

**The effectiveness and cost-effectiveness of a Structured Health Intervention
For Truckers (SHIFT): A cluster randomised controlled trial (RCT)**

Stacy A Clemes^{1,2*}, Veronica Varela-Mato^{1,2}, Danielle H Bodicoat³, Cassandra L Brookes⁴, Yu-Ling Chen^{1,2}, Edward Cox⁵, Charlotte L Edwardson^{2,6}, Laura J Gray⁷, Amber Guest¹, Vicki Johnson⁸, Fehmidah Munir^{1,2}, Nicola J Paine^{1,2}, Gerry Richardson⁵, Katharina Ruettger¹, Mohsen Sayyah¹, Aron Sherry^{1,2}, Ana Suazo Di Paola⁴, Jacqui Troughton⁸, Simon Walker⁵, Thomas Yates^{2,6}, James King^{1,2}

¹School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK

²NIHR Leicester Biomedical Research Centre, Leicester, UK

³Independent Researcher, Leicester, UK

⁴Leicester Clinical Trials Unit, University of Leicester, Leicester, UK

⁵Centre for Health Economics, University of York, York, UK

⁶Diabetes Research Centre, University of Leicester, Leicester, UK

⁷Department of Health Sciences, University of Leicester, Leicester, UK

⁸Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK

*Corresponding author: Stacy Clemes, S.A.Clemes@lboro.ac.uk, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK, telephone: [REDACTED].

Keywords: physical activity, sedentary behaviour, occupational drivers, diet, obesity, workplace, heavy goods vehicle

Disclosure of interest: Stacy Clemes and James King were in receipt of funding from the Higher Education Innovation Fund, which supported the costs of the intervention equipment used in this study. They also received in-kind support from © Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

DHL for this project, where DHL covered the time required by their drivers to participate in this study, by replacing these drivers with agency drivers, at a cost to the company. Amber Guest was in receipt of funding for a PhD Fellowship from the Colt Foundation which funded her time on this project. Amber was supervised by Stacy Clemes, James King and Nicola Paine, who are also associated with this funding. Ana Suazo Di Paola and Cassey Brookes are employed by the Leicester Clinical Trials Unit at the University of Leicester. Stacy Clemes, James King, Thomas Yates, Charlotte Edwardson, and Aron Sherry are all supported by the NIHR Leicester Biomedical Research Centre, with the Centre funding Aron Sherry's time on the project. Danielle Bodicoat is an independent researcher working with commercial and non-commercial organisations across a range of disease areas. Her time on this project was supported via a consultancy basis by the Leicester Clinical Trials Unit. Vicki Johnson and Jacqui Troughton are employed by the University Hospitals of Leicester NHS Trust who are in receipt of a range of research grants, including NIHR funding, which supported their time on the project. The University Hospitals of Leicester NHS Trust holds the Intellectual Property rights for and receives not-for-profit income through licensing fees to support implementation in Clinical Commissioning Groups in the UK, Ireland and Australia, of the DESMOND suite of self-management programmes. If SHIFT is successfully implemented after this study, then SHIFT will likely fall under the DESMOND suite of programmes. Laura Gray is in receipt of funding from the MRC and NIHR for a number of projects.

Important

A 'first look' scientific summary is created from the original author-supplied summary once the normal NIHR Journals Library peer and editorial review processes are complete. The summary has undergone full peer and editorial review as documented at NIHR Journals Library website and may undergo rewrite during the publication process. The order of authors was correct at editorial sign-off stage.

A final version (which has undergone a rigorous copy-edit and proofreading) will publish as part of a fuller account of the research in a forthcoming issue of the Public Health Research journal.

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Any queries about this 'first look' version of the scientific summary should be addressed to the NIHR Journals Library Editorial Office – journals.library@nichr.ac.uk

The research reported in this 'first look' scientific summary was funded by the PHR programme as project number 15/190/42. For more information visit <https://fundingawards.nichr.ac.uk/award/15/190/42>

The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The PHR editors have tried to ensure the accuracy of the authors' work and would like to thank the reviewers for their constructive comments however; they do not accept liability for damages or losses arising from material published in this scientific summary.

This 'first look' scientific summary presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the PHR Programme or the Department of Health and Social Care. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, NETSCC, the PHR Programme or the Department of Health and Social Care.

Scientific Summary

Background

Due to the nature of their occupation, long-distance heavy goods vehicle (HGV) drivers are exposed to a multitude of health-related risk factors and have been identified as working within one of the most hazardous professions. Their working environment and job demands (long irregular hours, enforced sedentarism, poor

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

dietary options, high stress) constrain the enactment of healthy behaviours leaving drivers vulnerable to a myriad of physical and mental health conditions. Furthermore, long, and variable working hours, including shift work, contributes to sleep deprivation and this can lead to metabolic disturbances and further promote the uptake of unhealthy behavioural choices. As a result of their working environment and poor health behaviours, HGV drivers exhibit high rates of obesity and cardiometabolic risk factors. These factors likely culminate in HGV drivers having an increased risk of accidents, and higher rates of chronic diseases and reduced life expectancies in comparison to other occupational groups. Despite this, HGV drivers are currently underserved in terms of health promotion efforts.

We have developed a Structured Health Intervention For Truckers (the SHIFT programme), a multicomponent, theory driven, health behaviour intervention designed to promote positive lifestyle changes in relation to physical activity, diet, and sitting in HGV drivers. This intervention has been informed by extensive Public and Patient Involvement (PPI) including drivers and relevant stakeholders. Initial pilot testing of our intervention delivery revealed it led to potentially favourable increases in physical activity and increases in fruit and vegetable intake. The current study extends this work by evaluating the multicomponent SHIFT programme within a cluster randomised controlled trial (RCT), with the inclusion of full process and cost-effectiveness evaluations.

Aim and objectives

The aim of this study was to evaluate the effectiveness and cost-effectiveness of the multicomponent SHIFT programme, compared to usual care, in a sample of long-distance HGV drivers at 6-months and 16-18-months follow-up.

Primary objective

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

To investigate the impact of the 6-month SHIFT programme, compared to usual care, on device-measured physical activity (expressed as steps/day) at 6-months follow-up.

Secondary objectives

- To investigate the impact of the SHIFT programme, compared to usual care, at 6-months follow-up on:
 - time spent in light and moderate-to-vigorous physical activity (MVPA)
 - sitting time
 - measures of adiposity (BMI, percent body fat, waist-hip ratio, neck circumference)
 - cardiometabolic risk markers (glycated haemoglobin [HbA1c], total cholesterol, high-density lipoprotein cholesterol [HDL-C] and low-density lipoprotein cholesterol [LDL-C])
 - fruit and vegetable intake and dietary quality
 - blood pressure
 - psychophysiological reactivity
 - sleep duration and quality
 - functional fitness (grip strength)
 - cognitive function
 - mental wellbeing (anxiety and depression symptoms, and social isolation)
 - work-related psychosocial variables (work engagement, job performance and satisfaction, occupational fatigue, presenteeism, sickness absence, and driving related safety behaviour)
 - health-related quality of life
 - health related resource use (such as GP visits)

- To investigate the longer-term impact of the SHIFT programme, compared to usual care, at 16-18-months follow-up on:
 - steps/day
 - time spent in light physical activity and in MVPA
 - sitting time
 - fruit and vegetable intake and dietary quality
 - sleep
 - mental wellbeing (anxiety and depression symptoms, and social isolation)
 - work-related psychosocial variables (work engagement, job performance and satisfaction, occupational fatigue, presenteeism, sickness absence, and driving related safety behaviour)
 - health-related quality of life
- To conduct a mixed-methods process evaluation throughout the implementation of the intervention (using qualitative and quantitative measures) with participating drivers and site managers.
- To undertake a full economic analysis of the SHIFT programme.

Methods

Design and setting

We conducted a two-armed cluster RCT, which incorporated an internal pilot phase, and included mixed-methods process and economic evaluations. The trial took place within the worksite setting of a major international Logistics and Transport company who agreed to provide the setting and access to their drivers and sites for this research. Transport sites/depots formed individual clusters and were located across the Midlands region of the UK.

Participants

All HGV drivers within participating sites were eligible to participate, unless they met any of the following exclusion criteria: were suffering from clinically diagnosed

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

cardiovascular disease; had mobility limitations that prevented them from increasing their daily activity levels; the presence of haemophilia or a blood-borne virus; unable to provide written informed consent. Written informed consent was obtained from participants before baseline measurements, and before each set of follow-up measurements.

Sample size

In order to detect a difference in mean daily step counts of 1500 steps/day between the intervention and control groups (assuming a standard deviation of 2919 steps/day, 80% power, a 2-tailed significance level of 5%, an intraclass correlation coefficient of 0.05, an average cluster size of 10, and a coefficient of variation to allow for variation in cluster size of 0.51), we required 110 participants from 11 clusters per arm. This sample size was inflated by 30% to account for loss to follow-up/non-compliance to the activPAL, in addition, the number of clusters was inflated by 2 to allow for whole cluster drop out. We therefore aimed to recruit 24 clusters (transport sites) with an average of 14 participants per cluster, providing a total target sample size of 336 drivers. The internal pilot was conducted using the first six clusters (sites) recruited and examined issues surrounding worksite and participant recruitment, randomisation, compliance to the primary outcome, and retention rates at 6-months follow-up.

The SHIFT intervention

The SHIFT programme is a multicomponent lifestyle-behaviour intervention designed to target behaviour changes in physical activity, diet and sitting in HGV drivers. The 6-month intervention, grounded within the Social Cognitive Theory for behaviour change consists of a group-based (4-6 participants) 6-hour structured education session tailored for HGV drivers, delivered by two trained educators. The education session was supplemented by health coach support (provided over a 6-month period) and equipment provision, including a Fitbit (participants were encouraged to use this to monitor their daily step counts and set goals) and resistance bands/balls

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

and a hand gripper (to facilitate a ‘cab workout’). Using the step count data recorded by the Fitbit, drivers were invited to participate in 6-weekly, tailored, step count challenges throughout the 6-month intervention, by the research team.

Control arm

Participants received an educational leaflet at the outset detailing the importance of healthy lifestyle behaviours (i.e., undertaking regular physical activity, breaking up periods of prolonged sitting, and consuming a healthy diet) for the promotion of health and well-being. Control participants completed the same study measurements as those in the intervention worksites, at the same time points and received the same health feedback as intervention participants immediately following their measurements. Aside from receiving a generic health education leaflet and feedback from their measurements, the control group carried on with usual practice for the duration of the study.

Outcome measures

Baseline measurements took place prior to randomisation of the sites into the two study arms. A second set of identical measurements took place at 6-months follow-up. These measurements took place within the transport sites and were conducted by researchers who had undergone relevant training. A final set of measurements took place at 16-18 months follow-up. These final follow-up measures were delayed due to the COVID-19 pandemic (they were initially planned for 12-months follow-up) and consisted of predominately self-report measures due to restrictions in face-to-face data collection. Due to the pandemic, the primary outcome was also changed from assessment at 12-months to 6-months.

Primary outcome

The primary outcome was device-measured physical activity, expressed as mean steps/day using the activPAL accelerometer, at 6-months follow-up.

Secondary outcomes

© Queen’s Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This ‘first look’ scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Secondary outcomes measured from the activPAL included time per day spent sitting, standing, stepping, time in prolonged sitting bouts, in light intensity and moderate to vigorous intensity physical activity (MVPA), and the number of sit-to-stand transitions. Variables were summarised for 3 different time periods within each measurement period: 1) daily (i.e., across all waking hours on all valid days); 2) workdays; and 3) non-workdays. The GENEActiv wrist-worn accelerometer was used to provide a measure of sleep duration and quality. The data from this device were summarised using the same time periods (daily, workdays, non-workdays) as that applied to the activPAL data. Data were collected on adiposity (BMI, fat percentage, waist circumference), and finger prick blood samples were collected to measure glycated haemoglobin (HbA1c), cholesterol (HDL, LDL, and total), and triglycerides. Fruit and vegetable intake and dietary quality were assessed using a food frequency questionnaire. Blood pressure, cognitive function, psychophysiological reactivity and functional fitness (grip strength) were also assessed. Further self-report measures collected at each assessment, via a questionnaire booklet, included mental wellbeing, musculoskeletal symptoms, occupational fatigue, job satisfaction and performance, work engagement, sickness absence, presenteeism, perceived work ability, job demands and control, and driving-related safety behaviour.

The primary analysis was performed using a mixed effect linear regression model, using a complete case population. Sensitivity analyses were conducted including intention-to-treat, per-protocol, and the effect of a different number of valid activPAL days.

Economic evaluation

Self-reported health-related quality of life and health-related resource use data were collected at each assessment point. The economic evaluation assessed the costs and outcomes associated with the SHIFT programme when compared with usual practice. These costs/outcomes were assessed over the time period of the trial and

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

also over a longer time horizon to reflect the fact that short term changes in activity are associated with longer term improvements in health.

Process evaluation

A mixed-methods process evaluation was conducted to examine intervention fidelity, dose, effectiveness of implementation strategies, potential contamination, barriers, and sustainability. Participants completed feedback questionnaires one month after their baseline and 6-month assessments. In addition, following completion of the trial focus groups and semi-structured interviews took place with participants and managers.

Results

Recruitment

382 participants (mean \pm SD age: 48.4 \pm 9.4 years, BMI: 30.4 \pm 5.1 kg/m², 99% male) were recruited across 25 clusters, and randomized (at the cluster level) into either the SHIFT (12 clusters, n=183) or control (13 clusters, n=199) arms. An additional site was recruited due to one internal pilot site having restrictions on when participants could wear the activPAL and GENEActiv accelerometers. The 25 transport sites operated within the transport, retail, hospitality, healthcare, pharmaceutical, construction, oil and gas, and automotive industries, and the average age of our sample and gender split matches the average age of HGV drivers and gender proportion seen nationally. Between baseline and 6-months follow-up, 2 sites dropped out of the trial (1 intervention, 1 control). For both, this was due to site closures because of the collapse of the contracting companies. At baseline, participants accumulated 8583 steps/day (IQR 6922-10696) and spent 11 hours/day sitting (SD 95 mins), 10 minutes/day (IQR 6-19) in MVPA and 99 minutes/day (IQR 82-123) in light physical activity. 42% of the sample were classified as overweight, and 46% were classified as having obesity at baseline.

Primary outcome

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Valid accelerometer data were available from 209 participants (54.7%) for the primary outcome analysis. At 6-months, significant differences in mean daily steps were found between groups, with the SHIFT group accumulating 1008 steps/day more than the control group (95% confidence interval (CI) 145 to 1871, $p=0.022$). These differences were largely driven by the maintenance of physical activity levels in the SHIFT arm and a decline in the control arm. Sensitivity analyses showed similar results to the primary analysis, with significant differences observed between groups when including participants with ≥ 2 , 3 and 4 valid days of activPAL data.

Secondary outcomes

Favourable changes at 6-months were also seen in the SHIFT group, relative to the control group, in time spent sitting (-24 mins/day, 95% CI: -43 to -6), standing (14 mins/day, 95% CI: 2 to 26), stepping (11 mins/day, 95% CI: 2 to 21), and time in MVPA (6 mins/day, 95% CI: 0.3 to 11). These differences were largely driven by changes in behaviours on non-workdays. No differences between groups were observed when these variables were assessed at 16-18-months follow-up. No differences were observed between groups in the other secondary outcomes at either follow-up.

Economic evaluation

The average total cost of delivering the SHIFT programme was £369.57 per driver, resulting quality-adjusted life-years were similar across trial arms (SHIFT: 1.22 (95% CI: 1.19 to 1.25); control: 1.25 (95% CI: 1.22 to 1.27)). Analyses revealed that the probability of the SHIFT programme being cost-effective in the within trial period was low, with a probability between 0.009 and 0.011 for the range of cost-effectiveness thresholds considered. Overall, the SHIFT programme was associated with higher costs than usual practice with little impact on other outcomes. It was concluded that the SHIFT programme is not likely to be cost-effective in its current delivery format and this result was robust to a range of alternative assumptions and additional analyses.

Process evaluation

Questionnaire and interview data indicated favourable attitudes towards the SHIFT programme from both drivers and managers. The Fitbit was the most favoured component of the intervention, whereas the cab workout appeared the least favoured. The education session was deemed useful for facilitating improvements in knowledge and behaviour change, however only dietary knowledge changes from the education session were predominantly recalled. Receiving feedback about their current health status from the physiological outcome measurements assessed at baseline and 6-months motivated participants to change aspects of their lifestyle (proportion agreeing: intervention = 91.1%, control = 67.5%). Barriers to a healthy lifestyle at work were still apparent and affected drivers throughout the study, with participants predominately making positive behaviour changes on non-workdays.

Conclusions

The SHIFT programme may have had a degree of success in positively impacting physical activity levels and reducing sitting time in HGV drivers at 6-months, however these differences were not maintained at 16-18-months. Due to the nature and demands of their occupation, the statistically significant differences observed between groups in these behaviours were largely driven by changes occurring on non-workdays, and largely attributable to the maintenance of physical activity levels in the SHIFT arm, and a decline in the control arm. The process evaluation revealed favourable attitudes towards the SHIFT programme from both drivers and managers, with drivers highlighting that the education session, Fitbit and step count challenges were particularly effective for facilitating behavioural changes. Managers and participants reported enthusiasm and necessity for SHIFT to be included in future Certificate of Professional Competence Training for professional drivers in the UK.

The high prevalence of drivers with obesity, along with the poor cardiometabolic health profile and sleep deprivation seen in our sample highlight substantial health issues in this at-risk and hard to reach occupational group. While the longer-term

© Queen's Printer and Controller of HMSO 2022. This work was produced by Clemes *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This 'first look' scientific summary may be freely reproduced for the purposes of private research and study and extracts may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

impact of the SHIFT programme is unclear, the programme (with refinement) offers potential to be incorporated into driver training courses to promote activity in this at-risk, underserved, and hard-to-reach essential occupational group.

Trial Registration: ISRCTN10483894 (date registered: 01/03/2017, last edited: 10/09/2021).

Funding details: This project was funded by the National Institute for Health Research (NIHR) Public Health Research programme (reference: NIHR PHR 15/190/42) and will be published in full in Public Health Research; Vol. x, No. x. The study was also supported by the NIHR Leicester Biomedical Research Centre which is a partnership between University Hospitals of Leicester NHS Trust, Loughborough University, and the University of Leicester.