stein 1992 ¹²¹	1538	44.5	76.2	61.0	39.5 to 80.3	72.6	59.5 to 83.4	0.541	0.272 to 0.865	2.21	1.27 to 3.9
Schynoll 1993 ¹¹⁸	264	53.1	85.3	34.7	27.5 to 42.3	80.6	75.2 to 85.2	0.811	0.708 to 0.917	1.78	1.28 to 2.5
Tsai 1994 ¹²⁵	186	50.0	63.0	50.1	36.4 to 63.9	63.8	55.8 to 71.2	0.784	0.560 to 1.032	1.38	0.95 to 1.9
Borczuk 1995 ⁵⁵	1448	39.5	85.7	40.0	31.9 to 48.5	85.7	83.8 to 87.6	0.701	0.600 to 0.797	2.80	2.16 to 3.56
Madden 1995 ⁶¹	537	78.0	74.9	26.7	13.1 to 44.2	85.7	78.7 to 91.2	0.856	0.651 to 1.033	1.87	0.84 to 3.7
Dunham 1996 ¹⁰¹	2032	64.8	75.4	65.9	61.8 to 69.7	97.7	97.3 to 98.0	0.350	0.310 to 0.391	28.59	24.41 to 33.68
Arienta 1997 ⁵⁴	9917	42.1	99.6	40.9	31.7 to 50.6	99.5	99.4 to 99.7	0.594	0.496 to 0.687	86.43	59.80 to 125.10
Hsiang 1997 ¹⁰⁵	1360	25.6	89.9	42.1	24.2 to 61.5	85.8	78.1 to 91.6	0.678	0.449 to 0.897	2.94	1.49 to 5.6

		223

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Murshid 1998 ⁷⁷	131	43.3	94.1	51.2	36.2 to 66.0	85.4	80.5 to 89.5	0.572	0.397 to 0.750	3.50	2.26 to 5.3
Stiell 2001 ²⁶	3121	53.1	82.7	74.7	65.7 to 82.6	74.9	70.8 to 78.8	0.337	0.231 to 0.462	2.98	2.44 to 3.6
Mussack 2002 ¹¹⁵	139	47.4	99.2	49.1	40.5 to 57.7	73.0	69.2 to 76.7	0.698	0.577 to 0.823	1.82	1.44 to 2.3
Mack 2003 ¹¹⁰	133	15.8	85.1	63.5	55.3 to 71.3	75.4	73.5 to 77.3	0.484	0.381 to 0.594	2.59	2.21 to 3.0
Tender 2003 ¹²³	255	27.5	81.4	43.4	26.3 to 62.2	98.1	94.9 to 99.5	0.578	0.387 to 0.753	21.98	7.67 to 86.3
lbanez 2004 ⁶⁰	1101	20.5	96.7	47.1	30.4 to 64.5	82.7	77.1 to 87.4	0.641	0.428 to 0.850	2.71	1.63 to 4.2
Thiruppathy 2004 ¹²⁴	381	33.8	80.3	44.6	38.8 to 50.5	76.3	73.9 to 78.6	0.726	0.646 to 0.807	1.88	1.59 to 2.2
Chan 200599	105	69.5	52.2	67.4	57.4 to 76.5	56.2	36.9 to 74.3	0.582	0.379 to 0.945	1.54	1.04 to 2.64
Fabbri 2005 ⁵⁷	7955	66.4	97.7	60.6	48.2 to 72.2	52.8	41.8 to 63.7	0.746	0.506 to 1.066	1.28	0.94 to 1.75
Biberthaler 200698	1309	32.3	89.6	33.4	24.7 to 42.8	89.6	87.8 to 91.2	0.744	0.638 to 0.841	3.20	2.29 to 4.34
Muller 2007 ¹¹³	226	47.6	82.4	42.8	28.2 to 58.3	93.7	88.2 to 97.2	0.613	0.446 to 0.772	6.73	3.26 to 15.9
Ono 2007 ⁶³	1064	36.0	86.8	28.7	22.2 to 36.0	82.2	74.2 to 88.6	0.868	0.761 to 0.994	1.61	1.02 to 2.6
		Heterogenei <i>p</i> -value°	ty test	Pooled estin	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	25	< 0.001	< 0.001	44.9	37.7 to 51.8	86.7	80.6 to 91.2	0.638	0.557 to 0.722	3.35	2.31 to 5.03

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Glasgow Coma Scale < 14 (intracranial injury – adults)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Feuerman 1988 ¹⁰²	129	24.5	89.5	22.0	15.7 to 31.2	92.0	86.2 to 95.5	0.849	0.766 to 0.911	2.81	1.70 to 4.21
Stein 1990 ¹²²	658	21.6	93.2	20.0	15.7 to 25.8	93.4	91.3 to 95.1	0.856	0.799 to 0.900	3.06	2.24 to 4.10
Harad 1992 ¹⁰⁴	302	5.5	96.8	12.0	6.9 to 16.7	97.2	95.3 to 98.5	0.905	0.868 to 0.953	4.33	2.53 to 6.5
Stein 1992 ¹²¹	1538	17.0	94.1	18.0	14.6 to 21.7	94.4	93.1 to 95.5	0.869	0.831 to 0.905	3.22	2.45 to 4.08
Tsai 1994 ¹²⁵	186	20.0	88.4	22.9	16.2 to 31.9	91.1	86.1 to 94.5	0.847	0.761 to 0.922	2.60	1.61 to 3.82

continued

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	n	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDF
Dunham 1996 ¹⁰¹	2032	22.7	95.4	17.3	14.2 to 22.8	95.3	94.3 to 96.1	0.869	0.811 to 0.899	3.65	2.95 to 5.0
Hsiang 1997 ¹⁰⁵	1360	8.9	98.2	9.8	7.1 to 12.8	98.1	97.3 to 98.8	0.919	0.890 to 0.946	5.23	3.47 to 8.0
Stiell 2001 ²⁶	3121	17.7	97.7	12.7	10.2 to 17.4	97.4	96.8 to 98.0	0.896	0.847 to 0.921	4.91	3.80 to 7.40
Mack 2003 ¹¹⁰	133	5.3	97.4	12.3	6.2 to 18.4	97.2	94.5 to 98.9	0.902	0.857 to 0.954	4.36	2.66 to 7.3
Tender 2003 ¹²³	255	7.8	94.1	12.1	7.7 to 16.5	97.1	94.4 to 98.5	0.905	0.872 to 0.952	4.19	2.08 to 6.52
Biberthaler 200698	1309	6.5	97.6	10.9	6.8 to 14.3	97.7	96.8 to 98.4	0.912	0.881 to 0.954	4.71	2.88 to 6.5
Muller 2007 ¹¹³	226	23.8	94.6	17.6	12.4 to 25.5	94.8	91.7 to 97.0	0.870	0.799 to 0.912	3.44	2.37 to 4.9
		Heterogeneit <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	12	< 0.001	< 0.001	15.0	11.4 to 18.9	96.0	94.3 to 97.4	0.885	0.853 to 0.915	3.81	2.87 to 4.93

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Glasgow Coma Scale decrease (intracranial injury – adults)

		Observed es	timates	Posterior m	edian estir	natesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Madden 1995 ⁶¹	537	33.0	93.9	29.1	24.7 to 34.4	94.0	91.5 to 95.9	0.754	0.703 to 0.801	4.84	3.47 to 6.86
Stiell 2001 ²⁶	3121	21.3	98.7	22.0	17.2 to 27.4	98.6	98.2 to 99.0	0.791	0.737 to 0.839	16.11	11.04 to 23.82
Stiell 2005 ⁴⁶	2707	30.7	91.0	31.2	25.9 to 36.8	91.1	89.9 to 92.2	0.755	0.693 to 0.814	3.50	2.81 to 4.31

	Heterogeneit <i>p</i> -value ^c	ty test	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
3	0.024	< 0.001	27.3	20.8 to 36.7	95.7	83.4 to 98.8	0.763	0.711 to 0.822	6.39	2.05 to 19.33

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.c Based on *Q*-statistic.

		Observed es	Observed estimates		Posterior median estimates ^a								
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Cook 1994 ¹⁰⁰	107	0.0	98.5	2.8	0.1 to 17.5	99.2	96.4 to 99.9	0.981	0.833 to 1.021	3.44	0.08 to 64.34		
Borczuk 1995⁵⁵	1448	3.4	85.9	3.5	1.2 to 7.7	86.0	84.0 to 87.7	1.122	1.070 to 1.161	0.25	0.08 to 0.56		
Arienta 1997 ⁵⁴	10,000	7.1	99.9	6.8	3.6 to 11.5	99.9	99.8 to 100.0	0.933	0.886 to 0.965	71.02	30.16 to 170.3		
Falimirski 2003 ⁵⁸	331	0.0	97.6	1.5	0.1 to 7.2	97.8	95.7 to 99.1	1.007	0.948 to 1.035	0.69	0.03 to 4.09		
lbanez and Arikan 2004 ⁶⁰	1101	4.8	99.3	4.7	1.6 to 10.3	99.3	98.7 to 99.7	0.960	0.903 to 0.992	6.96	2.00 to 22.04		
Chan 200599	105	12.2	87.0	11.5	5.9 to 19.4	91.0	75.4 to 98.0	0.973	0.862 to 1.180	1.28	0.38 to 6.26		
Fabbri 2005 ⁵⁷	7955	54.4	98.8	54.1	49.9 to	98.8	98.5 to 99.0	0.465	0.422 to 0.507	44.70	36.11 to 56.08		

Focal neurological deficit (intracranial injury - adults)

	Heterogenei <i>p</i> -value ^c	ty test	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
 8	< 0.001	< 0.001	6.6	1.2 to 16.9	98.6	95.2 to 99.8	0.95	0.84 to 1.01	9.671	0.663 to 38.950

58.3

8.9

0.3 to 99.9

99.5 to 0.976

100.0

100.0

1.141

0.912 to

0.998

30.36

2.15 to

794.41

1392.00

a Of posterior distribution for Bayesian meta-analyses.

2.2

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Saboori

200767

682

Depressed skull fracture (intracranial injury – adults)

100.0

2.5

		Observed es	timates	Fixed-effect	ts estima	itesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Madden 1995 ⁶¹	537	13.2	100.0	13.2	7.6 to 21.8	99.9	98.2 to 100.0	0.868	0.512 to 1.471	117.63	7.01 to 1973.44
Miller 1997 ²⁹	2143	2.2	100.0	2.2	0.7 to 6.5	99.98	99.6 to 100.0	0.978	0.822 to 1.165	87.17	4.39 to 1731.74
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.004	0.452	9.1	5.5 to	99.9	99.6 to	0.967	0.819 to	102.15	13.13 to

14.5

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

225

		Observed es	timates	Posterior me	edian estin	natesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schynoll 1993 ¹¹⁸	264	21.9	94.0	30.8	25.6 to 36.0	94.4	91.2 to 96.9	0.733	0.687 to 0.780	5.85	3.67 to 9.19
Madden 1995 ⁶¹	537	28.6	93.9	31.2	26.8 to 35.8	94.2	91.9 to 96.1	0.730	0.686 to 0.774	5.50	3.89 to 7.63
Dunham 1996 ¹⁰¹	2032	27.3	96.6	28.1	24.5 to 31.7	96.7	95.8 to 97.4	0.744	0.708 to 0.779	8.53	6.69 to 10.76
Arienta 1997 ⁵⁴	10,000	0.6	100.0	4.5	1.7 to 8.2	100.0	100.0 to 100.0	0.955	0.918 to 0.983	13,090	429.40 to 77,610
Stiell 2001 ²⁶	3121	30.3	95.4	30.1	26.6 to 33.8	95.4	94.6 to 96.1	0.733	0.696 to 0.769	6.53	5.40 to 7.82
lbanez 2004 ⁶⁰	1101	19.3	97.9	24.9	20.7 to 28.6	98.1	97.2 to 98.8	0.766	0.731 to 0.806	13.42	9.03 to 19.51
Fabbri 2005 ⁵⁷	7955	16.6	99.9	14.1	11.7 to 16.7	99.9	99.8 to 99.9	0.860	0.834 to 0.884	129.10	64.37 to 256.80
Stiell 2005 ⁴⁶	2707	29.9	96.4	28.7	25.4 to 32.3	96.4	95.6 to 97.1	0.740	0.704 to 0.773	8.01	6.49 to 9.85
		Heterogenei <i>p</i> -valueº	ty test	Pooled estin	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	8	< 0.001	< 0.001	21.1	8.4 to 33.9	98.4	90.5 to 100.0	0.80	0.72 to 0.92	54.070	3.594 to 353.700

Basal skull fracture (intracranial injury – adults)

a Of posterior distribution for Bayesian meta-analyses.b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Any seizure (intracranial injury – adults)

		Observed est	imates	Posterior me	edian esti	mates ^a					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schynoll 1993 ¹¹⁸	264	3.1	96.1	4.7	3.0 to 7.0	96.5	93.8 to 98.3	0.987	0.972 to 1.008	1.37	0.85 to 2.22
Cook 1994 ¹⁰⁰	107	0.0	97.2	3.9	1.7 to 6.8	97.7	93.7 to 99.4	0.985	0.970 to 1.007	1.67	0.89 to 4.18
Arienta 1997 ⁵⁴	10,000	0.6	100.0	0.4	0.0 to 1.8	100.0	100.0 to 100.0	0.996	0.982 to 1.000	29.56	2.39 to 501.40
Haydel 2000 ²⁷	520	11.1	95.9	5.1	3.6 to 7.4	95.8	93.8 to 97.3	0.989	0.971 to 1.009	1.25	0.84 to 1.79
Falimirski 2003 ⁵⁸	331	2.5	99.3	2.3	0.8 to 4.1	99.3	98.1 to 99.9	0.984	0.970 to 0.996	3.26	1.47 to 11.16
lbanez and Arikan 2004 ⁶⁰	1101	1.2	99.4	2.1	0.8 to 3.7	99.5	98.9 to 99.8	0.985	0.970 to 0.997	3.69	1.61 to 8.85
Chan 2005 ⁹⁹	105	3.7	95.7	3.9	1.6 to 7.2	97.8	91.1 to 99.7	0.986	0.971 to 1.028	1.70	0.69 to 6.54

		227

		Observed es	timates	Posterior median estimates ^a							
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Mower 2005 ⁶²	13,728	5.0	96.1	5.0	3.8 to 6.4	96.1	95.7 to 96.4	0.989	0.974 to 1.002	1.27	0.96 to 1.66
Stiell 2005 ⁴⁶	1822	4.3	98.1	3.6	2.4 to 4.9	98.1	97.4 to 98.7	0.983	0.970 to 0.994	1.89	1.29 to 2.79
Saboori 200767	682	0.0	99.7	1.6	0.4 to 3.3	99.7	99.1 to 99.9	0.987	0.971 to 0.998	5.19	1.72 to 21.4
		Heterogeneit	tv test								

	p-value ^c	-	Pooled estin	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
10	0.262	< 0.001	2.8	1.1 to 5.1	99.0	96.2 to 99.7	0.984	0.970 to 0.996	2.59	1.20 to 6.40

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Any loss of consciousness (intracranial injury – adults)

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Nelson 1992 ¹¹⁶	131	90.0	21.6	88.0	74.6 to 95.7	21.8	15.0 to 29.8	0.553	0.201 to 1.203	1.12	0.95 to 1.3
Schynoll 1993 ¹¹⁸	264	50.0	66.8	50.4	35.3 to 65.4	66.8	60.7 to 72.6	0.742	0.519 to 0.979	1.52	1.04 to 2.1
Cook 1994 ¹⁰⁰	107	44.4	48.5	56.0	31.0 to 77.0	50.1	40.4 to 59.7	0.877	0.467 to 1.413	1.12	0.62 to 1.6
Moran 1994 ¹¹²	200	100.0	55.7	78.0	56.3 to 93.8	55.0	48.0 to 61.8	0.402	0.114 to 0.795	1.72	1.24 to 2.2
Borczuk 1995⁵⁵	1448	77.3	36.8	77.2	69.6 to 83.8	36.8	34.3 to 39.4	0.618	0.439 to 0.835	1.22	1.09 to 1.3
Madden 199561	537	94.5	30.9	91.8	85.5 to 96.2	30.6	26.5 to 34.9	0.267	0.121 to 0.479	1.32	1.21 to 1.4
Miller 1996 ¹¹¹	1382	65.5	39.1	66.7	56.6 to 75.7	39.2	36.5 to 41.8	0.851	0.617 to 1.117	1.10	0.93 to 1.25
Arienta 1997 ⁵⁴	10,000	3.9	98.7	3.9	1.8 to 7.6	98.7	98.5 to 98.9	0.973	0.936 to 0.995	3.10	1.36 to 6.1
Sharma 2001 ¹²⁰	39	44.4	19.0	58.1	36.4 to 76.6	31.3	15.4 to 50.7	1.324	0.696 to 2.958	0.85	0.52 to 1.2
Stiell 2001 ²⁶	3121	52.0	54.6	52.4	46.4 to 58.4	54.6	52.8 to 56.4	0.872	0.760 to 0.987	1.15	1.02 to 1.30
Mack 2003 ¹¹⁰	133	42.1	72.8	70.7	60.8 to 79.6	70.0	67.2 to 72.8	0.419	0.291 to 0.562	2.36	1.98 to 2.75
lbanez 2004 ⁶⁰	1101	73.5	70.2	88.5	81.0 to 93.9	14.3	5.4 to 28.7	0.800	0.356 to 2.220	1.03	0.92 to 1.2
Chan 200599	105	87.8	8.7	53.3	49.1 to 57.5	82.4	81.6 to 83.3	0.566	0.516 to 0.618	3.04	2.76 to 3.3
Fabbri 2005 ⁵⁷	7955	53.7	82.5	63.1	59.9 to 66.1	53.1	52.2 to 53.9	0.696	0.638 to 0.756	1.34	1.27 to 1.4

continued

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

		Observed es	timates	Posterior median estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Mower 2005 ⁶²	13,728	63.0	53.1	53.7	47.4 to 60.0	53.0	51.0 to 54.9	0.874	0.754 to 0.999	1.14	1.00 to 1.3	
Stiell 2005 ⁴⁶	2707	53.2	52.9	43.1	25.7 to 61.9	72.8	64.4 to 80.2	0.782	0.526 to 1.032	1.58	0.93 to 2.5	
Saboori 2007 ⁶⁷	682	8.7	88.4	12.8	5.6 to 23.0	88.5	85.9 to 90.8	0.985	0.869 to 1.071	1.11	0.48 to 2.1	
		Heterogenei	ty test	Pooled estir	nates							

	<i>p</i> -value										
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
17	< 0.001	< 0.001	59.9	43.0 to 75.8	58.0	39.5 to 74.1	0.698	0.532 to 0.871	1.41	1.14 to 1.84	

a Of posterior distribution for Bayesian meta-analyses.b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Any headache (intracranial injury – adults)

		Observed es	timates	Posterior me	edian estim	natesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schynoll 1993 ¹¹⁸	228	40.9	26.7	61.2	37.5 to 79.2	29.6	23.5 to 36.4	1.311	0.686 to 2.288	0.87	0.52 to 1.15
Cook 1994 ¹⁰⁰	107	75.0	41.7	64.8	46.3 to 81.9	42.4	33.3 to 51.9	0.830	0.436 to 1.277	1.13	0.81 to 1.46
Borczuk 1995⁵⁵	1448	50.4	61.2	48.7	41.2 to 57.3	61.1	58.5 to 63.7	0.841	0.697 to 0.965	1.25	1.05 to 1.49
Holmes 1997 ⁵⁹	261	45.7	75.2	38.1	27.3 to 53.6	74.2	68.5 to 79.5	0.837	0.623 to 0.972	1.47	1.07 to 2.22
Haydel 2000 ²⁷	520	33.3	77.1	31.1	21.7 to 44.1	76.9	73.1 to 80.4	0.899	0.727 to 1.018	1.34	0.94 to 2.0
Falimirski 2003 ⁵⁸	331	22.5	85.2	21.7	13.7 to 33.0	84.8	80.6 to 88.5	0.927	0.790 to 1.018	1.41	0.91 to 2.30
Mack 2003 ¹¹⁰	133	31.6	79.8	28.8	17.6 to 44.5	79.1	71.7 to 85.4	0.907	0.709 to 1.042	1.35	0.86 to 2.26
lbanez 2004 ⁶⁰	1101	69.9	45.6	65.9	56.4 to 75.5	45.4	42.4 to 48.5	0.752	0.535 to 0.965	1.21	1.03 to 1.40
Chan 200599	105	43.9	69.6	42.6	33.1 to 52.6	66.8	52.9 to 80.0	0.866	0.680 to 1.074	1.27	0.90 to 2.12
Fabbri 2005 ⁵⁷	7955	17.2	83.4	18.0	14.8 to 21.7	83.5	82.6 to 84.3	0.982	0.937 to 1.023	1.09	0.89 to 1.32
Stiell 2005 ⁴⁶	1822	37.1	64.8	39.0	30.2 to 46.9	64.9	62.7 to 67.2	0.938	0.818 to 1.080	1.11	0.86 to 1.34
Ono 2007 ⁶³	1064	38.0	85.8	29.1	17.3 to 43.9	85.3	83.0 to 87.4	0.831	0.657 to 0.972	1.99	1.16 to 3.10
Saboori to 200767	682	4.3	85.5	14.0	5.6 to 22.0	85.9	83.1 to 88.5	0.999	0.911 to 1.105	1.01	0.39 to 1.57

	No. of studies	Heterogenei <i>p</i> -value ^c	ty test	Pooled estimates							
		Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	13	< 0.001	< 0.001	36.8	25.5 to 50.5	70.3	57.3 to 79.8	0.901	0.792 to 1.005	1.23	0.99 to 1.55

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Anterograde or post-trauma amnesia (intracranial injury – adults)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schynoll 1993 ¹¹⁸	239	27.3	91.2	18.6	12.0 to 26.2	90.6	86.7 to 93.7	0.900	0.840 to 0.950	1.95	1.53 to 2.53
Arienta 1997 ⁵⁴	10,000	2.6	98.6	3.1	1.4 to 5.8	98.6	98.3 to 98.8	0.984	0.956 to 1.000	2.11	0.97 to 4.08
Stiell 2001 ²⁶	3121	40.2	76.8	39.7	34.3 to 45.3	76.8	75.3 to 78.4	0.785	0.712 to 0.856	1.71	1.47 to 1.98
lbanez and Arikan 2004 ⁶⁰	1101	21.7	91.1	18.2	13.7 to 23.0	90.8	89.0 to 92.4	0.902	0.853 to 0.945	1.97	1.54 to 2.5
Stiell 2005 ⁴⁶	1822	23.7	85.0	27.1	22.3 to 32.2	85.2	83.6 to 86.8	0.855	0.800 to 0.908	1.84	1.53 to 2.16
Saboori 2007 ⁶⁷	682	8.7	93.7	12.2	7.7 to 17.4	94.0	92.1 to 95.5	0.935	0.888 to 0.975	2.01	1.39 to 2.76

	Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
6	< 0.001	< 0.001	16.2	6.8 to 30.9	91.9	83.2 to 96.4	0.912	0.825 to 0.972	1.95	1.48 to 2.62

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Undefined vomiting (intracranial injury – adults)

		Observed estimates		Posterior median estimates ^a							
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schynoll 1993 ¹¹⁸	261	25.0	69.9	27.1	15.5 to 41.1	70.9	64.7 to 76.5	1.028	0.824 to 1.223	0.93	0.52 to 1.48
Holmes 1997 ⁵⁹	261	14.3	97.8	14.2	7.1 to 24.9	97.4	95.0 to 98.9	0.882	0.773 to 0.955	5.36	2.26 to 13.71
Miller 1997 ²⁹	2143	15.2	95.0	15.6	10.7 to 21.7	95.0	93.9 to 95.9	0.889	0.825 to 0.941	3.10	2.04 to 4.52

continued

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Haydel 2000 ²⁷	520	11.1	91.1	15.4	7.7 to 25.7	91.3	88.6 to 93.6	0.926	0.814 to 1.016	1.78	0.85 to 3.16
Mussack 2002 ¹¹⁵	139	21.1	91.7	20.6	10.5 to 35.0	91.9	86.5 to 95.7	0.866	0.710 to 0.982	2.54	1.16 to 5.40
lbanez and Arikan 2004 ⁶⁰	1101	22.9	93.2	21.9	14.8 to 30.5	93.2	91.6 to 94.6	0.839	0.746 to 0.915	3.21	2.08 to 4.8
Chan 2005 ⁹⁹	105	45.1	69.6	41.9	32.0 to 52.5	73.7	54.9 to 87.6	0.790	0.613 to 1.079	1.59	0.89 to 3.41
Fabbri 200557	7955	16.1	97.4	15.9	13.0 to 19.1	97.4	97.0 to 97.8	0.863	0.830 to 0.893	6.14	4.84 to 7.75
Stiell 2005 ⁴⁶	1822	20.6	90.1	20.7	14.2 to 28.5	90.1	88.7 to 91.5	0.880	0.794 to 0.954	2.10	1.41 to 2.97
Saboori 2007 ⁶⁷	682	17.4	95.1	17.4	9.9 to 27.3	95.1	93.3 to 96.6	0.870	0.766 to 0.949	3.52	1.90 to 6.20
		Heterogenei p-value ^c	Pooled estimates								

No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
10	< 0.001	< 0.001	20.2	13.7 to 28.3	92.2	85.8 to 95.9	0.868	0.794 to 0.935	2.58	1.52 to 4.49

a Of posterior distribution for Bayesian meta-analyses.b Sensitivity and specificity estimates calculated from the observed data.c Based on *Q*-statistic.

Undefined or mixed amnesia (intracranial injury – adults)

		Observed es	timates	Posterior m	edian estir	natesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Borczuk 1995⁵⁵	1448	31.1	81.7	28.9	22.0 to 36.7	81.5	79.3 to 83.5	0.874	0.776 to 0.960	1.55	1.17 to 2.02
Miller 1996 ¹¹¹	1382	34.5	60.9	40.1	29.4 to 53.0	61.4	58.7 to 64.0	0.977	0.759 to 1.159	1.04	0.75 to 1.40
Stiell 2001 ²⁶	3121	92.9	13.3	93.2	89.8 to 95.7	13.4	12.2 to 14.6	0.513	0.318 to 0.775	1.08	1.03 to 1.11
Mussack 2002 ¹¹⁵	139	63.2	40.8	68.7	51.9 to 80.6	42.1	33.9 to 50.5	0.739	0.486 to 1.149	1.19	0.90 to 1.4
Mack 2003 ¹¹⁰	133	15.8	79.8	22.6	10.5 to 36.8	80.7	73.4 to 86.8	0.957	0.804 to 1.119	1.19	0.56 to 1.88
Chan 200599	105	9.8	87.0	11.2	5.8 to 18.7	89.6	79.1 to 95.5	0.990	0.916 to 1.115	1.09	0.49 to 2.20
Fabbri 2005 ⁵⁷	7955	67.2	57.3	66.0	61.6 to 70.1	57.3	56.1 to 58.4	0.593	0.522 to 0.672	1.55	1.43 to 1.65

	No. of studies	Heterogeneit <i>p</i> -value°	Pooled estir	nates							
		Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	7	< 0.001	< 0.001	50.9	24.5 to 77.9	60.0	35.3 to 79.7	0.815	0.579 to 1.008	1.27	0.98 to 1.59

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Severe or persistent headache (intracranial injury – adults)

		Observed estimates		Fixed-effects estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Miller 1997 ²⁹	2143	54.3	69.2	54.3	46.0 to 62.5	69.2	67.2 to 71.2	0.659	0.512 to 0.849	1.77	1.39 to 2.24	
Mower 200562	13,728	12.0	82.6	12.0	10.1 to 14.3	82.6	82.0 to 83.3	1.065	0.991 to 1.144	0.69	0.57 to 0.84	
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates							
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
	2	< 0.001	< 0.001	19.4	16.8 to 22.2	80.5	79.9 to 81.2	1.028	0.959 to 1.101	1.00	0.86 to 1.16	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Retrograde amnesia (intracranial injury - adults)

		Observed estimates		Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schynoll 1993 ¹¹⁸	240	50.0	68.3	49.6	43.6 to 56.6	68.9	62.5 to 74.6	0.732	0.637 to 0.832	1.60	1.31 to 1.95
Stiell 2001 ²⁶	3121	38.2	80.7	44.0	39.1 to 48.1	80.9	79.4 to 82.3	0.692	0.641 to 0.754	2.30	2.01 to 2.6
Fabbri 200557	7955	33.9	95.4	33.4	29.5 to 37.4	95.4	94.9 to 95.8	0.698	0.656 to 0.739	7.21	6.14 to 8.41
Stiell 2005 ⁴⁶	2707	54.5	71.1	49.4	44.2 to 55.3	71.0	69.2 to 72.7	0.713	0.629 to 0.787	1.70	1.51 to 1.93
		Heterogenei [.] <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	4	< 0.001	< 0.001	44.3	36.9 to 55.2	81.6	56.7 to 91.6	0.687	0.635 to 0.848	2.41	1.21 to 4.55

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Rosenorn 1991 ¹¹⁷	1876	11.1	98.7	16.5	2.5 to 39.9	98.7	98.1 to 99.2	0.846	0.609 to 0.988	13.13	1.88 to 33.53
Shackford 1992 ¹¹⁹	423	60.8	72.1	60.6	50.7 to 70.0	72.8	67.8 to 77.5	0.542	0.409 to 0.686	2.24	1.74 to 2.83
Moran 1994 ¹¹²	200	62.5	97.9	52.4	23.9 to 81.5	97.7	95.3 to 99.2	0.487	0.190 to 0.779	27.94	8.50 to 72.56
Dunham 1996 ¹⁰¹	2032	27.3	97.5	33.9	26.5 to 41.9	97.5	96.7 to 98.1	0.678	0.597 to 0.754	13.72	9.45 to 19.37
Mack 2003 ¹¹⁰	133	0.0	97.4	7.3	0.3 to 21.5	97.7	94.6 to 99.5	0.949	0.803 to 1.030	4.41	0.14 to 17.68
Chan 2005 ⁹⁹	92	54.9	100.0	53.6	42.2 to 65.0	97.4	90.9 to 99.9	0.476	0.358 to 0.597	105.10	5.84 to 385.30
Ono 2007 ⁶³	1064	48.0	99.4	45.8	32.2 to 59.6	99.3	98.7 to 99.7	0.546	0.407 to 0.683	72.05	30.90 to 155.10
Saboori 2007 ⁶⁷	682	4.3	98.4	7.2	1.6 to 16.5	98.4	97.4 to 99.2	0.942	0.848 to 1.001	5.13	0.95 to 13.76

Radiological skull fracture (intracranial injury – adults)

Heterogeneity test *p*-value^c

Pooled estimates

No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
8	< 0.001	< 0.001	29.8	9.8 to 55.9	97.4	94.2 to 99.2	0.720	0.455 to 0.923	14.26	3.68 to 38.43

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Post-trauma seizure (intracranial injury – adults)

		Observed es	timates	Fixed-effec	ts estimate	es ^a					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Stiell 2001 ²⁶	3121	0.4	99.9	0.4	0.1 to 2.7	99.9	99.7 to 100.0	0.997	0.141 to 7.052	3.76	0.39 to 36.04
Fabbri 2005⁵7	7955	8.5	99.3	8.5	6.4 to 11.1	99.3	99.1 to 99.5	0.921	0.841 to 1.009	12.84	8.67 to 19.02

	Heterogeneit <u>;</u> <i>p</i> -value ^c	y test	Pooled estin	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
2	0.002	0.002	7.9	6.0 to 10.4	99.4	99.2 to 99.5	0.921	0.841 to 1.009	12.39	8.41 to 18.24

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Need for neurosurgery in adults

Fall – any (neurosurgery – adults)

		Observed es	timates	Fixed-effects estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Harad 1992 ¹⁰⁴	302	18.2	81.8	18.2	4.6 to 50.7	81.8	76.9 to 85.8	1.000	0.285 to 3.508	1.00	0.28 to 3.58	
Miller 1996 ¹¹¹	1382	0.0	73.1	16.7	1.0 to 80.6	73.1	70.7 to 75.4	1.140	0.091 to 14.319	0.62	0.05 to 7.79	
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates							
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
	2	0.952	0.002	17.9	5.2 to 46.1	74.4	72.3 to 76.5	1.027	0.334 to 3.159	0.91	0.29 to 2.83	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Assault (neurosurgery – adults)

	Observed estimates			s estimates	a					
Study	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Harad 1992 ¹⁰⁴	63.6	83.2	63.6	33.9 to 85.7	83.2	78.4 to 87.0	0.437	0.200 to 0.957	3.78	2.26 to 6.32

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Motor vehicle collision - pedestrian (neurosurgery - adults)

	Observed estimates		Fixed-effect	ts estimate:	S ^a						
Study	Sensitivity ^b Specificity ^b		Sensitivity	95% HDR	Specificity	95% Specificity HDR		95% HDR	PLR	95% HDR	
Harad 1992 ¹⁰⁴	0.0	85.9	4.5	0.3 to 44.8	85.9	81.4 to 89.5	1.111	0.969 to 1.274	0.32	0.02 to 4.91	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

		Observed es	timates	Fixed-effect	ts estima	tesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Harad 1992 ¹⁰⁴	302	0.0	55.7	16.7	0.3 to 44.8	55.7	49.9 to 61.3	1.715	0.114 to 25.772	0.10	0.01 to 1.54
Miller 1996 ¹¹¹	1382	0.0	59.0	4.5	1.0 to 80.6	59.0	56.4 to 61.6	1.412	0.112 to 17.735	0.41	0.03 to 5.11
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	0	0.400	0.201	8.5	1.2 to	58.4	56 1 to	1 546	0 243 to	0.21	0 03 to

Motor vehicle collision - in car (neurosurgery - adults)

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Glasgow Coma Scale < 15 (neurosurgery – adults)

		Observed est	timates	Posterior m	edian estii	mates ^a					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Feuerman 1988 ¹⁰²	129	75.0	47.1	62.1	34.7 to 87.2	47.9	39.2 to 56.7	0.790	0.266 to 1.419	1.19	0.65 to 1.76
Stein 1990 ¹²²	658	36.8	69.2	41.1	22.7 to 60.7	69.3	65.6 to 72.8	0.851	0.568 to 1.122	1.34	0.73 to 2.01
Borczuk 1995⁵	1448	90.9	84.2	73.8	49.9 to 93.2	84.2	82.3 to 86.1	0.311	0.082 to 0.596	4.67	3.11 to 6.10
Gomez 1996 ¹⁰³	2484	53.3	95.2	53.8	37.7 to 69.5	95.2	94.3 to 96.0	0.486	0.320 to 0.655	11.24	7.60 to 15.41
Arienta 1997 ⁵⁴	9917	62.5	99.3	61.5	42.1 to 78.3	99.3	99.1 to 99.4	0.388	0.219 to 0.583	86.30	56.30 to 123.10
Hsiang 1997 ¹⁰⁵	1360	38.1	87.3	40.7	27.4 to 54.6	87.3	85.5 to 89.1	0.679	0.520 to 0.833	3.21	2.12 to 4.46
Thiruppathy 2004 ¹²⁴	381	33.3	75.4	37.8	22.2 to 54.7	75.6	70.9 to 79.8	0.823	0.596 to 1.041	1.55	0.88 to 2.4
		Heterogeneit	y test								

Pooled estimates

	<i>p</i> -value ^c		Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
7	0.026	< 0.001	53.1	34.8 to 73.1	86.8	62.3 to 96.2	0.546	0.310 to 0.881	4.00	1.24 to 14.61

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Gomez

1996103

Hsiang

1997105

2004124

Thiruppathy

2484

1360

381

No. of

5

studies

40.0

21.4

18.5

98.1 to 0.662

96.2 to 0.752

86.9 to 0.925

NLR

0.839

99.0

97.9

92.9

95%

HDR

84.9 to

98.0

11; \	VOI. 15: NO. 27	ł

95%

HDR

25.06

9.42

PLR

3.67

0.522 to

0.654 to

0.813 to 1.70

0.784

0.837

1.020

95%

HDR

0.684 to

1.042

0.39 to 2.24

1.00 to

14.50 to

42.66

5.72 to

15.24

0.85 to

3.09

95%

HDR

0.75 to

15.81

3.20

235

alasyon	Com		4 (110010)	surgery	adun					
		Observed es	timates	Posterior m	edian est	imatesª				
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR
Feuerman 1988 ¹⁰²	129	25.0	84.3	14.0	6.8 to 24.9	85.8	79.0 to 91.2	1.001	0.856 to 1.143	0.99
Stein 1990 ¹²²	658	15.8	90.8	17.1	9.9 to 26.5	90.9	88.5 to 92.9	0.912	0.806 to 1.000	1.88

34.8

27.0

16.6

Pooled estimates

Sensitivity

21.0

22.8 to

18.9 to

48.5

36.3

9.4 to

26.1

95%

HDR

33.4

10.0 to

98.6

97.1

90.2

Specificity

94.3

Glasgow Coma Scale < 14 (neurosurgery – adults)

98.7

97.3

89.8

Specificity

< 0.001

a Of posterior distribution for Bayesian meta-analyses.

0.271

b Sensitivity and specificity estimates calculated from the observed data.

Heterogeneity test p-value^c

Sensitivity

c Based on Q-statistic.

Focal neurological deficit (neurosurgery – adults)

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Feuerman 1988 ¹⁰²	50.0	93.7	50.0	20.0 to 80.0	93.7	90.7 to 95.8	0.534	0.125 to 2.272	7.93	1.86 to 33.79	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Depressed skull fracture (neurosurgery – adults)

	Observed estimates		Fixed-effects estimates ^a									
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Miller 1997 ²⁹	60.0	100.0	60.0	20.0 to 90.0	99.98	99.6 to 100.0	0.400	0.137 to 1.171	2565.6	146.6 to 44,909		

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Miller 1996111	0.0	38.7	16.7	1.0 to 80.6	38.7	36.1 to 41.3	2.156	0.103 to 44.998	0.27	0.01 to 5.67	

Any loss of consciousness (neurosurgery - adults)

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Any headache (neurosurgery – adults)

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Holmes 1997 ⁵⁹	25.0	78.5	25.0	3.4 to 76.2	78.5	73.0 to 83.0	0.956	0.098 to 9.368	1.16	0.12 to 11.38	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Undefined vomiting (neurosurgery – adults)

		Observed es	timates	Fixed-effects estimates ^a									
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Holmes 1997 ⁵⁹	264	25.0	98.1	25.0	3.4 to 76.2	98.1	95.5 to 99.2	0.765	0.245 to 2.387	13.00	1.52 to 111.28		
Miller 1997 ²⁹	2143	20.0	94.3	20.0	2.7 to 69.1	94.3	93.3 to 95.2	0.848	0.318 to 2.262	3.53	0.49 to 25.29		
		Heterogeneity test p-value ^c		Pooled estir	nates								
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
	2	0.858	0.015	22.3	5.6 to 58.1	94.6	93.6 to 95.4	0.811	0.386 to 1.706	6.41	1.50 to 27.33		

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Undefined or mixed amnesia (neurosurgery – adults)

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Miller 1996 ¹¹¹	0.0	61.1	16.7	1.0 to 80.6	61.1	58.5 to 63.7	1.363	0.065 to 28.451	0.43	0.02 to 8.95	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.
Severe or persistent headache (neurosurgery – all ages)

	Observed esti	mates	Fixed-effects	Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Miller 1997 ²⁹	20.0	67.7	20.0	2.7 to 69.1	67.7	65.7 to 69.6	1.182	0.132 to 10.596	0.62	0.07 to 5.55		

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Radiological skull fracture (neurosurgery – adults)

		Observed estimates		Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Murshid 1994 ¹¹⁴	566	57.1	89.3	39.5	30.1 to 49.8	90.2	87.6 to 92.1	0.671	0.549 to 0.791	4.00	2.54 to 6.12
Hung 1996 ¹⁰⁶	7000	37.8	90.2	39.1	34.7 to 43.5	90.1	89.4 to 90.8	0.676	0.627 to 0.725	3.96	3.45 to 4.52
Stein 1992 ¹²¹	1538	60.3	93.5	51.4	41.5 to 65.5	93.3	91.9 to 94.6	0.520	0.369 to 0.631	7.79	5.50 to 10.82
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	3	0.004	< 0.001	43.1	31.0 to 58.6	91.3	87.3 to 94.1	0.623	0.444 to 0.788	4.99	2.48 to 9.48

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

Individual clinical characteristics in children and infants – data for meta-analysis

Intracranial injury in children

Intoxication (intracranial injury – children)

		Observed estimates		Posterior m	edian es	timatesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Haydel 2003 ⁸⁸	175	7.1	93.8	3.4	1.3 to 7.0	94.4	90.2 to 97.2	1.022	0.977 to 1.078	0.61	0.19 to 1.63
Dunning 2006 ³⁰	22,772	4.6	99.8	4.5	2.5 to 7.3	99.8	99.8 to 99.9	0.957	0.929 to 0.976	28.10	14.69 to 50.93
Oman 2006 ⁹¹	1666	4.0	95.0	3.4	1.4 to 6.9	95.1	93.9 to 96.1	1.015	0.978 to 1.040	0.70	0.28 to 1.5
Atabaki 2008 ⁸¹	1000	1.5	99.1	3.9	2.3 to 6.0	99.1	98.4 to 99.6	0.970	0.948 to 0.988	4.57	1.92 to 11.25
		Heterogenei [.] <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	4	0.689	< 0.001	3.8	1.8 to 6.4	98.6	90.2 to 99.8	0.976	0.946 to 1.072	2.72	0.29 to 26.06

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Fall – any (intracranial injury – children)

		Observed estimates		Posterior median estimates ^a							
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Ramundo 1995 ¹³⁵	249	26.7	53.4	28.2	18.1 to 39.9	53.0	49.0 to 57.0	1.360	1.076 to 1.647	0.60	0.36 to 0.90
Boran 2006 ¹²⁸	421	40.5	60.2	44.5	32.1 to 57.7	57.7	54.0 to 61.6	0.965	0.707 to 1.228	1.06	0.72 to 1.44
Dunning 2006 ³⁰	22,772	11.7	46.5	12.4	8.7 to 16.5	46.6	45.9 to 47.2	1.883	1.791 to 1.966	0.23	0.16 to 0.31
Atabaki 2008 ⁸¹	1000	61.5	56.8	52.7	40.9 to 64.8	58.6	55.7 to 61.3	0.809	0.597 to 1.023	1.27	0.97 to 1.59
Guzel 200987	337	40.3	61.5	43.1	32.9 to 53.7	57.4	53.8 to 61.7	0.993	0.777 to 1.223	1.02	0.73 to 1.34

continued

logy Assessment 2011: Vol. 15: No. 27

Heterogeneity t <i>p</i> -value°		y test	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
5	< 0.001	< 0.001	34.7	17.0 to 56.5	54.7	49.1 to 60.6	1.206	0.726 to 1.683	0.78	0.34 to 1.41

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Fall from a height (intracranial injury – children)

		Observed estimates		Fixed-effects estimates ^a							
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Reed 2005 ¹³⁶	39	30.0	86.2	30.0	10.0 to 62.4	86.2	68.5 to 94.7	0.812	0.312 to 2.116	2.18	0.59 to 8.09
Dunning 2006 ³⁰	22,772	19.6	80.2	19.6	15.3 to 24.6	80.2	79.7 to 80.7	1.003	0.791 to 1.271	0.99	0.78 to 1.26
		Heterogenei <i>p</i> -value ^c	Heterogeneity test <i>p</i> -value ^c I		nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.423	0.421	20.0	15.8 to 25.0	80.2	79.7 to 80.7	0.991	0.787 to 1.247	1.01	0.80 to 1.28

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Dizziness (intracranial injury - children)

		Observed estimates		Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Davis 1994 ¹²⁹	168	0.0	98.1	5.6	0.1 to 16.2	96.4	90.9 to 99.0	0.986	0.862 to 1.054	1.35	0.05 to 8.42
Reed 2005 ¹³⁶	39	0.0	93.1	5.1	0.6 to 12.4	93.0	85.7 to 98.1	1.018	0.920 to 1.117	0.74	0.11 to 3.57
Atabaki 2008 ⁸¹	1000	7.7	89.9	5.3	1.8 to 11.6	90.3	88.3 to 92.2	1.048	0.977 to 1.095	0.55	0.18 to 1.23
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	3	0.881	0.012	5.2	0.6 to 13.3	93.5	85.7 to 98.5	1.014	0.910 to 1.109	0.79	0.11 to 4.30

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

Coagulopathy (intracranial injury – children)

		Observed estimates		Fixed-effects estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Dunning 2006 ³⁰	22,772	0.0	99.9	0.2	0.001 to 2.8	99.9	99.9 to 100.0	0.999	0.063 to 15.930	2.86	0.17 to 47.88	
0man 2006 ⁹¹	1666	7.0	99.0	7.0	3.8 to 12.6	99.0	98.4 to 99.4	0.939	0.511 to 1.726	7.00	3.19 to 15.37	
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates							
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
	2	0.010	< 0.001	5.8	3.2 to 10.5	99.7	99.6 to 99.8	0.942	0.520 to 1.706	6.56	3.08 to 14.00	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Assault (intracranial injury – children)

		stimates	Fixed-effects estimates ^a								
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dunning 2006 ³⁰	22,772	3.6	95.9	3.6	1.9 to 6.5	95.9	95.6 to 96.1	1.006	0.547 to 1.848	0.87	0.47 to 1.60
Ramundo 1995 ¹³⁵	261	2.2	92.6	2.2	0.3 to 14.2	92.6	88.3 to 95.4	1.056	0.152 to 7.337	0.30	0.04 to 2.20
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	mates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.648	0.017	3.4	1.9 to	95.9	95.6 to	1.010	0.565 to	0.79	0.44 to

6.0

96.1

1.805

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Vision (intracranial injury – children)

		Observed estimates		Fixed-effects estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Dunning 2006 ³⁰	22,772	1.4	98.9	1.4	0.5 to 3.7	98.9	98.8 to 99.1	0.996	0.377 to 2.636	1.35	0.50 to 3.59	
Guzel 2009 ⁸⁷	337	17.9	98.9	17.9	10.5 to 28.9	98.9	96.6 to 99.6	0.830	0.497 to 1.386	16.12	4.68 to 55.51	

continued

1.42

Heterogeneity to <i>p</i> -value ^c		ty test	Pooled estimates							
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
2	< 0.001	0.933	9.1	5.6 to 14.5	98.9	98.8 to 99.1	0.864	0.549 to 1.360	3.51	1.63 to 7.57

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Prior neurosurgery (intracranial injury – children)

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Dunning 2006 ³⁰	0.7	99.9	0.7	0.2 to 2.8	99.9	99.8 to 99.9	0.994	0.984 to 1.004	5.93	1.42 to 24.81	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Motor vehicle collision - pedestrian (intracranial injury - children)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Harad 1992 ¹⁰⁴	302	18.2	87.4	18.4	10.9 to 27.0	87.8	83.4 to 91.4	0.930	0.826 to 1.029	1.50	0.83 to 2.55
Tsai 1994 ¹²⁵	186	5.0	91.8	13.7	3.0 to 23.8	91.6	86.6 to 95.4	0.945	0.819 to 1.072	1.58	0.35 to 3.90
Boran 2006 ¹²⁸	421	43.2	80.2	28.9	13.2 to 51.8	80.8	76.7 to 84.6	0.883	0.597 to 1.088	1.48	0.67 to 2.80
Dunning 2006 ³⁰	22,772	28.1	98.7	27.3	22.2 to 32.8	98.7	98.5 to 98.8	0.737	0.681 to 0.788	20.79	16.46 to 25.85
Atabaki 2008 ⁸¹	1000	4.6	91.2	11.5	3.0 to 23.4	91.2	89.3 to 92.9	0.969	0.837 to 1.067	1.34	0.34 to 2.87
Guzel 2009 ⁸⁷	337	23.9	88.1	20.7	14.5 to 31.7	88.5	84.4 to 91.9	0.894	0.768 to 0.983	1.84	1.11 to 3.1
		Heterogenei <i>p</i> -value ^c	ty test	Pooled esti	nates						

	p raido											
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
6	< 0.001	< 0.001	19.4	9.0 to 30.2	91.9	81.7 to 96.6	0.883	0.754 to 1.043	2.32	0.75 to 6.56		

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

Motor vehicle collision - in car (intracranial injury - children)

		Observed es	timates	Posterior median estimates ^a							
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Ramundo 1995 ¹³⁵	261	51.1	76.4	31.7	19.5 to 53.4	74.6	68.5 to 80.3	0.918	0.611 to 1.094	1.27	0.76 to 2.36
Boran 2006 ¹²⁸	421	13.5	83.9	19.2	10.0 to 26.9	84.3	80.5 to 87.7	0.959	0.871 to 1.075	1.23	0.62 to 1.76
Dunning 2006 ³⁰	22,772	5.0	99.2	4.6	2.6 to 7.2	99.2	99.1 to 99.3	0.962	0.935 to 0.982	5.87	3.20 to 9.43
Atabaki 2008 ⁸¹	1000	10.8	78.9	20.8	9.2 to 29.8	79.4	76.7 to 81.9	0.999	0.882 to 1.152	1.01	0.44 to 1.47
Guzel 2009 ⁸⁷	337	7.5	96.3	9.2	4.8 to 13.8	96.4	94.0 to 98.1	0.942	0.901 to 0.989	2.68	1.26 to 4.56
		Heterogenei <i>p</i> -value⁰	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	5	< 0.001	< 0.001	15.2	5.6 to 31.7	90.0	67.9 to 98.4	0.947	0.870 to 1.065	1.99	0.82 to 4.30

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Motor vehicle collision with bicycle (intracranial injury - children)

	Observed est	timates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dunning 2006 ³⁰	15.3	96.7	15.3	11.5 to 20.0	96.7	96.5 to 96.9	0.876	0.833 to 0.921	4.63	3.49 to 6.15

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Persistent vomiting (intracranial injury – children)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Da Dalt 2006 ⁸³	3803	14.3	94.4	17.8	7.2 to 32.7	94.4	93.6 to 95.0	0.871	0.713 to 0.984	3.15	1.26 to 5.89
Dunning 2006 ³⁰	22,772	29.2	94.1	28.7	23.7 to 34.1	94.1	93.7 to 94.4	0.758	0.701 to 0.812	4.83	3.96 to 5.78
Oman 2006 ⁹¹	1666	24.0	89.0	23.6	17.3 to 30.9	89.1	87.5 to 90.6	0.857	0.774 to 0.930	2.18	1.55 to 3.0
Kupperman 2009 ⁹⁰	31,292	18.8	92.4	19.0	14.7 to 23.8	92.4	92.1 to 92.7	0.877	0.824 to 0.923	2.51	1.93 to 3.16

continued

	Heterogeneity <i>p</i> -value ^c	y test	Pooled estin	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
4	0.028	< 0.001	22.1	10.7 to 40.6	92.9	87.4 to 96.8	0.840	0.635 to 0.969	3.14	1.30 to 8.05

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Glasgow Coma Scale < 15 (intracranial injury – children)

		Observed estimates		Posterior m	edian esti	matesª					
Study	n	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Chan 1990 ²¹²	418	23.1	95.6	26.2	10.2 to 48.5	95.5	93.2 to 97.2	0.774	0.540 to 0.941	5.78	2.17 to 12.36
Dietrich 1993 ⁸⁴	253	75.0	77.0	73.0	58.3 to 84.9	77.2	71.4 to 82.4	0.351	0.197 to 0.543	3.18	2.35 to 4.30
Ramundo 1995 ¹³⁵	259	76.7	70.8	75.3	62.0 to 86.1	71.2	65.0 to 76.9	0.348	0.196 to 0.539	2.60	1.99 to 3.37
Stein 1995 ¹³⁹	751	40.4	80.1	41.3	31.9 to 51.2	80.3	77.1 to 83.2	0.731	0.606 to 0.852	2.09	1.56 to 2.73
Mandera 2000 ¹³³	166	61.8	70.4	62.1	50.5 to 72.6	71.6	62.3 to 79.8	0.531	0.377 to 0.713	2.18	1.55 to 3.16
Simon 2001 ¹³⁸	569	17.9	88.7	19.8	12.4 to 29.0	88.9	85.9 to 91.5	0.902	0.796 to 0.991	1.79	1.06 to 2.84
Reed 2005 ¹³⁶	39	90.0	82.8	77.4	52.8 to 93.7	82.3	67.1 to 92.3	0.277	0.079 to 0.577	4.27	2.22 to 9.9
Dunning 2006 ³⁰	22,772	55.5	98.5	54.8	49.0 to 60.5	98.5	98.3 to 98.6	0.459	0.401 to 0.518	36.04	30.97 to 41.7
0man 2006 ⁹¹	1666	68.8	82.0	68.4	60.5 to 75.7	82.0	80.0 to 83.9	0.386	0.296 to 0.483	3.80	3.24 to 4.4
Atabaki 2008 ⁸¹	1000	29.2	86.2	30.9	20.7 to 42.2	86.3	84.0 to 88.4	0.801	0.668 to 0.922	2.26	1.47 to 3.2
Guzel 2009 ⁸⁷	337	10.4	97.0	12.3	6.2 to 21.2	97.0	94.6 to 98.5	0.905	0.813 to 0.972	4.09	1.67 to 9.7
Kupperman 2009 ⁹⁰	31,694	26.6	97.4	26.6	21.6 to 31.9	97.4	97.2 to 97.6	0.754	0.699 to 0.804	10.30	8.32 to 12.5
		Heterogeneity test <i>p</i> -value°			nates						
	No. of				95%		95%		95%		95%

studies	Sensitivity	Specificity	Sensitivity	HDR	Specificity	HDR	NLR	HDR	PLR	HDR
12	< 0.001	< 0.001	46.3	29.6 to 64.2	89.6	81.1 to 94.7	0.602	0.418 to 0.765	4.42	2.63 to 7.66

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.
c Based on *Q*-statistic.

Glasgow Coma Scale < 14 (intracranial injury – children)

		Observed es	Observed estimates		edian esti	mates ^a					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Stein 1995 ¹³⁹	751	18.1	94.1	19.4	12.4 to 27.9	94.2	92.2 to 95.8	0.856	0.765 to 0.933	3.33	1.95 to 5.41
Mandera 2000 ¹³³	166	22.1	85.7	24.0	15.0 to 34.8	86.6	79.0 to 92.3	0.879	0.746 to 1.014	1.78	0.94 to 3.43
Dunning 2006 ³⁰	22,772	45.9	99.4	45.1	39.3 to 51.0	99.4	99.3 to 99.5	0.552	0.493 to 0.611	73.48	59.56 to 91.00
Atabaki 2008 ⁸¹	1000	90.8	2.7	89.7	80.7 to 95.6	2.7	1.8 to 3.8	3.858	1.534 to 8.154	0.92	0.83 to 0.98
Guzel 2009 ⁸⁷	337	20.9	98.5	21.1	12.9 to 31.3	98.6	96.8 to 99.6	0.802	0.697 to 0.885	14.90	5.78 to 48.58
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	5	< 0.001	< 0.001	40.4	12.8 to 77.5	89.1	18.9 to 99.6	0.718	0.429 to 1.674	3.58	0.80 to 46.84

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Focal neurological deficit (intracranial injury – children)

		Observed estimates			edian esti	matesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Chan 1990 ²¹²	418	7.7	96.0	33.8	9.9 to 45.7	96.6	94.6 to 98.1	0.683	0.568 to 0.935	10.07	2.63 to 16.23
Dietrich 1993 ⁸⁴	252	28.6	94.5	37.8	21.2 to 49.3	95.6	92.4 to 97.6	0.648	0.538 to 0.831	8.75	3.69 to 14.70
Ramundo 1995 ¹³⁵	261	11.1	99.5	12.1	5.4 to 21.5	99.7	98.8 to 99.9	0.883	0.791 to 0.948	36.64	9.68 to 112.20
Quayle 1997 ⁹⁴	321	40.7	85.0	56.6	32.3 to 67.4	86.1	81.8 to 89.7	0.500	0.384 to 0.793	4.03	2.14 to 5.55
Ng 2002 ¹³⁴	119	12.3	100.0	12.1	5.9 to 20.6	99.7	98.4 to 100.0	0.883	0.800 to 0.943	39.00	8.33 to 148.00
Da Dalt 2006 ⁸³	3796	25.0	99.8	12.2	6.7 to 25.9	99.8	99.6 to 99.9	0.880	0.743 to 0.935	48.31	26.62 to 125.20
Dunning 2006 ³⁰	22,772	19.2	99.6	16.9	12.9 to 22.0	99.6	99.5 to 99.6	0.835	0.783 to 0.874	38.00	27.43 to 54.56
Oman 2006 ⁹¹	1666	81.0	68.0	76.9	69.2 to 84.4	67.8	65.5 to 70.2	0.340	0.230 to 0.456	2.39	2.11 to 2.70
Atabaki 2008 ⁸¹	1000	3.1	99.6	8.1	2.8 to 15.0	99.8	99.3 to 99.9	0.921	0.854 to 0.975	41.38	6.97 to 102.6
Guzel 2009 ⁸⁷	337	3.0	100.0	3.8	1.0 to 9.5	100.0	99.7 to 100.0	0.962	0.907 to 0.990	87.38	12.21 to 503.50

continued

No. of studies Sens 10 < 0.0	Heterogeneit <i>p</i> -value ^c	y test	t Pooled estimates							
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
10	< 0.001	< 0.001	21.1	8.8 to 41.1	99.0	95.4 to 99.8	0.798	0.615 to 0.915	20.46	7.40 to 54.24

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Depressed skull fracture (intracranial injury – children)

	Observed estimates				Fixed-effects estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Ramundo 1995 ¹³⁵	261	26.7	96.8	26.7	15.8 to 41.3	96.8	93.4 to 98.4	0.758	0.467 to 1.231	8.23	3.43 to 19.74		
Dunning 2006 ³⁰	22,772	13.9	99.9	13.9	10.3 to 18.4	99.9	99.9 to 99.9	0.862	0.759 to 0.978	173.42	100.4 to 299.3		
		Heterogeneit <i>p</i> -value ^c	ty test	Pooled estir	nates								
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
	2	0.032	< 0.001	16.0	12.4 to	99.8	99.7 to	0.855	0.756 to	73.82	46.45 to		

20.5

99.9

0.966

117.32

a Assuming normal distribution on the logarithm scale.b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Basal skull fracture (intracranial injury – children)

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Reed 2005 ¹³⁶	39	30.0	93.1	28.1	11.6 to 49.9	96.6	90.0 to 99.3	0.744	0.535 to 0.913	11.12	2.53 to 24.08
Da Dalt 2006 ⁸³	3806	9.1	99.8	8.7	3.1 to 18.3	99.7	99.6 to 99.9	0.916	0.820 to 0.972	35.58	12.71 to 88.00
Dunning 2006 ³⁰	22,772	30.2	98.0	27.5	21.9 to 33.6	98.0	97.8 to 98.2	0.740	0.678 to 0.797	13.64	10.65 to 17.01
Atabaki 2008 ⁸¹	1000	4.6	97.6	17.2	4.7 to 26.4	98.3	97.1 to 99.1	0.843	0.751 to 0.975	11.07	2.10 to 18.86
Kupperman 2009 ⁹⁰	31,396	13.5	99.4	13.4	9.7 to 17.5	99.4	99.3 to 99.5	0.872	0.831 to 0.909	21.53	15.26 to 29.07

	Heterogenei <i>p</i> -value ^c	ty test	Pooled estimates							
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
 5	< 0.001	< 0.001	17.8	7.8 to 31.7	98.7	96.5 to 99.6	0.833	0.703 to 0.929	16.90	6.13 to 32.44

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Any seizure (intracranial injury – children)

		Observed es	timates	Posterior m	edian es	timates ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dietrich 1993 ⁸⁴	253	11.1	94.5	10.0	7.0 to 13.7	94.8	91.4 to 97.1	0.949	0.907 to 0.999	1.92	1.02 to 3.70
Ramundo 1995 ¹³⁵	256	11.9	95.8	10.0	7.3 to 13.3	96.0	93.0 to 98.0	0.937	0.900 to 0.981	2.51	1.29 to 5.21
Schunk 1996 ¹³⁷	313	7.7	92.0	10.0	6.7 to 14.3	92.3	89.0 to 95.0	0.975	0.924 to 1.028	1.31	0.74 to 2.22
Fridriksson 2000 ¹³⁰	49	22.7	88.9	10.0	6.8 to 14.7	92.4	80.2 to 97.8	0.973	0.909 to 1.120	1.33	0.47 to 4.69
Ng 2002 ¹³⁴	119	6.2	88.9	9.9	6.5 to 14.3	91.1	82.2 to 96.4	0.987	0.918 to 1.107	1.13	0.47 to 2.97
Reed 2005 ¹³⁶	39	20.0	96.6	10.1	7.3 to 13.6	96.7	89.0 to 99.4	0.931	0.889 to 1.014	3.07	0.88 to 16.95
Dunning 2006 ³⁰	22,772	10.0	99.6	10.1	7.2 to 13.8	99.6	99.5 to 99.7	0.902	0.866 to 0.932	27.40	18.36 to 40.06
Atabaki 2008 ⁸¹	1000	10.8	94.7	10.0	7.0 to 13.6	94.7	93.2 to 96.0	0.950	0.911 to 0.985	1.90	1.22 to 2.85
Guzel 2009 ⁸⁷	337	7.5	98.1	10.0	7.6 to 12.8	98.0	96.0 to 99.2	0.919	0.888 to 0.950	5.05	2.36 to 12.58
		Heterogeneit <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	9	0.602	< 0.001	10.0	7.3 to 13.3	96.3	91.9 to 98.3	0.935	0.899 to 0.987	2.69	1.17 to 6.24

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

		Observed es	timates	Posterior m	edian esti	natesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Chan 1990 ²¹²	418	61.5	67.4	56.2	36.4 to 75.3	67.5	62.9 to 72.0	0.650	0.366 to 0.950	1.73	1.10 to 2.4
Dietrich 1993 ⁸⁴	179	67.9	60.3	63.2	47.3 to 77.7	60.6	52.6 to 68.1	0.608	0.366 to 0.893	1.60	1.14 to 2.2
Davis 1994 ¹²⁹	138	60.0	68.8	54.6	33.3 to 75.3	69.1	60.8 to 76.5	0.659	0.356 to 0.982	1.76	1.04 to 2.7
Ramundo 1995 ¹³⁵	212	70.6	59.0	65.9	51.3 to 79.1	59.2	51.9 to 66.2	0.577	0.351 to 0.839	1.61	1.21 to 2.10
Schunk 1996 ¹³⁷	313	15.5	73.7	30.9	13.5 to 50.8	74.0	68.9 to 78.7	0.935	0.663 to 1.181	1.19	0.51 to 2.0
Fridriksson 2000 ¹³⁰	49	45.5	66.7	46.9	30.1 to 64.0	69.0	51.3 to 83.3	0.774	0.508 to 1.130	1.50	0.83 to 3.0
Simon 2001 ¹³⁸	429	38.7	52.9	41.1	30.0 to 52.8	53.3	48.1 to 58.3	1.106	0.873 to 1.351	0.88	0.63 to 1.2
Ng 2002 ¹³⁴	119	47.7	61.1	48.3	37.2 to 59.5	62.7	49.8 to 74.4	0.826	0.618 to 1.108	1.29	0.88 to 2.0
Reed 2005 ¹³⁶	39	50.0	86.2	46.3	25.8 to 68.5	85.5	71.5 to 94.4	0.632	0.372 to 0.890	3.17	1.40 to 8.46
Boran 2006 ¹²⁸	421	37.8	97.7	36.3	23.5 to 51.0	97.3	95.4 to 98.6	0.655	0.505 to 0.787	13.35	6.81 to 27.5
Da Dalt 2006 ⁸³	3793	38.1	97.4	35.9	20.6 to 54.1	97.3	96.8 to 97.8	0.659	0.472 to 0.816	13.44	7.56 to 21.3
Dunning 2006 ³⁰	22,772	51.2	95.4	50.6	44.8 to 56.3	95.4	95.1 to 95.6	0.519	0.458 to 0.579	10.91	9.56 to 12.4
0man 2006 ⁹¹	1666	75.0	45.0	73.3	65.8 to 80.0	45.1	42.6 to 47.6	0.592	0.441 to 0.764	1.33	1.19 to 1.5
Atabaki 2008 ⁸¹	1000	23.1	66.7	27.4	17.8 to 38.4	66.9	63.8 to 69.9	1.086	0.916 to 1.240	0.83	0.53 to 1.2
Guzel 2009 ⁸⁷	337	13.4	93.7	17.6	9.9 to 27.3	93.8	90.5 to 96.2	0.879	0.775 to 0.967	2.81	1.40 to 5.4
Klemetti 2009 ⁸⁹	485	53.0	68.7	51.4	41.2 to 61.6	91.1	87.7 to 94.0	0.534	0.421 to 0.647	5.79	3.93 to 8.8
Kupperman 2009 ⁹⁰	28,195	36.6	87.6	37.0	30.1 to 44.4	87.6	87.2 to 88.0	0.719	0.635 to 0.798	2.98	2.42 to 3.58
		Heterogenei <i>p</i> -value ^c	ty test	Pooled estir	nates						

Any loss of consciousness (intracranial injury – children)

No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
17	< 0.001	< 0.001	45.9	36.4 to 55.6	80.1	67.4 to 87.3	0.679	0.566 to 0.814	2.30	1.46 to 3.47		

a Of posterior distribution for Bayesian meta-analyses.b Sensitivity and specificity estimates calculated from the observed data.c Based on *Q*-statistic.

Any headache (intracranial injury – children)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Chan 1990 ²¹²	418	15.4	75.6	25.8	12.5 to 41.8	75.9	71.6 to 79.9	0.978	0.772 to 1.159	1.07	0.52 to 1.73
Dietrich 1993 ⁸⁴	194	50.0	51.7	52.7	34.7 to 69.6	52.7	45.6 to 59.7	0.898	0.584 to 1.259	1.11	0.73 to 1.49
Davis 1994 ¹²⁹	168	33.3	77.6	30.4	16.4 to 48.9	77.3	70.6 to 83.2	0.901	0.671 to 1.080	1.34	0.74 to 2.21
Ramundo 1995 ¹³⁵	185	66.7	32.9	69.6	49.6 to 84.6	34.4	27.7 to 41.6	0.881	0.455 to 1.507	1.06	0.76 to 1.31
Schunk 1996 ¹³⁷	313	38.4	70.3	37.3	22.0 to 55.1	70.4	65.2 to 75.3	0.890	0.641 to 1.109	1.26	0.75 to 1.88
Fridriksson 2000 ¹³⁰	49	40.9	66.7	40.1	24.8 to 57.0	67.8	52.7 to 80.5	0.886	0.655 to 1.153	1.24	0.77 to 2.0
Ng 2002 ¹³⁴	119	12.3	85.2	14.6	8.1 to 23.2	86.2	77.5 to 92.5	0.990	0.891 to 1.107	1.06	0.55 to 1.98
Haydel 2003 ⁸⁸	175	50.0	66.5	44.5	27.9 to 62.8	66.3	59.1 to 73.0	0.838	0.568 to 1.089	1.32	0.84 to 1.91
Reed 2005 ¹³⁶	39	10.0	100.0	9.7	2.1 to 26.0	93.5	84.1 to 98.4	0.970	0.822 to 1.046	1.45	0.51 to 4.77
Da Dalt 2006 ⁸³	3800	25.0	91.1	16.4	7.6 to 32.0	91.0	90.1 to 91.9	0.918	0.748 to 1.015	1.83	0.85 to 3.60
Dunning 2006 ³⁰	22,772	20.3	79.0	21.0	16.6 to 25.9	79.0	78.5 to 79.5	1.000	0.938 to 1.056	1.00	0.79 to 1.23
Atabaki 2008 ⁸¹	1000	26.2	61.7	31.4	21.2 to 42.8	62.2	59.0 to 65.2	1.103	0.916 to 1.282	0.83	0.55 to 1.14
Guzel 2009 ⁸⁷	337	32.8	83.7	29.7	20.7 to 40.5	82.8	78.2 to 86.9	0.850	0.717 to 0.966	1.72	1.15 to 2.57
Kupperman 2009 ⁹⁰	27,495	73.4	54.1	71.3	64.9 to 77.1	54.1	53.5 to 54.7	0.531	0.424 to 0.648	1.55	1.41 to 1.68
		Heterogeneit	y test								

p-value^c Pooled estimates

·										
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
14	< 0.001	<0.001	33.9	22.9 to 47.6	73.3	62.1 to 81.3	0.905	0.784 to 1.010	1.26	0.97 to 1.61

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Anterograde or post-trauma amnesia (intracranial injury - children)

	Observed est	imates	Fixed-effect	Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Guzel 2009 ⁸⁷	20.9	93.0	20.9	12.8 to 32.3	93.0	89.2 to 95.5	0.851	0.401 to 1.804	2.97	1.40 to 6.29		

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Chan 1990 ²¹²	418	38.5	73.8	34.7	18.2 to 55.4	73.9	69.5 to 78.0	0.883	0.603 to 1.117	1.33	0.69 to 2.19
Dietrich 1993 ⁸⁴	253	27.8	59.4	28.9	17.3 to 43.0	60.2	53.7 to 66.3	1.181	0.932 to 1.431	0.73	0.42 to 1.11
Davis 1994 ¹²⁹	168	8.3	93.6	18.8	5.7 to 38.2	92.4	87.7 to 95.8	0.880	0.669 to 1.027	2.46	0.72 to 6.14
Ramundo 1995 ¹³⁵	218	13.9	79.7	18.7	9.0 to 31.2	79.7	73.6 to 85.0	1.021	0.856 to 1.172	0.92	0.43 to 1.65
Schunk 1996 ¹³⁷	313	46.1	65.7	39.3	21.6 to 60.9	66.0	60.6 to 71.1	0.920	0.590 to 1.206	1.16	0.62 to 1.84
Fridriksson 2000 ¹³⁰	49	63.6	66.7	52.6	35.2 to 71.2	68.4	51.0 to 82.4	0.696	0.411 to 1.050	1.66	0.93 to 3.2
Ng 2002 ¹³⁴	119	41.5	50.0	40.2	29.4 to 51.7	53.2	40.4 to 65.6	1.122	0.834 to 1.542	0.86	0.58 to 1.28
Haydel 2003 ⁸⁸	175	42.9	82.6	36.5	19.9 to 57.4	82.3	76.1 to 87.5	0.773	0.516 to 0.987	2.05	1.05 to 3.64
Reed 2005 ¹³⁶	39	0.0	72.4	18.2	5.1 to 36.9	74.3	58.2 to 86.6	1.099	0.825 to 1.457	0.71	0.19 to 1.79
Da Dalt 2006 ⁸³	3803	23.8	87.1	25.8	12.8 to 42.4	87.1	86.0 to 88.2	0.852	0.661 to 1.002	2.00	0.99 to 3.32
Dunning 2006 ³⁰	22,772	40.9	89.4	40.3	34.7 to 46.1	89.4	89.0 to 89.8	0.668	0.603 to 0.731	3.80	3.26 to 4.38
Atabaki 2008 ⁸¹	1000	26.2	66.3	27.1	17.9 to 37.8	66.4	63.4 to 69.4	1.098	0.932 to 1.248	0.81	0.53 to 1.14
Guzel 2009 ⁸⁷	337	25.4	54.8	26.7	17.6 to 37.1	55.5	49.6 to 61.3	1.321	1.101 to 1.557	0.60	0.39 to 0.86
Kupperman 200990	31,476	35.5	87.5	35.2	29.8 to 40.9	87.5	87.1 to 87.9	0.740	0.676 to 0.803	2.82	2.38 to 3.28

Undefined vomiting (intracranial injury – children)

	No. of studies	Heterogeneity test p-value ^c			nates						
		Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
		< 0.001	< 0.001	30.9	21.6 to 40.1	76.0	68.1 to 83.8	0.910	0.774 to 1.059	1.29	0.85 to 1.99

a Of posterior distribution for Bayesian meta-analyses.b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Undefined or mixed amnesia (intracranial injury - children)

	Observed estimates		Posterior median estimates ^a								
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dietrich 1993 ⁸⁴	159	87.1	45.3	77.7	54.5 to 90.9	44.9	36.4 to 53.5	0.497	0.201 to 1.059	1.41	0.96 to 1.78
Ramundo 1995 ¹³⁵	178	56.3	49.4	54.3	34.9 to 74.3	49.9	42.3 to 57.5	0.915	0.512 to 1.346	1.08	0.69 to 1.53
Schunk 1996 ¹³⁷	313	22.9	80.3	28.8	12.2 to 48.3	80.6	75.9 to 84.8	0.884	0.643 to 1.097	1.48	0.62 to 2.58

	Observed estimates		Posterior median estimates ^a								
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Fridriksson 2000 ¹³⁰	49	31.8	74.1	33.8	18.7 to 51.0	76.3	59.8 to 88.5	0.869	0.638 to 1.165	1.42	0.68 to 3.01
Ng 2002 ¹³⁴	119	15.4	87.0	17.9	10.0 to 28.6	88.5	78.9 to 94.8	0.929	0.794 to 1.072	1.56	0.68 to 3.82
Reed 2005 ¹³⁶	39	20.0	100.0	17.2	4.6 to 38.9	96.7	88.2 to 99.6	0.863	0.643 to 0.987	5.05	1.22 to 39.56
Dunning 2006 ³⁰	22,772	24.6	97.1	23.8	19.0 to 29.0	97.1	96.9 to 97.3	0.785	0.731 to 0.835	8.20	6.46 to 10.16
Atabaki 2008 ⁸¹	1000	23.1	67.8	26.5	16.6 to 39.5	68.0	65.0 to 71.0	1.081	0.886 to 1.236	0.83	0.52 to 1.25

Heterogeneity test

	<i>p</i> -value ^c	,	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
8	< 0.001	< 0.001	33.4	17.8 to 52.4	81.4	63.1 to 93.3	0.821	0.642 to 0.998	1.82	1.00 to 3.74

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Severe or persistent headache (intracranial injury – children)

		Observed es	timates	Posterior median estimates ^a								
Study	n	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Reed 2005 ¹³⁶	39	0.0	75.9	20.4	13.8 to 29.2	80.6	64.8 to 92.2	0.994	0.876 to 1.206	1.17	0.58 to 2.19	
Da Dalt 2006 ⁸³	3800	25.0	98.1	11.1	8.5 to 14.0	98.1	97.6 to 98.5	0.907	0.878 to 0.933	5.80	4.27 to 7.73	
Dunning 2006 ³⁰	22,772	6.0	99.7	7.0	4.5 to 10.0	99.7	99.6 to 99.7	0.933	0.904 to 0.958	20.26	12.56 to 30.44	
0man 2006 ⁹¹	1666	20.0	85.0	19.3	13.9 to 25.4	85.0	83.2 to 86.8	0.949	0.876 to 1.016	1.29	0.92 to 1.74	
Kupperman 2009 ⁹⁰	26,494	12.7	97.0	12.4	9.8 to 15.3	97.0	96.8 to 97.2	0.903	0.873 to 0.929	4.19	3.29 to 5.20	
		Heterogeneit	to toot									

	<i>p</i> -value ^c	.,	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
5	< 0.001	< 0.001	13.5	7.8 to 21.5	94.9	81.8 to 99.3	0.916	0.872 to 0.986	4.35	1.07 to 12.35

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Chan 1990 ²¹²	418	100.0	96.8	43.9	38.5 to 51.5	96.5	94.4 to 98.0	0.583	0.506 to 0.635	12.43	8.03 to 21.53
Quayle 1997 ⁹⁴	321	51.9	87.8	49.0	43.2 to 55.5	87.8	83.8 to 91.3	0.581	0.509 to 0.649	4.04	3.01 to 5.57
Mandera 2000 ¹³³	166	51.7	32.1	59.5	49.9 to 68.8	33.7	25.2 to 43.0	1.199	0.849 to 1.725	0.90	0.73 to 1.10
Wang 2000 ¹⁴⁰	157	46.7	88.2	48.7	42.7 to 55.1	88.5	82.3 to 93.2	0.581	0.512 to 0.652	4.24	2.79 to 6.90
Boran 2006 ¹²⁸	421	43.2	93.0	46.4	41.0 to 52.2	93.1	90.2 to 95.3	0.577	0.517 to 0.634	6.67	4.77 to 9.7
Dunning 2006 ³⁰	22,772	34.9	99.3	37.0	31.7 to 42.4	99.3	99.2 to 99.4	0.635	0.581 to 0.688	51.58	41.74 to 63.64
Keskil 1995 ¹³²	257	70.0	61.2	55.4	47.5 to 64.2	61.2	54.8 to 67.4	0.728	0.580 to 0.879	1.43	1.16 to 1.77
		Heterogeneit <i>p</i> -value ^c	ty test	Pooled estir	nates						
					050/		050/		050/		05%

Radiological skull fracture (intracranial injury – children)

No. of 95% 95% 95% 95% HDR HDR HDR Specificity Sensitivity Specificity HDR NLR PLR studies Sensitivity < 0.001 40.8 to 67.7 to 0.585 0.516 to 1.64 to 7 < 0.001 48.4 89.3 4.55 57.3 97.3 0.708 15.73

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Post-trauma seizure (intracranial injury – children)

		Observed es	timates	Posterior m	edian est	imatesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Davis 1994 ¹²⁹	168	8.3	96.2	6.9	3.4 to 11.5	96.6	93.4 to 98.6	0.965	0.904 to 1.023	2.49	0.64 to 7.08
Haydel 2003 ⁸⁸	175	0.0	96.3	6.7	3.3 to 11.2	96.4	93.2 to 98.6	0.968	0.908 to 1.026	2.32	0.60 to 6.51
Boran 2006 ¹²⁸	421	13.5	99.7	13.5	6.4 to 23.3	99.4	98.6 to 99.9	0.870	0.770 to 0.943	39.81	6.41 to 164.30
Da Dalt 2006 ⁸³	3803	13.6	99.4	12.9	6.3 to 22.3	99.4	99.2 to 99.6	0.876	0.781 to 0.943	23.20	9.59 to 47.78
0man 2006 ⁹¹	1666	6.0	94.0	5.4	2.7 to 9.1	94.1	92.9 to 95.2	1.006	0.965 to 1.038	0.92	0.45 to 1.61
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	5	0.493	0.810	8.7	4.2 to	98.0	94.5 to	0.932	0.849 to	8.49	0.93 to

15.7

99.6

1.004

31.66

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

253

		Observed es	timates	Posterior m	edian esti	imates ^a					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Davis 1994 ¹²⁹	168	41.7	84.0	12.3	3.8 to 56.2	86.4	79.4 to 90.7	1.001	0.521 to 1.114	0.99	0.31 to 3.85
Reed 2005 ¹³⁶	39	0.0	96.6	5.7	0.0 to 14.9	90.6	86.0 to 97.5	1.045	0.946 to 1.108	0.54	0.00 to 1.58
Atabaki 2008 ⁸¹	1000	3.1	89.7	6.0	1.1 to 13.5	89.5	87.5 to 91.4	1.050	0.966 to 1.107	0.57	0.11 to 1.31
		Heterogeneit <i>p</i> -value°	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	3	0.002	0.051	7.4	0.1 to 33.7	89.1	83.0 to 94.7	1.040	0.782 to 1.107	0.67	0.02 to 2.27

Scalp laceration (intracranial injury – children)

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Scalp haematoma (intracranial injury - children)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Davis 1994 ¹²⁹	168	25.0	84.0	33.6	15.6 to 52.3	81.7	75.4 to 87.4	0.813	0.591 to 1.017	1.86	0.92 to 3.07
Reed 2005 ¹³⁶	39	20.0	72.4	41.3	21.1 to 56.4	75.6	64.7 to 85.3	0.775	0.618 to 0.968	1.71	1.12 to 2.46
0man 2006 ⁹¹	1666	59.0	63.0	57.6	49.7 to 65.3	63.3	60.8 to 65.7	0.670	0.548 to 0.796	1.57	1.34 to 1.80
Atabaki 2008 ⁸¹	1000	43.1	73.5	45.2	35.5 to 54.2	73.5	70.7 to 76.2	0.747	0.625 to 0.875	1.71	1.34 to 2.08
Guzel 2009 ⁸⁷	337	56.7	68.9	52.2	44.4 to 60.2	68.4	63.5 to 73.2	0.699	0.596 to 0.799	1.66	1.41 to 1.94
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	5	< 0.001	< 0.001	45.4	27.0 to 57.6	73.1	64.9 to 82.5	0.745	0.615 to 0.918	1.70	1.30 to 2.23

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

Need for neurosurgery in children

Glasgow Coma Scale < 15 (neurosurgery – children)

		Observed es	timates	Fixed-effects estimates ^a								
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Hahn 1993 ¹³¹	791	41.8	70.4	41.8	30.6 to 53.8	70.4	67.0 to 73.7	0.826	0.597 to 1.144	1.41	0.95 to 2.10	
Stein 1995 ¹³⁹	751	54.2	78.5	54.2	34.6 to 72.5	78.5	75.4 to 81.4	0.584	0.321 to 1.060	2.52	1.43 to 4.44	
		Heterogeneit <i>p</i> -value ^c	ty test	Pooled estin	nates							
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
	2	0.298	< 0.001	45.1	35.1 to 55.4	74.3	72.0 to 76.5	0.763	0.573 to 1.015	1.71	1.24 to 2.36	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Glasgow Coma Scale < 14 (neurosurgery – children)

		Observed es	timates	Fixed-effect	ts estimat	es ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Hahn 1993 ¹³¹	791	23.9	85.9	23.9	15.2 to 35.5	85.9	83.2 to 88.3	0.886	0.666 to 1.179	1.70	1.00 to 2.87
Stein 1995 ¹³⁹	751	25.0	93.1	25.0	11.7 to 45.6	93.1	91.0 to 94.7	0.805	0.504 to 1.286	3.64	1.56 to 8.48
		Heterogenei [.] <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.912	< 0.001	24.2	16.5 to 34.0	88.9	87.2 to 90.5	0.863	0.677 to 1.102	2.10	1.34 to 3.28

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Any seizure (neurosurgery – children)

	Observed est	timates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b Specificity ^b		Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schunk 1996 ¹³⁷	33.3	92.3	33.3	4.3 to 84.6	92.3	88.7 to 94.8	0.723	0.324 to 1.610	4.31	0.83 to 22.33

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Post-trauma seizure (neurosurgery – children) Observed estimates Fixed-effects estimates^a

	Observed esti	mates	Fixed-effects estimates ^a									
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR		
Haydel 2003 ⁸⁸	0.0	96.3	8.3	0.5 to 62.2	96.3	92.0 to 98.3	0.952	0.924 to 0.982	0.09	0.01 to 1.38		

a Assumes normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Any loss of consciousness (neurosurgery - children)

	Observed est	imates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schunk 1996 ¹³⁷	0.0	73.9	16.7	1.0 to 80.6	73.9	68.7 to 78.5	1.128	0.054 to 23.748	0.64	0.03 to 13.43

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Any headache (neurosurgery – children)

		Observed es	timates	Fixed-effect	ts estimat	esª					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schunk 1996 ¹³⁷	313	33.3	70.0	33.3	4.3 to 84.6	70.0	64.7 to 74.8	0.952	0.192 to 4.727	1.11	0.22 to 5.56
Haydel 2003 ⁸⁸	175	83.3	66.9	83.3	36.9 to 97.7	66.9	59.4 to 73.5	0.249	0.172 to 0.362	2.51	1.66 to 3.82
		Heterogenei <i>p</i> -value⁰	ty test	Pooled esti	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.161	0.479	64.2	26.6 to 89.9	68.9	64.6 to 72.9	0.267	0.186 to 0.384	2.39	1.60 to 3.58

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Undefined vomiting (neurosurgery – children)

		Observed es	timates	Fixed-effect	ts estimate	Sa					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schunk 1996 ¹³⁷	313	66.7	65.5	66.7	15.4 to 95.7	65.5	60.0 to 70.6	0.509	0.228 to 1.138	1.93	0.48 to 7.82
Haydel 2003 ⁸⁸	175	50.0	81.7	50.0	16.8 to 83.2	81.7	75.1 to 86.8	0.612	0.274 to 1.367	2.73	0.83 to 8.92

continued

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

	Heterogeneit <i>p</i> -value ^c	y test	Pooled estin	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
2	0.638	< 0.001	55.3	24.6 to 82.4	70.4	66.1 to 74.4	0.558	0.316 to 0.986	2.36	0.96 to 5.83

a Assuming normal distribution on the logarithm scale

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Undefined or mixed amnesia (neurosurgery – children)

	Observed est	imates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Schunk 1996 ¹³⁷	0.0	80.0	16.7	1.0 to 80.6	80.0	75.2 to 84.1	1.042	0.049 to 21.976	0.83	0.04 to 17.58

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Radiological skull fracture (neurosurgery – children)

	Observed est	imates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Hahn 1993 ¹³¹	73.1	53.3	73.1	61.3 to 82.4	53.3	49.7 to 56.9	0.504	0.337 to 0.752	1.57	1.33 to 1.85

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Intracranial injury in infants

Fall – any (intracranial injury – infants)

		Observed es	timates	Fixed-effect	s estimate	es ^a					
Study	п	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Ramundo 1995 ¹³⁵	37	62.5	20.7	62.5	28.5 to 87.5	20.7	9.6 to 39.0	1.813	0.743 to 4.423	0.79	0.45 to 1.39
Buchanich 2007 ⁸²	97	68.2	25.3	68.2	46.6 to 84.0	25.3	16.8 to 36.3	1.256	0.776 to 2.034	0.91	0.67 to 1.25

	Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
 2	0.771	0.620	66.6	48.3 to 81.0	24.1	16.8 to 33.3	1.365	0.893 to 2.085	0.88	0.67 to 1.16

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Coagulopathy (intracranial injury – infants)

	Observed est	imates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Oman 2006 ⁹¹	4.0	97.0	4.0	0.6 to 23.5	97.0	94.2 to 98.5	0.990	0.911 to 1.075	1.33	0.17 to 10.16

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Motor vehicle collision - in car (intracranial injury - infants)

	Observed est	imates	Fixed-effect	s estimate	S ^a	•				
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Ramundo 1995 ¹³⁵	25.0	93.1	25.0	6.3 to 62.3	93.1	76.2 to 98.3	0.806	0.533 to 1.216	3.63	0.60 to 21.86

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Persistent vomiting (intracranial injury - infants)

	Observed est	imates	Fixed-effect	s estimate	S ^a					
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
0man 2006 ⁹¹	13.0	87.0	13.0	4.5 to 32.4	87.0	82.6 to 90.4	1.000	0.296 to 3.373	1.00	0.30 to 3.37

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

257

		Observed es	timates	Posterior m	edian esti	mates ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Ramundo 1995 ¹³⁵	37	50.0	82.8	52.0	38.0 to 68.7	84.0	69.2 to 93.2	0.574	0.404 to 0.719	3.30	1.82 to 6.33
0man 2006 ⁹¹	309	72.0	58.1	67.9	49.0 to 84.3	58.4	52.6 to 64.0	0.551	0.268 to 0.885	1.63	1.15 to 2.13
Kupperman 2009 ⁹⁰	10,718	33.7	96.0	34.6	25.5 to 44.3	96.0	95.6 to 96.4	0.682	0.580 to 0.776	8.62	6.29 to 11.24
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	3	0.004	< 0.001	51.9	34.4 to 75.8	84.5	45.8 to 95.2	0.586	0.377 to 0.791	3.38	1.24 to 8.02

Glasgow Coma Scale < 15 (intracranial injury – infants)

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on Q-statistic.

Focal neurological deficit (intracranial injury - infants)

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Dietrich 1993 ⁸⁴	33.3	97.1	33.3	4.3 to 84.6	97.1	89.0 to 99.3	0.687	0.043 to 11.098	11.33	0.70 to 183.11	

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Radiological skull fracture (intracranial injury – infants)

		Observed es	timates	Fixed-effect	ts estimat	ƏS ^a					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Greenes 2001 ⁸⁶	422	100.0	92.2	96.2	59.7 to 99.8	92.2	89.1 to 94.4	0.042	0.037 to 0.047	12.29	8.66 to 17.44
Buchanich 2007 ⁸²	97	59.1	48.0	59.1	38.2 to 77.2	48.0	37.0 to 59.2	0.852	0.560 to 1.297	1.14	0.75 to 1.71
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.058	< 0.001	64.7	44.8 to 80.5	81.4	76.8 to 85.3	0.051	0.046 to 0.057	4.51	3.45 to 5.88

a Assuming normal distribution on the logarithm scale

b Sensitivity and specificity estimates calculated from the observed data.

Depressed skull fracture (intracranial injury - infants)

	Observed est	timates	Fixed-effects estimates ^a							
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Ramundo 1995 ¹³⁵	25.0	100.0	25.0	6.3 to 62.3	98.3	78.0 to 99.9	0.763	0.510 to 1.142	14.50	0.72 to 290.82

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Any seizure (intracranial injury - infants)

		Observed es	timates	Fixed-effect	ts estima	tesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dietrich 1993 ⁸⁴	71	0.0	100.0	16.7	1.0 to 80.6	100.0	89.3 to 100.0	1.000	0.080 to 12.564	22.67	0.54 to 959.56
Ramundo 1995 ¹³⁵	37	12.5	79.3	12.5	1.7 to 53.7	79.3	61.0 to 90.4	1.103	0.175 to 6.966	0.60	0.08 to 4.32
		Heterogenei [.] <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.858	0.017	13.7	2.8 to 47.2	84.3	69.5 to 92.7	1.066	0.240 to 4.730	1.32	0.23 to 7.55

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Any loss of consciousness (intracranial injury – infants)

		Observed es	timates	Posterior m	edian esti	matesª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dietrich 1993 ⁸⁴	58	50.0	83.9	37.8	25.4 to 54.1	84.1	73.3 to 92.0	0.741	0.576 to 0.873	2.41	1.47 to 4.07
Ramundo 1995 ¹³⁵	31	16.7	64.0	47.1	31.9 to 65.3	69.7	49.7 to 85.0	0.759	0.519 to 1.075	1.57	0.90 to 2.85
Oman 2006 ⁹¹	309	64.0	68.0	49.1	34.0 to 67.5	67.6	62.0 to 72.9	0.754	0.480 to 0.986	1.52	1.03 to 2.17
Kupperman 2009 ⁹⁰	10,215	19.5	96.4	21.9	13.6 to 31.4	96.4	96.1 to 96.8	0.810	0.711 to 0.896	6.15	3.77 to 8.92
		Heterogenei <i>p</i> -valueº	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	4	< 0.001	< 0.001	39.4	20.6 to 65.2	84.1	56.2 to 95.5	0.730	0.519 to 0.901	2.51	1.23 to 5.28

a Of posterior distribution for Bayesian meta-analyses.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

		Observed es	timates	tes Fixed-effects estimates ^a							
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Dietrich 1993 ⁸⁴	71	0.0	79.4	16.7	1.0 to 80.6	79.4	68.2 to 87.4	1.259	0.394 to 4.027	0.81	0.05 to 13.59
Ramundo 1995 ¹³⁵	37	12.5	79.3	12.5	1.7 to 53.7	79.3	61.0 to 90.4	1.103	0.473 to 2.571	0.60	0.07 to 5.02
		Heterogenei [.] <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.858	0.991	13.7	2.8 to	79.4	70.2 to	1.155	0.583 to	0.67	0.12 to

Undefined vomiting (intracranial injury – infants)

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

c Based on *Q*-statistic.

Post-trauma seizure (intracranial injury – infants)

	Observed estimates		Fixed-effects estimates ^a								
Study	Sensitivity ^b	Specificity ^b	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR	
Oman 2006 ⁹¹	8.0	91.0	8.0	2.0 to 26.9	91.0	87.1 to 93.8	1.011	0.896 to 1.141	0.89	0.22 to 3.53	

a Assuming normal distribution on the logarithm scale.b Sensitivity and specificity estimates calculated from the observed data.

Scalp haematoma (intracranial injury – infants)

		Observed es	timates	Fixed-effect	ts estimat	esª					
Study	п	Sensitivity ^b	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
Oman 2006 ⁹¹	309	65.0	59.0	65.0	44.9 to 80.9	59.0	53.2 to 64.6	0.593	0.438 to 0.804	1.59	1.15 to 2.18
Kupperman 2009 ⁹⁰	10,659	66.0	56.0	66.0	56.0 to 74.7	56.0	55.0 to 56.9	0.608	0.526 to 0.702	1.50	1.30 to 1.73
		Heterogenei [.] <i>p</i> -value ^c	ty test	Pooled estir	nates						
	No. of studies	Sensitivity	Specificity	Sensitivity	95% HDR	Specificity	95% HDR	NLR	95% HDR	PLR	95% HDR
	2	0.927	0.312	65.8	56.9 to 73.6	56.1	55.1 to 57.0	0.605	0.531 to 0.689	1.51	1.33 to 1.73

a Assuming normal distribution on the logarithm scale.

b Sensitivity and specificity estimates calculated from the observed data.

Management practices review – PRISMA (adapted) flow chart

Management practices review – table of excluded studies with rationale

Author, year	Reason for exclusion
Brown <i>et al.</i> 1994 ¹⁵²	Cohort study
Fabbri <i>et al.</i> 2004 ¹⁵³	Cohort study
Browning et al. 2005 ¹⁵⁴	Before-after study without concurrent control group
Fong <i>et al.</i> 2008 ¹⁵⁵	Before-after study without concurrent control group
Hassan <i>et al.</i> 2005 ²²	Before-after study without concurrent control group
Kerr <i>et al.</i> 2005 ¹⁵⁶	Before-after study without concurrent control group
Loroni <i>et al.</i> 1996 ¹⁵⁷	Before-after study without concurrent control group
Reed <i>et al.</i> 2005 ¹³⁶	Before-after study without concurrent control group
Shravat <i>et al.</i> 2006 ¹⁵⁸	Before-after study without concurrent control group
Sultan <i>et al.</i> 2004 ²¹	Before-after study without concurrent control group
Thomson <i>et al.</i> 1994 ¹⁵⁹	Before-after study without concurrent control group

© Queen's Printer and Controller of HMSO 2011. This work was produced by Pandor *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health.

Cost-effectiveness review: literature search strategies – a MEDLINE example

Database searched: Ovid MEDLINE(R) In-Process and Other Non-Indexed Citations and Ovid MEDLINE(R)

Platform or provider used: OvidSP

Date of coverage: 1950 to March 2010

Search undertaken: initial search 20 April 2009

Updated search: 11 March 2010

- 1. *Craniocerebral Trauma/
- 2. head injur\$.tw.
- 3. 1 or 2
- 4. Economics/
- 5. "costs and cost analysis"/
- 6. Cost allocation/
- 7. Cost-benefit analysis/
- 8. Cost control/
- 9. Cost savings/
- 10. Cost of illness/
- 11. 1Cost sharing/
- 12. "deductibles and coinsurance"/
- 13. Medical savings accounts/
- 14. Health care costs/
- 15. Direct service costs/
- 16. Drug costs/
- 17. Employer health costs/
- 18. Hospital costs/
- 19. Health expenditures/
- 20. Capital expenditures/
- 21. Value of life/
- 22. exp economics, hospital/
- 23. exp economics, medical/
- 24. Economics, nursing/
- 25. Economics, pharmaceutical/
- 26. exp "fees and charges"/
- 27. exp budgets/
- 28. (low adj cost).mp.
- 29. (high adj cost).mp.
- 30. (health?care adj cost\$).mp.
- 31. (fiscal or funding or financial or finance).tw.
- 32. (cost adj estimate\$).mp.

- 33. (cost adj variable).mp.
- 34. (unit adj cost\$).mp.
- 35. (economic\$or pharmacoeconomic\$or price\$or pricing).tw.
- 36. 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35
- 37. 3 and 36

Cost-effectiveness review – PRISMA (adapted) flow chart

Cost-effectiveness review – table of excluded studies with rationale

Author, year	Reason for exclusion
Ingebrigtsen 199634	Cost-minimisation study
Burnett 2002307	Abstract only
Af Geijerstam 2004 ³⁵	Cost-minimisation study

Questionnaire survey (adults) sent to lead clinician

1. What guidelines, if any, do you use to assess, investigate and manage MHI in adults?

NICE clinical guidelines	[]	If NICE clinical guidelines, please clarify	
		NICE 2007	[]
		NICE 2003	[]
No guidelines	[]		
Other	[]	If 'Other', please could you enclose a copy	

2. If these are formal guidelines, have you made amendments for local use? Please *only tick yes* if you have amended the actual guidelines, not simply formatting or presentation.

Yes [] No [] If *yes*, please could you enclose a copy

3. Do you have access to a CT head scan for head injured patients (*adults*) within 4 hours at any time (24 hours per day, 7 days per week) of presentation?

Yes [] No [] If *no*, please state what restrictions apply

4a. Where are MHI patients (adults) admitted in hospital?

CDU	[]
accident and emergency observation	[]
formal admission	[]

4b. Who are they admitted under?

accident and emergency staff	[]
inpatient team	[]

4c. Who has to approve admission?

any doctor	[]
senior doctor	[]
specialist	[]
Appendix 13

Protocol

Project title

The cost-effectiveness of investigation and hospital admission for minor (Glasgow Coma Scale 13–15) head injury.

Planned investigation

Research objectives

We aim to identify the optimal strategy for managing adults and children with minor [Glasgow Coma Scale (GCS) 13–15] head injury. Our specific objectives are to:

- estimate the diagnostic accuracy of clinical assessment, clinical decision rules, skull radiography, cranial computerised tomography (CT) and inpatient observation for identifying intracranial bleeding requiring neurosurgery in adults and children with minor (GCS 13–15) head injury
- estimate the cost-effectiveness of diagnostic strategies for minor head injury (MHI), in terms
 of the cost per quality-adjusted life-year (QALY) gained by each strategy
- identify the optimal strategy for managing MHI in the NHS, defined as the most costeffective strategy at the National Institute for Health and Clinical Excellence (NICE) threshold for willingness to pay per QALY gained
- identify the critical areas of uncertainty in the management of MHI, where future primary research would produce the most benefit.

Existing research

Head injury is responsible for around 700,000 emergency department (ED) attendances per year in England and Wales, most of which (90%) will be minor (GCS 13–15) and will not need immediate neurosurgical intervention or inpatient care.¹ These patients have a small (<1%), but important risk of subsequent deterioration due to intracranial bleeding. If these cases are recognised and treated early then a full recovery can be expected; if not then severe disability or death may ensue.

Potential diagnostic management strategies for MHI typically use a combination of clinical assessment, skull radiography, CT scanning and hospital admission for observation to detect intracranial bleeding. The choice of strategy will have substantial cost implications for the NHS because it will be applied to hundreds of thousands of patients each year. Only a small proportion of patients will have intracranial bleeding, but those who do have a huge potential to benefit from early diagnosis and treatment.

Guidelines for managing head injury were drawn up by NICE in 2003¹ and revised in 2007.² These guidelines were based upon literature review and expert consensus. Cost-effectiveness analysis was not used to develop the guidelines, but was used to explore the potential impact upon health service costs. The guidelines were expected to potentially reduce costs, but recent data (outlined below) suggest that costs may have substantially increased. Additional expenditure on MHI may represent a worthwhile use of NHS resources but there are currently no relevant analyses to support this. An extensive evidence synthesis and economic evaluation is thus needed to inform future NICE guidance.

Clinical assessment can be used to identify patients with an increased risk of intracranial bleeding and select patients for imaging or admission. A recent meta-analysis of 35 studies reporting data from 83,636 adults with head injury³ found that severe headache (relative risk 2.44), nausea (2.16), vomiting (2.13), loss of consciousness (LOC) (2.29), amnesia (1.32), post-traumatic seizure (PTS) (3.24), old age (3.70), male gender (1.26), fall from a height (1.61), pedestrian crash victim (1.70), abnormal GCS score (5.58), focal neurology (1.80) and evidence of alcohol intake (1.62) were all associated with intracranial bleeding. A similar analysis of 16 studies reporting data from 22,420 children with head injury⁴ found that focal neurology (9.43), LOC (2.23) and abnormal GCS score (5.51) were associated with intracranial bleeding.

Clinical features have been combined in a number of studies to develop a structured clinical decision rule. A systematic review undertaken for the NICE guidance¹ identified four studies of four different clinical decision rules. The studies of the Canadian CT rule⁵ and the New Orleans rule⁶ were both high quality, applicable to the NHS and reported 100% sensitivity for the need for neurosurgical intervention. The other two studies,^{7,8} respectively, reported poor sensitivity and were not applicable to the NHS.

Several further studies have been published and new rules developed since the NICE review. A comparison of the Canadian CT and New Orleans rules undertaken by the researchers who developed the Canadian rule⁹ showed that both rules had 100% sensitivity for predicting neurosurgical intervention and clinically important brain injury, but the Canadian rule had higher specificity (76.3% vs 12.1% and 50.6% vs 12.7%). A comparison by an independent team¹⁰ found that both rules had 100% sensitivity for neurosurgical intervention, but the New Orleans rule had higher sensitivity for clinically significant brain injury (99.4% vs 87.2%), while the Canadian rule had higher specificity (39.7% vs 5.6%). This team also developed a new rule, the CT in Head Injury Patients (CHIP) rule, with 100% sensitivity and 30% specificity for neurosurgical intervention.¹¹

New rules have also been developed for children with head injury. The National Emergency X-Radiography Utilization Study II (NEXUS II) rule, was developed and shown to have 98.6% sensitivity and 15.1% specificity for significant ICI,¹² whereas the Children's Head injury Algorithm for the prediction of Important Clinical Events (CHALICE) rule had 98.6% sensitivity and 86.9% specificity.¹³ The striking difference in specificity may be due to the use of broader selection criteria in the CHALICE study (and thus lower prevalence). Both studies had similar positive predictive value (9.5% vs 8.6%) and negative predictive value (99.1% vs 99.9%).

Skull radiography can identify fractures that are associated with a substantially increased risk of intracranial bleeding, but cannot identify intracranial bleeding itself. Skull radiography is therefore used as a screening tool to select patient for investigation or admission, but not for definitive imaging. A meta-analysis¹⁴ found that skull fracture detected on radiograph had a sensitivity of 38% and specificity of 95% for intracranial bleeding. More recent meta-analyses in adults³ and children⁴ reported relative risks of 4.08 and 6.13, respectively, for the association between skull fracture and intracranial bleeding.

Computerised tomography definitively shows significant bleeding and a normal CT scan effectively excludes a significant bleed at the time of scanning. MRI scanning can detect some lesions that are not evident on CT¹⁵ but arguably none that is of clinical importance and certainly none that influences early management. CT can therefore be considered a reference standard investigation for detecting injuries of immediate clinical importance.

Hospital admission and observation may be used to identify intracranial bleeding by monitoring the patient for neurological deterioration. Although commonly used in the past, the effectiveness of this approach has not been studied extensively and has the disadvantage that neurosurgical intervention is delayed until after patient deterioration has occurred. Hospital admission and observation are usually used selectively, based upon clinical assessment or skull radiography findings.

Theoretically, patients without intracranial bleeding on their CT scan do not require hospital admission. In practice, however, patients may be admitted for a number of reasons (1) CT scanning may identify abnormalities, such as minor cerebral contusions, which do not require neurosurgery and are of uncertain significance, but prompt hospital admission; (2) patients may be admitted pending CT scanning because they are deemed to need imaging but are unable to have imaging, either due to lack of availability or lack of ability to cooperate; and (3) patients may be admitted despite a normal CT because of concern about continuing symptoms, such as severe headache or vomiting, or with drug or alcohol intoxication.

Studies have compared CT-based strategies to skull radiography and/or admission to conclude that CT-based strategies are more likely to detect intracranial bleeding and less likely to require hospital admission.^{16,17} Cost analyses based upon trial data¹⁸ and modelling¹⁹ both suggest that a CT-based strategy is cheaper. However, admission-based strategies may be an inappropriate comparator for cost-effectiveness analysis because they appear to be expensive and ineffective, particularly if applied unselectively.

Computerised tomography may be used unselectively (in all patients) or selectively, based upon clinical assessment or a decision rule. A strategy of CT scanning all patients would clearly be very effective, but would have a low yield of positive results and would be expensive. The more selective the use of investigations or admission the cheaper the strategy, but the higher the risk of missed pathology. Cost-effectiveness analysis is therefore necessary to determine what level of investigation represents the most efficient use of health-care resources.

A study from the USA²⁰ used decision analysis modelling to examine the cost-effectiveness of strategies for managing MHI and concluded that strategies involving selective CT use or CT for all, followed by discharge if negative, were cost-effective, whereas admission-based strategies were not. There was only limited exploration of uncertainty, particularly around the estimate of the effect of early versus delayed neurosurgery, and it is not clear whether the results are applicable to the NHS.

Despite the economic importance of MHI there has been little evaluation of cost-effectiveness in the NHS. Recent NICE head injury guidance was based upon the Canadian CT head rule⁹ and was anticipated to lead to more CT scans being performed, but fewer skull radiographs and admissions. A cost analysis¹ suggested that the guidelines would be cost saving, by virtue of decreasing skull radiography and admissions while increasing CT scanning. Patient outcomes were not examined and the discussion cautioned that the assumption that increased CT scanning would reduce admissions might not hold in practice.

Data from a number of studies have since confirmed that more CT scans are being performed and less skull radiography is being undertaken.^{21–23} However, Hospital Episode Statistics (HES) for England show that the annual number of admissions for head injury has increased from 114,769 in 2001–2 to 155,996 in 2006–7. As average length of stay has remained relatively constant, bed-days have increased from 348,032 in 2001–2 to 443,593 in 2006–7. As *Figure 1* shows, the increase in admissions has been seen in adults rather than children.²⁴

FIGURE 1 Head injury admissions in England, 1998-2007.

These data suggest that the annual costs of admission for head injury have increased from around £170M to £213M since the guidelines were introduced. Additional expenditure may be justified if associated with improved outcomes, but the anticipated effect of the guidelines was originally estimated only in resource terms and published studies have not examined effects upon patient health. It is therefore not clear whether this additional expenditure has produced any health benefits.

Management guidelines of the NHS should be based upon rigorous cost-effectiveness analysis. This is particularly important for MHI, where guideline development involves a trade-off between the costs of investigation and the benefits of detecting pathology, and where guideline implementation has substantial resource implications for the NHS.

Research methods

Design

We plan to undertake a cost-effectiveness analysis based on secondary research (systematic review, meta-analysis and decision-analysis modelling), along with a national survey and analysis of routine data sources to determine the most appropriate diagnostic management strategy for adults and children with minor head injuries in the NHS.

Systematic review and meta-analysis

Using standard methodology, we will undertake systematic literature reviews to identify:

- cohort studies of patients with head injury that measure the diagnostic accuracy of any element of clinical assessment, any clinical decision rule, skull radiography, cranial CT or observation strategy for identifying intracranial injuries that require neurosurgery
- observational or experimental studies that evaluate diagnostic management strategies for MHI in terms of process measures (hospital admissions, length of stay, time to neurosurgery) or patient outcomes
- studies that report data to estimate key parameters in the decision-analysis model: prevalence
 of intracranial bleeding in MHI, survival and QoL after early or delayed neurosurgery for
 intracranial bleeding and long-term costs of care after neurosurgery for intracranial bleeding.

Search strategy

Relevant studies will be identified through electronic searches of key databases including MEDLINE, EMBASE, Science Citation Index (SCI) and Biological Abstracts. Recent published empirical work will be used to identify optimal strategies for prognosis and diagnosis on MEDLINE and EMBASE.^{25–28}

Search terms will include:

- head injur\$, craniocerebral trauma (including brain injuries, coma, post-head injur, cranial nerve injuries, head injuries (closed), brain concussion, head injuries (penetrating), intracranial haemorrhage (traumatic) and skull fracture)
- clinical assessment, clinical decision rule\$, guideline\$, Canadian CT, CHIP, NEXUS, New Orleans, skull radiograph\$, skull X-ray\$, CT scanning, and hospital admission; plus such terms as
- cohort studies, longitudinal studies, follow-up studies, time factors, long term, sequela\$, prognosis
- diagnostic terms such as specificity and sensitivity, false positive\$, false negative\$, true positive\$, true negative\$.

References will also be located through review of reference lists for relevant articles and through use of citation search facilities through WoK's SCI and Social Science Citation Index. Where existing systematic reviews already exist, these will be used both to identify relevant studies and to inform subsequent analysis. In addition, systematic searches of the internet the Copernic meta-search engine will be used to identify unpublished materials and work in progress. Key authors and professional and academic research groups will also be contacted and asked for unpublished material.

Review strategy

The stages of the review for diagnostic cohort studies will include:

- Accumulation of references, entry and tagging on a REFERENCE MANAGER database, enabling studies to be retrieved in each of the above categories by either keyword or textword searches.
- Two reviewers will independently undertake preliminary review to identify any potentially relevant article based on titles, abstracts and subject indexing. All studies identified for inclusion, together with those for which a decision on inclusion is not possible from these brief details, will be obtained for more detailed appraisal.
- Two reviewers will make decisions on the final composition of included studies, assessed from a hard copy of the item. The decisions will be coded and recorded on the REFERENCE MANAGER database by the project manager.
- Authors will be contacted, if appropriate, to clarify details and obtain missing data.
- The quality of each study will be assessed against recognised criteria.^{29,30}
- Data extraction will be undertaken independently with discrepancies being discussed by the data extractors. Those that cannot be resolved at this stage will be referred to the rest of the project team.

These methods will also be used to identify studies of the management of head injuries and studies reporting data to inform the decision analysis model, but search terms, filters, selection criteria and quality assessments will be adapted to suit the purpose of each literature search.

Data extraction

The following data will be extracted from each study: population characteristics (age, gender, mechanism of injury, median GCS), setting (ED, general ward, neurosurgical centre), characteristics of the assessment or intervention (e.g. method of recording clinical features or decision score, staff training), definition of each outcome used, methods used to measure outcomes, study quality criteria (independence of the reference standard, blinding of the intervention and reference standard), prevalence of each outcome (clinically significant brain injury and need for neurosurgery), and true-positives, false-positives, false-negatives and true-positives for each outcome.

Data synthesis

Where appropriate, we will combine diagnostic data to provide pooled estimates of the diagnostic accuracy of clinical characteristics or clinical decision rules for diagnosing intracranial bleeding. For each modality, we will estimate the diagnostic performance (together with associated uncertainty) for diagnosing (1) intracranial bleeding requiring neurosurgery and (2) any clinically significant brain injury.

We will analyse data from adults and children separately wherever possible. Although we are specifically interested in diagnostic performance in patients with MHI we anticipate that most studies will report cohorts that include a range of severity. We will explore the applicability of findings to patients with MHI as part of our analysis of heterogeneity (see below).

The model used to analyse the data will depend on characteristics of the data obtained. For example, if diagnostic thresholds can be assumed constant across studies then simple methods of pooling sensitivity and specificity will be conducted.³¹ If there is implicit or explicit evidence that diagnostic thresholds differ between primary studies then sensitivity and specificity cannot be considered independent and simultaneous modelling will be required.³² A detailed assessment of heterogeneity will be conducted in all instances. If possible, meta-regression will be used to explore whether heterogeneity can be explained by study population characteristics, the method of implementation of the intervention, the definition of the outcome or the study quality, although the feasibility of this will depend on the number of individual studies identified and the quality of reporting. Where exploration of covariates is not possible or (unexplained) heterogeneity remains after the incorporation of covariates into the model(s), random effects will be incorporated to allow for such variability in results between studies.

Covariate effects, unexplainable variability and uncertainty in parameter estimates will all be reflected in the results using cutting-edge meta-analysis approaches. As the outputs from these analyses will be used in the decision modelling, all such sources of variation and uncertainty will be accurately reflected in the decision modelling.³³

Standard meta-analysis methods will be used to combine multiple estimates, where they exist, for other parameters in the decision model.

A combination of STATA and the META-DISC statistical software³⁴ (version Beta 1.0.10) will be used for this analysis.

Identification of potential management strategies

We will identify potential management strategies for MHI using the following methods:

• *Literature review* As outlined above, we will identify any diagnostic management strategies evaluated in previous studies, particularly those based upon clinical decision rules.

- Expert panel review We will constitute an expert panel of emergency physicians, neurosurgeons and neuroradiologists, who will review emerging data from the systematic reviews and then use consensus methods to develop potential diagnostic management strategies that would be appropriate for the NHS. These may be based upon established strategies or clinical decision rules, or theoretical combinations of clinical features and diagnostic tests identified as being diagnostically useful in the systematic reviews.
- National survey We will undertake a national survey, as outlined below, to identify diagnostic management strategies that are currently being used in the NHS. These will then be reviewed by the expert panel and consensus methods used to select those with the potential for widespread use throughout the NHS.

National survey and routine data sources

We will undertake a national survey of EDs to identify formal guidelines used for MHI, clinical assessment strategies, policies for access to skull radiography and cranial CT, hospital admission policies (e.g. clinical decision unit, A&E observation or formal admission), bed availability, specialty responsible for inpatient care, staffing and senior supervision. This will be correlated with data from routine sources (e.g. HES).

We used a national survey in this way in our previous National Coordinating Centre for Health Technology Assessment (NCCHTA)-funded secondary research on diagnostic tests for deep vein thrombosis³⁵ and found it to be a valuable source of data, and well worth the relatively trivial outlay of resources required to undertake it. Data from the national survey will provide the following:

- identification of potential management strategies that are feasible in the NHS and can be evaluated by the decision-analysis model
- data to inform the structure and populate key parameters of the decision-analysis model
- context for our analysis, thus ensuring that the output of our research is relevant to the NHS.

Decision-analysis modelling

We will develop a decision-analysis model to estimate the costs and QALYs accrued by each potential management strategy for MHI, including a theoretical 'zero option' strategy of discharging all patients home without investigation. Each strategy will be applied to a theoretical cohort of patients attending the ED, with MHI allowing a direct comparison of results. For each strategy, sensitivity and specificity estimates from the literature review will determine the proportion of patients with intracranial bleeding who receive early or delayed neurosurgery and the proportion with no neurosurgical lesion who undergo diagnostic testing and/or admission to hospital.

The following costs will be estimated using data from the literature review, national survey, routine data sources and, if necessary, an expert panel: initial assessment, diagnostic tests (CT and skull radiography), hospital admission, neurosurgical intervention, long-term health and social care, and productivity losses.

Outcomes will be estimated as QALYs accrued following the decision to employ each management strategy. The expected utility associated with early or delayed neurosurgery will be taken from previous studies or, if necessary, expert panel opinion. We will search the literature to identify studies reporting survival and quality of life (QoL) after uncomplicated MHI (no bleeding), intracranial bleeding with early surgery, intracranial bleeding with delayed surgery and the disutility of the surgical procedure.

We will also use data from the Health And Long term Outcomes (HALO) study of patients with trauma. Researchers at the Medical Care Research Unit have been collecting diagnosis and baseline GCS, along with costs and QoL data up to 15 years after significant injury (including head injury). Where data from the existing literature are limited or inadequate we will ask the expert panel to review potential alternative data sources, for example extrapolating QoL data from other disabling neurological conditions. We will also use expert panel input to ensure that parameters are used in the model with appropriate estimates of uncertainty.

The time frame for the model will be the lifetime of the patient. We will assume that only patients with intracranial bleeding will incur long-term costs that are likely to be influenced by their initial diagnostic management, so long-term costs will be estimated only for patients in the model who survive intracranial bleeding. We will estimate discounted long-term costs by extrapolating follow-up costs from patients with significant head injury to the HALO study over the anticipated lifetime of the patient. Sensitivity analysis will be used to explore uncertainty in estimates of long-term costs. The baseline analysis will not include productivity losses but secondary analysis will be undertaken, including productivity losses to explore the effect of changing assumptions regarding the role of productivity losses. We will value productivity losses in the model by applying an average salary cost to estimated time off work as a result of intracranial bleeding.

We will undertake a literature review to estimate the effects of radiation exposure associated with radiological investigations (CT brain and skull radiography). We will then model these data to estimate a QALY loss and/or cost associated with each radiological investigation. This QALY loss and/or cost will then be applied to every patient in the model who receives a radiological investigation.

Analysis will be conducted in accordance with the NICE reference case.³⁶ Net benefit analysis will be used to identify the most cost-effective option at varying thresholds of willingness to pay.³⁷ The optimal strategy at the threshold currently used by NICE for decision-making will be presented as the optimal strategy for the NHS. The methodology used in the decision-analytic model will be dependent on the data that are available and the number of health states following the minor head injuries that are necessary to incorporate, with the most appropriate technique selected.

The exact modelling methodology to be used will be chosen once key data have been identified as attempting to manipulate data to fit a prespecified modelling structure will not be as accurate as choosing the method that can best represent the decision problem. The lead modeller has published papers using a wide range of decision methodologies, including discrete event simulation,³⁸ meta-modelling,³⁹ transition-state modelling,⁴⁰ decision-tree modelling,³⁵ and infectious disease modelling incorporating herd immunity,⁴¹ and we are confident that whatever modelling methodology is most appropriate will be able to be constructed. If possible, we shall attempt to calibrate the mathematical model with published data during the construction phase.

Probabilistic sensitivity analyses (PSAs) will be conducted in order that any interactions and non-linearities within the modelling are properly considered. Jack-knife techniques⁴² will be conducted to ensure that a sufficient number of PSA runs have been conducted to ensure that the average calculated from all runs for a management strategy is robust. Additionally the uncertainty associated in the actual mean net benefit will be provided using the percentile method in order that the full uncertainty in the results is reported. These analyses will facilitate the calculation of both full and partial expected value of perfect information, and if it is deemed appropriate an evaluation of the expected value of sample information will also be conducted.

The value of information analysis will help us to determine where funders of primary research in this important area (such as health technology assessment) should direct future studies to ensure that recommendations for policy and practice are more robust.

References

- 1. National Institute for Health and Clinical Excellence (NICE). *Head injury: triage, assessment, investigation and early management of head injury in infants, children and adults.* NICE clinical guideline No. 4. London: NICE; 2003.
- 2. National Institute for Health and Clinical Excellence (NICE). *Head injury: triage, assessment, investigation and early management of head injury in infants, children and adults.* NICE clinical guideline No. 56. London: NICE; 2007.
- 3. Dunning J, Stratford-Smith P, Lecky F, Batchelor J, Hogg K, Browne J, *et al.* Emergency Medicine Research Group. A meta-analysis of clinical correlates that predict significant intracranial injury in adults with minor head trauma. *J Neurotrauma* 2004;**21**:877–85.
- 4. Dunning J, Batchelor J, Stratford-Smith P, Teece S, Browne J, Sharpin C, *et al.* A metaanalysis of variables that predict significant intracranial injury in minor head trauma. *Arch Dis Child* 2004;**89**:653–9.
- 5. Stiell IG, Wells GA, Vandemheen K, Clement C, Lesiuk H, Laupacis A, *et al.* The Canadian CT Head rule for patients with minor head injury. *Lancet* 2001;**357**:1391–6.
- 6. Haydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBlieux PM. Indications for computed tomography in patients with minor head injury. *N Engl J Med* 2000;**343**:100–5.
- Richless LK, English K, Heller MB, Rachlin J, McClean P, Auble TE. A prospective evaluation of radiologic criteria for head injury patients in a community emergency department. *Am J Emerg Med* 1993;11:327–30.
- 8. Miller EC, Holmes JF, Derlet RW. Utilizing clinical factors to reduce head CT scan ordering for minor head trauma patients. *J Emerg Med* 1997;15:453–7.
- Stiell IG, Clement CM, Rowe BH, Schull MJ, Brison R, Cass D, *et al.* Comparison of the Canadian CT Head rule and the New Orleans criteria in patients with minor head injury. *JAMA* 2005;**294**:1511–18.
- 10. Smits M, Dippel DW, de Haan GG, Dekker HM, Vos PE, Kool DR, *et al.* External validation of the Canadian CT Head rule and New Orleans criteria for CT scanning in patients with minor head trauma. *JAMA* 2005;**294**:1519–25.
- 11. Smits M, Dippel DW, Steyerberg EW, de Haan GG, Dekker HM, Vos PE, *et al.* Predicting intracranial traumatic findings on computed tomography in patients with minor head injury: the CHIP prediction rule. *Ann Intern Med* 2007;**146**:397–405.
- 12. Oman JA, Cooper RJ, Holmes JF, Viccellio P, Nyce A, Ross SE, *et al.* Performance of a decision rule to predict need for CT among children with blunt head trauma. *Pediatrics* 2006;**117**:e238–46.
- 13. Dunning J, Daly JP, Lomas J-P, Lecky F, Batchelor K, Mackway-Jones K. Derivation of the children's head injury algorithm for the prediction of important clinical events decision rule for head injury in children. *Arch Dis Child* 2006;**91**:885–91.
- 14. Hofman PA, Nelemans P, Kemerink GJ, Wilmink JT. Value of radiological diagnosis of skull fracture in the management of mild head injury: meta-analysis. *J Neurol Neurosurg Psychiatry* 2000;**68**:416–22.

- 15. Kelly AB, Zimmerman RD, Snow RB, Gandy SE, Heier LBA, Deck MDF. Head trauma comparison of MR and CT experience of 100 patients. *Am J Neuroradiol* 1988;**9**:699–708.
- 16. Ingebrigtsen T. Routine early CT-scan is cost saving after minor head injury. *Acta Neurol Scand* 1996;**93**:207–10.
- Af Geijerstam J-L, Britton M, Marke LA. Minor head injury: observation or computer tomography? Economic aspects by literature review and economic analysis. *Emerg Med J* 2004;21:54–8.
- 18. Norlund A, Marke LA, af Geijerstam J-L Oredsson S, Britton M and the OCTOPUS study investigators. Immediate computed tomography or admission for observation after mild head injury: cost comparison in randomised controlled trial. *BMJ* 2006;**333**:469.
- 19. Af Geijerstam J-L, Oredsson S, Britton M and the OCTOPUS study investigators. Medical outcome after immediate computed tomography or admission for observation in patients with mild head injury: randomised controlled trial. *BMJ* 2006;**333**:465–8.
- 20. Stein SC. Indications for CT scanning in mild traumatic brain injury: a cost-effectiveness study. *J Trauma* 2006;**61**:558–66.
- 21. Sultan HY, Boyle A, Pereira M, *et al.* Application of the Canadian CT head rules in managing minor head injuries in a UK emergency department: implications for the implementation of the NICE guidelines. *Emerg Med J* 2004;**21**:420–5.
- 22. Hassan Z, Smith M, Littlewood S, Bouamra O, Hughes D, Biggin C, *et al.* Head injuries: a study evaluating the impact of the NICE head injury guidelines. *Emerg Med J* 2005;**22**:845–9.
- 23. Shravat BP, Hynes KA. The impact of NICE guidelines for the management of head injury on the workload of the radiology department. *Emerg Med J* 2004;**21**:521–2.
- 24. Goodacre S. Hospital admissions with head injury following publication of NICE guidance. *Emerg Med J* 2008;**25**:556–7.
- 25. Westwood ME, Whiting PF, Kleijen J. How does study quality affect the results of a diagnostic meta-analysis? *BMC Med Res Methodol* 2005;5:20.
- 26. Whiting P, Harbord R, Kleijnen J. No role for quality scores in systematic reviews of diagnostic accuracy studies. *BMC Med Res Methodol* 2005;5:19.
- 27. Whiting P, Rutjes AW, Dinnes J, Reitsma JB, Bossuyt PM, Kleijnen J. A systematic review finds that diagnostic reviews fail to incorporate quality despite available tools. *J Clin Epidemiol* 2005;**58**:1–12.
- Whiting P, Rutjes AW, Dinnes J, Reitsma J, Bossuyt PM, Kleijnen J. Development and validation of methods for assessing the quality of diagnostic accuracy studies. *Health Technol Assess* 2004;8(25).
- Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative. Department of Clinical Epidemiology and Biostatistics Academic Medical Centre, University of Amsterdam, the Netherlands; 2003.
- 30. Lijmer JG, Mol JJ, Heisterkamp S, Bonsel GJ, van der Meulen JHP, Bossuyt PMM. Empirical evidence of design-related bias in studies of diagnostic tests. *JAMA* 1999;**282**:1061–6.
- 31. Deeks JJ. Systematic reviews of evaluations of diagnostic and screening tests. In Egger M, Davey Smith G, Altman DG (editors). *Systematic reviews in health care: meta-analysis in context*. 2nd edn. London: BMJ Publishing Group; 2001.

- 32. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA. A unification of models for metaanalysis of diagnostic accuracy studies. *Biostatistics* 2007;**8**:239–51.
- Sutton AJ, Cooper NJ, Goodacre S, Stevenson M. Integration of meta-analysis and economic decision modelling for evaluating diagnostic tests. *Med Decis Making* 2008;28:650–67.
- 34. Zamora J, Abraira V, Muriel A, Khan KS, Coomavasamy A. Meta-DiSc: a software for metaanalysis of test accuracy data. *BMC Med Res Methodol* 2006;**6**:31.
- 35. Goodacre S, Sampson F, Stevenson M, Wailoo A, Sutton AJ, Thomas S, *et al.* Measurement of the clinical and cost-effectiveness of non-invasive diagnostic testing strategies for deep vein thrombosis. *Health Technol Assess* 2006;**10**(15).
- 36. National Institute of Clinical Excellence (NICE). *Guide to the methods of technology appraisal*. London: NICE; 2004.
- 37. Fenwick E, Claxton K, Sculpher M (2001). Representing uncertainty: the role of costeffectiveness acceptability curves. *Health Econ* 10:779–87.
- Stevenson MD, Oakley JE, Chick SE, Chalkidou K. The cost-effectiveness of surgical instrument management policies to reduce the risk of vCJD transmission to humans. *JORS* 2009;60:506–18.
- Stevenson MD, Brazier JE, Calvert NW, Lloyd-Jones M, Oakley J, Kanis JA. Description of an individual patient methodology for calculating the cost-effectiveness of treatments for osteoporosis in women. *JORS* 2005;56:214–21.
- 40. Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, *et al.* Accurate, practical and cost-effective assessment of carotid stenosis in the UK. *Health Technol Assess* 2006;**10**(30).
- 41. Stevenson MD, Beard SM, Finn A, Brennan A. Estimating the potential health gain and cost consequences of introducing a pre-school pertussis booster into the UK child vaccination schedule. *Vaccine* 2002;**20**:1778–86.
- 42. Inglehart DL. Simulating stable stochastic systems, V: comparison of ratio estimators. *Naval Res Logist Quart* 1975;**22**:553–65.

Feedback

The HTA programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.

NETSCC, Health Technology Assessment Alpha House University of Southampton Science Park Southampton SO16 7NS, UK Email: hta@hta.ac.uk www.hta.ac.uk