Reducing bias in trials from reactions to measurement: the MERIT study including developmental work and expert workshop

David P French,^{1*} Lisa M Miles,¹ Diana Elbourne,² Andrew Farmer,³ Martin Gulliford,⁴ Louise Locock,⁵ Stephen Sutton,⁶ Jim McCambridge⁷ and the MERIT Collaborative Group[†]

- ¹Manchester Centre for Health Psychology, University of Manchester, Manchester, UK
- ²Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- ³Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK ⁴School of Population Health and Environmental Sciences, King's College London, London, UK
- ⁵Health Services Research Unit, University of Aberdeen, Aberdeen, UK
- ⁶Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- ⁷Department of Health Sciences, University of York, York, UK

Declared competing interests of authors: David P French was a member of the National Institute for Health Research (NIHR) Public Health Research Funding Board (2015–19). Andrew Farmer is Director of the NIHR Health Technology Assessment programme (2020 to present) and is an NIHR Senior Investigator. Martin Gulliford was a member of the NIHR Health Services and Delivery Research (HSDR) Funding Committee (2016–19). Louise Locock was a member of the NIHR HSDR Funding Committee (2014–19).

Published September 2021

DOI: 10.3310/hta25550

Scientific summary

The MERIT study

Health Technology Assessment 2021; Vol. 25: No. 55

DOI: 10.3310/hta25550

NIHR Journals Library www.journalslibrary.nihr.ac.uk

^{*}Corresponding author david.french@manchester.ac.uk

[†]The MERIT Collaborative Group are listed in Appendix 1.

Scientific summary

Background

Measuring people can affect their behaviour, their emotions and the data they provide about themselves. This phenomenon is known as measurement reactivity. Randomised controlled trials always include measurements of trial outcomes and commonly include further measurements as part of process evaluations. The usual methods of conduct and analysis of trials implicitly assume that the taking of measurements does not affect subsequent outcome measurements or interact with the trial intervention and that any effects of measurement-taking will be the same in each experimental group and, hence, are unlikely to bias treatment comparisons. The present report aims to promote awareness of how and when taking measurements can lead to bias and to provide recommendations to prevent such bias.

There are few areas of research where there is sufficient evidence to be entirely confident that measurement reactivity is present. The most compelling evidence of measurement reactivity is found in two areas: (1) the question-behaviour effect (i.e. when the act of asking questions about behaviour produces small changes in the behaviour being asked about) and (2) the use of pedometers (particularly where step counts can be read by participants) leading to increases in physical activity. Other measurement procedures widely employed for outcome evaluation in randomised controlled trials, such as assessing body weight, are also used as intervention techniques in their own right because they are seen to be effective at producing behaviour change. It is not clear whether the limitations of the evidence base are due to a genuine lack of effect of measurement on outcomes or a lack of research to examine the effects of measurement on outcomes.

There is little direct evidence regarding how much of a problem measurement reactivity poses for bias in trials. As a consequence, measurement reactivity has generally been ignored in discussions of how to reduce bias in trials. Measurement reactivity is therefore not adequately addressed in existing guidelines for designing, reporting and appraising trials.

Objective

The MEasurement Reactions In Trials (MERIT) study aimed to produce recommendations to minimise risk of bias from measurement in trials of interventions to improve health.

Methods

The MERIT study consisted of (1) a series of systematic and rapid reviews, (2) a Delphi study and (3) an expert workshop to develop recommendations on how to minimise bias in trials due to measurement reactivity.

An updated systematic review examined if measuring participants had an effect on participants' health-related behaviours relative to no-measurement controls. Three new rapid systematic reviews were conducted to identify:

- 1. existing guidance on measurement reactivity
- 2. existing systematic reviews of studies that have quantified the effects of measurement on outcomes relating to behaviour and affective outcomes
- 3. studies that have investigated the effects of objective measurements of behaviour on healthrelated behaviour.

The views of 40 experts were sought to identify the scope of the recommendations in two rounds of a Delphi consultation. A workshop in October 2018 involved discussion of potential recommendations by 23 experts. Recommendations were formed through discussion in groups, with no formal voting procedure to indicate consensus being required.

Recommendations

The MERIT study has produced recommendations for reducing the risk of bias from measurement, with a focus on balancing measurement reactivity concerns in the context of wider trial design decision-making, including attending to established sources of bias. Development of the recommendations has relied extensively on indirect evidence, which is contingent on reasonable inference regarding the likely consequences of measurement in producing bias. Given the limited direct evidence, many of the recommendations are – in the terminology of the Grading of Recommendations Assessment, Development and Evaluations (GRADE) – 'motherhood statements', in that to recommend the opposite would not be reasonable.

We propose that researchers consider the following issues in relation to measurement reactivity as a potential source of bias. The recommendations also includes a list of randomised controlled trial features that should act as 'red flags' and indicate when risk of bias due to measurement reactivity may be present. The 14 recommendations are as follows:

- 1. Consider the potential for measurement reactivity causing bias at the design stage of a trial.
- 2. Consider the potential for measurement reactivity as a source of bias throughout the research process.
- 3. Consider specific trial features that may indicate heightened risk of bias due to measurement reactivity.
- 4. Theorise potential measurement reactions as part of a logic model of how an intervention is intended to work.
- 5. Consider the burden of measurement procedures and potential impact on participants in comparison with the intensity and duration of the studied intervention.
- 6. Consider how participants may use measurement in trials to meet their own aims.
- 7. Consider whether or not measurement reactivity concerns for the trial warrant further empirical examination.
- 8. Examine feedback from research personnel regarding research participants' reports of changes in their behaviour/thoughts/emotions as a result of measurement.
- 9. Consider possible measurement reactivity when determining the overall burden of measurement in a trial.
- 10. Embed measurement procedures onto routine clinical practice when possible.
- 11. Use identical measurement protocols in all arms of a trial.
- 12. Avoid overlap between measurement and intervention.
- 13. Consider the potential benefits of masking measures and/or withholding feedback of measured values against ethical considerations.
- 14. If measurement reactivity is likely to be present, investigations for measurement reactivity should be included a priori in the statistical analysis plan.

Research priorities

A major limitation of the evidence base used to develop the recommendations is the shortage of good-quality studies that have estimated the extent and magnitude of measurement reactivity in different settings. Accordingly, we identify the following research priorities to develop a

stronger evidence basis for future consideration of the nature and extent of bias in trials due to measurement reactivity:

- more primary research to quantify extent of measurement reactivity
- research priorities for studies within a trial to further understanding of measurement reactivity
 - conduct further empirical studies to provide more compelling evidence on study features that indicate that measurement may be particularly reactive
 - o compare traditional, obtrusive research methods with unobtrusive research methods
 - examine effects of measurement on both objective and subjective outcomes
- more systematic reviewing to quantify extent and variability of measurement reactivity
- better theorise when and why measurement reactivity is likely to occur.

We hope that this practical help on measurement reactions in trials will raise awareness of the ways in which trial evidence can be undermined by measurement reactivity and how this can be prevented and advance consideration of how measurement reactivity might be better understood in the future. Our ultimate aim is that these recommendations will be used in designing future trials so that trials are less likely to be at risk of bias.

Study registration

The first systematic review in this study is registered as PROSPERO CRD42018102511.

Funding

Funded by the Medical Research Council UK and the National Institute for Health Research as part of the Medical Research Council-National Institute for Health Research Methodology Research Programme.

Health Technology Assessment

ISSN 1366-5278 (Print)

ISSN 2046-4924 (Online)

Impact factor: 4.014

Health Technology Assessment is indexed in MEDLINE, CINAHL, EMBASE, the Cochrane Library and Clarivate Analytics Science Citation Index.

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (www.publicationethics.org/).

Editorial contact: journals.library@nihr.ac.uk

The full HTA archive is freely available to view online at www.journalslibrary.nihr.ac.uk/hta. Print-on-demand copies can be purchased from the report pages of the NIHR Journals Library website: www.journalslibrary.nihr.ac.uk

Criteria for inclusion in the Health Technology Assessment journal

Reports are published in *Health Technology Assessment* (HTA) if (1) they have resulted from work for the HTA programme or, commissioned/managed through the Methodology research programme (MRP), and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

Health Technology Assessment (HTA) research is undertaken where some evidence already exists to show that a technology can be effective and this needs to be compared to the current standard intervention to see which works best. Research can evaluate any intervention used in the treatment, prevention or diagnosis of disease, provided the study outcomes lead to findings that have the potential to be of direct benefit to NHS patients. Technologies in this context mean any method used to promote health; prevent and treat disease; and improve rehabilitation or long-term care. They are not confined to new drugs and include any intervention used in the treatment, prevention or diagnosis of disease.

The journal is indexed in NHS Evidence via its abstracts included in MEDLINE and its Technology Assessment Reports inform National Institute for Health and Care Excellence (NICE) guidance. HTA research is also an important source of evidence for National Screening Committee (NSC) policy decisions.

This report

This issue of the Health Technology Assessment journal series contains a project commissioned by the MRC-NIHR Methodology Research Programme (MRP). MRP aims to improve efficiency, quality and impact across the entire spectrum of biomedical and health-related research. In addition to the MRC and NIHR funding partners, MRP takes into account the needs of other stakeholders including the devolved administrations, industry R&D, and regulatory/advisory agencies and other public bodies. MRP supports investigator-led methodology research from across the UK that maximises benefits for researchers, patients and the general population – improving the methods available to ensure health research, decisions and policy are built on the best possible evidence.

To improve availability and uptake of methodological innovation, MRC and NIHR jointly supported a series of workshops to develop guidance in specified areas of methodological controversy or uncertainty (Methodology State-of-the-Art Workshop Programme). Workshops were commissioned by open calls for applications led by UK-based researchers. Workshop outputs are incorporated into this report, and MRC and NIHR endorse the methodological recommendations as state-of-the-art guidance at time of publication.

The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

This report presents independent research funded under a MRC-NIHR partnership. The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, the MRC, NETSCC, the HTA programme or the Department of Health and Social Care. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, the MRC, NETSCC, the HTA programme or the Department of Health and Social Care.

Copyright © 2021 French et al. This work was produced by French et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaption in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

Published by the NIHR Journals Library (www.journalslibrary.nihr.ac.uk), produced by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk).

NIHR Journals Library Editor-in-Chief

Professor Ken Stein Professor of Public Health, University of Exeter Medical School, UK

NIHR Journals Library Editors

Professor John Powell Chair of HTA and EME Editorial Board and Editor-in-Chief of HTA and EME journals. Consultant Clinical Adviser, National Institute for Health and Care Excellence (NICE), UK, and Professor of Digital Health Care, Nuffield Department of Primary Care Health Sciences, University of Oxford, UK

Professor Andrée Le May Chair of NIHR Journals Library Editorial Group (HS&DR, PGfAR, PHR journals) and Editor-in-Chief of HS&DR, PGfAR, PHR journals

Professor Matthias Beck Professor of Management, Cork University Business School, Department of Management and Marketing, University College Cork, Ireland

Dr Tessa Crilly Director, Crystal Blue Consulting Ltd, UK

Dr Eugenia Cronin Senior Scientific Advisor, Wessex Institute, UK

Dr Peter Davidson Consultant Advisor, Wessex Institute, University of Southampton, UK

Ms Tara Lamont Senior Scientific Adviser (Evidence Use), Wessex Institute, University of Southampton, UK

Dr Catriona McDaid Senior Research Fellow, York Trials Unit, Department of Health Sciences, University of York, UK

Professor William McGuire Professor of Child Health, Hull York Medical School, University of York, UK

Professor Geoffrey Meads Emeritus Professor of Wellbeing Research, University of Winchester, UK

Professor James Raftery Professor of Health Technology Assessment, Wessex Institute, Faculty of Medicine, University of Southampton, UK

Dr Rob Riemsma Reviews Manager, Kleijnen Systematic Reviews Ltd, UK

Professor Helen Roberts Professor of Child Health Research, UCL Great Ormond Street Institute of Child Health, UK

Professor Jonathan Ross Professor of Sexual Health and HIV, University Hospital Birmingham, UK

Professor Helen Snooks Professor of Health Services Research, Institute of Life Science, College of Medicine, Swansea University, UK

Professor Ken Stein Professor of Public Health, University of Exeter Medical School, UK

Professor Jim Thornton Professor of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Nottingham, UK

Please visit the website for a list of editors: www.journalslibrary.nihr.ac.uk/about/editors

Editorial contact: journals.library@nihr.ac.uk