

Mortality impact, risks, and benefits of general population screening for ovarian cancer: the UKCTOCS randomised controlled trial

Usha Menon¹*, Aleksandra Gentry-Maharaj¹,
Matthew Burnell¹, Andy Ryan¹, Jatinderpal K Kalsi^{2,3},
Naveena Singh⁴, Anne Dawnay⁵, Lesley Fallowfield⁶,
Alistair J McGuire⁷, Stuart Campbell⁸, Steven J Skates⁹,
Mahesh Parmar¹ and Ian J Jacobs¹⁰ on behalf of the
UKCTOCS team

¹MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK

²Department of Women's Cancer, Institute for Women's Health, University College London, London, UK

³CRUK UCL Centre, UCL Cancer Institute, London, UK

⁴Department of Cellular Pathology, Barts Health NHS Trust, London, UK

⁵Department of Clinical Biochemistry, Barts Health NHS Service Trust, London, UK

⁶Sussex Health Outcomes Research and Education in Cancer (SHORE-C), Brighton and Sussex Medical School, University of Sussex, Brighton, UK

⁷London School of Economics and Political Science, London, UK

⁸Create Health, London, UK

⁹Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

¹⁰Department of Women's Health, University of New South Wales, Sydney, NSW, Australia

*Corresponding author u.menon@ucl.ac.uk

Published May 2023
DOI: 10.3310/BHBR5832

Plain language summary

Mortality impact, risks, and benefits of general population screening for ovarian cancer: the UKCTOCS randomised controlled trial

Health Technology Assessment 2025; Vol. 29: No. 10
DOI: 10.3310/BHBR5832

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Plain language summary

What was the question?

Most women with ovarian cancer are diagnosed after the disease has spread widely (advanced stage – III and IV) and more than half die within 5 years. We wanted to find out if testing women without symptoms could pick up ovarian cancer at an earlier stage before it has spread beyond the ovaries and tubes and reduce deaths. We also wanted to assess the risks and benefits of such screening.

What did we do?

We invited over 1.2 million women living near 13 centres in England, Wales and Northern Ireland. Of them, 202,638 joined the trial. All women were between 50 and 74 and were no longer having periods. They had never been diagnosed with ovarian cancer or were not having treatment for any other cancer. They did not have many relatives with ovarian or breast cancer.

The volunteers were placed into one of three groups at random:

1. The blood test group contained 50,640 women who had yearly CA125 blood tests. If these showed a moderate or high chance of ovarian cancer, they had repeat CA125 tests and a scan.
2. The scan group contained 50,639 women who had yearly internal scans of their ovaries and tubes which were repeated if they showed an abnormality.
3. The no-screening group contained 101,359 women.

Those in the blood and scan groups had screening every year until December 2011.

We sent all women health questionnaires and also, with their permission, received information about them from the national cancer and death registries till mid-2020.

What did we find?

Women in the screened groups had an average of eight years of screening.

We followed them for approximately 16 years after they had joined the trial.

During this period, 2055 women were diagnosed with ovarian and tubal cancer. It was about 1 in 100 women (1%) in all three groups:

- 522 of 50,625 in the blood group
- 517 of 50,623 in the scan group
- 1016 of 101,314 in the no-screening group

More women were diagnosed with early-stage cancer and fewer were diagnosed with advanced cancer in the blood group compared to the no-screening group. There was no difference in the number diagnosed with early or advanced disease between the scan and no-screening group.

Despite this difference, the number of women in each group who died from ovarian and tubal cancer was similar in all three groups: 296 of 50,625 (0.6%) in the blood group, 291 of 50,623 (0.6%) in the scan group and 619 of 101,314 (0.6%) in the no-screening group.

Other results showed:

- Overall, 81% women in the blood group and 78% in the scan group attended all of their annual screening appointments.
- In the blood group, screening detected 84% of ovarian and tubal cancers diagnosed within one year of the test and correctly classified as normal 99.8% of women who did not have ovarian and tubal cancer.
- In the scan group, screening detected 72% of ovarian and tubal cancers diagnosed within one year of the last test and correctly classified 99.5% of those who did not have ovarian and tubal cancer.
- Both screening tests were associated with minor complications.
- While screening did not increase anxiety, there was slightly increased worry in women who were asked to return for more intense repeat testing.
- Both screening methods picked up changes that were in fact not ovarian cancer. This meant that women had unnecessary surgery together with the worry and risk of complications that go with it.
 - In the blood group 14 women had unnecessary surgery for every 10,000 women screened annually. This means that for each woman found to have ovarian cancer, an additional 2 women had unnecessary surgery.
 - In the scan group 50 women had unnecessary surgery for every 10,000 women screened annually. This means that for each woman found to have ovarian cancer, an additional 10 women had unnecessary surgery.
- A biobank with all the donated data and over 0.5 million serum samples, including yearly samples from women in the blood group, was built and continues to be used in many new studies, mainly focused on early detection of cancer.

What does this mean?

Screening using the CA125 blood test or transvaginal ultrasound scan to test for ovarian cancer did not save lives. Additionally, it was associated with some harm. Therefore, an ovarian cancer screening programme for most women cannot be currently recommended.

The trial also showed for the first time that ovarian cancer can be detected earlier through screening. However, for screening to save lives, the test needs to pick up many more women earlier in the course of the disease so that available treatments are effective.

The biobank provides an opportunity for scientists to see if newer tests for cancer can detect the disease earlier.

Health Technology Assessment

ISSN 2046-4924 (Online)

Impact factor: 3.5

A list of Journals Library editors can be found on the [NIHR Journals Library website](#)

Launched in 1997, *Health Technology Assessment (HTA)* has an impact factor of 3.5 and is ranked 30th (out of 174 titles) in the 'Health Care Sciences & Services' category of the Clarivate 2022 Journal Citation Reports (Science Edition). It is also indexed by MEDLINE, CINAHL (EBSCO Information Services, Ipswich, MA, USA), EMBASE (Elsevier, Amsterdam, the Netherlands), NCBI Bookshelf, DOAJ, Europe PMC, the Cochrane Library (John Wiley & Sons, Inc., Hoboken, NJ, USA), INAHTA, the British Nursing Index (ProQuest LLC, Ann Arbor, MI, USA), Ulrichsweb™ (ProQuest LLC, Ann Arbor, MI, USA) and the Science Citation Index Expanded™ (Clarivate™, Philadelphia, PA, USA).

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (www.publicationethics.org/).

Editorial contact: journals.library@nihr.ac.uk

The full HTA archive is freely available to view online at www.journalslibrary.nihr.ac.uk/hta.

Criteria for inclusion in the *Health Technology Assessment* journal

Manuscripts are published in *Health Technology Assessment (HTA)* if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in *Health Technology Assessment* are termed 'systematic' when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

Health Technology Assessment (HTA) research is undertaken where some evidence already exists to show that a technology can be effective and this needs to be compared to the current standard intervention to see which works best. Research can evaluate any intervention used in the treatment, prevention or diagnosis of disease, provided the study outcomes lead to findings that have the potential to be of direct benefit to NHS patients. Technologies in this context mean any method used to promote health; prevent and treat disease; and improve rehabilitation or long-term care. They are not confined to new drugs and include any intervention used in the treatment, prevention or diagnosis of disease.

The journal is indexed in NHS Evidence via its abstracts included in MEDLINE and its Technology Assessment Reports inform National Institute for Health and Care Excellence (NICE) guidance. HTA research is also an important source of evidence for National Screening Committee (NSC) policy decisions.

This article

The research reported in this issue of the journal was funded by the HTA programme as award number NIHR135503. The contractual start date was in January 2017. The draft manuscript began editorial review in January 2022 and was accepted for publication in August 2022. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' manuscript and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this article.

This article presents independent research funded by the National Institute for Health and Care Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, the HTA programme or the Department of Health and Social Care. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, the HTA programme or the Department of Health and Social Care.

This article was published based on current knowledge at the time and date of publication. NIHR is committed to being inclusive and will continually monitor best practice and guidance in relation to terminology and language to ensure that we remain relevant to our stakeholders.

Copyright © 2023 Menon *et al.* This work was produced by Menon *et al.* under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. See: <https://creativecommons.org/licenses/by/4.0/>. For attribution the title, original author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

Published by the NIHR Journals Library (www.journalslibrary.nihr.ac.uk), produced by Newgen Digitalworks Pvt Ltd, Chennai, India (www.newgen.co).