Evidence of quality of life for hospitalised patients with COVID-19: a scoping review

Edward JD Webb,¹ Natalie King,¹ Daniel Howdon,¹ Enitan D Carrol,² Joanne Euden,³ Philip Howard,⁴,⁵ Philip Pallmann,³ Martin J Llewellyn,⁶ Emma Thomas-Jones,³ Bethany Shinkins,¹,⁷† and Jonathan Sandoe,⁸,⁹† on behalf of the Procalcitonin: Evaluation of Antibiotic use in COVID-19 Hospitalised Patients (PEACH) Study Team

¹Academic Unit of Health Economics, Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
²Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
³Centre for Trials Research, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
⁴School of Healthcare, Faculty of Medicine and Health, University of Leeds, Leeds, UK
⁵Department of Medicines Management and Pharmacy, Leeds Teaching Hospitals, Leeds General Infirmary, Leeds, UK
⁶Brighton and Sussex Medical School, University of Sussex and University Hospitals Sussex NHS Foundation Trust, Brighton, UK
⁷Division of Health Sciences, Warwick Medical School, University of Warwick, Warwick, UK
⁸Healthcare Associated Infection Group, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
⁹Leeds Teaching Hospitals NHS Trust, Leeds, UK

*Corresponding author e.j.d.webb@leeds.ac.uk
†Joint last authors

Published May 2024
DOI: 10.3310/APTR4281

Abstract

Background: Information on the quality of life of people hospitalised with COVID-19 is important, both in assessing the burden of disease and the cost-effectiveness of treatments. However, there were potential barriers to collecting such evidence.

Objective: To review the existing evidence on quality of life for people hospitalised with COVID-19, with a focus on the amount of evidence available and methods used.

Design: A scoping review with systematic searches.

Results: A total of 35 papers were selected for data extraction. The most common study type was economic evaluation (N = 13), followed by cross-sectional (N = 10). All economic evaluations used published utility values for other conditions to represent COVID-19 inpatients' quality of life. The most popular quality-of-life survey measure was the Pittsburgh Sleep Quality Index (N = 8). There were 12 studies that used a mental health-related survey and 12 that used a sleep-related survey. Five studies used EQ-5D, but only one collected responses from people in the acute phase of COVID-19. Studies reported a negative impact on quality of life for people hospitalised with COVID-19, although many studies did not include a formal comparison group.

Limitations: Although it used systematic searches, this was not a full systematic review.

Conclusion: Quality-of-life data were collected from people hospitalised with COVID-19 from relatively early in the pandemic. However, there was a lack of consensus as to what survey measures to use, and few studies used generic health measures. Economic evaluations for COVID-19 treatments did not use utilities collected from people with COVID-19. In future health crises, researchers should be vigilant for opportunities to collect quality-of-life data from hospitalised patients but should try to co-ordinate as well as ensuring generic health measures are used more.
Background and introduction

Coronavirus disease 2019 (COVID-19) is a new disease caused by the SARS-CoV-2 virus, first discovered in Wuhan, China, in December 2019, which has caused global disease, suffering and disruption. Most people infected with the virus will have mild or moderate respiratory or viral symptoms; however, some become seriously ill and require hospital-based treatment. Individuals who develop severe illness due to COVID-19 tend to be older people with comorbidities such as cardiovascular disease, chronic respiratory disease, diabetes and cancer. As well as studying COVID-19 symptoms, risk factors, management and mortality, it is important to know how COVID-19 affects quality of life (QOL). Knowing the impact on QOL gives a holistic picture of the burden of COVID-19 on the patient experience. It is also an important factor in knowing how to guide care to support patients’ needs. Furthermore, vast resources have been spent on combating COVID-19, with estimates of over US$7 billion in research and development funding being made available in the first 9 months of the pandemic. QOL data underpin examinations of how cost-effective interventions that aim to tackle COVID-19 are, by reducing the risks of hospitalisation, intensive care unit (ICU) admission, ventilation, etc., and/or by aiding recovery.

There has been research focusing on the QOL of people with COVID-19 following discharge from hospital, with a systematic review including 21 studies. There have also been studies on how Long COVID-19 affects QOL, with reviews summarising the findings. However, we are not aware of any summaries of findings for QOL for patients hospitalised with COVID-19, and this study seeks to fill this gap by providing an overview of research in this area. QOL for hospitalised patients with COVID-19 is important to study alongside post-hospitalised/long COVID-19 patients, as they are the people most impacted during the acute phase of the disease. Thanks to the delivery of large, rapid randomised controlled trials, there is now much more knowledge about how best to prevent and treat COVID-19, including widespread vaccination and the distribution of disease severity in hospitals has consequently changed over time. As novel diagnostics and therapeutics continue to emerge, it is important to understand the evolving burden of disease and impact on QOL for individuals hospitalised with COVID-19.

Quality of life is typically measured using questionnaires, ideally completed by the individual with the disease in question, typically including generic questions which capture the individual’s physical, psychological and social capabilities. Another reason it is important to examine the research on QOL for patients hospitalised with COVID-19 is that collecting data on patient-reported outcome measures (PROMs) in hospitals during the peak of the pandemic presented a logistical challenge, with the protection of patients and staff rightly taking priority.

Aims and objectives

The aim of this paper is to provide an overview of studies reporting QOL data for individuals who are hospitalised with COVID-19, and the methods they used. This will reveal the best currently available evidence on COVID-19 inpatients’ QOL. It will also give an overview of how QOL research progressed throughout the course of the pandemic, given the challenges involved. Finally, the review will highlight where knowledge gaps exist in relation to QOL for people hospitalised with COVID-19, as well as providing recommendations for research practice during future health crises.

Methods

Search terms were developed with reference to Arber et al. by two authors, one a health economist (EW) and one an information specialist (NK). The search terms centred around the concepts of hospital patients, COVID-19 and health utility measures, including quality-adjusted life-years (QALYs), disability-adjusted life-years (DALYs) and survey measures such as EQ-5D, the Short Form (36) Health Survey (SF-36) and the Health Utilities Index (HUI). A full list of search strategies is included in the Appendix. The following databases were searched in May 2022, with searches re-run in December, from database inception to 7 December 2022: EMBASE (Classic and Ovid), Ovid MEDLINE®, Scopus and Web of Science (Core Collection, SCI-EXPANDED 1900+, SSCI 1900+, A&HCI 1975+, CPCI-S 1900+, CPCI-SSH 1900+, ESCI 2015). We did not apply limits for language or publication date to the search. The search was peer-reviewed by a second information specialist using the PRESS checklist.
Search results were stored and deduplicated in an EndNote library. Titles and abstracts were initially screened for inclusion in full-text review, after which the selected full texts were screened for inclusion in the data extraction process. Screening was done by one health economist author (EW).

The inclusion criteria were:

- reporting on original research
- English language full text available
- includes quantitative data specifically for inpatients with COVID-19.

Pre-prints and conference abstracts were included, but editorials, letters and commentaries were not. Likewise, review papers, protocols, secondary analyses and animal and laboratory studies were excluded. Studies only reporting results for pooled samples of COVID-19 inpatients and non-COVID-19 inpatients were not included. Studies were included if they published utility values for conditions other than COVID-19, provided those utilities were used to represent QOL for COVID-19 inpatients within the context of that study. So, for example, cost-utility analyses of interventions for COVID-19 inpatients were eligible for inclusion, even if the utility values were taken from patients with other conditions.

Three authors (EW, DH, BS) used a data extraction form to extract information on the studies’ methods and key results. The data extraction form is provided as Report Supplementary Material 1.

Extracted data were analysed using narrative synthesis.

Equality, diversity and inclusion

Inclusive language was used throughout the manuscript. Studies from many different countries, including low- or middle-income countries, met the inclusion criteria. Patient and public involvement co-researchers were involved throughout the project.

Results

Figure 1 gives a PRISMA diagram of the search results and paper identification. The final search identified 2222 records with 1040 unique records after deduplication. There were 107 records selected for full-text review, out of which 35 studies were selected for data extraction. *Table 1* summarises the individual studies, with all extracted data available as Report Supplementary Material 1.

Figure 2 illustrates which geographical contexts the studies were set in. Four out of six inhabited continents were represented, with no studies coming from Oceania or South America. The most common country was the USA, with just over a quarter of all studies (*N = 9*).

Figure 3 shows which study designs were chosen. The most common design was economic evaluation (*N = 13*) followed by cross-sectional (*N = 10*). *Figure 3* also illustrates what approaches were taken for economic evaluation. Most (*N = 8*) used a decision tree, with almost half (*N = 6*) using a Markov model. These modelling approaches were often combined, with a decision tree representing the hospitalisation phase, followed by a Markov process representing the rest of a patient’s life post discharge, with transitions between ill health, recovery and death. In two studies, a value of information analysis was performed.

Table 2 gives details about the various QOL measures employed by studies and *Figure 4* illustrates how frequently they were used. Most (*N = 13*) used published utility values, all of which were economic evaluations. Four studies used values for influenza to represent mild/moderate COVID-19 and values for patients with *Clostridioides difficile* infection to represent more severe illness. Two other studies used values for influenza to represent less severe COVID-19 cases and values for either influenza H1N1 (swine flu) or pneumonia to represent more severe cases. Kelton et al. used values for patients with *C. difficile* infection and Sheinson et al. used utility values from people with severe acute respiratory syndrome (SARS). Dijk et al. used published HUI values for SARS patients hospitalised with COVID-19, and published EQ-5D-3L values to represent QOL in post-ICU and post-hospitalisation patients. Two studies reported DALYs for patients using published disability weights from the Global Burden of Disease (GBD) study. One used weights for severe lower respiratory tract infection to represent severe COVID-19 inpatients, and pneumonia to represent critical inpatients; the other used severe respiratory tract infection for severe patients, but weights for ICU admission for critical patients. In four studies, it was unclear what conditions some or all published utility values came from. A single study used a nine-member expert panel to estimate COVID-19 disability weights for calculating DALYs.

Twelve studies used different mental health-related measures: the Patient Health Questionnaire-9 (PHQ-9; *N = 3*), the Hospital and Anxiety Depression Scale (HADS; *N = 2*), Generalised Anxiety Disorder-7 (GAD-7; *N = 2*), the Beck Anxiety Inventory...
(BAI; N = 1), the Beck Depression Inventory (BDI; N = 1), the Child Depression Inventory (CDI; N = 1), the Child Post-Traumatic Stress Reaction Index (CPTS-RI; N = 1), the Harvard Trauma Questionnaire (HTQ; N = 1), the Perceived Stress Scale (PSS-10; N = 1), the Screen for Child Anxiety Related Disorders (SCARED; N = 1), the Self-Rating Anxiety Scale (SAS; N = 1) and the Self-Rating Depression Scale (SDS; N = 1). Twelve studies used one or more sleep-related QOL measures, with the most popular being the Pittsburgh Sleep Quality Index (PSQI; N = 8).

Considering generic health measures, four studies used the Short Form (36) Health Survey (SF-36) and five studies used EQ-5D, of which two used EQ-5D-3L and three used EQ-5D-5L. Two studies using EQ-5D assessed inpatient rehabilitation programmes and one looked at patients seen 7 days after undergoing surgery for a proximal femur fracture. Thus, although they qualify for inclusion in this review due to reporting QOL data for inpatients with COVID-19, they did not collect data from patients in the acute phase of the disease. The remaining study-collected only data from those aged over 80.

Figure 5 shows how many COVID-19 inpatients were analysed by each study. The median number of participants was 97.5 and the mean was 1096.25. The mean was far higher due to two outliers, He et al. and Kairu et al., who included 2702 and 20,836 patients, respectively. These numbers were achieved by reporting DALYs calculated using years of life lost from routine data and disability weights from either published values or a nine-member expert panel.

Figure 6 shows a timeline of when studies collected data and publication dates (where only the month of data collection start/stop is given, we assumed collection started

FIGURE 1 PRISMA diagram.
TABLE 1 Studies selected for inclusion

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N analysed</th>
<th>Quality-of-life measures</th>
<th>Quality-of-life values</th>
<th>Quality-of-life conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akinci and Basar</td>
<td>Cross-sectional</td>
<td>189</td>
<td>PSQI; HADS</td>
<td>87 had PSQI < 5, 102 had PSQI >=5; 17% of good sleepers above HADS anxiety threshold vs. 9% for poor sleepers (p = 0.131); 29% of good sleepers above HADS depression threshold vs. 52% for poor sleepers (p = 0.010)</td>
<td>COVID-19 patients with poor sleep were more likely to be above the HADS depression scale</td>
</tr>
<tr>
<td>Bayrak and Çadirci</td>
<td>Prospective cohort study</td>
<td>122</td>
<td>World Health Organization Quality of Life-OLD (WHOQOL-OLD)</td>
<td>Overall WHOQOL-OLD total score = 41.5 (27.0–69.0). For those who survived (n = 111), total score = 42.0 (20.01–69.0). For non-survivals, total score = 21.0 (17.0–38.0)</td>
<td>QOL scores were significantly lower in the non-survivors on the first day of hospitalisation</td>
</tr>
<tr>
<td>Bounoua et al.</td>
<td>Cross-sectional</td>
<td>85</td>
<td>SF-36</td>
<td>Not clear</td>
<td>COVID-19 negatively affected QOL with lower SF36 scores with severe and critical COVID-19 compared to moderate; age, comorbidities and residual symptoms were associated with QOL</td>
</tr>
<tr>
<td>Carta and Conversano</td>
<td>Economic evaluation</td>
<td>1000 (simulated)</td>
<td>Published values for influenza/pneumonia</td>
<td>Base utility 0.851; hospitalised with no supplemental oxygen 0.581; hospitalised with supplemental oxygen 0.5; hospitalised patients with non-invasive ventilation 0.23; hospitalised with invasive ventilation 0.05</td>
<td></td>
</tr>
<tr>
<td>Chakrabarti</td>
<td>Cross-sectional</td>
<td>590</td>
<td>PHQ-9; ISI</td>
<td>40.1% had a PHQ-9 score over 24 indicating depression; depression was more likely among older people; females; unmarried/ separated people; people with substance abuse issues and comorbidities; 28.8% of patients had ISI scores above 14 indicating insomnia; 5% indicated suicidal ideation</td>
<td>COVID-19 had a major psychological impact on patients</td>
</tr>
<tr>
<td>Cleary et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>DALYs: YLL from actuarial study, disability weights from GBDS severe lower respiratory tract infection/pneumonia</td>
<td>Severe patients: disability weight 0.13, illness duration 1.5 months; critical patients: disability weight 0.41, duration of illness 2 months</td>
<td></td>
</tr>
<tr>
<td>Congly et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published values for influenza/influenza (H1N1)2009</td>
<td>Base utility 0.851; severe COVID-19 0.23; moderate COVID-19 0.5616</td>
<td></td>
</tr>
<tr>
<td>Covino et al.</td>
<td>Prospective cohort study</td>
<td>368</td>
<td>EQ-5D-5L</td>
<td>All cases (n = 368) = 8[5.10]. Survived (n = 236) = 9[7.13]. The group is also split by who had a stable QOL over time and those who QOL worsened to look for associations</td>
<td>Factors most influencing a decrease in QOL were found to be the female sex, frailty status before COVID-19, age group and overall pre-existing EQ-5D-5L value</td>
</tr>
<tr>
<td>Dijk et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published HUI values for SARS; published EQ-5D-3L values for post-ICU/post-hospitalised patients</td>
<td>ICU 0.050; hospital ward 0.500; recovered from ICU 0.677; recovered from hospital ward 0.880</td>
<td></td>
</tr>
</tbody>
</table>

This article should be referenced as follows:

This article should be referenced as follows:

TABLE 1 continued
TABLE 1 Studies selected for inclusion (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N analysed</th>
<th>Quality-of-life measures</th>
<th>Quality-of-life values</th>
<th>Quality-of-life conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloeckl et al.(^{22})</td>
<td>Prospective cohort</td>
<td>50</td>
<td>SF-66; PHQ-9; GAD-7</td>
<td>For mild/moderate patients: SF-36 mental (31.8 vs. 31.7) and physical (48.6 vs. 54.2) components not significantly different pre/post intervention. For severe/critical patients: SF-36 physical component not significantly different pre/post intervention (30.2 vs. 34.7), mental component score significantly different (38.5 vs. 52.9, p < 0.001); PHQ-9 score significantly improved (4 vs. 7, p = 0.002); GAD-7 score significantly deteriorated (4 vs. 5, p = 0.021)</td>
<td>Pulmonary rehabilitation can improve QOL for patients with severe/critical COVID-19</td>
</tr>
<tr>
<td>Gunes and Sensoy(^{23})</td>
<td>Cross-sectional</td>
<td>94</td>
<td>PSQI; ESS; ISI</td>
<td>55.1% of confirmed COVID-19 patients had bad sleep quality (PSQI > 5) compared to 33.1% of suspected COVID-19 patients (p = 0.02); no significant differences between groups were seen for ESS or ISI</td>
<td>'T[he psychosomatic aspect of this epidemic should not be overlooked and patients must be evaluated in detail in respect of sleep'</td>
</tr>
<tr>
<td>Hayden et al.(^{24})</td>
<td>Prospective cohort</td>
<td>105</td>
<td>EQ-5D-5L</td>
<td>Median EQ-5D-5L level sum was 11.65 pre intervention and 9.23 post intervention (p < 0.001); EQ-VAS improved pre/post intervention (medians 50.01 vs. 68.05, p < 0.001); PHQ-9 improved pre/post intervention (medians 4.39 vs. 2.69, p < 0.001); GAD-7 improved pre/post intervention (medians 6.39 vs. 4.00, p < 0.001)</td>
<td>Pulmonary rehabilitation can improve quality of life for patients with COVID-19</td>
</tr>
<tr>
<td>He et al.(^{25})</td>
<td>Cross-sectional</td>
<td>9 (expert panel); 2702 (patients)</td>
<td>DALYs: disability weights from expert panel.</td>
<td>Highest disability weight was 0.399 for severe expiratory dyspnoea; lowest disability weight was 0.004 for mild cough and sore throat; mean synthetic DALY was 2.29, mean daily DALY was 0.18</td>
<td>COVID-19 disease burden was higher for women than men, and higher in the younger than the older population</td>
</tr>
<tr>
<td>Huang et al.(^{26})</td>
<td>Prospective cohort</td>
<td>74</td>
<td>SSS-8; mMRC; PSQI</td>
<td>SSS-8, mMRC and PSQI scores declined over time</td>
<td>Symptomatic burden of COVID-19 and sleep quality improves over time up to 1 month post discharge</td>
</tr>
<tr>
<td>Jovanoski et al.(^{27})</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published utility values for C. difficile</td>
<td>Base utility: 0.9442-0.0027(^*)*age; non-hospitalised COVID-19 disutility: 0.19; hospitalised COVID-19 disutility: 0.61</td>
<td></td>
</tr>
<tr>
<td>Kairu et al.(^{28})</td>
<td>Economic evaluation</td>
<td>20,836</td>
<td>DALYs: disability weights from GBDS severe respiratory infection/ICU admission</td>
<td>Severe patients: disability weight 0.133; critical patients: disability weight 0.655</td>
<td></td>
</tr>
<tr>
<td>Karaogullarindan et al.(^{29})</td>
<td>Case-control</td>
<td>71 COVID, 71 non-COVID</td>
<td>PSQI; BDI; BAI</td>
<td>53.5% of COVID patients had poor sleep quality compared to 43.0% of non-COVID patients (p = 0.011); 66.2% of COVID patients had positive anxiety symptoms compared to 59.2% of non-COVID patients (p = 0.088); 63.4% of COVID patients had positive depression symptoms compared to 57.0% of non-COVID patients (p = 0.127); disparities were worse for older patients</td>
<td>Poor sleep quality, anxiety and depression were observed for COVID-19 inpatients aged > 65</td>
</tr>
<tr>
<td>Kelton et al.(^{30})</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published values for C. difficile and other unspecified conditions</td>
<td>Base utilities ranged from 0.922 for 18- to 29-year-olds to 0.736 for aged 80+; COVID-19 symptom disutility –0.190; mechanical ventilation disutility –0.600; non-invasive ventilation disutility –0.500; supplemental oxygen disutility –0.400; medical care without oxygen disutility –0.300</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1 Studies selected for inclusion (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N analysed</th>
<th>Quality-of-life measures</th>
<th>Quality-of-life values</th>
<th>Quality-of-life conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokhan et al.</td>
<td>Prospective cohort study</td>
<td>38</td>
<td>EQ-5D-3L</td>
<td>On the 21st day of the rehabilitation programme, the quality of life of the project participants questionnaires improved by 15.7% (from 8.9 ± 0.6 to 7.5 ± 0.5 points)</td>
<td>QOL scores improved over time for those undertaking the walking therapy intervention</td>
</tr>
<tr>
<td>Kowal et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published utility values</td>
<td>Unclear</td>
<td>N/A</td>
</tr>
<tr>
<td>J Li et al.</td>
<td>Non-randomised controlled trial</td>
<td>75</td>
<td>SIM-C; PSQI; HADS</td>
<td>Mindfulness intervention significantly improved SIM-C scores from 30.1 to 35.2 (p < 0.001), no significant difference for standard of care (29.4 vs. 31.2); Anxiety score: no significant differences in either group (14.1 vs. 12.9, p = 0.084 for intervention, 13.6 vs. 13.3, p = 0.629 for control); Depression score: significant improvement for intervention (14.1 vs. 12.5, p = 0.038) but not control (14.0 vs. 13.5, p = 0.568); PSQI: significant improvement for intervention (12.9 vs. 9.4, p < 0.001) but not control (13.4 vs. 11.9, p = 0.150)</td>
<td>Mindfulness meditation improved sleep quality and depression</td>
</tr>
<tr>
<td>X Li et al.</td>
<td>Cross-sectional</td>
<td>66</td>
<td>SDS; SAS; PSQI</td>
<td>27.6% were above SDS depression threshold; 22.7% were above SAS anxiety threshold; 25.5% had poor sleep</td>
<td>COVID-19 inpatients had mental health and sleep quality problems</td>
</tr>
<tr>
<td>Moretti et al.</td>
<td>Cross-sectional study</td>
<td>23</td>
<td>mBDS</td>
<td>8 patients (34.8%) had no dyspnoea, 3 (13.04%) had mild dyspnoea, 10 (43.5%) had severe dyspnoea, 1 (4.3%) had very severe dyspnoea and 1 (4.3%) had critical dyspnoea</td>
<td>mBDS scores were moderately correlated with reduced muscle power functions (ICF code: b730, p = 0.041) and walking (ICF code: d450, p = 0.011)</td>
</tr>
<tr>
<td>Moseholm et al.</td>
<td>Prospective cohort study</td>
<td>95</td>
<td>HADS; PSS-10; ISI; HTQ; SF-36</td>
<td>Baseline mean HADS-D score was 6.54; HADS-D scores were lower at 3-month (3.71, p < 0.001) and 6-month (3.29, p < 0.001) follow-up; baseline mean HADS-A score was 5.87; HADS-A scores were lower at 3-month (3.90, p < 0.001) and 6-month (3.93, p < 0.001) follow-up; baseline mean PSS scores were 11.11, with no significant changes at 3-month (11.47, p = 0.67) or 6-month follow-up (10.93, p = 0.95); baseline mean ISI scores were 8.58, with no significant changes at 3-month (9.41, p = 0.67) or 6-month follow-up (7.33, p = 0.95); 81% had no PTSD symptoms at baseline, with 82% at 3-month and 84% at 6-month follow-up; baseline mean SF-12 mental component was 46.35; SF-12 mental component did not change significantly at 3-month follow-up (46.42, p = 0.40) but was significantly higher at 6-month follow-up (49.33, p = 0.03); baseline mean SF-12 physical component was 42.39; SF-12 physical component did not change significantly at 3-month follow-up (42.48, p = 0.42) but was significantly higher at 6-month follow-up (46.26, p < 0.01)</td>
<td>A high proportion of patients hospitalised with COVID-19 experienced psychological distress</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>N analysed</td>
<td>Quality-of-life measures</td>
<td>Quality-of-life values</td>
<td>Quality-of-life conclusions</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Ohsfeldt et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published values for influenza/C. difficile</td>
<td>Base utilities ranged from 0.922 for 18- to 29 year-olds to 0.736 for aged 80+; COVID-19 symptom disutility –0.190; mechanical ventilation disutility –0.600; non-invasive ventilation disutility –0.500; supplemental oxygen disutility –0.400; medical care without oxygen disutility –0.300</td>
<td></td>
</tr>
<tr>
<td>Oksuz et al.</td>
<td>Economic evaluation</td>
<td>78</td>
<td>Published values for unspecified conditions</td>
<td>Standard of care disutility: –0.515; remdesivir disutility: –0.341</td>
<td></td>
</tr>
<tr>
<td>Ouanes et al.</td>
<td>Case-control study</td>
<td></td>
<td>SF-36</td>
<td>SF-36 physical component scores were 58.1 (inpatients), 58.2 (quarantined) and 57.2 (general population) with no significant differences; SF-36 mental component scores were 51.2 (inpatients), 49.5 (quarantined) and 47.9 (general population) with general population significantly lower than the other two groups</td>
<td>COVID-19 patients’ QOL was better than expected, possibly due to support, access to mental health care and enhanced resilience on recovering from COVID-19</td>
</tr>
<tr>
<td>Pass et al.</td>
<td>Retrospective cohort study</td>
<td>123</td>
<td>EQ-5D-3L</td>
<td>EQ-5D-3L values were higher for non-COVID-positive patients than COVID-positive patients (0.701 vs. 0.291, p = 0.001)</td>
<td>A COVID-19 infection was associated with reduced QOL</td>
</tr>
<tr>
<td>Rafi et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published values for influenza/C. difficile</td>
<td>Utility value for patients undergoing invasive ventilation assumed to be 0; hospitalised, not on oxygen disutility –0.36; hospitalised on oxygen disutility –0.58; increased comorbidities at entry disutility –0.116; 1-year post-discharge disutility –0.097</td>
<td></td>
</tr>
<tr>
<td>Samushiya et al.</td>
<td>Cross-sectional study</td>
<td>119</td>
<td>HADS; PSQI; MFI-20</td>
<td>11% of patients had HADS anxiety subscale scores above 8; 4% of patients had HADS depression subscale scores above 8; 73% of patients had MFI-12 scores above 20; 27% of patients had PSQI scores above threshold for sleep disorders</td>
<td>COVID-19 inpatients had poor mental health, fatigue and sleep quality; QOL = health-related quality of life</td>
</tr>
<tr>
<td>Sheinson et al.</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published values for survivors of acute respiratory distress syndrome/unspeciﬁed conditions</td>
<td>Base utilities ranged from 0.920 for 18- to 29-year-olds to 0.740 for aged 80+; COVID-19 symptom disutility –0.270; mechanical ventilation disutility –0.560; oxygen support without ventilation disutility –0.360; no oxygen support disutility –0.110</td>
<td></td>
</tr>
<tr>
<td>Tapan et al.</td>
<td>Cross-sectional study</td>
<td>105</td>
<td>PSQI; HADS</td>
<td>Patients with severe COVID-19 had worse sleep quality than those with non-severe COVID-19 (PSQI 12.64 vs. 8.43, p < 0.001), worse HADS anxiety subscale score (13.18 vs. 8.01, p < 0.001) and worse HADS depression subscale scores (11.76 vs. 9.00, p < 0.001)</td>
<td>Patients with COVID-19 had sleep quality and mental health problems, which were worse for patients with a more severe form of the disease</td>
</tr>
<tr>
<td>Taskesen et al.</td>
<td>Cross-sectional study</td>
<td>100 inpatients, 100 outpatients</td>
<td>CPTS-RI; CDI; SCARED</td>
<td>CDI values were comparable for inpatients/outpatients (7.34 vs. 10.13; p = 0.13); inpatient CPTS-RI was significantly lower than outpatient (10.7 vs. 16.63, p = 0.01); SCREAM values were not significantly different for inpatients and outpatients (15.64 vs. 14.8, p = 0.57)</td>
<td>COVID-19 can have psychopathological effects on paediatric patients</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>N analysed</td>
<td>Quality-of-life measures</td>
<td>Quality-of-life values</td>
<td>Quality-of-life conclusions</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Whittington et al.46</td>
<td>Economic evaluation</td>
<td>N/A</td>
<td>Published values for influenza/C. difficile</td>
<td>COVID-19 symptom disutility –0.190; mechanical ventilation disutility –0.600; non-invasive ventilation disutility –0.500; supplemental oxygen disutility –0.400; medical care without oxygen disutility –0.300</td>
<td>Neurorehabilitation improves QOL for patients with severe neurological symptoms following COVID-19</td>
</tr>
<tr>
<td>Wimmer et al.47</td>
<td>Prospective cohort study</td>
<td>61</td>
<td>Fatigue Severity Scale-7 (FSS-7); HADS; EQ-5D-5L</td>
<td>No significant differences were seen between baseline and discharge for FSS-7 (2.8 vs. 2.9, p = 0.970) or HADS-D (5.0 vs. 4.0, p = 0.142); significant improvements were seen between baseline and discharge for HADS-D (4.0 vs. 3.0, p = 0.026), EQ-VAS (52.3 vs. 67.4, p < 0.001) and EQ-5D-5L index value (0.554 vs. 0.749, p < 0.001)</td>
<td>Neurorehabilitation improves QOL for patients with severe neurological symptoms following COVID-19</td>
</tr>
</tbody>
</table>

N/A, not applicable; BAI, Beck Anxiety Inventory; BDI, Beck Depression Inventory; CDI, Child Depression Inventory; CPTS-RI, Child Post-Traumatic Stress Reaction Index; DALY, disability-adjusted life-year; ESS, Epworth Sleepiness Scale; GAD-7, Generalised Anxiety Disorder-7; HADS, Hospital Anxiety and Depression Scale; HTQ, Harvard Trauma Questionnaire; ISI, Insomnia Severity Index; mBDS, modified Borg Dyspnea Scale; MFI-20, Multidimensional Fatigue Inventory; mMRC, modified Medical Research Council Dyspnea Scale; PHQ-9, Patient Health Questionnaire-9; PSQI, Pittsburgh Sleep Quality Index; PSS-10, Perceived Stress Scale; SAS, Self-Rating Anxiety Scale; SCARED, Screen for Child Anxiety Related Disorders; SDS, Self-Rating Depression Scale; SF-36, Short Form-36; SIM-C, Short Inventory of Mindfulness Capability; SSS-8, 8-item Somatic Symptom Scale; WHOQOL-OLD, World Health Organization Quality of Life Instrument-Older Adults Module; YLL, years of life lost; QALY, quality-adjusted life-year.
on the first and/or ended on the last day of the relevant month). The earliest data collection started in February 202033 and seven other studies also began collection in the first half of 2020,13,23–26,29,34 with the majority using sleep and/or mental health-related measures. The first study to be published was Cleary \textit{et al.},18 who used published utility values. The first study to be published which reported data collected from COVID-19 inpatients was Akinci \textit{et al.},13 who used PSQI and HADS.

For studies where it was clear what mode was used for data collection, two used paper surveys,25,44 six collected responses online,17,26,34,39,42,45 three collected responses via phone36,39,42 and one used in-person interviews.23,36

In general, studies found that being an inpatient with COVID-19 negatively affected QOL and, in particular, many studies found a negative impact on mental health13,17,29,34,42,44 and/or sleep quality.13,17,23,26,29,33,34,42,44 However, many studies did not formally include a comparator group of those without COVID-19, making it difficult to isolate the causal effect of the disease. This is particularly problematic with sleep quality and anxiety where hospitalisation for any condition may be expected to have an impact. A differential impact on some groups was found by several studies, in particular older inpatients,15,20,29 women20,25 and those with comorbidities.20 The four studies examining inpatient rehabilitation programmes22,24,31,47 all showed a significant post-intervention improvement in QOL compared to baseline.

Discussion

The results show that collecting data on COVID-19 inpatients’ QOL was feasible, even in the early stages of the pandemic. Given the disruption that the pandemic caused to healthcare systems, as well as wider society, this is an encouraging finding for QOL research.

It is positive that many studies were from low- or middle-income countries. However, sample sizes, especially for studies collecting data directly from patients, were often relatively low, with a median of under 100. In addition, many studies were cross-sectional. While this design provides much useful information, it is difficult to get a picture of how QOL has varied over the course of the COVID-19 pandemic.

A large fraction of the included studies used sleep and/or mental health-related survey instruments. However, there was a lack of consensus on what survey measures to use,
with a large number employed. Some variation was clearly necessary, for example using child-specific instruments for studies in children, but the wide variety of surveys used hinders comparison of results across different studies.

While sleep and mental health are undoubtedly important topics, there is a lack of data on the overall QOL impact of being hospitalised with COVID-19. For example, only five studies used the EQ-5D measure commonly used in other areas of health research. Only one study targeted the general population of people hospitalised with COVID-19, with the others targeting specific sub-populations (older people, those undergoing surgery, or people in rehabilitation programmes).

The paucity of general QOL data for people hospitalised in the acute phase of the disease meant that economic evaluations used published utility values of disability weights for people with other conditions. This represents a serious knowledge gap, especially given the demonstrated feasibility of collecting such data. Research to fill this gap would be useful, not just for economic evaluation,
but also to see what the impact of being hospitalised with COVID-19 is on people’s QOL, and what aspects of health are most affected.

The latest date on which any included study was open for data collection was September 2021, although results from some studies which collected data at later time points may not yet be available. COVID-19 has evolved during the course of the pandemic and widespread vaccination has also reduced the probability of serious illness for those infected.73–75 Several studies have looked at how QOL evolved for the general population76,77 or for specific groups such as carers.78–80 However, the large number of survey measures used and the fact that generic measures were in a minority makes it difficult to track how the pandemic’s evolution has impacted QOL for COVID-19 inpatients.

Several studies examined a group of COVID-19 inpatients, but without also measuring QOL for a comparison group of individuals without the condition. This made it difficult to quantify the impact of being hospitalised with COVID-19,
FIGURE 4 Frequency of using different quality-of-life measures. BAI, Beck Anxiety Inventory; BDI, Beck Depression Inventory; CDI, Child Depression Inventory; CPTS-RI, Child Post-Traumatic Stress Reaction Index; DALY, disability-adjusted life-year; ESS, Epworth Sleepiness Scale; GAD-7, Generalised Anxiety Disorder-7; HADS, Hospital Anxiety and Depression Scale; HTQ, Harvard Trauma Questionnaire; ISI, Insomnia Severity Index; mBDS, modified Borg Dyspnea Scale; MFI-20, Multidimensional Fatigue Inventory; mMRC, modified Medical Research Council Dyspnea Scale; PHQ-9, Patient Health Questionnaire-9; PSQI, Pittsburgh Sleep Quality Index; PSS-10, Perceived Stress Scale; SAS, Self-rating Anxiety Scale; SCARED, Screen for Child Anxiety Related Disorders; SDS, Self-rating Depression Scale; SF-36, Short Form-36; SIM-C, Short Inventory of Mindfulness Capability; SSS-8, 8-item Somatic Symptom Scale; WHOQOL-OLD, World Health Organization Quality of Life Instrument – Older Adults Module.

FIGURE 5 Analysis sample sizes of COVID-19 inpatients.

This article should be referenced as follows:
since there was no counterfactual to measure a decrement against. Several other studies had a cross-sectional design, which is a common approach and can give valuable insight. However, a longitudinal design can give additional information, albeit usually with greater resource costs.

A strength of our paper is that we jointly developed a search strategy involving those with health economic experience, but also information specialist expertise. We also searched a wide range of databases. This approach maximised our chances of finding all relevant studies.

While our systematic searches were an advantage, it is a weakness of this study that it is not a systematic review, and no protocol was registered in advance. This may potentially have introduced some bias into our findings. There were limitations to the conclusions that could be drawn from the external data. For example, it was not possible to synthesise data from the included studies to find values representing QOL for COVID-19 inpatients on a full health = 1, dead = 0 scale. Many included studies used published values for people with other conditions. Those that did survey patients used a wide range of measures that were difficult or impossible to directly compare, and often comparison groups were not included. There was also a wide range of settings studied, from ICU to inpatient rehabilitation. A final limitation to the extracted data is that it was often difficult to distinguish between people hospitalised due to COVID-19 and those hospitalised for another reason who had also acquired a COVID-19 infection (although given the time frame of most studies, patients were likely to mostly consist of the former group). Yet it is also a strength of our study that examining the above limitations has allowed us to make recommendations both for future COVID-19 and QOL research and for methodological approaches to measuring the QOL impact of future health crises.

Conclusion

We conclude by summarising some recommendations for COVID-19-related research, as well as for research during future health crises. On the former topic, we recommend
that such data be collected longitudinally, so that the QOL impact for patients hospitalised with COVID-19 can be assessed as the disease progresses throughout its acute phase. Several economic evaluations of COVID-19 treatments exist which use utility values from patients with other conditions. The cost-effectiveness of such treatments should be reassessed using data collected from COVID-19 patients.

In future health crises, researchers should be aware of early opportunities to collect QOL data from hospitalised patients, given the feasibility demonstrated during COVID-19. There should also be an effort on behalf of the research community to co-ordinate as much as possible, to enhance comparability of results between studies and to ensure that important knowledge gaps do not arise.

Additional information

CRediT contribution statement

Edward Webb: Conceptualisation (equal), Data curation (lead), Investigation (equal), Methodology (joint lead), Software (lead), Visualisation (lead), Writing – original draft (lead), Writing – editing and reviewing (lead). **Natalie King:** Investigation (equal), Methodology (joint lead), Writing – editing and reviewing (supporting). **Daniel Howdon:** Data curation (supporting), Investigation (supporting), Writing – editing and reviewing (supporting). **Enitan D Carrol:** Conceptualisation (supporting), Funding acquisition (joint lead), Writing – editing and reviewing (supporting). **Joanne Euden:** Funding acquisition (equal), Project administration (lead), Writing – editing and reviewing (supporting). **Philip Howard:** Funding acquisition (equal), Writing – editing and reviewing (supporting). **Bethany Shinkins:** Conceptualisation (equal), Data curation (supporting), Funding acquisition (equal), Investigation (supporting), Supervision (lead), Writing – original draft (supporting), Writing – editing and reviewing (supporting). **Jonathan Sandoe:** Conceptualisation (supporting), Funding acquisition (joint lead), Writing – editing and reviewing (supporting). **Robert West:** Funding acquisition (equal). **Lucy Brookes-Howell:** Funding acquisition (equal). **Paul Dark:** Funding acquisition (equal). **Neil Powell:** Funding acquisition (equal). **Tamas Szakmany:** Funding acquisition (equal). **Mahableswar Albur:** Funding acquisition (equal). **David Partridge:** Funding acquisition (equal). **Thomas Hellyer:** Funding acquisition (equal). **Helena Parsons:** Funding acquisition (equal). **Susan Hopkins:** Funding acquisition (equal). **Margaret Ogden:** Funding acquisition (equal). **Dominic Shaw:** Funding acquisition (equal). **Stacy Todd:** Funding acquisition (equal). **Stuart Bond:** Funding acquisition (equal).

Disclosure of interests

Full disclosure of interests: Completed ICMJE forms for all authors, including all related interests, are available in the toolkit on the NIHR Journals Library report publication page at https://doi.org/10.3310/ATPR4281.

Primary conflicts of interest: None declared.

Data-sharing statement

Full extracted data are provided as Report Supplementary Material 1. All requests for data should be directed to the corresponding author.

Ethics statement

Research approval for the PEACH study was provided by the Health Research Authority (HRA) and Health and Care Research Wales (HCRW). Ethics approval was provided by West Midlands – Solihull Research Ethics Committee (REC Reference 21/WM/0052).

Information governance statement

The University of Leeds is committed to handling all personal information in line with the UK Data Protection Act (2018) and the General Data Protection Regulation (EU GDPR) 2016/679. Under the Data Protection legislation, The University of Leeds is the Data Controller, and you can find out more about how we handle personal data, including how to exercise your individual rights, and the contact details for our Data Protection Officer are here: https://dataprotection.leeds.ac.uk/.

Study registration details

This study is registered as ISRCTN66682918.

Department of Health and Social Care disclaimer

This publication presents independent research commissioned by the National Institute for Health and Care Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, MRC, NIHR Coordinating Centre, the HTA programme or the Department of Health and Social Care.

Funding

This article presents independent research funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment (HTA) programme as award number NIHR132254. The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, the HTA programme or the
Department of Health and Social Care. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, the HTA programme or the Department of Health and Social Care.

This article reports on one component of the research award Evidence of quality of life for hospitalised patients with COVID-19: a scoping review. For more information about this research please view the award page [https:/ /www.fundingawards.nihr.ac.uk/award/NIHR132254].

About this article
The contractual start date for this research was in October 2020. This article began editorial review in March 2023 and was accepted for publication in November 2023. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The Health Technology Assessment editors and publisher have tried to ensure the accuracy of the authors’ article and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this article.

This article was published based on current knowledge at the time and date of publication. NIHR is committed to being inclusive and will continually monitor best practice and guidance in relation to terminology and language to ensure that we remain relevant to our stakeholders.

Copyright
Copyright © 2024 Webb et al. This work was produced by Webb et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAI</td>
<td>Beck Anxiety Inventory</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>CDI</td>
<td>Child Depression Inventory</td>
</tr>
<tr>
<td>COVID-19</td>
<td>coronavirus disease 2019</td>
</tr>
<tr>
<td>CPTS-RI</td>
<td>Child Post-Traumatic Stress Reaction Index</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life-year</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>EuroQol-5 Dimensions</td>
</tr>
<tr>
<td>EQ-5D-3L</td>
<td>EuroQol-5 Dimensions, three-level version</td>
</tr>
<tr>
<td>GAD</td>
<td>generalised anxiety disorder</td>
</tr>
<tr>
<td>GBD</td>
<td>Global Burden of Disease</td>
</tr>
<tr>
<td>HADS</td>
<td>Hospital and Anxiety Depression Scale</td>
</tr>
<tr>
<td>HTQ</td>
<td>Harvard Trauma Questionnaire</td>
</tr>
<tr>
<td>HUI</td>
<td>Health Utilities Index</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>PHQ-9</td>
<td>Patient Health Questionnaire-9</td>
</tr>
<tr>
<td>PROM</td>
<td>patient-reported outcome measure</td>
</tr>
<tr>
<td>PSQI</td>
<td>Pittsburgh Sleep Quality Index</td>
</tr>
<tr>
<td>PSS</td>
<td>Perceived Stress Scale</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>QOL</td>
<td>quality of life</td>
</tr>
<tr>
<td>SAS</td>
<td>Self-rating Anxiety Scale</td>
</tr>
<tr>
<td>SCARED</td>
<td>Screen for Child Anxiety Related Disorders</td>
</tr>
<tr>
<td>SDS</td>
<td>Self-rating Depression Scale</td>
</tr>
</tbody>
</table>

List of supplementary material

Report Supplementary Material 1 Full extracted data

Supplementary material can be found on the NIHR Journals Library report page (https://doi.org/10.3310/ATPR4281).

Supplementary material has been provided by the authors to support the report and any files provided at submission will have been seen by peer reviewers, but not extensively reviewed. Any supplementary material provided at a later stage in the process may not have been peer reviewed.

References

This article should be referenced as follows:

Appendix

We searched the following academic databases for quantitative measures of quality of life in patients hospitalised with COVID-19 on 6 May 2022, with searches re-run on 7 December 2022:

- EMBASE Classic + EMBASE (Ovid) 1947 to 6 December 2022
- Ovid MEDLINE® ALL 1946 to 6 December 2022
- Scopus
- Web of ScienceCore Collection; SCI-EXPANDED 1900+, SSCI 1900+, A&HCI 1975+, CPCI-S 1900+, CPCI-SSH 1900+, and ESCI 2015 + searched simultaneously.

Searches were developed for the concepts: COVID-19, health utility measures and hospital patients. Subject headings and free text words were identified for use in the search concepts by the information specialist and project team members. Further terms were identified and tested from known relevant papers.

For the QOL measures concept, we based our search on the MEDLINE precision maximising health utilities filter (FSF3) designed by Arber et al. with the addition of extra QOL measurement tools. The search was then translated into the other databases. We did not apply limits for language or publication date to the search. The search was peer-reviewed by a second information specialist using the PRESS checklist. Duplicates were removed automatically and manually using Academic Unit of Health Economics, University of Leeds guidance.

Search strategies

EMBASE Classic + EMBASE <1947 to 6 December 2022>
Search date: 7 December 2022

1 quality-adjusted life year/ 32,963
2 (quality-adjusted or adjusted life year$).ti,ab,kf. 31,924
3 (qaly$ or qald$ or qale$ or qtime$).ti,ab,kf. 25,432
4 (illness state$1 or health state$1).ti,ab,kf. 13,894
5 (hui or hui1 or hui2 or hui3).ti,ab,kf. 2939
6 (multiattribute$ or multi attribute$).ti,ab,kf. 1462
7 (utility adj3 (score$1 or valu$ or health$ or cost$ or measur$ or disease$ or mean or gain or gains or index$)).ti,ab,kf. 30,140
8 utilities.ti,ab,kf. 14,439
9 exp ‘quality of life assessment’/ 98,410
10 (eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or euro qol or euroqol or euro qol5d or euroqol5d or euro qual or euroqol or euro qual5d or euroqual5d or eur qol or eur?qol or euro$qol or quality of life or european qol).ti,ab,kf. 28,819
11 (euro$ adj3 (5 d or 5d or 5 dimension$ or 5dimension$ or 5 domain$ or 5domain$)).ti,ab,kf. 8407
12 (sf36$ or sf 36$ or sf thirty six).ti,ab,kf. 44,163
13 (time trade-off$1 or time tradeoff$1 or tto or timetradeoff$1).ti,ab,kf. 3381
14 standard gamble/ or time trade-off method/ 451
15 or/1-14 [Health utilities based on Arber et al. Health State Utilities FSF3 Precision maximising] 206,779
16 disability-adjusted life year/ 3742
17 (DALY? or disability-adjusted life year$).ti,ab,kf. 7098
18 (HALY? or health-adjusted life year$).ti,ab,kf. 654
19 (sf20$ or sf 20$ or sf twenty).ti,ab,kf. 585
20 (sf12$ or sf 12$ or sf twelve).ti,ab,kf. 11,252
21 (sf8$ or sf 8$ or sf eight).ti,ab,kf. 1321
22 ‘health-related quality of life’.ti,ab,kf. 81,885
23 (HRqol or HR-QOL or HRQL or HR QL).ti,ab,kf. 42,963
24 or/16-23 [additional QOL terms] 103,844
25 15 or 24 [expanded Utility and QALY terms] 265,737
26 exp *coronavirus disease 2019/ 229,750
27 (coronavirus-19 or covid19 or covid-19 or covid 2019).ti,ab,kf. 30,433
28 exp *Severe acute respiratory syndrome coronavirus 2/ 35,387
29 (sars-cov2 or sars-cov-2 or sarscov2 or sarscov-2 or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus*).ti,ab,kw. 117,021
30 or/26-29 [Covid 19 simplified] 340,238
31 25 and 30 3312
32 exp hospital patient/ 230,238
33 ((hospital* or in-hospital) adj2 patient*).ti,ab,kf. 226,115
34 (inpatient* or in-patient*).ti,ab,kf. 3,392,878
35 or/32-34 [inpatients] 3,560,099
Ovid MEDLINE(R) ALL <1946 to 6 December 2022>
Search date: 7 December 2022

1 Quality-Adjusted Life Years/ 15,263
2 (quality-adjusted or adjusted life year\$).ti,ab,kf. 22,040
3 (qaly\$ or qald\$ or qale\$ or qtime\$).ti,ab,kf. 13,846
4 (illness state\$1 or health state\$1).ti,ab,kf. 7970
5 (hui or hui1 or hui2 or hui3).ti,ab,kf. 1882
6 (multiattribute\$ or multi attribute\$).ti,ab,kf. 1232
7 (utility adj3 (score\$1 or valu\$ or health\$ or cost\$ or measur\$ or disease\$ or mean or gain or gains or index\$)).ti,ab,kf. 19,091
8 utilities.ti,ab,kf. 8946
9 (eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual or euroqual5d or euro qol or euroql or euro qol5d or euroqol5d or euro qol or euroql or eur?qol or eur?qol5d or euro$qol or quality of life or european qol).ti,ab,kf. 16,100
10 (euro\$ adj3 (5 d or 5d or 5 dimension\$ or 5dimension\$ or 5 domain or 5domain\$)).ti,ab,kf. 5598
11 (sf36$ or sf 36$ or sf thirtysix or sf thirty six).ti,ab,kf. 25,754
12 (time trade-off\$1 or time tradeoff\$1 or tto or timetradef\$1).ti,ab,kf. 2276
13 or/1-12 [Arber et al. Health State Utilities FSF3 Precision maximising] 89,086
14 Disability-Adjusted Life Years/ 153
15 (DALY? or disability-adjusted life year\$).ti,ab,kf. 5576
16 Healthy Life Expectancy/ 42
17 (HALY? or health-adjusted life year\$).ti,ab,kf. 681
18 (sf20$ or sf 20$ or sf twenty).ti,ab,kf. 429
19 (sf12$ or sf 12$ or sf twelve).ti,ab,kf. 6600
20 (sf8$ or sf 8$ or sf eight).ti,ab,kf. 738
21 'health-related quality of life'.ti,ab,kf. 56,432
22 (HRqol or HR-QOL or HRQol or HRQl).ti,ab,kf. 26,447
23 or/14-22 [additional QALY terms] 69,438
24 13 or 23 [expanded Utility and QALY terms] 137,390
25 COVID-19/ 202/332
26 (coronavirus-19 or covid19 or covid-19 or covid19).ti,ab,kf. 279,370
27 SARS-CoV-2/ 143,349
28 (sars-cov2 or sars-cov-2 or sarscov2 or sarscov-2 or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus\$).ti,ab,kf. 106,989
29 or/25-28 [covid 19 simplified] 313,388
30 24 and 29 1615
31 Inpatients/ 28,233
32 ((hospital* or in-hospital) adj2 patient\$).ti,ab,kf. 123,506
33 (inpatient* or in-patient*).ti,ab,kf. 2,129,575
34 or/31-33 [inpatients] 2,214,076
35 30 and 34 [in patients - all] 285

This article should be referenced as follows:

DOI: 10.3310/ATPR4281
Web of Science Core Collection
Search date: 7 December 2022
Performed a simultaneous search of the following databases:

- Science Citation Index Expanded (SCI-EXPANDED)–1900–present
- Social Sciences Citation Index (SSCI)–1900–present
- Arts & Humanities Citation Index (AHCI)–1975–present
- Conference Proceedings Citation Index – Science (CPCI-S)–1990–present
- Conference Proceedings Citation Index – Social Science & Humanities (CPCI-SSH)–1990–present
- Emerging Sources Citation Index (ESCI)–2015–present.

Data updated 5 December 2022

1 'quality-adjusted' OR 'adjusted life year**' (Topic) Results: 21,592
2 qaly* OR qald* OR qale* OR qtime* (Topic) Results: 13,741
3 'illness state**' OR 'health state' (Topic) Results: 7234
4 hui OR hui1 OR hui2 OR hui3 (Topic) Results: 3535
5 multiattribute* OR 'multi attribute**' (Topic) Results: 11,488
6 utility NEAR/3 (score* OR valu* OR health* OR cost* OR measur* OR disease* OR mean OR gain OR gains OR index*) (Topic) Results: 41,056
7 utilities (Topic) Results: 476,812
8 eq-5d OR eq5d OR eq-5 OR eq5 OR 'euro qual' OR euroqual OR 'euro qual5d' OR euroqual5d OR 'euro qol' OR euroqol OR 'euro qol5d' OR euroqol5d OR 'euro quol' OR euroqol OR 'euro quol5d' OR euroqol5d OR 'eur qol' OR eurqol OR 'eur qol5d' OR 'eur qol5d' OR eur?qol OR eur?qol5d OR 'euro quality of life' OR 'european qol' (Topic) Results: 17,634
9 euro* NEAR/3 ('5 d' OR 5d OR '5 dimension**' OR 5dimension* OR '5 domain**' OR 5domain*) (Topic) Results: 6128
10 sf36* OR 'sf 36*' OR 'sf thirty-six' OR 'sf thirty six' (Topic) Results: 30,354
11 'time trade-off'' OR 'time tradeoff'' OR tto OR time-tradeoff* (Topic) Results: 3609
12 #11 OR #10 OR #9 OR #8 OR #7 OR #6 OR #5 OR #4 OR #3 OR #2 OR #1 Results: 55,1076 [based on arber HSU precision maximising]
13 daly* OR 'disability-adjusted life year**' (Topic) Results: 7348
14 'healthy life expectancy' (Topic) Results: 592
15 haly* OR 'health-adjusted life year'' (Topic) Results: 1857
16 sf20* OR 'sf 20'' OR 'sf twenty' (Topic) Results: 347
17 sf12* OR 'sf 12'' OR 'sf twelve' (Topic) Results: 6651
18 sf8* OR 'sf 8'' OR 'sf eight' (Topic) Results: 810
19 'health-related quality of life' (Topic) Results: 63,430
20 hrqol OR hr-qol OR hrql OR 'hr ql' (Topic) Results: 27,090
21 #20 OR #19 OR #18 OR #17 OR #16 OR #15 OR #14 OR #13 Results: 80,329 [additional QALY terms]
22 #21 OR #12 Results: 608,391 [All QALY]
23 'coronavirus-19' OR covid19 OR 'covid 19' OR 'covid 2019' (Topic) Results: 348,006
24 'sars-cov2' OR 'sars-cov-2' OR sarsov2 OR 'sars-cov2' OR 'sars-coronavirus2' OR 'sars-like coronavirus' (Topic) Results: 105,265
25 #24 OR #23 Results: 370,141 [COVID]
26 inpatient* OR 'in-patient*' (Topic) Results: 2,184,563
27 (hospital* OR in-hospital) NEAR/2 patient* (Topic) Results: 177,489
28 #26 OR #27 Results: 2,297,088 [inpatients]
29 #22 AND #25 AND #28 Results: 715 [QALY in covid hospital patients]