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Development and evaluation of machine-learning methods 
in whole-body magnetic resonance imaging with diffusion 
weighted imaging for staging of patients with cancer: the 
MALIBO diagnostic test accuracy study
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Background: Whole-body magnetic resonance imaging is accurate, efficient and cost-effective for cancer 
staging. Machine learning may support radiologists reading whole-body magnetic resonance imaging.

Objectives:  

1.	 To develop a machine-learning algorithm to detect normal organs and cancer lesions.
2.	 To compare diagnostic accuracy, time and agreement of radiology reads to detect metastases using 

whole-body magnetic resonance imaging with concurrent machine learning (whole-body magnetic 
resonance imaging + machine learning) against standard whole-body magnetic resonance imaging 
(whole-body magnetic resonance imaging + standard deviation).

Design and participants: Retrospective analysis of (1) prospective single-centre study in healthy 
volunteers > 18 years (n = 51) and (2) prospective multicentre STREAMLINE study patient data (n = 438).

Tests: Index: whole-body magnetic resonance imaging + machine learning.

Comparator: whole-body magnetic resonance imaging + standard deviation.

Reference standard: Previously established expert panel consensus reference at 12 months 
from diagnosis.
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Outcome measures: Primary: difference in per-patient specificity between whole-body magnetic 
resonance imaging + machine learning and whole-body magnetic resonance imaging + standard deviation. 
Secondary: per-patient sensitivity, per-lesion sensitivity and specificity, read time and agreement.

Methods: Phase 1: classification forests, convolutional neural networks, and a multi-atlas approaches 
for organ segmentation.

Phase 2/3: whole-body magnetic resonance imaging scans were allocated to Phase 2 (training = 226, 
validation = 45) and Phase 3 (testing = 193). Disease sites were manually labelled.

The final algorithm was applied to 193 Phase 3 cases, generating probability heatmaps. Twenty-five 
radiologists (18 experienced, 7 inexperienced in whole-body magnetic resonance imaging) were 
randomly allocated whole-body magnetic resonance imaging + machine learning or whole-body 
magnetic resonance imaging + standard deviation over two or three rounds in a National Health Service 
setting. Read time was independently recorded.

Results: Phases 1 and 2: convolutional neural network had best Dice similarity coefficient, recall and 
precision measurements for healthy organ segmentation. Final algorithm used a ‘two-stage’ initial organ 
identification followed by lesion detection.

Phase 3: evaluable scans (188/193, of which 50 had metastases from 117 colon, 71 lung cancer cases) 
were read between November 2019 and March 2020. For experienced readers, per-patient specificity for 
detection of metastases was 86.2% (whole-body magnetic resonance imaging + machine learning) and 
87.7% (whole-body magnetic resonance imaging + standard deviation), (difference −1.5%, 95% confidence 
interval −6.4% to 3.5%; p = 0.387); per-patient sensitivity was 66.0% (whole-body magnetic resonance 
imaging + machine learning) and 70.0% (whole-body magnetic resonance imaging + standard deviation) 
(difference −4.0%, 95% confidence interval −13.5% to 5.5%; p = 0.344). For inexperienced readers (53 
reads, 15 with metastases), per-patient specificity was 76.3% in both groups with sensitivities of 73.3% 
(whole-body magnetic resonance imaging + machine learning) and 60.0% (whole-body magnetic resonance 
imaging + standard deviation). Per-site specificity remained high within all sites; above 95% (experienced) 
or 90% (inexperienced). Per-site sensitivity was highly variable due to low number of lesions in each site.

Reading time lowered under machine learning by 6.2% (95% confidence interval −22.8% to 10.0%). Read 
time was primarily influenced by read round with round 2 read times reduced by 32% (95% confidence 
interval 20.8% to 42.8%) overall with subsequent regression analysis showing a significant effect 
(p = 0.0281) by using machine learning in round 2 estimated as 286 seconds (or 11%) quicker.

Interobserver variance for experienced readers suggests moderate agreement, Cohen’s κ = 0.64, 
95% confidence interval 0.47 to 0.81 (whole-body magnetic resonance imaging + machine learning) 
and Cohen’s κ = 0.66, 95% confidence interval 0.47 to 0.81 (whole-body magnetic resonance 
imaging + standard deviation).

Limitations: Patient whole-body magnetic resonance imaging data were heterogeneous with relatively 
few metastatic lesions in a wide variety of locations, making training and testing difficult and hampering 
evaluation of sensitivity.

Conclusions: There was no difference in diagnostic accuracy for whole-body magnetic resonance 
imaging radiology reads with or without machine-learning support, although radiology read time may be 
slightly shortened using whole-body magnetic resonance imaging + machine learning.

Future work: Failure-case analysis to improve model training, automate lesion segmentation and 
transfer of machine-learning techniques to other tumour types and imaging modalities.

Study registration: This study is registered as ISRCTN23068310.

Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Efficacy 
and Mechanism Evaluation (EME) programme (NIHR award ref: 13/122/01) and is published in full 
in Efficacy and Mechanism Evaluation; Vol. 11, No. 15. See the NIHR Funding and Awards website for 
further award information.
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Plain language summary

Whole-body magnetic resonance imaging demonstrates the entire body and can detect the spread 
of tumour, without the burden of ionising radiation. Recently, the STREAMLINE study reported 

that whole-body magnetic resonance imaging is accurate, efficient and cost-effective for cancer staging. 
However, whole-body magnetic resonance imaging is complex to report.

Machine learning is a type of artificial intelligence whereby a computer learns from being given previous 
data to undertake a task, using techniques such as classification forests, convolutional neural networks, 
and multi-atlas approaches. Our aim was to develop a machine-learning method to automatically detect 
lesions on whole-body magnetic resonance imaging to support radiologists by potentially improving 
their ability to correctly detect disease and reduce the reading time of whole-body magnetic resonance 
imaging scans in patients with cancer.

Firstly, whole-body magnetic resonance imaging scans from 51 healthy volunteers were used to develop 
machine-learning methods to automatically detect normal organs.

Secondly, machine-learning methods were trained to detect cancer lesions, using 271 whole-body 
magnetic resonance imaging scans from a previous study.

Finally, the refined machine-learning technique was tested in 188 patient scans from a previous study, 
to see if the technique could improve radiology reporting by increasing accuracy and speed in detecting 
disease. We designed a system to test the accuracy of radiologists reading whole-body magnetic 
resonance imaging with or without machine-learning support in a near-real clinical National Health 
Service setting. Twenty-five independent radiologists (18 experienced in reading whole-body magnetic 
resonance imaging and 7 radiologists inexperienced in whole-body magnetic resonance imaging) were 
randomly allocated whole-body magnetic resonance imaging scans to read with or without machine-
learning support. We found that machine-learning support resulted in similar accuracy for detecting 
disease and was slightly more efficient in the reading time than for radiological reads without machine-
learning support. Differences in interpretation between experienced readers were considered moderate 
in both cases.

Overall, the study was an ambitious attempt to undertake a highly complex machine-learning task, to 
detect cancer on whole-body magnetic resonance imaging. Many important steps have been taken but 
the current machine-learning algorithm did not result in a significant improvement in the radiologist’s 
accuracy for disease detection, although it may have slightly reduced the time taken to read the study. 
Future work is advocated to further develop machine-learning tools to improve the accuracy of tumour 
detection.
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Scientific summary

Background

Whole-body magnetic resonance imaging (WB-MRI) has been developed in the last decade and it has 
been proposed as an alternative to multimodality cancer staging pathways. The STREAMLINE study has 
demonstrated that staging of lung and colon cancer via WB-MRI was of similar accuracy to standard care 
staging pathways but resulted in fewer tests being required, and a reduction in staging time and cost. 
However, this technique has not widely translated into clinical practice, being limited to a few expert 
centres. A barrier to translation may be the complexity of interpretation by inexperienced readers. A 
machine-learning (ML) algorithm for automated detection of cancer lesions, to assist radiologists, may 
allow clinical translation of WB-MRI for the benefit of patient care.

Objective

The objective of Phases 1 and 2 was to develop a ML method for automatic detection of cancer lesions 
on WB-MRI.

The primary objective of Phase 3 was to compare the diagnostic test accuracy of WB-MRI in patients 
being staged for cancer with and without ML support, when read by independent, experienced readers. 
The reference standard was the consensus reference panel from the STREAMLINE study, which had 
recorded the sites of disease in the STREAMLINE patients using all available clinical information for a 
12-month follow-up from time of enrolment.

The planned secondary objectives of this study were:

1.	 to compare the reading time of WB-MRI scans, with and without ML support;
2.	 to determine the interobserver variability of WB-MRI diagnosis by different radiologists, with and 

without ML support;
3.	 to evaluate the diagnostic accuracy of WB-MRI read by non-experienced readers, with and without 

ML support;
4.	 to evaluate different combinations of acquired MRI sequences; all the above with and without ML 

support (not achieved);
5.	 to determine any difference in costs related to radiology reading time by means of a simple  

cost-effectiveness analysis (not achieved).

Design

This was an observational study (study limited to working with data), using different patient cohorts, and 
methodologies, being evaluated in series during three consecutive phases.

Phase 1: Previously acquired WB-MRI scans in 51 healthy volunteers were stitched into imaging 
volumes. The normal organs and skeleton were segmented by a trained radiologist. We compared 
and tested several state-of-the-art medical image segmentation methods to train an algorithm to 
automatically detect and segment the organs. This included a multi-atlas (MA) approach, classification 
forests (CFs) and convolutional neural networks (CNNs) methods. For the CFs method, we used 50 
trees with a maximum tree depth of 30 in the segmentation. The stopping criterion for growing trees 
was if either the objective function (information gain) could not be further improved or the number of 
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training samples in a leaf fell below a threshold of four samples. For the CNNs method, we employed a 
dual pathway (2 resolutions), 11-layer deep CNN, where the last 2 layers correspond to fully connected 
layers, which combine the features extracted on the 2 resolution pathways. We adopted 50–70 feature 
maps (different kernels) for each layer. The network architecture was fully convolutional and there 
were no max-pooling layers, which we found to increase segmentation accuracy. The CNN architecture 
was a balance between model capacity, training efficiency, and memory demands. The third algorithm 
was based on a MA label propagation approach. MA segmentation uses a set of atlases (images with 
corresponding segmentations) that represent the interparticipant variability of the anatomy to be 
segmented. Each atlas was registered to the new image to be segmented using a deformable image 
registration. The MA approach accounts for anatomical shape variability and is more robust than single-
atlas propagation methods, in that at any errors associated with propagation were averaged out when 
combining multiple atlases. The approach employed here makes use of efficient 3D–3D intensity-based 
image registration with free-form deformations as the transformation model and correlation coefficient 
as the similarity measure. Majority voting is used to derive the final tissue label at each voxel.

Phase 2: Available WB-MRI scans from the STREAMLINE study (n = 438) were allocated by the 
study statistician to Phase 2 (model training) and clinical validation (hold-out set of 193 cases). The 
visible lesions in cases allocated to Phase 2 were segmented by trained radiologists, using the defined 
consensus reference standard for the sites of disease. Using 226 evaluable and annotated cases, 
we trained a model for lesion detection and localisation rather than attempting accurate automated 
segmentation. We found that lesion detection in WB-MRI was suboptimal with the CNN alone. An 
optimal ‘two-stage’ ML method was developed and tested. In the first stage of the ‘two-stage’ method, 
the information from Phase 1 was used to identify the position of organs and bones and in stage two, 
the lesions were detected. Stage two could be modular with respect to the anatomical location in  
which the suspected lesion could be found. The architecture and configuration of the used CNN were 
modified to achieve optimal performance.

Phase 3: The final two-stage ML algorithm from Phase 2 was applied to the 193 cases that were 
held out for Phase 3, generating probability heatmap volumes. WB-MRI scans were reported by 
25 independent radiologists (18 radiologists experienced in reading WB-MRI and 7 radiologists 
inexperienced in WB-MRI). All radiologists took part in the 1st and 2nd round reads which incorporated 
inter-rater reads, and 8 participated in the 3rd round read for intrarater reads. All reads were undertaken 
in an NHS radiology reporting room, although using a separate cloud-based picture archiving and 
communication system (PACS). Based on experience level, 10–16 cases were randomly allocated by the 
study statistician to the reading lists for inexperienced or experienced radiologists. Each radiologist read 
both lung and colon cases with and without ML as a paired cohort. There were at least 4 weeks interval 
between each reading round for individual radiologists. Cases allocated to round 1 would be a random 
mixture of cases with and without ML support and then in round 2 the cases would be reversed such 
that each case was read once with and once without ML support. The number of cases with and without 
ML output was balanced in each reading round. A scribe recorded reading time.

Results

Phase 1 results
We found that CNNs outperformed CFs and the MA algorithm when T2w volumes were used as 
input to the algorithms and when using pooled overlap-evaluation metrics [Dice similarity coefficient 
(DSC), recall (RE), precision (PR)] to assess the accuracy of segmentation. When the performance of 
the algorithms was assessed, with pooled surface distance metrics [average surface distance (ASD), 
root-mean-square surface distance (RMSSD), and Hausdorff distance (HD)], it was the MA algorithm 
that performed best. Single misinterpreted voxels in CFs and CNNs can greatly elevate ASD, RMSSD, 
and HD; these metrics are particularly sensitive to outliers. We then assessed the pooled metrics 
performance of CFs and CNNs when using all imaging combinations [T2w + T1w + diffusion-weighted 



DOI: 10.3310/KPWQ4208� Efficacy and Mechanism Evaluation 2024 Vol. 11 No. 15

Copyright © 2024 Rockall et al. This work was produced Rockall et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care.  
This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction 
and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original 
author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

xxv

imaging (DWI)] as input, arguing that maximisation of training information to the algorithms might 
improve the performance of segmentation. We found that the performance of CFs was improved, 
however not significantly, when using all imaging combinations as input for training. The opposite was 
observed for CNNs.

The findings for the pooled metrics analysis, described above, were corroborated by a ‘per-organ’ 
quantitative analysis of the commonly used DSC, to assess the performance of our segmentation 
algorithms. This analysis confirmed that for all individual anatomical structures (except for the bladder), 
the algorithm that returned the greatest DSC was CNNs with T2w images only used as input. As our 
morphological T2w and T1w scans were acquired using breath-holds and the DWI sequence was 
acquired with free breathing, we found that there was significant displacement between soft tissues 
in anatomical areas adjacent to the diaphragm between these types of scans. As the employed affine 
registration method could not fully compensate for nonlinear motions caused by breathing, we assumed 
that misregistration could be the reason why the performance of CNNs, despite performing better than 
the other two algorithms when using T2w volumes as input only, was degraded when using all imaging 
combinations as input for training. A more robust, nonlinear registration method could improve the 
accuracy of CNNs and further improve the performance of CFs.

The performance of our methods cannot be directly compared to similar methods in the literature 
because there is no previous work describing automatic, simultaneous segmentation of healthy organs 
and bones in multiparametric WB-MRI. We believe, however, that our methods may compare favourably 
to other ML methods for detection and segmentation in medical imaging because our classifiers are 
inherently multilabel and effective training was achieved when using a relatively small number of data 
sets, something that is very important in the clinical setting. However, we still need to address the 
performance limitations of our algorithms when segmenting organs with big variability in appearance 
(e.g. the gallbladder or the pancreas).

Phase 2 results
We tested different ML methods for lesion detection. We found that using CNNs was not optimal for 
lesion detection on WB-MRI. This may have been due to the small fraction of lesion volume occupying 
the scanned space, when compared to the WB volume. It may also have been due to the complexity of 
intensities in background tissue and the lesion with weak boundaries causing challenges for the CNNs. 
We, therefore, adapted our process to become an optimal two-stage process, with an initial stage for 
detection of organs as per the Phase 1 technique followed by a CNN to detect lesions. Stage two could 
be modular with respect to the anatomical location where the suspected lesion can be found. The 
architecture and configuration of the used CNN could be modified to achieve optimal performance for 
lesion detection.

Phase 3 results
All radiology reads were completed between November 2019 and March 2020. Among the 193 cases 
allocated to Phase 3, 188 WB-MRI scans were evaluable (117 colon and 71 lung cancer) and 50/188 
cases had metastases.

Per-patient specificity for detection of metastases within experienced readers was 86.2% (WB-
MRI + ML) and 87.7% [WB-MRI + standard deviation (SD)], [difference −1.5%, 95% confidence interval 
(CI) −6.4%, 3.5%; p = 0.387]. Per-patient sensitivity produced results of 66.0% (WB-MRI + ML) and 
70.0% (WB-MRI + SD) (difference −4.0%, 95% CI −13.5% to 5.5%; p = 0.344). For inexperienced readers 
(53 reads, 15 with metastases), per-patient specificity was 76.3% in both groups with sensitivities of 
73.3% (WB-MRI + ML) and 60.0% (WB-MRI + SD). Per-site specificity remained high within all sites; 
above 95% (experienced) or 90% (inexperienced). Per-site sensitivity was highly variable due to the low 
number of lesions in each site, hampering interpretation.
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Reading time was lowered under ML by 6.2% (95% CI −22.8% to 10.0%). Read time was primarily 
influenced by read round with round 2 read times reduced by 32% (95% CI 20.8% to 42.8%) overall 
with subsequent regression analysis showing a significant effect (p = 0.0281) by using ML in round 2 
estimated as 286 seconds (or 11%) quicker.

Interobserver variance for experienced readers suggests moderate agreement, Cohen’s κ = 0.64, 95% CI 
0.47 to 0.81 (WB-MRI + ML) and Cohen’s κ = 0.66, 95% CI 0.47 to 0.81 (WB-MRI + SD).

Conclusion

Phase 1
In Phase 1, we developed and evaluated three state-of-the-art algorithms that automatically segment 
healthy organs and bones in WB-MRI with accuracy comparable to the one achieved manually by clinical 
experts, using relatively sparse training data. An algorithm based on CNNs and trained using T2w-only 
images as input performs favourably when compared to CFs or a MA algorithm, trained with either 
T2w-only images or a combination of imaging inputs (T2w + T1w + DWI). Using multimodal MRI data 
as input for training did not improve the segmentation performance in this work, but it is anticipated to 
improve the segmentation performance if more effective WB registration between the various imaging 
modalities can be performed. This investigation was the first step towards developing robust algorithms 
for the automatic detection and segmentation of benign and malignant lesions in WB-MRI scans for 
staging of cancer patients.

Phase 2
There were many challenges in training the algorithm for lesion detection, with a very heterogeneous 
data set, acquired at 16 sites on different machines. The low number of metastatic lesions were 
scattered through many anatomic sites. Identification of lesions of relatively small volume in relation to 
the large volume of the WB-MRI required a two-stage approach for lesion detection, with initial organ 
identification followed by lesion detection.

Phase 3
We undertook a robust diagnostic test accuracy study comparing WB-MRI with ML support (index text) 
with standard WB-MRI, without ML support (comparator test), with paired reads separated by a wash-
out period.

Although there was no clear statistical difference with or without ML support in terms of diagnostic test 
accuracy, either in experienced or inexperienced hands, we found that ML reads were likely to be a little 
shorter in reading time.

Implications for health care

Machine learning support for image interpretation is a rapidly expanding area of research. With 
continually increasing demand for diagnostic imaging and a radiology workforce crisis in the NHS, as 
well as globally, ML techniques may offer support to allow complex imaging modalities, such as WB-
MRI, to be ready for translation into clinical care for the benefit of patients. Phase 1 demonstrated that 
with relatively sparse data, we could develop very successful organ segmentation tools in highly complex 
data sets and this has many potential future roles. In this study, we used this as a first step prior to lesion 
detection and this generic method could be applied to a wider range of disease areas, including other 
tumour types.

We found that ML support slightly shorted the reading time, although with no improvement in 
diagnostic accuracy. However, we have shown that lesion detection using ML is achievable on 
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heterogeneous and complex multiparametric WB-MRI scans. With further model training, we believe 
that ML support is feasible in the future, with the potential to improve translation of WB-MRI more 
widely. In addition, many of the techniques that have been developed in the course of the study have 
the potential to be applied to other areas of diagnostic imaging.

Recommendations for future research

Future research should investigate:

1.	 Further improvement in lesion detection accuracy, with evaluation of failure cases for improved 
model training.

2.	 Evaluate lesion detection technique on other cancers, notably breast, prostate and myeloma.
3.	 Further developments in understanding the marrow composition in healthy aging and in metastatic 

cancer.
4.	 Developing further understanding and methods to overcome registration challenges between 

breath-hold and non-breath-hold MRI sequences in order to improve ML tissue characterisation.

Study registration

This study is registered as ISRCTN23068310.
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Chapter 1 Introduction

The use of medical imaging has steadily and rapidly increased, becoming a central pillar in the 
management of patients, particularly in the setting of cancer care. With increasing use of complex 

modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) for diagnosis, 
treatment planning and clinical studies, it has become desirable to use image-vision methods, such 
as machine-learning (ML) methods, to assist radiological experts in clinical diagnosis, quantification 
tasks and treatment planning.1 In recent years, there have been rapid developments in both machine-
learning methods as well as MRI techniques. For example, less than 10 years ago the use of whole-body 
magnetic resonance imaging (WB-MRI) protocols was uncommon due to many limitations, such as the 
forbidding acquisition times and limited availability. This past decade has shown substantial progress in 
WB-MRI protocols. This very promising technique has now started to move from the research setting to 
becoming more commonly used in clinical practice. It is currently recommended by the National Institute 
for Health and Care Excellence (NICE) for the detection of lesions in the bone marrow in myeloma and 
is used for detection of metastatic bone disease in prostate and breast cancer.2–4 This clinical use has 
been supported by recent technological developments and validation of WB-MRI by multiple studies 
and consensus papers.5 The STREAMLINE study of WB-MRI, in patients with newly diagnosed lung or 
colorectal cancer, reported similar staging accuracy using WB-MRI but with a reduced number of tests 
needed to reach the final determination of stage of disease and with a reduction in time to staging 
and cost.6–8 A single WB-MRI was also preferred by patients.9,10 As a result, WB-MRI is progressively 
proposed by radiologists as an efficient examination for an expanding range of indications.11 Multi-
modality WB-MRI is emerging as a new imaging standard for many diseases requiring detection and 
monitoring of skeletal and soft-tissue involvement in cancer.12 WB-MRI has been successfully used in 
several cancers for the detection of bone, lymph nodes and visceral metastases and their monitoring 
under treatment.13 Among these, metastatic cancers to bone and hematological malignancies, mainly 
multiple myeloma, benefit from WB-MRI. The potential benefits of using WB-MRI are considered to be 
a reduction in ionising radiation exposure, increased health outcomes due to reduced waiting periods 
and decreased patient anxiety caused by waiting periods for multiple staging investigations.

However, the radiological interpretation of WB-MRI scans requires a high level of expertise and 
training. Interpretation of WB-MRI requires integration of a large number of image data from multiple 
sequences. As a result, the reading process can become rather time-consuming for inexperienced 
readers, with increased risk of misinterpretations.14 This has hindered the translation of this technique 
into widespread use and the routine use of WB-MRI is currently limited to a relatively small number of 
expert centres.

The principal challenge for translating WB-MRI in clinical routine comes from the technical skills for 
image acquisition and the large number of data to be reviewed. Computer-aided image analysis may 
alleviate the workflow. Such automatic algorithms could ultimately facilitate the process of reading WB 
scans by reducing the reading time (RT) and improving the diagnostic accuracy of WB-MRI.

The advent of deep learning has pushed medical image analysis to new levels, rapidly replacing more 
traditional ML and computer vision pipelines. Detection of anatomical tissue of interest is crucial 
for quantitative analysis of WB images. Many image detection and segmentation algorithms have 
been proposed and some machine-learning algorithms can now perform image analysis tasks with 
performance equal, or even superior, to the one achieved by human experts.15,16 Automatically derived 
measurements and visual guides, obtained with machine-learning techniques, may serve as a valuable 
aid in many clinical tasks and are highly likely to transform the ways we see and use medical imaging. 
Reliable machine-learning algorithms are required for the accurate delineation of anatomical structures 
and/or lesions from different modalities of medical images.
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In this project, our aim was to develop machine-learning methods for improving the diagnostic 
performance and reducing the RT of WB-MRI in colon and lung cancer in order to support the 
translation of WB-MRI into routine clinical care for the benefit of patients. Given the pragmatic setting 
of MAchine Learning In whole Body Oncology (MALIBO), we believe that the methodological steps 
and challenges described here can be of invaluable assistance, and can serve as a guide, to groups who 
would like to apply similar studies in the future, not only for MRI, but in radiology generally.17

Background

Whole-body MRI, including diffusion-weighted magnetic resonance imaging (DW-MRI), is currently an 
active research interest in oncology imaging as a non-invasive technique for the detection of metastatic 
disease, as well as a potential biomarker for clinical use and drug development.18 Meta-analyses 
support further development of WB-MRI in clinical practice, in view of the promising sensitivities and 
specificities for detection of metastases (pooled sensitivity 0.92 and pooled specificity of 0.9319,20). 
DW-MRI is now standard in WB imaging. DW-MRI allows quantification of water diffusivity in tissues 
and has been found to be sensitive for detecting tumour sites in organs and bones, with visible changes 
in the MRI signal intensity due to a reduction in water diffusivity associated with the highly cellular 
nature of tumour tissue.21 The characteristic appearances of the bone marrow have been studied in 
relatively small numbers of patients without metastatic disease, and in patients with breast cancer, 
myeloma and prostate cancer.22–24

Other than the requirement for extensive training and potentially slow nature of manual reads, one of 
the main issues when using WB-MRI for staging of patients with cancer is the potential number of false 
interpretations. Many ‘normal’ anatomical structures (such as lymph nodes) may reflect similar diffusion 
properties compared to pathological regions. The possibility of using computer-assisted reading or machine-
learning (ML) techniques has been considered in aiding interpretation of complex MRI data sets. One group 
evaluated the topography of whole- body adipose tissue and proposed an algorithm that enables reliable 
and completely automatic profiles of adipose distribution from the WB data set, reducing the examination 
and analysis time to less than half an hour.25 Another group has developed a parametric modelling approach 
for computer-aided detection of vertebral column metastases in WB-MRI.26 ML techniques have previously 
been developed to differentiate benign (86 cases) from malignant (49 cases) in soft-tissue tumours using 
a large MRI database of multicentre, multimachine MRI images, but without using diffusion-weighted 
imaging (DWI).27 Co-investigators at Imperial College London have previously developed methods for organ 
localisation in WB DIXON MRI and accurate semantic segmentation on CT.28–32

Machine learning for image segmentation
Medical image segmentation aims to identify regions of interests (ROIs) from the image volume that 
are relevant to diagnosis or image interpretation.33 Numerous researchers have proposed various 
automated segmentation systems, including, but not limited to, active contour, graph cut and 
clustering. These segmentation algorithms are built on traditional methods such as edge detection 
filters and mathematical methods. However, due to developments in neural networks in the past 
decade, convolutional neural networks (CNNs) dictate the state of the art in biomedical image 
segmentation.34,35 One of the notable network architectures is based on encoder–decoder method 
for semantic segmentation, including fully convolutional networks (FCNs) and U-Net.36,37 A successful 
three dimensional (3D) neural network for brain tumour segmentation was DeepMedic, introduced by 
Kamnitsas et al.15 Kamnitsas et al. later enhanced an ensemble by combining three different network 
architectures, namely 3D FCN, 3D U-Net and DeepMedic, trained with different loss functions (Dice 
loss and cross-entropy) and different normalisation schemes.38

Whole-body magnetic resonance imaging for oncology
Simultaneously, MRI techniques have experienced rapid development, allowing the use of WB-MRI 
in evaluating for cancer or vascular disease,12 which was not possible in the last decade. Recently, 
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a meta-analysis was conducted to evaluate the diagnostic performance of WB-DWI technique in 
detection of primary and metastatic malignancies compared with that of whole-body positron emission 
tomography/CT (WB-PET/CT).39 It was found that WB-DWI has similar, good diagnostic performance 
for the detection of primary and metastatic malignancies compared with WB-PET/CT [area under curve 
(AUC) of WB-MRI 0.966 vs. AUC of WB-PET/CT 0.984]. This suggests that WB-MRI can be used to 
replace WB-PET/CT in certain clinical settings, such as some cancer studies.

Cancer is a leading cause of death worldwide, accounting for an estimated 9.6 million deaths in 2018 
(www.who.int/news-room/fact-sheets/detail/cancer). Colorectal and lung cancer are the third and fourth 
most common cancers in the UK, accounting for 13% and 12% of all new cancers, respectively, and 
they are the leading causes of cancer-related deaths in the UK. In both cancers, detection of metastatic 
disease is fundamental to treatment strategy.8 Although a range of imaging tests are available for diagnosis 
and staging, including CT and PET-CT, there is growing interests in using WB-MRI as an alternative to 
multimodality staging pathways. This is because WB-MRI does not impart diagnostic ionising radiation 
to patients, and promising data support its ability to stage.8,40 The recently reported National Institute for 
Health and Care Research (NIHR)-funded STREAMLINE study40 supports the use of WB-MRI for lung 
and colorectal cancer staging and this study was based on the data sourced from the STREAMLINE study. 
Apart from 51 WB-(DW)-MRI data set that have already been acquired,41 as part of whole-body protocol 
optimisation study, the trial used the WB-MRI data predominantly from the NIHR-funded STREAMLINE-C 
and STREAMLINE-L studies.8 Additional cases were obtained from the CRUK (Cancer Research United 
Kingdom) funded MELT study (Whole-Body Functional and Anatomical MRI: Accuracy in Staging and 
Treatment Response Monitoring in Adolescent Hodgkin’s Lymphoma Compared to Conventional Multi-
modality Imaging: NCT01459224).42 Also, data from the MASTER study [MRI Accuracy in STaging and 
Evaluation of Treatment Response in Cancer (Lymphoma and Prostate-MASTER L and MASTER P)] were 
employed (12/LO/0428).43 These data sets demonstrated additional cases of nodal disease and bone 
metastases, thereby ensuring a variation in the distribution of disease used to develop the ML algorithms. 
However, due to extensive heterogeneity in the data from the different studies, the STREAMLINE studies 
provided the final cohort for the MALIBO study.

Existing literature using machine learning for lesion detection from whole-body 
magnetic resonance imaging study

We searched PubMed for articles with medical subject headings (MeSH) and full-text searched for ‘ML and 
MRI’, ‘ WB-MRI and lesion detection’, ‘WB-MRI segmentation’ and ‘ML and WB-MRI’. We did not set the 
beginning of the publish time from PubMed, but our ending publish time was until 1 October 2020.

With ‘ML and MRI’ as keyword, we found there were 3325 papers from PubMed. As we can see, the 
number of publications in ML and MRI is increasing constantly. There are also number of available 
reviews.44–50 This covers a wide range of research works from neuronal networks to deep learning and 
from image segmentation to disease prediction.

A total of 817 papers were found from PubMed using ‘WB-MRI and lesion detection’ as keywords. Many 
of these are for detection of bone lesions (using ‘WB-MRI and lesion detection and bone’ as keywords 
there are 356 papers, i.e. 356/817 = 0.44), suggesting there is great interest in applying WB-MRI in 
general and WB-DWI for bone study in particular.

If we used ‘WB-MRI segmentation’ as keywords from PubMed, there were fewer articles, which include 
prostate,51 skeleton,52 blood vessel segmentation based on magnetic resonance angiography (MRA)53 
and manual tumour segmentation.54 When limiting the keywords to ‘ML and WB-MRI’, besides our 
previous studies14,17 and a study for small-animal organ segmentation from WB-MRI using multiple 

https://www.who.int/news-room/fact-sheets/detail/cancer
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support vector machine (SVM)-kNN (k-nearest neighbour) classifiers,55 there were only the following 
articles that are described below:

Firstly, a SVM method was used to segment prostate from WB-MRI scans. The method employed 3D 
neighbourhood information to build classification vectors from automatically generated features and 
randomly selected 16 MRI examinations for validation.56 The result suggested that the SVM for prostate 
segmentation can segment the prostate in WB-MRI scans with good segmentation quality.

Secondly, a combined segmentation method which included image thresholds, Dixon fat-water 
segmentation and component analysis were adopted to detect the lungs. MRI images are segmented 
into five tissue classes (not including bone), and each class is assigned a default linear attenuation value. 
The method was assessed using WB-MRI.57

Thirdly, a fully automated algorithm for extraction of the 3D-arterial tree and labelling the tree segments 
from WB-MRA sequences was presented. The algorithm developed consists of two core parts:  
(1) 3D-volume reconstruction from different stations with simultaneous correction of different types of 
intensity inhomogeneity, and (2) extraction of the arterial tree and subsequent labelling of the pruned 
extracted tree. A subjective visual validation of the method, with respect to the extracted tree, was 
performed. The results indicated clinical potential of the approach in enabling fully automated and 
accurate analysis of the entire arterial tree. This was the first study that not only automatically extracts 
the WB-MRA arterial tree, but also labels the vessel tree segments.58

Thus, there are few studies in the field of using ML for human WB-MRI evaluation. The major reasons for 
this may include challenges related to segmenting and labelling anatomical regions due to appearance 
variations, the frequent presence of imaging artefacts, and a paucity and variability of annotated data. In 
addition, ML, particularly, with deep NN (neural network), has only been more widely developed in the last 
decade. As a result, there were not many described ML methods for human WB-MRI studies. Furthermore, 
WB-MRI itself is a relatively new technique which has only been established in the clinical setting in the 
last decade.11 Although there were only a few related studies in this field, the application of ML methods 
to WB-MRI is thought to be of potential value in oncological imaging, to support the radiologist reading a 
complex imaging study that requires integration of fairly extensive information.

Clinical studies that this study relates to

The MALIBO study proposed to use WB-MRI data predominantly from the NIHR-funded STREAMLINE 
L and C studies. These are multicentre prospective cohort studies that evaluated WB-MRI in newly 
diagnosed non-small cell lung cancer (250 patients; STREAMLINE-L; ISRCTN50436483) and colorectal 
cancer (322 patients; STREAMLINE-C; ISRCTN43958015).40 The studies initially defined WB-MRI 
acquisition, quality assurance and analysis protocols applicable to daily NHS practice. The objectives 
of both studies are the same. The primary objective was to evaluate whether early WB-MRI increases 
detection rate for metastases compared to standard NICE-approved diagnostic pathways for each of 
the tumour types studied (a full description of the diagnostic pathways is available).6–8,40 Secondary 
objectives included assessing the influence of WB-MRI on time to and nature of first major treatment 
decision following definitive staging. At 12-month patient follow-up, a multidisciplinary consensus panel 
defined the reference standard for tumour stage considering all clinical, pathological, post-mortem and 
imaging follow-up. Accuracy was defined per lesion, per organ and per patient.

The STREAMLINE-C study recruited patients from 16 UK hospitals between March 2013 and August 
2016 with a final number of evaluable patients of 299, 68 (23%) of whom had metastasis at baseline. 
The STREAMLINE-L study recruited patients from 16 UK hospitals between March 2013 and September 
2016 with a final number of evaluable patients of 187, 52 (28%) of whom had metastasis at baseline. 
The ISRCTN for STREAMLINE-L is ISRCTN50436483 and for STREAMLINE-C, it is ISRCTN43958015.40
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Additional cases were obtained from the CRUK-funded MELT study (Whole-Body Functional and 
Anatomical MRI: Accuracy in Staging and Treatment Response Monitoring in Adolescent Hodgkin’s 
Lymphoma Compared to Conventional Multi-modality Imaging, NCT01459224)59 and the University 
College London Hospital (UCLH)-sponsored MASTER study, including cases with lymphoma and 
prostate cancer was also used.42,43 The original justification for using these data sets was that they 
would demonstrate additional cases of nodal disease and sclerotic bone metastases, thereby ensuring 
a variation in the distribution of disease used to develop the ML algorithm, as the cases from 
STREAMLINE studies are likely to have more non-nodal metastatic sites, such as liver (LVR) and lytic 
bone metastases. The purpose of the MELT study was to compare staging accuracy as well as response 
assessment using WB-MRI with standard investigations in patients with newly diagnosed Hodgkin’s 
lymphoma. It was a prospective observational cohort study. The primary outcome measures were: per-
site sensitivity and specificity of MRI for nodal and extra-nodal sites and concordance in final disease 
stage with the multimodality reference standard (at staging). The reference standard for the MELT 
study was contemporaneous multidisciplinary tumour board (MDT) with all other staging, for example, 
PET-CT and CT at the time of diagnosis and initial staging. Secondary outcome measures included: 
(1) interobserver agreement for MRI radiologists, and (2) evaluation of different MRI sequences on 
diagnostic accuracy; simulated effect of MRI on clinical management.

Rationale for the study

In order to make WB-DW-MRI a useful and clinically relevant tool within the NHS, a method that 
could assist the radiologist in improving diagnostic accuracy while reducing RT would be beneficial to 
deliver better accuracy, productivity and cost-effectiveness. An important aspect in the development 
of diagnostic support systems is semantic understanding of input data. In the case of WB-DW-MRI, it 
is essential to ‘teach’ the computer to automatically detect and localise different anatomical structures 
and discriminate normal and pathological appearances. A computer system that is able understand 
what is shown in an image can be effectively used to implement an intelligent radiology inspection 
tool. Such a tool may greatly support the radiologist when reading the large amount of MRI data, with 
integration of different MRI sequences. Guided navigation to ROI, automatic adjustment of organ and 
tissue specific visualisation parameters, and quantification of volume and extent of suspicious regions 
are some of the features that such a system would provide and thus, potentially reduce the time needed 
for an expert to perform diagnostic tasks. Previous ML methods (described in Image pre-processing for 
whole-body-magnetic resonance imaging: correction of fat-water swaps in Dixon magnetic resonance imaging) 
can be adapted to WB-DW-MRI to allow automatic vertebrae localisation,26 to automatically exclude 
false-positive detections in suspicious regions and to discriminate malignant from benign structures28–32). 
These methods have yielded promising results for their respective tasks. They are all based on a 
particular concept of ML called supervised learning. In supervised learning the assumption is that some 
annotated training data are available that can be used to train a predictor model. Here, the annotations 
reflect the output value that one would like to infer for new patient images. The training data can be 
defined as a set T = {(X!, Y!)} of pairs of input data Y!, here a WB-DW-MRI, and some desired output Y!, for 
example, a point-wise probability map that indicates the likelihood for each image point to be malignant. 
Using the training data, the aim of an employed learning procedure is then to estimate the conditional 
probability distribution (Y|X). Having a good estimate of this distribution allows prediction of output Y 
for any new input data X. In the context of WB-MRI for staging, the automatically obtained predictions 
for a new patient image can be integrated in a radiology inspection tool, for example to automatically 
navigate to or highlight suspicious region.

Objectives of this study

As this is a new area for oncology imaging research, there were no previous ML or CNN developed 
tools to apply to WB-MRI for tumour staging nor for lesion detection. To the best of our knowledge, the 
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applicability of this CNNs method for lesion segmentation from WB-MRI had not been investigated in a 
clinical setting at the time the study was commenced. Allowing for this, the main purpose of our project 
was to study the possibility to apply state-of-the-art CNN methods for lesion detection on human 
WB-MRI, particularly, for detecting lung and colon cancer and any metastatic lesions. Our plan was to 
develop, compare and select the most appropriate ML methods to achieve these goals.

Primary and secondary objectives
The primary objective of Phases 1 and 2 of the study was to develop a ML method (or modify an 
available method) for the detection of cancer lesions on WB-MRI.

The primary objective of Phase 3 of the study was to compare the diagnostic test accuracy of WB-MRI, 
as read by independent, experienced readers in patients being staged for cancer, with and without the 
aid of ML support, against the reference standard from the source studies.

Secondary objectives
The planned secondary objectives of this study were:

1.	 To compare the RT of WB-MRI scans, as recorded by experienced readers, with and without the 
assistance of ML methods.

2.	 To determine the interobserver variability of WB-MRI diagnosis of primary and metastatic lesions by 
different radiologists, with and without the assistance of ML methods.

3.	 To evaluate the diagnostic accuracy of WB-(DW)-MRI, as reported by non-experienced readers, 
with and without the assistance of ML methods.

4.	 To estimate the diagnostic performance of WB-(DW)-MRI when using different combinations of 
acquired MRI sequences, with and without the support of ML methods.

5.	 To determine the number of potential, additional staging tests that would be redundant if ML meth-
ods were applied in WB-(DW)-MRI, by means of a simple cost-effectiveness analysis.

Most of the study objectives were achieved, step by step, in the three phases of this study.

Study design

This is an observational study (study limited to working with data), using three different patient cohorts, 
being evaluated in series during three consecutive phases.

Phase 1: segmentation of normal organs
Development and optimisation of a ML pipeline to automatically identify anatomical structures of 
interest in WB-MRI in healthy volunteers. For automatically labelling anatomical structures of interest, 
we extended previous work that automatically segments abdominal organs from CT data.30 More 
specifically, we used a hierarchical weighting approach in which the anatomical atlases were constructed 
first at participant level and then followed by atlas construction at organ level and finally at voxel level. 
This approach has been shown to accommodate the significant body anatomical variability across 
different participants. By combining this with patch-based segmentation we were able to accurately and 
robustly annotate anatomical structures of interest. In order to construct the anatomical atlases, whole 
body MRI data sets from 50 healthy volunteers were used; these were collected under a separate ethics 
approval [Imperial College Research Ethics Committee (ICREC) 08/H0707/58]. The initial ML output was 
the ability to automatically segment the normal organs.

Phase 2: ‘training and validation set’ in cancer lesions
In the second phase, we planned to develop the ML pipeline for the automatic detection and 
identification of cancer lesions. For this we learnt shape and appearance models that were specific to 
the anatomical regions identified in Phase 1. These models allowed the probabilistic interpretation of 
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the images in terms of a generative model. Classification was carried out using advanced ML techniques 
based on ensemble classifiers such as random forests (RFs).60 WB-MRI scans from the STREAMLINE 
L and C, MELT and MASTER studies with established disease stage (main study reference standard, 
described above) were used to train ML detection of metastases. During the course of the study, it 
became apparent that the differences in sequences and acquisition parameters of the studies were too 
different to allow appropriate ML training and the study went forward with only the STREAMLINE C 
(STC) and L (STL) data sets, which had similar MRI protocols. Despite restricting Phases 2 and 3 to the 
STREAMLINE data, significant challenges were encountered due to the variation in scans acquired at 
the 16 recruitment centres. We undertook a power calculation to determine the number of cases with 
and without metastases that would be needed for the Phase 3 study, based on a hypothetical diagnostic 
test accuracy improvement. All of the remaining eligible data was then used for training. Allocation of 
cases to Phases 2 and 3 was undertaken by the study statistician in order to allow appropriate cases 
for training and ‘held-back’ cases for validation. A total of 245 WB-MR scans were allocated to Phase 2 
for model development (the original protocol planned for a minimum of 150 scans), of which 19 could 
not be used due to technical failure, with a final number of 226 WB-MRI available for development. All 
lesions were segmented on T2 and DWI volumes and checked by an expert (accredited radiologist) using 
the reference standard to ensure that ground truth (GT) was as accurate as possible. Initial radiology 
outputs were reviewed by expert radiologist and ML team to identify areas for improvement and the ML 
development focused on accurate detection of the GT segmented sites of disease. The algorithm was 
gradually improved and was then tested on the internal validation set to ensure sensitivity of detection 
was met, before progressing to the clinical testing. A validation step in phase 2 was undertaken on 45 
cases that were allocated to Phase 2 training but withheld from model development. Sensitivity for 
detection of metastatic lesions by the algorithm was evaluated using a Dice coefficient metric, with 
sufficient overlap and probability thresholds achieved. The threshold was determined as we developed 
the algorithm in the early stages of Phase 2. Our initially planned reader study, at the end of Phase 
2, was not undertaken and the described computational method was employed. Cases used for the 
sensitivity check at the end of Phase 2 were not used for any ML training or read by radiologists in 
Phase 3.

Phase 3: ‘clinical validation set’
The allocated Phase 3 data set for clinical validation was comprised of 193 WB-MRI (217 were 
originally planned in the protocol) from the STREAMLINE C and L studies that had not been used 
for Phase 2 training. These scans were to be read by experienced readers with the fixed final ML 
support, which was provided as a probability map (a heatmap) which could be overlayed on the 
T2-weighted stitched volumes of the WB-MRI and this was used as the index test. The WB-MRI 
reads by experienced radiologists without ML support was the comparator test. The per-patient 
specificity and sensitivity of WB-MRI assessment, with and without ML support, was determined 
using the established reference standard from the main study. An interim analysis of the first 50–70 
consecutive cases was planned but was not undertaken due to late running of the study. A scribe 
recorded the reader findings on the study case report form (CRF) and the RT was recorded. Substudies 
included: (1) Reads by new (inexperienced) WB-MRI readers; (2) Repeat reads (in random order and at 
time interval) with and without ML support to measure RT and interobserver variation. This ensured 
parity in computer setup between the reads, as there may have been variation in the original main 
study reads related to use of either picture archiving and communication system (PACS), Biotronics3D 
platform or other software, in addition to differences in internet speeds when reads were performed 
online for the main study.

Figure 1 shows the study design flow diagram for this project.

Patient public involvement
A patient representative took part in the development of the grant application, with all study materials 
being developed during the course of the study planning. The patient representative also was part 
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of the trial steering committee. Discussions concerning use of patient data in de-identified format 
were constructive and the idea of using ML techniques to potentially improve accuracy was seen as a 
positive area of research. This study did not recruit patients directly and so there were no patient-facing 
materials for review. However, the patient representative has been kept abreast of the developments 
through the course of the study.

Phase 2 ‘training set’ 
150 WB-MRI dual reads 

(up to 300 WB-MR reads available) 
First cohort of cancer patients 

Phase 1 
50 WB-MRI 

 healthy volunteers ‘training set’ 

Phase 3 ‘validation set’ 
(total 193 new cases) 

3’b’ minimum 141 final cases 

Performance to improve by 10% over radiology reads without 
ML support from source studies – estimated final specificity 

95% 

Iterative improvements to algorithm 
and 

TEST on 50 new cases  (3/12)

Phase 3 ‘validation set’ 
(total 193 new cases) 
3’a’ 50–70 new cases 

Interim specificity analysis on 
50–70 cases Sensitivity > 80% at upper 95% CI

Develop ML algorithm ‘A’ 

Develop ML algorithm ‘B’ then ‘C’ 

Sensitivity < 80% at upper 95% CI 

Specificity > 80% at upper 95% CI Specificity < 80% at upper 95% CI STOP

Interim sensitivity check  using
‘C’ on 40–50  new cases 

Sensitivity < 80% at upper 95% CI Sensitivity > 80% at upper 95% CI 

FIGURE 1 Planned study design flow diagram from the study protocol.
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Chapter 2 Phase 1: healthy volunteer data 
collection and pre-processing fat-water swap 
artefact

This chapter includes material previously published by the authors in references.41,61 The MRI 
protocol used for the healthy volunteer WB-MRI acquisition was first published in reference 41 

and permission to reproduce the MRI protocol was given by the American Journal of Roentgenology. The 
development of a methodology for correction of fat-water swap was published in reference 61 as open 
access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) 
license, permits others to distribute, remix, adapt and build upon this work, for commercial use, provided 
the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/. The text below 
includes minor additions and formatting changes to the original text.

Volunteers and magnetic resonance imaging scans

The source study for the healthy volunteer data was approved by the local ethics committee (ICREC 
08/H0707/58 for optimisation of MRI protocols used in clinical practice and translational research) 
and written consent was obtained from the participants. Fifty-one healthy volunteers [24 men (mean 
age = 37 years, age range = 23–67 years) and 27 women (mean age = 39 years, range = 23–68 years)] 
were scanned with WB-MRI from February 2012 to May 2014 at a single institution and scanned on the 
same machine.

Details about the volunteers’ population and scan protocol can be found in the reference.41 The inclusion 
and exclusion criteria were the following:

Inclusion criteria:

1.	 male or female, healthy volunteers were aged 18–100 years;
2.	 written, informed consent was provided.

Exclusion criteria:

1.	 any co-existing medical illness;
2.	 contraindications to MRI (e.g. patients with pacemakers, metal surgical implants and aneurism clips, 

patients suffering from claustrophobia).

Magnetic resonance imaging protocol for healthy volunteers
Whole-body magnetic resonance imaging was performed on a moving-table 1.5-T system (Avanto with 
Syngo MR B17, Siemens Healthcare) using the body coil for transmission and the neck and body phased-
array coils as receive coils. Four different imaging stations were used to achieve full body coverage, from 
the top of the neck to mid-thighs. Axial slices were acquired during free-breathing for DWI, whereas 
breath-holds were used for the three first stations for anatomic imaging. The acquisition time was 
approximately 45–50 minutes depending on the breath-holding ability of the examined participant. DWI 
slice-matched T1-weighted imaging with Dixon and T2-weighted imaging was performed to assist with 
the delineation of abdominal organs and bone marrow. The MRI protocol is provided in Table 1.41

Representative slices showing ROIs used to calculate apparent diffusion coefficient (ADC) values are 
given in Figure 23 of Appendix 1. Also, scatterplots of ADCALL with age are displayed in Figure 24 of 

http://creativecommons.org/licenses/by/4.0/


10

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Phase 1: healthy volunteer data collection and pre-processing fat-water swap artefact

Appendix 1, and ADC values calculated from perfusion-sensitive WB-DWI protocol (ADCALL) vary with 
fat fraction (FF), shown in Figure 25 of Appendix 1.

Image pre-processing for whole-body magnetic resonance imaging: correction of fat-
water swaps in Dixon magnetic resonance imaging61

In Phase 1 of the MALIBO project, we collected WB-MR images in 51 healthy volunteers with a Dixon 
sequence (Table 1). The Dixon method is a MRI sequence based on chemical shift and designed to 
achieve uniform fat suppression. However, fat- and water-only swap artefact may occur in up to 10% of 
scans, impacting on subsequent analysis.

We developed a new method to correct fat-water swap, based on regressing fat- and water-only images 
from in- and out-of-phase images by learning the conditional distribution of image appearance. We 
demonstrated the effectiveness of our approach on WB-MRI with various types of fat-water swaps.61

TABLE 1 Magnetic resonance imaging protocol for whole-body imaging at 1.5 T in 51 healthy volunteers41

DW-MRI T1-W MRI T2-W MRI

Sequence type SS SE EPI VIBE with DIXON HASTE

FOV (mm) 450 × 366 450 × 351 450 × 366

Matrix size 128 × 128 interpolated 320 × 202 256 × 256

No of slices/thickness/distance (mm) 50/5/0% 56/5/20% 50/5/0%

TR (ms) 9000 7.54 767

TE (ms) 72 2.38/4.76 92

Bandwidth (Hz/pixel) 2056 300 399

Flip angle 90 10 130

NA 4 1 2

Fat suppression STIR
 (TI = 180 ms)

N/A N/A

b-values (s/mm2) 0, 150, 400, 750, 1000 N/A N/A

Parallel acquisition GRAPPA 2 GRAPPA 2 GRAPPA 2

No stations 4, free-breathing 4, (3 with breath-holds) 4, (3 with breath-holds)

TA (min)/station 8.17 0.15 1.18

GRAPPA, generalised autocalibrating partially parallel acquisition; HASTE, half-Fourier acquisition single-shot turbo spin-
echo; SS SE EPI, single-shot spin echo planar imaging; STIR, short inversion time inversion recovery; VIBE, 3D volumetric 
interpolated breath-hold examination.
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Chapter 3 Phase 1: fully automatic, multi-
organ segmentation in normal whole-
body magnetic resonance imaging, using 
classification forests, convolutional neural 
networks and a multi-atlas approach14

Parts of this chapter are reproduced from Lavdas et al.14 under licence agreement with John Wiley 
and Sons, number 5176490914331. Phase 1 of the MALIBO study involved the development and 

optimisation of a ML pipeline to automatically identify and segment anatomical structures of interest 
in normal WB-(DW)-MRI. In order to construct the anatomical atlases, WB-MRI data sets from 51 
healthy volunteers were used (see Chapter 2 for description of data set or Lavdas et al.41). These had 
already been collected under a separate ethics approval (ICREC 08/H0707/58). During this phase, 
we developed shape and appearance models that were specific to the normal anatomical regions as 
identified in WB-MRI. Classification was carried out using advanced supervised ML techniques based 
on ensemble classifiers, such as RFs,62 deep-learning algorithms such as CNNs-(15) or a multi-atlas (MA) 
approach.63 In this phase, three different algorithms for automatic segmentation of the healthy organs 
and bones were completed. This phase has been successfully completed and published.14

Machine-learning methods for image segmentation

Imaging protocol
Please see Chapter 2 for the full description of the MRI protocol that was used for scanning the 51 
healthy volunteers. The full imaging protocol is shown in Table 1.

Machine-learning pipeline
Digital Imaging and Communications in Medicine (DICOM) data from individual imaging stations were 
stitched into single Neuroimaging Informatics Technology Initiative (NIfTI) volumes (https://nifti.nimh.
nih.gov/). The stitching method was performed in the following: First, MRI images were loaded from the 
individual stations (or sub-volumes), typically about six but this may vary between participants. Next, 
the first station that is provided in the list of stations was used as a reference for the in-plane resolution 
and number of voxels (because these can vary between stations). Using this reference standard, we 
resampled each station to the same in-plane resolution as the reference station. After that, there is a 
read out of the physical location of each station from the DICOM header information [this is typically 
stored in a DICOM tag called ‘Image Position (Patient)’]. Finally, using the physical location of each 
station, it calculates the output volume where all stations are ‘stitched’ together to form a continuous 
volume. Adjacent stations often have a small overlapping region. The information of the station that lies 
cranially (from a head-to-toe direction) was simply used.

The stitched MRI volume data were used as input data to the algorithms, while training was based 
on manual annotation of the anatomic ROI on the T2-weighted volumes, first segmented by two 
radiology trainees and then checked by a MRI expert. The expert checked the segmentations, which 
were adjusted, if needed, and agreed in consensus. When multimodal MRI data were used as input to 
classification forests (CFs) and CNNs (e.g. T2w + T1w + DWI data, where T1w refers to T1w in- and 
opposed-phase images from the DIXON acquisitions, and DWI refers to b = 1000 s/mm2 images 
and ADC maps), an extra registration step was attempted, to add to the data preparation pipeline. 
However, in the final pipeline, no registration was undertaken. During this step, T1w and DWI volumes 
were registered to the T2w volumes using an affine transformation. A schematic overview of the data 

https://nifti.nimh.nih.gov/
https://nifti.nimh.nih.gov/
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preparation process, including the registration step, is given in Figure 2. Data from different imaging 
stations are stitched to single volumes and then intrapatient registration is performed (when using 
multimodal MRI data as input to the algorithms). Manual segmentation and annotation of the anatomic 
ROI was also performed to generate training data for the ML algorithms.

Classification forests are powerful, multilabel classifiers that facilitate simultaneous segmentation of 
multiple organs. They have very good generalisation properties, meaning that the algorithm can be 
effectively trained using a relatively small number of annotated example data, a particularly important 
advantage in the clinical setting. CFs are a supervised, discriminative learning technique, which is 
based on RFs; an ensemble of weak classifiers called decision trees. Each decision tree is constructed 
in a way that it produces a partitioning of the training data, for example, image points that carry organ 
label information, in a way that training data with same labels are grouped together. This is achieved 
by building the trees from the root node down to the leaf nodes. Internal nodes, so called split nodes, 
separate the incoming data into two sets. Leaf nodes then correspond to small clusters of training data 
from which label statistics are computed and are used for predictions at testing time. Data splitting in 
the trees is based on an objective function, which maximises the information gained over empirical label 
distributions. The goal is to select discriminative features at split nodes that are best for partitioning 
the data. Different trees are built by injecting randomness for both feature selection and training data 
subsampling. This ensures decorrelation between trees and has proven to yield good generalisation 
properties. During testing, image points from a new image are ‘pushed’ through each tree until a leaf 

Separate imaging stations (.dcm)

+

+

+

Stitched volume (.nii.gz)

Registration to reference volume

Segmented image

Machine-learning
pipeline

Manual volumetric segmentation

FIGURE 2 Magnetic resonance imaging image data preparation pipeline. Diagrammatic flowchart of the data preparation 
process for the ML pipelines. CFs algorithm. Reproduced from Lavdas et al.14



DOI: 10.3310/KPWQ4208� Efficacy and Mechanism Evaluation 2024 Vol. 11 No. 15

Copyright © 2024 Rockall et al. This work was produced Rockall et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care.  
This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction 
and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original 
author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

13

node is reached. The label statistics over training data that are stored in the leaf nodes are aggregated 
over different trees by simple averaging, and a final decision on the most likely label is made based on 
this aggregation. Intuitively, image points will fall into leaf nodes that contain similar image points from 
the training data with respect to the features that are evaluated along the path from root to leaf node. 
An attractive property of CFs is their ability to automatically select the right image features for a given 
task, from a potentially very large and high-dimensional pool of possible features. This is important 
because preselecting or handcrafting image features beforehand can be very difficult, as it is not known 
in advance which features are discriminative for the task at hand. In CFs, the user only has to provide 
weak guidance on the ranges of parameters that are used to randomly generate potential features. In 
this work, we make use of the popular offset box features, which have been shown to provide effective 
means of capturing local and contextual information.64–66 Box features are very efficient to compute, 
which is beneficial for training and testing. In box features, intensity averages are calculated within 
randomly sized and displaced 3D boxes. Two types of features are computed: single-box and two-box 
features. Single-box features simply correspond to the average intensity of all voxels from a particular 
MRI sequence that fall into a 3D box. Two-box features return the difference between the averages 
computed for each of the two boxes and generalise intensity gradient features. Here, each box can be 
taken from a different MRI sequence and, thus, yield cross-sequence information.

Tuning parameters for our algorithm have been set accordingly to knowledge from previous applications, 
such as vertebra localisation in whole-body CT scans. We have used CFs extensively for related tasks for 
which cross-validation has been used to optimise hyperparameters such as tree depth. In this work, we 
used 50 trees with a maximum tree depth of 30. The stopping criterion for growing trees is if either the 
objective function (information gain) cannot be further improved or the number of training samples in a 
leaf fall below a threshold of four samples. We found that neither increasing the number of trees nor the 
tree depth increases the segmentation accuracy of the CFs.

Convolutional neural networks algorithm
Convolutional neural networks are feed-forward artificial neural networks, which have recently emerged 
as powerful ML methods for image analysis tasks, such as segmentation. CNNs are capable of learning 
complex, nonlinear data associations between the input images and segmentation labels through layers 
of feature extractors. Each layer performs multiple convolutional filter operations on the data coming 
in from the previous layer and outputs feature responses, which are then processed by the next layer. 
The last layer in the network combines all the outputs to make a prediction about the most likely class 
label for each voxel in an image. The parameters of the convolutions and weights for combining feature 
responses are learnt during the training stage, using an algorithm called back-propagation. The layered 
architecture enables CNNs to learn complex features automatically without any need for guidance 
from the user. The features correspond to a sequence of filter kernels learnt in consecutive layers of 
the neural network. A final feature that is used for classification thus can correspond to a nonlinear 
combination of individual features that are extracted hierarchically. This is also called features-of-
features, as filter kernels in deeper layers are applied to the feature responses of earlier layers. This is 
different to CFs, where the user has to define a pool of potential features beforehand from which the 
most discriminative ones are then selected during CF training. However, CNNs come with an increased 
computational cost during training, and they have multiple meta-parameters that need to be highly 
tuned to achieve optimal performance, a process which can be challenging for less experienced users. In 
addition, defining the right network architecture is a challenge on its own and a field of active research.

In this project, we made use of a recently published CNN approach that we developed originally for 
the task of brain lesion segmentation in multiparametric MRI. The approach, called DeepMedic,15 uses 
a dual pathway CNN that processes an image at different levels of resolution simultaneously. This has 
the advantage that features are based on both local and contextual information, something that can be 
particularly appealing in the case of whole-body multiorgan segmentation. For example, the left and 
right kidneys (LKDN and RKDN) might look very similar locally and share similar features at small scale, 
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but the contextual features that cover larger regions of the images allow the discrimination between the 
left and right body parts.

The CNN configuration used here follows largely the default configuration that has been previously used 
for brain lesion segmentation. To accommodate for larger context in the case of organ segmentation, 
the receptive field for the low-resolution pathway has been increased by using an image downsampling 
factor of 3. We use a dual pathway (two resolutions), 11-layer deep CNN, where the last two layers 
correspond to fully connected layers, which combine the features extracted on the two resolution 
pathways. We employ 50–70 feature maps (FMs) (i.e. different kernels) for each layer. The network 
architecture is fully convolutional and there are no max-pooling layers, which we find to increase 
segmentation accuracy. The CNN architecture is a balance between model capacity, training efficiency 
and memory demands.

Multi-atlas algorithm
A MA label propagation approach was also employed in this study.67 MA segmentation uses a set of 
atlases (images with corresponding segmentations) that represent the interparticipant variability of 
the anatomy to be segmented. Each atlas is registered to the new image to be segmented using a 
deformable image registration. The MA approach accounts for anatomical shape variability and is more 
robust than single-atlas propagation methods in that at any errors associated with propagation, are 
averaged out when combining multiple atlases. The approach employed here makes use of efficient 
3D intensity-based image registration68 with free-form deformations as the transformation model and 
correlation coefficient as the similarity measure. Majority voting is used to derive the final tissue label at 
each voxel.

Implementation, training and validation procedure
Training of CFs and CNNs is a demanding process computationally and in our case took up to 12 hours 
for CFs and 30 hours for CNNs for a single fold with 27 images, when using a quad-core Intel Xeon 
3.5 GHz workstation with 32 GB RAM and a NVIDIA Titan X graphics processor unit (GPU). Our CFs 
implementation uses all available central processor units (CPUs), while the CNN implementation runs 
mostly on the GPU. Training only needs to be performed once. Testing of new data points to obtain the 
full segmentation of an image is a particularly efficient process and takes about a minute for CFs and 
CNNs. Note that the MA algorithm does not require any training, but has considerably longer running 
time during testing which scales linearly with the number of atlases. To segment a single image using 27 
atlases takes about 15 minutes on CPU.

We ran five-fold cross-validation experiments on 34 artefact-free data sets to assess the agreement of 
segmentations between the ones from the developed algorithms and the ones from the clinical experts. 
All data sets were inspected by an expert radiologist before being selected for validation. Data sets 
with severe motion artefacts or DWI data sets with severe distortion artefacts, and therefore severe 
misalignment, were excluded from validation.

We report six metrics (three overlap and three surface distance-based measures) to assess the 
agreement between automatic segmentation results from our algorithms and the manual segmentations 
performed by the clinical experts. The Dice similarity coefficient (DSC) quantifies the match between 
the two segmentations (1 = complete overlap, 0 = no overlap). Recall (RE) can be expressed in terms 
of sensitivity (1 = no misses) and precision (PR) can be expressed in terms of specificity (1 = no false 
positives). The average surface distance (ASD) is the average of all the distances from points on the 
boundary of the automatic segmentation to the boundary of the manual segmentation (0 = perfect 
match), the root-mean-square surface distance (RMSSD) is calculated in the same way as the ASD, 
except that the distances are now squared (0 = perfect match). Finally, the Hausdorff distance (HD) or 
maximum surface distance is the maximal distance from a point in the first segmentation to a nearest 
point in manual segmentation (0 = perfect match).69 The three surface distance metrics are expressed in 
millimetres and are unbounded.
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We measured the above metrics for the right and left lungs (RLNG and LLNG), LVR, gallbladder (GBLD), 
RKDN and LKDN, spleen (SPLN), pancreas (PNCR), bladder (BLD), spine (SPN) and pelvic bones, 
including the femurs [pelvis (PLVS)] for all three algorithms, when using T2w volumes as inputs. Then, we 
did the same when using all imaging combinations (T2w + T1w + DWI) as inputs to CFs and CNNs.

Statistical analysis

One-way analysis of variances (ANOVA) was used to compare the mean metrics for all the examined 
structures between the three algorithms. Post hoc analysis (multiple comparisons) was performed with 
a Tukey test. In cases where the homogeneity of variances was violated, a Kruskal–Wallis test was used. 
A Mann–Whitney U-test was used to compare the performance between CFs and CNNs when using 
T2w volumes as input to the algorithms and when using all imaging combinations (T2w + T1w + DWI). 
ANOVA and Mann–Whitney U-tests were similarly used to compare the DSC of individual anatomical 
labels between the three algorithms and between CFs and CNNs when using different imaging 
inputs. Finally, a Mann–Whitney U-test was used to compare the DSC between CFs with all imaging 
combinations (T2w + T1w + DWI) as input and CNNs with T2w images as input only, for each 
anatomical label. A significance level of 0.05 was used for all tests. Statistical analysis was performed in 
SPSS 21.0 for Windows (SPSS, Chicago, IL, USA).

Results

It is noteworthy that an ‘at a glance’ qualitative assessment reveals that CNNs outperform CFs and the 
MA algorithm in DSC, RE and PR (Figure 3), while the MA algorithm seems to perform best in terms of 
surface distance metrics, namely ASD, RMSSD and HD.

A visual example of automatic segmentation results from the three algorithms in the coronal and axial 
plane is shown in Figure 3.

T2w Manual CF CNN MA

FIGURE 3 Examples of segmentation results from three algorithms. T2w representative coronal (top row) and axial slices 
(bottom row), manual and automatic segmentations of major organs (lungs, heart, kidneys, LVR, and SPLN) and bones (SPN 
and femurs) from the three algorithms.
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A bar chart that provides a pictorial representation of the mean metrics (DSC, RE, PR, ASD, RMSSD 
and HD) for the segmented organs when using T2w volumes as input to all three algorithms is shown in 
Appendix 1, Figure 26.

Table 2 shows the pooled mean metrics ± standard deviation (SD) from all the segmented structures for 
the three algorithms. It also shows the p-values from the ANOVA when comparing the metrics between 
the three algorithms. It is seen that CNNs provide the highest mean DSC (0.81 ± 0.13), RE (0.83 ± 0.14) 
and PR (0.82 ± 0.10) compared to CFs and the MA algorithm, but not statistically significant 
(p = 0.271, 0.294 and 0.185, respectively). On the contrary, the MA algorithm returns the lowest ASD 
(4.22 ± 2.42 mm), RMSSD (6.13 ± 2.55 mm), and HD (38.9 ± 28.9 mm) when compared to CFs and CNNs, 
which is statistically significant (p = 0.005, 0.004 and 0.001, respectively).

Table 3 reports the DSC, the most commonly used metric to assess agreement between manual and 
automatic segmentations, for individual anatomical structures (labels) when the three algorithms (CFs, 
CNNs and MA) are using the T2w images as inputs only. It also shows the p-values from the ANOVA, 
when comparing the DSC between the three algorithms for each anatomical label.

It is worth noting that CNNs performed significantly better (p < 0.001) than CFs and the MA algorithm in 
segmenting all the anatomies of interest, except for the BLD (p = 0.162).

A bar chart that provides a pictorial representation of the mean metrics (DSC, RE, PR, ASD, 
RMSSD and HD) for the segmented organs when using T2w volumes and all imaging combinations 
(T2w + T1w + DWI) as input to CFs and CNNs, is shown in Figure 26 in Appendix 1.

Pooled mean metrics ± SD are presented in Table 31 in Appendix 1. The bar plot of the mean measure 
metrics is plotted in Figures 26 and 27 of Appendix 1.

It is confirmed that the performance of CFs is improved when all imaging combinations are used 
(T2w + T1w + DWI) as input, when compared to using T2w volumes only. This is reflected in all 
metrics (DSC = 0.74 ± 0.16 vs. 0.70 ± 0.17, RE = 0.78 ± 0.16 vs. 0.73 ± 0.18, PR = 0.74 ± 0.13 vs. 
0.71 ± 0.14, ASD = 7.89 ± 7.55 mm vs. 13.5 ± 11.2 mm, RMSSD = 20.9 ± 27.1 mm vs. 34.6 ± 37.6 mm 
and HD = 170.7 ± 194.0 mm vs. 185.7 ± 194.0 mm). On the contrary, the performance of CNNs is better 
when using T2w volumes only as input, rather than using all imaging combinations (T2w + T1w + DWI). 
This is again reflected in all metrics (DSC = 0.81 ± 0.12 vs. 0.77 ± 0.14, RE = 0.82 ± 0.14 vs. 0.79 ± 0.15, 
PR = 0.82 ± 0.10 vs. 0.79 ± 0.11, ASD = 5.48 ± 4.84 mm vs. 9.23 ± 8.04 mm, RMSSD = 17.0 ± 13.3 mm 
vs. 25.2 ± 19.1 mm and HD = 199.0 ± 101.2 mm vs. 215.9 ± 98.6 mm). No significant differences were 
found in the performance of CFs and CNNs when using different T2w only and all imaging combinations 
(T2w + T12w + DWI) as inputs.

TABLE 2 Pooled mean metrics

DSC RE PR ASD (mm) RMSSD (mm) HD (mm)

CFs 0.70 ± 0.18 0.73 ± 0.18 0.71 ± 0.14 13.5 ± 11.3 34.6 ± 37.6 185.7 ± 194.0

CNNs 0.81 ± 0.13 0.83 ± 0.14 0.82 ± 0.10 5.48 ± 4.84 17.0 ± 13.3 199.0 ± 101.2

MA 0.71 ± 0.22 0.70 ± 0.24 0.77 ± 0.15 4.22 ± 2.42 6.13 ± 2.55 38.9 ± 28.9

p 0.271 0.294 0.185 0.005 0.004 0.001

Note
Pooled mean metrics ± SD from all the segmented structures from the three algorithms (CFs, CNNs and MA). In addition, 
p-values from the ANOVA when comparing the metrics between the three algorithms (ANOVA for DSC, RE and PR and 
Kruskal–Wallis for ASD, RMSSD and HD). Significant values are shown in bold.
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Table 31 (in Appendix 1) shows the pooled mean metrics T SD from all the segmented structures for CFs and 
CNNs, when using T2w only volumes and all imaging combinations (T2w + T1w + DWI) as inputs. It also 
shows the p-values from the Mann–Whitney U-test when comparing the two-input cases for CFs and CNNs.

Table 4 shows the DSC for all the anatomical labels, when CFs and CNNs are being used with T2w images 
only (CFs_T2w and CNNs_T2w) as inputs and when using all imaging combinations (T2w + T1w + DWI) 
as input to the two algorithms (CFs_all and CNNs_all). It also shows the p-values from the Mann–Whitney 
U-tests when comparing the DSC between CFs and CNNs used with different imaging inputs.

It is seen that the addition of extra imaging modalities (T1w + DWI) as input to CFs_T2w, significantly 
improves the segmentation performance (p = 0.046) for many anatomical structures (LVR, LKDN, SPLN, 
PNCR, BLD and SPN). By contrast, the addition of T1w + DWI to CNNs_T2w, significantly deteriorates 
the DSC (p = 0.044) for most the examined anatomies of interest (RLNG, LLNG, LVR, RKDN, LKDN, 
SPLN and SPN). Finally, Table 5 shows and compares the DSC from all anatomical labels, when 
segmented by the two algorithms with the best DSC performance as reported above, namely CFs_all 
and CNNs_T2w. It also shows the p-values from the Mann–Whitney U-tests to compare the DSC 
between the two algorithms for all the examined structures.

It is striking that CNNs_T2w scored significantly better DSCs than CFs in all the examined organs 
(p < 0.008), aside from the BLD (p = 0.384). The segmentation performance was notably improved when 
using CNNs_T2w, even for organs with great variability in appearance, such as the GBLD (0.38 ± 0.25 
for CNNs_T2w vs. 0.56 ± 0.19 for CFs_all, p = 0.002).

Discussion

All the algorithms tested in this study permitted automatic, multiorgan segmentation in whole-body MRI 
of healthy volunteers with very good agreement to the segmentations, performed manually by clinical 

TABLE 3 Dice similarity coefficient ± SD for each anatomical label

DSC

p-valueCFs CNNs MA

RLNG 0.92 ± 0.03 0.95 ± 0.01 0.93 ± 0.01 < 0.001

LLNG 0.92 ± 0.03 0.95 ± 0.01 0.93 ± 0.01 < 0.001

LVR 0.85 ± 0.03 0.93 ± 0.01 0.86 ± 0.04 < 0.001

GBLD 0.38 ± 0.26 0.56 ± 0.19 0.24 ± 0.26 < 0.001

RKDN 0.75 ± 0.09 0.87 ± 0.03 0.77 ± 0.07 < 0.001

LKDN 0.65 ± 0.19 0.84 ± 0.11 0.72 ± 0.13 < 0.001

SPLN 0.57 ± 0.18 0.79 ± 0.11 0.58 ± 0.14 < 0.001

PNCR 0.47 ± 0.13 0.62 ± 0.09 0.40 ± 0.14 < 0.001

BLD 0.65 ± 0.22 0.75 ± 0.21 0.69 ± 0.23 0.162

SPN 0.80 ± 0.04 0.87 ± 0.01 0.87 ± 0.02 < 0.001

PLVS 0.73 ± 0.05 0.81 ± 0.03 0.79 ± 0.06 < 0.001

Note
Dice similarity coefficient ± SD for each anatomical label, segmented by the three algorithms (CFs, CNNs and MA), when 
using T2w images as input only. In addition, p-values from the ANOVA when comparing the DSC between the three 
algorithms (ANOVA for DSC, RE and PR and Kruskal–Wallis for ASD, RMSSD and HD). Significant values are shown in bold.
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TABLE 4 Dice similarity coefficient ± SD from CFs and CNNs for all the anatomical labels

DSC

p-value

DSC

p-valueCFs_T2w CFs_all CNNs_T2w CNNs_all

RLNG 0.92 ± 0.03 0.92 ± 0.02 0.564 0.95 ± 0.01 0.94 ± 0.01 0.001

LLNG 0.92 ± 0.03 0.92 ± 0.02 0.500 0.95 ± 0.01 0.93 ± 0.03 0.003

LVR 0.85 ± 0.03 0.90 ± 0.02 < 0.001 0.93 ± 0.01 0.91 ± 0.03 < 0.001

GBLD 0.38 ± 0.26 0.38 ± 0.25 0.976 0.56 ± 0.19 0.49 ± 0.18 0.079

RKDN 0.75 ± 0.09 0.79 ± 0.06 0.093 0.87 ± 0.03 0.84 ± 0.05 < 0.001

LKDN 0.65 ± 0.19 0.73 ± 0.13 0.023 0.84 ± 0.11 0.78 ± 0.13 < 0.001

SPLN 0.57 ± 0.18 0.67 ± 0.15 < 0.001 0.79 ± 0.11 0.69 ± 0.13 < 0.001

PNCR 0.47 ± 0.13 0.55 ± 0.11 0.017 0.62 ± 0.09 0.57 ± 0.11 0.051

BLD 0.65 ± 0.22 0.74 ± 0.18 0.046 0.75 ± 0.21 0.74 ± 0.16 0.411

SPN 0.80 ± 0.04 0.83 ± 0.03 < 0.001 0.87 ± 0.01 0.85 ± 0.05 0.044

PLVS 0.73 ± 0.05 0.74 ± 0.05 0.135 0.81 ± 0.03 0.78 ± 0.06 0.069

Note
Dice similarity coefficient ± SD from CFs and CNNs for all the anatomical labels, when using T2w only images (CFs_T2w 
and CNNs_T2w) and when using all imaging combinations (T2w + T1w + DFWI) as inputs (CFs_all and CNNs_all). In 
addition, p-values from the Mann–Whitney U-tests. Significant values are shown in bold.

TABLE 5 Dice similarity coefficient ± SD from all the examined structures for CFs_all and CNNs_T2w algorithms

DSC

p-valueCFs all CNNs T2w

RLNG 0.92 ± 0.02 0.95 ± 0.01 < 0.001

LLNG 0.92 ± 0.02 0.95 ± 0.01 < 0.001

LVR 0.90 ± 0.02 0.93 ± 0.01 < 0.001

GBLD 0.38 ± 0.25 0.56 ± 0.19 0.002

RKDN 0.79 ± 0.06 0.87 ± 0.03 < 0.001

LKDN 0.73 ± 0.13 0.84 ± 0.11 < 0.001

SPLN 0.67 ± 0.15 0.79 ± 0.11 < 0.001

PNCR 0.55 ± 0.11 0.62 ± 0.09 0.008

BLD 0.74 ± 0.18 0.75 ± 0.21 0.384

SPN 0.83 ± 0.03 0.87 ± 0.01 < 0.001

PLVS 0.74 ± 0.05 0.81 ± 0.03 < 0.001

Note
Also, p-values from the Mann–Whitney U-tests to compare the DSC between the two algorithms for each segmented 
structure. Significant values are shown in bold.
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experts. Accurate, multiorgan automatic segmentation in whole-body MRI is the first step in training 
ML algorithms to recognise normality. This will lead the way to developing automatic identification and 
segmentation algorithms for lesions, such as primary or metastatic tumours, with increased sensitivity 
and specificity. These algorithms could ultimately facilitate the process of reading whole-body scans in 
cancer patients by reducing the RT, and possibly, improving the diagnostic accuracy of WB-MRI. These 
algorithms may also assist in quantifying the extent of normal tissues such as muscle or fat.

Our analysis showed that CNNs outperformed CFs and the MA algorithm when T2w volumes were 
used as input to the algorithms and when using pooled overlap-evaluation metrics (DSC, RE and PR) 
to assess the accuracy of segmentation. When the performance of the algorithms was assessed with 
pooled surface distance metrics (ASD, RMSSD and HD), it was the MA algorithm that performed best. 
Single misinterpreted voxels in CFs and CNNs can greatly elevate ASD, RMSSD and HD; these metrics 
are particularly sensitive to outliers.

We then assessed the pooled metrics performance of CFs and CNNs when using all imaging 
combinations (T2w + T1w + DWI) as input, arguing that maximisation of training information to the 
algorithms might improve the performance of segmentation. We found that the performance of CFs 
was improved, however not significantly, when using all imaging combinations as input for training. The 
opposite was observed for CNNs.

The findings for the pooled metrics analysis, described above, were corroborated by a ‘per-organ’ 
quantitative analysis of the commonly used DSC, to assess the performance of our segmentation 
algorithms. This analysis confirmed that for all individual anatomical structures (except for the BLD), the 
algorithm that returned the greatest DSC was CNNs with T2w images only used as input.

Because our structural scans were acquired using breath-holds and the DWI ones with free breathing, 
we found that there was significant displacement between soft tissues in anatomical areas adjacent 
to the diaphragm between these types of scans. As the employed affine registration method cannot 
fully compensate for nonlinear motions caused by breathing, we assume that misregistration could be 
the reason why the performance of CNNs, despite performing better than the other two algorithms 
when using T2w volumes as input only, was degraded when using all imaging combinations as input 
for training. A more robust, nonlinear registration method could improve the accuracy of CNNs and 
further improve the performance of CFs, so we are currently looking into methods to address this issue. 
Alternatively, we could have generated training data by manually segmenting the structures of interest 
on each sequence type separately, but this would be a rather strenuous and time-consuming approach. 
Further work would need to address the performance limitations of our algorithms when segmenting 
organs with big variability in appearance (e.g. the GBLD or the PNCR).

Conclusion

In conclusion, in this phase of the MALIBO study we have developed and evaluated three state-of-the-
art algorithms that automatically segment healthy organs and bones in whole-body MRI with accuracy 
comparable to the one achieved manually by clinical experts. An algorithm based on CNNs and trained 
using T2w only images as input performs favourably when compared to CFs or a MA algorithm, trained 
with either T2w only images or a combination of imaging inputs (T2w + T1w + DWI). Using multimodal 
MRI data as input for training, the developed algorithms did not improve the segmentation performance 
in this work, but it is anticipated to improve the segmentation performance if more effective WB 
registration between the various imaging modalities can be performed. This investigation is the first 
step towards developing robust algorithms for the automatic detection and segmentation of benign and 
malignant lesions in whole-body MRI scans for staging of cancer patients.
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Chapter 4 Reverse classification accuracy and 
domain adaptation

This chapter is based on material previously published by the authors in Valindria et al.70,71 with minor 
modification. This material is reproduced in line with Creative Commons licence BY 4.0.

Reverse classification accuracy: predicting segmentation performance in  
the absence of ground truth70

When integrating computational tools such as automatic segmentation into clinical practice, it is 
of utmost importance to be able to assess the level of accuracy on new data, and in particular, to 
detect when an automatic method fails. However, this is difficult to achieve due to absence of GT. 
Segmentation accuracy on clinical data might be different from what is found through cross-validation 
because validation data are often used during incremental method development, which can lead to 
overfitting and unrealistic performance expectations. Before deployment, performance is quantified 
using different metrics, for which the predicted segmentation is compared to a reference segmentation, 
often obtained manually by an expert. However, little is known about the real performance after 
deployment when a reference is unavailable. In this paper, we introduce the concept of reverse 
classification accuracy (RCA)70 as a framework for predicting the performance of a segmentation method 
on new data. In RCA, we take the predicted segmentation from a new image to train a reverse classifier 
which is evaluated on a set of reference images with available GT. The hypothesis is that if the predicted 
segmentation is of good quality, then the reverse classifier will perform well on at least some of the 
reference images. We validate our approach on multiorgan segmentation with different classifiers and 
segmentation methods. Our results indicate that it is indeed possible to predict the quality of individual 
segmentations, in the absence of GT. Thus, RCA is ideal for integration into automatic processing 
pipelines in clinical routine and as part of large-scale image analysis studies.

Introduction
Segmentation is an essential component in many image analysis pipelines that aim to extract clinically 
useful information from medical images to inform clinical decisions in diagnosis, treatment planning, 
or monitoring of disease progression. A multitude of approaches have been proposed for solving 
segmentation problems, with popular techniques based on graph cuts,72 MA label propagation,63 
statistical models73 and supervised classification.74 Traditionally, performance of a segmentation method 
is evaluated on an annotated database using various evaluation metrics in a cross-validation setting. 
These metrics reflect the performance in terms of agreement75 of a predicted segmentation compared 
to a reference ‘GT.’ (For simplicity, we use the term GT to refer to the best-known reference, which is 
typically a manual expert segmentation.) Commonly used metrics include DSC76 and other overlap-based 
measures,77 but also metrics based on volume differences, surface distances, and others.78–80 A detailed 
analysis of common metrics and their suitability for segmentation evaluation can be found in Konukoglu 
et al.81

Once a segmentation method is deployed in routine, little is known about its real performance on new 
data. Due to the absence of GT, it is not possible to assess performance using traditional evaluation 
measures. However, it is critical to be able to assess the level of accuracy on clinical data,82 and in 
particular, it is important to detect when an automatic segmentation method fails. Especially when the 
segmentation is an intermediate step within a larger automated processing pipeline where no visual 
quality control of the segmentation results is feasible. This is of high importance in large-scale studies 
such as the UK Biobank Imaging Study83 where automated methods are applied to large cohorts of 
several thousand images, and the segmentation is to be used for further statistical population analysis. 
In this study, we are asking the question whether it is possible to assess segmentation performance 
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and detect failure cases when there is no GT available to compare with. One possible approach to 
monitor the segmentation performance is to occasionally select a random data set, obtain a manual 
expert segmentation and compare it to the automatic one. While this can merely provide a rough 
estimate about the average performance of the employed segmentation method, in clinical routine 
we are interested in the per-case performance and want to detect when the automated method fails. 
The problem is that the performance of a method might be substantially different on clinical data and 
is usually lower than what is found through cross-validation on annotated data carried out beforehand 
due to several reasons. Firstly, the annotated database is normally used during incremental method 
development for training, model selection and FT of hyper-parameters. This can lead to overfitting84 
which is a potential cause for lower performance on new data. Secondly, the clinical data might be 
different due to varying imaging protocols or artefacts caused by pathology. To this end, we propose a 
general framework for predicting the real performance of deployed segmentation methods on a per-
case basis in the absence of GT.

Related work
Retrieving an objective performance evaluation without GT has been an issue in many domains, from 
remote sensing,85 graphics,86 to marketing strategies.87 In computer vision, several works evaluate the 
segmentation performance by looking at contextual properties,88 by separating the perceptual salient 
structures89 or by automatically generating semantic GT.90,91 However, these methods cannot be applied 
to a more general task, such as an image with many different class labels to be segmented. An attempt 
to compute objective metrics, such as PR and RE with missing GT, is proposed by Lamiroy and Sun92 
but it cannot be used for data sets with partial GT since it applies a probabilistic model under the same 
assumptions. Another stand-alone method to consider is the meta-evaluation framework, where image 
features are used in a ML setting to provide a ranking of different methods,93 but this does not allow the 
estimation of segmentation performance on an individual image level.

Meanwhile, unsupervised methods94,95 aim to estimate the segmentation accuracy directly from the 
images and label maps using, for example, information-theoretic and geometrical features. While 
unsupervised methods can be applied to scenarios where the main purpose of segmentation is to yield 
visually consistent results that are meaningful to a human observer, the application in medical settings 
is unclear.

When there are multiple reference segmentations available, a similarity measure index can be obtained 
by comparing an automatic segmentation with the set of references.96 In medical imaging, the problem 
of performance analysis with multiple references which may suffer from intrarater and inter-rater 
variability has been addressed.97,98 The simultaneous truth and performance level estimation (STAPLE) 
approach97 has led to the work of Bouix et al.99 that proposed techniques for comparing the relative 
performance of different methods without the need of GT. Here, the different segmentation results are 
treated as plausible references, thus can be evaluated through STAPLE and the concept of common 
agreement. Another work by Sikka and Deserno100 has quantitatively evaluated the performance of 
several segmentation algorithms by region correlation matrix. The limitation of this work is that it cannot 
evaluate the segmentation performance of a particular method on a particular image independently.

Recent work has explored the idea of learning a regressor to directly predict segmentation accuracy 
from a set of features that are related to various segmentation energy terms.101 Here, the assumption is 
that those features are well suited to characterise segmentation quality. In an extension for a security 
application, the same features as in Kohlberger et al.101 are extracted and used to learn a generative 
model of good segmentations that can be used to detect outliers.102 Similarly, the work of Frounchi et 
al.103 considers training of a classifier that is able to discriminate between consistent and inconsistent 
segmentations. However, the approaches101,103 can only be applied when a training database with 
good and bad segmentations is available from which a mapping from features to segmentation 
accuracy can be learnt. Examples of bad segmentations can be generated by altering parameters of 
automatic methods, but it is unclear whether those examples resemble realistic cases of segmentation 
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failure. The generative model approach in Grady et al.102 is appealing as it only requires a database of 
good segmentations. However, there is still the difficulty of choosing appropriate thresholds on the 
probabilities that indicate bad or failed segmentations. Such an approach cannot not be used to directly 
predict segmentation scores such as DSC, but can be useful to inform automatic quality control or to 
automatically select the best segmentation from a set of candidates. In the general ML domain, the lack-
of-label problem has been tackled by exploiting transfer learning104 using a reverse validation to perform 
cross-validation when the number of labelled data are limited. The basic idea of reverse validation104 is 
based on reverse testing, where a new classifier is trained on predictions on the test data and evaluated 
again on the training data. This idea of reverse testing is closely related to our approach as we will 
discuss in the following section.

Contribution
The main contribution of this study is the introduction of the concept of RCA to assess the 
segmentation quality of an individual image in the absence of GT. RCA can be applied to evaluate the 
performance of any segmentation method on a per-case basis. To this end, a classifier is trained using a 
single image with its predicted segmentation acting as pseudo GT. The resulting reverse classifier (or RCA 
classifier) is then evaluated on images from a reference database for which GT is available. It should be 
noted that the reference database can be (but does not have to be) the training database that has been 
used to train, cross-validate and fine-tune the original segmentation method. The assumption is that in 
ML approaches, such a database is usually already available, but it could also be specifically constructed 
for the purpose of RCA. Our hypothesis is that if the segmentation quality for a new image is high, then 
the RCA classifier trained on the predicted segmentation used as pseudo GT will perform well at least 
on some of the images in the reference database, and similarly, if the segmentation quality is poor, the 
classifier is likely to perform poorly on the reference images. For the segmentations obtained on the 
reference images through the RCA classifier, we can quantify the accuracy, for example, using DSC, 
since reference GT is available. It is expected that the maximum DSC score over all reference images 
correlates well with the real DSC that one would get on the new image if GT were available. Although 
the idea of RCA is similar to reverse validation104 and reverse testing,105 the important difference is 
that in our approach we train a reverse classifier on every single instance while the approaches in 
references104,105 train single classifiers over the whole test set and its predictions jointly to find out 
what the best original predictor is. RCA has the advantage of allowing to predict the accuracy for each 
individual case, while at the same time aggregating over such accuracy predictions allows drawing 
conclusions for the overall performance of a particular segmentation method.

In the following, we will first present the details of RCA and then evaluate its applicability to a multi-
organ segmentation task by exploring the prediction quality of different segmentation metrics for 
different combinations of segmentation methods and RCA classifiers. Our results indicate that, at least 
to some extent, it is indeed possible to predict the performance level of a segmentation method on 
each individual case, in the absence of GT. Thus, RCA is ideal for integration into automatic processing 
pipelines in clinical routine and as part of large-scale image analysis studies.

Reverse classification accuracy

The RCA framework is based on the idea of training reverse classifiers on individual images utilising 
their predicted segmentation as pseudo GT. In this work, we employ three different methods for 
realising the RCA classifier and evaluate each in different combinations with three state-of-the-art image 
segmentation methods. Details about the different RCA classifiers are provided in the following sections.

Learning reverse classifiers
Given an image I and its predicted segmentation SI, we aim to learn a function fI,SI(x): Rn 7 → C that 
acts as a classifier by mapping feature vectors x Є Rn extracted for individual image points to class labels 
c Є C. In theory, any classification approach could be utilised within the RCA framework for learning the 
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function fI,SI. We experiment with three different methods reflecting state-of-the-art ML approaches for 
voxel-wise classification and atlas-based label propagation.

Atlas forests (AFs): The first approach we consider for learning a RCA classifier is based on the recently 
introduced concept of AFs106 which demonstrates the feasibility of using RFs62 to encode individual 
atlases, that is images with corresponding segmentations. RFs have become popular for general image 
segmentation tasks as they naturally handle multiclass problems and are computationally efficient. Since 
they operate as voxel-wise classifiers, they do not (necessarily) require preregistration of the images 
neither at training nor testing time. Although in Zikic et al.106 spatial priors have been incorporated 
by means of registering location probability maps to each atlas and new image, this is not a general 
requirement for using AFs to encode atlases. In fact, the way we employ AFs within our RCA framework 
does not require any image registration. The forest-based RCA classifiers in this study are all trained with 
the same set of parameters of maximum depth 30 and 50 trees. As we follow a very standard approach 
for RFs, we refer to previous works106,107 for more details. It is worth noting that, similar to previous 
work, we employ simple box features which can be efficiently evaluated using integral images. This has 
the advantage that feature responses do not need to be precomputed. Instead, we randomly generate 
a large pool of potential features (typically around 10,000) by drawing values randomly for the feature 
parameters such as box sizes and offsets from predefined ranges. At each split node we then evaluate 
on the fly a few hundred box features with a brute force search for optimal thresholds over the range 
of feature responses to greedily find the most discriminative feature/threshold pair. This strategy has 
proven successful in a number of works using RFs for various tasks.

Deep learning: The second approach was to experiment with CNNs as RCA classifiers. Here, we utilise 
DeepMedic, a 3D CNN architecture for automatic segmentation.15 The architecture is computationally 
efficient as it can handle large image context by using a dual pathway for multiscale processing. CNNs 
have shown to be able to learn highly complex and discriminative data associations between input 
data and target output. The architecture of the network is defined by the number of layers and the 
number of activation functions in each layer. In CNNs, each activation function corresponds to a learnt 
convolutional filter, and each filter produces a FM by convolving the outputs of the previous layer. 
Through the sequential application of many convolutions, highly complex features are learnt that are 
then used to produce voxel-wise predictions at the final, fully connected layer. CNNs are a type of 
deep-learning approach which normally requires large amounts of training data in order to perform well 
due to the thousands (or millions) of parameters corresponding to the weights of the filters. To be able 
to act as a RCA classifier, that is trained on a single image, we require a specialised architecture. Here, 
we reduce the number of FMs in each layer by one third compared to the default setting of DeepMedic. 
We also cut the FMs in the last fully connected layers, from 150 to 45. By reducing the FMs without 
changing the architecture, in terms of number of layers the network preserves, its capability to see large 
image context as the size of the receptive field remains unchanged. With a smaller number of filters, 
the number of parameters is substantially decreased, which leads to faster computations, but, more 
importantly, reduces overfitting when trained on a single image. Training is performed in a patch-wise 
manner where the original input image is divided into 3D patches that are then sampled during training 
using backpropagation and batch normalisation. For details about the training procedure and further 
analysis of DeepMedic, we refer to Kamnistas et al.15

Atlas-based label propagation: The third approach we consider is atlas-based label propagation. 
Label propagation, using multiple atlases, have been shown to yield state-of-the-art results on many 
segmentation problems.63 A common procedure in MA methods is to use non-rigid registration to 
align the atlases with the image to be segmented and then perform label fusion strategies to obtain 
predictions for each image point. Although MA methods based on registration are not strictly voxel-wise 
classifiers as they operate on the whole image during registration, the final stage of label fusion can be 
considered as a voxel-wise classification step. Here, we make use of an approach that has been originally 
developed in the context of segmentation of cardiac MRI67. For the purpose of RCA, however, there is 
only a single atlas and, thus, no label fusion is required. Using single atlas-label propagation then boils 
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down to making use of an efficient non-rigid registration technique as the one described in Bai et al.67 
For RCA, the single atlas then corresponds to the image and its predicted segmentation for which we 
want to estimate the segmentation quality. We use the same configuration for image registration as in 
Bai et al.67 and refer to this study for further details.

Predicting segmentation accuracy
For the purpose of assessing the quality of an individual segmentation, we train a RCA classifier fI,SI on 
a single image I that has been segmented by any segmentation method, where SI denotes the predicted 
segmentation that acts here as pseudo GT during classifier training. Our objective is to estimate the 
quality of SI in the absence of GT. To this end, we define the segmentation function FI,SI(J) = SJ that 
applies the trained RCA classifier fI,SI to all voxels (or more precisely to the features extracted at each 
voxel) of another image J which produces a segmentation SJ. Assuming that for the image J a reference 
GT segmentation SJGT is available, we can now compute any segmentation evaluation metric on the 
pair (SJ, SJGT). The underlying hypothesis in our RCA framework is that there is a correlation between 
the values computed on (SJ, SJGT) and the values one would get for the pair (SI, SIGT), where SIGT is the 
reference GT of image I which in practice, however, is unavailable.

It is unlikely that this assumption of correlation holds for an arbitrary reference image J. In fact, the RCA 
classifier fI,SI is assumed to work best on images that are somewhat similar to I. Therefore, we further 
assume that a suitable reference database is available that contains multiple segmented images (or 
atlases) T = {(Jk, SGTJk )}

m

k=1
  that capture the expected variability. Such a database is commonly available 

in the context of ML and MA-based segmentation approaches but could also be generated specifically 
for the purpose of RCA. If already available, we can re-use existing training databases that might have 
been previously used during method development and/or cross-validation and parameter tuning. When 
testing the RCA classifier on all of the available m reference images, we expect that the RCA classifier 
performs well on at least some of these, if and only if the predicted segmentation SI is of good quality. If 
SI is of bad quality, we expect the RCA classifier to perform poorly on all reference images. This leads to 
our definition of a proxy measure for predicting the segmentation accuracy as:

ρ̄S1 = max
1≤k≤m

ρ
Ä
FI,SI(Jk), S

GT

Jk

ä

�
(1)

where ρ is any evaluation metric, such as DSC, assuming higher values correspond to higher quality 
segmentations. (For metrics where a lower value indicates better quality, such as surface distance, we 
can simply replace the max with a min operator.) Here, we only look for the maximum value that is found 
across all reference images, as this seems to be a good indicator of the quality of the segmentation SI. 
Other statistics could be considered, such as the average of the top three scores, but we found that 
the maximum score works best as a proxy. Note, that the mean or median scores are not very useful 
measures as we do not expect the RCA classifier to work well on the majority of the reference images. 
Afterall, the RCA classifier does overfit to the single image and will not generalise to perform well on 
dissimilar images. Nonetheless, as we will demonstrate in the experiments, ρ¯ indeed provides accurate 
estimates for the segmentation quality in a wide range of settings.

Summary
The following provides a summary of the required steps for using RCA in practice within a processing 
pipeline for automatic image segmentation. Given an image I to be segmented:

1.	 Run the automated image segmentation method to obtain predicted segmentation SI.
2.	 Train a RCA classifier on image I and its predicted segmentation SI to obtain an image segmenter FI,SI.
3.	 Evaluate the RCA classifier on a reference database with images for which GT is available 

T = {(Jk, SGTJk )}
m

k=1
  to obtain segmentations ∀ k FI,SI(Jk) = SJk.

4.	 Compute the segmentation quality of SI using a proxy measure ρ¯(SI) according to Equation 1 
ρ̄S1 = max

1≤k≤m

ρ
Ä
FI,SI(Jk), S

GT

Jk

ä
.
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Depending on the application, a threshold may be defined on ρ¯ to flag images with poor segmentation 
quality that need manual inspection, or to automatically identify high-quality segmentations suitable for 
further analysis.

Reverse classification accuracy experimental validation

In order to test the effectiveness of the RCA framework, we explore a comprehensive multiorgan 
segmentation task on WB-MRI. In this application, we evaluate the prediction accuracy of RCA in the 
context of three different state-of-the-art segmentation methods, a RF approach,74 a deep-learning 
approach using 3D CNNs,15 and a probabilistic MA label propagation approach.67 The data set used to 
validate our framework is from our MALIBO study. We collected WB, multi-sequence MRI (T1w Dixon 
and T2w images) of 35 healthy volunteers. Detailed manual segmentations of 15 anatomical structures, 
including abdominal organs (heart, LLNG/RLNG, LVR, adrenal gland, GBLD, LKDN/RKDN, SPLN, PNCR, 
BLD) and bones (SPN, left/right clavicle, PLVS), have been generated by clinical experts as part of the 
study. These manual segmentations will serve as GT in the quantitative evaluation.

Experimental setting
We use threefold cross-validation to automatically segment all 525 structures (15 organs × 35 
participants) with each of the three different segmentation methods, namely RFs, CNNs and MA. In each 
fold, we use the RCA framework with three different methods for realising the RCA classifier, namely 
AFs, constrained CNNs, and single-atlas, as described above. Using the RCA classifiers that are trained on 
each image for which we want to assess segmentation quality, we obtain segmentations on all reference 
images which are then compared to their manual reference GT. Since the GT is available for all 35 cases, 
we can compare the predicted versus the real segmentation accuracy for all cases and all organs under 
various settings with 9 different combinations of segmentation methods and RCA classifiers.

Quantifying prediction accuracy
The DSC is the most widely used measure for evaluating segmentation performance (despite some 
well-known shortcomings of DSC as discussed in Konukoglu et al.81) and in our main results we focus 
on evaluating how well DSC can be predicted using our RCA framework. In order to quantify prediction 
accuracy, we consider three different measures, namely the correlation between predicted and real DSC, 
the mean absolute error (MAE) and a classification accuracy. Arguably, the most important measure 
for direct evaluation of how well RCA works is the MAE, as it directly tells us how close the predicted 
DSC is to the real one. Correlation is interesting, as it tells us something about the relation between 
predicted and real scores. We expect high correlation in order for RCA to be useful, but we might not 
always have an identity relation, as there could be a bias in the predictions. For example, if the predicted 
score is consistently lower than the real score, this can still be useful in practice, and will be indicated by 
high correlation but might not yield low MAEs. In such a case, a calibration might be considered as we 
will discuss later on. We also explore whether the predictions can be used to categorise segmentations 
according to their quality. We argue that for many clinical applications it is already of great value to 
be able to discriminate between good-, bad- and possibly medium-quality segmentations and that 
the absolute segmentation scores are of less importance. For proof of principle, we consider a three-
category classification by grouping segmentations within DSC ranges [0.0, 0.6] for ‘bad’, [0.6, 0.8] for 
‘medium’ and [0.8, 1.0] for ‘good’ cases. Note, that those ranges are somewhat arbitrary, in particular, as 
the quality of absolute DSC values is highly depending on the structure of interest. So in practice, those 
ranges would need to be adjusted specifically to the application at hand.

Results for predicting Dice similarity coefficients
Our main results are summarised in Table 6 where we report the quantitative analysis of the predicted 
accuracy for nine different settings consisting of three different segmentation methods and three 
different ways of realising the RCA classifier. In Figure 4 we provide the scatterplots of real versus 
predicted DSC for all 9 settings with 525 data points each.
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Overall, we observe high correlation between predicted and real DSC for both AFs and single-atlas when 
used as RCA classifiers, with single-atlas showing correlations above 0.95 for all three segmentation 
methods. The single-atlas approach also yields the lowest MAEs between 0.05 and 0.07, and good 
three-category classification accuracies between 81% and 89%. This is visually confirmed by the 
scatterplots in the right column of Figure 17 which show good linear relation close to the diagonal 
between predicted and real scores for most structures in the case where RFs or MA are used as the 
original segmentation method. When using AFs for RCA, we still observe good correlation but the 
relationship between predicted and real scores is off-diagonal with larger spread towards lower quality 
segmentation. The correlation is still good and above 0.82, MAEs are between 0.12 and 0.17 with 
classification accuracy going down to 0.62%, 0.75% and 0.78% depending on the original segmentation 
method. For the case of the constrained CNNs, we observe that the prediction quality is lowest 
confirmed by the scatterplots and all quantitative measures, with correlations below 0.78 and MAEs 
above 0.2. The constrained CNNs seem to only work for predicting segmentation accuracy in case of 
major organs such as LVR, lungs, and the SPN but clearly struggle with smaller structures leading to 
many zero predictions even when the real DSC is rather high. This is most likely caused by the difficulty 
of training the CNNs with single images and small structures which does not provide sufficient amounts 
of training data.

Figure 28 in Appendix 1 shows an example for predicting the accuracy of a LVR segmentation. Next to 
a slice from a T2w MRI volume we show the GT manual segmentation together with the result from a 
RF. Underneath, we show the 24 segmentations obtained on the reference database when using the 
single-atlas RCA approach. The bar plot in the same figure shows the variation of the 24 DSC scores. 
Similarly, the bar plots in Figure 27 (in Appendix 1) of two more examples illustrate the distribution of 
DSC scores when predicting a good-quality segmentation on the left, and a poor-quality segmentation 
on the right. The three examples support the hypothesis that selecting the maximum score across the 
reference database according to equation (ρ̄S1 = max

1≤k≤m

ρ
Ä
FI,SI(Jk), S

GT

Jk

ä
 ) is a good proxy for predicting 

segmentation quality.

Scatterplots of predicted and real DSC of multiple structures for three different segmentation methods 
(rows) using three different RCA classifiers (columns) (see Figure 4). High correlation and low prediction 
errors are obtained when employing the single-atlas label propagation as RCA classifier (right column). 
There is also good correlation with predictions in case of AFs (left) with larger spread towards lower 
quality segmentations. The constrained CNNs (middle column) are less suitable for RCA which is likely 

TABLE 6 Table predicting DSC for different segmentation methods using different RCA classifiers

Segmentation method RCA classifier

Correlation MAE
Accuracy 
3-categories

All No zeros All No zeros All No zeros

RFs AFs 0.881 0.867 0.120 0.130 0.783 0.776

CNNs AFs 0.828 0.630 0.166 0.245 0.623 0.500

MA AFs 0.863 0.877 0.168 0.177 0.749 0.726

RFs Constrained CNNs 0.721 0.718 0.252 0.271 0.653 0.631

CNNs Constrained CNNs 0.756 0.662 0.225 0.292 0.592 0.472

MA Constrained CNNs 0.773 0.686 0.209 0.237 0.693 0.642

RFs Single-atlas 0.955 0.946 0.051 0.052 0.888 0.880

CNNs Single-atlas 0.973 0.892 0.052 0.065 0.811 0.756

MA Single-atlas 0.962 0.947 0.067 0.072 0.822 0.798
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FIGURE 4 Scatterplots using three different RCA classifiers.
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due to the difficulty of training on single images. Both AFs and constrained CNNs work best for larger 
organs such as LVR, lungs, and PLVS while leading to many zero predictions for smaller structures 
such as adrenal gland and clavicles. The single-atlas label propagation makes accurate predictions of 
segmentation quality across all 15 anatomical structures. A summary of the plots is given in Table 6.

Some of the original segmentation methods have problems segmenting structures such as the adrenal 
gland and clavicles. The CNNs, in particular, failed to segment adrenal glands in most cases. Because 
the real DSC for these is zero with no voxels labelled in the segmentation map, the RCA predictions are 
always correct as there are no labels for the RCA classifier for this structure. In order to investigate the 
effect of those zero predictions on the quantitative results, we also report in Table 9 under the columns 
‘No zeros’ the correlations, MAEs and classification accuracies when structures with a real DSC of zero 
are excluded. We observe that the zero predictions have mostly an impact on CNNs, either employed as 
original segmentation method or as RCA classifier. For AFs and single-atlas the effect on the accuracies 
is very little, confirming that those both are well suited within the RCA framework, independent of the 
original segmentation method.

The bar plots (Figure 5) show two examples for predicting the real DSC (red) in case of a good-quality 
(left) and bad-quality segmentation (right) using a database with 24 reference images with available GT. 
The predicted DSC (green bar) selected according to Eq. (ρ̄S1 = max

1≤k≤m

ρ
Ä
FI,SI(Jk), S

GT

Jk

ä
) matches well the real DSC.

Scatterplots for the experiment of detecting segmentation failure when using degraded RFs with 
limited depth as the segmentation method. AFs (left) and single-atlas label propagation (right) make 
highly accurate predictions in the low DSC ranges and thus are able to correctly detect such failed 
segmentations, with the exception of the BLD. Constrained CNNs are again less suitable for RCA with 
many zero predictions.

Detecting segmentation failure
In clinical routine it is of great importance to be able to detect when an automated method fails. We 
conducted a dedicated experiment to investigate how well RCA can predict segmentation failure. From 
the scatterplots in Figure 27 in Appendix 1 we can see that all three segmentation methods perform 
reasonably well on most major organs with no failure cases among structures such as LVR, heart, and 
lungs. In order to further demonstrate that RCA can predict failure cases in these structures, we utilise 
degraded RFs by limiting the tree depth at test time to 8. This leads to much worse segmentation results 
for most structures which is confirmed in the corresponding scatterplots shown in Figure 6. Again, we 
evaluate the performance of the three different RCA classifiers, AFs, constrained CNNs and single-
atlas. The results are summarised in Table 7. The constrained CNNs are again suffering from many zero 
predictions and less suitable for making accurate predictions. AFs and single-atlas, however, result in 
high correlations, low MAEs and very good classification accuracies. Low real DSC scores are correctly 
predicted and failed segmentations are identified. The only exception here is the BLD. This might be 
explained by the unique appearance of the BLD in the multispectral MRI with hyper-intensities in the 
T2w image, and its largely varying shape between participants. It appears that even a badly segmented 
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BLD can be sufficient for the RCA classifier to learn its appearance and segment the BLD well on at least 
one of the reference images. Overall, the experiment suggests that RCA with AFs and single-atlas can 
be employed in automatic quality control, for example, in large-scale studies where it is important to be 
able to detect failed segmentations which should be excluded from subsequent analyses.

Results for predicting different segmentation metrics
We further explore the ability to predict other evaluation metrics rather than DSC. We consider the 
following metrics: Jaccard index (JI), PR, RE, ASD, HD and relative volume difference (RVD). For this 
experiment, we use RFs as segmentation method, and AFs for RCA. The results are summarised in 
Table 8.

Good correlation is obtained between predicted and real overlap-based scores, with low MAEs, and 
high accuracies. Since Jaccard is directly related to DSC [JI = DSC/(2 − DSC)], it is expected that the 
predictions are of similar quality. Prediction accuracy for PR is lower than for RE. The two metrics 
capture different parts of segmentation error; under-segmentation is not reflected in PR, while 
over-segmentation is not captured in RE [DSC = 2 · PR · RE/(PR + RE)]. Distance-based errors are 
unbounded, so we define thresholds for HD and ASD, and errors above are clipped to the threshold 
value, which is set to 150 mm for HD and 10 mm for ASD. This also allows us to define ranges for the 
error categorisation. For HD, we use the ranges [0, 10], [10, 60] and [60, 150] for good-, medium- and 
bad-quality segmentations. For ASD we divide the range into [0, 2] for good, [2, 5] for medium and [5, 
10] for bad segmentation quality. Compared to overlap-based metrics, the RCA predictions for HD 
and ASD are not convincing with low correlation, high MAE and low classification accuracy. RVD is the 
ratio of the absolute difference between the reference and predicted segmentation volume and the 
reference volume. Perfect segmentation will result in a value of zero. As RVD is also unbounded, we use 
a threshold of one to indicate maximum error. The predictions for RVD are good, with high classification 
accuracy of 0.68%, similar to the overlap-based scores. In conclusion, it seems RCA works very well for 
overlap-based measures and for RVD to some extent, while distance-based metrics cannot be accurately 
predicted with the current setting and would require further investigation.

TABLE 7 Detecting segmentation failure

RCA classifier Correlation MAE Accuracy 3-Categories

AFs 0.853 0.096 0.884

Constrained CNNs 0.237 0.139 0.924

Single-atlas 0.875 0.097 0.928

TABLE 8 Predicting different segmentation metrics

Metric Correlation MAE Accuracy 3-Categories

DSC (0–1) 0.881 0.120 0.783

JI (0–1) 0.899 0.110 0.749

PR (0–) 0.572 0.242 0.638

RE (0–1) 0.833 0.170 0.663

HD (0–150) 0.189 41.38 0.387

ASD (0–10) 0.022 4.120 0.344

RVD (0–1) 0.474 0.051 0.678
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Reverse classification accuracy discussion and conclusion

The experimental validation of the RCA framework has shown that it is indeed possible to accurately 
predict the quality of segmentations in the absence of GT, with some limitations. We have explored 
different methods for realising the RCA classifier and could demonstrate that AFs and in particular, 
single-atlas label propagation yield accurate predictions for different segmentation methods. As the 
RCA framework is generic, other methods can be considered and it might be necessary to select the 
most appropriate one for the application at hand. We have also experimented with a constrained CNN 
trained on single images, which only works well for major organs such as LVR, lungs and SPN. There 
might be other more appropriate architectures for the purpose of RCA, which will be explored as part of 
future work.

An appealing property of the proposed framework is that unlike the supervised methods in Frounchi 
et al.103 and Kohlberger et al.101 no training data are required that captures examples of good and bad 
segmentations. Instead, in RCA we simply rely on the availability of a reference database with available 
GT segmentations. The drawback, however, is that we assume a linear relationship between predicted 
and real scores which should be close to an identity mapping, something we only found in the case 
of using single-atlas label propagation (cf. right column of Figure 27 in Appendix 1). In the case of off-
diagonal correlation, as, for example, found for AFs, an extension to RCA could be considered where 
the predictions are calibrated. This, however, requires training data from which a regression function 
could be learnt, similar to Kohlberger et al.101 In order to demonstrate the potential of such an approach, 
we perform a simple experiment on the data that we used for conducting the main evaluation. After 
obtaining all predicted DSC scores, we run a leave-one-participant-out validation where in each fold we 
use RF regression to calibrate the predictions. The results are summarised in Table 9 where we compare 
the quantitative measures before and after calibration. Both the MAEs and classification accuracies 
improve significantly for the case of AFs and constrained CNNs. For single-atlas, however, the results 
remain similar due to the already close to identify relationship between predicted and real scores 
before calibration.

In our experiments we have found that best predictions are obtained for overlap-based measures 
such as DSC and JI. Whether those measures are sufficient to fully capture segmentation quality is 
debatable. Still, DSC is the most widely considered measure and being able to accurately predict DSC in 

TABLE 9 Table comparison of predicting DSC with and without calibration via regression

Segmentation method RCA classifier

Correlation MAE
Accuracy 
3-categories

Direct Calibrated Direct Calibrated Direct Calibrated

All No zero All No zero All No zero

RFs AFs 0.881 0.833 0.120 0.105 0.783 0.809

CNNs AFs 0.828 0.929 0.166 0.079 0.623 0.783

MA AFs 0.863 0.939 0.168 0.065 0.749 0.745

RFs Constrained CNNs 0.721 0.826 0.252 0.104 0.653 0.768

CNNs Constrained CNNs 0.756 0.961 0.225 0.049 0.592 0.830

MA Constrained CNNs 0.773 0.874 0.209 0.100 0.693 0.787

RFs Single-atlas 0.955 0.872 0.051 0.089 0.888 0.815

CNNs Single-atlas 0.973 0.967 0.052 0.048 0.811 0.811

MA Single-atlas 0.962 0.918 0.067 0.080 0.822 0.825
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the absence of GT has high practical value. Besides being useful for clinical applications where the goal 
is to identify failed segmentations after deployment of a segmentation method, we see an important 
application of RCA in large-scale imaging studies and analyses. In settings where thousands of images 
are automatically processed for the purpose of deriving population statistics, it is not feasible to 
employ manual quality control with visually inspection of the segmentation results. Here, RCA can be 
an effective tool to automatically extract the subset of high-quality segmentations which can be used 
for subsequent analysis. We are currently exploring this in the context of population imaging on the 
UK Biobank imaging data where image data of more than 10,000 participants are available which will 
be subsequently increased to 100,000 over the next couple of years. The UK Biobank data will enable 
the discovery of imaging biomarkers that correlate with non-imaging information such as lifestyle, 
demographics, and medical records. In the context of such large-scale analysis, automatic quality control 
is a necessity and we believe the RCA framework makes an important contribution in this emerging area 
of biomedical research. In future work, we will further explore the use of RCA for other image analysis 
and segmentation tasks. To facilitate the wide application of RCA and use by other researchers, the 
implementations of all employed methods are made publicly available on the website of the Biomedical 
Image Analysis group (https://biomedia.doc.ic.ac.uk/software/).

Domain adaptation for magnetic resonance angiography organ segmentation using 
reverse classification accuracy71

The variations in multicentre data in medical imaging studies have brought the necessity of domain 
adaptation. Despite the advancement of ML in automatic segmentation, performance often degrades 
when algorithms are applied on new data acquired from different scanners or sequences than the 
training data. Manual annotation is costly and time-consuming if it has to be carried out for every new 
target domain. In this study, we investigate automatic selection of suitable participants to be annotated 
for supervised domain adaptation using the concept of RCA. RCA predicts the performance of a trained 
model on data, from the new domain and different strategies of selecting participants to be included 
in the adaptation via transfer learning, are evaluated. We perform experiments on a two-centre MRI 
database for the task of organ segmentation. We show that participant selection via RCA can reduce the 
burden of annotation of new data for the target domain.

Introduction
Machine learning has led to significant advances in medical imaging, particularly with big improvements 
in medical image segmentation. Performance, however, depends on the availability of sufficient amounts 
of labelled samples for supervised learning, and also whether the test data are coming from the same 
domain as the training data. In clinical practice, the source domain (S) on which the classifier is trained 
might be different from the target domain (T) with clinical data. The images from these domains are 
samples from different appearance distributions. The mismatch of distributions is caused by various 
factors such as the use of different scanners, types of sequences, or biases in patient cohorts – often 
causing a trained algorithm to perform poorly on new data. In a scenario where the tasks are the same, 
but the source and target domains are different, domain adaptation is usually performed to address the 
domain disparity problem.108

Domain adaptation can be categorised into three settings, supervised, semi-supervised and 
unsupervised. Our work focuses on supervised domain adaptation methods, which uses labelled data 
from the target domain. In the context of CNNs, supervised domain adaptation can be approached by 
training from scratch or fine-tuning (FT) a network pre-trained on the source domain.109

An approach called domain adaptation for supervised learning from sparsely annotated MRI110 explored 
a supervised domain adaptation by introducing a weighting scheme in RFs and SVMs for segmentation. 
This approach preserves the segmentation quality even though only sparse annotated data are used. 
Another approach tackles the segmentation difficulty of images from different scanners and imaging 

https://biomedia.doc.ic.ac.uk/software/
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protocols by weighting different SVM-based classifiers for transfer learning.111 More recent work has 
tried to explore transfer learning in CNNs in medical imaging,112,113 which confirmed the potential of 
fine-tuned and fully trained CNNs.

However, the importance of participant selection in transfer learning has not been widely studied yet. 
Most works114 attempt to integrate active learning with domain adaptation. Intuitively, active learning is 
chosen since it develops a criterion to determine the ‘value’ of a candidate for annotation.

In active domain adaptation, the classifier selects among the limited labels on target data by combining 
hybrid oracles. However, obtaining the oracles is costly. Instead of selecting instances to be added to the 
training set,115 selects a bag of instances by self-training. However, this approach is more effective when 
the source and target domains differ substantially. An appealing work is a recent application of active 
learning in domain adaptation for biomedical images.114 Active learning chooses the candidates with higher 
entropy and higher diversity, which are expected to improve the current performance. In Shin et al.,114  
a pre-trained CNN is further fine-tuned continuously by incorporating newly annotated samples in each 
iteration to enhance the performance incrementally. Although they can reduce the annotation cost, 
the iterative scheme can be time-consuming, especially if applied to volumetric data. Previous work 
on participant selection with active learning requires iterations and only deals with classification of 
2D images.

Instead of using iterative active learning, we propose a framework to select the ‘most valuable’ samples 
from the unlabelled target domain to be annotated – using RCA70 (or see previous section). We 
address the question whether RCA can be employed to select fewer participants to reduce the cost 
of annotation in supervised domain adaptation. To answer this question, we systematically conducted 
several experiments. Our contributions are: (1) demonstrating the effective use of RCA as a selector 
for n-participants in target domain to be incorporated into the training data set, (2) comparing different 
strategies for supervised domain adaptation with the RCA selection, (3) studying how the training size 
and the combination of target samples affect segmentation performance.

Data sets
Source domain (S): The data set is obtained from our Phase 1 of MALIBO study and includes abdominal 
T1-weighted MRI Dixon images of 35 healthy participants. We consider this data set as the source 
domain used to train the initial classifier in a supervised manner as manual organ annotations are 
available for all participants. The images have size of (256 × 208 × 202) and resolution (1.64 × 1.64 × 5) 
mm.

Target domain (T): Data for the target domain are obtained from the UK Biobank (UK Biobank 
Application ID 12579, ‘ML for Abnormality Detection in Imaging Studies with Application to Auto-QC 
and identification of Pathology-specific Outliers through Correlation with Non-Image Data’, PI Dr Ben 
Glocker, approval date 1 March 2016). We use 45 participants with manually annotated T1-weighted 
Dixon MRI images which have been acquired with a similar protocol as the MALIBO data. The main 
obvious differences are the image size (224 × 168 × 366) and resolution (2.23 × 2.23 × 3) mm.

The source and target data set are acquired at different centres. UK Biobank data are acquired with a 
Siemens 1.5T MAGNETOM Aera scanner while in MALIBO a Siemens 1.5T MAGNETOM Avanto was 
used (see Image pre-processing for whole-body-magnetic resonance imaging: correction of fat-water swaps 
in Dixon magnetic resonance imaging). For this study, we use the T1-weighted in-phase images from 
the Dixon protocol. We focus on organ segmentation within WB scans. As a pre-processing, image 
intensities in both data sets are normalised to zero-mean and unit-variance. Images are resampled to 
the same size and physical resolution. Visual examples from the source and target database are depicted 
in Figure 7. Despite the similarity of the scanning protocol and same scanner manufacturer, the drop-in 
segmentation accuracy when applying a model trained on MALIBO and tested on UK Biobank data 
is striking, as we will show in our experiments. The images seem to encode a significant bias in their 
appearance which is not obvious upon visual inspection.
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Supervised domain adaptation
We apply RCA with the single-atlas registration classifier as described in previous section or see.70 The 
test image together with its predicted segmentation is registered to a set of reference images such 
that the predicted segmentation can be quantitatively compared to the manual segmentations of the 
reference images by computing DSC. It is expected that the maximum DSC score over all reference 
images correlates well with the real DSC. RCA acts as a selector for picking up participants with high 
and low confidence in segmentation accuracy. Our hypothesis is that transfer learning with specific 
n-participant selection is better than picking-up random participants from the target domain, and thus 
fewer manually labelled participants are needed from the target domain. In the following, we call this 
‘domain adaptation using RCA’ or DARCA.

In our experiments, we employ DeepMedic15 as the base network for 3D organ segmentation. We use 
the default 11-layer-deep, multiscale, parallel convolutional pathways architecture.

The main approaches of supervised domain adaptation with CNNs are either training from scratch or 
FT.113 Using RCA as a selector, n-participants from the target domain are added to the training data. 
With the new training data containing source and n-target (S + T) participants, we train the network 
from scratch. Meanwhile, we can transfer the parameters from a pre-trained network and fine-tune on 
another database. To build the model, we fine-tune the pre-trained network (from S-only training), with 
the n-target participants selected by RCA. Based on the results in Ghafoorian et al.116 FT the last layer 
achieves the best performance compared to using more convolutional layers for FT. We fine-tuned only 
the last layer of the pre-trained networks and used the same optimisation but with fewer epochs. Based 
on our experiments FT all the layers are shown to have lower accuracy and more training time is needed.

Domain adaptation experiments and results

We present results for using different strategies to investigate the effect of RCA-based participant 
selection for domain adaptation, as shown in Figure 8. We use threefold cross-validation with the same 
random splits in all experiments. As the baseline, we trained the network with all S data and tested it to 
segment the T images. We predict the DSCs of all target segmentations using RCA. After we sort their 
DSCs (lowest to highest confidence), we select n-participants from T domain to be included with their 
corresponding manual annotations in the training set mimicking an active learning approach.

Training from scratch
We set our baseline as the segmentation of T with an S-only trained network, whereas the upper-bound 
is the segmentation of T with T-only trained network on LVR segmentation, as shown in Table 10.

Figure 8 shows that RCA selects n-participants from T domain, to be manually labelled and incorporated 
into training data set. For this experiment, we compared best-/worst-5 participants selected by RCA 
and the real best-/worst-5 (real DSCs from the target GT). Besides, we also run random-5 participant 

TARGETSOURCE

FIGURE 7 Examples of WB scans from source (MALIBO) and target (UK Biobank) database.
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selection (repeated with three different random combinations and taking the average) to be trained 
from scratch.

In the training-from-scratch strategy, we train S + T data simultaneously with the same optimisation, 
update-rule, number of epochs, loss function, and regularisation techniques as in the baseline. From 
Table 11 column one, we can see that picking up five participants from target domain has already 
improved the accuracy, compared to the baseline. Table 11 shows that the segmentation accuracy 
using the best-5 or worst-5 participant selection outperformed the random selection. Moreover, RCA 
selection gives a relatively similar segmentation accuracy to the selection using real DSC.

As we increase the number of annotated target images to be incorporated in training from scratch, 
the accuracy does improve, as shown in Table 32 in Appendix 1. From Table 11, T segmentation with 
lowest confidence also gives a good contribution to the current CNN, therefore we combine five target 
participants with highest confidence and five participants with lowest confidence into the training. The 
result shows that this combination achieves similar accuracy to the one that incorporated all annotated 
T participants. Hence, we reduce the ‘less valuable’ samples for training by RCA selection. Unfortunately, 
training from scratch requires more time since the networks must learn from the beginning.

Fine-tuning a pre-trained network
In Figure 8(2), we fine-tune the pre-trained network (from S), with n-participants selected by RCA. FT 
requires less time than training from scratch. Here, we fine-tune with three different selections (random, 
real DSC, and RCA) at different set size (2, 5, 10, 15 and all of the T data). Table 32 in Appendix 1 shows 
the results when we fine-tune using all of the T data, which are very similar (DSC: 0.830) to when we 
train from scratch (DSC: 0.831).

However, RCA seems worse to predict the real segmentation accuracy of FT. There is a gap between 
best-/worst-5 real selection and best-/worst-5 RCA accuracy (see Table 4). One of the reasons could 
be due to the under-estimation of RCA prediction on the baseline segmentation accuracies on T, with 
0.88 correlation and 0.15 MAE. As explained in the experiments of multiple-organs segmentation,70 the 
RCA prediction for organs with the real DSCs between (0.6–0.8) is not as accurate as in organs with 
real DSCs above 0.8. In our case, the average real DSCs of baseline LVR segmentation is 0.639, but RCA 
under-estimated the mean of predicted DSCs to be 0.497.

As we did in Training from scratch, we also combined best-5 and worst-5 in T domain to be annotated 
and incorporated in FT. These 10 combined participants give much better accuracy than when we 
choose only the best-10 participants (see Table 32 in Appendix 1). Similarly, picking up the worst sample 
in increasing number, results in lower accuracy than the ‘best 5 and worst 5’. Best-5 and worst-5 
annotated samples with real selection shows the best results (DSC: 0.842), and RCA selection also gives 
similar results (DSC: 0.835). Additionally, this best-5 and worst-5 combination (real and RCA selection) 
performs better than when we use all of the annotated participants from T (DSC: 0.830). Hence, we 
cut the cost of annotation by 67%, using only 10 selected participants instead of 30 participants and 
achieve a higher accuracy.

TABLE 10 Baseline and upper-bound accuracies

Training DSC [mean (stdv)]

Train on S (baseline) 0.639 (0.149)

Train on T (upper-bound) 0.873 (0.046)

Note
The upper-bound gives the highest performance when the network is trained and tested on one domain (target data set). 
The performance drops significantly when training and testing data are from different domains (baseline).
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Pseudo-labels for fine-tuning
In this experiment we investigate the use of pseudo GT labels in a semi-supervised way. In Fine-tuning  
a pre-trained network, we incorporated the n-participants by FT with their GT. What if, instead of using 
the real annotations, we use the predicted labels as pseudo GT, which are the baseline segmentation 
results – for training. In the previous work by Lee,117 pseudo-labels (PL) are used for semi-supervised 
learning with pre-trained and FT scheme. PL are defined as labels that have maximum predicted 
probability and seen as equivalent to entropy regularisation, which encourages low density separation 
between classes.

However, from Table 32 in Appendix 1, it is clear that using PL cannot improve the segmentation 
performance on the target domain. FT with all of the pseudo-labelled participants in T gives 
the worst result amongst all. The noisy labels negatively impact the segmentation performance. 
Hence, training using PL seems not suitable for domain adaptation in our application, since it 
assumes the baseline classifier to be of good quality, while by default it should be considered to be 
severely suboptimal.

Iterative domain adaptation using reverse classification accuracy
Different from the previous strategies, here, we wish to mimic the active learning domain adaptation,118 
where at each iteration, RCA chooses n-participants from the target domain to fine-tune the baseline 
networks (see Figures 8 and 9). At the first iteration, we fine-tune the baseline network with best-5 
participants selected by RCA. This new network is used to segment the test images from target domain 
for which accuracy is again predicted using RCA. At the second iteration, we fine-tune the network again 
with the best-5 and worst-5 selected participants.

The results in Table 32 in Appendix 1 show that the second iteration with worst-5 participants gives 
higher accuracies than FT with best-5 RCA. The combination of best-5 (1st iteration), and worst-5 
(2nd iteration) by RCA performs almost the same (DSC: 0.828) as FT using all of the labelled target 
data (DSC: 0.830). Additionally, the 2nd iteration with worst-5 RCA selection generally improves the 
1st iteration (by best-5 RCA selection) accuracies. Hence, with fewer labelled data we can save time 
with similar results.

TABLE 11 Strategies of DARCA on LVR segmentation

Strategies of sample selection Training from scratch FT Iterative

Baseline 0.639 (0.149) 0.639 (0.149) 0.639 (0.149)

All T 0.831 (0.074) 0.830 (0.066) N/A

Random 5 0.720 (0.103) 0.710 (0.172) N/A

Worst-5 (real) 0.797 (0.051) 0.619 (0.256) N/A

Worst-5 (RCA) 0.799 (0.048) 0.771 (0.156) 0.828 (0.072)

Best-5 (real) 0.747 (0.152) 0.723 (0.173) N/A

Best-5 (RCA) 0.755 (0.148) 0.687 (0.191) 0.777 (0.107)

Best-5 and worst-5 (real) 0.823 (0.058) 0.842 (0.050) N/A

Best-5 and worst-5 (RCA) 0.831 (0.063) 0.835 (0.065) N/A

Note
Training from scratch, FT and iterative scheme (only for 2nd iteration with RCA selection) with different choice of 
participant selection.
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Fine-tuning in right kidney segmentation
From the three different strategies of DARCA in LVR segmentation, we can see that FT with DARCA 
gives better results, less time-consuming (compared to training from scratch), and no iterative scheme 
needed. Also, from the results in LVR segmentation (see Table 11), combination of best-5 and worst-5 
participants always gives better or similar results than using all of the participants from domain T, in all 
strategies. To validate these results, we also explore DARCA-FT in a different task: RKDN segmentation.

Similarly, the best results of RKDN segmentation with FT are achieved when we combine best-5 and 
worst-5 participant selection (Table 12). The result (DSC: 0.716 with RCA selection) is better than when 
FT with all of the participants from T (DSC: 0.658), and similar to when we train from scratch using 
all target participants. This means we could cut the processing and annotation time. Figure 10 and 
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FIGURE 9 Plot for different n-selection training size in different strategies FT, FT with PL, and training from scratch (S + T). 
Similar trends are shown between real and RCA selection on FT and (S + T) with different size.

TABLE 12 Domain adaptation using reverse classification accuracy – FT on RKDN segmentation

Strategies FT [mean (stdv)]

Lower bound 0.417 (0.263)

Training from scratch (all T) 0.719 (0.106)

FT all T 0.658 (0.114)

FT random 5 0.506 (0.278)

FT worst-5 (real) 0.416 (0.254)

FT worst-5 (RCA) 0.358 (0.274)

FT best-5 (real) 0.500 (0.293)

FT best-5 (RCA) 0.421 (0.319)

Best-5 and worst-5 (real) 0.726 (0.126)

Best-5 and worst-5 (RCA) 0.716 (0.122)

Note
Combination of best and worst participant selection gives the best result, and RCA selection also gives a similar accuracy 
to the real selection.
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Figure 11 depict some examples on how DARCA-FT with combination of best-5 and worst-5 participant 
selection improves the baseline and gives the best segmentation accuracies.

Discussion and conclusion

Set size and participant selection are important in domain adaptation, where usually labels are not 
available in one of the domains. Thus, we explored whether it will be useful to select only the ‘valuable’ 
participants by RCA to be annotated. PL, which normally are used in semi-supervised learning and 
regularisation, seem not to be useful in supervised DARCA. As observed in Figure 9 the performance 
drops as we increase the number of PL in FT. PL will introduce more noise confusing the training of the 
networks and make them incapable to be applied to the new domain.

All of our strategies in DARCA (training from scratch, FT and iterative) show a consistent result, 
combination of best-5 and worst-5 participant selection yields best results. RCA selection of those 
combined participants also results in a similar accuracy to the real selection, compared to a bigger gap 
between RCA and real selection when FT with only best or worst participant selection.

In this scheme, DARCA shows its potential to leverage the highest and lowest confident participants, to 
be incorporated in the domain adaptation process. We demonstrated that DARCA with few labelled data 
can perform similarly and/or better to full-size labelled target data. In the examples of Figures 24 and 
25, DARCA with best-5 and worst-5 participants show consistent results across different tasks (LVR and 
kidney segmentation).

In the case of real DSCs between (0.6, 0.8), RCA underestimates the predictions.70 This led to a different 
participant selection. In future, an improvement of RCA prediction for medium level DSCs (0.6–0.8) 
needs to be investigated so that it can work more accurately. The study only focuses at a predefined 
number of selected participants, and a more thorough exploration needs to be done in future work. 
Traditional active learning may have more flexibility regarding the number of ‘valuable’ samples to be 
included, but it requires iterations, which is time-consuming. DARCA only needs RCA to predict the 

GT

DSC 0.4783 0.7347 0.7191 0.8963

DSC 0.7210 0.4035 0.9092 0.9187

Baseline Random-10 FT-all FT-best 5 worst 5 RCA

FIGURE 10 Domain adaptation using reverse classification accuracy FT in LVR segmentation. Combination of lowest and 
highest RCA prediction can give a better result than FT with random selection and with all of the target participants.
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DSCs from the baseline segmentation where we can select the highest and lowest predicted participants 
to be incorporated in a quick FT procedure. Therefore, we can conclude that DARCA could save 
processing time (no iterations needed) and annotation time with promising results avoiding the need for 
a large annotated target database.

Chapter summary

In this chapter, we only employed MALIBO data from healthy volunteers. Based on the data, we have 
developed RCA and domain method for medical image segmentation. These methods are useful for 
image segmentation if there is no GT available. We use threefold cross-validation to automatically 
segment all 15 organs from 35 participants with each of the 3 different segmentation methods, that is 
RFs, CNNs and MA. Overall, we found high correlation between predicted and real DSC for both AFs 
and single-atlas when used as RCA classifiers, with the single-atlas showing correlations above 0.95 
for all three segmentation methods. In the future, it will be interesting to use these methods for lesion 
segmentation from patients’ data.

GT

DSC 0.0275 0.5703 0.8162

DSC 0.3524 0.6973 0.8536

Baseline FT-all FT- best 5 worst 5 RCA

FIGURE 11 Domain adaptation using reverse classification accuracy FT in RKDN segmentation. Combination of lowest 
and highest RCA prediction can give a better result than FT with all of the target participants.
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Chapter 5 Developing machine-learning 
method for clinical whole-body magnetic 
resonance imaging study: Phase 2 training and 
validation methods and model selection

Parts of this chapter are reproduced from Lavdas et al.17 with permission from Clinical Radiology. 
The aim of Phase 2 was to develop an algorithm to detect and highlight possible cancer lesions on 

clinical WB-MRI. The primary output of the algorithm is a lesion probability map that can be visualised 
concurrently with the original MRI images during radiological reading, with the aim of providing valuable 
information to the reader that would increase the accuracy of lesion detection and speed up the 
reading process.

As this study uses a ‘human-in-the-loop’ approach, particular focus was ultimately given on an algorithm 
with high sensitivity to detect cancer lesions to make sure no lesion is being missed while there was less 
concern about false positives as these could be ruled out during radiological reading.

Whole-body magnetic resonance imaging data

In Phases 2 and 3 of the MALIBO project, the study used WB-MRI data from the NIHR-funded 
STREAMLINE-C and STREAMLINE-L studies.6–8 These were multicentre, prospective cohort studies that 
evaluate WB-MRI in newly diagnosed colorectal cancer patients (STREAMLINE-C: ISRCTN43958015) 
and lung cancer patients (STREAMLINE-L: ISRCTN50436483), recruited from 16 NHS centres in 
England. The STREAMLINE studies evaluated the potential role of WB-MRI as in single investigation for 
staging patients with lung or colon cancer when compared to the current standard of care pathways. A 
full description of the STREAMLINE-C and STREAMLINE-L studies can be found in the references.6–8,40

Ethical approval and consent
Ethical approval for retrospective use of previously acquired patient data was obtained (ICREC 
Reference 15IC2647). The MALIBO study did not directly collect patient imaging data, but relied on data 
from previous NIHR- and CRUK-funded trials (herein referred to as ‘contributing studies’40). The ethical 
approval for Phase 1 of the trial was in place (ICREC 08/H0707/58). Ethical approvals for Phases 2 and 
3 (contributing studies) were also in place as per their individual protocols.40 There were no material 
ethical concerns related to the MALIBO study with no perceived risk or benefit to individual patients. 
However, there was a significant interest in improving patient care, as indicated in section 60 of the 
Health and Social Care Act (2001). All patients gave written informed consent prior to participation in 
any of the contributing studies. Consent for the use of scans in future research was also obtained in 
the case of participants in the contributing studies. The need to re-consent participants for the use of 
the patient data was waived by the ethics committee. All patient data were de-identified and held in 
a secure central imaging server 3Dnet™ (www.3dnetmedical.com/public/), provided by Biotronics3D 
(London, UK). The data are also held on password-protected Imperial College London university 
computers for the purposes of the ML algorithms’ development.

Inclusion/exclusion criteria for evaluated cases

No patients were directly recruited into the MALIBO study. Recruitment and scanning of patients 
had taken place under separate studies (contributing studies), using their own ethical approval. The 
STREAMLINE-C study recruited patients from 16 hospitals between March 2013 and August 2016 

https://www.3dnetmedical.com/public/
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with a final number of evaluable patients of 299, 68 (23%) of whom had metastasis at baseline. The 
STREAMLINE-L study recruited patients from 16 UK hospitals between March 2013 and September 
2016 with a final number of evaluable patients of 187, 52 (28%) of whom had metastasis at baseline 
(see Figure 26). A total of 438 patient scans were available to the MALIBO team for evaluation and the 
remaining 48 scans were not to be available on the image repository (reasons not known).

Additional data from the CRUK funded MELT study (Whole-Body Functional and Anatomical MRI: 
Accuracy in Staging and Treatment Response Monitoring in Adolescent Hodgkin’s Lymphoma Compared 
to Conventional Multi-modality Imaging: NCT01459224)59 and the MASTER study [MRI Accuracy in 
STaging and Evaluation of Treatment Response in Cancer (Lymphoma and Prostate-MASTER L and 
MASTER P; 12/LO/0428)]43,59 were considered but then excluded due to significant differences in the 
images protocol and it was not felt possible to train the model which such variable data.

The following inclusion/exclusion criteria summarise the patient population for the MALIBO study 
Phases 2 and 3.

Inclusion and exclusion criteria
Inclusion criteria:

1.	 patient eligible for and consented to take part in one of the contributing studies: STREAMLINE C or 
L, MELT, MASTER

2.	 patient completed the study imaging assessments successfully
3.	 image DICOM data available on the image repository
4.	 consensus reference standard from the source study available.

Exclusion criteria:

1.	 patient that consented to contributing studies but did not complete the WB-MRI scan
2.	 scan could not be adequately completed due to, for example technical reasons
3.	 ML algorithm failed to produce results due to technical problems with the scan (missing sections, 

corrupted data or in the case of training data, poor quality of ADC/DWI images or extreme arte-
facts)

4.	 MELT and MASTER data due to incompatibility of imaging protocols.

Inclusion/exclusion criteria for the contributing studies can be found in previous works.8,42,43,59

Reference standard for sites of disease: STREAMLINE study
The reference standard for the site of the primary tumour and presence and site of metastatic lesions 
was established as part of the STREAMLINE study: At 12-month patient follow-up, a multidisciplinary 
consensus panel defined the reference standard for tumour stage considering all clinical, pathological, 
post-mortem and imaging follow-up. Accuracy was defined per lesion, per organ and per patient.

Allocation of cases to Phases 2 and 3
Allocation of patients for Phase 2 and 3 testing was based on the available 438 STREAMLINE-C 
and STREAMLINE-L scans (Figure 12). Of these reads, 97 were pre-allocated to Phase 2. This initial 
allocation had been undertaken due to delays in the completion of the source study and a decision 
was made to provide a number of scans to the MALIBO team to allow the start of the time-consuming 
manual segmentations, while awaiting the STREAMLINE studies to complete. This initial allocation was 
random and consecutive, as to when the scans became available on the image sharing platform from 
the sponsor. To ensure that the training set (Phase 2) and validation set (Phase 3) contained a similar 
array of reads, 97 cases were subsequently assigned to Phase 3 by the study statistician to ensure that 
the proportion of study type (lung or colon), study site (hospital) and presence of metastases (LVR, 
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bone or nodal sites) matched. When an equal proportion could not be reached exactly, study site was 
subsequently removed from the matching criteria.

To adequately power the primary analysis, the remaining unallocated cases were then allocated at 
random between Phases 2 and 3 while ensuring that 141 reads with no recorded metastatic tumours 
were allocated to Phase 3. As before, cases were allocated such that the two phases had a similar 
proportion of cases based on study type (lung or colon), study site (hospital) and presence of metastases 
(LVR, bone and nodal).

Following the allocation process, 245 reads were assigned to Phase 2 and 193 reads were assigned to 
Phase 3. Frequency tables were run on both sets of data to validate the proportions between the two 
data sets matched for the variables described above.

Image preparation

There are many challenges for applying ML methods to clinical studies using WB-MRI, and this 
was particularly so for this study as the source data were obtained from 16 different centres. We 
encountered a range of data quality challenges (artefacts) in the data sets used in MALIBO. For example, 
in some participants, there were missing slices in the data; it was not uncommon to collect data with 
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radio frequency interference; for some participants, there were motion artefacts; image artefacts were 
also present due to RF field inhomogeneities with resulting dielectric shading.

Whole-body magnetic resonance imaging scans were provided by the source study in their raw, 
unstitched format, with typically four stations for each of the axial WB-MRI sequences. Each station of 
the axial T2-weighted sequence, high b-value diffusion sequence and the accompanying ADC map were 
stitched together into single volumes, as described in Chapter 3.

Image quality
The versatility of MRI is the modality’s ‘blessing and curse’. A WB-MRI protocol puts both the machine 
and the patient through a stressful test, which usually is not tolerable for repetition. Therefore, a 
WB-MRI examination with DWI, will be extremely prone to artefacts. It is very common that through 
the rapid clinical workflow, the acquired images are not checked thoroughly during acquisition and 
imaging data sets of compromised quality can be ‘passed through the sieve’ of the clinical workflow.

It should be stressed, however, that the quality of the data sets might have been suitable for the 
objectives of the clinical study and not all of the issues were externally triggered [e.g. distortions in 
echo-planar imaging (EPI) DWI acquisitions are unavoidable], but they may have caused challenges to 
the ML algorithms with a subsequent detrimental effects to their performance.

This indicates the importance of having imaging data of readiness level of ‘Band A’, appropriate for the 
task at hand, as described by Lawrence119 for ML studies. It is acknowledged, however, that when multi-
centre data are collected, the scenario above is unrealistic, so loss of some cases that are not usable for 
ML, as happened in MALIBO, might be unavoidable, although this selective removal of cases was only 
undertaken in the data set allocated to model training. We lost 19 of the 245 (7.8%) WB-MRI scans 
allocated to the model development as they were not suited for ML purposes and had to be discarded 
(see CONSORT diagram Figure 26). For the data set allocated to the final Phase 3 clinical validation, 
all cases were included with no selection, although some cases were lost due to technical failure (see 
below, 5 of 193 allocated cases could not be used, 2.6%).

Image registration
The use of multimodality MRI data (‘multichannel’ data as commonly referred to in computer science 
terminology) has shown to improve algorithmic performance in tasks like brain lesion segmentation. 
However, using multichannel inputs for algorithm training requires registered imaging data sets 
between modalities, so that annotated data from a single modality can be used in the interest of 
time-efficiency when generating training data. Matched data sets from different modalities, is a 
task which can be performed efficiently enough in the brain, where no gross motion or anatomical 
deformation is expected between acquisitions, with a rigid registration algorithm. In body imaging, 
where there might be significant organ motion and deformation between acquisitions, a rigid 
registration might not suffice. The task proved to be even more challenging with whole-body 
MRI data. Furthermore, when we attempted to register DWI volumes to anatomical volumes, we 
encountered the extra challenge from the significant geometric distortion of the EPI-acquired, 
high b-value DW volumes. We qualitatively assessed registration between DWI and anatomical 
volumes, when using a 12 degrees-of-freedom affine registration, but with mixed results. A non-rigid 
registration using free-form deformations was also tested, but the time required to apply on the tens 
of WB data sets used in MALIBO was unacceptably long. In the first phase of MALIBO project, we 
simply used slice-matched acquisitions, resampled to match the spatial resolution of the reference 
volumes. For the Phase 2 and Phase 3 data from the STREAMLINE-C and STREAMLINE-L studies 
we decided to avoid registration between diffusion and structure scans as much as possible, as the 
main cause of discrepancy between the modalities was caused by patient breathing. This affected 
anatomical areas in and surrounding the lungs but was deemed acceptable compared to running 
an affine or nonrigid registration which might have introduced misalignment in other areas, rather 
making it worse. In order to match the modalities in terms of number of voxels and physical voxel 
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size, a simple resampling algorithm was used with linear interpolation. Scans were visually checked, 
and the large majority of cases did not show any concerning misalignment between structural T1w, 
T2w and diffusion scans.

Training data for machine learning
Generating training data for ML algorithms is one of the most important, but also laborious and time-
consuming processes. Manual, volumetric segmentations performed by clinical experts, were used to 
ensure reliable and accurate information for model training. These labelled data were also used as the 
GT to compare with, when evaluating algorithmic performance in the Phase 2 hold-out set. In MALIBO, 
we used ITK-SNAP120 to manually generate annotated WB images (see Appendices 2 and 3 for the 
usage of the software for this project; and for the manual segmentation method). Labelling of healthy 
structures (23 anatomical structures, including organs and bones) occupied a significant proportion of 
Phase 1 of the project, but this work was of paramount importance as in Phase 2 where we used a two-
stage approach, to identify cancer lesions as will be discussed in Two-stage approach. For Phase 2, the 
manual annotations concerned all cancer lesions, including primary tumours and metastatic lesions that 
were visible to the expert annotator. All primary tumours and metastases were manually segmented in 
both diffusion and structural T2w scans, using the final reference standard for sites of disease from the 
STREAMLINE consensus reference standard. These primary and metastatic lesion segmentations were 
then fused into a single lesion segmentation map for each participant and these fused lesion maps were 
used for training within the two-stage approach as discussed below.

Machine-learning pipeline

The choice of the exact machine algorithm is difficult to make beforehand, and often different variants 
and alternatives need to be considered during development. This was the case in Phase 1 where we 
evaluated three different approaches for the organ segmentation, namely MA, CFs and CNNs. Based 
on this previous phase and our experience from other studies, such as brain tumour segmentation, we 
decided to employ and validate two approaches for cancer lesion detection in Phase 2, namely CFs 
and CNNs. CFs are powerful, multilabel classifiers, which facilitate the simultaneous segmentation 
of multiple structures. They have good generalisation properties, which means they can effectively 
be trained using a limited number of data sets. Both traits were desirable in MALIBO. Our CNNs 
implementation was based on DeepMedic, an approach which has been shown to perform very well in 
brain lesion segmentation with multiparametric MRI data. The details of the hyperparameters used for 
the CFs and network architecture for the CNNs, can be found elsewhere. CNNs performed consistently 
better in healthy organ segmentation in Phase 1 of MALIBO, so it was the algorithm of choice for Phase 
2 of the project (lesion detection). However, we decided to also give the CFs a try as ultimately the 
task in Phase 2 is less of a segmentation task where we want to get exact boundaries around cancer 
lesions, but more of a lesion detection task where a heatmap should flag up suspicious regions to the 
human reader.

Feature crafting for supervised learning requires the definition of set of potentially useful features 
that are quickly and efficiently computed and provide adequate information for the algorithm to 
successfully perform the task at hand. In MALIBO, we have used two types of ‘box features’ for 
our CF algorithm. Box features are intensity-based features that are computed ‘on the fly’ and 
provide both local and contextual information extracted from the images. The CNNs are capable 
of learning highly complex features on their own during training and therefore, do not require any 
feature crafting.

One-stage approach
We initially experimented with a simple one-stage approach by training CFs and CNNs on the annotated 
Phase 2 data. This resulted in binary classification methods that were assigning a probability to each 
voxel in a multichannel WB-MRI whether it is believed to be part of a cancer lesion or not. Higher 
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probabilities indicated that a voxel is more likely to show signs of cancer. Due to the massive imbalance 
between normal and cancer voxels, this approach resulted in algorithms with low sensitivity, and was 
deemed insufficient for the task.

Two-stage approach
Ultimately, we opted for a two-stage approach leveraging the training data and algorithm for normal 
structure segmentation from Phase 1. Running the Phase 1 multiorgan CNN segmentation on all Phase 
2 data provided automatic organ maps for all patient scans. This required an intermediate step of 
registering Phase 2 data with a rigid registration algorithm to a template participant from the Phase 1 
data (Figure 13). This was to compensate for the different fields-of-view of Phase 1 and Phase 2. While 
the healthy volunteer Phase 1 data were covering the body from shoulders to knees, the Phase 2 patient 
data included the head which affects the performance of the Phase 1 algorithm. The registration is 
automatic and fast, and only required to obtain the organ masks. These are then mapped back with the 
inverse transformation to the original Phase 2 data. For Phase 2, there is no reference segmentation of 
organs to compare with, so we assessed the quality of these segmentations visually and they appeared 
to be sufficient for the following purpose.

We merged the automatically generated organ maps with the manually segmented cancer lesions for 
Phase 2 data, by replacing the labels for all voxels that were marked as cancer with a new additional 
label indicating the presence of a cancer lesion. This was implemented by adding a new label to the list 
of organ labels. This resulted in all 226 scans from Phase 2 having multiclass segmentation maps where 
the organ labels were generated automatically using the CNN algorithm from Phase 1, while the cancer 
lesions were labelled manually. We then used the training set of 181 scans for training the two multi-
class algorithms (CFs and CNNs based on DeepMedic) which are both capable of predicting the organ 
labels and cancer lesions jointly. This multiclass approach results in a much better distribution of voxels 
over class labels, and the ML algorithm has an easier task to learn class-specific features, rather than the 
binary task where all normal structures are merged into a single class. We confirmed this on the 45 scans 
in the Phase 2 validation set which showed a much higher sensitivity for detection of cancer lesions than 
the initial one-stage approach.

Post-processing to generate final lesion detection maps
This final two-stage approach could then be readily applied directly to Phase 3 data without any further 
pre-processing requirements on the input MRI, with the output being a probability map for each of the 
structures including the normal organs as defined in Phase 1 and the cancer lesions as defined in Phase 
2 (Figure 14). The probability map for the cancer lesions is output of interest for the reader study in 

(a) (b) (c) (d) (e) (f)

FIGURE 13 Data generation process for the two-stage approach in Phase 2. (a) An example of a T2w WB-MRI scans from 
a participant in Phase 2 data. (b) After registration to a template scan of Phase 1 data. (c) Output of the organ segmentation 
algorithm developed in Phase 1. (d) After mapping the organ segmentations back to the original Phase 2 scan. (e) The 
manual lesion segmentation overlaid on the T2w scan. (f) Merged organ segmentations and cancer lesion segmentation 
overlaid on the T2w scan which is used for training the final Phase 2 multiclass segmentation algorithm.
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Phase 3. We found that the raw probability maps could be significantly improved for the final use with a 
customised post-processing pipeline. The probability maps produced by the CNN were smoothed with a 
Gaussian filter with a kernel size of 5 mm, then normalised to the range [0, 1], and thresholded to reduce 
false-positive detections. We also tested a larger kernel size of 10 mm, but 5 mm was found to be better 
based on visual assessment on the 45 validation cases.

Results

We summarised the quantitative results over the 45 Phase 2 validation cases by plotting RE, PR and 
Dice curves (Figures 15–17).

Figure 15 shows the multiclass DeepMedic CNN that we favoured overall as the best method. Multi-
class here means that the algorithm predicts simultaneously labels for healthy organs and lesions.

Figure 16 shows the index curves for multi-class approach using RFs instead of CNNs.

Figure 17 displays a DeepMedic CNN that does not know about healthy organs, but is only trained to 
predict lesions versus non-lesions. Comparing this plot with the dm_multiclass nicely backs this up.

(a) (b) (c) (d) (e)

FIGURE 14 Cancer lesion detection. (a) Input T2w scan. (b) Diffusion scan. (c) Manual reference lesion segmentation 
overlaid on diffusion scan. (d) Post-processed lesion probability map from the CNN algorithm. (e) Post-processed lesion 
probability map from the CF algorithm.
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All three plots (see Figures 15–17) have three curves each for PR, RE and Dice. The important one is 
Dice, so whatever plot shows the highest Dice values is the best method. As we can see, in terms of 
Dice score, dm_multiclass > rf_multiclass > dm_binary.

It should be pointed out that these curves were plotted over different thresholds that one can place 
on the probability map. This is not relevant for the reader study (Phase 3 study), as the human sees 
recalibrated maps. It is also important to note that PR and RE here are on a voxel-level, so not to be 
confused with sensitivity/PR on a lesion level (as assessed in Phase 3).

Validation

Whether the task at hand is organ or lesion classification, segmentation or detection the core of 
the pipeline will most commonly be an accurate and robust classifier. In MALIBO Phase 2, we were 
interested in lesion detection and localisation rather than segmentation. We therefore had to employ 
a scheme to evaluate the CF and CNN-based voxelwise classification algorithms, but now in terms 
of detection task. A specific automatic evaluation procedure was implemented to calculate detection 
accuracy. This takes the manual reference segmentation and post-processed lesion probability from 
the ML algorithm as an input, and calculates the true positive rate, positive predictive value and F1 
score, based on a connected component analysis and a user defined threshold (in millimetres) on the 
distance between true and prediction lesion location. We found the CNN-based algorithm to produce 
significantly fewer false positives. However, we kept the probability maps from the CFs for further 
evaluation in Phase 3, as false positives might not necessarily be a problem for a human-in-the-loop 
reader study. Thus, two final algorithms were available to radiologists in clinical validation Phase 3, each 
with two different kernel levels (rf kernel 5 and 10 and dm kernel 5 and 10). The ML output dm kernel 5 
was selected to go forward but the rf kernel 5 was also provided as an alternative if the reader wished to 
use it.
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Chapter 6 Machine-learning clinical validation: 
Phase 3 methods and results for performance 
evaluations

During Phase 3, the clinical validation ‘hold out’ set of WB-MRI data from the STREAMLINE study 
were read by experienced readers with the final ML algorithm support (termed algorithm ‘C’ in the 

original study protocol). The per-patient specificity and sensitivity of WB-MRI assessment, with and 
without ML support, were determined using the established reference standard from the contributing 
study. The RT was also recorded at this stage. Experienced and inexperienced readers undertook 
radiology reads and inter-rater agreement was evaluated.

Background

The algorithms taken forward into clinical validation both used a ‘two-stage’ approach for lesion 
detection on WB-MRI. In the first stage, the information from Phase 1 healthy organs/bones was 
used to identify the location of organs; in the second stage, the lesions are detected (as described 
in Phase 2 of MALIBO, Chapter 5). In addition, we refined and improved the computer algorithm to 
reach a substantial sensitivity for lesion detection, allowing for the fact that the final reading study 
was to be undertaken with experienced readers who could choose to ignore false-positive sites on the 
probability maps.

Verification of the clinical performance and utility of ML tools for radiology involves more than the 
demonstration of their technical soundness.121 In the current study and final Phase 3 of the MALIBO 
project, we aimed to develop a robust methodology to verify and evaluate the ML lesion detection tool 
on WB-MRI in a near-real clinical setting. We compared the diagnostic test accuracy of the index test 
(WB-MRI with ML support, WB-MRI-ML) with the comparator test (WB-MRI standard, WB-MRI-SD) by 
a number of independent radiologists. We also measured RT using an independent scribe.

Reading platform

In clinical settings, PACS is used for hosting medical images and associated reader’s reports. In MALIBO, 
we have used a secure cloud-based central imaging server (3Dnet™), provided by Biotronics3D, to 
ensure that images and related ML output, are hosted in an secure environment where the research 
team could control the work-lists for each reader, ensuring blinding between reading rounds and strict 
allocation of cases with and without ML support.

Readers were trained online and were shown how to use a hanging protocol in Biotronics3D, so 
that stitched volumes from different imaging modalities, alongside the ML output, could be opened 
and browsed simultaneously, as shown in Figure 19 (or see Appendix 4). This setting also allowed for 
anatomical co-localisation using cross-hairs and also fusion between the colour-mapped ML output 
(probability map or ‘heat’ map) and any of the MRI modalities.

Data preparation for reading platform
Briefly, DICOM data from individual imaging stations had been previously stitched into a single NIfTI 
(https://nifti.nimh.nih.gov/) volume according to slice location to form whole-body volumes.14,17 The 
original DICOM data were retained for ‘gluing’ back to the converted ‘header less’ images for uploading 
to the reading platforms 3Dnet™. The WB-MRI data of T2w, DWI and ADC map were registered for ML 
analysis and for viewing by the radiologists. To assist the radiologists in finding the necessary series, the 

https://nifti.nimh.nih.gov/
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series were all re-numbered in a uniform way so that they would appear in the same order in the series 
list on PACS, as all the cases came from multiple different hospitals and had different series orders. To 
ensure the required level of blinding, the secure central imaging server 3Dnet™ was employed to store 
and display WB-MRI and ML outputs. All the WB-MRI data sets from the contributing studies were 
anonymised (by the source study sites) before upload to the 3Dnet™ which enables rapid and simple 
upload of complex imaging data sets via a standard internet connection. The disadvantage of this system 
is that it can only process images with DICOM format; thus the NIfTI image volumes could not be used.

One hundred and ninety-three patient cases (122 colon cases and 71 lung cases), from the contributing 
studies, were initially allocated to Phase 3 of the study. One colon case (STC042) was removed prior to 
allocating Phase 3 cases to readers due to a technical failure to convert and upload image files which 
was recognised prior to the final allocation of cases to readers. Post allocation, four additional colon 
cases were excluded from the analysis: two of them were because of missing ADC maps (STC144 
and STC151), one (STC062) had the corrupted DW image which leads to no-ML output and the other 
(STC223) was removed due to the failure to convert and upload image files (the same problem as 
STC042 but this was only recognised after the case has been allocated to a reader). Overall, 188 cases 
with ML output were adopted in the evaluation (see Figure 26).

Data conversion and viewing system
Four of the final ML algorithms were run on all 188 (rf kernel 5 and 10 and dm kernel 5 and 10). The ML 
output dm kernel 5 was selected to go forward into the clinical validation and in addition the rf kernel 
5 output was available on PACS for additional use at reader’s discretion. The ML output was available 
for each WB-MRI-ML case as an additional series on PACS. The ML outputs which take the form of 
NIfTI were converted to DICOM format as the imaging server 3Dnet™ can only store and display 
DICOM image. A Python (www.python.org/) script was created to convert NIfTI images in an Ubuntu 
18.04 Linux system (https://ubuntu.com/). In addition, MRI sequences were re-ordered for the central 
imaging server 3Dnet™ with T2w, ADC, DWI show on the top of the list on the server, followed by ML 
output. This was achieved by modifying the DICOM tags of the MRI images. After that, the converted 
images alongside with the original images were uploaded in 3Dnet™ system for radiologists to assess. 
As requested by 3Dnet™, Google Chrome (www.google.com/chrome/) and Mozilla Firefox (www.
mozilla.org/en-GB/) (only one radiologist used this browser) browsers were used to view WB-MRI 
images. Each WB-MRI scan was copied and one copy was given a new unique identifier (UID) in order 
to allow one data set with ML output and the other as standard on PACS. Thus, each original case from 
the contributing STREAMLINE study had two versions on the MALIBO study folder in Biotronics3D: 
for example, STC001-SD or STC001-ML would be the STREAMLINE-C patient 001 with one standard 
version (SD) and one version with available ML output (ML).

Experimental design for the reads

Study design (allocation of reads)
One hundred and ninety-three Phase 3 cases were allocated at random by the study statistician to 18 
experienced radiologists, defined as consultant radiologists that regularly reported reading WB-MRI in 
their standard clinical practice. Each reader was assigned 11 or 10 reads that would be assessed exclusively 
by them for the purpose of specificity and sensitivity testing. The randomisation was stratified by read 
type (colon or lung), presence of metastases (yes or no) and by original recruitment site to ensure that each 
reader had a similar set of reads. The allocation also ensured that no reader could assess read packages 
created at their home clinic/site. Allocated cases were then selected at random at a 1 : 1 ratio as to 
whether they would be presented with or without the additional ML documentation at round 1.

To allow for inter-rater assessments four or five additional reads were assigned to each reader in a way 
that would ensure that each read was assessed by two different readers. The same stratification method 
as described above was used in this process.

https://www.python.org/
https://ubuntu.com/
https://www.google.com/chrome/
https://www.mozilla.org/en-GB/
https://www.mozilla.org/en-GB/


DOI: 10.3310/KPWQ4208� Efficacy and Mechanism Evaluation 2024 Vol. 11 No. 15

Copyright © 2024 Rockall et al. This work was produced Rockall et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care.  
This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction 
and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original 
author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

55

To allow for intrarater assessments, any reader that made themselves available for an additional third 
round of reads would have 10 reads (6 STC, 4 STL) selected from their original allocation (either primary 
or inter-rater) at random and then assigned whether to assess these with or without ML (at 1 : 1 ratio).

For 12 additional radiologists that were deemed inexperienced in reading WB-MRI or were experienced, 
10 or 14 cases of the 193 Phase 3 cases were assigned at random using the same methodology as 
described above. Six or 10 cases were assigned for the purpose of establishing specificity and sensitivity 
with the other four cases used for inter-rater assessments. So each experienced reader was allocated 16 
reads per session and each inexperienced reader was allocated 10–14 (three readers have 14 reads and 
four readers have 10 reads) reads per session.

The three rounds for the radiologist readers took place between 8 November 2019 and 6 March 2020. 
All readers took part in the first two reading rounds with paired reads. To reduce the possibility of RE 
bias, there were at least four weeks interval between reading rounds. Figure 18 shows the diagram for 
the 1st and 2nd round pipeline for experienced readers.

Independent radiologists training
Several weeks before the 1st round read, an instruction sheet (see Appendix 4) for using the 3Dnet™ 
system was sent to all the radiologists who took part in the study. The instructions listed the suggested 
optimal methods to view MRI images. Radiologists were able to login to the system and practice using the 
system with a set of data sets from Phase 2 of the MALIBO project. This practice demonstration only used 
the data which were not included for the Phase 3 study and had the option of viewing the cases with or 
without ML support, from the 45 cases in the hold-out Phase 2 validation. There were several live on-line 
training events provided by an applications specialist from 3Dnet™ medical. In addition, on the day of the 
1st round read, a computer scientist or a scribe was assigned to set up the 3Dnet™ system and refresh 
the readers on how to use the system to display and overlay the ML images as a colour-encoded heatmap 
onto the T2w image. The computer scientist also showed the radiologists how to find the useful image 
sequences, allocate multiple images together on the screen, adjust image contrast and measure tumour 
size. Once radiologists were sure how to use the system, the reads and ML output evaluation were carried 
out. This demonstration only used the data which were not included for Phase 3 study.

Six- or eight-view windows (see Figure 19) was suggested to use the display MRI images depending 
on the total number of image sequence availability. Radiologists were advised to put the images in the 
order of T2w, DWI and ADC on the top row (see Figure 19) and lay ML image (if this is the case with ML 

Round 1 Round 2

188 cases with WB-MRI

Statistical comparison

Randomly select 16 cases
for each radiologist

8 with ML cases
8 without ML cases

8 without ML cases
8 with ML cases

FIGURE 18 Diagram showing experimental design for clinical evaluation of the ML method. Sixteen cases allocation for each 
experienced radiologist. The allocated reads include a selection of cases for inter-rater agreement (masked to the reader).
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support), dedicated LVR and dedicated brain scans at the bottom row. Radiologists could allocate more 
windows if they felt it was necessary.

The ML output images were overlaid onto the WB-MRI T2w scans in the form of a threshold, coloured 
probability map or heatmap (see Figure 19D). The overlay threshold (suggested 65%) was decided by 
the radiologists and computing scientists in consensus and this reflected the extent of the underlying 
T2w imaging and the extent of the ML heatmap; this could be easily adjusted by the reader at any time. 
Following this decision, it was at the radiologists’ discretion to make a call on a lesion’s true or false 
appearance and characterisation. Window settings could be adjusted for all sequences, including the ML 
output volume.

To achieve correct sequential allocation of cases and secure blinding of the reader, we created two 
folders on 3Dnet™ system for each case and these two folders were identical except the ML folder has 
one additional ML result to support the radiologists for the report. Radiologists were able to access only 
the cases for a specific reading round. No other cases could be accessed, thus ensuring that all the reads 
in Phase 3 were blinded.

Reading method
Whole-body magnetic resonance imaging scans were reported by 25 independent radiologists (including 
18 WB-experienced radiologists and 7 inexperienced in WB-MRI) who were blinded to the results of 
the other imaging and clinical information apart from know whether the primary tumour was lung or 
colon, as was the case in the source study. All radiologists took part in the 1st and 2nd round reads, but 
only eight (six WB-experienced and two WB-inexperienced radiologists) participated in the 3rd round 
(intrarater) read.

The detection of primary and metastatic lesions, incorporating ML support and radiologist’s expertise, 
was recorded using a proforma similar to the one used in the STREAMLINE studies,8 but adapted for the 
MALIBO study to account for the incorporation of ML (see Appendices 5 and 6).

After MRI images were set up on the 3Dnet™ system as shown in Figure 19 (or Appendix 4), beginning 
and ending RT and tumour stage and were recorded. T2w, DWI and ADC image qualities were 
evaluated. Readers were asked to detect a primary tumour based on all available information, including 

FIGURE 19 An example for read window layout (case number STC010-ML). (a) T2w image; (b) DWI image; (c) ADC map; (d) 
RF detection result overlaid on T2w image; (e) dedicated LVR image; (f) dedicated brain image.
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ML output if available. If the primary tumour was found, then four confidence level, from low (1) to high 
(4) was asked to be given by the reader to decide the confidence of the tumour detection. There after 
the maximum dimension of the tumour was measured and recorded. Cancer stage was also evaluated by 
the reader. For lung cases, regional nodal status was recorded. The detection of non-skeletal and skeletal 
metastatic sites was documented and incidental findings were also recorded in the case report form (see 
Appendix 5 for STC case and Appendix 6 for STL case).

In order to ensure parity in the time of reads, for the cases in which ML heatmaps were available, the 
readers were asked to undertake their clinical read together with the heatmap and record the sites of 
disease. Once this was completed the timer was stopped. The reader was then asked to review the 
sites of ML detection and assign one of four levels of detection related purely to the ML output. Four 
levels of probability were recorded by visual inspection by readers, from low (1) to high (4), to indicate 
the perceived probability of the ML for lesion detection by the reader – although the reader may have 
over-ruled the ML output in the clinical read.

A scribe was assigned to assist the radiologists for the report and completion of the CRF forms for all 
reading rounds. The scribe ensured appropriate knowledge of the PACS system prior to the worklist 
beginning, independently timed the clinical read and ensured that CRF forms were fully completed. The 
completed CRF forms were copied, scanned and sent to University College London (UCL) Cancer Trial 
Unit for input the data into the study database.

Statistical analysis
Encrypted data were provided to the study statistician by the UCL Cancer Trial Unit over a secure 
network and were imported into Statistical Analysis System v9.4 for analysis.

Primary analysis to investigate for a difference in specificity rates between reads with ML assistance 
compared to those without was carried out using McNemar’s test for paired proportions. Results are 
presented as a difference in proportions between the two arms with the corresponding 95% confidence 
interval (CI). Due to the nature of the results a two-sided test had to be carried out instead of the one-
sided test anticipated. Significance testing was based on the binomial distribution of the discordant pairs 
between the two assessment groups (ML and no-ML).

Full details of this methodology, including formulae, can be seen in section A7 of the statistical analysis 
plan (SAP, Appendix 7). In some cases, the analysis performed differed slightly than originally specified:

1.	 Following primary analysis, it was clear that a two-sided test rather than a one-sided test was re-
quired throughout. The SAP does allow for this eventuality but for a sacrifice of power in the design.

2.	 The SAP stated that frequencies of confidence scores will be visualised using a bar charts. This will 
no longer be the case as the medium is not suitable for displaying the outcome data. The corre-
sponding 4 × 4 frequency tables will be included in the results.

Results

Review of data
One hundred and ninety-three patient scans were initially assigned to Phase 3 of the MALIBO study 
(see Figure 20). Of these, one was removed due to technical problems prior to allocation to readers. Of 
192 allocated to readers, 188 were included for the primary analysis, as 4 further scans could not be 
evaluated due to a lack of assessable ML images. This left 138 sets with negative reference standards 
(no presence of detectable metastases) and 50 with positive reference standards (presence of detectable 
metastases) (Figure 20).
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Primary analysis: specificity per patient
The primary outcome measure for this trial was the per-patient specificity amongst experienced readers 
of WB-MRI with ML algorithm support, compared to the standard radiology read (WB-MRI without ML 
algorithm support) against the reference standard established in the STREAMLINE study. Specificity is 
defined as the proportion of cases with negative reference standard, which has been correctly classified 
as negative by the reading radiologist, based on WB-MRI with or without ML algorithm support.

Table 13 displays the overall frequency of whether a patient had at least one metastatic tumour detected 
in MALIBO reads in comparison to the reference standard amongst experienced readers and was 
repeated both with and without the assistance of ML, respectively. The corresponding data detailing 
negative reference standards were then carried over to Table 14 in order to investigate specificity. 
Using ML, readers were not able to detect metastatic tumours in 119 of the 138 patients with negative 
reference standards. This translates to a specificity rate of 86.2%. Without ML, 121 of the 138 patients 
with negative reference standards were unable to have metastatic tumours detected, a specificity rate 
of 87.7%. The corresponding difference in proportions when using ML is −1.5% (95% CI −6.4% to 3.5%) 
with the derived p-value (0.387) indicating that there is no evidence to reject a null hypothesis of no 
difference in specificity rates between arms.

193 assigned to Phase 3

192 allocated to readers

141 negative mets (ref std) 51 positive mets (ref std)

90  STC 31  STC

1 x removed in allocation
due to lack of images

188 included for primary
analysis

4 removed from
analysis

4 x no suitable
ML imaging

available

138 negative
mets

(ref std)

50 positive
mets

(ref std)

51 STL 20 STL

FIGURE 20 Flowchart of reference standard read data allocated for Phase 3 testing.
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Secondary analysis: sensitivity per patient
Table 15 shows whether metastatic tumours were detected in patients with positive reference standards 
when using ML or no-ML. Of the 50 patients with metastases present within the reference standard, 
33 were able to be detected by readers when using ML. This translates to a sensitivity rate of 66.0%. 
Without ML, 35 patients were established to have metastatic tumours, providing a sensitivity rate of 
70.0%. The corresponding difference in proportions when using ML is −4.0% (95% CI −13.5% to 5.5%) 
with the derived p-value (0.344), indicating that there is no evidence to reject a null hypothesis of no 
difference in sensitivity rates between arms.

Secondary analysis: specificity and sensitivity per site
A breakdown of the specificity and sensitivity rates per site of lesion can be found in Tables 16 and 
17, respectively. Generally, specificity was not affected based on usage of the ML algorithm with 

TABLE 13 2 × 2 table of observed per-patient classification

Reference standard MALIBO

Frequency: n (%) Negative Positive Total

(a) Without ML

Negative 121 (64.4) 17 (9.0) 138 (73.4)

Positive 15 (8.0) 35 (18.6) 50 (26.6)

Total 136 (72.3) 52 (27.7) 188 (100.0)

(b) With ML

Negative 119 (63.3) 19 (10.1) 138 (73.4)

Positive 17 (9.0) 33 (17.6) 50 (26.6)

Total 136 (72.3) 52 (27.7) 188 (100.0)

Note
(a) without ML and (b) with ML, against the reference standard. As the same scans are read both with and without ML the 
marginal totals for the reference standard (n−, n + and N) are the same in both (a) and (b).

TABLE 14 2 × 2 table to compare per-patient specificity for experienced readers with and without ML

No-ML ML

Frequency: n (%) Negative Positive Total

Negative 114 (82.6) 7 (5.1) 121 (87.7)

Positive 5 (3.6) 12 (8.7) 17 (12.3)

Total 119 (86.2) 19 (13.8) 138 (100.0)

TABLE 15 2 × 2 table to compare per-patient sensitivity for experienced readers with and without ML

No-ML ML

Frequency: n (%) Negative Positive Total

Negative 13 (26.0) 2 (4.0) 15 (30.0)

Positive 4 (8.0) 31 (62.0) 35 (70.0)

Total 17 (34.0) 33 (66.0) 50 (100.0)
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difference in proportions ranging from 1.6% down to −0.5%. In all cases, per-site specificity remained 
above 95%.

Investigating per-site sensitivity was hindered by the lack of positive cases within the reference 
standards with only two sites (LVR and lung) having 10 cases or more to relate to. With 23 positive cases 
(see Table 17), LVR produced a difference of −8.7% (95% CI −20.2 to 2.8) in metastatic tumour detection 
when using ML. The results for lung cancer provided very low sensitivity rates with 10.0% (95% CI 0.5 
to 45.9) in the machine-learning arm and 0% (95% CI 0.0 to 34.5) without ML. It should be noted that 
these figures are based on a small sample of positive lung cases such that the upper CIs are hitting more 
moderate values of 45.9% (ML) and 34.5% (No-ML), respectively.

Secondary analysis: analysis for inexperienced readers
Investigating per-patient and per-site specificity and sensitivity for less experienced readers produced 
similar results. Fifty-three reads were assessed amongst 7 readers; 38 with negative reference standards, 
15 with positive standards. For specificity, readers when using both ML and no-ML were able to not 
detect metastases in 29 of the 38 read sets with negative reference standards. This translates to a 
specificity rate of 76.3% (95% CI 59.4% to 88.0%) with a difference of 0.0% (95% CI −15.0% to 15.0%) 

TABLE 16 Per-site specificity for experienced readers with and without ML; including between-group difference with 95% CI

Site n

Specificity Difference in proportions

ML (%) No-ML (%) ∆ (%) LCI UCI

LVR 165 98.2 98.2 0.0 −2.4 2.4

Lung 178 95.5 95.5 0.0 −2.7 2.7

Adrenal 184 98.4 96.7 1.6 −0.2 3.5

Kidney 187 100.0 100.0 0.0 0.0 0.0

Brain 182 98.9 98.9 0.0 0.0 0.0

Pleura 187 97.3 97.9 −0.5 −2.9 1.8

SPLN 188 100.0 100.0 0.0 0.0 0.0

PNCR 188 100.0 100.0 0.0 0.0 0.0

Peritoneum 185 97.8 98.4 −0.5 −1.6 0.5

Bowel 188 99.5 99.5 0.0 −1.5 1.5

Chest 188 100.0 100.0 0.0 0.0 0.0

PLVS (non-skeletal) 186 99.5 100.0 −0.5 −1.6 0.5

Skull 187 100.0 100.0 0.0 0.0 0.0

Cervix 188 100.0 100.0 0.0 0.0 0.0

Thorax 184 99.5 100.0 −0.5 −1.6 0.5

Lumbar 184 99.5 98.9 0.5 −0.5 1.6

Sternum 187 100.0 100.0 0.0 0.0 0.0

PLVS (skeletal) 186 99.5 100.0 −0.5 −1.6 0.5

Clavicle N/A N/A N/A

Ribs 188 100.0 100.0 0.0 0.0 0.0

Other skeletal 188 100.0 100.0 0.0 0.0 0.0

LCI: lower confidence interval; UCI: upper confidence interval.
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(Table 18). For sensitivity, readers using ML were able to detect metastases in 11 of the 15 read sets 
with positive reference standards, a sensitivity rate of 73.3% (95% CI 44.8% to 91.1%). Without ML this 
figure decreases to 9 out of 15, a sensitivity rate of 60.0% (95% CI 32.9% to 82.5%). The corresponding 
difference in sensitivity rates when using ML is 13.3% (95% CI −7.9% to 34.5%) (Table 19).

A breakdown of the specificity and sensitivity rates per site of lesion for inexperienced readers can be 
found in Tables 20 and 21. The output is again generally similar to that found in the corresponding table 
for experienced readers (see Tables 16 and 17) with ML and no-ML producing similar results with small 
proportions of difference. The specificity values are slightly smaller in some cases with values heading 
down towards 90% (in comparison the lowest specificity in the experienced readers was above 95%). It 
should be noted that due to the low numbers of positive reference standards available in this subset of 
data that no realistic inferences can be made regarding difference in proportions in sensitivity.

Secondary analysis: time to complete reads
Combining experienced and inexperienced reads across both rounds 1 and 2, the overall mean (SD) 
RT of WB-MRI with ML algorithm support is 560 (260) seconds. Without using ML algorithm support, 
the time increases slightly to 595 (610) seconds (Table 22). Thus, using ML mean RT is lowered by an 

TABLE 17 Per-site sensitivity for experienced readers with and without ML; including between-group difference with 95% CI

Site n

Sensitivity Difference in proportions

ML (%) No-ML (%) ∆ (%) LCI UCI

LVR 23 60.9 69.6 −8.7 −20.2 2.8

Lung 10 10.0 0.0 10.0 −8.6 28.6

Adrenal 4 50.0 50.0 0.0 0.0 0.0

Kidney 1 0.0 0.0 0.0 0.0 0.0

Brain 6 66.7 50.0 16.7 −13.2 46.5

Pleura 1 0.0 0.0 0.0 0.0 0.0

Peritoneum 3 0.0 33.3 −33.3 −86.7 20.0

PLVS 2 0.0 0.0 0.0 0.0 0.0

Skull 1 0.0 0.0 0.0 0.0 0.0

Thorax 4 25.0 0.0 25.0 −17.4 67.4

Lumbar 4 25.0 0.0 25.0 −17.4 67.4

Sternum 1 100.0 100.0 0.0 0.0 0.0

PLVS skeletal 2 0.0 50.0 −50.0 −119 19.3

LCI: lower confidence interval; UCI: upper confidence interval.

TABLE 18 2 × 2 table to compare per-patient specificity for inexperienced readers with and without ML

No-ML ML

Frequency: n (%) Negative Positive Total

Negative 23 (60.5) 6 (15.8) 29 (76.3)

Positive 6 (15.8) 3 (7.9) 9 (23.7)

Total 29 (76.3) 9 (23.7) 38 (100.0)
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average of 35 seconds (95% CI −60 to 140), an average percentage reduction of 6.2% (95% CI −10.0% 
to 22.8%). Table 22 contains additional summary statistics and also breaks these results down by reader 
ability (experienced/inexperienced) and read order (rounds 1 and 2). Round 2 read times also dropped, 
regardless of ML assistance, read type (Table 23 and 24), or reader experience by an average of 226 
seconds (95% CI 147 to 304) or 31.8%, (95% CI 20.8% to 42.8%).

TABLE 20 Per-site specificity for inexperienced readers with and without ML including between-group difference with 
95% CI

Site n

Specificity Difference in proportions

ML No-ML ∆ LCI UCI

LVR 46 95.7 95.7 0.0 −8.5 8.5

Lung 51 96.1 90.2 5.9 −2.6 14.3

Adrenal 52 98.1 100.0 −1.9 −5.7 1.8

Kidney 52 100.0 100.0 0.0 0.0 0.0

Brain 50 98.0 100.0 −2.0 −5.9 1.9

Pleura 52 98.1 94.2 3.8 −3.6 11.3

SPLN 53 100.0 100.0 0.0 0.0 0.0

PNCR 53 100.0 100.0 0.0 0.0 0.0

Peritoneum 52 98.1 100.0 −1.9 −5.7 1.8

Bowel 53 96.2 100.0 −3.8 −8.9 1.4

Chest 53 98.1 100.0 −1.9 −5.6 1.8

PLVS non-skeletal 53 100.0 100.0 0.0 0.0 0.0

Skull 53 100.0 100.0 0.0 0.0 0.0

Cervix 53 100.0 100.0 0.0 0.0 0.0

Thorax 53 100.0 96.2 3.8 −1.4 8.9

Lumbar 53 100.0 98.1 1.9 −1.8 5.6

Sternum 53 100.0 100.0 0.0 0.0 0.0

PLVS skeletal 53 100.0 100.0 0.0 0.0 0.0

Clavicle N/A N/A N/A

Ribs 53 98.1 100.0 −1.9 −5.6 1.8

Other skeletal 53 100.0 100.0 0.0 0.0 0.0

LCI: lower confidence interval; UCI: upper confidence interval.

TABLE 19 2 × 2 table to compare per-patient sensitivity for inexperienced readers 
with and without ML

No-ML ML

Frequency: n (%) Negative Positive Total

Negative 3 (20.0) 3 (20.0) 6 (40.0)

Positive 1 (6.7) 8 (53.3) 9 (60.0)

Total 4 (26.7) 11 (73.3) 15 (100.0)
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TABLE 21 Per-site sensitivity for inexperienced readers with and without ML; including between-group difference with 
95% CI

Site n

Specificity Difference in proportions

ML No-ML ∆ LCI UCI

LVR 7 71.4 71.4 0.0 0.0 0.0

Brain 3 66.7 100.0 −33.3 −86.7 20.0

Lung 2 0.0 0.0 0.0 0.0 0.0

Adrenal 1 100.0 0.0 100.0 100 100

Kidney 1 0.0 0.0 0.0 0.0 0.0

Pleura 1 0.0 0.0 0.0 0.0 0.0

Peritoneum 1 0.0 0.0 0.0 0.0 0.0

lower confidence interval; UCI: upper confidence interval.

TABLE 22 Mean (SD) read time in seconds by arm, experience and read round – all packages

Read round

Without ML With ML

n Mean (SD) Median (IQR) n Mean (SD) Median (IQR)

Experienced readers All reads 188 595 (610) 480 (300–720) 188 560 (260) 540 (360–720)

Round 1 92 715 (824) 600 (360–780) 96 663 (259) 600 (450–810)

Round 2 96 481 (236) 420 (300–600) 92 453 (216) 390 (300–570)

Round 3 21 454 (206) 420 (300–540) 20 411 (156) 390 (300–510)

Inexperienced readers All reads 53 691 (412) 600 (420–900) 53 645 (329) 600 (360–840)

Round 1 26 842 (476) 630 (540–1020) 27 736 (382) 660 (360–840)

Round 2 27 544 (275) 540 (300–660) 26 552 (235) 480 (360–720)

Round 3 7 351 (112) 360 (240–480) 6 410 (158) 360 (300–420)

IQR, interquartile range.

TABLE 23 Mean (SD) read time for colon packages in seconds by arm, experience and read round

Colon Without ML With ML

Read round n Mean (SD) Median (IQR) n Mean (SD) Median (IQR)

Experienced readers All reads 117 597 (357) 540 (360–780) 117 560 (257) 540 (360–720)

Round 1 58 703 (417) 600 (360–840) 59 655 (249) 600 (420–840)

Round 2 59 492 (249) 480 (300–600) 58 463 (228) 390 (300–660)

Round 3 12 455 (161) 450 (330–570) 10 432 (162) 420 (300–600)

Inexperienced readers All reads 33 758 (481) 600 (360–1020) 33 705 (368) 660 (360–840)

Round 1 13 1057 (559) 960 (600–1320) 20 756 (423) 600 (420–840)

Round 2 20 564 (303) 540 (300–780) 13 626 (259) 660 (420–720)

Round 3 5 396 (100) 420 (360–480) 3 460 (227) 360 (300–720)

IQR, interquartile range.
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Comparing experienced read times to inexperienced read times we see that experienced readers 
complete their reads approximately 2 minutes faster than their inexperienced counterparts, however, 
the difference in time deduction depends on the read round. On average, experienced readers 
completed their reads 100 seconds (95% CI −75 to 274) faster (or 12.6%, 95% CI −9.6% to 34.8%) than 
their inexperienced counterparts for round 1 reads, and 81 seconds (95% CI 10 to 152) faster (or 14.8%, 
95% CI 1.2% to 27.8%) for round 2.

Model investigating difference in ML and non-ML RT in seconds and percentage adjusted for fixed-
effects read round (when ML is applied, 1st or 2nd round) and Read package (lung or colon cancer). 
Additional clustering effect applied for reader experience.

Value estimates relate to the overall estimated effect adjusted for all other covariates within the model. 
Intercept refers to value at reference standards round 1 and lung packages.

To investigate ML versus non-ML difference in read time a regression analysis was carried out using 
paired data comparing ML against their respecting non-ML read. The regression model was adjusted for 
fixed-effect co-variates; read tumour type (lung and colon) and read round (whether ML was used in the 
1st or 2nd round of reading). A clustering effect for reader experience was also included. Assumptions 
for regression modelling held and residuals were found to be normally distributed. Table 25 contains 
regression estimates (in seconds and as a percentage) for estimated effects of read round and read 
package when investigating paired ML versus non-ML difference in read time. While package type was 
not found to influence difference in read time, the output indicated read round to have a significant 
(p = 0.0281) effect. The estimated effect on ML/non-ML difference between rounds 1 and 2 is −486 
seconds (95% CI −760 to −213). Post hoc testing to estimate the subsequent effect on read time when 
using ML at round 2 is −286 (95% CI −370 to −201) seconds. Similar post hoc testing of percentage 
difference estimated ML to reduce round 2 read times by −11% (95% CI −61% to 26%).

Secondary analysis: confidence in reads
Tables 26–29 indicate the frequencies each confidence score provided by the reader for ML and non-
ML. For experienced readers without ML assistance, 77.1% (815) of primary tumour detection checks 
resulted in no tumour being found with high confidence (score of 1). For metastatic site checks, this 
increases to 95.5% (4852). Adding ML assistance, 77.5% (819) of primary tumour detection checks 
resulted in no tumour being found with high confidence and 95.5% (4851) in relation to metastatic site 

TABLE 24 Mean (SD) read time for lung packages in seconds by arm, experience and read round

Lung Without ML With ML

Read round n Mean (SD) Median (IQR) n Mean (SD) Median (IQR)

Experienced readers All reads 71 593 (885) 420 (300–720) 71 559 (268) 540 (360–720)

Round 1 34 736 (1253) 540 (360–720) 37 675 (276) 660 (480–780)

Round 2 37 462 (213) 420 (300–660) 34 434 (195) 390 (300–540)

Round 3 9 453 (265) 420 (300–480) 10 390 (156) 330 (300–420)

Inexperienced readers All reads 20 579 (229) 570 (450–630) 20 546 (228) 510 (360–660)

Round 1 13 628 (243) 600 (480–660) 7 677 (249) 600 (540–840)

Round 2 7 489 (181) 540 (360–600) 13 475 (189) 420 (360–600)

Round 3 2 240 (0) 240 (240–240) 3 360 (60) 360 (300–420)

IQR, interquartile range.
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checks. When looking at tumour detection with high confidence (score of 4), primary tumour detection 
checks without ML assistance accounted for 14.9% (157) of read scores with 0.7% (34) in metastatic 
sites. With ML assistance primary tumour detection checks with a score of 4 were recorded 15.6% 
(165) times with 0.6% (31) in metastatic sites. Looking at experienced readers we can see that 87.4% 
(924) and 93.9% (4774) confidence scores remained the same in both ML and non-ML reads in primary 

TABLE 25 Estimated fixed effects for difference in paired ML and non-ML reads from regression model in seconds and 
as percentage

Effect Value Effect estimate (95% CI)

Secs Intercept 226 (−250 to 702)

ReadRound Round 2 −486 (−760 to 213)**

Package Colon −51 (−626 to 524)

%age Intercept 64% (−32% to 160%)*

ReadRound Round 2 −77% (−113% to −41%)**

Package Colon −9% (−43% to 25%)

*	 p < 0.1; **p < 0.05 .

TABLE 26 Frequency table comparing confidence levels in diagnosis for experienced readers – primary tumour locations

Confidence score

With ML

1 (%) 2 (%) 3 (%) 4 (%) 999 (%) Total (%)

Without ML 1 (%) 771 (72.9) 17 (1.6) 1 (0.1) 16 (1.5) 10 (0.9) 815 (77.1)

2 (%) 29 (2.7) 13 (1.2) 3 (0.3) 1 (0.1) 0 (0.0) 46 (4.4)

3 (%) 7 (0.7) 4 (0.4) 10 (0.9) 18 (1.7) 0 (0.0) 39 (3.7)

4 (%) 12 (1.1) 0 (0.0) 13 (1.2) 130 (12.3) 2 (0.2) 157 (14.9)

Total (%) 819 (77.5) 34 (3.2) 27 (3.6) 165 (15.6) 12 (1.1) 1057 (100.0)

Note
Confidence score of 1 = no tumour with high confidence; 2 = no tumour with low confidence; 3 = tumour present with 
low confidence; 4 = tumour present with high confidence; 999 = data unavailable.

TABLE 27 Frequency table comparing confidence levels in diagnosis for experienced readers – skeletal and non-skeletal 
metastases locations

Confidence score

With ML

1 (%) 2 (%) 3 (%) 4 (%) 999 (%) Total (%)

Without ML 1 (%) 4709 (97.7) 108 (2.1) 14 (0.3) 5 (0.1) 15 (0.4) 4852 (95.5)

2 (%) 104 (2.0) 36 (0.7) 3 (0.1) 1 (0.0) 0 (0.0) 146 (2.8)

3 (%) 10 (0.2) 6 (0.1) 8 (0.2) 4 (0.1) 0 (0.0) 28 (0.6)

4 (%) 3 (0.1) 1 (0.0) 9 (0.2) 21 (0.4) 0 (0.0) 34 (0.7)

999 (%) 24 (0.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 24 (0.5)

Total (%) 4851 (95.5) 151 (3.0) 34 (0.7) 31 (0.6) 15 (0.3) 5084 (100.0)

Note
Confidence score of 1 = no tumour with high confidence; 2 = no tumour with low confidence; 3 = tumour present with 
low confidence; 4 = tumour present with high confidence; 999 = data unavailable.



66

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Machine-learning clinical validation: Phase 3 methods

tumour sites (see Table 26) and metastatic tumour sites (see Table 27), respectively. In comparison, for 
non-experienced readers 82.9% (247) and 95.2% (1363) confidence scores remained the same in both 
ML and non-ML reads in primary tumour sites (see Table 28) and metastatic tumour sites respectively 
(see Table 29).

The extent at which confidence levels differ between ML and non-ML reads seems to differ when 
looking at primary tumour sites in comparison to metastatic tumour sites. Twenty-eight (2.6%) and 15 
(5.0%) experienced and non-experienced reads respectively jump from high confidence in detection to 
non-detection (scores of 1 and 4) and vice versa. The corresponding jump from scores representing low 
confidence in detection and non-detection (scores of 2 and 3) are lower with values of 7 (0.7%) and 0 
(0%). In metastatic tumour sites, changes in high confidence (1 and 4) and low confidence scores (2 and 
3) are a lot closer. Experienced readers have 8 (0.2%) sets of scores alternating between 1 and 4, and 9 
(0.2%) alternating between 2 and 3. Non-experienced readers have 4 (0.3%) sets of scores alternating 
between 1 and 4, and 5 (0.3%) alternating between 2 and 3.

TABLE 28 Frequency table comparing confidence levels in diagnosis for inexperienced readers – primary tumour locations

Confidence score

With ML

1 (%) 2 (%) 3 (%) 4 (%) Total (%)

Without ML 1 (%) 213 (71.5) 9 (3.0) 8 (2.7) 9 (3.0) 239 (80.2)

2 (%) 4 (1.3) 2 (0.7) 0 (0.0) 0 (0.0) 6 (2.0)

3 (%) 6 (2.0) 0 (0.0) 1 (0.3) 6 (2.0) 13 (4.4)

4 (%) 6 (2.0) 0 (0.0) 2 (0.7) 31 (10.4) 39 (13.1)

999 (%) 1 (0.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.3)

Total (%) 230 (77.2) 11 (3.7) 11 (3.7) 46 (15.4) 298 (100.0)

Note
Confidence score of 1 = no tumour with high confidence; 2 = no tumour with low confidence; 3 = tumour present with 
low confidence; 4 = tumour present with high confidence; 999 = data unavailable.

TABLE 29 Frequency table comparing confidence levels in diagnosis for inexperienced readers – skeletal and non-skeletal 
metastases locations

Confidence score

With ML

1 (%) 2 (%) 3 (%) 4 (%) Total (%)

Without ML 1 (%) 1353 (94.5) 18 (1.3) 11 (0.8) 1 (0.1) 1383 (96.6)

2 (%) 17 (1.2) 0 (0.0) 2 (0.1) 1 (0.1) 20 (1.4)

3 (%) 8 (0.6) 3 (0.2) 1 (0.1) 1 (0.1) 13 (0.9)

4 (%) 3 (0.2) 1 (0.1) 1 (0.1) 9 (0.6) 14 (1.0)

999 (%) 1 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.1)

Total (%) 1382 (96.6) 22 (1.5) 15 (1.0) 12 (0.8) 1431 (100.0)

Note
Confidence score of 1 = no tumour with high confidence; 2 = no tumour with low confidence; 3 = tumour present with 
low confidence; 4 = tumour present with high confidence; 999 = data unavailable.
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Secondary analysis: size of tumours
Figure 21 shows scatterplots of the MALIBO recorded tumour size against the reference standard for 
both colon and lung data sets (Plots A and B). Both plots demonstrate a fairly strong positive correlation 
along the line where the MALIBO measurement matches the reference measurement (X = Y) indicating 
that the measurements taken within the MALIBO reads correspond fairly well with those provided in the 
reference standards.

Looking at Figure 21 in more detail we see that in plot A, for both ML and non-ML-assisted reads, a greater 
proportion of the data points lie above the reference line indicating a mean read difference greater than 
zero. Plots A and B in Figure 22 reinforce this with the distribution curve of both plots (representing 
distribution of all the differences in measurement found within in ML and non ML) peaking above zero. 
We can estimate the mean (SD) difference to be + 3.0 mm (16.3) with ML assistance and + 3.0 mm (14.6) 
without. Likewise, 95% of the size differences (in mm) with ML assistance were estimated to be in the 
range (−29.6, 35.5) and (−26.1, 32.2) without. This represents appreciable variability.

Looking at the size of primary tumours, when investigating mean difference in millimetres in comparison 
to the reference standard, the mean difference in sizes when using ML is on average 3.0 mm greater 
than the reference standard (95% CI 0.6 to 5.3). Without ML the mean difference stays at 3.0 mm (95% 
CI 0.9 to 5.2). Comparing the two groups we see that using ML reduces the mean difference on average 
by 0.1 mm (95% CI −3.1 to 3.2).

For non-experienced readers the mean (SD) difference in read sizes when compared to the reference 
standard is +6.8 mm (20.7) with ML assistance and +5.1 mm (19.2) without. Likewise, 95% of the size 
differences (in mm) with ML assistance were estimated to be in the range (−34.7, 48.2) and (−33.4, 43.5) 
without. Subsequently, the mean difference in sizes when using ML is on average 6.8 mm greater than 
the reference standard (95% CI 1.0 to 12.5). Without ML this difference reduces to 5.1 mm (95% CI −0.4 
to 10.5). Comparing the two groups we see that using ML increases the mean difference on average by 
1.7 mm (95% CI −6.1 to 9.5).

Similar results were found looking at the size difference as a percentage value in relation to the 
reference standard. For experienced readers, with ML assistance the mean (SD) percentage difference 
estimated that tumours were measured on average 14.4% (53.9) larger than the reference standard. 
Without ML this average reduced marginally to 14.3% (51.4). Ninety-five per cent of the size differences 
(as a percentage) with ML assistance were estimated to be in the range (−93.4, 112.3) and (−88.5, 
117.2) without. When comparing the two arms, using ML output resulted in a primary tumour size on 
average 14.4% greater than the value provided in the reference standard (95% CI 6.6 to 22.3). The 
corresponding figure without ML assistance was 14.3% (95% CI 6.8 to 21.8). Subsequently, we see that 
using ML assistance in comparison to not using ML assistance produced an average percentage increase 
in tumour measurement (in relation to the reference standard) by 0.1% (95% CI −10.7 to 11.0) (Table 30).

For non-experienced readers, with ML assistance the mean (SD) percentage difference estimated that 
tumours were measured on average 28.7% (72.0) larger than the reference standard. Without ML this 
average reduced to 23.1% (65.2). Ninety-five per cent of the size differences (as a percentage) with 
ML assistance were estimated to be in the range (−115.3, 172.6) and (−107.3, 153.5) without. When 
comparing the two arms, using ML output on average increased the primary tumour size by 28.7% (95% 
CI 8.6 to 48.7) while the corresponding figure without was 23.1% (95% CI 4.8 to 41.5). Subsequently we 
see that using ML assistance increases the average percentage increase in measurement (compared to 
the reference standard) by, on average 5.5% (95% CI −21.3 to 32.4) (Table 30).

Secondary analysis: inter- and intrareader analysis
Using the methodology described in the SAP (Appendix 6, Secondary outcome analysis) and based on 
pairing 93 reads amongst 18 readers; Cohen’s kappa for the interobserver variance amongst experienced 
readers when using ML was derived as 0.64 (95% CI 0.47 to 0.81). Without machine-learning assistance 
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FIGURE 21 Tumour measurements (mm) in relation to the reference standard for experienced readers. Plot A: Scatterplot of recorder size in mm against reference standard for colon data. 
Plot B: Scatterplot of recorder size in mm against reference standard for lung data.
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the interobserver variance was unaffected with a kappa statistic of 0.66 (95% CI 0.47 to 0.81). This 
can be interpreted as moderate agreement between readers.122 When investigating the smaller cohort 
of inexperienced readers (24 reads paired between 7 readers) the kappa statistic when using ML was 
derived as 0.27 (95% CI −0.08 to 0.64) and as 0.12 (95% CI −0.18 to 0.46) without machine-learning 
assistance. This can be interpreted as low agreement with ML, but no agreement without.

For intrarater reads, based on a sample of 30 tests, the corresponding kappa statistics when comparing 
round 3 experienced reads with their counterpart in round 1/2 is 0.61 (95% CI 0.13 to 1.00) with ML 
and 0.46 (95% CI 0.10 to 0.74) without. With only a sample of 10 tests amongst inexperienced readers, 
ML had 9 out of 10 round 3 tests match their round 1/2 counterpart. This produced a kappa value of 
0.62 (95% CI 0.29 to 1.00). All 10 tests without ML produced the same result in round 3 testing. This 
provides a kappa value of 1.00 (95% CI N/A). For experienced readers we could potentially see that 
using ML provides a greater consistency in results but would need more data to confirm. The sample for 
inexperienced readers was too small to provide a valid comparison but ultimately shows the volatility 
of testing within a small subsample with a difference in one test result resulting in a kappa reduction of 
0.38.

TABLE 30 Summary statistics of tumour difference values against reference standard

Reader level Arm n Mean Lower CIa Upper CIa SD

(a) Summary statistics of tumour difference values against reference standard (mm)

Experienced No-ML 183 3.0 0.9 5.2 14.6

ML 183 3.0 0.6 5.3 16.3

Inexperienced No-ML 51 5.1 −0.4 10.5 19.2

ML 52 6.8 1 12.5 20.7

(b) Summary statistics of tumour difference values against reference standard (%b)

Experienced No-ML 183 14.3 6.8 21.8 51.4

ML 183 14.4 6.6 22.3 53.9

Inexperienced No-ML 51 23.1 4.8 41.5 65.2

ML 52 28.7 8.6 48.7 72

a	 Confidence interval is at 95%.
b	 Percentage value is the size difference in the MALIBO read compared to the reference standard recalculated as a 

percentage of the original reference standard (e.g. for a 10-mm tumour defined in the reference standard, if the 
MALIBO read has measured 15 mm then the difference would be +5 mm/+50%).
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Chapter 7 Discussion

Whole-body magnetic resonance imaging is accurate, efficient and cost-effective for cancer 
staging.6,7 However, it is not widely used as a diagnostic or staging tool and this could be due 

to the perceived or real difficulties faced by the radiologist in reading such complex studies of the 
whole body, with the need to integrate many different MRI sequences. We proposed to develop a ML 
algorithm to support radiologists in reading WB-MRI in patients with cancer by automatically detecting 
and demonstrating suspected cancer lesions using a heat map. The over-arching vision was to develop 
a ML method to assist radiologists reporting WB-MRI, by providing an efficient and accurate tool 
for identification of metastatic lesions for concurrent use by radiologists, as a human–AI interaction 
application, as this could assist clinical translation. Our starting point was to train for detection of normal 
organs using a healthy volunteer data set. We then trained a model for cancer lesion detection. Finally, 
we tested the algorithm in an environment that was close to a real clinical environment.

Phase 1: healthy volunteer anatomic labelling study

Phase 1 of the study allowed an exploration of techniques to train an algorithm to identify various 
normal organs and bones on WB-MRI and to automatically segment the normal anatomy.14,41 We 
achieved reasonable Dice overlap for many organs, such as the lungs and LVR, but certain organs had 
poor Dice overlap, for example the PNCR. This finding was similar to other groups who have worked on 
MRI organ segmentation.123,124

Many aspects of Phase 1 ran smoothly, as the DICOM data were very homogeneous in nature, 
having been acquired on a single scanner at a single centre. In addition, many of the participants 
were young and able to tolerate the scan with ease, thus ensuring high-quality images in most cases. 
None of the healthy volunteer scans needed to be omitted due to technical failure. Data preparation 
was also relatively straightforward in terms of stitching the stations to form complete WB-MRI 
volumes for the T2w, DWI and ADC sequences, although some challenges will be discussed. Many 
additional exploratory studies were undertaken with the Phase 1 data, including the development of 
the Dixon-Fix software for fat-water swap and the work on reverse classification in the absence of 
GT and domain adaptation.71 These areas lend themselves to wider use in areas beyond WB-MRI. In 
addition, some detailed work on the bone marrow was undertaken using the Phase 1 DICOM data, 
important basic work in understanding differences in the bone marrow appearances by gender and 
age which will be important in future work on bone marrow disease, such as myeloma or in metastatic 
bone disease.41

One of the main challenges that we faced, initially in Phase 1, was unexpected. Registration between 
the T2w and the DWI sequences was poor. T2w images are acquired in breath-hold, whereas DWI are 
acquired with gentle breathing. This resulted in significant challenges for registration that, despite many 
methods being applied and many attempts, we could not overcome. We also identified registration 
issues between the DWI and ADC maps, which should not be the case as the ADC maps are calculated 
using the DWI sequence. However, the stitching process can result in some differences between 
volumes and the registration process following station stitching is not straightforward. Ultimately, for 
both Phase 1 healthy volunteers and in the patient studies, Phases 2 and 3, we were unable to register 
the different sequences. This leaves room for some improvement: registration of areas of concern could 
allow a more nuanced identification of disease. For example, the ML was very good at picking up sites 
of high signal intensity on the diffusion sequence, but could not always differentiate the areas with T2 
shine through, which are bright on ADC map against areas of restricted diffusion, which are dark on the 
ADC map. Being able to capture the combined signal intensity appearances from multiple sequences is 
highly likely to reduce the number of incorrect (false-positive) lesion identification.
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Phase 2: training for detection of cancer lesions

Following allocation of STREAMLINE cases to Phase 2 (training) and Phase 3 (clinical validation), we 
trained a model for the detection of cancer lesions. Training was based on expert manual segmentations 
of disease sites that were confirmed on the consensus reference standard of the STREAMLINE study. 
This was a time-consuming task, requiring multiple annotators. Occasionally, we found what appeared 
to be a discrepancy between a site of disease on the images and the consensus reference standard, 
resulting in uncertainty of the reference standard. However, we complied with the reference standard 
as the GT, although a review panel was used to evaluate these lesions in order to ensure there were no 
significant GT errors.

We developed a two-stage method, first using the organ-segmentation model from Phase 1 followed 
by lesion detection model developed during Phase 2 of the study. This two-stage method allowed 
us to overcome some limitations that we encountered when using conventional CNN methods alone 
and we verified the final method on multimodality MRI images from a multicentre relatively large 
data set. These data were collected from a representative range of district general and teaching 
hospitals, with all imaging performed and interpreted according to usual local protocols, to increase 
the generalisability and robustness of our methods for clinical application. However, many challenges 
were faced with the image data suitability for training (and testing) an ML algorithm. Many of the 
cases had significant issues, such as lacking part of the DWI, which prevented use in the study. In 
some cases, the acquisition resulted in some gaps in the coverage of the body. Those cases that were 
allocated to model training had to be removed as these fundamental problems would have interfered 
with the training. However, in the clinical test set (allocated as 193), all cases were included except 
five in which we were unable to successfully convert between DICOM and NIfTI formats and upload 
to the PACS system failed or in those cases in which ML output failed, due to lack of a complete DWI 
sequence. These problems could potentially have been overcome if time allowed. However, due to 
delays in receipt of the DICOM data from the contributing study, we had severe time limitations for 
the fine-checking of the data prior to statistical allocation, and thus, cases that were incomplete were 
included in the allocation.

Phase 2 training was brief due to the affected timelines. Despite this, two models were developed with 
reasonable sensitivity. The quantitative results for the model outputs were tested on the 45 Phase 2 
validation cases by plotting RE, PR and Dice curves and the 2 best performing models went forward for 
clinical validation.

Phase 3: clinical validation of machine-learning support tool during radiology reads

We developed a method to evaluate the diagnostic performance of concurrent ML support for 
radiologists reading WB-MRI in a clinical setting using a retrospective data set. We assessed the 
diagnostic performance for the detection of metastatic disease based on standard reads (without ML 
support) and with concurrent ML support (a combined human–AI interpretation).

Overall, the diagnostic accuracy was only moderate for the detection of metastatic lesions. For 
experienced readers, per-patient specificity for detection of metastases was 86.2% (WB-MRI + ML) and 
87.7% (WB-MRI + SD), (difference −1.5%, 95% CI −6.4% to 3.5%; p = 0.387); per-patient sensitivity 
was 66.0% (WB-MRI + ML) and 70.0% (WB-MRI + SD) (difference −4.0%, 95% CI −13.5% to 5.5%; 
p = 0.344). For inexperienced readers (53 reads, 15 with metastases), per-patient specificity was 
76.3% in both groups with sensitivities of 73.3% (WB-MRI + ML) and 60.0% (WB-MRI + SD). Per-site 
specificity remained high within all sites: above 95% (experienced) or 90% (inexperienced). Per-site 
sensitivity was highly variable due to low number of lesions in each site.
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While the results fail to satisfy our initial hypothesis that ML can improve specificity in detecting per-
patient metastatic tumours, the data indicate that the ML heatmaps did not hinder the read process and 
could potentially make reads slightly quicker.

The ML output was tested on a relatively heterogeneous WB-MRI data set (multi-institution and multi-
vendor) making the ML output vendor neutral and therefore hopefully more generalisable. The outputs 
had to be available to the radiologist in a format that was practical and meaningful, and we managed this 
using the Biotronics3D cloud-based PACS. We organised the scans and ML probability heatmaps on a 
system that was a familiar platform for radiologists. For cases being read with ML support, radiologists 
were able to view the heatmaps alongside the native WB-MRI volumes or they could overlay the 
heatmap on top of the T2 or diffusion sequence. We had the facility to fully blind each read without ML 
support from the those reads with ML support.

In Phase 3, we evaluated the ML method in an approximation of a real clinical setting with several 
independent radiologists from NHS hospitals, including many that were experienced in reading WB-MRI 
as well as a number of radiologists that were inexperienced in reading WB-MRI. The reads all took place 
in a large NHS radiology reporting room.

The statistical methodologies used for analysis of Phase 3 were traditional diagnostic test accuracy 
methods with robust evaluation of the index test against the comparator.

The analysis did produce some interesting results that may not have been expected. Investigating 
per-site sensitivity for lung metastases, of the 10 available reference reads, only 1 case with lung 
metastases was picked up by the reader using ML with 0 detected without (a sensitivity rate of 10% and 
0%, respectively). The failure to detect lung metastases can most likely be attributed to the underlying 
imaging technique which is not sensitive for detection of small lung nodules. However, detection of the 
primary lung masses was very high.

One surprising result was the lower intrarater agreement compared to the inter-rater agreement. While 
we could attribute some of this to the comparatively smaller sample of data it does not explain why the 
value of kappa is lower in both ML and non-ML. It is likely that the 3rd round of reads incurred a study-
specific effect where readers were just keen to complete the reads at a potential cost of accuracy.

The overall mean times of reads were also interesting. These were lower than anticipated for WB-MRI 
reads. We can speculate on the possible reasons for this: it may be that the preparation of the case with 
the scribe, who also asks focused and directed questions to the reader concerning particular aspects of 
the scan, results in an efficient system for reading the scan; the stitched volumes for T2w, DWI and ADC 
may have meant that some other unstitched sequences were not fully reviewed, as the available number 
of unprocessed sequences in many cases was very large and cumbersome to find any particular desired 
sequence for review, with each contributing site having slightly different sequence naming conventions 
and ordering of the sequences. The presence of the scribe may have engendered a consideration to 
work quickly, particular as the readers knew that they were being timed. In addition, the knowledge that 
the report was not going to affect patient care may also have an effect. The speed of reporting may have 
had an effect on the diagnostic accuracy, but it is not possible to test for this. However, the readers were 
not ‘rushed’ by the time available for reads, as each reader was booked for reading sessions for either 
a full day for a complete reading round (16 cases for experienced readers) or a half day for a half ready 
round (8 cases for experienced readers), allowing for 30 minutes per read. As each read was significantly 
shorter than the planned allowed time, the available time for the reads was clearly not a factor in the 
relatively short time used for each read.

We found slightly shorter mean RTs using ML of approximately 6% for both experienced and 
inexperienced readers. The limited time reduction is unlikely to affect daily practice. However, 
importantly, the use of the ML output did not make RTs longer. This was the first time that all readers 
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included in this study had used ML output in WB-MRI and the need to check appearances on the ML 
heatmaps might have slowed down the process of radiology reading.

Machine learning in whole-body oncology results in context
Machine-learning methods have been extensively applied in radiology for lesion segmentation and 
classification, patient risk stratification or patient outcome prediction based on radiological images with 
different modalities. However, fewer studies have undertaken clinical evaluation of ML in WB-MRI. 
ML has been applied to compare segments of WB-MRI in chronic non-bacterial osteitis pre and post 
treatment,125 with good sensitivity but low specificity of 33% for detection of treatment response. 
A study in evolutive lymphoma and residual masses in WB-MRI included methods for automatic 
segmentation of the lesions, their localisation, their enumeration and the generation of the parametric 
ADC map. It was found that combining functional, anatomical and morphological features, using a deep 
learning CNN method, resulted in a very high accuracy for classifying residual masses of 98.5%. No 
publication has been identified concerning ML for detection of metastases in WB-MRI.

There are few publications related to improving registration for multimodal WB-MRI. Ceranka et al. 
evaluated four different strategies for alignment of DWI and T1w images.126 The best method was found 
to be a two-step process with groupwise mosaicking of ADC stations followed by registration to the 
T1w image. However, this remains a relatively unexplored area, perhaps due to many challenges.

Change in RT when using ML or artificial intelligence (AI) outputs has been evaluated in other studies, 
although not to our knowledge in reading WB-MRI. A decrease in RT of 11% has been reported in the 
detection of lung nodules, using a deep learning-based computer-aided diagnosis (DL-CAD) system in 
patients with suspected lung cancer.127 In a recent study evaluating AI support in breast tomosynthesis, 
the use of DL-CAD reading support in breast tomosynthesis resulted in a mean decrease in RT from 
41 to 36 seconds,128 a mean decrease of 11%.129 Other studies in breast tomosynthesis have reported 
decreases of between 14% and 52.7%.130,131 A DL-CAD system in prostate MRI reduced RT by 21%, from 
a median of 103 to 81 seconds.132 ML methods in the detection of intracranial haemorrhage on CT have 
demonstrated improved diagnostic performance with a reduction in RT from 68 to 43 seconds.

Strengths and limitations

There are several strengths in this study.

1.	 We developed and employed state-of-the-art ML methods to attempt to improve the diagnostic 
performance of WB-MRI. To the best of our knowledge, this is the first to apply ML methods for 
the detection of lung or colon cancer using WB-MRI. The WB-MRI scans were obtained from a 
prospective study with a confirmed reference standard for sites of disease. The scans were acquired 
from multiple sites and manufacturers, with multimodality images and different number of image 
scan sequences.

2.	 A relatively large number of independent radiologists took part in the study, this makes this study 
robust comparing with the study if there is only a small number of radiologists, although had time 
allowed, it would have been beneficial for each reader to have read a larger portion of the scans. 
The use of a scribe for CRF filling ensured some homogeneity of reading methods and ensured that 
readers would have technical support for the PACS tool; the scribe also ensured an external way of 
measuring RT that was done in the same way for each reader.

3.	 We adopted an efficient reading platform which is cloud-based. This has several advantages: we 
were able to efficiently transfer the scans from the STREAMLINE study to the dedicated MALIBO 
server; within this we could allocate cases into separate worklists which included cases for Phase 2 
reviews of ML outputs, which were also used for online training of the readers, who could join from 
anywhere with an internet connection. We were able to create two copies of each scan, one with 
and one without ML output, and could create dedicated worklists for individual readers to ensure 
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masking of cases. Although readers could have undertaken the reads at any location, we decided 
to do this within a normal radiology reporting room, in an attempt at making the environment as 
similar as possible to daily clinical work.

4.	 The design and statistical methods employed for the final clinical study were based on classical 
diagnostic test accuracy studies to try to ensure robust testing methodologies. The statistical plan 
for the model development was more difficult to plan as we were uncertain at the time of writing 
the protocol how the model development would progress. However, a computational evaluation of 
the model output on the Phase 2 hold-out validation set was used to determine the best eventual 
model candidate to take forward to clinical testing.

There were many obstacles to overcome in the study.

1.	 Data availability

Data availability for Phases 2 and 3 from the STREAMLINE study was delayed, due to unexpected 
delays in completing the study, resulting in significant problems with the MALIBO study timelines. In 
hindsight, it is now clear that it is best not to plan a ML model development study until all the data are 
fully available for a particular project because without the data it is impossible to proceed. In the face of 
this difficulty, the team worked on other developments using the Phase 1 data and had a small portion 
of the STREAMLINE data to commence work on segmentation and work on image registration tasks. 
Due to time constraints, we were unable to spend as much time as wished to further develop and test 
the model at Phase 2. There were regular false-positive detections of normal anatomy (e.g. the uterus, 
prostate gland – which may have been mis-identified as many lesions were rectal cancers) and these are 
areas for future improvements.

2.	 Data preparedness

One of the biggest challenges was the wide variability of the WB-MRI scans, which were acquired from 
16 centres as part of a multicentre prospective study. There was a variation of scan vendor at the 16 
sites with different software versions and slight differences in acquisition parameters. These variations 
in scan acquisition and protocol resulted in significant challenges for ML development. However, the 
challenge for ML development with this heterogeneous input data may also be considered a strength 
of the study, in that the method developed is working towards a generic and pragmatic ML output. 
The range of WB-MRI appearances was also a challenge for individual radiology readers, as they had 
a number of cases from different scanner types and slightly different protocols at each reading round, 
unlike a typical reporting session whereby scans are typically from a single centre with much more 
homogeneous acquisition parameters which become familiar to the site radiologist. The MRI images 
obtained from 16 different hospitals demonstrate significant variation in image quality. Some had poor 
ADC maps, while others have fat water swap artefacts. It is challenging to correct these artefacts as it 
requires robust algorithms to adapt to different images. Poor quality of DWI and ADC maps can lead to 
incorrect decision for both human reader and ML methods and in some of these cases, ML outputs were 
not successful. There were also significant challenges to register T2w, ADC and DWI images. We have 
tested various image registration methods, including both linear and non-linear methods and we found it 
is difficult to realise robust image registration with reasonable accuracy. Ultimately, we did not succeed 
in registration of the different sequences.

3.	 Reference standard

The reference standard for metastatic lesions was based on an expert consensus panel at 1 year 
following patient recruitment into the source study. This is an accepted form of reference standard but 
does leave room for opinion, in the absence of histology for every site of suspected disease. However, 
this particular limitation is not one that can be readily overcome as it is not possible nor ethical to biopsy 
every site of suspected metastatic disease for reference standard confirmation.
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4.	 Reader-associated factors

As there were 18 experienced readers, there existed a risk that variance within reader interpretation 
could inadvertently effect results. To counter this, all readers were randomised a similar proportion of 
reads based on type (lung and colon), presence of patient metastases (negative and positive reference 
values) and site of read. Likewise, the paired analysis to derive Cohen’s kappa for inter-reader agreement 
was stratified in the same way. Due to time and resource constraints it was not feasible to establish 
viable estimates of agreement between all 18 readers (this would result in 153 separate pairs); however, 
the inter-rater analysis was able to establish an overall consensus amongst experienced readers. The 
inter-reader agreement statistic of > 0.6 for both ML and no-ML suggests that despite the large cohort 
of readers used, the consistency of assessment is fairly strong throughout, thus validating the results 
produced in the main cohort of experienced readers.

Extending this to the inexperienced reader cohort the two main issues are the number of readers (and 
reads) in this subgroup and the lack of overall agreement in assessments. To an extent this was expected 
due to the smaller sample of data and the greater likelihood of variance in the range of abilities in the 
less experienced inexperienced readers.

The intrarater agreement was also hard to assess. Again, due to time and resource constraints it was 
originally not planned to incorporate a third round of reads in order to allow for intrarater testing. While 
a third round of data was obtained, only five ML and five non-ML reads were able to be re-assessed by 
two readers, resulting in a very small subset of data.

We were ambitious with regards to the ability of ML algorithm to train to high standard on the 
limited data planned. Specificity on a per-patient basis did not reach the high specificity of the source 
STREAMLINE study and some speculative reasons for this could be:

•	 Readers were allocated scans from a multitude of different hospitals – they were not used to the 
appearance of the all the various sequences from different sites/different scanners. Whereas in the 
STREAMLINE study, radiologists read WB-MRI from their own site, although masked to the other 
staging investigations.

•	 The availability of stitched volumes of the T2, DWI, ADC but only unstitched Dixon T1w images, in 
addition to the large number of unstitched sequences available to the readers for each case on PACS, 
as provided by the STREAMLINE study, may have resulted in readers relying on the few stitched 
volumes as these are much easier to read – and not checking all the other sequences – perhaps 
reflected in the short RTs.

•	 There were many additional sites of ‘suspected disease’ highlighted by the ML heatmap, most 
of which could be ignored or over-looked by the readers and this may have affected the reader 
specificity. However, the specificity achieved in MALIBO was lower than STREAMLINE in the 
both standard WB-MRI reads as well as the ML reads, so this is unlikely to account for the 
lower specificity.

•	 MALIBO reads were entirely retrospective, not affecting patient care, whereas STREAMLINE 
WB-MRI reads were revealed in the multidisciplinary team meeting at the time of patient treatment 
planning. Thus, there may have been a difference in the level of concern for the effect on patient 
care, which may have resulted in this difference in reading accuracy.

5.	 Completion of study objectives

We were unable to fulfil two of our secondary objectives, due to time limitations related to delay in 
receipt of data. We were unable to undertake a study to evaluate different combinations of acquired 
MRI sequences with and without ML support. The COVID pandemic and UK national lockdown 
took place just as we finished the radiology reads that have been reported and it was not possible to 
undertake any further reading rounds with different combinations MRI sequences. In addition, we did 
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not undertake a simple health economic analysis. However, as there was a very limited difference in 
RT with ML support and no difference in diagnostic performance, an inference can be made that it 
is unlikely that health economic analysis would demonstrate any benefit to using ML support in the 
current study.

Clinical and public acceptance is an important consideration in ML-related imaging studies. The 
validation of the developed ML tools needs to stand up to scrutiny and the methods used for testing the 
tools need to be clear to clinical radiologists. In MALIBO, we have devised a viewing framework that is 
widely used by radiologists and incorporates the ML tools into a typical clinical environment for robust 
testing. This field of work is relatively new and further developments will be needed in order to identify 
whether ML support will ultimately improve the interpretation of complex scans, such as WB-MRI. 
However, the steps taken in this current study represent a part of a discovery process for building 
AI-supported imaging interpretation.

Conclusions

•	 Phase 1 demonstrated that an ML algorithm could be developed for the accurate segmentation of 
most healthy organs on WB-MRI.

•	 Phase 2 developed a ML output using a two-phase approach, with a first step being the organ 
segmentation followed by a second step for lesion detection.

•	 Phase 3 clinical validation of the ML output demonstrated equivalent performance for the detection 
of metastatic lesions in patients with lung or colon cancer on WB-MRI when ML methods were 
applied to assist clinical radiology reads. There was a slight decrease in RT when using ML.
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Chapter 8 Implications for practice and future 
research

The use of ML methods that automatically identify normal anatomical structures and subsequently 
detect abnormal lesions has the potential to improve the diagnostic accuracy and reduce the RT of 

WB-MRI scans obtained from patients having cancer staging. ML methods may support radiologists in 
complex reading tasks, particularly where significant expertise and training are required but not always 
available in an overstretched workforce. This ambitious project took steps in the direction of clinical 
translation. However, the work is not ready yet for deployment into the clinical arena and areas for 
further work have been identified.

Recommendations for future research

Further study within the current work.

With respect to the current study, future work should include:

1.	 Analysis of the cases in detail with respect to false-positive and false-negative lesion detection in 
order to evaluate the cause of failure/error and work on improving model training. Review the ML 
output together with the reference standard would allow to identify the sites that were missed or 
disregarded by readers but actually correctly identified by the ML output.

2.	 The work could be expanded to allow not only detection of metastatic lesions but also detection of 
the primary tumour mass.

3.	 Automated segmentation of lesions for lesion characterisation, for example with radiomics analysis.
4.	 The ML output on Phase 3 cases should be tested against manual expert segmentations, in order to 

evaluate the detection of lesions by the algorithm, independent of radiologist interaction.

Further research in this field of study.

With respect to the wider radiology and ML community, the following research needs were identified:

1.	 Harmonise WB-MRI protocols for different applications, in order to be able to harness the potential 
of ML model development. There is a clear need to improve standardisation of image acquisition 
across vendors as well as sites. Variation in acquisition may hamper widely generalisability ML tools. 
Homogeneity of acquisition may help the field overall. Attempts at protocol harmonisation for WB-
MRI should be related to specific applications (bone marrow/soft tissue or PET/MRI).

2.	 Image post-processing is an area that needs further development, including work in stitching of 
imaging stations to create whole-body image volumes, in the hope of being able to allow accurate 
image registration, particularly with respect to sequences acquired in breath-hold or non-breath-
hold.

3.	 There is scope for further work in the ML analysis of the bone and bone marrow appearances by 
gender and age in order to increase knowledge of normal marrow, allowing detection of marrow 
abnormalities as well as recognition and quantification of osteoporosis.

4.	 Future research work could include investigating the application of the developed methods for 
lesion detection on FDG-PET/CT and CT images. It may also be possible to combine PET/CT with 
WB-MRI for cancer detection. This may increase the accuracy of the detection as there are more 
features available from different modalities of the image.
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Appendix 1 Supplementary tables and figures

FIGURE 23 Apparent diffusion coefficient maps. Representative slices show ROIs used to calculate ADC values for red 
bone marrow and yellow bone marrow. (a–d) ADC maps show ROIs (outlined areas) used to calculate ADC values for red 
bone marrow in first thoracic vertebra (T1) (a), second thoracic vertebra (T2) (b), and third thoracic vertebra (T3) (c) and in 
yellow bone marrow in left and right femoral heads (d).
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FIGURE 24 Scatterplots showing the variation of ADCALL with age. Scatterplots showing the variation of ADCALL with age in the (a) LVR parenchyma (r = −0.37/p = 0.008 for all volunteers, 
r = −0.36/p = 0.11 for male volunteers and r = −0.49/p = 0.01 for female volunteers) and (b) yellow bone marrow (r = −0.35/p = 0.013 for all volunteers, r = −0.41/p = 0.046 for male 
volunteers and r = −0.53/p = 0.004 for female volunteers).
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FIGURE 25 Scatterplots show ADC values calculated from perfusion-sensitive WB-DWI protocol (ADCALL) vary with FF. (a) Scatterplot shows ADCALL values in red bone marrow vary with 
FF (r = –0.12, p = 0.41 for all volunteers; r = 0.17, p = 0.48 for male volunteers; r = –0.46, p = 0.02 for female volunteers). (b) Scatterplot shows ADCALL values in yellow bone marrow vary 
with FF (r = –0.49, p = 0.001 for all volunteers; r = –0.21, p = 0.37 for male volunteers; r = –0.41, p = 0.04 for female volunteers).
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TABLE 31 Pooled mean metrics ± SD

DSC RE PR ASD (mm) RMSSD (mm) HD (mm)

CFs_T2w 0.70 ± 0.17 0.73 ± 0.18 0.71 ± 0.14 13.5 ± 11.2 34.6 ± 37.6 185.7 ± 194.0

CFs_all 0.74 ± 0.16 0.78 ± 0.16 0.74 ± 0.13 7.89 ± 7.55 20.9 ± 27.1 170.7 ± 194.0

p-value 0.491 0.412 0.533 0.039 0.309 0.974

CNNs_T2w 0.81 ± 0.12 0.82 ± 0.14 0.82 ± 0.10 5.48 ± 4.84 17.0 ± 13.3 199.0 ± 101.2

CNNs_all 0.77 ± 0.14 0.79 ± 0.15 0.79 ± 0.11 9.23 ± 8.04 25.2 ± 19.1 215.9 ± 98.6

p-value 0.412 0.450 0.450 0.178 0.224 0.224

Note
Pooled mean metrics ± SD from all the segmented structures for CFs and CNNs, when using T2w only volumes and 
all imaging combinations (T2w + T1w + DWI) as inputs. In addition, p-values from the Mann–Whitney U-test when 
comparing the two input cases for CFs and CNNs.
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FIGURE 26 Bar chart showing the mean measured metrics. DSC (a), RE (b), PR (c), ASD (d), RMSSD (e) and HD (f) for the segmented organs (RLNG and LLNG, LVR, GBLD, RKDN and 
LKDN, SPLN, PNCR and BLD) and bones (SPN and PLVS) for the three algorithms (CFs), (CNNs) and (MA).
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FIGURE 27 Bar chart comparing the mean measured metrics. DSC (a), RE (b), PR (c), ASD (d), RMSSD (e) and HD (f) for the segmented organs (RLNG and LLNG: right and left lungs, GBLD, 
RKDN and LKDN, SPLN, PNCR and BLD) and bones (SPN and PLVS), when using T2w volumes and all imaging combinations (T2w + T1w + DWI) as inputs to CFs and B CNNs.
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FIGURE 28 Examples for LVR segmentation. Visual examples for predicting the segmentation quality of the LVR for a 
new image (slice from a T2w volume) shown on the top. Its GT segmentation (red coloured) is unknown in practice, and 
we want to estimate the quality of the predicted, automatic segmentation shown on the most right (green coloured). By 
taking the predicted segmentation as pseudo GT and training a RCA classifier we can obtain segmentations on a reference 
database with 24 images with available GT. The bar plot shows the real DSC in red and the different DSC values obtained 
for the reference images shown below. The green bar corresponds to the maximum DSC and is selected as predicted DSC 
for the new image according to Equation 1 which matches well the real DSC.

TABLE 32 Different n-participant selection size in FT, FT with PL and training from scratch (S + T)

Strategies 0 2 5 10 15 30 (all)

FT random-n 0.639 (0.149) 0.665 (0.245) 0.710 (0.172) 0.765 (0.157) 0.803 (0.086) 0.830 (0.066)

FT best-n (real) 0.639 (0.149) 0.684 (0.225) 0.723 (0.173) 0.780 (0.176) 0.750 (0.178) 0.830 (0.066)

FT best-n (RCA) 0.639 (0.149) 0.631 (0.234) 0.687 (0.191) 0.753 (0.166) 0.722 (0.229) 0.830 (0.066)

PL best-n (real) 0.639 (0.149) 0.625 (0.162) 0.639 (0.123) 0.640 (0.131) 0.589 (0.196) 0.553 (0.145)

PL best-n (RCA) 0.639 (0.149) 0.614 (0.146) 0.640 (0.125) 0.619 (0.580) 0.632 (0.139) 0.553 (0.145)

S + T best-n (real) 0.639 (0.149) 0.692 (0.164) 0.747 (0.152) 0.763 (0.151) 0.786 (0.282) 0.831 (0.063)

S + T best-n (RCA) 0.639 (0.149) 0.711 (0.160) 0.755 (0.148) 0.776 (0.282) 0.797 (0.277) 0.831 (0.063)
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Appendix 2 Using ITK-SNAP for checking 
segmentation

1.	 Download the free software from the web – either for mac or pc.
2.	 Once downloaded, click on ‘file’ then ‘open main image’.
3.	 Browse to find the dicom file for your first case – wherever you saved these from the download file. 

I usually check the T2 first so I will take you through my steps.
4.	 Select T2 volume (note: it will open zipped files so you do not have to unzip). You will need to do a 

few clicks through some questions but then T2 should open in the viewer.
5.	 I like to also have the diffusion and ADC opened for reference so I can check against these. So next 

I click on ‘file’ then ‘add another image’ then I browse to open the Diffusion, then I repeat for the 
ADC.

6.	Y ou may need to increase the image size, by clicking on the magnifying glass icon. To do this, on 
mac, I click on the ctrl button and adjust with my mouse. However, you can also use the standard 
options just below the icons 1 × 2 × 4×.

7.	 I then fix the image contrast settings if needed. To do this click on ‘tools’ then ‘image contrast’. A 
scary graph pops up but it is actually really easy to use. You will see a list of the images open on the 
left of the pop up box. Choose the T2 then play with the round dots on the graph to make the im-
age as you wish it to be. Then you can click on DW and do the same thing and then ADC if needed. 
You can always go back to image contrast and adjust at any time. This gets very quick once you are 
used to it.

8.	 Next you need to open the segmentation – in this case for T2 as this is the ‘main image’. To open 
the segmentation, go to ‘segmentation’ then ‘open segmentation’.

9.	 If you have also added extra images to help you (I always open the main image and then I add the 
other two sequences) then the segmentation will overlay on those but will likely not match – that’s 
fine.

10.	 The segmentation will then hopefully match the tumour – either primary, regional nodes, or mets –  
you need to check the position of these against the reference standard on the spreadsheet. To 
remove the segmentation push the S key, to make for opaque, push the A key, to make darker, push 
the D key.

11.	 If any need changing or adjusting, then click on the paintbrush. You can adjust the size of the paint 
brush on the sliding tool just below the paint brush. To add you just paint over the area you want to 
add. To remove you hold right click down and erase over the area you want to remove.

12.	 When happy, click ‘segmentation’ then ‘save segmentation as’ and add your initials to the end of the 
standard stem, for example _AR for me, just ahead of.nii.gz which is needed.

13.	 Then ‘unload the segmentation’ under the segmentation tab and upload the next one, for example, 
If you have done the primary, then upload the nodes or mets, until all done for T2.

14.	 If you need to add a new segmentation according to the consensus reference, then after you unload 
the previous segmentation, choose the paintbrush and colour in the appropriate item, for example 
Regional nodes. Then save as: STC-XXX_T2w_REGND_MET_initials or if LVR met the  
STC-XXX_DW_LVR_MET_initials etc.

15.	 Repeat the process for DW.
16.	 Then move onto the next case.
17.	 When you have done a set, please upload the new segmentations, with your initials, to the drop box 

under the appropriate segmentation folder, STC or STL.
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Appendix 3 Phase 2 segmentation checking 
methods

M 
ALIBO_Phase2_2019 (main folder shared with you in box).

Folder structure and where to find what you need:

There are three main folders:

1.	 Data:
a.	 This contains the DICOM data and is divided into folders for STL and STC. Within each are the 

folders for each patient containing the DICOM data T2, DWI and ADC. If there are multiple 
volumes, always use the one called ADCfinal_volume, regDWfinal_volume, (reDWvolume) and 
T2w_volume. These are the volumes that apply to the segmentations. I am sorry there are a 
number of options but I could not easily sort this out.

b.	 Please download the cases allocated to you and save in a folder on your computer. Please 
remember the data are shared confidentially with us by the sponsor of STREAMLINE study 
and we do not have permission to use the scans for any other purpose. Please delete the scans 
from your computer when you have finished checking the segmentations.

2.	 Segmentations:
a.	 The segmentations are divided up into DW and T2 segmentation folders. Once you have 

checked please save the checked segmentation into the folder with your name on it called 
‘checked by (your name)’. Can you possibly add your initials at the end of the checked cases so 
in other words if I checked it, I would add (standard stem_AR).

b.	 To check the segmentations (see full explanation below): The segmentations will load up onto 
the image volume that you load into ITK-snap and should match the open ‘main image’ such 
that if you open the T2 volume as the ‘main image’, then open the T2 segmentation for it to 
match.

3.	 Documents (to download the reference standard):
a.	 MALIBO STC or STL DATA EXTRACTS 26.10.2018 are the documents with the reference 

standard. You can see the increasing degree of information at the lower tabs. So the first tab 
gives the main position and size of the tumour and stage. Then other tabs give the presence of 
nodal mets/skeletal mets/non skeletal mets and the details of these according to the STREAM-
LINE reference standard. You need to check against this to confirm that you agree with the 
segmentations.
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Appendix 4 User manual for using 3D 
Biotronics platform

User Manual for training radiologists to use 3D Biotronics platform

Go to Google Chrome and open www.3dnetmedical.com/portal.

Login with your username and password (make sure this is the username that you have been given that 
links you to the MALIBO study folder), go then to PACS (upper row on the left side).

------- ----------- ------------ --------- ----------- --------- ---------- ------- -------- ----------

A window with 80 training cases will open.

For individual sear, please use the search bar. We suggest:

STL-039 -070, -103, -211.
STC-007, -089 (though overly does not work on this one), -096, -274.

By double clicking a STL/STC case will open.

https://www.3dnetmedical.com/portal
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Chose the second icon from the left (Series) to open all given series

-------- ------- -------- ------- --------- ---------- ----------- ---------- --------- -------

Select the appropriate images stated on the CRF sheet (T2 ax stack, DW ax stack, ADC ax stack, ML 
output if available), as well as other appropriate series (T1 dynamic LVR, lung, head/neck) by checking 
the icon box.

Afterwards click View to open.

-------- --------- --------- ------------- -------------- ------------ ------------- -----------
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After a new window has opened, you can click F11 for full screen mode.

Use the indicated icon on the sidebar to open a dedicated PACS interface.

Choose sequences from the hanging protocol on the left sidebar by drag and drop.

The following image illustrates the recommended user layout for the readings:
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T2 DWI ADC T1 

ML Liver Lung Brain

ML = Machine-Learning algorithm, please use DM5 as your primary output, 
RF5 is available as a secondary output for checking small lesions 

Once you have established your own preferred layout, you can connect all sequences to scroll them 
together via:

Position all images at the same anatomic level then you must keep ‘Ctrl + Shift’ down and select each 
chosen sequence by clicking them. Each selected window will be marked with blue outlines (choose 
perhaps only the volumes/stacks and ML).

Choose right mouse button and select the icon on the open window to link them.

You have to hold Ctrl±Shift down until the link is complete!

Now you can scroll through the images.

--------- -------- ---------- ---------- ---------- ------------ ---------- ------------- -------------

For windowing, use right mouse button or select W/L in the right upper corner. This will open a new 
window, where the appropriate settings can be done.
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To merge the T2 and the ML sequences together keep again Ctrl + Shift down and select both 
sequences by clicking them.

Afterwards, click with the right mouse button over the T2 image (!) and select the icon as indicated.

------------ ------------- ------------- ------------- ---------- ---------- --------- -------------

Once you have created the merged image you can further adjust the balance to a certain side by 
selecting the icon again and adjust the threshold button on the right side. We recommend a 65% 
threshold selection.
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In case of improper windowing of the anatomic sequence (T2), as in this particular example.

Please load another T2 sequence into a different window.

As all 80 training cases from the Phase 2 trial have inconsistent sequences, there are some with four ML 
series! You can select and use all four in your training. Some cases have no-ML output.

The DM5 should be merged together to the T2 sequence and used primarily for the reading as it has the 
highest specificity.

The RF5 should be used secondarily and only to check for small lesions as it has high sensitivity, but 
low specificity.

Scoring the ML output.

During your Phase 3 read, you will be asked to give ‘your opinion’ in relation to the primary tumour 
position and stage, nodal stage and presence and position of mets. Once ‘your opinion’ is recorded, you 
will be asked to go back and record what the ML output was like – on a score of 1 (no colour at all – no 
probability of cancer lesion), 2 (blue green colour – low probability of cancer lesion), 3 (orange, moderate 
probability of cancer lesion), 4 (red, high probability of cancer lesion). See examples below, score 2 for 
bowel, score 3 for bowel and score 4 for posterior mediastinum.
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Appendix 5 MALIBO STC CRF
MALIBO Study

DEVELOPMENT AND EVALUATION OF MACHINE-LEARNING METHODS IN 

WHOLE-BODY MR WITH DIFFUSION-WEIGHTED IMAGING FOR STAGING OF 

PATIENTS WITH CANCER

CASE REPORT FORM

TRIAL NUMBER.     MALIBO-STC-____   ____  _____- ML _______(Y/N)

Please send ORIGINAL forms to:

MALIBO Trial Coordinator

Comprehensive Cancer Imaging Centre

Ground Floor, Commonwealth Building

Hammersmith Hospital Campus

London

W12 0NN

General enquiries:  Telephone: Email:

Co-ordinator: 
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Name of reader: _____________________________ Reader number: _______

Date of read:       _____________________________

Which reading round:   round 1 /round 2 /round 3

Staging sheets can be provided to each reader at the time of the read.

IF ML OUTPUT IS AVAILABLE, THEN USE IT STRAIGHT AWAY AS WITH ANY 

AVAILABLE SEQUENCE.  HOWEVER, IT IS ESSENTIAL THAT ML EVALUATION

COLUMNS ARE NOT COMPLETED UNTIL THE CLINICAL READ IS FINISHED AND 

TIME OF READ IS RECORDED SO THAT WE CAN COMPARE WITH AND 

WITHOUT ML READING TIMES.  THANK YOU.

Please sign to confirm that ML outputs will be completed after the clinical read:  

Radiologist signature:  _________________________ 

Exam read start time:  _______:_________ (24 hour clock,  hours, minutes)

Images available?   Please tick.

Available? Quality of sequence

Y N Good Adequate Poor

T2 axial stack

DW axial stack

ADC axial stack

ML output available --------------- -------------

-

--------------

-

T1 axial stack

T1 coronal

Liver with contrast

Brain with contrast

T1FS post contrast (body)

Comment: 
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PRIMARY TUMOUR DETECTION 
Based on all available information, including ML output if available  

Note: if a tumour crosses an anatomical boundary, please choose a single site of tumour (you 

can add a comment if you wish).  If there are two separate primary tumours, you can add this 

as a second site.

1 
No primary 
tumour 
identified at 
this site

2 
Probably 
no 
primary 
tumour at 
this site

3 
Probably 
primary 
tumour at 
this site

4 
Highly 
likely 
primary 
tumour at 
this site

DM5
score
1-4
(NA if no 
ML 
output)

RF5 
used? 

Please 
tick at any 
site 
where 
this was 
used for 
detection

Rectum
Sigmoid
Descending 
colon
Transverse 
colon
Ascending colon
Caecum
Max dimension 
(mm) if 
measurable 
primary tumour 
(NA if no 
primary tumour 
seen)

Comment: (optional if second tumour or other comment):

T stage [as per Tumour Node Metastasis (TNM) version used in STREAMLINE study]
based on all available  information. If you identify a primary tumour at any site, with any

confidence level, please tick one cell only; if no primary tumour identified at any site, indicate

this in appropriate cell. If two primary lesions are identified, then please stage according to the

highest stage.  Add comment if you wish. 

Note: if uncertain of stage then please select the most likely stage with corresponding level of 

confidence/uncertainty.

*tick 1 box in this table

1 2 3 4 
high confidencevery low 

confidence
low 
confidence

reasonable 
confidence

No primary tumour 
identified
T1 
T2 
T3 
T4

Comment: (optional)
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REGIONAL NODES: 
Presence of nodal metastases based on all available information, including ML output if 

available  

Nodal stage (as per TNM version used in STREAMLINE study): 

Note: if uncertain of stage then please select the most likely stage with corresponding level of 

confidence/uncertainty

* tick 1 box

in this table

1 
very low 
confidence

2 
low 
confidence

3
reasonable 
confidence

4 
high 
confidence

DM5 
stage
(1-4)

RF5 used? 

Please tick 
at any site 
where this 
was used for 
detection

N0
N1
N2

Comment: (optional)

METASTASES: NON-SKELETAL SITES 
Based on all available information, including ML output if available.  If “Negative 1 or 2” is 

selected by reader, no measurement required, even if ML score >2. If “Positive 3 or 4” is 

selected by reader, then size(s) should be given. 

Comment: (optional)

Presence or absence 
of metastasis based 
on all available 
information
-Please tick

Negative
1- definitely 
not present
2- probably 
not present 

Positive
3-
probably 
present
4- highly 
likely
present     

Size of 
largest 
organ 
deposit 
(mm)

Size of 
second 
largest organ 
deposit (mm) 
(if not 
applicable 
put N/A)

Number of 
additional 
deposits
≥6mm 
(if ≤10, state 
number. If 
>10 state, 
>10) 
(if not 
applicable 
put N/A)

Number of 
additional 
deposits 
<6mm 
(if ≤10, state 
number. If 
>10 state, 
>10) 
(if not 
applicable 
put N/A)

RF5 
used? 

Please 
tick at 
any site 
where 
this was 
used for 
detection

Negative Positive 
1 2 3 4

DM5 
score 
1-4

DM5 
score
1-4

DM5
score
1-4

DM5 
score
1-4

Brain

Lung (L)

Lung (R)

Pleura (L)

Pleura (R)

Liver (left lobe)

Liver (right lobe)

Spleen

Adrenal (L)

Adrenal (R)

Kidney (L)

Kidney (R)

Pancreas

Mesentery/peritoneum

Bowel

Soft-tissue neck/chest

Soft-tissue abdomen/pelvis

Nodal (Non-regional -
Please state site; NA if no 
other nodal 
site)________________
Other (Please state/ or NA if 
no other 
site)________________
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METASTASES: SKELETAL SITES
Based on all available information, including ML output if available. If “Negative 1 or 2” is 

selected by reader, no measurement required, even if ML score >2. If “Positive 3 or 4” is 

selected by reader, then size(s) should be given. 
Presence or 

absence of 
metastasis based 
on all available
information
-Please tick

Negative
1-
definitely 
not 
present
2-
probably 
not 
present 

Positive
3-
probably 
present
4- highly 
likely
present     

Size of 
largest 
organ 
deposit 
(mm)

Size of 
second 
largest 
organ 
deposit 
(mm) 
(if not 
applicable put 
N/A)

Number of 
additional 
deposits
≥6mm 
(if ≤10, state 
number. If >10 
state, >10) 
(if not 
applicable put 
N/A)

Number of 
additional 
deposits 
<6mm 
(if ≤10, state 
number. If >10 
state, >10) 
(if not 
applicable put 
N/A)

RF5 
used? 

Please 
tick at 
any site 
where 
this was 
used for 
detection

Negative Positive 

1 2 3 4
DM5 
score
1-4

DM5 
score
1-4

DM5 
score
1-4

DM5 
score
1-4

Skull

Cervical spine

Thoracic spine

Lumbar spine

Pelvis

Sternum

Clavicle/Scapula (L)

Clavicle/Scapula (R)

Ribs (L)

Ribs (R)

Other (Please State or 
NA)

Additional comments (e.g. 2nd primary, incidental benign findings) (optional)

Exam read end time:  _________:_______ (24-hour clock, hours, minutes)

Now go back and fill in ML scores.  Please tick. 

Now go back to check table on page 2 is completed.  Please tick.  

CRF completed by (scribe): Signature:

CRF completed by (reader): Signature:

Date:
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Appendix 6 MALIBO STL CRF
MALIBO Study

DEVELOPMENT AND EVALUATION OF MACHINE-LEARNING METHODS IN 

WHOLE-BODY MRI WITH DIFFUSION-WEIGHTED IMAGING FOR STAGING OF 

PATIENTS WITH CANCER

CASE REPORT FORM

TRIAL NUMBER.     MALIBO-STL-____   ____  _____- ML _______(Y/N)

Please send ORIGINAL forms to:

MALIBO Trial Coordinator

Comprehensive Cancer Imaging Centre

Ground Floor, Commonwealth Building

Hammersmith Hospital Campus

London

W12 0NN

General enquiries:  Telephone: Email:

Co-ordinator: 
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Name of reader: _____________________________ Reader number:_______

Date of read:       _____________________________

Which reading round:   round 1 /round 2 /round 3

Staging sheets can be provided to each reader at the time of the read.

IF ML OUTPUT IS AVAILABLE, THEN USE IT STRAIGHT AWAY AS WITH ANY 

AVAILABLE SEQUENCE.  HOWEVER, IT IS ESSENTIAL THAT ML EVALUATION

COLUMNS ARE NOT COMPLETED UNTIL THE CLINICAL READ IS FINISHED AND 

TIME OF READ IS RECORDED SO THAT WE CAN COMPARE WITH AND 

WITHOUT ML READING TIMES. THANK YOU.

Please sign to confirm that ML outputs/scores will be completed after the clinical read:  

Radiologist signature:  _________________________ 

Exam read start time:  _______:_________ (24 hour clock,  hours, minutes)

Images available?   Please tick.

Available? Quality of sequence

Y N Good Adequate Poor

T2 axial stack

DW axial stack

ADC axial stack

ML output available --------------- -------------

-

--------------

T1 axial stack

T1 coronal

Liver with contrast

Brain with contrast

T1FS post contrast (body)

Comment: (optional)

PRIMARY TUMOUR DETECTION 
Based on all available information, including ML output if available  
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Note: if a tumour crosses an anatomical boundary, please choose a single site of tumour (you 

can add a comment if you wish).  If there are two separate primary tumours, you can add this 

as a second site.

1 
No primary 
tumour 
identified at 
this site

2 
Probably 
no 
primary 
tumour at 
this site

3 
Probably 
primary 
tumour at 
this site

4 
Highly 
likely 
primary 
tumour at 
this site

DM5 
score
1-4
(NA if no 
ML 
output)

RF5 
used? 

Please 
tick at 
any site 
where 
this was 
used for 
detection

Right upper lobe
Right middle lobe
Right lower lobe
Left upper lobe
Left lower lobe
Max 
dimension 
(mm) if 
measurable 
primary 
tumour (NA if 
no primary 
tumour seen)

Comment (optional if second tumour or other comment):

T stage [as per Tumour Node Metastasis (TNM) version used in STREAMLINE study]
based on all available  information. If you identify a primary tumour at any site, with any

confidence level, please tick one cell only; if no primary tumour identified at any site, please

indicate. If two primary lesions are identified, then please stage according to the highest stage

(you may add comment).

Note: if uncertain of stage, then please select the most likely stage with corresponding level of 

confidence/uncertainty.

*tick 1 box in this table

1 
very low 
confidence

2 
low 
confidence

3
reasonable 
confidence

4 
high confidence

No primary tumour 
identified
T1 
T2 
T3 
T4

Comment: (optional)
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REGIONAL NODES: 
Presence of nodal metastases based on all available information, including ML output if 

available.  

Nodal stage (as per TNM version used in STREAMLINE study): 

Note: if uncertain of stage, then please select the most likely stage with corresponding level of 

confidence/uncertainty

*tick 1 box

in this table

1 
very low 
confidence

2 
low 
confidence

3
reasonable 
confidence

4 
high 
confidence

DM5 
stage 
(1-4)

RF5 
used? 

Please 
tick at any 
site where 
this was 
used for 
detection

N0
N1
N2
N3

Comment: (optional)

What is the regional 
nodal status based on all 
available information?
-Please tick

Negative
1- definitely not 
present
2- probably not 
present 

Positive/high 
confidence
3- probably 
present
4- highly likely 
present     

DM5 score

NA if no ML 
output

RF5 used? 

Please tick 
at any site 
where this 
was used 
for detection

Negative Positive 

1 2 3 4 1-4 
Supraclavicular

Paratracheal

Pre-vascular

Right hilar

Left hilar

Subcarinal

Other regional nodal site (please 
describe or NA): 
Other regional nodal site (please 
describe or NA):
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METASTASES: NON-SKELETAL SITES
Based on all available information, including ML output if available.  If “Negative 1 or 2” is 

selected by reader, no measurement required, even if ML score >2. If “Positive 3 or 4” is 

selected by reader, then size(s) should be given. 

Comment: (optional)

METASTASES: SKELETAL SITES 
Based on all available information, including ML output if available.  If “Negative 1 or 2” is 

selected by reader, no measurement required, even if ML score >2. If “Positive 3 or 4” is 

selected by reader, then size(s) should be given. 

Presence or absence 
of metastasis based 
on all available 
information
-Please tick

Negative
1- definitely 
not present
2- probably 
not present 

Positive
3-
probably 
present
4- highly 
likely
present     

Size of 
largest 
organ 
deposit 
(mm)

Size of 
second 
largest organ 
deposit (mm) 
(if not 
applicable 
put N/A)

Number of 
additional 
deposits
≥6mm 
(if ≤10, state 
number. If 
>10 state, 
>10) 
(if not 
applicable 
put N/A)

Number of 
additional 
deposits 
<6mm 
(if ≤10, state 
number. If 
>10 state, 
>10) 
(if not 
applicable 
put N/A)

RF5 
used? 

Please 
tick at 
any site 
where 
this was 
used for 
detection

Negative Positive 
1 2 3 4

DM5 
score 
1-4

DM5 
score
1-4

DM5
score
1-4

DM5 
score
1-4

Brain

Lung (L)

Lung (R)

Pleura (L)

Pleura (R)

Liver (left lobe)

Liver (right lobe)

Spleen

Adrenal (L)

Adrenal (R)

Kidney (L)

Kidney (R)

Pancreas

Mesentery/peritoneum

Bowel

Soft-tissue neck/chest

Soft-tissue abdomen/pelvis

Nodal (Non-regional -
Please state site; NA if no 
other nodal 
site)________________
Other (Please state/ or NA if 
no other 
site)________________
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Presence or 
absence of 
metastasis based 
on all available
information
-Please tick

Negative
1-
definitely 
not 
present
2-
probably 
not 
present 

Positive
3-
probably 
present
4- highly 
likely
present     

Size of 
largest 
organ 
deposit 
(mm)

Size of 
second 
largest 
organ 
deposit 
(mm) 
(if not 
applicable put 
N/A)

Number of 
additional 
deposits
≥6mm 
(if ≤10, state 
number. If >10 
state, >10) 
(if not 
applicable put 
N/A)

Number of 
additional 
deposits 
<6mm 
(if ≤10, state 
number. If >10 
state, >10) 
(if not 
applicable put 
N/A)

RF5 used? 

Please tick 
at any site 
where this 
was used for 
detection

Negative Positive 

1 2 3 4
DM5 
score
1-4

DM5 
score
1-4

DM5 
score
1-4

DM5 
score
1-4

Skull

Cervical spine

Thoracic spine

Lumbar spine

Pelvis

Sternum

Clavicle/Scapula 
(L)
Clavicle/Scapula 
(R)
Ribs (L)

Ribs (R)

Other (Please State or 
NA)

Additional comments (e.g. 2nd primary, incidental benign findings) (optional)

Exam read end time:  _________:_______ (24-hour clock, hours, minutes)

Now go back and fill in ML scores.  Please tick. 

Now go back to check table on page 2 is completed.  Please tick.  

CRF completed by (scribe): Signature:

CRF completed by (reader): Signature:

Date:
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Appendix 7 Statistical analysis plan for 
machine learning in whole-body oncology 
project (version 1.1; 24 January 2020)

Statistical analysis plan background

The use of WB-MRI for the detection of metastatic disease is an active area of research in oncology 
imaging. In particular DW-MRI, which quantifies water diffusivity, can detect tumour sites in organs and 
bones. Limitations of WB-DW-MRI are the risk of false positives (as many ‘normal’ anatomical structures 
can look similar to pathological tissue) and the long reading times due to the large number of complex 
images. ML techniques have previously been used to assist in reading MRI data by developing algorithms 
to differentiate between benign and malignant cases, though not using DWI. In this study ML methods 
using WB-DW-MRI will be developed and evaluated for staging of patients with cancer.

Research questions

The primary research question is as follows. Is the specificity of WB-DW-MRI scans, in patients being 
staged for cancer, significantly improved with no subsequent loss of sensitivity when ML methods are 
applied? The secondary research question includes:

1.	 Can the RT of WB-DW-MRI scans be reduced, with a reduction of associated radiology costs, when 
ML techniques are employed to assist experienced radiologists?

2.	 Can interobserver variability be reduced by the use of ML methods in experienced or new WB-MRI 
radiologists?

3.	 Can the application of ML methods in WB-MRI increase the diagnostic accuracy delivered by less 
experienced radiologists?

4.	 Can intraobserver variability be reduced by the use of ML methods in experienced WB-MRI radiolo-
gists (exploratory)?

Study objective

The primary objective of this project is to compare the diagnostic accuracy of WB-DW-MRI, as read by 
experienced radiologists, in patients being staged for cancer, with and without the aid of ML methods 
against the reference standard of full clinical diagnosis at 12-month follow-up period.

The secondary objectives are in the following:

1.	 To compare the RT of WB-MRI scans.
2.	 To assess interobserver variability.
3.	 To test the diagnostic accuracy of non-experienced radiologists.
4.	 To achieve these objectives, we need to design statistical analysis experiments systematically.
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Design

Patient data
This is an observational study using patient data from the STREAMLINE study. If deemed compatible 
with the developed algorithm, data from the MELT and MASTER studies may also be used.

The primary data source is STREAMLINE,8 a pair of multicentre prospective cohort studies that evaluate 
WB-MRI in newly diagnosed non-small cell lung cancer (250 patients; STREAMLINE-L; ISRCTN50436483) 
and colorectal cancer (322 patients; STREAMLINE-C; ISRCTN43958015). The primary objective for both 
studies was to evaluate whether early WB-MRI increases detection rate for metastases compared to 
standard NICE (www.nice.org.uk)-approved diagnostic pathways. Secondary objectives included assessing 
influence of WB-MRI on time to and nature of first major treatment decision following definitive staging. 
At 12-month patient follow-up, a multidisciplinary consensus panel defined the reference standard for 
tumour stage considering all clinical, pathological, post-mortem and imaging follow-up.

Cases from STREAMLINE are likely to have more non-nodal metastatic sites, such as LVR and lytic bone 
metastases. Therefore, additional cases of nodal disease and sclerotic bone metastases will be acquired 
from two other studies to ensure variation in the distribution of disease used to develop the ML 
algorithm. The MELT study (100 patients; NCT01459224) is a prospective observational cohort study to 
compare staging accuracy using WB-MRI with standard investigations in patients with newly diagnosed 
Hodgkin’s lymphoma. Data from the MASTER study, including cases with lymphoma and prostate 
cancer, will also be used (the myeloma cases from MASTER are unlikely to be used).

In addition, WB-MRI data sets from 51 healthy volunteers will be used; these have been collected under 
a separate ethics approval (ICREC 08/H0707/58).14

Study design
The statistical study design is mainly in the second and third phases of this project. The anatomical 
atlases from Phase 1 were used in Phase 2 for anatomic mapping of healthy organs in the study scans.

In Phase 2, the ML produced a probabilistic map indicating the likelihood that the tissue is malignant. The 
scans and disease segmentations, based on the source study reference standard, were used to inform the 
algorithm using relatively sparse data. Training of the algorithm requires sufficient data from the three 
source studies to allow identification for different sites of disease, while holding back the data to be used 
in testing. The ML algorithm was refined in successive iterations until a final algorithm is obtained. An 
analysis of per-lesion sensitivity was performed at this stage using approximately 40–50 new patient data 
sets (to allow for sufficient positive cases). If the upper 95% CI of the sensitivity by algorithm ‘C’ is less than 
80%, then further work on the algorithm will need to be undertaken prior to proceeding to Phase 3.

The assessment of study outcomes was carried out in the third phase of this project. A second set of 
WB-MRI data relating to 191 participants from the STREAMLINE, MELT and MASTER studies was read 
by expert radiologists, both with and without ML support, in a similar way to a cross-over design. The 
timing and order of the reads were randomised. Study outcomes were recorded for each read. For the 
diagnostic accuracy measures, the ‘gold standard’ was regarded as the reference standard from the main 
study. A subset of the scans was re-read (both with and without ML support) by another radiologist to 
assess interobserver variability. A further subset was read by non-experienced radiologists to estimate 
diagnostic accuracy in this group.

Groups for comparison
The groups for comparison were read with the aid of ML compared to reads without the aid of ML. The 
groups are paired as each scan will be read by the same radiologist with and without the aid of ML. The 
primary comparison was amongst experienced radiologists and a separate, secondary comparison was 
amongst inexperienced radiologists for a subset of 30 patients.

https://www.nice.org.uk
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Study population

No patients were directly recruited into this study. Recruitment and scanning of patients have taken 
place under the separate contributing studies.

Study population for contributing studies
STREAMLINE L and C study inclusion criteria: histopathologically confirmed or suspected lung cancer or 
colorectal cancer being staged for initial treatment planning; written informed consent. Exclusion criteria 
include any contraindication to MRI scanning.

MELT (if applicable) study inclusion criteria: aged 6–18 years with participant/guardian informed 
consent, histologically confirmed Hodgkin’s lymphoma, treated with the Euronet chemotherapy regime. 
Exclusion criteria: contraindications to MRI, previous other malignancy or pregnancy/nursing.

MASTER (if applicable) study inclusion criteria: diagnosis of prostate cancer, lymphoma or myeloma.

Additional inclusion and exclusion criteria for this study
Phase 1 inclusion criteria: healthy volunteers aged 18–100 years, written informed consent.

Exclusion criteria: any co-existing medical illness, contraindications to MRI.

Phase 2 inclusion criteria: patient eligible for and consented to take part in one of the contributing 
studies (STREAMLINE C/L plus, if applicable, MELT and MASTER), patient completed the study imaging 
assessments and the reference standard from the source study is available.

Exclusion criteria: patients that consented to contributing study but did not undergo the scan, or 
the scan could not be adequately completed. In addition, cases will be excluded if the scan data is 
significantly corrupted during data transfer or contains significant artefacts, with marked obscuration 
of the images, such that the scan could not be reasonably processed for ML. This evaluation is made by 
the study MRI physicist and a record of each case will be maintained. Cases will also be excluded if the 
source study reference standard is not available.

Phase 3 inclusion criteria: any patients that were eligible for Phase 2 are automatically eligible for 
Phase 3.

Exclusion criteria: any patients whose reads were used in Phase 2 for the development of the ML 
algorithm are not considered for Phase 3.

Blinding
The study cannot be blinded to the addition of ML. The readers evaluating the sensitivity and specificity 
of WB-MRI with or without ML support will be blinded to the reference standard, including the original 
primary diagnosis and the stage of disease. To prevent any RE bias occurring in the Phase 3 analysis, 
readers will not be assigned scans originating from their home practice/site as part of the source studies.

Sample size
The sample size required for Phase 3 based on patients with no metastases is 141. This is based on 
McNemar’s test of paired proportions (McNemar, 1947), assuming ML support will improve specificity 
by 10%, from 86% to 96%, with a type 1 error of 0.05 (one-sided) and 90% power. Further, as per 
section 9.1 of the protocol, it is expected that 193 cases from the STREAMLINE study are available for 
use. Amongst the 193 patients from STREAMLINE studies, 51 are expected to have metastatic disease. 
Based on the above, we are anticipating an improvement in specificity of 10% from 86%. Regarding 
sensitivity, on the assumption that the sensitivity of WB-MR with ML support is no less than that of 
WB-MR alone (88%), a sample size of 51 metastases will provide an expected 95% CI for the sensitivity 
of WB-MR with ML support of 79–97%.



134

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Appendix 7 

Randomisation
This study is not a randomised controlled trial; however, stratified randomisation will be employed to 
allocate scans between Phases 2 and 3 to reduce the risk of a difference in the scans analysed in these 
phases. Randomisation will be stratified on: (1) type of primary tumour (colon, lung), (2) presence of 
metastatic disease: LVR, bone, nodal. Randomisation will be undertaken by the study statistician when 
complete reference standard data are available and the cases that could not be processed for ML have 
been determined by the physicist.

Randomisation will also be used to assign and order the cases. First, cases will be randomly assigned to 
readers, maintaining an equal number of cases per reader as far as possible, based on the strata of type 
of primary tumour, presence of metastatic disease and site such that each radiologist with have a similar 
proportion of each ‘type’. Once assigned to each reader, a random selection of half the cases will be chosen 
to be assigned ML first, and the remainder non-ML first. These scans will comprise the first set received by 
the reader. The reverse set will be provided once the first set has been completed and a month has elapsed.

In order to allow for the inter-reader analysis, each radiologist will be assigned 10 reads that will be read 
only by the assigned radiologist. The remainder will be read by two radiologists, randomly assigned such 
that the proportions of primary tumour type and presence of metastatic disease remain even amongst 
all experienced radiologists.

In order to assess the effect of ML amongst non-experienced radiologists, the same randomisation 
procedure as detailed above for experienced radiologists will be utilised.

Analysis sets
The analysis population was included all WB-MRI scans where both the unassisted read and the 
ML-assisted read were completed by a radiologist.

Variables of analysis

Primary outcome
The primary outcome measure was the per-patient specificity of WB-MRI against the reference standard 
established in the main study. The observed data are summarised in Table 35.

Specificity is defined as the proportion of patients with negative reference standard (metastasis not 
present anywhere) which have been correctly classified as negative by the radiologist, that is a1/(a1 + b1) 
without ML and a2/(a2 + b2) with ML.

Radiologist classification
Whole-body diffusion-weighted magnetic resonance imaging will be assessed for the presence of 
disease, using an imaging volume from the brain to mid-thighs. Reads will proceed using all sequences 

TABLE 33 2 × 2 table of observed per-patient classification. (a) Without ML and (b) with ML, against the reference 
standard. As the same scans are read both with and without ML, the marginal totals for the reference standard (n-, n+ and 
N) are the same in both (a) and (b)

(a) Patient classification without ML (b) Patient classification with ML

Negative Positive Total Negative Positive Total

Reference standard Negative a1 b1 a1 + b1 = n− a2 b2 a2 + b2 = n−

Positive c1 d1 c1 + d1 = n+ c2 d2 c2 + d2 = n+

Total a1 + c1 b1 + d1 a1 + b1 + c1 + d1 = N a2 + c2 b2 + d2 a2 + b2 + c2 + d2 = N
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from the source study, with experienced and non-experienced WB-MRI readers. The sites of disease 
to be described will include the primary tumour site, presence and site of metastatic lesions and any 
significant incidental findings.

Reference standard
The reference standards for this study are taken from the contributing studies. For the STREAMLINE 
data, at 12-month patient follow-up, a multidisciplinary consensus panel defined the reference standard 
for tumour site and stage considering all clinical, pathological, post-mortem and imaging follow-up. The 
reference standard for the MELT study is contemporaneous MDT with all other staging, for example 
PET-CT and CT, at the time of diagnosis and initial staging.

Secondary outcomes
Per-patient sensitivity of WB-MRI against the reference standard established in the main study. 
Sensitivity is defined as the proportion of patients with positive reference standard (at least one 
metastatic deposit) which have been correctly classified as positive by the radiologist, that is d1/(c1 + d1) 
without ML and d2/(c2 + d2) with ML.

Per-lesion specificity of WB-MRI against the reference standard established in the main study. 
Specificity is defined as the proportion of lesions with negative reference standard which have been 
correctly classified as negative by the radiologist. A similar table to Table 1 can be constructed on a 
per-lesion basis.

Per-lesion sensitivity of WB-MRI against the reference standard established in the main study. Sensitivity 
is defined as the proportion of lesions with positive reference standard which have been correctly 
classified as positive by the radiologist.

Confidence of the tumour detection diagnosis at site ‘x’ by the radiologist reading the WB-MRI:

1 = No primary tumour
2 = Probably no tumour
3 = Probably tumour present 
4 = Highly likely tumour present

Confidence of the T-Stage diagnosis by the radiologist reading the WB MRI:
1 = very low confidence
2 = low confidence
3 = reasonable confidence
4 = high confidence

Negative

Positive

Negative

Positive

Tumour size: Size of the largest organ deposit, the second largest organ deposits, the number of 
additional deposits ≥ 6 mm, the number of additional deposits < 6 mm.

Reading time: The total time taken by the radiologist to read and report the WB-MRI in minutes, not 
including time taken to complete the CRF.

Interobserver variability: Interobserver variability in a subset of scans with reads by two different 
radiologists will be measured by the kappa coefficient, generalised to non-unique raters.133,134 Both 
ML and non-ML reads will be repeated. For each participant i, i = 1, … , N, let xi be the total number 
of positive diagnoses (0, 1 or 2) from the two radiologists, and ρ¯ be the overall proportion of positive 
ratings. Then the between-participant mean square error is approximated by:

B =
1

N

∑
i

(xi − 2p̄)
2

2 	
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and the within-participant mean square error is:

W =
1

2N

∑
i

xi(2− xi)
	

and kappa is defined as:

κ =
B−W

B+W 	

Kappa is calculated separately for reads with and without ML assistance.

Intraobserver variability will be measured and compared using the kappa coefficient in the same method 
as above. Instead of comparing ‘Reader 1’ and ‘Reader 2’, ‘Period 1’ and ‘Period 2’ will be used instead to 
represent the two different times the same read was assessed. Again, Kappa is calculated separately for 
reads with and without ML assistance and compared.

Cost of radiology RT measured as per hour staff costs in Great British pounds for consultant radiologists.

Other variables
The following variables are recorded both as part of the reference standard and the radiologist 
assessment in Phase 3:

•	 site of tumour;
•	 tumour stage (N-stage; M-stage).

Confidence of the N/M-stage diagnosis by the radiologist reading the WB-MRI:

very low confidence

low confidence

reasonable confidence

high confidence

Negative

Positive

•	 size of largest and second largest deposits at staging;
•	 number of additional deposits < 6 mm;
•	 number of additional deposits ≥ 6 mm;
•	 radiologist ID;
•	 radiologist level (experienced or non-experienced);
•	 date of read.

Statistical methodology

General methodology
This SAP does not describe the ML aspect of the analysis. For clarity, the analysis described by this SAP 
is as follows:

•	 interim analysis of the per-lesion sensitivity in Phase 2;
•	 analysis of outcomes in Phase 3.
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Statistical significance is set at p = 0.05 throughout and CIs. The primary outcome analysis comparing 
the per-patient specificities with and without ML will be a one-sided test and CI for the difference; all 
other tests and CIs are two-sided. The only hypothesis test and p-value to be presented concerns the 
primary outcome and, as such, there will be no adjustment for multiple testing.

Results will be presented according to the STARD guidelines135 where possible and checklist items have 
been noted in this SAP.

Missing data (STARD item 16)
This study will use scans and follow-up data already collected within the STREAMLINE studies and also 
MELT and MASTER studies (if deemed compatible). Patients with missing or indeterminate reference 
standard data, or with missing or inadequate scan data from the source studies, will not be eligible 
for this study, but numbers will be reported in the patient flow diagram. In Phase 3, any missing data 
from the radiology reads will be queried with the reader and attempts made to complete the data. Any 
missing data remaining will be reported but excluded from the analysis. If only part of a patient’s report 
is missing, then the remainder of the data will be used where possible. Inconclusive diagnoses in Phase 3 
will be reported but excluded from the analysis.

As it is expected that missing data will be at a minimum, no data will be imputed for the purpose of the 
primary or secondary analysis.

Baseline characteristics (STARD items 20 and 21)
The following information (from the reference standard) will be described for all cases, with those used 
in Phases 2 and 3 shown separately:

•	 location of primary tumour (colon, lung);
•	 maximum dimension of primary tumour (cm, median and interquartile range);
•	 location of metastatic disease (LVR, bone, nodal);
•	 N-stage (N0, N1, N2, N3);
•	 M-stage (M0, M1a, M1b).

Primary outcome analysis (STARD items 23 and 24)
The per-patient specificities of WB-MRI with and without ML, for experienced radiologists, against 
reference standard were presented with 95% CI calculated using the Wilson method. The normal 
approximation is unsuitable as the proportions are likely to be close to 1. The proportions were 
compared using McNemar’s test for paired proportions.136 Using the same notation for the negative 
reference standard cases as used in Table 33 (a1, b1, a2, b2, n−), we can construct a 2 × 2 table to 
compare the (paired) proportions of patients classified as negative using the reference standard that are 
correctly identified as negative by the radiologist with and without ML (see Table 36):

The null hypothesis is that the two specificities (the marginal probabilities in Table 2) are the same, and 
the alternative hypothesis is that the specificity is higher with ML:

H0 :
a1

n−
=

a2

n−
H1 :

a1

n−
>

a2

n− 	

McNemar’s test statistic is:

T =
( j− k)

2

( j+ k) 	
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Under the null hypothesis, T follows a χ2 distribution on 1 degree of freedom. The p-value from a one-
sided test will be reported.

Results will be expressed as an absolute difference in proportions:

∆ =
a1 − a2

n−
=

j− k

n− 	

As a one-sided test is being used, assuming the point estimate of the absolute difference in proportions 
is positive, the one-sided 95% CI is:

[∆− 1.645× SE(∆),+∞]	

where:

SE(∆) =
1

n−

√
j+ k− ( j− k)

2

n− 	

A one-sided test is being used as it is not expected that specificity could be worsened by the addition 
of ML assistance. In the event that the point estimate is negative, a two-sided test and CI will be 
presented, acknowledging the loss in power to demonstrate a difference.

Should the number of discordant pairs (j + k) be small, an exact test will be performed instead. The 
p-value is calculated from the binomial distribution as:

min



1,

min( j, k)∑
t=0

Å
j+ k

t

ãÅ
1

2

ã j+k




	

Secondary outcome analysis
Per-patient sensitivity, per-lesion sensitivity and per-lesion specificity of WB-MRI with and without 
ML, for experienced radiologists, against the reference standard were reported with 95% CIs. The 
difference in sensitivity/specificity and 95% CI was calculated similarly to the primary outcome though 
no hypothesis test was performed.

Per-patient sensitivities and specificities of WB-MRI with and without ML, for inexperienced 
radiologists, against reference standard was reported with 95% CIs. The difference in sensitivity/
specificity and 95% CI was calculated similarly to the primary outcome though no hypothesis test will 
be performed.

TABLE 34 2 × 2 table to compare specificity with and without ML

With ML

Negative Positive Total

Without ML Negative I J a1

Positive K L b1

Total a2 b2 n−
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Confidence: The agreement in confidence (on a scale of 1–4) between WB-MRI with and without the 
ML support will be described using a 4 × 4 table, as below, and visualised using a bar charts. This will be 
done overall and by reference standard diagnosis.

Tumour size as assessed with and without ML will be compared using scatterplots. The size of the 
largest deposit as measured with ML will be plotted against the size of the largest deposit as measured 
without ML. A reference line of x = y will be added to indicate the same size measured by both methods, 
and colours used to indicate the reference standard diagnosis. This will be repeated for the size of 
second largest deposit, and the number of additional deposits.

Reading time will be compared between WB-MRI with and without the ML support by calculating the 
paired difference (RT with ML – RT without ML) for each scan, as they are read by the same radiologist. 
The paired differences will be analysed using regression, adjusting the standard errors for clustering 
at the radiologist level and including covariates: order of reads (ML first/second) and type of primary 

TABLE 36 Diagnostic accuracy measures with and without ML assistance, read by experienced radiologists

Without ML With ML
Absolute difference
% (95% CI)a

Per-patient specificity, n/N % (95% CI)

Per-patient sensitivity, n/N % (95% CI)

Per-lesion specificity, n/N % (95% CI)

Per-lesion sensitivity, n/N % (95% CI)

a	 A similar table will be produced for diagnosis by inexperienced radiologists and for subgroup analyses.

TABLE 37 Summary table for secondary outcomes

Experienced radiologists Inexperienced radiologists

Without ML With ML Without ML With ML

Confidence, median (IQR)

 Reference positive

 Reference negative

RT, median (IQR)

Interobserver variance, κ (95% CI)

Intraobserver variance, κ (95% CI)

IQR, interquartile range.

TABLE 35 Comparison of confidence in diagnosis

Confidence with ML

1 … 4

Confidence without ML 1

…

4
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tumour (colon, lung). The estimated mean difference in RT (with 95% CI) at the mean level of covariates 
will be obtained from the intercept term in the regression. The associations with read order and type 
of tumour will also be reported. A 1-month gap between reading sessions under the provision that the 
gap is sufficient enough to remove any RE bias. In the event where times between reading sessions 
vary between readers, an additional covariate may be added and its interaction with other covariates to 
explore dilution of their effects due to RE (time between reads in days).

A transformation of the dependent variable may be required if the regression assumptions are not met. 
If the assumptions are still not met after transformation, a Wilcoxon signed rank test137 was used to test 
for an unadjusted difference in RT.

Interobserver variance: Summary statistics of the proportions of concordant and discordant diagnosis 
between two experienced radiologists will be reported for both methods. Interobserver variance will 
be measured by kappa (κ) coefficient as described in Reading platform. A 95% CIs for kappa will be 
calculated using bootstrapping (bias-corrected method). We will assess whether the interobserver 
variance is reduced using ML by comparing the estimated values of kappa with and without ML, using 
the method of Gwet138 which is similar to the paired t-test.

Intraobserver variance: this will be calculated and compared using the same methodology as above 
replacing the reads from two different experienced radiologists with tow reads from the same 
radiologist, taken at a different time.

Costs of radiology RT: Estimated cost savings per WB-MRI will be calculated by multiplying any 
reduction in RT in hours (as per the above RT analysis) by the associated hourly radiologist reading costs. 
If appropriate, this will be performed separately for cases with and without metastases.

Analysis for inexperienced readers
In addition to the above analyses described in Primary outcome analysis (STARD items 23 and 24) and 
Secondary outcome analysis, to satisfy the third secondary objective, a duplicate set of analyses will 
be carried out based on reads carried out by a cohort of approximately 7–8 non-experienced readers. 
Likewise, difference in ML-effect sizes between experienced and non-experienced cohorts will be 
assessed to investigate whether any effect derived from using ML output is affected by the experience 
of reader.

The non-experienced reader cohort may potentially have a variance in abilities (e.g. some may be at 
consultant level with experience of reporting cancer while some are at the trainee level). In the event 
where this occurs, an additional set of sensitivity analyses will be run allowing for the inclusion of a 
stratification variable for ‘ability’ (consultants/trainees/etc.).

Subgroup analysis
The following subgroup analysis was performed for diagnostic accuracy outcomes, with subgroups 
defined by the reference standard:

•	 size of lesion (above or below median);
•	 location of primary tumour (colon, lung);
•	 location of metastatic disease (LVR, bone, nodal);
•	 N-stage;
•	 M-stage.

Interim analysis
Interim analysis, concerning per-lesion sensitivity, will be undertaken as part of Phase 2. It will be carried 
out using 40–50 new patient data sets. The per-lesion sensitivity will be calculated as the proportion of 
metastatic lesions which are correctly identified by the ML algorithm. Correct identification is defined 
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as achieving a particular threshold for the Dice coefficient, which quantifies the overlap of the areas 
identified as lesions by the ML algorithm with the true lesion area, as defined by the clinical expert. A 
suitable threshold for the Dice coefficient will be defined as part of the ML process, prior to the interim 
analysis. A 95% CI for the sensitivity will be calculated using the Wilson method.139 We will require the 
upper 95% CI of the sensitivity no less than 80%. If this is not met, then further work on the algorithm 
will be required. This is not a formal stopping rule, but rather the check to prevent proceeding to Phase 
3 if the algorithm is not identifying lesions at all. The cases used for the first interim analysis will not 
have been used for ML training or read by radiologists. Therefore, if the algorithm is sufficiently sensitive 
to proceed to Phase 3, the cases used in the first interim analysis can be part of the validation set. They 
will therefore be selected from those allocated to Phase 3.

A proposed interim analysis for per-patient specificity, for reads assisted by the ML algorithm in Phase 3, 
will no longer be performed due to time constraints.

Sensitivity analysis
Any difference in specificity seen in the primary analysis may be affected by the order or timing of the 
scans. It is also possible that the statistical significance is overstated if outcomes for the same radiologist 
are correlated. Conditional logistic regression will be used to obtain an odds ratio comparing the 
specificity with and without ML adjusting for the scan order (ML first/second), time between scans (if 
regression assumptions in section Secondary outcome analysis do not hold), and using robust standard 
errors to allow for clustering by radiologist.

To investigate whether the quality of sequence has an effect on the study results the primary analysis 
will be re-run using just reads where either the T2 axial stack or the DW axial stack has been deemed 
‘good’ quality. The same set of reads will be used to re-run secondary analyses for per-patient specificity 
and sensitivity. To investigate the effect sequence quality on read time, the regression model in section 
Secondary outcome analysis will include covariates for T2 stack quality and DW stack quality.

As per Analysis for inexperienced readers, in the event where the non-experienced reader cohort has 
varying grades of ability/experience an additional sensitivity analysis will be run within the non-
experienced cohort, including an additional variable to consider any effect this ability difference 
may have.
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