Public Health Research Programme – Rapid Funding Scheme

Rapid Funding Scheme Report – layout and headings

Each project funded under the Public Health Research (PHR) Programme Rapid Funding Scheme will publish a short report between 4-6 pages long with appendices e.g. flow charts, diagrams, references etc. The reports will be published on the programme website portfolio pages. Please note that any copyrighted material from other sources that are included within the report will require full permission for inclusion and publication (see this link for more detail: <u>https://www.journalslibrary.nihr.ac.uk/information-for-authors/</u>).

Please use the following template as a guide for your report layout:

Project title	Assessing the impact of zero and low emissions control interventions upon air
	quality in Oxford City; baseline data collection and feasibility study
NETSCC ID	
number	
Authors	Suzanne Bartington ¹ , Felix Leach ² , Tony Bush ³ , Nick Papaioannou ² , Francis Pope ¹ and G.Neil Thomas ¹ ¹ Institute of Applied Health Research, University of Birmingham; ² Department of Engineering Science, University of Oxford; ³ Apertum Ltd; ⁴ School of Geography, Earth and Environmental Sciences, University of Birmingham
Address for	s.bartington@bham.ac.uk
corresponde	
nce	
This report should be referenced as follows: Disclaimer:	Bartington SE, Leach F, Bush T, Papaioannou N, Pope F, Thomas G.N. Assessing the impact of zero and low emissions control interventions upon air quality in Oxford City; baseline data collection and feasibility study. NIHR PHR Rapid Funding Study Report. August 2020. This report presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the PHR programme or the Department of Health and Social Care. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the
	NHS, the NIHR, NETSCC, the PHR programme or the Department of Health and Social Care. This report has not been subject to peer review or any formal editorial process.
Acknowledge ments	The research was funded by the NIHR Public Health Research Programme [Grant number 130095]. The research was undertaken with the support of Oxford City Council and Oxfordshire County Council.
Background	Poor air quality is the largest environmental risk to health in the UK with pollutant levels in many cities regularly exceeding legal limits and health-based guidelines ¹ . Air pollution is recognised to exert a mortality burden equivalent to 28,000-36,000 deaths each year in the UK, ² with estimated economic costs of over £20Bn. ³ Air pollution is consistently ranked in the top five causes of death in urban areas, ahead of road traffic accidents, excess winter deaths and communicable diseases. ⁴

	Road transport is widely recognised as the major urban air pollution source and traffic emissions control measures are a key policy intervention option. In 2017, the Government published a framework to support local authority actions to reduce Nitrogen Dioxide (NO ₂) levels to below EU legal limits EU legal limits [e.g. 40 µg/m ³ annual mean] ⁵ in the shortest possible timeframe, including introduction of targeted 'Clean Air Zones' in UK cities. ⁶ In this context, Oxford City Council and Oxfordshire County Council planned to implement Zero Emissions Zone (ZEZ) and Low Emission Zone (LEZ) control interventions from late 2020. ⁷ Emissions control interventions are primarily focussed upon achieving legal NO ₂ compliance within a defined area, with effectiveness to improve population health and wellbeing remaining poorly defined in the UK. Existing LEZ evaluations have concentrated upon large core cities (e.g. ULEZ – London) ⁸ with limited information from small and medium-sized cities, such as Oxford. This policy context provided a unique and timely opportunity to perform a feasibility study of low- cost sensor technology for pre-intervention data acquisition to enable future quantification of scheme impacts upon air quality, health, local economy and wider society.
Plain English Summary	Background: Oxford City has recognised air quality and health inequity challenges, with the equivalent of 1 in 20 deaths due to air pollution. We sought to assess the practicality and viability of using wireless 'low-cost' air quality sensors mounted on buildings in the city centre to provide detailed real-time air quality information. This network may also be used to assess the impact of transportation changes (such as those occurring during the COVID-19 pandemic) and introduction of additional pollution control measures, including proposed restrictions on the most polluting vehicles.
	Methods: We set up a network of wireless 'low-cost' air quality sensors to capture real-time information on Particulate Matter (PM), Nitrogen Oxide (NO) and Nitrogen Dioxide (NO ₂) levels. Three sensors were operational from January to June 2020, throughout the COVID-19 "lockdown" period, with further sensors installed once restrictions were lifted. We applied statistical methods to account for differences in sensor performance and compared our results to those obtained from the Government regulatory air quality monitoring stations. Finally, we assessed changes in average pollutant concentrations before and after introduction of COVID-19 public health restrictions.
	Results: Sensors performed well in laboratory testing. The study team experienced several technical challenges when setting up the network although these have now been overcome. Data analysis of raw outputs before and after the COVID-19 lockdown showed significant reductions in PM (PM_1 , $PM_{2.5}$ and PM_{10}) at all three locations. Changes in NO and NO ₂ were less marked, with a reduction in NO ₂ levels at one site only. Data analysis is ongoing to fully understand the effects of weather conditions and sensor performance upon measured values.
	Conclusion : We report successful establishment of a low-cost air quality sensor network in an urban city environment. Preliminary findings indicate data generated are suitable for assessment of air quality intervention impacts
Scientific Summary	Background Poor air quality is the largest environmental risk to health in the UK with pollutant levels in many cities regularly exceeding legal limits and health-based guidelines. ¹ Planned emissions control measures in Oxford City

include proposed introduction of a Zero Emissions Zone (ZEZ) and enhanced Low Emission Zone (LEZ). Assessment of the impacts of such measures requires high spatio-temporal resolution air quality data at baseline conditions.

Objectives:

(a) Assess feasibility of low-cost sensor deployment for obtaining high spatio-temporal resolution air quality data (NO₂, particles (PM)) in Oxford City
(b) Produce micro-scale AP exposure estimates at key City Centre locations
(c) Calculate pre-intervention impacts of AP exposure upon: (i) premature mortality; (ii) lifetime economic costs; (iii) health inequalities in Oxford City.
(d) Assess modelled impacts of future intervention measures (e.g. ZEZ/LEZ)

The originally stated baseline data collection and analysis activities were disrupted considerably due to the COVID-19 pandemic and associated public health measures, with delays in sensor deployment date due to resource and building access restrictions. The focus of this report is therefore objectives (a) and (b) as (c) and (d) were not possible under the circumstances.

Setting: Oxford City (population ~155,000).

Methods

Data Collection

Eight South Coast Science (SCS) Praxis Urban air quality sensors were procured to measure four gaseous pollutants (Carbon Monoxide – CO, Nitrogen Oxide – NO, Nitrogen Dioxide – NO₂, Ozone – O₃) by electrochemical sensor and Particulate Matter (PM₁, PM_{2.5}, PM₁₀) by optical particle counter (Alphasense OPC-N3). Air quality sensors were laboratory tested for four days prior to field deployment to assess dependence of gaseous and PM measurements upon temperature and humidity. Sensor offsets from baseline were subsequently assessed by co-location of selected units at the Defra Automatic Urban and Rural Monitoring Network (AURN) sites at roadside (High Street) and urban background (St Ebbes) locations.

Sensor Deployment

Air quality sensors were wall-mounted on public and privately-owned building assets at selected City Centre locations at distances 1.1-9.7 metres from roadside and heights 1.2-9.5 metres. Site locations were originally selected to measure impacts across the proposed LEZ/ZEZ intervention areas; and detailed placement was decided by power availability, sensor security, and proximity to breathing height.

Data Processing and Statistical Analysis

Data filters were applied to remove data observations (temperature, humidity, pollutant concentrations) outside the expected performance bounds. The *Iteratively Reweighted Penalised Least Squares* regression analysis (AirPLS) method was adopted for sensor baseline estimation and offset adjustment using data comparison to AURN measurements (urban background). An alternative machine learning Random Forest data processing technique was applied, utilising an algorithm ensemble of Decision Trees developed during a sensor "training period, removing the need for AURN comparison data.

Patient and Public Involvement

Three public involvement sessions were held during the study, involving cycling campaigners, commercial bus drivers and members of the wider general public respectively. A research poster detailing study methods was presented to academic, commercial and policy representatives at the 2020 Oxford Air Quality Meeting.

Results Sensor performance and internal comparability for PM measurement was acceptable (uncorrected errors were <10% for all sensors) in laboratory testing. Technical challenges encountered during sensor deployment included temperature and humidity board (SHT) failure (four units), and 4G modem replacement (two units). All sensors required software upgrades (provided by the manufacturer) but the majority have proved robust under field conditions, with three operational sensors performing continuous data collection for a study period of >3 months.

Examination of uncorrected values for daily pollutant values from three operational SCS study sensors (Feb – end May 2020) revealed significant reductions in PM concentrations associated with the COVID-19 "lockdown" period (mean concentration change -44% $PM_{2.5}$, -43% PM_{10}) with few significant changes observed in NO₂ levels.

Conclusions

We report our experience of deployment of a low-cost sensor network in Oxford City and the generation of high spatio-temporal resolution point estimates at multiple sensor locations. We have identified and addressed multiple logistical and technical challenges associated with low-cost sensor deployment in an urban setting. Further detailed analyses of fully processed and adjusted data will be required to understand relative changes in pollutant concentrations at specified city centre locations to generate further insights regarding impacts of the COVID-19 lockdown period upon NO₂ and PM concentrations.

Changes in population level exposures and therefore health impacts associated with these changes are more uncertain and estimates were not undertaken due to health behavioural and service access changes during the COVID-19 lockdown period.

The data collected are not representative of (the previous) business-as-usual scenario as originally planned due to impacts of the COVID-19 pandemic. However, the established sensor network provides valuable monitoring capability to quantify air quality impacts of these natural experimental changes and forthcoming COVID-19 recovery transport measures within the city.

As a result of this study we recommend the following future research priorities:

- 1. Undertake further investigation and comparison of ML algorithms for correcting data obtained from networks of low-cost air quality sensors
- 2. Estimate pre-intervention (business-as-usual) impacts of air pollution exposure upon: (i) premature mortality; (ii) lifetime economic costs; (iii) health inequalities in Oxford City.
- 3. Assess modelled impacts of future intervention measures (e.g. ZEZ/LEZ measures)
- 4. Assess air quality and health impacts of COVID-19 recovery emergency active travel and transport interventions (e.g. Low Traffic Neighbourhoods, bus gates)
- 5. Undertake comparisons of sensor performance characteristics, calibration methods and air quality measurements to those obtained using comparable low-cost sensor technology in other settings.

Study aims, The overarching aim of this feasibility study was to obtain detailed baseline air

objectives and research question	quality data (NO ₂ , PM _{1,2.5,10}) for Oxford City to enable subsequent environmental, health and economic impact assessment.						
90630011	The originally stated objectives of this baseline study were to:						
	temporal (b) Produ (c) Calc mortality	resolution air uce micro-sca ulate pre-inte ; (ii) lifetime e	of low-cost sensor de r quality data (NO ₂ , pa le AP exposure estim ervention impacts of conomic costs; (iii) he mpacts of future interv	articles (PM ates at key AP exposi alth inequa)) in Oxford (City Centre l ure upon: (i) lities in Oxfo	City locations premature rd City.	
	disrupted health n building and (b) a	d considerabl neasures, wit access restric as (c) and (d)	baseline data colle y due to the COVID- th delays in sensor ctions. The focus of th were not possible unc	19 pandem deploymer his report is	ic and assoc at due to re s therefore of	iated public source and	
Methods	 Sensor validation and calibration Eight South Coast Science (SCS) Praxis Urban air quality sensors were procured within the study. The SCS Praxis Urban unit measures four gaseous pollutants (Carbon Monoxide – CO, Nitrogen Oxide – NO, Nitrogen Dioxide – NO₂, Ozone – O₃) sensor and Particulate Matter (PM₁, PM_{2.5}, PM₁₀). Gases are measured by electrochemical sensors and the particulates by optical particle counter (Alphasense OPC-N3) (Appendix A). Air quality sensors were laboratory tested for four days prior to field deployment to assess dependence of gaseous and PM measurements upon temperature and humidity. Senso offsets from baseline were subsequently assessed by co-location of selected units at the Defra Automatic Urban and Rural Monitoring Network (AURN) sites at roadside (High Street) and urban background (St Ebbes) locations. Sensor deployment Air quality sensors were wall-mounted on public and privately-owned building assets at selected City Centre locations at distances 1.1-9.7 metres from roadside and heights 1.2-9.5 metres (Table 1). Locations were chosen to measure the impact across the LEZ/ZEZ intervention areas; and detailed placement was decided by power availability, sensor security, and proximity to breathing height. 					bur gaseous on Dioxide – . Gases are tical particle nsors were dependence dity. Sensor of selected AURN) sites is.	
						sen to tailed	
	Sensor No.	Deployment Date	Site type	Distance from roadside (m)	Height (m)		
	536	In storage ^a	Roadside, cul-de- sac	N/A	N/A		
	537	30/01/2020	Close to busy road, near railway station	TBC	9.5		
	538	04/06/2020ª	AURN Station Urban background	8	2.7		

539	28/01/2020	Roadside, cul-de- sac, waiting area for delivery mopeds	1.1	3.3
541	24/02/2020	Roadside, arterial route into central Oxford	9.7	1.2
542	23/01/2020	Roadside, arterial route into central Oxford	-	4.7
543	25/01/2020	Roadside, main arterial route into central Oxford	3.5	5.5
552	04/06/2020 ^a	AURN Station Roadside, main arterial route into central Oxford	3.7	1.4

^aDeployment delayed due to COVID-19 restrictions.

Data processing and analysis

Data cleaning was performed by applying filters to remove observational data observations (temperature, humidity) outside the expected performance bounds. Short-term peaks in NO₂ concentrations exceeding 1000 ppb were excluded, considered to reflect uncorrected interferences from environmental influences upon sensor performance.

The Iteratively Reweighted Penalised Least Squares regression analysis (*AirPLS*) method⁹ was adopted for sensor baseline estimation and offset adjustment, targeting corrections in sensor drift by iteratively changing weights of sum squares errors (SSEs) between the fitted baseline and original signals, with weights of SSE obtained adaptively using the difference between the previously fitted baseline and original signals. External offset correction was performed by attenuating the sensor baseline relative to the data series for the corresponding time-period obtained from the St Ebbes AURN urban background station. Finally, residual negative sensor observations were removed.

An alternative approach to data analysis was also attempted for the first time, using the machine learning (ML) *Random Forest* (RF) technique, which is an algorithm ensemble of Decision Trees. This approach removes the need to have comparison data from the AURN, after an initial "training" period. In this work the splitting criterion used for each branch of the decision tree was the mean squared error. In order to find the optimum parameter and value to perform a split at each node, a greedy algorithm was used. Mean absolute errors (MAE) from before and after the use of the RF approach for NO2 for three sensors are shown in Table 2.

Table 2. NO₂ Mean Absolute Error before and after the use of RF models

NO2 Mean absolute error (µg/m³)

Sensor Before After

	539	14.8	5.7			
	541	47.4	7.4			
	542	66.3	5.5			
	Adjustment In order to taken for th hypothesis background	for the effect understand is month of that the m readings with pund AURN	ct of humidit such effect April, wher neasured va Il converge data from	s, the approact the lockdown llues between or at least show	nd NO ₂ readings h adopted focus was in full effec the AURN roa the same pattern station will be u	es on data ct, with the adside and ns. As such
	All data proc	cessing and	analysis wa	s performed usi	ing Python and R	
	comprising commercial included qu preferences session com	team ado three intera- bus drivers lestion pror for air quali pprised a for	pted a tar ctive group s; (iii) public npts to exp ity research cussed ques	sessions: (i) ac webinar event lore perceptior priorities and o	th for public in stive travel campa t. The former tw ns of local air o utcome measure er session explori	aigners; (ii) o sessions quality and s. The final
	Jan 10 2020 academic co), with over 7 ommunities. scussed the	160 attendee A project p project with	es from the public ster was displation the attendees (uality Meeting, w lic, policy, industr ayed and the proj (it was too early in	y, and ect team
Results	Feasibility			d during		t included
	temperature replacement (provided by conditions, collection for field deploy	and humic t (two units the manufa with three or a study p ment has nd following	dity board (). All senso acturer) but eriod of >3 demonstrat these initia	SHT) failure (for rs have also r the majority hav al sensors per months. The le ed the feasibi teething probl	nsor deploymen our units), and 4 required software ve proved robust erforming contin earning obtained lity of the data ems the authors	4G modem e upgrades under field uous data by the first gathering
	measureme and subse Electrochem than for PM conditions	y testing se nt was acce quent anal nical sensor I. The effect	eptable (und ysis and measurement t of humidity to ongoing	orrected errors processing rec ents (for gases on PM and N	ternal comparabi were <10% for duces this eve) showed greate O ₂ observations ed investigation	all sensors n further). r variability under field

methods previously described.

 $PM_{2.5}$ and NO_x assessment Analysis of regulatory data obtained from the Oxford High Street AURN station (NO, NO₂, PM₁₀) indicates a marked reduction in average daily roadside

NO/NO₂ concentrations following introduction COVID-19 restrictions from late March 2020 (Table 2). Average daily NO₂ concentrations decreased from 32.1 to 15.6 μ gm⁻³, a reduction to 49% of original levels (Table 3).

Table 3. Comparison of average (mean, 95% CI) roadside values of pollutant concentrations (NO/NO₂) measured at Oxford High Street (AURN) before and after introduction of COVID-19 emergency public health measures.

Mar – 31 May 2020
Mai – 51 May 2020
(µg/m³)
95% CI
5.0 - 5.8
15.0 – 16.1

There was no statistically significant change in overall PM_{10} concentrations (although the mean increases), with a notable PM episode occurring in earlymid April 2020 (Figure 1)

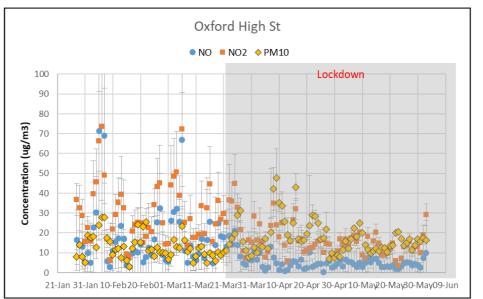
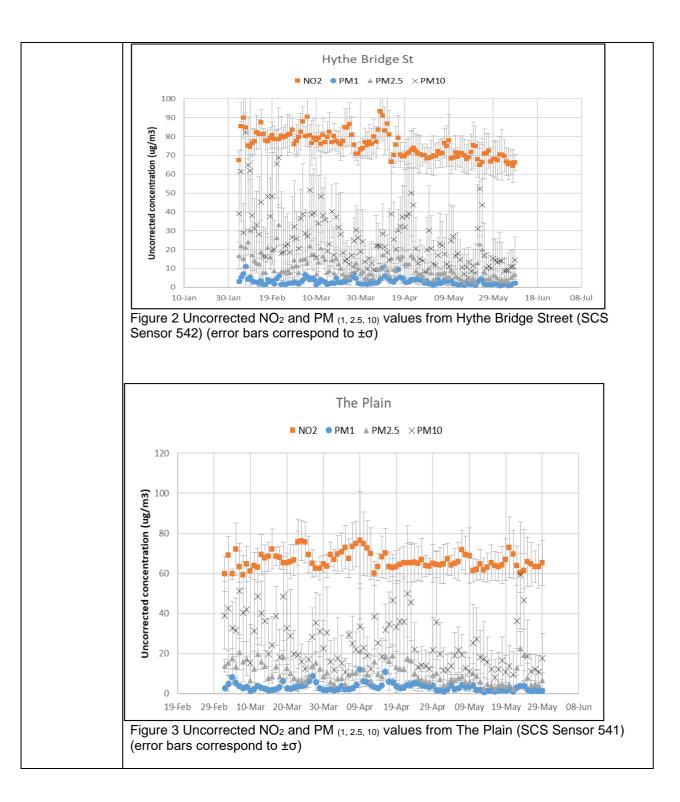



Figure 1. NO, NO₂, and PM₁₀ daily means from the AURN Oxford High St site (error bars correspond to $\pm \sigma$).

Examination of uncorrected values for daily pollutant values from three operational SCS study sensors (Feb – end May 2020) also reveals a noticeable drop in PM concentrations associated with the COVID-19 "lockdown" period with few significant changes observed in NO₂ levels (Figures 2-4, Table 4). All sensors exhibit trends similar to background levels, which are the focus of ongoing investigation.

			Ship St		
	100	■ NO2 ●	PM1 ▲ PM2.5 × PM10		
	00 (ng/m3) 00 00 00 00 00 00 00 00 00 00 00 00 00	19-Feb 10-Mar	30-Mar 19-Apr 09	T T T T T T T T T T T T T T T T T T T	
	10-Jan 30-Jan				Jun 08-Jul
	Figure 4 Uncorrect (error bars corresp		(1, 2.5, 10) Values from	n Snip Street (S	505 Sensor 539)
	Table 4. Percentag			or to and after ir	ntroduction of
	Location	NO ₂	Polluta PM1	nt PM _{2.5}	PM10
	Ship St The Plain Hythe Bridge St	Not significant Not significant -8%	Not significant Not significant Not significant	-48% -39% -45%	-46% -39% -44%
Conclusions and Recommend ations	Oxford City and estimates at mu multiple logistical deployment in an NO ₂ data are de offset correction processing techn Preliminary analy 19 lockdown per concentrations at changes and gr findings are conse Group (AQEG) identified the mo environment with over the lockdow	d the general litiple sensor l and technic urban setting escribed inclu- and application ique, which is vses of regulat eriod has ide associated wi eater variation istent within the rapid eviden bist pronounced typical reduce on typical reduce on period. Succ f 10-20µgm ⁻³ if the with a 50-60	tion of high sp locations. We h al challenges as . Our analytical a ding use of the on of machine le not reliant upon r cory air quality da entified marked th reductions in n in average da nose reported with ce review unde d changes in air ctions in mean N h changes typica f expressed relati % reduction in tra	atio-temporal ave identified sociated with pproaches to AirPLS algori earning as an egulatory stati ta obtained du roadside red vehicle trati ily PM conce nin the Defra rtaken in Ju quality to be NO ₂ concentra illy correspond ve to annual a	uring the COVID- ductions in NO ₂ ffic, with limited entrations. These Air Quality Expert ne 2020, which within the urban ations of 20-39% d to decreases in averages and are red in Oxford.

	city centre locations and generate further insights regarding the impacts of the lockdown period upon PM concentrations, measures (transport contributes to 18% of PM_{10} and 21% $PM_{2.5}$ emissions in the city). ¹⁰ The sensor network provides novel monitoring capability for PM assessment; of value for informing policy recommendations including those within the Oxford City Council Air Quality Action Plan.
	Changes in population level exposures and therefore health impacts associated with these changes are more uncertain compared to estimates of changes in ambient concentration; notably due to widespread health and behavioural changes during the COVID-19 lockdown period.
	The data are a very useful starting point, but the authors hesitate to say whether they form an appropriate baseline. At the time of writing the proposed ZEZ/LEZ intervention is postponed and uncertain, and the data that have been gathered are not representative of (the previous) business as usual due to the COVID-19 pandemic. However, it remains to be seen what business as usual will look like going forwards. The authors continue to monitor the situation.
Appendices	Appendix A: South Coast Science Praxis Unit – Detailed specification

Appendix A: SCS Urban Praxis Unit – Detailed Specification Sensing

- Alphasense analogue front-end (AFE) supporting up to four A4 electrochemical sensors
 - Ozone, model no. <u>OX-A431</u>
 - Nitrogen dioxide, model no. NO2-A43F
 - Nitric oxide, model no. NO-A4
 - Carbon monoxide, model no. CO-A4
- Ultra low-noise circuitry maximises repeatability of electrochemical sensing.
- Particulate monitoring via Alphasense OPC-N3 particle counters.
- Temperature and relative humidity via Sensirion (SHT) device.

Communications

- Wired: ethernet via waterproof RJ45 connector.
- Wireless: 4G cellular modem.

Processor

• Raspberry Pi Zero.

Clock

- Real time clock with battery backup.
- Time synchronisation is via GPS receiver, network time protocol or real time clock, as available.

Power

- 90 to 240 V AC Mains or 7 to 24 V DC input.
- Internal battery backup for up to 2 hours operation. Environment Operating range: -10 to 50 Centigrade.

Data infrastructure

- Sensed data messaging, control messaging via MQTT
- Data storage using Amazon Web Services (DynamoDB) with Python based API libraries and data dashboard.
- The SCS Praxis Urban logs at 0.1 Hz and transmits its data over the 4G network. The units are relatively easy to install requiring 12-24V DC or 240V AC (mains) power.

Public Health Research Programme

¹ RCP: Every Breath We Take: The lifelong impact of air pollution, Feb 2016.

² COMEAP: Associations of long-term average concentrations of nitrogen dioxide with mortality, Aug 2018

⁴ PHE: Estimation of costs to the NHS and social care due to the health impacts of air pollution, May 2018

⁵ European Commission. Air Quality Standards. Available at:

https://ec.europa.eu/environment/air/quality/standards.htm [Accessed 10 Aug 2020]

⁶ Defra/DfT: Clean Air Zone Framework Principles for setting up Clean Air Zones in England, May 2017.

⁷ Oxford City Council. Oxford's Zero Emission Zone. Available at:

https://www.oxford.gov.uk/info/20299/air_quality_projects/1305/oxford_zero_emission_zone_zez [Accessed 10 Aug 2020]

⁸ NIHR Signal London's Low Emission Zone has not been shown to improve children's respiratory health. Feb 2019. doi:10.3310/signal-000733

⁹ Zhang Z-M, Chen S, Liang Y-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst. Issue 5, 2010

¹⁰ Oxford Source Apportionment Study

https://www.oxford.gov.uk/downloads/download/1185/oxford_source_apportionment_study

³ HM Treasury: "Air Quality: Economic Analysis" Green Book, 2015